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Abstract: Motivated by the application of data-driven solutions to the field of

particle physics, in particular flavour tagging, we study the effectiveness of deep

learning (DL) approaches for inclusive |Vub| measurement within the Belle II envir-

onment and strangness tagging in the LHCb environment.

In the |Vub| study, we compare the performance of an existing Boosted Decision Tree

approach with a Bayesian neural network. In addition, we perform an in depth study

on the selected features, investigating the signal inclusivity of DL models which gives

insights into behaviours of the models.

We aim for classification speed and precision in the strange-quark jets tagging study.

Therefore, we explore using a simple fully connected feedforward neural network to

classify s-jets among all light jet backgrounds. A comprehensive feature investigation

is performed to understand the discriminating power of jet observable Js and the

importance of particle identification.

Additionally, data-driven methodologies are also reshaping industrial practices. A

study investigating the potential of DL in predicting realised volatility of a financial

index is included. It is a collaborative project with Optiver where neural networks

along with various training schemes are studied to maximise profits.
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Chapter 1

Introduction

Machine learning (ML) applications have evolved rapidly for most fields of scientific

studies, this includes subjects relevant to particle physics. ML has been applied

to various problems, beginning with applications to high-level physics analysis in

the 1990s and 2000s, followed by an explosion of applications in particle and event

identification and reconstruction in the 2010s [1]. A key objective of particle physics

since the major discovery of the Higgs boson has been to capitalise the full physics

potential of both the Large Hadron Collider (LHC) and other upcoming experiments

such as the high luminosity LHC (HL-LHC) and the B physics focused Belle II.

There will be a vast collection of new challenges from such experiments, both quant-

itatively and qualitatively, as the event size, data volume and complexity reaches

new heights. The physics reach from interpreting the experimental results will be

limited by efficiencies and performances of algorithms and computational resources.

The application of ML to particle physics shed light on both of these areas.

In this thesis, we focus on two event classification problems. The first one is the

inclusive measurement of |Vub| in the Belle II environment where |Vcb| related back-

ground events dominate. We compare the performances of a deep learning based

Bayesian neural network (BNN) with the existing boosted decision tree (BDT) ana-

lysis. Further investigations include complexity of features, the usage of different

Monte Carlo (MC) event generators and the inclusivity of phase space probed by
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the trained models.

The other problem concentrates on implementation of a strangeness tagger for LHCb

as the luminosity upgrades transform it into a general purpose detector. We explore

the possibility of having a simple neural network classifying s type jets from other

light jet backgrounds. ATLAS and CMS scenarios are briefly explored under the

same setup.

The approaches presented for both problems involve supervised learning, as the use

of MC event generators remove sample size constraints which is hugely beneficial for

data-driven analytics. However, this also means that the dependence on the quality

of modelling within the MC is much larger in comparison to other data sources. This

is inevitable within particle physics as the purpose of these classifiers is to further

our understanding of experimental data. This dependence is investigated in the

context of the problems, in particular the |Vub| measurement where an inclusivity

study of the models depending on their choice of MC and input features is included.

While ML is popular among scientific studies, it is also transforming other industries.

Most sectors have a vast volume of data untouched once recorded. The value of these

historical data are being recognised through ML. An additional aspect of this thesis

is based on the internship carried out as part of the study, whereby a research project

was undertaken in collaboration with Optiver. The purpose of this project was to

explore whether deep learning methods can be used to predict realised volatility of

a financial index. A selection of neural network architectures, input features and

training methods were investigated with a strong focus on the profits and losses

generated as the performance metric.

The rest of this thesis is organised as follows. Chapter 2 is an overview of the relevant

parts of the Standard Model (SM). Chapter 3 describes the ML algorithms used

throughout the studies presented and they include BDT, NN and the metrics used to

evaluate their performances. Chapter 4 is a comprehensive study on ML-approaches

in |Vub| inclusive measurements. Chapter 5 explores the potential of building a

strangeness tagger built from simple NNs. Chapter 6 provides an overview on real-
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ised volatility and option theory before diving into the performance investigation

from various ML techniques and we will conclude in Chapter 7.





Chapter 2

Physics Background

This thesis explores two event classification problems that are fundamentally flavour

physics problems. The central message from both problems is to provide a tool in

testing the SM. This chapter focuses on giving an overview of the SM while focusing

on the flavour sector. The aim is to provide sufficient understanding for the research

results presented in later chapters. The contents are largely based on Ref. [2–4].

2.1 The Standard Model

The current best theory in describing fundamental particle interactions is the Stand-

ard Model (SM). It has been extensively tested by experimental results from colliders

such as the Large Hadron Collider (LHC) at CERN. The most notable discovery is

the observation of a Higgs-like scalar boson in 2012 by ATLAS [5] and CMS [6]. The

SM is great at describing a compelling collection of phenomena but there are also

several long standing unaddressed problems. To name a few, an explanation for the

neutrino masses, particle content for Dark Matter and the existence of Dark Energy.

The SM is a quantum field theory (QFT) which describes the fundamental interac-

tions of nature apart from gravity. The descriptions are governed by the Lagrangian

density LSM, typically denoted as just the Lagrangian. It can be expressed by the
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following schematic equation:

LSM =− 1
4FµνF

µν

+ iψ̄ /Dψ

+ ψ̄iyijψjH + ψ̄iyijψjH̃

+ |DµH|2 − V (H) ,

(2.1.1)

where each line respectively represents pure gauge, matter, Yukawa and Higgs.

Explicitly, the first line contains kinetic and interaction terms of gauge fields stored

within the field strength tensor F µν . The second line describes the propagation

of matter fields ψ and their interactions with gauge fields through the covariant

derivative /D. The third line is known as the Yukawa interaction where y is the

Yukawa matrix. This line describes the interaction between the Higgs field H and

matter fields, giving rise to their masses after electroweak spontaneous symmetry

breaking (EWSB). The final line represents the Higgs-field interactions with the

gauge fields and with itself. The self-interaction produces the potential. More

details on matter field masses are explained in Section 2.1.2.

The SM is a gauge theory constructed with the SU(3)c × SU(2)L × U(1)Y gauge

symmetry where the subscripts c represents the colour charge, L is left and Y is the

weak hypercharge. It is also Lorentz invariant, as required by special relativity. The

field content of the SM is shown in Table 2.1. Notice that the gauge fields are not

included in this table, more details on them are described in the following sections.

Field SU(3)c SU(2)L U(1)Y
QL 3 2 1

6
uR 3 1 2

3
dR 3 1 −1

3
LL 1 2 −1

2
eR 1 1 −1
H 1 2 1

2

Table 2.1: Field content of the SM.
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2.1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of strong interaction, first com-

pletely written down by Fritzsch, Gell-Mann, and Leutwyler [7] and later on polished

by Gross and Wilczek [8], and Politzer [9]. It is a non-abelian theory with SU(3)c

symmetry, non-abelian simply means the generators within this theory are non-

commutative. Quarks have three (Nc) different colour charges as it is part of the

fundamental representation of SU(3). The gauge boson for QCD is the gluon, it is

in the adjoint representation which means that it has eight (N2
c − 1) colours.

There are two QCD parts in the Langrangian from Eq. 2.1.1: the QCD gauge field

tensor and the interactions between quarks and gluons inside the covariant derivative

D. The gauge field tensor part can be written as:

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν , (2.1.2)

where Ga is the gluon field, gs is the strong coupling constant and fabc is the

antisymmetric structure constant of SU(3). The covariant derivative connecting

quarks and gluons can be written as :

(Dµ)ij = ∂µδij − igsGa
µt
a
ij , (2.1.3)

where ta are the generators of SU(3). Some important relations from these generators

are:

[ta, tb] = ifabct
c ,

tAabt
A
bc = CF δac ,

CF ≡
(N2

c − 1)
2Nc

= 4
3 ,

fACDfBCD = CAδAB ,

CA ≡ Nc = 3 ,

tAabt
B
ab = TRδAB ,

(2.1.4)
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where CF s the colour factor (“Casimir”) associated with gluon emission from a

quark, CA is the colour factor associated with gluon emission from a gluon and

TR = 1/2 is the colour factor for a gluon to split into a qq̄ pair. It is important

to note that QCD governs quarks into bound states called hadrons at low energy

through a property known as colour confinement and it is also the main source of

radiation at high energies such as a collider collision.

2.1.2 Electroweak sector and the Higgs mechanism

The electroweak sector is based on the model first introduced by Glashow [10], Wein-

berg [11] and Salam [12]. This model describes electroweak interactions between

gauge fields and matter fields for the gauge group SU(2)L × U(1)Y . In the SM,

the left and right-handed fermion have different transformation properties under

different gauge groups. The subscript L for SU(2)L is included to emphasise the left

chirality. We can see this from Table 2.1 where left-handed fermions are doublets

(2) within SU(2) and the right-handed fermions are all singlets (1). Note that the

U(1) hypercharges are also different between left and right handed fermions which

means that parity is violated. Further discussion on the global symmetries of the

SM is included later in this chapter.

As fermions with different chiralities transform differently, the terms in the Lag-

rangian associated with them are naturally different. For left-handed fermions, the

covariant derivative includes interactions with both SU(2) and U(1) gauge fields. It

can be written as:

Dµ = ∂µ − igAaµ
σa

2 − ig
′YLBµ , (2.1.5)

where σa are the Pauli matrices, and Aaµ and Bµ are the gauge fields of SU(2)L and

U(1)Y respectively. For the right handed fermions, only the weak hypercharge field

is at play. The covariant derivative is then:

Dµ = ∂µ − ig′YRBµ , (2.1.6)
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where YL,R have intentionally been included as different variables to further emphasise

that left- and right handed- fields have different hypercharges.

The chirality dependence on the field when interacting with the gauge groups also

means that standard Dirac mass terms are forbidden. In addition, mass terms for

the gauge boson fields (M2VµV
µ) are not gauge invariant. However, we know that

theW± and Z gauge bosons are definitely not massless. The missing piece to include

these masses is known as the BEH mechanism [13–15]. The inclusion of a complex

scalar field with the famous “Mexican hat” shaped potential allows the acquirement

of the vacuum expectation value (VEV). This spontaneously breaks the symmetry

of the SM Lagrangian down to SU(3)c × U(1)EM, also known as the electroweak

spontaneous symmetry breaking (EWSB). The potential mentioned can be written

as:

V (H) = −µ2(H†H) + λ(H†H)2 , (2.1.7)

where it will take the hat shape for µ2, λ > 0. When this condition is met, the

minimum for this potential is:

|H| = v where v =
√
µ2

2λ (2.1.8)

This non-zero VEV breaks the SU(2)L × U(1)Y electroweak symmetry down to the

U(1)EM conservation of electric charge symmetry. Subsequently, the Higgs doublet

can be written in unitary gauge as:

H = 1√
2

 0

v + h

 , (2.1.9)

where h is the Higgs boson field. We can now retrieve mass terms for the gauge bosons

and fermions. For the case of the gauge bosons, the squared covariant derivative

within the broken Higgs phase can be expanded and we can define three massive
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vector bosons (W±, Z) and one massless vector field orthogonal to Z (photon A).

W±
µ = 1√

2
(A1

µ ∓ A2
µ) with mass mW = g

v

2 ,

Z0
µ = 1√

g2 + g′2
(g′A3

µ − gBµ) with mass mZ =
√
g2 + g′2

v

2 ,

Aµ = 1√
g2 + g′2

(g′A3
µ + gBµ) with mass mA = 0 .

(2.1.10)

This aligns with observation from experiments where we have massive W and Z

bosons while the photon remains massless.

One can now consider the covariant derivate from Eq. 2.1.5 in terms of the mass

eigenstates shown above, it is written as:

Dµ = ∂µ − i
g√
2

(W+
µ σ

+ +W−
µ σ
−)− i 1√

g2 + g′2
Zµ

(
g2σ

3

2 − g
′2Y

)

− i gg′√
g2 + g′2

Aµ

(
σ3

2 + Y

)
,

(2.1.11)

where σ± = 1
2(σ1 ± iσ2).

The term associated with the photon shows that the coefficient for electromagnetic

interaction as the electro e can be written as:

e = gg′√
g2 + g′2

, (2.1.12)

and that the electric charge quantum number Q is:

Q = σ3

2 + Y . (2.1.13)

In addition to the electromagnetic interaction, we can define the weak mixing angle

θw, also known as the Weinburg angle [11]. It is the angle that appears when

transforming between the (A3, B) and (Z,A) bases:Z
A

 =

cos θw − sin θw

sin θw cos θw


A

3

B

 , (2.1.14)
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the individual terms can be written as:

cos θw = g√
g2 + g′2

, sin θw = g′√
g2 + g′2

. (2.1.15)

With the Weinburg angle, Eq. 2.1.5 can be rewritten as:

Dµ = ∂µ− i
g√
2

(W+
µ σ

+ +W−
µ σ
−)− i g

cos θw
Zµ

(
σ3

2 − sin2 θwQ

)
− ieAµQ , (2.1.16)

where g = e
sin θw

. This form of the covariant derivative implies the couplings of

all weak bosons can be described with two parameters: the well-measured electron

charge e and the new mixing angle θw. The coupling induced by W and Z will also

involve the masses of these bosons. However, the masses are not independent where

mW = mZ cos θw. Subsequently, all effects of W and Z exchange on tree level can

be written in terms of three basic parameters: e, θw and mW . Notice that fermion

mass terms have not been mentioned although they are crucial for the next section.

2.2 Flavour

The quarks and leptons of the SM are organized into three generations. The fun-

damental properties between the generations are practically identical apart from

their masses. In these three generations, six different types of quarks and leptons

are also addressed as different flavours. The assortment of flavours give rise to a

mix of phenomenological interactions. Heavy flavour physics refers to studies of the

heaviest quarks, that is the quarks in the third generation (top and bottom), and

there is also some interest in the second generation (charm and strange). This is the

main focus of this thesis.

Particles from one generation can alter their flavour through two types of processes:

the first is a tree-level process interacting with aW± boson, the other type is called a

flavour changing neutral current (FCNC) interactions. The second type is forbidden

at tree level within the SM; loop suppression applies such that they are much rarer

compared to the first type.
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2.2.1 CKM matrix

In the previous section, we mentioned that quarks acquire masses through the BEH

mechanism. The Lagrangian terms representing this phenomenon are known as

Yukawa Interactions. They are interactions between the quark and the Higgs field.

They can be written as:

L ⊃ Y u
ijQ

i
LH̃u

j
R + Y d

ijQ
i
LHd

j
R + h.c.

⊃ v√
2
Y u
iju

i
Lu

j
R + v√

2
Y d
ijd

i
Ld

j
R + h.c. ,

(2.2.1)

where H̃ = iσ2H∗ and i, j are the generation indices. Note that the Higgs field

written in unitary gauge from Eq. 2.1.9 is applied and terms without the VEV are

dropped. We can find the quark masses by applying singular value decomposition

into the mass basis of Y . This is needed because Y are not guaranteed to be diagonal.

We find:

Mu = v√
2
Uu
LY

u(Uu
R)† and Md = v√

2
Ud
LY

d(Ud
R)† , (2.2.2)

where Uu,d
L,R are unitary matrices. The quark mass matrices Mu,d are now diagon-

alised such that Mu = diag(mu,mc,mt) and Md = diag(md,ms,mb). There are

two important bases for Y : one where the masses are diagonal, called the mass

basis (Eq. 2.2.2), and the other where the W± interactions are diagonal, called the

interaction basis. The W± basis arose from the fact that W bosons couple up and

down type quarks together. Note that these two bases do not produce the same

result in flavour-changing interactions. The change of basis can be written as:

uLγ
µdRW

+
µ → uL(Uu

L)γµ(Ud
L)†dRW+

µ ≡ uiLγ
µVijd

j
RW

+
µ (2.2.3)

where Vij ≡ Uu
L(Ud

L)† is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [16,17]. In

other words, the CKM matrix is the rotation between these two bases. As the CKM

matrix connects the flavours as shown in Eq. 2.2.3, a common way of representing
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it is as follows:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ≈


0.97 0.23 0.0037e−1.1i

−0.22 0.97 0.042

0.0086e−0.39i −0.041 1

 (2.2.4)

Each of the matrix element in the CKM can only be determined through experimental

measurements. However, additional improvements can be made using global fits

which combine theory calculations and experimental data. The values shown in

Eq. 2.2.4 are approximations of fit results from CKMFitter [18,19]. There are two

common ways in parametrising the CKM, the standard way through three mixing

angles and one phase [20] or the Wolfenstein way [21]. The standard parametrisation

scheme arose from the fact that a general 3 × 3 unitary matrix has nine degrees

of freedom and they can be separated into six phases and three real parameters.

Additionally, all but one of the phases can be absorbed into the quark fields leaving

three real parameters (θ12, θ13, θ23) and just one phase (δ13). The real parameters

are also known as mixing angles between different generation of quarks. The CKM

under standard parametrisation is written as:

V =


c12c13 s12c13 s13e

iδ13

−s13c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (2.2.5)

where cij = cos θij and sij = sin θij. The Wolfenstein parametrisation originated from

an attempt to represent the CKM through a small parameter expansion Vus ≈ 0.2 up

to orderO(λ4). The CKM under this parametrisation is written with four parameters

(λ,A, ρ, η), and has the form:

V =


1− λ2/2 λ Aλ(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (2.2.6)

This alternative parametrisation scheme displays important features of the CKM

as shown in the numerical version in Eq. 2.2.4. It is almost an identity matrix and
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therefore flavour transitions are suppressed. Such transitions between the first and

second generations are less suppressed compared to the first and third generation

transitions. Also, the complex elements (Vub, Vtd) are both O(λ3) which means they

are heavily suppressed.



Chapter 3

Machine Learning in Particle

Physics

Machine learning (ML) is one of the fastest growing fields since the late 20th century.

Data driven solutions spawn across most if not all scientific studies. The idea behind

ML is relatively simple; can a computer perform a task without being explicitly

programmed to do so. There are generally four types of ML, supervised, unsuper-

vised, semi-supervised and reinforcement learning. For supervised and unsupervised

learning, they differ by whether the algorithm is given labels of the training data as

a reference or not. Semi-supervised learning is a combination between supervised

and unsupervised learning where a small amount of data contain labels but the

majority are not labelled. Reinforcement learning is the most unique out of the

four types where it can be thought of as an agent trained to make a sequence of

decisions within a predefined environment. Independent of these four types, ML

is used to solve two general problems, regression and classification. The goal of a

regression problem is to statistically fit a model such that the real and continuous

target distribution can be predicted given further input data. On the other hand, a

classification problem has a categorical target e.g. a colour or types of flower, and

the goal is then to draw a conclusion on whether a set of input value represents

a certain category. This chapter focuses on introducing key concepts of machine
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learning and their applications in particle physics. In particular, we will concentrate

on decision trees and neural networks as they are the methods used throughout this

thesis. Ensembling will also be discussed as a method to improve performance for

both algorithms.

Machine learning applications in particle physics have evolved rapidly in the past

decades. The most common application has been event classification type problems

where the algorithm decides if a particle collision event belongs to a certain physical

process, the most refined usage is certainly quark gluon classification where a vast

array of methods have been developed to tackle this traditionally difficult problem

due to their similarity in fundamental properties [22–24] . Even though there were

more interest in classification problems early on, popularity in regression has caught

on as simplification for Monte Carlo simulations became more effective [25, 26]. A

complete review of ML applications can be found in Ref. [27–30]. This chapter is

inspired by Ref. [31].

3.1 Model and parameters

Before we introduce any ML algorithms, some simple concepts on model fitting are

reviewed here. For the purpose of this thesis, we shall focus on supervised binary

classification problems, we have:

f(x) : Rd → R, x ∈ R 7→ y∗ ∈ [0, 1] , (3.1.1)

where f is some ML algorithm which takes in a d-dimensional vector x and outputs

a real number y∗ between 0 and 1. Note that f(x) is used interchangeably with

model and x is often referred to as the input variables or features throughout this

thesis. The algorithm f learns to become a classifier from the training dataset D

which contains n pairs of vectors x and labelled output y such that:

D = {(xi, yi)|x ∈ Rd, y ∈ [0, 1]}, |D| = n . (3.1.2)
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In practice, f divides the d-dimensional input space into two regions for the two

classes. The task of finding this partition can be generalised as training the model

to find the best set of parameters {θ} that fits the data xi to label yi. In order to

train any model, an objective function is required and it can be written as:

obj(θ) = L(θ) + Ω(θ) , (3.1.3)

where L is the loss term and Ω is the regularisation term. The choice of function

for the loss term varies depending on the task. A typical loss function for binary

classification is the cross-entropy. The regularisation term is crucial in controlling

the complexity of the algorithm. The process of training a model is then to minimise

the objective function.

There are parameters optimised for the model as shown in Eq. 3.1.3 and there

are also hyperparameters defining the structure/complexity of the algorithm. The

training data provided to the algorithm optimises the performance based on the

hyperparameters but a problem could occur where the model is fitted exactly to the

training data and therefore fails to generalise to unseen data, such phenomenon is

known as overfitting. The regularisation term has an effect in avoiding overfitting.

A data set often contains three parts: training, validation and testing sets. The

purpose of having a validation set is to help visualise whether overfitting has occurred.

This is common where the values of the objective function are computed for both the

training and validation sets, a divergence between the values indicates overfitting has

occurred. In order to evaluate the performance, the testing set is typically generated

independently from the training and validation sets such that the algorithm could

not have learnt from these data during the learning and optimisation phases. Once

a model is well optimised, it can be used for inference which simply means the

utilisation of this model for making predictions on real data leading to actionable

outputs.
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Figure 3.1: Schematic diagram of a decision tree.

3.2 Boosted decision tree

Boosted decision tree (BDT) [32] is a staple piece in the machine learning arsenal for

various fields as it is effective yet simple and clearly interpretable. It is important

to start with the basic unit, what is a decision tree?

3.2.1 Decision tree

A decision tree [33] is a device that assigns a class number/decision based on the

input variables. The tree is built with decision nodes and leaf nodes. The decision

nodes are tests on various parts of the input vector. The tests are iteratively con-

structed and updated throughout the learning process, they can also be thought of

as making cuts on the input features. The leaf nodes are where the class number

is decided. A path leading to a particular result is known as a branch, this can

be understood as a conditional probability for the result to be a certain class. A

diagram of what a tree might look like is given in Fig. 3.1.

The rules in building and pruning a tree slightly differ between different tree al-

gorithms, we follow the procedures from the classification and regression trees

(CART) [34] as they are the tree models used throughout this thesis. The rules

are as follows:
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• The decision node creates tests based on the input variables such that the best

partition between the two classes is obtained.

• Each decision node recursively splits into child nodes and the first item is

applied.

• The splitting stops when no further information/performance gains are detected

or some pre-defined ending conditions are met.

The method used by CART to detect information gains is known as Gini impurity [35].

It is a measure of how often a randomly chosen element from the set would be

incorrectly labelled if it was randomly labelled according to the distribution of labels

in the training dataset. The Gini impurity for a dataset or feature can be written

as:

IG(p) =
J∑
i=1

pi(1− pi) , (3.2.1)

where J is the number of classes and pi is the fraction of data points in class i within

the dataset. A score can then be calculated for each branch of the tree through this

measure and a weighted sum of the whole tree determines if additional information

has been gained. This process is analogous to the entropy method shown in Eq. 3.2.2

where the weighted sum of score is replaced with the entropy E. A tree on its own

is a weak learner, often naive and prone to problems such as overfitting. A possible

solution for weak learners such as trees to avoid this problem is to have an ensemble

of trees. A comprehensive review of tree methods can be found in Ref. [36].

E =
J∑
i=1
−pi log2 pi . (3.2.2)

3.2.2 Boosting

Using an ensemble of trees is an effective scheme to reduce variance and bias on the

predictions and therefore obtain a relatively stable predictor. There are two main

streams of techniques in creating ensembles, bagging and boosting. This thesis has
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a stronger focus on boosting ensembles as they are more commonly used in particle

physics. Bagging refers to training multiple models with randomly chosen subsets

of the original training dataset and the combined predictions would have lower vari-

ance compared to a single tree model. One obvious advantage of bagging is that

the models are independent of each other in terms of training, allowing for parallel

computing. A famous bagging ensemble tree method is the Random Forest [37].

On the contrary, boosting trains the models sequentially which results in one strong

learner. Within the sequence of trees, early models are simple and any misclassified

samples of the input data would be highlighted with an increased weight. Sub-

sequently, the later models would have a stronger focus on those weighted samples

leading to better results overall. There have been multiple techniques developed

to optimise the boosting process, the most common one is called gradient boost-

ing [38, 39] where a gradient descent algorithm can optimise a given differentiable

loss function to guide the construction of future trees. One well known package for

gradient boosting tree methods is called XGBoost [40]. Note that ensemble techniques

are applicable to algorithms other than trees for the same benefits.

3.3 Deep learning

Deep learning (DL) refers to neural network (NN) related ML algorithms throughout

this thesis. Networks of non-linear elements, interconnected through adjustable

weights, play a prominent role in machine learning. These type of object is known as

neural networks. They got the name because of the vague resemblance to networks

of biological neurons. There are many methods in how a network can be connected

and the type of basic units used to construct it. In this thesis, we will focus on the

fully connected neural networks, which we will call NN, and an extended version

called Bayesian neural networks (BNN) [41,42].
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Figure 3.2: Schematic configuration of a perceptron.

3.3.1 Perceptron

A perceptron is the fundamental building block of a neural network, it was first

popularised by Minsky and Papert in 1969 as a type of threshold logic unit [43,44].

It outputs a decision given an input data point x = (x1, x2, ..., xd), the calculation

involved can be written as:

output(x) = act(
d∑
i=0

xi · wi + bias) , (3.3.1)

where wi are the weights which controls the relative importance of each feature, the

bias term is typically referred to as the zero-th data point where bias = 1 · w0 and

act is short for the activation function. A diagrammatic version of this calculation

is shown in Fig. 3.2. A vast collection of activation functions have been developed

over the years, we will focus on the sigmoid function here as it is the most common

choice for the output of a binary classifier. We can see why it is a good choice from

Fig. 3.3, it is an “S” shaped bounded and differentiable curve which returns a real

number between 0 and 1. The bounded nature acts conveniently as a probability

like measure. We have the basic structure of a perceptron defined, the learning

process is then to find the best weights, as mentioned in Section 3.1, such that the

best partition between the two classes can be obtained. Recall from Eq. 3.1.3, any

model requires an objective function and the binary classifiers typically use binary
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Figure 3.3: Sigmoid function.

cross-entropy as the loss function. It can be written as:

L(x, y, w) = − 1
N

N∑
i=1

yi · log(ŷi(x,w)) + (1− yi) · log(1− ŷi(x,w)) , (3.3.2)

where N is the number of data points, yi is the i-th label and ŷi is the i-th prediction.

The log terms emphasis small difference between the prediction and the label. We

know that ŷi depends on the weights wi from Eq. 3.3.1, the learning process is then

to find the optimal weights such that L is minimised.

Gradient descent algorithms are part of the family of automated differentiation librar-

ies. They are the standard methods for optimising weights within machine learning.

The principle behind gradient descent is simply the chain rule of differentiation. The

weights are updated like:

w(t+ 1) = w(t)− η∇wL , (3.3.3)

where the weights, w = (w1, w2, ..., wj), update at timestep t+ 1 depending on the

weights from the current timestep/iteration t and the gradient of the loss function

w.r.t. weights multiplied by the learning rate η. The fact that the gradient of the

loss function is involved highlights the importance of the differentiable property.

The learning rate is one of the many optimisable hyperparameters for a ML model,

it is important because it essentially controls the step size of the gradient decent.

The goal of the descent is to find the global minimum, a learning rate too large
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could cause the model to converge into a suboptimal minimum and a learning rate

too small could stop the model from leaving a suboptimal local minimum. The

common practice is to set an initial learning rate and allow it to evolve with future

iterations depending on the gradient descent algorithm. The most popular gradient

descent algorithm in recent years is called adaptive moment estimation (Adam) [45],

it changes the learning rate based on exponentially decaying averages of past squared

and non-squared gradients along with the concept of momentum [46] which helps

guide the direction of the decent. An overview of various gradient descent algorithms

can be found in Ref. [47].

3.3.2 Including regularisation

The previous section described the learning process of a perceptron and how the

weights can be updated to minimise the loss function. However, we know from

Eq. 3.1.3 that there is more than just minimising the loss function. The regularisation

term plays an important role in stabilising the model in order to avoid overfitting.

There are various methods in applying regularisation, we will focus on L1 and L2

regularisation. There are other algorithm specific methods which will be mentioned

in the corresponding sections. L1 and L2 regularisation, also known as LASSO and

ridge regression respectively, can be thought of as a penalty term added onto the

objective function. L1 adds on the sum of the absolute value of the weights and L2

adds on the sum of the squared magnitude of the weights. They are written as:

L1 = λ
m∑
j=0
|wj| , L2 = λ

m∑
j=0

w2
j , (3.3.4)

where λ is a hyperparameter functioning like the strength of the regularisation.

These penalty terms drive the weight of less important features down such that the

model focuses on the useful features. Note that L1 can reduce the weight to zero

while L2 can only take the weight close to zero.

The learning process with the regularisation term included is akin to the description
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Figure 3.4: A fully connected neural network with 2 hidden layers.

in Eq. 3.3.3. Using L2 as the example, the updated weight has the form:

w(t+ 1) = w(t)− η∇wL− 2ηλw(t) . (3.3.5)

3.3.3 Fully connected neural network

The classification power of a single perceptron is limited as the task become more

complicated. The next intuitive step is to connect multiple perceptrons together in

parallel, the resultant object is known as a dense layer. A neural network (NN) can

then be constructed by connecting layers together in series. The structure of any NN

typically consists of at least three layers, the input layer, output layer and hidden

layer(s) sandwiched between them as shown in Fig. 3.4. A deep neural network is

simply a network with more than one hidden layers. It is a fully connected neural

network when all neurons/perceptrons from two neighbouring layers are connected.

NNs have established a reputation for approximating highly non-linear functions well,

it is known that a network with two hidden layers where their activation functions

are non-linear can approximate any continuous function of n real variables given an

infinite number of neurons and training data [48]. The non-linearity comes from the

activation function as the action would otherwise just be a series of dot products as
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shown in Eq. 3.3.1. We have already encountered the sigmoid function above, other

popular activation functions include ReLU [49] and the hyperbolic tangent (tanh).

This non-linearity increases with the complexity of the network, this can be seen

from the output of the overall network given as:

outputNN(x) = f o(fh(fh−1(...f 1(x))) , (3.3.6)

where each f represents an output calculated according to Eq. 3.3.1, f o(...) is the

output of the output layer and h is the total number of hidden layers. The choice

of activation function for each layer is highly problem dependent, we mentioned

the sigmoid function being common for the output of binary classification but it

would be an unreasonable choice for a regression problem which typically uses a

linear output activation function. There are also hyperparameters associated with

the architecture of the network for example the number of hidden layers or the

number of neurons per layer. The learning process for a neural network is basically

an extended version of the gradient descent described in the previous section. The

weight optimisation process is known as back-propagation where the chain rule of

differentiation is used to calculate the Jacobian ∇W with respect to each neuron in

the network. The vector of weights from Eq. 3.3.3 becomes a matrix updating under

the same principles. This process can be written as:

W (t+ 1) = W (t)− η∇WL , (3.3.7)

where W is a matrix of weights where its dimension depends on the complexity of

the network.

In terms of regularisation, the L1 and L2 described in Section 3.3.2 are fully compat-

ible with NNs. Other common techniques include the dropout layer [50] and early

stopping. Each dropout layer has a rate which is a tunable hyperparameter. During

training, some number of layer outputs are randomly ignored or “dropped out” based

on the rate. This has the effect of making the layer look like and be treated like a

layer with different number of nodes and connectivity to the prior layer. In effect,
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each update to a layer during training is performed with a different “view” of the

configured layer. In addition, the training process will seem much noisier, forcing

nodes within a layer to probabilistically take on more or less responsibility for the

inputs. This conceptualisation suggests that perhaps dropout breaks-up situations

where network layers co-adapt to correct mistakes from prior layers, in turn making

the model training process more robust.

On the other hand, early stopping is much more straightforward, it is a mechanism

monitoring the training and validation loss. The training process is stopped when

the two losses deviates by a certain level chosen based on the target training preci-

sion. This ensures the model is not overfitted and that the best model weights are

obtained for inference.

3.3.4 Bayesian neural network

Development in different neural network architectures is arguably the fastest growing

field of research right now in ML. Different networks have been created for different

purposes such as the computer vision related convolutional networks [51] and the

natural language processing focused recurrent networks [52]. Bayesian neural network

(BNN) is an extension of the fully connected neural network, it can be thought of

as a neural network that trains based on the Bayes’ theorem.

Assume a neural network is viewed as a probabilistic model p(y|x,w) where y are

the labels, x are the inputs and w are the weights, training the model with dataset

D is the same as constructing the likelihood function p(D|w) and maximising it

based on w, this process is also known as maximum likelihood estimation (MLE).

This likelihood function corresponds to the cross-entropy shown in Eq. 3.3.2 and the

maximisation process is the same as optimising the loss function.

p(w|D) = p(D|w)p(w)
p(D) (3.3.8)

From Bayes’ theorem, shown in Eq. 3.3.8, we know that the likelihood function

p(D|w) multiplied by a prior distribution p(w) is proportional to p(w|D). Therefore,
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if we maximise p(w|D), this gives the maximum a posteriori (MAP) estimate of w.

The advantage of using MAP instead of MLE is that the model is naturally regular-

ised and hence is equivalent to optimising the loss function with the regularisation

term added on. The type of regularisation depends on the choice of distribution

chosen as the prior. Note that MLE and MAP both give point estimates of the

weights and biases. If the full posterior distribution over the parameters is available,

one can make predictions while accounting for the uncertainty on the weights. This

can be achieved from computing the predictive posterior distribution:

p(y|x,D) =
∫
p(y|x,w)p(w|D)dw . (3.3.9)

Note that this computation is the same as averaging predictions from an ensemble

of standard neural networks. The method up till this point sounds ideal, however

there are no analytical solutions for the true posterior p(w|D). One way around this

is to approximate the true posterior with a surrogate variational distribution q(w|θ)

where θ = (µ, σ), the mean and standard deviation of the variational posterior.

The learning for this distribution is done through minimising the Kullback-Leibler

divergence (KL) given in Eq. 3.3.10, which measures the similarity between two

probability distributions, between the surrogate q(w|θ) and the true posterior p(w|D)

as a function of the prior and the likelihood function through Bayes’ theorem.

KL[q(w|θ), p(w|D)] =
∫
dw q(w|θ) log q(w|θ)

p(w|D) . (3.3.10)

We have shown a mathematical overview of the BNN but how does it apply in the

context of ML? Recall an object of multiple perceptron-like neurons connected in a

parallel fashion is known as a dense layer. One of the two key differences between

BNN and NN is the type of layer used to construct the network. BNN commonly

utilises dense flipout layers instead of the standard dense layers. Flipout layers

perform a Monte Carlo approximation of the posterior distribution integrated over

the weights and biases [53]. In other words, the weights and bias are no longer points

but distributions characterised by mean µ and standard deviation σ as described
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in q(w|θ). There are a variety of prior distributions available but we will focus on

the Laplace and the Gaussian distributions. These two distributions are mentioned

because model trained with these priors are equivalent to models with L1 and L2

regularisations applied [54]. The learning process needs to include a KL-divergence

term which is also the second major difference. A complete derivation of this objective

function can be found in Ref. [55].

The weights updating process for BNNs is similar to a fully connected NN where

back-propagation is applied to compute the gradient of the mean µ and standard

deviation σ. It is important to note that a re-parametrisation trick is needed for

this back-propagation to work. This is because the gradient computed naturally

would otherwise be very close to zero. The trick is to sample from a parameter-free

distribution and then transform the sampled ε with a deterministic function t(µ, σ, ε)

for which a gradient can be defined.

Once the model is ready for inference, each prediction for the same input will be

different as we would be sampling from a distribution of weights instead of the point

values of weights. This allows the user to make n predictions for each data point in

the test set and in turns estimate the epistemic uncertainty arising from the neural

network weights. This process is also known as Bayesian inference.

3.4 Metrics

This section reviews some common metrics used when evaluating performances of

the ML algorithms in particle physics. For a binary classifier taking as input the

multidimensional features of an event, and returning a classifier output which is a

single number, ζ ∈ [0, 1]. Events with classifier output ζ ∼ 1 are likely to be signal

while events with ζ ∼ 0 are likely to be background. We define our signal (fiducial)

region through a cut on the classifier output. All events with ζ > ζcut are classified

as signal events. Events which are correctly classified as signal events are denoted

true positive (TP) events, while background events which are incorrectly classified
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as signal events are denoted false positive (FP) events. Note that this description is

general to any binary classifier.

Standard performance metrics in ML are the receiver operating characteristic (ROC)

curve, i.e. the true positive rate (TPR, signal acceptance) as a function of the false

positive rate (FPR, background acceptance), and the corresponding area-under-curve

(AUC), the integral of the ROC curve. TPR and FPR are given as:

TPR = TP
TP + FN , FPR = FP

FP + TN . (3.4.1)

It is also customary to plot the inverse of the FPR as a function of the TPR.

The optimal classification threshold (ζcut) is often selected by the best statistical

significance. We now discuss this in more detail.

The best estimate for the number of signal events can be written as:

S = N −B , (3.4.2)

where N is the total number of events, B is the number of background events and

S is the number of signal events. The uncertainty for this estimate is:

σ2(S) = σ2(N) + σ2(B) = N + σ2(B) (3.4.3)

where σ(S) is the standard deviation of S and N is characterised by a Poissonian

fluctuation such that σ2(N) = N . In addition, the sample size is assumed to be

large for B such that σ(B) is small and negligible. The significance is then:

S

σ(S) = S√
N

= S√
S +B

= TP√
TP + FP

(3.4.4)

where S is the equivalent to TP and B is the same as FP.

There are two ways forward to improve significance as a metric, the first is to

calculate it based on expected events. This is a common technique for particle

physics studies because the ML test result retains statistical accountability in an

experimental environment. The conversion between standard ML TP to the expected
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number of true positive events TPexp. is as follow:

TPexp. = εNNTP ∗ εdetector ∗ σMC
signal ∗ L , (3.4.5)

where εdetector is the efficiency from applying detector level cuts, εNNTP is the signal

efficiency TPR at the optimal ζcut, σMC
signal is the cross section of the signal process

obtained from the MC data generation and L is the luminosity. The expected

background FPexp. is calculated in the same fashion with the efficiency and cross

section replaced for the background process. Note that if there is more than one

background process,

FPexp. =
∑

i 6=signal
FPexp.

i . (3.4.6)

The other method is to remove dependence on the data sample size from the signific-

ance, this new quantity is known as the significance improvement σ̂. It is essentially

the significance normalized to its value at the baseline selection.

σ̂ = σ

σbaseline
, (3.4.7)

where σbaseline is given as the truth number of signals / truth number of signal and

background. A significance improvement greater than one signals a performance

increase compared to the baseline selection. Plotting the significance improvement

as a functions of the true positive rate defines the significance improvement charac-

teristic (SIC) curve [56].



Chapter 4

Machine-learning Approaches to

Inclusive |Vub| Determinations

Studies on elements of the CKM matrix is an important part of flavour physics as

they are central to testing the CKM picture of quark mixing and CP violation. This

chapter focuses on the determination of the least known element of the CKM matrix,

|Vub|. We explore the usage of machine learning (ML) techniques as multivariate

analyses, in particular the impact from the choice of Monte Carlo (MC) generator

used to simulate collision events, the set of features employed in training the al-

gorithms and the efficiency of such methods from not just a ML point of view but

also a physics standpoint. This chapter is based on Ref. [3, 57].

4.1 Semi-leptonic B decay

Precise determination of |Vub| is crucial in testing the flavour structure of the SM.

The measurement of |Vub| is particularly interesting since it is one of the smallest and

least known element. Common extraction techniques involve studying semi-leptonic

decays of B mesons.

The B meson2, lightest particle containing a b quark, decays weakly. In general, the
2The flavour or charge of the B mesons are not specified unless specifically mentioned.
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b q

νl

l−

W−

Figure 4.1: b quark decaying through charge current interaction into
quark q ∈ {c, u}.

semi-leptonic decay B decay can be written as:

B → Xqlν , (4.1.1)

where the final states consist of a lepton-neutrino pair (l, ν) and hadronic system Xq,

with q being either c or u quark. Note that Xq does not need to be a single hadron,

it can also be a group of hadrons. From the perspective of partons, the b (b̄) quark

undergoes a flavour changing charge current interaction through the emission of a

W− (W+) gauge boson and becomes a q (q̄) quark like b→ ql−ν̄ (b̄→ q̄l+ν). This

decay is shown in Fig. 4.1. The remaining valance quark in the B meson can be

assumed to be a spectator to good approximation. In order to thoroughly describe

the dynamics of the decay, the non-perturbative effects between the B meson and

final state Xq should be accounted for. However, since there is no strong interaction

between the lepton-neutrino pair and the hadronic final state Xq, it is possible to

factorize the strong and weak interaction contributions and treat them separately.

Consequently, such decays permits clean extraction of the CKM-matrix elements

|Vqb| and the study of non-perturbative effects.

The constituent of a B meson include a heavy b quark, mb ≈ 4.5− 5GeV� ΛQCD,

and a light u or d quark with masses much smaller than ΛQCD. This configuration

indicates that the framework of Heavy Quark Effective Theory (HQET) can be

applied to describe its dynamics. mb with such a high value has two implications:

perturbative QCD is valid in this description as the strong coupling constant is
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at the energy scale of mb αs(mb) ≈ 0.2. Furthermore, Λ = ΛQCD/mb ≈ 0.1 is

a reasonable expansion parameter for non-perturbative effects. Subsequently, a

systematic expansion of QCD in powers of Λ and αs can be performed within the

HQET framework. The description above on semi-leptonic B decay applies when q

is either c or u. The remainder of this chapter switches focus back to only b→ u.

The effective SM Lagrangian for these decays can be written as:

Leff = −4GF√
2
Vub(ūγµPLb)(ν̄γνPLl) + h.c. , (4.1.2)

Notice that the W boson has been integrated out of the Lagrangian as this type

of decays occur at a typical scale of mb. The W propagator is largely driven by

the mW = 80 GeV and therefore the interaction term is replaced by the effective

coupling 4GFVub/
√

2 and the four-fermion operator. GF is the Fermi constant, Vub

is the CKM-matrix element and PL = (1− γ5)/2 is the projection operator on the

left-handed part of the spinors.

4.1.1 Inclusive and exclusive

There are two general paths in extracting |Vub| from semi-leptonic B decays, ex-

clusive or inclusive. Exclusive measurements target a specific hadronic decay mode

such as B̄ → πlν̄. They are typically experimentally cleaner in terms of signal-to-

background ratios as the processes are carefully selected. However, the exclusive

branching fraction is typically only a few percent of that for inclusive decays. In-

clusive measurements on the other hand consider all possible hadronic final states

related to the target flavour transition.

From the theoretical standpoint, the inclusive B → Xulν decay rate would offer the

cleanest extraction of |Vub|. The computation of the inclusive differential decay rate

involves integrating over all possible hadronic final states Xu. This integration is

applied over three independent variables, the choices shown here are the energy of

the lepton (El), the invariant mass of the hadronic final state (MX) and the invariant

mass of the lepton-neutrino system (q2) with q = pl + pν . The triple differential
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decay rate under these three variables is given as:

d3Γ
dq2dEldMX

G2
F |Vub|2

16π2 (mB − P+)((P− − Pl)(mB − P− + Pl − P+)F1

+ (mB − P−)(P− + P+)F2

+ (P− − Pl)(Pl − P+)F3) ,

(4.1.3)

with Pl = mB − 2El and P± = EX ∓ |pX |, where mB is the B meson mass, El is

the energy of the lepton, EX and pX are the energy and three-momentum of the

hadronic system. The Fi are the structure functions of the B meson which include

shape functions and corrections to the strong coupling constant.

The evaluation of this integral is described by a local Operator Product Expansion

(OPE) in inverse powers of the b-quark mass [58]. The technique is familiar from

inclusive semi-leptonic decay into charm quarks, B → Xc`ν [59–62]. At leading

order in this 1/mb expansion the result for the inclusive decay is equal to that for

the quark-level process b → u`ν, whose total [63] and differential [64] decay rates

are known up next-to-next-to-leading order in QCD. At relative order 1/m2
b only a

handful of non-perturbative parameters appear, and recently even for these power

corrections the next-to-leading-order QCD corrections have been calculated [65].

When inclusive charmless semi-leptonic decay is considered in experiments, a series

of kinematic cuts is required to segregate the charmless decays from the overwhelm-

ing amount of charm background. The total rate becomes a partial rate and the

convergence of the local OPE tends to be subsequently destroyed. Non-perturbative

effects from the Fermi motion of the heavy quark inside the B meson are introduced

as the local OPE is replaced by a non-local, shape function OPE. The leading-order

contribution in the corresponding 1/mb expansion involves a single non-perturbative

shape function [58, 66], which is a function of one light-cone variable. It can be

measured from the photon energy spectrum in B → Xsγ [58, 67]. This leading

order shape function is universal for all heavy-to-light transitions. Analyses in

soft-collinear effective theory have shown that the 1/mb power corrections in this

non-local OPE involve a plethora of subleading shape functions beyond tree level,
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some of which are a function of up to three light-cone variables [68–70], and that

the next-to-next-to-leading order QCD corrections to the leading-power decay rate

can be substantial [71]. Further theoretical description of the shape functions can

be found in Ref. [72–74]. A complete review on inclusive calculations can be found

in Ref. [3].

Exclusive predictions focus on a specific hadronic final state resonance, they are

complementary to inclusive calculations. The matrix element of the hadronic part

can be written as:

〈M(pM)|ūγµPLb|B(pB)〉 =
∑

T µi Fi(q2) , (4.1.4)

where q = pB−pM the four-momentum transfer in the decay, M is the light resonant

final state such as π, ρ and ω. Ti are tensorial structures of the involved four-

momenta and polarisations in case of vector boson final states, and Fi are form

factors. Computing exclusive rates is a challenge due to the form factors because

they can not be calculated through perturbation theory in the strong coupling

constant and non-perturbative methods are required.

A popular exclusive mode for |Vub| determination is B → πlν, the hadronic matrix

element from Ref. [75] is given as:

〈π(pπ)|ūγµPLb|B(pB)〉 = T µ1 F+(q2) + T µ2 F0(q2)

with T µ1 =
(

(pµB + pµπ)− m2
B −m2

π

q2 qµ
)

T µ2 =
(
m2
B −m2

π

q2 qµ
)
.

(4.1.5)

More exclusive hadronic matrix elements can be found in Ref. [75].

4.2 Status of |Vub|

The least known element of the CKM matrix is |Vub|, which can be determined at

B-factories from semi-leptonic B-decays in the exclusive B → π`ν channel [76–79]

as well as from inclusive B → Xu`ν decays [80–82]. Moreover, it can be tested at the
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Figure 4.2: |Vub| values extracted from inclusive and exclusive meas-
urements. Figure adopted from Ref. [85].

LHCb experiment in Λb → ρµνµ decays [83]. The current average value of inclusive

and exclusive measurements is |Vub| = (3.82± 0.24)× 10−3 [84]. However, there is a

long-standing 3σ tension between them, making the determination of |Vub| in the

inclusive mode an exciting future measurement for Belle II. The evolution of the

|Vub| measurements over the last decade in shown in Fig. 4.2.

From the experimental standpoint, the large background from charmed final states

precludes a straightforward measurement of the total inclusive B → Xu`ν decay rate.

The traditional approach to inclusive |Vub| measurements has thus been to make

kinematic cuts to restrict measurements in phase-space regions which, neglecting de-

tector effects, are free from charm background. Examples of such cuts areMX < mD,

whereMX is the invariant mass of the hadronic final state X and mD is the D-meson

mass, or P+ < m2
D/mB, where P+ = EX − |~PX | is the energy-momentum difference

of the hadronic final state and mB is the B-meson mass. A technical challenge from

the experiments is that the detector effects cause the charm background to populate

these theoretically charm-free phase-space regions (see Fig. 4.3 below). Combining

this with the task of acquiring a non-trivial separation between signal and back-

ground for these restrictive kinematic cuts means that the theoretical description of

the partial B → Xu`ν decay rates becomes considerably more involved. As exper-



4.2. Status of |Vub| 59

iments improve in precision, the partial decay rates require phase-space cuts limit

into the non-perturbative shape function region, where the hadronic final state is a

collimated jet whose energy is much larger than its invariant mass.

Phenomenologically, several theoretical approaches to partial B → Xu`ν decay rates

are used in |Vub| extractions, going under the acronyms ADFR [86], BLNP [73,87],

DGE [88] and GGOU [74]. These differ in the treatment of QCD effects in the shape

function region, but all reduce to the conventional, local OPE results if the kinematic

cuts do not introduce new scales which are parametrically much smaller than the

b-quark mass. Given the complicated structure of the factorisation theorems and

the debate over the precise nature of the shape-function OPE, it is clearly desirable

to extend measurements over as large a region of phase space as possible, such that

the theoretically clean local OPE results can be applied.

Multivariate analysis techniques based on machine learning (ML) are ideally suited

for accessing the B → Xu`ν decays in regions dominated by the B → Xc`ν back-

ground, while still achieving good signal-to-background ratios. From the ML per-

spective, the challenge is to build a classifier between signal (B → Xu`ν) and back-

ground (B → Xc`ν and other decays). The first example of such a ML approach to

|Vub| determinations was the Belle analysis of Ref. [80]. It used a boosted decision

tree (BDT) based classifier taking various high-level kinematic and global features

as input and gave a result for the partial decay rate with the single restriction that

the charged lepton carries momentum greater than 1GeV in the B-meson rest frame.

Thereby, it samples more than 90% of the inclusive B → Xu`ν phase space such

that a theoretical description based on the local OPE is applicable. A potential

criticism is that such a classifier needs to be trained on Monte Carlo (MC) samples

of signal and background events, and is thus especially susceptible to systematic

uncertainties based on the kinematic modelling of the signal. A possible approach to

evading this criticism was presented in the reanalysis of the Belle data in Ref. [82],

where kinematic properties were not included as input features in the BDT classifier;

this approach uses the BDT as an additional event selection filter, the result can be
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used to enhance the signal-to-background ratio to a level which permits a binned

one- and two-dimensional likelihood analyses of the kinematic features of the signal

and background after event selection.

The rest of this chapter is a systematic study on the use of ML-based classifiers for

inclusive |Vub| analyses. There are two main aspects to this study. First, we explore

the use of neural networks (NNs) as an alternative ML algorithm to BDTs. While

BDTs typically work best when given a small set of carefully engineered, high-level

features such as the hadronic invariant mass, NNs can take high-dimensional set of

low-level features characterising the event (such as the four-momenta of the final-

state particles) as input and use it to learn an optimal way to classify signal and

background.1

Second, we study in detail the inclusivity of the classifiers and their sensitivity not

only to the set of input features chosen, but also to the event generator used pro-

ducing the training data. In particular, while present |Vub| analyses rely on the

generator EVTGEN [92], in this paper we compare results using combinations of

SHERPA [93] and EVTGEN event samples, which differ very little in their description

of the B → Xc`ν background but much more so in the description of the B → Xu`ν

signal.

4.3 Event generation

Our analysis aims at distinguishing B → Xu`ν signal events from the ∼ 50 times

larger background induced by the CKM-favoured B → Xc`ν process. Other back-

ground contributions from continuum and combinatorial backgrounds are neglected.

The training and test samples of the signal and background events for our ML

analyses are produced using MC event generators. In this section we explain our

simulation set-up and explore characteristics of the signal and background before
1For some discussions on the benefits of using low-level features rather than expert engineered

high-level input features only, see e.g. Refs. [89, 90] or the ML review [91].
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and after a detector simulation. We also compare MC samples produced with the

default generator for B-physics analyses, EVTGEN-v01.07.00 [92], with those from

SHERPA-v2.2.8 [93].

4.3.1 Monte Carlo samples and event selection

Our event samples are generated at SuperKEKB/Belle II beam energies of 4GeV

and 7GeV or, equivalently, an Υ(4S) resonance with a four-momentum of pΥ(4S) =

(11, 0, 0, 3)GeV.

For the EVTGEN sample, we generate signal and background events with the default

run card. For the B → Xu`ν signal we use the built-in hybrid model for combining

resonant and non-resonant modes, with the default input values mb = 4.8GeV for

the b-quark mass, a = 1.29 for the Fermi motion parameter and αs(mb) = 0.22 for

the strong coupling at the b-quark mass. The fragmentation of the Xu system into

final-state hadrons is performed by PYTHIA8 [94,95], and final state QED radiation

is performed by PHOTOS [96, 97]. In the SHERPA simulations, we make use of the

standard run card for B-hadron pair production on the Υ(4S) pole and use the

SHERPA default settings for fragmentation.

In both cases, our baseline event selection process is based on Ref. [80]. We select

events with one fully hadronically decaying B meson on the tagging side (Btag), and

require the other B meson on the signal side (Bsig) to decay semi-leptonically to an

electron or muon with p∗` > 1.0GeV, where p∗` is the magnitude of the electron or

muon momentum in the B-meson rest frame.

4.3.2 Detector effects

In order to mimic detector effects, we pass our MC data through an in-house detector

simulation described in Appendix A.1. In that appendix we also show some validation

plots comparing our MC samples with those produced by the Belle collaboration

(see Fig. A.1).
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Figure 4.3: EVTGEN hadronic mass distribution MX , energy-
momentum difference P+ and lepton momentum in B-
meson rest frame p∗` before (top) and after detector simu-
lation (bottom). The gray lines highlight the boundaries
of the theoretically background-free regions.

Our detector simulation includes detector efficiencies and mistagging for particles

on the signal side; it does not take into account that decay products from the tag

side can be incorrectly assigned as signal-side particles. While this in-house detector

simulation is too simplified to create completely realistic event samples, it does show

good agreement with MC results from the Belle collaboration, and can be considered

sufficient for the purpose of the qualitative studies performed in this chapter.

In Fig. 4.3, we show normalized distributions of signal and background events in

the EVTGEN MC sample before and after detector simulation for three kinematic

variables: the hadronic invariant mass MX , the energy-momentum difference P+,

and the lepton momentum in the B-meson rest-frame p∗` . The distributions of MX

and P+, which are based on multiple final-state particles and are therefore subject to

a cumulative effect from detector inefficiencies and mistagging, are clearly strongly

affected by detector effects. In the low-MX and low-P+ regions, detector effects cause

the charm background to populate even the theoretically inaccessible phase-space
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Figure 4.4: High-level features of B → Xc`ν events generated with
EVTGEN and SHERPA.

regions MX < mD and P+ < m2
D/mB. The lepton momentum, on the other hand,

can be determined quite precisely and detector effects have only a marginal effect.1

The contamination shown in these plots make clear that kinematic cuts on their

own are insufficient for an efficient signal and background separation after detector

effects. We will list a full set of distinguishing features of the signal used in our ML

analysis in Section 4.4.1.

4.3.3 EVTGEN vs. SHERPA

While EVTGEN and SHERPA follow the same general principle in modelling resonant

contributions, they differ in the treatment of the non-resonant modes (shape-function

regions). In this section we highlight the effects of these modelling choices on distri-

butions of the signal and background.

In Fig. 4.4, we compare distributions for the B → Xc`ν background. In addition to

the kinematic features MX and P+, we also show the number of kaons Nkaons in the

event. Given that inclusive semi-leptonic decays into charm are nearly saturated by

a small number of resonant contributions, it is not surprising that the EVTGEN and

SHERPA results show a close agreement. Minor differences, for instance the number

of kaons, are caused by small discrepancies in the assumed branching ratios for

high-mass Xc resonances as well as the different hadronisation modelling in PYTHIA8

1This would also be the case in a more realistic simulation, as long as the four-momentum
of the tag-side B meson, which determines the boost to the signal B-meson rest frame, is well
reconstructed.
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Figure 4.5: Upper panel: Comparison of EVTGEN and SHERPA high-
level features for B → Xu`ν signal events. Lower panel:
Cumulative sum of the differential distributions MX ,
P+ and p∗` in EVTGEN and SHERPA, compared to BLNP
prediction.

and SHERPA.

The analogous distributions for the B → Xu`ν signal are shown in the upper panel of

Fig. 4.5. There are clear differences between the EVTGEN and SHERPA distributions

of kinematic features such as the MX distribution, which are caused by the different

treatment of the non-resonant modes. In EVTGEN, the built-in hybrid model de-

scribes the non-resonant decay modes at leading order in the heavy-quark expansion

using the DeFazio-Neubert (DFN) model [72], including a non-perturbative shape

function to describe the Fermi motion of the b quark inside the B meson. The non-

resonant contribution is modelled such that the MX distribution for the sum of the

resonant and non-resonant contributions matches the distribution predicted by the

DFN model. This is achieved through a bin-by-bin re-weighting of the non-resonant

modes.

In SHERPA the non-resonant signal decay modes are modelled by parton showering

and hadronizing the leading-order partonic decay. Non-perturbative shape-function
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effects characterising the low-MX region are not taken into account, and no re-

weighting of the events is performed to match state-of-the-art theory calculations.

Comparing these two different approaches for the signal modelling in Fig. 4.5, we find

that, on the one hand, the EVTGEN results have a non-physical bump in the 1.5GeV

region, which is an artefact of the bin-by-bin re-weighting to match the DFN results.

The SHERPA distributions do not share this characteristic, since the non-resonant

events are instead obtained by excluding resonant events from the parton shower.

On the other hand, the current implementation of the SHERPA parton shower model

also produces a smaller proportion of the non-resonant signal contribution and gen-

erates fewer events in the high-MX and -P+ regions compared to EVTGEN, which

is precisely the region where the inclusive QCD predictions should be reliable. We

further highlight this in the lower panel of Fig. 4.5, where we compare the state-

of-the-art OPE results from the BLNP approach [73] with EVTGEN and SHERPA

results at the level of cumulative distributions. Overall, the agreement between the

EVTGEN-generated distributions with the BLNP predictions is stronger, which is

not surprising since the underlying inclusive modelling comes from the OPE-based

DFN result.

Clearly, the B → Xu`ν modelling in SHERPA needs a more sophisticated match-

ing of the non-resonant, parton shower contributions with (shape-function) OPE

results before being used in |Vub| extractions by experiments. For this reason, we

use EVTGEN in the following section when studying the performance of ML-based

classifiers, in spite of its own deficiencies in the low and intermediate invariant mass

regions. However, for the purposes of the study, the present situation allows us to

study an interesting question: how sensitive to the MC data used in the training

process are ML approaches to |Vub| extractions? This is the subject of Section 4.5.
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4.4 BDTs vs NNs

In this section we give a systematic analysis of signal vs. background event classific-

ation using BDTs and neural networks. We use Bayesian neural networks (BNNs)1,

which have been argued to deliver stable results and avoid overfitting [54]. The

details of the architecture for the BDTs and BNNs used in our study can be found

in Appendix A.2, along with a breakdown of data used in the training and testing

procedure. We describe the input features to the ML algorithms in Section 4.4.1, and

then move on to the results in Section 4.4.2. Note that the metrics used in evaluating

their performance have been described Section 3.4. Throughout this section we use

EVTGEN to generate the training and testing samples.

4.4.1 Input features

The features used in our multivariate analysis break into two sets. One is based on

physical high-level features such as invariant masses and the number of final-state

particles of a specific type, e.g. the number of kaons or slow pions, and the other is

based on low-level features, i.e. single particle properties. In particular, the low and

high-level features are:

• low level

pBtag , QBtag , pi, IDi, Qi i ∈ top 10 most energetic particles. (4.4.1)

• high level

q2, MX , P+, p∗` , N`, N
K

± , N
K

0 , Nhadron, M2
miss, Qtot,

N
π

0
slow
, N

π
±
slow
, M2

miss, D∗(π0
slow), M2

miss, D∗(π±slow).

(4.4.2)
1BNN and NN are used interchangeably throughout this chapter but they both mean Bayesian

neural network.
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The low-level features include, first off, the four-momentum pBtag and charge QBtag

of the tagged B meson. In addition, we pick out the 10 most energetic (as measured

in the lab frame) detected final-state particles, label them with an index i = 1, . . . 10,

and use as features the lab frame four-momenta pi, the charge Qi and the identity

IDi of these particles. Events with less than 10 detected final-state particles have

the corresponding particle features filled in with zeros.

The high-level features are defined as follows. The four-momentum transfer squared

is q2 = (pB − pX)2. N` denotes the number of leptons, which can only be greater

than one if the secondary leptons have momenta smaller than 1GeV. Since the

B → Xu`ν signal is very unlikely to contain secondary leptons, this feature can be

used to suppress the background, see the left panel of Fig. 4.6. N
K

± and N
K

0 denote

the number of charged and neutral kaons, respectively, where neutral kaons K0
S

are reconstructed from charged pions with an invariant mass in the range m
π

+
π

− ∈

[0.490, 0.505]GeV. Kaons are frequently produced in D-meson decays and their

presence hence indicates a B → Xc`ν background event, see the central panel of

Fig. 4.6. The number of final-state particles resulting from the hadron decay Nhadron

is typically larger for hadrons with a higher mass such as the background D mesons.

The missing mass squared M2
miss, defined as the square of the missing momentum

pmiss = psig − pX − p`, where psig = pΥ(4S) − pBtag is the reconstructed momentum

of the signal-side hadron, would always be compatible with zero without detector

effects. For background events, which as discussed above have a higher final-state

particle multiplicity, the probability of misidentifying a final-state particle is higher

resulting in positive values of the missing mass squared, see the right panel of Fig. 4.6.

The total charge Qtot of all particles in the event, on both the signal and the tag

side, is also subject to detector effects. It will only be non-zero for events where

charged particles have been missed, which happens more often for the background

events due to their larger final-state particle multiplicity. Slow pions, i.e. pions with

momentum |pπ| < 220MeV, can originate from D∗ → Dπ transitions and hence

appear more often for the B → Xc`ν background. We therefore include the number



68
Chapter 4. Machine-learning Approaches to Inclusive |Vub|

Determinations

0 1 2 3 4
Nleptons

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d 
di

st
rib

ut
io

n B Xu

B Xc

0 1 2 3 4
Nkaons

0.0

0.2

0.4

0.6

0.8

no
rm

al
ize

d 
di

st
rib

ut
io

n B Xu

B Xc

5 0 5 10 15
M2

miss [GeV2]

10 3

10 2

10 1

100

no
rm

al
ize

d 
di

st
rib

ut
io

n B Xu

B Xc

Figure 4.6: High-level features of the EVTGEN sample. Number
of leptons N` (left), number of kaons Nkaons (middle)
and missing mass squared M2

miss (right). Notice the
logarithmic scale for some of the distributions.

of neutral and charged slow pions, N
π

0
slow

and N
π

±
slow

, in our high-level feature set. To

test the compatibility of the slow pion with a D∗ → Dπ transition, we further define

M2
miss, D∗ = (psig − pD∗ − p`)2, where pD∗ = (ED∗ , ~pD∗) with ED∗ = m

D
∗

m
D

∗−mD
Eπ and

~pD∗ = ~pπ

√
E

2
D

∗−m2
D

∗

|~pπ |
. In this we have explicitly assumed that the slow pion direction

is strongly correlated with the D∗ direction. The quantity M2
miss, D∗ will more likely

be peaked at zero for true D∗ → Dπ transitions. Distributions in the high-level

input features not shown in Fig. 4.6 are displayed in Appendix A.3 in Fig. A.2.

We have chosen this set of high-level features to mimic the feature selection in the

BDT analyses performed by Belle in Refs. [80, 82]. Some differences with respect to

the sets used in those papers arise, because we do not have access to all experimental

features in our simplified detector simulation, for instance features related to the

quality of the signal reconstruction.

4.4.2 BDT and NN performance on different levels of

input features

We first contrast the performance of the BDT and NN on signal vs. background

classification using different levels of input features. We consider three scenarios:

(i) using only the low-level features in Eq. 4.4.1
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Figure 4.7: ROC (top) and SIC curves (bottom) for BDT (left)
and NN (right) for different levels of input features,
trained and tested on EVTGEN data with a physical
ratio of signal-to-background events in the test set. The
dashed lines in the upper panel are ROC curves for the
case of no separation. As a reference, the gray lines
in the bottom panel show the significance improvement
from the three cut-and-count scenarios in Eq. 4.4.5. A:
MX < mD, B: MX < 1.5GeV, C: P+ < m2

D/mB.

(ii) using only the high-level features in Eq. 4.4.2

(iii) using a combination of these low- and high-level features.

The ROC and SIC curves for the BDT and NN analyses using these input feature

scenarios are shown in Fig. 4.7.

As expected, the BDT performs well on high-level input features, the most important

features being the number of kaons, number of leptons, the hadronic invariant mass

MX , hadron multiplicity and the missing mass squared M2
miss. However, it performs

poorly when trained only with low-level features, indicating that it cannot use

them to construct additional non-linear features such as invariant masses. Using a

combination of low- and high-level features slightly improves the BDT performance
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compared to high-level only. We have explicitly checked that this performance

increase results almost entirely from adding the particle energies. The particle three-

momenta, on the other hand, do not seem to contain additional usable information

for the BDT.

The situation for the NN is very different. It performs slightly better when trained

only on low-level features than it does when trained only on high-level features.

This indicates that, as expected, it is able to learn new and efficient discriminating

features from the low-level inputs. Training on a combination of low plus high-level

inputs very marginally improves its performance compared to low-level only (mainly

due to the inclusion of MX as a feature), showing that the NN has learnt the most

important high-level features on its own.

The maximum of the SIC curves is reached for a cut on the classifier output of

ζcut ≈ 0.97, which corresponds to a signal acceptance, or true positive rate TPR =

TP/(TP + FN), of approximately 75 %. Explicitly, we find the following values for

the maximum significance improvement and the AUC for a BDT or NN trained and

tested on a combination of high and low-level features from the EVTGEN data:

AUC = 0.981, σ̂ = 5.59 BDT

AUC = 0.986, σ̂ = 5.67 NN .
(4.4.3)

The AUC and σ̂ for the NN is only about 2% better than the BDT approach.

Training on high-level features only puts the NN on equal footing with the BDT –

in fact, we find that they reach the exact same significance improvement, which is

σ̂ = 5.42. The very small loss of performance compared to the Eq. 4.4.3 indicates that

the high-level features are well chosen for a discrimination of signal and background,

containing (almost) the full relevant information that the NN can learn from the

low-level features and given architecture.

It is interesting to contrast the significance improvements using the BDT and NN

with those obtained from a typical cut-and-count analysis based on the cuts provided

in Ref. [81]. With the minimal requirement of having exactly one lepton, a total
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charge of zero, a veto on kaons and a low missing mass squared,

N` = 1, Qtot = 0, Nkaons = 0, M2
miss < 0.5GeV2 , (4.4.4)

we obtain a significance improvement of σ̂ = 1.9. If in addition to theses cuts we

select a theoretically background-free region, we find1

σ̂(MX < mD) = 3.3, σ̂(MX < 1.5GeV) = 4.4, σ̂(P+ < m2
D/mB) = 4.4 .

(4.4.5)

Comparing the significance values Eq. 4.4.5 with those from the BDT and NN analysis

in Eq. 4.4.3, we see that the ML approaches clearly outperform the cut-and-count

analyses.

4.5 Inclusivity of ML approaches

A main motivation for the application of ML techniques to |Vub| determinations

is to widen the experimentally accessible fiducial region to a level of inclusivity

where the theoretically clean, local OPE is unambiguously applicable. This amounts

to two conditions on the measured Xu final state: first, that it is not subject to

severe kinematic cuts (in which case the shape-function OPE would apply), and

second, that it contains a sufficiently broad sample of exclusive hadronic final states

in a given kinematic region (such that quark-gluon duality applies). A concern in

supervised ML approaches is that the classifiers will overuse either inclusive kinematic

properties or IR unsafe hadron-level properties of the final state, thereby limiting the

signal output to a restricted fiducial region which is very sensitive to MC modelling,

regardless of the inclusivity of the input events.

In this section we study the inclusivity of the signal acceptance in ML approaches to

event classification. As the inclusivity depends crucially on the input features used
1We consider the cut scenario MX < 1.5GeV in addition to MX < mD to account for the fact

that the background will dominantly populate the region slightly below mD due to detector effects,
see Fig. 4.3.
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in the ML classifier, we consider two scenarios:

• NNtight: a BNN using as input both the low and high-level features listed

in Eq. 4.4.1 and Eq. 4.4.2, respectively. This is a more sophisticated imple-

mentation of the basic approach of Ref. [80], and its classification power was

explored in Section 4.4.2.

• NNloose: a BNN using as input the high-level features listed in Eq. 4.4.2, but

excluding the kinematic features MX , P+, q
2 and p∗` . This is a proxy for the

BDT used in the recent reanalysis of Belle data [82].

In both cases the classifier threshold is chosen to maximize the significance of the

accepted event set. Obviously NNloose, which intentionally excludes discriminating

kinematic features of the signal and background, will not lead to the same signal

purity as NNtight. In our analysis NNtight reaches a signal-over-background ratio of

S/B ∼ 13, while for NNloose S/B ∼ 0.3 such that the background contribution is

still dominant even after event selection by the NN. In this latter case it is thus

essential to perform a binned one- and two-dimensional likelihood analyses of the

kinematic features of the signal and background after event selection by the NNloose,

as was done in Ref. [82]; this procedure can be useful for NNtight as well, even though

the S/B ratio is much higher.

A main focus of our study is how changes of the testing and training data affect the

inclusivity of the ML analyses. Testing and training the NNs on differently modelled

event sets provides a good test for overtraining and gives insight into how well the

classifier might perform when applied to real-world events, which are not expected to

show perfect agreement with MC data. The existing ML-based Belle analyses [80,82]

estimate uncertainties stemming from input data modelling by testing on samples

produced with different parameter choices within the EVTGEN framework while

fixing the ML configuration. Here we explore the alternative method of using a

fundamentally different MC-event generation framework, namely SHERPA. In this

section we train all NNs on EVTGEN and then study their classification properties
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on both SHERPA and EVTGEN data; in Appendix A.4 we show equivalent results

when the NNs are trained instead on SHERPA data. All MC samples used in testing

the NNs, whether generated by SHERPA or EVTGEN, contain the same ratio of signal

to background events after detector simulation.

We compare the inclusivity of the two NN setups in two main ways. In Section 4.5.1,

we study the inclusivity in kinematic phase space, and in Section 4.5.2 we focus on

inclusivity in the available hadronic final states. In the latter section we also study

sensitivity to changes of hadronisation parameters within the EVTGEN framework.

In addition to physics properties, we show the effect of ML training sample weights

in Section 4.5.3 as an alternative method to boost inclusivity.

4.5.1 Inclusivity in kinematics

We illustrate the salient features of event selection by NNtight and NNloose as a

function of MX , q2, and p∗` in Fig. 4.8. The binning of the kinematic variables

matches that used in the fitting procedure of the recent |Vub| extractions in Ref. [82]:

MX = [0, 1.5, 1.9, 2.5, 3.1, 4.0]GeV ,

q2 = [0, 2, 4, 6, 8, 10, 12, 14, 26]GeV2 ,

p∗` = 15 equidist. bins in [1, 2.5]GeV & [2.5, 2.7]GeV .

(4.5.1)

In all cases, the bins are sufficiently wide that the results can be compared with

predictions from the (shape-function) OPE, after correcting for acceptances and

detector effects. Each plot in the figure shows the following three results for the

indicated MC event sample: the detector-level signal distributions and the total

number of events (TP+FP) accepted by the given NN (upper panels), and the signal

acceptance of the NN (lower panels), all normalized to the number of detector-level

signal events. The left (right) column uses NNtight (NNloose). The NNs are trained

on EVTGEN data, and then tested on both EVTGEN and SHERPA data. For NNloose,

we also display the background acceptance in the lower panels, using the scale for



74
Chapter 4. Machine-learning Approaches to Inclusive |Vub|

Determinations

the y-axis displayed on the right of the plots. The background acceptance for NNtight

is negligible across phase space and is thus not shown.

The figure highlights an inevitable fact – since NNtight uses kinematic features to

discriminate between the signal and background, its acceptance is kinematics de-

pendent. The acceptance is higher in the theoretically background-free regions of

low MX , high q2, and high p∗` , and lower in regions where the charm background is

large.

It is interesting and important to study the MC-data dependence of the signal ac-

ceptance in these two regions, and connect it to kinematic modelling uncertainties

in the MCs. Take for example the results as a function of MX in the top left of

the figure. In the 0 < MX < 1.5 GeV bin, the EVTGEN and SHERPA modelling of

the b → u signal differ dramatically, with far more events in the SHERPA sample,

and also a very different shape as seen in the finely binned distributions shown in

Fig. 4.5. This is not entirely unreasonable, as the details of the low-MX distributions

depend on the method for matching resonant and non-resonant modes, and even the

integrated distribution over the entire bin depends on the exact implementation of

the shape-function OPE. However, the MC-dependence of the signal distribution in

this theoretically intricate region does not propagate into the signal acceptance of

NNtight, which is essentially MC-independent.

Contrast this with the high-MX region, especially in the bins above 1.9 GeV where

the charm background is large. In this case, the marked difference in the shapes of

the EVTGEN and SHERPA signals as a function of MX does lead to noticeably differ-

ent signal acceptances. On the other hand, kinematic distributions in the high-MX

region where this becomes most significant are reliably calculable within the local

OPE (before detector effects), so the MC-dependence can be viewed as an improv-

able deficiency in the current implementation of SHERPA, which does not perform a

matching with first-principle predictions as described in Section 4.3.3, rather than

as an irreducible kinematic modelling uncertainty. One would therefore expect a

reasonable MC uncertainty associated with extrapolating the accepted events to
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the full fiducial region, although this deserves careful quantitative study in actual

experimental analyses.

Similar qualitative comments hold for the p∗` and q2 distributions – the signal accept-

ances are essentially MC-independent in the highest bins, where kinematic modelling

dependence due to non-perturbative shape-function effects is expected to be signi-

ficant, but then start to become MC-dependent in the lower bins, where the local

OPE is applicable. On the other hand, the acceptances are somewhat flatter in these

variables than in MX , never dropping below 60% in any of the bins.

The exclusion of kinematic input features from NNloose leads to a different qualitative

picture of event acceptance compared to NNtight. The right-hand side of Figure 4.8

shows that its signal acceptance as a function of MX is considerably flatter, remain-

ing large at and above the mD resonance, although at the price of rejecting far

less background. In total, NNloose also accepts less of the signal. Whereas NNtight

accepts 75% (85%) of the EVTGEN (SHERPA) signal, the corresponding numbers for

NNloose are 61% (53%) at the value of the threshold classifier which optimizes the

significance improvement. For the q2 and p∗` distributions the acceptances of NNloose

are only moderately flatter than NNtight, if at all. The signal acceptances of NNloose

are reasonably independent of the MC testing data across the kinematic phase space.

However, unlike NNtight, noticeable differences can be seen in the lowest MX and

highest q2 and p∗` bins, where shape-function effects and kinematic modelling are

expected to be most important. The background acceptance of NNloose is relatively

flat at high MX and low p∗` , but not at low q2. Moreover, in the lowest MX bins as

well as the high-q2 region the background is largely excluded; these regions correlate

with a large missing mass squared.

These observations show that MC-dependence of the acceptances of a given NN is

subtle – avoiding sensitivity to kinematic modelling by excluding kinematic features

is not always possible. As a further illustration, consider a BNN, NNbinned, taking
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as input the following features

QBtag , IDi, Qi, [q2]binned, [MX ]binned, [p∗` ]binned, N`, N
K

± , N
K

0 ,

Nhadron, M2
miss, Qtot, N

π
0
slow
, N

π
±
slow
, M2

miss, D∗(π0
slow), M2

miss, D∗(π±slow).

(4.5.2)

NNbinned is the same as NNtight, except that particle 4-momenta are excluded1, and

the high-level kinematic features are defined in the bins

MX = [0, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5]GeV

p∗` = [1, 1.25, 1.5, 1.75, 2, 2.25, 3]GeV

q2 = [0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25]GeV2 .

(4.5.3)

This binning matches that used in the construction of the hybrid Monte Carlo

implemented within EVTGEN in Ref. [82], and is sufficiently wide that fully inclusive

distributions within these bins are accessible to the (shape-function) OPE. In other

words, unlike NNtight, this set-up is blind to the heavily model-dependent point-by-

point distributions of the hybrid Monte Carlo in the low MX and high p` and q2

region, at least as far as the explicit input features are concerned.

In Fig. 4.9 we compare the acceptances of NNtight and NNbinned as a function of

kinematic variables, using the same binning as in Fig. 4.8. Examining the figure

shows that the MC-dependence of the NNbinned acceptances are not reduced compared

to NNtight, and they depend more strongly on the kinematic variables. In particular,

when viewed as a function ofMX , NNbinned shows a considerable drop in classification

power in the higher bins, where kinematic modelling uncertainties are expected to be

best under control as long as the hybrid Monte Carlo is matched to OPE predictions.

Moreover, the maximal significance improvement σ̂ drops: when tested on EVTGEN

data NNtight has σ̂ = 5.67 while NNbinned has σ̂ = 5.46. It is thus far from clear that

using a set-up such as NNbinned would lead to a reduced theory uncertainty in |Vub|

1The high-level features for NNbinned also differ from NNtight in that P+ is included in the
latter case but not the former. We verified that adding or taking it away from makes a negligible
numerical difference.
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extractions compared to NNtight, even though its explicit kinematic input features

can be calculated within the (shape-function) OPE.

4.5.2 Inclusivity in hadronic final states

We now shift our focus to inclusivity in properties of the final-state Xu system which

appear only after fragmentation into hadrons. Such features are by definition inac-

cessible to OPE-based QCD calculations, which rely on a sum over hadronic final

states in order for quark-gluon duality to apply.

In Fig. 4.10 we display the same information as in Fig. 4.8, but this time as a function

of the number of kaons and total charge in the event. The number of kaons is an

explicit probe of the flavour structure of the final state, whereas the total charge is

closely related to the charged hadron multiplicity (see the discussion after Eq. (4.4.2)

above). Comparing the acceptance of NNtight and NNloose, we find that NNloose

effectively vetos both signal and background events with kaons or a non-zero total

charge.1 Therefore, when performing fits of the kinematic distributions after the

NNloose analysis, a good understanding of both the signal and the charm background

after strict cuts on the hadronic final states is required. NNtight, on the other hand,

accepts a large proportion of events with kaons or a non-zero total charge and is

thus more inclusive in (and less dependent on) these hadronisation-model dependent

features.

The number of signal events containing kaons in the final state is directly related to

the ss̄-popping probability γs, which determines how often an ss̄-pair is produced in

the decay of the hadronic X system. It is interesting to further investigate the had-

ronisation modelling sensitivity of the classifiers NNtight and NNloose resulting from

their different kaon acceptances. Since the number of kaons in the background, which

is entirely dominated by resonant contributions, is largely unaffected by changes of

γs, we investigate the sensitivity of the signal acceptance only. We have produced
1The small contributions of events with Qtot = 2 to the total number of signal events is negligible.
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additional EVTGEN test samples with a modified ss̄-popping probability in the range

γs ∈ [0.1, 0.4] and apply NNtight and NNloose to these.1

In Fig. 4.11, we display the relative change of the number of TP events as a function

of γs, taking the PYTHIA8 default γs = 0.217 [100] as our reference value. As events

containing kaons are more likely to be classified as background by the NNs, the

number of TP events decreases with an increasing value of γs. For NNloose, which

relies more heavily on the number of kaons as a features, the decrease of the signal

acceptance is stronger.

We contrast the effect of γs on our ML analysis with a simple kaon veto as well as

a cut-based approach defined by the cuts listed in Eq. 4.4.4 plus an additional cut

MX < 1.5GeV (tight cuts). The ML approach NNloose shows the same influence

on γs as a kaon veto, as expected from the signal acceptance shown in Fig. 4.10.

NNtight, however, is less disturbed by an increased value of γs than its cut-and-count

counterpart as it does not apply a stringent veto on kaons in signal events. Overall,

our findings highlight the ability of ML approaches to lift the weight from single

observables.

4.5.3 Inclusivity boost with ML sample weights

A possible option to increase acceptance from the ML setup is to include sample

weights to our training data for signal events in the high-MX region. Specifically, we

have increased the sample weight of signal events with an invariant hadronic mass

greater than MX > 1.5GeV to five, while using a flat sample weight of one for all

other signal and background events. Sample weights act as an additional penalty

term for the objective function shown in Eq. 3.1.3 such that false classification on

weighted events are strongly penalised. It is a common technique when dealing with
1The tested γs range is chosen to reflect the relatively large uncertainty on γs. The TASSO [98]

and JADE [99] collaborations have experimentally determined the ss̄-popping probability at center-
of-mass energies of 12GeV and 27GeV to be γs = 0.35 ± 0.05 and γs = 0.27 ± 0.06, respectively.
The default PYTHIA8 setting, resulting from a global tune of multiple fragmentation parameters, is
γs = 0.217 [100].
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imbalanced datasets. We explore this option on NNtight training and testing with

EVTGEN data.

In Fig. 4.12, we show the acceptance in terms of MX on the left and a comparison

on the significance improvement on the right between two NNtight, unweighted and

weighted training data. Keeping the classifier threshold fixed at 0.97, the sample

weights flatten the acceptance as shown in the left plot. However, when we increase

the classifier threshold to the value which maximises the significance, in this case

0.99, the acceptance at high MX drops to the same level as the acceptance of the

unweighted sample. Overall, the maximum significance of the ML classification

reduces slightly as more background events are accepted in the signal region as

shown in Fig. 4.12.

This procedure is not well suited for this study even though it is an imbalanced data

problem in experiments, the imbalance does not apply to our training data. The

algorithm is able to learn sufficiently well for both classes given a large amount of

training data. Therefore, this procedure becomes a balance problem between the

significance and the classification threshold.

4.5.4 Discussion

The above results show that conclusions on the inclusivity of NNtight and NNloose are

based heavily on how one thinks about the issue. If the focus is on a flat coverage

of kinematic phase space, especially as a function of MX , then NNloose, which does

not include kinematic features, would be preferable. If on the other hand one wishes

to be more inclusive in the sum over exclusive hadronic final states on which quark-

gluon duality is based, then NNtight, which accepts more events overall due to its

increased discriminating power, is more attractive.

An important thing to keep in mind when considering |Vub| extractions is that in

both cases MC modelling is used to extrapolate the signal from the fiducial region

singled out by the NN to the partial inclusive branching fractions with a baseline

kinematic cut of p∗` > 1.0GeV (with no restrictions on the hadronic decomposition



80
Chapter 4. Machine-learning Approaches to Inclusive |Vub|

Determinations

of the Xu final state). For NNtight this extrapolation is mainly sensitive to the shape

of the signal distribution at relatively high MX , which can reliably be calculated

in the local OPE. For NNloose it is mainly sensitive to non-perturbative phenomena

such as the flavour decomposition and multiplicity of the hadronic final state across

all kinematics. Given that the extrapolations are sensitive to different effects, it may

be wise to pursue both approaches in real-life |Vub| extractions.

It is worth mentioning that the signal acceptance of the kinematics independent

“background suppression” BDT used in the recent analysis of Ref. [82] is significantly

smaller than that found using NNloose and our in-house detector simulation, so that

the extrapolation from the accepted fiducial region to fully inclusive partial branching

fractions with kinematic cuts is correspondingly larger. By the same token, we expect

that the acceptance of NNtight in the high-MX region would be considerably lower in

the full experimental environment, again requiring a larger extrapolation than seen

in our simplified set-up.

4.6 Summary

This chapter presented a systematic study on the use of ML techniques in inclusive

|Vub| determinations. While our analysis is based on a simplified set-up using an

in-house detector simulation and seeking only to separate the B → Xu`ν signal from

the B → Xc`ν background, it has revealed several important qualitative points.

First, in Section 4.4, we showed that using a deep neural network trained on low-

level single-particle features leads to a small performance increase with respect to a

BDT analysis based on high-level features of the type used in the Belle analysis [80].

While upgrading such analyses to modern ML standards is certainly worthwhile, the

modest performance increase produced by the more sophisticated ML architecture

implies that the high-level features used in current BDTs are well-chosen – the most

important aspects of discriminating the b → u signal from the b → c background

can be understood with physicist-engineered observables.
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Second, in Section 4.5 we studied the inclusivity of the fiducial region selected by

cuts on the classifier output of two types of neural networks: NNtight, based on input

features of both kinematic and hadron-level features of the final states, such as the

one just described and used in Ref. [80], and NNloose, which excludes the kinematic

properties and is similar to the BDT used in the recent analysis in Ref. [82]. While

the signal acceptance of NNloose is fairly flat across the kinematic phase space, it

effectively makes hard cuts in hadronic properties of the event such as the number

of kaons and the total charge. On the other hand, NNtight is significantly more

inclusive in the hadronic decomposition of the final state and also in general, but

tends to give less weight to kinematic regions where there is a large overlap with the

b→ c background. Both of these issues deserve careful consideration when assessing

systematic theory uncertainties related to MC extrapolation from the fiducial regions

to partial branching fractions that are calculable within the (shape-function) OPE

in QCD.

Finally, as the Belle II measurements become systematics dominated, it will be

important to pay close attention to the sensitivity of supervised ML approaches

to the MC data on which they are trained. We have investigated the influence of

a modified ss̄-popping probability on the signal acceptance using EVTGEN data.

A ML approach based on kinematic information, such as NNtight, is generally less

biased by changes of global event parameters. Furthermore, in Section 4.3 we showed

results from the multipurpose MC event generator SHERPA in addition to those from

EVTGEN, which has been the exclusive MC tool for all previous |Vub| analyses, and in

Section 4.5 we discussed features appearing when the NNs were trained and tested on

event sets produced by different MCs. While SHERPA needs optimisation in matching

with OPE-based theory predictions before it can be used in experimental analyses,

investigating the stability of ML approaches against MCs whose modelling is based on

different theory assumptions can provide a powerful stress-test on MC uncertainties,

beyond the current practice of exploring modifications within EVTGEN.
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Figure 4.8: Distributions and signal acceptance of SHERPA and
EVTGEN Monte Carlo data as functions of MX , q2,
and p∗` for NNtight (left) and NNloose (right), trained
on EVTGEN data. The distributions in the upper pan-
els of each plot are normalized to the total number of
signal events. For NNloose the dashed lines in the lower
panels show the background acceptance, using the scale
for the y-axis displayed on the right.
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Chapter 5

Deep Learning approach to

strangeness tagging

When high-energy quarks and gluons collide as partons, they fragment and form

successive branches of collimated partons. This process is known as parton showering.

The partons in the shower will further branch out until they hadronise into hadrons

due to colour confinement. This collimated bunch of partons is known as a jet and

they can be seen as proxies to the high-energy quarks and gluons produced in a

collision [4]. This chapter explores how jet substructure can help identify the quark

flavour origin of jets. An overview of jet formation is given in Section 5.1 followed

by a review on different types of jet tagging from simple deterministic approaches

to application of machine learning algorithms. The focus is shifted from Section 5.3

towards strangeness tagging where we examine the potential of building a tagger

among light jet backgrounds with neural networks (NN). This chapter is based on

Ref. [4].

5.1 Jets

The quark model and the parton model were created to describe rather different

physics: the former classifies possible states of hadronic matter, while the latter
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applies if we want to describe hadrons within high energy interactions. A parton

can be understood as point-like constituent of the hadron carrying a fraction of the

hadron momentum. The force between quarks is QCD with gluons as the force

carriers as described in Section 2.1.1, an important feature of QCD is the strong

coupling αs = g
2
s

4π , which in the framework of perturbative QCD becomes a scale

dependent "running" constant. Within this framework, predictions for observables

are expressed in terms of the renormalised coupling αs(µ2
R) where µR is known as

the renormalisation scale. This scale dependence leads to key properties where QCD

interactions in the low energy regime are stronger than in a high energy regime. This

effect is also known as colour confinement where quarks and gluons are strongly held

together in the form of hadrons. In the high energy regime, QCD is asymptotically

free which means the quarks are weakly interacting. Perturbative QCD utilises this

property to compute strong processes given a high enough energy scale. This cut-off

is known as ΛQCD where further description of the process below this scale requires

non-perturbative QCD. Subsequently, the parton model is theoretically justified as

the lowest order approximation of a perturbative QCD calculation.

In a high energy collision event with protons, hundreds of particles are produced.

Each proton contains numerous partons, each carrying a fraction of the proton’s

momentum. The partons of the two protons interact with each other via a large

momentum transfer. The short distance interactions can be calculated perturbatively

as mentioned above. The extraction of this calculable part from the non-perturbative

part utilises parton distribution (or fragmentation) functions (PDF). These objects

can be interpreted as probability distributions introduced by the parton model.

The wide energy gap between the proton mass and the fraction of the collision energy

carried by the colliding partons is typically filled with emission of additional partons,

which is referred to as initial state radiation (ISR). Note that the ISR is not always

small because the hard1 momentum transfer can be smaller and therefore, the ISR

can still be considered hard. The hard interaction process determines the topological
1Hard, short distance, high energy are the same thing in this context.
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Figure 5.1: A schematic diagram representing a typical particle col-
lision event [4].

structure and the composition of the final state. Furthermore, if colour-charged

particles are produced in the hard interaction process, they are likely to emit even

more partons, known as final state radiation (FSR), which bridges the gap between

the interaction energy scale to ΛQCD, where non-perturbative QCD arranges the

partons into colour-neutral hadrons. The collection of collimated partons is known

as a jet and they can be seen as proxies to the high-energy quarks and gluons

produced in a collision.

While the hard process happens between the partons, the spectator partons still

carry a proportion of the proton’s energy. They are directed into the forward

direction of the detector, but a non-negligible amount of radiation off these spectator

partons can still end up in the central region of the detector. This type of excess

measured is called the underlying event (UE). The schematic diagram of a collision

is summarised in Fig. 5.1.

5.2 Jet tagging

When studying high-energy particle collisions, the hadronic final-states are the ma-

jor source of information for researchers to study the underlying processes while

establishing QCD as the fundamental theory of strong interactions [4]. Specifically,
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they allow for tests on perturbative QCD and tuning of Monte Carlo event gener-

ators. Hence, one often end up investigating the quarks and gluons produced as

final states. However, the successive showering and hadronisation mean that the

final state particles appear as collimated bunches of hadrons known as jets. There

are various definitions for a jet depending on the jet algorithm employed. The most

popular jet algorithm is known as the anti-kt algorithm [101]. It is part of the

sequential recombination algorithm family which utilises concepts of minimal dis-

tance between recombined particles. For any list of particles, two set of distances are

calculated. The first one is the inter-particle distance between any pair of particles

(i, j) given as:

dij = min(p−2
T,i, p

−2
T,j)∆R2

ij , (5.2.1)

where pT,i is the transverse momentum of the ith particle and ∆Rij is the geometric

distance in the rapidity-azimuthal angle plane (η, φ) given as:

∆Rij =
√

(ηi − ηj)2 + (φi − φj)2 . (5.2.2)

The other set is the beam distance given as:

di,B = p−2
T,iR

2 , (5.2.3)

where R is the parameter known as jet radius. The algorithm iteratively finds the

smallest distances among all dij and di,B, combine them into objects until the list

is exhausted. If two objects are close in the rapidity-azimuth plane, they are likely

to have come from the same parton and therefore are more likely to recombine.

Similarly, when ∆Rij > R, the object is outside of the jet radius and is no longer

recombined. The power of −2 on the transverse momenta allow this algorithm to

further prioritises hard particles which avoids complications with soft radiation. This

feature is favourable in an experimental context and hence explains its popularity.

Jet flavour identification is a crucial ingredient in measurements. Heavy flavour

tagging is an active area of research as top and bottom physics have huge implic-

ations in Higgs related research and the flavour structure of the SM. Traditional
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tagging approaches were developed based on extensions of standard jet algorithms.

The focus later shifted to the creation of innovative observables through inspecting

jet substructures. Standard top quark taggers used by ATLAS and CMS utilised

kinematic features induced by the top and W-boson masses [102–104]. Another well

established top tagging method is a two step process based on the number of prongs

within the jet, known as N-subjettiness [105], and the SoftDrop mass variable [106].

The situation is similar for bottom and charm tagging, existing algorithms typic-

ally use variables connected to the properties of heavy-flavour hadrons within the

jet. The lifetime of hadrons carrying b quarks is of the order of 1.5 ps, while the

lifetime for hadrons carrying c quarks is around 1 ps. This long lifetime (in particle

physics sense) allows the hadrons to travel for a few millimetres depending on their

momentum before decaying. This small displacement gives rise to displaced tracks

in the calorimeter away from the primary vertex (PV) which allows us to recon-

struct a secondary vertex (SV) [107]. The SV provides a distinctive feature for

bottom and charm events, therefore algorithms have been built around reconstruct-

ing/hunting such displacements. Further information on the algorithms can be found

in Ref. [108,109].

Another well-studied area of jet tagging is quark-gluon discrimination. QCD back-

grounds are simply dominated by gluon jets, strong discrimination is crucial in

obtaining definitive tests on QCD, reducing background for various measurements

and improving calibration for detectors. A well established list of traditional dis-

criminants have been developed over the years [110]. Two main categories include

the jet shapes and multiplicity-based observables.

For the multiplicity-based observables, a common choice is the iterated SoftDrop

multiplicity (ISDm), the number of branchings which have passed the SoftDrop

condition, as gluons tend to have a higher ISDm. An extensive review for some of

these discriminants can be found in Ref. [4].
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5.2.1 Machine learning in jet tagging

Notice that all of the tagging methods mentioned have mostly been simple univariate

approaches, they have all worked sufficiently well to within acceptable systematic

uncertainties for experimental usage. As data driven analytics evolve, the nat-

ural next step is to employ multivariate analyses such as machine learning or deep

learning. Such techniques allow for direct analysis from low level detector inform-

ation without constructing high-level engineered observables. Light quark tagging

between up and down quark jets has shown promising result through an observable

known as pT weighted jet charge [111–113] in combination with low level track in-

formation [114]. This observable has been proven to be effective as a measurable

discriminant [115–120] but machine learning further improved its performance signi-

ficantly [114].

Furthermore, cross-disciplinary methods can be applied to particle physics data

through deep learning. For example, natural language processing and computer vis-

ion techniques along with their neural network architectures. Heavy flavour tagging

has since benefited from these advancements, in particular DeepCSV [121] and this

deep learning based secondary vertex finder [122]. Both algorithms utilised cutting-

edge sequence focused deep learning techniques and achieved strong performance in

distinguishing heavy flavour jets from light and gluon jets. They can also be thought

of as universal jet taggers within their limits.

Deep learning revolutionised quark-gluon classification into an image analysing

task [22–24]. Energy depositions of particles within a jet is transformed into pixelated

two-dimensional images in the (η, φ) plane with the pixel luminosity proportional

to the energy carried by the particles. Different types of particles can be treated as

different colours much like how coloured images are formed by stacking RGB grids.

Convolutional neural networks can then process these "images" and classify jets

initiated from quarks or gluons. This method works primarily because of differences

in particle multiplicity and energy distribution between the two classes.

Notice that one type of quark is missing from all of the described taggers. The
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next section is a review of the latest development in strangeness tagging and an

introduction to the study presented in the rest of this chapter.

5.3 Strangeness tagging

We have mentioned various algorithms and analyses on tagging different types of

jets without any mention of strange tagging. There is currently no algorithm in use

for identifying strange-quark jets at the LHC. Inclusion of such an algorithm would

be complementary along with existing heavier quark tagging software for analyses

like t→ W+s [123] and h→ ss̄ [124] decays.

Machine-learning methods have been explored to tackle strangeness tagging, Refs. [125,

126] utilised recurrent neural networks (RNN) as a feature extractor along with

particle level 3-momentum, mass and high level jet related features to achieve strong

separations. They compared potential performances under different detector settings

which emphasised the importance of particle identification (PID). Alternatively, de-

tector based track information combined with image recognition type neural networks

were explored in Ref. [127]. This study included an additional step of tagging long-

lived neutral kaons K0
L through different detector signatures. Both studies struggled

to achieve classification comparable to the efficiencies seen in heavy flavour bottom

or charm quark tagging. One of the reasons is that the strange hadrons, such as

kaons, are abundant in all light quark fragmentations. In addition, strange had-

rons are experimentally difficult to identify as short-lived KS and Λ mesons decay

within the inner tracking detectors and therefore can only be reconstructed through

well-measured invariant mass of their decay products. It is possible to distinguish

long-lived K± from other hadrons through Cherenkov detectors. Such PID capab-

ilities are currently unavailable at ATLAS and CMS, as LHCb is the only detector

within the LHC equipped with the RICH detectors [128]. However, time-of-flight

detectors have been studied and planned for future upgrades [129, 130], more on

time-of-flight is discussed in Appendix B.3. Further discussion on the importance of
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PID is shown in Section 5.5.2.

The analysis shown in the rest of this chapter explores building a strangeness tagger

against all light quark jets using neural networks for LHCb. Two directions are

considered for this NN, the first studies the effect of how the jets are defined, one

can label a jet with certain quark type given it is quark matched, but this procedure

is not physical in an experimental environment where the leading jet is typically

taken as the target jet. We study the consequences of training with quark matched

jets while testing on leading jets. The other is feature selection in exploring jet

substructure as a proxy to understand hadronic radiation patterns emerging from

energetic (anti-)strange quarks. In particular, the usage of jet jet-flavour variable Js

introduced in [124].

The remainder of this chapter is organised as follow: Section 5.4 is the recipe for the

simulated data including detector effects and cuts. Section 5.5.2 compares definitions

and particle constituents between the jets. Section 5.5 describes feature sets and

the performance of NNs trained with different features which further emphasis the

importance of PID. Then, Section 5.6 showcases the result of the NN trained within

the LHCb environment and a summary is given in Section 5.7.

5.4 Event generation and preprocessing

We studied the discrimination between light jets in pp → Z(→ ll)j process at the

LHCb. All of the samples are prepared within the 2 < η < 5 region in order to meet

with LHCb specifications. The samples have been generated using Sherpa [93].

The parton level events are generated using AMEGIC++ [131] as ql+l− and q̄l+l−

separately at
√
s = 13 TeV. The quarks are required to have a minimum of 20

GeV transverse momentum, where for leptons, this has been required to be 10 GeV.

The minimum angular separation between two leptons and a lepton and a jet has

been set to 0.4. Finally, the minimum same flavour lepton invariant mass has been set

to 50 GeV. The parton shower and hadronisation are handled through COMIX [132]
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and CSSHOWER++ [133]. In addition, the samples are generated with NNPDF

2.3 PDF set [134] within LHAPDF package [135].

The preprocessing loosely follows the LHCb specifications [136] using MadAnalysis

5 version 1.9 [137,138] alongside with SFS [139] machinery for detector simulation.

The detector simulation mainly consists of transverse momentum (pT ) smearing and

particle (mis)identification. Further details regarding the detector simulation can be

found in the Appendix B.1; in the following, we will discuss the event selection and

the requirements introduced for the preprocessing.

The jet objects are reconstructed using the anti-kT algorithm [101] embedded in

FastJet version 3.3.3 [140]. The radius parameter for the jets has been chosen to

be 0.5 with minimum transverse momentum at 20 GeV. In order to tag b(c) jets,

MadAnalysis 5’s internal hadron matching has been employed with ∆R(j, B(C)) <

0.3 and each tagged jet has been removed from the jet collection. Among these jets,

light jets are selected within 2 < η < 4. Similarly, lepton objects are selected if they

satisfy 2 < η < 4.5 and pT > 10 GeV limitations. We employed simple ∆R-based

isolation to separate jet and lepton objects from each other. Any jet objects within

∆R < 0.2 vicinity of an electron are thus removed from the jet collection. Similarly,

leptons are removed from the lepton collection if they lie within ∆R < 0.5 of a jet

object.

In selecting the two opposite-sign same-flavour leptons from the Z decay, the event is

required to have two same flavour leptons and their invariant mass is within mZ±30

GeV. Additionally, each event is required to have at least one light jet. Once the

requirements are satisfied, each jet goes through a parton matching procedure where

a jet is tagged if the parton level quark is within ∆R < 0.5.

Table 5.1 shows the difference in the cross section of the samples for different quark

types where events with tagged jets and leading jets are shown separately. The

difference between the values is due to the detector efficiencies where it is possible to

have events with no quark-matched jets. We observed that the leading jets are tagged

as quark matched jets for 98% of the events, and the second leading jets are tagged for
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Process quark matched [pb] non-matched [pb]
pp→ sll 0.521 0.644
pp→ dll 5.018 6.548
pp→ ull 9.123 11.998
pp→ s̄ll 0.515 0.633
pp→ d̄ll 0.871 1.086
pp→ ūll 0.591 0.731
pp→ gll - 7.608
pp→ bll - 0.175
pp→ cll - 0.439

Table 5.1: LO cross sections from SHERPA for each jll process where
the left column contains cross sections of the quark
matched tagged jets and the right column shows the
same when only the leading jets are selected. Samples
with gluons, b and c quarks are included separately as
reference.

only 1% of events. Admittedly Z+qq̄ production can create a significant background

for this channel where the Born level contribution is enhanced by gluon mediation.

However, such processes are suppressed by αS, and we calculated the corresponding

cross-section, after the requirements mentioned above, for pp→ ss̄Z(→ ll) to be 1

fb. Hence these contributions are disregarded without loss of generality.

In order to use the particle identification information from the tracker, each track,

generated within 10 mm - 1.16 m radial distance from the production vertex, have

been matched with the jets with ∆R ≤ 0.5. Instead of the constituents within the

jet, the information from these tracks has been used for the training and testing. In

Fig. 5.2 the main differences between tagged, leading and second-leading jets are

presented for s, d and u samples. The top panel shows the number of charged kaons

(left) and pions (right) originated from the tracks matched with the jet in question,

and the bottom panel shows the flavour discriminating observable Js [124,141] given

as:

Js =
(∑

track

1
p
||
trk

)(∑
track

p
||
trkR

)
; p

||
trk = ptrack · p̂jet ,

where p||trk is the scalar projection of the track momenta on the unit momenta of

the reference jet. R is an identification constant where it is −1 (+1) for positively

(negatively) charged kaon and zero for all other particles. The colour codes blue, red,
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Figure 5.2: Distributions of the number of charged kaons (top left),
charged pions (top right) and Js where red, green and
blue represents samples with d, u and s quarks and
solid, dashed and dotted lines represent the histograms
for quark matched, leading and second leading jets.

and green represent samples generated with s, d and u quark jets. In addition to the

colours, the line style represents the nature of the jet where solid, dashed and dotted

lines stand for quark matched, leading and second-leading jets respectively. Whilst

kaon multiplicity indicates a slight difference between strange and other samples,

the difference is relatively minor and does not propagate to the pion multiplicity

histogram. However, we observe a significant difference in the Js distribution which

indicates its potential discriminating power. As mentioned in the earlier studies [127],

the momentum weighted fraction of the charged kaons are significantly larger than

the neutral kaons, which can live long enough to reach the calorimeter. Thus this

analysis is aimed to exploit such hadron shower evolution over charged hadrons.



96 Chapter 5. Deep Learning approach to strangeness tagging

e± µ± π± K± p Σ+/Σ− Ξ− Ω−
10−5

10−4

10−3

10−2

10−1

100

101

F
ra

ct
io

n
of

p
ar

ti
cl

es

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g m

at
ch

ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

m
at

ch
ed

le
ad

in
g

2n
d

le
ad

in
g

(s/s̄)l+l− sample (d/d̄)l+l− sample (u/ū)l+l− sample
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Figure 5.3: Fraction of track content of quark-matched, leading and
second leading jets following the same colour-code as
Fig. 5.2 including both q and q̄ separately in the final
state (Upper). Each particle includes fraction informa-
tion for all three sets of jets as labelled above the bars.
The bottom panel shows the mean fraction of trans-
verse momentum carried by each type of particles for
the quark matched, leading and second leading jets.

Js captures the momentum fraction of charged kaons alongside the strangeness of

the process, which allows for discrimination between a process with s-quark from

s̄-quark. Also, the serious shortage of strange hadrons in processes with other light

quarks allows the s-type sample be segregated among others.

In the upper panel of Fig. 5.3, the fraction of identities from each track within

jets is shown. Each charged particle has been divided into three blocks for quark-

matched, leading and second-leading jets, and each jet block is further divided into

three colour-coded samples, namely strange (blue), down (red) and up (green) type

samples. Fraction of pions suppress all the other contributions in each block which

is also captured in Fig. 5.2 with respect to kaon multiplicity. This is because almost
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half of the neutral kaons incapable of reaching the calorimeter decay into a pair of

charged pions. Since 98% of the quark matched jets are also leading jets, respective

blocks show a close correlation for each particle content. Each of these particles leaves

a significant track behind where the decay lengths (cτ) for π±, K±, Σ+, Σ−,Ω− and

Ξ− are 7.8 m, 3.7 m, 2.4 cm, 4.4 cm, 2.4 cm and 4.9 cm respectively [142]. However,

since not all of them are precisely identifiable, we will only use the identification

information from charged kaons, charged pions, protons and muons, and the rest of

the particle content within a jet is tagged as the same.

The bottom panel of Fig. 5.3 shows the mean fraction of transverse momentum carried

by the respective type of particles within any given jet. For muons and protons, the

difference between different samples and jet definitions are small. However, relatively

large deviation for charged kaons and pions further supports the use of Js and its

component p||trk as features for our multivariate analysis. More on feature selection

is discussed in the next section.

5.5 Identifying strange jets with deep neural

networks

5.5.1 Features

The classification speed of a neural network, alongside its precision, are the core

concerns for experimental collaborations. Hence, this study aims to devise a simple

architecture that can achieve relatively high precision with the given feature space.

To that end, we formed different groups of features and tried to understand their

contributions to the given network. Tables 5.2 shows the features used, in particular

Js is the single high-level feature due to its discrimination power exhibited in the

Fig. 5.2. The low-level features include the momentum fraction, particle identity
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Name Features & number of inputs
High-level Js 1
Low-level

{
P ′track, PID, Q, d0, dz

}
∈ 5 tracks ordered by P ′track 25

Low + High Js,
{
P ′track, PID, Q, d0, dz

}
∈ 5 tracks ordered by P ′track 26

Tracker pj, {p, Q, d0, dz} ∈ 5 tracks ordered by P ′track 39
Tracker + PID pj, {p, PID, Q, d0, dz} ∈ 5 tracks ordered by P ′track 44

Table 5.2: The list of features used to study the contribution to the
network. The braces indicate the list of features used
for ordered tracks and the features out of the bracket
are independent features. Boldface p stands for the
particle momenta in polar coordinates; pT , η, φ and
energy where subscript j refers to the reference jet.

(PID)1, particle charge, transverse impact parameter and longitudinal impact para-

meter for five leading tracks ordered by normalised projected momentum fraction of

the tracks. In the following, we combined the high and low level features to observe

if the PID alongside with projected momentum fraction of the track can suppress

the importance of Js. This will directly show if the PID information from pions and

muons can impact the prediction outcome. In order to see if the neural network

can reproduce the projected momentum fraction, we also studied a feature space

including complete information of the three momenta of each track and the reference

jet. This group of features is denoted as the tracker. Finally, we also included the

PID along with the tracker group. Since predicting the outcome with a large set of

inputs is more expensive, this test will reveal if the normalised momentum fraction

is a satisfactory replacement for three-momenta. The following section focuses on

the impact of these features in a neural network.

5.5.2 Performance comparison

In order to study the performance from each features group, we prepared two dedic-

ated networks depending on the number of input features based on TensorFlow

version 2.1 [143, 144] and Keras [145]. We have an architecture for the high level

1PID has been one-hot encoded for pions, kaons, protons and muons. Rest of the particle
content has been identified as charged track.
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Figure 5.4: ROC curve for strange jet samples against down-type jet
samples (left) and up-type jet samples (right). Colour
code represents the feature mapping shown in Table. 5.2
where red, green, blue, orange and purple corresponds
to high-level, low-level, high + low, tracker and tracker
+ PID, respectively.

only models with just one feature in Table B.2, the other groups all use the network

described in Table B.1. All hyper-parameters shown for the architectures are optim-

ised using hyperopt version 0.2.5 [146]. The data is standardised using the standard

scaler from Scikit-Learn version 0.22.1 [147].

We train the NNs to classify the two main backgrounds. In other words, we focus

on s-jets vs. d-jets, or s-jets vs. u-jets. Note that s-jets include both s and s̄ events

and similarly for d- and u- jets where the anti-quark events are included.

In order to achieve maximum efficiency, each network is trained using quark-matched

jets. However, this methodology requires matching of parton-level quarks with the

reconstructed objects, it is not accessible during an experiment. Hence leading jets

were used for testing. As mentioned in the previous section, the jet definitions only

differ by 2% in population. Therefore, we did not observe any significant difference

between quark-matched and leading jet testing results.

Fig. 5.4 shows the Receiver operating characteristic (ROC) curve for each features

set presented in Table 5.2. We have pp→ (s/s̄)ll sample against pp→ (d/d̄)ll sample

on the left and the same signal sample against pp → (u/ū)ll sample on the right.

One immediately observes from both sets of ROC curves that the PID information
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Strange vs. Down Strange vs. Up
Features εS = 80% εS = 60% εS = 80% εS = 60%
High-level 1.430 2.507 1.415 2.421
Low-level 2.107 4.100 2.125 4.009

Low + High 2.095 4.098 2.128 3.978
Tracker 1.397 2.119 1.350 1.967

Tracker + PID 2.097 4.073 2.116 3.954

Table 5.3: Background rejection values for each feature group at
80% and 60% efficiency.

is crucial for the classification. The qualitative performance of individual groups

are similar between the two classifiers, the tracker group scored the lowest, which

is closely followed by the model trained with only the high-level feature Js. The

latter is expected to achieve minimal success; however, the fact that it manages to

score higher than the tracker group emphasises its discriminating power and the

importance of particle identification, especially for charged kaons.

We can observe that the rest of the feature groups all scored the same AUC value.

The existence of particle identification seems to affect each feature group similarly.

However, we observed varying training times where High+Low managed to converge

faster (46 epochs for both down and up type characterisation) than only Low-level

features (60 epochs for down and 47 epochs for up characterisation). Table 5.3

provides additional comparison between the two ROC curve where background re-

jection values are presented for each feature map at 60% and 80% tagging efficiency

point. This further shows that the Low-level features give the most cost-effective

results in our tests.

5.5.3 Understanding the features through SHAP values

We have shown the performance from each feature set and the importance of PID in

the previous section, this section is a deeper investigation on the individual features

and how they affect the learning of the NNs. We employ Shapley values through the

SHapley Additive exPlanations (SHAP) [148] package as a probe to understand how

different features affected the performances shown in Fig. 5.4. Shapley values measure
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Figure 5.5: Top 10 features with the most impact on the classifica-
tion output according to SHAP values for high + low
features. The left panel follows the strange vs down
classification where right panel shows strange vs up
classification.

the average marginal contribution of each feature in augmenting the classification

performance as part of a group of features.

Classical Shapley values were first utilised in game theory to compute explanation of

model predictions [149–151]. Consider a value function Φ for all features in a set S,

where S is the feature set excluding xj written as S ∈ {x1, ..., xp}\{xj}. The feature

xj is isolated from S such that the marginal value predicted by the model with and

without this feature can be computed. The equation for it can be written as [150]:

Φj(ν) =
∑

S∈{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!
p! (ν(S ∪ xj)− ν(S)) , (5.5.1)

where p is the total number of features including the isolated ones, x is the vector of

features and ν is the model prediction. In other words, the Shapley value computes

the contribution of each feature to the model prediction, weighted and summed over

all possible contributions. A positive SHAP shows the influence from the feature

for the model to classify the particular test set as a signal. Modern usage of SHAP

follows the same principles, the difference is mainly on how the model predictions

are estimated for different types of algorithms. A comprehensive review of SHAP

can be found in Ref. [148].

Figs. 5.5 and 5.6 show the 10 most influential features in order of SHAP with the

top being the most important for high + low and the tracker + PID groups. In
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Figure 5.6: Top 10 features with the most impact on the classifica-
tion output according to SHAP values for Track+PID
features. The left panel follows the strange vs down
classification where right panel shows strange vs up
classification.

each of the figures, the left panel shows strange vs down quark results, where the

right panel shows the strange vs up quark results. The subscript in each feature

represents the position of the object on p||-ranked sequence, and the parameter in

parenthesis shows the specific element after one-hot encoding. The colours represent

the size of the feature, for instance, PID1π± is whether the track with the highest

p|| is a charged pion. The blue population are mostly positive in SHAP which means

that events without charged pions as their highest p|| tracks are likely to be signal

events.

From Fig. 5.5, Js ranked as the most influential feature among all. We know it

has allowed the network to converge faster from the number of epochs trained when

comparing with only low-level features. In both cases, the models tend to treat event

with Js near its extrema as signals. This is expected as there are strong overlaps

between different quark types at Js ≈ 0 as illustrated in Fig. 5.2. Hence why more

of the purple population has negative SHAP values. In addition, features related to

charged kaon identification are crucial in strange jet classification with both models

highly ranking these features.

Similar behaviour is observed in Fig. 5.6 where charged kaons play an important

role in signal classification. It is interesting to see that charged pions are relatively

effective in classifying background events when they are so abundant as a final
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Figure 5.7: Predicted integrated luminosity of LHCb from 2010 -
2037 [152,153].

state hadron for all quark types. We also observe that transverse momentum and

pseudo-rapidity information are effectively used alongside particle identification; this

suggests that the network is also trying to reconstruct a Js-like observable to achieve

better classification. Additionally, due to the relatively long lifetime of charge kaons

and pions, the transverse impact parameter is valuable for signal classification.

5.6 Prospects at LHCb

The amount of data collected at LHCb through Run1 and 2 is at around 9 fb−1. The

total has been planned to increase to around 50 fb−1 from now till the end of Run4

and 300 fb−1 after Upgrade II as shown in Fig. 5.7 [152,153].

This section is an exploration in applying the method described above against all

light quark jet backgrounds. We build a classifier for s-jets vs d-jets, u-jets and

gluon-jets as a feasibility case study. The classifier employs the same architecture as

described in Table B.1 and the features used are the low level group from Table 5.2.

Key assumptions include perfect discrimination of b− and c−jets events and the

gluon contribution is generated with the same kinematic specification described in
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Strange vs. all other light jet background
Features εS = 80% εS = 60% AUC
Low-level 1.995 3.745 0.73

Table 5.4: Background rejection values at 80% and 60% efficiency
points and the AUC for the LHCb scenario trained low
level features.

Section 5.4. Note that only the leading jets are selected for the gluon sample as it is

not reasonable to quark-match gluon jets.

The fitted result is shown in Table 5.4. It is clear that the background rejection

values are similar to the s-jets vs d-jets result shown in Fig. 5.4 and Table 5.3

even though there are so many more background processes involved. This suggests

that the both the signal and the combined background machine learning efficiencies

perform similarly to the simpler case shown above. A similar analysis for general

detectors has been included in Appendix B.3.

5.7 Summary

In summary, this chapter explored the application of simple neural network archi-

tectures along with detector track information to identify strange-quark jets from

other light-quark jets including up and down. We set up five different feature sets as

shown in Table 5.2 around particle 3-momentum, the flavour observable Js and its

compositions, the particle/track momentum fraction with respect to its jet P ′track.

We studied the features on classification between s-jets with the two largest light-jet

backgrounds, d-jets and u-jets separately. The models trained with only low level,

high and low level, and the track + PID features performed similarly and that

these three performed significantly better than the remaining two sets without PIDs.

This clearly demonstrated the importance of PID as the models recreate something

similar to Js within their latent spaces. This is further supported by the SHAP

values analysis as P ′track and PIDs are highly ranked in feature importance. The

result obtained from the systematic feature study indicates that P ′track is a strong
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candidate in replacing track 3-momentum which could help reduce dimensionality

when more particles/tracks are considered.

As a feasibility study, we applied this method to distinguish s-jets from all light

-jet backgrounds and gluons. Only low level features were used and the fitted result

showed little difference from the above models in terms of ML signal and background

efficiencies.

This study provided some insights into feature selection for strangeness tagging but

the network architecture is too simple to make any further claims on the effectiveness

of the presented architecture in a practical setting. A deeper analysis with more

complex architectures and the complete set of transfer functions for detector effects

is required. In addition, the number of tracks per jet is fixed and hence there could

be more information when the whole jet is included through a geometry aware graph

network.





Chapter 6

Predicting Realised Volatility with

Deep Learning

6.1 Introduction

Deep learning (DL) is a blooming field of research and its capabilities for real world

problems are being explored by different sectors. The financial industry is certainly

one of the leaders in adapting machine learning (ML) and DL into their solutions

for real world problems. The growth is immense from analytical/visualisation tools

to modelling the stock market. This chapter is inspired by the research project

in collaboration with Optiver aimed at investigating the potential in utilising deep

learning techniques to predict realised volatility of stock market indexes.

Since the 2008 financial crisis, risk management has been ever more important for

investors. The financial instrument commonly used to balance their risks and rewards

are options. Options give their holder the right to buy or sell some underlying for an

agreed-on price at a fixed expiry date. The underlying here can be stocks, indexes

or other structural products. The ability to predict volatility accurately is crucial

for pricing and trading these options.

There are two types of volatilities: implied (IV) and realised (RV). Implied volatility

is a statement about the value of the options being traded based on opinions of market
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participants and realised volatility comes from the underlying’s actual volatility

observed retrospectively [154]. Further explanation on these two quantities and how

they are derived and used will be discussed in the next section.

The traditional approaches for predicting RV often involve fitting an autoregressive

(AR) model such as GARCH [155,156] or a Heston model which assumes volatility

is driven by its own stochastic process [157]. AR models are the most widely used

family of models in literature due to their ability to empirically fit volatility clustering

from financial time series. However, they are also known to lack flexibility in their

fits especially for large prediction horizons [158]. Development of GARCH models is

an ongoing field of research where various modifications have been produced over the

years leading to more flexible models, for instance, Engle and Lee suggested a two

equation model where each of them represents long-run and short-run components

of volatility [159]. On the other hand, Heston models assume stock prices undergo

Brownian motion. The model Heston derived follows an Ornstein-Uhlenbeck process

and the parameters for such models are determined through either the Generalized

Method of Moments [160] or simulations [161].

Majority of production level solutions have turned to machine learning approaches

such as Ridge Regression and Random Forest. They are favoured because of their

transparency and reactivity to sudden market movement on top of simply better

predictions over AR models. We mainly considered DL methods and there have

been numerous papers on this subject. For example, Ramos-Pérez et al. [162]

used predictions from a number of ML algorithms (Random Forest, Support Vector

Machines and Gradient Boosting) in addition to historical information extracted

from the underlying and formed an ensemble model with a neural network. Zhou

et al. [163] utilized alternative data such as search engine volumes for their long-

short term memory networks (LSTM). The models we present here include typical

neural networks, Bayesian neural networks and various training schemes to maximise

performance.

This project is in collaboration with Optiver. They are the leading company in
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option trading as a market maker. A market maker is someone whose principal

trading method is to quote a two-sided market (a bid and an offer) [154]. We were

part of the statistical arbitrage (statarb) research team which focus on systemetic

trading.

The rest of this chapter is organised as follows: Section 6.2 concentrates on giving

insights about options and why accurately predicting RV is important. Section 6.3

focuses on the data used, the choice of features and the preprocessing scheme.

Section 6.4 is about the models chosen along with introduction to what they are

before presenting the fitting result and backtesting result in Section 6.5. Section 6.6

is the final discussion.

6.2 Theoretical background

6.2.1 Option

Options are a type of derivative meaning their value are derived from the value of

another asset. An option contract give its holder the right but not an obligation to

buy or sell the underlying at an agreed-on price and date, this price is also called the

strike. The cost for such a contract is called the premium. There are two main styles

of options: European and American style. The difference is in their execution where

the European style option can only be used at expiry but an American option can

be exercised at any time before expiration. There are two general types of options,

puts give the holder the right to sell the underlying for the strike at expiry and calls

allow the owner to buy the underlying with the strike at expiry. In other words, puts

bet on the underlying to lose value and calls bet on the underlying to gain value.

Options are typically used as a tool to manage the risk of the investment portfolio.

For example, an investor is holding a long position over a stock, this investor would

then buy a put to protect that position. In simple words, this means an investor

bought some shares of a stock expecting their value to go up (long position), this
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investor then bought a put contract which gives the investor the right to sell those

shares for an agreed-on lower price at expiry in case the stock drops in value. The

put option is essentially an insurance for taking that long position, the maximum loss

for the investor is then the premium from buying the put contract and the difference

between the initial stock price paid to buy those shares and the predetermined strike

price stated in the put. The action of buying an insurance is also known as hedging

where the investor hedges the risk from taking the long position away with the put.

More on hedging is discussed later this section.

Options can also be used speculatively i.e. an investor expect a stock to gain value,

this investor can purchase a call and potentially make a large profit while only paying

for the premium instead of the larger sum required to directly buy the underlying and

left exposed to other risks. The maximum loss from this trade is just the premium

paid for the call contract. There is another level to this where the investor can buy

an out-of-money call option, such options typically have cheap premiums and are

worthless if exercised against the current underlying price.

The value of an option can be separated into two parts as follows:

Option value = intrinsic value + time value . (6.2.1)

For call options, the intrinsic value is simply the underlying’s price at expiry sub-

tracted by the strike. Note that if the calculated value is negative, it simply means

the option is worthless. The moneyness of an option is determined by its intrinsic

value where a contract with positive intrinsic value is said to be in-the-money. If

the strike is the same as the current price of the underlying, such options are said to

be at-the-money. A put option with 0 intrinsic value due to the strike being higher

than the underlying is called out-of-money. The equivalent situation is true for call

options. Time value of an option is at its greatest when the option is at-the-money,

otherwise it is a decaying quantity as the expiry approaches. Moneyness is also

closely related with the Greeks which describe the risk profile of options, more on

the Greeks will be discussed below in this section.
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6.2.2 Pricing options

There are various ways to price options, the most famous method is the Black-Scholes-

Merton formula (BSM) which won the Nobel Economics Prize in 1997 [164–166]. It

can be written as:

∂C

∂t
+ 1

2σ
2S2∂

2C

∂S2 + rS
∂C

∂S
− rC = 0 , (6.2.2)

where C is the value of the option as a function of the stock price S and time t, σ is

the standard deviation of the underlying’s returns also known as the volatility and

r is the interest free rate. The BSM framework requires some keys assumptions and

they are:

• The underlying is tradable.

• A single constant interest rate r.

• No additional income from the underlying e.g. dividends.

• Ability to short the underlying.

• Constant volatility.

• The underlying changes continuously and therefore the investor can also con-

tinuously hedge.

• Volatility is the only parameter required to specify the distribution of the

underlying’s returns.

A tradable underlying means it is purchasable and sellable quickly and fairly for the

size required to dynamically hedge, in other words the underlying needs to be liquid.

An investor is shorting an underlying when shares are borrowed and sold at expiry

betting on the underlying to lose value. Notice that these assumptions are mostly

not applicable to the real market, the prominent example being volatility where it

is obviously not constant. In addition, continuously hedging is not feasible because



112 Chapter 6. Predicting Realised Volatility with Deep Learning

there is a cost for every hedge. Finally, assuming volatility is the only parameter

for the returns distribution in turns assume normal or log-normal price distribution

which is simply incorrect as we will see later this chapter. The BSM framework is

clear and robust, it can manufacture an option and tell you the cost. However, this

is only true under these idealised assumptions. The market does not behave like the

assumptions but it can nevertheless provide a qualitative view for traders to adjust

for these drawbacks.

Within the BSM framework, there is no analytical solution for American style options

but there are for the European style. The solutions for European calls and puts are

given as:

call = S exp((b− r)t)N(d1)−K exp(−rt)N(d2)

put = −S exp((b− r)t)N(−d1) +K exp(−rt)N(−d2)
(6.2.3)

where
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ln( S

K
) + (b+ σ

2

2 )t
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ln( S

K
) + (b− σ

2

2 )t
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t

= d1 − σ
√
t ,

(6.2.4)

K is the strike, b is the generalized cost of carry parameter, b = r gives the standard

Black-Scholes stock option model, b = 0 gives the Black futures option model which

is an adjusted version of the BSM to model futures contracts. Futures are similar

to options but the holder has to exercise the contract at expiry. Lastly, b = r − q

where q is a dividend yield allows for adjustments on effective interest rates by

approximating the dividend stream with that yield. N(x) is the cumulative normal

distribution function as shown below:

1
σ
√

2π

∫ x

−∞
exp

(
−z2

2

)
dz . (6.2.5)
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The partial derivatives in Eq. 6.2.2 can be represented by Greeks written as:

θ = ∂C

∂t
,

∆ = ∂C

∂S
,

Γ = ∂2C

∂S2 .

(6.2.6)

There are 4 major Greeks representing different types of risks. θ is the rate of change

of the option price with respect to time which can be thought of as the amount by

which an option’s value will decline every day. Theta PnL describes the profits and

losses associated with θ, it is negative for option buyers as time works against long

positions. On the other hand, option sellers benefit from option value decay where

they could then buy these contracts back with a cheaper price and profit from the

difference in the premium.

∆ is the rate of change of the option price with respect to the underlying which

means it indicates how sensitive the option price is to movement in the underlying.

∆ is also a measure of moneyness as mentioned above. If the strike is the same as

the underlying i.e. the option is at-the-money. An at-the-money call contract has

∆ = 0.5 and −0.5 if it is a put instead. A call option is in-the-money when ∆ > 0.5

and out-of-money when ∆ < 0.5. The negative equivalent apply for puts.

Γ is the rate of change of ∆ with respect to the underlying. If ∆ is the speed of the

underlying, Γ is the acceleration. It is very small when the option is deep in or out

of money close to the expiry because ∆ will either be close to 0 or 1 in these two

scenarios and stays the same. It is at its largest when the option is at-the-money as

expiry approaches because ∆ rapidly jumps around 0.5. Γ and Θ have a cancelling

effect on each other, this will be clearer later when the general PnL is defined.

The last Greek is Vega, it is the sensitivity measure of the option price with respect

to change in implied volatility of the underlying. It is written as:

Vega = ∂C

∂σ
. (6.2.7)

Note that Vega is not a real Greek letter but a word created by option traders. It
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changes when there are large price movements in the underlying leading to increased

volatility, and falls as the option approaches expiration. There are many other

Greeks associated with other kinds of risk but these 4 have the biggest impact.

6.2.3 Delta hedging

Delta hedging is an option trading strategy aimed at reducing, or hedging, the

directional risk associated with the price movements in the underlying. This approach

uses options to offset the risk of either a single other option holding or an entire

portfolio of holdings. The investor tries to reach a delta neutral state (∆ = 0) and

not have a directional bias [154].

Consider a stock option with price C bought at implied volatility σi, financing the

purchase by borrowing at the risk-free rate r. This option is delta hedged by shorting

the underlying S by ∆i units where ∆i is the delta hedge ratio calculated according

to the implied volatility.

Time Option position Stock position Cash position Net

t Ci −∆iS ∆iS − Ci 0

t+ dt Ci + dCi −∆i(S + dS) (∆iS − Ci)erdt ?

Table 6.2.3 breaks down the positions at different time points. At time t, the stock

option is hedged by ∆i units. The premium paid is Ci and the value gained from

selling the underlying (the short position which is also the hedge in this case) is ∆iS,

the subtotal on cash is then the two added together. We are holding onto the option

contract and shorted stocks and therefore the net value at time t is 0. At time t+dt,

the option position has moved by dCi hence we need to further hedge the change

in the movement of the underlying dS. Now we would like to know what is the net

value at t+ dt.

PnL is typically given as:

PnL = Theta PnL + Gamma PnL + other effects (6.2.8)
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The incremental PnL according to the table is then:

dPnL = (Ci + dCi)−∆i(S + dS) + (∆iS − Ci)erdt

≈ dCi − rdtCi −∆idS + ∆iSrdt

(6.2.9)

Note that exp(rdt) ≈ (1 + rdt) as rdt� 1. From Eq. 6.2.9, we need two additional

substitutions given below:

dC ≈ θdt+ ∆rdS + 1
2Γ(dS)2 ≈ θdt+ ∆rdS + ΓS

2σ2
r

2 dt (6.2.10)

θdt = −1
2ΓS2σ2

rdt− rdt∆rS + rdtC (6.2.11)

where Eq. 6.2.10 originates from the Taylor expansion of C up to O((dS)2) and

Eq. 6.2.11 is just a rearranged version of Eq. 6.2.2 multiplied by dt on both sides.

Substituting both equations into Eq. 6.2.9, we would obtain:

dPnL = 1
2ΓS2(σ2

r − σ2
i )dt (6.2.12)

which implies

PnL = 1
2

∫ T

0
ΓS2(σ2

r − σ2
i ) exp(−rt)dt (6.2.13)

Note that this equation has huge implications because there aren’t any random

components at all meaning the PnL is deterministic. This method of trading is also

known as gamma scalping where the investor can now long options when RV>IV

and collect profits given an accurate prediction of σr. The same is true when RV<IV

and the investor shorts the options. Gamma scalping is incredibly powerful as money

can be made from just market movement/volatilty, the reason why people haven’t

all gone crazy about option trading is because Γ comes with a cost θ, time is a

risk as unexpected events could still happen. Notice that we have demonstrated

the profitability of having accurately predicted realised volatility but none of the

calculations actually require any knowledge on what RV is. The next section will

focus on the main character of this project, RV.
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6.2.4 Volatility

There are two types of volatilities as mentioned before: implied and realised. Implied

volatility is the volatility set by market participants when they are pricing options. In

other words, one can extract the implied volatility used to price the option through a

pricing a model like the BSM framework given the other required variables. Realised

volatility is simpler, it is essentially the historical standard deviation of the returns

for a given underlying given as:

RV =
√√√√ 252∑n

i=1wi

n∑
i=1

R2
i , (6.2.14)

where 252 is the number trading days in a year included to annualise the measure,

w is known as the winddown which is a quantity used to weight different time points

throughout the day, R is the log returns and n is the number of recordings we are

rolling over e.g. if R is recorded daily and we want to calculate the 5 days rolling

RV then n = 5.

It is crucial to know that RV behaves differently in different regimes, these regimes

could be a bearish/bullish underlying market, which means the value of the underly-

ing is decreasing or increasing respectively, or it could be an unseen regime where no

other periods in the past have similar behaviour. The main challenges in predicting

RV are that we do not know when regime shifts occur and even if we do, it is not

guaranteed the behaviour stays the same in the same type of regimes now compare

to 20 years ago. Both RV and IV exhibit some level of mean reversion where they

every so often would revert to their long-term mean. This feature is popular among

trading strategies but lack reactivity to sudden movement in the underlying. This

strategy remains effective as RV would typically increase when down ticks occur in

the underlying and decrease slowly when the underlying goes up, more on this will

be discussed in the next section when the data is introduced.



6.3. Data and Features 117

Figure 6.1: Payoff of a straddle at different time to expiry where T
is the expiry and t is the current time.

6.2.5 Straddle

There are many different option trading strategies, most of them were created to

mitigate a certain type of risk. We will focus on straddles as they are the simplest

strategy to trade with volatility. Long straddle is essentially a long call combined

with a long put, typically at-the-money (∆ = 0.5), bought with the same strike

and expiry. This type of trades ignore the direction moved by the underlying and

collect positive PnL given the movement is large enough to cover the premiums. An

example of a straddle bought at strike=100 is shown in Fig. 6.1. The minima of the

payoff smile goes up with more time away from expiry, increase in volatility has a

similar effect.

6.3 Data and Features

We used Standard & Poor’s 500 (S&P 500) data dated from January 2014- September

2020. It is an index based on the top 500 companies in the United States weighted by

their market capitalisation. We typically use 2014-2017 as the training set, 2018-2019

as the test set and keep 2020 completely out of sample until the final test. More on
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Figure 6.2: Rolling 1 day realized volatility from 2014 - 2020.

train test split is discussed in the next section. The data consist of 56 data points

per trading day from 8:15AM to 10PM in 15 minutes intervals, this period includes

both EU and US trading hours. A plot of this data is shown below in Fig. 6.2. The

first obvious observation one can made is that there are some big spikes occasionally.

Otherwise, the RV remains quite flat over a long period of time. Most of these big

spikes are typically events, more on events are discussed in the following section.

6.3.1 Events

Events from 2016 onwards have been categorised based on their type. There are

generally two types of events, we have recurring events such as the European Central

Bank (ECB) press conference which makes the latest decisions on monetary policies.

There can also be instantaneous events like when the US President Donald Trump

tweeted about China trade tariffs causing strong market movements. Market parti-

cipants often price in possible outcomes of events which cause the IV to gradually

increase up till the end of the events. The IV tends to rapidly revert towards its long

term mean after the event. The effect from recurring events are not very strong for

the S&P because of the sheer number of companies averaging them out. However, big

events like Covid-19 certainly have longer-term effects as investors remain cautious

due to uncertainties on future development, a similar effect was observed after the
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Figure 6.3: Rolling 1 day realised volatility zoomed into 2020.

2008 financial crisis. This kind of reaction keeps the long term volatilties at a higher

level as shown in Fig. 6.3. The mean RV before Covid-19 reaction is about 0.12 and

it became roughly 0.2 after the Covid-19 peak. This nicely echos the point made in

the previous section where RV behaves differently in different regimes.

6.3.2 Features

Features from historical market movement include rolling averages over 0.5, 1, 2, 3,

5, 10 and 20 days of RV and moves. Notice that all of these features can be derived

from the log returns with Eq. 6.2.14 for the RVs and moves are just rolling averages

of itself. The RV features provide a sense of regime and the overall level the model

should predict. The moves features are particularly important as they provide a

sense of direction and amplitude for the prediction. Additionally, we have included

datetime information as features. There are further explanation to this inclusion

later in this section.

The target label is the 1 day out rolling 1 day RV meaning we took the rolling

1 day RV and shifted it by 56 data points. Due to the target originating from

one of the features, it is extremely important to keep an extra day of data points

between training and test set to avoid data contamination from future information.

Otherwise, the final part of the training labels will be the same as the beginning of
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the test features.

Datetime effect

We have plotted the mean of the rolling 1 day realised volatility grouped by different

time frames in Fig. 6.4. The most prominent datetime effect comes from weekdays

as shown in the top left plot. It is clear that the RV is higher on Mondays and

Fridays. We have included other effects such as hour of the day, week of the month

and month in the rest of Fig. 6.4.

The hour effects are small and they originate from numerical error when recording.

However, pattern could still emerge when combined with other datatime features.

The monthly effect is seasonal where investors often re-balance their portfolio in

the beginning of the year and activity slows down come summer till September and

October when people are back in their offices. The week of month is included in

hope of capturing some of the contribution from recurring events and other seasonal

patterns. In practice, we use the datetime from the target as we should know exactly

when we are predicting and these features are one-hot encoded to avoid simple

numerical biases. In addition, month and week of month effects are weakened by

multiplying with 0.1 after one-hot encoding to prioritise shorter term patterns.

6.3.3 Preprocessing

In most DL research, standardisation or normalisation of the data is common as

they help the algorithm generalise better and therefore obtain better result. We

have decided against both preprocessing techniques.

First of all standardisation transform the data forces a zero mean and the standard

deviation becomes one, such transformation works best when the data is Gaussian.

We cannot make this assumption on RV as shown in Fig. 6.5 where the distribution

is heavily right-skewed along with a strong tail. Normalisation typically transforms

the data to between 0 and 1 through manipulation with the minimum and maximum
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Figure 6.4: Mean of rolling 1 day realised volatility between 2014
- 2017 grouped by weekday (top left), hour of the day
(top right), month (bottom left) and week of month
(bottom right).

of the variables. This can be problematic for time series like the RV e.g. the training

set between 2014 - 2017 is normalised, the same normalisation applied to a strong

peak like Covid-19 would break the 0 and 1 balance. In other words, normalisation

on the dataset can not account for unseen big peaks.

We went on to explore different transformations aimed at maximising performance.

We decided to target logRV) as the variations in scale are squashed in logarithmic

scale which naturally lead to more robust models against sudden jumps. We settled

on transforming RV features into log(RV*10) and kept the moves unchanged. This

transformation pushes the mean to zero which is crucial for the neural networks to

perform effectively. We will return to the consequence of this transformation later

in the results section.
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Figure 6.5: Normalised histogram of the rolling 1 day realised volat-
ility from 2014-2017.

Figure 6.6: Training method of the benchmark model.

6.4 Methods

6.4.1 Benchmark

The benchmark method is a Ridge regression model trained with a walk forward

window (rolling). The features used to train the benchmark is slightly different to

the features mentioned in the previous section. Note that there is a tiny gap between

the train and test set, this is to avoid overlapping labels as mentioned in the previous

section. This method has strong transparency on how the weights are interacting at

each re-train which allows for further analysis on how the model would react under

different scenarios.
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6.4.2 Artificial neural network (ANN)

We propose two types of neural network (NN) in predicting RV, artificial neural

network (ANN)1 and Bayesian neural network (BNN). The architecture we used

for the ANN included 2 hidden dense layers each with 32 nodes, ReLU activation

and L2 activity regulariser with λ = 10−5. We did not use sigmoid because of the

vanishing gradient problem where predictions on big peaks performed poorly. Each

hidden layer is followed by a dropout layer with their rates set to 0.3. There are

three general types of regularisers and they are kernel, bias and activity regularisers.

The activity regulariser penalise on the combined weight between the kernel and the

bias.

Validation is included through validation split where we use the last 30% of the

training set as validation data. We have allowed random shuffling on the training

data to improve on generalisation. The batch size is set to 100 and the number of

epochs is set to 20. We have also employed model checkpoints and early stopping, a

checkpoint is updated when the validation loss from the current epoch is the historical

minimum and the model weights from this epoch get saved out. Early stopping

monitors a given metric and terminates the training process when a condition is

met. The metric we monitor is the validation loss and termination occurs when

the validation loss remain unchanged or increased for 5 consecutive epochs. The

trained models have their checkpoint weights loaded in before inference. The mean

prediction from 200 models is used as the stable result. All of the models were

trained with mean squared error as the loss function and Adam optimiser [45]. All

DL models presented were implemented in Tensorflow [143].

6.4.3 Bayesian neural network (BNN)

The premise of BNNs is analogues to ANNs as mentioned in Section 3.3.4. The

main differences between the two comes in the type of layer and the definition of
1ANN here is the same type as the fully connected neural network described in Section 3.3.3
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loss function. For the hidden layers, BNN typically uses dense flipout layers instead

of standard dense layers. Flipout layers perform a Monte Carlo approximation of

the distribution integrated over the kernel and bias [53]. In other words, the kernel

and bias are not points but distributions. The weight updates are now on the mean

and standard deviation of the surrogate distributions which we have assumed are

Gaussian.

The output layer could be used like in an ANN where the network directly predicts

the target with 1 output node. The other way is to make an assumption about the

distribution of the target variable and the network would then predict the mean and

standard deviation of this distribution. We know the target distribution is a right

skewed Gaussian with a fat tail from Fig. 6.5. Unfortunately, skewed distributions

are still in development when this is written. Therefore, we used BNN as if it is an

ANN with an uncertainty band.

The loss function is critically different with the inclusion of the Kullback-Leibler

divergence (KL) on top of just MSE. In order to perform inference on a BNN, we

need a method to optimise the distributions of the weights and bias. KL-divergence

measures the similarity between two probability distributions and in this case between

the prior distribution and the Monte Carlo approximated distribution. In addition,

this extra term naturally acts as a regulariser and therefore BNNs are much less

likely to overfit. A complete derivation of this process can be found in [55].

In practice, these convenient features of BNN means that we do not need to train an

ensemble of models. However, this is not the full story because we need to sample the

weight and bias distributions enough times to get a representative result. We found

sampling 200 time to be sufficient and we take the mean as the stable prediction.

This process is also known as variational inference.

BNNs were implemented with Tensorflow and Tensorflow probability [167].

The architecture used for the BNN is essentially the same as the ANN with the

dropout layers removed. The number of epochs has moved up to 100 as BNN

generally requires more epoch before convergence. The model checkpoint and early
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Figure 6.7: The anchored walk-forward training scheme.

stopping remain in place with the patience setting also increased to 10 epochs. All

other hyperparameters are the same as the ANN.

6.4.4 Anchored walk-forward training

This is much like the walk forward training scheme used by the benchmark but the

starting point of the training set is fixed while the whole training set increases in

size like an expanding window as shown in Fig. 6.7. The first training set starts from

2014-2017 and the test set is 5 days long. The test set get absorbed to be the end

point of the next training set. The validation data does not have a fixed size because

it is always the last 30% throughout all timesteps. We have also tried to apply the

exact same walk forward scheme from the benchmark to the neural networks but

the result was bad. This is because the training sample size is simply too small

for the networks to learn anything meaningful under the same specification of the

benchmark.

6.4.5 Cross-validation

In the neural networks mentioned, they both have a validation set obtained from the

final 30% of the training data. The cross validation here is similar to K-fold cross

validation in terms of how the data is split but we have also included an anchored

walk-forward type training scheme. We have 2 ways of using this, the first being an

epoch number finder and the second is basically K-fold cross validation. Consider

5 sets of training data separated by similar number of validation data points, each
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Figure 6.8: Cross validation by simultaneously training different
sets one epoch at a time.

set has 50 models to account for instability. We train 250 models 1 epoch at a time.

The mean validation loss (val loss) across all models is calculated, when this mean

val loss is above the historical minimum val loss, the patience ticker goes up by

1. This ticker is reset to 0 if the current mean val loss is a new minimum. This

training process stops when the patience reaches 5 and we would have an epoch

number signalling the beginning of over-fitting. This is essentially a custom early

stopping mechanism where the mean val loss across all validation sets is monitored.

In the first scenario, we run the epoch finder every 2 months and use that number

to train a fresh set of models without any validation data up to that epoch number

every 5 days. The point is we now have a relatively safe epoch number where we

could include the latest data in the training set without spending any of them on

validation. The second usage is much simpler where we would use the 250 models

as a big ensemble and take the mean prediction at every timestep. The train test

split setup is displayed below in Fig. 6.8.

6.4.6 EMASE

This is an evaluation method intended to act as a safety net for models to combine

their predictions in a conservative way. Consider an ensemble S of 2 models where

one of them is an ANN and the other one is the benchmark model. We only used

2 models but there is no limit on the total number. The ANN generally performs

well but ANNs are known to be bad at extrapolation i.e. it might give bad results if
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the data input does not belong to any part of the trained data space. On the other

hand, the Ridge regression trained like the benchmark will always be reasonable due

to its interpretability.

For each point of the prediction, the contribution from each of the models are

weighted. The weights are calculated through the Error Function Moving Average

Squared Error (EMASE) [168], it can be written as:

EMASE = Erfc(MASEs)∑
s∈S Erfc(MASEs)

,∀s ∈ S , (6.4.1)

where S is the ensemble, s is each one of the models, MASE is the moving average

square error over a period P and Erfc is the Gaussian complementary error function

given in Eq. 6.4.2. The period P of the MASE controls the reactiveness such that

smaller window leads to faster reactions. Note that faster reaction does not guarantee

better predictions. We chose P to be the past 5 days such that we are sure about the

weights without being too conservative. The MASE are then MinMax transformed

to be between 0 and 1 with the minimum and maximum within every P . This retains

the sense of scale between different predictions.

Erfc(x) = 4√
π

∫ ∞
x

exp(−t2)dt . (6.4.2)

The sum of EMASE adds up to 1, each weight decays exponentially with the loss due

to the error function. The final prediction is then the linear combination between

the weights and their respective predictions.

6.4.7 Model weight regularisation

This is an incremental learning method similar to the walk-forward training scheme

from the benchmark. Rather than retraining the models at every timestep, we

have a set of base models trained with data from 2014-2017. They have the same

architecture as the ANN presented above. The new models have a similar architecture

but the dropout layers are removed. At every timestep, we fine tune the new models

with the base model weights loaded in with the hidden layer weights frozen such
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that the output layer is the only trainable object. The new models are trained on

the most recent 30 days of data and test on the next day. The loss function is also

custom made to include a penalty term on the mean squared difference between the

base model weights and the fine tuned model weights. The custom loss is written

as:

Custom loss = MSE + λ

N
(wbase − wFT])2 , (6.4.3)

where MSE is the mean squared error, λ is the penalty coefficient much like the one

for Ridge or LASSO, N is the length of the weights vector, wbase is the vector of base

model weights and wFT is the vector of the fine tuned model weights. This penalty

is small when the fine tuned prediction is similar to the base prediction i.e. the

fine tuned model weights are only allowed to change when the fine tuned prediction

needs to be drastically different from the base prediction. This could happen when

the input data is unseen within the base trained data space hence this method has

a built-in safety net. This method introduced an additional parameter λ, we found

λ = 2 ∗ 105 gives the best result through calibrating on 2018-2019 data. One can

also include an additional penalty term on the bias between the two sets of models

to further constrain any changes. However, this additional degree of freedom makes

it difficult to determine the best λ for each of the terms.

6.5 Result and discussion

The results shown in Table 6.1 were calculated on 2018-2019 data, the metrics in-

cluded mean squared error (MSE), R-squared (R2) and mean absolute error (MAE).

In this table, standard refers to the statically trained base model, WF stands for walk

forward, CVs are the corresponding usages mentioned in the previous section and

fine tuned is the incrementally trained weights regulated model. Notice that there

isn’t a BNN fine tuned model, this decision was made because it is not reasonable

to take weights differences from samples of the weight distributions. However, one

could attempt to use the mean and standard deviation for such regularisation.
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Method MSE R2 MAE

Benchmark walk-forward 0.00240 0.566 0.03093
ANN Standard 0.00205 0.630 0.02894

Anchored WF 0.00203 0.633 0.02877
Anchored CVWF epoch 0.00208 0.624 0.02938
Anchored CVWF mean 0.00206 0.629 0.02882

EMASE 0.00212 0.617 0.02926
Fine tuned 0.00206 0.627 0.02905

BNN Standard 0.00195 0.648 0.02916
Anchored WF 0.00207 0.626 0.02898

Anchored CVWF epoch 0.00208 0.625 0.02976
Anchored CVWF mean 0.00196 0.645 0.02885

EMASE 0.00202 0.635 0.02913

Table 6.1: Result calculated based on 2018-2019 data.

Overall, all methods performed better than the benchmark. The best fitted method

is the standard BNN with R2 = 0.648. The best ANN is the anchored walk forward

model which also has the bestMAE. Given the fact that big differences between pre-

diction and target are enlarged inMSE comparing toMAE, the similarity inMAE

across the models suggests that the predictions are all quite similar apart from the

amplitude of the bigger peaks. When comparing the same method between ANNs

and BNNs, the latter generally have higher R2 especially the standard, anchored

CVWF mean and EMASE models. This comes from better peak amplitude predic-

tions as R2 is proportional to MSE.

The first 4 months’ predictions for each of the families are shown in Fig. 6.9 and 6.10.

It is apparent that DL methods are quicker at reacting to sudden market movements

as all models showed an earlier rise than the benchmark for the first big peak. As

mentioned above, most predictions within the same family are quite similar apart

from the anchored CVWF epoch finder models. They have likely still overfitted in

certain regions as the number of epochs is decided through a relatively small batch

size and the mean validation loss across all data up till the point of testing. It is

also clear that BNNs generally predicted the peak amplitude with greater accuracy

as mentioned before. Note that the benchmark predicted a false signal around mid
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Figure 6.9: ANN predictions on the first 4 months of 2018 for each
of the methods shown in Table 6.1.

February as a result of the choice of features. The EMASE predictions were strongly

affected by it and have a damped version of this false signal as expected.

It is important to show that a strategy is profitable before applying it in production.

We utilised the backtester developed by the Statarb team to test the trading sig-

nals generated from our models. The backtester simulate trades based on historical

market movement. The 2018-2019 backtest results are shown in Table 6.2, Sharpe

here refers to the annualised Sharpe ratio, ac shown in the bracket is the Sharpe

ratio after cost and max drawdown is the biggest drop in PnL from any single trade

throughout the testing period. Note that all models apart from the stared one has

been tuned to have around 40% market time in short positions and 15% market

time in longs. We will therefore not include the stared result in our performance

comparison.

From Table 6.2, we can see that the simpler ANNs generally traded better than the

other models. The standard ANN made the highest total PnL even though it did

not have the best fitting result. The standard BNN which fitted best performed well

on shorts but made a few bad longs. This is because of the higher peak amplitude

where it would signal for longs even when the IV is on its way down. This is also

known as a loss in Vega PnL. On the other hand, the best fitted ANN actually
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Figure 6.10: BNN predictions on the first 4 months of 2018 for each
of the methods shown in Table 6.1.

traded well with the best Sharpe before cost on both shorts and longs. In terms of

drawdowns, the BNN EMASE model came out on top but this only means that it

has lost the least in any single trade. It is also the most profitable BNN. Regardless

of the weak performance from the standard BNN, this shows the value in having a

safety net. The safety net effect is not as prominent for the ANN EMASE because

the standard ANN is much more similar to the benchmark than the standard BNN.

Therefore the EMASE calculated often stays around 0.5 for the ANN.

In general, 2018 had some strong long opportunities due to explosion in VIX and

other general market adjustments where else 2019 is mainly a short year because the

RV had a downward trend throughout the year apart from occasional events. The

ideal strategy would then be one that picked up these key features. The plots in

Fig. 6.11 and 6.12 shows the evolution of the PnL for the respective methods. Note

that the effect of VIX explosion and Trump tweet have been toned down to 0.2 of

the original strength. All models roughly followed the ideal trait. It is interesting to

see that the standard and the anchored CV epoch mean BNNs perform so similarly

to the benchmark overall in total PnL while their fits are 15% better in terms of R2.
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Method Side Count Sharpe (ac) PnL Max drawdown
Benchmark walk-forward short 93 3.434 (2.604) 1.167 -0.217

long 120 2.909 (1.633) 0.647 -0.109
ANN Standard short 99 4.898 (3.972) 1.710 -0.128

long 142 4.088 (2.587) 0.872 -0.121
Anchored WF short 86 5.311 (4.405) 1.749 -0.123

long 139 4.482 (2.514) 0.706 -0.125
Anchored CVWF epoch short 85 4.149 (3.266) 1.374 -0.127

long 125 3.304 (1.752) 0.583 -0.108
Anchored CVWF mean short 85 4.083 (3.209) 1.367 -0.123

long 183 3.622 (1.446) 0.639 -0.138
EMASE short 94 4.132 (3.230) 1.344 -0.162

long 133 3.818 (2.149) 0.702 -0.095
Fine tuned short 90 4.971 (4.006) 1.539 -0.111

long 125 4.035 (2.616) 0.823 -0.133
BNN Standard short 98 4.052 (3.047) 1.338 -0.129

long 60 2.172 (1.177) 0.359 -0.171
Anchored WF * short 64 5.605 (4.697) 1.515 -0.105

long 119 4.371 (2.431) 0.544 -0.091
Anchored CVWF epoch short 83 4.886 (3.875) 1.447 -0.111

long 58 3.379 (2.578) 0.603 -0.100
Anchored CVWF mean short 91 4.242 (3.311) 1.427 -0.143

long 66 2.401 (1.179) 0.310 -0.180
EMASE short 96 4.867 (3.874) 1.496 -0.119

long 70 3.946 (2.949) 0.703 -0.095

Table 6.2: Backtest result calculated based on 2018-2019 data.

6.5.1 2020

2020 is the out-of-sample test set as mentioned before. We have decided to only test

the better models with this additional test set and they are the standard, anchored

walk forward, EMASE, fine tuned ANNs and the EMASE BNN. The fitting results

for these models are shown below: The benchmark predicted a massive peak in

March at about RV = 3 when the truth is about 1.6 which explains the poor MSE

and R2. The rest of the predictions from the benchmark are reasonable. On the other

hand, the NNs predicted fine apart from the region after the Covid-19 peak around

April as shown below in Fig. 6.13. It is clear that the standard and anchored walk

forward ANNs did not pick up the regime shift. They were constantly predicting

0.05 points below the benchmark let alone the truth. There are several reasons
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Figure 6.11: Backtest result of the ANNs, total PnL (top), PnL
from longs (bottom left) and PnL from shorts (bottom
right).

behind this, the first being the moves of the underlying during that time. The

moves after the big peak in March have mostly been positive as the market sharply

recovered from the enormous drop, the models have likely learnt that positive moves

are related to decrease in volatilities and vice versa. Therefore, the predictions drops

quickly to a similar level before Covid-19 where it is comfortable. Secondly, this

is exactly the kind of bad extrapolation neural networks could make because there

weren’t any similar events between 2014-2017 in terms of market impact. Notice

that the models with safety nets overcame this problematic region as designed, this
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Figure 6.12: Backtest result of the BNNs, total PnL (top), PnL
from longs (bottom left) and PnL from shorts (bottom
right).

shows the importance of such mechanisms as the future is unpredictable. Lastly,

this could be a curse from predicting in log scale where the predictions and labels

are not significantly different in log space but this difference is actually quite big

once transformed back for low RV. However, this particular problem in April should

be avoidable given more training data as we know retrospectively the RV behaved

similarly to other extreme events such as the 2008 financial crisis.

There were two major events in our 2020 data, the assassination of Qasem Soleimani

and Covid-19. The RV has been on a downward trend at times other than these
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Method MSE R2 MAE

Benchmark walk-forward 0.04134 0.241 0.08357
ANN Standard 0.01840 0.662 0.08158

Anchored WF 0.02061 0.622 0.07970
EMASE 0.01795 0.670 0.07289

Fine tuned 0.01604 0.705 0.07282
BNN EMASE 0.01699 0.688 0.07130

Table 6.3: Fitting result on 2020 data.

Figure 6.13: Predictions in April after the Covid-19 peak.

events making 2020 a fairly simple year in terms of trades. The backtest result on

the first 9 months of 2020 is shown in Table 6.4 and Fig. 6.14. Note that the effect

on the Covid-19 peak has also been toned down like previous major events. The

trade barriers for these models remained the same as calibrated for 2018-2019, the

market time in shorts are around 70% and 8% in longs.

The DL models all avoided shorting into the assassination while some actually longed

the event and gained strong profit, this is most likely luck from datetime patterns.

The overall performance between the benchmark and the DL models are not that

different otherwise. In addition, none of the DL models got punished for predicting

the wrong long term RV because IV was above the RV for pretty much the whole

time past the peak. Notice that the short PnL dropped a few times while no longs
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Method Side Count Sharpe (ac) PnL Max drawdown
Benchmark walk-forward short 46 1.330 (0.784) 0.339 -0.254

long 20 8.909 (7.344) 0.072 -0.017
ANN Standard short 44 3.038 (2.437) 0.595 -0.126

long 44 4.057 (1.856) 0.111 -0.033
Anchored WF short 44 3.358 (2.749) 0.695 -0.136

long 50 1.170 (-1.142) 0.030 -0.059
EMASE short 45 2.892 (2.293) 0.574 -0.156

long 37 7.167 (5.750) 0.221 -0.019
Fine tuned short 46 3.013 (2.399) 0.579 -0.168

long 41 4.186 (2.666) 0.130 -0.028
BNN EMASE short 46 2.726 (2.091) 0.525 -0.136

long 17 9.290 (7.868) 0.105 -0.013

Table 6.4: Backtest result from January to the end of September of
2020.

were made during the second half of the year. They were Covid-19 news and it is

impossible for our kind of models to predict such jumps but it would be interesting

to see if a headline scrapper type algorithm could help minimise the loss.

6.5.2 Extra data

Towards the end of this project, we obtained more S&P data dated from 2000. This

data contains several major events such as the 2008 financial crisis and the 911 attack

in 2001. The 2008 peak clearly shares similar regime shift type behaviour to the

Covid-19 peak as shown in Fig. 6.15. We applied the standard ANN model training

from 2000-2016 and test on 2017-2020, we can expect better performance from the

model in 2020 because of the other events. Training on this bigger dataset has also

improved performance in other test years as the network got to learn from more

examples of datetime effect. We have excluded hour of the day from the datetime

features as it was inducing false patterns, the rest of the feature set is the same

as above. The prediction for April 2020 is displayed in Fig. 6.16, the new ANN

performed exactly as desired solving the extrapolation problem. In addition, we

compared the backtest results dated from 2017 onwards with the benchmark and
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Figure 6.14: Backtest result of the selected DL models in 2020.

the standard ANN as shown in Table 6.5 and Fig. 6.17. There is a staggering

2 units of PnL difference between this ANN and the benchmark. This difference

comes from longs in 2017 and late 2019. It is interesting how none of the previous

models made similar longs in late 2019. Further investigation is required to gain

better understanding on this part.

6.6 Summary

We have explored different DL methods to predict RV, they have mostly performed
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Figure 6.15: Comparison between the 2008 financial crisis peak and
the Covid-19 peak in 2020.

Method Side Count Sharpe (ac) PnL Max drawdown
Benchmark walk-forward short 187 2.601 (1.797) 2.203 -0.583

long 166 3.262 (1.724) 0.898 -122
ANN Standard short 266 4.679 (3.602) 3.636 -0.388

long 172 4.705 (3.027) 1.523 -0.114

Table 6.5: Backtest result from 2017-September 2020.

better than the benchmark. The standard, anchored walk forward, fine tuned ANNs

and the EMASE BNN have comparable results as the top candidates.

The success of these models demonstrated some key features, performance in R2

does not necessarily translate to trading performance as shown by the standard BNN

but this is not definite for every model as seen in the anchored walk forward ANN.

This lower R2 comes from lower predicted peak amplitude which seemingly helped

avoid problematic longs for the better traded models. We have tested on more

complicated models like LSTM or just with added complexity to the architecture

without success. The simple architecture with a low number of neurons restricts

the freedom of the models reducing the possibility of overfit and false signals. The

models without safety nets suffered from the April regime shift problem in 2020 as

they produce poor extrapolations. However, preliminary result from training with
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Figure 6.16: Comparison between standard ANNs trained with
2014-2017 data and 2000-2016 data in April 2020.

additional data showed that the April problem can be resolved by having events

similar to Covid-19 in terms of market impact. The future of this project can be

separated into 3 main directions, the first in architecture. We have not fully explored

the capabilities of this new dataset, more complicated methods such as LSTM may

work better than standard ANNs given the larger training dataset. The second one

is on feature searches, the current feature set is rudimentary as we only have features

from the return series and datetime effects. Other features from different underlying

or insights from traders should be explored. The third direction would be to use

alternative data like news headlines or something more extreme like satellite sensory

data as an increasing amount of movement in the market can be traced back to

certain instantaneous events.
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Figure 6.17: PnLs between the benchmark and 2000-2016 trained
standard ANN, total PnL (top), long PnL (bottom
left) and short PnL (bottom right).



Chapter 7

Conclusion

This thesis explored the usage of machine learning algorithms on two classification

problems, inclusive |Vub| determinations and strange quark jet flavour tagging. Both

problems focus on flavour physics as |Vub| is the least known element within the

CKM matrix and strangeness tagging is the final piece of the puzzle in quark flavour

tagging. A strong emphasis on feature selection is imposed for both problems, as

advancements in data driven solutions allows for low level detector information in

addition to the carefully crafted physics observables. The aim of the studies is then

to provide new methods and features in extending development for these areas and

in turn be better equipped when testing the flavour structure of the Standard Model

(SM).

We began with an overview of the thesis in Chapter 1. We followed with an intro-

duction to the SM and in particular flavour physics in Chapter 2. Chapter 3 focuses

on descriptions of different machine learning methodologies and their deployment

within particle physics.

In Chapter 4, we studied systemically the application of ML techniques to inclusive

|Vub| determinations. We showed that a deep neural network trained on low level

single-particle detector level features resulted in a small performance increase com-

pared to the existing Boosted Decision Tree method based on high-level observables

used in the Belle analysis [80]. The difference in performance being so small further
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validates the effectiveness of the carefully crafted high-level features in discriminating

the b→ u signal from the overwhelming b→ c background.

In addition to method comparisons, we dived into understanding the inclusivity

within the fiducial region selected by cuts on the classifier output of two types of

neural networks. The networks differ in the input features respectively where one

included both kinematic and hardon-level features and the other only used hadron-

level features similar to the BDT approach mentioned. These signal acceptance rates

provide insights on behaviours of the models when selecting signal events. They also

prompt for additional consideration when extrapolating |Vub| as systematic theory

uncertainties associated to the Monte Carlo modelling emerge for non-local shape

function OPE regions.

This chapter finished with an investigation on the influence of ss̄-popping probability

for the signal acceptance rates as supervised ML approaches require precise MC data,

especially when measurements become systematics dominated for Belle II. The full

analysis was carried out using the standard |Vub| analyses MC tool EVTGEN but

was also repeated with a different event generator SHERPA. The NNs were trained

and tested on data produced by different MCs as a stress test on MC uncertainties.

Further opportunities arise from more complicated network architectures but also

advancements in theory calculations such that MC generators can keep up with the

precision required in future experiments.

In Chapter 5, we explored the potential of building a strangeness tagger among light

quark jet backgrounds with NN architectures. We showed that the experimental jet

definition has little effect as the quark-matched samples contain mostly leading jets

ordered by pT . We systematically studied the features, in particular Js and its com-

positions [124, 141]. We observed the importance of particle identification through

performance of the feature groups and that the network must have effectively created

something similar to p‖ and Js from low level detector tracks information through a

SHAP analysis.

Furthermore, we investigated the prospect of having such a network setup for LHCb.
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We included the gluon contributions as part of the background events. The result

suggests that the signal and background ML efficiencies are similar to the simpler

s-jets vs d-jets scenario.

Finally as a side study, we investigated the effectiveness of obtaining PID information

through time-of-flight measurements planned for general purpose detectors such as

ATLAS and CMS. We showed that the proposed 30 ps time resolution is not precise

enough for this individual setup and the required resolution is lower than 1 ps.

There are several directions forward for this study, one way is to employ more

sophisticated network architectures. However, this also requires additional research

on more effective flavour discriminants. Another limit is with PID where precise

detection of charged kaons would only improve tagging performances.

Chapter 6 is a diversion from particle physics where a research project was presen-

ted in collaboration with Optiver to investigate the application of deep learning in

predicting realised volatility of financial indexes. We examined two different neural

network architectures along with numerous training schemes in terms of how the

data is arranged to maximise performance. The benchmark is a simple ridge regres-

sion and all proposed DL methods achieved stronger results in both the fits and the

backtesting result obtained from simulated trades. In addition, this study showed

the importance of the quality of the training data, as a regime shift occurred at the

beginning of 2020 (COVID-19), which was not picked up by models trained with

data between 2014-2017. The reason behind the poor fit is because such behaviour

has not been observed within that period and NNs are unreliable when extrapolation

is required. However, when data dated from 2000 are included as part of the training

data, similar market behaviour from the 2008 financial crisis helped the models

overcome the underprediction by the model trained on 2014-2017 data.

As follow-ups to this study, the obvious next step is to further investigate the ro-

bustness of the presented methods. In terms of potential areas for improvement,

the most important one is to search for more effective and/or diverse features. The

current set of features are mostly derived from the returns of the underlying. Correl-
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ations between the features are naturally high but perhaps causality should also be

considered as a proxy for different events. Diversity can also come from a different

data source, an interesting choice would be news headlines, though it is difficult to

incorporate such data as market reactions to news are extremely subjective.



Appendix A

|Vub| study appendices

A.1 Detector simulation

Theoretically, the signal and background processes are well separated by the through

kinematic boundaries at MX = mD, P+ = m2
D/mB and p∗` = (m2

B − m2
D)/(2mB).

However, detector effects lead to large contributions from the B → Xc`ν background

to the B → Xu`ν signal region, and it is necessary to include them in order to mimic

the challenges of the experimental environment.

In the following, we describe our in-house detector simulation meant to capture the

main features of a more complete one. We list the assumed parameters for detector

resolution in Section A.1.1 and for detector efficiencies and mistagging probabilities

in Section A.1.2. Most of these values are based on the description of the BaBar

detector in Ref. [169], from the BaBar analysis of the inclusive determination of |Vub|

paper [81] and the corresponding PhD thesis on the same subject [170]. We compare

the resulting distributions after our detector simulation to those shown in the recent

reanalysis of Belle events in Ref. [82]. We highlight that the beam energies in Belle

(3.5GeV and 8.0GeV) are slightly different from the values we used in our MC event

generation (4.0GeV and 7.0GeV), see Section 4.3. We therefore expect deviations

of the lab-frame momenta on the level of . 10 %.
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A.1.1 Detector resolution

We assume perfect reconstruction of the direction of each detected particle and we

only smear the energy (momemtum) for photons (charged particles). The energy

resolution of photons is parametrized by [170]

σEγ
Eγ

= 2.32 %
E1/4
γ

⊕ 1.85 %, Eγ in GeV. (A.1.1)

For the resolution of charged particles, we use the pT resolution of the Drift Cham-

ber (DCH) which is the main tracking device for charged particles with pT ≥

120MeV [170].

σpT
pT

= 0.45 %⊕ 0.13 % pT , pT in GeV. (A.1.2)

We apply this formula on all charged particles, also those with pT < 120MeV.

A.1.2 Efficiencies and mistagging

For charged particles/tracks, the overall reconstruction efficiency is 98 % for momenta

p ≥ 200MeV (DCH) [170]. We assume that mistagging is only relevant for

true π± → fake K±

→ fake e

→ fake µ

true K± → fake π±

→ fake e

Photons

Photons are detected with an efficiency of 96 % for energies above 20MeV.

effγ(Eγ) = 0.96 (Eγ ≥ 0.02), Eγ in GeV (A.1.3)
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Electrons

Electrons need to have a minimum momentum of plab = 500MeV in the lab frame.

Their efficiency is 93 % above this threshold [81].

effe(p) = 0.93 (p ≥ 0.5), p in GeV (A.1.4)

Muons

Muons need to have a minimum momentum of plab = 500MeV in the lab frame.

Their efficiency is 90 % above this threshold.

effe(p) = 0.9 (p ≥ 0.5), p in GeV (A.1.5)

Since muons and electrons/hadrons are detected in different detector parts, we

assume the muon fake rate for electrons and hadrons to be negligible.

Kaons

Charged kaons need to have minimum momenta of plab ≥ 300MeV to be identified.

The efficiency is taken from Fig. 3.5 of Ref. [170]. It drops linearly for momenta

satisfying p < 7GeV, at values above this we approximate the efficiency using a

quadratic function:

eff
K

±(p) =



0, p < 0.3

−0.8 p+ 1.23, 0.3 ≤ p < 0.7 p in GeV

0.86− 0.35(p− 1.5)2, 0.7 ≤ p < 1.8

−0.0225 p+ 0.87, p > 1.8

(A.1.6)

We determine possible K0
s candidates based on the invariant mass of opposite-sign

pion pairs. Pairs in the mass range m
π

+
π

− ∈ [0.490, 0.505]GeV are assumed to result

from K0
s decays with a 40 % probability, see Fig. 3.6 of Ref. [170]. We model the
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misidentification of kaons as electron as

mise|K(p) =


0, p < 0.05

0.004− 0.001 p, 0.05 ≤ p < 4.0 p in GeV

0, p > 4.0

(A.1.7)

Pions

For the reconstruction efficiency of slow, i.e. low momentum, pions we use the

values given in Ref. [171]. The efficiency for pions grows exponentially from 20 %

at pT = 50MeV to 80 % at pT = 70MeV, see also Fig. 9 of Ref. [171]. For pion

momenta p ≥ 0.4GeV, we assume the reconstruction efficiency to drop linearly,

compare Fig. 89 of Ref. [169].

effπ(p) =


0, p < 0.05

1− 13 exp(−86.29 p+ 560.4 p2 − 1601 p3 + 1625 p4), 0.05 ≤ p < 0.4 p in GeV

1− 0.015 p, p > 0.4

(A.1.8)

The efficiency for pions to be misidentified as kaons is taken from Fig. 3.5 of Ref. [170].

We approximate the momentum dependence as linear for low momenta and constant

for larger momenta

misK|π(p) =


0, p < 0.05

0.01 p, 0.05 ≤ p < 2.0 p in GeV

0.02, p > 2.0

(A.1.9)

We assume the efficiency for pions to be misidentified as muons to be 0.5 % below

1GeV and 1 % above this value (Fig. 3.4 in Ref. [170]). We do not model any angular

dependence.

misµ|π(p) =


0, p < 0.5

0.005 p, 0.5 ≤ p < 1.0 p in GeV

0.1, p > 1.0

(A.1.10)
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We model the misidentification of pions as electron as

mise|π(p) = 0.001p (p > 0.5), p in GeV (A.1.11)

A.1.3 Validation

To validate our detector simulation, we reproduce Fig. 14 of Ref. [82] in our Fig. A.1.

We find good agreement for the number of charged kaons and the bulk of the

M2
miss, D∗(πslow) distributions. Larger deviations between our detector simulation

and the Belle values, for instance at low M2
miss, D∗(πslow) or with a large number of

kaons, appear in statistically much less relevant regions and less than 2 % (1 %) of

all signal (background) events lie at M2
miss, D∗(πslow) < −20GeV2. Less than 3 % of

the background event contain more than one charged kaon. Since we do not include

the effect of particles from the tagging side of the event being assigned to the signal

side, we poorly underestimate the negative regime of the missing mass squared.

A.2 Machine Learning analysis set-up

A.2.1 Training and test sets

To train our classifiers, we create balanced data sets with 10M B → Xu`ν signal

events and 10M B → Xc`ν background events. The data preparation process

includes the application of the in-house detector simulation and a standard scaling

of the data based on the training set. Categorical features are one-hot encoded

and are not scaled. The training set is shuffled and 20 % of it is used for cross

validation. For testing, we create two test sets with a physical signal-to-background

ratio (1/45). Each test set contains 40K signal and 1.8M background events after

detector simulation, which roughly corresponds to the number of semi-leptonic B-

decays in a sample of 22.6M BB̄ events.
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A.2.2 Bayesian neural network

Bayesian neural network (BNN)
Input layer number of features nodes
1st hidden DenseFlipout layer 256 nodes, Sigmoid activation

batch normalisation
2nd hidden DenseFlipout layer 256 nodes, Sigmoid activation

batch normalisation
3rd hidden DenseFlipout layer 256 nodes, Sigmoid activation
Output layer 1 node, Sigmoid activation
Kernel posterior function mean field normal distribution
Bias posterior function mean field normal distribution
Kernel divergence function KL divergence function
Loss function binary cross-entropy
Optimizer Adam
Batch size 512
learning rate 0.1 for first 10 epochs

then decreasing with e−0.1 each epoch

Table A.1: Neural network architecture.

Our BNN is implemented with Tensorflow [143], TensorFlow-Probability [167]

and Keras [145] with a total of 5 layers. The number of nodes of the input layer is

the number of input features. There are 3 hidden DenseFlipout layers [53], each of

them containing 256 nodes using the Kullback-Leibler (KL) divergence function as

the kernel divergence function. We use a sigmoid activation function for all hidden

layers. The first two hidden layers are followed by a batch normalisation layer which

scales the weights and biases to have mean = 0 and standard deviation = 1. This

helps avoid the vanishing gradient problem with sigmoid functions. The output layer

only has 1 node with a sigmoid activation function, the posterior function for the

kernel and bias are both assumed to be mean field normal distributions. The kernel

divergence function for the output layer is also the KL divergence function.

We use binary cross-entropy as our loss function and apply the Adam [45] optimizer.

The KL divergence is automatically added to the loss during training. Early stopping

and model checkpoints are in place to monitor the validation loss of each epoch. The

model weights from the best performing epoch are saved out and loaded back in
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before inference. We summarise the NN architecture in Table A.1.

A.2.3 Boosted decision tree

Boosted decision tree (BDT)
Classifier XGBoost
Max depth 10
Learning rate 0.4
Number of estimators 300
Gamma 1
Subsample 0.9
Colsample_bytree 0.7
Loss function logloss

Table A.2: Boosted decision tree architecture.

The BDT is implemented with XGBoost [40]. We allow for a maximum depth of 10

as higher depth did not improve performance. The learning rate is fixed at 0.4. The

number of estimators is set to 300 with early stopping in place. The gamma factor

is fixed at 1. The subsample ratio of the training instance is 0.9 and subsample

ratio of columns when constructing each tree is set to be 0.7 to reduce the risk of

overfitting. The BDT set-up is summarized in Table. A.2.

In training the algorithms, the hyperparameters displayed in Tab. A.1 and A.2 were

predetermined with minimal optimization through HyperOpt [146].

A.3 Plots of the high-level input features

A.4 Training with SHERPA

In Section 4.5 we studied the performance of NNtight and NNloose when trained on

EVTGEN data and then tested on both SHERPA and EVTGEN data. Here we give

results when instead SHERPA data is used to train the BNNs.

We begin by showing in Fig. A.3 the signal acceptances of NNtight (upper row) and
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NNloose (bottom row), finely binned in the variable MX . As in Fig. 4.8, the plots

also show the signal and total number of accepted events (TP+FP), normalized to

the number detector-level signal events, in addition to the background acceptances

for NNloose using the y-axis shown on the right of the lower panels. The plots in the

left-hand side of the figure are trained on EVTGEN data, while those on the right

are trained on SHERPA data.

The figure shows that the signal acceptances for NNtight are fairly independent of the

training and testing data up until about MX ∼ 1.5 GeV, even though finely-binned

signal modelling from the two MCs is vastly different. For MX > 1.5 GeV, on the

other hand, the acceptances depend crucially on the which MC is used in the training.

The reason is that the SHERPA signal drops quickly to zero beyond this point, and

is already negligible at the D-meson resonance at MX = 1.9 GeV. Consequently, as

seen in the top-right plot, a SHERPA-trained NNtight tends to reject the higher-MX

region of the EVTGEN signal, as it has not seen signal events in that region during

the training.

This artificial separation of signal and background in SHERPA is an unphysical effect

that can be remedied by a matching with OPE-based results, which give a model-

independent description of fully inclusive rates in the higher-MX region. We note

further that the signal acceptance of NNloose is fairly flat as a function MX , whether

trained on EVTGEN or SHERPA data, and in particular even the SHERPA-trained

version accepts EVTGEN signal events across the entire region. In this case, however,

the unphysical behaviour of the signal modelling would inevitably show up in a

poor fit quality in the second stage of the analysis. For these reasons we have not

considered SHERPA-trained BNNs in the body of the text.

Still, for completeness, we show in Fig. A.4 and A.5 the SHERPA-trained versions

of Fig. 4.8 and 4.10. The most prominent feature is the expected reduction in the

signal acceptance of EVTGEN data by NNtight in the regions of high-MX and low q2

and p∗` in in Fig. A.4 compared to the EVTGEN-trained version in Fig. 4.8, as well

as a higher acceptance of the SHERPA signal overall, regardless of the BNN.
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Figure A.1: Detector simulation validation plots for signal (left)
and background (right) contributions. We compare the
distributions of our MC events after detector simulation
(detector sim) with the MC events produced by the
Belle collaboration displayed in Fig. 14 of Ref. [82]. See
paragraph below Eq. 4.4.2 for the feature definitions.
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Figure A.2: Comparison of high-level features for B → Xu`ν signal
and B → Xc`ν background events.
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Figure A.3: MX distributions and signal acceptance for NNtight
(top) and NNloose (bottom) trained on EVTGEN (left)
and SHERPA (right) data. For NNloose the dashed lines
in the lower panel show the background acceptance
using the scale for the y-axis on the right.The distri-
butions in the upper panels of each plot are normal-
ized to the total number of signal events. A broader
binning has been chosen to show the acceptance at
MX > 2GeV, where event statistics are low.
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Figure A.4: As in Fig. 4.8, but using SHERPA instead of EVTGEN
data for training the NNs.
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Figure A.5: As in Fig. 4.10, but using SHERPA instead of EVTGEN
data for training the NNs.
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Strangeness tagger appendices

B.1 Detector simulation specifications

In order to smear jet objects in the SFS [139] module we first choose constituent

based smearing. The detection of partons is based on calorimetric energy and spatial

resolution. The standard deviation in energy resolution has been taken as 10.32%,

and the standard deviation in the spatial resolution has been determined by

σspatial = α

1 + eβ(piT−γ)
,

where piT is the transverse momentum of the hadron and α, β and γ are taken as

0.04526, 0.013 and 31.15, respectively which are based on Ref. [172]. Both energy

and spatial resolution have been used in a Gaussian smearing function to set the

momentum of hadrons. Furthermore, a reconstruction probability has been set on

jets where the efficiency is defined as [173]:

εj =


0% for pT < 0.8 or η < 2 or η > 5 ,

95% else .
(B.1.1)

In addition to jets, electron (muon) reconstruction efficiency have been set as [174]

εe (µ) = 0%for pT < 0.6 (0.8) or η < 2 or η > 5 , (B.1.2)
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97%else . (B.1.3)

The electron and photon energy has been smeared according to the calorimeter

specifications if they are within 2 < η < 5,

σE
E

= 1⊕ 0.015E ⊕ 0.1
√
E . (B.1.4)

The track reconstruction efficiency has been held the same as jets where their mo-

mentum have been smeared with σpT = 0.005 if their transverse momentum is

greater than 0.5 GeV and its transverse impact parameter has been smeared with

σd0 = 0.0116 + 0.0234/pT . Since our simulation largely depends on particle iden-

tification, we also implement track misidentification where charged pions, kaons

and protons are accepted with only 95% probability. The misidentification of pions,

kaons and protons as muons has been held via

επ|µ = 0.005 + 0.0663 e−0.13 pT cosh(η) ,

εK|µ = 0.005 + 0.086 e−0.11 pT cosh(η) ,

εp|µ = 0.2% ,

respectively [173].

Alongside the smearing, the trajectory of each particle has been modified in ac-

cordance to 1.1 T magnetic field and 3.31 m tracker radius. Note that a similar

parametrization has also been used in Delphes package [175].

B.2 Neural network architectures

This section contains descriptions for the two neural network architecture used in

Chapter 5. The networks are implemented within TensorFlow version 2.1 [143,

144] and Keras [145]. All hyperparameters for the networks are optimised using

hyperopt version 0.2.5 [146].
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Large Neural Network (NN)
Input layer number of features nodes
1st hidden Dense layer 16 nodes, Tanh activation, L2 regulariser = 1e-3
1st Dropout layer rate = 0.001
2nd hidden Dense layer 128 nodes, ReLU activation, L2 regulariser = 1e-2
2nd Dropout layer rate = 0.06
3rd hidden Dense layer 64 nodes, Sigmoid activation, L2 regulariser = 1e-2
3rd Dropout layer rate = 0.2
Output layer 1 node, Sigmoid activation
Loss function binary cross-entropy
Optimizer Adam
Batch size 256

Table B.1: NN architecture for models with numerous features.

Small Neural Network (NN)
Input layer number of features nodes
1st hidden Dense layer 16 nodes, Tanh activation, L2 regulariser = 1e-4
1st Dropout layer rate = 0.235
2nd hidden Dense layer 16 nodes, ReLU activation, L2 regulariser = 1e-4
2nd Dropout layer rate = 0.318
Output layer 1 node, Sigmoid activation
Loss function binary cross-entropy
Optimizer Adam
Batch size 256

Table B.2: NN architecture for high level only model.

B.3 Performance in general purpose detectors

In Section 5.5.2, we demonstrated the importance of PID capabilities. This section

explores the application of the presented method to general purpose detectors. We

use time-of-flight (TOF) as a proxy for PID at different time resolutions. The ATLAS

and CMS collaboration have investigated the usage of TOF for identifying charged

particles through the time-of-arrival from around 30 picosecond (ps) resolution [129,

130]. TOF by definition is the time it takes for hadron H to travel to the barrel of

timing detectors from the collision point, it is given as :

TOF = RbEH

pHT
= Rb cosh ηH

√√√√1 + m2
H

|~pH |2
(B.3.1)



162 Appendix B. Strangeness tagger appendices

where Rb is the distance from the point of collision to the barrel of the detector,

c is the speed of light. Eq B.3.1 implies the mass mH and therefore the identity

of the charged final state particle can be extracted given we know the hadron 3-

momentum (pH). However, we must assume imperfect knowledge of TOF due to the

timing resolution. We model detector resolution by smearing the truth level TOF

with Gaussian noise of width tres, where tres ≈ 30 ps represents the experimental

situation. The mass squared (m2
TOF ) can be extracted as:

m2
TOF = p2

T,H

(
TOF2

R2
b

− cosh2 η

)
(B.3.2)

so that mT,H = mH for tres = 0, corresponding to perfect PID. For non-zero tres,

mT,H is distributed about mH in a pT -dependent way. This is especially important

for high-pT hadrons, where m2
H � p2

T,H . For such hadrons, the difference of the

two terms inside the square root in Eq. B.3.2 must be much smaller than the terms

themselves, so smearing the TOF makes a big effect on the reconstructed mass

mT,H . To see this, let us shift TOF→ TOF + δt, where δt ∼ tres. Under this shift,

mT,H → mH + δmT,H , where, setting cosh η = 1 and working to first order in δt for

simplicity,

δmT,H

mH

= cδt

Rb

p2
T,H

m2
H

√√√√1 + m2
H

p2
T,H

. (B.3.3)

The shift in the reconstructed mass is thus enhanced by p2
T/m

2
H . Numerically,

δmT,H

mH

≈ 0.8×
(

δt

30ps

)
×
(
pT,H
5GeV

)2
×
(
mK

mH

)2

. (B.3.4)

Let us now ask what timing resolution δt is needed for δmT,H/mT,H < 0.5 at

pT = 5 GeV. For a kaon, this requires δt ∼ 20 ps, but for a pion the number

is m2
K/m

2
π ≈ 12 times smaller, δt ≈ 2 ps.

The data for this additional study on general purpose detectors is also generated

from SHERPA as ql+l− and q̄l+l− separately at
√
s = 13 TeV. Only q = [s, d] were

generated for this section. In addition, the MC specifications are roughly the same

as described in Section 5.4 apart from the jet |η| < 3. Furthermore, detector effects
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Figure B.1: ROC plot for s-jets vs d-jets in a general purpose de-
tector with time-of-flight detector time resolution at [0,
1, 2.5, 5, 30] ps and mass resolution at 15% .

on particle misidentification and momentum smearing have been removed to solely

focus on effects from the time-of-flight resolution.

We used the same NN architecture as described in Table B.1 for this study. The

features are the same as the low-level features listed in Table 5.2. There is a slight

difference in how the PIDs are obtained. They are derived from the time-of-flight

mass shown in Eq. B.3.2 and hence have a dependence on the TOF. There is an

additional parameter introduced to set an acceptance mass range for the PIDs, this

mass resolution is set to be 15%.

In Fig. B.1, the ROC curves for time resolution = [0, 1, 2.5, 5, 10, 30] ps are displayed.

The result shows that the perfect 0 ps case perform similarly to the LHCb case. The

proposed 30 ps under the setup described in this analysis is not feasible as the

AUC performed poorly compare to the 0 ps case. The performances for other time

resolutions are also disappointing as slight improvement is only observed when the

time resolution reaches 1ps. There is a small caveat with this study which is the mass
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resolution. It is currently set at 15% but it is essentially a tunable hyperparameter

through additional optimisation.
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