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A Study of Streamwise Vortex Interactions

Adam Marshall

Abstract

Wind tunnel experiments and numerical simulations using RANS modelling were

conducted to investigate the effect of a wall on the evolution of co and counter-rotating

vortex pairs. The counter-rotating vortices had a mutually induced velocity that

moved the pair away from the wall. Such pairs occur in the wakes of race car

front and rear wings, as well as other areas of race cars where vortices are used for

flow control purposes. In the experiments, two vortices were generated using two

vortex generators, with NACA0012 profiles, attached to a flat plate. Whereas in the

simulations the superposition of two Batchelor vortices was used to investigate the

evolution of a vortex pair. Despite differences in Reynolds number, there was good

correlation between the experiments and simulations. It was found that the presence

of a wall increases the at which co-rotating vortices move towards each other and

merge. This is due to the lateral and vertical induced velocities due to the image

vortices and secondary vorticity respectively. At very low initial heights two initially

symmetric vortices will merge like an asymmetric pair. The rate of rotation of the

co-rotating pairs increased with decreasing initial height, until the initial height

became too small and the rotation was inhibited. The generation of secondary

vorticity and the interaction between primary vortices and this secondary vorticity

was shown to accelerate the decay of circulation for both co and counter-rotating

pairs. For counter-rotating pairs whose mutually induced velocity moved the pair

away from the wall, the secondary vorticity was found to have little effect on the

trajectory. That is significantly different from counter-rotating pairs whose mutually

induced velocity moves the pair towards the wall, which rebound multiple times.
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Chapter 1

Introduction

Modern race cars utilise vortices to improve performance, for example, to increase

mass flow under the car and increase downforce. This results in multiple interacting

vortices near a solid boundary. These vortices can be counter or co-rotating and of

equal or unequal strength [1, 2]. Zhang et al attributed an increase in downforce for

a race car front wing with decreasing ride height to the wing tip vortices inducing

suction on the surface [2]. Other examples of interacting vortices near a solid

boundary in practical flows are submarines, on surfaces such as aircraft wings where

vortices are used to provide momentum addition into the boundary layer and delay

separation and aircraft trailing vortices during take off or landing [3, 4, 5]. Aircraft

vortices are often modelled as an equal strength counter-rotating pair, however in

high-lift configurations with part-span flaps, more than two vortices are produced [6].

One model is of a four vortex system containing two unequal strength co-rotating

pairs[7]. The majority of the existing research on vortex pairs in ground effect

focuses on counter-rotating vortex pairs whose mutually induced velocity moves the

pair towards the wall, and as such not studied in this research. Because of that, little

is known about the effect of a wall on the evolution and merging of a co-rotating

vortex pair. As well as the effect of a wall on the evolution of a counter-rotating

vortex pair whose mutually induced velocity moves the pair away from the wall.

Such a vortex pair close to the ground occurs in the wake of race car front and rear

wings [8], inside the rear diffuser of a race car [2] and around the bargeboard area

of a race car, where vortices are utilised for flow control purposes [1].

This research aims to identify the effect of being in close proximity to a wall on

the evolution of a vortex pair, as well as the effect of initial spacing on the evolution
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of the pair, using both experimental and numerical techniques. To achieve this wind

tunnel testing of vortices generated by two vortex generators at multiple spacings

will be completed. As well as this, numerical simulations using OpenFOAM of both

co-rotating and counter-rotating vortex pairs with different initial parameters will

be conducted. To achieve this a pneumatic 5 hole probe will be calibrated so that it

can be used to take measurements during the wind tunnel tests. Vortex generators,

as well as a method of mounting them within the wind tunnel in such a way that

the angle of attack can easily be adjusted, will be designed and manufactured. To

allow vortex pairs to be analysed numerically, code that sets the inlet velocity of the

computational domain to the superposition of two Batchelor vortices and allows the

initial parameters to be adjusted will be produced. The data from this work will

then be used to calculate the trajectories of the vortices, so that the effect of ground

and initial spacing can be identified. Counter-rotating vortex pairs whose mutually

induced velocity moves the pair away from the ground will be investigated, as much

less research exists for such counter-rotating pairs. The effect of the proximity of the

ground as well as the initial spacing on the merging of co-rotating vortices will be

investigated by calculating the separation distance between the vortices at multiple

planes and analysing how this changes. It has been identified that the ground effect

promotes merging, however this was only investigated at one height above the ground

[9], this research will investigate vortex pairs at multiple heights above the ground

to further study this promoted merging. The circulation of the vortex pairs will be

calculated for all cases, which will allow the effect of the ground on the decay of this

to be identified. As well as the mechanism by which this decay occurs.
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Chapter 2

Literature Review

2.1 Co-Rotating Vortices

Vortices in practical flows will interact with other vortices of the same sense (co-rotating)

and opposite sense rotation (counter-rotating) and both equal and unequal strength.

In this section the case of co-rotating vortices is considered.

2.1.1 Properties of a Co-Rotating Vortex Pair

If the total circulation is non zero, Γtotal ̸= 0, for counter or co-rotating vortex pair

there will be rotation of the system. Thus, co-rotating vortices will rotate about

a point between the two vortex centres because of the mutually induced velocity.

This point is the invariant vorticity centre, and for a point vortex pair is given by

(Γ1X
c
1+Γ2X

c
2)/(Γ1+Γ2), with an angular velocity given by (Γ1+Γ2)/(2πb

2), where

Xc
1 and Xc

2 are the centres of the two vortices respectively and b is the separation

distance of the vortex centroids [10]. The trajectories of co-rotating pairs are shown

in Figure 2.1. Ω is the angular velocity of the pair around the invariant vorticity

centre and it can be seen that for an unequal strength pair, this centre is not at the

mid point between the vortices, as is the case with an equal strength pair.

A co-rotating vortex pair in a co-moving reference frame it consists of multiple

regions, as shown in Figure 2.2 from Leweke et al. [10], bounded by separatrices.

The regions consist of an outer recirculation region, an inner core region and the

region between the two called the inner recirculation region. Within the inner core

region the flow is like two single vortices, moving outwards to the inner recirculation

region the fluid flows around both vortices. Within the outer recirculation region
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Figure 2.1: Trajectories of equal strength (left) and unequal strength (right)

co-rotating point vortex pairs from Leweke et al. [10]

the fluid behaves like a pair of secondary vortices, termed ghost vortices. These

regions, identified by Leweke et al. [10], are crucial to understanding the process of

vortex merging.

Figure 2.2: Streamline patterns of an equal strength co-rotating pair in the comoving

frame from Leweke et al. [10]

Each vortex in the pair induces upon the other a strain field resulting in a

stretching of the vortices. Due to the strain and rotation, the streamlines become

elliptical, orientated at an angle 45◦ to the principle stretching axis. This is shown

in Figure 2.3, from Leweke et al. [10]. A vortex of Γ1 generates a strain field at the

centre of vortex Γ2 of amplitude Se = Γ1/(2πb
2). The deformation caused by the

external strain further increases the strain within the vortex, thus the strain rate at

the centre of the vortex is larger than the strain rate induced by the presence of the

other vortex. [10]
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Figure 2.3: Elliptical streamlines due to the induced strain for a co-rotating vortex

pair from Leweke et al. [10]

2.1.2 The Merging of Co-Rotating Vortices

The onset of merging for a pair of co-rotating vortices occurs at a critical normalised

core size, a/b, where a is the core size and b is the separation distance. Early work to

determine this value was undertaken by Saffman and Szeto, Overman and Zabusky,

and Dritschel [11, 12, 13]. All of these studies utilised numerical methods focusing on

uniform vorticity patches in two dimensions. They found the critical size to be 0.29

to 0.32. Meunier et al experimentally measured a/bcr = 0.24±0.01. [14] In order to

deduce this value the core size was defined as a = ( 1Γ
∫
S |X−Xc|2 ωxdS)

0.5, where

ωx is the streamwise vorticity, X is the displacement and Xc is the vortex centroid.

This means that the calculated a/bcr is independent of vorticity distribution.

For an equal strength co-rotating pair there are 4 stages of vortex merging:

the first diffusive stage, the convective stage, the second diffusive stage and the

merged diffusive stage. Initially, Melander et al identified two stages of merging,

the viscous metastable stage and the convective stage. [15] The merged diffusive

stage was then identified by Meunier and Leweke [16] and Meunier et al [14], then

the second diffusive stage was defined by Cerretelli and Williamson [17]. During

the first diffusive stage the vortex cores grow due to viscous diffusion with very

little change in separation distance, b. The growth of the cores follows the viscous

diffusion law, a2 = a20+4νt, where a0 is the initial core size, ν is kinematic viscosity

and t is time [16]. This stage of merging continues until a critical core size is reached,

as mentioned above, at which point the convective stage begins. During this stage

there is a rapid decrease in separation distance, as shown in Figure 2.4. It was

found by Meunier et al that this is because some vorticity is advected to the outer

region, which moves the cores together in order for total momentum to be conserved
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[18]. During the second diffusive stage the separation distance decreases slowly due

to Biot-Savart induction [10]. Finally, during the merged diffusive stage the vortex

becomes more axisymmetric.

Figure 2.4: Normalised core separation during vortex merging from Cerretelli and

Williamson. [17]

Figure 2.5: Vorticity distribution and streamlines in the corotating frame for a vortex

pair at Re = 530 from Cerretelli and Williamson. [17]

In order to determine the reason for the rapid reduction in b during the convective

stage, Cerretelli and Williamson superimposed the vorticity onto the streamlines in

the comoving frame, as shown in Figure 2.5 [17]. In Figure 2.5a the vorticity is

diffusing from the inner core region to the inner recirculation region, then in Figure

2.5b filaments have formed extending into the outer recirculation region. This is

because vorticity is convected by the velocity field up and to the left of the left

vortex core and down to the right of the right vortex core. Focusing on the left hand

vortex, the effect of the filament, which consists of anti-clockwise vorticity, is to

induce a velocity on the vortex centre. The filament is below and to the right of the
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vortex centre so the induced velocity is to the left, thus the vortices move towards

each other. In order to determine what vorticity is responsible for the convective

merging, Cerretelli and Willimason decomposed the skewed vorticity into symmetric

and antisymmetric vorticity [17]. To do so the vorticity was made skewsymmetric

(symmetric about the origin) and the vorticity was decomposed as follows

ωx(x, y) =
1

2
[ωx(x, y) + ωx(x,−y)] +

1

2
[ωx(x, y)− ωx(x,−y)] (2.1)

From this, it was found that the induced horizontal velocity due to the symmetric

vorticity anywhere along the axis passing through the vortex centroids is 0. The

antisymmetric vorticity is comprised of two counter-rotating vortex pairs where the

induced velocities drive the vortex centroids together. This is shown in Figure 2.6

from Cerretelli and Williamson [17].

Figure 2.6: Total vorticity, symmetric vorticity and antisymmetric vorticity for a

vortex pair at Re = 530 from Cerretelli and Williamson. [17]
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Figure 2.7: Vorticity contours for different ratios of initial vortex circulation, showing

the different types of unequal vortex merging from Brandt and Nomura. [19]

In the case of vortices of different size or circulation, partial merger, partial

straining out or complete straining out can occur [10], shown in Figure 2.7. Using

contour simulations, Dritschel and Waugh [20] observed that the interaction between

a pair of vortices with a large difference in size is significantly different than the

interaction of a pair of vortices with a small discrepancy in size. Often a vortex

pair with a large difference in size results in partial or complete straining of the
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smaller vortex. For a pair of more similar sized vortices, the result is an increase

in larger vortex size, complete merger, or a smaller small vortex, partial merger.

They defined the different asymmetric vortex pair interactions based on normalised

circulation. These interactions occur when one vortex is too weak to support the

strain field induced by the other vortex and the weaker vortex is elongated [21, 22]

or vorticity is stripped from the weaker vortex by an erosion process [23, 24].

Studies of vertex merging in proximity to the ground are limited. Wang et al

experimentally investigated a co-rotating pair in ground effect [9], at h0/b0 = 1.0,

where h0 is initial vortex height and b0 is initial vortex separation. A secondary

vortex was formed, which is believed to be the cause of the upwards motion of the

pair, much like for a counter-rotating pair in ground effect. It was found that the

proximity of the ground promoted merging as the vortex separations, initially equal

for both cases, were smaller for the in ground effect pair at downstream locations.

Wang et al. concluded that the ground effect promoted the merger of the vortices

because the of lateral movement induced by the ground and the vertical movement

induced by the secondary vorticity. The velocities induced on the vortex closer to

the ground, so for certain orientations of the vortex pair, resulting in the vortices

moving towards each other. When the angle of orientation of the vortex pair, defined

in Figure 5.7, between 0◦ and 90◦, both the effect of the image vortices and the

secondary vortex induced velocities upon the primary vortices which reduced the

separation distance, b. For angles of orientation between 90◦ and 180◦, the image

vortex effect increased the separation distance whilst the secondary vortex still had

the effect of reducing b. It was also observed that the pair in ground effect had an

accelerated rotational rate and moved laterally and upwards.

Figure 2.8: Vorticity contours for a co-rotating vortex pair in ground effect from

Wang et al. [9]
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2.2 Counter-Rotating Vortices

2.2.1 Properties of Counter-Rotating Vortex Pairs

The streamlines in the comoving frame for an equal strength counter-rotating vortex

pair are less complex than those of a co-rotating pair, consisting only of an inner

and outer region, shown in Figure 2.9 [10].

Figure 2.9: Streamline patterns of an equal strength counter-rotating pair in the

comoving frame from Leweke et al. [10]

Figure 2.10: Elliptical streamlines due to the induced strain for a counter-rotating

vortex pair from Leweke et al. [10]

Similarly to co-rotating vortex pairs each vortex induces a strain at the centre of

the other vortex. However, the elliptical streamlines in the case of counter-rotating

vortices are orientated 45◦ in the opposite direction compared to a co-rotating pair.
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[10]. This can be seen by comparing Figure 2.3 to Figure 2.10. The same as

co-rotating pairs, if Γtotal ̸= 0 for a vortex system there will be rotation of the

system. For point vortex pairs with Γ1 = −Γ2 the pair will translate along the

axis of symmetry with a speed of U = Γ/(2πb) [10]. The trajectories of unbound

counter-rotating pairs are shown in Figure 2.11.

Figure 2.11: Trajectories of counter-rotating point vortex pairs from Leweke et al.

[10]

A counter-rotating vortex pair in close proximity to a wall has a significantly

different trajectory to that of an unbound pair. A counter-rotating vortex pair

in proximity to a no-slip wall will rebound unlike a pair approaching a stress free

wall, as shown in Figure 2.12. When a vortex pair approaches a wall, a boundary

layer of opposite sign vorticity to the primary vortex forms. The vortex results

in a low pressure region as well as a cross flow, this causes the cross flow to be

subject to an adverse pressure gradient as it flows under the vortex, which causes a

bubble containing the vorticity to form [25]. At the low Reynolds numbers simulated

by Peace and Riley, O(102), separation from the wall does not occur, however,

vorticity from the wall region is swept up into the main body of the flow [26]. In the

experiments by Harvey and Perry and simulations by Orlandi, at larger Reynolds

numbers (O(105) and O(103) respectively), separation of the boundary layer was

observed forming a secondary vortex of opposite vorticity. This can be seen in Figure
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2.13. The interaction of the secondary vortex and primary vortex induces an upwards

velocity on the primary vortex, resulting in the rebound away from the wall. Multiple

rebounds are possible, when secondary vortices separate from the wall and form a

pair with the primary vortices, the interaction of the two primary-secondary pairs

causes them to move towards the wall again. At the Reynolds numbers simulated

by Orlandi, this approach of the primary vortices towards the wall again resulted in

the detachment of vorticity from the wall [27].

Figure 2.12: Actual (black line) and ideal (grey line) trajectories of a

counter-rotating vortex pair approaching a wall from Kramer et all. [28]
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Figure 2.13: Vorticity contour plots showing the evolution of one vortex of a pair

colliding with a no-slip wall. Vorticity dynamics of a dipole colliding with a no-slip

wall from Kramer, Clercx and van Heijst. [28]

2.2.2 Instabilities

2.2.2.1 Crow Instability

The Crow Instability is a long wave instability with large wavelengths relative to

the core size, the evolution of this can be seen in Figure 2.14 from Lweke and

Williamson [29]. This was first studied by Crow [30] who undertook an analysis of

a pair of equal strength counter-rotating Rankine vortices. A vortex pair subject

to a sinusoidal perturbation is affected by the self induced rotation, the induced

strain and rotation by the other vortex in the pair and the motion due to the

perturbation. The system becomes unstable when these three rotations cancel and

the perturbation plane is held at a constant angle, approximately 45◦, where the

total stretching rate is positive [10]. This can be seen in Figure 2.15. The amplitude

of the displacements increases until the vortices touch and reconnection occurs.

This results in the formation of vortex rings [31]. When the circulations of the pair

are not equal and opposite, the rotation of the pair (ΩCrow) has to be taken into

consideration. Rather than the rotation effects summing to 0, they have to sum to

ΩCrow if the perturbation plane is to remain aligned with plane where total radial

stretching is positive. It was shown by Jimenez [32] that this can never be achieved

for a co-rotating pair of vortices.
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Figure 2.14: A sketch of the evolution of the Crow Instability from Lweke and

Williamson. [29]

Figure 2.15: Diagram of the Crow instability from Leweke et al. [10]
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Figure 2.16: (a) The stability diagram for an equal strength counter-rotating

vortex pair (The region where ae
b > 0.5 has no physical meaning because the

cores are overlapping there) (b) The growth rate of the Crow instability as a

function of normalised axial wavelength, where the symbols represent experimental

measurements from Leweke et al. [10]

Widnall et al [33] further investigated this using vortex models which included

axial velocities and as such better represented wing tip vortices. This was possible

as the concept of equivalent core size was introduced. For a non Rankine vortex the

core size equivalent to that of a Rankine vortex can be found using the following

equation: ln(aea ) = 1
4 − A + C, where ae is the Rankine vortex core size, a is the

non Rankine vortex core size and A and C depend on the vorticity distribution and

axial velocity respectively (C=0 for no axial velocity). Using this, Klein et al [34]

and Fabre [35] showed that all co-rotating pairs are stable whilst all counter-rotating

pairs are unstable with respect to the Crow mechanism. Leweke and Williamson [29]

were able to build upon the work of Klein et al and Fabre, using the exact rotation

rate for small-amplitude sinusoidal displacement waves on Rankine vortices to plot

the stability diagram shown in Figure 2.16 (a). This was an improvement on the

work of Crow [30] as it avoided the spurious short-wave instability in the stability

diagrams. It can also be seen from Figure 2.16 (b) that for an equal strength pair

the most unstable wavelengths are between 6 and 10 times the separation distance.

Asselin and Williamson [36] experimentally investigated the influence of a wall

on a vortex pair which is unstable with respect to a long wave instability. Three

modes were identified, vertical rings mode, horizontal rings mode and large rings

mode. The vertical rings mode occurs for 3 ≤ h0
b0

≤ 6, in this mode the instability is

inhibited and the vortices do not reconnect into vortex rings, shown in Figures 2.17
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a and b, instead collapsed vortices form, as seen in Figure 2.17 c. As the troughs

interact with the wall before the peaks, vorticity is generated at the wall in those

locations first. This secondary vorticity separates from the wall and wraps around

the primary vortex and forms a ”tongue” as shown in in Figure 2.18 a-d show

the vortices in plan view and e-h show the vortices in side view. The ”tongues”

are transported to the peaks, by a strong pressure driven axial flow, where they

rotate by self induction into a vertical orientation, shown in Figures 2.17 c, d and

e. They then move towards each other and grow, forming the vertical rings. The

final configuration of the primary vortices in the vertical rings mode is shown in

Figures 2.17 d and h. Moving to heights of 6 ≤ h0
b0

≤ 9 horizontal vortex rings

were formed. At these heights the Crow instability is able to develop further prior

to wall interaction, thus the vortices have moved closer together at the troughs

resulting in more vorticity cancellation than at the lower initial heights. The Crow

instability is still inhibited at these heights and two collapsed vortices form per

wavelength. The troughs also interact with the secondary vorticity generated at

the wall, further weakening the vortices at those points, increasing the pressure.

This increased pressure at the troughs drives a strong axial flow, stronger than in

the vertical rings mode. The axial flow changes the topology of the primary vortex,

becoming hollow vortices. The hollow vortices reconnect with the secondary vortices

to form horizontal vortex rings. At values of h0
b0

greater than 9 the instability grows

and reaches reconnection forming vortex rings before being influenced by the wall.

These vortex rings then generate secondary vorticity at the wall. Figure 2.19 shows

the effect of the ground on the amplitudes of the Crow instability compared to the

unbounded Crow instability.

Dehtyriov et al. [37] renamed the vertical rings mode the small amplitude mode

and the horizontal rings mode the large amplitude mode. For the small amplitude

mode the formation of four tongues was observed compared to the two observed by

Asselin and Williamson. It was also found that reconnection of the tongues does no

occur, thus vertical vortex rings were not formed. The simulation did not support

the finding of horizontal rings either, instead finding the two vortex tongues formed

wrapped around the primary vortices but do not result in the formation of vortex

rings.
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Figure 2.17: Primary vorticity for the vertical rings mode, from the experimental

work of Asselin and Williamson. [36] a-d show the vortices in plan view and e-h

show the vortices in side view.
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Figure 2.18: Secondary vorticity for the vertical rings mode, from the experimental

work of Asselin and Williamson. [36] a-d show the vortices in plan view and e-h

show the vortices in side view.
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Figure 2.19: The normalised amplitudes of the unbounded, large rings mode and

vertical rings mode Crow Instability from Asselin and Williamson. [36]

2.2.2.2 Elliptic Instability

The elliptic instability is a short wave instability which can occur in both counter-rotating

and co-rotating vortices. This was first investigated and explained by Moore and

Saffman [38] and Tasi and Widnall [39] which followed on from the work of Widnall

[40]. The mechanism responsible for the instability is a resonance between two Kelvin

waves within the vortex core, caused by the strain induced by the other vortex. The

instability can be visualised for both counter and co-rotating pairs in Figure 2.20. It

was shown experimentally by Leweke and Williamson [41] and Meunier and Leweke

[42] that for a vortex pair without axial flow that the core deformations correspond to

an instability mode of (m1,m2, n) = (−1, 1, 1), where m1 and m2 are the azimuthal

wave numbers and n characterises the radial complexity of the mode.
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Figure 2.20: Water tank visualisation of elliptic instabaility: (a) For a

counter-totating pair at ReΓ = 2750 from Leweke and Williamson [41] (b) For a

co-rotating pair at ReΓ = 4140 from Meunier and Leweke [42]

For vortices with axial flow, such as wing tip vortices [43], the axial flow modifies

the Kelvin waves within the vortex cores. A Rankine vortex with constant axial

velocity was analysed by Lacaze et al. [44] and found that the stationary symmetric

Kelvin modes, m = 1 and m = -1, no longer leads to a sinuous deformation. A

Batchelor vortex was then analysed by Lacaze et al. [45] using the same method

used by Moore and Saffman [38] and found that for small axial flow components

the symmetry between the two kelvin modes is broken and there is no sinuous

deformation. When the axial flow component is increased the resonance between

the Kelvin modes m = 1 and m = -1 disappears due to damping, but a new

resonance between Kelvin modes m = 0 and m = -2 occurs. As the axial flow

component is increased the resonance mode is replaced by m = -1 and m = -3 and

so on. Direct numerical simulations for equal strength co-rotating pairs by Roy et

al. [46] and unequal strength counter-rotating pairs by Ryan et al. [47] showed

that the rotation of the vortex system does not significantly change the stability

characteristics however, co-rotating pairs have increased growth rates.

20



Chapter 3

Experimental Methodology

3.1 Wind Tunnel and Measurement Technique

Experiments were performed in the Durham 1m wind tunnel, an open return fixed

ground type capable of speeds up to 45 ms−1 with a closed 550mm by 550mm test

section. The tunnel nozzle has a contraction ratio of 7.1:1 over a length of 1.8m. A

schematic of the tunnel is shown in Figure 3.1.

Figure 3.1: Plan, side and isometric views of the Durham 1m Wind Tunnel

Pressure measurements were taken using a five hole pneumatic probe and amplified

pressure transducers connected to a NI-DAQmx data logger. The pressure transducers

were calibrated by applying known pressures to each transducer, the output voltage
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from the transducer was then logged and a calibration file was produced. This

calibration file was then used during the processing of pressure data.

The five hole probe was designed, manufactured and calibrated. The probe tip

has one hole at the centre with the other four holes positioned around, as shown

in Figure 3.2. The calibration was completed using a dedicated calibration facility

which consisted of a fan connected to a long diffuser and then a nozzle with a

diameter of 102mm and a traverse that rotated about two axes. The probe was first

aligned with the flow exiting the nozzle. The probe was inserted into the flow and

measurements were taken at a small range of angles. The probe was then inverted

and the process was repeated. The error in the alignment of the probe with the flow

was calculated using the following equations:

Pitch = sin−1

[
(( uz

U∞
)− ( uz

U∞
))inverted

2

]
(3.1)

Y aw = sin−1

[
((

uy

U∞
)− (

uy

U∞
))inverted

2

]
. (3.2)

Where uy and uz are the horizontal and vertical components of velocity respectively

and U∞ is the freestream velocity. A non-zero angle indicates the probe is misaligned

with the flow, the probe was considered aligned once the angle was less than 0.1◦.

For the calibration the flow velocity was set to 35ms−1, the same as the velocity

used in the wind tunnel as discussed below. This was measured using measurements

of static pressure upstream and downstream of the nozzle, thus the exact velocity

of the flow was known. The tip of the probe was then placed at the centre of the

nozzle and calibrated between ±60◦ in both pitch and yaw at 2.5◦ increments, with

data logged over 5s at each orientation. Dynamic and static pressure coefficients

and coefficients of yaw and pitch were calculated using the following equations:

CpDyn =
P0 − (P1+P2+P3+P4

4 )

PDyn
, (3.3)

Cp0 =
P0 − Ptot

P0 − (P1+P2+P3+P4
4 )

, (3.4)

Cyaw =
P1 − P2

P0 − (P1+P2+P3+P4
4 )

, (3.5)

Cpitch =
P3 − P4

P0 − (P1+P2+P3+P4
4 )

, (3.6)
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where the subscript refers to the number hole at which the pressure was measured

and PDyn is dynamic pressure. The calibration file, shown in Figure 3.3 was then

produced, which relates the coefficients to the angle of the flow. It can be seen in

Figure 3.3 that although the probe was calibrated between±60◦, the probe is only

sensitive to ±45◦.

During experiments measurements were taken at multiple grid points, with the

probe moved using a 3 axis traverse. The angle of the local flow at a given point is

then calculated using an inverse process to the creation of the calibration file. The

pitch and yaw coefficients are calculated using equations 3.6 and 3.5, the angles to

which these coefficients correspond to are then found from the calibration file.

The lowest the probe could be traversed was 10mm above the flat plate. Due to

this and the spatial resolution of the pneumatic probe, the secondary vortices close

to the plate were not resolved. The no slip condition was applied to the plate and

cubic spline interpolation was then used when processing the velocity data. This

allowed the velocity between the plate and y = 10mm to be interpolated. From this

interpolated velocity data ωx was calculated using the following equation:

ωx =
∂uz
∂y

=
∂uy
∂z

. (3.7)

Circulation was calculated using

Γ =

∫
ωxdS. (3.8)

Vortex centroids are given by the integral of vorticity multiplied by displacement

and divided by the circulation [10], shown below:

Yc =
1

Γ

∫
Y ωxdS (3.9)

Zc =
1

Γ

∫
ZωxdS (3.10)
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(a)

(b)

Figure 3.2: (a) Schematic of a five hole pneumatic pressure probe. (b) A view of

the five hole probe tip, with the number of each hole shown in red.
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Figure 3.3: Five hole probe calibration.

3.2 Experimental Geometry

To generate the vortices vortex generators were used, the vortex generators are

wings orientated perpendicular to the flat plate, shown in Figure 3.5, which produce

trailing vortices. A NACA 0012 profile was used for the vortex generators, this

was chosen as there is a large amount of existing research on it’s vortices for non
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interacting cases [48, 49, 50] and it’s vortices for interacting cases [51, 52, 9]. It is

also a symmetric aerofoil that allowed quick changes between co and counter-rotating

configurations within the wind tunnel. The vortex generators were produced using

additive manufacturing. Forster compared wind tunnel measurements of an aluminium

NACA 0012 wing to a polylactic acid (PLA), a material commonly used for additive

manufacturing, wing and found no observable differences [53]. Due to this PLA was

used for the vortex generators. The vortex generators were attached to the flat plate

via a bolt through the quarter chord and a tapped hole in the plate. The quarter

chord was chosen as it is the aerodynamic centre and would result in no moment

acting upon the vortex generator, keeping the angle of attack constant.

An angle of attack of 10◦ was chosen as it provided a balance between maximising

produced circulation and being below stall angle predicted using 2-dimensional

potential flow analysis (Xfoil). This angle was used for both VGs in co-rotating

configuration however, for the counter-rotating configuration in order to produce two

vortices with similar circulations and stagnation pressure loss, asymmetric angles of

attack had to be used due to an angularity to the wind tunnel flow. In order to

produce the vortices in ground effect, a low aspect ratio (span/chord) of 0.5 was used.

The angle of the vortex generator was measured using a digital protractor. The wind

tunnel freestream velocity was set at 35ms−1 which gave a Reynolds number based

on chord length of, Re = 1.17x105. This was chosen as it is within the supercritical

region for a NACA 0012 at 10◦ angle of attack, which was found by Huang et al [54]

to be Re > 4.5x104, therefore the vortex shedding was indicative of higher Reynolds

number flows. The experimental geometry can be seen in Figures 3.4 and 3.5.
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Figure 3.4: The vortex generators and flat plate experimental setup.

Figure 3.5: The vortex generators and flat plate experimental setup.
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Chapter 4

CFD Methodology

Reynolds Averaged Navier Stokes (RANS) modelling was used for this research,

solved using openFOAM. RANS was chosen over Large Eddy Simulations (LES) and

Direct Numerical Simulations (DNS) due to the reduced computational requirements.

LES and DNS resolves eddies down to grid length scale and Kolmogorov length scale

respectively [55], whereas RANS describes the behaviour of eddies in the flow using

a turbulence model. RANS is widely used for vortex flows in industry [56] and has

also been used in the research of vortex interactions [57, 58, 59, 60].

As the flow is at a Mach number of M≈ 0.1 the flow is assumed to be incompressible,

as a result only the governing equations ensuring the conservation of mass and

momentum need to be considered [55]. As the flow is assumed to be incompressible

the density, ρ, is constant the continuity equation is the following:

∇ · U⃗ =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.1)

where U⃗ is the velocity vector and u, v and w are the x, y and z velocity components

respectively.

4.1 Turbulence Modelling

4.1.1 Reynolds Averaged Navier-Stokes Equations

At the Reynolds number of the flow in this investigation turbulent flow structures

are expected. In order to represent the effects of turbulence Reynolds averaging is

used, the flow variables are decomposed into mean and fluctuating components:
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u = U + u′, v = V + v′, w = W + w′, p = P + p′ (4.2)

Substituting the velocity and pressure terms described in Equation 4.2 into the

Navier-Stokes equations and taking the time average gives the Reynolds Averaged

Navier-Stokes equations:

∇ · U⃗ = 0 (4.3)

∂U

∂t
+∇ · UU⃗ = −1

ρ

∂p

∂x
+ µ∇ · (∇U)− 1

ρ

[
∂(ρu′2)

∂x
+

∂(ρu′v′)

∂y
+

∂(ρu′w′)

∂z

]
(4.4)

∂V

∂t
+∇ · V U⃗ = −1

ρ

∂p

∂y
+ µ∇ · (∇V )− 1

ρ

[
∂(ρu′v′)

∂x
] +

∂(ρv′2)

∂y
+

∂(ρv′w′)

∂z

]
(4.5)

∂W

∂t
+∇·WU⃗ = −1

ρ

∂p

∂z
+µ∇· (∇W )− 1

ρ

[
∂(ρu′w′)

∂x
] +

∂(ρv′w′)

∂y
+

∂(ρw′2)

∂z

]
(4.6)

where µ is dynamic viscosity.

This process introduces additional terms, the Reynolds stresses, which are associated

with convective momentum transfer due to turbulent eddies within the flow. Due to

these additional terms the RANS equations can not be solved without closure being

provided. This is achieved by the use of the Boussinesq approximation which relates

the Reynolds stresses to the mean velocity gradients:

−ρu′iu
′
j = µt(

∂Ui

∂xj
+

∂Uj

∂xi
)− 2

3
ρkδij , (4.7)

where δij is the Kronecker delta.

4.1.2 Turbulence Model

The k-ω shear stress transport (k-ω SST) turbulence model was chosen for this

study as it is a hybrid model between the k-ϵ and k-ω models. As such it combines

the k-ϵ models low sensitivity to assumed freestream conditions and the k-ω models

improved performance for boundary layers subject to adverse pressure gradients

compared to the k-ϵ model. [61] Furthermore, in the experimental and numerical

investigations of a vortex in wall effect of Wibowo et al [62] the k-ω model performed

well when compared to the experiments and was the best of the RANS turbulence

models.

The standard k-ϵ model is a two equation model and solves for turbulent kinetic

energy (k) and turbulence dissipation rate (ϵ) by introducing the following transport
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equations:
∂(ρk)

∂t
+∇ · (ρkU⃗) = ∇ · [µt

σk
∇k] + 2µtSij · Sij − ρϵ (4.8)

∂(ρϵ)

∂t
+∇ · (ρϵU⃗) = ∇ · [µt

σϵ
∇ϵ] + C1ϵ

ϵ

k
2µtSij · Sij − C2ϵρ

ϵ2

k
(4.9)

where Sij is the strain rate tensor, µt is turbulent viscosity and σϵ, σk, C1ϵ and C2ϵ

are constants.

The standard k-ω model [63] uses turbulent kinetic energy and specific turbulence

dissipation rate (ω) to solve for µt by using the relation µt =
ρk
ω and introducing the

following transport equations:

∂(ρk)

∂t
+∇ · (ρkU⃗) = ∇ · [(µ+

µt

σk
)∇k] + (2µtSij · Sij −

2

3
ρk

∂Ui

∂xj
δij)− β∗ρkω (4.10)

∂(ρω)

∂t
+∇· (ρωU⃗) = ∇· [(µ+ µt

σω
)∇ω]+γ1(2ρSij ·Sij −

2

3
ρω

∂Ui

∂xj
δij)−β1ρω

2 (4.11)

where δij is the kronecker delta and σω, β
∗, γ1 and β1 are constants.

For the hybrid k-ω model, equation 4.9 is transformed into an ω transport

equation by substituting ϵ = kω. The model received minor updates in 2003 which

is the version implemented by OpenFOAM. The k-ω SST transport equations are:

∂(ρk)

∂t
+

∂(ρUik)

∂xi
= Pk − β∗kω +

xi

[
(µ+ σkµt)

k

xi

]
(4.12)

∂(ρω)

∂t
+

∂ρUiω

∂xi
= αρS2 − βρω2 +

∂

∂xi

[
(µ+ σωµt)

∂ω

∂xi

]
+ 2(1− F1)ρσω,2

1

ω

∂k

∂xi

∂ω

∂xi
(4.13)

Where F1 is the blending function described by the hyperbolic tangent function:

F1 = tanh{{min

[
max(

k0.5

β∗ωd
,
500ν

d2ω
),

4ρσω,2k

CDkwd2

]
}4} (4.14)

with CDkw = max(2ρσω,2
1
ω

∂k
∂xi

∂ω
∂xi

, 1010) and d is the distance of the cell centroid to

the nearest wall. The blending function, F1, is defined in such a way that it is equal

to 0 at the wall and tends to 1 away from the wall, providing a smooth transition

between the k − ω and k − ϵ models. [64] β and α are constants and ν is kinematic

viscosity.

In order to improve the performance of the model over the standard k-ω model for

flows with adverse pressure gradients or wake regions the eddy viscosity is limited and

to prevent the build up of turbulence in stagnation regions turbulent kinetic energy

production is limited. The two quantities are limited by the following limiters:

µt =
a1ρk

max(α1ω, SF2)
(4.15)
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Pk = min[µt
∂Ui

∂xj
(
∂Ui

∂xj
+

∂Uj

∂xi
), 10β∗ρkω] (4.16)

where α1 is a constant and F2 is another blending function, F2 = tanh

[[
max(2

√
k

βωd ,
500ν
d2ω

)
]2]

,

and S =
√

2SijSij . [64]

4.2 Numerical Procedure

OpenFOAM uses the finite volume method which is widely used in CFD codes.

First, the conservation equations are transformed to integral form and the solution

domain is subdivided into a finite number of control volumes. The centroid of each

volume is where the values are computed. To calculate the values of the variables

on the faces of the volumes the RANS equations need to be discretised.

4.2.1 Discretisation

In order to calculate the values at the control volume faces from the data calculated

at the centre discretisation techniques are used. Central differencing was used to

discretise the diffusion term. Central differencing uses linear interpolation to obtain

values at the faces and is a second order accurate scheme. For the convection terms

the linear upwind scheme was chosen, it was chosen over central differencing as it

possesses greater stability and transportiveness and considers the flow direction. As

a result, central differencing schemes are better suited to flows with lower velocity

than is used in the simulations in this research. Upwind differencing assumes a

constant value of the flow properties between the face and the upstream volume

centre (node) and is first order accurate which results in artificial diffusion. [55,

65] The linear upwind scheme was used by Wibowo et al. [62] for experimentally

validated simulations of a vortex over a delta wing.

4.2.2 Solution Algorithm

A pressure based solver using the SIMPLE algorithm was used for all simulations

presented in this thesis. The SIMPLE acronym stands for Semi-Implicit Method

for Pressure Linked Equations, initially proposed by Patankar and Spalding [55].

The algorithm gives a method of solving for pressure and velocities iteratively

starting from an initial guess. The SIMPLE algorithm is shown in Figure 4.1.
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The momentum equations are solved followed by the pressure correction equation,

which couples the pressure and velocities. Following the solving of the pressure

correction equation the corrections are applied to the pressures and velocities. The

turbulence quantities are then calculated. The initial guesses are updated with the

newly calculated values, this process is iterated until convergence is reached. [55]

Figure 4.1: The SIMPLE algorithm
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4.2.3 Convergence Criteria

The solution was considered converged when the residuals were steady and equal to

or less than 10−5 as well as the variation in lift force over the previous 500 iterations

to be 1% or less. For all simulations conducted this took between 2000 and 3000

iterations.

4.3 Computational Domain

4.3.1 Boundary Conditions

A velocity inlet and pressure outlet were used, with the sides and top of the domain

modelled as walls with zero shear and the no slip condition applied to the bottom

of the domain (plate). The boundary layer was fully resolved, so the following

boundary conditions were used for the plate, the omega wall function was used for

omega, which sets the omega boundary condition to that recommended by Menter

[66] and a fixed value of 0 was used for k and µt. [67] Inlet and initial turbulence

model boundary conditions were calculated from turbulence intensity, which was set

to 1% and a length scale given by l = 0.07H, where H is the height of the inlet, as

recommended by Versteeg and Malalasekera [55]. The computational domain and

boundary conditions are shown schematically in Figure 4.2

The inlet velocity was given by the superposition of two Batchelor vortices,

a vortex profile that was initially proposed by Batchelor in 1964 [68]. This vortex

model was chosen as it has been successfully used in many times for similar problems

[42, 69, 70, 71, 72, 73, 74, 75, 76] and it includes a velocity deficit in the core like in

a tip vortex. The velocity distribution in cylindrical coordinates for the Batchelor

vortex is given by:

ur = 0, uθ =
Γ0

2πr
(1− e−r2/a20), uz = W0e

−r2/a20 (4.17)

where a0 is the initial core size, Γ0 is the initial circulation, r is the distance from

the centre and W0 is the maximum axial velocity in the vortex centre and thus

controls the velocity deficit in the core. The velocity was then converted to Cartesian

coordinates to be used as the inlet boundary condition. The streamwise vorticity is

given by:

ωx =
Γ

πa20
e−r2/a20. (4.18)
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Figure 4.2: The computational domain and boundary conditions.

Figure 4.3: The superposition of two Batchelor vortices.

4.3.2 Mesh

To determine the solution obtained was mesh independent meshes of increasing

density were tested. The mesh was varied so that the cell aspect ratios were

maintained as the mesh densities increased. The variations in vortex circulation

and centroids at multiple planes downstream of the inlet compared to the finest
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mesh were obtained. This process indicated that the circulation for the mesh with

2x107 control volumes varied by less than 0.5% for every position tested, as shown

in Figure 4.4. It also showed that the position of the vortex centroid overlaps for the

two planes closest to the inlet and by 0.3a0 for the most downstream plane, as can

be seen in Figure 4.5. The variation in vortex centroid was computed by calculating

the distance of the centroid from the position of the centroid in the most fine mesh,

non-dimensionalised by a0.
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Figure 4.4: Variation in vortex circulation in the planes x = 20a0 (blue), x = 40a0

(red) and x = 60a0 (green) due to changes in mesh density.
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Figure 4.5: Variation in vortex centroid in the planes x = 20a0 (blue), x = 40a0

(red) and x = 60a0 (green) due to changes in mesh density.

To estimate the error associated with using the 2x107 mesh rather than the

more dense mesh the grid convergence indicator (GCI) was calculated. The GCI

was proposed by Roach [77] and is calculated using the following equation:

GCI =
Fsr

O
CGI |ζ|

(rOCGI − 1))
, ζ =

fcoarse − ffine
fcoarse

, rCGI =
hcoarse
hfine

, (4.19)

where Fs is the safety factor, hfine and hcoarse are the characteristic lengths for the

meshes, ffine and fcoarse are the quantities which the GCI is being calculated and

O is the order of the numerical scheme. A factor of safety of 3 is used. [55] The GCI

values are shown in Table 4.1.

Plane GCI for circulation

x
a0

= 20 0.864%

x
a0

= 40 1.37%

x
a0

= 60 1.50%

Table 4.1: The GCI for circulation.

To ensure the distance to the sides and top of the domain did not affect the

results 3 different domain heights (10a0, 20a0 and 40a0) and widths (20a0, 40a0 and

80a0) were tested. The different widths were tested for the a co-rotating pair at the
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lowest height above the ground, as this was expected to move laterally the most,

therefore most likely to be affected by the domain walls. The varying domain heights

were tested with the co-rotating pair at the highest initial height above the ground.

The vortex pair circulation was then compared to the largest domain, as shown in

Tables 4.2 and 4.3, from this it was found that there was -0.0027% and -0.0023%

change for the 40a0 width and 20a0 height domains respectively. The mesh density

was held constant as the domain size was varied.

Domain Width Percentage Variation

20a0 -6.42

40a0 -0.027

80a0 0

Table 4.2: Variation in vortex pair circulation at x = 80a0 for differing domain

widths compared to the widest domain tested.

Domain Height Percentage Variation

10a0 -1.79

20a0 -0.0023

40a0 0

Table 4.3: Variation in vortex pair circulation at x = 80a0 for differing domain

heights compared to the largest domain tested.

A structured mesh was used throughout this investigation, with grading employed

so that the vortex cores and near wall flows are accurately captured whilst keeping

the computational expense at a practical level. To accurately represent the near

wall flow a dimensionless wall distance, y+, must be less than 5 to place the centre

of the first layer of cells within the viscous sublayer. [55, 78] The y+ was held as

close to 1 as possible across the bottom of the domain, with a maximum value of 1.4.

The mesh also maintained 28 cells across the vortex core, more than the minimum

of 15 recommended by Dacles-Mariani et al. [79] to correctly capture the vortex

core. The cell aspect ratio was kept close to 1 in the regions of the mesh containing

the vortices. However, large aspect ratios do exist within the mesh but are kept to

regions far from the vortices to limit the impact on the investigation. These mesh
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regions can be seen in Figure 4.6.

(a) (b)

Figure 4.6: (a) The mesh in the region containing the vortices and (b) the mesh

region near the edges of the domain, away from the vortices.
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Chapter 5

Results

Experiments were undertaken for vortex pairs at multiple separations, using two

NACA0012 vortex generators to produce the vortex pair, at a Reynolds number

based on vortex generator chord length, Re = 1.17x105, as stated in Chapter 3.

Further wind tunnel experiments, as well as water tunnel experiments utilising

particle image velocimetry were initially planned. However, due to the Covid-19

pandemic it was not possible to complete further experimental work, as a result

numerical investigations were completed. Numerical simulations, using RANS modelling,

were completed for both co-rotating and counter-rotating vortex pairs at varying

initial separations and heights above the ground plane. For all simulations the

Reynolds number based upon circulation, ReΓ ≈ 5x104 . This was chosen as it

is similar to the Reynolds numbers of the tip vortices found in van den Berg’s

investigations [80] of an inverted race car wing in ground effect. It is also approximately

35 times larger than the ReΓ used by Wang et al. [9], allowing vortex merging in

ground effect to be investigated at a Reynolds number closer to that observed in

real world flows.

The numerical simulations did not aim to replicate the experimental setup. As

the ReΓ was limited for the experimental work, due to wind tunnel speed and

VG geometry, the simulations presented an opportunity to investigate the vortex

interactions at a higher ReΓ. However, this meant that no quantitative comparison

could be made between numerical and experimental work. Quantitative comparisons

were still possible and an insight into vortex interactions at different ReΓ can be

gained.
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Case a0
b0

h0
a0

Type

Experimental Co-Rotating 1 0.12 1.73 Experiment

Experimental Co-Rotating 2 0.32 1.73 Experiment

Co-Rotating 1 0.1 1.67 CFD

Co-Rotating 2 0.2 1.67 CFD

Co-Rotating 3 0.3 1.67 CFD

Co-Rotating 4 0.4 1.67 CFD

Co-Rotating 5 0.5 1.67 CFD

Co-Rotating 6 0.2 5 CFD

Co-Rotating 7 0.2 7.5 CFD

Co-Rotating 8 0.2 10 CFD

Co-Rotating 9 0.3 3.33 CFD

Co-Rotating 10 0.3 5 CFD

Co-Rotating 11 0.3 6.67 CFD

Counter-Rotating 1 0.1 1.67 CFD

Counter-Rotating 2 0.2 1.67 CFD

Counter-Rotating 3 0.3 1.67 CFD

Counter-Rotating 4 0.4 1.67 CFD

Counter-Rotating 5 0.5 1.67 CFD

Table 5.1: List of Cases

5.1 Co-Rotating Results

5.1.0.1 Experimental Co-Rotating Case 1

Experimental Co-Rotating Case 1 is an investigation of a co-rotating vortex pair at

an initial spacing of a0
b0

= 0.12 and an initial height of h0
a0

= 1.73. This is most similar

to the spacing and height to that of Co-Rotating Case 1. The first measurement

plane was 50mm (1 chord length, C) downstream of the vortex generators.
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Figure 5.1: Contours of ωx for Experimental Co-Rotating Case 1.

Figure 5.2: Vortex centroids for Experimental Co-Rotating Case 1.

At the first measurement plane, shown in Figure 5.1, the vortices had not started

to rotate about each other. Moving downstream to the next plane the vortices had

shifted laterally due to the induced velocity and started to stretch in the direction

of the line between their centres. At x = 4C, a filament, similar to that seen in the
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simulations, formed on the left vortex. In the plots of vortex core paths of Figure

5.2, it can be seen that the vortices shift laterally an almost equal amount, with the

left and right vortices moving by 9.2mm and 10.5mm respectively between the first

and last measurement planes. Rebound is also observed, as the left vortex moved

upwards by 3.92mm and the right by 1.36mm between x =1C and x =4C. That

discrepancy can be explained by the rotation of the pair, as the right vortex starts

to move under the left. Although, there is only a small change in orientation angle

of the pair, consistent with the simulations.

5.1.0.2 Experimental Co-Rotating Case 2

Experimental Co-Rotating Case 2 is the experimental case with the widest spacing,

at an initial spacing of a0
b0

= 0.32 and an initial height of h0
a0

= 1.73. This is

most similar to the spacing and height to that of Co-Rotating Cases 3. The first

measurement plane was 50mm (1 chord length) downstream of the vortex generators.

Figure 5.3: Contours of ωx for Experimental Co-Rotating Case 2.

42



Figure 5.4: Vortex centroids for Experimental Co-Rotating Case 2

From the ωx contour plots in Figure 5.3 it is clear that by x = 1C the vortices

had already started to rotate around each other. The right vortex which approaches

the ground is also smaller than the right, despite the vortex generators being set

to the same angle of attack, due to the vortex being strained as it passes between

the other vortex and the ground. At x = 2C, the vortex which passed closest to

the ground was starting to merge into the other. A similar merging pattern can be

seen in the simulations of co-rotating vortices at an initial height of h0
a0

= 1.67. By

the final downstream location the vortices were not fully merged. Lateral movement

of the vortices is obvious in this case and it can be seen from Figure 5.4 that the

left vortex rapidly moves towards the other, with a difference in lateral position

of 12.5mm between the first and last measurement planes. Like in the previous

experimental case, vortex rebound was observed.

5.1.0.3 Co- Rotating Case 1

Co-Rotating Case 1 is the co-rotating case with the widest initial spacing, with an

a0
b0

= 0.1 and an initial height above the ground plane of, h0
a0

= 1.67. Vortex merging

has been shown to commence at a spacing of a
b ≈ 0.24 [14], therefore the effect of

ground effect on the evolution of a vortex pair before merging has commenced can

be observed.
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Figure 5.5: Contours of ωx for Co-Rotating Case 1.
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Figure 5.6: Vortex centroids for Co-Rotating Case 1. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.5 shows contours of ωx at multiple streamwise locations. The vortices

are initially symmetric and at the same height with no boundary layer present at

x
a0

= 0. At x
a0

= 16 the vortices start to move laterally and stretch in the direction

parallel to the line between their centroids. A layer of opposite sense, secondary

vorticity, forms at the ground and is starting to separate under the primary vortices

at the right side. This is similar to the formation and separation of boundary

layer vorticity observed in the simulations of Kramer et al [28]. This separation of

secondary vorticity occurred due to the suction peak below the vortex core and the

vortex also induced a cross flow. As there was a suction peak below the vortex the

cross flow is subject to an adverse pressure gradient after it passed under the vortex,

which caused a bubble of separated secondary vorticity to form. [25] The primary

vortices then start to form filaments at x
a0

= 32 as they move laterally, they also

start to rebound away from the wall. The filaments increase in length by a
a0

= 48

but as the vortices move away from the ground start to become more axisymmetric

again at x
a0

= 64 and x
a0

= 80. The vortices also remain close to symmetric as they

move downstream. The secondary vorticity which detaches from the wall moves

upwards and is drawn around the primary vortices at a
a0

= 48, a
a0

= 64 and a
a0

= 80.

The trajectories of the vortices are almost identical, as shown in Figure 5.6,

with both vortices moving 5.4a0 laterally and 1.1a0 vertically. As the trajectories

of each vortex are almost identical, the separation distance, b, between the vortices

remained close to initial separation, b0. The angle of orientation of the pair is also

close to 0 throughout the domain. Whereas, in the experiments of Cerretelli and
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Figure 5.7: Definition of the angle of orientation, theta.

Figure 5.8: Vortex centroids for a single vortex (h0
a0

= 1.67). The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

Williamson [17], for the out of ground effect vortex pair, with an initial spacing

of a0
b0

= 0.118, the orientation angle of the pair increases linearly during the first

diffusive stage of merging. The angle of orientation is defined as shown in Figure

5.7. Therefore the vortices at this spacing and initial height are behaving like single

vortices in ground effect. Further evidence of this can be seen by comparing Figure

5.6 to Figure 5.8. The y- and z-trajectories of the single vortex are almost identical

to the trajectories of each of the two vortices in the pair with initial spacing a0
b0

= 0.1.

5.1.0.4 Co-Rotating Case 2

Co-Rotating Case 2 is a simulation of a vortex pair with an initial spacing only

slightly wider than the critical spacing of a
b ≈ 0.24 [14] allowing the evolution of the

pair to be observed from before the onset of merging. However, due to the closer

initial spacing the likelihood of merging occurring within the domain is increased

compared to Co-Rotating Case 1. The initial height of the pair is h0
a0

= 1.67.
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Figure 5.9: Contours of ωx for Co-Rotating Case 2.
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Figure 5.10: Vortex centroids for Co-Rotating Case 2. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.11: Angle of orientation for Co-Rotating Case 2.

The contours of ωx in Figure 5.9 show the initially symmetric vortex pair move

laterally due to the ground effect and image vortices and start to deform. At x
a0

= 16

it can be seen that the vortices become asymmetric, the direction of the stretching of

the vortices differs and the left vortex remains closer to the ground. Similarly to Case

1, secondary vorticity starts to form under each vortex at the right hand side. By

x
a0

= 32 the vortices have become more asymmetric, as the left vortex starts to move

under the right and compared to the right vortex has become even more elongated

and both vortices have formed filaments. The layer of secondary vorticity under the

left vortex remains flat whereas under the right vortex the secondary vorticity is

starting to separate from the ground. Further downstream at x
a0

= 48, the right side

vortex becomes more axisymmetric and the left vortex continues to move between

the right vortex and the ground. There is also an increase in secondary vorticity.
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At x
a0

= 64 and x
a0

= 80 the initially left vortex continues to rotate around the right

vortex, passing between the right vortex and the ground. At the most downstream

position the secondary vorticity which separated was advected up and around the

vortex pair.

Both vortices move laterally due to the effect of the mirror image vortices, as

previously stated, the initially left sided vortex moves 9.7a0, which is around 2 times

further laterally than the right side vortex, which is different from Case 1 where the

vortices follow almost identical paths. Vertically, vortex rebound can be seen in the

initially right sided vortex, the vortex moved steadily upwards due to the secondary

vorticity until x
a0

≈ 65 where the height decreased due to the interaction with the

other primary vortex. In contrast, the initially left sided vortex moved closer to the

ground as the vortex pair started to rotate around each other, until x
a0

≈ 65 where

it rapidly moved upwards. The trajectories are shown in Figure 5.10. At x
a0

≈ 77,

two vortices were no longer separable, despite not being merged. The rotation of the

vortex pair is suppressed by the ground at this spacing and height, with the angle

of orientation remaining close to 0, until x
a0

= 40 where it rapidly increases. This

can be seen in Figure 5.11.

A schematic of a co-rotating vortex pair close to the ground and the mirror

image vortices is shown in Figure 5.12. From this it is clear to see the effect of the

image vortices inducing a lateral movement on the primary vortices, as mentioned

above. It is also clear to see that the secondary vorticity induces a vertical velocity

on the primary vortices and causes rebound. As identified by Wang et al. [9], these

effects cause the observed promoted merging for a co-rotating vortex pair in ground

effect. As the secondary vorticity is closer to the right vortex, the induced vertical

velocity is higher and it moves away from the ground more than the left vortex.

The left vortex then moves under the right as the lateral velocity on the left vortex

is now higher as it is closer to its image vortex. The deformation of the vortices

seen at x
a0

= 16 can be explained by the interaction of the primary vortices with the

image vortices. When the primary vortices interact with their image vortices, which

form counter rotating pairs, they become stretched as shown in the schematic of a

counter-rotating pair in Figure 2.10.
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Figure 5.12: A schematic of a co-rotating vortex pair and secondary vorticity very

close to the ground. The image vortices are shown below the plate.

5.1.0.5 Co-Rotating Case 3

Co-Rotating Case 3 is a simulation of a vortex pair with an initial spacing of a0
b0

= 0.3,

narrower than the critical spacing of a
b ≈ 0.24 [14] allowing the evolution of the

vortex pair very close to the ground to be observed during the convective and second

diffusive stages of merging. The chance of observing merging within the domain was

increased compared to that of Co-Rotating Case 1 and 2 due to the closer spacing.

The initial height of the pair is h0
a0

= 1.67.
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Figure 5.13: Contours of ωx for Co-Rotating Case 3.
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Figure 5.14: Vortex centroids Co-Rotating Case 3. The trajectories in the XY plane

are shown on the left and in the XZ plane on the right.

Figure 5.15: Angle of orientation for Co-Rotating Case 3.

In observing Figure 5.13, it is clear from x
a0

= 16 that the initially left sided

vortex becomes more elongated than the right side vortex as it starts to pass between

the right vortex and the ground. At this streamwise location, it can also be seen that

secondary vorticity forms, however unlike Co-Rotating cases 1 and 2, this vorticity

only begins to separate from the ground below the right side vortex. At x
a0

= 32

the vortex which passed closest to the ground became further elongated as it rotates

around the other vortex, similar to the interaction of an asymmetric co-rotating

vortex pair [19, 20]. By x
a0

= 80 merger of the two vortices had occurred. Secondary

vorticity continued to separate from the wall and was advected upwards around the

vortex pair.

As shown by Figure 5.14 both vortices moved laterally with the final position of

the merged vortex being 8.95a0 from the initial position of the left vortex and 5.62a0
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different from the initial position of the right vortex. Vortex rebound also occurred,

the final height of the merged vortex was 1.41a0 higher than the initial height of the

pair. This is higher than both Co-Rotating Cases 1 (Figure 5.6) and 2 (Figure 5.10).

Like in Co-Rotating Case 2, the left vortex initially moved downwards as it moved

between the right vortex and the ground. However, in contrast to Co-Rotating Case

2, the right vortex firstly moved upwards before the moving down slightly as the

pair rotated, before rebounding away from the wall. After x
a0

≈ 45 two vortices were

not separable. As can be seen in Figure 5.15, the pair initially rotate slowly, until

the vortex which passes closest to the ground becomes partially strained and wraps

around the other. After this the rotational rate rapidly increases.

5.1.0.6 Co-Rotating Case 4

Co-Rotating Case 4 is the simulation with the second closest spacing, with an initial

spacing of a0
b0

= 0.4. This further increases the chance of observing full merging

within the domain. The initial height of this case is h0
a0

= 1.67.
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Figure 5.16: Contours ofωx for a Co-Rotating Case 4.
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Figure 5.17: Vortex centroids for Co-Rotating Case 4. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.18: Angle of orientation for Co-Rotating Case 4.

The ωx contour plots, Figure 5.16, show that at this spacing then started to rotate

around each other instantly, with the left vortex which passes closest to the ground

becoming significantly elongated at x
a0

where the right vortex was less deformed

but did develop a filament. Similarly to Co-Rotating Case 3, a layer of secondary

vorticity forms under the vortex pair, with one region starting to separate from the

ground under the right vortex. At x
a0

the region of separated secondary vorticity

grew. The left vortex become further elongated as it wraps around the right vortex.

As in Co-Rotating Cases 2 and 3, the initially symmetric vortex pair merges like

an asymmetric vortex pair. At x
a0

= 80 the pair had merged and had became more

axisymmetric. At planes x
a0

= 64 and x
a0

= 80 the separated secondary vorticity had

wrapped around the pair.

Compared to the initial positions of the left and right vortices the final merged
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vortex shifted laterally by 8.5a0 and 6a0 respectively. The final position of the

merged vortex was 1.52a0 higher than h0. This is shown in Figure 5.17 where to

centroids of the two vortices where separable are shown, after x
a0

≈ 35 the centroid

of the merging vortices is plotted. The vortex rebound observed in this case was

greater than that of Co-Rotating Cases 1, 2 and 3. The angle of orientation of the

vortex pair is shown in Figure 5.18. Unlike the previous cases, the pair begin to

rotate immediately, with only a slight increase in rotational rate after the vortex

which passes closest to the ground starts to wrap around the other.

5.1.0.7 Co-Rotating Case 5

Co-Rotating Case 5 has the closest spacing of all co-rotating pairs investigated.

The initial spacing is a0
b0

= 0.5, at this spacing the vortex cores start to touch. This

allows the impact of such close spacing on the evolution and merging to be observed.

Such a close spacing of vortices could occur when vortices are produced by vortex

generators at different downstream locations.
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Figure 5.19: Contours of ωx for Co-Rotating Case 5.
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Figure 5.20: Vortex centroids for Co-Rotating Case 5. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.21: Angle of orientation for Co-Rotating Case 5.

As expected at the closest spacing the distance to merging is shortest, having

merged by x
a0

= 48, after that the merged vortex became more axisymmetric. As

in Co-Rotating Cases 2, 3 and 4, the left vortex passes closest to the ground end

becomes elongated, as it rotates around the right vortex. The right vortex forms

a small filament at x
a0

= 16 and secondary vorticity started to separate from the

ground below it. At x
a0

= 32 more secondary vorticity had separated. At planes

x
a0

= 48, x
a0

= 64 and x
a0

= 80 the separated secondary vorticity was advected

up and around the merged vortex causing vortex rebound. This is can be seen in

Figure 5.19. The secondary vorticity wrapped further around the vortex than in

Co-Rotating Cases 1, 2, 3 and 4.

Figure 5.20 shows the centroids of the two vortices for a short distance downstream,

before it was not possible to separate the two vortices. After this the centroid of
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the merging vortices is shown. The most downstream position of the merged vortex

was shifted laterally by 7.6a0 and 5.8a0 compared to the initial positions of the left

and right vortices respectively. This is the smallest lateral movement of the left

vortex of the h0 = 1.67 cases except for the case with the widest spacing of a0
b0

= 0.1.

This cases also showed the greatest vortex rebound, with a final vortex height 1.7a0

higher than h0. At this close spacing, the angle of orientation, shown in Figure 5.21,

started to increase rapidly immediately. However, it was only possible to calculate

up to x
a0

= 10, as at this close spacing it quickly was not possible to separate the

vortices.

5.1.0.8 Co-Rotating Case 6

Co-Rotating Case 6 consists of a pair of vortices with the same spacing of a0
b0

= 0.2

as in Co-Rotating Case 2, however the initial height is higher. Simulations were

completed for pairs of vortices at increasing heights above the ground, the initial

height of the pair in this case is h0
a0

= 5. This gives an h0
b0

= 1.0 and allows the impact

of ground effect on the evolution of the vortex pair to be investigated. The spacing

was chosen as it puts the vortices at a spacing wider than the critical spacing at

which merging starts to occur of a
b ≈ 0.24 [14].
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Figure 5.22: Contours of ωx for Co-Rotating Case 6.
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Figure 5.23: Vortex centroids for Co-Rotating Case 6. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.24: Angle of orientation for Co-Rotating Case 6.

From Figure 5.22 it can be seen that, in contrast to Co-Rotating Case 2, both

vortices remained symmetrical throughout the domain. At x
a0

= 16 the vortices had

deformed slightly due to the strain induced by each vortex on the other, a layer

of opposite sense vorticity also formed, unlike Co-Rotating Case 2, none of that

secondary vorticity was starting to septate from the ground. Further downstream at

x
a0
, the layer of secondary vorticity increased in thickness and the vortices continued

to stretch. At x
a0

= 64 the left vortex passed closest to the ground as the vortex

pair rotated, due to this a region of secondary vorticity started to separate from the

ground. Another difference between this case and Co-Rotating Case 2 (Figure 5.9)

is that no filaments formed.

Figure 5.23 shows that the vortex pair shifted laterally slightly due to the ground

effect, but the lateral motion of the pair became dominated by the rotation of the
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pair at this initial height. The initially left vortex moved by 6.8a0 in the y-direction

between x
a0

= 0 and x
a0

= 80. The difference in the lateral position of the right vortex

between x
a0

= 0 and x
a0

= 80 was −0.4a0. The motion in the z-direction was also

dominated by the rotation of the pair, due to the small amount of secondary vorticity

separating from the ground in this case, the left vortex which passed closest to the

ground was 1.34a0 lower than h0 at x
a0

= 80 and the right vortex was 1.76a0 higher

at the same downstream location. Figure 5.24 shows the angle of orientation of the

pair, it can be seen that the vortices start to rotate around each other immediately,

unlike in Counter-Rotating Case 2 (Figure 5.11). The final orientation angle of the

pair was 120 degrees.

Figure 5.25 shows a schematic of a co-rotating vortex pair similar to that of

Co-Rotating Cases 6 to 11 and its image vortices. It can be seen that the image

vortices interact with the primary vortices, inducing a lateral velocity, however as

the distance been them is larger than in Figure 5.12, the induced velocity is lower.

There is also the induced vertical velocity due to the secondary vorticity. These two

effects result in the promoted merging, as identified by Wang et al. [9]. These effects

also influence the rotational rate of the vortex pair, as will be discussed further in 6.

The deformations of the vortices can again be explained by the interaction between

primary vortices and their image vortices. The primary-image counter rotating

vortex pairs, deform similarly to the counter-rotating pair shown in Figure 2.10.

5.1.0.9 Co-Rotating Case 7

Co-Rotating Case 7 consists of a pair of vortices with the same spacing of a0
b0

= 0.2

as in Co-Rotating Case 2, however the initial height is higher. Simulations were

completed for pairs of vortices at increasing heights above the ground, the initial

height of the pair in this case is h0
a0

= 7.5. This gives an h0
b0

= 1.5 and allows the

impact of ground effect on the evolution of the vortex pair to be investigated.
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Figure 5.25: A schematic of a co-rotating vortex pair and secondary vorticity in

ground effect, but further from the ground than in Figure 5.12. The image vortices

are shown below the plate.

Figure 5.26: Contours of ωx for Co-Rotating Case 7.
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Figure 5.27: Vortex centroids for Co-Rotating Case 7. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.28: Angle of orientation for Co-Rotating Case 7.

The ωx plots of Figure 5.26 show that the vortices had started rotating around

each other and deform by x
a0

= 16. Also at this streamwise location, a layer of

secondary vorticity had formed. At x
a0

= 32 the layer of secondary vorticity had

increased in thickness, however, unlike Co-Rotating Case 6, there was no further

growth in the thickness of the layer moving further downstream, even when the

vortex passed closest to the ground. At x
a0

= 48 the vortices have become further

elongated, but there were no further significant changes in the shape of the vortices.

As in Co-Rotating Case 6, no filaments formed, which differed from the case with

the same spacing but lowest initial height. It can also be seen in the plots that the

vortex pair shifts laterally due to the proximity of the ground.

Figure 5.27 also shows that lateral motion of the vortex pair. The left vortex

moved 5.3a0 between
x
a0

= 0 and x
a0

= 80 and the right vortex moved −a0. Similarly
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to Co-Rotating Case 6, the lateral motion was dominated by the rotation of the

pair. There was no rebound observed for the vortex pair at this h0 due to the lack

of secondary vorticity separating from the ground, as this has been shown to cause

vortex rebound [28, 26, 27, 9]. The rate of rotation of the vortex pair, shown in

Figure 5.28, was slower than that of Counter-Rotating Case 6, which had a lower

initial height and the same initial spacing. The final orientation angle was 110

degrees.

5.1.0.10 Co-Rotating Case 8

Co-Rotating Case 8 is the case with the spacing of a0
b0

= 0.2 with the highest initial

height, with a height of h0
a0

= 10. This gives an h0
b0

= 2.0 and allows the impact of

ground effect on the evolution of the vortex pair to be investigated.
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Figure 5.29: Contours of ωx for Co-Rotating Case 8.
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Figure 5.30: Vortex centroids for Co-Rotating Case 8. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.31: Angle of orientation for Co-Rotating Case 8.

It can be seen in Figure 5.29 that the vortices had started to deform due to

the induced strain [10] by x
a0

= 16 however, the vortices had changed from their

initial shape less at this location when compared to Co-Rotating Cases 2, 6 and

7. Also, layer of secondary vorticity had formed at that location. At x
a0

= 48, the

vortices had elongated and remained similarly shaped throughout the domain from

that position onwards. The layer of secondary vorticity did not increase in thickness

like with Co-Rotating Cases 6 and 7.

From the plots of the vortex centroids in Figure 5.30 the lateral movement of

the vortex pair can be seen, which moved 3.67a0 laterally. Like with Co-Rotating

Case 7, no vortex rebound was observed due to the small layer of secondary vorticity

remaining attached to the ground [28, 26, 27, 9]. The angle of orientation is shown in

Figure 5.31. The rate of increase in orientation angle is slower at this initial height
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than for the vortex pairs with the same initial spacing but lower initial heights of

Co-Rotating Cases 6 and 7, with the vortex pair at this height reaching a final angle

of 100 degrees.

5.1.0.11 Co-Rotating Case 9

Co-Rotating Case 9 has the same spacing of a0
b0

= 0.3 as Co-Rotating Cases 3, 10 and

11, but with a higher initial height than case 3 of h0
a0

= 3.33. This initial height gives

an h0
b0

= 1. The increased h0 allows the impact of ground effect on the interaction

of the co-rotating vortex pair to be investigated.
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Figure 5.32: Contours of ωx for Co-Rotating Case 9.
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Figure 5.33: Vortex centroids for Co-Rotating Case 9. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.34: Angle of orientation for Co-Rotating Case 9.

In observing Figure 5.32 it can be seen the vortices quickly started to rotate

around each other. At x
a0

= 16, the left vortex was starting to approach the ground

and both vortices were starting to develop filaments. A layer of secondary vorticity

was also present at this streamwise location. At x
a0

= 32, the left vortex had

moved past the position where it was closest to the ground, as a result secondary

vorticity had started to separate from the ground. Both vortices developed filaments,

however the filament of the vortex which passed closest to the ground was more

elongated than that of the other vortex. Filaments form when ωx diffuses into

the outer recirculation region, shown in Figure 2.2, the rotation within this region

then elongates this ωx into filaments [17]. Moving to the subsequent downstream

locations, the region of separated secondary vorticity grows and is advected upwards

and the filaments of the vortices become more symmetric. The vortex pair was
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un-merged at the final location of x
a0

= 80.

There was a lateral movement of the vortex pair, as shown by Figure 5.33, with

the initially left vortex moving 5.8a0 and the initially right vortex moving 3.6a0 in

the y-direction. A small amount of vortex rebound was observed with both vortices

final heights being less than a0 higher than their initial height. As the vortices move

towards each other the rate of increase of the orientation angle increases, reaching

a final orientation angle of 550 degrees. This can be seen in Figure 5.34.

5.1.0.12 Co-Rotating Case 10

Co-Rotating Case 10 has the same spacing of a0
b0

= 0.3 as Co-Rotating Cases 3, 9

and 11, but with a higher initial height than cases 3 and 9 of h0
a0

= 5. This initial

height gives an h0
b0

= 1.5.
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Figure 5.35: Contours of ωx for Co-Rotating Case 10.
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Figure 5.36: Vortex centroids for Co-Rotating Case 10. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.35 shows the initially axisymmetric vortices quickly become stretched

and started to develop filaments by x
a0

= 16. A layer of secondary vorticity had

also formed. This layer increased in thickness at x
a0

= 32 before separating from the

ground at x
a0

= 48. At x
a0

= 32 the vortices formed filaments, which then grew by

x
a0

= 48, where the filament of the vortex which passed closest to the ground was

longer than the other. At x
a0

= 64 the filaments had become symmetric. Like in

Co-Rotating Case 9, the vortices remained un-merged.

A lateral movement of the vortex pair was observed in Figure 5.36, however

no significant vortex rebound was observed. The initially left vortex moved by

4.8a0 in the y-direction between x
a0

= 0 and x
a0

= 80. Figure 5.37 shows the angle

of orientation for the vortex pair, the rotational rate of the pair increased as the

vortices moved downstream and towards each other.

Figure 5.37: Angle of orientation for Co-Rotating Case 10.
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5.1.0.13 Co-Rotating Case 11

Co-Rotating Case 11 is the case with a spacing of a0
b0

= 0.3 with the highest initial

height, with an h0 = 6.67 and an h0
b0

= 2.

From Figure 5.38 it can be seen that the vortex pair quickly started to rotate

and stretch and filaments started to form. At x
a0

= 16, the pair had rotated less

than at the same streamwise location for Co-Rotating Cases 9 and 10. A layer of

secondary vorticity had formed by x
a0

= 16, which increased in thickness moving

downstream until x
a0

= 8− where the thickness decreased. At x
a0

= 48 the filament

of the vortex which passed closest to the ground was longer than the other, as in

Co-Rotating Cases 9 and 10, but by x
a0

= 64 the filaments were symmetric. The

vortices did not merge by the most downstream location.

Lateral motion of the vortices was observed, this motion was less than in Co-Rotating

Cases 9 and 10, with the initially left and right vortices moving 4a0 and 0.7a0 in

the y-direction respectively. There was no vortex rebound observed for this case,

due to the lack of secondary vorticity separating from the ground. The paths of the

vortices are shown in Figure 5.39. As with previous co-rotating cases, the rotational

rate of the pair increased as the vortices moved towards each other. This is shown

in Figure 5.40.
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Figure 5.38: Contours of ωx for Co-Rotating Case 11.
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Figure 5.39: Vortex centroids for Co-Rotating Case 11. The trajectories in the XY

plane are shown on the left and in the XZ plane on the right.

Figure 5.40: Angle of orientation for Co-Rotating Case 11.

5.2 Counter-Rotating Results

5.2.0.1 Counter- Rotating Case 1

Counter-Rotating Case 1 is a simulation of a counter-rotating vortex pair at an initial

spacing of a0
b0

= 0.1 and initial height of h0
a0

= 1.67. This is the same spacing as in

Co-Rotating Case 1, however the vortices are counter rotating in such a way that the

vortices will move towards each other and away from the ground. This configuration

was chosen as there has been less research for such counter rotating pairs than of

those that move downwards and away from each other, this configuration can be

seen in Figure 5.41.
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Figure 5.41: A schematic of the configuration of the counter-rotating vortex pairs

investigated. U is the vertical velocity each vortex induces upon the other and b is

the separation distance.
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Figure 5.42: Contours of ωx for Counter-Rotating Case 1.
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Figure 5.43: Vortex centroids for Counter-Rotating Case 1. The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

ωx contour plots in Figure 5.42 show that as the pair begins to shift laterally by

x
a0

= 16, the vortices started to stretch parallel to the line between their centres.

Counter-rotating pairs usually stretch normal to the line between their centres

however due to the ground plane and the distance between them they do not. Also

at this location, secondary vorticity had started to form at the ground, similar to

the formation of secondary vorticity in the simulations of Kramer [28]. The location

of the area of separation of vorticity from the ground is at the side of the vortex

which is closest to the other, this can clearly be seen at x
a0

= 32. At this location

the vortices have started to develop filaments. At x
a0

= 48 the separated secondary

vorticity was advected up and started to wrap around the primary vortices. The

separated secondary vorticity then started to rotate around the primary vortices at

x
a0

= 64 and by x
a0

= 80 had become strained out by the stronger primary vortices.

The trajectories of the vortices are shown in Figure 5.43. The vortices moved

laterally due to the induced velocity due to the ground plane, they continued to

move towards each other until x
a0

= 60 when they remained a constant distance

of 3.44a0 apart. In the z-direction, the pair remained a constant height above the

ground until x
a0

= 10 when they started to move upwards. At x
a0

= 50 the vertical

velocity of the pair increased and reached a final height 1.588a0 higher than h0.

As discussed above, the vortices move laterally, this can be explained by the

interaction of primary vortices with their images vortices, shown in Figure 5.44. The

deformation of the primary vortices seen at x
a0

= 16, before the primary vortices

interact, can also be explained by the interaction of the primary vortices with their
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Figure 5.44: A schematic of a counter-rotating vortex pair close to the ground and

it’s image vortices.

image vortices. They form two primary-image counter-rotating vortex pairs, and

stretch perpendicular to the line separating them.

5.2.0.2 Counter- Rotating Case 2

Counter-Rotating Case 2 is a simulation of a counter-rotating vortex pair at an

initial spacing of a0
b0

= 0.2 and initial height of h0
a0

= 1.67. This is the same spacing

as in Co-Rotating Case 2, however the vortices are counter rotating in such a way

that the vortices will move towards each other and away from the ground.
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Figure 5.45: Contours of ωx for Counter-Rotating Case 2.
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Figure 5.46: Vortex centroids for Counter-Rotating Case 2. The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

Observing Figure 5.45 it can be seen that the vortices moved together quickly

and had significantly reduced their spacing by x
a0

= 16. Secondary vorticity had

also formed by that location. At x
a0

= 32 the vortices started to develop filaments

and stretch in the direction normal to the line between their centres. Secondary

vorticity had also started to separate from the wall. The vortices continued to move

upwards and by x
a0

= 64 the filaments became detached from the primary vortices.

The region of separated secondary vorticity also decreased in size.

From Figure 5.46 it can be seen that the vortices initially moved laterally before

reaching a spacing of 2.644a0 by x
a0

= 20 and remained this distance apart as they

moved downstream. The vortices initially remain a constant height above the ground

before inducing a vertical velocity upon each other and moving rapidly upwards to

a final height 4.659a0 above h0.

5.2.0.3 Counter- Rotating Case 3

Counter-Rotating Case 3 is a simulation of a counter-rotating vortex pair at an

initial spacing of a0
b0

= 0.3 and initial height of h0
a0

= 1.67. This is the same spacing

as in Co-Rotating Case 3, however the vortices are counter rotating in such a way

that the vortices will move towards each other and away from the ground.
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Figure 5.47: Contours of ωx for Counter-Rotating Case 3.
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Figure 5.48: Vortex centroids for Counter-Rotating Case 3. The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

As shown by Figure 5.47 the vortices moved together and filaments and second

peaks of ωx formed as they moved towards each other at x
a0

= 16. Secondary vorticity

also started to form. By x
a0

= 32 the vortices had became stretched and secondary

vorticity started to separate from the ground. At x
a0

= 48 the vortices continued

to moved upwards due to the mutually induced vertical velocity and there was an

increase in the size of the region of separated secondary vorticity. By x
a0

= 64 the

region of separated secondary vorticity had decreased and by the final downstream

location the filaments detached from the primary vortices.

As shown in Figure 5.48 the vortices quickly reached their final spacing, moving

to a distance of 2.266a0 apart by
x
a0

= 20 and following a linear path thereafter. The

vortices moved vertically initially however they saw an increase in vertical velocity

at x
a0

= 15 as they moved towards each other. The pair moved 5.906a0 between the

first and last planes.

5.2.0.4 Counter- Rotating Case 4

Counter-Rotating Case 4 is a simulation of a counter-rotating vortex pair at an

initial spacing of a0
b0

= 0.4 and initial height of h0
a0

= 1.67. This is the same spacing

as in Co-Rotating Case 4, however the vortices are counter rotating in such a way

that the vortices will move towards each other and away from the ground.
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Figure 5.49: Contours of ωx for Counter-Rotating Case 4.
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Figure 5.50: Vortex centroids for Counter-Rotating Case 4. The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

The ωx contour plots can be seen in Figure 5.49. At x
a0

= 0 the vortices were

not circular at this close spacing. By x
a0

= 16, the vortices had started to stretch.

They also formed filaments and second peaks of ωx. At x
a0

= 32 the vortices had

stretched further, becoming highly elongated. The vortices ascended and at x
a0

= 80

the filaments had become detached from the primary vortices. Secondary vorticity

had formed by x
a0

= 16 and became detached by x
a0

= 32, however by x
a0

= 80 no

detached secondary vorticity was present.

Inspecting Figure 5.50 it can be seen that the path of the vortices in the XY

plane is almost linear, with the closest spacing of the vortices was 2.08a0. The

vortices also immediately started to move upwards at this initial spacing, moving

upwards by 6.07a0.

5.2.0.5 Counter- Rotating Case 5

Counter-Rotating Case 5 is a simulation of a counter-rotating vortex pair at an

initial spacing of a0
b0

= 0.5 and initial height of h0
a0

= 1.67. This is the same spacing

as in Co-Rotating Case 5, however the vortices are counter rotating in such a way

that the vortices will move towards each other and away from the ground.
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Figure 5.51: Contours of ωx for Counter-Rotating Case 5.
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Figure 5.52: Vortex centroids for Counter-Rotating Case 5. The trajectories in the

XY plane are shown on the left and in the XZ plane on the right.

Like with Counter-Rotating Case 4 at x
a0

= 0, which can be seen in Figure 5.51,

the vortices are not circular at this close spacing. At x
a0

= 16 the vortices started to

stretch and became significantly elongated by x
a0

= 32. By x
a0

= 48, the amount of

separated secondary vorticity started to decrease and as in Counter-Rotating Case

4, no separated secondary vorticity was visible by x
a0

= 80.

Like with Counter-Rotating Case 4, the vortices immediately moved upwards, as

can be seen in Figure 5.52. As expected at the pair with the closest spacing moved

the most vertically, moving by 6.2a0. The vertical velocity was almost constant.

There was almost no lateral movement, with the vortices going from an initial

spacing of 2a0 to a final spacing of 1.95a0.
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Chapter 6

Discussion

6.1 Comparison Between Experimental and Numerical

Co-Rotating Cases and Limitations

Although ReΓ is lower for the experimental cases than the numerical simulations,

the results show many similarities. Co-Rotating Cases 2 and 4 had the closest a0
b0

values, due to the lower h0 of the experimental cases, it makes the most sense to

compare Experimental Cases 1 and 2 to Co-Rotating Cases 1 and 3 respectively,

due to the more similar values of h0
b0
.

When comparing Experimental Case 1 to Co-Rotating Case 1, it can be seen from

the ωx plots (Figures 5.1 and 5.5) that both vortex pairs exhibited similar behaviour.

The vortices in both cases stretched parallel to the line between them. Figures 5.2

and 5.6 show that the vortex pairs in both cases shifted laterally (movement in the

x-y plane for CFD cases and x-z plane for experimental) and rebounded (movement

in the x-z plane for CFD and x-y plane for experimental), the mechanism for which

was explained in Chapter 5. The lateral movement exhibited in co-rotating case

1 and experimental case 1 are very similar. The vertical movements of the two

cases appear to show some differences, but upon closer inspection, they can also

be seen to be similar. Figure 5.6 shows that the vortex pair in co-rotating case 1

initially moved upwards before moving very slightly downwards between X
a0

= 21 and

X
a0

= 40. After this, the vortices moved upwards again. The experimental vortex

pair show similar behaviour. This is shown in Figure 5.2, the pair initially moved

upwards, then between x=3C and x=4C, the vortices moved down by less than
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1mm. The downstream positions where this slight downward movement occurred

normalised by a0 are X
a0

= 25 and X
a0

= 33.3, similar to the locations this occurred

in co-rotating case 1. Furthermore, in Experimental Case 1, the vortices behaved

like two single vortices, something which was also observed in Co-Rotating Case 1.

Further evidence for this can be seen in Figures 6.1 and 6.2, where the separation

distances remained almost constant for both cases.

For Experimental Case 2 it can be seen in Figure 5.3 that the vortex which

passed closest to the ground merged into the other vortex, merging as if it were

an asymmetric vortex pair. This phenomenon is also seen in Co-Rotating Case 3,

as well as Co-Rotating Cases 2, 4 and 5. Unlike in the experimental case a very

high vortex aspect ratio was seen in the vortex which passed closest to the ground.

This is possibly due to the low spatial resolution of the experimental measurement

technique. For both cases the separation distance rapidly reduced initially, shown

in Figures 6.2 and 6.1, with the vortex pairs of neither case exhibiting signs of being

in the first diffusive stage of merging. Figures 5.4 and 5.14 show that a lateral

shift, as well as rebound, occurs in both the experimental and numerical cases.

Comparing the lateral movements of the two cases they are very similar. In both

the experimental case and the numerical case, the vortex which passed closest to

the ground shifts more laterally than the other vortex. At x
a0

≈ 26 for co-rotating

case 3 and X=3C (Xa0 = 25) for experimental case 2, the vortices crossed over. The

vertical movements again look different, but upon closer inspection similarities can

be found. In experimental case 2, the left side vortex initially moved upwards and the

right side vortex downwards. Then, the left side vortex moved slightly downwards

between X=3C (Xa0 = 25) and X=4C (Xa0 = 33.3). The right side vortex moved

slightly upwards between X=2C (Xa0 = 16.67) and X=4C (Xa0 = 33.3). A similar

trajectory is observed in co-rotating case 3. Again, the left side vortex initially

moved upwards and the right side vortex downwards. At approximately x
a0

= 30,

the left side vortex started to move downwards, whilst the right side vortex moved

upwards. By x
a0

= 35 the vertical position of the vortices had not crossed over,

as is the case at the most downstream measurement plane in experimental case 2.

Although the vertical motion of both pairs shows similarities, the movement was

more pronounced in co-rotating case 3.

For the numerical investigation of this research the RANS turbulence model was
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utilised to investigate the vortex interactions and their evolution downstream. This

model used time and Reynolds averaging, as a result transient effects are not included

and any subgrid scale eddies are not resolved. However, the evolution of secondary

vortices has been addressed subject to this limitation, for example in Figures 5.5,

5.32 and 5.42. As discussed in 3, the secondary vortices were not resolved due to

limitations in both the spatial resolution of the pneumatic probe and the lowest

height to which it could be traversed. However, the effects of the secondary vortices,

such as vortex rebound can be observed in Figures 5.2 and 5.4.

6.2 Vortex Merging

As identified by Wang et al [9], the merger of two co-rotating vortices is promoted

by the influence of the ground. This can be seen in observing Figures 5.13 and

5.32, the two cases have the same initial spacing but the case with the lower initial

height merged within the domain whereas the case with the higher h0 had not. This

promoted merging phenomenon can be seen more clearly in observing the change in

vortex separation in Figures 6.1, 6.2, 6.3 and 6.4. It is clear to see that the vortex

pairs closer to the ground more rapidly move together.

Figure 6.1: The change in vortex separation for vortex pairs at the same initial

height, h0
a0

= 1.667 but varying initial spacings.
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Figure 6.2: The change in vortex separation for the experimental cases, which had

an initial height of h0
a0

= 1.73 and initial spacings of a0
b0

= 0.12 and a0
b0

= 0.32

respectively.

Figure 6.3: The change in vortex separation for vortex pairs at the same initial

spacing, a0
b0

= 0.2, but varying initial heights.
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Figure 6.4: The change in vortex separation for vortex pairs at the same initial

spacing, a0
b0

= 0.3, but varying initial heights.

As discussed in Chapter 2, Wang et al. concluded that merging was promoted

due to the image vortices and secondary vortices. This is supported by comparing

Co-Rotating Cases 9, 10 and 11 (Figures 5.32, 5.35 and 5.38). As the initial height of

the vortex pair decreases the separation decreases more quickly. Also with decreasing

height above the ground, there are increases in induced lateral and vertical velocities,

as evidenced by the increased lateral and vertical movement of the vortex pair of

Co-Rotating Case 9 compared to Case 10, shown in Figures 5.33 and 5.36. Wang et

al. [9] also suggested that when the angle of orientation, θ, of the vortex pair was

90◦ ≤ θ ≤ 180◦ the image vortices delayed merger by slowing the rate of decrease

in separation distance. This is because in this orientation the vortex closest to the

ground, thus experiencing the greater induced lateral velocity, will move away from

the other vortex. This is shown schematically in Figure 6.5 (b), where the vortex

closest to the ground is closer to its image vortex. This means that the lateral

spacing of the vortices will increase. This effect can be seen in Figure 6.4 for the

vortex pair with h0
b0

= 3.33, at x
a0

≈ 30 there is a decrease in the rate at which

the vortices approach each other. This x
a0

corresponds at an angle of orientation of

θ = 90◦, shown in Figure 5.34. When the angle of orientation is 0◦ ≤ θ ≤ 90◦, the

lateral velocities resulting from the image vortices will cause the separation distance

to reduce, as in this orientation the vortex closest to the ground is on the left, when
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the lateral movement is moving the vortices to the right.

(a) (b)

Figure 6.5: A schematic of a co-rotating vortex pair with an angle of orientation of

(a) 0 ≤ θ ≤ 90◦ and (b) 90◦ ≤ θ ≤ 180◦.

The same trend is seen in Co-Rotating Cases 6, 7 and 8 (Figures 5.22, 5.26 and

5.29). Although these cases do not enter the convective stage of merging, which can

be seen in both the ωx contour plots, as no filaments form, and Figure 6.3 where

there is no rapid reduction in b. Despite this, the vortex pairs with lower h0 still

show a greater reduction in separation distance. As the vortex pairs did not enter

the convective stage of merging this reduction in b can not be due to antisymmetric

vorticity. Antisymmetric ωx was shown by Cerretelli and Williamson [17] to be

the cause of the reduction in b during the convective stage of merging. Thus, this

reduction in b must be due to the induced lateral and vertical velocities.

The effect of the secondary vorticity can be seen by comparing Co-Rotating Case

6 to Cases 7 and 8, only in Case 6 does secondary vorticity separate from the ground.

and that case has a reduction in b of 24% compared to 13% and 8% for Cases 7 and

8 respectively. The ground effect also modifies the first diffusive stage of merging.

For an out of ground effect vortex pair the separation remains constant or close to

constant throughout the first diffusive stage [17], but for the in ground effect pairs

even during this stage b reduces, as shown in Figure 6.3.

As well as the induced lateral and vertical velocities promoting vortex merging

of co-rotating vortex pairs in ground effect, there is also an increase in the length

of the filaments that from in the vortex which passes closest to the ground. This

suggests an increased amount of antisymmetric ωx, which was shown to be the reason
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the vortices move towards each other during the convective stage of merging [17].

Cerretelli and Williamson split the total ωx in symmetric and antisymmetric ωx by

making the total ωx skew-symmetric. As the vortex pair becomes asymmetric due

to the interaction with the ground it is not possible to make ωx skew-symmetric.

As such the vorticity which is advected outside of the core region was integrated

between x
a0

= 32 and x
a0

= 64 for Co-Rotating Cases 9, 10 and 11 and is presented

in Figure 6.6. The core region was defined by the contour line at e−1 of the peak

in plane ωx. These streamwise locations were chosen as it can be seen from Figures

5.32, 5.35 and 5.38 that filaments had formed at those locations. This shows that

there is an increase in ωx outside of the core region which suggests there is also a

greater amount of antisymmetric ωx as h0 decreases. This, as well as the effect of

secondary vorticity explains the more rapid movement of the vortices towards each

other as the height above the ground decreases.

Figure 6.6: The circulation outside of the core region for vortex pairs at the same

initial spacing of a0
b0

= 0.3, but varying initial heights.

For the vortex pairs with the lowest initial heights Co-Rotating Cases 3, 4 and 5

merge within the domain. Whilst Case 1 sees no reduction in b and Case 2 enters the

convective stage of merging. Cases 3, 4 and 5 has close enough initial spacings that

they immediately start to rapidly move together where in Case 2 the vortices initially

slowly move together before b rapidly reduces. At the low initial height of h0
a0

= 1.67,
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when the vortices start to rotate around each other, the vortex which passes closest

to the ground becomes partially strained. Due to this, the initially symmetric vortex

pair become asymmetric, which is why the merging differs significantly from the cases

with a higher h0. The merger of the vortices show similarities to the simulations

of Brandt and Nomura [19] for vortex pairs with circulation ratios of 0.9 and 0.8,

despite the vortices being initially equal.

6.3 Decay of Circulation

6.3.1 Co-Rotating Pairs

It can be seen in Figures 6.7 that for the vortex pairs at low initial heights there

is a sudden and fast decay of circulation. The circulation was calculated using

3.8. This trend in circulation decay varies significantly from the decay seen in

the investigations of co-rotating vortex pairs out of ground effect undertaken by

Cerretelli and Williamson [17]. A similar decay trend was seen in the experimental

work of Wang et al. [9], who suggested the commencement of the rapid decay was

due to the onset of vortex merging, when ωx is advected out of the inner core region

to the outer core region and is no longer included in calculations of vortex Γ. From

Figure 6.7 (a) it can be seen that this sudden and rapid decrease in Γ occurs even

in the vortex pair with h0 = 1.67 and a0
b0

= 0.1, which sees no decrease in b (Figure

6.1), and therefore had not entered the convective stage of merging. Furthermore,

in Figure 6.7 C the rapid decrease in Γ is only observed in the vortex pairs at initial

heights of h0
a0

= 1.67 and h0
a0

= 3.33 but all vortex pairs with spacing of a0
b0

= 0.3

entered the convective stage of merging. From this it can be concluded that there

must be other factors causing the observed decay of Γ.
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(a)

(b) (c)

Figure 6.7: Circulation for: (a) vortex pairs at multiple spacings and an initial height

of h0
a0

= 1.67 (b) vortex pairs at an initial spacing of a0
b0

= 0.2 and multiple heights

and (c) vortex pairs at an initial spacing of a0
b0

= 0.3 and multiple heights.

It was found by Stephan et al. [81] and Holzapfel et al. [82] that the interaction

between secondary vorticity and primary vortices, which causes turbulence and

annihilation of vorticity, resulting in the decay of primary vortex Γ. The vortex

pairs which do not exhibit rapid decay of Γ also do not experience any significant

interaction with secondary vorticity. This can be seen qualitatively in Figures 5.22,

5.26, 5.29, 5.35 and 5.38, as no secondary vorticity separates from the ground and

subsequently interacts with the primary vortices. Further evidence of this can be

seen in Figure 6.9 where there is less secondary circulation produced in the cases

with higher initial heights.

In order to quantify the interaction between the primary vortices and secondary
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Figure 6.8: Circulation for the Experimental Co-Rotating Vortex Pairs at initial

spacings of: a0
b0

= 0.12 and a0
b0

= 0.32

vorticity, in plane turbulent kinetic energy, k, has been integrated at multiple

downstream locations. Turbulent kinetic energy is generated due to the shear at the

ground but also due to the interaction between the primary and secondary vortices.

Figures 6.10 B and C show that for the case in which no secondary vorticity separated

from the ground and no rapid decay of Γ occurred, there is no significant increase

in k. This suggests that the interaction between the primary vortices and secondary

vorticity is the reason for the decay of Γ.

The variation in initial septation changes the streamwise location at which the

rapid decay of circulation commences, as shown by Figure 6.7 (a). The two cases

with the largest spacings, Co-Rotating Cases 1 and 2, the rapid decay begins at

around x
a0

≈ 36, with Case 2 decaying more from that point onwards. The other

cases with an initial height of h0
a0

= 1.67 begin to decay rapidly at approximately

x
a0

≈ 20. A similar decay pattern can be seen in the experimental cases (Figure

6.8), where the vortex pair with the largest separation, (a0b0 = 0.12) which does not

enter the convective stage of merging, sees a rapid decrease in circulation after x

= 200mm. Whereas the experimental case with a closer initial spacing, a0
b0

= 0.32,

rapidly decays from x = 150mm. From the ωx contour plots in Chapter 5, it is

clear that as the initial spacing decreased the secondary vorticity wrapped further

around the primary vortices. Stephan et al [81] found that for a counter rotating

vortex pair in ground effect, the wrapping around of secondary vorticity caused the

rapid decay of the primary vortices. Figure 6.10 (a) shows there is an increase in

turbulent kinetic energy, k, and the increase in k coincides with the beginning of the
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rapid decay of Γ for those cases.

The difference in decay of Γ plots between the in of ground effect co-rotating

pairs studied in this thesis and out ground effect pairs, such as in the research of

Cerretelli and Williamson [17], can be explained by the interaction between primary

and secondary vortices. As discussed in this section, when a co-rotating pair is

close to a solid surface, secondary vortices will form and wrap around the primary

vortices. Turbulent kinetic energy is generated by this interaction between primary

and secondary vortices. Stephan et al. and Holzapfel et al. [81, 82] showed that this

leads to rapid decay of Γ. Where as for a co-rotating pair out of ground effect, no

secondary vortices form, thus the decay of Γ for such a pair does not see a sudden

and rapid decrease in Γ. The decay plots of co-rotating cases 7 and 8 are similar to

the decay trend of an out of ground effect pair, as can be seen in Figure 6.7 (b). This

is because the h0 of those pairs were far enough from the ground that no secondary

vortices wrapped around the primary vortices. This can be seen quantitatively in

Figures 5.26 and 5.29 and quantitatively in Figure 6.9 (b).
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(a)

(b)

(c)

Figure 6.9: Secondary Circulation for: (a) vortex pairs at multiple spacings and an

initial height of h0
a0

= 1.67 (b) vortex pairs at an initial spacing of a0
b0

= 0.2 and

multiple heights and (c) vortex pairs at an initial spacing of a0
b0

= 0.3 and multiple

heights.
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(a)

(b) (c)

Figure 6.10: Turbulent kinetic energy for: (a) vortex pairs at multiple spacings and

an initial height of h0
a0

= 1.67 (b) vortex pairs at an initial spacing of a0
b0

= 0.2 and

multiple heights and (c) vortex pairs at an initial spacing of a0
b0

= 0.3 and multiple

heights.

6.3.2 Counter-Rotating Pairs

The decay of Γ for counter-rotating vortex pairs at multiple initial spacings are

presented in Figure 6.11. To calculate this, the plane was split down the line of

symmetry between the vortex pair. The positive ωx of the left side of the plane

and the negative ωx were integrated, the modulus of the right side circulation was

taken. The left and right circulations were then summed to give the total in-plane

circulation for the counter-rotating vortex pair. As the initial spacing increases the

final circulation value decreases. The only case which shows significant decay of Γ

is Counter-Rotating Case 1. This is because Case 1 is the only vortex pair which
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interacted significantly with secondary vorticity, as it remained closer to the ground

than the vortex pairs of the other cases. Figure 6.12 shows that in Counter-Rotating

Case 1 the peak secondary circulation, Γs, is 29% greater than Counter-Rotating

Case 2, which produced the second most secondary circulation. It is also clear from

theωx contour plots, presented in Chapter 5 (Figures 5.42), that at x
a0

= 48 the

secondary vorticity separated from the ground starts to wrap around the primary

vortices. Thus, Γ decays due to the mechanism presented by Stephan et al. [81].

It is also clear from the ωx contour plots that this does not occur in any of the

other Counter-Rotating Cases. Weaker secondary vorticity is generated as the initial

spacing reduces as the vortex pair more quickly move away from the wall due to the

increased vertical velocity they induce upon each other as the vortices are closer

together.

When compared to the co-rotating cases at the same initial height, the counter-rotating

circulation decays much less throughout the domain. This is due to the reduced

interaction with secondary vorticity when compared to the co-rotating cases. In all

co-rotating cases with an initial height of h0
a0

= 1.67 the secondary vorticity wraps

around the primary vortices, however that only occurred in Counter-Rotating Case

1.

Figure 6.11: The circulation at multiple downstream locations for counter-rotating

pairs at multiple initial spacings and an initial height of h0
a0

= 1.67.
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Figure 6.12: The circulation of secondary vorticity at multiple downstream locations

for counter-rotating pairs at multiple initial spacings and an initial height of h0
a0

=

1.67.

6.4 Vortex Pair Trajectories

6.4.1 Co-Rotating Pairs

As expected as the initial height was reduced the lateral movement of the vortex

pair increased. Co-Rotating Cases 6, 7 and 8 moved by 6.4a0, 4.3a0 and 3.67a0

respectively, as can be seen in Figures 5.23, 5.27 and 5.30. As found by Wang et

al. [9] vortex rebound occurs in co-rotating vortex pairs in ground effect. Like

with counter-rotating pairs this is due to the separation of secondary vorticity from

the ground. This can be seen by comparing the vertical motion of the vortices in

Co-Rotating Cases 3 and 11. The initial spacing is the same, but Case 3 is at a

lower initial height. No secondary vorticity separates from the ground in Case 11

where it does in Case 3 and Case 3 moves vertically approximately 5 times more

than in Case 11, which can be seen by comparing Figure 5.14 to Figure 5.39.

As seen in Chapter 5 the ground effect also influences the rotation of the vortex

pair. Wang et al. [9] found that ground effect increased the rate of rotation of

the vortex pair. The results of Co-Rotating Cases 6, 7, 8, 9, 10 and 11 support

this (Figures 5.24, 5.28, 5.31, 5.34, 5.37 and 5.40). However, at the lowest initial

heights the presence of the ground inhibits this rotation. This is most prominent

in Co-Rotating Cases 1 and 12. There is no change in angle of orientation in

Co-Rotating Case 1 and little change in orientation angle in Experimental Case

1. For Co-Rotating Cases 2, 3 and 4, the rotation is initially suppressed before
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rapidly increase as the vortex which passes closest to the ground wraps around and

merges into the other. This is shown in Figures 5.11, 5.15 and 5.18.

6.4.2 Counter-Rotating Pairs

The paths of the counter-rotating vortices, shown in Chapter 5, in the vertical

direction can be grouped into three categories. Counter-Rotating Case 1 in which

the pair remained at an almost constant height above the ground before moving

upwards, as shown in Figure 5.43. Counter-Rotating Cases 2 and 3, which remained

at an almost constant height above the ground for a short distance downstream

(around 15a0) before moving upwards at a constant rate, as seen in Figures 5.46

and 5.48. Finally, Counter-Rotating Cases 4 and 5, which moved upwards at an

almost constant rate immediately, shown in Figures 5.50 and 5.52. Co-Rotating

Cases 4 and 5 moved vertically around 3 times more than Co-Rotating Case 1.

As the vortices move towards each other due to the velocity induced upon each

vortex due to the ground, the spacing between the vortices reduces. The final spacing

of the vortices is related to the initial spacing. Counter-Rotating Case 1 has a final

spacing 2 times greater than that of Counter-Rotating Case 5. This occurs as once

the vortices are close enough to induce a vertical velocity upon each other the pair

moves away from the ground. As a result the induced lateral velocity reduces until

it becomes 0. At which point the vortices are out of ground effect and no longer

move towards each other.

It has been shown that for a counter-rotating vortex pair in which the induced

velocity results in a downward movement of the pair, the secondary vortices which

form due to the interaction with the ground significantly alter the trajectories of

the vortices when compared to a slip wall [28, 26, 27, 25]. As presented in Chapter

5 and as shown by Wang et al. [9], secondary vorticity significantly affects the

dynamics of co-rotating vortex pairs in ground effect. However, little research exists

on the effect of counter-rotating vortex pairs in which the induced velocity moves

the pair away from the ground, this configuration is shown in Figure 5.41. In

order to determine the effect of the secondary vortices on the trajectory of such

counter-rotating vortices simulations with a slip condition applied to the ground

were completed for comparison to the simulations with the no-slip condition applied

to the ground.
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It is clear from Figure 6.13 that in this configuration the secondary vortices have

significantly less impact on the dynamics of the pair than that of a counter-rotating

vortex pair which moves downwards. It can be seen that at the closest spacing, the

secondary vorticity has no effect on the trajectory of the vortex pair. A negligible

difference in vertical trajectory between the case with a spacing of a0
b0

= 0.3 when

comparing the simulations with a slip and no-slip condition applied to the ground.

At the largest spacing of a0
b0

= 0.1 the secondary vorticity has more effect on the

trajectory. The secondary vorticity has the effect of reducing the lateral velocity

of the primary vortices as the velocity induced by the secondary vorticity is in the

opposite direction to that of the primary vortices. This results in a closer final

spacing of the primary vortices in the simulation with a slip wall. The secondary

vorticity also initially increases the vertical velocity of the primary vortices, as shown

in Figure 6.13, due to vortex rebound described in [28, 26, 27, 25]. However, the final

height of the vortex pair is lower in the simulation with a no slip wall as the final

spacing is wider, thus the vertical velocity induced by the primary vortices is lower.

As the primary vortices are much stronger the secondary vortices, any velocity they

indue upon each other is much greater than the velocity induced by the secondary

vortices on the primary.
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(a)

(b)

(c)

Figure 6.13: The trajectories counter-rotating vortices for simulation with a no slip

condition applied to the ground and a slip condition applied to the ground. The

initial spacings of the vortex pairs are: (a) a0
b0

= 0.1, (b) a0
b0

= 0.3 (c) a0
b0

= 0.5
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The work presented has investigated both co-rotating and counter-rotating vortex

pairs using a mixture of experimental methods and numerical methods. A five

hole pneumatic pressure probe was used to take pressure measurements within a

wind tunnel with two NACA0012 vortex generators used to generate the vortices

close to a flat plate. Simulations utilising RANS modelling were performed for

co-rotating and counter-rotating vortex pairs at multiple initial spacings and heights.

The counter-rotating vortex pairs studied had a mutually induced velocity which

moved away from the flat plate. Little research exists on vortex pairs with such a

configuration, they occur in the wakes of race car front and rear wings and in the

rear diffuser and around the bargeboard area of race cars [8, 2, 1]. The k-ω SST

turbulence model was used for the simulations and this was chosen as it has been

shown to match well to experiments for similar flows [62].

Despite the difference in ReΓ between the experiments and the simulations, the

two matched well. For both Experimental Case 1, which had the widest initial

spacing of the experimental cases, and Co-Rotating Case 1, the two vortices did

not interact. The separation distance remained almost constant for both at all

downstream locations analysed. The vortices in both cases also exhibited similar

deformations, although lower vortex aspect ratios were seen in the experimental case.

This is possibly due to the low spatial resolution of the experimental measurement

technique. In Experimental Case 2 and Co-Rotating Case 3, a similar merging

pattern was observed. The vortex which passed closest to the ground became
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partially strained and then started to merge into the other vortex. Although, the

very high vortex aspect ratio observed in the numerical simulation was not seen in

the experiment.

It was found from both experiments and simulations that an initially equal

strength co-rotating vortex pair very close to the ground will merge like an asymmetric

vortex pair. This is due to the vortex which passes closest to the ground becoming

partially strained as it moves between the ground plane and the other vortex. This

vortex will then merge into the other. As found by Wang et al. [9], merging was

found to be promoted by the ground effect. The rate at which separation distance

decreased was found to increase with decreasing initial height. The conclusions of

Wang et. [9] are supported by this work, as image vortices and secondary vorticity

results in the faster movement of the vortices towards each other. It was also found

that, the vortex pairs that are closer to the ground had longer filaments, which

means an increased amount of antisymmetric ωx, which further increases the rate

at which the vortices move towards each other.

The decay of Γ was found to be accelerated by the generation of secondary

vorticity and the subsequent interaction of the primary vortices with this secondary

vorticity. The interaction of the secondary vorticity with the primary vortices causes

turbulence, shown by the increase in turbulent kinetic energy, which results in

annihilation of ωx. It was found that as the initial height of the co-rotating cases

increased the rate of decay of Γ decreased, due to less interaction of primary vortices

with secondary vortices and well as weaker secondary vorticity being generated. For

the counter-rotating cases investigated, it was found that only the widest spacing

case showed a significant decrease in Γ. This is due to the mutually induced vertical

velocity moving the vortices away from the ground, thus limiting their interaction

with secondary vorticity.

Lateral movement and rebound were observed in the co-rotating vortex pairs

both in the experimental work and the numerical work. These movements were

greater as the initial height of the vortex pair decreased, due to the stronger interaction

of primary vortices with their image vortices and the secondary vorticity. It was also

found from the simulations that the ground effect increased the rotational rate of

the co-rotating pairs, as identified by Wang et al. [9]. However, at the lowest initial

heights, as well as in the experimental work, the presence of the ground initially
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inhibited the rotation of the pair, before then rapidly increasing as the vortex which

passes closest to the ground then merges into the other.

The counter-rotating vortex pairs moved both laterally and vertically. However,

the trajectories of the counter-rotating pairs investigated in this work were not

significantly affected by the secondary vorticity. This was shown by comparing

simulations where the ground was modelled as a no slip and slip wall respectively.

This was due to the mutually induced vertical velocity moving the pair away from

the ground, this resulting in both weaker secondary vorticity being generated and

less interaction of primary vortices with the secondary vorticity. This is significantly

different than counter-rotating pairs whose mutually induced velocity moves the pair

towards the ground.

7.2 Future Work

The following areas have been identified as possible areas of further work regarding

vortex interactions in ground effect.

Experiments at ReΓ similar to that of the numerical simulations presented in

this thesis would be of interest. In the numerical co-rotating cases where merging

occurs, very high aspect ratios can be seen in the vortex which passes closest to the

ground. This would allow it to be ascertained if this also occurs during experiments.

Experiments which use a measurement technique with a higher spatial resolution

than in this research, such as particle image velocimetry, would be of interest. This

would allow secondary vortices to be captured and their interaction with primary

vortices could be better analysed. Furthermore, this would also allow any transient

effects to be observed.

As this research used a RANS turbulence model for numerical work, numerical

investigations using large eddy simulations (LES) would be of interest. This would

allow transient effects to be analysed and some eddies not resolved in the RANS

simulations to be resolved. Alternatively, direct numerical simulations (DNS) could

be undertaken, this would allow the eddies down to the Kolmogorov scale to be

resolved. However, due to the computational expense of such simulations, ReΓ

would have to be lower than in the RANS simulations.

A study of unequal strength co-rotating pairs would also be of interest. In both
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the experimental work and numerical work at the lowest h0 it was seen that pair

merged like an unequal strength pair. It was shown by Brandt and Nomura and

Dritschel and Waugh [19, 20] that unequal strength pairs have significantly different

merging than equal strength pairs. It was also shown that the circulation ratio (Γ2
Γ1
)

affects the type of merging that occurs in unequal pairs, as discussed in 2. From

such research, it could be discovered if proximity to the ground affects the type of

merging that occurs for a given circulation ratio.
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