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Abstract: In this thesis we consider two distinct applications of higher-form
symmetries in quantum field theory. First we explore the spontaneous breaking of
higher-form symmetry in a holographic quantum field theory containing matter fields
in the fundamental representation of the gauge group U(N). At strong coupling,
we numerically solve the bulk equations of motion to compute the current-current
Green’s function and demonstrate the existence of a goldstone mode. We then
compare to direct analytic perturbative results obtained at weak coupling. In the
second half of the thesis we work with a hydrodynamic effective field theory which
possesses a higher-form symmetry. In particular, we consider a natural higher-
derivative correction to force-free electrodynamics and compute a hydrodynamic
transport coefficient from microscopics. Concretely, this is a perturbative QED
calculation in a background magnetic field. Finally we compare our findings to
astrophysical observations.
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Notation and conventions

Spacetime signature

We follow the conventions and notation of [3]. In particular, the metric signature
is mostly plus, that is we have gµν = diag(−1, 1, 1, 1). Lorentzian Green’s functions
are related to two-point functions by iG12(x, y) = 〈T φ1(x)φ2(y)〉 for fields φ1 and
φ2 where T denotes time-ordering.

Indices

Unless otherwise stated, we normally use M,N to refer to 5d bulk indices, µ, ν to
refer to 4d field theory indices, and i, j to refer to 3d spatial indices. In Chapter 3
our construction will involve embedding a D7-brane into a 10d spacetime. Here α, β
will refer to D7-brane worldvolume coordinates and A,B will refer to 10d target
space indices.

Differential forms

Our conventions for differential forms are those of [4], and we record some useful
identities below:

d(ωp ∧ ηq) = dωp ∧ ηq + (−1)pωp ∧ dηq (0.0.1)
ωp ∧ ηq = (−1)pqηq ∧ ωp (0.0.2)
ωp ∧ ?ηp = ηp ∧ ?ωp (0.0.3)

The square of the Hodge star acting on a p form in n dimensions on a metric with s
minus signs in its eigenvalues is

?2 = (−1)s+p(n−p) . (0.0.4)
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In particular, in Lorentzian signature in 4d acting on a 2-form, we have ?2
4 = −1.

As in [5], we define
|Ap|2 = 1

p!Aµ1...µpA
µ1...µp (0.0.5)

and we use the shorthand
A2
p ≡ Ap ∧ ?Ap (0.0.6)

To translate between expressions involving forms and expressions involving compon-
ents, we can use the identity

A2
p = |Ap|2 ε (0.0.7)

where ε is the volume form associated with the metric determinant g

ε = ?1 =
√
|g| dnx (0.0.8)

The integral of an n-form Ω over an n-dimensional manifold M of signature s is
defined by ∫

M
Ω ≡

∫
Rn

(−1)s(?Ω) ε =
∫
Rn
dnx

√
|g| (−1)s(?Ω) (0.0.9)

So in particular, for a p-form we have∫
M
A2
p =

∫
Rn
dnx

√
|g| |Ap|2 (0.0.10)

Fourier transforms

As is standard, we write a tilde to denote the Fourier transform of an object. So for
example

J̃µν(p) =
∫
d4x e−ip·x Jµν(x) (0.0.11)

The inverse is then given by

Jµν(x) =
∫
d̃p eip·x J̃µν(p) (0.0.12)

Here the tilde over the measure d̃p is a shorthand for d4p
(2π)4 . Similarly d̃p‖ ≡

d2p‖
(2π)2 ,

that is we weight the denominator by the appropriate power of 2π.

For the Fourier transform of a Green’s function G, we use the convention that

G̃12(p) ≡
∫
d̃p e−ip·x G12(x, 0) (0.0.13)

and similarly in a 2-point function,

〈φ̃1(p)φ̃2(−p)〉 ≡
∫
d̃p e−ip·x 〈T φ1(x)φ2(0)〉 (0.0.14)
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Gamma matrices

Our metric sign convention fixes the Clifford algebra as

{γµ, γν} = −2gµν (0.0.15)

For concreteness, we use the Weyl (chiral) representation of the gamma matrices
given by

γµ =
 0 σµ

σ̄µ 0

 (0.0.16)

where σµ ≡ (12, σ
i) with σi the Pauli matrices.





Chapter 1

Introduction

Symmetries are of crucial importance in theoretical physics in general and quantum
field theory in particular. For example, symmetries provide aesthetically pleasing
mathematical explanations for a wide range of natural phenomena, from classification
of phases of matter to the Higgs mechanism. Symmetries also afford us a systematic
way to solve many seemingly intractable problems by computing perturbations away
from some idealised solvable system. Such calculations are abundant in perturbative
quantum field theory and hydrodynamics.

This thesis focuses on applications of a novel type of symmetry in quantum field
theory called generalised global symmetries, higher-form symmetries or p-form sym-
metries. These symmetries were first explored in [6] and, as the name suggests,
generalise the notion of global symmetries in quantum field theories from point-
like objects (particles) to extended objects with higher spatial dimensions (strings,
branes, etc.). Helpfully, many of the features of ordinary global symmetries can be
readily lifted up to the higher-form case. In particular, a higher-form symmetry
is associated with a conserved symmetry current. Physically, the conservation of
the symmetry current corresponds to the conservation of (the density of) extended
objects such as strings and branes. Higher-form symmetries can be spontaneously
broken (resulting in Goldstone modes [7, 8]), have anomalies (see e.g. [9] for an early
example), and be used to build hydrodynamic theories [10, 11, 12].

The outline of the thesis is as follows. We begin in Chapter 2 with a very elementary
treatment of symmetries in the familiar setting of Lagrangian mechanics. From
here we bridge the gap to review generalised global symmetries in quantum field
theory. In Chapter 3 we use the formalism of holography to explore the higher-
form symmetry structure of a supersymmetric quantum field theory with matter
fields in the fundamental representation of the gauge group. These results were
first presented in [1]. We move on to consider a further application of higher-form
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symmetry in hydrodynamics, namely force-free electrodynamics. In Chapter 4 we
review the essential aspects of hydrodynamics and force-free electrodynamics, then
in Chapter 5 we compute a transport coefficient for force-free electrodynamics from a
microscopic theory. These results form the basis of [2]. Finally we offer a conclusion
and outlook in Chapter 6.



Chapter 2

Review of generalised global
symmetries

We set the stage with a very simple example in the framework of classical Lagrangian
mechanics. The discussion and notation readily generalise to Lagrangian field theory,
and from there we can smoothly proceed to the quantum theory, clarifying various
aspects along the way. Once we have discussed global symmetries in quantum
theories, we can generalise further to higher-form symmetries. We end the chapter
by considering higher-form symmetries of non-Abelian gauge theories.

2.1 Symmetries in classical Lagrangian
mechanics

The material in this section is elementary undergraduate knowledge, brilliantly
explained in e.g. [13]. Nonetheless, it provides an ideal starting point to clarify our
perspective and notation, and should make the later generalisations more accessible.

2.1.1 Single point particle

Consider a classical point particle of massm under the influence of a time-independent
potential V in three-dimensional Euclidean space. We assume that the particle takes
a path beginning at time t0 and ending at time t1. The Lagrangian is given by

L(x, ẋ) = 1
2m|ẋ|

2 − V (x) (2.1.1)
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The action functional for the system is

S[x; t0, t1] =
∫ t1

t0
dt L(x, ẋ) =

∫ t1

t0
dt
(1

2m|ẋ|
2 − V (x)

)
(2.1.2)

Equations of motion

To find the equations of motion for the particle, we extremise the action functional
S with respect to the path of the particle x(t). Consider a small variation of the
path

xi(t) 7→ xi(t) + ε δxi(t) (2.1.3)

which vanishes on the endpoints

δxi(t0) = 0 (2.1.4a)
δxi(t1) = 0 (2.1.4b)

i.e. the point particle has a fixed initial position xI = x(t0) and a fixed final position
xF = x(t1).1

Under this variation of the path, the Lagrangian deforms as

L 7→ L+ ε δL+O(ε2) (2.1.5)

where

δL = mẋ · δẋ− δx · ∇V

= −δx · (mẍ +∇V ) + d

dt
(m δx · ẋ)

So the change in the action is

S[x + ε δx]− S[x] = ε δS[x] +O(ε2) (2.1.6)

where

δS[x] =
∫ t1

t0
dt δL = −

∫ t1

t0
dt δx · (mẍ +∇V ) + [m δx · ẋ]t1t0 (2.1.7)

The second term on the right-hand side vanishes because, by definition, the variation
δx vanishes at the endpoints. Along an extremising path xC(t), δS must vanish for all
δx(t), and hence xC(t) satisfies the (classical) equation of motion or Euler-Lagrange
equation

mẍ +∇V = 0 (2.1.8)

1Here i is understood to range from 1 to 3.
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A path x(t) satisfying the classical equation of motion is said to be “on-shell”.

We define the canonical conjugate momentum to be

pi = ∂L

∂ẋi
= mẋi (2.1.9)

Defining the force as F = −∇V in the usual way, we recover Newton’s equation

F = ṗ (2.1.10)

Time translation invariance and conservation of energy

What symmetries does this system have? Observe that if we make a small translation
in time

t 7→ t′ = t− ε (2.1.11)

then this induces a transformation of the path

xi(t) 7→ x̃i(t) = xi(t+ ε) = xi(t) + ε ẋi(t) +O(ε2) (2.1.12)

i.e. δxi(t) = ẋi(t).2

Note that this induced transformation of the xi says nothing about the endpoints,
unlike the variation we took to find the equations of motion. Indeed, we made no
such specification that ẋi(t0) should vanish. Confusingly, it is common to use the
notation δxi both for taking variations of the action as in (2.1.3) and for the change
under an infinitesimal transformation such as (2.1.11).

The Lagrangian transforms as

δL = mẋ · δẋ− δx · ∇V

= mẋ · ẍ− ẋ · ∇V

= d

dt

(1
2m|ẋ|

2 − V (x)
)

= dL

dt

In particular, to leading order in ε the Lagrangian shifts by a total derivative. The
transformed action is

S ′[x] =
∫ t1−ε

t0−ε
dt L(x̃, ˙̃x)

2Note that the sign of ε appears to be opposite in the transformation of xi compared to t,
because x̃i(t′) = xi(t). This is called an active transformation - more on this later.
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=
∫ t1−ε

t0−ε
dt

(
L(x, ẋ) + ε

dL

dt

)
+O(ε2)

=
∫ t1

t0
dt L(x, ẋ)− ε(L(t1)− L(t0)) + ε

∫ t1

t0
dt
dL

dt
+O(ε2)

= S[x] +O(ε2)

where we used the Leibniz integral formula and the fundamental theorem of calculus.

To leading order in ε, the action is invariant under the transformation. Hence S ′ will
yield the same equations of motion as the original action S. For this reason, we say
that a transformation for which the action is invariant is a symmetry of the system,
or a symmetry of the action. Note that in particular, we did not have to use the
equations of motion to show that S ′ = S.

This particular transformation is time translation. So we say that the system is
invariant under time translation, or that the system has a time translation symmetry.

Recall that in general the Lagrangian takes the form

L = T − V (2.1.13)

where T is the kinetic energy of the system and V is the potential energy of the
system.3 The total energy of the system is given by

E = T + V = 1
2m|ẋ|

2 + V (x) (2.1.14)

Using the equations of motion, it is straightforward to show that the total energy is
conserved, that is, it is constant in time. Indeed,

dE

dt
= d

dt

(1
2m|ẋ|

2 + V (x)
)

= mẋ · ẍ + ẋ · ∇V

= ẋ · (mẍ +∇V )
= 0

At least superficially it may seem that these two facts, namely the existence of the
symmetry and the conservation of the energy, are unrelated. In fact, the conservation
of the total energy is a direct consequence of the time translation symmetry! One
way to see this is to compare our particular transformation of the Lagrangian

L 7→ L+ d

dt
(ε L) +O(ε2) (2.1.15)

3At least for a conservative system.
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with the transformation under a general variation:

L 7→ L− ε δx · (mẍ +∇V ) + d

dt
(ε mδx · ẋ) +O(ε2) (2.1.16)

Equating the expressions to first order in ε and imposing the equations of motion
we find that

d

dt
(ε L) = d

dt
(ε mδx · ẋ) (2.1.17)

Setting δx = ẋ we recover Ė = 0 as expected.

This is more than just an amusing observation. The conservation of energy of the
particle allows us to study its dynamics even when the potential is more complicated,
for example by considering stationary points of the potential and investigating their
stability.

Rotational invariance and conservation of angular momentum

To consider another example, let’s restrict to the case where the potential V is
spherically symmetric, i.e. we have V (x) = V (|x|). Consider rotating the path x(t)
in a plane with unit normal n by an angle θ.

xi(t) 7→Mij(n, θ) xj(t) (2.1.18)

where M ∈ SO(3). Using the defining property of SO(3), we have

MkiMkj = δij (2.1.19)

and so both |x| and |ẋ| are invariant under the rotation.

Hence L 7→ L and the rotation is a symmetry of the action.

What is the infinitesimal form of the rotation? If θ is small we can write

Mij = δij + θAij +O(θ2) (2.1.20)

for some matrix Aij.

Imposing MkiMkj to leading order in θ gives

Aij + Aji = 0 (2.1.21)

i.e. A is antisymmetric.

Imposing detM = 1 to leading order in θ gives

TrA = 0 (2.1.22)
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i.e. A is traceless.

The infinitesimal form of the rotation is thus

xi(t) 7→ xi(t) + θAijxj(t) +O(θ2) (2.1.23)

i.e. we have δxi = Aijxj, where A is antisymmetric and traceless. In fact,

Aij = εijk nk (2.1.24)

Plugging this into the general transformation of the Lagrangian gives

δL = −δx · (mẍ +∇V ) + d

dt
(m δx · ẋ)

= −δx · (mẍ +∇V ) + d

dt
(m εijk nk xjẋi)

= −δx · (mẍ +∇V )− d

dt
(n · L)

where L = x× p = x× (mẋ) is the angular momentum.

We know that δL = 0 under the rotation. Hence when the equations of motion
are satisfied, the component of the angular momentum parallel to the normal is
conserved:

d

dt
(n · L) = 0 (2.1.25)

However, this is true for every unit vector n, and so we must have d
dt

L = 0.

To verify this statement we can use the equations of motion directly. As a result of
the spherically symmetric potential we have that

∇V (|x|) = V (|x|)∇|x| = V (|x|)
|x|

x (2.1.26)

So

d

dt
L = d

dt
(x× p)

= mẋ× ẋ + x× ṗ

= x× (−∇V )

= −V (|x|)
|x|

(x× x)

= 0

as asserted above.

An important case is a Newtonian point particle of mass m � M (say, a satellite)
orbiting a fixed point particle of mass M (say, the Earth). In this case, with the
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larger mass at the origin and the smaller mass at a point x, the potential is given by

V (|x|) = −GM
|x|

(2.1.27)

where G is Newton’s gravitational constant. Physically, a satellite orbiting the Earth
has a conserved angular momentum throughout its orbit.

2.1.2 General system

Now we generalise the discussion so far, while remaining in Lagrangian mechanics.
We replace the coordinates of the particle xi(t) with n generalised coordinates
q1(t), q2(t), · · · , qn(t). The Lagrangian will be a function of qi(t), q̇i(t) and time t
only. In particular, there will be no second-order or higher derivatives of qi appearing
in the action.

The action functional is

S[q] =
∫ t1

t0
dt L(q(t), q̇(t), t) (2.1.28)

Here we take the opportunity to clarify some universal abuses of notation that arise
in this subject. The Lagrangian should be understood to be a function of 2n + 1
variables.

L : Rn × Rn × R→ R

(a,b, c) 7→ L(a,b, c)

It just so happens that in practice, we always evaluate this function L at a = q(t),
b = q̇(t), and c = t. When we write an expression like ∂L

∂q̇i
, what we really mean

is ∂L
∂bi

evaluated at a = q(t), b = q̇(t) and c = t. With this in mind, it is perfectly
legitimate to take derivatives with respect to q and q̇ independently.

Equations of motion

In order to determine the classical equation of motion of this system, we extremise
the action functional S[q] with respect to the paths qi(t), i = 1, . . . , n from t0 to t1
while keeping the endpoints fixed.

More rigorously, q is a function of a single variable defined on an interval

q : [t0, t1]→ Rn

t 7→ q(t)
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satisfying q(t0) = qI and q(t1) = qF . Let Q be the set of all such functions q which
are also sufficiently smooth. We want to extremise the action functional

S : Q → R

q 7→ S[q]

To do this we deform q by a small variation

qi(t) 7→ qi(t) + ε δqi(t) (2.1.29)

satisfying δqi(t0) = δqi(t1) = 0.

Evaluating the action after the deformation, we find

S[q + ε δq] =
∫ t1

t0
dt L(q + ε δq, q̇ + ε δq̇, t)

=
∫ t1

t0
dt L+ ε

∫ t1

t0
dt

(
δqi(t)

∂L

∂qi
+ δq̇i(t)

∂L

∂q̇i

)
+O(ε2)

= S[q] + ε


∫ t1

t0
dt δqi(t)

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
+
[
δqi

∂L

∂q̇i

]t1
t0

+O(ε2)

Summation over the repeated index i is implied and we have integrated by parts.
The first-order in ε term involving the endpoints vanishes because δqi = 0 at the
endpoints.

If we define the first variation of S to be

δS[q] = lim
ε→0

(1
ε
(S[q + ε δq]− S[q])

)
(2.1.30)

and the variational derivative of S by

δS[q] =
∫ t1

t0
dt δqi(t)

δS

δqi(t)
(2.1.31)

then we obtain
δS

δqi(t)
= ∂L

∂qi
− d

dt

∂L

∂q̇i
(2.1.32)

For qC ∈ Q to be a stationary point of S, we require δS[qC ] = 0 for all variations
δq, i.e. we require the variational derivative of S to vanish.

Hence qC satisfies the Euler-Lagrange equations of motion for the classical path of
the system

δS

δqi(t)
= ∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (2.1.33)

As before, a path qi(t) satisfying δS
δqi(t) = 0 is said to be on-shell.
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Transformations of the system

So far, we have seen two distinct transformations: time translation and spatial rota-
tion. These two examples demonstrate the two essential classes of transformations
which are possible in Lagrangian mechanics. With a view to generalising to field
theory, we call time translation a (space)time transformation, and we call spatial
rotation an internal transformation.
(Space)time transformations commonly cause much confusion, even in the straightfor-
ward setting of Lagrangian mechanics. At this point, we will make a useful definition
and move on.4 For us, an active (space)time transformation

t 7→ T (t) (2.1.34)

is defined to induce a transformation

qi(t) 7→ Qi(t) = qi(T−1t) (2.1.35)

Further, under such a transformation, the Lagrangian is defined to transform as

L(q(t), q̇(t), t) 7→ L(q(T−1t), q̇(T−1t), t) (2.1.36)

If instead we transform the generalised coordinates q themselves, we have

qi(t) 7→ Qi(t) = ρi(q(t), t) (2.1.37)

for some functions ρi. The Lagrangian is defined to transform as

L 7→ L′ = L(Qi(t), Q̇i(t), t) (2.1.38)

If the action is left invariant by either type of transformation, i.e. S[L′] = S[L],
then the equations of motion are unchanged and we call such a transformation a
symmetry. The reader may at this point why we bother distinguishing between the
two types of transformation. After all, a (space)time transformation simply induces
a transformation of the generalised coordinates and nothing more. We will soon see
why. For us, a (space)time symmetry will always shift the Lagrangian by a total
derivative, and is only a pseudosymmetry of the Lagrangian. An internal symmetry
is a symmetry of the Lagrangian itself, that is it leaves the Lagrangian unchanged.
This will have important implications shortly.
Of particular importance to us are continuous transformations connected to the
identity. For such transformations we can write (for some infinitesimal real parameter

4The reader is welcome to disagree with our definition, but the formalism here will be self-
consistent.
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ε)
t 7→ T (t) = t− ε δt (2.1.39)

for a (space)time transformation, and

qi 7→ ρi(q, t) = qi(t) + ε δqi(t) (2.1.40)

for an internal transformation.

For a (space)time transformation, the infinitesimal change in the Lagrangian is

δL =
(
q̇i
∂L

∂qi
+ q̈i

∂L

∂q̇i

)
δt =

(
dL

dt
− ∂L

∂t

)
δt (2.1.41)

For an internal transformation, the infinitesimal change in the Lagrangian is simply

δL = δqi
∂L

∂qi
+ δq̇i

∂L

∂q̇i
= d

dt

(
δqi

∂L

∂q̇i

)
+ δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
(2.1.42)

2.1.3 Aside: Active v passive transformations

Now we take a moment to clarify some confusing terminology and language associ-
ated with transformations in physics, namely the notion of “active” and “passive”
transformations. The most general setting to formulate this distinction carefully is
the framework of manifolds, diffeomorphisms and charts.

Let M be a manifold and let A : M → Rn be a chart for M. Let φ : M → R
be a real scalar field on the manifold. Suppose we are given some smooth map
T : Rn → Rn.

In the passive picture, this represents a coordinate transformation T : x 7→ x′,
mapping the coordinates with respect to the chart A to coordinates with respect
to another chart B. In other words, it is a transition map T = B−1 ◦ A. The
representation of the scalar field φ in the original coordinates is ΦA = φ ◦ A−1 :
Rn → R. Usually in field theory we refer to “φ(x)” when we really mean ΦA(x). For
a passive transformation, the field itself does not transform, but its representative
must be written in the new coordinates. Let ΦB = φ◦B−1. We have ΦA = φ◦A−1 =
φ ◦B−1 ◦B ◦ A−1 = ΦB ◦ T . So ΦA(x) = ΦB(Tx). In a common abuse of notation,
we suppress the dependence on charts and simply write φ(x) 7→ φ(Tx). Physically,
this is saying that nothing has actually moved - only the coordinates we give to
points on the manifold.

On the other hand, in the active picture there is some diffeomorphism T : M→M.
In this case, we interpret T as the representation of this diffeomorphism with respect
to the chart A. More precisely, we have T = A ◦ T ◦ A−1. Note that there is only
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one chart involved in this picture - we are not doing a coordinate transformation,
but instead moving the points around on the manifold itself. The diffeomorphism
induces a pushforward on the scalar field φ which yields a new scalar field φ′ = T∗φ =
(T −1)∗φ = φ◦T −1. The new scalar field has a representation Φ′ in the coordinates of
the chart given by Φ′ = φ′ ◦A−1 = φ◦T −1 ◦A−1 = φ◦A−1 ◦A◦T −1 ◦A−1 = Φ◦T−1.
Hence the new scalar field is related to the old scalar field by Φ′(x) = Φ(T−1x). In
a common abuse of notation, we simply write φ(x) 7→ φ(T−1x). Physically, this is
saying that points on the manifold have moved around, but we are using the same
set of coordinates.

The point of all this is that simply writing “the transformation x 7→ x′” by itself
is insufficient to deduce the induced transformations on scalar fields and other
objects. Usually active transformations can be assumed, however it is best to simply
define clearly how a given transformation acts on everything to avoid ambiguity.
From here onwards we will take this approach and clearly define all of our induced
transformations.

2.1.4 Noether’s theorem for Lagrangian mechanics

We conclude our recap of Lagrangian mechanics with the most important result.

Over a century ago the German Mathematician Emmy Noether proved in [14] that
(in modern language) every continuous symmetry of a classical physical system gives
rise to a conservation law. This statement is known as Noether’s theorem.5 The
precise mathematical statement depends on the context. A more rigorous unification
from an algebraic point of view is attempted in [15], but our treatment here is closer
to the spirit of Noether’s original work.

In Lagrangian mechanics, a continuous symmetry is a transformation such that the
Lagrangian is deformed by (at most) a total derivative with respect to time:

δL = df

dt
(2.1.43)

In such a case, the action S is invariant, and the equations of motion are unchanged.

Here a conservation law means mathematically there is some function K(t) such
that along any on-shell path qi(t), we have

dK

dt
= 0 (2.1.44)

We usually call such a function a conserved charge. The upshot of Noether’s theorem

5Not to be confused with Noether’s theorems for rings - usually this is unambiguous for physicists.
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is that given a non-trivial continuous symmetry of the system, we are guaranteed a
conserved charge. Further, we get an algorithm to construct the charge using the
symmetry transformation.

Precise statement

Given a Lagrangian L(qi(t), q̇i(t), t), and a transformation qi(t) 7→ qi(t)+ε δqi(t) such
that δL = df

dt
, there exists a non-trivial function K(t) such that when the equations

of motion are satisfied, we have dK
dt

= 0.

Proof

From the above equations, we have that, under an arbitrary transformation,

δL = d

dt

(
δqi

∂L

∂q̇i

)
+ δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
(2.1.45)

In particular, when the transformation is a symmetry we have

d

dt

(
δqi

∂L

∂q̇i
− f

)
= δqi

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
(2.1.46)

When the Euler-Lagrange equations of motion are satisfied, the right-hand side
vanishes and hence defining

K(t) = δqi
∂L

∂q̇i
− f(t) (2.1.47)

we have constructed a conserved charge as desired.

(Space)time symmetry: energy conservation

From (2.1.41), we can deduce that a Lagrangian which does not depend explicitly
on time, i.e. satisfies ∂L

∂t
= 0, admits a (space)time symmetry (with δt = 1, say).

More explicitly, we have δqi = q̇i and the Lagrangian changes by a total derivative:

δL = dL

dt
(2.1.48)

Hence we can use the Noether recipe to construct a conserved charge:

E(t) = q̇i
∂L

∂q̇i
− L (2.1.49)

which is the generalisation of the conserved energy we obtained previously in (2.1.14).
A more careful treatment of time transformations in classical mechanics and the
corresponding Noether theorem is provided in [16].
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Internal symmetry: momentum conservation

For internal symmetries, we assume that the Lagrangian itself is invariant. Hence
the Noether recipe is even simpler and we obtain simply

K(t) = δqi
∂L

∂q̇i
(2.1.50)

In practice, this will be the jth component of linear momentum when δqi = δij or
the angular momentum when δqi = Aijqj for some antisymmetric A.

2.2 Symmetries in classical Lagrangian field
theory

Now we have clarified the fundamental points, we generalise from Lagrangian mech-
anics to Lagrangian field theory. Since the ultimate destination is quantum field
theory, we will adopt relativistic notation from this point onwards. The material in
this section is also covered in e.g. [3, 17, 18]

2.2.1 Free scalar field

The simplest example in Lagrangian field theory is a free scalar field. This is
analagous to the single point particle considered in Lagrangian mechanics. For
concreteness, we work in four-dimensional Minkowski spacetime with coordinates
xµ = (t, xi). The scalar field is a function φ : R1,3 → R. Typically we write φ = φ(x).

As before, we have a Lagrangian L which depends on φ and its first derivatives. We
rule out explicit dependence on time, and write L = L(φ, ∂µφ). Similarly to before,
the action is then S[φ] =

∫ t1
t0
dt L.

However now that we have spatial dimensions to work with, we assume that the
dynamics are local and we can write the Lagrangian as

L(φ, ∂µφ) =
∫
R
d3x L(φ, ∂µφ) (2.2.1)

for some Lagrangian density L. The action is then simply

S[φ] =
∫
d4x L(φ, ∂µφ) (2.2.2)

In practice, we almost always work with the Lagrangian density and refer to it as
“the Lagrangian”.
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For a free scalar, the Lagrangian density is given by

L = −1
2 gµν∂µφ ∂νφ−

1
2 m2φ2 (2.2.3)

where gµν is the Minkowski metric.

Equations of motion

To find the equations of motion for the scalar field, we extremise the action functional
S with respect to the path of the field φ(x). Physically, in the Lagrangian mechanics
setting we considered a particle living at a point x in space at each time t and
tracing out some continuous path over time. In Lagrangian field theory, the field φ
permeates all of space, but its value at a given point x0 can change over time.

Consider a small deformation of the field

φ(x) 7→ φ(x) + ε δφ(x) (2.2.4)

which vanishes at the temporal endpoints and decays to zero at spatial infinity

δφ(t0, xi) = 0 (2.2.5a)
δφ(t1, xi) = 0 (2.2.5b)
δφ(t, xi)→ 0 as |x| → ∞ (2.2.5c)

i.e. the field has a fixed initial and final configurations, and is fixed at spatial infinity
during its time evolution.

The Lagrangian deforms as

L 7→ L+ ε δL+O(ε2) (2.2.6)

where
δL = −gµν∂µφ ∂ν(δφ)−m2φ δφ (2.2.7)

So the change in the action is

S[φ+ ε δφ]− S[φ] = ε δS[φ] +O(ε2) (2.2.8)

where

δS[φ] =
∫
d4x δL =

∫
d4x δφ

(
�−m2

)
φ−

∫
∂M

d3y δφ nµ∂µφ (2.2.9)

Here � ≡ gµν∂µ∂ν is the d’Alembertian operator, ∂M schematically denotes the
spatio-temporal boundary and nµ is a normal vector to ∂M. By definition, δφ
vanishes on ∂M so the integral over y on the right-hand side vanishes.
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For an extremising field φC(x), δS must vanish for all such δφ(x) and hence φC(x)
satisfies the classical equation of motion(

�−m2
)
φ(x) = 0 (2.2.10)

The equation of motion for a free scalar field is called the Klein-Gordon equation.

A field φ(x) satisfying the equation of motion is said to be “on-shell”. We define the
canonical conjugate momentum to be

π(x) = ∂L
∂(∂0φ) = φ̇(x) (2.2.11)

We can write the equation of motion more explicitly as in Lagrangian mechanics:

π̇ =
(
∇2 −m2

)
φ (2.2.12)

where ∇2 ≡ δij∂i∂j is the Laplacian.

Spacetime translation invariance and conservation of stress tensor

Observe that if we make a small translation in spacetime

xµ 7→ xµ − ε aµ (2.2.13)

then this induces a transformation of the field

φ(x) 7→ φ̂(x) = φ(x) + ε aµ∂µφ(x) +O(ε2) (2.2.14)

i.e. δφ(x) = aµ∂µφ(x).

Note that this induced transformation of φ says nothing about the boundary, unlike
the variation we took to find the equations of motion. However in Lagrangian field
theory this does not matter, because we assume that the Lagrangian density decays
sufficiently quickly as we reach spatial infinity.6

The Lagrangian density transforms as

δL = −∂µφ ∂µ (aν∂νφ)−m2φ aν∂νφ

= −1
2 aν∂ν

(
∂µφ ∂µφ+m2φ2

)
= ∂ν (aνL)

6Otherwise the action would not be well-defined.
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The transformed action is

S ′[φ] =
∫
d4x (L+ ε δL) +O(ε2)

= S[φ] + ε
∫
d4x ∂µ (aµL) +O(ε2)

= S[φ] + ε
∫
∂M

d3y nµ (aµL) +O(ε2)

Since we assume the Lagrangian density vanishes on ∂M, the term linear in ε

vanishes. So the action is invariant, and hence the equations of motion are invariant.
That is, spacetime translation is a symmetry of the theory.

Now it is appropriate to define the stress tensor or energy-momentum tensor of the
theory. We write

Tµν = ∂µφ ∂νφ+ gµνL = ∂µφ ∂νφ−
1
2 gµν

(
∂ρφ ∂ρφ+m2φ2

)
(2.2.15)

Using the equations of motion, it is straightforward to show that the stress tensor is
conserved. Indeed,

∂µT
µν = ∂µ

[
∂µφ ∂νφ− 1

2 gµν
(
∂ρφ ∂ρφ+m2φ2

)]
= (∂νφ)

(
�−m2

)
φ

= 0

Again this was an inevitable consequence of Noether’s theorem - invariance under
spacetime translation implies conservation of the stress tensor. To see why, compare
our particular transformation of the Lagrangian density with the transformation
under a general variation. Imposing the equation of motion, we get

∂µ (aµL) = −∂µ (δφ ∂µφ) (2.2.16)

Setting δφ = aµ∂µφ we recover aν∂µT µν = 0. But aν is an arbitrary constant, so
conservation of the stress tensor follows immediately as expected.

There is an important but subtle point to be made here. In general, the stress tensor
should be defined by coupling the Lagrangian to an arbitrary background metric gµν
and taking a functional derivative of the action:

Tµν = − 2√
−g

δS

δgµν
(2.2.17)

For the action to be invariant under an arbitrary diffeomorphism (smooth map
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between manifolds), the stress tensor must be conserved:

∇µT
µν = 0 (2.2.18)

However, this equation should be understood in the spirit of “gauge invariance”, i.e.
the stress tensor is not a true conserved quantity, but rather a redundancy of our
mathematical description.

The crucial extra ingredient required to construct a true conserved quantity is an
isometry of spacetime. Generically, a vector field K generates an isometry if

∇µKν +∇νKµ = 0 (2.2.19)

and we also call K a Killing field. By contracting a Killing field Kµ with some
parametrisation of a geodesic xµ we can manufacture a Noether charge Q. In our
trivial flat space example, translations in any direction are isometries, so we (loosely)
say that T µν itself is a Nother current. A more precise statement is that Noether
charges are conserved along geodesics of the spacetime. The details of symmetry and
Noether’s theorem associated with the stress tensor are very nicely explored in the
notes [19].

The conserved stress tensor will play an important role in the quantised theory,
particularly in the context of the computations in Chapter 5.

2.2.2 Complex scalar field

To consider another example of symmetry, we can work instead with a complex scalar
field, i.e. a map φ : R1,3 → C. We denote the complex conjugate of φ as φ†. The
Lagrangian density is

L = −gµν∂µφ ∂νφ† −m2φ†φ (2.2.20)

which again yields the Klein-Gordon equation as the equation of motion.

Global U(1) symmetry and conservation of charge

Observe that if we make the transformation (for constant α ∈ R)

φ(x) 7→ eiα φ(x) (2.2.21a)
φ†(x) 7→ e−iα φ†(x) (2.2.21b)

then the Lagrangian density, and thus the action, is invariant. We call this a global
U(1) symmetry, since the field φ(x) transforms the same way at every point x.
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Infinitesimally, we can write

φ(x) 7→ φ(x) + iαφ(x) +O(α2) (2.2.22)

Making contact with the notation from before, we have

δφ(x) = iφ(x) (2.2.23)

and
δL = 0 (2.2.24)

If we define the current
jµ = i

(
φ†∂µφ− φ ∂µφ†

)
(2.2.25)

then we have

∂µj
µ = igµν∂µ

(
φ†∂νφ− φ ∂νφ†

)
= i

(
φ† �φ− φ �φ†

)
= iφ†

(
�−m2

)
φ− iφ

(
�−m2

)
φ†

= 0

when the equations of motion are satisfied. i.e. the current jµ is conserved.

The conservation equation can be written more explicitly as

∂j0

∂t
+∇ · j = 0 (2.2.26)

where jµ = (j0, j).

Integrating over some bounded spatial volume V with boundary surface ∂V = S

gives the integral form of the equation

dQV

dt
+ FV = 0 (2.2.27)

where QV =
∫
V dV j0 is the charge inside the volume V and FV =

∫
S dS (n̂ · j) is

the flux coming out of V . As is conventional, n̂ is the unit normal to S pointing
outwards.

Indeed, using Stokes’s theorem we have

dQV

dt
= d

dt

∫
V
dV j0

=
∫
V
dV

(
∂j0

∂t

)

= −
∫
V
dV (∇ · j)
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= −
∫
S
dS (n̂ · j)

= −FV

Making contact with classical electromagnetism, we call j0 the charge density and
j the current density. Physically the local charge QV inside some bounded region
of space V changes at exactly the instantaneous rate to balance the current flowing
across the boundary ∂V .

Once again, the conservation of the current is a consequence of the global symmetry.

2.2.3 General system

We can now generalise our discussion of classical field theory and work in d space-
time dimensions. Consider n general fields which we write schematically as ΦA(x),
A = 1, 2, . . . , n. Note that the ΦA are not necessarily scalars and can be in any rep-
resentation of the Lorentz group. The most general Lagrangian density of interest
is a function of the fields and their first derivatives. The final ingredient is the set
of possible masses and interaction couplings which appear as the coefficients, which
we write schematically as ga.

The action functional is

S[ΦA; ga] =
∫
ddx L (ΦA(x), ∂µΦA(x); ga) (2.2.28)

Equations of motion

Using our familiar technology we extremise the action functional by deforming the
fields as

ΦA 7→ ΦA + ε δΦA (2.2.29)

The Lagrangian density deforms as

δL = ∂L
∂ΦA

δΦA + ∂L
∂(∂µΦA)∂µ(δΦA)

= δΦA

(
∂L
∂ΦA

− ∂µ
∂L

∂(∂µΦA)

)
+ ∂µ

(
δΦA

∂L
∂(∂µΦA)

)

where summation over A is implied.

Imposing as usual that the field deformations vanish on the spacetime boundary,
the total derivative term vanishes under the integral sign, and hence the variational
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derivative of the action with respect to ΦA is

δS

δΦA

= ∂L
∂ΦA

− ∂µ
∂L

∂(∂µΦA) (2.2.30)

At extremal S, this must vanish for arbitrary deformations of the fields (as long as
the deformations vanish on the spacetime boundary). Hence the Euler-Lagrange
equations of motion are

∂L
∂ΦA

− ∂µ
∂L

∂(∂µΦA) = 0; A = 1, 2, . . . , n (2.2.31)

Transformations of the system

We can again split out transformations into two classes.

A spacetime transformation is a map

xµ 7→ Xµ(x) (2.2.32)

which induces fields transformations

ΦA(x) 7→ Φ̂A(x) = ΦA

(
X−1x

)
(2.2.33)

The Lagrangian density transforms as

L (ΦA(x), ∂µΦA(x); ga) 7→ L
(
ΦA(X−1x), ∂µΦA(X−1x); ga

)
(2.2.34)

If instead we transform the fields directly, we have

ΦA(x) 7→ Φ̂A(x) (2.2.35)

and the Lagrangian density transforms as

L 7→ L′ = L
(
Φ̂A(x), ∂µΦ̂A(x)

)
(2.2.36)

This is called an internal transformation.

If the action is invariant under either type of transformation then we call the trans-
formation a symmetry. A spacetime symmetry will shift the Lagrangian density
by a total spacetime derivative, while an internal symmetry is a symmetry of the
Lagrangian density itself (and not only the action).

Of particular interest are continuous transformations connected to the identity. For
a spacetime transformation we have

xµ 7→ Xµ(x) = xµ − ε δxµ (2.2.37)
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and for an internal transformation we have

ΦA(x) 7→ ΦA(x) + ε δΦA(x) (2.2.38)

For clarity, we emphasise that the parameter δxµ is constant but that generically
δΦA can be a function of spacetime xµ. This is analagous to the earlier (simpler)
case of Lagrangian mechanics, where the parameter δt in (2.1.39) was constant but
δqi in (2.1.40) could be a function of t.

For a spacetime transformation, the infinitesimal change in the Lagrangian density
is then simply given by

δL = δxµ ∂µL (2.2.39)

For an internal transformation, the infinitesimal change in the Lagrangian density is

δL = ∂L
∂ΦA

δΦA+ ∂L
∂(∂µΦA)∂µ(δΦA) = δΦA

(
∂L
∂ΦA

− ∂µ
∂L

∂(∂µΦA)

)
+∂µ

(
δΦA

∂L
∂(∂µΦA)

)
(2.2.40)

Note that in a sense the spacetime transformation is a special case of the in-
ternal transformation when the Lagrangian has no explicit dependence on xµ. It is
straightforward to check the consistency of these two variations by setting δΦA(x) =
δxν ∂νΦA(x).

2.2.4 Noether’s theorem for Lagrangian field theory

As the reader will anticipate, we can lift our derivation of Noether’s theorem to
Lagrangian field theory with appropriate generalisations.

In Lagrangian field theory, a continuous symmetry is a transformation such that
the Lagrangian density is deformed by (at most) a total derivative with respect to
spacetime:

δL = ∂µf
µ (2.2.41)

In such a case, the action S is invariant, and the equations of motion are unchanged.

The suitable generalisation of a conserved charge is a conserved current. Mathemat-
ically, there is some vector jµ such that on-shell, we have

∂µj
µ = 0 (2.2.42)

Precise statement
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Given a Lagrangian density L(ΦA, ∂µΦA) and a transformation ΦA(x) 7→ ΦA +
ε δΦA(x) such that δL = ∂µf

µ, there exists a non-trivial current jµ such that
on-shell, we have ∂µjµ = 0.

Proof

Under an arbitrary transformation, we have

δL = ∂µ

(
δΦA

∂L
∂(∂µΦA)

)
+ δΦA

(
∂µ

∂L
∂(∂µΦA) −

∂L
∂ΦA

)
(2.2.43)

In particular, when the transformation is a symmetry, we have

∂µ

(
δΦA

∂L
∂(∂µΦA) − f

µ

)
= δΦA

(
∂µ

∂L
∂(∂µΦA) −

∂L
∂ΦA

)
(2.2.44)

When the fields are on-shell, the right-hand side vanishes and hence defining

jµ = δΦA
∂L

∂(∂µΦA) − f
µ (2.2.45)

we have constructed a conserved current as desired.

Spacetime symmetry

In Minkowski space, the spacetime symmetry group consists of translations

δxµ = aµ (2.2.46)

and Lorentz transformations
δxµ = Λµ

ν x
ν (2.2.47)

where Λµν is constrained to be antisymmetric.

Together these transformations form the Poincaré group. To see why the Poincaré
transformations are symmetries, it is straightforward to check using (2.2.39) that we
have

δL = ∂µ(δxµL) (2.2.48)

i.e. the Lagrangian density deforms by a total derivative. The associated conserved
quantities are the stress tensor (for translations) and the angular momentum (for
Lorentz transformations).
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Internal symmetry

For internal symmetries, the Lagrangian is invariant and we obtain a conserved
current

jµ = δΦA
∂L

∂(∂µΦA) (2.2.49)

Physically this can correspond to conservation of e.g. electric charge or baryon
number. When the fields live in representations of non-Abelian gauge groups, the
internal symmetries can be more complicated, but we will not discuss that here.

2.2.5 Aside: Differential forms

So far we have worked with Lagrangians and fields explicitly in components. While
very concrete, the equations have a tendency to become littered with indices and
can get quite complicated. An elegant approach to deal with this problem is to work
instead with differential forms. As well as being succinct, using forms instead of
components also allows us to generalise more easily to curved spacetimes. This will
be particularly useful to us in Chapter 3 where we work extensively in bulk AdS
spacetime. Some work is required upfront to build intuition for the formalism of
differential forms and the associated operations, but this investment will more than
pay off in the later chapters.

In what follows we use the conventions of [4]. Another useful resource is [19].

Physicist’s definition

We define a p-form or differential form to be an antisymmetric (0, p) tensor field.
Geometerically, given a smooth spacetime manifold M with dual tangent bundle
TM∗, a (0, p) tensor field is a map

ω : (TM∗)p → R (2.2.50)

For such ω to be a p-form, we further require that with respect to any basis, the
components of ω are antisymmetric.

ωµ1µ2...µp = ω[µ1µ2...µp] (2.2.51)

In our work we will exclusively use the dual coordinate basis, and write the compon-
ents of a p-form as

ωp = 1
p! ωµ1µ2...µp dx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp (2.2.52)



26 Chapter 2. Review of generalised global symmetries

Here the subscript p on the left-hand side reminds us that ωp is a p-form.

New forms from old

The wedge product denoted by ∧ can be defined component-wise for a p-form ωp and
a q-form ηq by

(ω ∧ η)µ1µ2...µp+q = (p+ q)!
p! q! ω[µ1µ2...µpηµp+1µp+2...µp+q ] (2.2.53)

ωp ∧ ηq is thus a (p+ q)-form.

The exterior derivative denoted by d can be defined component-wise for a p-form ωp

by
(dω)µ1µ2...µp+1 = (p+ 1) ∂[µ1ωµ2...µp+1] (2.2.54)

dωp is thus a (p+ 1)-form.

The Hodge star denoted by ? can be defined component-wise for a p-form ωp by

(?ω)µ1,...µn−p = 1
(n− p)! ε

ν1...νp
µ1...µn−p ων1...νp (2.2.55)

where n is the number of spacetime dimensions and

εµ1µ2...µn =
√
|g| sgn ((µ1µ2 . . . µn)) (2.2.56)

is the Levi-Civita tensor density. Here g is the metric determinant and (µ1µ2 . . . µn)
denotes a cycle. The sign of the cycle takes the value 0 if it is not a permutation,
+1 if it is an even permutation and −1 if it is an odd permutation.

?ωp is thus an (n− p)-form.

Finally, we can use the Hodge star to integrate n-forms as follows. Define the volume
form by

ε = ?1 =
√
|g| dnx (2.2.57)

where we identified dx1 ∧ dx2 ∧ · · · ∧ dxn = dnx.

For an n-form Ωn, we have
Ωn = ω(x) ε (2.2.58)

for some function ω(x). In fact, it turns out that ω = (−1)s (?Ωn), where s is the
signature of the metric on the manifold.

Hence we can define the integral of Ωn over the manifoldM by∫
M

Ωn = (−1)s
∫
Rn
dnx

√
|g| (?Ωn) (2.2.59)
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Utility of differential forms

Now we can generalise our earlier work in Lagrangian field theory. Given an n-
dimensional spacetime manifoldM, we can instead make the Lagrangian density L
an n-form. Then the action is simply given by

S =
∫
M
L (2.2.60)

Note that the manifold is not necessarily flat Minkowski spacetime.

Returning to our earlier example, consider a complex scalar field φ(x). The action
is simply

S[φ] = −
∫ (

dφ ∧ ?(dφ)† +m2φ ∧ (?φ)†
)

(2.2.61)

Taking a variation of φ (leaving φ† fixed), we have

δS = −
∫ (

d(δφ) ∧ ?(dφ)† +m2δφ ∧ (?φ)†
)

=
∫
δφ ∧

(
d ? (dφ)† −m2(?φ)†

)
−
∫
∂M

δφ ∧ ?(dφ)†

where we used Stoke’s theorem for differential forms. Neglecting the boundary term
and acting with ?, we extract the equation of motion(

?d ? d−m2?2
)
φ = 0 (2.2.62)

If we assume that the metric is flat with signature s = −1, it is straightforward to
show that ?d ? dφ = −�φ and ?2φ = −φ, so we recover the usual Klein-Gordon
equation.

Finally, we turn to the conserved Noether current jµ satisfying ∂µjµ = 0. If we
interpret j instead as a 1-form, we can write the elegant conservation equation

d ? j = 0 (2.2.63)

This generalises nicely to higher-form symmetries as we will discuss later.

2.3 Symmetries in quantum field theory

2.3.1 Quantisation and the path integral

The most accessible route to defining a quantum field theory is to quantise a known
Lagrangian field theory. In the quantum theory, our classical fields Φ(x) are promoted
to quantum fields or operator-valued fields, i.e. at each point x in spacetime, Φ(x) is
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an operator. Note that the quantum field theory may consist of multiple fundamental
fields Φ1(x),Φ2(x), · · · , but for brevity in abstract discussion we will schematically
denote all the field content as Φ(x). In particular, the fields may not be in the scalar
(trivial) representation of the Lorentz group.

Given some Lagrangian density L and an action S[Φ] =
∫
ddx L (Φ, ∂µΦ; ga), we

define the path integral Z0[ga] by

Z0 =
∫

[DΦ] exp (iS[Φ; ga]) (2.3.1)

where [DΦ] is the path integral measure.

Roughly speaking, rather than only considering the on-shell field configurations, we
integrate over all configurations for the fields, and weight them by (the exponential
of) their corresponding actions. By construction, the classical field configurations
minimise the action, and so (after Wick-rotating to Euclidean space), their con-
tributions to the path integral dominate because they are the least exponentially
suppressed.

Given a path integral, we can define correlation functions or n-point functions of
local operators. For operators OA(x), we define

〈O1(x1)O2(x2) · · · On(xn)〉 = 1
Z0

∫
[DΦ] O1(x1)O2(x2) · · · On(xn) exp (iS[Φ; ga])

(2.3.2)
These are the fundamental objects of study in quantum field theory.

Note that the OA are not necessarily fundamental fields appearing in the Lagrangian.
They may be composite operators e.g. O(x) = Φ1(x)Φ2(x) or something entirely
more exotic.

In practice, we usually introduce a sourcing field J for each fundamental field in the
action and consider a generating functional Z[J ] defined by

Z[J ] =
∫

[DΦ] exp
(
iS[Φ; ga] + i

∫
ddx J(x) · Φ(x)

)
(2.3.3)

where J · Φ schematically denotes possible contractions.

The generating functional provides a systematic mechanism to compute perturbative
quantum corrections arising from interactions between fields, order by order in the
coupling strengths ga. These computations are codified by Feynamn rules which are
used to draw and calculate individual Feynman diagrams. Usually we refer to the
generating functional as simply “the path integral”, noting that Z[0] = Z0.
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2.3.2 Noether’s theorem for quantum field theory

Quantum mechanically, the relevant object to discuss is the generating functional,
rather than the action. Observe that in the path integral, we integrate over all field
configurations, and so (from the point of view of the path integral) the fields are
essentially dummy variables. For arbitrary transformations of the fields Φ 7→ Φ′ we
can write

Z[J ] =
∫

[DΦ′] exp
(
iS[Φ′; ga] + i

∫
ddx J(x) · Φ′(x)

)
(2.3.4)

If S[Φ′] = S[Φ], we say that the transformation is a symmetry. In classical field
theory, Noether’s theorem guaranteed the existence of a conserved current. However,
in quantum field theory we are faced with the additional complication of the path
integral measure. If the path integral measure is invariant under the transformation:
[DΦ′] = [DΦ], then we have a quantum mechanical symmetry. On the other hand, if
the path integral measure is not invariant, then the quantum theory does not inherit
the classical symmetry and we call it anomalous.

Following [18], we can use a nice trick to generalise Noether’s theorem to quantum
field theory. This is also well-explained in [20]. Given an infinitesimal transformation
Φ 7→ Φ′ = Φ + ε δΦ, we can consider a more general class of transformations
by promoting the infinitesimal parameter ε to a spacetime-dependent field ε(x).
Sometimes we will drop O(ε2) terms without explicitly stating so, but from the
context it will be clear.

Under the general continuous transformation

Φ 7→ Φ′ = Φ + ε(x) δΦ (2.3.5)

the Lagrangian transforms as

L 7→ L+ ε(x) δΦ ∂L
∂Φ + (∂µε(x) δΦ) ∂L

∂(∂µΦ) (2.3.6)

In particular, when the transformation with ε constant is a global symmetry of the
action, the infinitesimal change in the Lagrangian must be a total derivative, i.e.

L 7→ L+ ε ∂µf
µ (2.3.7)

Equating the order ε terms when epsilon is constant, we find that

δΦ ∂L
∂Φ + ∂µ (δΦ) ∂L

∂(∂µΦ) = ∂µf
µ (2.3.8)

But this equation is independent of ε(x), and so we can substitute back into the
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general transformation of the Lagrangian to obtain

L 7→ L+ ε(x) ∂µfµ + ∂µ (ε(x)) δΦ ∂L
∂(∂µΦ) (2.3.9)

The action must then transform as follows

S[Φ + ε δΦ]− S[Φ] =
∫
∂M

dd−1y nµ

(
ε(y) δΦ(y) ∂(∂µL)

∂Φ

)
−
∫
M
ddx ε(x) ∂µjµ(x)

(2.3.10)
where jµ is the usual Noether current.

Discarding the boundary integral over y, we see immediately that if S[Φ + ε] = S[Φ]
and ε is constant, then jµ is conserved as expected. This is nothing more than the
classical Noether theorem.

We can push this further in the quantum theory. For now let’s assume that we
have a global symmetry transformation under which the path integral measure is
invariant. Using the above technology, we can write the path integral as

Z[K] =
∫

[DΦ] exp
(
iS[Φ]− i

∫
ddx ε(x) ∂µjµ(x)

)
exp

[
i
∫
ddy K(y) · (Φ(y) + ε(y) δΦ(y))

]
=
∫

[DΦ] eiS[Φ]+i
∫
ddz K(z)·Φ(z)

(
1− i

∫
ddx ε(x) ∂µjµ(x)

)(
1 + i

∫
ddy K(y) · ε(y) δΦ(y)

)
= Z[K] + i

∫
[DΦ] eiS[Φ]+i

∫
ddz K(z)·Φ(z)

∫
ddx ε(x) (K(x) · δΦ(x)− ∂µjµ(x))

where we wrote K for the source field instead of J , to avoid confusion with the
symmetry current jµ.

Now we see the utility of promoting ε to a spacetime-dependent field. To satisfy the
above equation, we must have for all ε(x) that∫

[DΦ] eiS[Φ]+i
∫
ddz K(z)·Φ(z)

∫
ddx ε(x) (K(x) · δΦ(x)− ∂µjµ(x)) = 0 (2.3.11)

In particular, we can choose ε(x) = K · δΦ− ∂µjµ so that the integrand inside the
functional integral is strictly positive (after Wick-rotating). Hence we must have
that∫

[DΦ] exp
(
iS[Φ] + i

∫
ddz K(z) · Φ(z)

)
(K(x) δΦ(x)− ∂µjµ(x)) = 0 (2.3.12)

In a sense, this is the generalisation of Noether’s theorem to the quantum theory.

Observe that we are still free to choose the source K(x) and so we have considerable
scope to derive further identities. For example, we can evaluate the expression with
K identically vanishing to immediately get

∂µ 〈jµ(x)〉 = 0 (2.3.13)
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In other words, the one-point function of the Noether current operator is conserved.

Instead, we could first take a functional derivative with respect to K(y) to obtain∫
[DΦ] eiS[Φ]+i

∫
ddz K(z)Φ(z)

[
iΦ(y)(K(x) δΦ(x)− ∂µjµ(x)) + δΦ(x) δ(4)(x− y)

]
= 0

(2.3.14)

Setting K = 0 in this expression then yields

∂(x)
µ 〈Φ(y)jµ(x)〉 = 1

i
δ(4)(x− y) 〈δΦ(x)〉 (2.3.15)

This is known as a Ward identity for the theory. The term involving a delta-function
on the right-hand side is called a contact term.

By successively taking n functional derivatives and evaluating at K = 0, we can
obtain a more general identity:

i∂(x)
µ 〈Φ(y1)Φ(y2) · · ·Φ(yn)jµ(x)〉 =

n∑
i=1

δ(4)(x− yi) 〈δΦ(x)
n∏
j=1
j 6=i

Φ(yj)〉 (2.3.16)

In particular, when δΦ = iqΦ, i.e. a usual U(1) symmetry, we have

∂(x)
µ 〈Φ(y)jµ(x)〉 = q δ(4)(x− y) 〈Φ(x)〉 (2.3.17)

Roughly speaking, correlation functions containing the Noether current are con-
served up to contact terms. In other words, the charged operators under the global
symmetry current are the local operators Φ(x). The charged excitations of these
operators are physically interpreted as point particles, e.g. electrons. In more mod-
ern language, we refer to “ordinary” global symmetries as 0-form symmetries. The
conserved vector current j can be thought of as a 1-form.

In quantum theories, it is a common abuse of notation to write operator-valued
equations involving j and Φ without specifying that they only hold inside the path
integral.

The quantum analogue of Noetherian local charge conservation is the existence of
quantum mechanical operators whose eigenvalues are “good” quantum numbers, in
the sense that the operators commute with the Hamiltonian. For example, the
conserved U(1) current of a complex scalar field theory guarantees the existence of
a number operator given by an integral over an arbitrary timeslice by

N =
∫
?j =

∫
d3x j0 = i

∫
d3x

(
φ φ̇† − φ̇ φ†

)
(2.3.18)

Roughly speaking, the number operator acts on a state to count the net number of
particles (number of particles minus number of antiparticles). In the quantum theory,
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the presence of the U(1) global symmetry is equivalent to the number operator being
indepedent of the chosen timeslice; i.e. the net number of particles in a given state
of the Fock space is conserved as time evolves. In fact, we did not have to define N
on a timeslice at all; an arbitrary codimension-1 manifold will do.7 This notion will
generalise later when we consider higher-form symmetries in quantum field theory.

2.3.3 Anomalies

General discussion

Now we consider an important new possibility in the quantum theory compared to
the classical theory, namely anomalies. Anomalies are not the main focus of this
thesis, but to provide a complete overview of symmetries in quantum field theory it
is important to explain briefly what they are and to provide a simple example.

As alluded to already, a quantum anomaly arises when the path integral measure [DΦ]
transforms non-trivially under a (classical) symmetry transformation. Confusingly,
such transformations are sometimes referred to as “anomalous symmetries”, but this
is misleading, since in the quantum theory such transformations are not symmetries
at all. It is perhaps more accurate to describe these transformations as classical
symmetries which are not present in the full quantum theory.

We can generalise our treatment of Ward identities from above. Suppose that we
have a classical symmetry transformation of the action so that

S[Φ + α δΦ]− S[Φ] = −
∫
α ∧ (d ? j) (2.3.19)

where j is the Noether current, and we wrote α(x) instead of ε to avoid confusion
with the volume form.

Now if the path integral measure D[Φ] picks up a phase under the transformation,
we have

[DΦ] 7→ [DΦ] exp
(
i
∫
α ∧ ?A

)
= [DΦ]

(
1 + i

∫
α ∧ ?A

)
(2.3.20)

for some function A(x).

The generating functional can then be written as

Z[K] =
∫

[DΦ]
(

1 + i
∫
α ∧ ?A

)
eiS[Φ]

(
1− i

∫
α ∧ (d ? j)

)
ei
∫
K∧?Φ

(
1 + i

∫
α K ∧ ?δΦ

)
=
∫

[DΦ] eiS[Φ] ei
∫
K∧?Φ

[
1 + i

∫
α ∧ (?A− d ? j +K ∧ ?δΦ)

]
7In n ambient spacetime dimensions, a codimension of k simply means a dimension of n− k.
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= Z[K] + i
∫

[DΦ]
∫
α ∧ (?A− d ? j +K ∧ ?δΦ)

Since α(x) is arbitrary, we obtain〈
exp

(
i
∫
K ∧ ?Φ

)
(A+ ?d ? j +K δΦ)

〉
= 0 (2.3.21)

In particular, with the source K switched off, we have

〈A+ ?d ? j〉 = 0 (2.3.22)

which in components in flat space is simply

〈∂µjµ(x)〉 = 〈A(x)〉 (2.3.23)

Roughly speaking, the function A(x) quantifies the extent to which the current is
no longer conserved.

Example: ABJ anomaly of free Dirac fermion

Let’s consider the most well-known example of a classical 0-form global symmetry
which is anomalous in the full quantum theory. This is the famous ABJ anomaly
first studied in [21, 22, 23]. The setting is the theory of a free massless Dirac fermion.

First we consider the classical action and demonstrate the existence of a 0-form
global symmetry. Suppose we have a massless free Dirac fermion ψ with Lagrangian
density given by

L = iγµψ̄∂µψ (2.3.24)

We can make the U(1) transformation

ψ → ψ′ = eiαψ; α ∈ R (2.3.25)

so that ψ̄ → e−iαψ̄ and L → L. The action is invariant so this transformation
is a symmetry transformation. By Noether’s theorem, there must therefore be an
associated conserved 1-form current j.

Taking a variation of the action and neglecting boundary terms, we find that

δS = i
∫
d4x (δψ̄ /∂ψ − ψ̄

←−
/∂ δψ) (2.3.26)

where the left arrow indicates that the derivative is acting to the left.

Hence imposing δS = 0 gives the classical equation of motion

i /∂ψ = 0 (2.3.27)
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If instead we follow the usual trick by “gauging” the U(1) parameter α→ α(x) and
perform the infinitesimal transformation δψ = iα(x)ψ, we get

δS = −
∫
d4x (∂µα) (ψ̄γµψ) =

∫
d4x α ∂µ(ψ̄γµψ) (2.3.28)

When α is constant, this transformation is a symmetry, and so we must have δS = 0
for all α. This allows us to identify the conserved vector current

jµV = ψ̄γµψ (2.3.29)

This is a classical statement. Quantum mechanically, we can derive a Ward identity
from the path integral to show that the charged objects under the vector symmetry
are the local operators ψ and ψ̄. The charged excitations under the symmetry (that
which the charge operator counts) are electrons and positrons.

Interestingly, there is a further classical symmetry associated with the Dirac field:
the axial symmetry. Consider coupling the Dirac fermion to a background gauge
field A1, by promoting the partial derivative ∂ to a covariant derivative D given by

D = ∂ − igA (2.3.30)

for some coupling strength g.

Defining the gamma matrix γ5 by

γ5 = iγ0γ1γ2γ3 (2.3.31)

we can deform the Dirac field by

ψ 7→ eiαγ5ψ; α ∈ R (2.3.32)

This induces a transformation ψ̄ 7→ ψ̄eiαγ5 , so under this transformation, the Lag-
rangian density is invariant. Hence by Noether’s theorem there is an associated
conserved 1-form current. In this case, the conserved current is the axial current
defined by

jµA = ψ̄γµγ5ψ (2.3.33)

However, it turns out that in the full quantum theory, there is an anomaly and so
the axial current is no longer conserved in the usual sense of the Ward identities.
Comparing to our earlier notation, the anomaly function A(x) is given by

A(x) = g2

4π2 ? (F ∧ F ) = − g2

16π2 ε
µνρσFµνFρσ (2.3.34)

where F = dA.
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Hence quantum mechanically we have

d ? 〈jA〉 = g2

4π2 ? 〈F ∧ F 〉 (2.3.35)

This anomaly was originally discovered perturbatively at one-loop using so-called
“triangle diagrams”, see [21, 22, 23]. Concretely, there does not exist a regularisation
scheme that preserves axial symmetry, and so after renormalising at one-loop, the
quantum corrections forbid the conservation of the axial current.

Later in [24] the anomaly was computed by calculating the Jacobian factor in the path
integral with functional determinants. The calculations are lengthy and involved;
more readable treatments are given in the usual textbooks [3, 18] and notes [20].

The ABJ anomaly quantitatively affects the decay width of neutral pions to pair of
photons, and so can be observed experimentally.

2.3.4 Spontaneous symmetry breaking

In this part we revisit the complex scalar field to cover the final aspect of conventional
(0-form) global symmetries, namely spontaneous symmetry breaking.

We introduce a quartic coupling to the complex scalar field theory. The Lagrangian
density is now

L = −(∂µφ)†(∂µφ)− V (φ) (2.3.36)

where
V (φ) = m2 |φ|2 + λ

4 |φ|
4 (2.3.37)

and λ > 0.

As before, we have a U(1) global symmetry transformation g(α) parametrised by α:

g(α) : φ(x) 7→ eiα φ(x), α ∈ R (2.3.38)

If m2 > 0 then the vacuum expectation value of φ is 〈φ〉 = 0 because this is the
unique minimum of the classical potential. Thus L describes a massive complex
scalar of mass m with a quartic self-interaction governed by the coupling λ.

However if m2 < 0, we write µ2 = −m2 > 0 and then

V (φ) = λ

4

(
|φ|2 − v2

2

)2

(2.3.39)

where v = 2µ√
λ
and we added a constant µ4/λ to the potential which doesn’t affect

the physics. This is called the “Wine Bottle” potential because its plot looks like
the bottom of a wine bottle - see Figure 2.1.
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Figure 2.1: Plot of the “Wine Bottle” potential for λ = 4 and v2 = 2

Clearly V (φ) ≥ 0 for all configurations φ(x). Consider the manifold of minima of
the potential given by

V ≡ {φ(x) | V (φ) = 0} =
{
v√
2
eiθ

∣∣∣∣∣ θ ∈ R
}
∼= S1 (2.3.40)

V is diffeomorphic to S1 so we can parametrise the vacuum states as

φ0(θ) ≡ v√
2
eiθ (2.3.41)

The U(1) transformation g(α) then acts as

g(α) : V → V
φ0(θ) 7→ φ0(θ + α)

So although g maps V into itself, the map g has no fixed points φ0(η). We say that
the U(1) global symmetry is spontaneously broken or non-linearly realised.

We can expand φ about an arbitrary state φ0(η) ∈ V and write 8

φ(x) = v + ρ(x)√
2

exp
(
iη + iθ(x)

v

)
(2.3.42)

8The factor of v in the exponent is chosen so that θ(x) will be canonically normalised in the
Lagrangian.
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where ρ(x) and θ(x) are real degrees of freedom. We say that the field φ has obtained
a non-zero vacuum expectation value given by 〈φ〉 = φ0(η).

Then we can write the action in terms of the new degrees of freedom via

|φ(x)|2 − v2

2 = 1
2 ρ2 + vρ (2.3.43a)

(∂µφ)†(∂µφ) = 1
2 |dρ|

2 + 1
2

(
1 + ρ

v

)2
|dθ|2 (2.3.43b)

So the Lagrangian density can be written as

L = −1
2 |dρ|

2 − 1
2

(
1 + ρ

v

)2
|dθ|2 − 1

2 m2
ρ ρ

2
(

1 + ρ

2v

)2
(2.3.44)

where the mass for the gapped mode ρ(x) is given by

m2
ρ = 1

2 λv2 (2.3.45)

As expected, there is no dependence on the choice of vacuum state parametrised by
η. This is a consequence of the existence of a global symmetry: we get the same
result independent of which vacuum we expand around. However, the fact that we
had to make an arbitrary choice of some vacuum is crucial!

Hence the Lagrangian describes a theory of a massive real scalar ρ(x) with mass mρ

and a massless real scalar θ(x). The gapless mode θ(x) is called a Goldstone boson
or simply Goldstone mode.9 ρ has cubic and quartic self-interactions, and there are
also θθρρ and θθρ interactions.

Intuitively, it makes sense that “moving along the rim of the wine bottle” between
the degenerate vacua costs little energy, and thus corresponds to the gapless mode
θ(x), whereas moving in a radial direction “uphill” to a higher potential costs much
more energy, and thus corresponds to the gapped mode ρ(x).

Recall we have a conserved symmetry current j, exactly as when the symmetry is
not spontaneously broken. This current can be written in terms of the new degrees
of freedom in this case as

j = −
(

1 + ρ

v

)2
dθ (2.3.46)

There is a massive field ρ(x) and a massless field θ(x), so if we consider low energies
E � mρ, we can ignore the massive excitations. The low energy effective action is
then simply

Seff = −
∫ (1

2 (dθ)2
)

(2.3.47)

9In general when a continuous global symmetry group G is spontaneously broken to a continuous
global symmetry group H, there arise dim(G)− dim(H) Goldstone bosons. In this case G = U(1)
and H = {1}, the trivial group, so there is just one Goldstone boson.
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so the theory describes a free gapless scalar field θ.

However, consider the symmetry transformation inherited by θ. We now have

θ 7→ θ + αv (2.3.48)

i.e. δθ = v. We usually call this a shift symmetry, and this is the non-linear
realisation of the U(1) global symmetry of the complex scalar field. The associated
conserved symmetry current is

j = −dθ (2.3.49)

In fact, we can choose to characterise spontaneous symmetry breaking by its effect
on the Noether current. When spontaneous symmetry breaking occurs, the current
j becomes exact, i.e. we have j = dβ for some 0-form β. Interestingly, this auto-
matically guarantees the existence of a second conserved current. Indeed, defining
k(x) = ?j(x), we have

d ? k = d
(
?2j

)
= −dj = −d2β = 0 (2.3.50)

Later in Section 2.4.3 we will make the connection between co-closed forms10 and
conserved quantities more explicit. They play a key role in the construction of
topological operators.

In quantum field theories, the distinction between spontaneously broken symmetries
and anomalies is very subtle, as explored in [25].

2.4 Higher-form symmetries

2.4.1 Free Maxwell field

The free Maxwell theory, which classically is nothing more than relativistic electro-
dynamics in vacuum, provides an excellent concrete introduction to so-called 1-form
symmetries. We will begin with the familiar textbook formalism, before introducing
more sophisticated and recently developed concepts.

Consider a gauge field A1 with field strength F2 = dA1. As a shorthand we write
F 2 ≡ F ∧ ?F . For now we will work in four-dimensional Minkowski space. The
action is given by

S[A] = −
∫
d4x

(
1

4g2FµνF
µν

)
= −

∫ (
1

2g2F
2
)

(2.4.1)

10Co-closed forms are forms whose Hodge duals are closed.
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where g2 is a coupling constant.

Equations of motion

Consider a small deformation to the gauge field that vanishes on the spacetime
boundary:

A 7→ A+ ε δA (2.4.2)

The induced transformation on the Lagrangian density is

L 7→ L − ε d(δA) ∧ ?F (2.4.3)

Hence the action transforms as

δS = − 1
g2

∫
d(δA) ∧ ?F = − 1

g2

∫
∂M

(δA ∧ ?F )− 1
g2

∫
M
δA ∧ (d ? F ) (2.4.4)

Since δA vanishes on ∂M, we can read off the equation of motion

d ? F = 0 (2.4.5)

which in components is the familiar free Maxwell equation

∂µF
µν = 0 (2.4.6)

Electric 1-form symmetry

Observe that if we consider the specific transformation given by

δA = Λ (2.4.7)

with Λ a closed 1-form, i.e. dΛ = 0, then

δS = 0 (2.4.8)

So shifting the gauge field by a closed 1-form is a symmetry of the action. Every
symmetry we considered so far was generated simply by a function, i.e. a 0-form.
This new type of symmetry is called a 1-form symmetry because it is generated
by a 1-form. This is a particular case of a higher-form symmetry or generalised
global symmetry. In free Maxwell theory, this is usually called the electric 1-form
symmetry.
Straightforwardly from the equations of motion, we obtain a conserved 2-form current
Je defined by

Jµνe = 1
g2F

µν (2.4.9)



40 Chapter 2. Review of generalised global symmetries

satisfying d ? Je = 0. We emphasise that this is a classical statement. The quantum
analogue follows shortly.

Ward identity

To compare with the 0-form example, we define the Wilson loop for a closed curve
C by

W [C] = exp
(
i
∫
C
dxµAµ

)
(2.4.10)

Neglecting the boundary term (e.g. by insisting that Λ vanishes there), we can relax
our condition that Λ is closed to obtain

δS = −
∫

Λ ∧ (d ? Je) (2.4.11)

The Wilson loop deforms as

δW [C] =
(
i
∫
C

Λ
)
W [C] (2.4.12)

The path integral for the quantum theory is

Z =
∫

[DA] exp (iS[A]) (2.4.13)

The path integral measure [dA] is invariant under the 1-form transformation, and
so similarly to the 0-form symmetry case, we obtain

Z =
∫

[DA] exp
(
iS[A]− iε

∫
Λ ∧ (d ? Je)

)
=
∫

[DA] exp(iS[A])
(

1− iε
∫

Λ ∧ (d ? Je) +O(ε2)
)

= Z − iε
〈∫

Λ ∧ (d ? Je)
〉

+O(ε2)

so we have 〈∫
Λ ∧ (d ? Je)

〉
= 0 (2.4.14)

But this must hold for all Λ(x), and hence we have

d ? 〈Je〉 = 0 (2.4.15)

Now we consider insertions of the Wilson loop in the path integral. Define a gener-
ating functional

Z1 =
∫

[DA] exp (iS[A])W [C] (2.4.16)
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The 1-form transformation deforms both the action and the Wilson loop, so we have

Z =
∫

[DA] exp
(
iS[A]− iε

∫
Λ ∧ (d ? Je)

)
W [C]

(
1 + iε

∫
C

Λ
)

=
∫

[DA] exp(iS[A])W [C]
[
1 + iε

(∫
C

Λ−
∫

Λ ∧ (d ? Je)
)

+O(ε2)
]

= Z1 + iε
〈(∫

C
Λ−

∫
Λ ∧ (d ? Je)

)
W [C]

〉
+O(ε2)

Hence for all Λ the order ε term vanishes and we have

d ? 〈Je W [C]〉 = δC 〈W [C]〉 (2.4.17)

where we introduced the 3-form δC defined by∫
M
ω1 ∧ δC =

∫
C
ω1 (2.4.18)

for any 1-form ω1. The notation is deliberately suggestive: δC is a differential form
generalisation of the Dirac delta function. More rigorous treatment of the underlying
theory of integration of forms on manifolds is given in [26].

(2.4.17) is the Ward identity for the U(1) 1-form global symmetry. In other words, the
Wilson loops are the charged operators under the 1-form symmetry. The associated
charged excitations are electric field lines. This construction is entirely analagous to
the conventional Ward identity given by (2.3.17).

Note that Wilson loops W [C] are line operators depending on a curve C, as opposed
to local operators Φ(x) depending only on a spacetime point x. Our constructions
hint at the possibility that the gauge field A1, although a local operator itself, is not
necessarily the correct choice of fundamental field from which to build the theory.
Therefore it would be interesting to construct the theory regarding the Wilson loops
as fundamental. We could image sourcing the Wilson loops in the path integral by a
line operator source and taking a formal derivative with respect to this source. This
would allow us to derive Ward identities with multiple Wilson loops and contact
terms. In fact, this is the approach adopted in [27], taking inspiration from earlier
work in [28].

Gauge invariance

There is a subtle distinction to be made with a local gauge transformation. A local
gauge transformation is defined by

A→ A+ dλ (2.4.19)
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and leaves the Lagrangian density invariant. However this is not regarded as a global
symmetry of the system, but rather a redundancy in our mathematical description of
the physics. This redundancy is referred to as local gauge invariance or, confusingly,
gauge symmetry.

We should emphasise that the symmetries of interest in this thesis are global sym-
metries, rather than gauge “symmetries”. Gauge invariance is an important feature
of the equations which we can exploit to make computations simpler, but it does not
have a physical meaning, as opposed to global symmetries, whose physical reality
manifests in conserved currents. Again, this hints that gauge invariance could be an
indication that the gauge fields are not the correct degrees of freedom from which
to build the theory.

It is often said that the photon is massless as an inevitable result of gauge invariance.
However, a more modern perspective should view the massless photon as a Goldstone
mode of a spontaneously broken 1-form electric symmetry! This idea was originally
proposed in [6], with further discussion in [7, 8]. Note that this is distinct from the
superconducting phase in which the photon acquires an effective mass and the 1-form
electric symmetry is unbroken, see e.g. [29].

2.4.2 Electromagnetic duality

Now we discuss a useful method for deepening our understanding of theories with
p-form gauge fields. Given a purely kinetic action that depends on a p-form field
Ap only through its field strength Fp+1 = dAp, we can dualise by adding a term
to the Lagrangian and integrating out Fp+1. If we work in n Lorentzian spacetime
dimensions, the electromagnetic dual field is an (n− p− 2)-form Ãn−p−2.

This algorithm is described in e.g. [5] and we reproduce it below for completeness.

The initial classical action is

S[Ap] = −
∫ (1

2F
2
p+1

)
(2.4.20)

The associated path integral in the quantum field theory is

Z =
∫

[DA] exp(iS[Ap]) (2.4.21)

We can make a change of variables in the path integral so that we integrate instead
over field strengths Fp+1 = dAp. However, we must insist on the constraint that Fp+1

is closed, i.e. dFp+1 = 0. Hence we can introduce a Lagrange multiplier term into
the action, and then integrate out Fp+1 from the path integral. This gaussian field
integral will contribute an overall multiplicative constant to the path integral.
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Let Λn−p−2 be such a Lagrange multiplier. The action for F and Λ is given by

S[Fp+1,Λn−p−2] =
∫ (
−1

2 F 2
p+1 + Λn−p−2 ∧ dFp+1

)
(2.4.22)

The equation of motion for Λ is algebraic as there is no kinetic term for Λ.

We can use Stokes’s theorem for differential forms and neglect the boundary integral
to obtain

S[Fp+1,Λn−p−2] =
∫ (
−1

2 F 2
p+1 − (−1)p(n−p) Fp+1 ∧ dΛn−p−2

)
(2.4.23)

Deriving the equation of motion for F in the usual way, we find that

? Fp+1 + (−1)p(n−p) dΛn−p−2 = 0 (2.4.24)

We can substitute this into the action to obtain an effective action for Λ. We usually
rename Λ to Ã to remind us of its origin. This yields simply

Seff[Ãn−p−2] = −
∫ (1

2dÃ
2
n−p−2

)
(2.4.25)

Observe that the initial action had a symmetry generated by the transformation

δAp = Ξp (2.4.26)

for a closed p-form Ξp.

This is an example of a p-form symmetry; the general definition will be given later.

There is a corresponding conserved (p+ 1)-form current

Jp+1 = Fp+1 (2.4.27)

satisfying d ? J = 0.

After taking the electromagnetic dual, the new action has a symmetry generated by
the transformation

δÃn−p−2 = Ξ̃n−p−2 (2.4.28)

for a closed (n− p− 2)-form Ξ̃n−p−2.

This is a (n− p− 2)-form symmetry. The corresponding conserved current is

J̃n−p−1 = dÃn−p−2 = ± ? Fp+1 (2.4.29)

In the above, we presented the case of a single free p-form field. However, we
emphasise that it is also possible to extend electromagnetic duality to interacting
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theories as long as the Lagrangian density depends on the field of interest only
through its field strength. We will exploit this fact extensively in Chapter 3.

Magnetic 1-form symmetry

Now we consider the canonical example of electromagnetic duality from which it
historically obtains its name. We work in n = 4 spacetime dimensions with p = 1,
i.e. a free Maxwell field A1. We already know that there exists an electric 1-form
symmetry whose charged operators are Wilson loops and whose charged quantum
excitations are electric field lines.

By considering the electromagnetic dual of the Maxwell field, we obtain the magnetic
gauge field Ã1, whose field strength F̃2 = dÃ1 is given by

F̃2 = ?F2 (2.4.30)

The free Maxwell theory can thus be presented in terms of the magnetic gauge field.
Immediately we obtain the magnetic 1-form symmetry whose associated conserved
current is

Jm = ?F2 (2.4.31)

The charged operators under the magnetic 1-form symmetry are ’t Hooft lines W̃ [C]
which can be constructed from the magnetic gauge field as

W̃ [C] = exp
(
i
∫
C
Ã1

)
(2.4.32)

The associated charged quantum excitations under the symmetry are magnetic field
lines.

Particle-vortex duality

For a more exotic example, we can work in n = 3 spacetime dimensions and again
consider p = 1, i.e. a free ordinary gauge field A1. Taking the electromagnetic dual,
we obtain a 0-form θ. The inherited 0-form symmetry is precisely the shift symmetry
we studied in our earlier discussion of spontaneous symmetry breaking. This is
an example of particle-vortex duality, and raises the following interesting question:
which degree of freedom provides the “correct” or “fundamental” presentation of
the theory? The answer is simply that they are equivalent viewpoints of the same
quantum field theory; with these symmetries, neither is more “fundamental” than
the other.
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2.4.3 Abstract discussion

Amazingly, higher-form symmetries were only very recently systematically studied in
[6]. We give a brief overview of the salient points presented therein using our present
notation. In general, a p-form global symmetry is associated with a (p + 1)-form
current J which obeys a conservation equation

d ? J = 0 (2.4.33)

The conventional case is p = 0; in this case we have a 1-form current that counts a
density of particles. In this thesis we will focus on the case p = 1; in this case we
have a conserved 2-form current satisfying ∂µJµν = 0. For 1-form global symmetries,
the charged excitations are e.g. strings and field lines. For p > 1, the charged
excitations are e.g. membranes and defects.

Topological operators

Given a p-form symmetry with a conserved (p+ 1)-form current J , we can define a
conserved charge on a codimension-(p+ 1) manifoldM by

Q(M) =
∫
M
?J (2.4.34)

For a 0-form symmetry on a timesliceM this is precisely the usually defined Noeth-
erian charge.

Taking the exponential of this charge, we obtain a topological operator

Ug(M) = exp
(
g
∫
M
?J
)

(2.4.35)

for g an element of the symmetry group.

For the free Maxwell theory we have extensively discussed, there are topological
operators UE associated with the electric 1-form symmetry and UM associated with
the magnetic 1-form symmetry. These are sometimes referred to as Gukov-Witten
operators. See the original paper [6] for a more detailed discussion.

Interestingly, such topological operators can also be constructed for discrete higher-
form symmetries, for which there is no conserved current J .
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2.4.4 Higher-form symmetries in non-Abelian gauge
theory

In Chapter 3 we will study some aspects of the realisation of higher-form symmetries
in quantum field theories with holographic duals. We will focus on the study of
gauge theory coupled to probe matter in the fundamental representation. As we
will review below, in the case where the gauge group is SU(N), this theory has no
1-form symmetries, though it does have a 0-form symmetry associated with baryon
number; we will clarify some aspects of how the holographic representation of this
baryon number intertwines with the (explicitly broken) putative center symmetry
of the pure gauge theory. In the case where the gauge group is U(N) however,
the theory has an unbroken 1-form symmetry associated with the conservation of
magnetic flux of the “U(1) factor” in the gauge group. We will study the realisation
of this symmetry, identifying the charged line operators and studying the correlation
function of its currents. As we will elaborate on below, we note that this is perhaps
the simplest holographic model in which such a continuous 1-form symmetry can be
spontaneously broken, motivating our study.

We now review how higher-form symmetries are realised in various types of non-
Abelian gauge theory with and without matter couplings.

SU(N) gauge theory: Let us begin our study by reviewing the higher-form sym-
metry structure of SU(N) gauge theory with only adjoint matter. If we have access
to a Lagrangian description of the theory, the action is

S =
∫
d4x

(
− 1
g2
YM

tr |F |2 + · · ·
)

(2.4.36)

where F is the non-Abelian field strength, and the · · · refers to possible supersym-
metrisations or other terms in the action. This action depends only on the Lie
algebra of the group su(N). As it turns out, though the Lie algebra specifies the
action, it does not actually fully define the theory itself. This is because the full
theory contains line operators, and the spectrum of line operators depends on the
global form of the gauge group [30]. Let us first consider the case where the global
form of the gauge group is SU(N); we then have the usual Wilson lines in the
fundamental representation of the gauge group in the theory:

W (C) ≡ Tr P exp
(∮

C
A
)

(2.4.37)

In a modern understanding, these Wilson lines are charged under 1-form symmetries.
To be more precise, there is a ZN valued surface operator Uq(M2) that is defined on
closed 2-manifolds and is topological in that it is invariant under small modifications
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of the 2-manifoldM2. This surface operator has a non-trivial braiding algebra with
the Wilson line, i.e. we have inside the path integral,

U(M2) W (C) = exp
(2πiq
N

)
W (C) q ∈ {0, . . . , N − 1} (2.4.38)

ifM2 wraps the curve C. This 1-form symmetry is a refinement of the usual “center”
symmetry of non-Abelian gauge theory, under which adjoint matter fields Φa

b are
invariant:

Φa
b → exp

(2πiq
N

)
δac Φc

d exp
(
−2πiq

N

)
δdb = Φa

b (2.4.39)

(More explicitly, the insertion of a surface operator U(M2) induces a gauge trans-
formation that is not single-valued as one winds around M2; instead this gauge
transformation returns to itself only up to an element of the center of the gauge
group [31]. However if all fields transform in the adjoint, this operation is non-
singular from the point of view of the gauge fields).

Let us now consider what happens if we instead couple this theory to Nf flavours of
bosons and fermions charged in the fundamental under SU(N), i.e. if the action is
taken to be:

S ′ =
∫
d4x

[
− 1
g2
YM

tr |F |2+ (2.4.40)

+
Nf∑
i=1

(
−|∂φi − iAφi|2 −m2

φ |φi|2 + ψ̄i (iγµ (∂µ − iAµ)−mψ)ψi
)

+ · · ·
]

The 1-form symmetry above is now explicitly broken – though the line operator
W (C) can still be defined, the operator Uq is no longer topological and thus there is
no longer a 1-form symmetry.11

However there is a new 0-form symmetry: the baryon number current, which acts
as a diagonal phase rotation on both φi and ψi. The associated conserved current is
defined in the usual way as:

jµB =
Nf∑
i=1

(
ψ̄iγ

µψi + 2 Imφ†iD
µφi

)
(2.4.41)

It is worth noting that the local gauge-invariant operators that are charged under
this baryon number symmetry are fully antisymmetrized products of Nc fundamental
fields, and so will have charge Nc in the appropriate units.

Symmetry structure of U(N) gauge theory: Let us now change the theory
under consideration by studying instead the U(N) gauge theory with only adjoint

11In familiar 0-form language, a fundamental matter field transforms as
φa → exp

( 2πiq
N

)
δab φ

b = exp
( 2πiq
N

)
φa 6= φa.
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matter. It is convenient to write the gauge group as

U(N) = U(1)× SU(N)
ZN

(2.4.42)

If we have access to a Lagrangian description of the U(N) gauge theory, it is straight-
forward to see that the gauge field corresponding to the U(1) factor separates off,
and the action (2.4.36) can now be written as

S =
∫
d4x

(
− 1

2g2
1
|f |2 − 1

g2
YM

tr |F |2 + · · ·
)

(2.4.43)

where f corresponds to the field strength of the new U(1) gauge field f = da. As all
matter is in the adjoint, nothing couples to the U(1) gauge field, which has a free
Maxwell action. There is thus a precisely marginal U(1) gauge coupling which we
have named g1.

Unlike above, where we had only a single discrete ZN 1-form symmetry, this theory
has two continuous U(1) 1-form symmetries corresponding to the simultaneous
conservation of electric U(1)e and magnetic U(1)b flux. Their respective conserved
currents Jµνe,b are:

Jµνe = 1
g2

1
fµν Jµνb = 1

2ε
µνρσfρσ (2.4.44)

We can generalise our earlier discussion of 1-form symmetries (in Section 2.4.1) from
Maxwell theory to non-Abelian gauge theory as follows. In the phase described by
a free U(1) gauge theory action both of these symmetries are spontaneously broken,
and the usual 4d photon is the Goldstone mode of this breaking. The line operator
that is charged under the electric 1-form symmetry is the usual U(1) Wilson line,
and that charged under the magnetic 1-form symmetry is the t’Hooft line. The
diagnosis of this symmetry breaking in terms of these line operators is discussed in
[7, 8].

Following along the lines of the discussion above, we now add the same flavour
degrees of freedom to the U(N) gauge theory. The U(1) gauge field a now couples
minimally to both φ and ψ:

S ′ =
∫
d4x

− 1
2g2

1
|f |2 − 1

g2
YM

tr |F |2+

Nf∑
i=1

(
−|∂φi − iaφi − iAφi|2 −m2

φ |φi|2 + ψ̄i (iγµ (∂µ − iaµ − iAµ)−mψ)ψi
)

+ · · ·


(2.4.45)

where a and A are the U(1) and SU(N) gauge potentials respectively. This changes
the dynamics of the U(1) 1-form symmetries described above. Importantly, the
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symmetry corresponding to conservation of electric flux is now generically explicitly
broken by the presence of the electrically charged matter; the simplest way to see this
is to note that the conserved current identified in (2.4.44) is now no longer conserved;
indeed the U(1) Maxwell equations are simply:

∂νJ
µν
e = jµB[φ, ψ], (2.4.46)

where jµB[φ, ψ] is precisely the baryon number current (2.4.41). Physically, this
simply captures the idea that electric field lines can now end on the electric charges
that are carried by φ and ψ.

The magnetic flux current Jµνb is still conserved, as is clear from its definition:

∂νJ
µν
b = 0 (2.4.47)

Thus, this theory has a single U(1) 1-form symmetry.

However, the realisation of this symmetry now depends on the dynamics of the φ, ψ
fields. Let us now consider how the energy scale of interest E compares to the masses
mφ,mψ:

1. E � mφ,ψ: In this case the matter fields are gapped and can essentially be
ignored. We are then in the same situation as when there were no flavour fields
at all; jµ[φ, ψ] is effectively zero, and both the electric and magnetic flux cur-
rents are conserved. The associated symmetries are again both spontaneously
broken, as described around (2.4.44). In particular, the relevant line operators
should display a perimeter law in this phase.

2. E � mφ,ψ: In this case we probe electric charge fluctuations in the vacuum, and
the electric flux symmetry is explicitly broken. The magnetic flux symmetry
is now realised differently; in particular, it is no longer spontaneously broken.
Relatedly, in this regime the U(1) gauge coupling g1 runs logarithmically with
the energy scale E.

Summary: In the following chapter, we will study the manifestation of the higher-
form symmetry structures described above in a strongly coupled model, given by
the holographic realisation of maximally supersymmetric N = 4 Super-Yang-Mills
coupled to matter in the fundamental. We will primarily focus on the case of the
U(N) gauge theory where we have a continuous 1-form symmetry, but along the
way we will clarify some aspects of the SU(N) case as we proceed.





Chapter 3

Application 1: Holographic flavour

In this chapter we study the higher-form symmetry structure of N = 4 supersym-
metric Yang-Mills theory with added matter fields in the fundamental representation
of the gauge group. This quantum field theory has a holographic dual; the added
matter fields correspond to probe D7-branes in the bulk.

The structure is as follows. In Section 3.1 we introduce the (well-known) holo-
graphic bulk action and discuss its symmetry structure, also discussing some lower-
dimensional examples to build some intuition for the extensive dualisations that
follow. In Sections 3.2 and 3.3 we discuss the bulk dynamics and appropriate
charged operators in the duality frames that are appropriate for the SU(N) and
U(N) gauge theories respectively. Finally in Section 3.4 we numerically compute
the spectral function for the 2-form current in the U(N) theory and compare with
expectations at weak coupling.

3.1 Symmetries of holographic flavour

In this section we describe the holographic dual of the system described at the end
of Chapter 2; in particular we study the maximal supersymmetrisation of the gauge
theory, i.e. N = 4 SYM with holographic flavour added. In most discussions of
holography it is implicitly assumed that the gauge group is SU(N); for us however
the precise distinction between the U(N) and SU(N) gauge theories will be of con-
siderable importance. This issue has been clarified recently (see [32] for a perspective
from higher-form symmetry) and we briefly review it here, taking special care with
the issues that will be relevant for our construction.

Some preliminary remarks on holography are in order. Holographic duality is the
statement that a quantum field theory in d spacetime dimensions is equivalent to a
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gravity theory in (d+1) spacetime dimensions (its dual theory or bulk dual). Roughly
speaking, the extra spacetime dimension accounts for the running of the couplings
with energy scale, i.e. the renormalisation group flow.

A crucial aspect of holography is that strongly-coupled quantum field theories are
dual to weakly-coupled gravity theories. This makes holography very useful for
studying quantum field theories in regimes which are perturbatively inaccessible
with conventional techniques such as Feynman diagrams. This aspect of holography
may be referred to as strong-weak duality.

There is an extensive “dictionary” that can be used to translate between objects in
the field theory and objects in the gravity theory. For example, a conserved current
of a 0-form symmetry in the field theory is dual to a 1-form gauge field in the bulk.
More generally, a conserved current of a p-form global symmetry in the field theory
is dual to a (p+ 1)-form gauge field in the bulk. The stress tensor of the field theory
is dual to the metric of the gravity theory.

The boundary conditions of the bulk degrees of freedom are dual to the global
structure of the field theory gauge group. In this chapter we will determine the
appropriate such boundary conditions (corresponding to each of SU(N) and U(N))
for these bulk fields by studying the symmetry properties of the dual field theory.

Many examples of holography have been constructed and detailed reviews can be
found in e.g. [33] and [34].

3.1.1 Bulk holographic action

The holographic dual of the above is Type IIB string theory on AdS5 × S5, giving
rise to kinetic terms for the NS-NS 2-form B2 and the R-R 2-form C2, as well as a
Chern-Simons term. After compactifying on the S5 we obtain an action which is
an integral over all of AdS5. To add fundamental matter, we wrap Nf � Nc probe
D7-branes around the S5 [35]. See e.g. [33] for a review of holographic flavour.

The final form of the dimensionally-reduced action on AdS5 is

Sbulk = Skin + SCS +Nf SDBI

= N2
c

8π2R3

∫ −1
2H

2
3 −

1
2

(
λ

4πNc

G3

)2

+ κB2 ∧
(

λ

4πNc

G3

)
− 1

2κ
2µf(z)

(
B2 + 2πR2

√
λ
F2

)2


(3.1.1)

Note our conventions for writing differential forms. For a p-form Ωp in n-dimensions
we can define a corresponding n-form by

Ω2
p ≡ Ωp ∧ ?Ωp (3.1.2)
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Sometimes it is preferable to work in components, in which case we borrow from [5]
and write

|Ωp|2 ≡
1
p! Ωµ1µ2...µpΩµ1µ2...µp (3.1.3)

It is straightforward to translate between these descriptions using the identity

Ω2
p = |Ωp|2

√
|g| dnx (3.1.4)

The forms appearing in the action are the field strengths H3 = dB2, G3 = dC2 and
F2 = dA1. Note that we have used the unusual name G3 for the field strength of
the R-R form to avoid confusion with the field strength of the D7-brane Maxwell
field. Our zoo of higher-form fields is extensive – and will become even more so as
we dualise fields in the bulk – so we have provided an index in Appendix 3.C. The
constants in the action are given by

κ = 4
R

(3.1.5a)

µ = Nf

Nc

λ

32π2 (3.1.5b)

µ denotes the relative dynamical importance of the flavour and colour degrees of
freedom. The function f is given by

f(z) =

1− (z/zc)2 z ≤ zc

0 z > zc
(3.1.6)

We will work with AdS5 in Poincaré coordinates:

ds2 = R2

z2

(
dxµdxµ + dz2

)
(3.1.7)

where R is the AdS radius.

Some words about the probe limit are in order here. Usually one considers the limit
where µ→ 0, and thus where the backreaction of the flavour degrees of freedom on the
colour degrees of freedom can be ignored. We will work with the simple quadratic
action above, but we will allow µ to take on finite values. This corresponds to
studying some subset of the interplay between flavour and colour degrees of freedom,
in particular those associated with the realisation of the symmetries. As explained
below, this results in novel effects associated with the Higgsing of the 2-form B

field by the DBI gauge field A1; these effects qualitatively affect the physics but are
invisible in the strict probe limit. Strictly speaking, however, we are not studying
all aspects of this interplay, because we neglect the gravitational backreaction of
the flavour branes; thus the approximation we take should be considered as an
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illustrative one that is designed to highlight the physics of interest.

Let us now note the gauge symmetry of the action above. We have two independent
1-form gauge transformations shifting B2 and C2 respectively; we also have a 0-form
gauge transformation shifting the DBI worldvolume field. The full transformation
of the fields is

δB2 = dΞ(B)
1 (3.1.8a)

δC2 = dΞ(C)
1 (3.1.8b)

δA1 = −
√
λ

2πR2

(
Ξ(B)

1 + dξ(A)
)

(3.1.8c)

Note the simultaneous transformation of A1 and B2 under a shift by Ξ(B)
1 ; this

encodes the fact that string worldsheets can end on the D-brane, and will be of
considerable importance to us.

We turn now to the Chern-Simons term B2 ∧G3; this well-known term [36, 37, 38]
is closely related to the physics of higher-form symmetry in holography [32] and will
play a key role in our analysis. Obtaining the precise prefactor can be somewhat
subtle; it can naively be thought of as arising from a dimensional reduction of a 10d
Chern-Simons term B2 ∧ dc4 ∧G3 involving the R-R 4-form c4. Integrating over the
S5 we pick up a factor of the flux dc4 ∼ Nc, giving a term with qualitatively the
correct form, as first noted in [38].

However, this is not quite consistent: in fact, a covariant action for the (self-dual) RR
4-form does not actually exist, and pursuing the above route results in an inconsistent
normalisation for the Chern-Simons term, as noted in [39]. In this work we take a
different approach. Consistency of the theory in the presence of magnetic charges
actually requires the coefficient of this term to be quantized; we review this Dirac
quantisation condition in Appendix 3.A.2 and identify the integer coefficient of the
term with Nc, as we expect on symmetry grounds.

Finally, the last term arises from the dimensional reduction of the DBI action. We
can embed Nf probe D7-branes into the target space by means of the DBI action:

Nf SDBI = −Nf τ7

∫
d8ξ

√
− det (gαβ +Bαβ + 2πl2s Fαβ) (3.1.9)

where ξα are the brane worldvolume coordinates, gαβ are the components of the
induced worldvolume metric on the D7-brane, Bαβ are the components of B2 and
Fαβ are the components of F2 = dA1, the Maxwell field strength living on the brane
worldvolume. τp is the effective Dp-brane tension after absorbing the effect of the
dilaton eΦ = gs and is given by τ7 = 1

gs

1
(2π)7l8s

.
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The S5 factor in the metric may be written as

dΩ2
5 = dθ2 + cos2 θ dψ2 + sin2 θ dΩ2

3, (3.1.10)

where we have chosen coordinates that make manifest an S3 ⊂ S5. As usual for a
D3/D7 embedding, the desired brane configuration fills all of AdS and wraps the
3-sphere around the S5. Thus the embedding is parametrized by the transverse
coordinates ψ, θ; ψ is a Killing direction and may be taken to be constant, and the
appropriate solution for θ(z) corresponding to massive holographic flavour is [35]:

θ(z) = θc ≡

arccos(z/zc) z ≤ zc

0 z > zc
(3.1.11)

A careful matching to the field theory shows that

zc =
√
λ

2π
1
mF

(3.1.12)

where mF is the mass of the flavour degrees of freedom [40, 41].

Geometrically, this embedding means that the S3 wrapping the S5 is of maximal
size (θ = π/2) at z = 0 on the boundary, and the D7-brane vanishes (θ = 0) at
the critical value z = zc. For z > zc the D7-brane has no effect; this is dual to
the fact that at energies smaller than the mass gap the flavour degrees of freedom
can no longer be excited. If we set the mass to zero θ is constant and the theory is
conformal.

If we now substitute the on-shell angle θ = θc back into the DBI action and expand
to quadratic order in B2 and F2 we obtain the following quadratic action for the
fluctuations of the DBI gauge field:

Nf SDBI = − N2
c

8π2R3

∫ 1
2κ

2µf(z)
(
B2 + 2πR2

√
λ
F2

)2

(3.1.13)

Some details about this computation are given in Appendix 3.A.3.

3.1.2 Examples in lower dimensions

The action (3.1.1) has several interesting features, arising from the interplay of
the higher-form symmetry with the baryon number symmetry. To the best of our
knowledge these have not yet been fully explained in the literature, and we will
unpack these below. It is first helpful to orient ourselves with some more familiar
examples in lower dimension.
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Let us begin with the following action for a Goldstone mode in three dimensions:

S1 = −
∫
d3x

v2

2 |dθ|
2 (3.1.14)

Clearly this has a single degree of freedom, which is gapless. The situation is however
very different if we consider gauging this scalar Goldstone with a 1-form gauge field
aµ, resulting in the following action

S2 =
∫
d3x

(
− 1

2g2 |da|
2 − v2

2 |a− dθ|
2
)

(3.1.15)

This theory is now massive; the Goldstone mode is eaten by the photon, resulting in
a gapped theory with mass gap g2v2. As turning on a small gauge coupling g results
in a mass gap, the weak coupling limit and the infrared limit don’t commute.

Higgsing a gauge field is one way to obtain a mass gap. Another way to give a gauge
field a mass is through a Chern-Simons term [42]. Let us thus imagine removing the
Goldstone mode and adding a second gauge field b to obtain the following theory:

S3 =
∫
d3x

(
− 1

2g2 |da|
2 − 1

2v2 |db|
2 + a ∧ db

)
(3.1.16)

What is the spectrum of this theory? An illuminating way to understand this is to
dualise the gauge field b to a scalar ψ. Following the standard algorithm, we find

S ′3 =
∫
d3x

(
− 1

2g2 |da|
2 − v2

2 |dψ − a|
2
)

(3.1.17)

where in terms of the original degree of freedom db = g2 ?(dψ−a). This is essentially
the same as the Higgs-ed theory studied above in (3.1.15), and is also gapped. Thus
we see that adding a Chern-Simons term and Higgsing a gauge field are the same
mechanism, just written in different duality frames.

Finally, let us imagine both adding a Chern-Simons term and Higgsing, i.e. we study
the following action:

S4 =
∫
d3x

(
− 1

2g2 |da|
2 − 1

2v2 |db|
2 + a ∧ db+ v2

2 |a− dθ|
2
)

(3.1.18)

What is the spectrum now? It is again helpful to dualise the b field, after which we
obtain:

S ′4 =
∫
d3x

(
− 1

2g2 |da|
2 − v2

2 |dψ − a|
2 − v2

2 |dθ − a|
2
)

(3.1.19)

i.e. after a duality this is like “Higgsing twice”. But we only have one photon to eat
a putative Goldstone; thus there should remain one Goldstone left uneaten, which
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can be seen by rewriting the action to be:

S ′′4 =
∫
d3x

(
− 1

2g2 |da|
2 − v2

4 |dψ + dθ − 2a|2 − v2

4 |dψ − dθ|
2
)

(3.1.20)

Thus the gauge-charged combination ψ + θ is eaten, and forms part of a massive
photon; however the gauge-invariant combination ψ − θ remains uneaten, and is a
gapless mode in the spectrum. The general lesson is that if we try to give a gauge
field a mass twice, both by Higgsing and by adding a Chern-Simons term, then we
find that a gapless mode survives. We could also have chosen to dualise the scalar
θ in (3.1.18) into a 1-form gauge field; in this case the gapless mode would have
appeared to be a gauge field and not a scalar, but this gauge field would be related
to ψ − θ by the usual Abelian duality.

What does all of this have to do with AdS/CFT? In most discussions of holographic
flavour in AdS/CFT, one works in the probe limit, considering the limit µ ∼ Nf

Nc

to 0 and studying the fluctuations of the DBI worldvolume gauge field A1, which
then decouples from the other fields, and whose action takes the form S ∼

∫
(dA1)2.

This is the action of a massless photon and is analogous to a higher-form version
of (3.1.14). The field theory dual of this massless gauge field is the baryon number
current.

However, if we consider the complete action (3.1.1), we see that this is actually
somewhat dangerous; in fact the gauge field does not appear by itself but rather in
the gauge-invariant combination B2 + 2πR2

√
λ
F2. At first glance, this appears somewhat

problematic, as the action contains the following terms:

N2
c

8π2R3

∫ −1
2(dB2)2 − 1

2κ
2µ

(
B2 + 2πR2

√
λ
F2

)2

+ · · ·
 (3.1.21)

(where for simplicity we consider a case where f(z) is constant). Compare this to
(3.1.15); it actually now appears that the field A1 has been eaten by the higher-form
gauge field B2, in a higher-form analogue of the Higgs mechanism. This suggests
that the theory should have only massive modes, with the mass scaling like κ2µ. In
a sense, the infrared limit no longer commutes with the probe limit. However, this is
clearly a nonsensical result: the dual field theory should still have a baryon number
current, which should be dual to a bulk gauge field that is exactly massless to all
orders in Nf

Nc
.

The resolution comes in studying the full action, which contains an extra field C2

which has its own kinetic term as well as a mixed Chern-Simons term coupling it
to B2. The action now appears more like a higher-form version of (3.1.18), which
indeed does support a gapless mode, though it is not apparent at first glance. In
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this work we will unpack the analogous mechanism in the AdS/CFT context; we will
indeed find that the bulk action always supports a gapless mode. For a certain set of
boundary conditions (those which are dual to the SU(N) gauge theory), this mode
is dual to the baryon number current. For a different set of boundary conditions
(those which are dual to the U(N) gauge theory), this mode is dual to the 2-form
current for magnetic flux.

The fact that the existence of this gapless mode depends crucially on the interplay
between the Chern-Simons and DBI terms is dual to the fact that in the field theory
the baryon number current is intertwined in some sense with the 1-form center ZN
symmetry of the pure gauge theory.

3.2 SU(N) gauge theory

The bulk may be understood in various duality frames. We begin by studying it in a
frame which is useful when the dual field theory is the SU(N) gauge theory coupled
to fundamental flavour.

3.2.1 Bulk action

To begin, it is helpful to Poincaré dualise the R-R form C2 to a 1-form C̃1 in the
usual way. The procedure is explained in for example Appendix B.4 of [5]; applying
the algorithm we find:

G̃2 = λ

4πNc

? G3 − κB2 (3.2.1)

where G̃2 = dC̃1.

Substituting into the action now gives a different presentation of the same theory.

S = − N2
c

8π2R3

∫ 1
2H

2
3 + 1

2κ
2

(B2 + 1
κ
G̃2

)2
+ µf(z)

(
B2 + 2πR2

√
λ
F2

)2
 (3.2.2)

Observe now that from the duality relation (3.2.1), C̃1 inherits the gauge-transformation
under the 1-form gauge symmetry:

δC̃1 = −κ
(
Ξ(B)

1 + dξ(C)
)

(3.2.3)

which ensures that the action is indeed still gauge-invariant. Here Ξ(B) is the
original 1-form gauge transformation of B2, whereas ξ(C) is an emergent 0-form
gauge transformation that exists only in this duality frame. In a sense it is the
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magnetic dual of the 1-form gauge transformation of C2, which has been dualised
away.

We can diagonalise the action in this duality frame to better understand its spectrum.
After diagonalising, it will also be easier to fix a gauge and solve the equations of
motion. To this end, it is convenient to define the function h(z) by

h(z) = 1
1 + µf(z) (3.2.4)

so that we can define the new 1-form fields

η1 = 1
κ
C̃1 −

2πR2
√
λ

A1 (3.2.5a)

τ1 = 2πR2
√
λ

A1 + h η1 (3.2.5b)

and their respective field strengths

Y2 = dη1 (3.2.6a)
T2 = dτ1 (3.2.6b)

These linear combinations inherit the following gauge-transformations

δη1 = dξ (3.2.7a)
δτ1 = −Ξ(B)

1 + h dξ (3.2.7b)

where ξ = ξ(A) − ξ(C). Observe that η1 has the same gauge transformation as an
ordinary free Maxwell field. When the field theory is gapless, η1 is precisely a
massless gauge field in the bulk, so is the holographic dual of a 0-form symmetry in
the field theory. This 0-form symmetry corresponds to baryon number conservation.

The diagonalised action can now be written cleanly as

S = − N2
c

8π2R3

∫ {1
2H

2
3 + 1

2κ
2
[
(1− h)Y 2

2 + h−1 (B2 + T2 + η1 ∧ dh)2
]}

(3.2.8)

Gauge-invariance is easy to check: H3, Y2 and B2 +T2 +η1∧dh are each individually
gauge-invariant quantities.

This action is somewhat complicated, as it is dual to an RG flow captured holograph-
ically by the profile of the function f(z). To understand the symmetry structure, it
is helpful to consider the limit of zero fermion mass mF → 0. We now have zc →∞,
and so f(z) = 1 for all z. This gives h(z) = (1 + µ)−1.
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We then find:

S → − N2
c

8π2R3

∫ [
1
2H

2
3 + 1

2κ
2(1 + µ)(B2 + dτ1)2 + 1

2κ
2
(

µ

1 + µ
Y 2

2

)]
(3.2.9)

We can partially gauge-fix to an analogue of unitary gauge in which we set T2 = 0.
This describes a 2-form gauge field B2 which has been Higgs-ed by the 1-form τ1;
the resulting dynamical bulk field is massive. It also has a precisely massless 1-form
gauge field η1, as anticipated above. This is dual to the baryon number current.
Note that this structure arose out of the interplay between the Chern-Simons term
and the flavour terms; this is dual to the interplay between the U(1) baryon number
current and the ZN center symmetry of the field theory. In the remainder of this
section we further describe some universal aspects of this interplay.

Up to boundary terms, the variation of the action is

δS = − N2
c

8π2R3

∫ {
δB2 ∧ ?

[
?d ? dB2 + κ2h−1(B2 + T2 + η1 ∧ dh)

]
− κ2 δη1 ∧ ?

[
?d((1− h) ? dη1)− h−1 ? (dh ∧ ?(B2 + T2 + η1 ∧ dh))

]
+ κ2 δτ1 ∧ d

[
h−1 ? (B2 + T2 + η1 ∧ dh)

] }
(3.2.10)

Hence the equations of motion are1

? d ? dB2 + κ2h−1(B2 + T2 + h′η1 ∧ dz) = 0 (3.2.11a)
(1− h) ? d ? dη1 + h−1h′ ? [dz ∧ ?(−h dη1 +B2 + T2 + h′η1 ∧ dz)] = 0 (3.2.11b)

where h′ ≡ dh
dz
.

The spectrum of fields thus consists of a massive 2-form gauge field B2, a massless
1-form gauge field η1 which is dual to the baryon number current, and a 1-form
gauge field τ1 which appears only through its field strength T2. T2 is of less physical
importance since it can be easily gauged away; in a sense it simply provides the
longitudinal degrees of freedom of the massive tensor B2.

If we are studying the SU(N) gauge theory coupled to fundamental flavour, it is
important to note that the appropriate boundary conditions at the AdS boundary
are those where we hold fixed the boundary value of η1; this guarantees that we
obtain a conserved 0-form baryon number current jµb in the boundary theory. As we
will see, this will be different when we study the U(N) gauge theory.

1The τ1 equation is redundant since it follows by taking the exterior derivative of the B2
equation.
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3.2.2 Boundary Conditions

We briefly take a moment to unravel the dualities to uncover the appropriate bound-
ary conditions on the original form fields, namely B2, A1 and C1.

At stated above, the appropriate boundary condition on η is to hold it fixed at the
UV boundary, i.e.

∂µ lim
z→0

η = 0 (3.2.12)

This boundary condition implies that the field strength Y2 satisfies

Yµν = 0, z → 0 (3.2.13)

From the duality (3.2.1) and the definition of η in (3.2.5a) we find that the field
strengths are related by

κY2 = λ

4πNc

? G3 − κ
(
B2 + 2πR2

√
λ
F2

)
(3.2.14a)

T2 = 2πR2
√
λ
F2 + hY2 + h′dz ∧ η1 (3.2.14b)

Putting the boundary condition (3.2.13) into (3.2.14a) we find that

λ

4πNc

(?G)µν = κ

(
Bµν + 2πR2

√
λ
Fµν

)
, z → 0 (3.2.15)

If we further fix the gauge so that T2 = 0 and note that h′(0) = 0 then we have
simply

Fµν = 0, z → 0 (3.2.16a)
λ

4πNc

(?G)µν = κBµν , z → 0 (3.2.16b)

3.2.3 Charged operators

We now describe the bulk object that is charged under the baryon number symmetry.

Baryon vertices in pure SU(N) gauge theory

Let us first review the conventional case with no flavour branes [38]. There we set
Nf → 0, and we find simply:

S = − N2
c

8π2R3

∫ [1
2H

2
3 + 1

2κ
2(B2 + T2)2

]
(3.2.17)
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With no flavour branes the DBI gauge field A1 does not exist, and from (3.2.4) and
(3.2.5b) we see that when h = 1 we have simply τ1 = κ−1C̃1, i.e. τ1 is directly the
magnetic dual of the RR 2-form.

We will now revisit this action from the point of view of symmetry. Note that under
the 1-form gauge transformation of B2, τ1 must also transform:

B2 → B2 + dΞ1 τ1 → τ1 − Ξ1 (3.2.18)

We now study the bulk objects that are charged under these gauge symmetries. We
have fundamental string worldsheets, which couple minimally to B2 as

1
2πl2s

∫
M
B2 (3.2.19)

We turn now to τ1; as τ1 is a usual 1-form gauge field in the bulk, it couples naturally
to one-dimensional particle worldlines in AdS5. What are these objects?

From the definition of the duality relationship (3.2.1), we can see that these objects
couple magnetically to the RR 2-form C2. In the ten-dimensional picture, these are
thus D5-branes. Of their six dimensional worldvolume, five of them are wrapped
on the S5, and the remaining one dimension traces a worldline on AdS5. By using
the normalisations in Appendix 3.A.2 one can verify that a single such D5-brane
couples to τ1 as

Nc

2πl2s

∫
L
τ1 (3.2.20)

Note however that this coupling alone is not invariant under the 1-form gauge
transformation (3.2.18): indeed we see that the the one-dimensional worldline L can
exist only as the boundary of Nc string worldsheets, i.e. the combined coupling

Nc

(
1

2πl2s

∫
M
B2

)
+ Nc

2πl2s

∫
∂M

τ1 (3.2.21)

is invariant. This fact – that the wrappedD5-brane is the endpoint ofNc fundamental
strings and thus acts as a baryon vertex in the dual field theory – can also be
understood directly from the original Chern-Simons coupling [38, 36, 37, 43]. Here
we simply restate it in an alternative (bulk) duality frame.

It is now instructive to imagine the bulk worldline intersecting the AdS boundary
at a point. Each of the Nc string worldsheets will also intersect the boundary as
a series of curves ending at the same point. Holographically, the combined object
is a non-dynamical baryon vertex serving as the endpoint of Nc Wilson lines in
the fundamental representation. It is clear that the baryon vertex, being tied to
Nc Wilson lines, is not a local operator in the field theory; the bulk dual of this
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statement is that it does not correspond to a free particle worldline but rather only
as the boundary of Nc F-strings.

D5
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Figure 3.1: The hanging D5-brane forms 1-dimensional worldline
in the bulk; it is the boundary of Nc F-string world-
sheets which also intersect the AdS boundary. At their
intersection with the boundary they define the insertion
of fundamental Wilson lines in the dual CFT.

Baryon operator in theory with dynamical flavour

We now restore the flavour branes, i.e. we return to (3.2.9). In the bulk, we now have
a new massless field η1, which we understand is dual to the baryon number current
in the field theory U(1)B. In the dual field theory, we now expect the existence of
local baryon operators that carry charge Nc (in units of the baryon charge of the
fundamental gauge-charged fields).

What is the bulk dual of this operator? Consider a general particle-like object in
the bulk that couples to both η1 and τ1, i.e.∫

L
(qηη1 + qττ1) (3.2.22)

As argued above, any coupling to τ1 will necessarily mean that the particle has
strings attached, in order to ensure gauge-invariance. Let us consider an object
which has qτ = 0. As η1 does not transform under the 1-form gauge transformation
(3.2.18), this coupling is entirely gauge-invariant on its own. Thus a particle in the
bulk that couples in this way is dual to a local boundary operator that carries baryon
charge. From field theory considerations, we understand that this object should be
related to a bound state of a D5-brane and F-strings in some manner.
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The presence of the new field η1 lets the D5-brane exist as an independent object
that is untethered to any strings. To see this more explicitly, we can express this
coupling in terms of the original fields C̃1 and A1; we find that the unit quantized
D5-brane couples as

qη

∫
L
η1 = Nc

2πl2s

∫
L

(
2πR2
√
λ
A1 − κ C̃1

)
(3.2.23)

where we have used the quantized coupling to C̃1 worked out above, and where the
coupling to A1 is correlated with that of C̃1 by the condition that qτ = 0. This can
be compared to the coupling of a single F-string ending on the D7-brane:

1
2πl2s

(∫
ws
B2 +

∫
∂ws

2πR2√
λ
A1

)
(3.2.24)

In other words, the coupling to A1 is as Nc F-strings. Microscopically one can
actually imagine that the D5-brane is connected by very small strings to the flavour
D7-brane, where the string charge is now carried by the A1 field living on the brane.
The resulting composite object is the particle-like excitation that we describe above.
Related work in different holographic models to directly construct bulk objects
carrying baryon number can be found in [44, 45, 46]; see in particular [46]. We
stress that our construction makes no real statements about the dynamics of the
internal structure, and simply shows how their charges are captured in the low-energy
description.

3.3 U(N) gauge theory

We would now like to understand the theory with the boundary conditions that are
appropriate to having a U(N) gauge theory dual. We now expect to obtain a 2-form
conserved current on the boundary; it is thus appropriate to study the bulk in a
different duality frame.

3.3.1 Bulk action

We can Poincaré dualise the field τ1 by integrating out its field strength T2 in the
usual way. This yields a 2-form A2 with field strength F3 = dA2 given by:

F3 = κ2h−1 ? (B2 + T2 + η1 ∧ dh) (3.3.1)
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Substituting into the action and integrating by parts gives

S = − N2
c

8π2R3

∫ [1
2H

2
3 + 1

2κ
2(1− h)Y 2

2 + 1
2κ
−2h F2

3 +B2 ∧ F3 − Y2 ∧ A2 ∧ dh
]

(3.3.2)

Note the last term in the action where A2 appears explicitly; this arises from an
integration by parts so that the action depends on Y2 = dη1 and not η1 explicitly.
As a result we can now dualise η1 using exactly the same procedure to give a 2-form
P2 whose field strength Q3 = dP2 is given by

Q3 +A2 ∧ dh = κ2(1− h) ? Y2 (3.3.3)

(Note that P2 can be thought of as – modulo mixing with other fields – the electric-
magnetic dual of η1, i.e. the bulk field dual to the baryon number current). Substi-
tuting this back into the action then gives:

S = − N2
c

8π2R3

∫ [1
2H

2
3 +B2 ∧ F3 + 1

2κ
−2
(
(1− h)−1(Q3 +A2 ∧ dh)2 + hF2

3

)]
(3.3.4)

Note that we have a gauge freedom given by

δA2 = dΞ1 (3.3.5a)
δP2 = −Ξ1 ∧ dh+ dΛ1 (3.3.5b)

under which the action is invariant, where Λ1 is a new free 1-form gauge parameter.
From the perspective of the 2-form picture, two of the equations of motion in the
1-form picture are simply the Bianchi identities dF3 = 0 and dQ3 = 0.

The spectrum is easiest to understand in the case where the flavour mass is zero
so that dh = 0. We then have two coupled 2-forms B2 and A2 which constitute
a massive degree of freedom. We also have a single massless 2-form P2 whose
dependence is only through its field strength Q3; this massless bulk is dual to the
only conserved 2-form current Jµν = Jµνb , identified in (2.4.44).

The equations of motion in the 2-form picture are

d ? [(1− h)−1(Q3 +A2 ∧ dh)] = 0 (3.3.6a)
d ? H3 −F3 = 0 (3.3.6b)

d ? (hF3) + κ2H3 − (1− h)−1dh ∧ ?(Q3 +A2 ∧ dh) = 0 (3.3.6c)

From the perspective of the 1-form picture, two of these equations give the Bianchi
identities dY2 = 0 and dT2 = 0. The third equation is the same in both pictures.

Thus, to obtain the bulk dual to the U(N) gauge theory coupled to flavour, we
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should use AdS/CFT boundary conditions where we hold fixed the boundary value
of the 2-form field P . The usual rules of AdS/CFT will then guarantee that in the
dual field theory, we will obtain a 2-form conserved current J , as expected.

We note that the U(N) theory seems to contains one extra parameter as compared to
the SU(N) theory; as explained around (2.4.45), the coupling constant g1 associated
to the “U(1) factor” seems to be an extra parameter that can be tuned. In a
universal sense this can be understood as a double-trace coupling associated to the
2-form current J . When there are flavor degrees of freedom present this coupling is
expected to run logarithmically, becoming strong in the UV. Thus, due to dimensional
transmutation the extra data that needs to be provided is not a dimensionless
coupling but rather the energy scale for the Landau pole at which this coupling
becomes strong. As explained in [32, 47], the boundary conditions for a massless
2-form field such as P in AdS5 indeed require one to specify such a scale. We will
see this explicitly when solving the bulk equations of motion in later sections.

We provide a few more details; as usual, J is obtained by taking a functional
derivative of the bulk on-shell action with respect to the boundary value of P2. If
we set

lim
z→0
P2 = p2 (3.3.7)

and use the equation of motion then we obtain

Jµν = δSon-shell

δpµν
= N

2κ2
δ

δpµν

∫
d
[
(1− h)−1P2 ∧ ?(Q3 +A2 ∧ dh)

]
= N2

δ

δpµν

∫
d(P2 ∧ Y2)

From here we can conclude that the 2-form symmetry current is:

Jµν = lim
z→0

N
2 (?4Y2)zµν (3.3.8)

where the normalisation is given by N = N2
c

8π2R3 .

3.3.2 Boundary Conditions

As we did for the SU(N) gauge theory previously, we now explicitly spell out the
boundary conditions for the original form fields which are appropriate for the U(N)
gauge theory.

We hold P2 fixed at the UV boundary, or in other words the field strength Q3 satisfies

Qµνρ = 0, z → 0 (3.3.9)
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Using (3.3.3) and again the fact that h′(0) = 0, we obtain simply

(?Y )µνρ = 0, z → 0 (3.3.10)

Taking the Hodge star of (3.2.14a) and (3.2.14b) we obtain the boundary conditions

(?F )µνρ = 0, z → 0 (3.3.11a)
λ

4πNc

Gµνρ = −κ(?B)µνρ, z → 0 (3.3.11b)

In a sense these boundary conditions are the electromagnetic dual of the boundary
conditions we previously obtained for the SU(N) gauge theory. This is expected
because at the UV boundary the field strength of η1 is the electromagnetic dual of
the field strength of P2.

The non-vanishing components of the field strengths in each case (namely Yzµ for
SU(N) and Qzµν for U(N)) encode the respective conserved symmetry current. For
SU(N) this is the baryon number current and for U(N) this is the magnetic flux
current.

3.3.3 Charged line operator

We would now like to understand the bulk operators that are charged under the
2-form gauge field P2. In the field theory, these are dual to line operators that are
charged under the corresponding 1-form symmetry. In this subsection only we will
work only to first order in µ to simplify the formulas. We begin by tracing back
through the chain of dualities; from (3.2.5a) to (3.2.5b), in the small µ limit we find:

τ1 = 1
κ
C̃1 + 2π`2

sµA1 η1 = 1
κ
C̃1 − 2π`2

sA1 (3.3.12)

Furthermore, in the same limit we find

dP2 = κ2µ ? dη1 dA2 = κ2 (B2 + dτ1) (3.3.13)

An object which couples minimally to P2 is one that appears on the right hand side
of the equation of motion d ? dP2 = 0; we thus need to find bulk objects that couple
magnetically to the fields C̃1 and A1. As C̃1 is the magnetic dual of the RR 2-form
C2, the object coupling magnetically to it is simply a D1-string. In the Appendix
we work out the normalisation of this coupling in our conventions to show that

1
κ

∫
S2
dC̃1 = (2π`s)2

Nc

(3.3.14)
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where here the S2 wraps a D1-string that is hanging down into AdS5.

The object which couples magnetically to the DBI worldvolume gauge field A1 is
somewhat more interesting. We will call this object the DBI monopole. In this
section we will work in the case where Nf = 1; the situation for generic Nf is more
interesting still and we will touch on it briefly later. A similar problem was discussed
in [48] in a lower dimensional construction, and we may take over the same ideas.
The desired magnetically charged object turns out to be a wrapped D5-brane that
ends on the D7 flavour brane. To be more precise, recall from the earlier sections
that the D7 flavour brane wraps an S3 ⊂ S5:

dΩ2
5 = dθ2 + cos2 θ dψ2 + sin2 θ dΩ2

3 (3.3.15)

where the S3 is spanned by the coordinates Ω3. The D7-brane does not extend in
θ: more precisely, for each value of the radial coordinate z, the D7-brane sits at
a single θ(z). In the conformal case, it lives at θD7 = π

2 for all z, whereas in the
non-conformal case θD7 interpolates from π

2 at the UV boundary to 0 in the interior.

In contrast, consider a D5-brane that wraps this S3 and ends on the D7-brane. The
D5-brane extends in θ from θ = 0 to the θD7 coordinate of the D7-brane, as shown
in Figure 3.2. It sits at a particular value of ψ; as ψ is a Killing direction this choice
is arbitrary.

0
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Figure 3.2: The D5-brane wrapping half of the S4 ⊂ S5 formed by
(θ,Ω3), ending on the D7-brane which lives at θ = θD7.
The remaining 2 coordinates of the D5-brane world-
volume form a two-dimensional string worldsheet in the
bulk.

The boundary of the D5-brane is a five-dimensional manifold; three of these dimen-
sions are compact and form the S3, and the remaining two dimensions define a two
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dimensional manifoldM2 which extends into the bulk of AdS5. As is well known
[49], the boundary of this D5-brane appears magnetically charged to the DBI gauge
field A1 living on the D7-brane worldvolume. Hence the wrapped D5-brane is the
DBI monopole that we seek.

In the Appendix, we work out the coupling of this brane and show that the coupling
to one such wrapped brane is

2π`2
s

∫
S2
F2 = (2π`s)2 (3.3.16)

where F2 = dA1 and the S2 surroundsM2 in AdS5. By comparing this to (3.3.14)
and (3.3.12), we see that the D1-brane couples to P with 1/Nc the charge of the
DBI monopole. We may write an effective coupling to the P field for both of these
objects:

S = qD1

∫
D1
P + qD5

∫
D5
P (3.3.17)

The overall normalisation of qD1 and qD5 depends on the (arbitrary) convention
chosen to normalize P in our action, but their ratio is fixed on topological grounds
to be N−1

c .
qD1

qD5
= 1
Nc

(3.3.18)

Let us now turn to an understanding of this from the dual field theory. The inter-
section of the D1 string with the AdS boundary defines a t’Hooft line in the SU(N)
gauge theory sector. Similarly the wrapped D5-brane defines a t’Hooft line for the
U(1) gauge theory sector; the simplest way to see this is to note that when evaluated
at the boundary, (3.3.16) is precisely the definition of a t’Hooft line. It has been
previously noted (see e.g. Appendix C of [32]) that from the point of view of the
U(1) magnetic 1-form current, the charge of a non-Abelian t’Hooft line has U(1)
charge of 1/Nc-th the Dirac monopole, consistent with (3.3.18).

Let us now understand the dynamics of symmetry breaking. Consider the wrapped
DBI monopole such that it intersects the AdS boundary on a 1d curve C. This
defines the insertion of a line operator into the field theory 〈W (C)〉, and as usual
from the rules of AdS/CFT we should compute:

〈W (C)〉 ∼ exp (−SD5[C]) (3.3.19)

with SD5[C] the on-shell action of the wrappedD5-brane. We now seek to understand
the dependence of this answer on the curve C; if it depends only locally on the data
of the curve C (e.g. as a perimeter law) then the symmetry is spontaneously broken.
If it depends non-locally – e.g. as an area law, or more generally in any way that
cannot be locally determined by the curve, then the symmetry is unbroken.
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The precise holographic arguments are a higher-form analogue of the arguments
presented in [48]. Consider first the case where the mass of the flavour degrees of
freedom is zero, i.e. zc →∞. In this case the S3 factor of the D7-brane remains the
same size everywhere in the bulk, i.e. it is independent of z. As the brane always
hangs down into the bulk, this defines a minimal area problem, essentially the same
as in the usual studies of Wilson lines from holography [50]. It is clear from the
geometry that the on-shell action will always depend more strongly on the curve
itself than its perimeter. Thus by the previous paragraph, the symmetry is unbroken.
See Figure 3.3 for a visualisation of this geometry.

Let us now consider the case where the mass of the flavour degrees of freedom is
nonzero. Then there is a value of zc at which the D7-brane caps off. At this value of
zc the wrapped D5-brane also pinches off and is allowed to smoothly end. There are
now two disconnected possibilities for the topology of the hanging DBI monopole;
it can form topologically a disc, or it can be topologically a cylinder which hangs
straight down and ends where the brane caps off. For sufficiently large sizes of
the curve, the cylinder solution will dominate. Such topologically non-trivial phase
transitions are common in holography [51, 52, 53]. As the surface now hangs straight
down, the action will depend only on the perimeter of the curve (multiplied by a
constant distance in the holographic direction), and in this phase the U(1) symmetry
is spontaneously broken, as expected.

Finally, one could attempt to generalize the construction of defect operators to the
case NF > 1; in this case there is presumably an extra quantum number associated
with which of the NF D7 branes the D5 brane ends on. It seems that a careful study
of the braiding algebra of bulk operators should allow the holographic identification
of the mixed symmetry of rank gcd(N,NF ) identified by [54]. We leave this for later
study.

3.4 Fluctuation spectrum

In the remainder of this chapter we study only the U(N) theory, with its associated
1-form symmetry associated with magnetic flux. We have argued above that if the
flavour degrees of freedom are gapped, then the 1-form symmetry is spontaneously
broken, as can be seen from the fact that the charged line operator exhibits a
perimeter law. On general grounds, we thus expect that there exists a gapless
Goldstone mode in the spectrum [7, 8]. In this section we will explicitly solve the
equations of motion to show the existence of this Goldstone mode. We first digress
slightly to explain precisely what a Goldstone mode means in this context.
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Figure 3.3: Two distinct topologies that are possible for the DBI
monopole. On the left is the situation when the flavour
sector is gapless; the D7-brane then has no boundary,
and the DBI monopoles hangs down into the bulk with a
disc topology, whose action depends non-locally on the
data describing the boundary curve. On the right, when
the flavour brane ends, the D5-brane is also allowed
to end, permitting a cylinder topology. The action of
this configuration depends only on the perimeter of the
boundary curve.

Consider a completely general Lorentz-invariant four-dimensional quantum field
theory with a conserved 2-form current Jµν . For simplicity, let us study the theory
in Euclidean signature; as explained in (e.g.) [32], the two-point function of the
current in momentum space then takes the general form

〈Jµν(k)Jρσ(−k)〉

=
(
− 1
k2 (kµkρgνσ − kνkρgµσ − kµkσgνρ + kνkσgµρ) + (gµρgνσ − gµσgνρ)

)
fJJ

(
|k|
m

)
(3.4.1)

where here fJJ is a dimensionless function and m is a scale. The correlation is
completely determined by the function f . In this context, spontaneous breaking of
the symmetry means that fJJ

(
|k|
Λ

)
approaches a constant as k → 0; the k → 0 limit

then results in a gapless mode from the inverse factors of k−2 arising from the tensor
structure.

A simple example is given by pure 4d electrodynamics; here the 1-form symmetry
is broken, and the correlator of the magnetic flux J = ?F takes precisely this form
with

fJJ(k) = 1
g2 (3.4.2)

where g2 is the electromagnetic coupling.

An example where the symmetry is not spontaneously broken is given by the holo-
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graphic example studied in [32]. Here the theory in question was a simple bottom-up
holographic realisation of a 1-form symmetry, and the function fJJ was given by

fJJ(k) = 1
g2 log

(
|k|
Λ

) (3.4.3)

where Λ is a Landau pole, i.e. a UV scale where the theory breaks down, as
described in [32]. We note here that fJJ vanishes at k → 0, and the symmetry is
not spontaneously broken. A similar result is found whenever there are electrically
charged degrees of freedom present that are massless.

In this section we will explicitly solve the bulk equations of motion and compute
the function fJJ in our theory, showing that the low-frequency limit does not vanish.
We will then compare it to expectations at weak coupling.

3.4.1 Goldstone modes and numerics

We will proceed by computing the correlation function of spatial components of J ij

with the (Euclidean) momentum purely in the time direction. Although the Green’s
function of interest is better extracted in the “2-form” duality frame with the fields
P2 and A2, it is easier to solve the equations of motion in the “1-form” duality frame
consisting of the fields η1 and τ1. Our strategy will be to solve the bulk equations of
motion in the 1-form frame and then exploit a simple correspondence between the
frames at the UV boundary to extract the Green’s function.

For numerical convenience, we will set µ = 1. As explained below (3.1.7), we
are working in an illustrative approximation where we capture some aspect of the
backreaction of the flavor degrees of freedom on the color dynamics, while neglecting
gravitational backreaction. The results below do not depend qualitatively on this
choice of µ, but this O(1) choice allows us to conveniently find numerical solutions
to the equations of motion.

1-form

We solve the equations of motion given in (3.2.11) by partially fixing the gauge so
that T2 = 0. Next we Fourier transform the fields in the field theory directions and
exploit Lorentz invariance to choose the momentum kµ = (ω, 0). This allows us to
expand some expressions involving differential forms in terms of their components
as

?d?dη1 = z

R2

{(
zη′′i − η′i + zω2ηi

)
dxi + iωz(η′t − iωηz) dz + [z(η′′t − iωη′z)− η′t + iωηz] dt

}
(3.4.4)
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and

H3 = 1
2B
′
ij dx

i∧dxj∧dz+
(
B′it + 1

2iωBijdx
i ∧ dxj ∧ dt− iωBiz

)
dxi∧dt∧dz (3.4.5)

We next note that for a general 2-form Ω2, we have

? (dz ∧ ?Ω2) = − z
2

R2 (Ωiz dx
i + Ωtz dt) (3.4.6)

Similarly, for a general 3-form Ω3 we have

?d?Ω3 = − z

R2

{1
2 ((zΩijz)′ + iωzΩijt) dxi ∧ dxj + (zΩitz)′dxi ∧ dt+ iωzΩitzdx

i ∧ dz
}

(3.4.7)

In pure AdS we can also show that

∂S ε
MNP

QR = 1
z
δzS ε

MNP
QR (3.4.8)

which allows us to write

?d?H3 = − z

R2

{1
2((zB′ij)′ − ω2zBij)dxi ∧ dxj + (zHzit)′dxi ∧ dt+ iωzHzitdx

i ∧ dz
}

(3.4.9)
where

Hzit = B′it − iωBiz (3.4.10)

Now we can write the equations of motion more explicitly in components. The B2

equation of motion is

zh
[1
2
(
zB′ij

)′
dxi ∧ dxj + (zHzit)′dxi ∧ dt+ iωzHzitdx

i ∧ dz
]

= 16
[
(Biz + h′ηi) dxi ∧ dz + (Btz + h′ηt)dt ∧ dz + 1

2Bij dx
i ∧ dxj +Bit dx

i ∧ dt
]

(3.4.11)

We are interested in the vector channel, namely the components with a single
spatial index; after imposing the duality relation at the boundary this contains the
information of the transverse channel of the J ij correlation function.

zh(zHzit)′ = 16Bit (3.4.12a)
zh(iωzHzit) = 16(Biz + h′ηi) (3.4.12b)

These can be combined to give

zh

[
z(B′it + iωh′ηi)

16− ω2z2h

]′
−Bit = 0 (3.4.13)



74 Chapter 3. Application 1: Holographic flavour

where we eliminated Biz using

Biz = iωz2hB′it − 16h′ηi
16− ω2z2h

(3.4.14)

We also have the η1 equation

(1− h)
[(
zη′′i − η′i + zω2ηi

)
dxi + iωz(η′t − iωηz)dz + (z(η′′t − iωη′z)− η′t + iωηz)dt

]
(3.4.15)

− zh−1h′[(hη′i + h′ηi +Biz)dxi + (hη′t − iωhηz +Btz + h′ηt)dt] = 0 (3.4.16)

We are most interested in the vector channel equation

(1− h)
(
η′′i −

1
z
η′i + ω2ηi

)
− h−1h′

(
hη′i + h′ηi + iωz2hB′it − 16h′ηi

16− ω2z2h

)
= 0 (3.4.17)

Observe that equation 3.4.17 contains no information for z > zc, since h(z) = 1 and
h′(z) = 0 in that region. Tracing this back to Eq 3.2.11, we conclude that η1 simply
does not exist for z > zc. In this interpretation, the field B2 starts out life in the
deep interior of the bulk and evolves continuously through the D-brane cap until it
reaches the UV boundary. However, the field η1 does not exist on the IR side of the
D-brane cap - it begins its life at z = zc and evolves to the UV boundary. As η1

started its life as the DBI worldvolume gauge field (which was then mixed together
with other bulk fields to obtain the physical spectrum), it makes sense that it only
exists where the D-brane is present.
However, we now need to understand how to evolve the existing fields through the
transition at z = zc. Imposing continuity of the η1 equation of motion yields a useful
boundary condition. As z → zc from below we have h(z)→ 1 and h′(z)→ 2µ/zc, so
we obtain

dz ∧ ?
(
−dη1 +B2 + T2 + 2µ

zc
η1 ∧ dz

)
= 0

i.e.
Bµz + Tµz − ∂µηz +

(
∂z + 2µ

zc

)
ηµ = 0 (3.4.18)

With our gauge choice, the relevant boundary condition at the cap is given by

η′i = −
(
iωB′it − 2ω2µηi

16− ω2

)
; z = zc . (3.4.19)

Finally, if we expand the dynamical equations of motion in the UV, from the asymp-
totic behavior of the fields we can read off the dual conformal dimensions (using e.g.
[33])

∆η = 3 (3.4.20a)
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UV boundary brane caps off Deep IR

𝑧𝑐 ∞0

𝑧

Figure 3.4: Brane caps off at z = zc

∆b = 2 + 4
√

1 + µ (3.4.20b)

As η is dual to the conserved baryon current, its dimension is fixed at 3 as expected; B
is dual to a massive tensor mode that does not have a simple universal interpretation.

To solve the equations of motion, we now Wick-rotate to Euclidean signature by
setting ω = iω̃. The equations of motion become

(1− h)
(
η′′i −

1
z
η′i − ω̃2ηi

)
+ h−1h′

(
−hη′i − h′ηi + ω̃z2hB′it + 16h′ηi

16 + ω̃2z2h

)
= 0

(3.4.21a)

zh

[
z(B′it − ω̃h′ηi)

16 + ω̃2z2h

]′
−Bit = 0

(3.4.21b)

We can also rewrite the equations in terms of a dimensionless holographic radial
coordinate and frequency by defining

ζ = z/zc (3.4.22a)
w = ω̃ zc (3.4.22b)
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UV boundary brane caps off Deep IR

𝑧𝑐 ∞0

𝑧

𝐵

𝜂

Figure 3.5: B2 (in green) evolves continuously from the IR to the
UV boundary; η1 (in red) is “born” at the brane cap
and evolves to the UV

Dropping the subscripts i, t and exploiting the fact that z∂z = ζ∂ζ , we have

(1− h)
(
d2η

dζ2 −
1
ζ

dη

dζ
− w2η

)
+ h−1dh

dζ

−hdη
dζ
− dh

dζ
η +

zcwζ
2hdB

dζ
+ 16dh

dζ
η

16 + w2ζ2h

 = 0

(3.4.23a)

ζh
d

dζ

[
ζ

16 + w2ζ2h

(
zc
dB

dζ
− wdh

dζ
η

)]
− zcB = 0

(3.4.23b)

Note that instances of zc remain - this is to be expected since it is precisely the
mass scale mmeson = z−1

c which breaks conformal invariance of the dual field theory.
However, the factors of zc appear only when multiplied by B. Hence we can define
b = zcB, so that

(1− h)
(
d2η

dζ2 −
1
ζ

dη

dζ
− w2η

)
+ h−1dh

dζ

−hdη
dζ
− dh

dζ
η +

wζ2h db
dζ

+ 16dh
dζ
η

16 + w2ζ2h

 = 0

(3.4.24a)
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ζh
d

dζ

[
ζ

16 + w2ζ2h

(
db

dζ
− wdh

dζ
η

)]
− b = 0

(3.4.24b)

The boundary condition at the cap is given in Euclidean signature by

dη

dζ
=
w db
dζ
− 2µw2η

16 + w2 (3.4.25)

2-form

The above set of equations is a closed system that can be conveniently numerically
solved. However we are ultimately interested in studying the behavior of the system
in the U(N) duality frame, in which the physics is encoded in the fields P2 and A2

rather than η1 and τ1. To relate them, we note that in the UV (z → 0, dh = 0), we
can match the fields using (3.3.3) to get dP2 = κ2µ

1+µ ? dη1. After a Wick rotation we
can fix some UV scale zΛ to get

w

zc
P12(zΛ) = α

η′3(zΛ)
zΛ

(3.4.26a)

z P ′12(zΛ) = α
w

zc
η3(zΛ) (3.4.26b)

where α = 16µ
(1+µ)R .

As in [32], in the UV we have

Pjk ∼ pjk + Jjk log z, z → 0 (3.4.27)

We may also directly verify that the leading order asymptotic behaviour of η3(z) is
given by

η3(z) ∼ η0 + η2z
2 + η̄2z

2 log z, z → 0 (3.4.28)

Hence matching these components at the cutoff we find that

J12 = α
w

zc
η0 (3.4.29a)

w

zc
(p12 + J12 log zΛ) = α (2η2 + η̄2 + 2η̄2 log zΛ) (3.4.29b)

Consistency of the unambiguous coefficients of log zΛ fixes the coefficient η̄2 to be

η̄2 = 1
2

(
w

zc

)2
η0 (3.4.30)

We now turn to the interpretation of the logarithm in Eq (3.4.27). As explained in
detail in [32], this logarithm arises from the fact that the double-trace coupling J2
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is marginally irrelevant. This marginal irrelevance breaks conformality, and more
information must be given to specify the theory. (Indeed, the only conformal theory
with a continuous 1-form symmetry in four dimensions is free Maxwell electrodynam-
ics [7, 55]). This information can be given in the form of the value of the double-trace
coupling 1

θ
J2 at a particular scale. (Note that in this strongly coupled model one

can now identify θ with the gauge coupling of the U(1) sector g1 in (2.4.45)).

Following the algorithm in [32], we can now determine the source p12 by

p12 = P12(zΛ)− J12

θ
= 2α zc

w
η2 + J12 log z̄∗ (3.4.31)

Here the scale z̄∗ is given by

z̄∗ ≡ e1/2 z∗ ≡ e1/2 zΛ e
−1/θ (3.4.32)

The value of this scale should be understood as the Landau pole where the theory
breaks down; as θ > 0, we note that it is an extremely small scale, much smaller
than the cutoff. Concretely, we can numerically extract the 2-point function content
fJJ(ω) by solving the equations of motion for B3t and η3. See Appendix 3.B for
further details of this method.

Results

Here we present a plot of the numerically calculated Green’s function as a function
of w = ωzc for various values of the dimensionless number γ ≡ zc/z̄∗, i.e. the meson
mass in units of the Landau pole scale.

Note that at weak coupling the mass gap is given by the bare flavor mass mF .
However at strong coupling the mass gap is the mass of the lightest meson which
is given by 1

zc
= 1

2π

√
λ

mF
, where here mF should be understood as the coefficient of

the relevant mass deformation in the UV. We have thus chosen to plot the result in
units of the physical meson mass zc. We observe that the asymptotic behaviour is as
expected: for small w the leading order contribution is a constant which depends on
γ. For large w we expect logarithmic behaviour, but this is difficult to see explicitly
because we cannot numerically access the solution for an exponential range of values
of w.

3.4.2 Comparison to weak coupling

Here we will try to compare the functional form of the results above to a weak-
coupling computation. By weak-coupling, we mean that we will take the non-Abelian
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Figure 3.6: The symmetry current correlator at strong coupling as
a function of w = ωzc for various masses, computed
numerically using holography. For this plot we set z̄∗ =
10−8.

t’Hooft coupling λ to zero; however we will keep fixed the Landau pole associated
with the U(1) factor. Note that in the λ to zero limit, the U(1) sector of the field
theory is effectively super QED with Nf flavours, i.e. a U(1) gauge field a1 coupled
to Nf Dirac fermions and Nf complex scalars of mass m with coupling constant g1.
Up to a normalisation, the current associated with the 1-form global symmetry is
Jb = ?f .

The current-current correlator can be shown to be

〈J̃µνb (k)J̃ρσb (−k)〉 = εµναβερσγδkαkγ ∆̃βδ(k) (3.4.33)

where ∆̃µν(k) is the loop-corrected photon propagator in momentum space. We are
interested in the purely spatial components 〈J̃xyb (k)J̃xyb (−k)〉.

The contributions to the photon propagator ∆µν arise from resumming scalar and
fermion loops as in Figure 3.7 and Figure 3.8:

k

l − k

l

k

Figure 3.7: Scalar loop diagram contributing to correction of photon
propagator

This is a textbook calculation - see e.g. [3] for a reference which matches our
conventions. We use dimensional regularisation in the MS renormalisation scheme
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k

l − k

l

k

Figure 3.8: Fermion loop diagram contributing to correction of
photon propagator

and put momentum purely in the time direction. This allows us to write

〈J̃xyb (ω)J̃xyb (−ω)〉 =
{

1− Nf g
2
1(µ)

4π2

∫ 1/2

0
dy (1− 2y2) log

[
1 + (1/4− y2) ω̂2

(µ/m)2

]
+O(g4

1)
}−1

(3.4.34)
where µ is an arbitrary mass scale and we define a dimensionless number by ω̂ ≡ ω/m.
The coupling g1 runs logarithmically with the energy scale. Let’s fix the coupling
g1 at some UV scale µΛ to be gR. Then the Landau pole scale µ∗ at which the
renormalized coupling g1 diverges is related to µΛ by

µ∗ = µΛ e
1/χ (3.4.35)

where here χ is given by
χ = 5Nf g

2
R

24π2 (3.4.36)

Note that we have combined the fermion contribution of Nf g
2
R/(6π2) with the scalar

contribution of Nf g
2
R/(24π2). Here µ∗ is the physical scale which we should identify

with the holographic Landau pole z∗ when comparing the two theories.

This gives an expression for the current-current correlator in terms of the Landau
pole scale and the double-trace coupling as

〈J̃xyb (ω)J̃xyb (−ω)〉−1 = 6
5χ

∫ 1/2

−1/2
dy (1− 2y2) 1

2 log
[

1 + (1/4− y2) ω̂2

(µ∗/m)2

]
(3.4.37)

See Figure 3.9 for a plot of the correlator at weak coupling. As we can see, the weak-
coupling and strong-coupling plots are extremely similar: they approach a constant
for small ω in relation to the relevant mass scale (as dictated by the spontaneous
symmetry breaking), and diverge logarithmically for large ω (as dictated by the
running of the coupling at large frequencies). It is curious to note that these two
properties appear to be sufficient to control the correlator at all scales, giving the
same dynamical behavior from strongly coupled gravity and from weakly coupled
Feynman diagrams.
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Figure 3.9: The symmetry current correlator at weak coupling as
a function of ω̂ = ω/mF , computed analytically in per-
turbation theory

Conclusion: In this chapter, we have studied the realisation of 1-form symmetries
in perhaps the simplest holographic model in which such a symmetry could be
spontaneously broken; along the way we have clarified some aspects of the interplay
between 0-form baryon number symmetry and the 1-form ZN symmetry in SU(N)
gauge theory. We identified the charged line operator and verified the expected
behavior of the current-current correlation function, demonstrating the existence
of the expected Goldstone mode. We can identify various directions for future
research. It would be very interesting to extend this study to finite temperatures,
where we could expect to make contact with recent symmetry-based formulations
of magnetohydrodynamics [10]. In a more formal direction, it would also be very
interesting to understand the bulk holographic dual of the colour-flavour-center
symmetry identified in [54].
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3.A Normalisations

To translate between field theory quantities and bulk quantities we use the holo-
graphic dictionary [34]

R4

l4s
= λ ≡ g2

YMNc = 4πgsNc (3.A.1)

3.A.1 Kinetic Terms

The kinetic terms for B2 and C2 are of the form

Skin = −
∫
AdS5

(1
2N

2
B H

2
3 + 1

2N
2
C G

2
3

)
(3.A.2)

and our task is to find the factors NB and NC .

Consider the type IIB low energy supergravity action in the NS-NS sector2 (see e.g.
[5]):

SNS = 1
2κ2

10

∫
d10x
√
−G e−2Φ

(
R + 4∂µΦ∂µΦ− 1

2 |H3|2
)

(3.A.3)

where G is the 10-dimensional metric in the string frame, Φ is the dilaton field, R
is the Ricci scalar and κ10 is the gravitational coupling in 10 spacetime dimensions
given by 2κ2

10 = (2π)7l8s .

If we choose the dilaton to be constant with eΦ = gs and choose the string frame
metric to be the usual metric on AdS5 × S5, the relevant term is

SNS = 1
(2π)7l8sg

2
s

∫
AdS5×S5

(
−1

2H
2
3

)
(3.A.4)

We dimensionally reduce on the S5 which yields a factor of V5 = π3R5

Seff = − R5

128π4l8sg
2
s

∫
AdS5

(1
2H

2
3

)
(3.A.5)

where now the integral is taken only over the AdS5 directions. We thus conclude
that

N 2
B = R5

128π4g2
s l

8
s

= N2
c

8π2R3 (3.A.6)

The analysis for the R-R kinetc term is similar. The supergravity action in the R
sector is

SR = − 1
4κ2

10

∫
d10x
√
−G

(
|F1|2 + |Ĝ3|2 + 1

2 |F̃5|2
)

(3.A.7)

2To match the conventions of [5] with ours we have
∫
d10x
√
−G |Fp+1|2 =

∫
F 2
p+1.
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where the relevant quantity for us is Ĝ3 ≡ G3 − C0 ∧H3 and G3 = dC2 is the R-R
field strength. Setting C0 = 0 we have the term

SR = − R5

128π4l8s

∫
AdS5

(1
2G

2
3

)
(3.A.8)

after compactifying on the S5. By comparing with the original action we can identify

N 2
C = R5

128π4l8s
= λ2

128π4R3 (3.A.9)

as promised.

3.A.2 Chern-Simons Term

Suppose we have a Chern-Simons term in the action of the form

SCS = k

2π

∫
B2 ∧G3 = κ NB NC

∫
B2 ∧G3 (3.A.10)

The coupling to D1-branes and F1-strings respectively is SD1 = µ1
∫
C2 and SF1 =

1
2πl2s

∫
B2, where µ−1

1 = 2πl2s is the tension of a D1-brane. A higher-form Dirac
quantisation condition gives

µ1

2π

∫
S3
F3 ∈ Z (3.A.11)

For a magnetic monopole of unit charge we have (in d = 10)

dG3 + 2π
µ1
δ4(W ) = 0 (3.A.12)

where W = S5 × L is the 6d worldvolume of the D5-brane sourcing the monopole
and L is the worldline of the monopole, i.e.a timelike curve in AdS5.

By taking the wedge with dΩ5 ∧Ξ1 and integrating over all 10 dimensions we obtain∫
AdS

dG3 ∧ Ξ1 + 2π
µ1

∫
L

Ξ1 = 0 (3.A.13)

which allows us to write the gauge variation of the Chern-Simons term as

δSCS = k

µ1

∫
L

Ξ1 (3.A.14)

This must be cancelled by the gauge variation of M F1 strings which end on the
worldline L,

MδSF1 = M

2πl2s

∫
F1
δB2 = M

2πl2s

∫
L

Ξ1 (3.A.15)
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We identify the integer M with the number of colours in the field theory Nc, as in
[38].

Hence
k = µ1Nc

2πl2s
= Nc

4π2l4s
= Ncλ

4π2R4 (3.A.16)

This gives
κ = k

2πNBNC
= 4
R

(3.A.17)

3.A.3 DBI term

Here we will describe the basic setup to add a D7-brane to AdS5 × S5 by wrapping
an S3 around the S5. We will follow a similar approach to [40]. The final result will
be a contribution to the action of

−N 2
B

∫ 1
2κ

2µf(z)
(
B2 + 2πR2

√
λ
F2

)2
 (3.A.18)

where the factor µ and the function f(z) will be determined.

The 10d string frame metric GAB is given by

ds2 = GABdX
AdXB = R2

z2 (−dt2 + dz2 + dxidxjδij) +R2dΩ2
5 (3.A.19)

Here i, j ∈ {1, 2, 3} are spatial indices and A,B index the coordinates z, t, xi and all
the angles of S5. R is the AdS radius and we parametrise the 5-sphere as

dΩ2
5 = dθ2 + cos2 θdψ2 + sin2 θdΩ2

3, (3.A.20)

where dΩ2
3 is the standard metric for a 3-sphere, the angle ψ ∈ [0, 2π] is azimuthal

and the angle θ takes values in [0, π2 ]. This coordinate choice is analogous to the
so-called Hopf coordinates on S3. For our purposes, these coordinates provide a
simpler way to embed a 3-sphere inside a 5-sphere than the usual hyperspherical
coordinates.

We can embed a probe D7-brane into the target space by means of the DBI action:

SDBI = −τ7

∫
d8ξ

√
− det (gαβ +Bαβ + 2πl2sFαβ) (3.A.21)

where ξα are the brane worldvolume coordinates, gαβ is the induced worldvolume
metric on the D7-brane, Bαβ are the components of the NS-NS 2-form and F2 = dA1

is the Maxwell field strength living on the brane.
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τp is the effective Dp-brane tension after absorbing the effect of the dilaton eΦ = gs

and is given by equation (13.3.23) of [5] as

τ7 = 1
gs

1
(2π)7l8s

(3.A.22)

The desired brane configurations fills all of AdS and wraps a 3-sphere around the S5,
so the transverse fluctuations will be the θ and ψ angles. Since GAB is independent
of ψ, i.e.∂ψ is a Killing vector of the target space metric, we will take ψ to be a
constant. Crucially, the θ angle will be a function of the AdS radial coordinate:
θ = θ(z).

The worldvolume metric is the pull-back of the target space metric onto the world-
volume

gαβ = ∂XA

∂ξα
∂XB

∂ξβ
GAB (3.A.23)

If we choose static gauge ξα = Xα then we simply have

gzz = Gzz +
(
dθ

dz

)2

Gθθ = Gzz(1 + (zθ′)2) (3.A.24a)

gαβ = Gαβ, α 6= z (3.A.24b)

Let’s write Bαβ + 2πl2sFαβ ≡ B̃αβ. We can expand the determinant in the DBI
Lagrangian as

det(gαβ + B̃αβ) = det(gαγδγβ + gαγgβδB̃
γδ)

= det(gαγ) det(δγβ + gβδB̃
γδ)

= det(GMN)(1 + (zθ′)2)(R2 sin2 θ)3 det(δγβ + gβδB̃
γδ)

For a traceless matrix A we have det(1 + A) = 1− 1
2 Tr(A2) +O(A3).

Since gβδB̃γδ is traceless, the leading order behaviour of det(δγβ + gβδB̃
γδ) is given by

det(δγβ + gβδB̃
γδ) = 1 + 1

2B̃
αβB̃αβ + · · · (3.A.25)

Putting this into the DBI action and performing the integral over the unit 3-sphere
to obtain a factor of 2π2 gives

SDBI = − 1
gs

2π2R3

(2π)7l8s

∫ √
−GMN d5x

[√
1 + (zθ′)2 sin3 θ

(
1 + 1

4B̃
αβB̃αβ

)]
(3.A.26)

to quadratic order in B̃αβ.

Let’s turn off the Kalb-Ramond field and the Maxwell field. Now we have an effective
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action of the form
S = N

∫
dzL[θ(z), θ′(z)] (3.A.27)

where
L = sin3 θ

z5

√
1 + (zθ′)2 (3.A.28)

and we absorbed the integral over field theory directions into the overall normalisation
factor N .

Solving the Euler-Lagrange equation gives the single-valued on-shell angle

θ(z) = θc ≡

arccos(z/zc) z ≤ zc

0 z > zc
(3.A.29)

Geometrically, this means that the S3 wrapping the S5 is of maximal size (θ = π/2)
at z = 0 on the boundary, and the D7-brane vanishes (θ = 0) at the critical value
z = zc. For z > zc the D7-brane has no effect.

It is straightforward to show that√
1 + (zθ′c)2 sin3 θc = f(z) (3.A.30)

where f is the dimensionless scalar function given by

f(z) =

1− (z/zc)2 z ≤ zc

0 z > zc
(3.A.31)

Using the holographic dictionary we find that 2πl2s = 2πR2
√
λ
. In general to add Nf

flavours we simply add Nf probe D7-branes. After holographic renormalisation this
gives an overall contribution to the action of

NfSDBI = − N2
c

8π2R3

∫ 1
2

( 4
R

)2 Nf

Nc

λ

32π2f(z)
(
B2 + 2πR2

√
λ
F2

)2
 (3.A.32)

from which we can read off that

µ = Nf

Nc

λ

32π2 (3.A.33)

as expected.

3.A.4 Couplings of other branes

Here we work out the couplings to various other bulk objects in our normalisation.
We will sometimes make use of the form delta function δMp(x). This is a delta
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function that is nonzero only if x is on the submanifoldMp; more precisely it is a
d − p-form such that δMp(x) = 0 if x /∈ Mp and the integral over any p-form Cp

satisfies: ∫
Rd
δMp ∧ Cp =

∫
Mp

Cp . (3.A.34)

Wrapped D5-brane: baryon vertex

We recall the action:

S = − N2
c

8π2R3

∫ [1
2H

2
3 + 1

2κ
2(B2 + T2)2

]
(3.A.35)

where T2 = dτ1. Recall from (3.2.1) also that τ1 is related to the original RR and
NS 2-forms as

dτ1 = λ

4πNcκ
? dC2 −B2 (3.A.36)

We now start with a D5-brane wrapped on the S5, and would like to determine its
coupling to the field τ1; in other words we add to the action a term

qτ

∫
L
τ1 (3.A.37)

and would like to determine the coefficient qτ . For simplicity, study a configuration
with B2 = 0; varying the action with respect to τ1 we have

N2
c κ

2

8π2R3d ? dτ1 = qτδL(x) (3.A.38)

Integrating both sides of this over a ball with boundary S3 that intersects the
worldline L, we have

N2
c κ

2

8π2R3

∫
S3
?dτ1 = qτ (3.A.39)

Now use G3 = dC2 and insert (3.A.36) to find that for a minimally charged D5-brane
as in (3.A.11) we have

qτ = Nc

2πl2s
(3.A.40)

This is Nc times the “unit charge” of a single F -string in the appropriate units, as
we discuss in the bulk of the text.

Wrapped D5-brane with boundary: DBI monopole

We now discuss a different bulk object, though also arising from a wrapped D5-
brane, here wrapping a half S4 and ending on the D7 flavour branes. The geometry
is described around (3.3.15). Here we work out the precise charges; the computation
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outlined here is a higher-dimensional analogue of the calculations in [48]. The
relevant parts of the bulk action are

NFT7

∫
D7

2πl2s F2 ∧ C6 + T5

∫
D5
C6 + · · · (3.A.41)

We study the case with Nf = 1. We study the configuration where the D5-brane has
a boundary ∂D5 ending on the D7-brane. This boundary means that the coupling
to C6 alone is no longer gauge invariant; indeed if we now do a 5-form gauge
transformation of the RR 6-form C6, C6 → C6 + dΛ5, we find that gauge-invariance
requires that

T7 2πl2s dF2 = −T5 δ∂D5(x) (3.A.42)

and thus that if we consider an S2 that surrounds ∂D5 on the D7-brane worldvolume,
we have that ∫

S2
F2 = 2π (3.A.43)

where we have used that T5
T7(2πl2s) = 2π. Thus the edge of the wrapped brane couples

magnetically to the DBI worldvolume field. As expected, this is the magnetic flux
that saturates the Dirac quantisation condition, where the conjugate electric charge
is viewed as the endpoint of an F-string ending on the D7-brane.

D1 string

Here we work out the coupling of the D1 string to C̃1, which is the magnetic dual of
the RR 2-form C1. We begin with the relevant part of the effective 5d kinetic term
for C2 from (3.1.1), which is

S = − λ2

128π3R3

∫
AdS5

1
2(dC2)2 + · · · (3.A.44)

From here we and the coupling to a D1 string used in 3.A.2 we find that the equation
of motion in the presence of a D1 source is

∫
S2
?dC2 = 64π3

l2s

R3

λ2 (3.A.45)

where the integral is taken over an S2 that surrounds the D1 brane. Next, using the
relation between C2 and C̃1 in (3.2.1) in a configuration where B = 0, we find that

∫
S2
dC1 = 16π2l2s

NCR
(3.A.46)

Restoring the factor of κ−1 this reduces to (3.3.14) quoted in the main text.
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3.B Numerical Solution

Here we give a brief explanation of the numerical procedure used to obtain the
spectral function in Figure 3.6.

An overview: the equations of motion for B2 and η1 are numerically solved twice,
each time with different boundary conditions. The solution for η1 is dualised to a
solution for P2 in the UV. The solutions for B2 and P2 are then used to construct
the Green’s function fJJ . For concreteness, we work with the components B3t and
η3.

3.B.1 Equations of motion

The boundary conditions used are the values of the fields B and η at the D7-brane
cap ζ = 1. This then fixes the derivatives of the fields as follows. The derivative of
B is determined by solving the equation of motion in the range 1 < ζ <∞ and the
derivative of η is determined by imposing continuity as ζ → 1 from below.

In the region 1 < ζ <∞, the equation of motion for B is considerably simpler. In
fact, it can be reduced to a first-order nonlinear differential equation for the new
field Σ defined by

Σ(ζ) ≡ 1
B(ζ)

dB

dζ
(3.B.1)

The appropriate asymptotic boundary condition in the IR is constrained by regularity
to be

Σ(ζ) ∼ −w; ζ →∞ (3.B.2)

This is the consequence of the asymptotics of B itself:

B(ζ) ∼ e−wζ ζ →∞ (3.B.3)

After solving for Σ we can read off the value of the derivative of B at the cap as

dB

dζ
(1) = Σ(1)B(1) (3.B.4)

The coupled equations of motion are solved up to some UV-cutoff scale (a minimum
value for zc), at which η1 can be straightforwardly dualised to P2. P2 corresponds
to a 1-form global symmetry, so its asymptotic form in the UV is well-understood.
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3.B.2 Asymptotic analysis

To extract the data needed for the Green’s functions, we need a careful understanding
of the asymptotic falloffs of various fields. In the 1-form picture, one finds the
following form for the fields:

B(z → 0) ∼ z−ν
(
b0,− + z2b2,− + · · ·

)
+ zν

(
b0,+ + z2b2,+ + · · ·

)
(3.B.5)

Here, by the usual rules of AdS/CFT, b0,− is the source and b0,+ is the response.
Similarly, we may expand the field η(z) at infinity: we find

η(z → 0) ∼ η0 + η2z
2 + η̄2z

2 log z + · · ·+ z4−ν
(
η−,0 + z2η−,2 + · · ·

)
(3.B.6)

Here a somewhat unfamiliar role is played by the terms in z4−ν ; these arise from the
mixing between the two bulk fields. The coefficients η−,0, η−,2 are all proportional to
b0,− and may be explicitly calculated from the asymptotic analysis of the equations
of motion.

Numerically it is more practical to fit the solutions of the equations of motion to
the known asymptotic form using linear regression. This “numerical holographic
renormalisation” allows us to pick out the coefficients we need. Crucially however,
we implemented the numerics using the ζ coordinate defined by ζ = z

zc
. We can

write the above asymptotic expansions in this coordinate system as

B(ζ → 0) ∼ z−νc ζ−ν
(
b0,− + z2

c ζ
2 b2,− + · · ·

)
+ zνc ζ

ν
(
b0,+ + z2

c ζ
2 b2,+ + · · ·

)
(3.B.7)

= ζ−ν
(
b̂0,− + · · ·

)
+ ζν

(
b̂0,+ + · · ·

)
A linear regression in the ζ coordinate system will thus fit the coefficients

b̂0,− ≡ z−νc b0,− (3.B.8a)
b̂0,+ ≡ zνc b0,+ (3.B.8b)

This scaling can be accounted for, but will anyway cancel out at the end of our
calculation.

However for η the presence of the logarithmic term in the asymptotic expansion
produces a more subtle transformation. We have (after holographic renormalisation)

η(ζ → 0) ∼ η0 + η2z
2
c ζ

2 + η̄2z
2
c ζ

2(log zc + log ζ) + · · · (3.B.9)
= η0 + z2

c (η2 + η̄2 log zc) ζ2 + η̄2 z
2
c ζ

2 log ζ + · · ·
= η̂0 + η̂2ζ

2 + ˆ̄η2ζ
2 log ζ + · · ·
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Hence for η a naive linear regression in the ζ coordinates will fit the coefficients

η̂0 ≡ η0 (3.B.10a)
η̂2 ≡ z2

c (η2 + η̄2 log zc) (3.B.10b)

η̄2 is given in terms of η0 by consistency, so we can invert these transformations to
obtain η0 and η2, i.e.the expansion coefficients in the z coordinate system. These
are the physically useful constituents for computing the Green’s function.

We finally map these coefficients to the source and response in the 2-form picture
via

p = 2α zc
w
η2 + J12 log z̄∗ (3.B.11a)

J = α
w

zc
η0 (3.B.11b)

3.B.3 Source-response method

To construct the Green’s function we refer to the source-response picture, in which
the Green’s function is understood as acting on the source to produce a response.
Labelling the fields as I, J , the sources as SI and the responses as RI , the components
GIJ of the Green’s function are thus given by

GIJSJ = RI (3.B.12)

Hence for example,
GPBSB +GPPSP = RP (3.B.13)

To extract GPP , we need to obtain two sets of the source and response data, which
we label as S(1)

I and S(2)
I , etc. We thus obtain a straightforward matrix equationS(1)

B S
(1)
P

S
(2)
B S

(2)
P

GPB

GPP

 =
R(1)

P

R
(2)
P

 (3.B.14)

which we can trivially invert to find

GPP = S
(1)
B R

(2)
P − S

(2)
B R

(1)
P

S
(1)
B S

(2)
P − S

(2)
B S

(1)
P

(3.B.15)

In our earlier notation, we have SB = b0,−, RB = b0,+, SP = p, RP = J and
fJJ = GPP . Hence running the numerical algorithm twice provides all the data we
need to input into equation 3.B.15 to compute the Green’s function of interest.
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3.C Index of symbols

For the convenience of the reader, here we present a roughly alphabetical list of the
symbols in this chapter, a brief description, and where it is first defined. As a rule,
the subscript on a form indicates the degree of the form.

1. A1: the usual DBI worldvolume gauge field living on the flavour brane. First
appears in (3.1.1), where F2 = dA1.

2. A2: the magnetic dual of the 1-form field τ1.

3. B2: the NS-NS 2-form. First appears in (3.1.1).

4. C2: the R-R 2-form. First appears in (3.1.1).

5. C̃1: the magnetic dual of the R-R 2-form C2. Defined in (3.2.1).

6. f(z): the function describing how the brane caps off in the bulk. Defined in
(3.1.6).

7. fJJ(w): the scalar function capturing the dependence of the symmetry current
two-point function on w. Defined in (3.4.1).

8. F2: the field strength of A1. First appears in (3.1.1).

9. F3: the field strength of A2. Defined in (3.3.1).

10. G3: the field strength of C2. First appears in (3.1.1).

11. G̃2: the field strength of C̃1. Defined in (3.2.1).

12. h(z): a function of f first defined in (3.2.4)

13. H3: the field strength of B2. First appears in (3.1.1).

14. mF : the fermion mass, i.e.the mass gap at weak coupling. First appears in
(3.1.12).

15. mmeson: the lightest meson mass, z−1
c , i.e.the mass gap at strong coupling.

16. Nc: the number of colours of the gauge group.

17. Nf : the number of flavours of fundamental matter; the number of D7-branes
in the bulk.

18. P2: the magnetic dual of η1. Defined in (3.3.3).
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19. Q3: the field strength of P2. Defined in (3.3.3).

20. R: the AdS radius. First appears in (3.1.7).

21. T2: the field strength of τ1. Defined in (3.2.6b).

22. w: the dimensionless number ωzc. Defined in (3.4.22b).

23. Y2: the field strength of η1. First defined in (3.2.6a).

24. z: the radial AdS coordinate.

25. zc: the value of z where the brane caps off. First appears in (3.1.6).

26. η1: a combination of A1 and C̃1. Defined in (3.2.5a).

27. κ: Factor appearing in (3.1.1) equal to 4
R
. Defined in (3.1.5a).

28. µ: the ratio of mass contributions from A1 and C̃1. Defined in (3.1.5b).

29. τ1: a combination of A1 and C̃1. Defined in (3.2.5b).

30. ζ: the dimensionless number z/zc. Defined in (3.4.22a).





Chapter 4

Review of relativistic
hydrodynamics

In this short chapter we provide a brief review of relativistic hydrodynamics and
contrast it with the recent symmetry-based reformulations of magnetohydrodynamics
and force-free electrodynamics. This will lay the groundwork for the following chapter
in which we compute a transport coefficient in this framework from microscopics.

4.1 Relativistic hydrodynamics

An excellent review of relativistic hydrodynamics is given in [56]. The key points
are as follows. As discussed in Chapter 2, relativistic theories in a flat spacetime
have a translational symmetry, and hence a conserved stress tensor T µν satisfying

∂µT
µν = 0 (4.1.1)

We can also add a further ingredient, namely a U(1) ordinary global symmetry. By
Noether’s theorem, this guarantees a classically conserved 0-form current j satisfying

∂µj
µ = 0 (4.1.2)

In hydrodynamics, the relevant degrees of freedom are no longer the stress tensor T µν

and the symmetry current jµ, but rather the hydrodynamic variables of fluid velocity
uµ, inverse temperature β and chemical potential µ. We normalise the fluid velocity
by uµuµ = −1. The equations expressing the relationship between the microscopic
T µν and jµ in terms of the hydrodynamic variables are called constitutive relations.

In the thermal equilibrium state of the system, uµ, β and µ are constant functions
of the spacetime. Hydrodynamics is concerned with small fluctuations of the system
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around the thermal equilibrium, and hence we consider derivative expansions of the
hydrodynamic variables. That is, we write the constitutive relations order-by-order
in derivatives of uµ, β and µ.

Physically, when no deviations from thermal equilibrium are allowed, we are in the
regime of ideal hydrodynamics or non-dissipative hydrodynamics. This system can
be solved in certain cases, but for general boundary conditions even guaranteeing
the existence of a physical solution remains a deep open problem, see [57]. Here the
constitutive relations are given simply by

T µν = ε uµuν + p(gµν + uµuν) (4.1.3a)
jµ = nuµ (4.1.3b)

where ε is the equilibrium energy density, p is the equilibrium pressure and n is the
equilibrium charge density.

At non-trivial orders in derivatives, there are dissipative corrections to the con-
stitutive relations. Hydrodynamics thus provides a systematic way to organise such
corrections. From an effective field theory point of view, the coefficients of such
corrections, called transport coefficients, must be determined separately from the
underlying microscopic theory. At first order in conventional hydrodynamics these
transport coefficients are viscosities.

In quantum field theory we can use a Kubo formula to compute transport coefficients
from correlation functions involving jµ and T µν . This is the approach adopted in
Chapter 5. The Kubo formulas themselves are universal in the sense that they are
independent of the specific microscopics. The transport coefficient is only determined
when the precise microscopics are specified.

4.2 Magnetohydrodynamics

In conventional magnetohydrodynamics (MHD), there is an additional ingredient
provided by a dynamical electromagnetic field. The equations of magnetohydro-
dynamics are used extensively to understand astrophysical plasmas. See [58] for a
discussion of relativistic MHD.

From the gauge field strength and the Levi-Civita tensor, we can construct a 2-form
current Jµν .

Jµν = 1
2ε

µνρσFρσ (4.2.1)

From a symmetries perspective, there is in fact no longer an ordinary U(1) global
symmetry, but instead a 1-form U(1) global symmetry, providing a conserved 2-form
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current Jµν satisfying
∂µJ

µν = 0 (4.2.2)

Physically, the 1-form symmetry is related to the conservation of magnetic flux lines.
Strongly-coupled MHD can be constructed as a hydrodynamic theory from first
principles, as in [10]. As before, we have a conserved stress tensor T µν .

The constitutive relations at ideal order are

T µν = (ε+ p) uµuν + p gµν − µρ hµhν (4.2.3a)
Jµν = ρ(uµhν − uνhµ) (4.2.3b)

where hµ is a spacelike vector pointing in the direction of the magnetic field lines.
We normalise hµhµ = 1.

Crucially, the constitutive relations break Lorentz invariance by fixing some preferred
choice of direction hµ along the field lines. This distinguishes MHD from force-free
electrodynamics which we discuss below.

4.3 Force-free electrodynamics

4.3.1 FFE in astrophysics

In astrophysics, force-free electrodynamics (FFE) is conventionally thought of as
a description of a particular regime of a strongly magnetised plasma, one where
free electric charges are sufficiently plentiful to screen the electric field to zero, but
sufficiently dilute that their stress-energy may be ignored in comparison to the energy
stored in the electromagnetic field. As conventionally formulated, FFE comprises a
self-consistent set of equations describing the non-linear dynamics of the magnetic
field itself [59, 60] (see [61] for a review). One can imagine that the FFE equations
of motion are a sort of Navier-Stokes equations for the magnetic field.

In components, the FFE equations of motion (in a curved spacetime) are given by

∇[µFρσ] = 0 (4.3.1a)
Fσν∇µF

µν = 0 (4.3.1b)

This theory is conventionally used for a coarse-grained description of the magneto-
spheres of astrophysical objects. It is important to note however that the usual
formulation of FFE imposes the degeneracy condition

F ∧ F = 0 (4.3.2)
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or equivalently in components

1
2ε

µνρσFµνFρσ = εijkF0iFjk = ~E · ~B = 0 (4.3.3)

There is thus never an electric field along a magnetic field line. We now note that
the Lorentz force means that stray charged particles are essentially confined to move
along magnetic field lines. This means that there is no possibility for an accelerating
electric field, i.e. an electric field that accelerates charged particles to high energies.

A typical application of FFE pertains to the study of neutron stars, in particular
to pulsars. Pulsars exhibit a rich phenomenology, including coherent emission of
radio waves and the acceleration of particle winds. From the above, it appears that
FFE alone does accommodate a natural mechanism to accelerate particles into jets
or cosmic rays. Further, it appears that FFE has no built-in length scales; these
two features mean that FFE does not seem to account in a simple manner for the
full plethora of observed phenomena associated with pulsars. [62, 63, 64]. We will
discuss these consequences in further detail in Chapter 5.

As a theory then, (ideal) FFE can be considered incomplete. Theoretically, the
conventional formulation of FFE does not make clear in precisely what sense it is
an approximation, or how one might systematically improve on the approximation
in some small parameter.

4.3.2 Generalised FFE

From the point of view of higher-form symmetries, FFE (in the astrophysics lit-
erautre) can be considered as the ideal (no dissipation) limit of a hydrodynamic
theory, which we will call generalised FFE or confusingly, FFE. Recently, FFE was
reformulated from the point of view of effective field theory in [65]. This reformu-
lation was made possible by the identification of a higher-form symmetry that is
associated with the conservation of magnetic flux. Importantly, this reformulation
makes clear that FFE is an expansion in powers of derivatives, essentially placing
it on the same footing as conventional hydrodynamic theories [56]. It also makes it
possible to systematically incorporate higher-derivative corrections.

We first present an extremely brief overview of the formalism, assuming that the
reader is already somewhat familiar with [65]. We work in terms of Jµν , which is
related to the conventional electromagnetic field strength as

Jµν = 1
2ε

µνρσFρσ (4.3.4)
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As explained in detail in [6], this is the conserved current for the 1-form symmetry
associated with magnetic flux conservation. It was shown in [10] that this symmetry
principle is useful for organising magnetohydrodynamics. In [65] it was further shown
that a formulation of FFE exists where the magnetic field and stress tensor can be
conveniently expressed in terms of a 2-form uρσ which can be thought of as the
volume form of the dynamical magnetic field. To leading order in derivatives, one
finds

Jµν = Buµν (4.3.5a)

T µν = B2
(1

2g
µν + Ωµν

)
(4.3.5b)

where here Ωµν = uµρu
ρ
ν is a projector onto the worldsheet of the magnetic field

lines, B is the magnitude of the magnetic field, and we have made a choice of an
“equation of state”. (Note that in this formalism B should be viewed as a kind of
“thermodynamic variable”, as explained in [65]). uµν is not an arbitrary 2-form; it
has a fixed magnitude and satisfies a particular degeneracy relation u ∧ u = 0.

Conservation of the 2-form current and the stress tensor is equivalent to the field
equations of motion for FFE given in (4.3.1). This is the usual expression for FFE;
however within the effective field theory framework it is only the first term in an
infinite series of higher-derivative corrections.

One interesting comparison between the hydrodynamic theories discussed so far
emerges from the contrast between the various corresponding constitutive relations
(4.1.3), (4.2.3) and (4.3.5).

4.3.3 Higher-derivative corrections

In this thesis, we focus on a particular higher-derivative correction, one which was
shown in [66] to produce a correction with ~E · ~B 6= 0, and hence a non-trivial
accelerating electric field, in a typical (toy model of a) pulsar geometry. We present
the first microscopic computation of such a higher derivative correction in Chapter
5 by computing a one-loop diagram in QED.

The possible set of leading higher-derivative corrections was classified in [66]. In the
following chapter we focus on one particular correction β2 from that analysis, which
leads to a correction of the form:

Jµν = Buµν − 3∇σ

(
β2(B)∇[αuβγ]ΩασΠβµΠνγ

)
+ · · · (4.3.6)

where here Πµν = gµν − Ωµν is an orthogonal projector. The addition of this term
is conceptually similar to adding e.g. viscosity to ideal hydrodynamics. We will
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thus call β2 a transport coefficient, where we borrow the term from hydrodynamics.
(As we will see, the Lorentz-invariance of the FFE effective theory gives it a rather
different character to more familiar transport coefficients such as viscosity).

The key point here is that once such a term is included, it is no longer generically
true that J ∧ J ∼ ~E · ~B = 0. The generic existence of accelerating electric fields
now leads to the tremendously exciting possibility of observational consequences. In
fact, it was shown in [66] that the term shown above is generically active on a toy
model of a pulsar geomtery. In the following chapter, we compute β2(B) from first
principles.



Chapter 5

Application 2: Force-free
electrodynamics

In this chapter, we compute the transport coefficient associated with a particu-
lar higher-derivative correction to force-free electrodynamics. Concretely, this is a
perturbative QED calculation involving fermions in a background magnetic field.

The structure is as follows. In Section 5.1 we give an overview of the perturbative
computation including the relevant Feynman diagrams. In Section 5.2 we compute
the transport coefficient for a toy model consisting of a complex scalar. Then in
Section 5.3 we use a similar but more complicated method to compute the transport
coefficient for the physical model which consists of a Dirac fermion. Finally in
Section 5.4 we compare the results of the calculation for the physical model with
appropriate astrophysical observations and discuss the implications. Many further
details of the computations, including our choice of conventions, can be found in the
appendix to this chapter.

5.1 Overview of calculation

As usual, to calculate a transport coefficient from a micrsocopic description we
should use a Kubo formula (see [56] for a review of the formalism in conventional
hydrodynamics). For FFE the relevant Kubo formulas were recently derived in [66];
that for β2 is given by

β2 = −
[
∂2

∂p2
1
G̃02,23
JT (p1)

] ∣∣∣∣∣
p1=0

= i

[
∂2

∂p2
1
〈J̃02(p1)T̃ 23(−p1)〉

] ∣∣∣∣∣
p1=0

(5.1.1)

This is written in a non-covariant manner; the Kubo formula was derived from
fluctuations about a homogenous magnetic field pointing in the 3 direction, i.e. in
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equilibrium we have J03 = B, where B is the background magnetic field. p1 is a
transverse spatial momentum. With our conventions, the Green’s function is related
to the two-point function by

i Gµν,ρσ
JT (x, y) ≡ 〈Jµν(x)T ρσ(y)〉 (5.1.2)

We note that J is odd under charge conjugation symmetry, which also acts on the
background magnetic field as B → −B; thus this correlator clearly vanishes in the
Lorentz-invariant vacuum where B = 0. The final answer for β2 will thus be odd
under B → −B, as anticipated in [65]. While we will verify this explicitly in what
follows.

We will calculate this correlation function at one-loop order for both a complex
scalar and a Dirac fermion. We note that in general it is difficult to compute
transport coefficients from perturbative quantum field theory, as the hydrodynamic
limit typically does not commute with the weak-coupling limit, which manifests itself
in the need to sum infinitely many Feynman diagrams. However in this case this
particular correlation function is a static correlator, evaluated at ω = 0. In some
ways, this perhaps more akin to a correction to thermodynamics than a dynamical
transport coefficient. We will nevertheless continue to call it a transport coefficient
in this current work, and we will initiate its study by computing it to leading order
in perturbation theory, and in the conclusion we will discuss the validity of this
calculation.

The general method is as follows. First we calculate the Fourier transform of the
correlation function 〈T J02(x)T 23(y)〉 with momentum purely in a spatial direction
transverse to the magnetic field, and then take partial derivatives with respect to this
momentum. As T is a bilinear in the fundamental fields, this correlation function
itself can be constructed by calculating a three-point function of fundamental fields
and applying appropriate spatial derivatives and integrals. For the complex scalar
we will use the three-point function 〈T Aµ(x)φ†(y)φ(z)〉 and for the Dirac fermion
we will use the three-point function 〈T Aµ(x)ψ̄(y)γνψ(z)〉.

To calculate 〈T J02(x)T 23(y)〉 we take appropriate spatial derivatives of the relevant
three-point function and then sew together the ends of the diagram to make a loop,
bringing y and z to a single point. This sewing process is illustrated by Figures 5.1
and 5.2.

By building the 2-form current J and the stress tensor T out of the fundamental fields
and using a modified form of the propagator for the matter fields, we can perform
a one-loop calculation to obtain the transport coefficient. For the scalar field, the
only non-vanishing contribution comes from the so-called Schwinger phase of the
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p

k

k − p

x

µ
w

y

Figure 5.1: Feynman diagram for 〈T J02(x)T 23
(S)(y)〉 formed by sew-

ing together the ends of the three-point function
〈T Aµ(x)φ†(y)φ(z)〉

p

k

k − p

x

µ
w

ν

y

Figure 5.2: Feynman diagram for 〈T J02(x)T 23
(F )(y)〉 formed by sew-

ing together the ends of the three-point function
〈T Aµ(x)ψ̄(y)γνψ(z)〉

modified scalar propagator. The Schwinger phase breaks the transverse translational
symmetry of the propagator. In the fermion case, as well as the Schwinger phase
we also have contributions to the transport coefficient which can be physically
understood to emerge from the intrinsic spin of the electron.

A key component of the calculation is the gauge-invariant regularisation procedure.
We will regularise a 2-dimensional loop integral over the longitudinal momenta using
(a method similar to) the Pauli-Villars procedure.
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The computation yields a fully analytic formula for the transport coefficient in terms
of the dimensionless number b ≡ B/Bcr, where Bcr = m2/e is the critical magnetic
field strength of the particle (complex scalar or Dirac fermion). The transport
coefficient is an odd function of b, with an asymptotic expansion for small b given by

β
(S)
2 = e

120π2
B

B
(S)
cr

+O
( B

B
(S)
cr

)3
 (5.1.3)

for the complex scalar, and

β
(F )
2 = − e

240π2
B

B
(F )
cr

+O
( B

B
(F )
cr

)3
 (5.1.4)

for the Dirac fermion.

We will adopt a notation where i, j range over 1, 2 - the transverse directions - and
a, b range over 0, 3 - the longitudinal directions. Alternatively we may write the
components in pairs as x⊥ ≡ (x1, x2) ≡ xi and x‖ = (x0, x3) ≡ xa.

5.2 Scalar field

An outline of the calculation follows. First we will introduce a modified version of
the scalar propagator in the presence of a background magnetic field. Next we will
explain how to construct the current stress tensor Green’s function G̃02,23

JT (p1) from
a loop diagram involving these propagators. This provides the input to the Kubo
formula for the transport coefficient β(S)

2 . Finally we will regularise the loop integral
in a gauge-invariant manner to analytically evaluate the transport coefficient and
present the result. Supplementary details and derivations can be found in Appendix
5.B.

5.2.1 Modified scalar propagator

Following the conventions of [3], we define the free Feynman propagator for the
scalar in a vacuum background to be

∆(x− y) =
∫ d4k

(2π)4
eik(x−y)

k2 +m2 − iε
(5.2.1)

This is a Green’s function for the Klein-Gordon equation, ie the classical equation
of motion for a free scalar field:

(−�(x) +m2) ∆(x− y) = δ(4)(x− y) (5.2.2)
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where � ≡ ∂µ∂νg
µν and the superscript (x) emphasises that derivatives are taken

with respect to the position x.

In ordinary scalar QED calculations with a vacuum background, this is the propag-
ator used to evalute Feynman diagrams. However, in this work we impose a fixed
background magnetic field of strength F12 = B3 = B oriented along the positive
3-direction. In the calculation that follows, we will assume that B > 0, while simul-
taneously noting which aspects of the final answer depend on the sign of B. Adapting
a calculation in the appendix of [67], we can find a modified scalar propagator in
the presence of such a background magnetic field. As is conventional, we fix the
background field to be in Landau gauge given by A2 = Bx1. Writing D = d− ieA
for the covariant derivative associated with the background gauge field, the Green’s
equation for the modified propagator is(

−gµνD(x)
µ D(x)

ν +m2
)
G(φ)(x, y) = δ(4)(x− y) (5.2.3)

where the superscript (φ) emphasises that we are working with a scalar. The presence
of the magnetic field together with the charge of the scalar introduces a magnetic
length scale l defined by

l = (eB)−1/2 (5.2.4)

It is convenient to Fourier transform the longitudinal directions x‖ and leave the
transverse direction x⊥ alone as follows

G(φ)(p‖;x⊥, y⊥) =
∫
d2x‖ e

−ip‖·(x‖−y‖) G(φ)(x, y) (5.2.5)

We can then solve the Green’s equation to obtain

G(φ)(p‖,m;x⊥, y⊥) = 1
2πe

iΦ(x⊥,y⊥)e−
1
2 ξ
∞∑
n=0

Ln(ξ)
l2(m2 + p2

‖) + 2n+ 1 (5.2.6)

where Φ is the so-called Schwinger phase defined by

Φ(x⊥, y⊥) = 1
2l2 (x1 + y1)(x2 − y2) (5.2.7)

and the Ln are orthogonal Laguerre polynomials. The variable ξ is defined by

ξ = 1
2l2 |x⊥ − y⊥|

2 (5.2.8)

For a detailed derivation of this propagator see Appendix 5.B.1.

We interpret the sum over n as a sum over Landau levels.

If we flip the orientation of the magnetic field B 7→ −B, then the Green’s function
simply maps to its complex conjugate. In particular, the only change is the change



106 Chapter 5. Application 2: Force-free electrodynamics

of sign of the Schwinger phase Φ(x⊥, y⊥) 7→ −Φ(x⊥, y⊥) = Φ(y⊥, x⊥). As anticipated
around (5.1.2), our final answer should be odd under B → −B; thus we expect that
in the scalar field case, the only non-vanishing contribution to β(S)

2 arises from the
Schwinger phase, which is the only ingredient that is sensitive to the sign of B. We
will see this explicitly from the calculation below.

Further, it is often helpful to Fourier transform the translationary-invariant part of
the propagator, i.e. the propagator without the Schwinger phase included:

G̃(φ)(p) ≡
∫
d2x⊥ e

−ip⊥·(x⊥−y⊥) e−iΦ G(φ)(p‖,m;x⊥, y⊥) = 2l2e−p2
⊥l

2
∞∑
n=0

(−1)nLn(2p2
⊥l

2)
l2(m2 + p2

‖) + 2n+ 1
(5.2.9)

See Appendix 5.D.2 for the relevant details concerning Fourier transforms of Laguerre
polynomials.

5.2.2 Computation of Feynman diagram

Construction of current stress tensor correlator

Now that we have a modified form of the scalar propagator, we need to derive an
expression for the current stress tensor correlator using the usual Feynman diagram
formalism.

The 2-form current associated with the higher-form symmetry is simply the Poincaré
dual of the Maxwell field strength

J = ?F (5.2.10)

and so in components we have

J02(x) = F13(x) = ∂
(x)
1 A3(x)− ∂(x)

3 A1(x) (5.2.11)

The relevant component of the scalar stress tensor can be readily constructed in the
canonical way as

T 23
(S)(y) = ∂

(y)
2 φ†(y) ∂(y)

3 φ(y) + ∂
(y)
3 φ†(y) ∂(y)

2 φ(y) (5.2.12)

Hence we can write the time-ordered current stress tensor correlator1 in terms of
three-point functions of the fundamental fields, where we sew two of the ends together

1Note that Kubo formulas in conventional hydrodynamics are usually formulated in terms of the
retarded correlator; however as this particular Kubo formula is evaluated at ω = 0, the time-ordered
and retarded correlators coincide.
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to form a loop as in Figure 5.1.

〈T J02(x)T 23
(S)(y)〉

=
[(
∂

(y)
2 ∂

(z)
3 + ∂

(y)
3 ∂

(z)
2

) (
∂

(x)
1 〈T A3(x)φ†(y)φ(z)〉 − ∂(x)

3 〈T A1(x)φ†(y)φ(z)〉
)]
z=y

(5.2.13)

The Feynman diagram associated with the three-point function can be found in
Figure 5.3.

p

k

q

x

µ

w

z

y

Figure 5.3: Feynman diagram for 〈T Aµ(x)φ†(y)φ(z)〉 as used in the
complex scalar calculation

From the Feynman rules, the three-point function 〈T Aµ(x)φ†(y)φ(z)〉 is given by

〈T Aν(x)φ†(y)φ(z)〉

= −ie gρσ
∫
d4w G(γ)

νρ (x,w)
[
G(φ)(z, w)∂(w)

σ G(φ)(w, y)−G(φ)(w, y)∂(w)
σ G(φ)(z, w)

]
(5.2.14)

since each propagator appears with a factor of −i and the vertex appears with a
factor of −e. Here G(γ)

µν (x,w) denotes the ordinary photon propagator in position
space. To lowest order in the coupling this photon propagator is not modified by
the magnetic field from its familiar vacuum value; in the conclusion we discuss how
one could systematically improve on this result.

For ease of calculation and writing it is useful to separate the photon propagator
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from the scalar propagators by defining

Vσ(w, y, z) ≡ G(φ)(z, w) ∂(w)
σ G(φ)(w, y)−G(φ)(w, y) ∂(w)

σ G(φ)(z, w) (5.2.15)

so that the three-point function has a neat form.

〈T Aν(x)φ†(y)φ(z)〉 = −ie gρσ
∫
d4w G(γ)

νρ (x,w) Vσ(w, y, z) (5.2.16)

We can further define

Uσ(w, y, z) ≡
(
∂

(y)
2 ∂

(z)
3 + ∂

(y)
3 ∂

(z)
2

)
Vσ(w, y, z) (5.2.17)

and thus succinctly construct the gauge-field stress tensor correlator.

〈T Aν(x)T 23
(S)(y)〉 = −ie gρσ

∫
d4w G(γ)

νρ (x,w) Uσ(w, y, y) (5.2.18)

Next we differentiate with respect to xµ, take a Fourier transform and restrict the
momentum to the 1-direction. The resulting expression is indepdendent of the gauge
choice for the photon propagator, so for simplicity we can choose the Feynman gauge
where we have

G̃µν(p1) = gµν
(p1)2 − iε

(5.2.19)

We can now write the following compact expression for the Fourier-transformed
current stress tensor correlator.

〈J̃02(p1)T̃ 23
(S)(−p1)〉 = e

p1

∫
d4w e−ip1w1

U3(w, 0, 0) (5.2.20)

A short manipulation in momentum space shows that U3 receives contributions from
spatial derivatives of the Schwinger phase as well as plane waves.

U3(w, 0, 0) = i
∫
d̃q d̃k G̃(φ)(q) G̃(φ)(k) eiw·(q−k) (q3+k3)

(
q2k3 + k2q3 + w1(q3 + k3)

2l2

)
(5.2.21)

Hence after integrating out the longitudinal position w‖ and the longitudinal mo-
mentum k‖, the Green’s function relating the current and the stress tensor is

G̃02,23
JT (p1) = 2e

l2p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖) q2

3 w
1

(5.2.22)

Substituting the expression for the Fourier-transform of the translationally-invariant
part of the scalar propagator from equation 5.2.9 we obtain a longitudinal loop
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integral for the Green’s function.

G̃02,23
JT (p1) = e

2π2l2p1

∫
d̃q‖ q

2
3

∫
d2w⊥ w

1 e−ip1w1
e−w

2
⊥/2l

2
∞∑

n,n′=0

Ln(w2
⊥/2l2)Ln′(w2

⊥/2l2)
λn(q‖)λn′(q‖)

(5.2.23)
where the denominators inside the series are given by

λn(q‖) = l2(m2 + q2
‖) + 2n+ 1 (5.2.24)

Note that the loop is given in a mixed representation; due to the lack of translational
invariance from the Schwinger phase, we perform the integral over the transverse
directions in position space, though we do the integral over the longitudinal direction
in momentum space.

Evaluation of loop integral

The Kubo formula for the transport coefficient β(S)
2 contains derivatives of G̃02,23

JT (p1)
with respect to p1. Here we use the Kubo formula to write β(S)

2 in terms of a
longitudinal loop integral. If we change variables to plane polar coordinates for w⊥
then the dependence on p1 takes a simple form.

G̃02,23
JT (p1) = e

πl2p1

∫
d̃q‖ q

2
3

∫ ∞
0

dr r2e−
r2
2l2

∞∑
n,n′=0

Ln( r2

2l2 )Ln′( r
2

2l2 )
λn(q‖)λn′(q‖)

∫ 2π

0

dθ

2π cos θ e−ip1r cos θ

(5.2.25)

Note that the azimuthal integral over θ is a standard representation of the Bessel
function of the first kind.∫ 2π

0

dθ

2π cos θ e−ip1r cos θ = −i J1 (p1r) (5.2.26)

The Bessel function admits the Maclaurin expansion

J1(p1r)
p1 = r

2 −
r3p2

1
16 +O(p4

1) (5.2.27)

Hence applying the Kubo formula in Eq. 5.1.1 to the current stress tensor Green’s
function and changing variables to x = r2/2l2 gives

β
(S)
2 = −iel

4

2π

∫
d̃q‖ q

2
3

∫ ∞
0

dx x2 e−x
∞∑

n,n′=0

Ln(x)Ln′(x)
λn(q‖)λn′(q‖)

(5.2.28)

The integral over x can be related to the inner-product structure of generalised
Laguerre polynomials. If we define

In,n′ ≡
∫ ∞

0
dx x2 e−xLn(x) Ln′(x) (5.2.29)
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then we can write In,n′ in terms of quadratic polynomials in n as follows.

In,n = f0(n) (5.2.30a)
In,n+1 = f1(n) (5.2.30b)
In,n+2 = f2(n) (5.2.30c)
In,n′ = 0, |n− n′| > 2 (5.2.30d)

(A limited number of off-diagonal entries in this inner product are nonzero due to the
factor of x2; see Appendix 5.D.1 for further details on this derivation and Appendix
5.D.1 for quick reference of explicit expressions for the polynomials). This structure
allows us to perform one of the sums over n′, and gives

β
(S)
2 = −iel

4

2π

∫
d̃q‖ q

2
3

∞∑
n=0

[
f0(n)
λn(q‖)2 + 2f1(n)

λn(q‖)λn+1(q‖)
+ 2f2(n)
λn(q‖)λn+2(q‖)

]
(5.2.31)

After Wick-rotating and rescaling the longitudinal momentum integral by l, we can
finally write

β
(S)
2 = e

16π2

∫ ∞
0

dx x S(φ)(x;µ) (5.2.32)

where µ = (ml)2 is a dimensionless number and S(φ) is a series given by

S(φ)(x;µ) =
∞∑
n=0

1
µ+ x+ 2n+ 1

[
f0(n)

µ+ x+ 2n+ 1 + 2f1(n)
µ+ x+ 2n+ 3 + 2f2(n)

µ+ x+ 2n+ 5

]
(5.2.33)

Regularisation

We can now naively explicitly perform the sum above to obtain

S(φ)(x;µ) = 1
8

{[
3 (µ+ x)2 + 1

]
ψ(1)

(1
2 (µ+ x+ 1)

)
− 2 (3µ+ 3x+ 2)

}
(5.2.34)

where ψ(1) is the polygamma function. However, when this is inserted into the
expression for β(S)

2 we obtain a quartic (in momentum) UV divergence; the integral
over x (i.e. the squared Euclidean norm of the Wick-rotated longitudinal loop
momentum) is not well-defined. Hence our previous expressions for β2 only make
sense if it is understood that we need to regulate the divergence.

This divergence arises from our regularisation procedure; a hard cutoff on the lon-
gitudinal loop momentum is not gauge-invariant. We need to regularise the loop
integral using a scheme which preserves gauge-invariance. A straightforward choice
is the Pauli Villars procedure. To review, we introduce a heavy fictitious ghost
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particle of mass Λ� m by replacing the scalar propagator G(φ)(x, y;m).

G(φ)(x, y;m)→ G(φ)(x, y;m)−G(φ)(x, y; Λ) (5.2.35)

For finite Λ the integral is thus finite by construction; as Λ is removed we return to
the original problem, and thus Λ is a gauge-invariant regulator.

In principle we would have to repeat all of the previous steps of the loop integral
calculation. However it is straightforward to see that this is equivalent to making
the following replacement in the expression for the transport coefficient.

1
λn(q‖;m) →

l2(Λ2 −m2)
λn(q‖;m) λn(q‖; Λ) (5.2.36)

That is, for each Landau level we suppress the propagator by l2
(
q2
‖ + Λ2

)
+ 2n+ 1

in exchange for a heavy mass factor in the numerator. This allows us to regularise
the longitudinal momentum integrand as

Ŝ(φ)(x;µ,Λ)

=
∞∑
n=0

 (l2Λ2 − µ)2

(µ+ x+ 2n+ 1)(l2Λ2 + x+ 2n+ 1)

[
2 + 6n+ 6n2

(µ+ x+ 2n+ 1)(l2Λ2 + x+ 2n+ 1)

+ 2(−4− 8n− 4n2)
(µ+ x+ 2n+ 3)(l2Λ2 + x+ 2n+ 3) + 2(2 + 3n+ n2)

(µ+ x+ 2n+ 5)(l2Λ2 + x+ 2n+ 5)

]
(5.2.37)

Here we have written a hat over S to emphasise the regularisation. This sum can
be explicitly evaluated, but we omit the full expression here for brevity. After
performing the sum over n, we now take the limit Λ→∞ (for fixed l > 0) to remove
the regulator and recover the corrected series Ŝ.

Ŝ(φ)(x;µ) = 1
8

{[
3 (µ+ x)2 + 1

]
ψ(1)

(1
2 (µ+ x+ 1)

)
− 6 (µ+ x)

}
(5.2.38)

We now obtain the transport coefficient β(S)
2 by performing the remaining integral:

β
(S)
2 = e

16π2

∫ ∞
0

dx x Ŝ(φ)(x;µ) (5.2.39)

which – unlike for the hard cutoff used earlier – is UV-finite.

5.2.3 Results

So far we have worked with the dimensionless quantity µ = m2l2 = m2/(eB). When
presenting the results, it is convenient to introduce the critical magnetic field Bcr
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which is defined by
Bcr = m2

e
(5.2.40)

Physically this corresponds to the magnetic field strength at which the energy gap
between adjacent Landau levels is the same order as the particle’s rest energy [64].
This allows us to work with a different dimensionless quantity b ≡ B/Bcr = µ−1.

After removing the Pauli-Villars regulator, the regularised transport coefficient for
the scalar field is given in terms of b by the lengthy but fully analytic formula

β
(S)
2 = e

128π4

− π2

b3

(
b2(144b log(A) + 48 log(A) + 5b log(16) + 4(5b+ 3) log(π) + 3 + log(4096))

− 4
(
b2 + 3

)
b logΓ

(1
2

(
1 + 1

b

))
+ 96b2

(
ψ(−2)

(
b+ 1

2b

)
− 3bψ(−3)

(
b+ 1

2b

))
+ 1

)
− 36ζ(3)


(5.2.41)

where A ≈ 1.28 is the Glaisher-Kinkelin constant and we have analytically continued
the index of the polygamma function.

The transport coefficient is plotted against b in Figure 5.4.

Figure 5.4: Plot of β(S)
2 (in units of e

120π2 ) for the complex scalar as
a function of B/B(S)

cr

It grows as B grows larger, and vanishes for small field. Within our perturbative
calculation, this arises from the one-loop nature of the computation; a larger magnetic
field means that there is more energy to pull forth scalar charge particles from the
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vacuum. For small b, we have, as promised in the Introduction:

β
(S)
2 = eb

120π2 +O
(
b2
)

(5.2.42)

5.3 Massive Dirac fermion

The above calculation has laid out the methodology for calculating such transport
coefficients using the toy model of a complex scalar field. With an eye towards
eventual astrophysical calculations, we now perform the same calculation for a Dirac
fermion that (in principle) denotes the electron of our own universe. We will use very
similar steps as in the complex scalar computation, with a few new complications
arising from the mathematical structure of the electron spin.

The sequence of this section will be as follows. First we will introduce a modified
version of the fermion propagator in the presence of a background magnetic field.
Next we will explain how to construct the current stress tensor Green’s function
G̃02,23
JT (p1) from a loop diagram involving these propagators. This provides the input

to the Kubo formula for the transport coefficient β(F )
2 . Finally we will regularise

the loop integral in a gauge-invariant manner to analytically evaluate the transport
coefficient and present the result. Supplementary details and derivations can be
found in Appendix 5.C.

5.3.1 Modified fermion propagator

As with the complex scalar, we follow the conventions of [3] by defining the free
Feynman propagator for the Dirac fermion in a vacuum background to be

SF (x− y) =
∫ d4k

(2π)4 e
ik(x−y) (−/k +m)

k2 +m2 − iε
(5.3.1)

This is a Green’s function for the Dirac equation, ie the classical equation of motion
for a free Dirac field: (

m− i/∂(x)
)
SF (x− y) = δ(4)(x− y) (5.3.2)

where /∂ ≡ γµ∂µ and the superscript (x) emphasises that derivatives are taken with
respect to the coordinate x.

In ordinary QED calculations with a vacuum background, this is the propagator used
to evalute Feynman diagrams. However, in this work we impose a fixed background
magnetic field of strength F12 = B3 = B > 0 oriented along the positive 3-direction.
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Adapting a calculation in the Appendix of [67], we can find a modified fermion
propagator in the presence of such a background magnetic field. Our conventions
are as before; we write the magnetic field in Landau gauge A2 = Bx1. Writing
D = d− ieA for the covariant derivative associated with the background gauge field,
the Green’s equation for the modified propagator is(

m− i /D(x))
G(ψ)(x, y) = δ(4)(x− y) (5.3.3)

where the superscript (ψ) emphasises that we are working with a Dirac fermion, and
as before the magnetic length is l = (eB)−1/2.

It is convenient to Fourier transform the longitudinal directions x‖ and leave the
transverse direction x⊥ alone as follows

G(ψ)(p‖;x⊥, y⊥) =
∫
d2x‖ e

−ip‖·(x‖−y‖) G(ψ)(x, y) (5.3.4)

We can then solve the Green’s equation to obtain

G(ψ)(p‖;x⊥, y⊥) = 1
2πe

iΦe−
1
2 ξ
∞∑
n=0

(m− γapa)(Ln(ξ)P+ + Ln−1(ξ)P−)− i
l2
γj(xj − yj)L(1)

n−1(ξ)
l2(m2 + p2

‖) + 2n
(5.3.5)

where Φ is the so-called Schwinger phase defined by

Φ(x⊥, y⊥) = 1
2l2 (x1 + y1)(x2 − y2) (5.3.6)

and the L(α)
n are generalised Laguerre polynomials. The variable ξ is defined by

ξ = 1
2l2 |x⊥ − y⊥|

2 (5.3.7)

A new ingredient for fermion is the degrees of freedom associated with the spin; for
this we introduce the spin projectors P± defined by

P± = 1
2(1± iγ1γ2) (5.3.8)

See Appendix 5.C.1 for a detailed derivation of the results above.

We interpret the sum over n as a sum over Landau levels.

Note that above we assumed B > 0. As in the scalar case, the final answer should
be odd under charge conjugation, which acts as B → −B; thus, as for the scalar,
we expect a contribution to the answer from the presence of the Schwinger phase.
However, for the case of the fermion, there are also new contributions arising from the
coupling to the fermion spin. Indeed if we allow B < 0, then then the combination
of Dirac matrices appearing in (5.3.8) is modified to be (1 ± i sign(eB)γ1γ2), as
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discussed in more detail in Appendix 5.C.1. This non-analyticity in B allows for
novel contributions to β(F ). Physically, the familiar Schwinger phase represents
a contribution from the orbital motion of the particles, and these new terms will
represent a contribution from the intrinsic spin degrees of freedom. We will explicitly
discuss these contributions as we proceed and verify that the final answer is odd in
B, as required.

To obtain a more useful expression for our purposes, we can Fourier transform the
translationary-invariant part of the propagator.

G̃(ψ)(p) = 2l2e−p2
⊥l

2
∞∑
n=0

(−1)nDn(p)
l2(m2 + p2

‖) + 2n (5.3.9)

where the numerator is given by

Dn(p) = (m− γapa)
(
Ln
(
2p2
⊥l

2
)
P+ − Ln−1

(
2p2
⊥l

2
)
P−
)

+ 2γjpjL(1)
n−1(2p2

⊥l
2)

(5.3.10)

See Appendix 5.D.2 for the relevant details concerning Fourier transforms of Laguerre
polynomials.

5.3.2 Computation of Feynman diagram

Construction of current stress tensor correlator

As in the scalar calculation, we have J02(x) = F13(x). However, for fields with
spin the construction of the stress tensor is more subtle. More precisely, we need
the Belifante stress tensor T µν(F ), which turns out to be the symmetrisation of the
canonical stress tensor T µν(0) . We can construct the canonical stress tensor via the
usual Noether construction.

T (0)
µν = i

2
[
ψ̄γµ∂νψ − (∂νψ̄)γµψ

]
(5.3.11)

The Belifante stress tensor is then

T (F )
µν = T

(0)
(µν) = i

4
[
ψ̄γµ∂νψ − (∂νψ̄)γµψ + ψ̄γν∂µψ − (∂µψ̄)γνψ

]
(5.3.12)

More details on the relationship between the fermion stress tensors can be found in
e.g. [68]. It is more helpful to write this as

T µν(F )(y) = i

4
[
(gµρgνσ + gµσgνρ)

(
∂(z)
ρ − ∂(y)

ρ

)
ψ̄(y)γσψ(z)

] ∣∣∣∣∣
z=y

(5.3.13)
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The relevant component is

T 23
(F )(y) = i

4
[(
∂

(z)
2 − ∂

(y)
2

)
ψ̄(y)γ3ψ(z) +

(
∂

(z)
3 − ∂

(y)
3

)
ψ̄(y)γ2ψ(z)

] ∣∣∣∣∣
z=y

(5.3.14)

A helpful mnemonic when relating this expression to the scalar stress tensor is that
we have exchanged a partial derivative ∂µ for a gamma matrix iγµ.

Hence we can write the time-ordered current stress tensor correlator in terms of
three-point functions, where we sew two of the ends together as in Figure 5.2.

〈T J02(x)T 23
(F )(y)〉 = i

4

[ (
∂

(z)
2 − ∂

(y)
2

) (
∂

(x)
1 〈A3(x)ψ̄(y)γ3ψ(z)〉 − ∂(x)

3 〈A1(x)ψ̄(y)γ3ψ(z)〉
)

+
(
∂

(z)
3 − ∂

(y)
3

) (
∂

(x)
1 〈A3(x)ψ̄(y)γ2ψ(z)〉 − ∂(x)

3 〈A1(x)ψ̄(y)γ2ψ(z)〉
) ]∣∣∣∣∣∣

z=y

(5.3.15)

The Feynman diagram for the three-point function is shown in Figure 5.5.

p

k

q

x

µ

w

ν

z

y

Figure 5.5: Feynman diagram for 〈T Aµ(x)ψ̄(y)γνψ(z)〉 as used in
the Dirac fermion calculation

From the Feynman rules, the relevant (suitably time-ordered) three-point function
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is

〈T Aµ(x)ψ̄(y)γνψ(z)〉 = e gρσ
∫
d4w G(γ)

µρ (x,w) Tr[γνG(ψ)(z, w)γσG(ψ)(w, y)]
(5.3.16)

We now introduce the following notation

Vµν(w, y, z) ≡ Tr
[
γµG

(ψ)(z, w)γνG(ψ)(w, y)
]

(5.3.17)

so that the three-point function is simply

〈T Aµ(x)ψ̄(y)γνψ(z)〉 = e gρσ
∫
d4w G(γ)

µρ (x,w)Vνσ(w, y, z) (5.3.18)

It will also be useful to define

Uµνρ(w, y, z) ≡
(
∂(z)
ρ − ∂(y)

ρ

)
Vµν(w, y, z) (5.3.19)

so that we can compactly write the gauge-field stress tensor correlator as

〈T Aµ(x)T 23
(F )(y)〉 = ie

4 gρσ
∫
d4w G(γ)

µρ (x,w) [U23σ(w, y, y) + U32σ(w, y, y)] (5.3.20)

As before, differentiate and antisymmetrise, then Fourier transform and restrict
the momentum to the 1-direction. The resulting Fourier-transformed current stress
tensor correlator is

〈J̃02(p1)T̃ 23
(F )(−p1)〉 = − e

4p1

∫
d4w e−ip1w1 [U233(w, 0, 0) + U323(w, 0, 0)] (5.3.21)

Working in momentum space, we have

U233(w, 0, 0) = i
∫
d̃q d̃k

(
q2 + k2 + w1

l2

)
eiw·(q−k) Tr

[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]

(5.3.22a)

U323(w, 0, 0) = i
∫
d̃q d̃k (q3 + k3) eiw·(q−k) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]
(5.3.22b)

Hence the Green’s function relating the current and the stress tensor is

G̃02,23
JT (p1)

= −e4p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)

{(
q2 + k2 + w1

l2

)
Tr
[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
+ (q3 + k3) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]}
(5.3.23)
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Now we can expand the Green’s function as sums over Landau levels by substituting
the expression for the Fourier-transformed fermion propagator. This gives

G̃02,23
JT (p1) = −el

4

p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)e−l
2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(k‖;m)[(
q2 + k2 + w1

l2

)
Tr(γ3Dn(q)γ3Dn′(k)) + (q3 + k3) Tr(γ3Dn(q)γ2Dn′(k))

]
(5.3.24)

where the denominator factors are given by

σn(q‖;m) = l2(m2 + q2
‖) + 2n (5.3.25)

Next we can expand the traces using

Tr(γ3Dn(q)γ3Dn′(k)) = −2m2[Ln(2q2
⊥l

2)Ln′(2k2
⊥l

2) + Ln−1(2q2
⊥l

2)Ln′−1(2k2
⊥l

2)]
− 16qikiL(1)

n−1(2q2
⊥l

2)L(1)
n′−1(2k2

⊥l
2) (5.3.26a)

Tr(γ3Dn(q)γ2Dn′(k)) = 4[Ln−1(2q2
⊥l

2)L(1)
n′−1(2k2

⊥l
2)q3(k2 + ik1)− L(1)

n−1(2q2
⊥l

2)Ln′(2k2
⊥l

2)k3(q2 + iq1)
+ Ln′−1(2k2

⊥l
2)L(1)

n−1(2q2
⊥l

2)k3(q2 − iq1)− L(1)
n′−1(2k2

⊥l
2)Ln(2q2

⊥l
2)q3(k2 − ik1)]

(5.3.26b)

For further details of the trace structure see Appendix 5.C.3. We can perform the
integral over the longitudinal position w‖ and k‖, and invert the Fourier transforms
of the generalised Laguerre polynomials, using

(−1)n l2e−p2
⊥l

2
Ln
(
2p2
⊥l

2
)

= 1
4π

∫
d2x⊥ e

−ip⊥·x⊥e−x
2
⊥/4l

2
Ln
(
x2
⊥/2l2

)
(5.3.27a)

(−1)n l2pj e−p
2
⊥l

2
L

(1)
n−1

(
2p2
⊥l

2
)

= − i

8πl2
∫
d2x⊥ xj e

−ip⊥·x⊥e−x
2
⊥/4l

2
L

(1)
n−1

(
x2
⊥/2l2

)
(5.3.27b)

The resulting longitudinal loop integral for the Green’s function is

G̃02,23
JT (p1) = 2e

(4π)2p1l2

∫
d̃q‖ d

2w⊥ e
−ip1w1

e−w
2
⊥/2l

2
∞∑

n,n′=0

1
σn(q‖;m)σn′(q‖;m)w1 m2

(
Ln
(
w2
⊥/2l2

)
Ln′

(
w2
⊥/2l2

)
+ Ln−1

(
w2
⊥/2l2

)
Ln′−1

(
w2
⊥/2l2

))

− 2w1w
2
⊥

l4
L

(1)
n−1

(
w2
⊥/2l2

)
L

(1)
n′−1

(
w2
⊥/2l2

)
+ 4 q2

3 w1 L
(1)
n′−1

(
w2
⊥/2l2

) [
Ln
(
w2
⊥/2l2

)
− Ln−1

(
w2
⊥/2l2

)]
(5.3.28)
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Further details of this lengthy calculation are given in Appendix 5.C.2. Physically,
we can understand the terms proportional to m2 as arising from the Schwinger phase
structure, since these take the same form as in the scalar calculation. The other new
terms which involve generalised Laguerre polynomials can thus be understood to
emerge from the spin components of the electron itself. As before, we have written
the one-loop calculation in a mixed representation, going to momentum space in the
longitudinal direction but staying in position space for the transverse directions.

Evaluation of loop integral

Next we want to perform the integral over w⊥. We can use plane polar coordinates
exactly as we did for the scalar. The azimuthal integral will yield a Bessel function
of the first kind, which we can input into the Kubo formula. Repeating the same
steps as in Section 5.2.2 gives a complicated but tractable integral:

β
(F )
2

= −iel
4

8π

∫
d̃q‖

∞∑
n,n′=0

1
σn(q‖;m)σn′(q‖;m)

∫ ∞
0

dx x2 e−x
{
m2 (Ln(x)Ln′(x) + Ln−1(x)Ln′−1(x))

− 4x
l2
L

(1)
n−1(x)L(1)

n′−1(x) + 4 q2
3 L

(1)
n′−1(x) [Ln(x)− Ln−1(x)]

}
(5.3.29)

The integral over x can be related to the inner-product structure of generalised
Laguerre polynomials. The terms here are more complicated than in the scalar case
and we will need to define the following more general integral.

I
(a,b,c)
n,n′ ≡

∫ ∞
0

dx x2+c e−xL(a)
n (x)L(b)

n′ (x) (5.3.30)

Then I(0,0,0)
n,n′ = In,n′ , the integral we defined in the scalar calculation. We can now

write the expression for the transport coefficient more compactly as

β
(F )
2 = −iel

2

8π

∫
d̃q‖

∞∑
n,n′=0

1
σn(q‖;m)σn′(q‖;m)[

µ
(
I

(0,0,0)
n,n′ + I

(0,0,0)
n−1,n′−1

)
− 4 I(1,1,1)

n−1,n′−1 + 4 (lq3)2
(
I

(0,1,0)
n,n′−1 − I

(0,1,0)
n−1,n′−1

)]
(5.3.31)

where we defined the dimensionless number µ ≡ (ml)2. It should be understood that
any term in the series with a negative subscript vanishes. It is sensible to group the
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terms as follows.

S
(ψ)
1 =

∞∑
n,n′=0

I
(0,0,0)
n,n′ + I

(0,0,0)
n−1,n′−1

σn(q‖;m)σn′(q‖;m) (5.3.32a)

S
(ψ)
2 =

∞∑
n,n′=0

I
(1,1,1)
n−1,n′−1

σn(q‖;m)σn′(q‖;m) (5.3.32b)

S
(ψ)
3 =

∞∑
n,n′=0

I
(0,1,0)
n,n′−1 − I

(0,1,0)
n−1,n′−1

σn(q‖;m)σn′(q‖;m) (5.3.32c)

We emphasise again that S1 is associated with the Schwinger phase while S2 and
S3 are associated with the intrinsic electron spin. We can evaluate the integrals as
polynomials in n, then separate out the lowest Landau levels and rearrange to write
the series as

S
(ψ)
1 = 2

σ2
0
− 8
σ0σ1

+ 4
σ0σ2

+
∞∑
n=1

1
σn

(
g0(n)
σn

+ 2 g1(n)
σn+1

+ 2 g2(n)
σn+2

)
(5.3.33a)

S
(ψ)
2 =

∞∑
n=1

1
σn

(
h0(n− 1)

σn
+ 2 h1(n− 1)

σn+1
+ 2 h2(n− 1)

σn+2

)
(5.3.33b)

S
(ψ)
3 = 2

σ0

( 1
σ1
− 1
σ2

)
+
∞∑
n=1

1
σn

(
p0(n)
σn

+ p1(n)
σn+1

+ p2(n)
σn+2

)
(5.3.33c)

Here g(n), h(n), p(n) are all polynomials in n of at most cubic order. Their explicit
forms are given in Appendix 5.D.1, along with thorough computational detatils in
Appendix 5.D.1.

After Wick-rotating and rescaling the longitudinal momentum integral by l, we have

β
(F )
2 = e

32π2

∫ ∞
0

dx
[
µ S

(ψ)
1 (x;µ)− 4 S(ψ)

2 (x;µ) + 2x S(ψ)
3 (x;µ)

]
(5.3.34)

where µ = ml is dimensionless and we have

S
(ψ)
1 (x;µ) = 2

(µ+ x)2 −
8

(µ+ x)(µ+ x+ 2) + 4
(µ+ x)(µ+ x+ 4)

+
∞∑
n=1

1
µ+ x+ 2n

[
g0(n)

µ+ x+ 2n + 2 g1(n)
µ+ x+ 2n+ 2 + 2 g2(n)

µ+ x+ 2n+ 4

]
(5.3.35a)

S
(ψ)
2 (x;µ) =

∞∑
n=1

1
µ+ x+ 2n

[
h0(n− 1)
µ+ x+ 2n + 2 h1(n− 1)

µ+ x+ 2n+ 2 + 2 h2(n− 1)
µ+ x+ 2n+ 4

]
(5.3.35b)

S
(ψ)
3 (x;µ) = 2

(µ+ x)(µ+ x+ 2) −
2

(µ+ x)(µ+ x+ 4)
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+
∞∑
n=1

1
µ+ x+ 2n

[
p0(n)

µ+ x+ 2n + p1(n)
µ+ x+ 2n+ 2 + p2(n)

µ+ x+ 2n+ 4

]
(5.3.35c)

Regularisation

It is possible to explicitly perform the sums over n to obtain expressions for the
S

(ψ)
j (x;µ) in terms of polygamma functions. However as we would expect, we again

obtain a UV divergence when we try to perform the integral in (5.3.34) to obtain
β

(F )
2 . Again we need to regularise the loop integral in a gauge-invariant manner.

Inspired by the scalar calculation, a gauge-invariant regularisation scheme is to make
the replacement

1
σn(q‖;m) →

1
σn(q‖;m) −

1
σn(q‖; Λ) = l2(Λ2 −m2)

σn(q‖;m) σn(q‖; Λ) (5.3.36)

in the equations for S(ψ)
j . This is similar to the Pauli-Villars procedure, in that

the integral is finite for finite Λ, and as we take Λ → ∞ we obtain the original
problem. However it is subtly different to the usual replacement G(ψ)(x, y;m) →
G(ψ)(x, y;m)−G(ψ)(x, y; Λ) due to the presence of the mass m in the numerator of
the fermion propagator.

We should pause for a moment to consider a physical picture of this regularisation
procedure. One way to understand this procedure is that rather than regulating the
original 4d fermion, we are instead regulating each effective two-dimensional degree
of freedom traveling along the magnetic field lines. The transverse and longitudinal
directions are thus now explicitly on a different footing. But really the symmetry
between transverse and longitudinal directions was broken from the very beginning
when we introduced a magnetic field along the 3-direction. Thus the regulator breaks
no further symmetries, and it is computationally far more straightforward than a
regulator of the original 4d fermion.

The rest of the computation proceeds as for the scalar. Once we have regularised
expressions Ŝ(ψ)

j (x;µ,Λ) we can remove the regulator by taking the limit Λ→∞ to
obtain new functions

Ŝ
(ψ)
j (x;µ) = lim

Λ→∞
S

(ψ)
j (x;µ,Λ) (5.3.37)

The transport coefficient is then given by the finite integral

β
(F )
2 = e

32π2

∫ ∞
0

dx
[
µ Ŝ

(ψ)
1 (x;µ)− 4 Ŝ(ψ)

2 (x;µ) + 2x Ŝ(ψ)
3 (x;µ)

]
(5.3.38)
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5.3.3 Results

We have a fullly analytic expression for the transport coefficient as a function of
b = B/Bcr = µ−1.

β
(F )
2 = e

64π2b3

[
8b2 log

(
π3A6

b

)
− 48b2ψ(−2)

(
1 + 1

2b

)
− 2

(
2b2 + 3

)
ψ(0)

(
1 + 1

2b

)

+ 24b logΓ
(1

2

(
2 + 1

b

))
+ 2b(b(2b− 3 + log(256))− 3) + 3

]
(5.3.39)

Here A ≈ 1.28 the Glaisher-Kinkelin constant and ψ(n) the analytically continued
polygamma function.

The transport coefficient is plotted against b in Figure 5.6. The asymptotic behaviour
for small b is

β
(F )
2 = − eb

240π2 +O
(
b3
)

(5.3.40)

Figure 5.6: Plot of the transport coefficient in units in units of
e/240π2 for the Dirac fermion as a function of B/Bcr

Note that the sign changes from positive to negative at b ≈ 0.548. Physically, this
can be understood in terms of the two competing contributions to the transport
coefficient, namely that from the Schwinger phase (which is positive) and that from
the intrinsic spin (which is negative). Our computation demonstrates that for high
Landau levels (large n), the dominant contribution to β(F )

2 arises from the intrinsic
spin of the electron, since each summand of the series is cubic in n, while the
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Schwinger phase contribution is quadratic. A heuristic argument for this follows:
for weak magnetic fields (b � 1) it is energetically possible for the electrons to
occupy high Landau levels, hence for b � 1, the spin contribution dominates and
β

(F )
2 has a negative sign. When the magnetic field is very strong (b� 1), the energy

considerations force most of the electrons into the lowest Landau level, where the
dominant contribution comes from the Schwinger phase and the spin structure is
unimportant. This further explains why for asymptotically large b, the scalar and
fermion plots have the same behaviour.

5.4 Conclusion

For small values of b = B/Bcr, the transport coefficient β(F )
2 arising from a one-loop

calculation for a massive Dirac fermion in QED has an expansion in odd powers of
b given by

β
(F )
2 = eB

240π2Bcr

[
−1 + 46

7

(
B

Bcr

)2
+ 224

11

(
B

Bcr

)4
+O

(
(B/Bcr)6

)]
(5.4.1)

where as usual eBcr = m2, with m the mass of the fermion. This expression – and
the corresponding result for the scalar – are the main results of this work.

We now discuss the validity of this calculation. It is well-known that calculating
transport coefficients from perturbative quantum field theory is notoriously difficult;
at its core this has to do with the fact that the hydrodynamic limit of an interacting
quantum field theory (where one works on scales longer than the mean free path)
is in tension with the weakly coupled limit of a quantum field theory (where the
mean free path generally diverges as the coupling is taken to zero) [69, 70]. This
conceptual tension manifests itself in the need to resum infinitely many Feynman
diagrams to correctly account for IR divergences when calculating finite temperature
transport coefficients in perturbative quantum field theory [71, 72]; indeed, if this is
not done, then quantum field theory results do not agree with those from elementary
kinetic theory.

The situation in our case, where we are studying a zero temperature – yet still coarse-
grained and thus “hydrodynamic” – effective theory is somewhat less clear. There is
less understanding in the literature on precisely what the domain of validity of FFE
should be, i.e. which scale precisely plays the role of the mean free path (and why).
Furthermore, it seems to us that the static correlator that we compute above is not
afflicted by the precise IR divergences reported on in [72], which are intimately related
to the analytic structure of finite-temperature quantum field theory (or, physically,
by the presence of a thermal bath, which is absent in our calculation above). Thus
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we do not see an obvious pathology with the above calculation. This situation clearly
deserves further study. It would be very interesting to study the same transport
coefficient holographically in an intrinsically strongly coupled study (see e.g. [73] for
some work on the holographic description of FFE). Another (diametrically opposite
approach) would be to build a kinetic theory framework (using a density of particles
in an external magnetic field) and calculate the same transport coefficient.

In the remainder of this conclusion, we optimistically take the result above at face
value and turn to possible applications. We began this work by discussing the fact
that there exist observed phenomena associated with pulsars – for example coherent
radiation emission, or the presence of particle winds – that resist a simple theoretical
explanation in terms of conventional FFE alone. As described in the introduction,
a nonzero β2 will now generically result in a non-trivial value for an accelerating
electric field such that ~E · ~B 6= 0. It is very interesting to ask whether our result for
β2 could potentially have observable consequences. We now speculate on this.

Here we will confine our attention to only one potential application; the creation
of pulsar winds. We remind the reader that a pulsar is a rapidly rotating compact
object with a large magnetic field. Despite considerable effort, the precise mechanism
by which particle winds are generated by a pulsar remains theoretically challenging
(see e.g. [74] for a review). It is natural to ask if our computation of β2 – and
concommitant production of an accelerating electric field can shed light on this.

Following [65], we will study the effects of this term on the Michel monopole, which
is a caricature of a pulsar that models it as a rotating magnetic monopole with
magnetic charge q and frequency Ω [75]. (For a more realistic model, one would split
the monopole, i.e. flip the sign of the magnetic charge at θ = π

2 ; this introduces a
current sheet along the equator, and is now thought to be a reasonable facsimile of
an actual pulsar). The Michel monopole field-strength is given by

F = q sin θdθ ∧ (dφ− Ωd(t− r)) (5.4.2)

This is a solution to conventional FFE. In [65] a general expansion for β2 was
considered in powers of B as:

β2 = BL2 +O(B2) + · · · (5.4.3)

with L an arbitrary scale. Inserting this into the FFE constitutive relations arising
from (4.3.6), it was shown that on the Michel magnetic monopole an accelerating
electric field was created whose magnitude is

E0 = −4qL2

r3 Ω cos θ E0 ≡
E ·B√
B2 − E2

(5.4.4)
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It was emphasised in [65] that this results in the acceleration of charged particles
away from the pulsar, where the acceleration can now be calculated using elementary
physics in terms of the scale L. Can this contribute to a reasonable pulsar wind? It
is often estimated that one requires a Lorentz factor of these accelerated particles of
γ ∼ 103 [74]. Inserting typical numbers for pulsars (i.e. a magnetic field B ∼ 1012

Gauss, a stellar radius of ten kilometers, and a pulsar period on the order of seconds),
[65] argued that one could obtain the desired acceleration if the scale L was on the
order of metres. (Tantalisingly, this is also the same scale at which coherent pulsar
radiation happens).

The new contribution of our work is that we now have an explicit calculation for L.
Comparing the phenomenological expansion (5.4.3) with the microscopic calculation
(5.4.1), we see that we have

L2 = e

240π2Bcr

= 1
240π2

1
m2 (5.4.5)

In other words, somewhat predictably L is set by the only scale in the problem; the
electron mass. As a length scale L = λ̄e√

240π2 ∼ 10−14 metres, of the order of the
Compton wavelength of the electron, which is many orders of magnitude too small
to account for the precise application suggested in [65].

However, we stress that the given formulae are valid for a broader range of b and could
potentially find a fruitful use in another setting. In particular, one might imagine
that the stronger the magnetic field the more relevant our calculation; we note the
existence of magnetars where the magnetic field can be up to two orders of magnitude
greater than the critical field strength [76]. It would be extremely interesting to
solve the equations of generalised FFE with a higher-derivative correction in a more
complicated pulsar geometry using our β(F )

2 ; one might entertain hope that this new
effective field theory approach could shed light on long-standing problems in pulsar
physics.

5.A Conventions

Transverse and longitudinal directions

In this chapter we have a fixed background magnetic field in the 3-direction. This
effectively splits the whole 4-dimensional spacetime into longitudinal directions 0, 3
and transverse directions 1, 2. It is thus useful to devise an appropriate notation.
We use i, j to range over 1, 2 and a, b range over 0, 3. Alternatively we may write
the components in pairs as x⊥ ≡ (x1, x2) ≡ xi and x‖ = (x0, x3) ≡ xa.
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Gauge-fixing

We work with the background gauge field in the Landau gauge defined by

Aµ = (0, 0, Bx1, 0) (5.A.1)

which fixes the magnetic field to be F12 = B3 = B. For the one-loop calculation
there is no gauge-fixing required since we restrict the photon momentum to be purely
in the 1-direction.

5.B Details of scalar calculation

5.B.1 Derivation of scalar propagator

In this appendix we provide a self-contained derivation of the scalar propagator in
a background magnetic field. Our approach follows [67] but is more detailed and
uses different conventions. The strategy will be to find a Green’s function for the
modified equation of motion for a free complex scalar. We will take the Lagrangian
to be (see [3])

L = −(Dµφ)†(Dµφ)−m2φ†φ− 1
4F

µνFµν (5.B.1)

where F = dA and the covariant derivative is defined by D ≡ d− ieA.2 This yields
the following equation of motion for φ(

−gµνDµDν +m2
)
φ(x) = 0 (5.B.2)

Making contact with the above vacuum background case, the Green’s equation for
the scalar field is defined by(

−gµνD(x)
µ D(x)

ν +m2
)
G(φ)(x, y) = δ(4)(x− y) (5.B.3)

Following [67], we will work with a constant background magnetic field oriented
along the positive z-direction:

F12 = B3 = B > 0 (5.B.4)

It is convenient to work in Landau gauge given by

A2 = Bx1 (5.B.5)

2That is, we choose the electric charge of the “scalar electron” to be q = −e < 0.
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We thus adopt a notation where i, j range over 1, 2 - the transverse directions - and
a, b range over 0, 3 - the longitudinal directions. Alternatively we may write the
components in pairs as x⊥ ≡ (x1, x2) ≡ xi and x‖ = (x0, x3) ≡ xa. Then the Green’s
equation becomes(

−gijD(x)
i D

(x)
j − gab∂(x)

a ∂
(x)
b +m2

)
G(φ)(x, y) = δ(4)(x− y) (5.B.6)

since the gauge field vanishes in the longitudinal directions with our gauge choice.

Now we Fourier transform in the longitudinal components:

G(φ)(p‖;x⊥, y⊥) =
∫
d2x‖ e

−ip‖·(x‖−y‖) G(φ)(x, y) (5.B.7)

This gives the Green’s equation(
−π2
⊥ + p2

‖ +m2
)
G(φ)(p‖;x⊥, y⊥) = δ(2)(x⊥ − y⊥) (5.B.8)

where

π1 = D
(x)
1 = ∂

(x)
1 (5.B.9a)

π2 = D
(x)
2 = ∂

(x)
2 − i(x1/l2) (5.B.9b)

π2
⊥ = π2

1 + π2
2 (5.B.9c)

l = (eB)−1/2 is the magnetic length, and p2
‖ = papbg

ab = −(p0)2 + (p3)2.

Observe that if we now change the orientation of the magnetic field by flipping
B 7→ −B, this is implemented by replacing l 7→ −il, and so we would replace π2

⊥ by
(π2
⊥)∗. Clearly this is equivalent to changing the sign of the “scalar electron” charge

q → −q since (Dµ)∗ = ∂µ + i(−q)Aµ.

At this point we introduce the wavefunctions Ψn,q2(x⊥) defined for n ∈ Z≥0 and
q2 ∈ R by

Ψn,q2(x⊥) = 1√
2πl

e−iq2x2
ψn

(
x1

l
+ q2 l

)
(5.B.10)

where ψn(η) are so-called Hermite functions.3 They are defined by

ψn(η) = 1√
2nn!
√
π
e−η

2/2Hn(η) (5.B.11)

where Hn are Hermite polynomials. The ψn are scaled so that they are orthonormal:∫ ∞
−∞

dη ψn(η)ψm(η) = δnm (5.B.12)

3Hermite functions ψn(η) are energy eigenfunctions of the quantum harmonic oscillator in the
usual position space representation, with η =

√
mω
~ x.
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Hermite functions satisfy the recurrence relations

ψ′n(η) =
√
n

2ψn−1(η)−
√
n+ 1

2 ψn+1(η) (5.B.13a)

ηψn(η) =
√
n

2ψn−1(η) +
√
n+ 1

2 ψn+1(η) (5.B.13b)

for all n ∈ Z≥0 if we set ψ−1 = 0.

If we let η = x1

l
+ q2l we have

lπ1Ψn,q2(x⊥) = d

dη
Ψn,q2(x⊥) (5.B.14a)

lπ2Ψn,q2(x⊥) = −iηΨn,q2(x⊥) (5.B.14b)

Hence using the recurrence relations for the Hermite functions, we can show that
Ψn,q2 satisfies the eigenvalue equation

π2
⊥Ψn,q2 = − 1

l2
(2n+ 1) Ψn,q2 (5.B.15)

The Ψn,q2 satisfy completeness and normalisability conditions

δ(2)(x⊥ − y⊥) =
∫ ∞
−∞

dq2

[ ∞∑
n=0

Ψn,q2(x⊥)Ψ∗n,q2(y⊥)
]

(5.B.16a)

δnn′ δ(q2 − q′2) =
∫
d2x⊥ Ψ∗n,q2(x⊥)Ψn′,q′2

(x⊥) (5.B.16b)

We can now write the left-hand side of the Green’s equation as(
−π2
⊥ + p2

‖ +m2
)
G(φ)(p‖;x⊥, y⊥)

=
(
−π2
⊥ + p2

‖ +m2
) ∫

d2z⊥ δ
(2)(x⊥ − z⊥)G(φ)(p‖; z⊥, y⊥)

=
∫
d2z⊥ G

(φ)(p‖; z⊥, y⊥)
∫ ∞

0
dq2

∞∑
n=0

[
Ψ∗n,q2(z⊥)

(
−π2
⊥ + p2

‖ +m2
)

Ψn,q2(x⊥)
]

= 1
l2

∫
d2z⊥ G

(φ)(p‖; z⊥, y⊥)
∫ ∞
−∞

dq2

∞∑
n=0

[
Ψ∗n,q2(z⊥)λn(p‖;m)Ψn,q2(x⊥)

]
where

λn(p‖;m) = l2(m2 + p2
‖) + 2n+ 1 (5.B.17)

Next multiply both sides of the Green’s equation by Ψ∗n′,q′2(x⊥) and integrate with
respect to x⊥. Using the completeness of the wavefunctions we obtain (after rela-
belling)

l2

λn(p‖;m)Ψ∗n,q2(y⊥) =
∫
d2z⊥ G

(φ)(p‖,m; z⊥, y⊥)Ψ∗n,q2(z⊥) (5.B.18)
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Finally, multiply by Ψn,q2(x⊥), sum over n and integrate over q2 to obtain

G(φ)(p‖,m;x⊥, y⊥) = l2
∫ ∞
−∞

dq2

∞∑
n=0

[
1

λn(p‖;m)Ψn,q(x⊥)Ψ∗n,q(y⊥)
]

(5.B.19)

Now we can substitute the expressions for the wavefunctions and complete the square
of the resulting exponent

G(φ)(p‖,m;x⊥, y⊥)

= l2
∫
dq2

[∑
n

1
λn

Ψn,q2(x⊥)Ψ∗n,q2(y⊥)
]

= l2

2πl

∫
dq2 e

−iq2(x2−y2)
[∑
n

1
λn
ψn

(
x1

l
+ q2 l

)
ψn

(
y1

l
+ q2 l

)]

= l

2π

∫
dq2 e

(
−l2q̃22+iΦ(x⊥,y⊥)− |x⊥−y⊥|

2

4l2

) [∑
n

1
2nn!
√
π

1
λn
Hn

(
x1

l
+ q2 l

)
Hn

(
y1

l
+ q2 l

)]

where we defined a shifted complexified momentum

q̃2 = q2 + 1
2l2 [(x1 + y1) + i(x2 − y2)] (5.B.20)

and a Schwinger phase

Φ(x⊥, y⊥) = 1
2l2 (x1 + y1)(x2 − y2) (5.B.21)

The Green’s function becomes

G(φ)(p‖,m;x⊥, y⊥) = l

2πe
iΦe−

1
2 ξ
∫
dq2 e

−l2q̃22
[∑
n

1
2nn!
√
π

1
λn
Hn(lq̃2 − α)Hn(lq̃2 + α∗)

]
(5.B.22)

where
α = 1

2l [(x
1 − y1) + i(x2 − y2)] (5.B.23)

and
ξ = 1

2l2 |x⊥ − y⊥|
2 = 2|α|2 (5.B.24)

We want to perform a change of variable from q2 to q̃2 in order to do the integral.
This is equivalent to shifting the contour to a horizontal line parallel to the real axis.
This will give the same result as integrating along the real axis so we don’t worry
about it here. We also need to rescale q̃2 via u = q̃2l. To perform the resulting u
integral, we will use the following integral identity∫ ∞

−∞
dx e−x

2
Hm(x+ y)Hn(x+ z) =

√
π 2n m! zn−m L(n−m)

m (−2yz) (5.B.25)

which is valid for m < n, where L(α)
m (x) are the generalised Laguerre polynomials.
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L(0)
m are ordinary Laguerre polynomials of order m. This identity is straightforward

to prove by Taylor expanding the Hermite polynomials, using the orthogonality
relation, and then comparing the resulting finite sum to the closed form of the
generalised Laguerre polynomial. This allows us to write the Green’s function as

G(φ)(p‖,m;x⊥, y⊥) = 1
2πe

iΦe−
1
2 ξ
∫
du e−u

2
[∑
n

1
2nn!
√
π

1
λn
Hn(u− α)Hn(u+ α∗)

]

= 1
2πe

iΦe−
1
2 ξ
∑
n

1
λn
Ln(2|α|2)

= 1
2πe

iΦ(x⊥,y⊥)e−
1
2 ξ
∞∑
n=0

Ln(ξ)
λn(p‖;m)

The final expression for the mixed representation Green’s function is thus

G(φ)(p‖,m;x⊥, y⊥) = 1
2πe

iΦ(x⊥,y⊥)e−
1
2 ξ
∞∑
n=0

Ln(ξ)
l2(m2 + p2

‖) + 2n+ 1 (5.B.26)

We interpret the sum over n as a sum over Landau levels. If we flip the orientation of
the magnetic field B 7→ −B, then the Green’s function simply maps to its complex
conjugate. In particular, the only change is the change of sign of the Schwinger
phase Φ(x⊥, y⊥) 7→ −Φ(x⊥, y⊥) = Φ(y⊥, x⊥).

Further, we can Fourier transform the translationary invariant part of the propagator:

G̃(φ)(p) ≡
∫
d2x⊥ e

−ip⊥·(x⊥−y⊥) e−iΦ G(φ)(p‖,m;x⊥, y⊥) = 2l2e−p2
⊥l

2
∞∑
n=0

(−1)nLn(2p2
⊥l

2)
l2(m2 + p2

‖) + 2n+ 1
(5.B.27)

See Appendix 5.D.2 for the relevant details concerning Fourier transforms of Laguerre
polynomials.

5.B.2 Computation of Feynman diagram

Here we provide further details of the Feynman diagram computation for the complex
scalar.

Fourier transform of current stress tensor correlator

We are interested in the momentum-space correlator 〈J̃02(p1)T̃ 23(−p1)〉. Starting
from the 3-point function, we have

〈T Aν(x)φ†(y)φ(z)〉 = −ie gρσ
∫
d4w G(γ)

νρ (x,w) Vσ(w, y, z) (5.B.28)
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Act on both sides with
(
∂

(y)
2 ∂

(z)
3 + ∂

(y)
3 ∂

(z)
2

)
and evaluate at z = y to get

〈T Aν(x)T 23(y)〉 = −ie gρσ
∫
d4w G(γ)

νρ (x,w) Uσ(w, y, y) (5.B.29)

Now we can differentiate with respect to xµ and antisymmetrise over the indices µ
and ν to get

〈T Fµν(x)T 23(y)〉 = −ie gρσ
∫
d4w

[
∂(x)
µ G(γ)

νρ (x,w)− ∂(x)
ν G(γ)

µρ (x,w)
]
Uσ(w, y, y)

(5.B.30)

The photon propagator is given by

G(γ)
µρ (x,w) =

∫
d̃p eip·(x−w)G̃(γ)

µρ (p) =
∫
d̃p eip·(x−w) 1

p2 − iε

(
gµρ − (1− ζ) pµpρ

p2

)
(5.B.31)

for some gauge-fixing parameter ζ.

Hence we have

〈T Fµν(x)T 23(0)〉 = e gρσ
∫
d4w d̃p eip·(x−w)

[
pµG̃

(γ)
νρ (p)− pνG̃(γ)

µρ (p)
]
Uσ(w, 0, 0)

(5.B.32)

Taking the Fourier transform we simply have

〈F̃µν(p)T̃ 23(−p)〉 = e gρσ
[
pµG̃

(γ)
νρ (p)− pνG̃(γ)

µρ (p)
] ∫

d4w e−ip·w Uσ(w, 0, 0) (5.B.33)

Setting µ = 1, ν = 3 and pµ = (0, p1, 0, 0), we identify F13 = J02 to get

〈J̃02(p1)T̃ 23(−p1)〉 = e p1 G̃
(γ)
3ρ (p1) gρσ

∫
d4w e−ip1w1

Uσ(w, 0, 0) (5.B.34)

Observe that when the momentum is purely in the 1-direction, the expression for
the photon propagator simplifies to

G̃
(γ)
3ρ (p1) = g3ρ

(p1)2 (5.B.35)

which allows us to write

〈J̃02(p1)T̃ 23(−p1)〉 = e

p1

∫
d4w e−ip1w1

U3(w, 0, 0) (5.B.36)

Now to calculate U3(w, 0, 0). Start with V3(w, y, z) and use the momentum-space
representation of the scalar propagator.

G(φ)(z, w) =
∫
d̃k eik·(z−w)eiΦ(z⊥,w⊥) G̃(φ)(k) (5.B.37)
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This allows us to write V3 as

V3(w, y, z) = i
∫
d̃q d̃k (q3 + k3) eiq·(w−y)eik·(z−w)eiΦ(z⊥,w⊥)e−iΦ(y⊥,w⊥) G̃(φ)(q)G̃(φ)(k)

(5.B.38)

Hence differentiating gives

U3(w, y, z) = i
∫
d̃q d̃k eiq·(w−y)eik·(z−w)eiΦ(z⊥,w⊥)e−iΦ(y⊥,w⊥)G̃(φ)(q)G̃(φ)(k)

(q3 + k3)
{
k3
[
q2 + ∂

(y)
2 Φ(y⊥, w⊥)

]
+ q3

[
k2 + ∂

(z)
2 Φ(z⊥, w⊥)

]}

When we evaluate at z = y, the Schwinger phases cancel, and we obtain a simpler
expression.

U3(w, y, y)

= i
∫
d̃q d̃k ei(q−k)·(w−y)G̃(φ)(q)G̃(φ)(k)(q3 + k3)

[
k3q2 + q3k2 + (q3 + k3) ∂(y)

2 Φ(y⊥, w⊥)
]

(5.B.39)

The Schwinger phase is given by

Φ(y⊥, w⊥) = 1
2l2 (y1 + w1)(y2 − w2) (5.B.40)

so the relevant derivative is

∂
(y)
2 Φ(y⊥, w⊥) = w1 + y1

2l2 (5.B.41)

Hence evaluating at y = 0, the expression we need is

U3(w, 0, 0) = i
∫
d̃q d̃k G̃(φ)(q) G̃(φ)(k) eiw·(q−k) (q3+k3)

(
q2k3 + k2q3 + w1(q3 + k3)

2l2

)
(5.B.42)

Plugging this into the expression for the correlator, we can immediately do the
integral over the longitudinal directions w‖ to get a factor of δ(2)(q‖ − k‖). Then we
can integrate over (say) k‖. This gives

〈J̃02(p1)T̃ 23(−p1)〉 = 2ie
p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖)q2

3

(
q2 + k2 + w1

l2

)
(5.B.43)

With our conventions the Green’s function is related to the correlator by

i G̃02,23
JT (p1) = 〈J̃02(p1)T̃ 23(−p1)〉 (5.B.44)
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Hence we can write

G̃02,23
JT (p1) = 2e

p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖) q2

3

(
q2 + k2 + w1

l2

)
(5.B.45)

Similarly to before, we write d̃k⊥ as a shorthand for d2k⊥
(2π)2 . We will show that only

the term in the integrand with a factor of w1/l2 has a non-vanishing contribution to
the correlator. For the remaining (q2 + k2) piece we can do the integral over w2 and
k2 then expand the propagator expressions to get∫
dw2 dq2 dk2 e

iw2(q2−k2) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖) (q2 + k2)

=
∫
dq2 dk2 δ(q2 − k2) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖) (q2 + k2)

= 2
∫
dq2 G

(φ)(q⊥, q‖) G(φ)(k1, q2, q‖) q2

= 8l4
∫
dq2 q2 e

−l2(k2
1+q2

1+2q2
2)

∞∑
n,n′=0

(−1)nLn(2l2(q2
1 + q2

2))
l2
(
q2
‖ +m2

)
+ 2n+ 1

(−1)n′Ln′(2l2(k2
1 + q2

2))
l2
(
q2
‖ +m2

)
+ 2n′ + 1



This explicitly shows that the integrand is odd in q2, so since we integrate q2 from
−∞ to ∞ the integral over q2 vanishes as claimed. Hence we have

G̃02,23
JT (p1) = 2e

l2p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥) G(φ)(q⊥, q‖) G(φ)(k⊥, q‖) q2

3 w
1

(5.B.46)

Now we go full circle back to the mixed representation of the scalar propagator,
using

G(φ)(k⊥, q‖) = 1
2π

∫
d2x⊥ e

−ik⊥·x⊥e−x
2
⊥/4l

2
∞∑
n=0

Ln(x2
⊥/2l2)

λn(q‖)
(5.B.47)

This allows us to invert the transverse direction Fourier transforms to get
∫
d̃q⊥ d̃k⊥ e

iw⊥·(q⊥−k⊥) G(q⊥, q‖) G(k⊥, q‖) = 1
(2π)2 e

−w2
⊥/2l

2
∞∑

n,n′=0

Ln(w2
⊥/2l2)Ln′(w2

⊥/2l2)
λn(q‖)λn′(q‖)

(5.B.48)

So substituting back into the Green’s function gives

G̃02,23
JT (p1) = e

2π2l2p1

∫
d2w⊥ d̃q‖ q

2
3 w

1 e−ip1w1
e−w

2
⊥/2l

2
∞∑

n,n′=0

Ln(w2
⊥/2l2)Ln′(w2

⊥/2l2)
λn(q‖)λn′(q‖)

(5.B.49)
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Wick rotation and rescaling of longitudinal integral

Here we fill in the details of the Wick rotation of the longitudinal loop momenta.
We have 4

β
(S)
2 = −iel

4

2π

∫
d̃q‖ q

2
3

∞∑
n,n′=0

In,n′

λn(q‖)λn′(q‖)
(5.B.50)

where In,n′ is a Laguerre-type integral. We can Wick rotate the longitudinal mo-
mentum q‖ by setting q0 = iΩ, q3 = k. Then d2q‖ = i dΩ dk. We get

β
(S)
2 = el4

2π

∫ ∞
−∞

dΩ
2π

∫ ∞
−∞

dk

2π k2
∞∑

n,n′=0

In,n′

[l2(m2 + Ω2 + k2) + 2n+ 1][l2(m2 + Ω2 + k2) + 2n′ + 1]
(5.B.51)

Now the denominator is symmetric in Ω and k so we can write

β
(S)
2 = el4

4π

∫ ∞
−∞

dΩ
2π

∫ ∞
−∞

dk

2π

∞∑
n,n′=0

(Ω2 + k2)In,n′
[l2(m2 + Ω2 + k2) + 2n+ 1][l2(m2 + Ω2 + k2) + 2n′ + 1]

(5.B.52)

Rescale and transform to polar coordinates with the following change of variables.

l Ω = ρ cosϕ (5.B.53a)
l k = ρ sinϕ (5.B.53b)

Then l2 dΩ dk = ρ dρ dϕ and the expression becomes

β
(S)
2 = e

8π2

∫ 2π

0

dϕ

2π

∫ ∞
0

dρ ρ3
∞∑

n,n′=0

In,n′

(µ+ ρ2 + 2n+ 1)(µ+ ρ2 + 2n′ + 1) (5.B.54)

where µ = ml is a dimensionless number. Clearly the azimuthal integral integrates
to 1, and as before we can make this even simpler by substituting x = ρ2 to get

β
(S)
2 = e

16π2

∫ ∞
0

dx x S(φ)(x;µ) (5.B.55)

where S(φ) is the series given by

S(φ)(x;µ) =
∞∑

n,n′=0

In,n′

(µ+ x+ 2n+ 1)(µ+ x+ 2n′ + 1) (5.B.56)

4We assume throughout that the series and all integrals commute with each other.
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5.C Details of fermion calculation

5.C.1 Derivation of fermion propagator

Much of the work carries over from the scalar case. Beginning with the QED
Lagrangian

L = ψ̄(i /D −m)ψ (5.C.1)

We obtain the equation of motion for the Dirac spinor

(i /D −m)ψ = 0 (5.C.2)

So we have the Green’s equation(
m− i /D(x))

G(ψ)(x, y) = δ(4)(x− y) (5.C.3)

We can Fourier transform in the longitudinal directions to get(
m+ γapa − iγiπi

)
G(ψ)(p‖;x⊥, y⊥) = δ(2)(x⊥ − y⊥) (5.C.4)

and then act on each side with (m− γapa + iγiπi) to get(
m2 + p2

‖ − π2
⊥ −

i

l2
γ1γ2

)
G(ψ)(p‖;x⊥, y⊥) = (m− γapa + iγiπi) δ(2)(x⊥ − y⊥)

(5.C.5)

Using the exact same wavefunctions Ψn,q2(x⊥) as we did for the scalar calculation,
we have

lγiπiΨn,q2(x⊥) =
(
γ1 d

dη
− iγ2η

)
Ψn,q2 (5.C.6)

Using the representation of the Ψn,q2 in terms of Hermite polynomials ψn(η) in
(5.B.10), we have:

lγiπiΨn,q2(x⊥) = e−iqx
2

√
2πl

γ1
[
P+

(
d

dη
+ η

)
+ P−

(
d

dη
− η

)]
ψn(η)

= e−iqx
2

√
2πl

γ1
[
P+
√

2n ψn−1(η)− P−
√

2(n+ 1) ψn+1(η)
]

= γ1
[√

2n Ψn−1,q2 P+ −
√

2(n+ 1) Ψn+1,q2 P−

]
where the projectors P± are defined by

P± = 1
2(1± iγ1γ2) (5.C.7)

Above, we assumed B > 0; however it will later be useful to keep track of which
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terms depend on the sign of B, as these tell us about the transformation of the
propagator under charge conjugation. If we take B → −B, this flips the sign of the
Schwinger phase, and thus the sign of the exponent in Ψn,q2 . Tracing through, this
also flips the sign of the term in −iγ2η term in (5.C.6) and thus interchanges P+

and Pi in subsequent expressions; thus to obtain an expression valid for all B, we
should also write:

P± = 1
2(1± i sign(eB)γ1γ2) (5.C.8)

Though we will mostly work with B > 0 and use the simpler expression (5.C.7), it
is helpful to keep this non-analyticity in B in mind.

This expression is valid for all n if we understand Ψn−1 to be 0. We can write the
left-hand side of the Green’s equation as(

m2 + p2
‖ − π2

⊥ −
i

l2
γ1γ2

)
G(ψ)(p‖;x⊥, y⊥)

= 1
l2

∫
d2z⊥

∫ ∞
−∞

dq2

∞∑
n=0

[
Ψ∗n,q2(z⊥)(λn(p‖;m)− iγ1γ2)Ψn,q2(x⊥)G(ψ)(p‖; z⊥, y⊥)

]
(5.C.9)

and the right-hand side as

(m− γapa + iγiπi) δ(2)(x⊥ − y⊥)

=
∫ ∞
−∞

dq2

∞∑
n=0

Ψ∗n,q2(y⊥)
{

(m− γapa)Ψn,q(x⊥)

+ iγ1

l

[√
2n Ψn−1,q2(x⊥) P+ −

√
2(n+ 1) Ψn+1,q2(x⊥) P−

]}
(5.C.10)

Multiplying the Green’s equation by Ψ∗n′,q′2(x⊥), integrating with respect to x⊥ and
relabelling allows us to invert to get

1
l2

∫
d2z⊥

[
Ψ∗n,q2(z⊥)(λn(p‖;m)− iγ1γ2)G(ψ)(p‖; z⊥, y⊥)

]
= (m− γapa)Ψ∗n,q2(y⊥) + iγ1

l

[√
2(n+ 1) Ψ∗n+1,q2(y⊥) P+ −

√
2n Ψ∗n−1,q2(y⊥) P−

]
(5.C.11)

Observe that
λn − iγ1γ2 = (λn − 1)P+ + (λn + 1)P− (5.C.12)

so we can act on both sides with its inverse to get∫
d2z⊥

(
Ψ∗n,q2(z⊥)G(ψ)(p‖; z⊥, y⊥)

)
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= l2
(

P+

λn − 1 + P−
λn + 1

){
(m− γapa)Ψ∗n,q2(y⊥)

+ iγ1

l

[√
2(n+ 1) Ψ∗n+1,q2(y⊥) P+ −

√
2n Ψ∗n−1,q2(y⊥) P−

]}

= l2

(m− γapa)Ψ∗n,q2(y⊥)
(

P+

λn − 1 + P−
λn + 1

)

+ iγ1

l


√

2(n+ 1)
λn + 1 Ψ∗n+1,q2(y⊥)P+ −

√
2n

λn − 1 Ψ∗n−1,q2(y⊥)P−



Then as we did for the scalar, multiply by Ψn,q2(x⊥), sum over n and integrate with
respect to q2. On the left-hand side this extracts the Green’s function. On the
right-hand side we run the same method as for the scalar: expand the wavefunction
expressions, complete the square of the exponent, then shift the contour so we can
do the momentum integral using the Hermite polynomial integral identity.

(2π) e−iΦe 1
2 ξ G(ψ)(p‖;x⊥, y⊥)

= (2π) e−iΦe 1
2 ξ l2

∫ ∞
−∞

dq2

∞∑
n=0

Ψn,q2(x⊥)
[
(m− γapa)Ψ∗n,q2(y⊥)

(
P+

λn − 1 + P−
λn + 1

)

+ iγ1

l

(√2(n+ 1)
λn + 1 Ψ∗n+1,q2(y⊥)P+ −

√
2n

λn − 1 Ψ∗n−1,q2(y⊥)P−
)]

= e−iΦe
1
2 ξ l

∫ ∞
−∞

dq2

∞∑
n=0

ψn

(
x1

l
+ q2l

)[
(m− γapa)ψn

(
y1

l
+ q2l

)(
P+

λn − 1 + P−
λn + 1

)

+ iγ1

l

(√2(n+ 1)
λn + 1 ψn+1

(
y1

l
+ q2l

)
P+ −

√
2n

λn − 1 ψn−1

(
y1

l
+ q2l

)
P−

)]

=
∫
du e−u

2
∞∑
n=0

Hn(u+ α∗)
2nn!
√
π

[
(m− γapa)Hn(u− α)

(
P+

λn − 1 + P−
λn + 1

)

+ iγ1

l

(
Hn+1(u− α)

λn + 1 P+ −
2n Hn−1(u− α)

λn − 1 P−

)]

=
∞∑
n=0

[
(m− γapa)Ln(ξ)

(
P+

λn − 1 + P−
λn + 1

)
+ iγ1

l

(
(−2α)L(1)

n (ξ)
λn + 1 P+ −

2α∗L(1)
n−1(ξ)

λn − 1 P−

)]

=
∞∑
n=0

[
(m− γapa)Ln(ξ)

(
P+

λn − 1 + P−
λn+1 − 1

)
− 2iγ1

l

(
αL(1)

n (ξ)
λn+1 − 1 P+ + α∗L

(1)
n−1(ξ)

λn − 1 P−

)]

=
∞∑
n=0

Fn(p‖;x⊥, y⊥)
λn(p‖;m)− 1

where Φ is the Schwinger phase and 2l2ξ = |x⊥ − y⊥|2, exactly as before.
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In the lowest Landau level, we have

F0(p‖;x⊥, y⊥)
λ0 − 1 = (m− γapa)P+

l2(m2 + p2
‖)

(5.C.13)

In every excited Landau level, we have

Fn(p‖;x⊥, y⊥) = (m− γapa)(Ln(ξ)P+ + Ln−1(ξ)P−)− 2iγ1

l
(αP+ + α∗P−)L(1)

n−1(ξ)
(5.C.14)

We can easily show that
2lγ1(αP+ + α∗P−) = γjzj (5.C.15)

where z⊥ ≡ x⊥ − y⊥. Hence our final expression for the numerator is

Fn(p‖;x⊥, y⊥) = (m− γapa)(Ln(ξ)P+ + Ln−1(ξ)P−)− i

l2
γjzjL

(1)
n−1(ξ) (5.C.16)

This is valid for n = 0 also if we understand that L(α)
−1 = 0, so we can write

G(ψ)(p‖;x⊥, y⊥) = 1
2πe

iΦe−
1
2 ξ
∞∑
n=0

(m− γapa)(Ln(ξ)P+ + Ln−1(ξ)P−)− i
l2
γjzjL

(1)
n−1(ξ)

l2(m2 + p2
‖) + 2n

(5.C.17)

Further, we can Fourier transform the translationary invariant part of the propagator:

G̃(ψ)(p) = 2l2e−p2
⊥l

2
∞∑
n=0

(−1)nDn(p)
l2(m2 + p2

‖) + 2n (5.C.18)

where the numerator is given by

Dn(p) = (m− γapa)
(
Ln
(
2p2
⊥l

2
)
P+ − Ln−1

(
2p2
⊥l

2
)
P−
)

+ 2γjpjL(1)
n−1(2p2

⊥l
2)

(5.C.19)
See Appendix 5.D.2 for the relevant details concerning Fourier transforms of Laguerre
polynomials.

5.C.2 Computation of Feynman diagram

For completeness, we provide some further details of the computation of the current
stress tensor Green’s function for the fermion.

We have the three-point function

〈T Aµ(x)ψ̄(y)γνψ(z)〉 = e gρσ
∫
d4w G(γ)

µρ (x,w)Vνσ(w, y, z) (5.C.20)
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Differentiating, we get(
∂

(z)
λ − ∂

(y)
λ

)
〈T Aµ(x)ψ̄(y)γνψ(z)〉 = e gρσ

∫
d4w G(γ)

µρ (x,w)Uλνσ(w, y, z) (5.C.21)

Now add the components with λ = 2, ν = 3 and λ = 3, ν = 2 then evaluate at z = y.

〈T Aµ(x)T 23
(F )(y)〉 = ie

4 gρσ
∫
d4w G(γ)

µρ (x,w) [U23σ(w, y, y) + U32σ(w, y, y)] (5.C.22)

Differentiating with respect to xλ and antisymmetrising, we have

〈T Fλµ(x)T 23
(F )(y)〉

= −e4 gρσ
∫
d4w d̃p eip·(x−w)

[
pλG̃

(γ)
µρ (p)− pµG̃(γ)

λρ (p)
]

[U23σ(w, y, y) + U32σ(w, y, y)]

(5.C.23)

Now take the Fourier transform with momentum purely in the 1-direction.

〈F̃13(p1)T̃ 23
(F )(−p1)〉 = −e4 p1 g

ρσ G̃
(γ)
3ρ (p1)

∫
d4w e−ip·w [U23σ(w, 0, 0) + U32σ(w, 0, 0)]

(5.C.24)

Hence after substituting the Fourier transform of the photon propagator and identi-
fying the 2-form current, we have

〈J̃02(p1)T̃ 23
(F )(−p1)〉 = − e

4p1

∫
d4w e−ip·w [U233(w, 0, 0) + U323(w, 0, 0)] (5.C.25)

Now to write the relevant components of Uµνρ(w, 0, 0) in terms of the propagators
G̃(ψ)(q).

U233(w, y, z)
=
(
∂

(z)
2 − ∂

(y)
2

)
V33(w, y, z)

=
(
∂

(z)
2 − ∂

(y)
2

)
Tr
[
γ3 G

(ψ)(z, w) γ3 G
(ψ)(w, y)

]
=
(
∂

(z)
2 − ∂

(y)
2

) ∫
d̃q d̃k eiΦ(z⊥,w⊥)eiq·(w−y)eiΦ(w⊥,y⊥)eik·(z−w) Tr

[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
= i

∫
d̃q d̃k (q2 + k2 + ∂

(z)
2 Φ(z⊥, w⊥) + ∂

(y)
2 Φ(y⊥, w⊥))eiΦ(z⊥,w⊥)eiq·(w−y)eiΦ(w⊥,y⊥)eik·(z−w)

Tr
[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]

If we evaluate this expression at z = y then the Schwinger phases cancel and the
expression simplifies to

U233(w, y, y)

= i
∫
d̃q d̃k (q2 + k2 + 2 ∂(y)

2 Φ(y⊥, w⊥)) ei(q−k)·(w−y) Tr
[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
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= i
∫
d̃q d̃k

(
q2 + k2 + w1 + y1

l2

)
ei(q−k)·(w−y) Tr

[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
where we used

2 ∂(y)
2 Φ(y⊥, w⊥) = y1 + w1

l2
(5.C.26)

Finally evaluating at y = 0 gives

U233(w, 0, 0) = i
∫
d̃q d̃k

(
q2 + k2 + w1

l2

)
eiw·(q−k) Tr

[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
(5.C.27)

Similarly we also have

U323(w, y, z) =
(
∂

(z)
3 − ∂

(y)
3

)
V23(w, y, z)

=
(
∂

(z)
3 − ∂

(y)
3

)
Tr
[
γ2 G

(ψ)(z, w) γ3 G
(ψ)(w, y)

]
=
(
∂

(z)
3 − ∂

(y)
3

) ∫
d̃q d̃k eiΦ(z⊥,w⊥)eiq·(w−y)eiΦ(w⊥,y⊥)eik·(z−w) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]
= i

∫
d̃q d̃k (q3 + k3)eiΦ(z⊥,w⊥)eiq·(w−y)eiΦ(w⊥,y⊥)eik·(z−w) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]

Again evaluating at z = y:

U323(w, y, y) = i
∫
d̃q d̃k (q3 + k3) ei(q−k)·(w−y) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]

Finally evaluating at y = 0 gives

U323(w, 0, 0) = i
∫
d̃q d̃k (q3 + k3) eiw·(q−k) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]
(5.C.28)

After substituting these expressions into the current stress tensor Green’s function,
we obtain

G̃02,23
JT (p1)

= −e4p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)

{(
q2 + k2 + w1

l2

)
Tr
[
γ3 G̃

(ψ)(q) γ3 G̃
(ψ)(k)

]
+ (q3 + k3) Tr

[
γ2 G̃

(ψ)(k) γ3 G̃
(ψ)(q)

]}
(5.C.29)

Now we can expand the Green’s function as sums over Landau levels by substituting
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the expression for the Fourier-transformed fermion propagator. This gives

G̃02,23
JT (p1) = −el

4

p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)e−l
2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(k‖;m)[(
q2 + k2 + w1

l2

)
Tr(γ3Dn(q)γ3Dn′(k)) + (q3 + k3) Tr(γ3Dn(q)γ2Dn′(k))

]
(5.C.30)

As in the scalar case, we will demonstrate that the terms linear in q2 and k2 must
vanish. Indeed,
∫
d4w d̃q d̃k q2 e

−ip1w1
eiw·(q−k)e−l

2q2
⊥ e−l

2k2
⊥

[
Tr(γ3Dn(q)γ3Dn′(k))
σn(q‖;m)σn′(k‖;m)

]

=
∫
dw1 d̃q

dk1

2π q2 e
−iw1(p1−q1+k1)e−2l2q2

2 e−l
2(q2

1+k2
1)
[

Tr(γ3Dn(q)γ3Dn′(k1, q2, q‖))
σn(q‖;m)σn′(q‖;m)

]
= 0

since the integrand is odd in q2 and we integrate q2 over all of R. Similarly we have
∫
d4w d̃q d̃k k2 e

−ip1w1
eiw·(q−k)e−l

2q2
⊥ e−l

2k2
⊥

[
Tr(γ3Dn(q)γ3Dn′(k))
σn(q‖;m)σn′(k‖;m)

]
= 0

So the expression simplifies to

G̃02,23
JT (p1) = −el

4

p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)e−l
2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(k‖;m)[
w1

l2
Tr(γ3Dn(q)γ3Dn′(k)) + (q3 + k3) Tr(γ3Dn(q)γ2Dn′(k))

]
(5.C.31)

Now we can expand the traces using

Tr(γ3Dn(q)γ3Dn′(k))
= −2m2[Ln(2q2

⊥l
2)Ln′(2k2

⊥l
2) + Ln−1(2q2

⊥l
2)Ln′−1(2k2

⊥l
2)]− 16qikiL(1)

n−1(2q2
⊥l

2)L(1)
n′−1(2k2

⊥l
2)

(5.C.32a)

Tr(γ3Dn(q)γ2Dn′(k))
= 4[Ln−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)q3(k2 + ik1)− L(1)
n−1(2q2

⊥l
2)Ln′(2k2

⊥l
2)k3(q2 + iq1)

+ Ln′−1(2k2
⊥l

2)L(1)
n−1(2q2

⊥l
2)k3(q2 − iq1)− L(1)

n′−1(2k2
⊥l

2)Ln(2q2
⊥l

2)q3(k2 − ik1)]
(5.C.32b)

Once again we can neglect the terms which are odd in q2 and k2 since they vanish
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under the integral sign. Hence

G̃02,23
JT (p1) = −el

4

p1

∫
d4w d̃q d̃k e−ip1w1

eiw·(q−k)e−l
2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(k‖;m)−2w1

l2

(
m2[Ln(2q2

⊥l
2)Ln′(2k2

⊥l
2) + Ln−1(2q2

⊥l
2)Ln′−1(2k2

⊥l
2)]

+ 8qikiL(1)
n−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)
)

+ 4i(q3 + k3)
(
Ln−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)q3k1 − L(1)
n−1(2q2

⊥l
2)Ln′(2k2

⊥l
2)k3q1

− Ln′−1(2k2
⊥l

2)L(1)
n−1(2q2

⊥l
2)k3q1 + L

(1)
n′−1(2k2

⊥l
2)Ln(2q2

⊥l
2)q3k1

)
(5.C.33)

An obvious and straightforward step is to perform the longitudinal position integral
over w‖. This will yield a delta function so that we can do the k‖ integral. This
simplifies the expression to

G̃02,23
JT (p1) = −el

4

p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥)e−l

2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(q‖;m)−2w1

l2

(
m2[Ln(2q2

⊥l
2)Ln′(2k2

⊥l
2) + Ln−1(2q2

⊥l
2)Ln′−1(2k2

⊥l
2)]

+ 8qikiL(1)
n−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)
)

+ 8iq2
3

(
Ln−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)k1 − L(1)
n−1(2q2

⊥l
2)Ln′(2k2

⊥l
2)q1

− Ln′−1(2k2
⊥l

2)L(1)
n−1(2q2

⊥l
2)q1 + L

(1)
n′−1(2k2

⊥l
2)Ln(2q2

⊥l
2)k1

)
(5.C.34)

To save writing, we can suppress the arguments of the (generalised) Laguerre poly-
nomials - the argument being implied by the subscript (e.g. n for 2q2

⊥l
2).
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Then we have

G̃02,23
JT (p1) = −2el4

p1

∫
d2w⊥ d̃q d̃k⊥ e

−ip1w1
eiw⊥·(q⊥−k⊥)e−l

2q2
⊥ e−l

2k2
⊥

∞∑
n,n′=0

(−1)n+n′

σn(q‖;m)σn′(q‖;m)−w1

l2

[
m2(LnLn′ + Ln−1Ln′−1) + 8qikiL(1)

n−1L
(1)
n′−1

]

+ 4iq2
3

[
k1L

(1)
n′−1 (Ln−1 + Ln)− q1L

(1)
n−1 (Ln′−1 + Ln′)

]
(5.C.35)

Now we can invert the transverse Fourier transforms, using

(−1)n l2e−p2
⊥l

2
Ln
(
2p2
⊥l

2
)

= 1
4π

∫
d2x⊥ e

−ip⊥·x⊥e−x
2
⊥/4l

2
Ln
(
x2
⊥/2l2

)
(5.C.36a)

(−1)n l2pj e−p
2
⊥l

2
L

(1)
n−1

(
2p2
⊥l

2
)

= − i

8πl2
∫
d2x⊥ xj e

−ip⊥·x⊥e−x
2
⊥/4l

2
L

(1)
n−1

(
x2
⊥/2l2

)
(5.C.36b)

Hence we have the lengthy expression

G̃02,23
JT (p1)

= − 2e
(4π)2p1

∫
d2w⊥ d̃q‖ d̃q⊥ d̃k⊥ d

2y⊥ d
2z⊥ e

−ip1w1
eiq⊥·(w⊥−y⊥)e−ik⊥·(w⊥+z⊥)e−y

2
⊥/4l

2
e−z

2
⊥/4l

2

∞∑
n,n′=0

1
σn(q‖;m)σn′(q‖;m)

−w1

l2

[
m2
(
Ln
(
y2
⊥/2l2

)
Ln′

(
z2
⊥/2l2

)

+ Ln−1
(
y2
⊥/2l2

)
Ln′−1

(
z2
⊥/2l2

))
− 2yjzj

l4
L

(1)
n−1

(
y2
⊥/2l2

)
L

(1)
n′−1

(
z2
⊥/2l2

) ]

+ 2q2
3
l2

[
z1L

(1)
n′−1

(
z2
⊥/2l2

) (
Ln
(
y2
⊥/2l2

)
− Ln−1

(
y2
⊥/2l2

))
−

y1L
(1)
n−1

(
y2
⊥/2l2

) (
Ln′

(
z2
⊥/2l2

)
− Ln′−1

(
z2
⊥/2l2

)) ]
We can straightforwardly do the transverse momentum integrals, yielding delta
functions. Then after trivial integrals over y⊥ and z⊥ we have

G̃02,23
JT (p1) = 2e

(4π)2p1l2

∫
d2w⊥ d̃q‖ e

−ip1w1
e−w

2
⊥/2l

2
∞∑

n,n′=0

1
σn(q‖;m)σn′(q‖;m)w1 m2

(
Ln
(
w2
⊥/2l2

)
Ln′

(
w2
⊥/2l2

)
+ Ln−1

(
w2
⊥/2l2

)
Ln′−1

(
w2
⊥/2l2

))

− 2w1w
2
⊥

l4
L

(1)
n−1

(
w2
⊥/2l2

)
L

(1)
n′−1

(
w2
⊥/2l2

)
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+ 4 q2
3 w1 L

(1)
n′−1

(
w2
⊥/2l2

) [
Ln
(
w2
⊥/2l2

)
− Ln−1

(
w2
⊥/2l2

)]
5.C.3 Trace identities

From the Clifford algebra
{γµ, γν} = −2gµν (5.C.37)

we can derive that

Tr(γµγν) = −4gµν (5.C.38a)
Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (5.C.38b)

Tr(γµ1 · · · γµ2k+1) = 0 (5.C.38c)

Together with the projector properties,

P±P± = P± (5.C.39a)
P±P∓ = 0 (5.C.39b)

and the relations

[P±, γa] = 0 (5.C.40a)
P±γ

i = γiP∓ (5.C.40b)

we find that
Tr(γaP±γj) = 0 (5.C.41)

and
Tr(γ3γiγ2γaP±) = 2g3a(gi2 + igi1) (5.C.42)

Hence we can show that

Tr(γ3Dn(q)γ3Dn′(k))
= −2m2[Ln(2q2

⊥l
2)Ln′(2k2

⊥l
2) + Ln−1(2q2

⊥l
2)Ln′−1(2k2

⊥l
2)]

− 16qikiL(1)
n−1(2q2

⊥l
2)L(1)

n′−1(2k2
⊥l

2)

(5.C.43)

and

Tr(γ3Dn(q)γ2Dn′(k))
= 2(qakiLn−1L

(1)
n′−1 − kaqiL

(1)
n−1Ln′) Tr(γ3γiγ2γaP+)

+ 2(kaqiLn′−1L
(1)
n−1 − qakiL

(1)
n′−1Ln) Tr(γ3γiγ2γaP−)

= 4[Ln−1(2q2
⊥l

2)L(1)
n′−1(2k2

⊥l
2)q3(k2 + ik1)− L(1)

n−1(2q2
⊥l

2)Ln′(2k2
⊥l

2)k3(q2 + iq1)
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+ Ln′−1(2k2
⊥l

2)L(1)
n−1(2q2

⊥l
2)k3(q2 − iq1)− L(1)

n′−1(2k2
⊥l

2)Ln(2q2
⊥l

2)q3(k2 − ik1)]

5.D Laguerre polynomials

5.D.1 Laguerre polynomial structure

This appendix provides the details of the orthogonality structure of generalised
Laguerre polynomials. Using this, we thoroughly demonstrate a method to evaluate
position-space integrals which arise in the calculation of the current stress tensor
Green’s function.

Scalar part

First define the following integral.

In,n′ ≡
∫ ∞

0
dx x2 e−xLn(x) Ln′(x) (5.D.1)

This looks very similar to the inner product of generalised Laguerre polynomials:

〈n|n′〉 ≡
∫ ∞

0
dx x2 e−x L(2)

n (x) L(2)
n′ (x) = (n+ 2)(n+ 1) δn,n′ (5.D.2)

The generalised Laguerre polynomials with superscript 0 are the usual Laguerre poly-
nomials, and the generalised Laguerre polynomials of order 0 are just the constant 1
function:

L(0)
n = Ln (5.D.3a)

L
(α)
0 = 1 (5.D.3b)

so we have I0,0 = 〈0|0〉 = 2. For n > 0 we can use the “three-point-rule” of
generalised Laguerre polynomials

L(α)
n = L(α+1)

n − L(α+1)
n−1 (5.D.4)

to write In,n′ in terms of 〈n|n′〉. For example we have

L
(0)
1 = L

(2)
1 − 2L(2)

0 (5.D.5)

which gives I1,0 = 〈1|0〉 − 2 〈0|0〉 = −4. We summarise the first few values below,



146 Chapter 5. Application 2: Force-free electrodynamics

obtained similarly.5

I0,0 = 〈0|0〉 = 2 (5.D.6a)
I0,1 = 〈1|0〉 − 2 〈0|0〉 = −4 (5.D.6b)
I1,1 = 〈1|1〉+ 4 〈0|0〉 = 14 (5.D.6c)
I0,2 = 〈2|0〉 − 2 〈1|0〉+ 〈0|0〉 = 2 (5.D.6d)
I1,2 = 〈2|1〉 − 2 〈2|0〉 − 2 〈1|1〉+ 5 〈1|0〉 − 2 〈0|0〉 = −16 (5.D.6e)

In general for n ≥ 2 we have

I0,n = 〈0|n− 2〉 − 2 〈0|n− 1〉+ 〈0|n〉 (5.D.7a)
I1,n = 〈1|n− 2〉 − 2 〈1|n− 1〉+ 〈1|n〉 − 2 I0,n (5.D.7b)

When n, n′ ≥ 2, we can apply the three-point rule twice to each Laguerre polynomial
to obtain (inductively)

In,n′ = 〈n|n′〉 + 4 〈n− 1|n′ − 1〉 + 〈n− 2|n′ − 2〉
− [2 〈n|n′ − 1〉 − 〈n|n′ − 2〉+ 2 〈n− 1|n′ − 2〉+ (n↔ n′)]

(5.D.8)

From the above we deduce that In,n′ = 0 whenever |n− n′| > 2. For n ≥ 2 we have

In,n = 2 + 6n+ 6n2 ≡ f0(n) (5.D.9a)
In,n+1 = −4− 8n− 4n2 ≡ f1(n) (5.D.9b)
In,n+2 = 2 + 3n+ n2 ≡ f2(n) (5.D.9c)

In fact, we can check that f0(0) = 2 = I0,0 and f0(1) = 14 = I1,1. Similarly we can
evaluate f1 and f2 at n = 0, 1 and compare with I0,1 and so on. We conclude that
the quadratics f0, f1 and f2 give the respective values of In,n, In,n+1 and In,n+2 for
all n ≥ 0. This is sufficient for the scalar loop calculation.

Fermion part

To compute the Dirac fermion transport coefficient, there is further work to do.
We will need to slightly generalise the above knowledge of the Laguerre polynomial
integrals. Define the integral

I
(a,b,c)
n,n′ ≡

∫ ∞
0

dx x2+c e−xL(a)
n (x)L(b)

n′ (x) (5.D.10)

5In,n′ is trivially symmetric under the exchange of n and n′ so we can assume n ≤ n′.
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so that I(0,0,0)
n,n′ = In,n′ , the integral we defined in the scalar part. For the fermion, in

addition to I(0,0,0)
n,n′ we will need to compute I(1,1,1)

n,n′ and I(0,1,0)
n,n′ .

To calculate I(1,1,1)
n,n′ we can apply the exact method we used for I(0,0,0)

n,n′ since the level
of the generalised Laguerre polynomials in the integrand is once again 2 less than
the power of x in the integrand. Hence we can apply the 3-point rule twice and
use the orthogonality relation of generalised Laguerre polynomials. We immediately
deduce that I(1,1,1)

n,n′ = 0 whenever |n− n′| > 2 and that I(1,1,1)
n,n′ = I

(1,1,1)
n′,n .

Recall the 3-point rule
L(α)
n = L(α+1)

n − L(α+1)
n−1 (5.D.11)

We can generalise the inner product defined earlier to

〈n|n′〉(α) =
∫ ∞

0
dx xα e−x L(α)

n (x) L(α)
n′ (x) = Γ(α + n+ 1)

n! δn,n′ (5.D.12)

and identify our earlier product 〈n|n′〉 ≡ 〈n|n′〉(2). Here the relevant inner product
is with α = 3:

〈n|n′〉(3) =
∫ ∞

0
dx x3 e−x L(3)

n (x) L(3)
n′ (x) = (n+ 3)(n+ 2)(n+ 1) δn,n′ (5.D.13)

Using this technology we have I(1,1,1)
0,0 = 3! = 6 and I(1,1,1)

1,1 = 48. For n ≥ 2 we can
apply the 3-point rule twice to write

L(1)
n = L(3)

n − 2L(3)
n−1 + L

(3)
n−2 (5.D.14)

So that

I(1,1,1)
n,n = 〈n|n〉(3) + 4 〈n− 1|n− 1〉(3) + 〈n− 2|n− 2〉(3)

= 6 (1 + n)3

≡ h0(n)

where we defined the polynomial h0(n). Note that h0(0) = 6 = I
(1,1,1)
0,0 and h0(1) =

48 = I
(1,1,1)
1,1 , so in fact we have I(1,1,1)

n,n = h0(n) for all n ≥ 0.

We can do a similar calculation to show that

I
(1,1,1)
n,n+1 = −2

(
〈n|n〉(3) + 〈n− 1|n− 1〉(3)

)
= −2(n+ 1)(n+ 2)(2n+ 3)
≡ h1(n)

for n ≥ 2, and checking the edge cases by hand shows that I(1,1,1)
n,n+1 = h1(n) for all

n ≥ 0.
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Finally we have

I
(1,1,1)
n,n+2 = 〈n|n〉(3)

= (n+ 1)(n+ 2)(n+ 3)
≡ h2(n)

and similar checks show that I(1,1,1)
n,n+2 = h2(n) for all n ≥ 0.

In summary,

I(1,1,1)
n,n = 6 (1 + n)3 ≡ h0(n) (5.D.15a)
I

(1,1,1)
n,n+1 = −2(n+ 1)(n+ 2)(2n+ 3) ≡ h1(n) (5.D.15b)
I

(1,1,1)
n,n+2 = (n+ 1)(n+ 2)(n+ 3) ≡ h2(n) (5.D.15c)

Using the now familiar method, the final integral we need is

I
(0,1,0)
n,n′ ≡

∫ ∞
0

dx x2 e−xLn(x)L(1)
n′ (x) (5.D.16)

Assume first that n ≥ 3 and n′ ≥ 1 to avoid any edge issues. Using the notation and
identities mentioned previously, we can write

I
(0,1,0)
n,n′ =

(
〈n|(2) − 2 〈n− 1|(2) + 〈n− 2|(2)

) (
|n′〉(2) − |n′ − 1〉(2)) (5.D.17)

We can then exhaustively consider all cases:

I
(0,1,0)
n,n−2 = 〈n− 2|n− 2〉(2) = n(n− 1) (5.D.18a)
I

(0,1,0)
n,n−1 = −2 〈n− 1|n− 1〉(2) − 〈n− 2|n− 2〉(2) = −n(1 + 3n) (5.D.18b)
I(0,1,0)
n,n = 〈n|n〉(2) + 2 〈n− 1|n− 1〉(2) = (1 + n)(2 + 3n) (5.D.18c)
I

(0,1,0)
n,n+1 = −〈n|n〉(2) = −(n+ 1)(n+ 2) (5.D.18d)

with I(0,1,0)
n,n′ = 0 if n′ ≥ n + 2 or n′ ≤ n − 3. We can then check all edge cases by

hand - it turns out that In,n′ agrees with the above formulae for every n, n′ ≥ 0, as
expected from our earlier results.

Summary

For completeness and easy reference, we provide a full list of the polynomials in n
appearing in the series.

The scalar calculation uses the following quadratics.

f0(n) = 2 + 6n+ 6n2 (5.D.19a)
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f1(n) = −4− 8n− 4n2 (5.D.19b)
f2(n) = 2 + 3n+ n2 (5.D.19c)

The fermion calculation uses the following quadratics and cubics.

g0(n) = 4 + 12n2 (5.D.20a)
g1(n) = −4− 8n− 8n2 (5.D.20b)
g2(n) = 2 + 4n+ 2n2 (5.D.20c)
h0(n) = 6 (1 + n)3 (5.D.20d)
h1(n) = −2(n+ 1)(n+ 2)(2n+ 3) (5.D.20e)
h2(n) = (n+ 1)(n+ 2)(n+ 3) (5.D.20f)
p0(n) = −6n2 (5.D.20g)
p1(n) = 2(1 + 2n)2 (5.D.20h)
p2(n) = −2(1 + n)2 (5.D.20i)

5.D.2 Fourier transform of Laguerre polynomials

To work fully in momentum space, we need to take the Fourier transform of a
product of a Laguerre polynomial and a gaussian. This is straightforward using the
generating function for Laguerre polynomials and the result that gaussians map to
gaussians under the Fourier transform.

It is easy to derive the following expression for the generating function.

GL(t, x) ≡
∑
n

tnLn(x) = e−tx/(1−t)

1− t (5.D.21)

We know that the Fourier transform of a multidimensional gaussian with diagonal
covariances σ2 is given by∫

dnx e−ip·xe−x
2/2σ2 = (2πσ2)n/2e−σ2p2/2 (5.D.22)

and this can be checked easily by completing the square and shifting the contour.

Combining these two facts we find the following Fourier transform for the generating
function.∫

d2x e−ip·xe−x
2/4l2GL(t, x2/2l2) = 4πl2e−p2l2GL(−t, 2p2l2) (5.D.23)

Extracting the relevant polynomial from the generating function by successive dif-
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ferentiation with respect to t gives the result we need for the scalar.∫
d2x e−ip·xe−x

2/4l2Ln(x2/2l2) = 4πl2e−p2l2(−1)nLn(2p2l2) (5.D.24)

This is enough to immediately derive the Fourier-transform of the translationally-
invariant part of the scalar propagator.

G̃(φ)(p) ≡
∫
d2x⊥ e

−ip⊥·(x⊥−y⊥) e
− 1

2 ξ

2π

∞∑
n=0

Ln(ξ)
λn(p‖;m) = 2l2e−p2

⊥l
2
∞∑
n=0

(−1)nLn(2p2
⊥l

2)
l2(m2 + p2

‖) + 2n+ 1
(5.D.25)

For the fermion, we will also need the following integral.∫
d2x xj e

−ip·xe−x
2/4l2L

(1)
n−1(x2/2l2) = i(4πl2)(2pjl2) e−p2l2(−1)nL(1)

n−1(2p2l2)
(5.D.26)

This can be computed using a recurrence relation for Laguerre polynomials. Indeed,
let v = 2p2l2. Then we have∫
d2x xj e

−ip·xe−x
2/4l2L

(1)
n−1(x2/2l2) = i

∂

∂pj

∫
d2x e−ip·xe−x

2/4l2L
(1)
n−1(x2/2l2)

= i
∂

∂pj

n−1∑
k=0

∫
d2x e−ip·xe−x

2/4l2Lk(x2/2l2)

= i(4πl2) ∂

∂pj

n−1∑
k=0

e−p
2l2(−1)kLk(2p2l2)

= i(4πl2) ∂v
∂pj

d

dv

n−1∑
k=0

e−v/2(−1)kLk(v)

= i(4πl2)(4pjl2)
n−1∑
k=0

e−v/2(−1)k
(
−1

2Lk(v) + L′k(v)
)

= i(4πl2)(2pjl2) e−p2l2
[
−1 +

n−1∑
k=1

(−1)k+1
(
Lk(v) + 2L(1)

k−1(v)
)]

= i(4πl2)(2pjl2) e−p2l2
[
−1 +

n−1∑
k=1

(−1)k+1
(
L

(1)
k (v) + L

(1)
k−1(v)

)]

= i(4πl2)(2pjl2) e−p2l2(−1)nL(1)
n−1(2p2l2)

Note that in the last equality we exploited a telescoping sum. Using these integral
formulas, we can take the Fourier transform of the (transeversely) translationary-
invariant part of the fermion propagator. That is, we can Fourier transform e−iΦG(ψ)(p‖;x⊥, y⊥),
since only the Schwinger phase breaks transverse translational symmetry. Write
z⊥ = x⊥ − y⊥. Then we have∫
d2x⊥ e

−ip⊥·(x⊥−y⊥) e−iΦ G(ψ)(p‖;x⊥, y⊥)
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= 1
2π

∫
d2z⊥ e

−ip⊥·z⊥e−z
2
⊥/4l

2
∞∑
n=0

Fn(p‖;x⊥, y⊥)
λn − 1

= 1
2π

∞∑
n=0

1
λn − 1

∫
d2z⊥ e

−ip⊥·z⊥e−z
2
⊥/4l

2
[
(m− γapa)

(
Ln

(
z2

2l2

)
P+ + Ln−1

(
z2

2l2

)
P−

)

− i

l2
γjzjL

(1)
n−1

(
z2

2l2

)]

= 4πl2 e−p2l2

2π

∞∑
n=0

(−1)n
λn − 1

[
(m− γapa)

(
Ln
(
2p2
⊥l

2
)
P+ − Ln−1

(
2p2
⊥l

2
)
P−
)

+ 2γjpjL(1)
n−1(2p2

⊥l
2)
]

= 2l2 e−p2l2
∞∑
n=0

(−1)nDn(p)
l2(m2 + p2

‖) + 2n

where

Dn(p) = (m− γapa)
(
Ln
(
2p2
⊥l

2
)
P+ − Ln−1

(
2p2
⊥l

2
)
P−
)

+ 2γjpjL(1)
n−1(2p2

⊥l
2)

(5.D.27)





Chapter 6

Conclusion

In this thesis we reviewed higher-form symmetries in quantum field theory and
demonstrated their utility in two separate applications.

The first application was a supersymmetric quantum field theory with a holographic
dual. This quantum field theory had matter fields in the fundamental representation
of the gauge group. When the gauge group was SU(N), the U(1) 1-form symmetry
was explicitly broken, but when the gauge group was U(N), the U(1) 1-form sym-
metry was spontaneously broken. We demonstrated this by numerically computing
the two-point function of the symmetry current to show the existence of a Goldstone
mode.

In the same way that ordinary global symmetries have been so successful as a tool for
classifying phases of matter in quantum field theory, higher-form symmetries provide
a pleasing way to classify the phases of more exotic systems, most notably the
reinterpretation of the (massless) photon as a Goldstone mode of a spontaneously
broken 1-form symmetry. The application given in Chapter 3 can be extended
further to include e.g. finite temperature quantum field theories, implemented
holographically by the presence of a black hole.

The second application was to a hydrodynamic effective field theory. This hydro-
dynamic theory was conceived to generalise the theory of force-free electrodynamics
by providing a systematic way to compute higher-derivative corrections. Using a
Kubo formula, we computed the transport coefficient of one such correction per-
turbatively from microscopics, namely QED in a background magnetic field. This
particular correction provided a mechanism to generate non-zero E · B and hence
accelerate radiation away from pulsars or other compact astrophysical objects.

Many more complicated astrophysical geometries can be considered, with potentially
interesting phenomenological implications. This is analagous to the rich behaviour
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of the non-dissipative Navier-Stokes equations when situated in various regimes
according to the fluid geometry and values of the hydrodynamic transport coefficients.

By now it will be clear to the reader that higher-form symmetries have a wide
variety of applications in quantum field theory. The examples presented in this
thesis are just a starting point of the exploration of this new exciting framework,
and there are many promising directions for further fruitful computations to deepen
our understanding of existing knowledge and shine a light on open problems.
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