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Abstract: In this thesis I analyse the structure of scattering amplitudes in super-

symmetric gauge and gravitational theories in four dimensional spacetime, starting

with a detailed review of background material accessible to a non-expert. I then

analyse the 4D scattering equations, developing the theory of how they can be used

to express scattering amplitudes at tree level. I go on to explain how the equations

can be solved numerically using a Monte Carlo algorithm, and introduce my Math-

ematica package treeamps4dJAF which performs these calculations. Next I analyse

the relation between the 4D scattering equations and on-shell diagrams in N = 4

super Yang-Mills, which provides a new perspective on the tree level amplitudes

of the theory. I apply a similar analysis to N = 8 supergravity, developing the

theory of on-shell diagrams to derive new Grassmannian integral formulae for the

amplitudes of the theory. In both theories I derive a new worldsheet expression for

the 4 point one loop amplitude supported on 4D scattering equations. Finally I use

4D ambitwistor string theory to analyse scattering amplitudes in N = 4 conformal

supergravity, deriving new worldsheet formulae for both plane wave and non-plane

wave amplitudes supported on 4D scattering equations. I introduce a new prescrip-

tion to calculate the derivatives of on-shell variables with respect to momenta, and

I use this to show that certain non-plane wave amplitudes can be calculated as

momentum derivatives of amplitudes with plane wave states.
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sense of safety I needed to face the depth of my suffering and disability, and it was
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body have had a big impact on my life. I had accepted a postdoctoral research
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decision, and though I’m not at full health now as I write, I’m making good progress

towards a normal level of functionality.

So I’ve found the last few years of my life to be challenging in many ways, and with

each challenge I’ve overcome I’ve grown a little stronger. I’ve had to learn how to be

weak and vulnerable, how to reach out, how to listen. I’ve found that both healing

and research have involved a deep process of introspection, teaching me to focus

closely on myself and find out which parts are wholesome and beneficial, and which

parts have been harmful and needed to change.

Integral to that process of personal growth has been the opportunity I’ve had to

study for a PhD. It’s given me the time I’ve needed to meet my demons and to

start to learn a little about how to let them go in peace. As my studies draw to a

close I’m able to carry so much more of my humanity out in the open than I could

have when I started, and that’s something that will always be with me and that I’ll

always be grateful for.
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Chapter 1

Introduction

1.1 Literature Review

I start with a review of the relevant literature, to show where my research sits within

the wider body of knowledge in the field 1.

The development of new mathematical techniques for calculating scattering amp-

litudes has lead to important advances in the range of accessible calculations, allowing

for computations with more external states and higher loop order. In the 1980s the

introduction of spinor helicity notation gave way to new simplified computations

of four dimensional amplitudes which previously had seemed intractable, for ex-

ample [5, 6, 7]. In recent years there have been many advances in the set of technical

tools that exist for calculating perturbative scattering amplitudes. Key tree-level

techniques include recursive methods for calculation of higher point amplitudes from

lower point inputs, known as BCFW (Britto, Cachazo, Feng and Witten) recur-

sion [8, 9], expression of n-point S-matrices in terms of a sum over the solution

of algebraic scattering equations [10, 11], and the formulation of field theory amp-

litudes in terms of string worldsheet calculations, initially developed in twistor string

theory [12, 13, 14], and more recently in ambitwistor string theory [15, 16]. Both

1Note that this literature review is up to date only as of March 2019, due to an extended period
of illness starting from that date
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twistor string and ambitwistor string theory are string models whose spectra contain

only field theory degrees of freedom, and hence their worldsheet S-matrices calculate

scattering amplitudes in quantum field theory. In this work I focus on scattering

amplitudes in gauge theory and gravity, of which two specific theories stand out.

N = 4 super-Yang-Mills and N = 8 supergravity are believed to be the simplest

quantum field theories in four dimensions, for a number of reasons. The planar scat-

tering amplitudes of N = 4 super Yang-Mills enjoy Yangian symmetry, which is a

hallmark of integrability [17], and the loop amplitudes of N = 8 supergravity exhibit

unexpected UV cancellations which suggest that the theory may be perturbatively

finite [18].

One of the first n-point amplitudes calculated in any theory was the Parke-Taylor

form of the Yang-Mills tree-level MHV amplitude [7], which inspired a description

in terms of 2D current algebra [19]. This idea was then generalised to N = 4

super Yang-Mills amplitudes[12, 13], who proposed a worldsheet model for N =

4 super Yang-Mills known as twistor string theory. The correlation function of

worldsheet vertex operators in twistor string theory give rise to an elegant formula

for tree-level amplitudes in terms of integrals over curves in twistor space [14]. The

spectrum of the theory was also found to calculate N = 4 conformal supergravity

amplitudes[20] which can be seen as a mixed blessing, allowing for calculation of

amplitudes with these states but making computations in pure N = 4 super Yang-

Mills at loop level more complex in this framework. Twistor string theory allows

for the calculation of N = 4 conformal supergravity amplitudes, but the Yang-Mills

and conformal supergravity amplitudes decouple from one another only at tree-level,

so the conformal supergravity states in the spectrum obstruct calculation of loop

amplitudes in N = 4 super Yang-Mills.

A similar worldsheet formula for N = 8 supergravity was found in[21], following

the discovery of a gravitational analogue of the Park-Taylor formula by Hodges [22].

Cachazo, He and Yuan extended the formula of [21] to a framework for calculating

tree-level scattering of particles in arbitrary dimensions for a wide variety of non-
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supersymmetric gauge and gravitational theories in terms of a unified set of scattering

equations[11, 10, 23], which I will refer to as ‘general d scattering equations’ in this

work. In the CHY framework, tree-level amplitudes for different theories of massless

particles are supported on the solutions of these scattering equations, which were

first discovered in the context of ordinary string theory in [24, 25]. Ambitwistor

string theory is the worldsheet theory underlying CHY’s formulae, and was first

constructed by Mason and Skinner [15]. Different worldsheet matter content in

ambitwistor string theory corresponds to different spectra, allowing for CHY formulae

for different quantum field theoretic amplitudes.

The power of the spinor helicity formalism in four dimensions along with the gener-

ality of the scattering equation formalism were combined to produce 4D ambitwistor

string theory in[26, 27]. This model gives a worldsheet description for the tree-level

S-matrices of Yang-Mills theories and Einstein gravity which are manifestly super-

symmetric for any number of supersymmetries N . They are supported on refined

scattering equations which are graded by helicity degree, which I refer to as ‘4D

scattering equations’ in this thesis. The formulae arising from 4D ambitwistor string

theory are closely related to those arising from twistor string theory [19, 12, 13, 14, 21].

Amplitudes arising from 4D ambitwistor theory can be related to those of twistor

string theory by integrating out the moduli of curves in twistor space from the

twistor string representations [28].

Ambitwistor string models are critical in ten dimensions, and one-loop amplitudes

in 10D ambitwistor string theories were first proposed in [29], with work also done

in [29, 30, 31, 32]. In these original works the loop level scattering equations are

written on the torus in terms of elliptic functions, but they can also be formulated

in terms of rational off-shell scattering equations on the Riemann sphere [30, 33].

The 10D ambitwistor formulae have been further extended to two loops in [34], but

finding a framework to calculate loop integrands for any theory in an intrinsically 4

dimensional setting using 4D ambitwistor string theory or the original twistor string

has proven a difficult task.
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Like the Berkovits-Witten twistor string, the 4D ambitwistor string for N = 4

super Yang-Mills contains conformal supergravity in its spectrum, in particular a

non-minimal model of N = 4 conformal supergravity [35] which has a coupling

between the Weyl tensor and scalar fields of the model, unlike in the original min-

imal conformal gravity[36]. Conformal supergravity has a number of undesirable

features, most notably that it is not unitary. However there are still a number of

reasons why it is interesting theoretically; it is renormalizable and can be made UV

finite if coupled to N = 4 super Yang-Mills [37, 38], and it is possible to obtain

classical Einstein gravity with cosmological constant by imposing Neumann bound-

ary conditions on conformal gravity [39, 40, 41]. This relationship between Einstein

gravity and conformal gravity was used to find twistor string formulae for scattering

amplitudes of Einstein supergravity in flat space [42, 43]. Conformal supergravity

amplitudes were first studied in [20, 44, 45, 46, 47, 48], and more recently have been

shown to arise from taking the double-copy of super-Yang-Mills with a new (DF )2

gauge theory [49]. An ambitwistor string description of the (DF )2 theory was sub-

sequently found and used to deduce a CHY formula for conformal gravity amplitudes

in general dimensions in [50]. Einstein gravity in de Sitter or anti de Sitter space

in four dimensions was shown to have an embedding in conformal gravity in [39],

providing motivation to study the amplitudes of conformal gravity and leading to

proposals for worldsheet formulae for scattering amplitudes on these backgrounds in

[51, 52]. These formulae suggest that amplitudes in anti de Sitter space should have

some analogue of the double copy structure found in flat spacetime, as explored in

[53, 54, 55].

Formulae supported on scattering equations have been successful in representing

and calculating abstract theoretical properties of amplitudes such as soft limits [56,

57, 58, 59, 60], collinear limits [61] and relations between the S-matrices of different

theories [23, 62]. Direct evaluation of amplitudes by solving the scattering equations

is difficult, and some approaches solve the integrations by different methods[63, 64].

The equations have (n − 3)! solutions at n points, and it is likely that finding all
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of these solutions analytically for generic kinematics is not possible. Calculating

amplitudes in this framework then becomes a primarily numerical problem, which

has been addressed in the literature only for the general d equations.

On-shell diagrams were first proposed in [65], providing a diagrammatic framework

to express BCFW recursion in planar N = 4 super Yang-Mills at all loop orders.

This allows the n-point l-loop integrand to be calculated recursively in terms less

complex integrands, and ultimately to be built up out of 3-point vertices [8, 9, 66].

Unlike Feynman diagrams, on-shell diagrams do not contain virtual particles, and

are named for the fact that all internal lines are on-shell. They were first developed

in the context of planar N = 4 super Yang-Mills [67] where they revealed an underly-

ing Grassmannian structure, suggesting a geometric interpretation of the scattering

amplitudes of the theory as the volume of an object known as the Amplituhedron

[68]. On-shell diagrams can be extended to Yang-Mills theory with N < 4 super-

symmetries by introducing a physical orientation to the diagram representing the

helicity of the superfield corresponding to each internal edge [69].

More recently, on-shell diagrams have been developed for tree-level amplitudes in

N = 8 supergravity, revealing new connections to planarN = 4 super Yang-Mills [70,

71]. It is possible to computeN = 8 supergravity amplitudes by decorating planar on-

shell diagrams and summing over permutations of the external legs, giving rise to new

Grassmannian integral formulae. Although it is possible to extend BCFW recursion

to all loops in planar N = 4 super Yang-Mills, and work has been done in Yang-Mills

theory at one loop [3], it is not known how to generalize this to higher loops in Yang-

Mills or other theories such as N = 8 supergravity. Recent progress in this direction

has been made using Q-cuts [32], which are intrinsically d > 4 dimensional and give

rise to formulae closely related to those of 10D ambitwistor string theory. Current

work exists relating worldsheet expressions from the twistor string to recursive

formulae arising from BCFW [28, 72, 73], showing deep connections between the

two approaches.
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1.2 Overview of this Thesis

In this work I explore the structure of scattering amplitudes in quantum field theory,

building upon recently developed techniques for calculating amplitudes. I develop

a deeper understanding of the 4D scattering equations, on shell diagrams and 4D

ambitwistor string theory, and how these computational methods can play a role in

understanding the properties of scattering amplitudes in N = 4 super Yang-Mills,

N = 8 supergravity and N = 4 conformal supergravity. I start by giving a review of

the background material necessary to understanding these computational methods

and the scattering amplitudes of these theories in Chapter 2.

The 4D scattering equations have given rise to many different results in understand-

ing scattering amplitudes, but prior to this work there has been no clear set of

analytical and numerical results in the literature detailing how to use them to calcu-

late amplitudes, and what subtleties must be addressed in this framework. I start

this work by addressing these questions in Chapters 3 and 4, which are based on

my work from [1]. I use these results to develop an understanding of the scattering

amplitudes of N = 4 super Yang-Mills, N = 8 supergravity and N = 4 conformal

supergravity in Chapters 5, 6 and 7. In Chapter 3 I explain the analytical framework

required for understanding the details of the 4D scattering equation formalism, and

I provide details of how to find full sets of solutions for a given set of numerical

momenta and MHV degree by Monte Carlo algorithm in Chapter 4.

To understand the problem of numerical solutions to the 4D scattering equations, it

is helpful to first review numerical methods for the general d scattering equations.

These equations can be reduced to a simplified polynomial form [74] which is tractable

numerically in Mathematica using NSolve up to 9 points on a standard laptop,

and CHY provide an algorithm for finding individual solutions at higher points [11],

but there are difficulties finding all solutions in this way. The 4D equations do not

currently have an equivalent simplified polynomial form and depend on a larger set

of variables than the general d equations, and as such NSolve cannot solve them
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above 7 points. There exist published Mathematica packages for evaluation of

tree level amplitudes using BCFW[75, 76], but to date there have been no equivalent

packages for calculating amplitudes using the scattering equations either analytically

or numerically.[77] provide an algorithm for calculation of amplitudes in the CHY

formalism numerically without directly solving the scattering equations, but no

explicit implementation is given. Alongside my work from [1], and hence building on

the material from Chapters 3 and 4 of this thesis, I developed the Mathematica

package treeamps4dJAF. treeamps4dJAF is included with the arXiv submission of

[1], and can be used to calculate amplitudes analytically in the MHV sector and

numerically for general NkMHV at tree level using the 4D scattering equations.

Previously available Mathematica packages for calculating scattering amplitudes

focused on Yang-Mills theory, and treeamps4dJAF provides the first explicit publicly

available algorithms for calculating Einstein supergravity and N = 4 conformal

supergravity amplitudes at tree level.

On-shell diagrams are an alternative method to calculate scattering amplitudes,

most notably in N = 4 super Yang-Mills. The relationship between worldsheet

formulae arising from twistor string theory and Grassmannian integral formulae

coming from on-shell diagrams has been explored previously in [28, 78, 72, 73], and

in Chapter 5 of this thesis I extend this analysis to understand how expressions

supported on 4D scattering equations arising from 4D ambitwistor string theory can

be related to those coming from on-shell diagrams. This shows how the seemingly

disparate Grassmannian and worldsheet integral structures are related at tree-level,

and provides a starting point to address the long-standing problem of finding a

manifestly 4D worldsheet formula describing the integrands of scattering amplitudes

in N = 4 super Yang-Mills at loop level.

I start Chapter 5 by deriving Grassmannian integral formulae for tree-level MHV

amplitudes in N = 4 super Yang-Mills using on-shell diagrams, and map these to

an expression supported on 4D scattering equations, based on my work from [2].

This calculation is particularly straightforward due to the fact that there is only
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one solution to the 4D scattering equations in the MHV sector, which leads into the

more complex analysis necessary to understand NMHV amplitudes in this setting.

In the NMHV case it is necessary to specify a contour in the Grassmannian which

will depend on the method used to compute the amplitudes, and for the 6-point

NMHV amplitude I show that the three contributing on-shell diagrams correspond

to residues of a single top form in the Grassmannian and can subsequently be

encoded in a Grassmannian contour integral. This contour integral can then be

mapped into an expression supported on 4D scattering equations using a global

residue theorem. I then move to loop level, finding that on-shell diagrams can be

used to obtain a new worldsheet formula for the 1-loop four point amplitude of

N = 4 super Yang-Mills, which is manifestly supersymmetric and supported on 1-

loop scattering equations refined by MHV degree. Finally I go on to find the solution

to the equations explicitly, solving the worldsheet integrals to give the standard form

for the integrand in momentum space, based on my work from appendix C of [3].

This result is notable in that the worldsheet expression directly evaluates to the

integrand with quadratic propagators in momentum space compared with the less

standard linear propagators arising from previous approaches to 1 loop scattering

equations [30], and lead to new worldsheet formulae for n-point 1-loop integrands

with quadratic propagators in a variety of theories in [3].

In Chapter 6 of this thesis I extend the theory of on-shell diagrams in N = 8

supergravity, also based on my work from [2]. Previous work on on-shell diagrams

in N = 8 supergravity calculated only 4 and 5 point amplitudes [70], and I give an

expression for the full n-point MHV amplitude calculated in two different ways; the

first giving the inherently non-planar Hodges matrix, and the second producing the

BGK formula [79] as a sum over permutations of a planar sector of diagrams. The

methods I develop to map worldsheet formulae to Grassmannian integrals in N = 4

super Yang-Mills in Chapter 5 naturally extend N = 8 supergravity, producing the

Hodges matrix expression for the MHV amplitude as a Grassmannian integral. I

then go on to study 6 points NMHV, where I find that the three decorated planar
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on-shell diagrams from which the full amplitude can be derived do not correspond to

residues of a single top form, as they do in N = 4 super Yang-Mills. From it is not

clear how to relate the Grassmannian contour integral expression for the amplitude

obtained using on-shell diagrams to the worldsheet integral formula supported on

4D scattering equations using the global residue theorem, and new methods are

necessary to show the correspondence, possibly using non-planar on-shell diagrams.

Finally I use the fact that it is possible to describe the 1-loop 4-point amplitude of

N = 8 supergravity using a decorated on-shell diagram [70] to derive a worldsheet

formula in this case, analogously to the calculation in N = 4 super Yang-Mills in

Chapter 5.

4D ambitwistor string theory provides the underlying mechanism to derive worldsheet

expressions for scattering amplitudes supported on 4D scattering equations for a

number of theories, notably super Yang-Mills and Einstein supergravity. This leaves

a clear open problem, which is to find other theories whose tree-level S-matrices can

be supported on 4D scattering equations. In Chapter 7 of this work I extend 4D

ambitwistor string theory to calculate scattering amplitudes in N = 4 conformal

supergravity, giving concise supersymmetry covariant worldsheet expressions for the

scattering of plane-wave graviton multiplets, based on my work from [4]. I find

from this that a key feature of the amplitudes in this theory is that the number of

negative helicity superfields is not in general equal to the Grassmann degree of the

superamplitudes, as is the case for super Yang-Mills and Einstein supergravity. This

means the MHV degree of the amplitude could be defined either as the number of

negative helicity superfields scattered or as the Grassmann degree of the superamp-

litude, and I choose to define the MHV degree of the amplitude as the Grassmann

degree as this definition better reflects the structure of the 4D scattering equations.

For MHV amplitudes the worldsheet formula reduces to the one previously derived

by Berkovits and Witten [20], and for general k the formula can be readily evaluated

numerically using the methods I developed in Chapter 4. I use treeamps4dJAF to

compare amplitudes calculated in this framework to results obtained from Feynman
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diagrams and double copy techniques developed in [49] up to 8 points, checking cases

in all MHV sectors.

Since the equations of motion for conformal gravity are fourth order in derivatives,

they also admit non-plane wave solutions of the form A · xeik·x for the graviton

multiplets of the theory, which I explain in Chapter 2. Vertex operators for these

non-plane wave states were previously proposed in twistor string theory [45] for

A2 = 0, and I find the analogous 4D ambitwistor vertex operators for these states

in Chapter 7. These new vertex operators allow scattering of non-plane wave states

with unrestricted A, and I find them to have a more compact and natural form

than those of twistor string theory. Computing non-plane wave amplitudes using

4D ambitwistor string theory is computationally more complex than for plane wave

modes, requiring the introduction of source terms in the path integral which leads

to deformed scattering equations which I explain in detail. Using these results I find

worldsheet formulae for the scattering amplitudes of non-plane states written in terms

of derivatives with respect to the spinor degrees of freedom of the external states of

the amplitude. Previous calculations of such amplitudes in [45] were restricted to

3 points, and with the methods developed in this thesis I develop some non-plane

wave amplitudes at n-points. Finally I develop a prescription for taking momentum

derivatives of spinor variables with respect to corresponding the off-shell momentum,

which allows me to express the non-plane wave amplitudes as momentum derivatives

of amplitudes with plane wave states.

In Chapter 8 I conclude the work of this thesis and provide possible directions for

future research.



Chapter 2

Background Material

In this chapter I aim to provide a concise, comprehensive overview of the physical

concepts and mathematical frameworks necessary to understand my results in the

following chapters, and to make my notations and conventions clear to the reader.

My intention is for this material to be accessible to a reader with some background in

mathematics and physics, but who may not be familiar with the study of scattering

amplitudes in quantum field theory.

2.1 Scattering Amplitudes in Relativistic

Quantum Field Theory

Relativistic quantum field theory describes the interaction of particles as the quant-

ized excitations of a field in a d dimensional space-time, combining quantum mech-

anical and special relativistic physics into a single consistent theoretical model.

Quantum field theory is most widely studied in Minkowski spacetime, which I de-

note Md generally or Md(R) or Md(C) depending on whether the coordinates are

real or complex, and which I specialise to in this thesis. Spacetime manifolds are

defined in terms of a metric tensor gµν which defines distances between points, and

any coordinate transformations leaving the metric invariant are considered sym-



12 Chapter 2. Background Material

metries of the spacetime. The more symmetric a spacetime is the more tractable

calculations will be in a given quantum field theory defined on that spacetime, and

the maximum number of coordinate symmetries in a d-dimensional manifold is d(d+1)
2 .

Minkowski spacetime Md has metric (ηµν) = diag(−1, 1, ..., 1) which is invariant un-

der linear transforms which form Lorentz symmetry group SO(d− 1, 1) of rotations

and boosts, as well as having translational symmetry in each of the d spacetime

dimensions. Hence Md is maximally symmetric with d(d+1)
2 symmetries, and the

full spacetime symmetry group of Md is known as the Poincaré group. Spacetime

coordinate symmetries can be extended past this maximal limit in two ways by al-

lowing for additional types of transformations; the first is known as supersymmetry

which introduces extra Grassmann odd degrees of freedom to the manifold and is

discussed in Section 2.3, and the second is conformal symmetry which allows for

symmetries to be defined in terms of coordinate transformations which leave the

metric invariant, and is discussed in Section 2.6.

Particle excitations of the fields each carry a spin s′ ∈ N
2 which is related to how their

fields transform as representations of the Lorentz group, and states with integer spin

are represented by Grassmann even fields and are called bosons, with half-integer spin

particles represented by Grassmann odd fields and called fermions. Most calculations

in this work will be for bosonic fields, with any fermionic calculations related to

the bosonic amplitudes as a result of supersymmetry, as explained in Section 2.3.

Another key property of any given state is its rest-mass m, and in this in this thesis

I will consider only massless particles with m = 0.

Scattering amplitudes are among the most fundamental computable quantities in

any quantum field theory, providing an important link between theory and experi-

ment. They are the basic building blocks for the calculation of the scattering cross

section, which is the main physical observable used to model the scattering processes

which underlie particle collision experiments [80, 81]. The scattering process then

is modelled in this setting by a collection of particles which start in the infinite

past in non-interacting quantum states, interact with each other during finite times
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and finish in non-interacting states in the infinite future. The scattering amplitude

is the mathematical structure describing the interaction, and is a complex number

describing the probability amplitude that a specified set of initial quantum states

will interact to result in a given set of final state. As such the amplitude is a Lorentz

invariant function of the quantum states at the beginning and the end of the process,

most notably depending on the relativistic momenta of the particles as well as any

coupling constants of interaction terms in the Lagrangian of the theory.

The quantum states at the beginning and end of the scattering process are well

separated and as such are non-interacting, which means they solve the linearized

equations of motion for the relevant quantum field. For a spin zero field φ(x), a spin

one Yang-Mills field Aaµ(x), and a spin two gravitational metric perturbation hµν(x),

the standard linearized equations of motions after fixing any gauge symmetries are

�φ(x) = 0, �Aaµ(x) = 0 and �hµν(x) = 0, (2.1.1)

with a basis for solutions with standard boundary conditions given by momentum

eigenstates in the form of plane waves.

φ(x) = φ0e
ik·x, �Aaµ(x) = εaµe

ik·x and �hµν(x) = εµνe
ik·x. (2.1.2)

Scattering amplitudes are often considered only for plane wave states such as these,

but in this thesis I also consider states with more complex boundary conditions in

conformal supergravity coming from 4th order linearized field equations, discussed

in Section 2.6.

The quantum state of the particle before and after the interaction is then described

by its momentum and polarisation structure, and the momenta ki and polarisation

εi of the ith particle will be the key variables that the scattering amplitude depends

on. As the particles are massless these equations of motion enforce that k2
i = 0, and

they are hence on-shell in the sense of Einstein’s famous mass-shell relationship.

The polarisation vectors in equation (2.1.2) are defined only up to a choice of
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gauge for any gauge symmetries of the theory, and are defined uniquely only after

gauge fixing. For spin 1 particles the polarisation vectors the gauge symmetries

and equations of motion of the theories [82, 83] remove two degrees of freedom and

result in a total of d− 2 linearly independent polarisation vectors in d dimensions.

This basis of polarisation vectors transforms in the fundamental representation of

the little group, which is the subset of Lorentz transformations which leave the

state’s momentum vector invariant, and the little group for massless particles in d

dimensions is SO(d− 2). Spin 2 particles carry a rank 2 polarisation tensor, which

can be written as a product of the polarisation vectors for spin 1 as described in

Section 2.5.

Scattering amplitudes are defined in the S-matrix formalism where they can be

considered as components of the scattering matrix or S-Matrix, which is an operator

in the quantum field theory which evolves the initial quantum states before a collision

to the final states afterwards. The S-matrix of a theory can be constrained by the

axiom of unitarity, which requires that the probabilities for all possible outcomes of

a given scattering process add up to 1. The outcomes of the process then form a

consistent probability space, such that no information can be lost. In the S-matrix

formalism unitarity requires S†S = 1 so that S is a unitary operator.

The probability of an initial set of quantum states 〈initial| evolving to a final set of

states |final〉 is then given in terms of the S-matrix by | 〈initial|S|final〉 |2. Any process

involving n total states both incoming and outgoing can calculated using a simple

transformation from the process which takes n incoming particles 〈1, 2, ..., n| to the

vacuum |0〉 [80], so the interaction can always be considered as | 〈1, 2, ..., n|S|0〉 |2. To

define the scattering amplitude from S it is necessary to subtract out the probability

that the particles pass through one-another without interacting, and to accommodate

for this S-Matrix can be split up into S = 1+ iT . The scattering amplitude is then

defined as

A := 〈1, 2, ..., n|T |0〉 . (2.1.3)
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The integer n counting the number of states in the process is referred to as the

number of points of the amplitude, and for an n-point amplitude I define N to be

the set of all of the particle labels, so that N := {1, ...n}. Amplitudes are often

cyclically ordered, and in these cases I define any choice of labels which is greater

than n by division modulo n, so that if k ∈ N then n+ k ∼ k.

The translational part of the Poincaré symmetry group of Minkowski spacetime

results in overall conservation of momentum in the scattering process, ∑i∈N ki = 0.

Defining P := ∑
i∈N ki this is encoded in the scattering amplitude with a Dirac delta

function δ(P ), and the amplitude can always be expanded as

A = δd(P )A
(
g; (p1, ε1, q1), (p2, ε2, q2), ... , (pn, εn, qn)

)
, (2.1.4)

where qi denotes any additional quantum numbers defining particle state i. I use

a simplified notation A(g; 1...n) to describe this functional dependence, with the

particle label implying the information about the quantum states of each particle.

The classic approach to calculating scattering amplitudes is to relate 〈1, 2, ..., n|T |0〉

to an correlation function of n field operators in the quantum field theory using

the LSZ formula [80, 82], and to expand the path integral for that correlation

function perturbatively to give the amplitude to different orders in the coupling

constant g. This expansion can be expressed diagrammatically as a sum over all

possible Feynman diagrams, which are graphs whose edges are called propagators

and are calculated from the kinetic terms in the Lagrangian of the theory, and

whose possible vertices are calculated from the interaction terms. The assumption

of unitarity enforces bounds on the large momentum behaviour of the propagators

and scattering amplitudes of the theory [84].

This approach has largely been superseded by newer techniques for calculating the

amplitude, and in this thesis I will focus on computational frameworks known as on-

shell diagrams, scattering equations and ambitwistor string theory. These techniques

still rely on the perturbative expansion in terms of the coupling constant of the theory,
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which can be written as

A(g; 1 ... n) = A(0)(1 ... n) + gA(1)(1 ... n) + g2A(2)(1 ... n) +O(g3). (2.1.5)

The zeroth order term in the perturbative expansion is known as the tree-level

amplitude because the topology of Feynman diagrams at this order contains no

closed loops. Higher order terms of degree L contain L closed loops, and each loop

corresponds to an integral over off-shell momentum space. The Feynman diagram

expansion shows that both tree-level amplitudes and the integrands of loop level

amplitudes are rational functions, with the tree level amplitudes depending only on

the on-shell momenta defining the scattering states, which the the loop amplitudes

depend additionally on the off-shell loop momentum. In this thesis I consider

mostly tree level amplitudes with some calculations at one loop, where the one-loop

amplitude can be written as a loop integral as

A(1)(1 ... n) =
∫
dd` I(`; 1 ... n) (2.1.6)

The loop integrals in scattering amplitudes above tree level diverge in general either

in the UV or the IR regime and these divergences must be regulated. Dimensional

regularisation is the most common way to regulate divergences at loop level which

requires taking the dimension of the spacetime away from d by small amount an

taking a limit back to d dimensions, although I will not make use of dimensional

regularisation in this work.

2.2 Specialising to 4 Dimensions of Spacetime

While it is possible to calculate amplitudes in general dimensions, four dimensions

of spacetime is the most physically relevant and nearly all calculations in this thesis

will be for d = 4. The structure of scattering amplitudes is richer in four dimensions,

allowing for more complex calculations at higher number of points and loop order,
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although regulating loop integrals is generally done by taking the dimension of the

spacetime slightly away from d = 4. This additional structure stems from the fact

that the Lorentz group factorises in four dimensions into two copies of SU(2), so

that SO(3,1) ' SL(2)L×SL(2)R. In this thesis I refer to the two copies as SU(2)L for

left and SU(2)R for right to distinguish between them, and I use α̇, β̇, ... for indices

in SU(2)L and α, β, ... for indices in SU(2)R.

This splitting means that any representation of SO(3,1) can be classified as a choice of

representation for the left and right copies of SU(2), which results in a more powerful

framework than in general dimensions of spacetime because the representation theory

of SU(2) is particularly simple. Each representation of SU(2) is defined by a choice of

one natural number for the number of indices in the fundamental representation the

representation carries, and then a general representation of SO(3,1) can be written

as a choice of two natural numbers. The fundamental representation of SO(3,1) is

then (1,1) which corresponds to a spacetime vector, and the mapping in between

vectors in SO(3,1) and the two fundamental SU(2) indices of (1,1) is given by the

4D Pauli matrices, σα̇αµ = (1α̇α, σα̇αi ) and σ̄µαα̇ = (1αα̇, σαα̇i ) where σi are the standard

3D Pauli matrices. Hence any vector in SO(3,1) can be written as a rank 2 tensor

with one index in SU(2)L and one in SU(2)R, so that

kα̇α := σα̇αµ kµ, or kαα̇ := σ̄µαα̇k
µ. (2.2.1)

Note that the indices are always ordered so that when they are upper the dotted

index comes first, and when they are lower the undotted index comes first.

The Minkowski inner product of two vectors x and y is then given by x·y = xα̇αyαα̇ =

Tr(xy), and so the norm of a vector k is given by k · k = kα̇αkαα̇ = det (kα̇α). Then

any massless vector must satisfy det (kα̇α) = 0, which implies that massless k can be

written as the product of two Grassmann even spinors, one in the fundamental of

SU(2)L and one in SU(2)R. In this thesis I will refer to the spinors corresponding

to the momentum vector for external state i ∈ N of an amplitude as |i]α̇ ∈ SL(2)L,

and 〈i|α ∈ SL(2)L, where in M4(R) the two spinors are related by |i] = 〈i|† with †
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the conjugate transpose. It will be important at some points to package the spinors

up into two 2× n matrices, with the first index ranging over the spinor degrees of

freedom and the second over the number of particles. In these cases, I will use the

notation λ = (λαi ) = (〈i|α), and λ̃ = (λ̃αi ) = (|i]α̇). Sometimes the spinors will not

be specific to the external data a given particle, and then I will refer to them as
∣∣∣λ̃]

and 〈λ|, where the λ is now the variable name for the spinors and is not related to

the external data of an amplitude.

The splitting of a massless 4-vector into two spinors can then be written as either

ki = |i] 〈i| := (|i]α̇ 〈i|α) or ki = |i〉 [i| := (|i〉α [i|α̇) , (2.2.2)

where in this notation |i〉 and |i] are two component column vectors and 〈i| and

[i| are two component row vectors, so that the tensor product in equation (2.2.2)

matches the matrix multiplication. Massive vectors can also be represented in this

formalism as a sum of two massless vectors. Any amplitude for massless particles

written as a function of momentum vectors ki must take into consideration the mass

shell constraint k2
i = 0, but can be written as as an unconstrained function of |i]

and 〈i|. Removing the need for quadratic on-shell constraints in the representation

of the amplitude can simplify their algebraic expressions significantly.

The amplitude is Lorentz invariant and so it is necessary to construct Lorentz

invariant functions of the spinor variables. There is an invariant rank 2 tensor

in SU(2) given by ε = ( 0 1
−1 0 ), which exists in SU(2)L as (εαβ) = (εβα) = ε, and in

SU(2)R as (εβ̇α̇) = (εα̇β̇) = ε. These tensors can be used to map from the fundamental

representations of SU(2)L and SU(2)R to their corresponding dual spaces, motivating

the following definition for the dual spinors

〈i| := (ε |i〉)T , [i| := (ε |i])T . (2.2.3)

Then SU(2) invariant products are defined by matrix multiplication of the row

vectors in the dual space with the column vectors in the fundamental representation,
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so that

〈ij〉 := 〈i| |j〉 = det(|i〉 |j〉) = |i〉1 |j〉2 − |i〉2 |j〉1

[ij] := [i| |j] = det(|i] |j]) = |i]1 |j]2 − |i]2 |j]1 ,
(2.2.4)

noting that this is equivalent to the calculation of a two by two matrix. Lorentz

invariant products of two null vectors can be constructed from the spinor brackets

as

2ki · kj = 〈ij〉 [ji] . (2.2.5)

Relaxing the constraint that |i] = 〈i|† reveals additional structure in the represent-

ation of scattering amplitudes, and allowing the two spinors to be independent of

one another corresponds to complexifying the spacetime. The relationship for the

Lorentz group then becomes SO(3,1)C ' SL(2)L×SL(2)R, and I will work mostly

with complexified momenta in this thesis.

The specialisation to four dimensions also simplifies the representation of polarisation

vectors significantly, due to the particularly simple structure of the little group in

4D. The little group for null vectors in complexified 4D spacetime is GL(1), which

acts on the spinors as

(|i] , 〈i|) 7→ (αi |i] ,
1
αi
〈i|) α ∈ GL(1), (2.2.6)

leaving the vector ki = |i] 〈i| invariant. The representations of GL(1) are specified

by a single integer, which means that the helicity of a massless particle in 4D can

be used to specify its polarisation structure, up to freedom of gauge choice. Spin

one particles are restricted to a polarisation of either ε+ or ε− corresponding to

positive or negative helicity, and spin two particles similarly have polarisation ε++

or ε−−. The forms of these polarisation vectors are given explicitly in terms of the

spinor variables in [83], and depend on a reference spinor which encodes the gauge

freedom. As a result of this the momentum and polarisation state of a spin one or

spin two particle can be fully specified by a momentum and a choice of ±, and hence

the functional dependence of scattering amplitudes for these particles in 4D can be
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written as

A = A(1h1 2h2 3h3 , ..., nhn), (2.2.7)

which no longer depends on the polarisation vectors explicitly as in general dimen-

sions of space-time. This is a significant simplification, reducing the dependence

of the amplitude down from a polarisation vector constrained by gauge invariance

for each particle down to a binary choice of helicity. This reduction in complexity

is one of the main computational advantages in 4D compared to other dimensions

of spacetime, and is used widely in theory and experiment and referred to as the

spinor-helicity formalism, reviewed in [83, 85, 82] and first used in [6].

The simplicity of representing different massless amplitudes at n points in 4D by

a binary choice of helicities is encoded in a further formalism, known as the MHV

classification. For amplitudes with only one type of spin one or spin two particle it is

standard define the MHV degree k as the number of negative helicity particles where

relevant. I also define a left set of particles L as the particles with negative helicity,

and a right set R as the positive helicity particles, so that L tR = N , |L| = k and

|R| = n− k. The tree-level amplitudes of a number of theories, including those of

Yang-Mills and Einstein gravity as discussed in the next section, are zero for helicity

configurations with all positive helicities (k = 0), and similarly for configurations

with one positive helicity and all others negative (k = 1);

A(0)(1+ 2+ 3+ ... n+) = A(0)(1− 2+ 3+ ... n+) = 0, (2.2.8)

as well as for k = n− 1 and k = n by helicity conjugation.

The first non-zero amplitude is the amplitude with two negative helicity particles,

and this is commonly referred to as the ‘maximal helicity violating’ or MHV amp-

litude, with the name coming for the idea that conservation of helicity results in the

amplitudes in equation 2.2.8 being zero. The MHV classification then denotes all

such amplitudes in terms of k = |L| as N(k−2)MHV amplitudes.

Although amplitudes in the most common and physically relevant theories satisfy
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equation (2.2.8), this is not always true and does not hold for example in conformal

supergravity, as reviewed in Section 2.6 and discussed in detail in Chapter 7. It is

still relevant to think of these amplitudes as fitting into the MHV classification, but

now the ‘out-of-MHV’ amplitudes with k = 0, 1, n− 1 or n need not be equal to zero.

An example of the computational power of this combination of techniques is illus-

trated by the 3 point amplitudes of Yang-Mills theory and Einstein gravity, which are

completely fixed by Lorentz symmetry, translational invariance, little group scaling

and unitarity bounds [86] to give

AYM(1−2−3−) = 0 AYM(1−2−3+) = δ4(P ) 〈12〉4

〈12〉 〈23〉 〈31〉

MEG(1−2−3−) = 0 MEG(1−2−3+) = δ4(P ) 〈12〉8

〈12〉2 〈23〉2 〈31〉2
.

(2.2.9)

2.3 Supersymmetry, Superamplitudes and

On-Shell Superspace

The spacetime symmetries of a given quantum field theory can be augmented with

an additional type of symmetry known as supersymmetry, which is a powerful tool

in further constraining the structure of the scattering amplitudes of the theory.

Supersymmetry groups bosonic and fermionic particles together into superpartners

or supermultiplets, constraining the possible interactions between different kinds of

fields and reducing the number of coupling constants. Supersymmetry was originally

conceived purely as a theoretical endeavour [87], and it subsequently came to be

believed that it would describe physics beyond the standard model [88], although

it was not found at LHC energy scales as originally predicted, and its viability as a

physical model in this setting is unclear [89]. In the study of scattering amplitudes

the benefit of supersymmetry as a computational tool is clear however - the additional

non-physical supersymmetries added to the theory make many more computations

accessible, and a number of computational techniques which are now used to calculate

scattering amplitudes relevant to standard model physics were first developed in
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simpler supersymmetric models, whose scattering amplitudes do not model natural

phenomena.

Each supersymmetry transformation of a given theory is parameterised by an anti-

commuting Grassmann odd degree of freedom, and supersymmetry can be considered

as acting on a spacetime which has Grassmann odd dimensions additional to the

standard commuting degrees of freedom on the manifold to create a supermanifold.

In four dimensions each supersymmetry added contributes four degrees of freedom to

the manifold, so that with N ∈ N supersymmetriesM4(R) is extended toM4|4×N (R).

There is an SU(N ) symmetry under mixing different supersymmetries together which

is known as the ‘R-symmetry’ [83] , and the new anticommuting coordinates on the

supermanifold transform in the fundamental representation of SU(2)L×SU(N ) and

SU(2)R × SU(N ) so that a point can be written as

(x, |θ〉 , |θ]) ∈M4|4×N (R), (2.3.1)

where |θ〉 =
(
|θI〉

)
and |θ] =

(
|θI ]

)
. I use indices I, J,K, ... to represent indices

transforming in SU(N ).

The conserved charges
∣∣∣Q̃] and |Q〉 which generate each supersymmetry transform-

ation are necessarily also Grassmann odd, and as such they anticommute with

one-another and commute with the generators of the Poincaré group. The closure

of the commutators of these generators produces a graded Lie algebra known as the

super Poincaré algebra as the spacetime symmetry of the supersymmetric theory [90],

which is given by {∣∣∣QI
]α̇
, 〈QJ |α

}
= P α̇α δIJ , (2.3.2)

where P generates spacetime translations.

As supersymmetry transformations take linear combinations of bosonic and fermionic

fields they can be considered as increasing or decreasing the helicity of the corres-

ponding particle states by 1
2 . The states of different fields are then grouped together

into a supermultiplet by the supersymmetry operations. As an example consider
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N = 1 super Yang-Mills theory, which is a theory of a gauge boson Aµ and a fermion

ψα. The excitations of Aµ are a positive and a negative gluon, g+ with helicity +1

and g− with helicity −1, and the excitations of ψα are ψ+ with helicity +1
2 and ψ−

with helicity −1
2 . The supersymmetry transformations combine these states together

into the supermultiplets (g+, φ+) and (g−, φ−), such that the multiplets are closed

under action of the generators
∣∣∣Q̃] and 〈Q| of the supersymmetries.

Increasing the number of supersymmetries increases the number of different types of

particles which can be related to one another, so for example N = 2 allows for linear

combinations of fields with spin differing by at most 1, and the gluon supermultiplets

of N = 2 super Yang-Mills theory are (g+, ψ+, φ) and (g−, ψ−, φ̄) where φ is a scalar

field in the theory. Supermultiplets for a given N can be constructed recursively

from the multiplets for N − 1, and contain a total of N states.

This property of increasing and decreasing helicity introduces a bound on the number

of supersymmetries N for a given theory, and hence supersymmetry can be maximal

or non-maximal. To see this, consider the negative helicity gluon in Yang-Mills theory.

Increasing the helicity of this particle four times in steps of +1
2 using the generators

of the supersymmetry gives a particle of helicity +1, which must be the positive

helicity gluon. If we add an additional supersymmetry generator and increase one

more time we get a spin 3
2 particle, which is necessarily part of a gravitational theory,

and so the theory is no longer Yang-Mills only. From this it can be that at the

maximum number of super symmetries in Yang-Mills theory in 4D is N = 4, and

I discuss the N = 4 Yang-Mills super multiplet in Section 2.4. Following a similar

argument in Einstein gravity the maximum number of super symmetries in 4D is

N = 8, with supermultiplet discussed in Section 2.5. Maximal supersymmetry in

conformal supergravity is N = 4 and is discussed in Section 2.6. Increasing the

helicities of a gravitational theory above 2 or below -2 produces higher-spin fields

which have a number of undesirable physical properties, and so the maximal number

of supersymmetries in four dimensions is generally considered to be 8. Note that

setting N = 0 recovers the original theory without supersymmetry.



24 Chapter 2. Background Material

One key way in which supersymmetry restricts the structure of scattering amplitudes

in a given theory is described by the supersymmetric Ward identities [83], which

enforce that certain linear combinations of amplitudes for different types of particles

must add up to zero. This reduces the number of independent amplitudes that need

to be calculated in the theory, and is a particularly powerful result which holds true

for all values up the coupling constant, and hence all orders of perturbation theory.

Supersymmetry also simplifies the structure of loop amplitudes in perturbation

theory significantly, due to the fact that any internal loop degrees of freedom must

now include a sum over states in the super multiplet of the theory, and cancellations

arise due to a relative minus sign between fermionic and bosonic loops.

The supersymmetric Ward identities can be encoded by combining the component

amplitudes for different particles together into a new structure called a superamp-

litude. The superamplitude can be considered as the amplitude for a process which

scatters supermultiplets of the theory rather than scattering individual particles, and

the amplitude for the individual particles is then referred to as a component amp-

litude. This is encoded in a formalism called ‘on-shell superspace’ which introduces

Grassmann odd degrees of freedom ηi = (ηIi ) which transform in the fundamental of

SU(N ) for i ∈ N , and superamplitudes are written as an expansion in the different

ηI variables for each R-symmetry index as shown in sections 2.4, 2.5 and 2.6.

The supercharges corresponding to each external state the theory are then represen-

ted in terms of η as |q̃iI ] = |i] ∂
∂ηI

and
∣∣∣qIi 〉 = |i〉 ηIi , and the

∣∣∣qIi 〉 can be thought of

as an additional Grassmann component to the momentum of each particle, referred

to as the supermomentum of the particle. Physically the supermomentum encodes

the The total supermomentum of all of the states combined is |Q〉 = ∑
i∈N |qi〉,

and the supersymmetric Ward identities enforce conservation of supermomentum

so that the superamplitude always has a factor of δ2×N (Q). The superamplitude is

then manifestly invariant under the |Q〉 supersymmetry transformations due to the

δ2×N (Q), and can be shown to also be invariant under the
∣∣∣Q̃] transformations [85].

This superspace formalism is chiral because |Q〉 and
∣∣∣Q̃] are treated differently. The
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mapping between this chiral superspace and the one where
∣∣∣Q̃] is algebraic and |Q〉

acts as a derivative operator is given by a Grassmann Fourier transform from η to η̃

variables.

The MHV classification for amplitudes without supersymmetry is then generalised

to superamplitudes by introducing the idea of an MHV sector. In super Yang-Mills

theory the Nk−2MHV sector at n points is the set of component amplitudes related

to the Nk−2MHV amplitude by supersymmetry, and in Einstein gravity it is the

set of amplitudes related to the Nk−2MHV graviton amplitude. The Nk−2MHV

superamplitude is a Grassmann function with a well-specified weight in η variables

NG, and amplitudes where NG is not a multiple of N are zero. As such it is natural

to define the Grassmann degree kG := NG
N of the amplitude, and in super Yang-

Mills and Einstein supergravity kG = k. The relationship still holds in conformal

supergravity but is more subtle in this case subtle, which I discus in Section 2.6 and

Chapter 7.

Component amplitudes for individual states can be extracted from the superamp-

litude by integrating against NG relevant η variables specifying which particle is

being scattered for each external state. A review of these techniques can be found in

[85, 83], and the extension to non-maximal supersymmetry is discussed in detail in

[91]. I illustrate this process with an example of extracting a component amplitude

in N = 4 super Yang-Mills theory in the next section.

2.4 Super Yang-Mills Theory

Yang-Mills theory describes the physics of a spin 1 vector boson Aµ with a gauge

symmetry group SU(Nc) whose quantized field excitations are referred to as gluons,

and Nc ∈ N is referred to as the number of colours of the theory. Gauge theory is

of fundamental importance to physics; in the standard model of particle physics it

is used to model both the weak and strong nuclear forces. The Lagrangian of the
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theory is widely used in many applications, and is given by

L = −1
4FµνF

µν , (2.4.1)

where Fµν = ∂µAν − ∂νAµ − ig2 [Aµ, Aν ], g is the coupling constant of the theory and

Aµ = AaµT
a where T a are the generators of the adjoint representation of SU(Nc).

To calculate amplitudes in the Feynman diagram formalism would require finding

interaction vertices from equation 2.4.1, but to use the methods developed in this

thesis it will not be directly relevant. The equations of motion coming from this

Lagrangian are

∂µFµν + g [Aµ, Fµν ] = 0, (2.4.2)

and the corresponding linearized equations in Lorenz gauge with plane wave solutions

are given in (2.1.1).

Plane-wave gluon states in 4D Yang-Mills theory are then fully specified by a mo-

mentum and choice of helicity of the gauge boson, as well as an SU(Nc) adjoint

index for each particle. The dependence of an amplitude on the gauge group in-

dices is referred to as its colour structure, and in any given amplitude the colour

structure can be written as a sum over traces of the generators of the adjoint rep-

resentation. This decouples the colour-dependent part of the amplitude from the

dynamical structure depending on the momenta and helicities, and the remaining

dynamical colour-independent functions are called colour ordered amplitudes. The

colour ordered amplitudes are gauge invariant as well as Lorentz invariant, and as

such can be more simple to work with than the full colour-dressed amplitude. At

tree-level, the colour dressed amplitude can be written as

A(0)(1h1,a12h2,a2 ...nhn,an) =
∑

σ∈Sn−1

A(0)(1h1σ(2h2 ...nhn))Tr
(
T a1T σ(a2 ...T an)

)
,

(2.4.3)

where Sn−1 is the permutation group on n− 1 elements.

As the colour structure is completely specified for all amplitudes at tree level using

only one trace over all n of the adjoint generators for each particle, the colour ordered
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amplitude has mathematical structure under cyclic permutations Zn of the external

data, and is cyclically symmetric in some cases as explained below. At higher loop

levels it is necessary to consider more complex colour structures with multiple traces,

and so in general there are many terms and the full colour ordered amplitude does

not obey the cyclic structure that it does at tree level.

Considering the amplitude as a function of the rank of the gauge group Nc, these

multiple trace terms are subleading in Nc compared to the single trace terms as Nc

increases. It is then possible to take the limit as Nc goes to infinity and neglect these

subleading terms, leaving a simplified subset of the terms from the full amplitude.

This simplified object can be considered as the amplitude for a Yang-Mills theory in

the ‘large-N limit’ [92, 82], where the theory is referred to as ‘planar Yang-Mills’. For

this theory to be well-defined the coupling constant g must also be taken to infinity,

keeping the combination g′ := g2Nc known as the ’t Hooft coupling fixed. Colour

ordered amplitudes in the large-N limit then have a cyclic structure for higher loop

levels as well as at tree-level, and when discussing Yang-Mills amplitudes in this

thesis I will consider only the calculation of colour ordered amplitudes in the large-N

limit. I will denote Yang-Mills amplitudes as A in this thesis.

In chapters 3 and 4 of this thesis I consider calculation of super Yang-Mills amp-

litudes with any number N of supersymmetries, and in Chapter 5 I will focus on

N = 4 supersymmetry when considering Yang-Mills amplitudes. Maximal N = 4

supersymmetry introduces additional properties for the superamplitude which make

it easier to compute. The spectrum of the theory contains one gluon with two heli-

city states g±, eight fermions ψ+ I and ψ− IJK , and six scalars φAB. The maximal

N = 4 supersymmetry transformations link the negative and positive helicity gluons

into the same multiplet and so there is only one supermultiplet in N = 4 super

Yang-Mills which can be written as a superfield in on shell super space as

Φ = Φ+ = Φ− = g−η1η2η3η4 + ψ− IJKηIηJηK + φIJηIηJ + ψ+ IηI + g+. (2.4.4)

As a result of this the assignment of positive and negative helicities to the external
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data of the superamplitude in the theory is arbitrary, and the superamplitudes are

invariant under a Zn cyclic transformation of the particle labels. Yang-Mills theory

is classically conformally invariant in four dimensional spacetime, and this symmetry

extends to the quantum level for all values of the coupling constant exactly when

N = 4.

To completely specify an amplitude in super Yang-Mills theory at tree level, it is

necessary to make a choice of number of supersymmetries N , number of points n,

left set of negative helicity superfields L and a cyclic ordering of the particles σ ∈ Sn,

and I will always use cyclic ordering σ = (1, 2, ...n) in this thesis. The tree-level

superamplitude can then be written as

A(n)(Φh1
1 Φh2

2 ...Φhn
n ) = A(n)

n,L,N , (2.4.5)

where k = kG = |L|, relating the MHV degree, Grassmann degree and number of

negative helicity superfields.

With maximal N = 4 supersymmetry the tree-level superamplitude is specified by

a smaller set of choices due to the fact that Φ+ = Φ−. In this case it is necessary

to specify simply a number of points and a Grassmann degree, and then the MHV

degree is defined by the Grassmann degree so that k := kG and

A(n)(Φ1Φ2...Φn) = A(n)
n,k,N=4. (2.4.6)

In general writing down n point formulae for scattering amplitudes is a complex

task, but in Yang-Mills theory in the MHV sector the amplitude has a particularly

simple form. The famous tree-level MHV Parke-Taylor amplitude is

A(0)
n,{i,j},N = δ4|2×N (P ) 〈ij〉4−N

〈12〉 〈23〉 ... 〈n1〉 , (2.4.7)

where L = {i, j}, and the cyclic symmetry of the amplitude for N = 4 is manifest.

The expressions for a general NkMHV amplitudes at tree-level in super Yang-Mills
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theory are significantly more complex than the MHV amplitude, but are well known

in the literature [93, 94].

Finally consider extracting the component amplitudeA(g−ψ− IJKg+ψ+L) fromA(0)
4,2,N=4

as an example to explain how component amplitudes are extracted from a superamp-

litude. Each component amplitude corresponds to a specific set of on-shell superspace

variables ηIi for each particle label i, and the relevant ηIi for each state can be read off

from the supermultiplet. Integrating the superamplitude against these Grassmann

variables then relates the component amplitude to the superamplitude

A(0)(g−ψ− IJKg+ψ+L) =
∫
dη1

1dη
2
1dη

3
1dη

4
1dη

I
2dη

J
2 η

K
2 dη

L
4A

(0)
4,2,N=4. (2.4.8)

2.5 Einstein Supergravity

The standard calculation of gravitational scattering amplitudes works from the

Einstein-Hilbert Lagrangian, and I will refer to these amplitudes as Einstein gravity

amplitudes. The Lagrangian is

L = 1
κ

√
−gR + Lmatter, (2.5.1)

where R is the Ricci scalar, √−g is a volume element on the space-time, κ = 16πGN

is the coupling constant in terms of Newton’s gravitational constant GN , and Lmatter

describes any matter content considered. The Ricci scalar is a standard function

of the metric gµν , its inverse gµν and its derivatives ∂σgµν [95], and so the Einstein-

Hilbert Lagrangian describes the self-interactions of a metric gµν , which is a rank 2

symmetric tensor. The action corresponding to this Lagrangian is invariant under

arbitrary parameterizations of the space-time manifold known as diffeomorphisms.

To calculate gravitational amplitudes in flat space, the metric is expanded as a

perturbation around the Minkowski metric, so that

gµν = ηµν + κhµν , (2.5.2)
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and the quantized field excitations of the perturbation hµν are spin 2 particles referred

to as gravitons. The expansion of √−g in orders of κ has infinitely many terms,

and the interaction vertex structure of Einstein gravity in the Feynman diagram

formalism is incredibly complex. Einstein gravity amplitudes in this thesis will be

calculated using methods which do not refer to the Lagrangian, and so equation 2.5.1

will not be used directly.

The equations of motion of the Einstein-Hilbert Lagrangian in terms of the full

metric gµν are the famous Einstein’s field equations,

Rµν −
1
2Rgµν = Tµν , (2.5.3)

where Rµν is the Ricci tensor satisfying Rµ
µ = R, and Tµν is the stress-energy

tensor calculated from Lmatter. The linearized field equations for hµν in de Donder

gauge [95] are given in equation 2.1.1, and so the states of the theory are plane

waves, as in Yang-Mills theory, but with polarisation tensors of the form εµν . The

diffeomorphisms which leave both the perturbative form of the metric and the choice

of gauge invariant constrain the form of these polarisation tensors, and are considered

a gauge symmetry under which the amplitudes of the theory must be invariant. As

with Yang-Mills theory there are only two different possible polarisation structures

ε+µν and ε−µν , and they can be decomposed in terms of the polarisation vectors of

Yang-Mills theory as ε±µν = ε±µ ε
±
ν [83].

While there are many similarities between the structures of gauge theory and gravity

amplitudes, there are also a number of notable differences. Importantly there is

no notion of colour in gravity and hence no need for colour ordering. Nk−2MHV

gravitational amplitudes do not have a cyclic structure as in Yang-Mills, and instead

have an Sk×Sn−k permutation invariance under interchange of any two external states

with the same helicity. In this thesis I will generally useM to denote gravitational

amplitudes.

Chapters 3 and 4 of this thesis consider calculation of Einstein supergravity amp-

litudes with any number N of supersymmetries, and in Chapter 6 I will focus on
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N = 8 supergravity. As with Yang-Mills Theory, maximal N = 8 supersymmetry

introduces additional structure to superamplitude. The spectrum of the theory

contains one graviton with two helicity states h±, 16 gravitinos λ+ I and λ−I , 56

graviphotons A+ IJ and A−IJ , 112 spin 1
2 fermions ψ+ IJK and ψ−IJK , and 70 scalars

φABCD. The N = 8 supersymmetry transformations link the negative and positive

helicity gravitons into the same multiplet, and so there is only one supermultiplet in

N = 8 supergravity which can be written as a superfield in on shell super space as

Φ = Φ+ = Φ− = h−η1η2η3η4η5η6η7η8 + ...+ψ+ IJKηIηJηK +A+IJηIηJ + λ+IηI + h+.

(2.5.4)

As with N = 4 super Yang-Mills, this means that the assignment of positive and

negative helicities to the external data of the superamplitude in the theory is arbitrary,

and hence N = 8 supergravity amplitudes have a full Sn permutation symmetry

under the exchange of any two external states.

Specifying an amplitude in Einstein supergravity requires the same information as

in super Yang-Mills, and we have that

M(n)(Φh1
1 Φh2

2 ...Φhn
n ) =M(n)

n,L,N , (2.5.5)

with

M(n)(Φ1Φ2...Φn) =M(n)
n,k,N=8. (2.5.6)

for maximal N = 8 supersymmetry.

MHV amplitudes in supergravity can be written in a number of different ways,

[79, 96], but perhaps the most concise and simple expression is written in terms of

the MHV Hodges matrix H [22]. The amplitude is

M(0)
n,{a,b},N = δ4|2×N (P ) 〈ab〉8−N detH

〈ab〉 〈bc〉 〈ca〉
, (2.5.7)

where c is any choice of particle label from N \ {a, b}, and the amplitude can be

shown to be independent of the choice of c. The MHV Hodges matrix H is an
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(n− 3)× (n− 3) matrix, defined as

H :=


[ij]
〈ij〉 i 6= j,

ψ
|a〉|b〉
i,n i = j,

. (2.5.8)

The diagonal elements are written in terms of the gravitational inverse soft factor

ψ
|a〉|b〉
i,n , which is defined as

ψ
|a〉|b〉
j,n =

n∑
k∈N \{j}

[jk]
〈jk〉
〈ka〉 〈kb〉
〈ja〉 〈jb〉

, (2.5.9)

and is also a building block for amplitudes in conformal supergravity. |a〉 and |b〉

in this formula can be taken to be particle labels, or any choice of external spinors,

and ψabi,n can be shown to be invariant under the choice of the spinors.

For the purposes of amplitudes written in terms of the 4D scattering equations, this

expression for the MHV gravity amplitude can be considered the equivalent of the

Parke-Taylor formula for supergravity. General NkMHV amplitudes even at tree

level in supergravity are much more complex than at MHV, and the possibility exists

that more simple and beautiful expressions for these amplitudes can still be found,

along with the hope that finding new forms could shed light on the structure of

quantum gravitational physics.

2.6 Conformal Supergravity

Conformal gravity is a diffeomorphism invariant theory of a metric tensor field

gµν similarly to Einstein gravity, but it differs from Einstein gravity in that it is

additionally invariant under Weyl transformations of the metric gµν 7→ eΩ(x)gµν

which enhance the Poincaré symmetry of the space-time to conformal symmetry.

The addition of conformal symmetry results in a theory which is not unitary, and

hence conformal gravity is not physical and cannot be used directly to model nature.

Conformal symmetry however constrains the structure of the theory significantly,

notably resulting in a gravitational theory with much better UV behaviour than
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Einstein gravity. In this thesis I take the philosophy that studying conformally

invariant gravitational amplitudes may help in developing techniques to study more

physically relevant amplitudes in Einstein gravity.

Spacetime Lorentz and translational transformations preserve angles and lengths

between points, for example rotationally symmetric objects are equivalent at different

angles. Conformal transformations also preserve angles between points, but because

they allow additionally for a scaling of the metric tensor of the space-time they

no longer preserve lengths, and conformal symmetry is then a statement of the

equivalence of objects at different length scales. Weyl invariance of a theory leaves the

theory invariant under space-time scaling transformations x 7→ eαx, and additionally

conformal boost transformations Kµ which are constructed by inverting spacetime

through the origin so that x 7→ x
x2 , translating in the inverted space and inverting

back [97]. The Poincaré group, scaling transformations and conformal boosts combine

together to form the conformal group which in Minkowski space in d dimensions is

SO(d, 2). The introduction of these additional symmetries constrains the structure of

the theory significantly and conformal field theory, the study of conformally invariant

quantum field theories, is of fundamental importance in mathematical physics, with

an introduction given in [97, 98].

While the Lagrangian of Einstein gravity is constructed from contractions of the

Riemann tensor, the Lagrangian of conformal gravity is written in terms of the

Weyl tensor Wµνρσ. The Weyl tensor is one of the irreducible components of the

Riemann tensor when considered as a representation of the Lorentz group, and can

be constructed from the Riemann tensor and the metric [95], and is the natural

object to consider in constructing a conformal theory of gravity as it transforms

covariantly under Weyl rescaling of the metric as Wµνρσ 7→ eΩWµνρσ. The most

simple Lagrangian for a theory of conformal gravity is then

L =
√
−g

(
− 1
K2WµνρσW

µνρσ
)
, (2.6.1)

which is conformally invariant in four dimensions where the Weyl rescaling of the
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volume element √−g 7→ e−
d
2 Ω√−g cancels with the conformal transformation of

WµνρσW
µνρσ, so that √−gWµνρσW

µνρσ 7→ e
Ω
2 (4−d)√−gWµνρσW

µνρσ. The coupling

constant K is different from that of Einstein Gravity, having mass dimension 0 as

required for conformal invariance.

The equations of motion coming from (2.6.1) are

(∇ρ∇σ +Rρσ)Wρµνσ = 0, (2.6.2)

and any solution to the vacuum Einstein’s field equations also solves these conformal

gravity equations [99]. In this thesis I will study scattering amplitudes in conformal

gravity as perturbations hµν around Minkowski space-time, where the perturbative

expansion is the same as that for Einstein gravity explained in the previous section

except with coupling constant K. Expanding the equations in the coupling constant

K, choosing an appropriate gauge and taking the linear terms gives the following

linearized field equations for the graviton field in conformal gravity

�2hµν = 0. (2.6.3)

The fact that these equations are fourth-order in derivatives leads to two main

consequences for the theory. The first is that additional boundary conditions for

scattering states in the theory can now be considered compared to Yang-Mills theory

and Einstein gravity. Standard plane waves eik·x for k2 = 0 are still scattering states

in conformal gravity as they solve equation (2.6.3), but additionally to these states

are the non-plane wave states

hµν = εµν A · x eik·x, (2.6.4)

where A is a vector. States for which A ∝ k solve the second order equations of

motion �hµν = 0 and hence are equivalent to plane wave modes, and so non-plane

wave states are defined for A ∼ A+βk, for all β ∈ R. There are both conceptual and

mathematical difficulties in scattering these states, given that states in the S-matrix

formalism are defined at t→ ±∞, and non-plane wave states grow linearly with t
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in that limit. It is possible to circumvent these issues considering the amplitude as

a distribution, which I discuss in Chapter 7.

A second consequence of the fourth order field equations of conformal gravity is

that the propagators of the theory go as 1
p4 , from which it can be seen that the

theory is not unitary at the quantum level. To understand this, consider adding

the Einstein-Hilbert Lagrangian as a mass deformation to the conformal gravity

Lagrangian to give

L =
(
− 1
K2WµνρσW

µνρσ − 2
K2m

2R
)
. (2.6.5)

The Einstein-Hilbert Lagrangian has standard 1
p2 propagators, which resolves the 1

p4

propagators of the conformal theory to some massless and some massive graviton

modes, all with standard propagators. The argument runs as follows; the linearized

equation of motion is modified schematically from (2.6.3) to

�
(
� +m2

)
hµν = 0, (2.6.6)

which has propagator

∆(p) =
(

1
p2

1
p2 +m2

)
= 1
m2

(
1
p2 −

1
p2 +m2

)
. (2.6.7)

The second equivalent expression under partial fractioning shows that the massless

mode is physical with a standard 1
p2 propagator, but the massive mode is an unphys-

ical ghost mode due to the minus sign in front of the 1
p2+m2 propagator. Ghost modes

are not compatible with unitarity, and conformal gravity is therefore non-unitary as

the ghost mode remains in the m→ 0 limit, as explained in more detail in [35].

It is possible to modify the structure of conformal gravity by the addition of a

complex scalar field, resulting in a class of models known as non-minimal conformal

gravities. The Lagrangian of these theories is given by [35]

L =
√
−g

(
f(φ)W+

µνρσW
+µνρσ + f(φ̄)W−

µνρσW
−µνρσ

)
+ Lφ±,int, (2.6.8)

where Lφ±,int is given in [35] and contains the kinetic terms in φ as well as additional

interaction terms in φ and g. W+
µνρσ is the self-dual and W−

µνρσ the anti self-dual
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component of the Weyl tensor under Hodge duality in the spacetime, and a choice

of complex analytic function f defines the theory. The theory can be naturally

supersymmetrised to an N = 4 super conformal field theory as explained in [35],

with super-multiplet structure detailed below.

A specific non-minimal conformal supergravity was found to rise naturally in twistor

string theory [20], for which f(φ) = 1+φ
1−φ . This model also arises naturally in 4D

ambitwistor string theory, and will be the object of study of Chapter 7 of this

work, and one additional benefit of studying non-minimal conformal supergravity

is that plane wave amplitudes in the minimal theory are all equal to zero [43,

100]. To differentiate from other conformal supergravities the theory is named

Berkovits-Witten conformal supergravity, and from now on when I refer to conformal

supergravity in this work I always mean Berkovits-Witten non-minimal conformal

supergravity.

The spectrum of the theory contains three different super-multiplets with their

helicity conjugates. There are two types of graviton multiplets, one with plane wave

boundary conditions and one with non-plane wave boundary conditions, and the

scalar fields coupling to the Weyl tensor in the Lagrangian fit into these graviton

multiplets. There are also plane wave gravitino multiplets in the theory [20], which

I will not consider in this work.

The field content of the two different types of gravity multiplets is the same, with

two graviton polarisation’s h±, eight gravitinos λ+ I and λ− IJK , twelve graviphotons

A±IJ , eight spin 1
2 fermions ψ−I and ψ+ IJK and two scalars, φ+ and φ− which are

related to the complex scalar field from the Lagrangian by φ− := φ and φ+ := φ̄. The

plane wave graviton multiplets can be written as superfields in on-shell superspace

as

Φ− = h−η1η2η3η4 + λ− IJKηIηJηK + A− IJηIηJ + ψ− IηI + φ−

Φ+ = φ+η1η2η3η4 + ψ+ IJKηIηJηK + A+ IJηIηJ + λ+ IηI + h−,

(2.6.9)

and the equivalent non-plane wave multiplets have the same Grassmann expansion
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and are denoted Φ±x , with non-plane wave graviton states denoted h±x and scalars

denoted φ±x .

The coupling between the Weyl tensor and the scalars in the Lagrangian results

in a number of superamplitudes which are zero at tree level in super Yang-Mills

and Einstein supergravity taking non-zero values in conformal supergravity, notably

superamplitudes with all negative helicity superfields or with one negative helicity

superfield. This means that the number of negative helicity superfields is not in

general equal to the Grassmann degree of the superamplitude, and to fully specify a

superamplitude, both a set of negative helicity superfields {Φ−} and a Grassmann

degree kG must be given. Amplitudes for plane wave graviton multiplets in conformal

supergravity at tree-level can then be written

M(0)(Φh1
1 Φh2

2 ...Φhn
n ) =M(0)

n,{Φ−},kG . (2.6.10)

The full set of three point super amplitudes for plane wave graviton multiplets up

to helicity conjugation are given by

M(−−−) = δ4|8(P ), M(−−+) = 0, (2.6.11)

with some component amplitudes for gravitons and scalars given by

M(h−h−h−) = 0, M(h−h−h+) = 0

M(h−h−φ−) = 〈12〉4 δ4(P ).
(2.6.12)

The tree level super amplitude in N = 4 conformal supergravity for kG = 2 at n

points is given by

M(0)
n,{Φ−},kG = δ4|8(P )

∏
i∈Φ+

ψi,n, (2.6.13)

with the gravitational inverse soft factor ψi,n defined in equation (2.5.9). Equa-

tion (2.6.13) is referred to as the Berkovits-Witten formula and was first calculated

in twistor string theory in [20], and I give an alternative calculation of this amp-

litude in 4D ambitwistor string theory in Chapter 7. Some three point calculations
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involving non-plane wave gravity multiplets are calculated in [45], and I extend these

to n-point calculations in Chapter 7 of this thesis.

2.7 Scattering Equations in general d and CHY

Formalism for Tree-level Amplitudes

The CHY (Cachazo-He-Yuan) formalism allows for compact expressions to be written

down for the full n-point tree-level S-matrix in d-dimensions for many different

theories [10]. Amplitudes in this formalism are written down as a sum over the

solutions of the scattering equations,

∑
j∈N \{i}

ki · kj
si − sj

= 0, (2.7.1)

where ki are a set of n-point null momenta obeying momentum conservation, and

si are points on the Riemann sphere which I will refer to as worldsheet coordinates.

In this thesis will refer to these equations as the ‘general d scattering equations’.

They are parameterised by the d-dimensional momenta ki for each particle, and

are solved for the worldsheet coordinates si, and physically they are equivalent to

the equations of electrostatics for n particles in 2D whose charges are vectors in

Minkowski spacetime.

The equations have an SL(2) symmetry arising from global conformal transformations

on the worldsheet, which is found by acting with the Mobiüs transformation on all

of the si

f : si 7→ f(si) = asi + b

csi + d
(2.7.2)

where a, b, c, d ∈ C, with ad− bc = 1. This SL(2) symmetry reduces the number of

variables by three, and the equations are shown to have three linear dependencies,

reducing the total number of independent equations for n down to n− 3. To solve

the equations it is necessary to fix the SL(2) symmetry, and a standard choice of

gauge is sa = 0, sb = 1 and sc →∞ for a, b, c ∈ N .
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For example for n = 4, fixing s1 = 0, s2 = 1, s3 → ∞ and choosing any one of the

four equations produces an equivalent linear system for s4. The full solution is then

s = (1, 0,∞,−k1 · k4

k1 · k2
). (2.7.3)

All solutions at 5 points are given in [101] as well as some analysis at 6 points for

d = 4, but above this the system becomes much more complex to solve. In [11] an

inductive argument is given to show that the equations have (n− 3)! solutions at n

points, hence showing that above n = 5 the question of finding all solutions becomes

in principle a numerical problem, due to the Abel-Rufini theorem [102] which states

that polynomial equations have no general solution in terms of radicals for degree 5

or higher.

In this general d formalism tree-level amplitudes can be expressed as integrals of

a theory-specific integrand f(si, ki, εi) over delta functions enforcing the scattering

equations,

A(0)
n =

∫ dns

SL(2)
∏
i∈N

′δ

 ∑
j∈N \{i}

ki · kj
si − sj

 f(si, ki, εi). (2.7.4)

As the equations have three linear dependencies, three delta functions must be

removed and a corresponding Jacobian factor introduced. The notation for the delta

functions is then defined so that

∏
i∈N

′δ

 ∑
j∈N \{i}

ki · kj
si − sj

 := (sa− sb)(sb− sc)(sc− sa)
∏

i∈N \{a,b,c}
δ

 ∑
j∈N \{i}

ki · kj
si − sj

 ,
(2.7.5)

where a, b, c ∈ N . The integral is shown not to depend on the choice a, b and c in

[11].

Any valid integrand f must be covariant under this SL(2) symmetry additionally

to its invariance under any other symmetries inherited from the corresponding amp-

litude. The number of integrations matches the number of delta functions, and hence

the integral gives the instruction to sum the integrand times the relevant Jacobian
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factor over the (n− 3)! solutions to the scattering equations. In this way, calculating

tree-level scattering for massless particles in many theories can be reduced to solving

a set of algebraic equations. Further details can be found in [11, 10].

The integrands of many different theories can be built up from matrices which depend

on momenta ki, polarisation vectors εi and worldsheet variables si, as shown in [10].

Perhaps the most important of these matrices is the following antisymmetric 2n×2n

matrix Ψ, defined by

Ψi,j =


ki·kj
si−sj i 6= j,

0 i = j,

Ψi+n,j+n =


εi·εj
si−σj i 6= j,

0 i = j,

Ψi+n,j =


εi·ki
si−sj i 6= j,

− ∑
l∈N \{i}

εi·kl
si−sl

i = j,

(2.7.6)

for i, j ∈ N . This matrix is found to have a nullspace of dimension two, and hence

to find a non-zero determinant it is necessary to remove two rows and columns from

the matrix. Then scattering amplitudes in Yang-Mills theory and Einstein gravity

in any dimension at tree level for any number of points can be calculated using the

following integrands,

fYM d dimensions(si, ki, εi) := 1∏
i∈N (si − si+1)(−1)a+bPf(Ψab

ab)
sa − sb

fEG d dimensions(si, ki, εi) := det(Ψab
ab)

(sa − sb)2

(2.7.7)

where the notation Ψab
ab corresponds to removing row and column a and b from matrix

Ψ, and Pf is the Pfaffian of an antisymmetric matrix, which satisfies (PfM)2 =

detM making manifest double-copy structure of Yang-Mills and Gravity amplitudes

[10, 103]. 1∏
i∈N

(si−si+1) is referred to as the Parke-Taylor factor in analogy with the

Parke-Taylor amplitude from equation (2.4.7), and encodes the cyclic ordering of

colour-ordered Yang-Mills amplitudes. It is shown in [10] that these integrands do

not depend on the choice of i, j ∈ N .
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These CHY integral formulae for scattering amplitudes in quantum field theory

can be calculated from a string model known as ambitwistor string theory, which I

introduce and discuss briefly in Section 2.11.

2.8 Refined 4D Scattering Equations

The 4D scattering equations are a refinement of the general d scattering equations

which depend on the MHV degree as well as the number of particles [26], and can

be used to calculate supersymmetry covariant expressions for the n-point tree level

S-matrix of gauge theory and gravity. They are written in terms of the angle and

square bracket spinors rather than momentum dot products, which introduces an

extra variable ti into the system for each particle which is related to the little group

scaling of the spinor variables. I will think of the ti as additional worldsheet variables,

promoting each worldsheet coordinate from a point on the Riemann sphere to a point

σi ∈ C2 defined as σi = 1
ti

( 1
si ) =

(
σ1
i

σ2
i

)
. It is then natural to combine these variables

together into a matrixσ ∈ C2×n, and to work with minors of this matrix defined as

(ij) := det(σiσj) = si−sj
titj

= σ1
i σ

2
j − σ2

i σ
1
j . There is a natural GL(2) transformation

acting on the left of this matrix, and I discuss symmetries and gauge fixing of the

equations in detail in Chapter 3.

In super Yang-Mills and Einstein supergravity, the 4D scattering equations respect

the grouping of external states into a set L for negative helicities and a set R of

positive helicities, where the MHV degree k of the amplitude is equal to the size of

the left set, k := |L|, which is equal to the Grassmann degree of the superamplitude,

|L| = kG. For the discussion of conformal supergravity in this work it will be

necessary to separate the definition of MHV degree and left set of negative helicity

superfields, as explained in Section 2.6 and Chapter 7.

The 4D scattering equations are defined as the zeros of the following spinor functions

Ẽl := |l]−
∑
r∈R

|r]
(lr) , l ∈ L Er := |r〉 −

∑
l∈L

|l〉
(rl) r ∈ R, (2.8.1)
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giving the following linear relations between the spinor variables for the external

data;

|l] =
∑
r∈R

|r]
(lr) , l ∈ L |r〉 =

∑
l∈L

|l〉
(rl) r ∈ R. (2.8.2)

Additionally I define the following set of fermionic functions, specified by an integer

n, a left set L and a number of supersymmetries N , which are used to encode

supersymmetry in the 4D scattering equation framework.

ENl := δN
(
ηl −

∑
r∈R

ηr
(lr)

)
(2.8.3)

Note that the fermionic functions exist only for the left set which may seem counter

intuitive, however it gives a total of |L|N = kGN = sNG supersymmetries which

is the correct number for a given superamplitude. Only the bosonic parts of the

scattering equations are localised onto the integral measure for the worldsheet, and

so the fermionic equations are not solved in the same way that the bosonic equations

are and are instead integrated against when extracting component amplitudes from

the superamplitude.

I also define two sets of delta functions as a notational shorthand for the full set of

4D scattering equations. The first is a bosonic set of delta functions

δ2×n (SEn,L) :=
∏
l∈L

δ2(Ẽl)
∏
r∈R

δ2 (Er) , (2.8.4)

and the second set of delta functions also includes the fermionic variables,

δ2×n|N×|L| (SEn,L) = δ(2|N )×|L|+2×|R| (SEn,L) :=
∏
l∈L

δ2|N (Ẽl)
∏
r∈R

δ2 (Er) . (2.8.5)

I define the mixed bosonic-fermionic delta function δ2|N (El) to include the relev-

ant fermionic variables as required from the context; so in this case δ2|N (El) =

δ2(El)δN (ENl ). When using the first definition, I will consider the fermionic delta

functions as a part of the integrand. With the second definition, the fermionic

delta functions are considered as scattering equations for the Grassmann on-shell
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superspace variables. I find both approaches to be useful, and hence include both

definitions in this thesis.

As in the general d case it is then possible to write tree-level amplitudes for many

different theories as integrals of some integrand f over these scattering equation

delta functions, either with the fermionic delta functions as a part of the equations;

A(0)
n,L =

∫ d2×nσ

GL(2)δ
2×n|N×|L| (SEn,L) f(σ, |i〉 , |i]),

or as a part of the integrand

A(0)
n,L =

∫ d2×nσ

GL(2)δ
2×n (SEn,L) fN (σ, |i〉 , |i] , ηi),

Integrands for Einstein gravity and Yang-Mills theory with any number of super-

symmetries were derived in [26];

fsYM(σ, |i〉 , |i]) := 1∏
i∈N (i i+1)

fsupergravity(σ, |i〉 , |i]) := det ′H det ′H̃ (2.8.6)

where det ′ is an instruction to remove one row and column from the matrices before

taking the determinant. H is the Hodges matrix and H̃ the dual Hodges matrix,

defined as

Hll := −
∑

l′∈L\{l}
Hll′ , l ∈ L Hll′ := 〈ll

′〉
(ll′) , l 6= l′ ∈ L

H̃rr := −
∑

r′∈R\{r}
H̃rr′ , r ∈ R H̃rr′ := [rr′]

(rr′) , r 6= r′ ∈ R. (2.8.7)

Both matrices have determinant zero, each a single null vector (1, 1, ... 1) and for

this reason one row and column is removed before taking the determinant in the

scattering equation integrand. The matrices can be shown to be invariant of the

choice of row and column removed.

These integrands are valid for the case where the scattering equations include both

the bosonic and fermionic variables, and should be integrated against delta functions

δ2×n|N×|L| (SEn,L). I also define the following integrands which include the fermionic
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delta functions

fNsYM(σ, |i〉 , |i] , ηi) :=
∏
l∈L

ENl fsYM(σ, |i〉 , |i] , ηi)

fNsupergravity(σ, |i〉 , |i] , ηi) :=
∏
l∈L

ENl fsupergravity(σ, |i〉 , |i] , ηi), (2.8.8)

and these integrands should be integrated against δ2×n (SEn,L).

As shown in [56], there are A(n, k) =
〈
n−3
k−2

〉
solutions to the n-point Nk−2MHV scat-

tering equations, where 〈 nk 〉 are the Eulerian numbers [104], tabulated in Figure 4.1.

The inductive proof of the number of solutions finds that A(n, k) can be expanded

recursively by taking either a left set particle soft to reduce to an amplitude of the

form A(n − 1, k − 1) or a right set particle soft to reduce to A(n − 1, k). Each of

these solutions then has a given multiplicity such that

A(n, k) = (n− k − 1)A(n− 1, k − 1) + (k − 1)A(n− 1, k), (2.8.9)

with one solution in the MHV and MHV sectors for each n, so that A(n, 2) =

A(n, n− 2) = 1.

2.9 On-Shell Diagrams

On-shell diagrams provide an alternative method to calculate amplitudes in a number

of different theories, and are based on the computational framework of BCFW (Britto-

Cacahazo-Feng-Witten) recursion [8, 9]. In this framework n-point amplitudes are

expressed recursively in terms of lower point amplitudes as a sum over factorisation

channels. To derive this recursion relation, two of the external momenta of the

amplitude are shifted by a complex variable z so that momentum is conserved for

all z, and the BCFW shifted amplitude A(z) is then a meromorphic function of z.

The factorisation channels of the original amplitude occur as the poles of the shifted

amplitude in the complex z plane, and the residues of these poles are products of

two lower point amplitudes. The n-point amplitude can be constructed from A(z)
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1
2

3

= δ4(P )δ2N (|1〉 η1 + |2〉 η2 + |3〉 η3)(
〈12〉 〈23〉 〈31〉

)N/4

1
2

3

= δ4(P )δN ([12]η3 + [23]η1 + [31]η2)(
[12][23][31]

)N/4
= ∫ d2 |λ〉 d2

∣∣∣λ̃]
GL(2) dNη

Figure 2.1: Vertices and edges for on shell diagrams in N = 4 super
Yang-Mills and N = 8 supergravity

as
∮
dzA(z)

z
, where the contour encloses the pole at zero only, and is related to the

poles on the factorisation channels using a global residue theorem.

Using this method repeatedly the n-point scattering amplitude can be broken down

into 3-point building blocks, and on-shell diagrams are a diagrammatic calculus

which encodes this process in four dimensional spacetime, notably in N = 4 super

Yang-Mills at all loop orders and N = 8 supergravity at tree level. As the three-point

amplitudes in these theories are known simply from the symmetries and some basic

physical assumptions as explained in Section 2.2, on-shell diagrams take the minimal

possible physical inputs and from this build up the the full S-matrix.

On-shell diagrams are then bipartite graphs constructed from 3-point black and white

vertices which correspond to 3-point MHV and MHV superamplitudes respectively,

as shown in the upper part of Figure 2.1. Unlike ordinary Feynman diagrams, the

internal lines of on-shell diagrams do not contain virtual particles and correspond

to integrating over on-shell degrees of freedom, as depicted in the lower part of

Figure 2.1.

Scattering amplitudes in planar N = 4 super Yang-Mills can be constructed from

on-shell diagrams using the recursion relation in Figure 2.2 [65], which encodes

BCFW recursion for loop integrands. Neglecting the second term on the right-hand
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A
HlL

n

n1

=
∑
L,R

n1

ARAL

· ¸

+

2

n

…

A
Hl-1L

n+2

n-1

1

Figure 2.2: Loop-level BCFW recursion for planar N = 4 super
Yang-Mills. The loop order of AL and AR must add up
to l, and the total number of legs must add up to n+ 2.

Figure 2.3: Square move equivalence relation super Yang-Mills

side produces the previously described tree-level BCFW recursion. The structure

consisting of one white and one black vertex which attaches legs 1 and n to the

lower-point on-shell diagrams implements the BCFW shift by complex variable z

and is known as a BCFW bridge. In planar N = 4 super Yang-Mills it is possible

to extend the recursion relation to the integrand of the loop amplitudes, which is

due in part to the fact that it is possible to make a canonical definition for the

loop momentum in a planar theory. The loop recursion is taken into account by

the second term on the right-hand side in Figure 2.2, which involves connecting

two adjacent legs of a lower-loop diagram and attaching a BCFW bridge. This

process constrains the momenta on the connected legs to add up to zero in what is

known as a ‘forward limit’. The on-shell diagrams of N = 4 super Yang-Mills also

respect various equivalence relations such as the square move and mergers depicted

in Figures 2.3 and 2.4, which can often be used to simplify calculations.

In N = 8 supergravity it is also possible to define a tree-level recursion relation in

terms of on-shell diagrams, as depicted in Figure 2.5 [70]. In this case, the BCFW
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= = = =

Figure 2.4: Merger equivalence relations for N = 4 super Yang-
Mills

Figure 2.5: Tree-level BCFW recursion relations in N = 8 super-
gravity

bridge is decorated by a kinematic factor as shown in Figure 2.6, and the expression

is summed over all partitions of the external legs of the two subamplitudes which

hold legs 1 and n fixed. In general this procedure will yield non-planar on-shell

diagrams, but it is possible to restrict the recursion to a planar subset of diagrams

by attaching the fixed legs of each subdiagram to the bridge or the other subdiagram

at each step in the recursion. The full amplitude can then be obtained by summing

over permutations of the unshifted external legs, implying nontrivial identities for

non-planar on-shell diagrams. The on-shell diagrams of N = 8 supergravity enjoy

equivalence relations similar to those of N = 4 super Yang-Mills, in particular the

square move in Figure 2.3 and decorated mergers in Figure 2.7.

A remarkable feature of on-shell diagrams is that they naturally give rise to formulae

Figure 2.6: Definition of BCFW bridge decoration in N = 8 super-
gravity
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= = = =

Figure 2.7: Merger equivalence relations in N = 8 supergravity

for Nk−2MHV amplitudes in the form of integrals over the Grassmannian Gr(k, n),

which is the space of k planes in n dimensions. Integrals over Gr(k, n) can be

expressed as an integral over a k × n matrix C modulo a left action of GL(k) and

are supported on delta functions of the form

δk×(2|N )
(
C · λ̃|C · η

)
δ2×(n−k)

(
λ · C⊥

)
, (2.9.1)

where C⊥ is an n × (n − k) matrix considered to be perpendicular to C. This

orthogonality property is expressed by the conditions

C⊥ · C = 0, (i1...in−k)⊥ = εi1...in (in−k+1...in) ,

where the left and right hand sides denote the minors of C⊥ and C respectively.

The dot products appearing in the delta functions are taken with respect to particle

number, so that (C · λ̃)α̇l := ∑
j∈N Clj |j]α̇ and (C · η)Il := ∑

j∈N Cljη
I
j for l ∈ L, and

(λ · C⊥)αr := ∑
j∈N C⊥rj 〈j|

α for r ∈ R.

It is often convenient to use the GL(k) symmetry to fix C in such a way that k

columns form a k × k unit matrix, leaving integrals over the remaining k × (n− k)

elements. This form is referred to as the link representation [105] and is closely

related to the expressions arising from 4D ambitwistor string theory. In the link

representation the delta functions in (2.9.1) take the same form as the 4D scattering

equations.

There is a simple algorithm for deriving Grassmannian integral formulae directly

from on-shell diagrams, which I now describe schematically, with more details given

in Section 6.1. First assign variables αi to the edges of the diagram, and assign

arrows in a ‘perfect orientation’ such that there are two arrows entering and one

arrow leaving every black node, and two arrows leaving and one arrow entering every
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white node. Then set one edge variable associated with each vertex to unity, leaving

2n − 4 edge variables. To construct the Grassmannian integral in N = 4 super

Yang-Mills, take the measure to be the product of dαi/αi for each remaining edge

variable, and multiply this by the delta functions in (2.9.1), where the C and C⊥

matrices are computed by summing over paths through the on-shell diagram and

taking the product of the edge variables encountered along each path, as described

in more detail in Section 6.1. The resulting formula can then be thought of as a

gauge fixed Grassmannian integral formula where the gauge symmetry corresponds

to GL(k). Lifting the result to a covariant formula in N = 4 super Yang-Mills gives

the following expression or one of its residues,

dk×nΩN := dk×nC

Vol(GL(k))
δk×(2|N )(C · λ̃|C · η)δ(n−k)×2(λ · C⊥)∏

i∈N (i ... i+k−1) , (2.9.2)

which can be considered as a Parke -Taylor expression on Gr(k, n) due to the cyclic

product of minors. A similar factor also appears in Grassmannian integral formulae

for N = 8 supergravity amplitudes, so I keep the supersymmetry parameter N

unfixed.

The algorithm for deriving Grassmannian integral formulae in N = 8 supergravity

from on-shell diagrams is similar to that of N = 4 super Yang-Mills, except that a

factor of dα/α2 must be included for each edge variable leaving a white vertex or

entering a black vertex and dα/α3 for each edge variable entering a white vertex or

leaving a black vertex. Decorations for the BCFW bridges are also needed as depicted

in Figure 2.6, and spinor brackets factor at each vertex. For each black vertex include

a factor of 〈ij〉 where i and j are the two edges with ingoing arrows, and for each

white vertex include a factor of [ij] where i and j are the two edges with outgoing

arrows. The spinors in these brackets will initially be internal to the diagram, but

can be written in terms of the external spinors and edge variables by summing over

paths in the on-shell diagram in a similar way to how the C-matrix is computed.

In the final step it is necessary to include the delta functions in (2.9.1) and lift the

integrand to a covariant expression as in N = 4 super Yang-Mills. More details
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and various shortcuts for computing on-shell diagrams in N = 8 supergravity are

described in Section 6.1, where I also explain how to incorporate the bonus relations

of N = 8 supergravity into the on-shell diagram recursion for MHV amplitudes.

2.10 Twistor Space

Twistor theory provides a mathematical framework for recasting physics from its

standard setting in Minkowski spacetime Md(R) into twistor space, which para-

metrises the set of geodesics in spacetime. In this section, I give an introduction

to the mathematics of twistor space, discuss some motivations to why it can be a

useful alternative to Minkowski spacetime, and provide the mathematical techniques

necessary to describe 4D ambitwistor string theory in the next section. Twistor space

is most useful for null geodesics, and the parameter space of only null geodesics is

referred to as projective twistor space and denoted PT, I will refer to as simply

twistor space in this thesis.

A null ray in flat space can be written as

R(x, p) =
{
x+ αp α ∈ R

}
, (2.10.1)

where x, p ∈M4(R) with p2 = 0. The moduli space of these curves is

PTd =
{
x, p ∈M4(R) p2 = 0, x ∼ x+ αp for α ∈ R

}
, (2.10.2)

and twistor space in 4 dimensions is a mapping from this space to a new set of

variables which solve the null constraint on p and quotient out by the identification

x ∼ x + αp automatically. Twistor space in four dimensions of space-time is the

most well studied and widely applicable case, and PT4 = CP3 in 4D.

A general twistor Z = (ZA) ∈ PT is naturally written in terms of two component
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spinors |λ〉 transforming in SU(2)R and |µ〉 transforming in SU(2)L as

Z =

|λ〉
|µ]

 . (2.10.3)

The mapping from Minkowski space-time to twistor space is non-local – a single

twistor defines a null ray in space-time, and a point in space-time corresponds to

a line in twistor space. This non-local mapping is encoded in the twistor incidence

relation; a twistor Z is said to be incident with space-time point x if

|µ] = x |λ〉 , (2.10.4)

where x is the 2 by 2 matrix with components x = (xα̇α) = (xµσα̇αµ ). Note that the

incidence relation is invariant under a rescaling, respecting the projective nature of

CP3.

Now suppose twistor Z ∈ PT is incident to the light ray R(x, ki), where ki = |i] 〈i|

is the momentum corresponding to the ith external state. The null condition on the

direction vector of the geodesic is solved automatically by using the spinor variables,

and the quotient by the identification x ∼ x+α |i] 〈i| is seen as follows. First let the

twistor Z be incident to each point on R(x, ki), so that |µ] =
(
x+α |i] 〈i|

)
|λ〉 , ∀ α ∈

R. This condition implies that 〈iλ〉 = 0, from which follows that |λ〉 = β |i〉 for some

β ∈ C. This β can be removed using the projective scale on the twistor, giving that

the twistor incident to R(x, ki) is

Z =

 |i〉
x |i〉

 , (2.10.5)

which is invariant under x 7→ x+ α |i] 〈i|.

Now consider fixing a single twistor Z =
(
|λ〉
|µ]

)
∈ PT, and asking what locus of space

time points x ∈ X⊂M4(R) solve the incidence relation |µ] = x
(
|λ〉 , |µ]

)
|λ〉. This is

equivalent to constructing the inverse mapping to (2.10.5), taking a point in twistor

space and giving a null ray in space time. I will then use this to prove that twistor

space covers all possible null rays.
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There are four possible ways to construct vectors from the spinors |λ〉 and |µ] and

their conjugates, and the set of combinations form a basis for vectors in space-time.

Expanding x in this basis gives

x = α |µ] 〈µ̃|+ β|λ̃] 〈µ̃|+ γ |µ] 〈λ|+ δ|λ̃] 〈λ| (2.10.6)

where α, β, γ, δ ∈ R are functions of [µλ̃] and 〈µ̃λ〉, and hence have projective scaling

weight 0. To find the functional form of these coefficients, first consider that x must

have projective scaling weight 0. Then note that |µ] 〈λ| has weight 2 and |λ̃] 〈µ̃| has

weight -2 which cannot be balanced by the scaling weight of β or γ, and so it must be

true that β = γ = 0. Then it holds that x = α |µ] 〈µ̃|+ δ|λ̃] 〈λ|, and substituting this

form for x into the incidence relation gives that α = 1
〈µ̃λ〉 . Following from this the

locus of spacetime points X incident to twistor Z =
(
|λ〉
|µ]

)
is equal to the following

null ray,

X = R

 |µ] 〈µ̃|
〈µ̃λ〉

, |λ̃] 〈λ|
 =

 |µ] 〈µ̃|
〈µ̃λ〉

+ β|λ̃] 〈λ|
∣∣∣∣∣∣ β ∈ R

. (2.10.7)

The position vector in this expression has norm 0, and this is not generically true

for all null rays. To show this expression covers all possible null rays, now prove

that the mapping is surjective. First let x ∈ Md(R) be a general spacetime point

which need not satisfy x2 = 0, and then check to see whether letting x ∈ R
(
|µ]〈µ̃|
〈µ̃λ〉 , k

)
restricts x2, noting that the direction along the line k = |λ̃] |λ] already covers all

possible null vectors. Then it follows that |µ] = x |λ〉, and this form for |µ] can be

inserted into the null ray from equation (2.10.7) to give that

|µ] 〈µ̃|
〈µ̃λ〉

+ β|λ̃] 〈λ| = x |λ〉 [λ̃|x
[λ̃|x |λ〉

+ β|λ̃] 〈λ| = x+ β′k (2.10.8)

where in the third equality the Dirac algebra x |λ〉 [λ̃|+ |λ̃] 〈λ|x = [λ̃|x|λ〉 has been

used and a new parameter β′ = β − x2

〈λ̃|x|λ〉 has been defined on the null ray. From

this it follows that twistor space covers all possible null rays in spacetime.

It is clear by writing the twistor in the form given in equation (2.10.5) that the

little group scaling of the momentum vector acts equally on |λ〉 and |µ], and so
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the projective scale of the twistor corresponds to the action of the little group in

space-time. It can also be seen at this point that it is possible for a twistor Zi to

correspond to the external state i of a scattering process, without being incident to a

spacetime point. In this case Zi =

 |i〉
|µi]

 , specifying only the first two components

|i〉 in terms of Minkowski space and not the second two |µi]. Physically this partially

specified twistor can be seen as a consequence of the fact that the state is localised

only in momentum space and not in position space due to the quantum uncertainty

principle.

Much of the physics of how twistor space is relevant to the study of scattering amp-

litudes can be seen as a problem of trying to understand how to assign a space-time

point x incident to the twistor Zi corresponding to each external state i. Three

common approaches to this are problem twistor string theory discussed briefly in

Section 2.11, 4D ambitwistor string theory discussed in detail in Section 2.11, and

momentum twistors [106]. Momentum twistors assign an ordering to the external

states, and then construct a position Xi for each twistor in terms of a sum of mo-

mentum vectors ki, and as such is a non-local mapping in particle labels. Momentum

twistors are a powerful computational tool in the study of scattering amplitudes

and give rise to particularly simple expressions for the amplitudes of N = 4 Super

Yang-Mills, although I will not use them in this thesis.

To see how the symmetries of the space-time act on twistor space PT, let Z =(
|λ〉
|µ]

)
∈ PT be incident to the ray R(x, ki). The Minkowski inner product x · ki is

manifestly Lorentz invariant under SO(3,1), and is additionally invariant under the

conformal group SO(4,2). This inner product can then be written in two different

forms using the twistor incidence relation |µ] = x |λ〉 and its Hermitian conjugate,

so that

x · ki = [i|x |i〉 = [iµ] = 〈µi〉 , (2.10.9)

where [i| = |i〉† and 〈µ| = |µ]† in real Minkowski spacetime as explained in Section 2.2.

The largest subgroup of the general linear group which acts on Z as Z 7→ MZ,
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for M ∈ GL(4) and which leaves [iµ] invariant is the group SU(2,2), defined by

the condition MεM † = ε where ε =
(

0 12
−12 0

)
. SU(2,2) is the double cover of

the conformal group in SO(4,2) Minkowski space, and the generators of SU(2,2)

acting on twistor space and SO(4,2) acting on Minkowski space can be shown to be

equivalent [107]. Although the Lorentz group acts linearly on Minkowski space, the

conformal group has no linear representation acting directly on Minkowski space,

and a key motivation for working in twistor space is the simplified linear action of

the conformal group in this setting.

This action of SU(2,2) motivates an inner product on twistor space with metric ε.

Twistors W in the dual space are taken to be hermitian conjugates of those in CP3,

so that W =
(

[ρ| 〈ν|
)
. The inner product of a twistor and a dual twistor is then

defined as

W · Z := WεZ = [ρµ]− 〈νλ〉 . (2.10.10)

The dual twistor corresponding to Z is defined to be

Z̄ := Z† =
(
|λ〉† |µ]†

)
=

([
λ̃
∣∣∣ 〈µ̃|) , (2.10.11)

with norm given by

Z̄ · Z = Z†εZ =
[
λ̃µ
]
− 〈λµ̃〉 . (2.10.12)

Projective twistor space is defined by the condition Z̄ · Z = 0, and hence only the

twistors in PT may be incident with a null ray and satisfy equation 2.10.9.

There is also a second SU(2,2) invariant product defined on twistor space in terms

of the totally antisymmetric tensor εABCD, which is denoted by the angle 4- bracket

〈ijkl〉 := εABCDZAi ZBj ZCk ZDl , (2.10.13)

where {i, j, k, l} ∈ N label four twistors corresponding to different external states.

The subgroup of SU(2,2) which corresponds to the Lorentz transformations acting

on twistor space is already manifest from the angle and square bracket structure;

|λ〉 transforms in SU(2)L and |µ] transforms in SU(2)R. The conformal group is
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reduced to the Lorentz group by introducing a new bi-twistor referred to as the

infinity twistor. The infinity twistor is denoted I, defined as

I := X [A Y B], X =
( 0

0
1
0

)
, Y =

( 0
0
0
1

)
, (2.10.14)

which corresponds to a light ray at null infinity of Minkowski spacetime. I is invariant

under the subgroup ( a 0
0 b ) of SU(2,2), where a ∈ SU(2)L and b ∈ SU(2)R.

Where conformal symmetry is broken a two bracket can then be defined on twistor

space as

〈ZiZj〉 := 〈ijI〉 = 〈ij〉 , (2.10.15)

which is equal to the angle 2-bracket in momentum space for twistors corresponding

to external states i and j. Using this two-bracket allows for expression of all possible

momentum dot products in terms of twistor brackets, as ki ·kj = 〈ZiZj〉 ¯〈ZjZi〉. The

scattering amplitudes of any conformally invariant theory written in twistor space

should have an expression in terms of twistor brackets without using the infinity

twistor, and any theory which does not have conformal symmetry will require the

infinity twistor in the expression of its scattering amplitudes.

Another key motivation for studying physics in twistor space is that functions on

twistor space automatically solve linearized equations of motion in Minkowski space-

time, of the form �φ(x) = 0 where φ(x) is a massless spin-s field. Twistor space

can then be seen as an extension of complex analysis to 4 dimensions [108], in the

sense that any complex analytic function f(z, z̄) which satisfies ∂̄f = 0 automatically

solves ∇f = 0, where the Laplacian is taken in terms of the real and imaginary parts

of z. To see that functions on twistor space automatically solve �φ(x) = 0, note

that
δ

δxα̇α
f

(
|λ〉
|µ]

)∣∣∣∣∣
|µ]=x|λ〉

= |λ〉α
∂

∂(x |λ〉)α̇ f

(
|λ〉
x |λ〉

)
(2.10.16)

Acting again on this formula with δ
δxαα̇

to produce �f contracts together 〈λ|α with

|λ〉α, giving �f = 0 for all functions f
(
|λ〉
|µ]

)
.

In general a function on twistor space which is homogeneous with degree 2s′−2 such
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that f(αZ) = α2s′−2f(Z) will solve the linearized equations of motion for a spin

s′ field on space-time, and φ the explicit mapping from homogeneous functions on

twistor space to solutions to massless linearized field equations on Minkowski space-

time is known as the Penrose transform. For spin s′ > 0, each homogenous function

on twistor space corresponds to two functions on space-time, one for positive and one

for negative helicity, and the Penrose transform in this case is explained in detail in

[109]. Spin 0 fields correspond to twistor functions such that f(αZ) = α−2f(Z), and

in this case there is no concept of helicity and hence only one function on space-time.

The Penrose transform is given in this case by

φ(x) =
∫
〈λdλ〉 f

(
|λ〉
x |λ〉

)
. (2.10.17)

Note that the scaling weight of f cancels with that of 〈λdλ〉 so that the integral

gives a well defined function on Minkowski space-time.

To study the physics of scattering amplitudes in twistor space it is necessary to know

which functions on twistor space are momentum eigenstates and hence correspond to

plane waves in space-time. The form of a plane wave in twistor space corresponding

to a spin s′ particle is given by

V
(s′)
i (Z) =

∫ dt

t2s−1 δ
2
(
|i〉 − t |λ〉

)
eit[µi]. (2.10.18)

It can be seen that this function satisfies the necessary homogeneity condition

f(αZ) = α2s′−2f(Z) by changing variables to t′ = αt in the integral. To see that

this function corresponds to a plane wave in space-time for spin s′ = 0, take the

Penrose transform of equation 2.10.18 to give

∫
〈λdλ〉V (0)

i

(
|λ〉
x |λ〉

)
=

∫
〈λdλ〉

∫
tdt δ2

(
|i〉 − t |λ〉

)
eit〈λ|x|i] (2.10.19)

To solve the integrals, expand |λ〉 in a basis
(
|i〉 , |j〉

)
so that |λ〉 = α |i〉 + β |j〉.

Then fix α = 1 using the projective scale on the twistor to give 〈λdλ〉 = 〈ij〉 dβ.
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Expanding the delta function in this basis gives that

∫
〈λdλ〉 V (0)

i

(
|λ〉
x |λ〉

)
= 〈ij〉2

∫
dβdt tδ

(
βt 〈ij〉

)
δ
(
(t− 1) 〈ij〉

)
e
it

(
〈i|+β〈j|

)
x|i]

(2.10.20)

The delta functions are then solved by β = 0 and t = 1, and all of the factors 〈ij〉

cancel to give that ∫
〈λdλ〉V (0)

i

(
|λ〉
x |λ〉

)
= eiki·x, (2.10.21)

a plane wave in Minkowski space-time with momentum ki, and hence a momentum

eigenstate.

Twistor space has a natural supersymmetric extension with N supersymmetries

known as twistor superspace, which has geometry analogous that of non-supersymmetric

twistor space and which I denote and I denote as PTN = CP3|N . A null ray in super

Minkowski spacetime is written as

RN
(
x, |θ〉 , p, |q〉

)
=
{

(x+ αp, |θ〉+ α |q〉) α ∈ R} (2.10.22)

and a supertwistor Z ∈ PTN is written as

Z =
( |λ〉
|µ]
χ

)
(2.10.23)

where |λ〉 and |µ] are as before, and χ = (χI) are Grassmann odd variables trans-

forming in the fundamental representation of the R symmetry group SU(N ).

In twistor superspace there is an incidence relation for both the |µ] and the χ part

of the twistor, so that

|µ] = x |λ〉 , χ = 〈θλ〉 , (2.10.24)

and using these relations calculations in twistor superspace follow roughly analag-

ously to those in twistor space.

Setting this twistor incident to the null ray RN
(
x, |θ〉 , ki, |qi〉

)
, where ki = |i] 〈i|

and |qi〉 = |i〉 ηi gives that

Z =
(
|i〉
x|i〉
〈θi〉

)
, (2.10.25)
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which is invariant under both x 7→ x+ α |i] 〈i〉 and |θ〉 7→ |θ〉+ α |i〉 ηi.

It is standard in scattering amplitudes to work in complex Minkowski spaceM4(C),

and the corresponding twistor space in this case is referred to as ambitwistor space.

Ambitwistor space exists in general dimensions starting from equations 2.10.1 and

2.10.2, and extending all real variables to the complex domain. In this work I will

focus on ambitwistor space PA in four dimensions, which corresponds to allowing

the twistor Z to become independent of its dual Z̄. Both the twistor Z and its

ambitwistor conjugate Z̃ are then treated equally, hence the name ‘ambi’, coming

from the Greek for ‘both’.

To form a point in ambitwistor space starting with Z, Z̃ ∈ C4 it is then necessary

to quotient out by the GL(1) scaling

Z 7→ αZ, Z̃ 7→ α−1Z̃, α ∈ GL(1), (2.10.26)

and enforce that

Z̃ · Z = 0. (2.10.27)

Any pair (Z, Z̃) satisfying these relations is a point in PA, which can be expanded

in terms of two component spinors as

Z̃ =
(
〈µ̃|

[
λ̃
∣∣∣) , Z =

|λ〉
|µ]

 . (2.10.28)

The ambitwistor pair corresponding to external state i can be written

Z̃i =
(
〈µ̃i| [i|

)
, Zi =

 |i〉
|µi]

 , (2.10.29)

and it is natural to define an SU(2,2) invariant square 4-bracket for the dual twistors

in ambitwistor space, as well as a corresponding two bracket using the infinity twistor;

[ijkl] := εABCDWiAWjBWkCWlD [WiWj] := [ijI] = [ij] . (2.10.30)

Twistor superspace has a natural extension to ambitwistors, and in this case mo-
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mentum eigenstates in supersymmetric ambitwistor space can be written as

Ṽ
(s)
i (Z̃) =

∫ dt

t2s−1 δ
2|N

(
|i]− t

∣∣∣λ̃]) eit〈µ̃i〉 (2.10.31)

V
(s)
i (Z) =

∫ dt

t2s−1 δ
2 (|i〉 − t |λ〉) eit([µi]+χ̃·ηi), (2.10.32)

where Ṽ s
i (Z̃) corresponds to the negative helicity superfield and V (s)

i (Z) corresponds

to the positive helicity. The supersymmetry is encoded differently in the two functions

because ambiwistor space is non-chiral and treats the two helicities equally, but the

superspace used is chiral. Ṽ (s)
i (Z̃) can be obtained by complex conjugating V (s)

i (Z)

and Grassmann Fourier transforming back from η̃ superspace back to η superspace.

2.11 4D Ambitwistor String Theory

4D ambitwistor string theory is a worldsheet theory whose target space is ambitwis-

tor space, combining computational techniques from twistor theory as explained

in Section 2.10 and string theory [110, 111] to calculate scattering amplitudes in

quantum field theory as integrals supported on the 4D scattering equations intro-

duced in Section 2.8. In essence 4D ambitwistor string theory is a modification

of the original twistor string theory [12, 13] which expresses scattering amplitudes

as integrals over the moduli space of curves in twistor space, and can also be con-

sidered as the specialisation to four dimensional spacetime of a general dimensional

ambitwistor string model [15] which calculates scattering amplitudes in the CHY

formalism reviewed in Section 2.7 from the worldsheet.

Quantum states in the the target space quantum field theory correspond to vertex

operators in the ambitwistor string model, and scattering amplitudes are calculated

as the correlation functions of vertex operators. Finding the vertex operators requires

the worldsheet theory to be quantized, which can be done in the BRST formalism

[112, 80], where a Grassmann-odd BRST operator Q is introduced which generates

transformations in the space of all possible fixings of the gauge symmetries of the

theory. Each gauge symmetry is then assigned a corresponding b− c or β − γ ghost
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system [111] with opposite Grassmann parity to the symmetry, and Q is constructed

from the generators of the gauge symmetries of the theory and their associated ghost

fields [111]. When all of the gauge symmetries of the theory are anomaly-free at

the quantum level the BRST operator is nilpotent so that Q2 = 0, and when this

condition holds the string theory is said to be critical. Importantly Q2 = 0 implies

that worldsheet conformal transformations are anomaly free, which is necessary for

computing loop amplitudes in the theory. As Q is nilpotent it has an associated

cohomology in the space of operators of the theory, and the set of vertex operators

{V } is equivalent to the cohomology of Q. Then all vertex operators of the theory

must satisfy QV = 0, and are defined up to the identification V ∼ V +QW where

W is any other operator.

The perturbative loop expansion of the S-matrix in the quantum field theory cor-

responds to the calculation of this correlation function on worldsheets of increasing

genus, with zeroth order calculations on the Riemann sphere and first order calcu-

lations on the torus. It is possible to calculate tree-level amplitudes using string

theories with anomalous conformal symmetries, but for the theory to be well-defined

on the torus it is necessary for the worldsheet conformal symmetry to be anomaly

free. In this section I consider two 4D ambitwistor string theories; the first contains

both super Yang-Mills and conformal supergravity states and can be made anomaly

free at the quantum level due to the existence of a current algebra in the Lagrangian.

Loop amplitudes calculated will contain Yang-Mills and conformal gravity states,

and there is currently no known way to decouple the states in the loop calculation.

The second contains Einstein supergravity states, where there is no known way to

cancel the conformal anomaly and define loop amplitudes in the theory. The super-

symmetry transformations for a given N are also anomalous at the quantum level

unless N = 4 in the Yang-Mills and conformal supergravity case or N = 8 for the

Einstein gravity case.

The worldsheet Lagrangian for ambitwistor string theory in general dimensions can

be obtained from the standard string theory action by taking an infinite tension
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limit α′ → 0 which is chiral on the worldsheet, in that it treats the two worldsheet

directions inhomogeneously. The spectra of ambitwistor string theories contain only

states corresponding to a given quantum field theory, which can be understood as

the higher string excitations having been damped out by the increasing tension. It is

also possible to take a zero tension limit which can be related to ambitwistor string

theory in a different way [113, 114, 115].

The Lagrangian is

L = P (∂ + e∂)X − α

2P
2. (2.11.1)

I use a complex Euclidean worldsheet in this work which I denote as s ∈ C with

conjugate s̄, and I denote worldsheet derivatives as ∂ := ∂
∂s

and ∂ := ∂
∂s̄
. Then X

and P are both worldsheet fields depending on s and s̄, and the theory has two

gauge symmetries. The gauge field for the first symmetry is e, which parametrises

worldsheet diffeomorphisms in s̄ and is the remaining degree of freedom left from

the worldsheet metric after taking the chiral infinite tension limit. Note that the

Lagrangian is also trivially diffeomorphism invariant in s because it has no kinetic

term in ∂. The second gauge symmetry is a GL(1) with gauge field α, and identifies

X ∼ X + αP . Hence we find that the target space for this theory is the space of

null geodesics in Minkowski spacetime in d dimensions, as in equation (2.10.2).

Now consider specialising ambitwistor string theory to four dimensions of spacetime.

The worldsheet Lagrangian for 4D ambitwistor string theory [26, 27] can be calcu-

lated from the general d ambitwistor Lagrangian in (2.11.1) by specialising to 4D

ambitwistor space as explained in Section 2.10. This procedure gives the Lagrangian

as

L = Z̃ · (∂̄ + e∂)Z + u Z̃ · Z, (2.11.2)

so that Z and Z̃ are mappings from the worldsheet to C4|N , both depending on

s and s̄. This Lagrangian forms the basis for two 4D ambitwistor string theories;

the first contains super Yang-Mills and conformal supergravity states and requires

the introduction of a current algebra, and the second contains Einstein supergravity
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states with Lagrangian given in equation (2.11.14).

The Lagrangian in equation (2.11.2) has two gauge symmetries. The first has gauge

field e describing worldsheet diffeomorphisms as in the general d ambitwistor string,

and the second is the GL(1) gauge field u which generates the projective scaling of

ambitwistor space in equation (2.10.26). The equations of motion for u enforce that

Z̃ · Z = 0, and together with the projective scaling this reduces the target space of

the theory down from C4|N × C4|N to 4D ambitwistor space PA. The equations of

motion for the twistors enforce that ∂Z = ∂Z̃ = 0, and so the worldsheet fields are

holomorphic functions of s.

This is the same action as in twistor string theory [12, 13], and the new feature of 4D

ambitwistor strings compared to twistor string theory are that the worldsheet fields

Z and Z̃ are now on equal footing. In the original twistor string where Z has weight

(1, 0) and Z̃ has weight (0, 0), and Z̃ is treated as an auxiliary field which is integrated

out directly in the path integral. In 4D ambitwistor string theory Z and Z̃ both

have conformal weight
(

1
2 , 0

)
, and the two µ fields will be treated as auxiliary fields

in the path integral and integrated out directly. This choice of conformal weights

puts negative and positive spin external states on equal footing, and based on this

there are two types of vertex operators for particles with spin s′, which are based

on the momentum eigenstates in ambitwistor space from equation (2.10.31). Ṽl(s)

is calculated from Ṽ
(s′)
l (Z̃(s)) and corresponds to a negative helicity superfield, and

Vr(s) is calculated from V (s′)
r (Z(s)) and corresponds to a positive helicity superfield.

The twistor fields from the Lagrangian in equation 2.11.2 can be split into components

as

Z(s) =


|λ(s)〉

|µ(s)]

χ(s)

 , Z̃(s) =
(
[λ̃(s)| 〈µ̃(s)| χ̃(s)

)
,

where χ and χ̃ transform in the fundamental representation of the R-symmetry

group SU(N ). In terms of the spinor components of Z and Z̃, the 4D ambitwistor

Lagrangian can then be written as
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L = 〈µ̃| ∂̄ |λ〉 − [µ| ∂̄
∣∣∣λ̃]+ χ · ∂̄χ̃, (2.11.3)

after subtracting the total derivative ∂̄
[
µλ̃
]
and gauge fixing e = u = 0.

The vertex operators for N = 4 super Yang-Mills with supermomentum paramet-

erised by |i〉 , |i] and ηi are then given by

Ṽl(s) = Ṽ
(1)
l (Z̃(s))J(s) =

∫ dt

t
δ2|4

(
|l]− t

∣∣∣λ̃(s)
])
eit〈µ̃(s)l〉J(s)

Vr(s) = V (1)
r (Z(s))J(s) =

∫ dt

t
δ2 (|r〉 − t |λ(s〉) eit([µ(s)r]+χ(s)·ηr)J(s)

(2.11.4)

where J is a Kac-Moody current, described in the context of ambitwistor string

theory in [52]. I show that these vertex operators are in the cohomology of the

BRST operator in Section 7.7, and the cohomology also contains vertex operators

corresponding to the conformal supergravity states which I discuss in Chapter 7.

The superamplitude is then written as a correlation function of these vertex operators,

using V for negative helicity super fields in the left set and V for positive helicity

super fields in the right set

A(0)
L,n,N =

∫ dns

SL(2)

〈∏
l∈L
Ṽl(sl)

∏
r∈R
Vr(sr)

〉
. (2.11.5)

Now consider this correlation function for Yang-Mills theory with N = 0 as an

example to see how the 4D scattering equation representation for A(0)
L,n arises from the

worldsheet. The delta function in each vertex operator will contribute a scattering

equation for each external particle in the amplitude, and positive and negative

helicity particles have different vertex operators producing left and right set scattering

equations. Inserting the expressions for the vertex operators gives

A(0)
L,n =

∫ ∏
i∈N

dsidti
ti

GL(2)

〈∏
l∈L

δ2
(
|l]− tl

∣∣∣λ̃(sl)
])
eitl〈µ(sl)l〉×

∏
r∈R

δ2 (|r〉 − tr |λ(sr)〉) eitr[µ(sr)r]
∏
i∈N

J(si)
〉
.

(2.11.6)
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This correlation function is then simplified first by combining the s and t variables

into a worldsheet vector σ ∈ C2 for each particle where σ = 1
t

( 1
s ), and hence the

variables for the 4D scattering equations are two component vectors as discussed

in Section 2.8. The worldsheet SL(2) invariance and the GL(1) gauge symmetry

have been combined together in equation (2.11.6), and the resulting GL(2) acts as a

matrix transformation on the σ variables with inhomogenous transformation law for

the left and right sets as described in Section 3.1.

The measure changes as dsidti
ti

= t2i d
2σi under this change of variables, and differences

of the worldsheet s variables can be written as 1
si−sj = (ij)

titj
, where (ij) = σ1

i σ
2
j −σ1

kσ
2
i

are the minors of the 2× 2 matrix σ. The current algebra for the J fields decouples

from the twistor fields and hence its correlation function can be calculated separately.

In general the current algebra correlator has multitrace terms which couple the Yang-

Mills states to the conformal supergravity states [20], but taking only the highest

order terms in Nc neglects these multitrace terms and produces scattering in Yang-

Mills theory. In this case, the correlator evaluates to 〈∏i∈N J(si)〉 = ∏
i∈N

1
si−sj .

The correlation function then simplifies to

A(0)
L,n =

∫ d2σ

GL(2)
∏
i∈N

1
(i i+1)

〈∏
l∈L

δ2
(
|l]− tl

∣∣∣λ̃(sl)
])
×

∏
r∈R

δ2 (|r〉 − tr |λ(sr)〉) ei(
∑

l∈L〈µ(sl)l〉+
∑

r∈R[µ(sr)r])
〉
.

The next step to calculate the correlation function is to write it as a path integral

over the worldsheet fields, as

A(0)
L,n =

∫ d2σ

GL(2)
∏
i∈N

1
(i i+1)

∫
D |λ〉D

∣∣∣λ̃]D |µ]D |µ̃〉 ei
∫
d2s(L−∑l

δ2(s−sl)tl〈µ̃(sl)l〉−
∑

r
δ2(s−sr)tr[µ(sr)r])×

∏
l∈L

δ2
(
|l]− tl

∣∣∣λ̃(sl)
]) ∏

r∈R
δ2 (|r〉 − tr |λ(sr)〉) ,

(2.11.7)

where the exponentials in |µ] and |µ〉 variables from the vertex operators have been

combined into the action as an integral over Dirac delta functions.
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The calculation differs at this point from a standard string scattering calculation

due to the fact that |µ] and |µ〉 appear only in the exponentials and hence can be

integrated out directly, which arises from the point of view of the worldsheet due

to the fact that the Lagrangian only has kinetic terms in ∂̄ and not ∂. From the

point of view of the twistor geometry this can be understood due to the fact that

the twistors in each vertex operator are related only to a null vector |i] 〈i|, and are

not incident with any spacetime position.

The integration in the |µ] field gives a functional Dirac delta for the
∣∣∣λ̃] field;

∆|λ̃]µ :=
∫
D |µ] ei

∫
d2s([µ|∂̄ ˜|λ]−

∑
l∈L tl[µl]δ

2(s−sl)) = δ

∂̄ ∣∣∣λ̃]−∑
l∈L

tl |l] δ2 (s− sl)
 .

(2.11.8)

The argument of the delta function is the equation of motion for the
∣∣∣λ̃] field coming

from the Lagrangian with source terms added coming from each vertex operator.

The equation of motion can be solved for this delta function to give

∆|λ̃] = δ

(∣∣∣λ̃(s)
]
− 1
t

∑
r∈R

|r]
(s r)

)
, (2.11.9)

where σs := 1
t

( 1
s ), using that ∂̄f(s, s̄) = δ(s− a) implies that f(s, s̄) = f(s) = 1

s−a .

The integration in the |µ̃〉 field is solved similarly to give a functional Dirac delta

for the |λ〉 field, and equation of motion for |λ〉 is solved in the same way resulting

in the following delta function

∆|λ〉 = δ

|λ(s)〉 − 1
t

∑
l∈L

|l〉
(s l)

 , (2.11.10)

The path integrals in D |λ〉 and D
∣∣∣λ̃〉 are then localised onto these Dirac delta

functions and can be integrated out directly. This substitutes the solutions to the

equations of motion for |λ〉 and
∣∣∣λ̃] into the delta functions coming from the vertex

operators for each external state, giving rise to the 4D scattering equations
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|l] =
∑
r∈R

|r]
(lr) , l ∈ L |r〉 =

∑
l∈L

|l〉
(rl) r ∈ R (2.11.11)

With all of the path integrals solved, the full tree-level S-matrix for Yang-Mills

theory is then obtained from the correlator of the vertex operators as an integral

supported on these equations as

A(0)
n,L =

∫ d2×nσ

GL(2)
1∏

i∈N (i i+1)δ
2×n(SEn,L). (2.11.12)

The cyclic structure in the worldsheet minors can then be seen to arise from the

current algebra correlator, and generalises the Parke-Taylor amplitude to all MHV

sectors.

For Yang-Mills with N supersymmetries the calculation follows similar steps, with

the addition of the fermionic fields χ(s) and χ̃(s). The χ̃(s) field is integrated out in

the path integral similarly to the bosonic |µ̃〉 and |µ] fields, producing a functional

delta function localising the χ(s) field onto the following solution to its equations of

motion,

tχ(s) =
∑
r∈R

ηr
(sr) .

This relationship gives rise to the fermionic scattering equations in equation (2.8.3),

and produces the following supersymmetry covariant expression for the complete

tree-level S-matrix

A(0)
n,L,N =

∫ d2×nσ

GL(2)
1∏

i∈N (i i+1)δ
2×n|N×|L|(SEn,L). (2.11.13)

For Einstein supergravity, the worldsheet theory has Z and Z̃ ∈ C4|N as in Yang-

Mills, as well as the following additional fields,

R =


|ρ〉

|ν]

ω

 R̃ = ([ρ̃| , 〈ν̃| , ω̃),

which have the opposite Grassmann degree to Z, Z̃, so that for example
( ω
|ρ〉
|ν]

)
∈ CN|4.
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The worldsheet Lagrangian [21] is given in terms of these fields as

L = Z̃ · ∂̄Z + ρ̃ · ∂̄ρ+ uBKB, (2.11.14)

where KB is a vector containing 8 generators for different GL(1) gauge symmetries,

and uB is a vector of corresponding gauge fields. The index B is for notational

simplicity only and carries no physical significance. The generators of the 8 gauge

symmetries are given by

KB =
(
Z̃ · Z, R̃ · R, Z̃ · R, R̃ · Z, 〈ZR〉 , [Z̃R̃], 〈RR〉 , [R̃R̃]

)
. (2.11.15)

The first four symmetries enforce that Z, Z̃,R, and R̃ form all possible ambitwistor

pairs, 〈ZR〉 enforces that |ρ〉 ∝ |λ〉 and similarly for [Z̃R̃], and 〈RR〉 and [R̃R̃] are

consistency conditions on the spinor two brackets, ensuring for that 〈ρρ〉 = 0 as is

always the case for bosonic spinors.

The integrated vertex operators are calculated from the plane moves in twistor space

as

Ṽl(s) =
(〈
Z ∂

∂Z̃

〉
+
〈
R, ∂

∂Z̃

〉
R̃ · ∂

∂Z̃

)
Ṽ

(2)
l

(
Z̃(s)

)
Vr(s) =

([
Z̃ ∂

∂Z

]
+
[
R̃ ∂

∂Z

]
R · ∂

∂Z

)
V (2)
r (Z(s)) ,

(2.11.16)

where I define the square and angle two brackets in terms of the infinity twistor in

equation (2.10.30), and Ṽ (2)
r and V (2)

l are the momentum eigenstates in ambitwistor

space for spin 2 particles from equation (2.10.31). These formulae can be expressed

in terms of the spinor components of Z, Z̃,R, and R̃, and importantly all derivatives

of delta functions with respect to spinor variables cancel out after calculating the

two brackets with the infinity twistor and the ferminonic correlation function in the

ρ variables in the path integral. The BRST cohomology also contains unintegrated

vertex operators constructed from ghosts associated with the fermionic currents in

(2.11.15), which are necessary to give the det ′ structure where one row is removed

from the Hodges matrices in the worldsheet integral.

This procedure the calculates the following supersymmetry covariant expression for
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the tree-level S-matrix of Einstein supergravity with N supersymmetries as

M(0)
n,L,N =

∫ d2×nσ

GL(2) det ′H det ′H̃ δ2×n|N×|L|(SEn,L). (2.11.17)



Chapter 3

Analytical Properties of the 4D

Scattering Equations

In this chapter I provide a detailed analysis of the 4D scattering equations based on

my results from [1]. I cover all aspects necessary for the numerical methods I describe

in Chapter 4, building up to my Mathematica implementation treeamps4dJAF, which

I cover in Section 4.5. In Section 3.1 I give an overview of how to calculate amplitudes

from the 4D scattering equation integral, and I then give a detailed proof of various

properties of the 4D scattering equations in the following sections. In Section 3.2

I explain how to recover the general d scattering equations for d = 4 from the 4D

specific equations, and in Section 3.3 I discuss the symmetries of the equations in

detail. In Section 3.4 I describe how to 4 of equations imply momentum conservation,

in Section 3.5 I discuss how the equations transform under permutations of particle

labels, and in finally Section 3.6 I calculate the Jacobian for the equation for different

cases.
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3.1 Calculating Amplitudes with the 4D

Scattering Equations

In this section I describe the analytical results necessary for solving the 4D scattering

equations to calculate amplitudes given an integrand for a certain theory. These

techniques will then be used explicitly to find amplitudes numerically and analytically

in the package treeamps4dJAF, which I introduce in Chapter 4. The equations are

reviewed in Section 2.8, and are

|l] =
∑
r∈R

|r]
(lr) , l ∈ L |r〉 =

∑
l∈L

|l〉
(rl) r ∈ R. (3.1.1)

Scattering amplitudes in this framework can then be expressed as integrals over

delta functions enforcing the equations

An,L =
∫ d2×nσ

GL(2)δ
2×n (SEn,L) fN (σ, |i〉 , |i]),

where fN is a theory-dependent integrand with N supersymmetries.

As shown in equation (2.8.2), at n points there are 2n 4D scattering equations de-

pending on 2n worldsheet σ variables. There is a GL(2) symmetry on the worldsheet

which acts as inhomogeneously on the left and right set of worldsheet coordinates

for G ∈ GL(2) as

σl 7→ Gσl, l ∈ L σr 7→
G

detG σr, r ∈ R. (3.1.2)

Under this GL(2) translation, any minor of the form (lr) remains invariant, and

hence the scattering equations are invariant. Fixing this gauge symmetry leaves

2n − 4 remaining degrees of freedom. Generally in this work I will restrict to

gauge transformations specified by two particle labels i, j which fix σi = ( 1
0 ) and

σj = ( 0
1 ), and refer to this operation as ‘gauge-fixing particles i and j’. As the GL(2)

transformations act inhomogeneously on the left and right set, only the two left or

the two right particles can be fixed in this way. The details of gauge-fixing and the
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symmetries of the equations are explained in Section 3.3.

The system now appears to be over specified and four equations must be removed

to match the 2n − 4 variables. Two spinor equations i and j either from the left

set or from the right set can be reduced to a momentum conserving delta function

on support of the other scattering equations, as proved in Section 3.4. I refer to

this operations as ‘deleting particles i and j’, and the remaining equations are a

well-specified set of 2n− 4 equations in 2n− 4 variables.

The number of integrations in equation (3.1) is the same as the number of delta

functions, and hence the integrations are an instruction to sum over all of the

solutions of the scattering equations. Deleting equations l and l′ ∈ L, the Jacobian

of the remaining equations can be calculated to solve the delta function integrals as

follows

An,L =
∫ d2×nσ

GL(2)δ
2×n (SEn,L) f(σ) = δ4(P )

∑
σsol∈solutions

f(σsol)
〈ll′〉−2 det(Jn ll′L (σsol))

.

(3.1.3)

where JnL is the Jacobian of the scattering equations with respect to the sigma

variables, and the superscript l, l′ refers to removing four rows and columns corres-

ponding to these two particle labels from the matrix before taking the determinant.

The factor 〈ll′〉2 comes from the Jacobian for deleting particles l and l′ to give δ4(ρ).

Details of the Jacobian to the scattering equations are explained in Section 3.6. It is

now a well-formulated problem to solve the scattering equations and sum a theory

dependent integrand f over the full set of solutions to produce an amplitude.

Calculating MHV amplitudes is generally more simple than calculating Nk−2MHV

amplitudes, and this simplicity is reflected in the structure of the 4D scattering

equations. Analytical solutions to the 4D scattering equations are not known for

general MHV degree, but can be constructed in the MHV sector. First consider the

case where the left set is L = {1, 2}. Then the MHV equations become
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δ2×n
(
SEn,{1,2}

)
= δ2

(
|1]−

∑
r∈R

|r]
(1r)

)
δ2
(
|2]−

∑
r∈R

|r]
(2r)

) ∏
r∈R

δ2
(
|r〉 − |1〉(1r) + |2〉

(2r)

)

(3.1.4)

The most obvious choice of equations to delete in this case are the two left set

equations, which become the overall momentum conservation delta function, along

with a Jacobian factor of 〈12〉2. Similarly, particles 1 and 2 are gauge-fixed to the

identity in the Grassmannian, and each delta function of the right-set equations then

takes the following form, which can be solved by a Schouten identity,

δ2
(
|r〉 − |1〉

σ2
r

− |2〉
σ1
r

)
= 〈12〉3

〈1r〉2 〈2r〉2
δ

(
σ1
r −
〈12〉
〈r1〉

)
δ

(
σ2
r −
〈12〉
〈r2〉

)
, r ∈ R. (3.1.5)

The full MHV solution along with its minors and the associated expression for the

Jacobian of the delta functions is

σMHV =

1 0 〈12〉
〈31〉 ... 〈12〉

〈n1〉

0 1 〈12〉
〈32〉 ... 〈12〉

〈n2〉


δ2×n

(
SEn,{1,2}

)
= 〈12〉2

∏
r∈R

〈12〉3

〈1r〉2 〈2r〉2
δ4 (P ) δ2n−4 (σ − σMHV)

(12)MHV = 1 (rr′)MHV = 〈12〉3 〈rr′〉
〈1r〉 〈1r′〉 〈2r〉 〈2r′〉 (1r)MHV = 〈12〉

〈r2〉 (2r)MHV = 〈12〉
〈1r〉 .

(3.1.6)

The Jacobian as calculated this way is in agreement with the calculation from

Section 3.6, where I also consider the Jacobian for higher MHV degree.

Finding analytical solutions for generic kinematics outside of the MHV sector is

currently an unsolved problem, apart from at 6 points NMHV where the scattering

equations have four solutions, which are found for the general d equations for d = 4 in

[101]. Abel’s theorem states that there is no algebraic solution in terms of nth roots

to a general polynomial equation of degree five or higher with arbitrary coefficients

[102]. To find analytical Nk−2MHV solutions above 6 points NMHV some underlying
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structure would have to exist within the coefficients of the equations, otherwise

general analytical solutions are excluded by Abel’s theorem. Full sets of solutions

can be found analytically for some specific choices of momenta[116].

Due to these difficulties in finding analytical solutions, calculating amplitudes by

solving the scattering equations outside of the MHV sector is primarily a numerical

problem, which I address in Chapter 4.

One key strength of the scattering equation formalism is that once a full set of

solutions is known, amplitudes can be calculated in any theory at relatively small

computational cost. The relevant integrand is chosen, and the only necessary opera-

tion is to sum over the solutions. Solutions to the scattering equations are graded

only by MHV degree and not by a specific choice of left set. This implies that

there must exist some transformation on the worldsheet which can map an integrand

supported on scattering equations for one left set into an integrand for a different

left set of the same degree. For example such a mapping allows for calculation of

all 6 point NMHV gluon amplitudes in Yang Mills theory with only one solution

to the scattering equations; eg. A(+ − + − +−) with left set L = {2, 4, 6} and

A(−−−+ ++) with left set L = {1, 2, 3}.

The following is an explicit co-ordinate transformation on the worldsheet which

swaps two particles, l0 ∈ L and r0 ∈ R, between the left and right sets of the

scattering equations.1

σl0 7→ σ′l0 = σl0
1

(l0r0) , σr0 7→ σ′r0 = σr0
1

(r0l0) ,

σl 7→ σ′l = σl
(ll0)
(lr0) l 6= l0 ∈ L, σr 7→ σ′r = σr

(rr0)
(rl0) r 6= r0 ∈ R. (3.1.7)

1I thank Paul Heslop for suggesting this transformation.
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Under this transformation the scattering equation integrand transforms as
∫ d2×nσ

GL(2)δ
2×n (SEn,L) f(σ) 7→

∫ d2×nσ

GL(2)δ
2×n (SEn

L′) f ′(σ) =
∫ d2×nσ

GL(2)δ
2×n (SEn

L′)
∏

l 6=l0∈L

(ll0)2

(lr0)2

∏
r 6=r0∈R

(rr0)2

(rl0)2
f(σ′)
(l0r0)8

(3.1.8)

where L′ has l0 swapped with r0. This transformation can be used to calculate a

new integrand f ′ for a swap of the choice of left sets for the scattering equations.

Details of how the equations vary under this transformation are given in Section 3.5.

Repeatedly applying the transformation can be used to reassign any left set.

3.2 Recovering the General d Scattering

Equations for d = 4

Solutions to the 4D equations are grouped into sets for the different Nk−2MHV

sectors, whereas the general d equations depend only on n and do not encode

this grouping. As the 4D scattering equations contain more information than the

general d scattering equations, 4D ⇒ general d (for d = 4), which I prove in this

section; a different argument is given in [74]. The proof also provides an explicit

method for finding solutions to the general d equations using those from the 4D

specific case. Integrands for the general d equations for d = 4 can also be mapped

to integrands for the 4D equations [117].

First I prove a lemma which holds for the general d equations. Define world-sheet

dependent momentum P (s) := ∑
j∈N

ki
s−si . Then I prove that P (s)2 = 0 ⇔ the

general d equations. Note that there are no second order poles in P (s)2 as all of the

external momenta ki are null. Then

P (s)2 =
∑
i,j∈N
i6=j

ki · kj
(s− si)(s− sj)

= 2
∑
i∈N

1
s− si

∑
j∈N
j 6=i

ki · kj
si − sj

 , (3.2.1)
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where the second equality comes from using partial fractions and relabelling indices.

P (s) is now written explicitly as a sum of its poles, and hence can only be zero if

all of its residues are zero. Therefore, P (s)2 = 0⇔ ∑
j∈N

ki·kj
si−sj = 0.

To relate to the 4D equations, construct a new explicitly null world-sheet dependent

momentum in terms of two world-sheet dependent spinors |λ(s)〉 := ∑
r∈R

tr|r〉
s−sr and

|λ(s)] := ∑
l∈L

tl|l]
s−sl

. Then the associated momentum vector is

|λ(s)] 〈λ(s)| =
(∑
r∈R

tr |r]
s− sr

)∑
l∈L

tl 〈l|
s− sl

 =
∑
r∈R
l∈L

|r] 〈l|
(rl)

( 1
s− sl

− 1
s− sr

)

=
∑
r∈R

|r]
s− sr

∑
l∈L

〈l|
(rl)

+
∑
l∈L

(∑
r∈R

|r]
(lr)

)
〈l|

s− sl

=
∑
r∈R

|r] 〈r|
s− sr

+
∑
l∈L

|l] 〈l|
s− sl

= P (s),

(3.2.2)

where the same steps are used as in the previous calculation, and the second-to-last

equality uses the 4D scattering equations and ki = |i] 〈i|. Given that |λ(s)] 〈λ(s)|

is explicitly constructed as a null vector, the 4D scattering equations imply that

P (s)2 = 0, and hence by the lemma they imply the general d scattering equations.

This proof also provides an explicit mapping from a solution to the 4D scattering

equations to a solution to the general d equations. A point in the solution space

of the 4D equations is mapped to a point in the n-punctured Riemann sphere by

writing each column as σi = t−1
i ( 1

si ), and keeping only the s variables and not the

scales t. Suppose there is some solution to the 4D scattering equations which is

gauge-fixed such that the first two particles are equal to the identity matrix. Under

this mapping the vector ( 1
0 ) maps to the point at infinity, and the remaining gauge

redundancy can be fixed by dividing through by s3 to arrive at

σ4D =

1 0 σ1
3 ... σ1

n

0 1 σ2
3 ... σ2

n

 7→ sgeneral d,d=4 =
(
∞ 0 1 σ1

4
σ2

4

σ2
3
σ1

3
... σ1

n

σ2
n

σ2
3
σ1

3

)
. (3.2.3)

Is is clear from this analysis that reconstructing a full solution to the 4D equations

in terms of the s and t variables is not direct given a d = 4 solution to the general
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d equations, and it would be interesting to understand how the t variables can be

specified in this case.

MHV and MHV solutions to the general d equations for d = 4 were derived in [101].

Using the mapping 3.2.3, the map from the MHV solutions to the 4D equations

derived in Section 3.1 onto those of the general d equations can be seen explicitly as

σMHV =

1 0 〈12〉
〈31〉 ... 〈12〉

〈n1〉

0 1 〈12〉
〈32〉 ... 〈12〉

〈n2〉

 7→ sMHV =
(
∞ 0 1 〈41〉〈32〉

〈31〉〈42〉 ... 〈n1〉〈32〉
〈31〉〈n2〉

)
,

(3.2.4)

in agreement with equation (49) of [101], up to choice of SL(2) gauge fixing.

3.3 Symmetries, Little Group Scaling and

Grassmanians

The scattering equations have a GL(2) symmetry which can be realised in different

ways in terms of a worldsheet redefinition, or a worldsheet redefinition with a cor-

responding little group rescaling. The worldsheet GL(2) symmetry in (3.1.2) is a

combination of the standard SL(2) symmetry of global conformal transformations

in the string worldsheet s variables, and a GL(1) transformation corresponding to a

rescaling of the worldsheet t variables. Any function f(σ) which is integrated against

the scattering equation delta functions must transform as f(σ)→ f(σ)(detG)n−2k

under (3.1.2) to balance out the transformation of the measure. All of the integrands

for the theories considered in Section 2.8 satisfy this transformation law, as enforced

by their underlying 4D ambitwistor string models [26].

Before considering joint worldsheet and little group transformations, I first analyse

the little group scaling of amplitudes supported on the scattering equations. Consider

a general amplitude An,L with some arbitrary integrand f(σ, |i〉 , |i]),
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An,L :=
∫ d2×nσ

GL(2)δ
2×n (SEn,L) f(σ, |i〉 , |i]).

Perform a different little group scaling for each particle, such that |i〉 7→ αi |i〉 and

|i] 7→ α−1
i |i]. Then the amplitude transforms as

An,L(αi |i〉 , α−1
i |i]) =

∫ d2×nσ

GL(2)
∏
l∈L

δ2
(
|l]
αl
−
∑
r∈R

|r]
αr(lr)

) ∏
r∈R

δ2

αr |r〉 −∑
l∈L

αl |l〉
(rl)


f(σ, αi |i〉 , α−1

i |i]).

(3.3.1)

To relate to the previous expression before the scaling, define new worldsheet co-

ordinates such that σ′l := α−1
l σl for l ∈ L, and σ′r := αrσr for r ∈ R Then change

variables and rename back to σ, picking up factors of the αi from the delta functions

and the measure to arrive at

An,L(αi |i〉 , α−1
i |i]) =

∫ d2×nσ

GL(2)δ
2×n (SEn,L)

∏
l∈L

α4
l

∏
r∈R

α−4
r f(αlσl, α−1

r σr, αi |i〉 , α−1
i |i]).

(3.3.2)

Now consider how the integrand for Yang-Mills theory with N supersymmetries as

defined in Section 2.8 scales under the little group. Under this little group trans-

formation the Grassmann variables transform as ηi → α−1
i ηi, and the Grassmann

delta functions transform in a similar way to the scattering equation delta functions.

The transformation of the Parke-Taylor factor cancels out that of the measure, and

the integrand becomes

fsYM(αlσl, α−1
r σr, αi |i〉 , α−1

i |i] , α−1
i ηi) =

∏
l∈L

α−2−N
l

∏
r∈R

α2
r fsYM(σ, |i〉 , |i] , ηi).

(3.3.3)

From this the standard little group scaling is found for negative and positive helicity
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superfields of a Yang-Mills superamplitude, that

An,L(αi |i〉 , α−1
i |i] , α−1

i ηi) =
∏
l∈L

α2−N
l

∏
r∈R

α−2
r An,L(|i〉 , |i] , ηi), (3.3.4)

and a similar analysis produces the required scaling for gravity amplitudes.

The variables to 4D scattering equations can be considered as 2× n matrix with a

GL(2) gauge freedom, and hence appear at first sight as though sit in the Grassman-

nian Gr(2, n). This is not directly the case however, due tho the fact that the GL(2)

acts differently on the left and right sets of particles. I now show that combining a

little group transformation with a worldsheet rescaling can produce a standard GL(2)

transformation which acts homogeneously on the left and right sets, and hence the

solution space of the equations can indeed be considered as Gr(2, n). Simultaneously

performing an inhomogeneous little group scaling such that |l]→ α|l], |l〉 → α−1 |l〉

for l ∈ L and |r]→ β|r], |r〉 → β−1 |r〉 for r ∈ R, the scattering equations become

δ2×n (SEn,L) =
∏
l∈L

α−2δ2
(
|l]− β

α detG
∑
r∈R

|r]
(lr)

) ∏
r∈R

β2δ2

|r〉 − β

α detG
∑
l∈L

|l〉
(rl)


= α2n−4k(detG)2n−2kδ2×n (SEn,L) ,

(3.3.5)

where in the last equation β = α detG is chosen to keep the equations invariant.

The measure and delta functions combined transform such that

∫ d2×nσ

GL(2)δ
2×n (SEn,L) f(σ, |i〉 , |i]) 7→

∫ d2×nσ

GL(2)δ
2×n (SEn,L) (detG)3n−2kα2n−4k

f(Gσ, α |l〉 , α−1 |l] , α detG |r〉 , (α detG)−1 |r]).

(3.3.6)

As was shown above, the little group transformation of the amplitude A comes from

little group covariance of the integrand f . Any f which integrates to an amplitude

must transform covariantly under the little group, and hence f must transform as a
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scaling transformation for any combined little group transformation and worldsheet

rescaling. It can then be concluded that for any f which describes an amplitude

there must exist some x and y real numbers such that

f(Gσ, α |l〉 , α−1 |l] , α detG |r〉 , (α detG)−1 |r]) = (detG)xαyf(σ, |i〉 , |i]).

Given f which transforms in this way, the little group scaling α can be chosen such

that (detG)3n−2k+xα2n−4k+y = 1, and hence this transformation is a symmetry for

any amplitude supported on the scattering equations. This GL(2) invariance is the

GL(2) invariance of the Grassmannian Gr(2, n), and hence in this sense the solutions

to the scattering equations can be thought of as living in Gr(2, n).

3.4 Deleting Equations and Momentum

Conservation

In this section I demonstrate how to remove four equations to give a momentum

conserving delta function. There are three possible cases; two particles in the left

set, two in the right set, or one particle in each set. First consider the case of two

particles in the left set. Without loss of generality, label these particles to be 1 and

2. Defining the delta functions for these particles to be ∆1,2,

∆1,2 := δ2
(
|1]−

∑
r∈R

|r]
(1r)

)
δ2
(
|2]−

∑
r∈R

|r]
(2r)

)

= 〈12〉4 δ2
(
|1] 〈12〉 −

∑
r∈R

|r] 〈12〉
(1r)

)
δ2
(
|2] 〈21〉 −

∑
r∈R

|r] 〈21〉
(2r)

)
.

(3.4.1)

Now consider a general right set equation and contract with first with 〈2|, and

separately with 〈1|, to find that

|r〉 =
∑
l∈L

|l〉
(rl) =⇒


〈12〉
(1r) = −〈r2〉 −∑ l∈L

l 6=1,2

〈l2〉
(lr)

〈21〉
(2r) = −〈r1〉 −∑ l∈L

l 6=1,2

〈l1〉
(lr) .

(3.4.2)
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Substituting into ∆1,2,

∆1,2 = 〈12〉4 δ2

(|1] 〈1|+
∑
r∈R
|r] 〈r|

)
|2〉+

∑
r∈R, l∈L
l6=1,2

|r] 〈l2〉
(lr)



δ2

(|2] 〈2|+
∑
r∈R
|r] 〈r|

)
|1〉+

∑
r∈R, l∈L
l 6=1,2

|r] 〈l1〉
(lr)

 .
(3.4.3)

The remaining left set equations are then used to solve the sum over r in the last

term in each delta function, arriving at

∆1,2 = 〈12〉4 δ2

( ∑
n∈N

|n] 〈n|
)
|2〉
 δ2

( ∑
n∈N

|n] 〈n|
)
|1〉
 = 〈12〉2 δ4 (P ) .

(3.4.4)

This is referred to as having ‘deleted equations 1 and 2’, and the remaining 2n− 4

equations give a well-specified system. Note the Jacobian 〈12〉2 for this calculation.

The calculation for deleting two equations in the right set goes by the same steps,

and labelling the two particles in the right set to be r1 and r2:

δ2

|r1〉 −
∑
l∈L

|l〉
(r1l)

 δ2

|r2〉 −
∑
l∈L

|l〉
(r2l)

 = [r1r2]2 δ4 (P ) . (3.4.5)

There is one remaining choice; deleting one equation from the left set and one

equation from the right set. Choosing equations in this way does not produce a

momentum-conservation delta function, and hence does not result in a solvable

system for spinors satisfying momentum conservation. To see this, label the left set

particle as 1 ∈ L, and the right set particle as n ∈ R. Then following the same

analysis as above,
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δ2
(
|1]−

∑
r∈R

|r〉
(1r)

)
δ2

|n〉 −∑
l∈L

|l〉
(nl)


= 〈1n〉2 [1n]2 δ2

(
|1] 〈1n〉+

n−1∑
i=2
|i] 〈in〉

)
δ2
(
n−1∑
i=2

[1i] 〈i|+ [1n] 〈n|
)
.

(3.4.6)

These equations looks deceptively similar to momentum conservation. I prove here

that they are in fact not the same, and give a constraint corresponding to non-generic

kinematics.

Solving the first equation as |1] = 1
〈n1〉

∑n−1
i=2 |i] 〈in〉 and substituting into the second,

these delta functions imply that

|n〉
n−1∑
i=2

Pn · Pi +
n−1∑
i,j=2
j 6=i

|i〉 [ij] 〈jn〉 = |n〉
(
n−1∑
i=2

Pi

)2

= 0, (3.4.7)

where between the first two equalities the second sum is split into two terms, and

the indices are relabelled using a Schouten identity. Hence to keep consistency with

these equations either |n〉 or the Mandelstam invariant
(∑n−1

i=2 Pi

)2

must be set to

zero, and neither of these choices correspond to generic kinematics. Therefore, it is

not possible to delete one equation from each set.

3.5 Permutations and Choice of Left Set

A given n point Nk−2MHV amplitude will be supported on scattering equations

with a specified left set L. In this section I show how solutions to the scattering

equations for one left set can be used to calculate amplitudes with the same MHV

degree that are supported on different left set L′. This mapping of different left

sets is important computationally as it will allow us to solve the equations only

once in each MHV sector and then calculate all amplitudes of this MHV degree for

the specified numerical momenta. The explicit worldsheet transformation swapping
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particles l0 ∈ L and r0 ∈ R in between the sets is given in equation (3.1.7). Under

this transformation, the scattering equations transform as

El −→ El −
(l0r0)
(lr0) El0 El0 −→ (l0r0)Er0

Er −→ Er −
(r0l0)
(rl0) Er0 Er0 −→ (l0r0)El0 ,

where a Schouten identity in the worldsheet variables is used in the l and r equations.

The second terms in the l and r equations are zero on support of the l0 and r0

equations, and hence the scattering equations remain the same up to changing the

particles l0 and r0 between the left and right set. The delta functions pick up

an overall factor of (l0r0)−4. Calculating the transformation of the measure, the

scattering equation integral transforms as in equation (3.1.8).

Performing a permutation of the external data on the same legs l0 and r0 and looking

at the transformation properties of the integrands, it can be understood that the

amplitude does not depend on a choice of left set for maximally supersymmetric

theories and for N = 4 conformal supergravity. This transformation can also be used

to understand permutation invariance under swapping between the right and left

sets for N = 8 supergravity. Showing permutation invariance of gravity amplitudes

under a swapping two legs which carry the same helicity superfield is straightforward,

and simply requires renaming the worldsheet variables on the permuted legs.

Now look at the form of the integrand for Yang-Mills theories. Under this trans-

formation,

∫ d2×nσ

GL(2)δ
2×n (SEn,L)

∏
l∈L δ

N
(
ηl −

∑
r∈R

ηr
(lr)

)
∏
i∈N (i i+1)

→
∫ d2×nσ

GL(2)δ
2×n (SEn,L′)

∏
l∈L′ δ

N
(
ηl −

∑
r∈R′

ηr
(lr)

)
∏
i∈N (i i+1) (l0r0)N−4.

(3.5.1)

For N = 4 the integrand is unchanged up to a choice of the left set, and hence

for N = 4 super Yang-Mills theory the choice of left set does not affect the overall
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superamplitude. Now look at the MHV sector for N = 0, fix L = {1, 2} and swap the

external data for particles 1 and r0, as well as performing the integral transformation

to swap 1 and r0. It is clear that (1r0)4 = 〈12〉4

〈2r0〉4
, which is exactly the factor required

to modify the Park-Taylor formula for particles 1 and 2 negative helicity gluons to

have particles 2 and r0 with negative helicities. It is interesting to note that this

structure extends outside of the MHV sector at the level of the integrand in the

scattering equation formalism.

3.6 The Jacobian of the 4D Scattering Equations

In this section I detail some properties of the Jacobian of the 4D scattering equations.

For a general worldsheet integral over the scattering equation delta functions, the

integrals can be solved and the expression can be written as a sum over the solutions

to the scattering equations. To do this, an explicit expression is needed for the

Jacobian JnL(σ) as follows. I use the notation for matrix A that Aij has rows and

columns i and j removed. Let l, l′ ∈ L and delete equations l and l′ to arrive at

∫ d2×nσ

GL(2)δ
2×n (SEn,L) f(σ) = δ4(P )

∑
σsol∈solutions

f(σsol)
〈ll′〉−2 det(Jn ll′L (σsol))

. (3.6.1)

Note that as shown in Section 3.4, the two rows/columns deleted must either both

be in the left set or both in the right set, and there is an extra associated factor eg.

〈ll′〉2 such that the full determinant of the Jacobian is 〈ll′〉−2 det(Jn ll′L ) for two left

set particles deleted and gauge-fixed.

At n points with left set L the Jacobian is calculated to be

JnL =

 ∂Ẽl
∂σl′

∂Ẽl
∂σr′

∂Er
∂σl′

∂Er
∂σr′

 =

−δll′
∑
r∈R

|r]⊗σr
(lr)2

|r′]⊗σl
(lr′)2

〈l|⊗σr
(lr)2 −δrr′

∑
l∈L

〈l|⊗σl
(lr)2

 , (3.6.2)

where the matrix is written in a block form with blocks of sizes of the left and right

set, and each element of these matrices is broken down into a 2×2 matrix which is a
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tensor product of a spinor with a worldsheet vector. This matrix has determinant 0,

which is simple to check analytically for example in Mathematica. This is insured

by the fact that gauge-fixing removes 4 of the sigma variables, and hence four of the

rows of the matrix must be removed to produce a well specified system. Similarly,

four of the columns of JnL must be removed, which is equivalent to deleting two

equations as shown in appendix 3.4.

In the MHV sector this matrix is block diagonal and the determinant in terms

worldsheet minors can be calculated directly. Taking the left set to the particles 1

and 2 and also gauge-fixing and deleting these particles

det
(
Jn 12
{1,2}

)
= det

(
∂Er
∂σr′

)
=
∏
r∈R

det
(
〈1| ⊗ σ1

(1r)2 + 〈2| ⊗ σ2

(2r)2

)
. (3.6.3)

A general result for determinants of sums of tensor products of two dimensional

vectors is given by

det
(

m∑
i=1

αiui ⊗ vi
)

=
∑

1≤i<j≤m
αiαj det(uiuj) det(vivj), (3.6.4)

for m variables ui, vi ∈ C2 and αi ∈ C. Using this result for the MHV calculation

m = 2 gives

det
(
Jn 12
{1,2}

)
=
∏
r∈R

〈12〉 (12)
(1r)2(2r)2 =

∏
r∈R

〈1r〉2 〈2r〉2

〈12〉3
, (3.6.5)

where in the last equation the MHV solution from Section 3.1 is substituted in.

It is also possible to analytically evaluate the Jacobian outside of the MHV sector.

Assume 1, 2 ∈ L and gauge-fix and delete particles 1 and 2, and use the formula for

the determinant of a block matrix to find that

det
(
Jn 12
L

)
= det

(
∂Er
∂σr′

)
det

∂Ẽl
∂σl′
− ∂Ẽl
∂σr′

(
∂Er
∂σr′

)−1
∂Er
∂σl′

 , (3.6.6)

where r, r′ ∈ R and l, l′ ∈ L/{1, 2}.

As ∂Er
∂σr′

is block diagonal, it is comparatively simple to calculate its determinant and
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inverse. Using equation (3.6.4) the determinant becomes

det
(
∂Er
∂σr′

)
=
∏
r∈R

∑
l<l′∈L

〈ll′〉 (ll′)
(rl)2(rl′)2 . (3.6.7)

To invert this matrix first notice that in the r, r′ indices it is simply δrr′ , leaving the

calculation of the inverses of the 2× 2 blocks. The general result for a 2× 2 matrix

M that M−1 = det(M)−1 ( 0 1
−1 0 )M ( 0 −1

1 0 ) can be used to invert in the spinor and

worldsheet indices. This corresponds to raising and lowering the two indices, and

dividing by the determinant as calculated by equation (3.6.4). The result is then

that

det
∂Ẽl
∂σl′
− ∂Ẽl
∂σr′

(
∂Er
∂σr′

)−1
∂Er
∂σl′


= det

∑
r∈R

[r| ⊗ σr
(lr)2∑

λ<λ′∈L
〈λλ′〉(λλ′)
(rλ)2(rλ′)2

∑
λ∈L

〈l′λ〉 (lλ)
(λr)2(l′r)2 − δll′

∑
λ<λ′∈L

〈λλ′〉 (λλ′)
(λr)2(λ′r)2

 ,
(3.6.8)

where the determinant is taken over l, l′ ∈ L/{1, 2}, combined with the tensor

product of spinor and worldsheet indices. In the NMHV sector it is found that

l = l′ = 3 and the determinant of the remaining 2×2 matrix can be calculated using

equation (3.6.4). As an example, at 6 points NMHV the determinant is

det(J6 12
{1,2,3} ) = 〈12〉2 (12)2∏

l,r(lr)2

∑
r<r′∈R
l<l′∈L

[rr′] (rr′) 〈ll′〉 (ll′)
∑
λ∈L
ρ∈R

εll′λεrr′ρ(λρ)2. (3.6.9)





Chapter 4

Monte Carlo Numerical Methods

for the 4D Scattering Equations

In this chapter I treat the 4D scattering equations as a numerical system which I solve

by Monte Carlo algorithm, based on my work from [1]. I introduce the numerical

system in Section 4.1, and discuss why previous algorithms in the literature do not

work in this setting in Section 4.2. I present a new Monte Carlo algorithm for

solving the equations in any MHV sector in Section 4.3, and discuss the details of an

algorithm for extracting component amplitudes from a superamplitude in Section 4.4.

I implement the analytical framework from Chapter 3 and the numerical algorithms

developed in this chapter in my Mathematica package treeamps4dJAF which can

be downloaded from the arXiv submission of [1], and which I introduce in Section

4.5.

4.1 The 4D Scattering Equation as a Numerical

System

The 4D scattering equations can be thought of as 2n − 4 equations with variables

σαi in the Grassmannian Gr(2, n), and are parameterised by a set of spinors obeying
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Equations

momentum conservation, as explained in Section 3.3. A full set of solutions to

the scattering equations at n points Nk−2MHV will then be a mapping from the

external data of the amplitude to
〈
n−3
k−2

〉
points in Gr(2, n). In the MHV case I

give this mapping analytically in Section 3.1, but finding analytical solutions for

k > 2 is complicated due to the combinatorially increasing number of solutions. A

well-specified problem is to provide explicit numerical momenta, which will usually

be randomly sampled, and to then solve the resulting equations numerically. CHY

provide an inverse-soft type algorithm for finding individual numerical solutions to

the general d equations [11], but there are difficulties in constructing the full set of

solutions in this way which I discuss in Section 4.2. To overcome these problems

I provide an explicit algorithm which takes a set of numerical momenta as input

and samples random numerical points in Gr(2, n) to find solutions to the equations

stochastically. Algorithms of this type are known as Monte Carlo algorithms, and

Monte Carlo methods in high energy physics are well studied [118, 119]. Though

not generally applied to solving nonlinear algebraic equations, their application to

this type of problem is straightforward.

Random sampling of solution points will eventually cover the whole sample space,

and so with enough computing power and time, any non-linear system of equations

can be solved by Monte Carlo algorithm. The two key questions to address are when

to stop the algorithm, and which distribution to sample the initial points from. The

scattering equations are well-suited for solution in this way because the number of

solutions is known which gives a clear stopping condition. I address the sampling

question in Section 4.3. Finding a set of solutions this way is stochastic and can

take a long time, with time complexity now distributed as a random variable which

depends on n and k. The expectation of the time complexity increases as n increases

and as k moves towards bn2 c. One advantage of the 4D formalism compared to the

general d equations that makes it better suited for solution by Monte Carlo algorithm

is that the (n − 3)! solutions are broken down into Eulerian numbers of solutions,

tabulated in Figure 4.1. This means that the algorithm can stop after finding a
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smaller number of solutions than in general dimensions.

Once a full set of numerical solutions are known for a given number of points and

MHV degree, along with the corresponding momenta and left set, they can then be

used to calculate amplitudes in different theories for a selection of different external

states by substituting different integrands into the sum over solutions.

Tree-level amplitudes are all rational functions of external momenta, and hence for

rational numerical external data they will be a rational number. The solutions to

the scattering equations are in general not rational numbers, but given a set of

rational kinematics they can be calculated to very high precision at relatively low

computational cost via deterministic algorithm once all solutions are known. It is

then possible rationalise to the closest rational number to give exact numerical results

for the amplitude, and treeamps4dJAF provides support for this kind of calculation.

n
〈
n−3
k−2

〉
4 1
5 1 1
6 1 4 1
7 1 11 11 1
8 1 26 66 26 1
9 1 57 303 302 57 1
10 1 120 1191 2416 1191 120 1

Figure 4.1: Eulerian numbers of solutions to the 4D scattering equa-
tions

4.2 Difficulties with CHY’s Inverse Soft

Algorithm

One proposed algorithm to find numerical solutions to the general d equations is

that of CHY [11], which takes one of the momenta soft with parameter ε to reduce

the equations from n points down to n − 1 points. The soft parameter is then

reintroduced, and the soft equation at O(ε) is solved for each of the (n−4)! solutions

to the n− 1 point equations. The solutions then have a multiplicity of n− 3, and
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these points are input back into the system with ε moving slowly up from 0 to 1. As

this algorithm involves slowly bringing the soft parameter back to the full n point

system, it is referred to as an inverse soft algorithm. (n − 3)! solutions to the n

point equations will be found in this way, but there is no guarantee that all of these

solutions will be distinct, and hence they will not necessarily cover the full solution

space. It seems to be a generic feature of the algorithm that solutions collide in the

inverse soft part of the process, and it is difficult to find kinematics which produce

all solutions at n points with this algorithm.

The inverse soft algorithm is based on an inductive argument for counting the total

number of solutions, and it can be extended to the 4D case using the analogous

4D solution counting argument, which is reviewed in Section 2.8. Taking one soft

parameter ε for left set particle 1 ∈ L so that |1〉 7→ ε |1〉, and a further parameter ε̃

for a right set particle n ∈ R so that |n] 7→ ε̃ |n], the 4D scattering equations become

|1]−
∑

r∈R\{n}

|r]
(1r) − ε̃

|n]
(1n) = 0 |n〉 − ε |1〉(n1) −

∑
l∈L\{1}

|l〉
(nl) = 0

|l]−
∑

r∈R\{n}

|r]
(lr) − ε̃

|n]
(ln) = 0, l ∈ L \ {1} |r〉 − ε |1〉(r1) −

∑
l∈L\{1}

|l〉
(rl) = 0, r ∈ R \ {n}.

(4.2.1)

It can be seen that the worldsheet variable for the particle in the soft limit decouples,

and the equations reduce to n− 1 point Nk−2MHV equations when ε = 1, ε̃→ 0 and

n − 1 point Nk−3MHV equations when ε̃ = 1, ε → 0. Evaluated on the solution to

the lower point equations, the remaining equation for the particle that decoupled

gives the multiplicity for each solution, as shown in equation (2.8.9).

As detailed in [11] this method is sufficient to produce individual solutions for a

specific n and k, but difficulties are found when trying to construct all of the solutions

in this way. In four dimensions, two of the different solutions constructed from a

lower point amplitude can converge to the same higher point solution, as shown at 6

points NMHV in Figure 4.2. Hence the maximum number of solutions this algorithm
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can find is
〈
n−3
k−2

〉
, and generically it does not find all of the solutions.

MHV and MHV solutions are known analytically, and the first non MHV case is at 6

points NHMV, with four solutions. The ε soft limit gives a 5 point MHV amplitude,

and the ε̃ soft limit produces a 5 point MHV amplitude. The soft limit equations

both have two solutions. Figure 4.2 describes the norm of the MHV solutions as

they evolve from ε = 0 up to ε = 1 in blue, and the MHV solutions from ε̃ = 0 up

to ε̃ = 1 in yellow.

A norm is defined on the solutions by taking the standard norm on Cn, after flattening

the 2× 6 worldsheet matrix with gauge-fixed rows deleted down to C8. As depicted

in Figure 4.2, the solutions converge when ε = 1. Note that where the lines cross for

ε ∈ [0, 1] only the norms of the solutions are equal and not the solutions themselves.

Interestingly, when the algorithm is run for ε slightly larger than the 1 the solutions

separate again.

Figure 4.2: Convergent solutions at 6 points NMHV using CHY’s
inverse soft algorithm. Orange solid lines are solutions
coming from 5 points MHV and blue dashed lines are
from 5 points MHV.

In the case shown in Figure 4.2, both of the solutions from 5 points MHV collide

separately with two individual solutions from 5 points MHV . In general for different

randomly selected numerical momenta at 6 points NMHV I have found zero, one or
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two pairs of solutions converging, and the number of pairs that converge appears

to be random based on the selection of random momenta. Solution crashing is a

ubiquitous phenomenon; it occurs for nearly all choices and the difficulty is rather

to find cases where the solutions do not crash than to find cases where they do.

These difficulties with the inverse soft algorithm inspire developing new methods,

and I solve this problem using a Monte Carlo algorithm.

4.3 Monte Carlo Algorithm

The Monte Carlo equation solving algorithm in treeamps4dJAF is implemented via

NSolveMonteCarlo. Many initial random points are sampled from a distribution

described below, and chosen as the initial conditions for a FindRoot calculation.

These initial calls to FindRoot run for many iterations, and stop after only one digit

of precision is met. Most initial guess points will be far from a solution, and will not

converge to 1 digit of precision by the specified number of iterations. Those which

do not converge are discarded, and the ones that do converge go back into FindRoot

up to a higher precision. These points are now solutions, which are compared with

a list of all currently found solutions and duplicates are discarded. The algorithm

stops when a suitable stopping condition is met, which may be after a specified

amount of time or number of iterations, or when some or all solutions are found. A

pseudo-code for this algorithm is

function NSolveMonteCarlo(equations, variables)

Compile equations and Jacobian down to C code for faster evaluation

while a stopping condition is not met do

Sample 100 initial solution points from a specified distribution

Run FindRoot on each point. Stop after 1000 iterations, or when a point

solves the equations to 1 digit

Run FindRoot to higher precision for points that solved the equations
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Compare solutions to a specified precision and discard any duplicate

solutions found

end while

end function

NSolveMonteCarlo is tailored to the 4D scattering equations in the function

NSolveScatteringEquations4D. This specifies the stopping condition to be when

all of the Eulerian numbers of solutions are found, and selects an appropriate dis-

tribution to sample the random points from. Figure 4.3 gives a statistical analysis

of the time complexity of the algorithm1 and of the distribution of solution points

for all currently accessible n and k. Figure 4.4 expands on this analysis for 6 points

NMHV, giving a histogram of the timings. Timings are positively skewed with a

similar shape for other n and k. Based on this, the algorithm can currently handle

at most around 500 total solutions. Accessing the next cases would require around

1000 solutions, at 10 points N2MHV and 13 points NMHV.

I now analyse the sampling of the initial points, and explain which distribution to

sample from for most efficient results. Firstly, I solve momentum conservation in

terms of the spinors |1] and |2], and delete equations 1 and 2 so that these spinors do

not appear in the equations to be solved. This way every random numerical spinor

generated is unconstrained, and hence comes from the same uniform distribution.

Note that the statistics of the solution points is gauge dependent, and as I always

gauge fix particles 1 and 2 it is not possible to make a direct comparison between

data points with k = k′ and with k = n− k′, even though these cases at first glance

should be symmetrical.

I perform a statistical analysis at 6 points NMHV, as guided by the analytical

understanding in the MHV sector. A solution at 6 points NMHV can be considered

as a matrix in C2×4 after removing gauge-fixed columns. I project this down to a

1All timings were calculated on a Linux desktop computer with 3.30GHz Intel(R) Core(TM)
i7-5820K processor, and vary depending on what other processes were running during evaluation
of the algorithm.
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n k
〈
n−3
k−2

〉
Nruns Nσ γσ MADσ t STDt

6 3 4 7559 483776 0.448 0.462 1.82 s 1.23 s
7 3 11 1047 230340 0.433 0.448 12.5 s 12.2 s
8 3 26 1001 624624 0.443 0.461 1. min 50.1 s
9 3 57 57 90972 0.408 0.427 22.9 min 15.8 min
10 3 120 9 34560 0.423 0.427 4.33 hr 3.65 hr
11 3 247 2 17784 0.508 0.508 10.7 hr 1.57 hr
7 4 11 1001 220220 0.482 0.485 39.8 s 1.49 min
8 4 66 53 83952 0.439 0.447 31. min 29.9 min
9 4 302 2 16912 0.397 0.403 28.7 hr 2.67 hr
8 5 26 328 204672 0.539 0.533 3.45 min 3.02 min
9 6 57 51 81396 0.665 0.642 21.2 min 17.6 min
10 7 120 17 65248 0.698 0.702 59.8 min 34.9 min
11 8 247 2 17784 0.627 0.61 11.5 hr 7.81 hr
12 9 502 1 20080 1.71 1.76 22.3 hr -

Figure 4.3: Statistical summary of distribution of solutions to 4D
scattering equations and timings of NSolveMonteCarlo
algorithm. Nruns is the number of different set of nu-
merical momenta used, Nσ = (4n − 8)

〈
n−3
k−2

〉
Nruns is

the number of solution points checked, γσ is the scaling
parameter of the fitted Cauchy distribution and MADσ

is the median absolute deviation. t is the average time
and STDt is the standard deviation. Note that when
Nruns is small solution point statistics may not be reli-
able even though Nσ is large, as they come from a small
number of different choices of numerical momenta.

vector of real numbers in R16, and hence collect 48 real numbers for each set of

numerical momenta which I refer to as ‘solution points’. I then run the algorithm for

statistically many sets of random numerical momenta, and collect all of the solution

points together into one data set. A histogram of this data is plotted in Figure 4.5.

The data are best fitted by a Cauchy distribution, for which the probability density

function has the form

P(x;x0, γ) = 1
πγ

(
γ2

(x− x0)2 + γ2

)
. (4.3.1)

The data are symmetrically distributed around 0, and hence the location parameter

x0 = 0. This leaves only one remaining parameter γ, which is tabulated for some

cases in Figure 4.3. Apriori it would be expected that γ is a function of n, k and
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Figure 4.4: Histogram of timings for finding all solutions
to the 4D scattering equations for 7559 sets
of numerical momenta at 6 pts NMHV using
NSolveScatteringEquations4D. The blue curve is
FrechetDistribution[3.7,1.6,-0.2], as a best fit by
Mathematica.

the size of the uniform distribution from which the random momenta are sampled.

Some intuition can be used from the analytical result in the MHV sector to reduce

this down to just γ = γ(n, k). Solution points in the MHV sector have a form such

as Re( 〈12〉
〈1r〉), as shown in Section 3.1. Hence the size of the uniform distribution from

which the random events are sampled will divide out statistically, and will not affect

the distribution of the solution points. This independence is guaranteed for higher

MHV degrees as solutions have mass dimension 0. Performing a statistical analysis

of numerical solutions to the scattering equations outside of the MHV sector also

verifies these properties, for example as shown in Figure 4.3 where different values

for γ are tabulated. The data in Figure 4.3 show that γ is insensitive to k also. I

find this independence of γ on n and k to be intriguing and counter-intuitive.

From this analysis, it seems clear that the initial points should be sampled from the

relevant Cauchy distribution. However, very many initial points must be sampled

for each iteration of the algorithm, and sampling points from Cauchy distribution

is significantly slower than sampling from a uniform distribution. I find in practice

that it is more efficient to approximate this Cauchy distribution with a uniform
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Figure 4.5: Histogram of 43776 solution points at 6 points NMHV
taken from 7559 different random momenta. The blue
dashed curve is CauchyDistribuion[0,0.447], and
the red solid curve is an approximation with the uniform
distribution U([−0.894, 0.894]).

distribution. To approximate a normal distribution with a uniform distribution, one

could choose a symmetric range with a width which is a small multiple of the standard

deviation, eg. U([−2σ, 2σ]). This poses a problem with the Cauchy distribution as it

has infinite standard deviation. I use instead the median absolute deviation (MAD),

which is roughly equivalent to the γ parameter of the Cauchy distribution, and is

tabulated for different n and k in Figure 4.3. To solve the equations for a given n and

k, NSolveScatteringEquations4D uses the tabulated MAD values from Figure 4.3

to sample initial points from U([−2 MAD, 2 MAD]).

When finding solutions by Monte Carlo algorithm, a large percentage (∼ 3
4) of the

solutions tend to be found comparatively quickly, and it can take a long time to

find the remaining solutions. It is possible that sampling a certain percentage of

the solutions from the approximated uniform distribution and then sampling the

remaining solutions from the relevant Cauchy distribution could help to overcome

this problem; I leave this for future work.
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4.4 Efficient Component Amplitude Extraction

Extracting individual component amplitudes from a super amplitude written as an

expansion in Grassmann parameters is a well specified and well understood operation,

as explained in Section 2.3. Explicitly evaluating these calculations on the computer

is not as simple as the operation itself might suggest. The most naïve application is

to expand out the Grassmann super amplitude in terms of each of its factors, and

to then throw away any of the terms which are equal to zero either due to η2 = 0 or

because they do not match the integration measure, but this algorithm is prohibitive

in terms of memory usage in the computer. For example a product of m ∈ N factors

each with a sum of m terms in different Grassmann numbers will result in a total of

mm terms when expanding out naively, nearly all of which are zero. This motivates

finding a more efficient algorithm.

In the scattering equation formalism, the Grassmann delta functions are always

written in the form ∏
l∈L δ

N
(
ηl −

∑
r∈R

ηr
(lr)

)
. Integrals of this expression over a

subset of the η variables of dimension kN are a special case of a Grassmann integral

of the form IG :=
∫
dmη

∏m
i=1(∑m

j=1Aijηj), where some components of the matrix A

are given by worldsheet minors, and the rest are zero. Grassmann integrals of this

type can be evaluated in an especially neat analytical form, and it is found that IG =

det(A). Numerical computation of determinants is generally implemented with an

algorithm of time complexity around O(m3), and hence the Grassmann components

can be extracted in a very efficient way using this formula. Grassmann integration

of functions of this form then consists simply of assigning the correct values to the

matrix A and calculating its determinant. Any product of Grassmann delta functions

takes this form, and specifically the fermionic delta functions of the scattering

equations, as well as many other standard representations for superamplitudes.

The RAM and time efficiency of this algorithm can be improved further for numerical

computations by storing the matrix as a sparse array, where all elements are assumed

to be zero unless they are specified (in the case of the 4D scattering equations as
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worldsheet minors). The evaluation of the determinant can then be held until explicit

numerical values are substituted in for the worldsheet minors, and the determinant

of a numerical matrix is all that need be calculated. Calculation in this way is very

efficient, saving the need to store large intermediate analytical expressions in the

RAM.

4.5 Implementation in Mathematica with

treeamps4dJAF

treeamps4dJAF provides a set of computational tools in Mathematica for ana-

lytical and numerical calculation of amplitudes at tree-level. The package’s most

high-end functions are tailored for calculations in the 4D scattering equation form-

alism using the techniques derived in Chapters 3 and 4 of this thesis. It is simple

within the package to insert new scattering equation integrands and sum them over

solutions to the equations, providing a toolbox to explore new theories in which the

equations may be relevant. The package also provides functionality for calculating

MHV amplitudes analytically with specified external states in the supermultiplets

of Yang-Mills and Einstein gravity theories, and graviton multiplets in conformal

supergravity. Moving out of the MHV sector the package also provides function-

ality for solving the scattering equations numerically and using these solutions to

calculate amplitudes. At a more low-level analysis of the code, many functions

and a framework are provided for analytical computations in general in the spinner

helicity formalism for amplitudes, including for example functions for dealing with

antisymmetric brackets and the Schouten identity, and for evaluating expressions in

terms of momentum twistors numerically.

I include some discussion of the key functions from the package in [1], and in the

supporting files of the arXiv submission I provide the Mathematica package along

with example code and full documentation, and a lookup table with solutions to
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the equations. Numerical solutions to the 4D scattering equations up to 12 points

NMHV and 9 points in all MHV sectors are currently accessible to the algorithms

of treeamps4dJAF, and I tabulate full solution sets with rational external data for

these cases in the accompanying data file SolutionLookupTable.csv which allows

for fast calculation of amplitudes without solving the equations.





Chapter 5

From 4D Scattering Equations to

On-Shell Diagrams in N = 4 Super

Yang-Mills

In this chapter I develop the theory of scattering amplitudes in N = 4 super Yang-

Mills by relating formula derived from on-shell diagrams with those supported on

4D scattering equations, based on my work from [2] and appendix C of [3]. I start

with the MHV sector at tree level in Section 5.1, where I first derive a Grassmannian

integral formula for the amplitude using on-shell diagrams. I then map the worldsheet

expression supported on 4D scattering equations into this Grassmannian integral

formula using link variables. I then move to the NMHV sector at tree level in

Section 5.2 where I use the same approach, taking into account the fact that this

case is more complex as a choice of contour is necessary to specify the Grassmannian

integral. I show how to relate the contours arising from the 4D scattering equations

and on-shell diagrams by a global residue theorem, and how the three terms arising

from on-shell diagrams come from a single top form which can be calculated from a

Postnikov diagram. Finally in Section 5.3, I use on-shell diagrams to obtain a new

worldsheet formula for the 1-loop four point amplitude via the link variable mapping.

This formula is manifestly supersymmetric and supported on new 1-loop scattering
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5.1 Tree-level MHV

In this section I derive Grassmannian integral formulae for tree-level MHV amplitudes

in N = 4 super Yang-Mills using on-shell diagrams and the 4D scattering equations.

The 4D scattering equation formulae can already be thought of as integrals over the

Grassmannian Gr(2, n) if the worldsheet coordinates σi are arranged into a 2 × n

matrix. For Nk−2MHV amplitudes, this Gr(2, n) must be mapped into Gr(k, n)

via link variables in order to compare with the expressions obtained from on-shell

diagrams, so I will first describe this mapping for MHV amplitudes. I will generalize

to non-MHV and 1-loop amplitudes in subsequent sections.

I will first derive the Grassmannian integral formula for MHV amplitudes by mapping

the 4D scattering equation formula in (2.11.13) into link variables. This can be

accomplished by inserting 1 in the form

1 =
∫ ∏

l∈L,r∈R
dclrδ

(
clr −

1
(lr)

)
(5.1.1)

to obtain

A(0)
n,2 =

∫ d2×nσ

GL(2)
∏
i∈N

1
(i i+1)

∏
l∈L,r∈R

dclrδ

(
clr −

1
(lr)

)

×
∏
l∈L

δ2|4
(
|l]−

∑
r∈R

clr |r]
) ∏
r∈R

δ2

|r〉+
∑
l∈L

clr |l〉


where the left set is chosen to be L = {1, 2}. Using GL(2) symmetry to fix σ1 = ( 1

0 )

and σ2 = ( 0
1 ), then (12) = 1, (1r) = σ2

r and (2r) = −σ1
r , the delta functions in the

link variables can then be written as

∏
l∈L,r∈R

δ

(
clr −

1
(lr)

)
=
∏
r∈R

1
c2

1rc
2
2r
δ
(
σ2
r − 1/c1r

)
δ
(
σ1
r + 1/c2r

)
. (5.1.2)

Furthermore, on the support of these delta functions

(i i+1) = c1ic2i+1 − c1i+1c2i

c1ic2ic1i+1c2i+1
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Figure 5.1: On-shell diagram for tree-level n-point MHV amplitude
in N = 4 super Yang-Mills in terms of (n − 1)-point
MHV amplitude

for 3 ≤ i ≤ n−1. Hence, the worldsheet coordinates are integrated against the delta

functions in (5.1.2) the following integrals over link variables are left:

A(0)
n,2 =

∫ d2×(n−2)C

(12)...(n1)δ
(2|4)×2

(
C · λ̃

)
δ2×(n−2)

(
λ · C⊥

)
where the link variables have been arranged into a 2× n matrix C

C =

 1 0 c13 ... c1n

0 1 c23 ... c2n

 (5.1.3)

and (ij) now refers to a minor of C involving columns i and j rather than an inner

product of worldsheet coordinates. If C is thought of as an element of Gr(2, n), the

formula above corresponds to a particular choice of coordinates on this space. The

formula for MHV amplitudes can then be written covariantly as follows

A(0)
n,2 =

∫ d2×nC

GL(2)
1

(12)...(n1)δ
2×(2|4)

(
C · λ̃

)
δ(n−2)×2

(
λ · C⊥

)
. (5.1.4)

where the GL(2) allows one to fix four elements of the C-matrix, as done in (5.1.3).

It not difficult to derive this expression directly from on-shell diagrams. Indeed

for MHV amplitudes, there is only one on-shell diagram to consider, depicted in

Figure 5.1. At n points, it is given by
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A(0)
n,2 =

∫ dβ

β

dγ

γ

∫ d2×(n−1)C

GL(2) δ2×(2|4)
(
C · λ̃

)
δ(n−2)×2

(
λ · C⊥

)
I
(
1̂, 2, ..., n̂−1

)

where I is the integrand of the (n − 1)-point sub-amplitude, without the delta

functions. The C matrix can be computed in terms of edge variables following the

algorithm in Section 6.1, and is given by

C =

 1 ... 0 γ

0 ... 1 β

 ,
where the rows correspond to legs (1, n−1) and the ellipsis encodes the edge variables

of the subdiagram. Noting that (1n−1) = 1, (1n) = β, and (nn−1) = γ, the integral

over edge variables can be uplifted to the following covariant expression in Gr(2, n)

A(0)
n,2 =

∫ d2×nC

GL(2)
(1n−1)

(1n)(nn−1)δ
2×(2|4)

(
C · λ̃

)
δ(n−2)×2

(
λ · C⊥

)
I
(
1̂, 2, ..., n̂−1

)
.

Using the GL(2) symmetry to set C = λ, the following recursion relation is obtained

for MHV amplitudes

A(0)
n,2 = 〈1n−1〉

〈1n〉 〈nn−1〉A
(0)
n−1,2

which is easily solved to give

A(0)
n,2 = δ4|8(P )∏

i∈N 〈i i+1〉 .

It is easy to see that (5.1.4) is the unique Grassmannian uplift of the above formula,

which can be seen by using the GL(2) symmetry to choose C = λ.

5.2 Tree-level NMHV

In this section I generalize the calculations of Section 5.1 to non-MHV amplitudes,

which involves an additional subtlety. Whereas Grassmannian integrals for MHV

amplitudes are completely localised by the bosonic delta functions in C · λ̃ and λ ·C⊥,

for non-MHV amplitudes there will be more integrals than delta functions so one
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must specify a contour in order to make the integrals well-defined. In particular,

for an Nk−2MHV amplitude there will be k(n− k) integrations and 2n− 4 bosonic

delta functions (after subtracting four that impose momentum conservation), so

the dimension of the contour will be (k − 2)(n − k − 2). The precise form of the

Grassmannian contour integral will depend on the method one uses to compute

the amplitudes. The contour integral implied by BCFW reduces to summing over

residues of a single top form in the Grassmannian, each of which corresponds to an

on-shell diagram, and can be related to the contour integral arising from the 4D

scattering equations using global residue theorems.

To make the discussion as simple as possible I will focus on the example of the

6-point NMHV amplitude, which is the simplest example of a non-MHV amplitude

since the contour in the Grassmannian Gr(3,6) is one-dimensional. I first review how

to obtain its Grassmannian integral formula, which was previously derived using

various approaches in [28, 78, 72, 120, 73].

4

2 3

56

1

6

21

5

43

1

32

6 5

4

3+5 4+4 5+3

Figure 5.2: On-shell diagrams contributing to the 6-point NMHV
amplitude in N = 4 super Yang-Mills

Using the recursion relation defined in Figure 2.2, there are three on-shell diagrams

contributing to the 6-point NMHV amplitude, which are shown in Figure 5.2. The

first one corresponds to combining a three point MHV diagram with a five point

MHV diagram which will be referred to as the 3+5 channel diagram. Secondly two

four point diagrams can be pasted together, this channel will be called the 4+4
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channel. Finally, a five point MHV can be pasted together with a three point MHV

diagram, and this will be referred to as the 5+3 channel.

Α8

Α7

Β

Α6

Α1

Α5

Α4

Α2

Α3
1

32

6 5

4

Figure 5.3: The 5+3 channel BCFW diagram contributing to the
6 point NMHV in N = 4 super Yang-Mills. Edge vari-
ables are denoted as αi. The label β is not an edge
variable.

On-shell diagrams in N = 4 super Yang-Mills can be evaluated in terms of edge

variables using the algorithm defined in Section 2.9. Assigning arrows and variables

to the edges of the 5+3 diagram as shown in figure 5.3 gives following formula for

the C-matrix by summing over paths between external legs

C5+3 =


α2α5 α3α5 + α4 1 0 0 0

α2 α3 0 1 α6 0

α8(α1 + α2) α3α8 0 0 α7 1

 , (5.2.1)

where the rows correspond to legs 3, 4, 6 which have incoming arrows. This matrix

has the minor (456) = 0, which will ultimately imply a contour in the Grassmannian

when writing down a covariant formula for the 5+3 diagram. In order to derive such

a formula, first consider the following deformation of the C-matrix,

C̃5+3 =


α2α5 α3α5 + α4 1 0 α 0

α2 α3 0 1 α6 0

α8(α1 + α2) α3α8 0 0 α7 1

 . (5.2.2)
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This deformed matrix now has (456) = α and depends on nine parameters, so it

can be used to define an integral over Gr(3, 6). Using the algorithm in 2.9, the 5+3

diagram is given in terms of edge variables by

A(0)
6,3 (5+3) = Res

α=0

∫ dα

α

8∏
i=1

dαi
αi
δ3×(2|4)(C̃ · λ̃)δ3×2(λ · C̃⊥). (5.2.3)

Using

d9C̃ = α2α3α8dα
8∏
i=1

dαi

and

(123)(234)(345)(456)(561)(612) = αα1α2α
2
3α4(α2α5α6 − αα2)α7α

2
8,

equation (5.2.3) can be uplifted to following covariant formula,

A(0)
6,3 (5+3) = Res

(456)=0

∫
d3×6Ω4,

where d3×6Ω4 is as defined in (2.9.2).

In summary, I find that the 5+3 diagram arises from a residue of the canonical

volume form of Gr(3, 6). From this, the 3+5 diagram can be calculated immediately

by complex conjugating and permuting the external legs. Under this mapping,

[ij]↔ 〈ij〉, and (ijk)→ εijkabc(abc) and the permutation P = ( 1 2 3 4 5 6
4 3 2 1 6 5 ) is applied

to obtain

A(0)
6,3 (3+5) = Res

(234)=0

∫
d3×6Ω4 (5.2.4)

Finally consider the 4+4 channel diagram, which is oriented and labelled as in

figure 5.4. In this case, the (612) minor of the C-matrix vanishes, so the following

deformed matrix is considered

C̃ =


α2 1 α3(α5α6 + α7) α3α6 0 0

α 0 α5α6 α6 1 0

α1α4 0 α4(α5α6 + α7) + α5α6α8 α6(α4 + α8) 0 1

 , (5.2.5)

which has been constructed to have the minor (612) = α. In terms of edge variables,
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Α6

Α8

Α4

Γ

Α7Α3

Α2

Β

Α1

Α5

6

21

5

43

Figure 5.4: The 4+4 channel BCFW diagram contributing to the
6 point NMHV amplitude in N = 4 super Yang-Mills.
Edge variables are denoted as αi. The labels β and γ
are not edge variables.

the diagram can be written

A(0)
6,3 (4+4) = Res

α=0

∫ dα

α

8∏
i=1

dαi
αi
δ3×(2|4)(C̃ · λ̃)δ3×2(λ · C̃⊥).

Noting that

d3×3C̃4+4 = α3α4α
3
6α7dα

8∏
i=1

dαi

and

(123)(234)(345)(456)(561)(612) =

αα2α
2
3α4α

3
6α

2
7α8(−α1α4α5α6 + α(α4(α5α6 + α7) + α5α6α8)), (5.2.6)

the 4 + 4 diagram uplifts to the following covariant expression:

A(0)
6,3 (4+4) = Res

(612)=0

∫
d3×6Ω4. (5.2.7)

Note that the 4+4 must be self-conjugate under complex conjugation, and (612)

exactly remains invariant under this transformation, paired with the permutation P

defined in the 5+3 calculation.

Hence, the full amplitude can be written as a sum of three residues of a single top

form

A(0)
6,3 =

(
Res

(234)=0
+ Res

(456)=0
+ Res

(612)=0

)∫
d3×6Ω4 (5.2.8)
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Β Γ

Α

Figure 5.5: Postnikov diagram for the 6 point NMHV amplitude in
N = 4 super Yang-Mills

1

2

k-1

k

k+1 k+2 n-1 n

⋮

…

→

→

→

Figure 5.6: Postnikov diagram for n-point Nk−2MHV amplitude in
N = 4 super Yang-Mills

This can be written as a contour integral if one defines the contour to encircle the

three poles in (234), (456), and (612). The existence of such a formula relies on the

fact that the three on-shell diagrams in Figure 5.2 can be embedded into a single

diagram depicted in Figure 5.5, which is referred to as a Postnikov diagram [121].

In particular, the 3+5, 5+3 and 4+4 diagrams in Figure 5.2 correspond to residues

with respect the edge variables α, β and γ respectively, using the square moves and

mergers. More generally, the Postnikov diagram for an n-point Nk−2MHV amplitude

in N = 4 super Yang-Mills can be constructed as in Figure 5.6 [122].

I now derive a Grassmannian contour integral formula for the 6-point NMHV amp-
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litude of N = 4 super Yang-Mills using the 4D scattering equation integral formula,

A(0)
6,3 =

∫ d2×6σ

GL(2)
∏
i∈N

1
(i i+1)

∏
l∈L

δ2|4
(
|l]−

∑
r∈R

|r]
(lr)

) ∏
r∈R

δ2

|r〉 −∑
l∈L

|l〉
(rl)


where I have chosen the left set to be L =∈ {1, 3, 5}. First multiply by 1 in the form

of an integral over link variables

1 =
∫ ∏

l∈L,r∈R
dclrδ

(
clr −

1
(lr)

)

to obtain

A(0)
6,3 =

∫ d2×6σ

GL(2)
∏
i∈N

1
(i i+1)

∏
l∈L,r∈R

dclrδ

(
clr −

1
(lr)

)

×
∏
l∈L

δ2|4
(
|l]−

∑
r∈R

clr |r]
) ∏
r∈R

δ2

|r〉+
∑
l∈L

clr |l〉

 .
Next use the GL(2) symmetry to fix σ1 = ( 1

0 ) and σ3 = ( 0
1 ), so that the eight

remaining worldsheet coordinates are fixed by eight of the delta functions in the link

variables. In particular,

∏
r∈R

δ

(
c1r −

1
(1r)

)
δ

(
c3r −

1
(3r)

)
=
∏
r∈R

1
c2

1rc
2
3r
δ
(
σ2
r −

1
c1r

)
δ
(
σ1
r + 1

c3r

)

and

δ

(
c52 −

1
(52)

)
δ

(
c54 −

1
(54)

)
= c12c34c32c14

c2
52c

2
54 (c32c14 − c12c34)δ

2 (σ5 − σ∗5)

where

σ∗5 = 1
c52c54 (c32c14 − c12c34)

 c12c14 (c32c54 − c34c52)

c32c34 (c12c54 − c14c52)

 . (5.2.9)

Note that there is one remaining delta function in the link variables which will not

be integrated out, and which provides the following constraint on the clr

δ

(
c56 −

1
(56)

)
= c52c54c16c36 (c32c14 − c12c34)

c56
δ(S)

where
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S = c52c36 (c54c16 − c56c14) (c12c34 − c14c32)

− c32c56 (c14c36 − c16c34) (c52c14 − c54c12) .

Putting everything together then gives

A(0)
6,3 =

∫
d3×3C

(135)δ(S)
(123)(345)(561)δ

3(2|4)
(
C · λ̃

)
δ2×3

(
λ · C⊥

)
(5.2.10)

where

C =


1 c12 0 c14 0 c16

0 c32 1 c34 0 c36

0 c52 0 c54 1 c56


and

S = (123)(561)(346)(245)− (125)(136)(456)(234). (5.2.11)

Uplifting equation (5.2.10) to a covariant expression in Gr(3, 6) gives a contour

integral in the Grassmannian, taking δ(S) → 1/S and defining the contour to

encircle the pole at S = 0 gives

A(0)
6,3 = Res

S=0

∫ d3×6C

GL(3)
1
S

(135)
(123)(345)(561)δ

3×(2|4)
(
C · λ̃

)
δ3×2

(
λ · C⊥

)
. (5.2.12)

A global residue theorem can now be applied to wrap the contour around the other

poles of the integrand to obtain

A(0)
6,3 =

(
Res

(123)=0
+ Res

(345)=0
+ Res

(561)=0

)∫ d3×6C

GL(3)
1
S

(135)
(123)(345)(561)×

δ3×(2|4)
(
C · λ̃

)
δ3×2

(
λ · C⊥

)
.

(5.2.13)
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Using Plücker identities, S in equation (5.2.11) can be written as

S = (135)(234)(456)(612)− (246)(123)(345)(561).

Noting that the second term in S can be discarded on support of each of the residues

in (5.2.13), it can be seen that (5.2.13) is equivalent to (5.2.8), which was deduced

from on-shell diagrams.

In summary, I have obtained two Grassmannian contour integral formulae for the

6-point NMHV amplitude in N = 4 super Yang-Mills using on-shell diagrams and

the 4D scattering equations, given by equations (5.2.8) and (5.2.12) respectively.

Remarkably, these two contour integrals are related by a global residue theorem.

5.3 One-Loop

In this section I derive a worldsheet formula for the 1-loop four-point integrand in

N = 4 super Yang-Mills using on-shell diagrams. The worldsheet formula is are

manifestly supersymmetric and supported on 4D 1-loop scattering equations refined

by MHV degree.

Using the on-shell diagram recursion in Figure 2.2, I find that the 1-loop four-point

amplitude can be obtained by applying a forward limit and BCFW bridge to the tree-

level 6-point NMHV amplitude, which is described by the three on-shell diagrams

in Figure 5.2. After doing so, only the 4 + 4 channel diagram survives and using

square moves and mergers the 1-loop 4-point amplitude can be described by the

on-shell diagram in Figure 5.7 (for more details, see [65]), which can be obtained

from the diagram in Figure 5.8 by taking the forward limit on legs − and + and

attaching a BCFW bridge to legs 1 and 4. The strategy will therefore be to derive

a Grassmannian integral formula for Figure 5.8, convert it to a worldsheet formula,

and apply a forward limit and BCFW bridge to obtain a worldsheet formula for the

1-loop 4-point amplitude.
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|0]〈0|

α|4]〈1|

Figure 5.7: On-shell diagram for 1-loop four-point amplitude in
N=4 super Yang-Mills

+ −

Figure 5.8: On-shell diagram from which Figure 5.7 can be obtained
by taking a forward limit and adding a decorated BCFW
bridge.

Based on this prescription I define the loop momentum to be the sum of the momenta

in these two edges:

` := |0] 〈0|+ α |4] 〈1| , (5.3.1)

and I define two left and right sets, one for the 4 point amplitude and one for the

6 point diagram before taking the forward limit. Then L := {1, 2} and R := {3, 4}

so that N = L ∪ R = {1, 2, 3, 4}, and L′ := {1, 2,−} and R′ := {3, 4,+}, with

N ′ = L′ ∪R′ = N ∪ {+,−}.

The diagram in Figure 5.8 can be obtained from the on in Figure 5.4 by relabelling

the external legs according to P = ( 1 2 3 4 5 6
1 + − 4 3 2 ). Applying this relabelling to (5.2.7)
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then gives the following Grassmannian integral formula for Figure 5.8:

A(0)
6,3 (4+4)′ = Res

(012)=0

∫ d3×6C

GL(3)
∏
i∈N ′

1
(i i+1 i+2)δ

3×(2|4)
(
C · λ̃

)
δ3×2

(
λ · C⊥

)
. (5.3.2)

To convert this into a worldsheet formula, it is written in terms of link variables

which can then be written in terms of GL(2) covariant minors of the worldsheet σ

variables. This can be accomplished by choosing coordinates on the Grassmannian

such that

C =


c1+ 1 0 c13 c14 0

c2+ 0 1 c23 c24 0

0 0 0 c−3 c−4 1

 (5.3.3)

where the rows correspond to legs 1, 2, 5. The residue in (5.3.2) sets c−+ = 0, and

hence there are eight link variables which are fixed by eight bosonic delta functions in

(5.3.2); recall that the remaining four delta functions enforce momentum conservation.

Equation (5.3.2) can then be written as

A(0)
6,3 (4+4)′ =

∫
d8C

∏
i∈N ′

1
(i i+1 i+2)δ

2×(2|4)
(
C · λ̃

)
δ3×2

(
λ · C⊥

)

where d8C is an integral over the eight link variables in (5.3.3).

The next step is to convert this to a worldsheet integral by introducing six punctures

on the 2-sphere with homogeneous coordinates σi ∈ C2, i ∈ N ′. Setting σ1 = ( 0
1 )

and σ2 = ( 1
0 ), the coordinates of the remaining four punctures then provide eight

integration variables which match the number of link variables. To map the link

variables into worldsheet coordinates, multiply equation (5.3.2) by a factor of 1 in

the form

1 =
∫ ∏

i∈N ′−L
d2σi

∏
r∈R′

δ
(
σ1
r + 1

c1r

)
δ
(
σ2
r −

1
c2r

) δ2
(
σ− − σ∗−

)
(5.3.4)

where
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σ∗− = 1
c−3c−4 (c14c23 − c13c24)

 (c14c−3 − c13c−4) c23c24

(c23c−4 − c24c−3) c13c14

 ,
which has been chosen so that

δ2
(
σ− − σ∗−

)
= (12)(34)

∏
r∈R

1
(r−)2 δ

(
c−r −

1
(−r)

)
(5.3.5)

in terms of worldsheet minors (ij). The remaining delta functions in equation (5.3.4)

can also be written in terms of worldsheet minors as

∏
r∈R′

δ
(
σ1
r + 1

c1r

)
δ
(
σ2
r −

1
c2r

)
=
∏
r∈R′

1
(1r)2(2r)2 δ

(
c1r −

1
(1r)

)
δ

(
c2r −

1
(2r)

)
.

(5.3.6)

Using these expressions it is now straightforward to integrate out the link variables

against the delta functions, leaving an integral over worldsheet coordinates. Uplifting

the resulting worldsheet integral to a covariant expression in Gr(2, n) gives,

A(0)
6,3 (4+4)′ =

∫ d2×6σ

GL(2)
∏
i∈N ′

1
(i i+1)

(14)(+−)
(1−)(+4)δ

2|4
(
|−]−

∑
r∈R

|r]
(−r)

)
δ2

|+〉 −∑
l∈L

|l〉
(+l)


×
∏
l∈L

δ2|4
(
|l]−

∑
r∈R

|r]
(lr) −

|+]
(l+)

) ∏
r∈R

δ2

|r〉 −∑
l∈L

|l〉
(rl) −

|−〉
(r−)

 .
To obtain a worldsheet formula for the 1-loop amplitude from this expression then

take a forward limit |+] 〈+| = − |−] 〈−| by setting (|−] , |−〉 , η−) = (|+] ,− |+〉 , η+),

and define a new set of variables for the loop momentum so that (|0] , |0〉 , η0) :=

(|−] , |−〉 , η−), as well as BCFW shifting legs 1 and 4. The loop momentum is then

defined as in equation (5.3.1), and the measure in these variables is given by

d4`

`2 = d2 |0] d2 |0〉
vol GL(1)

dα

α
.

Then exchange the definitions of σ+ and σ− to give

A(1)
4,2 =

∫ d4`

`2
d2×6σ

GL(2)
∏
i∈N ′

1
(i i+1)

(14)(+−)
(1−)(+4)δ

2(Ẽ(1)
0 )δ2

(
E

(1)
0

)∏
l∈L

δ2|4
(
Ẽ

(1)
l

) ∏
r∈R

δ2
(
E(1)
r

)
,

(5.3.7)
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where the 4 point 1 loop scattering equations refined by MHV degree are given by

the zeros of the following functions

Ẽ0 := |0]−
∑
r

|r]
(−r) , E0 := |0〉 −

∑
l

|l〉
(+l) (5.3.8)

El := |̂l]−
∑
r∈R

|r]
(lr) + |0]

(l+) , Er := ˆ|r〉 −
∑
l∈L

|l〉
(rl) −

|0〉
(r−) , (5.3.9)

where ˆ|4〉 = |4〉 − α 〈1|,
( ˆ|1], η̂1

)
= (|1] + α |4] , η1 + αη4), and the hats act trivially

on the other spinors.

The ratio of brackets multiplying the Parke-Taylor factor corresponds to summing

over the exchange of σ+ and σ−, by the identity

∑
+→−

1
(−1)(12)(23)(34)(4+)(+−) = 1

(−1)(12)(23)(34)(4+)
(14)

(+1)(4−) . (5.3.10)

Compared to the tree level equations there are also two auxiliary punctures σ+ and

σ− which encode the loop momentum. Making the following definition for a 4 point

one loop scattering equation delta function

δ2×6|4×2(SE(1)
4,L) := δ2

(
Ẽ

(1)
0

)
δ2
(
E

(1)
0

)∏
l∈L

δ2|4
(
Ẽ

(1)
l

) ∏
r∈R

δ2
(
E(1)
r

)
, (5.3.11)

the 4 point 1 loop integrand of N = 4 super Yang-Mills can then be written as the

following 6 point worldsheet integral supported on 1 loop 4D scattering equations

refined by helicity degree

A(1)
42 =

∫ d4`

`2
d2×6σ

vol GL(2)

(
1

(−1)...(4+)(+−) + (+↔ −)
)
δ2×6|4×2(SE(1)

4,L) (5.3.12)

The scattering equations in (5.3.8) have a unique solution on the support of which

the worldsheet integral in (5.3.12) gives rise to the standard loop integrand in terms

of quadratic Feynman propagators, and I will now solve the equations explicitly

to show that the worldsheet integral evaluates to the 4 point 1 loop integrand.

After replacing the scattering equations for particles 3 and 4 to give a momentum

conservation delta function and gauge fixing the punctures for particles 1 and 2, the
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equations form a linear system with solution

σsol =

 1 0 [34]〈12〉
〈1|3+0|4] −

[34]〈12〉
〈1|4+0|3]

〈12〉
〈10〉

〈2|3+0|4]〈2|4+0|3][20]
P 2

034̂
〈12〉[03][04]

0 1 [34]〈12〉
〈2|3+0|4] −

[34]〈12〉
〈2|4̂+0|3]

〈12〉
〈20〉

〈1|3+0|4]〈1|4+0|3][01̂]
P 2

034̂
〈12〉[03][04]

 ,

where the columns are labelled 1, 2, 3, 4,+,−, and P034̂ = |0] 〈0|+ |3] 〈3|+ |4]
〈
4̂
∣∣∣ =

` + k3 + k4. The relevant minors of this matrix needed to evaluate the worldsheet

integral are given by

(12) = 1 (23) = − [34]〈12〉
〈1|3 + 0|4]

(14) = − [34]〈12〉
〈2|4̂ + 0|3]

(34) =
[34]3〈12〉3P 2

034̂
〈1|3 + 0|4]〈1|4 + 0|3]〈2|3 + 0|4]〈2|4̂ + 0|3]

(−1) = −〈1|3 + 0|4]〈1|4 + 0|3][01̂]
[03][04]〈12〉P 2

034̂
(4+) = [34]2〈12〉3〈04̂〉

〈2|4̂ + 0|3]〈1|4 + 0|3]〈10〉〈20〉

(+1) = −〈12〉
〈20〉 (4−) = [34]

[03] ,

and the Jacobian for the system, defined by δ2×6(SE(1)
4,L) = J δ(4) (P ) δ(8) (σ − σsol),

is given by

J = [34]8〈12〉8
P 2

034̂〈1|3 + 0|4]〈1|4 + 0|3]〈2|3 + 0|4]〈2|4 + 0|3][30]2[40]2〈10〉2〈20〉2 . (5.3.13)

Combining the integrand and Jacobian on support of the solution above, the world-

sheet integral can be evaluated to

A(1)
42 =

∫ d4`

`2

∫
d2×6σ δ2×6|4×2(SE(1)

4,L) (14)
(−1)(12)(23)(34)(4+)(+1)(4−)

= δ4|8(P ) [34]2

〈12〉2
∫ d4`

`2(`+ k4)2(`+ k3 + k4)2(`+ k2 + k3 + k4)2 ,

noting that |0] 〈0|+ |4]
〈
4̂
∣∣∣ = `+ |4] 〈4|, which is the four point amplitude as required.

I now point out some important features of the worldsheet formula for the 1-loop

4-point amplitude in (5.3.7). First note that it contains an integral over the loca-

tions of six punctures on a genus-0 worldsheet. Whereas the punctures 1, .., 4 are

associated with the four external particles being scattered, punctures − and + are

associated with the two internal particles participating in the forward limit. The
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Figure 5.9: The worldsheet configuration describing a 1-loop 4-point
amplitude using the 4D scattering equations.

worldsheet can therefore be visualised as Figure 5.9, which corresponds to a non-

separating degeneration of a genus-1 worldsheet (similar to the 1-loop amplitudes

of 10D ambitwistor string theory [33]). The integral over loop momentum is im-

plemented by decomposing it according to (5.3.1) and integrating over the forward

limit momentum |0] 〈0| and BCFW shift parameter α which appear in the 1-loop

scattering equations in (5.3.8). Note that (5.3.7) is manifestly supersymmetric and

does not contain Pfaffians, so is simpler than previous worldsheet formulae for 1-loop

amplitudes. On the other hand, it must be regulated when integrating over loop

momentum since it is intrinsically four-dimensional.

A natural question is then how to extend this formula to higher points, which is

currently unclear. At five points, there are three on-shell diagrams, two of which

encode the forward limit of a 7-point tree-level amplitude and one of which encodes

a one-loop four-point amplitude dressed with a soft factor, as explained in more

detail in [3]. Although it is straightforward to map each on-shell diagram into a

worldsheet integral, it is unclear how to combine them into into a single worldsheet

formula because the scattering equations associated with the soft term appear to be

incompatible with those encoding the forward limit. The natural generalisation of

(5.3.12) to n points is

A(1),FL
n =

∫ d4`

`2
d2×(n+2)

vol GL(2)

 ∏
i∈N ∪{+,−}

1
(i i+ 1) + (+↔ −)

 δ(SE), (5.3.14)
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which evaluates to the forward limit contribution to a general n-point one-loop

NkMHV amplitude, rather than evaluating to the full integrand. The intuition

coming from these formulae of adding a BCFW shift to a worldsheet expression lead

to n-point worldsheet formulae with quadratic propagators in the general dimensional

formalism in [3].





Chapter 6

On-Shell Diagrams in N = 8

Supergravity

In this chapter I extend the theory of on-shell diagrams in N = 8 supergravity first

considered in [70], based on my work from [4]. I start by describing a streamlined

algorithm for computing on-shell diagrams in this setting in Section 6.1. I then

derive the Hodges form of the tree level MHV amplitude in Section 6.2, starting

with a Grassmannian integral formula for the amplitude using on-shell diagrams,

and then mapping the worldsheet expression supported on 4D scattering equations

into this Grassmannian integral formula using link variables. In Section 6.3 I derive

a simplified version of the BGK formula for the tree level MHV amplitude, using a

planar recursion in the on-shell diagram formalism. I then move to the NMHV sector

at tree level in Section 6.4 where I derive a Grassmannian expression for the 6 point

NMHV amplitude using a planar on-shell diagram recursion. I show that the three

terms arising from on-shell diagrams cannot be calculated from a single top form as

in N = 4 super Yang-Mills. In Section 5.3, I use on-shell diagrams to obtain a new

worldsheet formula for the 1-loop four point amplitude in N = 8 supergravity via the

link variable mapping. As with N = 4 super Yang-Mills in Chapter 5, this formula is

manifestly supersymmetric and supported on new 1-loop scattering equations refined

by MHV degree. In Section 6.6 I explain how to incorporate the bonus relations for
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N = 8 supergravity into on-shell diagrams in the MHV sector, and in Section 6.7

I derive identities relating spinor brackets to minors appearing in Grassmannian

integral formulae which are necessary for the analysis in other sections.

6.1 Algorithm for Computing On-Shell

Diagrams

In this section I provide a streamlined version of the algorithm for calculating on-shell

diagrams in N = 8 supergravity in terms of Grassmannian integral formulae which

I review in Section 2.9. In particular, given a decorated on-shell diagram computed

from the recursion relations described in Section 2.9;

1. Choose a perfect orientation for the diagram by drawing arrows on each edge

such that there are two arrows entering and one arrow leaving every black

node, and two arrows leaving and one arrow entering every white node.

2. Label every half-edge with an edge variable α so that there are two variables

for each internal edge (one associated with each of the two vertices attached

to the edge). Then set one of the two edge variables on each internal edge to

unity, and set one of the remaining variables associated with each vertex to

unity. There will be 2n− 4 edge variables remaining after this step.

3. To construct the integrand, include a factor of dα/α2 for each edge variable

leaving a white vertex or entering a black vertex and dα/α3 for each edge

variable entering a white vertex or leaving a black vertex.

4. Now include decorations associated with the BCFW bridges and spinor bracket

factors associated with the vertices. The spinor brackets at the bridges cancel

with the bridge decoration to leave only edge variables. This step can be

summarised as:
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(a) For each BCFW bridge, look at the sub-diagram formed only by this

bridge, its two vertices, and the four legs attached to it.

• If there is only one path through the sub diagram which includes the

bridge, assign a factor of the edge variable on the bridge, divided by

the two edge variables on the legs which are not on that path.

• If there are four possible paths through the sub diagram, divide

through by a factor of each of the edge variables on the external legs,

and the edge variable on the bridge squared.

If there is no edge variable in any of the locations described above, then

this edge variable was set to unity in step 2.

(b) For each remaining black vertex not attached to a bridge, add a factor of

〈ij〉 where i, j are the two edges with ingoing arrows. For each remaining

white vertex not associated to a bridge, add a factor of [ij] where i, j are

the two edges with outgoing arrows.

5. Now it is necessary to relate all internal spinors to external spinors. This can

be done algorithmically by noting that all spinors are related to each other by

|i〉 =
∑

paths j→i

 ∏
edges in path e

αe

 |j〉
|i] =

∑
paths i→j

 ∏
edges in path e

αe

 |j] . (6.1.1)

In practice however it is often possible obtain simpler expressions using the

relations between square and angle brackets at each vertex given in figure 6.1.

6. Calculate the C-matrix in terms of the coordinates assigned to the diagram

by associating each column with an external leg and each row with an ingoing

external leg. The element Cij can then be computed by summing over all paths

from leg i to leg j taking the product of all the edge variables encountered

along the path as in the first line of (6.1.1). Similarly, the C⊥ matrix can be

computed by summing over the reverse paths as in the second line of (6.1.1).
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After doing so, include the following delta functions in the integrand

δk×(2|8)(C · λ̃|C · η)δ(n−k)×2(λ · C⊥).

7. If the diagram contains closed loops, include a factor of J N−4, were J is a

sum over products of disjoint closed loops [71]:

J = 1 +
∑
i

fi +
∑

disjoint i,j
fifj +

∑
disjoint i,j,k

fifjfk + ...

and fi is minus the product of edge variables around the i’th closed loop. Note

that when there are many closed loops then diagrams become complex to

calculate, and a method to work with these cases is given in [123].

8. The above procedure gives an expression for the on-shell diagram as a Grass-

mannian integral in terms of specific coordinates. This can be uplifted to a

covariant expression by expressing the rest of the integrand in terms of minors.

This results in an SL(k) invariant expression, but the overall GL(1) scaling of

the GL(k) gauge freedom will not be correct in general. There will always be

one minor which is gauged fixed to be equal to unity, and the correct number

of factors of this minor should be included in the integrand to give an overall

GL(1) weight of zero to the integrand. Note that dk×nΩN in (2.9.2) has GL(1)

weight N − 4. For on-shell diagrams contributing to non-MHV amplitudes,

this lift will specify a nontrivial contour in the Grassmannian. Details of this

process for 6 point NMHV amplitudes in N = 8 supergravity are explained in

Section 6.4.

6.2 Hodges Formula for Tree-level MHV

In this section, I will derive a new Grassmannian integral formula for the MHV

amplitudes of N = 8 supergravity, generalising the results obtained using on-shell

diagrams in [70] to n points. As with N = 4 super Yang-Mills in Section 5.1, start
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Α3

Α1
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Α1
Α2

Α3

1
2

3

〈23〉 = 〈12〉
α1α3

= 〈31〉
α1α2

[23] = [12]
α1α3

= [31]
α1α2

Figure 6.1: Relations between spinor bracket factors at each vertex
of an on-shell diagram in N = 8 supergravity

by multiplying 1 in the form of integrals of delta functions as in equation (5.1.1) into

the 4D scattering equation formula from Section 2.8 to give

M(0)
n,2 =

∫ d2×nσ

GL(2)
∏

l∈L,r∈R
dclrδ

(
clr −

1
(lr)

)
det ′H det ′H̃

×
∏
l∈L

δ2|8 (|l]− clr |r])
∏
r∈R

δ2 (|r〉+ clr |l〉)
(6.2.1)

where I have chosen L = {1, 2}. Using the GL(2) symmetry to fix σ1 = ( 1
0 ) and

σ2 = ( 0
1 ), the delta functions can be written in the link variables as in (5.1.2), and

on the support of these delta functions

(ij) = c1jc2i − c1ic2j

c1ic2ic1jc2j
,

where (ij) are the minors of σ, and i, j ∈ R. Next remove row and column 1 from

H, and remove row and column n from H̃ and additionally rescaling the i’th row of

H̃ by c1ic2i and the j’th column by c1jc2j. Then det′H = 〈12〉, H̃ reduces to

H̃rr = −
∑
r′ 6=r

[rr′]
c1rc2r′ − c1r′c2r

c1r′c2r′

c1rc2r
, H̃rr′ = [rr′]

c1rc2r′ − c1r′c2r
, r 6= r′,

where r, r′ ∈ {3, ..., n−1}, and the rescaling of the rows multiplies det′ H̃ by a factor

of ∏n−1
r=3 c

2
1rc

2
2r.

Integrating out the worldsheet coordinates in (6.2.1) against the delta functions in

(5.1.2) then leaves the following integral over link variables

M(0)
n,2 =

∫ d2×(n−2)C

GL(2)
〈12〉
(12)

det H̃
(12)2(2n)2(n1)2 δ

2×(2|8)
(
C · λ̃

)
δ(n−2)×2

(
λ · C⊥

)
,
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Figure 6.2: On-shell diagram contributing to tree-level n-point
MHV tree amplitude in N = 8 supergravity

where (ij) now refers to the minors of C. Note that on the support of the delta

functions, 〈12〉
(12) is invariant under permutations and hence can be replaced with 〈pq〉(pq)

for any p, q ∈ N . For a derivation of this identity relating spinor brackets to minors,

as well as a generalisation to higher MHV degree, see Section 6.7.

Uplifting the expression in equation (6.2) to a covariant expression in Gr(2, n) gives

M(0)
n,2 =

∫ d2×nC

GL(2)
〈pq〉
(pq)

det H̃
(ab)2(bc)2(ca)2 δ

2×(2|8)
(
C · λ̃

)
δ(n−2)×2

(
λ · C⊥

)
, (6.2.2)

where a, b, c ∈ N are distinct, and

H̃ii = −
∑

j∈N \{a,b,c}

[ij]
(ij)

(aj)(bj)
(ai)(bi) , H̃ij = [ij]

(ij) , i 6= j

where i, j ∈ N \ {a, b, c}.

To obtain Hodge’s formula for the MHV amplitude from on-shell diagrams directly,

it is necessary to incorporate the bonus relations of N = 8 supergravity, which I

explain in detail in Section 6.6. These relations are incorporated into the on-shell

diagram recursion for MHV amplitudes by modifying the bridge decoration, and for

the diagram in Figure 6.2 the modified bridge decoration is given by

B12n;i = 〈i2〉
〈1i〉 〈n2〉 [1n] .
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Using this modified bridge decoration the full amplitude is obtained by summing

the diagram over i ∈ {3, ..., n− 1}. In terms of the edge variables on the diagram in

figure 6.2, the amplitude is

M(0)
n,2 =

n−1∑
i=3

∫ dβ

β2
dγ

γ2 [β1̂][γî] 〈γβ〉B12n;i

∫ d2×(n−1)C

GL(2) δ2×(2|8)
(
C · λ̃

)
× δ(n−2)×2

(
λ · C⊥

)
In−1

(
1̂, 2, ..., î, ...n− 1

)
(6.2.3)

where I is the integrand of the Gr(2, n−1) integral in the (n−1)-point amplitude

without the delta functions. Noting that

[β1̂][γî] 〈γβ〉 = βγ [n1] [ni] 〈i1〉 ,

equation 6.2.3 reduces to

M(0)
n,2 =

n−1∑
i=3

[ni] 〈i2〉
〈n2〉

∫ dβ

β

dγ

γ

∫ d2×(n−1)C

GL(2) δ2×(2|8)
(
C · λ̃

)
×

δ(n−2)×2
(
λ · C⊥

)
In−1

(
1̂, 2, ..., î, ...n− 1

)
.

For the diagram in Figure 6.2, the C-matrix is given by

C =

 1 ... 0 ... β

0 ... 1 ... γ


where the rows correspond to particles 1 and i, and the indicated columns correspond

to particles 1, i and n. For this C-matrix, (ni) = β, (1n) = γ, and (1i) = 1, so the

amplitude can be written covariantly in Gr(2, n) as

M(0)
n,2 =

n−1∑
i=3

[ni] 〈i2〉
〈n2〉

∫ d2×nC

GL(2)
(1i)

(in)(1n)δ
2×(2|8)

(
C · λ̃

)
× δ(n−2)×2

(
λ · C⊥

)
In−1

(
1̂, 2, ..., î, ...n− 1

)
.

Using the GL(2) symmetry to set C = λ, the following recursion relation for MHV

amplitudes is then obtained

M(0)
n,2 =

n−1∑
i=3

[in]
〈in〉

〈1i〉 〈2i〉
〈1n〉 〈2n〉M

(0)
(n−1),2

(
1̂, 2, ..., î, ...n− 1

)
.
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This is the recursion relation obtained by Hodges in [124], with solution [22] given

by

M(0)
n,2 = δ4|16(P )detH̃

〈12〉2 〈2n〉2 〈n1〉2
,

where the MHV Hodges matrix H is defined in equation 2.5.8, with {a, b, c} =

{1, 2, n}. Equation (6.2.2), as calculated by first mapping the 4D scattering equation

expression to a Grassmannian integral, is the unique Grassmannian uplift of (6.2).

6.3 BGK Formula for Tree-level MHV

In this section I solve the planar on-shell diagram recursion relations for MHV

amplitudes and obtain the BGK formula [125] in a slightly simplified form, showing

that this formula arises naturally from a planar object. The full MHV amplitude can

then be obtained by summing this expression over permutations of (n−3) legs, which

I verify against the Hodges matrix expression numerically. Although the physical

interpretation of this planar object is not clear, it would be interesting to see if it

has a geometric interpretation as the volume of some object.

At n points in the MHV sector there is only one planar BCFW diagram to consider

as in N = 4 super Yang-Mills in Section 5.1, and the diagram is generated from

the (n−1) point planar diagram by adding an inverse soft factor as depicted in

Figure 6.2. Two of the legs are fixed in the recursion, and the modified bridge

decoration proposed in Section 6.6 can be used to fix an additional leg so that the

full amplitude is obtained by summing over permutations of n−3 particle labels. The

permutation sum is then over a bonus-simplified decorated planar on-shell diagram,

which I denote A(0)∗
n,2 . Starting with A(0)∗

4,2 as the base case of the recursion, with the

orientation and labelling in figure 6.3, the 4-point C matrix can be read off as

C4 =

 1 α1 0 α3

0 α2 1 α4

 . (6.3.1)

To calculate A(0)∗
4,2 include a factor 〈α2α1〉 [α2α4]B234;1 = α2

α1

〈23〉〈14〉
〈31〉〈24〉 from the bridge, a
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Α1

Α3

Α2

Α4

1

23

4

Figure 6.3: Bonus-simplified on-shell diagram for 4-point amplitude

factor of one over each edge variable, and spinor bracket factors of 〈13〉 and α1[12]

from the two lower vertices not attached to the bridge. The diagram then evaluates

to

A(0)∗
4,2 =

∫
d2×4Ω8

〈13〉[12]
α1α3α4

〈23〉 〈14〉
〈31〉 〈24〉 , (6.3.2)

which can be uplifted to a covariant expression as

A(0)∗
4,2 =

∫
d2×4Ω8

〈13〉[12]
(13)2(34)(24) , (6.3.3)

where d2×4Ω4 is defined in (2.9.2). Since this expression has been computed using

the bonus relations it needs to be summed over n−3 permutations of external states.

In this case there are only 4−3 = 1 permutations, and the diagram is equal to the

full 4 point amplitude in N = 8 supergravity,

A(0)∗
4,2 =M(0)

4,2 =
∫ d2×4C

Vol(GL(2))
δ2×(2|8)(C · λ̃)δ2×2(λ · C⊥)∏

i<j(ij)
〈ab〉
(ab)

[cd]
(cd)⊥ ,

where a 6= b ∈ N and c 6= d ∈ N .

Equation (6.3.3) can be rearranged using momentum conservation and by identifying

label 5 with label 1 at 4 points to give the following expression,

A(0)∗
4,2 =

∫
d2×4Ω8

〈ab〉
(ab)

[12](35)(14)
(13)2(34)(45)(24) , (6.3.4)

which is in a more convenient form to use as the base case for the recursion.

To calculate A(0)∗
n,2 it is then necessary to choose an orientation and labelling which



130 Chapter 6. On-Shell Diagrams in N = 8 Supergravity

can be extended to higher points in a recursive fashion. First use the planar BCFW

recursion to add the appropriate inverse soft factor onto legs 1 and 2. Then to

produce an n point diagram where the paths remain unchanged compared to the

n−1 point diagram, apply a cyclic rotation to the labels so that the top inverse soft

factor is labelled with legs 1, 2 and 3 and the bottom left black vertex is labelled

as leg 4. Performing the recursion in this way and relabelling can be thought of as

cutting the orientation of diagram to insert the new inverse soft factor, as shown

in Figure 6.4. Note that in this process, BCFW recursion is always carried out in

the standard way and the diagram itself is never really cut, it is only the unphysical

orientation of the diagram which is cut. Constructing the diagrams in this way

allows for a simple recursive calculation of the C matrix, which I denote as Cn at

n-points.

Α1

…

»

Α2

Α4

Α3

∆i

Γi

…

Α2 i-5

»

Α2 i-4

1

23

4 i

Figure 6.4: On-shell diagram showing how 4-point seed amplitude
orientation is cut, and an inverse soft factor is inserted
for i ∈ {5, ...n}

Now consider how to build up Cn from Cn−1 and the paths through the new inverse

soft factor. As the orientation and labelling remain the same on the top inverse

soft factor, the first three rows of the C matrix are the same for all n, and it is

only necessary to calculate paths through the diagram for the remaining rows of the

diagram for i ∈ {4, ..., n}. Each path from 1 to i remains the same except for an

extra factor of α2n−5 from the new inverse soft factor, and there is now a new path
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from 3 to i additional to all of the previous paths. The new path is the same as the

longest path from 1 to i in the n point diagram, with an extra factor of α2n−5α2n−4

from the new inverse soft factor. Finally, the path from 1 to n picks up only α2n−5

and from 3 to n has α2n−5α2n−4. Then Cn can be written recursively in terms of

Cn−1 as

(Cn)ai = (C4)ai, i ∈ {1, 2, 3}, a ∈ {1, 2}

(Cn)1i = α2n−5(Cn−1)1i, i ∈ {4, ..., n− 1}

(Cn)2i = (Cn−1)2i + α2n−5α2n−4(Cn−1)1i, i ∈ {4, ..., n− 1}

(Cn)1n = α2n−5

(Cn)2n = α2n−5α2n−4. (6.3.5)

Next look at how to relate A(0)∗
n,2 to A(0)∗

n−1,2. Because of the way the labelling and

orientation have been chosen, the vertex and bridge factors coming from the top

inverse soft factor in Figure 6.4 are the same for A(0)∗
n,2 as for A(0)∗

n−1,2, apart from an

additional factor α2n−5. The algorithm in Section 6.1 shows that it is necessary to

multiply by the bridge and vertex factors in the cut inverse soft factor for i = n

to complete the recursion. The bridge factor is Bγnδn4;n, the left hand white vertex

contributes a factor [α2n−4γn−1]
α2n−4

, the black vertex a factor 〈α2n−4δn〉
α2

2n−5
, and the white

vertex attached to leg n a factor ∑n−1
j=4

(∏n−1
k=j α2k−5

)
[ji]. The recursion relation is

then

A(0)∗
n,2 = A(0)∗

n−1,2
〈α2n−4δn〉 [α2n−4γn−1]Bγnδn4;n

α2n−4α2n−5

n−1∑
j=4

n−1∏
k=j

α2k−5

 [jn]. (6.3.6)

The bridge factor and the new spinor bracket factors in this expression are written

in terms of internal spinors at each vertex, which must be related to external spinors

to evaluate the recursion. These factors simplify to

〈α2n−4δn〉 [α2n−4γn−1]Bγnδn4;n = α2n−4
〈γnδn〉 〈n4〉
〈δn4〉 〈γnn〉

= α2n−4
〈3 n+1〉 〈4n〉
〈3n〉 〈4 n+1〉 ,
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where the first equality substitutes the expression for the bridge factor, and the

second uses that |γn〉 = |3〉, and |δi〉 = |1〉 = |n+1〉. Based on this the recursion

relation simplifies to

A(0)∗
n,2 = A(0)∗

n−1,2
1

α2n−5

〈3 n+1〉 〈4n〉
〈3n〉 〈4 n+1〉

n−1∑
j=4

n−1∏
k=j

α2k−5

 [jn]. (6.3.7)

To uplift to a covariant expression in Gr(2, n) next calculate the necessary minors of

Cn, denoted (ab)n. Recall that for n = 4, leg 5 is defined to be leg 1 so for example

(45)4 := (41)4 = α4, and in general (45)n = α2n−5(45)n−1. The remaining minors

needed can be read off from the n point C matrix as

(13)n = 1

(23)n = α1

(3j)n
(3i)n

=
i−1∏
k=j

α2k−5, j < i ∈ {4, ..., n}. (6.3.8)

Using these results is possible to solve the recursion in equation (6.3.7) and uplift.

The factor α−1
2n−5 is absorbed in changing the (45)n−1 in A(0)∗

n−1,2 to (45)n, and the

other edge variables are uplifted using (6.3.8). The final result for the planar MHV

diagram is then

A(0)∗
n,2 =

∫
d2×nΩ8

〈ab〉
(ab)

[12](35)(14)
(13)2(24)(34)(45)

n∏
i=5

(3 i+1)(4i)
(3i)(4 i+1)

∑i−1
j=4(3j)[ji]

(3i)

=
∫
d2×nΩ8

〈ab〉
(ab)

1
(23)(34)(42)

n∏
i=4

∑i
j=4(3j)[j i+1]

(3 i+1)

= δ4|16(P )∏
i∈N 〈i i+1〉

1
〈23〉 〈34〉 〈42〉

n∏
i=4

〈3|P4...i|i+ 1]
〈3 i+1〉 , (6.3.9)

where a 6= b ∈ N . The full n-point MHV amplitude in N = 8 supergravity can be

obtained from the above formula by summing over permutations of the legs 1, 5, ..., n,

and I have verified numerically up to 10 points that this expression is equal to the

Hodges MHV expression in equation (6.2). Equation (6.3.9) can be easily related

to the BGK formula for MHV graviton scattering [125], and the similar planar
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expression obtained more recently in [126].

6.4 Tree-level NMHV

In this section I generalize the calculations of Sections 6.4 and 6.3 to non-MHV

amplitudes, where it is necessary to specify a contour in the Grassmannian in order

to make the integrals well-defined as in N = 4 super Yang-Mills in Section 5.2. In

that case the contour integral implied by BCFW reduces to summing over residues

of a single top form in the Grassmannian, and can be related to the contour integral

arising from the 4D scattering equations using global residue theorems. For N = 8

supergravity I show that the decorated planar on-shell diagrams (from which the full

amplitude can be deduced by summing over permutations of external legs) do not

correspond to residues of a single top form, and so the Grassmannian contour integral

has a more complex form. It is also possible to derive such a formula starting from

the 4D scattering equations and mapping to Gr(k, n) using link variables, although

it is unclear how to map it into the contour integral arising from on-shell diagrams

using global residue theorems in this case.

4

2 3

56

1

6

21

5

43

1

32

6 5

4

3+5 4+4 5+3

Figure 6.5: Decorated planar on-shell diagrams contributing to the
6 point NMHV amplitude in N = 8 supergravity. The
full amplitude can be obtained by summing over per-
mutations of legs 1 to 4.

Since the on-shell diagram recursion can be restricted to a planar sector in N = 8
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supergravity, the calculation can be reduced to computing three planar diagrams

which are decorated versions of the ones appearing in N = 4 super Yang-Mills, as

shown in Figure 6.5. The full 6-point NMHV amplitude can then be obtained by

summing over permutations of legs 1 to 4. The same orientation and labelling will

be used as the N = 4 super Yang-Mills diagrams, so the C matrices will remain the

same.

First compute the 3 + 5 diagram in Figure 6.5. Using the orientation and labelling

from figure 5.3 and following the algorithm in Section 6.1,

A(0)
6,3 (3+5) = Res

(456)=0

∫
d3×6Ω8

α7

α6α8

〈α1α2〉〈α3α4〉[α4α5][βα6]∏8
i=1 αi

(6.4.1)

where d3×6Ω8 is defined in (2.9.2). The internal spinors can then be related to

the external spinors by summing over paths connecting them as described in the

algorithm, finding

〈α1α2〉 = α8

α2
〈16〉

〈α3α4〉 = 1
α3
〈23〉

[α4α5] = α4

α5
[23]

[βα6] = α6[45].

Substituting these relations into (6.4.1) and simplifying gives

A(0)
6,3 (3+5) = Res

(456)=0

∫
d3×6Ω8

〈16〉[45]〈23〉[32]
α1α2

2α
2
3α

2
5α6α8

(6.4.2)

which can be uplifted to the following covariant expression:

A(0)
6,3 (3+5) = Res

(456)=0

∫
d3×6Ω8

〈16〉[45]〈23〉[32]
(123)(561)(146)(236) (6.4.3)

where the minors are computed using (5.2.2).

The 5+3 channel in Figure 6.5 can be calculated directly as the complex conjugate

of the 3+5 channel, which maps [ij] ↔ 〈ij〉, and (ijk) → εijkabc(abc). To keep the

cyclic definition of the legs consistent it is necessary to also apply the permutation
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P = ( 1 2 3 4 5 6
4 3 2 1 6 5 ), which gives the non-trivial result that the 3+5 and 5+3 channels

both have the same integrand, only with different residues,

A(0)
6,3 (3+5) = Res

(234)=0

∫
d3×6Ω8

〈16〉[45]〈23〉[32]
(123)(561)(146)(236) . (6.4.4)

Then the 4+4 channel diagram in Figure 6.5 is computed using the orientation and

labelling in figure 5.4. Using the algorithm in Section 6.1, the following expression

is obtained for the amplitude,

A(0)
6,3 (4+4) = Res

(612)=0

∫
d3×6Ω8

α8

α4

〈α1α2〉〈α5α7〉[α2α3][α5α6]
α6
∏8
i=1 αi

. (6.4.5)

Writing the internal spinor brackets in terms of external ones then gives

〈α1α2〉 = α4

α2
〈16〉

〈α5α7〉 = 1
α5α6α7

(α3α6α7〈32〉+ α4α6α7〈36〉)

[α2α3] = α2

α3
[12]

[4α5] = α5[43].

Substituting this into 6.4.5 and uplifting into a covariant expression in Gr(3,6) then

gives

A(0)
6,3 (4+4) = Res

(456)=0

∫
d3×6Ω8

〈16〉[34](623)[12] ((346)〈32〉+ (432)〈36〉)
(123)(561)(346)2(256) , (6.4.6)

where the minors are computed using (5.2.5). This expression for the integrand can

then be simplified further using the relations between spinor brackets and minors

derived in Section 6.7. The relevant identities are

〈32〉(346) + 〈34〉(623) + 〈36〉(432) = 0

[43](145)⊥ − [41](453)⊥ − [45](314)⊥ = 0

[43](623) + [41](612) + [45](256) = 0.

On the support of residue at (612) = (453)⊥ = 0 the terms proportional to [41] in

the second two relations can be dropped, and the following simplified expression is
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obtained for the 4+4 channel,

A(0)
6,3 (4+4) = Res

(612)=0

∫
d3×6Ω8

〈16〉[45]〈34〉[12]
(123)(561)(346)2 . (6.4.7)

Adding up the three contributions in (6.4.3) (6.4.4), (6.4.7), the sum of decorated

planar on-shell diagrams in Figure 6.5 is found to correspond to the following Grass-

mannian integral formula:

A(0)
6,3 =

(
Res

(234)=0
+ Res

(456)=0

)∫
d3×6Ω8

〈16〉[45]〈23〉[32]
(123)(561)(146)(236)

+ Res
(612)=0

∫
d3×6Ω8

〈16〉[45]〈34〉[12]
(123)(561)(346)2 . (6.4.8)

The full 6-point NMHV amplitude in N = 8 supergravity is then given by summing

(6.4.8) over permutations of labels 1 to 4.

From equation (6.4.8) it can be seen that this sum of planar diagrams cannot be

written as the sum of three residues of a single top form. To see this, first add and

subtract the (612) residue of the first integrand

A(0)
6,3 =

(
Res

(234)=0
+ Res

(456)=0
+ Res

(612)=0

)∫
d3×6Ω8

〈16〉[45]〈23〉[32]
(123)(561)(146)(236)

+ Res
(612)=0

∫
d3×6Ω8

〈16〉[45]
(123)(561)(346)2(146)(236)

(
〈34〉[12](146)(236)− 〈23〉[32](346)2

)
,

(6.4.9)

and note that the second line does not vanish on the support of the residue (612) =

0. To see this, choose an appropriate GL(3) gauge so that the solution to the delta

functions and residue constraints is

C =

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉

0 [45] [53] [34] 0 0

 . (6.4.10)

Then evaluating the second term on this solution shows that it is not zero for generic

momenta.

Hence the decorated planar on-shell diagrams from which the 6-point NMHV amp-

litude of N = 8 supergravity can be calculated do not correspond to residues of a

single top-form, unlike in N = 4 super Yang-Mills. This can be understood dia-
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grammatically as follows. Whereas the three planar on-shell diagrams contributing

to the 6-point NMHV amplitude in N = 4 super Yang-Mills can be embedded in a

single Postnikov diagram in Figure 5.5, it is not possible to decorate this diagram

in such a way that it encodes the three decorated on-shell diagrams in Figure 6.5.

This is because the merger equivalence relation for N = 8 supergravity described in

Section 2.9 is less flexible than the one in N = 4 super Yang-Mills, since it requires

opposite edges to be decorated as depicted in Figure 2.7.

It would be interesting to see if a unique top-form can be deduced by solving the

on-shell diagram recursion relations in a non-planar sector or incorporating the bonus

relations. Note that one can obtain such a formula by uplifting the formulae derived

in [127, 128] to covariant expressions in Gr(k, n), however it is unclear how to relate

this to a contour integral arising from on-shell diagrams.

6.5 One-Loop

In this section I derive a worldsheet formula for the 1-loop 4-point amplitude of

N = 8 supergravity supported on 4D scattering equations, analogously to the one

I derived for N = 4 super Yang-Mills in Section 5.3. Unlike in planar N = 4

super Yang-Mills, a loop-level BCFW recursion relation is not known for N = 8

supergravity, however the 4 point amplitude can still be related to the on-shell

diagram formalism by noting that it is equal the on-shell diagram in Figure 6.6 after

summing over permutations of the external legs [70].

The diagram in Figure 6.6 can be obtained from the diagram in Figure 6.7 by

taking the forward limit of legs + and − and attaching a decorated BCFW bridge

to legs 1 and 4. As in the previous section, the loop momentum is defined to be

the sum of the momenta in these two edges given by (5.3.1). The necessary steps

to obtain a worldsheet formula for the 1-loop 4-point amplitude are to derive a

Grassmannian integral formula for Figure 6.7, convert to a worldsheet formula by



138 Chapter 6. On-Shell Diagrams in N = 8 Supergravity

Λ0 Λ
�

01
`

Α Λ1 Λ
�

4

4
`

2

1

3

4

|0]〈0|

α|4]〈1|

Figure 6.6: On-shell diagram for 1-loop four-point amplitude in
N=8 supergravity

using link variables, take a forward limit and add a decorated BCFW bridge, and

sum over permutations of the external legs.

Note that the diagram in Figure 6.7 is the same as the 4 + 4 diagram in Figure

6.5 up to the location of bridge decorations. Hence, it can be computed simply by

multiplying the integrand in (6.4.5) by the following ratio of bridge decorations and

spinor brackets associated with the vertices,

new decorations
old decorations

new brackets
old brackets = α−2

6 α1α
−1
2
〈βα3〉[γα7]
〈α1α2〉[4α5] .

The relabelling P = ( 1 2 3 4 5 6
1 0 5 4 3 2 ) is then applied to match the labelling between

Figures 6.7 and 6.5, which gives the following Grassmannian integral formula for the

diagram in Figure 6.7,

A(0)
6,3 (4+4)′ = Res

(+12)=0

∫ d3×6C

GL(3)
∏
i∈N ′

1
(i i+1 i+2)

〈12〉 〈4−〉 [+1] [34]
(234)(4−+)(−12)2×

δ3×(2|8)
(
C · λ̃

)
δ3×2

(
λ · C⊥

)
,

(6.5.1)

where L := {1, 2} and R := {3, 4} so that N = L ∪ R = {1, 2, 3, 4}, and L′ :=

{1, 2,−} and R′ := {3, 4,+}, with N ′ = L′ ∪R′ = N ∪ {+,−} as in Section 5.3.

To map this into a worldsheet formula, it is first written in terms of link variables as
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Figure 6.7: On-shell diagram from which Figure 6.6 can be obtained
by taking a forward limit and adding a decorated BCFW
bridge.

done in the previous section. Choosing coordinates on the Grassmannian according

to (5.3.3), (6.5.1) can be written as

A(0)
6,3 (4+4)′ =

∫
d8C

∏
i∈N ′

1
(i i+1 i+2)

〈12〉 〈4−〉 [+1] [34]
(234)(4−+)(−2)2 δ

3×(2|8)
(
C · λ̃

)
δ2×3

(
λ · C⊥

)
(6.5.2)

where d8C is the measure over the eight non-zero link variables in (5.3.3).

The next step is to convert this to a worldsheet integral. Introduce six punctures

on the 2-sphere with homogeneous coordinates σi for i ∈ N ′, and set σ1 = ( 0
1 )

and σ2 = ( 1
0 ). The coordinates of the remaining four punctures then provide eight

integration variables which precisely matches the number of link variables. To

map the link variables into worldsheet coordinates, multiply a factor of “1” into

(6.5.2) in the form given by (5.3.4). Using equations (5.3.6) and (5.3.5) it is then

straightforward to integrate out the link variables against these delta functions as in

Section 5.3, leaving an integral over worldsheet coordinates. Uplifting the resulting

worldsheet integral to a covariant expression in Gr(2,6) gives

A(0)
6,3 (4+4)′ = 〈12〉 〈4−〉 [+1] [34]

∫ d2×6σ

GL(2)
(+2)(13)(14)3(24)(3−)

(+4)2(12)2(1−)2(23)(34)2

× δ2|8
(
|−]−

∑
r∈R

|r]
(−r)

)
δ2

|+〉 −∑
l∈L

|l〉
(+l)
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×
∏
l∈L

δ2|8
(
|l]−

∑
r∈R

|r]
(lr) −

|+]
(l+)

) ∏
r∈R

δ2

|r〉 −∑
l∈L

|l〉
(rl) −

|−〉
(r−)

 .

To obtain a worldsheet formula for the 1-loop amplitude from this expression then

take a forward limit |+] 〈+| = − |−] 〈−| by setting (|−] , |−〉 , η−) = (|+] ,− |+〉 , η+),

and define a new set of variables for the loop momentum so that (|0] , |0〉 , η0) :=

(|−] , |−〉 , η−). Then BCFW shift legs 1 and 4 and sum over permutations, and note

that the loop momentum is then defined as in equation (5.3.1), and the measure

as in equation (5.3). Exchanging σ+ with σ− and simplifying the integrand on the

support of the scattering equations gives that

M(1)
4,2 =

∑
S4

〈12〉2 [34]2
∫ d4l

l2
d2×6σ

GL(2)
∏
i∈N ′

1
(i i+1)

(14)(+−)
(1−)(+4)

× δ2(Ẽ(1)
0 )δ2

(
E

(1)
0

)∏
l∈L

δ2|8
(
Ẽ

(1)
l

) ∏
r∈R

δ2
(
E(1)
r

)
,

where the scattering equations are defined in (5.3.8) and the sum over S4 permuta-

tions acts on all particle labels in the expression. The hats are defined so that
ˆ|4〉 = |4〉 − α |1〉,

( ˆ|1], η̂1
)

= (|1] + α |4] , η1 + αη4), and they act trivially on the

other spinors. On the support of the scattering equations the following identity

holds

〈12〉2 [34]2 =
∏
i∈N (+i)(−i)
1− (+−)2 detH det H̃,

where six point NMHV Hodges matrices defined in Section 2.8 have been taken with

rows and columns associated with particles + and - removed to give

H =

 −
〈10〉
(1−) −

〈12〉
(12)

〈12〉
(12)

〈12〉
(12) − 〈20〉

(2−) −
〈21〉
(21)

 , H̃ =

 −
[30]
(3+) −

[34]
(34)

[34]
(34)

[34]
(34) − [40]

(4+) −
[43]
(43)

 .
Finally the following worldsheet formula for the 1-loop 4-point amplitude of N = 8
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supergravity is obtained

M(1)
4,2 =

∑
perms{1,2,3,4}

∫ d4l

l2
d2×6σ

GL(2)
∏
i∈N ′

1
(i i+1)

(14)(+−)
(1−)(+4)

×
∏
i∈N (+i)(−i)
1− (+−)2 detH det H̃ δ2×6|8×2(SE(1)

4,L).

(6.5.3)

Though it may not be intuitive from the expression above, it can be shown that can

be shown that this formula has the expected scaling properties under little group

transformations. In particular, the term 1 − (+−)2 is invariant because σ+ and

σ− scale with opposite weight. Little group scaling of worldsheet coordinates is

explained in Chapter 3. It should be straightforward to evaluate the worldsheet

integrals in the expression explicitly using the solution to the scattering equations

calculated in Section 5.3.

The determinants in equation (6.5.3) can be thought of as arising from the for-

ward limit of a tree-level 6-point NMHV amplitude, but the planar Parke-Taylor

factor is unusual in a gravity amplitude. It is likely that the factors ∏i∈N ′
1

(i i+1)

and ∏i∈N (+i)(−i) cancel due to the following relation [33] for sum of the n point

worldsheet Parke-Taylor factors over permutations of n−2 labels,

∑
σ∈Sn−2

s+ − s−
(s+ − s1σ)(s1σ − s2σ)...(snσ − s−) =

n∏
i=1

s+ − s−
(s+ − siσ)(siσ − s−) , (6.5.4)

along with the relations for how the scattering equations transform under permuta-

tions of particle labels derived in Section 3.5. The (1− (+−)2)−1 factor in the

integrand is difficult to interpret.

6.6 Bonus Relations in On-Shell Diagrams

In this section I detail how to incorporate the bonus relations of N = 8 supergravity

into the on-shell diagram formalism. In general for BCFW recursion to hold for a

given theory it is required that the amplitudes behave as O (z−2) as z → ∞. For

N = 8 supergravity, the superamplitudes vanish like O (z−2), which implies that
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Figure 6.8: BCFW recursion for tree-level MHV amplitudes in N =
8 supergravity

the sum over factorisation channels weighted by z for each channel should vanish,

in addition to the recursion relations themselves. These constraints are known as

bonus relations and make it possible to express one factorisation channel as a sum

over the others [129, 130]. In the MHV sector the bonus relations will be added by

modifying the bridge factor in the on-shell diagrams. For non-MHV amplitudes it is

less clear how to incorporate the bonus relations [131], so I restrict my analysis of

the bonus relations to the MHV sector in this thesis.

Consider BCFW shifting particles 1 and n of an n-point amplitude, so that

ˆ|1] = |1] + z |n] , ˆ|n〉 = |n〉 − z |1〉 .

The momenta are then shifted as p̂1 = p1 + zq and p̂n = pn − zq, where q = |n] 〈1|.

When calculating an MHV amplitude under this shift, each factorisation channel

will consist of a 3-point amplitude containing particle n times an (n − 1)-point

amplitude containing particle 1. The channel can then be labelled by the unshifted

external leg appearing on the 3-point amplitude, as depicted in Figure 6.8. The

value of z corresponding to the ith factorisation channel is determined by solving

(p̂n + pi)2 = 0, and is given by

zi = pn · pi
q · pi

= 〈ni〉
〈1i〉 .

In particular for an n-point MHV amplitude BCFW shifted as a described above, the

i = 2 channel can be expressed as a sum over the other n− 3 channels as depicted in

Figure 6.9. Substituting this into the BCFW recursion relation, the amplitude can
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Figure 6.9: The MHV bonus relations in N = 8 supergravity can
be used to eliminate one channel from the recursion in
Figure 6.8, reducing the number of channels from (n−2)
to (n− 3)

be expressed as a sum over the channels i ∈ {3, ..., n} each weighted by the factor

β12n;i = 1− zi
z2

= 〈1n〉 〈i2〉
〈1i〉 〈n2〉 .

An n-point MHV amplitude can be obtained by attaching an (n−1)-point amplitude

to a 3-point vertex and adding a decorated BCFW bridge as depicted in Figure 6.2

and summing over i ∈ {2, ..., n− 1}. If this diagram is multiplied by the factor

above, the amplitude can be obtained by summing over i ∈ {3, ..., n− 1}. Then it is

possible to incorporate the bonus relations into on-shell diagram recursion by using

the modified bridge decoration

B12n;i = 〈i2〉
[1n] 〈1i〉 〈2n〉 ,

where the subscript 12n indicates that 1, 2 and n are held fixed when summing over

permutations of the external legs to obtain the full amplitude.
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6.7 Relations between spinors and minors

The Grassmannian approach to scattering amplitudes provides a geometrical way to

view the λ and λ̃ spinors. For an n-point Nk−2MHV amplitude, the λ spinors can

be seen to lie inside k-planes in n dimensions and the λ̃ spinors lie in the orthogonal

(n−k)-planes. Representing the k-planes by an k×n matrix C and the (n−k)-planes

by an n× (n− k) matrix C⊥, this is implied by delta functions in the Grassmannian

integral formulae for scattering amplitudes enforcing C · λ̃ = λ · C⊥ = 0. I will now

show that this gives rise to nontrivial relations between spinor brackets and minors

of C and C⊥.

Let the rows of the k × n matrix C be denoted Cαi, i ∈ {1, ..., n}, α ∈ {1, ..., k}.

Then Cramer’s rule for the linear dependence of the distinct set of rows from 1 to

k + 1 can be written succinctly as follows:

∑
σ∈Zk+1

(−1)1σkCα1σ (2σ...(k + 1)σ) = 0,

where (2σ...(k + 1)σ) represents a k × k minor of the C matrix.

Analogous formulae exist for any distinct set of k + 1 rows. Taking the product of

this vector relation with a (k− 1) blade formed of rows of the C matrix generates all

possible Plücker identities for Gr(k, n). As an example, consider Gr(3, n). Choose

four distinct rows a, b, c and d of C. Then Cramer’s rule can be written

Cαa(bcd)− Cαb(cda) + Cαc(dab)− Cαd(abc) = 0,

and taking the product with the (k−1) blade εαβγCβdCγe gives the Plücker relations

(dea)(bcd)− (deb)(cda) + (dec)(dab) = 0

The constraints C · λ̃ = λ ·C⊥ = 0 imply that the GL(k) symmetry can be used to set

the first two rows of C equal to λ, i.e. Cβi = λβi, β ∈ {1, 2} and Cαi, a ∈ {3, ..., k}
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are unspecified. Gauge fixing this way gives the mixed Cramer’s rule,

∑
σ∈Zk+1

(−1)1σk |1σ〉 (2σ...(k + 1)σ) = 0 (6.7.1)

For k = 2, this is equivalent to the statement that 〈ij〉 / (ij) is invariant for all i 6= j

[70]. Consider again the same example of Gr(3, n). Choose four distinct rows a, b, c

and d of C. Then the mixed Cramer’s rule can be written

|a〉 (bcd)− |b〉 (cda) + |c〉 (dab)− |d〉 (abc) = 0

and taking the product with spinor |d〉 gives the mixed Plücker relations

〈da〉(bcd)− 〈db〉(cda) + 〈dc〉(dab) = 0

Deriving these identities relies only on the condition C · λ̃ = 0. On the support of

λ ·C⊥ = 0, another mixed Cramer’s rule can be derived which relates λ̃ spinors and

the minors of C⊥,

∑
σ∈Zn−k+1

(−1)1σ(n−k) |1σ] (2σ...(n− k + 1)σ)⊥ = 0. (6.7.2)

This identity leads to similar mixed Plücker relations with the square bracket spinors.





Chapter 7

N = 4 Conformal Supergravity

Amplitudes in 4D Ambitwistor

String Theory

In this chapter I analyse the scattering amplitudes of non-minimal Berkovits-Witten

N = 4 conformal supergravity within the framework of 4D ambitwistor string theory,

based on my work from [4]. In Section 7.1 I derive worldsheet formulae for scattering

amplitudes of graviton multiplets with plane-wave boundary conditions, and in

Section 7.2, I show that these formulae reduce to the Berkovits-Witten result in

the MHV sector. I then generalise this analysis to non-plane wave states in Section

7.3, working through some examples of amplitudes for non plane wave states in

Sections 7.4 and 7.5. The non-plane wave states can be expressed as momentum

derivatives of plane wave states using a prescription for taking momentum derivatives

of on-shell spinor variables which I develop in Section 7.6, and finally in Section 7.7

I discuss BRST invariance of plane-wave and non-plane wave vertex operators.
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Ambitwistor String Theory

7.1 Plane Wave Graviton Multiplet Scattering

In this section I calculate scattering amplitudes for graviton multiplets with plane

wave boundary conditions in N = 4 conformal supergravity, first considering the

vertex operators for positive and negative helicity superfields of the theory. I review

the field content in Section 2.6. The worldsheet Lagrangian of the theory is reviewed

in Section 2.11, and after gauge fixing is given by

L = 〈µ̃| ∂̄ |λ〉 − [µ| ∂̄
∣∣∣λ̃]+ χ · χ̃ (7.1.1)

in terms of the bosonic spinor fields |λ〉, |λ̃], |µ̃〉 and |µ], and the fermionic fields χ

and χ̃ which transform in the fundamental representation of the SU(4) R-symmetry

group .

N = 4 conformal supergravity amplitudes are computed using four types of vertex

operators, in contrast toN = 4 super Yang-Mills andN = 8 supergravity which have

only two types of vertex operators. These additional vertex operators reflect the fact

that the number of negative helicity superfields scattered N − is no longer always

equal to the Grassmann degree of the superamplitude, kG = NG
N , as discussed in

Section 2.6. In this work I choose to define the MHV degree k of the superamplitude

to be the Grassmann degree kG, and so the MHV degree is no longer equal in general

to the number of negative helicity superfields scattered. Under this definition the

scattering equations are still refined by the MHV degree of the amplitude with the

MHV degree corresponding to the size of the left set, and I denote the left set vertex

operators by Ṽl and right set by V. Note that this definition is consistent with the

standard definition where the MHV degree corresponds to the set of negative helicity

particles for all graviton amplitudes, and gives a natural extension to amplitudes

with gravitons and scalars such that φ+ states are in the left set and φ− states in

the right set.
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The vertex operators are

Ṽ−l (s) =
∫ dt

t2
〈lλ(s)〉 δ2|4

(
|l]− t|λ̃(s)]

)
ei〈µ̃(s)l〉

Ṽ+
l (s) =

∫
tdt

[
λ̃(s)∂λ̃(s)

]
δ2|4

(
|l]− t|λ̃(s)]

)
ei〈µ̃(s)l〉

V−r (s) =
∫
tdt 〈λ(s)∂λ(s)〉 δ2 (|r〉 − t|λ(s)〉) ei[µ̃(s)r]+ ˜χ(s)·ηr

V+
r (s) =

∫ dt

t2

[
rλ̃(s)

]
δ2 (|r〉 − t|λ(s)〉) ei[µ̃(s)r]+ ˜χ(s)·ηr .

(7.1.2)

Note that the Ṽ± vertex operators can be obtained by complex conjugating the V∓

vertex operators and Grassmann Fourier transforming the on-shell superspace η̃ back

to the original η space. I verify the BRST invariance of these vertex operators in

Section 7.7.

To understand the physics of these vertex operators it can be helpful to consider only

the SU(4) singlet states of each multiplet, which are the gravitons h± and the scalars

φ±. The vertex operators for these states are calculated as superspace integrals of

the vertex operators in (7.1.2), and are given by

Ṽh−l (s) =
∫ dt

t2
〈lλ(s)〉 δ2

(
|l]− t|λ̃(s)]

)
ei〈µ̃(s)l〉

Ṽφ
+

l (s) =
∫
tdt

[
λ̃(s)∂λ̃(s)

]
δ2
(
|l]− t|λ̃(s)]

)
ei〈µ̃(s)l〉

Vφ−r (s) =
∫
tdt 〈λ(s)∂λ(s)〉 δ2 (|r〉 − t|λ(s)〉) ei[µ̃(s)r]

Vh+

r (s) =
∫ dt

t2

[
rλ̃(s)

]
δ2 (|r〉 − t|λ(s)〉) ei[µ̃(s)r],

(7.1.3)

and so the structures 〈lλ(s)〉 and
[
λ̃(s)∂λ̃(s)

]
in the left set vertex operators can

be thought of as corresponding to the states h− and φ+ respectively. In this way

the graviton and scalar states contain all of the structure of the scattering for

the other states, which can be related to amplitudes for gravitons and scalars by

supersymmetry transformations.

To specify an amplitude for plane-wave superfields, it is necessary to give a set of

negative helicity superfields and a Grassmann degree k. Then choose a left set with

|L| = k, and partition the negative helicity superfields into disjoint subsets Φ̃− and

Φ−, depending on whether the superfield is in the left or right set, and similarly for
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the positive helicity superfields. Then the left set L = Φ̃− t Φ̃+ and the right set

R = N −L = Φ−tΦ+ and an n point superamplitude is then obtained by computing

a correlator of vertex operators integrated over the worldsheet and quotienting out

by the SL(2) gauge freedom in the integral so that

M(0)
n,Φ−,k =

∫ dns

SL(2)

〈 ∏
l−∈Φ̃−

Ṽ−l−
(
sl−
) ∏
l+∈Φ̃+

Ṽ+
l+

(
sl+
) ∏
r−∈Φ−

V−r−
(
sr−

) ∏
r+∈Φ+

V+
r+

(
sr+

)〉
.

(7.1.4)

The calculation of this correlation function is straightforward due to the fact that

the |µ̃〉 and |µ] fields in the action are not dynamical, and follows the example

given for Yang-Mills in Section 2.11. The |µ̃〉, |µ] and χ̃ fields integrate out directly

in the path integral, and localise the |λ〉, |λ̃] and χ fields onto the solutions in

equations (2.11.9), (2.11) and (2.11). This results in delta functions which localise

the worldsheet integral onto solutions of 4D scattering equations.

The n-point Nk−2MHV amplitude is then given by the following worldsheet formula

M(0)
n,Φ−,k =

∫ d2×nσ

GL(2)δ
2×n|4×k(SEn

L)
∏

l−∈Φ̃−
Hl−

∏
l+∈Φ̃+

F̃l+
∏

r−∈Φ−
Fr−

∏
r+∈Φ+

H̃r+ , (7.1.5)

where k = |L| = |Φ̃−|+ |Φ̃+|, and

F̃l :=
∑

r<r′∈R

[rr′] (rr′)
(lr)2 (lr′)2 , Hl :=

∑
l′∈L\{l}

〈ll′〉
(ll′)

Fr :=
∑

l<l′∈L

〈ll′〉 (ll′)
(rl)2 (rl′)2 , H̃r :=

∑
r′∈R\{r}

[rr′]
(rr′) .

I have checked numerically that the superamplitude is unchanged under replacing

Φ± states with Φ̃± states as long as the Grassmann degree kG = k = |L| is preserved,

and hence is invariant of the choice of the left set, L. It should be possible to prove

this analytically using the results from Section 3.5.

The H factors are the diagonal elements of the Hodges matrices defined in equation

(2.8.7), and the F allow for putting the diagonal elements of the Hodges matrix

into the set of particles of opposite parity. The factors H, F , H̃ and F̃ can then
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be considered as generalisations of the gravitational inverse soft factor from equa-

tion (2.5.9) outside of the MHV sector. Component amplitudes can be extracted

by integrating out the appropriate η variable; for example, the scalar-graviton amp-

litudes are obtained by integrating out (ηl)4 for l ∈ L, and setting ηr = 0 for r ∈ R.

In a similar way amplitudes with fermions and spin-1 states can also be obtained.

In the MHV sector the scattering equations have only one solution, which is given in

Section 3.1. On the support of this solution (7.1.5) reduces to the Berkovits-Witten

result [20], and I provide details of this calculation in Section 7.7. The formula is

M(0)
n,Φ−,2 = δ4|8(P )

∏
i∈Φ+

∑
j∈N \{i}

[ij]
〈ij〉
〈jxi〉 〈jyi〉
〈ixi〉 〈iyi〉

, (7.1.6)

where |xi〉 and |yi〉 are arbitrary reference spinors.

Evaluating the worldsheet integrals analytically for higher MHV degree is complex

because the scattering equations have more than one solution, so the 4D scattering

equation formalism is less practical in this setting. I have verified equation (7.1.5)

for different component states at higher MHV degrees numerically by matching it

against results obtained using Feynman diagrams and colour-kinematics duality in

[49] up to eight points with any number of particles 1, using the numerical methods

developed in Section 4.3 to evaluate the worldsheet integrals. Some partial analytical

results for NMHV amplitudes in N = 4 conformal supergravity are described in [132],

and for the special case where the set of negative helicity superfields corresponds to

the left set of the amplitude a formula in terms of integrals over curves in twistor

space was previously conjectured in [47]. It would be interesting to see how this

formula is related to equation (7.1.5).

1I thank Henrik Johansson for providing numerical results derived from colour-kinematics duality
against which to compare my worldsheet formula.
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7.2 Derivation of Berkovits-Witten MHV

Formula

In this section I evaluate the worldsheet integral in (7.1.5) for the MHV case with

k = |L| = 2. This reproduces the formula of Berkovits and Witten from [20], and

shows that this amplitude can be considered as the MHV amplitude under my

definition in terms of Grassmann degree. In this case, the worldsheet integral can be

evaluated analytically using the results from Chapter 3. In this section I take the left

set to be L = {1, 2} and the right set to be R = {3, ..., n}, with Φ̃− t Φ̃+ = {1, 2}.

On support of the MHV solution in equation (3.1.6), the amplitude from equa-

tion (7.1.5) reduces to

M(0)
n,Φ−,2 =

∫ d2×nσ

GL(2)δ
2×n|4×2(SEn

{1,2})
∏

l−∈Φ̃−
Hl−

∏
l+∈Φ̃+

F̃l+
∏

r−∈Φ−
Fr−

∏
r+∈Φ+

H̃r+

= δ4(P )δ
8(Q)
〈12〉2

∏
r∈R

(1r)2(2r)2

〈12〉 (12)
∏

l−∈Φ̃−

〈12〉
(12)

∏
l+∈Φ̃+

∑
r<r′∈R

[rr′](rr′)
(l+r)2(l+r′)2

∏
r−∈Φ−

〈12〉 (12)
(1r−)2(2r−)2

∏
r+∈Φ+

∑
r∈R

[r+r]
(r+r)

∣∣∣∣∣∣
σ=σMHV

= δ4|8(P ) 1
(12)2

∏
l+∈Φ̃+

∑
r<r′∈R

[rr′](rr′)(12)
(l+r)2(l+r′)2 〈12〉

∏
r+∈Φ+

∑
r∈R

[r+r](1r+)2(2r+)2

(r+r) 〈12〉 (12)

∣∣∣∣∣∣
σ=σMHV

,

(7.2.1)

where in the third line it can be seen explicitly how the factors from the vertex

operators of the Φ− states in the left set cancel the factors from the MHV Jacobian.

Now evaluate equation (7.2.1) on the MHV solution. The factor associated with

each Φ+ state in the right set when evaluated on the MHV solution is equal to the

gravitational inverse soft factor ψ|1〉|2〉r+,n defined in equation (2.5.9),

∑
r∈R

[r+r](1r+)2(2r+)2

(r+r) 〈12〉 (12) =
∑
r∈R

[r+r] 〈1r〉 〈2r〉
〈r+r〉 〈1r+〉 〈2r+〉

= ψ|1〉|2〉r+,n . (7.2.2)
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Now look at the factor associated with each Φ̃− state in the left set, defining this

quantity to be ψ′l−,n. To simplify the notation, define (l−)c as the complement of l−

in L = {1, 2}. Then it can be seen that

ψ′l−,n =
∑

r<r′∈R

[rr′](rr′)(12)
(l−r)2(l−r′)2 〈12〉 =

∑
r<r′∈R

[rr′] 〈rr′〉
〈12〉2

〈(l−)cr〉 〈(l−)cr′〉
〈l−r〉 〈l−r′〉

. (7.2.3)

I find numerically up to high multiplicity that ψ′i,n can be uplifted to an expression

ψ
′ |z〉
i,n in terms of an arbitrary reference spinor |z〉, and that ψ

′ |z〉
i,n is equal to the

gravitational inverse soft factor ψ|x〉|y〉i,n . Then

ψ
′ |z〉
i,n =

∑
j<k∈N \{i}

[jk] 〈jk〉
〈ij〉 〈ik〉

〈zj〉 〈zk〉
〈iz〉2

=
n∑

k∈N \{j}

[jk]
〈jk〉
〈kx〉 〈ky〉
〈jx〉 〈jy〉

= ψ
|x〉|y〉
i,n ,

(7.2.4)

where |x〉 and |y〉 are arbitrary reference spinors. It is interesting that this expression

for the gravitational inverse soft factor depends only on one reference spinor, while

the standard expression depends on a choice of two reference spinors.

Finally I find that the general n point plane wave MHV amplitude reduces to the

formula of Berkovits and Witten,

M(0)
n,Φ−,2 = δ4|8(P )

∏
i∈Φ+tΦ̃+

ψi,n.

7.3 Scattering Non-Plane Wave States

The fourth order equations of motion for conformal gravity lead to a second set of

graviton multiplet states with non-plane wave boundary conditions, and calculating

scattering amplitudes for these states using 4D ambitwistor string theory is the

subject of this section. I consider scattering only for the SU(4) singlet graviton

and scalar states, which as in the plane wave case cover all of the structure of the

amplitude up to other states related by supersymmetry transformations.
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I review non-plane wave states in Section 2.6. They have functional form A · xeik·x

up to polarisation structure, where A is a vector defined up to the identification

A ∼ A + βk for all β ∈ R. Following from this the vertex operators for non-plane

wave states are vectors which will be contracted into a choice of vector A for each

state. The vertex operators depend on the worldsheet spinor fields |λ〉, |λ̃], |µ̃〉,

|µ] and the derivatives with respect to the worldsheet variable ∂ as in the plane

wave case, and they also depend on derivatives with respect to the spinor vectors

defining the momentum eigenstate. I define the following shorthand notation for

spinor derivatives

|∂i]α̇ := ∂

∂ |i]α̇
|∂i〉α := ∂

∂ |i〉α
, (7.3.1)

which allow for spinor contractions with these derivatives to be expressed succinctly,

and for example 〈j|α ∂
∂|i〉α = 〈i∂j〉.

I then propose the following vertex operators describing non-plane wave gravitons

and scalars,

Ṽh
−
x

l (s) =
∫ dt

t2
(|l〉 [µ(s)| − |λ(s)〉 [∂l|) δ2

(
|l]− t

∣∣∣λ̃(s)
])
eit〈µ̃(s)l〉

Ṽφ
+
x

l (s) =
∫
t dt

(
|∂µ̃(s)〉[λ̃(s)| − |µ̃(s)〉

[
∂λ̃(s)

∣∣∣) δ2
(
|l]− t

∣∣∣λ̃(s)
])
eit〈µ̃(s)l〉

Vφ
−
x

r (s) =
∫
t dt (|λ(s)〉[∂µ(s)| − |∂λ(s)〉[µ(s)|) δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]

Vh
+
x

r (s) =
∫ dt

t2

(
|µ̃(s)〉 [r| − |∂r〉

[
λ̃(s)

∣∣∣) δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r],

(7.3.2)

where the derivative with respect to the external data |∂r〉 and [∂l| act on the delta

functions. I verify the BRST invariance of these vertex operators in Section 7.7.

When calculating a correlation function with these vertex operators, it is not possible

to integrate out the |µ] and |µ̃〉 fields directly in the path integral as in the plane

wave case because these fields appear additionally outside the exponentials of the

vertex operators. This feature makes non-plane wave amplitudes more difficult to

calculate from the worldsheet than their plane wave counterparts, and as such it

requires a calculation for each combination of non-plane wave states scattered to be

able to write down their amplitudes in terms of integrals supported on 4D scattering
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equations.

It is possible to remove the dependence of the vertex operators on the |µ] and |µ̃〉

fields outside of the exponentials by adding source terms for these fields. Then a

different correlator can be computed where they only appear in the exponentials,

and original correlator obtained by taking functional derivatives with respect to the

sources and then setting the sources to zero. Source |J〉 is introduced to couple

to |µ̃〉, and |J̃ ] to couple to |µ], and the modified worldsheet Lagrangian with the

sources is then

Lsources = 〈µ̃| ∂̄ |λ〉 − [µ| ∂̄
∣∣∣λ̃]+ χ · χ̃+ [µJ̃ ]− 〈µ̃J〉 .

The non-plane wave vertex operators are replaced with

Ṽh−l (s) =
∫ dt

t2

|l〉 δ

δ
[
J̃(s)

∣∣∣ − |λ(s)〉 ∂
∂ [l|

 δ2
(
|l]− t

∣∣∣λ̃(s)
])
eit〈µ̃(s)l〉

Ṽφ
+

l (s) =
∫
t dt

(
∂

(
δ

δ|J(s)〉

)
[λ̃(s)| − δ

δ|J(s)〉 [∂λ̃(s)|
)
δ2
(
|l]− t

∣∣∣λ̃(s)
])
eit〈µ̃(s)l〉

Vφ−r (s) =
∫
t dt

(
|λ(s)〉∂

(
δ

δ[J̃(s)|

)
− |∂λ(s)〉 δ

δ[J̃(s)|

)
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]

Vh+

r (s) =
∫ dt

t2

(
δ

δ |J(s)〉 [r| − ∂

∂ |r〉
[
λ̃(s)

∣∣∣) δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r],

(7.3.3)

where from this form it is clear that each term of the vertex operators acts as a

derivative, analogously to how the non-plane wave state in momentum space can be

written as A · ∂eik·x
∂k

.

Correlators involving these vertex operators can then be evaluated by combining the

exponentials in the vertex operators with the action as in the plane wave case, and

integrating out |µ] and |µ̃〉 to give rise to delta functionals which localise the |λ〉 and

|λ̃] fields onto their equations of motion. The equations of motion now depend on

the sources and are given by

∂̄|λ〉 =
∑
l∈L

tl|l〉δ (s− sl) + |J〉, ∂̄|λ̃] =
∑
r∈R

tr|r]δ (s− sr) + |J̃ ],
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and are uniquely solved by

t|λ(s)〉 =
∑
l∈L

|l〉
(sl) + t

∫
ds′
|J〉 (s′)
s− s′

t|λ̃(s)] =
∑
r∈R

|r]
(sr) + t

∫
ds′
|J (s′)]
s− s′

,

(7.3.4)

where σαs = 1
t

(
1
s

)
.

The functional derivatives with respect to the sources from the vertex operators then

act on the functional delta functions enforcing (7.3.4), and using the chain rule for

functional differentiation they can be written as

δ

δ|J̃(s)]
=
∫ ds′

s− s′
δ

δ|λ̃(s′)]
,

δ

δ|J(s)〉 =
∫ ds′

s− s′
δ

δ|λ(s′)〉 , (7.3.5)

keeping in mind that they act on the functional delta function enforcing the equations

of motion. The sources are then set to zero, which removes the additional terms

in equation (7.3.4), and functional integration by parts can be used to move the

functional derivatives in the |λ〉 and |λ̃] fields off the delta function enforcing the

equations of motion and onto any vertex operators containing these states. The path

integral in these fields can then be done by integrating against the delta functions

enforcing (7.3.4), which produces the scattering equations from each vertex operator

as in the plane wave case. Worked examples for this type of calculation with non-

plane wave scalar and graviton states are given in Section 7.4 and 7.5.

The non-plane wave graviton vertex operators in (7.3.2) contain an additional sub-

tlety, in that the two terms in the vertex operator are both singular, and the singular-

ity cancels between the terms. I describe this cancellation in more detail in Section

7.5, where I also present some examples at n points with up to two non-plane wave

states, and show that amplitudes with non-plane wave states can be obtained by

acting on the plane wave amplitudes with a momentum derivative for each non-plane

wave state. That non-plane wave amplitudes can be calculated from plane wave

amplitude in this way can be seen schematically from the LSZ reduction formula by

noting that a non-plane wave solution can be written as a momentum derivative of
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a plane-wave solution, A · x eik·x = A · ∂
∂k
eik·x, where k is understood to be off-shell

prior to taking the derivative.

The non-plane wave functional form A ·xeik·x diverges as x→∞, and so at first sight

scattering amplitudes of these states appear not to be well defined. The amplitudes

do however have a clear definition in a distributional sense when understood as

momentum derivatives of plane-wave amplitudes; if a non-plane wave amplitude is

multiplied by a test function and integrated over momentum space, it is possible to

move the momentum derivative onto the test function using integration by parts,

and then only derivatives of the test function multiplied by plane-wave amplitudes

remain, which are defined unambiguously.

Since the amplitudes are manifestly 4D and on-shell it is necessary to differentiate

on-shell spinor variables with respect to off-shell momentum vectors to make sense

of this operation. I define a prescription for taking derivatives of this form in Section

7.6. The key formulae used to differentiate any little group invariant function of

spinor brackets with respect to the corresponding off-shell momentum vector are

∂

∂pβ̇β

(
〈λ|α

〈λη〉

)
= 〈η|α

〈λη〉2
|λ〉β[ξ̃|β̇

[ξ̃λ̃]
∂
(
|λ̃]α̇〈λ|α

)
∂pβ̇β

= δαβ δ
α̇
β̇ −
|ξ̃]α̇〈ξ|α|λ〉β[λ̃|β̇
〈λξ〉 [ξ̃λ̃]

,

(7.3.6)

where |η〉 is an arbitrary spinor defining the little group invariant function, and |ξ〉

is a reference spinor which defines the direction of an off-shell extension to |λ]〈λ|.

A general plane wave amplitude expressed in terms of on-shell variables has many

different possible expressions on support of momentum conservation. Non-plane wave

amplitudes are more subtle still, and have more than one possible form even after

taking into account momentum conservation. As an example to explain this freedom,

consider using momentum conservation to remove the dependence on the momentum

of a particular external state. Amplitudes with a single non-plane wave state can

then be written with derivatives that act only on the momentum-conserving delta

function, but the expressions obtained from worldsheet calculations will generally
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not be of this form for amplitudes with more than three legs as seen in Sections 7.4

and 7.5.

7.4 Non-Plane Wave Scalar Amplitudes

In this section I give a worked example of calculating an n-point MHV amplitude

with a non-plane wave scalar state using the vertex operators proposed in Section

7.3, and use the method described in Section 7.6 to express them as momentum

derivatives of plane wave amplitudes.

I first calculate an amplitude with two plane wave negative helicity gravitons, a neg-

ative multiplet scalar with non-plane wave boundary conditions, and n−3 plane wave

positive helicity gravitons. I define the left set which contains the negative helicity

gravitons to be L = {1, 2}, the right set R to contain the remaining particles, and the

set R′ = {4, ...n} to be the set of positive helicity gravitons. The vertex operators for

these states can be found in (7.1.3) and (7.3.2). For notational simplicity, I define an

antisymmetric bilinear bracket which acts on a pair of functions on the worldsheet

as [f, g](s) := ∂fg− f∂g, as well as defining shorthands for the delta functions from

the vertex operators as δ|l] := δ2
(
|l]− tl

∣∣∣λ̃(sl)
])

and δ|r〉 := δ2 (|r〉 − tr |λ(sr)〉).

The amplitude is given by

M(0)(h−h−φ−x h+...h+) =
∫ dns

SL(2)

〈∏
l∈L
Ṽh−l (sl)Vφ

−
x

3 (s3)
∏
ρ∈R′
Vh+

ρ (sρ)
〉

=
∫ d2×nσ

GL(2)

∫
D |λ〉D|µ]D |µ̃〉D|λ̃]e

∫
d2sL∏

l∈L
δ|l]e

i〈µ̃(sl)l〉

×
∏
r∈R

δ|r〉e
i[µ(sr)r] 〈1λ(s1)〉 〈2λ(s2)〉

[
|µ], 〈λ|

]
(s3)

∏
ρ∈R′

[
ρλ̃(sρ)

]
.

(7.4.1)

The |µ̃〉 field in the integrand appears only inside exponentials, and hence the path

integral in |µ̃〉 and |λ〉 can be done as in the example for Yang-Mills in Section 2.11.

As there are |µ] fields appearing outside of the exponentials also, I introduce a source

|J ] for these fields as explained in Section 7.3.2. The Lagrangian with the sources
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and exponentials from the vertex operators is then

L′ = 〈µ̃|
(
∂ |λ〉+ i

∑
l∈L

tlδ(s− sl) |l〉
)

+ [µ|
(
∂|λ̃] + i

∑
r∈R

trδ(s− sr)|r] + |J ]
)
, (7.4.2)

and the amplitude can be written as

M(0)(h−h−φ−x h+...h+) =
∫ d2×nσ

GL(2)

∫
D |λ〉D|µ]D |µ̃〉D|λ̃]

∏
l∈L

δ|l] 〈lλ(sl)〉
∏
r∈R

δ|r〉

×
∏
ρ∈R′

[
ρλ̃(sρ)

] [ δ

δ|J ] , 〈λ|
]
(s3)e

∫
d2sL′

∣∣∣∣∣
|J ]=0

=
∫ d2×nσ

GL(2)

∫
D |λ〉D|λ̃]

∏
l∈L

δ|l] 〈lλ(sl)〉
∏
r∈R

δ|r〉
∏
ρ∈R′

[
ρλ̃(sρ)

]

× δ
(
∂ |λ〉+ i

∑
l∈L

δ(s− sl) |l〉
)

×
[
δ

δ|J ] , 〈λ|
]
(s3) δ

(
∂|λ̃] + i

∑
r∈R

δ(s− sr)|r] + |J ]
)∣∣∣∣∣
|J ]=0

(7.4.3)

Solving the equations of motion for |λ〉 and |λ̃] inside the delta functions gives that

|λ(s)〉 =
∑
l∈L

tl |l〉
s− sl

|λ̃(s)] =
∑
r∈R

tr|r]
s− sr

+
∫
ds′
|J(s′)]
s− s′

(7.4.4)

Now integrate the delta function enforcing the equations of motion for |λ〉 directly

against D |λ〉, and change the functional derivative in |J ] to one in |λ̃], and set

|J ] = 0. This introduces an extra integral over s′ from the chain rule for functional

derivatives.

M(0)(h−h−φ−x h+...h+) =
∫ d2×nσ

GL(2)

∫
D|λ̃]

∏
l∈L

δ|l]
∏
r∈R

δ|r〉
〈12〉2

(12)2

∏
ρ∈R′

∑
r∈R

[ρr]
(ρr)

×
∫
ds′
[ 1
s− s′

δ

δ|λ̃(s′)]
,
∑
l∈L

tl 〈l|
s− sl

]
(s3) δ

(
|λ̃]−

∑
r∈R

|r]
s− sr

)
(7.4.5)

Then use functional integration by parts to move the δ
δ|λ̃] functional derivative off

of the functional delta function, and use the bilinearity of the bracket [f, g] to pull
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out δ
δ|λ̃] and the 〈l|. Then the bracket evaluates to [ 1

s−s′ ,
1

s−sl
](s3) = s′−sl

(s3−sl)2(s′−sl)2 .

Combining these results gives that

M(0)(h−h−φ−x h+...h+) =
∫ d2×nσ

GL(2)
∏
r∈R

δ|r〉
〈12〉2

(12)2

∫
D|λ̃] δ

(
|λ̃]−

∑
r∈R

tr|r]
s− sr

)

×
∫
ds′

∑
l∈L

s′ − sl
(s3 − sl)2(s′ − sl)2

δ

δ|λ̃(s′)]
〈l|

δ|1]δ|2]
∏
ρ∈R′

∑
r∈R

[ρr]
(ρr)


(7.4.6)

The derivative structure of the vertex operator with the non-plane wave states acting

on the other vertex operators is now clear, showing how the non-plane wave states

can be seen as momentum derivatives acting on the corresponding amplitudes with

plane-wave states. Expanding out the functional derivative using the chain rule gives

normal derivatives with respect to external data acting on the delta functions. There

are also delta functions in s′ from each action of the functional derivative, localising

the s′ integral. The final form of the amplitude as a worldsheet integral can then be

seen to be

M(0)(h−h−φ−x h+...h+) =
∫ d2×nσ

GL(2)
〈12〉2

(12)2

( ∏
ρ∈R′

∑
r∈R

[ρr]
(ρr)

) (12)
(13)2(23)2 (|∂1] 〈2| − |∂2] 〈1|)

+
∑

ρ∈R′,l∈L

|ρ] 〈l| (ρl)
(3ρ)2(3l)2

( ∏
ρ′∈R′,ρ′ 6=ρ

∑
r∈R

[ρ′r]
(ρ′r)

)δ2×n(SEn,{1,2})

(7.4.7)

The first term comes from acting with the functional derivatives on the delta functions

imposing the scattering equations, and the second term comes from acting on the

spinor brackets
[
ρλ̃(sρ)

]
in the positive-helicity graviton vertex operators.

The worldsheet integral can be evaluated analytically following the same procedure

as in Section 7.2. Using the GL(2) symmetry to fix σ1 =
(

1
0

)
and σ2 =

(
0
1

)
and

converting the delta functions in the left set into a momentum conserving delta

function, it can be seen that the remaining terms do not depend on |1] or |2].
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Furthermore, the Jacobian from the scattering equation delta functions only contains

angle brackets, so that |∂1] and |∂2] will act only on the momentum conserving delta

function. This part of the amplitude can then be simplified as follows:

(
|∂1]α̇ 〈2|α − |∂2]α̇ 〈1|α

)
δ4(P ) =

(
〈1|β 〈2|

α ∂

∂P α̇β
− 〈2|β 〈1|

α ∂

∂P α̇β

)
δ4(P )

= 〈12〉 ∂δ
4(P )
∂pα̇α3

,

(7.4.8)

and after some further simplification using the Schouten identity, and writing in

terms of the gravitational inverse soft factor, ψp,n from equation (2.5.9), the explicit

form for the amplitude in terms of angle and square brackets is

M(0)(h−h−φ−x h+...h+) = 〈12〉4
 ∏
ρ∈R′

ψρ,n
∂

∂p3

+
∑
ρ∈R′

|ρ] (〈12〉 〈ρ3〉 〈3|+ 〈23〉 〈13〉 〈ρ|)
〈3ρ〉2 〈1ρ〉 〈2ρ〉

∏
ρ′∈R′,ρ′ 6=ρ

ψρ′,n

δ4(P )

(7.4.9)

I now use this result to show that amplitudes with states with non-plane wave

boundary conditions can be calculated as momentum derivatives of those with plane

wave boundary conditions. In this case, the statement is that

M(0)(h−h−φ−x h+...h+) = A3 ·
∂

∂p3
M(h−h−φ−h+...h+)

= 〈12〉4A3 ·
∂

∂p3

∏
ρ∈R′

ψρ,nδ
4(P )

 (7.4.10)

Clearly for n = 3, |R′| = 0 and the result holds. To prove for all n, it suffices to

prove that

A3 ·
|ρ] (〈12〉 〈ρ3〉 〈3|+ 〈23〉 〈13〉 〈ρ|)

〈3ρ〉2 〈1ρ〉 〈2ρ〉
= A3 ·

∂

∂p3
ψρ,n, (7.4.11)



162
Chapter 7. N = 4 Conformal Supergravity Amplitudes in 4D

Ambitwistor String Theory

given some vector A3 such that A3 · P3 6= 0, which I prove in Section 7.6.

7.5 Non-Plane Wave Graviton Amplitudes

In this section I calculate an n-point MHV amplitude with a non-plane wave grav-

iton state using the vertex operators proposed in Section 7.3, and use the method

described in Section 7.6 to express them as momentum derivatives of plane wave

amplitudes. There is an additional computational subtlety in the non-plane wave

graviton vertex operators which was not present for non-plane wave scalars which

must be addressed first. As written the non-plane wave graviton vertex operators

contain singular terms, which can be seen for the h−x vertex operator as follows. First

consider the equation of motion for |λ〉,

|λ(s)〉 =
∑
l∈L

|l〉
s− sl

, (7.5.1)

where the poles of |λ(s)〉 are located at s = sl. As h− sits in the left set, Ṽh
−
x

l (sl) will

be inserted in the correlation function and has a pole at s = sl. Then it appears at

first glance that this vertex operator is not well-defined, but there is also a pole of

[µ(s)| which cancels this pole and hence the singularity is removable. The residue

at the pole of |λ(s)〉 when s = sl in the vertex operator is |l〉 [∂l|. Given that

[µ(s)| ∼ 1
s−s′

δ

δ[λ̃(s′)| , it can be seen that will also have a pole at s = sl. On support

of the delta function,
[
λ̃(sl)

∣∣∣ = [l| and the residue of this pole will be − |l〉 [∂l|, hence

the two singularities cancel.

One way to regulate this removable singularity is to insert limα→sl Ṽ
h−x
l (α) into

correlation functions instead of Vh−(sl), and another is to use the normal-ordered

vertex operator : Ṽh
−
x

l :, which is equivalent to inserting Vh−x (sl) directly and dropping

singular terms.

I now provide an explicit calculation of the amplitude with one negative non-plane

wave graviton,M(0)(h−x h−h+...h+), regulating the removable singularity by writing
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the vertex operator as Ṽh
−
x

l (s1) = limα→s1 Ṽ
h−x
l (α). I define the left set to be L =

{1, 2}, and use the same definitions from the last section for δ|l] and δ|r〉. The

amplitude can then be written as

M(0)(h−x h−h+...h+) =
∫ dns

SL(2)

〈
Ṽh
−
x

1 (s1)Ṽh−2
∏
r∈R
Vh+

r (sr)
〉

=
∫ d2×nσ

GL(2)

∫
D |λ〉D|µ]D|µ̃〉D|λ̃]ei

∫
d2sLei〈µ̃(s1)1〉δ|2]e

i〈µ̃(s2)2〉

×
∏
r∈R

δ|r〉e
i[µ(sr)r] 〈2λ(s2)〉

∏
r∈R

[
rλ̃(sr)

]

× lim
α→s1

|1〉 [µ(α)| − |λ(α)〉 [∂1|

δ|1]

(7.5.2)

Following the same steps as the calculation with one φ−x state gives that

M(0)(h−x h−h+...h+) =
∫ d2×nσ

GL(2)
∏
r∈R

δ|r〉
〈12〉
(12)

∫
D|λ̃] δ

(
|λ̃]−

∑
r∈R

|r]
s− sr

)

×
∫
dσ′ lim

α→s1

 1
α− s′

|1〉 δ

δ
[
λ̃(s′)

∣∣∣ − |λ(α)〉 [∂1|


×

δ|1]δ|2]
∏
r∈R

∑
r′∈R

[
rλ̃(sr)

]
(7.5.3)

Calculating the functional derivative and solving the integrals in |λ̃] and s′ gives that

M(0)(h−x h−h+...h+) =
∫ d2×nσ

GL(2)
〈12〉
(12)

×

 lim
α→σ1

 |1〉 [∂1|
α− σ1

+ |1〉 [∂2|
(12) −

|1〉 [∂1|
α− σ1

− |2〉 [∂2|
(12)

 ∏
r∈R

∑
r′∈R

[rr′]
(rr′)

+
∑
r∈R

|1〉 [r|
(1r)

∏
r′ 6=r∈R

∑
r′′∈R

[r′r′′]
(r′r′′)

δ2×n(SEn,L).

(7.5.4)

The singular terms cancel, giving an integral expression for the amplitude supported

on scattering equations. Solving this integral as in the calculation with one φ−x state

gives
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M(0)(h−x h−h+...h+) =
∫ d2×nσ

GL(2)
〈12〉
(12)

 |1〉 [∂2| − |2〉 [∂1|
(12)

 ∏
r∈R

∑
r′∈R

[rr′]
(rr′)

+
∑
r∈R

|1〉 [r|
(1r)

∏
r′ 6=r∈R

∑
r′′∈R

[r′r′′]
(r′r′′)

δ2×n(SEn,L)

= 〈12〉4
 ∏
r∈R

ψr,n
∂

∂p1
+
∑
r∈R

〈12〉 |1〉 [r|
〈1r〉2 〈2r〉

∏
r′∈R,r′ 6=r

ψr′,n

δ4(P ),

(7.5.5)

and using the result for the derivative of a gravitational inverse soft factor from

Section 7.6 gives that

M(0)(h−x h−h+...h+) = 〈12〉4A1 ·
∂

∂p1

 ∏
r∈R

ψ|1〉|2〉r,n δ4(P )
. (7.5.6)

Following similar steps, the calculation with two non-plane wave gravitons gives that

A(h−x h−x h+...h+) = 〈12〉4
(
A1 ·

∂

∂p1

)(
A2 ·

∂

∂p2

) ∏
r∈R

ψ|1〉|2〉r,n δ4(P )
 (7.5.7)

where A1 and A2 are vectors in the wave functions of particles 1 and 2.

7.6 Momentum Derivatives

In this section I define a prescription to differentiate on-shell spinor variables |λ〉

with respect to a corresponding momentum vector p, as needed to calculate the

momentum derivatives of plane wave amplitudes. I work with real momenta, such

that |λ̃] = 〈λ|†. As written this problem is not well specified, as there are four

degrees of freedom in an off shell momentum p and only three degrees of freedom

in the spinor variables after the quotient by the U(1) little group. To make the

problem well-defined, I add an extra constant reference spinor |ξ〉 and a variable α

proportional to the length of the vector to the system to define a complete co-ordinate

transformation from (p0, p1, p2, p3) to (|λ〉 , α). The direction ξ = |ξ] 〈ξ| then defines

a direction which comes off the mass shell, and all other directions
∣∣∣λ̃] 〈λ| sit in the
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mass-shell. The change of variables is given by

p = |λ̃]〈λ|+ α|ξ̃]〈ξ|. (7.6.1)

Inverting this equation to solve for α gives that α(p) = p2

2p·ξ , and it is also possible

to solve for |λ(p)〉. To see this, contract equation 7.6.1 with spinor [ξ̃| to arrive at

[ξ|p = [ξ̃λ̃]〈λ|. For real momenta the relationship
∣∣∣[ξ̃λ̃]

∣∣∣2 = ξ · p holds, and hence

there must exist some phase θ(p) such that [ξ̃λ̃] = e−iθ
√
ξ · p. Given that |λ〉 is

defined only up to this arbitrary phase, the inverse coordinate transformation is then

given by

〈λ(p)| = eiθ(p)
[ξ|p√
ξ · p

, α(p) = p2

2p · ξ . (7.6.2)

It may appear strange at first sight that the phase can depend on p but this depend-

ence is actually used regularly, for example when using the little group freedom to

fix one of the components of |λ〉. For the choice of reference spinor 〈ξ| =
(

0
1

)
and

θ = 0 the following well-known expression [82]

|λ(p)〉 = 1√
p0 + p3

 p0 + p3

p1 − ip2

 (7.6.3)

is recovered.

Now consider calculating ∂|λ〉
∂p

from equation (7.6.2), keeping in mind that the little

group phase depends on p. Then

∂〈λ(p)|α

∂pβ̇β
= ∂

∂pβ̇β

eiθ(p)
(
[ξ̃|p

)α
√
ξ · p


=
δαβ e

iθ(p)[ξ̃|β̇√
ξ · p

− 1
2
eiθ(p)

(
[ξ̃|p

)α
√
ξ · p

|ξ〉β[ξ̃|β̇
ξ · p

+ i
∂θ(p)
∂pβ̇β

eiθ(p)
(
[ξ̃|p

)α
√
ξ · p

=
δαβ [ξ̃|β̇
[ξ̃λ̃]

− 1
2
〈λ(p)|α|ξ〉β[ξ̃|β̇

〈λξ〉 [ξ̃λ̃]
+ i

∂θ(p)
∂pβ̇β

〈λ(p)|α,

(7.6.4)

and it can be seen that ∂|λ〉
∂p

transforms as a connection on the U(1) little group.

Now consider taking the momentum derivative of a function of spinor brackets. Due
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to the transformation law for ∂|λ〉
∂p

, if the function transforms covariantly in the little

group then its derivative will transform as a connection in the little group, and

only for little group invariant functions will the derivative transform covariantly. As

scattering amplitudes either transform covariantly or are invariant in the little group,

it is important to only differentiate little group invariant functions of momenta in

the calculation of non-plane wave amplitudes. All acceptably differentiable functions

of spinor brackets can then be built up out of two basic little group invariants, |λ̃]〈λ|

and 〈λ|
〈λη〉 , where |η〉 is any spinor defining the functions.

First consider differentiating 〈λ|
〈λη〉 with respect to p, using equation (7.6.4). Note

that while equation (7.6.4) is not little group covariant its contraction with |λ〉 is,

resulting in a little group invariant result.

∂

∂pβ̇β

(
〈λ|α

〈λη〉

)
=
〈λη〉 ∂〈λ|

α

∂pβ̇β
+ ∂〈λ|γ

∂pβ̇β
|η〉γ 〈λ|α

〈λη〉2

= 〈η|α

〈λη〉2
|λ〉γ

∂〈λ|γ

∂pβ̇β
= 〈η|α

〈λη〉2
|λ〉β[ξ̃|β̇

[ξ̃λ̃]
,

(7.6.5)

where in the second line the Schouten identity was used, and in the third equality

(7.6.4) was used.

Now consider differentiating the on shell momentum vector |λ̃]〈λ|. This calculation

is more simple using the initial definition of the co-ordinate transformation (7.6.1),

which gives that

∂
(
|λ̃]α̇〈λ|α

)
∂pβ̇β

= δαβ δ
α̇
β̇ −
|ξ̃]α̇〈ξ|α|λ〉β[λ̃|β̇
〈λξ〉 [ξ̃λ̃]

. (7.6.6)

The result of this calculation is a projection matrix which satisfies |ξ̃]β̇〈ξ|β ∂(|λ̃]α̇〈λ|α)
∂pβ̇β

= 0

and pβ̇β ∂(|λ̃]α̇〈λ|α)
∂pβ̇β

= |λ̃]α̇〈λ|α. Although these formulae depend on a reference spinor,

varying with respect to the reference spinor gives terms corresponding to momentum

derivatives of functions which vanish on-shell and can therefore be neglected.

Now use these identities to compute two different momentum derivatives of the

gravitational inverse-soft factor ψ|a〉|b〉j,n defined in equation (2.5.9), which are used

in Sections 7.4 and 7.5. In particular, first differentiate with respect to particle i
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where i 6= j, and take reference spinors |a〉 and |b〉 not to depend on i. Note that

the independence of the gravitational inverse soft factor on the two reference spinors

is only valid on support of momentum conservation, and when taking derivatives it

is necessary to specify what the reference spinors are. Then

∂

∂pβ̇βi
ψa,bj,n = ∂

∂pβ̇βi

∑
k∈N \{j}

[jk]
〈jk〉
〈ka〉 〈kb〉
〈ja〉 〈jb〉

= 1
〈ja〉 〈jb〉

[j|α̇
∂

∂pβ̇βi

(
|i]α̇〈i|α

)
|a〉α
〈ib〉
〈ji〉

+ [ji] 〈ia〉 ∂

∂pβ̇βi

(
〈i|α

〈ji〉

)
|b〉α


=
(
|i〉β 〈ab〉 〈ji〉+ |j〉β 〈ia〉 〈bi〉

) [j|β̇
〈ja〉 〈jb〉 〈ij〉2

,

(7.6.7)

where in the second line equations (7.6.6) and (7.6.5) are used, the reference spinor is

chosen to be |ξ〉 = |j〉, and Schouten identity was also used to rearrange the brackets.

A final example is a different derivative of the gravitational inverse soft factor.

Consider the case where |a〉 = |j〉, and j 6= i. Then

∂

∂pj
ψ
|j〉|b〉
i,n =

∑
k∈N \{i,j}

[ki]
〈ki〉
〈kb〉
〈ib〉

∂

∂pj

(
〈kj〉
〈ij〉

)

=
∑

k∈N \{i,j}

[ki]
〈ki〉
〈kb〉
〈ib〉
〈ik〉
〈ij〉2

∣∣∣ξ̃] 〈j|[
ξ̃j
] (7.6.8)

Fixing the reference spinor
∣∣∣ξ̃] = |i] gives that

∂

∂pj
ψ
|j〉|b〉
i,n = [i|

∑
k∈N \{i,j}

(
|k] 〈k|

)
|b〉 |i] 〈j|

[ij] 〈bi〉 〈ij〉2

= 〈bj〉 |i] 〈j|
〈bi〉 〈ij〉2

(7.6.9)

7.7 BRST Quantization

In this section I analyse the BRST quantisation 4D ambitwistor string theory as

defined by the worldsheet Lagrangian in equation (2.11.2). This serves as a review

of how Yang-Mills states sit in the cohomology of the BRST operator Q, and I also
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derive new results showing how the conformal supergravity vertex operators which I

provide in Sections 7.1 and 7.3 are also in the cohomology of Q.

The Lagrangian can be written as

L = Z ∂̄Z̃ + uZ · Z̃ + eTmatter,

where u is a worldsheet gauge field and

Tmatter = 1
2
(
Z · ∂Z̃ − Z̃ · ∂Z

)
+ TJ ,

where TJ is the current algebra stress tensor.

Note that this Lagrangian is a (β, γ) ghost system with holomorphic conformal

weights (1/2, 1/2). A general (β, γ) system with holomorphic conformal weights

(λ, 1− λ) has the stress tensor

Tβγ = λβ∂γ − ε(1− λ)γ∂β,

where ε = ±1 for bosonic/fermionic statistics. The central charge can then be read

off from the OPE of T with itself and is given by

c = 2ε
(
6λ2 − 6λ+ 1

)
. (7.7.1)

The gauge fields can be fixed to e = u = 0 using the Fadeev-Popov procedure

by introducing ghost systems (b, c) and
(
b̃, c̃
)
with holomorphic conformal weights

(2,−1) and (1, 0), respectively. The stress tensor for the ghosts is then given by

Tghost = Tbc + Tb̃c̃ where

Tbc = 2b∂c− c∂b, Tb̃c̃ = b̃∂c̃.

Using (7.7.1), the contribution of the ghosts to the central charge is cghost = −26−2 =

−28. The BRST charge Q is then defined as

Q =
∮
ds
(
c (Tmatter + Tghost) + c̃Z · Z̃

)
.
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The key property that Q must satisfy is nilpotency, that Q2 = 0. In order for Q to

satisfy this constraint, the total central charge must vanish. The (Z, Z̃) system has

zero central charge since the bosonic contributions cancel the fermionic ones, so the

central charge of the current algebra must be cJ = +28.

For vertex operators to be in the cohomology of Q they must satisfy QV = 0, which

is equivalent to calculating {Q,V} = 0 at the level of operators in the 2D conformal

field theory. This condition implies that the vertex operators must have holomorphic

conformal weight wV = 1 and GL(1) weight qV = 0. The conformal and GL(1)

weights may be read off from the OPE of the vertex operator with T and Z · Z̃:

T (σ)V(s′) = wVV(s)
(s− s′)2 + ..., Z · Z̃(s)V(s′) = qVV(s)

s− s′
+ ...

where the ellipses denote less singular terms.

Now verify that the vertex operators considered in Sections 7.1 and 7.3 are Q-closed.

A plane-wave vertex operator in the right set is schematically of the form

δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r],

where kr = |r] 〈r| is the on-shell momentum. Let us then consider an ansatz for a

plane-wave vertex operator of the form

V(s) =
∫ dt

tγ
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]

[
λ̃(s)r

]s′−1
J(s), (7.7.2)

where s′ ≥ 1 is the spin. In practice, a long but straightforward OPE calculation can

be avoided using the following rules for computing conformal and GL(1) weights;

T : [Z] = [Z̃] = −[t] = 1
2 , [∂] = 1

Z · Z̃ : [Z] = −[Z̃] = −[t] = 1, [∂] = 0,

where weights of t are fixed by the consistency condition that [tZ] = 0. For vertex

operators in the left set, t will have opposite weights. External spinors have zero

weight, [|i〉] = [|i]] = 0. Applying these rules to the vertex operator in (7.7.2), gives

that
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wV = 1
2 (γ − 1) + 1

2(s′ − 1) + wj, qV = (γ − 1)− (s′ − 1),

where wj is the conformal weight of the current algebra. Q-closure then implies that

γ = s′ and wj = 2− s′, which implies that s′ ≤ 2. Note that if the constraint qV = 0

is not imposed then the GL(1) symmetry is not gauged and vertex operators with

higher spin appear to be allowed. If s′ = 1, then the vertex operator reduces to

V(s) =
∫ dt

t
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]J(s) (7.7.3)

which describes a gluon in N = 4 super Yang-Mills. For s = 2, the vertex operator

describes a graviton with plane wave boundary conditions:

V(s) =
∫ dt

t2
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]

[
λ̃(s)r

]
,

where the current algebra is not present in the vertex operator since wj = 0.

To deduce the vertex operator for a scalar in the right set, consider the ansatz

V(s) =
∫ dt

tγ
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r] 〈λ(σ)∂λ(σ)〉1−s

′
J(s) (7.7.4)

where s′ ≤ 1. Using the rules described above gives

wV = 1
2 (γ − 1) + 2(1− s′) + wj, qV = 2(1− s′) + (γ − 1).

Imposing wV = 1 and qV = 0 then implies that γ = 2s′ − 1 and wj = s′, from which

we deduce that s′ ≥ 0. If s′ = 1, then the vertex operator reduces to the gluon vertex

operator in (7.7.3), but if s′ = 0 it describes a scalar with plane-wave boundary

conditions,

V(s) =
∫
tdtδ2 (|r〉 − t |λ(s)〉) eit[µ(s)r] 〈λ(s) · ∂λ(s)〉 .

Now consider non-plane wave states, using the following ansatz:

V(s) =
∫ dt

tγ

(
A ·

(
|i] 〈µ̃| −

∣∣∣λ̃] 〈∂i|))s′−1
δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r].

Following an analysis similar to the one from equation (7.7.2) gives that s′ = γ = 2,



7.7. BRST Quantization 171

so the vertex operator reduces to that of a non-plane wave graviton. Similarly, the

following ansatz

V(s) =
∫ dt

tγ
(A · (|λ〉 ∂ [µ| − ∂ |λ〉 [µ|))1−s′ δ2 (|r〉 − t |λ(s)〉) eit[µ(s)r]

must satisfy s′ = 0 and γ = −1, and reduces to the vertex operator for a non-plane

wave scalar.





Chapter 8

Conclusion

8.1 Summary of Results

In this thesis, I have focused on the framework of the 4D scattering equations, their

relationship with 4D ambitwistor string theory and on-shell diagrams, and how they

can be used to calculate scattering amplitudes in N = 4 super Yang-Mills, N = 8

supergravity and N = 4 conformal supergravity.

In Chapter 3 I explained in detail the necessary tools for solving the 4D scattering

equations analytically in the MHV sector and numerically for higher MHV degree,

based on my work from [1], and in Chapter 4 I outlined a Monte Carlo algorithm

for solving the scattering equations numerically, and an algorithm for extracting

component amplitudes from Grassmann delta functions efficiently. These results

allow for computation of tree-level amplitudes in Yang-Mills theory and Einstein

gravity with any number of super symmetries, as understood in [26], and sets up

the formalism necessary for my later analysis of N = 4 conformal supergravity.

Amplitudes in these theories can be calculated explicitly using my accompanying

Mathematica package treeamps4dJAF which is published alongside [1], and im-

plements the algorithms described in this paper. When integrands are conjectured

for new theories it will now be straightforward to test and evaluate them using the

package.
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In Chapter 5 I then moved on to explore amplitudes inN = 4 super Yang-Mills by un-

derstanding the relation between worldsheet integral expressions for the amplitudes

of the theory supported on 4D scattering equations, and Grassmannian integral for-

mulae arising from on-shell diagrams, based on my work from [2]. From this analysis

I found a deeper understanding of the structure of tree level amplitudes in N = 4

super Yang-Mills, making clear how the two different computational approaches are

related by a global residue theorem in the NMHV sector, and understanding how the

different terms in the amplitude can be seen to arise from taking residues of a single

top form in the Grassmannian in this case. I also derived new worldsheet formulae

for the 1-loop 4 point integrand of the theory which is manifestly supersymmetric

and supported on scattering equations refined by MHV degree. I then solved the

scattering equations to evaluate this worldsheet integral, based on my work from

appendix C of [3]

I went on in Chapter 6 to extend the theory of on-shell diagrams for N = 8 super-

gravity, and to extend my analysis of the mapping between 4D scattering equations

and on-shell diagrams to this setting, also based on my work from [2]. This allowed

me to compute the n-point tree level MHV amplitude in supergravity using on-

shell diagrams, matching against known expressions in terms of both the inherently

non-planar Hodges matrix and the planar BGK formula. For NMHV amplitudes,

I find that the decorated planar on-shell diagrams of N = 8 supergravity do not

arise from the residues of a single top form in the Grassmannian, in contrast to the

planar on-shell diagrams of N = 4 super Yang-Mills. I also derived new worldsheet

formulae for the 1-loop 4 point integrand in N = 8 supergravity, equivalent to the

one I found in N = 4 super Yang-Mills in Chapter 5.

Finally, in Chapter 7 I investigated tree-level scattering amplitudes of graviton

multiplets in N = 4 conformal supergravity using 4D ambitwistor string theory,

based on my work from [4]. In contrast to the 4D ambitwistor string formulae for

N = 4 super Yang-Mills and N = 8 supergravity, I find that the number of negative

helicity superfields is not equal to the Grassmann degree of the amplitude, and that
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the scattering equations for conformal supergravity are defined by the Grassmann

degree. I found simple expressions for the vertex operators for plane wave graviton

multiplets of the theory, and by calculating correlation functions of these vertex

operators I obtained simple formulae for scattering amplitudes of graviton multiplets

which generalize previous results of Berkovits and Witten for Grassmann degree 2.

For Grassmann degree 3 and higher I evaluated the worldsheet integrals numerically

using my methods from Chapters 3 and 4, and I matched the results against those

obtained using Feynman diagrams and the double copy approach developed in [49]

up to 8 points.

I went on in Chapter 7 to analyse graviton multiplets with non-plane wave boundary

conditions of the form A · xeik·x. I found that amplitudes with such states were

subtle to compute, requiring the introduction of sources in the worldsheet path

integral which lead to deformed scattering equations as an intermediate step in the

calculation. Using this formalism I derived worldsheet formulae for some amplitudes

with non-plane wave graviton states at n-points. I then developed a prescription for

differentiating spinor variables with respect to their corresponding off-shell momenta,

which I used to show that non-plane wave amplitudes of the theory can obtained by

acting on plane wave amplitudes with momentum derivatives.

8.2 Directions for Future Work

I now give a brief description of directions for future research based on my work in

this thesis.

Firstly building on the work analysing numerical and analytical aspects of the 4D

scattering equations from Chapters 3 and 4, the following are possible areas for

future research:

• A natural question to ask is whether my numerical methods for solving the

4D scattering equations are applicable to the general d scattering equations.
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It should be simple to map a full set of solutions at n points from the 4D

scattering equations to the general d scattering equations for d = 4, which

would allow calculating amplitudes for the wider variety of theories supported

by these equations in four dimensions. Solving the general d equations directly

using this algorithm is more difficult as they are not refined by helicity degree

and all (n− 3)! solutions must be found. Mathematica’s inbuilt algorithms

can already solve the general d equations numerically up to 9 points with a

deterministic algorithm, so it would be necessary to improve on the efficiency of

the Monte Carlo algorithm if it is to become a viable method for this problem.

• The explicit implementation of the algorithms in my Mathematica package

treeamps4dJAF which is published alongside this work provide only a basic

implementation of the Monte Carlo equation solving algorithm, and there are

a number of different ways that it could be improved. NSolveMonteCarlo does

not support parallel computation of different calls to FindRoot, and does not

use an optimal algorithm for deciding whether solutions are duplicate. The

sampling method used where all initial points are taken from an approxim-

ated uniform distribution could be improved on. An updated algorithm with

these changes in Mathematica should have significantly better behaved time

complexity. Re-writing the core solution finding algorithm in a different pro-

gramming language better suited to low-level numerical computation such as

C++ could also increase efficiency dramatically. These changes should allow

solution finding in the 4D case for higher n and k, and it is possible that

they could allow solving the general d equations by Monte Carlo algorithm to

become viable.

• It is intriguing to find that the Cauchy distribution arises in the statistical

analysis of the solutions to the 4D scattering equations, and especially to find

that the parameter of the distribution is insensitive to changing n and k. It

would be interesting to explore how the functional form of this distribution is
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related to the physics of the equations.

• A clear limitation of the 4D scattering equations is that they currently only

support tree-level calculations, and the forward limit part of one loop integrands

as explained in Chapter 5. Although loop-level scattering equations exist in

general dimensions[133, 134], and work has been done with the general d

scattering equations in 4 dimensions [3] at one loop, there is as yet no n-point

formula for loop integrands in terms of helicity refined 4D scattering equations.

A natural future direction is to investigate the existence of n-point loop level

4D scattering equations, and another direction for future work could implement

numerical algorithms to evaluate loop-level integrands as sums over solutions

to the general d equations. It would also be interesting to extend the work

from [3] to two loops.

• The 4D scattering equations are not restricted only to calculating amplitudes,

they also cover form factors [135] and possibly further structures in quantum

field theory. They can also be used to calculate more physically relevant

standard model amplitudes[136]. The tools I have provided in this paper

should be directly relevant to calculation of form factors, and could play a

role in finding new types of structures that can be supported on scattering

equations.

• Recent work in [137, 138] proposes a set of 6D scattering equations, and [139]

extends the general d scattering equations from the Riemann sphere to CP k.

It would be interesting to see if the algorithms I provide in this thesis are useful

in finding solutions to these new extended scattering equations.

Based on my work understanding how the 4D scattering equations are related to

on-shell diagrams in N = 4 super Yang-Mills in Chapter 5, I pose the following

questions for future research:

• In Section 6.6, I use the bonus relations to solve the on-shell diagram recursion
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relations in the planar sector for MHV amplitudes in N = 8 and obtain a

compact expression for any number of legs. It would be interesting to see if

this expression has a geometric interpretation, analogous to the amplituhedron

for planar N = 4 super Yang-Mills. Beyond MHV, I find that the decorated

planar on-shell diagrams from which the full amplitudes can be deduced do

not correspond to residues of a single top-form, so it would be interesting to

see if a unique top-form can be deduced by solving the recursion relations in a

non-planar sector or incorporating the bonus relations, possibly using the work

on non-planar on-shell diagrams in [140]. Interesting progress has been made

recently towards finding a geometrical object to describe gravity amplitudes

in [123, 141].

• Since integrability is usually restricted to two-dimensional models, one would

expect that reformulating perturbative scattering amplitudes as worldsheet

integrals should provide new insight into the origin of such properties in a

4D theory like N = 4 super Yang-Mills. It would therefore be interesting to

investigate how Yangian symmetry is realised for the worldsheet formulae of

N = 4 super Yang-Mills arising from 4D ambitwistor string theory, compared

with that of the original twistor string [142]. Moreover, if it is possible to

generalize my worldsheet formulae for N = 8 supergravity to higher loops,

it would be interesting to investigate if they provide hints into the origin

of unexpected UV cancellations, or if they provide a simple prescription for

regulating IR divergences.

• There has been a great deal of progress in computing tree-level form factors

in N = 4 super Yang-Mills using on-shell diagrams [143] and 4D ambitwistor

string theory [136, 144, 135, 145], so it would interesting to see if my one-

loop worldsheet formula for N = 4 super Yang-Mills can be generalised to

form-factors.

And finally based on my work understanding the structure of N = 4 conformal
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supergravity amplitudes, and how they can be described as integrals over the 4D

scattering equations arising from 4D ambitwistor string theory, I suggest the following

directions for future research:

• Although N = 4 conformal supergravity is invariant under the conformal

group, this symmetry is not manifest in my worldsheet formulae. As explained

in [48], this may be expected since choosing plane wave external states singles

out 2-derivative solutions to the 4-derivative equations of motion, breaking

conformal invariance. On the other hand, the underlying theory has conformal

symmetry so it would be interesting to understand how it is realised at the

level of amplitudes. Hidden conformal symmetry of gravitational amplitudes

was recently explored in [146], so it would be interesting to see if the ideas

developed in that paper can be applied to conformal gravity.

• As I show in Chapters 5 and 6, the 4D scattering equation formulae for N = 4

super Yang-Mills and N = 8 supergravity can be mapped into Grassmannian

integral formulae which can be derived from a completely different approach

involving on-shell diagrams. For N = 4 super Yang-Mills, these formulae

suggest a new interpretation of the amplitudes as the volume of a geometric

object known as the Amplituhedron [68]. It would interesting to carry out an

analogous mapping for conformal supergravity amplitudes and see if they have

a similar geometric interpretation.

• A double copy construction has recently been proposed for conformal super-

gravity [49], which involves combining super-Yang-Mills with a certain non-

supersymmetric (DF )2 gauge theory, and an ambitwistor string theory de-

scribing the latter in general dimensions was proposed in [50]. It would be

interesting to try to formulate the (DF )2 theory using 4D ambitwistor string

theory and obtain worldsheet formulae for the scattering amplitudes supported

on refined scattering equations.

• One major open problem is to derive perturbative loop amplitudes directly from
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the worldsheet theories for N = 4 super Yang-Mills and N = 8 supergravity.

This may be challenging using the worldsheet models developed so far since the

worldsheet theory for N = 4 super Yang-Mills contains conformal supergravity

in its spectrum [20] and the worldsheet theory for N = 8 supergravity is not

critical if one gauges the Virasoro symmetry [21]. The work I have done in

understanding tree-level conformal supergravity amplitudes in this thesis may

be relevant to solving this problem.

8.3 Concluding Remarks

In summary, I have given a thorough analysis of the computational frameworks of

the 4D scattering equations, on-shell diagrams and 4D ambitwistor string theory,

and have developed new approaches to understanding the structure of the scattering

amplitudes of N = 4 super Yang-Mills, N = 8 supergravity and N = 4 conformal

supergravity using these techniques. I have derived a number of results in these

settings which are new in the literature, and which I hope will provide a small

contribution towards answering some of the deep questions of theoretical physics.

My results for amplitudes in N = 4 super Yang-Mills could give provide insights

towards new computational techniques in the physical Yang-Mills theory without su-

persymmetries which may ultimately lead to more efficient computational techniques

allowing a wider range of scattering amplitudes to become accessible to experimental

physics. My work on the amplitudes of N = 8 supergravity and N = 4 conformal

supergravity may lead to a deeper understanding of gravitational amplitudes, which

could ultimately be applied to more realistic models and hopefully provide a small

piece in the puzzle of the problem of quantum gravity.
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