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Abstract

This thesis aims to bridge the development of nonadiabatic dynamics methods and their
application for studies of real molecular systems.

First, this work explores fundamental concepts of photochemistry by investigating
two di�erent pictures, arising from the Born-Oppenheimer and the exact factorisation
representation. Based on a simplistic model, a photochemical experiment from the exci-
tation up to the formation of photoproducts is simulated. This study then compares the
Born-Oppenheimer and exact factorisation representations of the processes. Subsequently,
the in�uence of the Born-Oppenheimer picture for approximate nonadiabatic dynamics
is investigated on two-dimensional model systems around conical intersections. The
e�ects of neglected couplings and geometric phase are evaluated for ab initio multiple
spawning (AIMS), a method for nonadiabatic molecular dynamics based on classically
moving Gaussians.

Afterwards, this work introduces a standardised test set of molecules to connect between
tests of newly developed nonadiabatic dynamics methods on one-dimensional model
systems and their intended application to full-dimensional molecules. Inspired by the
widely used one-dimensional Tully models, three molecules are selected to form the
molecular Tully models, which undergo similar photophysical processes, but in a high-
dimensional space. In addition, the recently proposed stochastic-selection AIMS framework
is also tested on two molecules undergoing ring-opening reactions to explore the strengths
and limitations of the method.

Finally, a direct comparison between experimental and computational results is pre-
sented. The photochemistry of 2(5H)-thiophenone is probed during and after the initial
ring opening using time-resolved photoelectron spectroscopy. Static and dynamic cal-
culations unravel the photoprocesses and identify a variety of photoproducts. Using
the computational results, the experimental signal can be translated to insights into the
ongoing photochemistry.

Overall, this thesis aims to bring models in nonadiabatic dynamics in a real-world
context. This work contributes to facilitating the transfer of new nonadiabatic dynamics
methods towards the study of molecules in their full dimensionality.
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Introduction 1
"When I think of the wave-particle dilemma, which is the cornerstone of the universe, I would
without hesitation emphasize that energy is freedom. I believe that the material particle is a
packet of imprisoned energy. Light is a state of energy. Can one deny the free �ow of light?
We must take into consideration that quanta are de�ned as energy’s smallest particle state
and are today almost seen as the factor that explains all diversity. Yes, quantum motion is the
creative power of all diversity. I cannot resist asking whether this is the God that humanity
has been searching for all along." — Abdullah Öcalan1

At the beginning of the 20th century, the �eld of photochemistry, where light absorption

processes activate chemical reaction pathways inaccessible by other means, started to

emerge on the way towards its modern form. From 1899 onward, Armenian descendent

Giacomo Ciamician had regularly exposed his various reaction tubes and �asks to the sun

on the roof of his laboratory at the Università di Bologna. Together with Paul Silber, he was

the �rst person to investigate the chemical e�ects of light, making the �rst systematic study

of the behaviour of organic compounds toward light, pioneering the �eld of photochemistry.

They discovered a multitude of photochemical reactions and set a path for the subsequent

developments of modern photochemistry.2,3

The subsequent developments have recently cumulated in a multitude of applications

of photochemical processes that fundamentally assist our life: photodynamic therapy

exploits light for less aggressive treatment of cancer, solar and photovoltaic cells make the

energy of the sun accessible for our use. More recent developments in photoorganic and

photoinorganic chemistry include photocatalysis and photoredox catalysis,4,5 that have

emerged since the discovery of the photocatalytic water splitting on TiO2 electrodes.6 It

has found various other applications from carbon dioxide reduction, to the development

of new solar cell materials and in a multitude of organic syntheses.7–9

Due to the undeniable rise of photochemistry in various applications, following the

processes of a molecule after light absorption has become increasingly important for

a fundamental understanding of its capabilities. In 1988, Ahmed Zewail presented the

1



�rst experiment that followed the photoinduced dissociation of ICN.10 This experiment

marked the beginning of the rise of femtochemistry, where photoinduced reactions are

spectroscopically probed in femtosecond time scale. Ultrafast dynamics based on di�raction

techniques (ultrafast electron and X-ray di�raction) are directly sensitive to the spatial

distribution of atoms. Through ultrafast electron di�raction, it was achieved to measure

the nuclear motion in photoexcited molecular crystals with femtosecond resolution.11,12

These advances in experimental techniques have necessitated equal advancements in

computational methods to describe the processes following photoexcitations: molecular

quantum dynamics. Many parts of our way to picture chemistry have been heavily in-

�uenced by the Born-Oppenheimer approximation,13 the assumption that the motion of

nuclei and electrons can be treated separately in a molecule. Chemical structures, proper-

ties, and reactivity are often discussed mostly in terms of the evolution of nuclear degrees

of freedom in a single electronic eigenstate —- a direct result of the Born-Oppenheimer

approximation, which, by decoupling the motion of electrons and nuclei, introduces the

concept of potential energy surfaces.14,15 This picture is often su�cient for an accurate

description of how molecules absorb light, i.e. which wavelength of the light is mainly

absorbed and which excited states are accessed through the absorption. The photochemi-

cal processes following photoexcitation, in contrast, go beyond the Born-Oppenheimer

approximation; upon photoexcitation, the ground state wavefunction is projected into a

higher excited state where it is likely to become a nuclear wavepacket. Such a nuclear

wavepacket will subsequently evolve on the excited electronic state and can eventually

encounter regions where two (or more) electronic states come close in energy and therefore

are coupled. In these regions of high nonadiabaticity, nuclear motion can induce a change

of electronic eigenstate and the Born-Oppenheimer approximation will break down (cf.

Fig. 1.1).

An exact description of this process requires the solution of the time-dependent Schrödinger

equation, which is only possible for the smallest systems. For a quantum mechanical

description of the photoprocesses of molecules, it is, therefore, necessary to rely on

approximations. In the past 40 years, a very large number of so-called nonadiabatic dy-

namics methods have been proposed that describe electron and nuclear motion in very

di�erent ways. Upon development, the largest part of these methods has been tested

on one-dimensional, exactly-solvable model systems that are, models with prede�ned

one-dimensional potential energy curves and couplings between the states. These tests

2 Chapter 1 Introduction



Fig. 1.1.: Schematic representation of the evolution of a wavepacket upon photoexcitation. The
nuclear wavefunction is initially fully prepared in the S0 ground state. It is hit by a laser
pulse, excited to the S1 state where it forms a nuclear wavepacket. This evolves on the S1
state until it encounters a coupling region, where a splitting on the wavepacket occurs.

are of fundamental importance since the approximations underlying each method need

to be carefully assessed in order to understand the limitations that such approximations

impose on the use of the technique.

One very famous set of one-dimensional model systems are the so-called Tully Models,

proposed by John C. Tully in 1990.16 Since their publication, these simple model systems

have been extensively used to assess the quality of newly-developed methods or test new

approximations or corrections proposed for existing ones. The diversity of strategies tested

with some or all of Tully models is astonishing.17 It includes, among others, full multiple

spawning,18 semiclassical initial value representation,19 symmetrical quasi-classical win-

dowing combined with Meyer-Miller mapping Hamiltonian,20 extended classical mapping

model with commutator variables,21 surface hopping Herman-Kluk semiclassical initial

value representation method,22 semiclassical Monte-Carlo,23 dephasing representation of

quantum �delity,24 counter-propagating wave methods trajectories,25 Ehrenfest-Plus,26

coupled-trajectory mixed quantum/classical dynamics,27,28 quantum trajectory mean-�eld

approach,29 iterative linearised approach to nonadiabatic dynamics,30 mean-�eld dynamics

with stochastic decoherence,31 nonadiabatic Bohmian dynamics,32,33, bohmion method,34

mean-�eld molecular dynamics with surface hopping,35 non-Hermitian surface hopping,36

multi-state trajectory approach to nonadiabatic dynamics,37 partial linearised density ma-
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trix dynamics,38 ring polymer surface hopping,39 quantum trajectory surface hopping,40

consensus surface hopping,41 or quasiclassical mapping Hamiltonian methods,42. This list

is intended to illustrate the great variety of nonadiabatic dynamics methods that have been

developed in the past 30 years and that have proven their strengths on one-dimensional

model systems.

In contrast, only a drastically smaller number of methods is commonly employed for the

investigation of the photochemistry of molecular systems. The most commonly employed

methods are for example multicon�gurational time-dependent Hartree, variational multi-

con�gurational Gaussians, multicon�gurational Ehrenfest, ab initio multiple spawning,

and the most widely used trajectory surface hopping.

The questions arising at this point are: Why only a few theoretical methods are used

to simulate the photochemistry of molecules among the immense variety of strategies

proposed in the literature? What would be required to bridge the development of new

methods for nonadiabatic dynamics and their application for molecular systems?

One possible cause leading to the issues highlighted by these questions is the potential

lack of connections between simple, one-dimensional models and the reality of photo-

chemical processes for molecular systems. This concern is legitimate already from an

electronic structure perspective, as moving from one to two nuclear degrees of freedom

forces us to account for conical intersections (in the adiabatic representation).43–46 Coni-

cal intersections are points in con�guration space where two adiabatic electronic states

become degenerate and are known to be ubiquitous in the photodynamics of molecular

systems and responsible for ultrafast funnelling processes between electronic states.

Before elaborating on how to bridge this gap between nonadiabatic dynamics meth-

ods shown to succeed on one-dimensional model systems and their applicability to real

molecules, I want to consider what one usually means when using the term model. For

the often used one-dimensional models, this question appears trivial: They consist of

(analytically) de�ned potential energy surfaces and their couplings as well as the state,

position and momentum of the initial wavefunction. The potentials are constructed such

that they reproduce particular situations in excited-state dynamics that would challenge

the tested methods, such as decoherence and recoherences, dephasing, etc. The problem of

de�ning a model becomes more di�cult if one wants to move to the dynamics of molecules

in their full con�guration space. These dynamics are usually desired to be carried out on

the �y, meaning without the need of precomputed potential energy surfaces but obtaining
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the necessary electronic structure quantities (energies, gradients and couplings of the

electronic states) at each step of the dynamics. De�ning a controlled set of parameters and

models based on molecules immediately becomes more challenging. In addition, while

analytical models can be tuned to pose speci�c challenges for nonadiabatic dynamics

methods, �nding a set of molecules that probe the limitations of these methods is less

straightforward. There is a consensus in the community that such uni�ed hard benchmark

tests,47 using models in higher dimensions, would be highly bene�cial for benchmarking

the di�erent methods available and dissecting their approximations. The Libra library is a

project going in this direction.48

Another component of what is meant by models is the representation it uses to picture a

photochemical process. All the previous discussion is based on a (post) Born-Oppenheimer

picture: A molecule evolves in di�erent, separated static electronic states that can become

coupled in certain regions of con�guration space. However, this picture, based on the Born-

Huang expansion of the molecular wavefunction, is only one possible representation. This

model of photochemistry has been challenged by the so-called exact factorisation, where

the wavefunction is represented as a product of a time-dependent electronic and nuclear

part, giving rise to a picture a single, moving electronic state. While we have relied largely

on the Born-Oppenheimer based model of photochemistry in the past, challenging this

picture has the potential of increasing our fundamental understanding of photophysical

and photochemical processes.

In this thesis, I focus on the various uses of models for bridging the basic understanding

of photochemical processes and the development of new methodologies to their appli-

cations for theoretical studies of molecular systems, and more generally to a synergy

between experiment and theory. The thesis is structured as follows. In chapter 2, I give an

introduction to the di�erent representations of the molecular wavefunction – the Born-

Oppenheimer and exact factorisation pictures – and their implications for photochemistry.

A brief overview of the key ingredients of an in-silico photochemical experiment is given

before focusing on two main approaches for nuclear dynamics and their derived method-

ologies that are most widely used throughout this thesis.

Chapter 3 introduces di�erent fundamental ways of picturing photochemistry by com-

paring a complete simulated photochemical experiment within the Born-Oppenheimer

and the exact factorisation picture from the explicit excitation up until the formation of
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photoproducts in a two-dimensional model. In addition, a framework to propagate classical

and quantum trajectories based on the exact factorisation potentials is introduced.

In chapter 4, the implications of the Born-Oppenheimer picture on the approximations

of the ab initio multiple spawning method are investigated. For a series of two-dimensional

model systems, the approximated dynamics in the vicinity of a conical intersection are

probed and the e�ects of the approximations are dissected with a speci�c focus on the

in�uence of the neglected quantities – second-order nonadiabatic couplings and geometric

phase e�ects.

Having investigated nonadiabatic dynamics methods on low dimensional systems, this

work then proposes a bridge towards models for molecules in their full con�guration

space. In chapter 5, a set of molecules is de�ned that probes similar photoprocesses

as the original one-dimensional Tully models. The molecular models are introduced

and it is exempli�ed which typically observed photophysical processes they probe; their

dynamics are dissected, speci�cally the evolution of the electronic populations, obtained

with di�erent nonadiabatic dynamics methods. In addition, this study shows how some

of these models can be used to test the performance of new versions of nonadiabatic

dynamics methods.

Following the use of molecules to probe dynamics methods, in chapter 6, two molecules

that undergo ring-opening processes are chosen as model systems in order to speci�cally

probe the strengths and limitations of a newly developed strategy, stochastic selection ab

initio multiple spawning, for the prediction of the electronic population decay.

The �nal chapter of this thesis proposes perhaps the strongest reference model for any

nonadiabatic dynamics methods: a direct comparison between theory and experiment.

In the �nal results chapter 7, complementary time-resolved photoelectron spectroscopy

and computational studies are carried out on a prototypical molecule for heterological

ring-opening. It is exempli�ed on this molecule, how the experimental studies can follow

the ring-opening and subsequent product formation, the interplay with computational

studies is fundamental for a complete understanding of the electron and nuclear dynamics

processes. It is shown how experimental observables can be obtained from simulations in

an e�cient way that allows for a maximal insight into the ongoing molecular processes.

The �ndings have been further interpreted and validated by ultrafast electron di�raction

experiments and the corresponding simulated quantities.
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Finally, I summarise the work of this thesis and draw conclusions towards the still

open questions of the use and developments of models in various contexts of nonadiabatic

dynamics.
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Theory 2
Parts of this chapter are based on the following publications:

L. M. Ibele, A. Nicolson, and B. F. E. Curchod, “Excited-state dynamics of molecules with

classically driven trajectories and Gaussians”, Mol. Phys. 118, e1665199 (2020)

L. M. Ibele and B. F. E. Curchod, "Dynamics near a conical intersection – a diabolical

compromise for the approximations of ab initio multiple spawning", J. Chem. Phys. 155,

174119 (2021)

This chapter provides an overview of the various ingredients necessary for an in-silico

photochemical experiment, i.e. the simulation of a photochemical experiment on the com-

puter. Starting from a general overview of the key problem — solving the time-dependent

Schrödinger equation — the central quantity, the molecular wavefunction, will be intro-

duced. It will be explored how the representation of the molecular wavefunction shapes

our understanding of (photo)chemistry. Subsequently, all the elements that constitute

an in-silico photochemical experiment will be dissected, before focusing on strategies

to solve at various levels of accuracy the nuclear dynamics of molecular systems upon

photoexcitation.

2.1 Time-dependent Schrödinger equation

The quantum mechanical description of any system implies the treatment of its wavefunc-

tion. The wavefunction is an element of the Hilbert space of square-integrable functions

and encodes the complete information on all properties of a pure system. The state of a

molecular system is described by its time-dependent molecular wavefunction [Ψ(r , X, C)]
depending on all 3#el electronic [r] and 3#n nuclear coordinates [X]. The time-evolution

of the molecular wavefunction is characterised, in a non-relativistic framework, by the

time-dependent Schrödinger equation, TDSE:49

8~
m

mC
Ψ(r , X, C) = �̂m(r , X, C)Ψ(r , X, C) . (2.1)
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The full, molecular Hamiltonian [�̂m(r , X, C)] consists of the nuclear kinetic energy [)̂n(X)],
the electronic potential energy through the Born-Oppenheimer Hamiltonian [�̂BO(r , X)],
and can include an external potential [+̂ext(r , X, C)]:

�̂m(r , X, C) =)̂n(X) + �̂BO(r , X) + +̂ext(r , X, C)

=

#n∑
d

−~2

2"d

∇2
Xd
−

#el∑
8

~2

2<e
∇2
r8 +

#el∑
8

#el∑
9>8

42

4cn0 |r8 − r 9 |

+
#n∑
d

#n∑̀
>d

/d/`4
2

4cn0 |X` − Xd |
−

#n∑
d

#el∑
8

/d4
2

4cn0 |Xd − r8 |
+ +̂ext(r , X, C) .

(2.2)

The Born-Oppenheimer Hamiltonian consists of the electronic kinetic energy, the electron-

electron interaction, the nucleus-nucleus interaction and the electron-nucleus interaction.

2.2 Born-Oppenheimer picture
Under the assumption of an in�nite mass of the nuclei (and neglecting the external poten-

tial), the full Hamiltonian becomes the Born-Oppenheimer Hamiltonian. The eigenvalues

and eigenvectors of �̂BO(r, X) can be determined for a �xed nuclear con�guration [X] by

the time-independent Schrödinger equation (TISE):

�̂BO(r , X)Φ� (r ; X) = n ( � )BO (X)Φ� (r ; X) . (2.3)

This yields a set of othornormal electronic basis function [{Φ� (r ; X)}� ∈R], the electronic

(adiabatic) wavefunctions, where � labels the electronic state associated with electronic

energy [n ( � )BO ]. The electronic energies for a state � for all �xed X create a so-called

adiabatic potential energy surface (PES). Within the famous Born-Oppenheimer (BO)

approximation,13 the molecular wavefunction is then approximated to be a product of

one of these electronic, time-independent wavefunctions and a corresponding nuclear

time-dependent wavefunction [j (X, C)]:

ΨBO(r , X, C) = Φ� (r ; X)j � (X, C) . (2.4)

The BO approximation assumes that the nuclear and electronic motion can be decoupled,

restricting the dynamics of the nuclear wavefunction to a single adiabatic electronic state � .

Thus, within this approximation, the propagation of the molecular wavefunction through
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the time-dependent Schrödinger equation results in evolution on one adiabatic PES, where

the wavefunction remains at all times in this single electronic state; this propagation

is called adiabatic dynamics. This means that at no time throughout the dynamics the

electronic state of the nuclear wavefunction can change. While this might be accurate

for ground-state processes where no other states are energetically accessible, for photo-

chemical processes, i.e. for the dynamics following photoexcitation, the molecule probably

encounters regions of con�guration space where multiple electronic states become close

in energy. In these regions, the coupling between the electronic states becomes very large

and the nuclear dynamics lead to a change of electronic state. In this situation, the nuclear

and electronic motion cannot be considered uncoupled anymore; the BO approximation

breaks down necessitating the inclusion of nonadiabatic e�ects.

This problem can be overcome through the so-called Born-Huang (BH) expansion50.

Instead of considering the molecular wavefunction as a single product of an adiabatic

electronic and nuclear wavefunction, it is expanded in the full basis of adiabatic electronic

wavefunctions [{Φ� (r ; X)}� ∈R], where the nuclear wavefunctions act as time-dependent

expansion coe�cients:

Ψ(r , X, C) =
∞∑
�

Φ� (r ; X)j � (X, C) . (2.5)

Within this representation, the time-dependence of the molecular wavefunction is solely

grouped in the nuclear wavefunctions for each state � . Therefore, in order to characterise

the time-dependence of the molecular wavefunction — to carry out quantum molecular

dynamics — one can look at the time-evolution of the nuclear amplitudes. To this end, the

BH expansion (Eq. (2.5)) is inserted in the TDSE (Eq. (2.1)); after left multiplication with

Φ∗
�
(r ; X) and integration over all electronic coordinates [r], this yields a set of coupled

equations of motion for the nuclear amplitudes:

8~
m

mC
j� (X, C) =

(
#n∑
d

−~2

2"d

∇2
Xd
+ n (� )BO (X)

)
j� (X, C)

−
∞∑
�

[
#n∑
d

[
~2

"d

〈Φ� | ∇Xd |Φ� 〉r ∇Xd +
~2

2"d

〈Φ� | ∇2
Xd
|Φ� 〉r

] ]
j � (X, C)

+ 〈Φ� | +̂ext(X, C) |Φ� 〉r j � (X, C) .

(2.6)
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The notation 〈· · ·〉r implies integration over all coordinates r . The �rst two terms on the

left-hand side of Eq. (2.6) are the nuclear kinetic energy and electronic potential energy.

They give rise to the adiabatic evolution of the nuclear wavefunction [j� (X, C)] on state

� , following the corresponding static PES given by n (� )BO (X). The last two terms are the

so-called nonadiabatic couplings, which are the terms that are neglected by the BO approxi-

mation, and couple the di�erent adiabatic states to each other. For real electronic wavefunc-

tions, the �rst order nonadiabatic coupling vectors (NACVs) [d� � (X) = 〈Φ� | ∇X |Φ� 〉r ] are

only non-zero for � ≠ � . The second order couplings have a not null contribution for � = � ,

[� � � (X) = 〈Φ� | ∇2
X |Φ� 〉r ], called the diagonal Born-Oppenheimer correction (DBOC),

and a contribution for � ≠ � , [�� � (X) = 〈Φ� | ∇2
X |Φ� 〉r ], called second order nonadiabatic

couplings (NACs). The �rst-order nonadiabatic couplings measure the variation of the

electronic wavefunction with the nuclear coordinates, and can be rewritten to explicitly

highlight their dependence on the energy di�erence between two states � and � as51

d� � (X) = 〈Φ� | ∇X |Φ� 〉r =
〈Φ� | ∇X�̂BO(X) |Φ� 〉r
n
( � )
BO (X) − n

(� )
BO (X)

. (2.7)

The BH expansion still considers the evolution of the nuclear wavefunction on individual,

time-independent, adiabatic electronic states, but allows population transfer between

nuclear wavefunctions associated with di�erent electronic states through the nonadiabatic

couplings. It can, thus, be viewed as a post-Born-Oppenheimer picture: keeping the same

spirit of static, adiabatic states, but simply coupling them with each other through the

nonadiabatic couplings.

2.2.1 Photochemistry in a (post) Born-Oppenheimer picture

The most common understanding of photochemical and photophysical processes is insep-

arably connected with the BO picture: usually, the excited-state molecular dynamics of a

molecule is pictured throughout as radiative or nonradiative transfers between di�erent

electronic states.14 An example for a typical photochemical experiment in the BO picture

is schematically shown in Fig. 2.1. Initially, the molecule is in its ground electronic and

vibrational state (Initialisation), when it is hit by an ultrashort light pulse which triggers a

transition to a higher-lying electronic state, S= , (Excitation). Through the light-matter in-

teraction, a portion of the original nuclear wavefunction is projected onto the excited state,

forming a nuclear wavepacket. This means that part of the original nuclear wavefunction
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Fig. 2.1.: Schematic overview of the steps of an in-silico photochemical experiment within the
(post) Born-Oppenheimer picture.
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is represented as a linear combination of the nuclear eigenstates for the new electronic

state S= . Additionally, part of the ground-state wavefunction can be also excited to a higher

vibrational eigenstate of the electronic ground state (as depicted in the example in Fig. 2.1).

The excited-state nuclear wavepacket subsequently evolves on the S= state (Evolution). The

nuclear wavepacket encounters a region of con�guration space, where the electronic state

it evolves on comes close in energy to another electronic state and nonadiabatic e�ects

become strong, leading to decay back to the ground state (Deactivation). This means, in

these regions, the nuclear wavepacket transfers amplitude to the coupled electronic state,

which leads to a branching of the resulting wavepackets on the di�erent electronic states.

This particular nonradiative decay is called internal conversion and it is usually the most

e�cient relaxation process for a molecule. After the system has decayed to the ground

state, it can very often access regions of con�guration space, that were not accessible from

the equilibrium and through that form Photoproducts.

This very general picture of common photochemical processes is intrinsically based

on the BH expansion of the molecular wavefunction: every process consists of static

electronic states where the nuclear wavepacket evolves in and occasionally, these states

exhibit strong coupling between each other.

2.2.2 Representation of the electronic basis

In the BH expansion, the molecular wavefunction is expressed in a basis of electronic

functions; thus, one has to choose a representation for this electronic basis.52,53 As done in

Eq. (2.5), the most common choice is to use the eigenfunctions of the electronic Hamilto-

nian (Eq. (2.4)), giving rise to the widely used adiabatic representation of the molecular

wavefunction. An alternative is provided by choosing electronic wavefunctions that do

not (parametrically) depend on the nuclear coordinates, meaning that they keep their

electronic character. This basis of electronic wavefunctions is called diabatic and can be

related to the adiabatic wavefunctions as:

Φ� (r ; X) =
∑
8

2dia
� 8 (X)Φ

dia
� (r ; X0) . (2.8)

These diabatic states [Φdia
�
(r ; X0)] are de�ned at a particular geometry X0, at which they

are eigenstates of the electronic Hamiltonian, but they maintain their electronic character

and do not diagonalise the electronic Hamiltonian at any geometries di�erent from X0.
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Within this representation, all the couplings between electronic states are absorbed in the

o�-diagonal elements of the Hamiltonian matrix and therefore, the nonadiabatic coupling

terms from Eq. (2.6) become redundant as the nuclear kinetic energy operator becomes

diagonal in the diabatic representation.

The relation between the diabatic and adiabatic basis can be illustrated through the

diabatic-adiabatic transformation. This can be exempli�ed with a simple two-state system,

where the potential energy matrix of a diabatic Hamiltonian is de�ned as52,54,55

Hdia
BO(X) =

©«
+11(X) +12(X)
+12(X) +22(X)

ª®¬ , (2.9)

where +� � = 〈Φdia
�
(X0) | �̂BO(X) |Φdia

�
(X0)〉r . Diagonalising the potential energy matrix,

results in the adiabatic electronic states as the eigenfunctions of �̂BO(r , X). The diagonali-

sation can be done through the unitary transformation matrix [U]

U(X) = ©«
cos\ (X) sin\ (X)
− sin\ (X) cos\ (X)

ª®¬ , (2.10)

resulting in the relation between adiabatic states [Φ1,2(r ; X)] and diabatic states [Φdia
1,2 (r ; X0)]:

©«
Φ1(r ; X)
Φ2(r ; X)

ª®¬ =
©«

cos\ (X) sin\ (X)
− sin\ (X) cos\ (X)

ª®¬ ©«
Φdia

1 (r ; X0)
Φdia

2 (r ; X0)
ª®¬ , (2.11)

where \ (X) is the mixing angle (or adiabatic-to-diabatic transformation angle) between

the diabatic electronic states +11(X) and +22(X) and can be de�ned as

\ (X) = 1
2 arctan 2+12(X)

+11(X) −+22(X)
. (2.12)

An interesting thing to note at this point is that this mixing angle can be related to the

nonadiabatic coupling vector [d� � (X)] by inserting the expressions for the adiabatic states

from Eq. (2.11) as follows:52

d12(X) = 〈Φ� | ∇X |Φ� 〉r = −∇X\ (X) . (2.13)
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The ground and excited adiabatic electronic energies, n (−)BO and n (+)BO , respectively, can be

obtained from the diabatic energies as

n
(±)
BO =

+11(X) ++22(X)
2 ± 1

2

√
(+22(X) −+11(X))2 + 4+ 2

12(X) . (2.14)

In the general case, for systems including more than two electronic states, it is not

possible to �nd a basis of strictly diabatic states.53 In applications to larger systems, quasi-

diabatic states can be found as a set of electronic states that minimise the NACVs terms.

This is, however, not straightforward and therefore, often the photochemistry of molecules

is treated in the adiabatic picture.

2.2.3 Conical intersections

One feature of particular importance of adiabatic PESs are so-called conical intersections

(CI), points of degeneracy between two adiabatic surfaces.44,51,52,56 Consequently, the nona-

diabatic coupling becomes singular exactly at these points, and very strong in their vicinity.

Therefore, CIs are points in con�guration space, in whose vicinity the BO approximation

breaks down completely and they often act as funnels for nonradiative decay processes.

But how can one characterise and identify these diabolical features of the PESs? To

simplify the problem, the previously introduced two-state diabatic Hamiltonian de�ned in

Eq. (2.9) is considered. For the eigenvalues of this matrix to be degenerate, two conditions

must be satis�ed:51

+11(X) −+22(X) = 0 (2.15)

+12(X) = 0 . (2.16)

Considering a molecule with #dof = 3#n − 6 degrees of freedom, these two conditions are

satis�ed spanning a subspace of dimension #dof−2. Neumann and Wigner �rst introduced

these conditions for degeneracy for a diatomic molecule as the noncrossing rule — in the

case of only one degree of freedom, two electronic states cannot become degenerate.57

However, polyatomic molecules include many degrees of freedom and therefore their

electronic states can indeed become degenerate. These degeneracies, giving rise to CIs,

occur indeed in a majority of polyatomic molecules and act as funnels for nonadiabatic

events. As a consequence of the noncrossing rule, in systems of more than two dimensions,

16 Chapter 2 Theory



CIs do not occur as isolated points but rather span a so-called seam, a connected (#dof − 2)-
dimensional subspace, with the space orthogonal to it called the branching space.51,56

For characterising conical intersections, determining the branching space is a crucial step.

For a CI between electronic states � and � , the branching space is spanned by the energy

di�erence gradient [g� � (X)] and the coupling gradient [h� � (X) = 〈Φ� | ∇X�̂BO(X) |Φ� 〉r ].58

The potential energy matrix of Eq. (2.9) transforms in the branching plane of the CI to51

H1B (-1, -2) = (B1-1 + B2-2)1 +
©«
6-1 ℎ-2

ℎ-2 −6-1

ª®¬ , (2.17)

where -1 and -2 are displacements along the g� � and h� � directions, respectively, 6 and ℎ

are the norm of the respective vectors and B1 and B2 are the projections of (g� + g � )/2 onto

the branching plane. The eigenvalues of H1B then become

n
(±)
BO (-1, -2) = B1-1 + B2-2 ±

√
(6-1)2 + (ℎ-2)2 . (2.18)

Plotting the energy of the two electronic states around the CI along these two coordinates,

the potential forms the characteristic double cone — leading to the notion of CIs as diabolical

points. The topography of the CI is determined by the parameters 6 and ℎ, which give the

slope of the cone in the respective directions, and B1 and B2, which give the tilt of the cone.

A symmetric cone has equal slopes in 6 and ℎ, while they di�er for an asymmetric cone.

Another important classi�cation is between peaked or sloped CIs. For a peaked CI, both B1

and B2 are zero, while if one or two of the parameters B1 and B2 are nonzero, it gives rise

to a sloped conical intersection.51,56,58 As will be shown in later parts of this thesis, the

topography of a CI can have a crucial in�uence on the nonadiabatic dynamics observed in

the system.

2.2.4 Geometric phase

CIs give rise to one crucial feature: the geometric phase (GP) or Berry phase.59,60 In 1958,

Longuet-Higgins60 found for a Jahn-Teller model that when a real-valued, adiabatic wave-

function forms a closed loop in nuclear coordinate space encircling a CI, the wavefunction

must change its sign. In 1984, Berry59 showed that a system in a given eigenstate trans-

ported along a contour acquires a time-dependent phase factor [exp(8W � (C))]. This phase

[W � (C)] becomes independent of the time, for a closed contour and a long enough time
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needed for the excursion along this contour. In analogy to Longuet-Higgins �ndings, Berry

showed that if the closed contour [Γ] lies in a plane containing a CI, the phase [W � (Γ)] is c

and the overall wavefunction changes sign.52 This phase factor was de�ned by Berry as

W � (Γ) = 8
∮
Γ
〈Φ� |∇XΦ� 〉r dX . (2.19)

A correct inclusion of the GP is quite challenging as the exact functional form of the phase

is not known for more complex and real systems.61 However, it was shown in previous

works that the inclusion of the GP can be vital for an accurate description of the evolution

of molecules upon photoexcitation in an adiabatic picture, where a lack of GP e�ects

predicts drastically slower population decay.54,61

It is convenient to return to the two-state model system as de�ned in Eq. (2.9) for

a simpli�ed, exemplary case of accounting for the GP. Based on the seminal work by

Mead and Truhlar43, it is known that the GP is the same for both states considered in

a two-state system, i.e. W1 = W2 = W . Furthermore, Mead and Truhlar showed how the

GP can be related to the mixing angle between diabatic and adiabatic states as de�ned

in Eq. (2.12).55 Close investigation of \ (X) shows that upon encircling, the phase of the

adiabatic electronic wavefunction, as de�ned by Eq. (2.11), changes by a factor of c .61–63

This factor of c means that the (real) adiabatic wavefunctions, given by Eq. (2.11), changes

their sign by circling around a conical intersection. This phase shift and subsequent �ip of

sign is a manifestation of the GP.59,60 However, the GP leads to a double-valuedness of the

electronic wavefunctions. For a proper description of the molecular wavefunction (which

is overall needs to remain single-valued), one would need to use doubled-valued boundary

conditions for the nuclear wavefunctions as well.55,61,63 However, as suggested by Mead

and Truhlar43 this can be avoided by instead transforming the adiabatic Hamiltonian [Hadi
BO]

as

Hadi
BO

(GP)(r, X) = 48\ (X)Hadi
BO(r , X)4

−8\ (X) . (2.20)

However, the choice of the GP is not universal, and while the above choice as the mixing

angle is valid for many two-state linear-vibronic coupling models, the GP still depends on

the system studied.44

It is important to keep in mind, that this quantised GP [W (Γ)] arises as an artefact of

the BO approximation and is a direct consequence of the presence of CIs in the adiabatic

representation. At the point of the conical intersection, the nuclear BO wavefunction
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becomes multivalued as a consequence of the nonanalyticity of the potential. Therefore, to

preserve the single-valuedness of the overall wavefunction, the electronic contribution to

the BO wavefunction must be multivalued as well and if encircling the closed path around

the conical intersection, changes its sign.64 Contrary to populist beliefs, the molecular GP

(a quantised, topological phase) is not an observable; indeed, in a diabatic picture (and in

the exact factorisation picture, see Sec. 2.3), such a GP does not occur.65

2.3 Exact factorisation
A contrasting picture to the previously described (post)BO picture is given by the exact

factorisation (EF). Instead of expressing the molecular wavefunction as an in�nite sum

over time-independent electronic eigenfunctions and time-dependent nuclear amplitudes,

the EF66,67 proposes a subtle alternative:

Ψ(r , X, C) = Φ(r , C ; X)j (X, C) . (2.21)

This exact representation of the molecular wavefunction consists now of a single product

between a nuclear wavefunction [j (X, C)] and an electronic wavefunction [Φ(r , C ; X)] —

parametrically dependent on the nuclear coordinates [X]. Note that now both nuclear

and electronic wavefunction are time-dependent. By imposing the partial normalisation

conditions

〈Φ(C ; X) |Φ(C ; X)〉r = 1 ∀X, C , (2.22)

the existence and uniqueness — up to a gauge transformation — of the single product as

given by Eq. (2.21) can be proven.66,68 Consequently, it is ensured that |j (X, C) |2 repro-

duces the nuclear density as obtained from Ψ(r , X, C) at all times. Therefore the nuclear

wavefunction can also be expressed as

j (X, C) = exp
(
8

~
S(X, C)

) √
〈Φ(C ; X) |Φ(C ; X)〉r , (2.23)

where the phase of the nuclear wavefunction [S(X, C)] is a real function of nuclear positions

and time.

This expansion of the molecular wavefunction is invariant under a gauge transformation

of nuclear and electronic wavefunctions.68 Multiplication of j (X, C) by a phase factor

[6(X, C)] and Φ(r , C ; X) by its complex conjugate [6∗(X, C)], does not change the product
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of the two wavefunctions. As a consequence of the partial normalisation condition, the

absolute value squared of this phase factor needs to equal one [|6(X, C) |2 = 1], so it can

be de�ned as 6(X, C) = 48/~Z (X,C ) , for a real gauge function [Z (X, C)]. For uniqueness of

the wavefunction it is necessary to �x the gauge by choosing a suitable Z (X, C). The

gauge function [Z (X, C)] can also be absorbed into the phase of the nuclear wavefunction

[S(X, C)] as choosing the phase of the nuclear wavefunction implies �xing the gauge. The

topic of the gauge freedom will be discussed in more detail below.

In order to investigate the time-evolution of the molecular wavefunction, inserting

the factored form (Eq. (2.21)) into the TDSE (Eq. (2.3)) and by using the partial normali-

sation condition (Eq. (2.22)), coupled equations of motion for the nuclear and electronic

wavefunctions can be derived.

8~
m

mC
j (X, C) =

[
#n∑
d

[
−8~∇Xd +Gd (X, C)

]2

2"d

+ n (X, C) + Eint(X, C)
]
j (X, C) (2.24)

8~
m

mC
Φ(r , C ; X) =

[
�̂BO(r , X) + +̂ext(r , X, C) + *̂en [Φ, j] (X, C) − n (X, C) − Eint(X, C)

]
Φ(r , C ; X)

(2.25)

The electron-nuclear coupling operator [*̂en [Φ, j] (X, C)] depends explicitly on the nuclear

wavefunction [j (X, C)] and also implicitly contains the electronic wavefunction [Φ(r , C ; X)]
through the time-dependent vector potential [Gd (X, C)]

*̂en [Φ, j] (X, C) =
#n∑
d

~2

"d

(
[−8~∇Xd −Gd (X, C)]2

2

+
(−8~∇Xd j (X, C)

j (X, C) +Gd (X, C)
) (
−8~∇Xd −Gd (X, C)

) )
.

(2.26)

With these two equations of motion, the two new potentials within the framework of

the EF are introduced: the time-dependent vector potential (TDVP),

Gd (X, C) = 〈Φ(C ; X) | − 8~∇XdΦ(C ; X)〉r , (2.27)
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and the time-dependent potential energy surface (TDPES), consisting of the two scalar

potentials,

n (X, C) = 〈Φ(C ; X) | �̂BO(X) + *̂en [Φ, j] (X, C) − 8~
m

mC
|Φ(C ; X)〉r (2.28)

Eint(X, C) = 〈Φ(C ; X) | +̂ext(X, C) |Φ(C ; X)〉r (2.29)

that mediate the electron nuclei coupling beyond the adiabatic picture.69,70

Since the scalar potential [n (X, C)] is obtained as the sum of expectation values on

Φ(r , C ; X) of the three operators �̂BO, *̂en and −8~ m
mC

, it seems to depend explicitly on the

nuclear wavefunction [j (X, C)] as the electron-nuclear coupling operator [*̂en [Φ, j] (X, C)]
depends explicitly on it.68 Subsequently, also the "nuclear Hamiltonian" from Eq. (2.24)

would depend on j (X, C) as well. However, from the de�nition of the TDVP and the partial

normalisation condition it follows that

〈Φ(C ; X) | − 8~∇Xd −Gd (X, C) |Φ(C ; X)〉r = 〈Φ(C ; X) | − 8~∇Xd |Φ(C ; X)〉r −Gd (X, C) = 0 ,

(2.30)

and thus, neither n (X, C) nor the nuclear Hamiltonian depend on j (X, C).

While the equations of motion (Eqs. (2.24) and (2.25)) are form-invariant under a gauge

transformation, the scalar and vector potential transform as

ñ (X, C) = n (X, C) + m

mC
Z (X, C) (2.31)

G̃d (X, C) = Gd (X, C) + ∇XdZ (X, C) . (2.32)

The TDVP is inherently gauge dependent, while the TDPES can be decomposed in gauge-

invariant, (GI), and gauge-dependent (GD) contributions [n (X, C) = nGI(X, C) + nGD(X, C)].∗

ñGI(X, C) = nGI(X, C) = 〈Φ(C ; X) | �̂BO(X) |Φ(C ; X)〉r

+
#n∑
d

~2

2"d

〈∇XdΦ(C ; X) |∇XdΦ(C ; X)〉r −
#n∑
d

G2
d (X, C)
2"d

(2.33)

ñGD(X, C) = nGD(X, C) +
m

mC
Z (X, C) = 〈Φ(C ; X) | − 8~ m

mC
|Φ(C ; X)〉r +

m

mC
Z (X, C)

(2.34)

∗The external scalar potential [Eint (X, C)] that contributes to the TDPES, is also invariant under gauge
transformation
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For any meaningful conclusions to be drawn from EF quantities, it is necessary to �x the

gauge. While there exists a freedom, some choices might facilitate expressions more than

others. A common choice for one-dimensional systems is to �x the gauge such that the

TDVP is always zero. However, for higher dimensional systems, this is not a valid choice

and therefore, it is often chosen that the phase of the nuclear wavefunction [S(X, C)] is

zero, which enforces a real, positive nuclear wavefunction at all time.

2.3.1 Photochemistry in an exact-factorisation picture

The EF provides a very di�erent picture of photochemistry than the (post) BO picture does.

The main di�erence is that now our electronic wavefunction is explicitly time-dependent.

The concept of a nuclear wavefunction evolving on a set of static adiabatic electronic

states, which are coupled only in regions of space where they are close in energy, can no

longer be applied. Concepts such as conical intersections or the geometric phase do not

exist in the EF framework.

In the EF, a single potential energy surface drives the dynamics. At this point, only a

qualitive introduction will be provided on how the picture of photochemistry changes

in the EF picture, but this will be discussed and analysed in greater detail in chapter 3 of

this thesis. First, the focus will be generally on the concept of a single, time-dependent

potential energy surface that drives the dynamics. In Fig. 2.2, the same steps of the

same photochemical experiment are shown as in Fig. 2.1. The left column of the plots

shows the nBO(X) = 〈Φ(C ; X) | �̂BO(X) |Φ(C ; X)〉r contribution to the TDPES, in order to

clarify the connection with the BO picture. The right column of the plots shows the full

TDPES that guides the time-evolution of the nuclear wavefunction. Looking at the nBO

contribution it becomes visible that throughout the parts of the photochemical process,

where nonadiabatic e�ects play a minor role (Initialisation, Photoproducts), it takes the

form of either of the adiabatic states, while during nonadiabatic processes (Excitation,

Evolution, Deactivation), it provides a mean-�eld like potential. Looking at the full TDPES,

it is revealed how the dynamics of the nuclear wavepacket are already encoded in the

TDPES.71–73 Initially, the wavepacket is fully in a harmonic like potential. During the

Excitation, the TDPES develops a structure where a second, lower well is produced. During

the Evolution, the wavepacket starts to split into two parts with one developing a node.

The TDPES shows the reason: at the position of the node it shows a strong, nodal-like

feature that separates the wavepacket. The splitting is caused by a signi�cant step created

22 Chapter 2 Theory



Fig. 2.2.: Schematic overview of the steps of an in-silico photochemical experiment within the EF
picture. The BO term of the time-dependent potential energy surface is depicted in the
left column of plots, while the right column shows the full TDPES.
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in the TDPES. These same features continue to develop during the Deactivation. It can

be seen that the change of adiabatic state, as observed in the BO picture, is in no way

re�ected in the TDPES. Finally, the Photoproducts have formed distinguished through a

well-separated step in the potential.

The other driving potential is the time-dependent vector potential. It can be connected to

the momentum in the nuclear TDSE and can be related to a nuclear velocity �eld.74,75 This

relation and the behaviour of the TDVP around conical intersections will be introduced in

chapter 3 of this thesis.

2.4 Ingredients to simulate photochemistry

As this thesis focuses on the theory, methods and applications of in-silico photochem-

istry, the "ingredients" that are necessary to perform a photochemical experiment on the

computer will be brie�y introduced.

2.4.1 Initial conditions

A photochemical experiment usually starts with the system in the electronic ground state,

either in its ground vibrational state or equilibrated at a speci�c temperature. Thus, for

our nuclear dynamics method of choice, it is crucial that at time C = 0 the position and

momentum distribution of the desired initial quantum state is well represented. The

method of choice of initialising dynamics depends fully on the system studied and its size,

and also in which way the nuclear dynamics will be described.

When using dynamics methods based on classically moving trajectories or trajectory

basis functions (see sections 2.6.2 and 2.5.3 for details), the goal is to represent the initial

wavefunction through individual trajectories. Therefore, it is necessary to map the ground-

state wavefunction onto a phase-space.76 For this quantum approach of phase-space

sampling, one technique is the Wigner transform of the initial wavefunction in position

(nuclear coordinates X) and momentum (nuclear momenta V ) space.77,78

, (X, V ) = 1
(2c)3#n

∫ ∞

−∞
ds exp(8Vs)

[
j(0,a0 (X − s/2)j∗(0,a0

(X + s/2)
]

(2.35)

j(0,a0 is the (electronic and vibrational) ground-state nuclear wavefunction, and s is a

displacement vector. However, for most molecular systems consisting of more than a few
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degrees of freedom, calculating j(0,a0 is not feasible and the initial conditions must be

sampled from an approximate distribution.

A possible approximation, while conserving the quantum nature of the distribution,

consists in approximating the Wigner distribution by expressing j(0,a0 approximately

as a product of the eigenstates of uncoupled harmonic oscillators.78–80 This means that

the ground-state nuclear wavefunction is approximated through uncoupled harmonic

oscillators, where each frequency corresponds to the normal modes of the molecule. Then,

the approximated Wigner distribution becomes a Husimi distribution:

, (X, V ) ≈ ,̃ UHO(X, V ) =
1

(2c)3#n

3#n−6∏
d

exp
(
−X2

d · 4`dld
)

exp
(
−

V 2
d

`dld

)
, (2.36)

where now positions and momenta are sampled independently from each normal mode

[d], with frequency [ld], and reduced mass, [`d]. While this o�ers an easily accessible

and widely used method to sample initial conditions, it is also connected to several

approximations that need to be treated with care in some situations. The assumption of

harmonic oscillators for all modes ignores any anharmonicities, which can create issues

for low-frequency modes.81 A second problem arises from the fact that a distribution of

classical degrees of freedom is created with average classical energy approaching the a = 0

energy of the system. The classical modes can freely distribute energy between each other

leading to a zero-point energy (ZPE) leakage, because quantum mechanically, each normal

mode should contain at least the ZPE.82

Additionally, Wigner sampling is not always practical for very large systems as it

requires a frequency calculation of all normal modes, especially when treating systems in

an embedding scheme, where for example solvent molecules are explicitly included. In

this case, an often-used approach is the classical sampling of positions and momenta

from a thermal distribution.79 This is usually done by running a long time ab initio

molecular dynamics (or classical molecular dynamics for very large systems) at a chosen

temperature in the ground electronic state and sampling the positions and momenta from

this dynamics. However, this approach faces the drawback that the classical treatment at

300 K yields a distribution with average internal energy signi�cantly lower than the ZPE

of a molecule.76,80

These sampling methods show ways to generate initial conditions — positions and

momenta — for classically moving trajectories (or trajectory basis functions). In contrast,
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methods that directly simulate a quantum wavepacket, such as multicon�gurational time-

dependent Hartree (MCTDH, see below), can directly express the ground-state wavepacket.

Approximate methods, such as variational multicon�gurational Gaussians (vMCG, see

below) also manage to directly express the ground-state wavepacket but dress it with

unpopulated Gaussians. Due to their quantum propagation based on the Dirac-Frenkel

variational principle, an appropriate initialisation is not trivial. However, when using

quantum trajectories, the above approaches are all destined to fail. While for classical

trajectories, nuclear positions and momenta can be regarded as independent variables, this

is no more the case for quantum trajectories. Their nuclear position and momentum at

each time step are related. Thus, while the initial positions can still be sampled randomly

from the distribution of the initial wavefunction, the corresponding momentum at time

C = 0 for quantum trajectories needs to be determined. One possible way is presented in

the results of chapter 3.

2.4.2 Photoexcitation

Having found a good representation of the initial wavefunction, the next step to consider

is the light absorption process. Light absorption can induce a transition between states

with the energy di�erence corresponding to the wavelength of the light. For transitions

between electronic states, this process happens at several orders of magnitude faster than

nuclear motion, so the excitation is expected to happen "vertically" at the same nuclear

con�guration. Assuming an in�nitely short laser pulse, the transition probability of the

system from electronic state |Φ� 〉 to electronic state |Φ� 〉 is given by the oscillator strength

[5�→� ]. The oscillator strength indicates the number of electrons oscillating per spatial

dimension during an electronic transition.83,84 For a vertical excitation, i.e. assuming static

nuclei during the excitation, the oscillator strength is related to the energy gap between

the two states and the squared electronic transition dipole moment,

5�→� (X) =
2<e
3~2 (n

( � )
BO (X) − n

(� )
�$
(X))

��〈Φ� | -̂el |Φ� 〉r
��2 , (2.37)

with the electronic transition dipole moment operator [-̂el(r)]. A commonly used approach

to initialise nonadiabatic dynamics consists of sampling the ground-state wavefunction

as described above, but then projecting this wavepacket directly on the excited states,

meaning to assume vertical excitations, and begin the dynamics from there. A possible
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way of choosing which initial conditions are excited to which state, is done stochastically

based on a transition probability calculated as 50→� /(n (0)�$ (X) − n
( � )
BO (X))

2.85

Since this approach assumes an in�nitely short laser pulse, it is an approximation that

might not always well re�ect the reality of a photochemical experiment, where lasers of

�nite length are used. Thus, one might choose to include explicitly the excitation process

in the dynamics. This can be done by including the external �eld as an external, time-

dependent potential term in the Hamiltonian (Eq. (2.2)). Within the dipole approximation,

this term then is de�ned as

+̂ext(r , X, C) = -̂ (r , X) · K (C) . (2.38)

Generally, an electric �eld is de�ned by its amplitude �0, polarisation vector &_ , the

envelope, determining the time-dependent pulse shape F (C) and the carrier frequency l

K (C) = &_�0F (C) cos(lC) . (2.39)

It should be noted that very often the excitation of interest, however, is not an ultrashort

laser pulse, but natural sunlight, since many photochemical processes of interest occur in

nature through the absorption of sunlight. A very recent work86 proposed a framework

for simulations of nonadiabatic dynamics (within a mixed-quantum classical approach,

see Sec. 2.6) initiated by solar radiation. The schematic approach is to sample initial

conditions from a broad blackbody spectrum, running the dynamics with conventional

methods and considering the �eld and the realisation time in the ensemble averaging. As

many photochemical processes naturally occurring on earth are initiated by sunlight, this

approach presents an interesting starting point for future methodological developments.

2.4.3 Electronic structure

The previously derived set of equations of motion for nuclear amplitudes (Eq. (2.6)) makes

it clear that a solution of the time-dependent Schrödinger equation in the adiabatic repre-

sentation requires knowledge of the following information: electronic energies [n ( � )BO (X)],
nonadiabatic coupling vectors [d� � (X)], and, potentially, the gradients of the electronic

energies and second-order nonadiabatic couplings [�� � (X)], for and between all electronic

states considered. These quantities can be obtained from a vast range of methods that aim
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at approximating the time-independent electronic Schrödinger equation (Eq. (2.3)) with

critical caveats and limitations existing for any of these electronic structure methods.14

Many electronic structure methods are based on recovering the de�ciency of Hartree-

Fock — used as a starting point — in the description of electronic correlations, the inter-

action among electrons in a quantum picture. In particular, this can be distinguished in

dynamical correlation, given by instantaneous interaction among electrons, and static

correlation, given by the contribution or more possible electronic con�gurations, missing

in a single-reference method as Hartree-Fock.

Ideally, an electronic-structure method would (i) provide all the quantities needed for

the nuclear dynamics, (ii) describe equally well the di�erent electronic states of interest,

(iii) be able to describe accurately the couplings between electronic states, (iv) be e�cient

if used in combination with on-the-�y (direct) dynamics (see below), (v) be robust enough

when visiting di�erent regions of the con�guration space, (vi) be capable of describing (or

at least detecting) multicon�gurational character of the electronic wavefunction(s).

Since the main focus of this thesis is on the nuclear dynamics aspect, only a brief list

of the most commonly employed electronic-structure methods will be provided. The

density functional theory approach (DFT) approach uses the three dimensional density

as a replacement of the high dimensional electronic wavefunction, and is usually a very

reliable method for ground-state energies. Its most commonly used extension to excited

states, is linear-response time-dependent density functional theory (LR-TDDFT).87 While

LR-TDDFT usually o�ers a very good compromise with regard to computational e�ciency,

it has several, well known limitations:† It can fail to describe electronic states with a charge-

transfer character88–94, conical intersections between the ground and �rst excited state,95

electronic states with double-excitation character,95–99 and can formally only be used to

describe ground-to-excited-state quantities like nonadiabatic coupling vectors100–107 even

if linear-response theory already o�ers a good approximation.108 Di�erent benchmarks of

LR-TDDFT and exchange/correlation functionals for the description of electronic energies

have been proposed in the literature109, and with more speci�c benchmarks related to, for

example, oscillator strengths110 or nonadiabatic dynamics111.

The algebraic diagrammatic construction of second-order (ADC(2)) can be seen as

an extension of Møller-Plesset perturbation theory up to second-order to excited states.

ADC(2), in its standard formulation, cannot be used to describe the coupling between the

†Note, that the crucial approximation leading to issues with a practical use of LR-TDDFT lies within the
adiabatic approximation for the exchange-correlation kernel.
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ground and �rst excited state but a spin-�ip variant has recently been proposed.112 The

single con�gurational nature of the method is also its main de�ciency, as it cannot recover

static correlation. In addition, it has recently been shown that ADC(2) leads to arti�cial

S1/S0 crossings for carbonyl-containing molecules upon C=O elongation.113

One very widely used method for various levels of nonadiabatic dynamics is state-

averaged complete active space self-consistent �eld (SA-CASSCF). It allows a selection of

an active space — a selection of occupied and unoccupied orbitals that are dominating the

excited states of interest of the molecule — and constructs a full-con�guration interaction

wavefunction from the possible excitations within this active space. One of SA-CASSCF

central issues is its neglect of dynamic correlation for practically accessible active spaces,

leading to a potentially imbalanced description of electronic states.114 In addition, in many

cases a choice of active space might not be able to describe the potential equally well after

the nuclear dynamics have been driven far from equilibrium. For example, if the molecule

acquires high kinetic energy after deactivation, it might potentially form photoproducts

with vastly di�erent nuclear geometries which the initially chosen orbitals do not manage

to describe.115,116

Multistate complete active space perturbation of second-order (MS-CASPT2) includes

dynamic correlation e�ects through perturbation theory in a multistate approach. It is

a highly accurate multicon�gurational method, but its computational cost might be the

most limiting factor of its use for dynamics. The other problems, MS-CASPT2 might su�er

from during dynamics are the appearance of intruder states and instabilities near conical

intersections.114,117 However, the latter has been partially overcome by the extended MS-

CASPT2.117 This list is far from complete but just highlights some of the common electronic

structure methods for nonadiabatic dynamics used throughout the thesis.

An important distinction exists between di�erent nonadiabatic dynamics techniques, de-

pending on when the electronic-structure quantities are calculated. Some nuclear dynamics

strategies require a global knowledge of the PESs and couplings over the entire nuclear

con�guration space considered. Therefore, such methods necessitate the precalculation of

all electronic structure quantities prior to the actual nuclear propagation. They also often

rely on the �tting of the electronic structure quantities to certain functional forms, or the

use of a model Hamiltonian.118,119 Contrarily, other nonadiabatic methods only require the

electronic structure information to be known locally, allowing for on-the-�y nonadiabatic

dynamics (also called “direct” or “ab initio” dynamics). In this case, the electronic quanti-
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ties are computed at each nuclear propagation time step, or when required. The cost of

electronic-structure calculations can become a serious bottleneck when performing on-

the-�y excited-state dynamics of molecular systems. Recent developments could achieve a

dramatic reduction of this computational cost, for instance by combining nonadiabatic

dynamics with quantum chemical calculations accelerated on graphics processing units

(GPUs)120–123, or by employing machine (or deep-) learning strategies.124,125

2.4.4 Nuclear dynamics

Di�erent strategies have been proposed to describe the nuclear dynamics of an electronically-

excited molecule. A numerically exact solution of the TDSE is possible, but only in the

framework of a subspace of the original in�nite-dimensional Hilbert space. Hence, our

problem is projected onto the space spanned by the # basis functions. The wavefunction,

however, is usually not expressed in an orthogonal basis but rather represented as a discrete

set of time-dependent complex amplitudes on a grid. These grid points can be understood

as the coe�cients of spatially localised basis functions, which in turn are related by a

unitary transformation to a conventional basis of orthogonal functions and consequently,

they span the same subspace and have analogous properties of orthogonality and complete-

ness. This means, that in the so-called standard method the nuclear amplitudes, as well as

the di�erent operators, are evaluated on a numerical grid prior to the propagation of the

nuclear wavefunction. The nuclear amplitudes are discretised by expressing each nuclear

degree of freedom (1, . . . , #dof) in a basis of (N1, . . . ,N#dof) time-independent functions.

As mentioned, these time-independent functions are spatially localised and hence, close to

X-functions. The choice of the time-independent primitive basis functions depends usually

on the problem on hand. However, assumingN basis functions in each of the #dof degrees

of freedom, the computational cost scales asN#dof limiting the application of the standard

method to systems with usually no more than 10 degrees of freedom.

With the aim to allow the description of more degrees of freedom or larger molecules,

the multicon�gurational time-dependent Hartree (MCTDH)126–129 was proposed, which

constitutes one of the most accurate methods. It uses time-dependent single-particle basis

functions, which are in turn expanded in time-independent basis functions. Coupled

equations of motion for the complex amplitudes and the single-particle functions are

obtained through the Dirac-Frenkel variational principle. These basis functions constitute

the grid on which the TDSE are solved. The basis functions can move and variationally
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sample the space, which allows the treatment of more nuclear degrees of freedom as the

number of basis functions is reduced. Consequently, in the limit of the single-particle

functions covering the full space, there is no more time evolution of the basis and it

converges towards the standard method.

Two very widely used strategies of nuclear dynamics will be discussed in great detail in

sections 2.5 and 2.6. The �rst strategy consists in expressing the nuclear wavefunctions

using a moving grid of basis functions (see Sec. 2.5), which can be derived from �rst

principles and can be converged to the standard method. The other strategy, mixed

quantum/classical dynamics (see Sec. 2.6), enforces a classical approximation for the nuclei,

resulting in classical trajectories.

While all these methods mentioned are based on the BH representation of the wavefunc-

tion (cf. Eq. (2.5)), employing the classical nuclei approximation within the EF framework

(cf. Eq. (2.21)) gives rise to the coupled-trajectory mixed quantum-classical (CT-MQC)

algorithm.27,130,131 The strategy of CT-MQC is to propagate classical trajectories simulta-

neously on a time-dependent vector potential.

Note that apart from these strategies, a variety of other formalisms has been developed

to describe non-BO dynamics, such as semiclassical approaches,19,132,133 including e.g. the

mapping approach,134,135 symmetrical quasi-classical windowing models,136,137 quantum-

classical Liouville approaches138–140 and Bohmian dynamics.32,141–143

2.5 Nonadiabatic dynamics with Gaussian functions
In the following, strategies to perform nonadiabatic quantum dynamics in practice for

molecular systems will be introduced. Starting from the exact expansion of the nuclear

wavefunction in a Gaussian basis, various exact approaches will be introduced. The main

focus will be on the framework of classically moving Gaussians and approximations to it

that makes it feasible for full dimensional molecular systems.

2.5.1 Time-dependent Schrödinger equation in a Gaussian basis

Coming back to the BH expansion of the molecular wavefunction (Eq. (2.5)), the time-

dependence can be fully grouped into the time-dependent nuclear expansion coe�cients,

i.e. the nuclear wavefunctions. Nonadiabatic dynamics, within the (post) BO picture, is

centred around solving the nuclear equations of motion (Eq. (2.6)), but an exact solution
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is not possible for molecules with more than a few degrees of freedom. Therefore, more

practical strategies and carefully considered approximations become necessary.

One starting point for such frameworks is to expand the nuclear wavefunction [j � (X, C)],
in a basis of # ( � )TBF trajectory basis functions (TBFs) [{ j̃ ( � )< }

#
( � )
TBF

<=1 ]. These TBFs [j̃ ( � )< =

j̃
( � )
<

(
X;0 ( � )

<,1(C), ..., 0
( � )
<,#?
(C)

)
], each depend on a set of #? time-dependent parameters

[0 ( � )
<,#?
(C)]. This expansion can be inserted into the BH representation of the molecular

wavefunction to express it within a multi-set formalism as

Ψ(r , X, C) =
∞∑
�

#
( � )
TBF∑
<

�
( � )
< (C) j̃ ( � )<

(
X;0 ( � )

<,1(C), ..., 0
( � )
<,#?
(C)

)
Φ� (r ; X) . (2.40)

Here, � ( � )< (C) are the complex, time-dependent (nuclear) expansion coe�cients for state

� . A common and practical choice of TBFs is to use moving, multidimensional, Gaussian

functions,

j � (X, C) =
#
( � )
TBF∑
<

�
( � )
< (C) j̃ ( � )<

(
X; X̄ ( � )< (C), V̄

( � )
< (C), W̄

( � )
< (C)," (C)

)
, (2.41)

where the (moving) Gaussians are de�ned by their (time-dependent) position [X̄ ( � )< (C)]
and momentum [V̄ ( � )< (C)] at the centre, width [" (C)] and a phase [W̄ ( � )< (C)]. Alternatively,

a single-set formalism can be used. Then, the molecular wavefunction is expressed as

Ψ(r , X, C) =
#
( � )
TBF∑
<

( ∞∑
�

�<� (C)Φ� (r ; X)
)
j̃<

(
X;0<,1(C), ..., 0<,#? (C)

)
. (2.42)

It is noted that the single-set formalism can also use a sum of normalised linear combination

of electronic states (Ehrenfest con�gurations), and introduce an amplitude to weight the

nuclear contributions. In both, multi- and single-set formalism‡, each 3#n-dimensional

TBF is de�ned as a product of 3#n one-dimensional Gaussians as

j̃
( � )
< = 4

8
~ W̄
( � )
< (C )

3#n∏
d

j̃
( � )
<d

(
'd ; '̄ ( � )<d (C), %̄ ( � )<d (C), W̄ ( � )< (C), Ud (C)

)
(2.43)

j̃
( � )
<d =

(2Ud
c

)1/4
exp

[
−Ud (C)

(
'd − '̄ ( � )<d (C)

)2
+ 8
~
%̄
( � )
<d (C)

(
'd − '̄ ( � )<d (C)

)]
. (2.44)

‡It should however be noted that in the single-set formalism, there is not state dependence on the
de�nition of the TBFs.
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If this Gaussian expansion of the BH representation is inserted into the TDSE (Eq. (2.1)),

(after left multiplication by
(
j̃
(� )
:

(
X; X̄ (� )

:
(C), V̄ (� )

:
(C), W̄ (� )

:
(C)," (C)

)
Φ� (r ; X)

)∗
and integra-

tion over all electronic [r] and nuclear [X] coordinates) one obtains a set of equations of

motions for the complex expansion coe�cients

dC
dC

�

= − 8
~
S−1
� �

[
(H� � − 8~¤S� � )C� +

∞∑
� ≠�

H� �C�
]
. (2.45)

Here, S� � is the overlap matrix between two TBFs with elements

( � �
:<

= 〈j̃ (� )
:
| j̃ ( � )< 〉X . (2.46)

H� � and H� � are intra- and interstate Hamiltonian matrices:

�
� �

:<
= 〈j̃ (� )

:
Φ� | �̂m |Φ� j̃ ( � )< 〉r,X . (2.47)

These intra- and interstate Hamiltonian matrix elements are the crucial elements that

couple the TBFs with each other, on the same and di�erent electronic states.

The de�nition of the TBFs, the description of the time evolution of their parameters

as well as the computation (and possible approximation) of the Hamiltonian matrix ele-

ments, establish various approaches for Gaussian based nonadiabatic quantum molecular

dynamics.§

Under the condition that the TBFs closely follow the evolution of the nuclear wave packet,

the number of TBFs used can be greatly reduced. Hence, it is necessary to �nd equations

of motion for the TBFs which provide proper support for the nuclear wavefunctions at a

reasonable computational cost. Following the idea of MCTDH, the equations of motion for

the basis functions can be determined from the Dirac-Frenkel variational principle de�ning

the framework of variational Multicon�gurational Gaussians (vMCG).144–146 Through the

quantum propagation of the Gaussian functions, a good representation of the nuclear

wavefunction is ensured and the necessary number of Gaussian functions is reduced. In

principle, the time-dependent variational principle also allows propagation of the width of

the Gaussians however this usually introduces instabilities in the dynamics and usually

§One should note, however, that up to this point no approximations were introduced, so independent of
the way to treat the time evolution of the Gaussians, in the limit of enough Gaussian functions and an exact
evaluation of the Hamiltonian matrix elements, all Gaussian based methods converge to the exact solution of
the TDSE.
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frozen Gaussians are used in vMCG.144 The better description o�ered by the quantum

propagation comes at the cost of highly coupled equations of motion that increase the

complexity (and hence computational cost) of the dynamics of the TBFs.

In multicon�gurational Ehrenfest (MCE), the Gaussian functions with frozen width are

propagated classically in the single-set formalism, following Ehrenfest trajectories.147–149

As a result, the TBFs are propagated on an averaged potential energy surface in regions

of strong nonadiabaticity, composed of a linear combination of the adiabatic surfaces

weighted by electronic coe�cients.

Alternatively, the method called full multiple spawning (FMS) proposes to propagate

the Gaussian functions classically on adiabatic PESs in the multi-set formalism.150–152

However, the number of basis functions can be expanded when nonadiabatic regions are

encountered during the dynamics by using a spawning algorithm. While all these TBF

based methods are in principle exact within the limit of the basis set, approximations

have been introduced for all of them in order to be able to simulate the nonadiabatic

dynamics of molecules on the �y, resulting in direct-dynamics vMCG, ab initio MCE and

ab initio multiple spawning (AIMS). In an e�ort to take the best of both ansätzen, MCE and

multiple spawning have been combined yielding the multiple cloning method,153 where

an Ehrenfest con�guration is cloned into two, of which one is guided by a single PES and

the other follows the mean-�eld potential of the remaining states.

The on-the-�y formulation of FMS, ab initio multiple spawning (AIMS) and its deriva-

tions makes the dynamics of medium and larger sized molecules accessible. This framework

has been extensively tested and used throughout the work of this thesis. Therefore, in this

section, the working equations starting from the in-principle exact FMS and showing the

stepwise approximations to reach AIMS and further approximations to make it an even

more practical method, will be introduced.

2.5.2 Full multiple spawning

Full multiple spawning expresses the nuclear wavefunction in a basis of Gaussian functions

in the form of Eqs. (2.43) and (2.44), with the di�erence that it employs Heller’s ansatz of

frozen Gaussians,154–157 i.e. the width of the Gaussian [" (C) = " ] is �xed and no more

time-dependent. The most characteristic feature of the method is however that the size

of the Gaussian basis is time-dependent [# ( � )TBF(C)], since it can be extended through the
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so-called spawning algorithm, whenever necessary (as will be detailed below).150,158 The

nuclear wavefunction is expanded as

j � (X, C) =
#
( � )
TBF (C )∑
<

�
( � )
< (C) j̃ ( � )<

(
X; X̄ ( � )< (C), V̄

( � )
< (C), W̄

( � )
< (C),"

)
. (2.48)

As mentioned above, the TBFs in FMS follow classical trajectories. The TBF [j̃ ( � )< ] on

electronic state � evolves adiabatically on the PES given by n ( � )BO (X), and its positions and

momenta are propagated using Hamilton’s equations of motion.

d'̄ ( � )<d (C)
dC =

%̄
( � )
<d (C)
"d

(2.49)

d%̄ ( � )<d (C)
dC = −

mn
( � )
BO (X)
m'<d

�����
'<d='̄

( � )
<d (C )

(2.50)

The time evolution of the phase [W̄ ( � )< (C)] is obtained, based on semiclassical arguments,

by integrating the classical Lagrangian.79

dW̄ ( � )< (C)
dC =

3#n∑
d

(
%̄
( � )
<d (C)

)2

2"d

− n ( � )BO

(
X̄
( � )
< (C)

)
(2.51)

For the evaluation of the complex expansion coe�cients, the same set of equations of

motions is obtained as shown above in Eq. (2.45).

Spawning algorithm

An important aspect of FMS is the time-dependence of the size of the basis set. At time

C = 0, the initial wavefunction is represented by a linear combination of #ini coupled

TBFs, the parent TBFs. Each of these parent TBFs has the possibility of creating new, child

TBFs over time. To express this explicitly, one can rewrite the wavefunction in the BH

representation as79,159

Ψ(r , X, C) =
#ini∑
V

Ψ̃V (r , X, C)

=

#ini∑
V

∞∑
�

#
�

V
(C )∑
<

�
( � )
<V
(C) j̃ ( � )

<V

(
X; X̄ ( � )

<V
(C), V̄ ( � )

<V
(C), W̄ ( � )

<V
(C),"

)
Φ� (r ; X) . (2.52)
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This underlines the fact that in FMS all the initial parent TBFs are coupled from the

beginning and will be coupled to all the additional children TBFs created throughout the

dynamics.

The important question arising at this point is: When and how are basis functions

added to the dynamics? From Eq. (2.45) it can be seen that nonadiabatic population

transfer is mediated by the interstate couplings between TBFs. Therefore, whenever a TBF

encounters a region of high nonadiabatic coupling to another state, a new TBF is created

on the other state. The most commonly used spawning algorithm160 is schematically

shown in �gure 2.3. Throughout the dynamics, every TBF monitors the strength of the

nonadiabatic coupling (the e�ective coupling, [) e�
� �
(X)] between the state it evolves in

and all other states. The coupling strength is most straightforwardly evaluated as the

absolute value of the nonadiabatic coupling vector at the position of the centre of the TBF,

so ) e�
� �
(X̄<) is de�ned as

) e�
� � (X̄<) = |d� � (X̄<) | . (2.53)

An alternative criterion that is commonly used monitors the projection of the NACV on

the classical velocity of the TBF:

) e�
� � (X̄<) = |d� � (X̄<) · ¤̄X< | . (2.54)

As soon as one TBF encounters a coupling that exceeds a prede�ned threshold, the

propagation of the complex coe�cients (of all TBFs in the dynamics) is stopped. At this

time, Centry, the respective TBF enters the spawning mode (see centre panels in �gure 2.3):

only this TBF is propagated forward until it reaches the point where) e�
� �

is maximal. At this

point, a new child TBF is spawned on the new state if certain criteria are ful�lled:161–163 i)

the energy can be conserved, i.e. the kinetic energy is large enough to compensate for the

increase in potential energy, ii) the child TBF overlaps su�ciently with the parent TBF

and iii) the child TBF does not overlap too much with other TBFs on the same state. Under

these conditions, the successful spawn is created as a TBF with the identical properties

as the parent, but its momentum is rescaled for energy conservation and the complex

coe�cient are set to zero. The child TBF is propagated backwards in time, until C = Centry.

At this point, the spawning mode is terminated and the normal FMS dynamics can resume

with the extended basis: now, the equations of motion include the amplitude of the new

child TBF and in the subsequent dynamics it can receive and transfer amplitude from and
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Fig. 2.3.: Schematic illustration of a spawning process in FMS. Top plots: photoexcitation and
evolution of the TBF until the e�ective coupling succeeds a threshold. Middle plots:
Spawning mode - forward propagation, spawning, backward propagation. Bottom plots:
Forward propagation and exchange of amplitude between parent and child TBF.
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to all other TBFs included. This spawning algorithm ensures that the parent and child TBF

have a maximal overlap at the point where the e�ective coupling between their respective

states becomes maximal.

Hamiltonian matrix elements

Having established how the Gaussians in FMS are moving and being created, their couplings

between each other will be investigated closer.¶

Looking at the Hamiltonian matrix elements in more detail, for FMS there are two

main types of couplings: the intrastate coupling for TBFs in the same electronic state,

so for � = � ∀:,<; and the interstate couplings for TBFs in di�erent electronic states, so

for � ≠ � ∀:,<. For an intrastate coupling, the Hamiltonian matrix element [
(
�
� �

:<

)
FMS

]

between two TBFs, : and<, evolving in the same electronic state � , becomes14,79,150

(
�
� �

:<

)
FMS

=

(
〈j̃ ( � )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)

FMS
= −

3#n∑
d

~2

2"d

〈j̃ ( � )
:
| m2
'd
| j̃ ( � )< 〉X

+ 〈j̃ ( � )
:
| n ( � )BO | j̃

( � )
< 〉X −

3#n∑
d

~2

2"d

〈j̃ ( � )
:
|�d

� �
| j̃ ( � )< 〉X . (2.55)

The terms on the right-hand side encode the contributions of the nuclear kinetic energy

operator, the electronic energy, and the DBOC introduced earlier. An interstate coupling is

characterised by a matrix element [
(
�
� �

:<

)
FMS

], where the two TBFs, : and<, are evolving

in di�erent electronic states, � and � , as

(
�
� �

:<

)
FMS

=

(
〈j̃ (� )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)

FMS
= −

3#n∑
d

~2

2"d

〈j̃ (� )
:
| 3d
� �
| j̃ ( � )< 〉X

−
3#n∑
d

~2

2"d

〈j̃ (� )
:
|�d

� �
| j̃ ( � )< 〉X . (2.56)

The right-hand side of this equation shows that the non-BO coupling between two TBFs

is mediated by the �rst-order NACVs and the second-order NACs. These formally exact

Hamiltonian matrix elements given above include the integrations of electronic-structure

quantities over the nuclear coordinates. This requires that electronic-structure quantities

—- electronic energies, NACVs, DBOCs, and NACs — should be known over the full nuclear
¶For simplicity, there will be no di�erentiation of the di�erent branches of TBFs as this was mainly a tool

to visualise their origin, but does not have a meaning in FMS, since all TBFs are coupled equally, so it will be
considered that j̃ (� )

:V′
= j̃
(� )
:

and j̃ ( � )
<V

= j̃
( � )
< .
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con�guration space. This requirement dramatically limits the applicability of FMS to

molecular systems, as it does not allow for on-the-�y dynamics.

Therefore, for the study of the dynamics of molecules in their full dimensionality, it is

necessary to rely on controlled approximations to the couplings between the TBFs, which

leads to the framework of AIMS.

2.5.3 Ab initio multiple spawning

AIMS introduces two main approximations to the way the TBFs are coupled throughout

the dynamics to make it accessible for larger molecules: the independent �rst generation

approximation (IFGA) and the saddle point approximation of order zero (SPA0).

Independent first generation approximation

As described above, in FMS, the initial wavefunction is prepared as #ini coupled initial

Gaussian functions, that mimic the initial nuclear wavepacket. Assuming the dynamics

of a molecule, a high-dimensional system, after photoexcitation, the nuclear wavepacket

is expected to spread rapidly in phase space. Therefore, the initial TBFs rapidly move

away from each other and become uncoupled. Subsequently each initial TBF evolves

independently and create new TBFs in its branch.

Within AIMS, the so-called IFGA exploits this behaviour: the initial parent TBFs are

considered uncoupled from the very beginning of the dynamics.159,161 This approximation

greatly simpli�es the dynamics and its initialisation. Within the IFGA, independent initial

conditions for each parent TBF can simply be sampled from a Wigner distribution (cf.

Sec. 2.4.1) and subsequently be run independently. Consequently, it is also assumed that

not only are the initial TBFs evolving independently of each other but also all children

TBFs in a certain branch V are independent of any TBFs in any other branch V ′. At the

end of the dynamics, all observables, as well as the populations of the electronic states,

can be reconstructed as an incoherent sum over all initial conditions.

The IFGA provides two great advantages in the practical application of AIMS dynamics:

1) As the initial conditions are each run independently, it allows for a higher degree of

parallelisation. 2) Convergence of the dynamics with respect to the number of initial

conditions can be determined on the �y. One can add additional runs of initial conditions

until convergence is reached.
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Saddle-point approximation

The second approximation, the saddle-point approximation directly acts on the Hamilto-

nian matrix elements. As mentioned before, an exact evaluation of the matrix elements

requires integration of electronic energies, NACVs, NACs and DBOCs over the whole

nuclear con�guration space and therefore requires precomputed potentials. This makes an

application for molecules in their full dimensionality impractical and on-the-�y dynamics

impossible. Therefore, in AIMS, these matrix elements are approximated. The �rst approx-

imation is to neglect the NACs and DBOCs, i.e. all �� � (X) and � � � (X) terms, because of

their small size.

Additionally, the remaining contributions — the electronic energies [n ( � )BO (X)] and NACVs

[d� � (X)] — are evaluated locally at the positions of the TBFs, by introducing the so-called

saddle-point approximation of order zero (SPA0). Thanks to the characteristic that TBFs are

spatially localised, one can see that the product of two Gaussians yields another Gaussian

at the centroid position between the two original Gaussians. This is exploited in the SPA0,

as the electronic energy and the NACV are Taylor expanded around this centroid position

and the resulting integral can then be solved analytically.160,161,164,165 Looking for example

at the expansion of the electronic energy [n ( � )BO (X)] between two TBFs, [j̃ ( � )
:
(X, C) and

j̃
( � )
< (X, C)], around the centroid position [X̄:< = (X̄: + X̄<)/2], one would obtain

n
( � )
BO (X) = n

( � )
BO (X̄:<) +

3#n∑
d

('d − '̄:<,d )
mn
( � )
BO (X)
m'd

�����
'd='̄:<,d

+ 1
2

3#n∑
d,d′
('d − '̄:<,d )

m2n ( � )BO (X)
m'dm'd′

�����
'd='̄:<,d ,'d′='̄:<,d′

('d′ − '̄:<,d′) + · · · . (2.57)

In AIMS, the Taylor series is truncated after the zeroth order term, (thus, the name, SPA0),

and the intrastate coupling elements become

(
〈j̃ ( � )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA0

AIMS
= −

3#n∑
d

~2

2"d

〈j̃ ( � )
:
| m2
'd
| j̃ ( � )< 〉X + n

( � )
BO (X̄:<) 〈j̃

( � )
:
| j̃ ( � )< 〉 .

(2.58)

For the interstate couplings, the NACV is expanded within the SPA0 to become

(
〈j̃ (� )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA0

AIMS
= −

3#n∑
d

~2

"d

3
d

� �
(X̄:<) 〈j̃ (� ): | m'd | j̃

( � )
< 〉X . (2.59)
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The SPA0 addresses elegantly the complexity arising from the X-dependence of the

electronic energies and NACVs: It allows to simply calculate the Hamiltonian matrix

elements by performing at each time step a single point calculation at the position of each

TBF and at the centroid position between each pair of TBFs, and with that to evaluate the

complex coe�cients on the �y.

An important consideration has been swept under the carpet in the presentation of the

AIMS approximations above: neglecting the NACs in the interstate matrix elements should

break the hermiticity of the Hamiltonian [H� � ≠ H� � ].166 This is a result of the NACVs

being anti-Hermitian [d� � (X) = −d � � (X)], and would have the dramatic consequence

that AIMS dynamics should not conserve the norm of the wavefunction. Interestingly,

the use of the SPA0 compensates for the neglect of the NACs.79 Looking closely at the

de�nition of the AIMS interstate Hamiltonian matrix elements in the SPA0 (Eq. (2.59)),

one can see that the AIMS Hamiltonian is Hermitian, as d� � (X̄:<) = −d � � (X̄:<) and

〈j̃ (� )
:
| ∇X | j̃ ( � )< 〉X = − 〈j̃ ( � )< | ∇X | j̃ (� ): 〉X . This compensation between the SPA0 and the

neglect of the NACs explains the Hermitian nature of the AIMS Hamiltonian and its

norm-conserving dynamics. However, this observation also indicates that one needs to be

extremely careful when trying to modify or improve the interstate Hamiltonian matrix

elements in AIMS to preserve its Hermitian nature, as will be exempli�ed in the following.

Ab initio multiple spawning beyond the zeroth-order saddle point
approximation

Improving the quality of the AIMS matrix elements beyond the SPA0 appears to be a trivial

task: one can simply include higher-order terms in the Taylor expansion discussed above.

In the following, it will be shown that care has to be taken with the interstate couplings.55

Applying the saddle-point approximation to �rst order (SPA1) to the intrastate Hamilto-

nian matrix elements is straightforward as it only requires the addition of the �rst-order

term of the Taylor expansion for the electronic energy – the nuclear gradient – evaluated at
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the centroid position of the two TBFs considered. The general expression for the intrastate

couplings is then

(
〈j̃ ( � )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA1

AIMS
= −

3#n∑
d

~2

2"d

〈j̃ ( � )
:
| m2
'd
| j̃ ( � )< 〉X + n

( � )
BO (X̄:<) 〈j̃

( � )
:
| j̃ ( � )< 〉X

+
3#n∑
d

mn
( � )
BO (X)
m'd

�����
'd='̄:<,d

〈j̃ ( � )
:
| ('d − '̄:<,d ) | j̃

( � )
< 〉X ,

(2.60)

where the evaluation of the last term on the right-hand side only requires the calculation

of a nuclear gradient of the electronic energy for state � at the centroid position.

Deriving the SPA1 for the interstate Hamiltonian matrix elements is substantially more

challenging for two reasons. The �rst issue comes from the fact that adding the �rst-

order term of the Taylor expansion for these matrix elements implies the evaluation of

the Jacobian of the NACVs – a quantity not commonly available in electronic-structure

packages. The Jacobian of the NACVs [Jd� � (X)] is de�ned as

Jd� � (X) =
m

mX
d� � (X) =

©«
m
mX3

1
� �
(X)
...

m
mX3

3#n
� �
(X)

ª®®®®¬
=

©«
m
m'1
31
� �
(X) · · · m

m'3#n
31
� �
(X)

...
. . .

...

m
m'1
3

3#n
� �
(X) · · · m

m'3#n
3

3#n
� �
(X)

ª®®®®¬
. (2.61)

(The explicit form of the Jacobian for the NACVs for a two-state two-dimensional case is

given in the appendix A.) Considering that one can obtain Jd� � (X), the interstate couplings

within the SPA1 would be given by

(
〈j̃ (� )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA1

AIMS
= −

3#n∑
d

~2

"d

3
d

� �
(X̄:<) 〈j̃

(� )
:
| m'd | j̃

( � )
< 〉X

−
3#n∑
d

3#n∑
d′

~2

"d

(
Jd� � (X̄:<)

)
dd′
〈j̃ (� )
:
| ('d′ − '̄:<,d′)m'd | j̃

( � )
< 〉X . (2.62)

with
(
Jd� � (X̄:<)

)
dd′

being the element dd ′ of the Jacobian matrix (see Eq. (2.61)). Without

considering the di�culties in obtaining the Jacobian, Eq. (2.62) reveals the second issue men-

tioned above: it is non-Hermitian. Upon expanding the integrand of the Gaussian integral in

the last term of the right hand-side in Eq. (2.62), it becomes clear that most resulting contri-

butions are Hermitian, with the exception of the term [
∑3#n
d

~2

2"d

(
Jd� � (X̄:<)

)
dd
〈j̃ (� )
:
| j̃ ( � )< 〉X].
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This term is anti-Hermitian, as
(
Jd� � (X̄:<)

)
dd

= −
(
Jd� � (X̄:<)

)
dd

and 〈j̃ (� )
:
| j̃ ( � )< 〉X =

〈j̃ ( � )< | j̃ (� ): 〉X . An explicit discussion of all the contributing terms for a two-level two-

dimensional system can be found in the appendix A.

From the above analysis of the SPA1 interstate couplings, it becomes clear that the

original approximations in AIMS places this method in a sweet spot where the SPA0

compensates for the loss of hermiticity caused by neglecting the NACs in the interstate

couplings. One may now wonder whether including back the NACs could resolve the

hermiticity issue observed within the SPA1.

Including the second order couplings in ab initio multiple spawning –
two-state systems

Based on the �ndings above that the SPA1 breaks the hermiticity of the AIMS interstate

couplings, it will be investigated whether including back the (long-neglected) NACs could

lead to Hamiltonian matrix elements that are Hermitian. At this opportunity, also the

inclusion of the DBOCs in the interstate matrix elements will be discussed, as they originate

from the second-order couplings. Discussions of the role of NACs and DBOCs in AIMS

have been previously proposed in Refs. [167, 168], for example.

To simplify the analysis, it is restricted to a two-state model (for example the two-state

two-dimensional system introduced in Eq. (2.9)), which allows simplifying the expressions

for the NACs and DBOCs. One can start by expanding the NACs into a symmetrised form,

�
d

� �
(X) = 〈Φ� | m2

'd
|Φ� 〉r = m'd 〈Φ� | m'd |Φ� 〉r − 〈m'dΦ� |m'dΦ� 〉r . (2.63)

Inserting the resolution of the identity [
∑
 |Φ 〉 〈Φ | = 1] into the last term of the right

hand-side in Eq. (2.63), one obtains

�
d

� �
(X) = 〈Φ� | m2

'd
|Φ� 〉r = m'd 〈Φ� | m'd |Φ� 〉r −

∑
 

〈m'dΦ� |Φ 〉r 〈Φ |m'dΦ� 〉r . (2.64)

For a two-state system, from Eq. (2.64) a simpli�ed expression can be derived for the

DBOCs

�
d

� �
(X) = 〈Φ� | m2

'd
|Φ� 〉r = −| 〈Φ1 | m'd |Φ2〉r |2 = −|3

d

12(X) |
2 , (2.65)
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and the NACs,

�
d

� �
(X) = 〈Φ� | m2

'd
|Φ� 〉r = m'd 〈Φ� | m'd |Φ� 〉r = m'd3

d

� �
(X) . (2.66)

Hence, both the DBOCs and the NACs can be readily obtained from the NACVs for a

two-state model.

Now the de�nitions of DBOCs and NACs provided by Eqs. (2.65) and (2.66) can be used

in the AIMS matrix elements within the SPA0. The additional term in any matrix elements

incorporating the DBOC reads, within the SPA0, as(3#n∑
d

~2

2"d

〈j̃ ( � )
:
|�d

� �
| j̃ ( � )< 〉X

)SPA0

AIMS

= −
3#n∑
d

~2

2"d

|3d12(X̄:<) |
2 〈j̃ ( � )

:
| j̃ ( � )< 〉X , (2.67)

while the one containing the NACs is(3#n∑
d

~2

2"d

〈j̃ (� )
:
|�d

� �
| j̃ ( � )< 〉X

)SPA0

AIMS

=

3#n∑
d

~2

2"d

(
Jd� � (X̄:<)

)
dd
〈j̃ (� )
:
| j̃ ( � )< 〉X . (2.68)

In light of the discussion of Eq. (2.62), it is known that the interstate coupling term

(Eq. (2.68)) is anti-Hermitian, as
(
Jd� � (X̄:<)

)
dd

= −
(
Jd� � (X̄:<)

)
dd

while 〈j̃ (� )
:
| j̃ ( � )< 〉X =

〈j̃ ( � )< | j̃ (� ): 〉X . However, this anti-Hermitian contribution coming from Eq. (2.68) is exactly

the same as the anti-Hermitian contribution obtained from the expansion of the last term

of the right hand-side of Eq. (2.62) (interstate coupling within the SPA1). Hence, if one

combines the SPA1 for the NACVs with the SPA0 for the NACs, the two anti-Hermitian

parts cancel out, providing an overall Hermitian Hamiltonian. Note that expanding the

interstate matrix elements to di�erent orders of the SPA allows to include all terms that

contain the NACVs up to their �rst-order derivatives.

In summary, one can propose the following AIMS Hamiltonian matrix elements for

a two-state system, using a combination of the SPA0 and SPA1 for both the intrastate

couplings,
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(
〈j̃ ( � )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA1’

AIMS
= −

3#n∑
d

~2

2"d

〈j̃ ( � )
:
| m2
'd
| j̃ ( � )< 〉X + n

( � )
BO (X̄:<) 〈j̃

( � )
:
| j̃ ( � )< 〉X

+
3#n∑
d

mn
( � )
BO (X)
m'd

�����
'd='̄:<,d

〈j̃ ( � )
:
| ('d − '̄:<,d ) | j̃

( � )
< 〉X

+
3#n∑
d

~2

2"d

|3d12(X̄:<) |
2 〈j̃ ( � )

:
| j̃ ( � )< 〉X , (2.69)

and the interstate couplings,

(
〈j̃ (� )
:

Φ� | �̂m |Φ� j̃ ( � )< 〉r,X
)SPA1’

AIMS
= −

3#n∑
d

~2

"d

3
d

� �
(X̄:<) 〈j̃

(� )
:
| m'd | j̃

( � )
< 〉X

−
3#n∑
d

3#n∑
d′

~2

"d

(
Jd� � (X̄:<)

)
dd ′̧
〈j̃ (� )
:
| ('d′ − '̄:<,d′)m'd | j̃

( � )
< 〉X

−
3#n∑
d

~2

2"d

(
Jd� � (X̄:<)

)
dd
〈j̃ (� )
:
| j̃ ( � )< 〉X . (2.70)

This combination of approximations for the Hamiltonian matrix elements will be denoted

SPA1’. The SPA1’ is the simplest approximation to the FMS Hamiltonian matrix elements

that allows for the inclusion of the NACs and DBOCs while preserving hermiticity.

2.5.4 Stochastic-selection ab initio multiple spawning

The accuracy of AIMS, thanks to the coupling between the TBFs, comes at the cost of

two drawbacks: nonlinear scaling of the computational e�ort with respect to the number

of TBFs and high sensitivity to numerical issues and instabilities during the propagation.

Since all TBFs of one initial branch are coupled in AIMS, the number of required electronic

structure calculations scales quadratically with the number of TBFs, leading to almost

infeasible computational costs of AIMS dynamics for long-time propagation or a large

number of electronic states. Additionally, the fully-coupled propagation of the complex

coe�cients implies that as soon as an error occurs during any electronic structure calcula-

tion for any TBF the whole AIMS dynamics cannot continue. To the end of overcoming

these bottlenecks, a very straightforward solution has been proposed recently: using the
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Fig. 2.4.: Schematic representation of the evolution of a TBF in a typical SSAIMS run. An initial
(parent) TBF evolves in time and spawns new TBFs throughout the dynamics. The cou-
pling between TBFs is constantly monitored during the dynamics, and when TBFs become
uncoupled (indicated by the dashed line), a stochastic-selection process is triggered. Only
one TBF, or a group of coupled TBFs, survives the stochastic-selection process – in the
present scheme, the parent TBF becomes uncoupled from a group of two child TBFs and
is therefore discarded.

naturally occurring decoupling between groups of TBFs to reduce the number of TBFs by

stochastically selecting one of the groups.169

The important consideration is how an introduced death process for decoupled TBFs

a�ects observable results. In AIMS, the expectation value of an operator [$̂] for the nuclear

wavefunction for state � is given by

$ � (C) =
∑# � (C )
:<

�
( � )∗
:
(C)� ( � )< (C) 〈j̃ ( � ): | $̂ | j̃

( � )
< 〉X∑# � (C )

:<
�
( � )∗
:
(C)� ( � )< (C) (Y) � �:<

. (2.71)

In most cases local operators are of interest, meaning for TBFs well separated in phase

space the matrix elements in the numerator goes to zero, leaving only pairs of TBFs close

to each other. In the limit of all TBFs being very distant, Eq. (2.71) reduces to

$ � (C) ≈
∑# � (C )
:

|� �
:
(C) |2 〈j̃ ( � )

:
| $̂ | j̃ ( � )

:
〉
X∑# � (C )

:
|� �
:
(C) |2

. (2.72)

Similarly, for TBFs in di�erent electronic states, the important interference terms are

localised in nonadiabatic regions where the TBFs overlap. Following this observation,

the new approach of stochastic-selection ab initio multiple spawning (SSAIMS) dynamics

seems reasonable: in the case of (groups of) TBFs becoming uncoupled, it is unnecessary

to follow the complete dynamics as the interference terms vanish and subsequently, allows
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stochastic selection of one of the blocks to pursue the dynamics. The main approximation

invoked in this scheme is the following assumption: If a group of TBFs decouples from

all other TBFs at one point during the dynamics, they will remain uncoupled to all other

TBFs throughout the whole dynamics.

Within this scheme, it is of utmost importance to be careful when TBFs are de�ned

as uncoupled. In the ESSAIMS method (where the E comes from the energy units of the

threshold), the o�-diagonal matrix elements of H between the running TBFs (represented

by the bold dashed lines in �gure 2.4) are compared to a prede�ned threshold [Y] throughout

the dynamics. In the overlap based formalism, OSSAIMS, the relevant criterion is the

overlap between the TBFs. It is important to note that this criterion in OSSAIMS does not

distinguish between the electronic state the TBFs are evolving on, whereas in ESSAIMS

interstate and intrastate couplings are di�erentiated. A connectivity matrix [M] between

the TBFs is constructed and for | (H):< | > Y (if TBFs : and< are coupled) (M):< is set to

unity, and zero otherwise. Iterative multiplications of the connectivity matrix by itself

identi�es higher order couplings between TBFs, i.e. when two TBFs are coupled via one

or more other TBFs, and is performed until idempotency is reached.

Having established the coupling pattern between the TBFs, the coherent population

[?U ] of an uncoupled block [U] of # �
U (C) coupled trajectories in each state � is calculated

as

?U =
∑
�

#
�
U (C )∑
:<

�
( � )∗
:
(C)� ( � )< (C)( � �:< . (2.73)

In the case of multiple uncoupled blocks, one of them [a] is selected stochastically for

further propagation if for a random number [b] generated in the interval [0 : 1]

a−1∑
U

?U ≤ b ≤
a∑
U

?U . (2.74)

The simulation is continued with only the TBFs of the ath block, which are rescaled to

preserve wavefunction normalisation. It is important to note that during the spawning

mode the stochastic selection process is suspended for the newly created TBF to ensure its

survival until the spawning time since at the point of entry the new TBF is usually only

weakly coupled.

The parameter Y has to be chosen individually for each system of interest and depending

on the choice of Y SSAIMS can be an approximation to AIMS with only a few stochastic
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trajectories, while still ensuring a proper description of regions of high nonadiabaticity

(spawning regions), or by decreasing the threshold it eventually converges to the AIMS

population distribution between the electronic states. In chapter 6, a detailed analysis of

ESSAIMS vs. OSSAIMS for the dynamics of complex molecular systems is presented and

the results and computational cost of the method are compared to those of AIMS and TSH.

2.6 Nonadiabatic dynamics based on trajectories

In contrast to the previously introduced methods based on trajectory basis functions, a

di�erent approach to dynamics, based on classically moving trajectories will be introduced.

While the previously introduced strategies all preserve the quantum nature of the nuclei,

mixed quantum/classical approaches use a classical approximation for the nuclei, keeping

only the quantum description of the electrons and an approximate description of nona-

diabatic e�ects.15 The nuclei move as classical particles, following Newton’s equation of

motion, but the nuclear forces are derived from the potential energies that need to account

for nonadiabatic e�ects.170,171 A trajectory V , describing the nuclear con�guration [XV (C)]
at time C feels the classical nuclear force [L V (C)],

L V (C) = −∇Xn (X)
��
X=XV (C ) , (2.75)

from a potential [n (X)]. The obvious question arising now is: How can one de�ne n (X) in

a way that it incorporates nonadiabatic e�ects?15,172

2.6.1 Ehrenfest dynamcis

A common choice for the potential would be a mean-�eld potential energy giving rise to the

so-called Ehrenfest dynamics..170,173,174 Ehrenfest dynamics emerges from a classical limit

of the time-dependent self-consistent �eld equations, where the molecular wavefunction

is approximated as a product of a time-dependent nuclear and electron wavefunction.

Subsequently, in Ehrenfest dynamics, a mean-�eld potential energy is used to propagate

the purely classical nuclei. The force is then calculated as the gradient of the expectation

value of the BO Hamiltonian as

L V (C) = −∇X 〈Φ(C ; XV (C)) | �̂BO(XV (C)) |Φ(C ; XV (C))〉r . (2.76)

48 Chapter 2 Theory



If the electronic states involved in photoprocesses are of similar character, Ehrenfest

dynamics can e�ciently provide good results for short term dynamics. However, if the

PESs involved in the photoprocess di�er strongly, the mean-�eld nature can lead to arti�cial

nuclear dynamics.

Since the trajectories are propagated on the support of an average potential, Ehrenfest

dynamics cannot represent di�erent physical situations found after encountering regions

of high nonadiabaticity.

2.6.2 Trajectory surface hopping

One of the most famous and widely used mixed quantum/classical methods is trajectory

surface hopping (TSH). In a way, TSH has a resemblance with a classical approximation to

AIMS: Invoking an independent trajectory approximation (ITA), replace moving Gaussians

by classical (and fully independent) trajectories and spawning events are replaced by hops,

i.e. trajectories are allowed to change the running state based on nonadiabatic e�ects.

Postulated in the 1970s175,176, it became widely known and used since the formulation

of the fewest switches surface hopping (FSSH) algorithm in 1990.16,177 In TSH the classical

nuclei are propagated on the adiabatic PESs, so their nuclear force felt by a trajectory V is

L V (C) = −∇Xn (∗)BO (X)
��
X=XV (C ) , (2.77)

where n (∗)BO indicates that the electronic state, in which the trajectory evolves, can change

during the dynamics. Each trajectory V is associated with a time-dependent electronic

wavefunction which is a linear combination of the electronic states [Φ� (r ; XV )]

Φ̃� (r , C ; XV ) =
∑
�

�
( � )
V
(C)Φ� (r ; XV ) , (2.78)

with complex coe�cients [� ( � )
V
(C)] associated with each state. Inserting this expansion into

the time-dependent electronic Schrödinger equation, yields a set of equations of motion

for the complex amplitudes:

¤� (� )
V
(C) = − 8

~
n
( � )
BO (X

V )� (� )
V
(C) −

∑
�

¤XV (C) · d� � (XV )� ( � )V (C) , (2.79)
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which includes the projection of the NACV [d� � (XV )] onto the nuclear velocity vector

[ ¤XV (C)]. At time C = 0, the initial state of the trajectory is chosen by setting the coe�cient

of this state to 1 and all other coe�cients to 0. After each nuclear time step, the coe�cients

are propagated and a probability for a hop from the running electronic state to another is

calculated. Then, based on a stochastic algorithm, it is decided whether the trajectory hops

or remains in its state. Within the fewest switches algorithm, this hopping probability is

calculated as

PV
�→� = max

0,−
2<

[
�
( � )∗
V
(C)� (� )

V
(C) ¤XV (C) · d� � (XV )

]
|� ( � )
V
(C) |2

dC

 . (2.80)

A random number b is created at each step (from the uniformous interval [0 : 1]) and a

hop from � to � occurs if ∑
 <�

PV
�→ ≤ b ≤

∑
 ≥�
PV
�→ . (2.81)

So at each step, every trajectory has the opportunity to hop and this possibility is mediated

by the nonadiabatic coupling between the electronic state and complex coe�cients. For

an accurate description of the nonadiabatic processes, a large number of trajectories is

necessary to converge the stochastic algorithm (in addition to the convergence of the

sampling of initial conditions).

In comparison to the previously introduces SSAIMS, there is an undeniable analogy

between the selection process in SSAIMS strongly and the idea of hops in TSH. However,

TSH is never guaranteed to converge to the exact physical result. In contrast, a large

number of stochastic runs and a small threshold in SSAIMS reproduces the AIMS result.

2.6.3 Issues with trajectory surface hopping

Since the TSH algorithm has not been derived from �rst principles, some aspects of the

dynamics require ad hoc adjustments. The most critical corrections are the momentum

rescaling to ensure energy conservation during hops, the approach to handle frustrated

hops and the problem of overcoherence.178

Energy conservation and frustrated hops

In TSH, each trajectory should conserve classical energy throughout the dynamics. How-

ever, since hops induce an instantaneous gain or loss of potential energy, this needs to be
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compensated. There is no unique way to do this,178–180 but several approaches to scale

the nuclear kinetic energy have been proposed. The original method proposed by Tully16

is to rescale the nuclear momentum vector in the direction of the NACV [d� � (X)] of the

two states, � ,� , involved in the hop. Thereby, the potential energy variation of the hopping

event is transformed into the work of a force acting on the nuclei. However, since the

nonadiabatic coupling vectors might not always be available during the dynamics, an

isotropic rescaling, i.e. simply rescaling along the nuclear velocity, is also widely used.

It should be noted that both these common methods do not conserve angular momen-

tum, however, using the rescaling along the NACVs can restore this conservation once a

projection operator is applied to remove the translational and rotational components.181

An issue closely related to the rescaling of the momentum is frustrated hops. A hop is

considered frustrated if the gain of potential energy during the hop exceeds the kinetic

energy. In these cases, it has been argued in the past that the nuclear momentum should

subsequently be inverted, but also the opposite has been argued. Again, if one chooses to

invert the nuclear momentum after a frustrated hop, this can either be done parallel to

the NACV or the full momentum vector can be inverted.177,179,182,183 Generally, hops are

more likely to be frustrated when rescaling along the NACV as only the portion of kinetic

energy parallel to the NACV is available.178

Decoherence failure

Another troubling aspect of TSH is its overcoherent nature, a consequence of the disconnec-

tion of the evolution of nuclei and electrons: while the nuclei evolve on individual BO PESs

and instantaneously hop between them, the electronic evolution remains in a coherent

superposition of BO states throughout.178 This problem is exempli�ed in Fig. 2.5. Consider

a trajectory V initially fully evolving on one state, e.g. S1, with complex coe�cients at time

C0 as� (S0)
V
(C0) = 0.0 and� (S1)

V
(C0) = 1.0. Once the two states come close in energy, because

of the stochastic algorithm no hop occurs, so the nuclear dynamics of the trajectory still

follows the force of the S1 state. However, in the vicinity of the coupling region, electronic

population is transferred between the states through the equations of motion for the

complex amplitudes. Thus, after passing the coupling region, the complex coe�cients

are for example � (S0)
V
(C1) =

√
0.3 and � (S1)

V
(C1) =

√
0.7. As the trajectory is following the

force of S1, all electronic population is also forced to follow the force of the running state,

leading to an arti�cial overcoherence of the population.
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Fig. 2.5.: Schematic representation of the overcoherence problem of TSH. A trajectory, with initial
coe�cient [� (S1)

V
(C0) = 1.0] evolves on the S1 state. In the coupling region no hop occurs

but electronic population gathers in the ground state [� (S0)
V
(C1) =

√
0.3]. However, all

electronic population has to follow the running trajectory and therefore, the electronic
population on the S0 overcoherently goes against the force of its state.

A direct consequence of the overcoherence of TSH is a loss of internal consistency:184 The

fraction of trajectories in any electronic state � at any time C [Π � (C) = # � (C )
#traj

], should equal

the averaged electronic population [?̄ � (C) = 1
#traj

∑#traj
V

���� ( � )
V

���2]. Many ad hoc decoherence

correction schemes have been proposed that aim at restoring internal consistency.184 One

of the simplest schemes is the energy based decoherence correction (EDC) proposed by

Granucci and Persico.184 Based on earlier work by Truhlar and coworkers in the context of

mean-�eld methods,185,186 the idea of EDC is to apply an exponential dampening function

to the electronic populations of the nonactive states after each integration step. For a

trajectory V in state � , the electronic population of each nonactive state [?V
�
(C) =

���� (� )
V
(C)

���2]

is dampened according to

?
V

�
′(C) =

���� (� )
V
(C)

���2 exp
(
−ΔC
g� �

)
, (2.82)

for a time-step [ΔC] and a decoherence rate [g� � ], which is computed as

gEDC
� � =

~
|n ( � )BO − n

(� )
BO |

(
1 + C

)n

)
(2.83)

and depends on the energy gap between the active state � and the nonactive state � , as

well as on the kinetic energy [)n]. The parameter C is a constant that could be adjusted
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but is usually set to 0.1 Eh. Zhu et al. observed that their results was quite insensitive to

the parameter [C]185 and were the �rst to use 0.1 Eh which subsequently also became the

usual default value for C in the context of TSH. It should be noted that although originally

this decay was intended to be applied to the populations, multiple softwares implemented

the EDC to be dampening coe�cients. However, numerical comparisons between the

two approaches for a subset of molecules do not reveal signi�cant practical di�erences in

predicted population decay.17,187

A di�erent approach is the so-called augmented fewest switches surface hopping (A-

FSSH)188 where the decoherence rate is obtained from how fast trajectories propagated on

di�erent surfaces move away from each other. Each trajectory is associated with auxiliary

trajectories evolving on the other nonactive states. The decoherence rate is calculated as

1
gA-FSSH
� �

=
XL � � · XX� �

2~ −
2
���d� � · X (n ( � )BO − n

(� )
BO)XX� � · X

���
~|X |2 , (2.84)

where XX� � = X� − X � refers to the position di�erence between the auxiliary trajectory on

state � and the trajectory on the active state � , and L � � = −∇X (n (� )BO − n
( � )
BO (X � )) to the force

di�erence. This decoherence rate is not directly applied, but used in a stochastic collapse

process: if ΔC/gA-FSSH
� �

is greater than a random number, the amplitude of nonactive state

[� (� )
V

] is collapsed to zero, while the coe�cient of the active state is increased to conserve

the total amplitude.

A similar approach with propagating auxiliary trajectories is taken in the decoherence-

induced surface hopping based on exact factorisation (DISH-XF).189 In DISH-XF, an additional

term [[ (� )
V
(C)] is added to the equations of motion of the complex coe�cients (see Eq. (2.79))

that accounts for the decoherence. This term has the form

[
(� )
V
(C) =

∑
�

#n∑
d

1
"d

∇Xd |j (X, C) |
|j (X, C) |

���
XV (C )

· (5 ( � )
V,d
(C) − 5 (� )

V,d
(C)) |� ( � )

V
(C) |2� (� )

V
(C) , (2.85)

and it contains the quantum momentum term [ ∇Xd |j (X,C ) ||j (X,C ) |

���
XV (C )

] and the accumulated force,

i.e. the di�erence in force along the BO PES integrated along the trajectory [5 ( � )
V,d
(C) =

−
∫ C

0 ∇Xdn
( � )
BO d (C ′)dC ′]. The dependence on the population of the di�erent states leads to

this term being active as soon as population is distributed between di�erent states. It

has been shown that this term [[ (� )
V
(C)] leads to decoherence and wavepacket splitting in

model systems.27,28 At this point, the question arises, how can one compute (approximately)
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the quantum momentum, since we have an approximation of classical trajectories and

therefore do not have a nuclear wavefunction. To this end, auxiliary trajectories are

propagated: for each initial active trajectory V , auxiliary trajectories V ′ are propagated on

all nonactive states. Then, the nuclear wavefunction is approximately reconstructed by a

Gaussian broadening of each of the trajectories and from this, the quantum momentum is

approximately reconstructed.

It should be noted that these are not the only ways to account for decoherence in surface

hopping but a large number of approaches have been proposed in the past.35,185,190–193

2.6.4 Trajectory surface hopping vs. ab initio multiple spawning

Having presented the two widely used ansätze for nonadiabatic dynamics provided by

AIMS and TSH, it is an interesting step to compare how they evaluate their complex

amplitudes.14,79

Assuming a system including two electronic states � and � , in TSH the equations of

motion for the complex coe�cients associated with the two states for a trajectory V are

calculated as ©«
¤� (� )
V
(C)

¤� ( � )
V
(C)

ª®¬ = − 8
~

©«
� � �
V

�
� �

V

�
� �

V
�
� �

V

ª®¬ ©«
�
(� )
V
(C)

�
( � )
V
(C)

ª®¬ , (2.86)

with the Hamiltonian matrix elements, according to Eq. (2.79), being de�ned as

�
� �

V
= n
( � )
BO (X

V ) (2.87)

�
� �

V
= −8~d� � (XV ) · ¤X

V
. (2.88)

In contrast, for AIMS, as a simple, exemplary case, two TBFs evolving on state � and one

TBF evolving on state � are assumed. This then leads the following equations of motion

©«
( � �11 ( � �12 0

( � �12 ( � �22 0

0 0 (
� �

33

ª®®®®¬
©«
¤� (� )1 (C)
¤� (� )2 (C)
¤� ( � )3 (C)

ª®®®®¬
=


− 8
~

©«
� � �11 � � �12 �

� �

13

� � �21 � � �22 �
� �

23

�
� �

31 �
� �

32 �
� �

33

ª®®®®¬
−

©«
¤( � �11 ¤( � �12 0
¤( � �12 ¤( � �22 0

0 0 ¤( � �33

ª®®®®¬

©«
�
(� )
1 (C)

�
(� )
2 (C)

�
( � )
3 (C)

ª®®®®¬
,

(2.89)
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with the Hamiltonian matrix elements, following Eqs. (2.58) and (2.59), being obtained as

�
� �

:<
= n
( � )
BO (X̄:<) 〈j̃

( � )
:
| j̃ ( � )< 〉X (2.90)

�
� �

:<
= −

3#n∑
d

~2

"d

3
d

� �
(X̄:<) 〈j̃ (� ): |

m

m'd
| j̃ ( � )< 〉X . (2.91)

Comparison of these two sets of equations of motion highlights the conceptual di�er-

ence between the coupled TBFs in AIMS and the independent trajectories in TSH. As a

consequence of the ITA, there are neither interstate nor intrastate interactions between

di�erent trajectories within TSH while the interstate couplings (for a given trajectory V)

are exclusively evaluated at the location of the trajectory at time C .

While the ITA is the reason behind the simplicity (and success) of the TSH algorithm

and allows for a computational cost scaling linearly with the number of TSH trajectories,

it is clear from the previous analysis that the trajectories produced might su�er from some

artefact. In particular, TSH might su�er in cases where the nuclear wavepacket branches

in a nonadiabatic region, leading to a separation of the nuclear components on the two

coupled surfaces – in the case of decoherence, as detailed in the previous section. This is

in stark contrast with AIMS, where the use of coupled TBFs, possibly evolving on di�erent

electronic states, allows for the description of splitting wavepackets.

Surface hopping approach to ab initio multiple spawning

Armed with the detailed comparison between TSH and AIMS provided above, is a good

starting position for close investigation of the e�ect of their di�erences on the excited-

state dynamics. Comparing the two sets of equations of motion of TSH and AIMS clearly

highlights the di�erence between the ITA inherent to TSH and the coupled TBFs strategy

employed by AIMS. Apart from the complete neglect of intrastate couplings in TSH, a

vast di�erence becomes evident upon the comparison of the interstate elements of the

Hamiltonian. The interstate couplings of the AIMS Hamiltonian read (upon evaluation of

the Gaussian integral153,164)(
�
� �

:<

)
AIMS

=
∑
d

3
d

� �
(X̄ (� � )

:<
(C)) ~

2

"d

〈j̃ (� )
:
| m

m'd
| j̃ ( � )< 〉 (2.92)

=
∑
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d
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"d

[
− 8
~
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]
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:
| j̃ ( � )< 〉 ,
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with %̄ (� � )
:<,d

= 1
2 (%̄

( � )
<,d + %̄ (� ):,d ).

In comparison, interstate couplings in TSH are computed as

�
� �

V
= −8~d� � (XV ) · ¤X

V (C) . (2.93)

Which kind of approximations need to be performed on the AIMS matrix elements to

bridge the equations of motion of AIMS to those of TSH? The most obvious approximation

is to set the overlap [( � �
:<

] and Hamiltonian matrix elements of the type ¤( � �:< and � � �
:<

to

zero in Eq (2.89). This uncouples the TBFs evolving on the same state and prevents ampli-

tude transfer between them. Recovering the interstate couplings of TSH from the AIMS

equations would require to enforce that the two coupled TBFs, evolving on di�erent states,

follow the same trajectory, leading to a perfect overlap between them at all times. Hence,

setting the intrastate couplings to 0 and enforcing the following three approximations to

the interstate couplings of AIMS constitute the framework called surface hopping approach

to ab initio multiple spawning (SHAIMS):

1. Enforcing perfect overlap between the TBFs: 〈j̃ (� )
:
| j̃ ( � )< 〉 = 1

2. The two TBFs need to be placed at the same position and propagated identically, i.e.

ΔX (� � )
:<

= 0 and V̄
(� � )
:<

= V̄
(� )
:

= V̄
( � )
<

3. Instead of the NACV at the centroid position [d� � (X̄ (� � ):<
(C))] only the one of one

TBF [d� � (X ( � )< (C))] is considered.

At this point, it is important to note that SHAIMS was developed and implemented as a

tool to investigate di�erences between TSH and AIMS rather than an actual dynamics

method.
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A photochemical reaction in

different theoretical

representations

3

This chapter is based on the publication:
L. M. Ibele, B. F. E. Curchod and F. Agostini, "A photochemical reaction in di�erent theo-
retical representations" submitted (2021)

3.1 Introduction

As introduced in the previous section, our way of picturing molecules and chemical pro-

cesses has been greatly shaped by the Born-Oppenheimer (BO) approximation, the assump-

tion that the motion of electrons and nuclei can be treated separately in a molecule.13,194

Photochemistry inherently goes beyond this picture as photon absorption by a molecule

makes transitions to di�erent electronic states possible.10,17,195–199 A legitimate strategy to

move beyond the BO approximation would be to try to supplement the BO picture with

more electronic eigenstates and account for their mutual couplings mediated by nuclear

motion (see Sec. 2.2). This approach is equivalent to expanding the molecular wavefunction

in a basis of time-independent electronic eigenfunctions, with time-dependent coe�cients

given by the nuclear wavefunctions. Importantly, this post BO model relies on the use of

quantities originally de�ned within the framework of the BO approximation – like the

potential energy surfaces obtained from the electronic Schrödinger equation for �xed

nuclear degrees of freedom – in a context that is at the opposite of their initial raison d’être:

strong electron-nuclear couplings.52 Analogously, our way to regard photochemical pro-

cesses, and the vocabulary used for such processes is intrinsically shaped by BO concepts:

potential energy surfaces,195 conical intersections,44,45 geometric phase,43,200 transition

dipole moment (the electric dipole moment for the transition between two electronic

states).
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This chapter explores the di�erent steps of a typical photochemical experiment de-

scribed in sections 2.2.1 and 2.3.1, within the standard Born-Oppenheimer (BO) picture (as

introduced in Sec. 2.2) that generates the model that underlies our common understanding

of photochemistry. This model is contrasted with an alternative representation of the cou-

pled electron-nuclear dynamics of a molecule, the exact factorisation (EF, see Sec. 2.3).66,67

The EF introduces a framework exempt of the ideas emanating from the BO picture – there

is no mention of electronic states or static potential energy surfaces. Instead, the EF depicts

the dynamics of a molecular system by a nuclear wavefunction whose dynamics is dictated

by a single time-dependent vector and scalar potential. Earlier works64,65,74,201 showed that

this formalism proposes a radically di�erent model of nonadiabatic molecular dynamics.

In particular, the concepts of transition between electronic states, conical intersections

(CIs), or geometric phase (GP) do not appear in the EF. Hence, there is a real curiosity to

unravel how the EF would describe a full photochemical experiment for a two-dimensional

two-state molecular model, from the photoexcitation with a laser pulse to the formation of

photoproducts, and to compare this picture to the more conventional BO representation.

In addition, these simulations will allow shedding light on other interesting aspects of

an in-silico photochemical experiment, such as (i) the e�ect of the Condon approxima-

tion, (ii) the analysis of the dynamics using representation-free quantities, and (iii) the

use of classical and quantum trajectories to depict the entire nuclear dynamics during a

photochemical process.

This chapter is organised as follows. I �rst de�ne the two-state two-dimensional model

Hamiltonian and the light-matter interaction Hamiltonian with and without the Condon

approximation in Sec. 3.2. In the same section, I also highlight some important considera-

tions on the model and provide the computational details. I then present the results of

this in-silico photochemical experiment, starting with the more conventional BO picture

(Sec. 3.3) and then moving to the EF (Sec. 3.4). An additional topic that this chapter ad-

dresses is the representation of an in-silico photochemical experiment using purely the

concept of nuclear trajectories, which will allow opening a broader discussion on the steps

towards excited-state molecular dynamics simulations. In Sec. 3.5, nuclear trajectories

are used for nonadiabatic dynamics in the context of the EF, since well-de�ned nuclear

forces can be identi�ed and provide a clear distinction between classical and quantum

trajectories.

58 Chapter 3 A photochemical reaction in different theoretical representations



3.2 Presentation of the two-state two-dimensional
model

3.2.1 Computational details

A two-dimensional, two-state molecular model is used for this study. In the diabatic

representation, the general form of the Hamiltonian is given by

Ĥdia(X) = )̂n(X)1 +
©«
+11(X) +12(X)
+12(X) +22(X)

ª®¬ , (3.1)

with the following diabatic electronic energies:

+11(X) =
:-

2 (- − -1)2 +
:.

2 .
2

+22(X) =
:-

2 (- − -2)2 +
:.

2 .
2 + Δ

+12(X) = W. exp(−U (- − -3)2) exp(−V. 2) , (3.2)

using X = (-,. ). The parameters :- = 0.02 �ℎ0−2
0 , :. = 0.1 �ℎ0−2

0 , Δ = 0.01 �ℎ ,

W = 0.01 �ℎ0−1
0 , U = 3 0−2

0 , and V = 1.5 0−2
0 , "- = 20000.0 <4 , and ". = 6667.0 <4 are

based on Refs. [201, 202], and here, it was set that -1 = 6 00, -2 = 2 00, and -3 = 3.875 00.

Nuclear wavepackets are propagated with numerically-exact quantum dynamics, using

for the initial state a Gaussian function with widths f- = 0.15 0−1
0 and f. = 0.197 0−1

0

initialised in the adiabatic ground electronic state with zero initial nuclear momentum.

The nuclear wavefunction is initially positioned at the Franck-Condon (FC) point Xinit =

(2.0, 0.0) 00.

The external time-dependent electric �eld of a laser pulse under study here is given by

E(C) = 9_�0 exp
(
− (C − C0)

2

) 2

) (
−2 (C − C0)

) 2 · sin(lC) + l cos(lC)
)
, (3.3)

with amplitude �0 = 0.065 ~(400)−1, centered at C0 = 350.0 ~�−1
ℎ

, with duration ) =

141.421356 ~�−1
ℎ

, and frequency l = 0.15 �ℎ~−1. 9_ is the polarisation vector, set to
1√
2 (1.0, 1.0) for all calculations. The transition dipole moment in the diabatic representation

is chosen as -12(X) = (5- (- − -0), 5. (. − .0)), with 5- = 0.2 4 , 5. = 2.0 4 , -0 = −1.0 00
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and .0 = −0.5 00. In the Condon approximation, -12(X = Xinit) is used. The diagonal

elements of the dipole operator are set to zero.

The full time-dependent Schrödinger equation is solved numerically in the diabatic

representation employing a split-operator formalism203,204 with a time step of 0.01 ~�−1
ℎ

.

A spatial grid of 800 points per coordinate is used over the range - ∈ [0.0, 8.0] 00 and

. ∈ [−2.0, 2.0] 00. Diabatic quantities are consequently transformed to give all the re-

spective EF quantities of interest, namely the time-dependent vector potential (TDVP)

and the time-dependent potential energy surface (TDPES), as discussed in Sec. 3.2.2 The

phase factor [Z (X, C)] is here absorbed into the phase [S(X, C)] of the nuclear wavefunction

[j (X, C) = |j (X, C) | exp[(8/~)S(X, C)]] and the gauge is chosen so that the nuclear wave-

function is real and non-negative, i.e., j (X, C) = |j (X, C) | ∀X, C . The exact nuclear density

is determined as the sum of the squared moduli of the diabatic nuclear wavefunctions

and its positive square root yields the nuclear wavefunction [j (X, C)] in the chosen gauge.

Using the diabatic wavefunctions and the nuclear wavefunctions, the potentials can be

easily constructed as discussed previously.74

3.2.2 Expressing the TDVP and TDPES within a diabatic basis

The electronic Hamiltonian in this work (Eq. (3.1)) is given in the diabatic basis, thus,

in the calculations the state |Φ(C ; X)〉 is represented in such a basis, and the expansion

coe�cients (or diabatic nuclear amplitudes) are identi�ed as j (dia)
;
(X, C). All quantities

analysed in this work, namely the nuclear density, the TDPES and the TDVP, are obtained

by integrating over the electronic degrees of freedom, thus by summing over the diabatic

states.

The nuclear density |j (X, C) |2 is simply

|j (X, C) |2 =
∑
;

���j (dia)
;
(X, C)

���2 . (3.4)

The explicit expression of the TDPES is

n (X, C) = 〈Φ(C ; X) | �̂BO |Φ(C ; X)〉r

+
#=∑
d=1

[
~2

2"d

〈
∇dΦ(C ; X)

�� ∇dΦ(C ; X)〉r − A2
d (X, C)
2"d

]
+ 〈Φ(C ; X) | − 8~mC |Φ(C ; X)〉r . (3.5)
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and can thus be decomposed as the sum of four terms n (X, C) = nGI1(X, C) + nGI2(X, C) +
nGI3(X, C)+nGD(X, C), the �rst three being gauge invariant (GI) while the last one being gauge

dependent (GD) under the (gauge) transformations discussed in Sec. 2.3. Transforming the

integration over r to the sum over the diabatic states, considering that the nonadiabatic

coupling vectors are identically zero in this basis, and using the notation for the matrix

elements of electronic Hamiltonian introduced in Eq. (3.1), the terms in the expression of

the TDPES are

nGI1(X, C) =
∑
;,:

j
(dia)
:

∗
(X, C)j (dia)

;
(X, C)

|j (X, C) |2 +:; (X) (3.6)

nGI2(X, C) =
∑
d

~2

2"d

∑
;

�����∇d j (dia)
;
(X, C)

j (X, C)

�����
2

(3.7)

nGI3(X, C) = −
∑
d

A2
d (X, C)
2"d

(3.8)

nGD(X, C) = −8~
∑
;

j
(dia)
;

∗
(X, C)

j∗(X, C) mC
j
(dia)
;
(X, C)

j (X, C) . (3.9)

Similarly, the TDVP is given by

Ad (X, C) = −8~
∑
;

j
(dia)
;

∗
(X, C)

j∗(X, C) ∇d
j
(dia)
;
(X, C)

j (X, C) . (3.10)

While the TDPES and TDVP can be expressed in the diabatic basis, as done above, it is crit-

ical to note that they do not depend on any particular choice of electronic representations.

3.2.3 Some considerations on the proposed model

In this chapter, all the steps of a photochemical process are simulated explicitly for the

model system discussed above, as schematically represented in Fig. 3.1. The model system

consists of two two-dimensional parabolas shifted in- direction and energy. At time C = 0,

the molecular system is in its ground vibrational state, in the FC region of the electronic

ground state (point (1) in Fig. 3.1). Then, a part of the initial wavefunction is excited to the

S1 excited electronic state via the coupling of the molecule with an explicit ultrashort laser

pulse whose frequency is in resonance with the S0-to-S1 transition (point (2) in Fig. 3.1).

This photoexcitation generates a nuclear wavepacket in the excited electronic state, which

will relax towards the CI and funnel through it (point (3) in Fig. 3.1). At this point, the
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Fig. 3.1.: Schematic representation of the in-silico photochemical experiment discussed in this
chapter. The adiabatic potential energy surfaces for the ground (S0) and the excited (S1)
electronic states of the model are represented with a colourmap that shows positive
electronic energies in purple and negative values in yellow/orange tones. The black
circles and arrows indicate the di�erent steps of the photochemical experiment: (1) initial
state of the system in the FC region, (2) photoexcitation from S0 to S1 triggered by a laser
pulse, (3) relaxation through a CI, and (4) formation of photoproducts.

nuclear wavepacket undergoes a branching, preserving some of its amplitude in the excited

electronic state while a good part of it has transferred back to the ground state as a result

of nonadiabatic e�ects, where it now evolves as a photoproduct (point (4) in Fig. 3.1).

It should be stressed at this stage that the schematic representation of a photochemical

experiment depicted in Fig. 3.1 is deeply rooted in a (post) BO picture. In the following

(Sec. 3.3), the details of this dynamics will be discussed in terms of time-dependent nuclear

wavepackets and static potential energy surfaces, thus adopting such a BO vocabulary. In

Sec. 3.4, this analysis will be revisited from the perspective of the EF, where the overall

dynamics is examined in terms of a time-dependent nuclear wavepacket evolving according

to a single time-dependent vector and scalar potential.

Another aspect that requires attention at this stage is the coupling of an external

time-dependent electric �eld – here a laser pulse – to a molecule. As described above, a

semiclassical approach is used here to couple an external time-dependent electric �eld to

the molecular dipole operator. Introducing a given basis for the electronic states – once

more preserving here a BO picture – yields couplings between the time-dependent electric

�eld and the transition dipole moment between the pair of electronic states considered

(here S0 and S1) [-12(X)]. The magnitude and direction of the transition dipole moment

depend on the nuclear position, as depicted by the colourmap and white arrows in the

left panel of Fig. 3.2. This X-dependence of the transition dipole moment implies that,

within the long-wavelength approximation, the time-dependent electric �eld cannot be
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Fig. 3.2.: Representation of the transition dipole moment (white arrows give its direction and
colourmap its intensity in 400) in the non-Condon case (left panel) and Condon case
(right panel), around the FC region. The gray arrows indicate the polarisation vector of
the time-dependent electric �eld. The black contour lines show the nuclear density of
the initial wavefunction at time C = 0.

considered as always aligned with the transition dipole moment (see grey arrows in Fig. 3.2,

symbolising the electric-�eld polarisation vector) and one has to take the scalar product

between the two quantities. The situation when the explicit X-dependence of the transition

dipole moment is accounted for will be referred to as ’non-Condon’ in the following. The

Condon approximation proposes to consider the transition dipole moment as a constant,

set to its value at the FC point [-12(XFC)] (right panel of Fig. 3.2). Hence, only within

the Condon approximation, it is valid to consider that the time-dependent electric �eld is

always polarised along the transition dipole moment, for all nuclear con�gurations (note

that this is not the case in the present chapter).

In the non-Condon case, the strength of the coupling between the molecular system

and the time-dependent electric �eld, given by

V(dia)(X, C) = ©«
0 −-12(X) · E(C)

−-12(X) · E(C) 0
ª®¬ , (3.11)

depends on X as well. Conversely, in the Condon approximation the relative orientation

of the transition dipole moment and the polarisation vector of the time-dependent electric

�eld is constant, leading to a X-independent coupling term in the Hamiltonian.
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3.3 Photochemical experiment in the
Born-Oppenheimer picture

3.3.1 Nuclear dynamics

In a BO picture (as introduced generally and depicted for a one-dimensional case in the

theory section 2.2) , the overall dynamics of an electronically-excited molecule is analysed

by following the evolution of nuclear wavepackets on the potential energy surfaces (as

depicted schematically in Fig. 3.1). At time C = 0 the nuclear wavefunction is a stationary

state in the adiabatic ground state S0 (�rst column in Fig. 3.3). The interaction with

the time-dependent external �eld – laser pulse in the following – induces the electronic

excitation of part of the original wavefunction to the �rst excited state S1 (second column

in Fig. 3.3). The state created in S1 is a nuclear wavepacket, which evolves and decays

back to the ground state through the CI (third column in Fig. 3.3).

First, let us investigate the quantum dynamics obtained in the non-Condon case (upper

two rows of panels in Fig. 3.3). The colourmap shows the potential energy of the S1 (top

row) and S0 (second row from top) states, and the location of two critical points of the

potential energy surfaces – the FC point and CI – are marked throughout the plots with a

cross and triangle for reference. Focusing on the BO picture of a photochemical process,

the potential energy surfaces of the two adiabatic states do not move or change during the

dynamics, but can rather be seen as the electronic landscape on the support of which the

nuclear wavepackets evolve. The nuclear densities associated with the S0 and S1 states are

superimposed onto the respective potentials in Fig. 3.3 and indicated as red and purple

contour lines, respectively. At time C = 0, the complete nuclear density is found in the

S0 state without any contribution in S1. During the photoexcitation by the laser pulse

(C = 10.2 fs in Fig. 3.3), nuclear amplitude is transferred to the excited electronic state.

In addition, it can be observed that the nuclear contribution remaining in the ground

electronic state is also a�ected by the action of the laser pulse. Once the short laser pulse

is over, the excited portion of the nuclear wavepacket relaxes on the S1 potential energy

surface, and at C = 31.5 fs reaches the CI (last column in Fig. 3.3). At this precise moment,

part of the nuclear density transfers to the S0 electronic state due to the in�uence of

nonadiabatic e�ects. Interestingly, the portion of the nuclear wavepacket that remains in

the FC region in S0 formed a nodal line as a result of the photoexcitation process. This
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Fig. 3.3.: Snapshots of the nonadiabatic quantum dynamics at times 0, 10.2 and 31.5 fs (from left
to right). The colourmaps indicate the (adiabatic) electronic energies of the S1 and S0
electronic states (see labels) in hartree (�ℎ). The adiabatic contribution to the nuclear
density in each electronic state for the three snapshots is indicated by red (|j(0 (X, C) |2)
and purple (|j(1 (X, C) |2) contour lines. The FC point is indicated by a magenta cross and
the location of the CI by a burgundy triangle.
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nodal line is somehow tilted, that is, not parallel to the . -axis (see red contour lines on

the second row, last column panel of Fig. 3.3).

Within the Condon approximation (bottom two rows in Fig. 3.3), the potential energy

surfaces remain identical to the non-Condon case but the transition dipole moment – and

as explained above the interaction Hamiltonian – is no more X-dependent. The overall

dynamics is very similar to the one observed in the non-Condon case, with the main

di�erence being that the nodal line, observed after the laser pulse on the ground-state

nuclear wavepacket, appears to be parallel to the . -axis, rather than tilted as in the non-

Condon case. This feature can be clearly observed at times C = 10.2 fs and C = 31.5 fs in

the S0 portion of the nuclear density (bottom panels of Fig. 3.3).

It is worth commenting further on the development of the nodal line in the ground-

state portion of the nuclear wavefunction after the laser pulse. This nodal line suggests

the formation of a higher vibrational eigenstate in the electronic ground state in the FC

region. The asymmetry of the nuclear density in S0 observed at C = 31.5 fs testi�es from

the anharmonic nature of the S0 potential energy surface for the low vibrational states.

From a more general perspective, this observation unravels an interesting question related

to the analysis of a photochemical experiment, where the outcome of a light-induced

process – photoproducts or hot ground-state molecules – are thought to be coming from

the excited-state dynamics following photoexcitation. This observation hints towards the

possibility of forming vibrationally-excited molecules without nonadiabatic processes,

simply as a result of the coupling with a laser pulse. However, nonadiabatic dynamics

simulations are often initiated directly from the formed nuclear wavepacket in a given

excited electronic state, neglecting the remaining ground-state nuclear amplitude. While

that is often an adequate approximation, the simple example presented here could indicate

that the in�uence of a laser pulse on the contribution remaining in the ground electronic

state may not be negligible.

3.3.2 Analysis of the nuclear dynamics

A more quantitative analysis of the photochemical dynamics described in Section 3.3.1

can be obtained by monitoring the electronic population evolution and the formation of

photoproducts (Fig. 3.4).

Initially, the electronic population is fully in the ground state (see left panel of Fig. 3.4).

Due to the coupling between the molecule and the laser pulse, the population starts to be
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Fig. 3.4.: Left panel: Time trace of the ground-state (S0) population for the non-Condon (purple)
and Condon (magenta) quantum dynamics simulations, and strength of the electric
component of the laser pulse (gray line) in �ℎ/400. Right panel: Time trace of the
transmission probability through the CI for the non-Condon (purple lines) and Condon
simulation (magenta lines). Solid lines indicate the total (S0+S1) probability, while the
dashed (dotted) lines give the S0 (S1) population contribution.

transferred to the excited state just before 5 fs. A maximum of around 64% (non-Condon)

and 67% (Condon) of the population is excited to S1 at C = 10.2 fs, shortly after the

laser pulse reaches its maximum intensity. The ground-state population subsequently

plateaus at 48% (non-Condon) and 46% (Condon). After 26 fs, the excited-state population

starts to decay back to the ground state as the S1 nuclear wavepacket reaches the CI (see

discussion above in Sec. 3.3.1). This ground-state population �nally reaches a �nal plateau

at about 98% after about 39 fs. Overall, the evolution of the ground-state population is

very similar in the non-Condon and Condon quantum dynamics simulations, with only

minor quantitative di�erences emerging.

It is important at this stage to stress that the electronic population dynamics reported

in the left panel of Fig. 3.4 and discussed above is a representation-dependent quantity. In

other words, this quantity is not (strictly speaking) an observable and the assignment of

an adiabatic electronic state is intrinsically linked to the BO picture. Hence, the earlier

observations are complemented with an analysis of the evolution of the nuclear density

in the con�guration space. To this end, the transmission probability through the CI

along the reaction coordinate (along - ) is calculated, based on the proposition that -CI,

i.e., the position of the CI in the - coordinate, delimits two regions: the photoreactant

region (- < -CI) and the photoproduct region (- > -CI). Therefore, the formation of

photoproducts can be estimated by integrating the nuclear density over all values of .

and for - > 3.86 00 (that is, - > -CI). In the case of a real photochemical experiment, the

formation of photoproducts could be probed,196 and the passage through a CI can open up
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Fig. 3.5.: Schematic representation of the full TDPES at three di�erent times during the dynamics:
0 fs, 10.2 fs, and 31.5 fs. The position of the FC (magenta cross) point and CI (burgundy
triangle) are marked for reference. The colourbar is given in hartree (�ℎ) and its negative
range has been extended for the C = 31.5 fs snapshot. The TDPES is represented only
in the regions of nuclear con�guration space where the total nuclear density is 10−8 or
larger.

pathways on the ground electronic state that would have been inaccessible by thermal

evolution.

The transmission probability for the non-Condon and Condon cases is shown in the right

panel of Fig. 3.4. Within the Condon approximation, 54.2% of the population is transferred

to the photoproduct region. In the non-Condon case, this value is slightly lower, reaching

52.0%. The transmission probability can be decomposed in ground- and excited-state

contributions, going back to a BO picture. The majority of the photoproducts are formed in

their ground state, 50.2% (non-Condon) and 52.3% (Condon). Hence, the slight di�erences

between non-Condon and Condon excitations observed in the representation-dependent

population dynamics are re�ected in this ’representation-free’ observable.

3.4 Photochemical experiment in the exact-factorisation
picture

Having discussed this in-silico photochemical experiment from a BO perspective, the

�ndings are reinterpreted in the following using the tools o�ered by the EF picture by

transforming the diabatic quantities to the TDVP and TDPES as described in Sec. 3.2.2.

The representation of the EF proposes to replace the concepts of static potential energy

surfaces associated with adiabatic electronic states and their nonadiabatic couplings by a

single TDPES and TDVP. With the EF, one moves away from the representation of multiple

electronic states visited by time-dependent nuclear wavefunctions and focus solely on a

single nuclear wavefunction evolving under the in�uence of the single TDPES and TDVP.
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Fig. 3.6.: Time-dependent potential energy surface at three di�erent times – 0, 10.2 and 31.5 fs (from
left to right) – for the non-Condon (top row) and Condon quantum dynamics (bottom
row). The colourbar is given in hartree (�ℎ). The nuclear density is superimposed (black
contour lines). The position of the FC (magenta cross) point and CI (burgundy triangle)
are marked for reference.

This picture was introduced and the features depicted generally for a one-dimensional

case in the section 2.3 of the Theory chapter.

For the non-Condon dynamics, Fig. 3.5 depicts schematically the behaviour of the TDPES

for the three same times along the dynamics as in the previous section, i.e., C = 0, 10.2, 31.5 fs.

At time C = 0, the TDPES exhibits a single well in the FC region, basically reproducing

the shape of the S0 potential energy surface in this region (see Fig. 3.1). When the laser

pulse is interacting with the molecule (C = 10.2 fs in Fig. 3.5), the minimum of the TDPES

gets lower in energy and becomes asymmetrical around the FC point. This distortion is

due to the fact that the TDPES includes the e�ect of the time-dependent external �eld via

Eint(X, C) (see Sec. 2.3). At later times (C = 31.5 fs in Fig. 3.5), the TDPES develops a step,

separating the two portions of the nuclear wavepacket: one portion is localised in the FC

region while the second one can be found in the vicinity of the CI. In addition, the nodal

line observed for the nuclear wavefunction in the FC region is re�ected in the TDPES as

a potential barrier, reaching high positive and negative values. This section provides a

deeper analysis of the TDPES and its companion the TDVP for the studied photochemical

experiment.
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3.4.1 Nuclear and electronic dynamics

As in Sec. 3.3, the quantum dynamics obtained with and without invoking the Condon

approximation are compared, but this time from an EF perspective.

Let us �rst focus on the evolution of the TDPES. In Fig. 3.6, the full TDPES is plotted

as a colourmap with superimposed black contour lines indicating the areas where the

(full) nuclear density is mainly localised. At C = 0, both the non-Condon and the Condon

simulations show an identical picture, where the TDPES shows a minimum around the

centre of the initial nuclear wavefunction and is curved upwards to higher energies

towards the borders, mainly reproducing the shape of the S0 potential energy surface

(as discussed above for Fig. 3.5). When the laser pulse reaches its maximum intensity

(at around C = 10.2 fs), the TDPES is lower in energy in the area just around the centre

of the nuclear wavefunction in comparison to the previously shown time step, where

the yellow/orange areas correspond to negative energy values. At this time step, no

signi�cant di�erences appear between the TDPES computed with and without the Condon

approximation. Later in time, after the laser pulse (Fig. 3.6, C = 31.5 fs), a step appears

within the TDPES: the portion of the TDPES with - > 3 00 is signi�cantly lower than

that at - < 3 00. Furthermore, a marked di�erence between the non-Condon and Condon

calculations emerges when looking at the TDPES in the region where the nodal line

appears on the nuclear wavefunction around the FC position. In the non-Condon case,

a localised peak can be observed between the two portions of the nuclear wavefunction,

whereas a barrier forms within the Condon approximation, almost parallel to the . -axis

and stretching all through the TDPES. It is worth stressing that the interesting features of

the TDPES at C = 31.5 fs are all localised around the FC point and caused by the formation

of an eigenstate in this portion of the con�guration. The TDPES in the region where a CI

would be observed in the BO picture is blatantly featureless, basically leading the nuclear

wavepacket towards the photoproduct region (- > -CI).

The TDPES is one of the time-dependent quantities of interest within the EF. Another

key ingredient of this formalism is the TDVP. For a physical understanding of the TDVP,

it is important to note that the nuclear momentum �eld computed from the molecular

wavefunction [Ψ(r , X, C)] can be decomposed as the sum of a curl-free contribution, which

is related to the phase [S(X, C)] of the nuclear wavefunction [j (X, C)], and a (in general)

not-irrotational contribution, which is given by the TDVP [Gd (X, C)]. Thus, in the chosen

gauge, where S(X, C) = 0, the TDVP is equivalent to the nuclear momentum �eld.
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Fig. 3.7.: Time-dependent vector potential at three di�erent times – 0, 10.2 and 31.5 fs (from left
to right) – for the non-Condon (top row) and Condon quantum dynamics (bottom row).
The colourmap indicates the absolute value of the TDVP in ~/00, while the gray unit
vectors show the orientation of the vector potential. The nuclear density is superimposed
(black contour lines). The position of the FC (magenta cross) point and CI (burgundy
triangle) are marked for reference.

Fig. 3.7 shows the TDVP for the three critical times of the dynamics, with and without

the Condon approximation. At time C = 0, the magnitude of the TDVP is very small.

This can be understood from the de�nition of the initial condition for the dynamics,

which is the ground vibrational state for the ground electronic state, at FC point. From

a quantum trajectory perspective, the momentum �eld corresponding to a nuclear (real)

eigenstate would be zero everywhere.205 During the excitation, the TDVP increases in

magnitude and triggers the dynamics of the nuclear wavepacket. Conversely to the earlier

observations with the TDPES, the TDVP already develops some di�erences at C = 10.12 fs

depending on the use of the Condon approximation or not. In the non-Condon simulation,

the TDVP shows a non-negligible contribution along the . -direction, while within the

Condon approximation such contribution is almost zero and the vector potential has

components only along the - -axis (see unit arrows in Fig. 3.7). In both cases, however,

one can observe an abrupt change of direction of the TDVP along the - -axis at around

- = 1.9 00, for all values of . . At C = 31.5 fs, the TDVP develops two clear portions.

In the region - > 3 00, the TDVP shows overall a larger magnitude. In this region, the

nuclear wavepacket is indeed pushed towards larger - values following the slope of the

TDPES. Interestingly, and consistently with the observation on the TDPES, this portion of
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Fig. 3.8.: Time-dependent potential energy surface and vector potential during the laser pulse,
for the non-Condon (top row of each panel) and Condon (bottom row of each panel)
dynamics. Left panel: Eint – contribution to the TDPES coming from an external potential
(here the interaction between the laser pulse and the molecule). Middle panel: TDPES
without the external potential. Right panel: TDVP, where the colourmap indicates
the absolute value, while the black unit vectors show the orientation. The FC point is
indicated by a magenta cross in all plots. Colorbars for the left and middle panels are
given in hartree (�ℎ), while that of the right panel is given in ~/00.

the TDVP is smooth and does not reveal any features that would testify from a speci�c

electron-nuclear coupling. This observation is particularly important if one considers

that, in the BO picture, the nuclear wavepacket is passing through a CI at this speci�c

time (see Fig. 3.3). Such a behaviour of the TDPES and the TDVP simply highlights that

the coupled electron-nuclear dynamics presented here should be seen as a non-event –

with a molecule simply relaxing in energy, driven by the TDPES and TDVP. However,

a BO picture enforces the description of this process with adiabatic electronic states,

which are not representative of a single electronic character. As a result, the S1 nuclear

wavepacket in the BO picture su�ers a nearly singular nonadiabatic coupling to transfer to

the S0 electronic state, hence preserving its electronic character. Conical intersections and

singular nonadiabatic coupling terms, therefore, emanate from the intrinsic limitations

posed by the adiabatic representation of the BO picture, and the EF remedies naturally to

this issue by eliminating the notion of electronic states altogether.

Around the FC position, the TDVP shows signi�cantly smaller values at C = 31.5 fs,

highlighting the rather stationary nature of the portion of the nuclear wavefunction

localised in this region (Fig. 3.7). In the region around - = 2.1 00, where the nuclear

density splits, an intense localised peak appears on the TDVP in the non-Condon case

while the Condon simulation leads to the appearance of an intense ’delocalised’ barrier,

parallel to the . -axis. In the non-Condon case, the unit vectors of the TDVP betray the

fact that the nuclear wavepacket is somehow rotating around - = 2.1, . = 0 00.
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To further unravel the di�erences observed in the TDPES and TDVP for the non-Condon

versus Condon treatment of quantum dynamics, the TDPES is decomposed into n (X, C)
and Eint(X, C) at two times close to the maximum of the �eld envelop. The time 8.95 fs

corresponds to a snapshot before the electric �eld of the laser pulse reaches a maximum

while the other snapshot, C = 9.20 fs, is just after the maximum is passed. Fig. 3.8 presents a

zoom of the TDPES and TDVP around the FC region for these two speci�c times. Looking

only at the contribution to the TDPES coming from the coupling of the laser pulse to the

molecule – Eint(X, C) in Eq. (2.29) (’vint’, left panels in Fig. 3.8) – it can be observed in the

non-Condon case that an anisotropy along the . -direction is created, absent in the Condon

approximation. This anisotropy is also visible in the term n (X, C) (TDPES without vint,

middle panels in Fig. 3.8), where for instance the negative contributions of the TDPES are

not symmetric along the . -direction in the non-Condon case. The variation of the TDPES

caused by the interferences between the two components of the nuclear wavefunction is

reminiscent of the observations of interferences in nonadiabatic processes.206 Zooming on

the TDVP (right panels of Fig. 3.8) highlights some additional interesting features. The

TDVP already exhibits strong contributions along the . -direction at the early stage of the

dynamics in the non-Condon case, when the laser pulse is present, while in the Condon

case no . -contribution can be observed. The line along which the - -component of the

TDVP changes sign is not parallel to the . -axis in the non-Condon simulation, conversely

to the Condon one.

The observations presented in this section show that the EF formalism o�ers an al-

ternative perspective of a photochemical process to the conventional BO picture. The

contribution to the molecular Hamiltonian coming from the light-matter interaction is

fully encoded in the TDPES, and the evolution of the nuclear wavepacket is driven by the

(single) TDPES and TDVP, which, in turn, encode the e�ect of the electronic dynamics on

the nuclei. In the particular gauge chosen in this chapter, the TVDP is identi�ed as the

nuclear momentum �eld. Furthermore, it was highlighted how the combined e�ects of

the TDPES and TDVP induce the splitting of the nuclear wavepacket into two portions

in the FC region, resembling the formation of a higher vibrational state of the electronic

ground-state potential. Instead, the TDPES and TDVP are smooth where, in the BO picture,

the nuclear wavepacket passes through a CI and su�ers singular nonadiabatic couplings.

The EF and its time-dependent potential also highlight another interesting fact about

photochemistry and photophysics. The presence of potential energy surfaces in a BO
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picture invites us to think of photochemical processes similarly to chemical reactions in

the ground electronic state: by looking at these static potentials and possibly looking

at their critical points and how they connect via minimum-energy paths. However, it

is crucial to realise that such concepts are often not su�cient or valid to understand a

given photochemical process.163 In other words, a molecule does not have per se a de�ned

photochemical reactivity, but such a photochemical reactivity depends on the initialisation

of the process (type of photoexcitation) and the following out-of-equilibrium dynamics on

the coupled potential energy surfaces. The EF highlights this fact by exhibiting di�erent

time-dependent potentials even for subtly di�erent photochemical dynamics (here, simply

employing or not the Condon approximation).

3.5 Analysis of a photochemical process with
trajectories

Since the EF encodes all the coupled electron-nuclear dynamics in the TDPES and TDVP,

this framework naturally lends itself to the propagation of nuclear trajectories, which can

be used to further analyse the nuclear quantum dynamics without the need of introducing

additional approximations. The challenge of propagating trajectories in a BO picture to

describe nonadiabatic dynamics is notorious and caused by the presence of the lack of

well-de�ned nuclear forces due to the presence of di�erent (sometimes coupled) potential

energy surfaces.15,73

3.5.1 Trajectory-based solution of the nuclear exact factorisation
equation

As the coupled nuclear and electronic equations of motion give rise to a single TDVP and a

single TDPES in the EF, one intriguing question is how one can exploit this characteristic

and represent the nuclear probability density with trajectories evolving based on the two

potentials. Previous works204,207 showed that by inserting the polar form of the nuclear

wavefunction [j (X, C) = |j (X, C) | exp( 8~S(X, C))] into the time-dependent Schrödinger
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equation, one can derive an evolution equation for the phase that can furthermore be

identi�ed as a (nuclear) Hamilton-Jacobi equation (with ∇XdS(X, C) = Ṽd (X, C)):

− m
mC
S(X, C) = �n(Ṽ , X, C) =

∑
d

[Ṽd (X, C) +Gd (X, C)]2

2"d

+ n (X, C) + Eint(X, C) +
∑
d

−~2

2"d

∇2
d |j (X, C) |
|j (X, C) | . (3.12)

The last term on the right-hand side is the so-called quantum potential [&pot(X, C)] which is

responsible for an important portion of the nuclear quantum e�ects. The term containing

the nuclear momentum �eld [Vd (X, C) = Ṽd (X, C) +Gd (X, C)] is the nuclear kinetic energy

and the sum [n (X, C) + Eint(X, C) +&pot(X, C)] represents the potential energy. As discussed

in an earlier work,204 this Hamilton-Jacobi partial di�erential equation can be solved by

using the method of characteristics. This results in Hamilton-like evolution equations

(which are, an a priori in�nite, set of ordinary di�erential equations) for the trajectories

[X (C) ≡ {Xd (C)}d=1,...,#n], with corresponding momenta [V (C) ≡ {Vd (C)}d=1,...,#n]:

¤Xd (C) =
Ṽd (C) +Gd (X (C), C)

"d

(3.13)

¤̃Vd (C) = −∇Xd�n(Ṽ (C), X (C), C) , (3.14)

or equivalently

¤Xd (C) =
Vd (C)
"d

(3.15)

¤Vd (C) = −∇Xd�n(V (C), X (C), C) + ¤Ad (X (C), C) . (3.16)

Enforcing the choice of gauge for this work [S(X, C) = 0] in the characteristics repre-

sentation of the nuclear dynamics, yields that Eqs. (3.13) and (3.14) simplify to

¤Xd (C) =
Gd (X (C), C)

"d

(3.17)

¤̃Vd (C) = 0 , (3.18)

proving that the TDVP fully accounts for the nuclear momenta of the trajectories. It is

worth noting that, within the EF, the nuclear momentum �eld computed with Ψ(r , X, C) is
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the sum of a curl-free term – the gradient of S(X, C) – and a (in general not irrotational)

contribution due to the TDVP, as shown in Ref. [73]. With the choice of gauge used

in this work, the irrotational part becomes zero. The following section will present an

analytical proof of the identity given in Eq. (3.18) and show that, in the chosen gauge,

∇Xd�n(Ṽ (C), X (C), C) = 0.

Propagating trajectories either using solely Eq. (3.17) or the coupled Eqs. (3.15) and

(3.16) yields what is referred to as quantum trajectories. In particular, Eq. (3.17) corresponds

to the Bohmian de�nition of the velocity �eld for quantum-mechanical particles described

by a real wavefunction in the presence of an external vector potential.208 By neglecting

the quantum potential in �n(V (C), X (C), C), the nuclear Hamiltonian becomes classical,

i.e., � cl
n (V (C), X (C), C). This classical approximation is used when integrating Eqs. (3.15)

and (3.16) to generate classical trajectories. The corresponding evolution equations for the

classical trajectories then read

¤Xd (C) =
Vd (C)
"d

(3.19)

¤Vd (C) = −∇Xd� cl
n (V (C), X (C), C) + ¤Ad (X (C), C) . (3.20)

Nuclear forces for the quantum trajectories

In this section, Eq. (3.18) of the previous section is proven by demonstrating that, within

the chosen gauge [S(X, C) = 0], ∇Xd�n(Ṽ , X, C) = 0.

The nuclear Hamiltonian identi�ed in the Hamilton-Jacobi equation in Eq. (3.12) reads

�n(X, C) =
∑
d

Gd (X, C)2

2"d

+ n (X, C) + Eint(X, C) +
∑
d

−~2

2"d

∇2
d |j (X, C) |
|j (X, C) | , (3.21)

when imposing the gauge as Ṽ = 0. Following its de�nition given in Sec. 2.3, the time-

dependent scalar potential [n (X, C)] is

n (X, C) = 〈Φ(C ; X) | �̂BO(X) |Φ(C ; X)〉r +
∑
d

~2

2"d

〈∇XdΦ(C ; X) |∇XdΦ(C ; X)〉r

−
∑
d

Gd (X, C)2

2"d

+ 〈Φ(C ; X) | − 8~ m
mC
|Φ(C ; X)〉r , (3.22)

where the second and third terms follows from the *̂en [Φ, j] (X, C) contribution. The third

term of Eq. (3.22) cancels out with the kinetic energy in Eq. (3.21) and it is identi�ed
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nBO(X, C) = nGI1(X, C) and nbBO(X, C) = nGI2(X, C). As a result, the full nuclear Hamiltonian

reads:

�n(X, C) =nBO(X, C) + nbBO(X, C) + nGD(X, C) + Eint(X, C) +&pot(X, C) (3.23)

with

nBO(X, C) = 〈Φ(C ; X) | �̂BO(X) |Φ(C ; X)〉r (3.24)

nbBO(X, C) =
∑
d

~2 〈∇XdΦ(C ; X) |∇XdΦ(C ; X)〉r
(2"d )

(3.25)

nGD(X, C) = 〈Φ(C ; X) | − 8~mC |Φ(C ; X)〉r (3.26)

It is easy to prove that, while nBO(X, C) (BO term) and nbBO(X, C) (beyond-BO term) are

gauge-invariant contributions, since they remain unchanged if the electronic wavefunction

is modi�ed by a phase factor that only depends on X and C , nGD(X, C) is gauge-dependent

(GD).73 Furthermore, it might seem that in the chosen gauge the nuclear Hamiltonian is

purely potential energy. This is not actually the case, since it has been shown in Refs. [67,

209] that nbBO(X, C) contributes to the nuclear kinetic energy – despite appearing as a

scalar potential included in the expression of n (X, C).

With the aim to manipulate previous equations, here the de�nition of the electronic

wavefunction as Φ(r , C ; X) = Ψ(r,X,C )
|j (X,C ) | is used. This expression is inserted into the de�nitions

of the nBO(X, C) and nGD(X, C) potentials. Writing explicitly the expectation values as

integrals over the electronic con�guration space, this yields for these contributions

nBO(X, C) =
1

|j (X, C) |2
∫

drΨ∗(r , X, C)�̂BO(r , X)Ψ(r , X, C) (3.27)

nGD(X, C) =
∫

dr Ψ
∗(r , X, C)
|j (X, C) | (−8~

m

mC
)Ψ(r, X, C)|j (X, C) |

=

∫
dr Ψ

∗(r , X, C)
|j (X, C) | (−8~)

( m
mC
Ψ(r , X, C)) |j (X, C) | − Ψ(r , X, C) m

mC
|j (X, C) |

|j (X, C) |2

=
1

|j (X, C) |2
∫

drΨ∗(r , X, C) (−8~ m
mC
)Ψ(r, X, C) . (3.28)

The second term in nGD(X, C), being purely imaginary, is identically zero since the whole

expression is purely real.
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The contribution to the time-dependent scalar potential arising from the external �eld,

i.e., Eint(X, C), can also be rewritten as

Eint(X, C) =
1

|j (X, C) |2
∫

drΨ∗(r, X, C)+̂ext(r , X, C)Ψ(r, X, C) . (3.29)

The “kinetic” part of the time-dependent scalar potential, nbBO(X, C), becomes

nbBO(X, C) =
∑
d

~2

2"d

∫
dr

(
∇XdΦ(r , C ; X)

)∗ (
∇XdΦ(r , C ; X)

)
=

∑
d

~2

2"d

[
∇Xd

∫
drΦ∗(r , C ; X)∇XdΦ(r , C ; X) −

∫
drΦ∗(r , C ; X)∇2

Xd
Φ(r , C ; X)

]
.

(3.30)

Here, the chain rule for the derivative with respect to Xd , namely ∇Xd , is used. Applying

once more the chain rule to the �rst term on the right-hand side of Eq. (3.30) yields∫
drΦ∗(r , C ; X)∇XdΦ(r , C ; X)

= ∇Xd
∫

drΦ∗(r , C ; X)Φ(r , C ; X) −
∫

dr
(
∇XdΦ(r , C ; X)

)∗
Φ(r , C ; X) . (3.31)

Using the partial normalisation condition [
∫
3r |Φ(r, C ; X) |2 = 1 ∀X, C] to show that the

�rst term on the right-hand side of Eq. (3.31) is identically zero, implies that∫
drΦ∗(r , C ; X)∇XdΦ(r , C ; X) = −

∫
dr

(
∇XdΦ(r , C ; X)

)∗
Φ(r , C ; X) , (3.32)

proving that Eq. (3.32) is purely imaginary. However, nbBO(X, C) is real overall, which

implies that such purely imaginary contribution, from the �rst integral in its de�nition

(Eq. (3.30)), should be canceled out exactly by the imaginary part of its second term. As a

result, Eq. (3.30) can be rewritten as

nbBO(X, C) = −<
[∑
d

~2

2"d

∫
drΦ∗(r, C ; X)∇2

Xd
Φ(r , C ; X)

]
. (3.33)
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Summarising the results obtained so far, the nuclear Hamiltonian can be expressed as

�n(X, C) =
1

|j (X, C) |2
∫

drΨ∗(r , X, C)
(
−8~ m

mC
+ �̂BO(r , X) + +̂ext(r , X, C)

)
Ψ(r , X, C)

− <
[∑
d

~2

2"d

∫
drΦ∗(r, C ; X)∇2

Xd
Φ(r , C ; X)

]
+&pot(X, C) . (3.34)

Note that the �rst integral of Eq. (3.34) can be simpli�ed using the time-dependent

Schrödinger equation. In fact, the operator in parenthesis equals (minus) the nuclear

kinetic energy, i.e., (−8~ m
mC
+ �̂BO(r, X) + +̂ext(r , X, C)) = −)̂n(X), and the whole integral is

(minus) the expectation value of )̂n(X) over the molecular wavefunction. Hence, now one

can de�ne the condition for (the nuclear gradient of) �n(X, C) to be equal to zero:

−<
[∑

d

~2

2"d

∫
drΦ∗(r , C ; X)∇2

Xd
Φ(r , C ; X)

]
!
=

∑
d

−~2

2"d

∫
dr

Ψ∗(r , X, C)∇2
Xd
Ψ(r , X, C)

|j (X, C) |2 −&pot(X, C) . (3.35)

Using once again the de�nition of Φ(r , C ; X) in terms of the molecular and nuclear wave-

functions, and applying ∇2
Xd

on the left-hand side of Eq. (3.35), yields

−
∑
d

~2

2"d

∫
drΦ∗(r, C ; X)∇2

Xd
Φ(r , C ; X)

= −
∑
d

~2

2"d

∫
dr Ψ

∗(r , X, C)
|j (X, C) |

(∇2
Xd
Ψ(r , X, C)
|j (X, C) | −

2∇XdΨ(r , X, C)∇Xd |j (X, C) |
|j (X, C) |2

−
Ψ(r , X, C)∇2

Xd
|j (X, C) |

|j (X, C) |2 +
2Ψ(r , X, C)

(
∇Xd |j (X, C) |

)2

|j (X, C) |3

)
=
∑
d

~2

2"d

(
−

∫
dr

Ψ∗(r , X, C)∇2
Xd
Ψ(r , X, C)

|j (X, C) |2 +
∇2
Xd
|j (X, C) |
|j (X, C) |

+ 2
∫

dr
Ψ∗(r , X, C)∇XdΨ(r , X, C)

|j (X, C) |2
∇Xd |j (X, C) |
|j (X, C) | − 2

(∇Xd |j (X, C) |)2

|j (X, C) |2

)
. (3.36)

Therefore, the condition given by Eq. (3.35) would be ful�lled if, by taking the real part of

Eq. (3.36), the last two terms would cancel out.
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To show that, the real part of the contribution depending on the full molecular wave-

function is investigated, where Ψ(r , X, C) = Φ(r , C ; X) |j (X, C) | is used, namely

<
[∫

dr Ψ
∗(r , X, C)
|j (X, C) |

∇XdΨ(r , X, C)
|j (X, C) |

]
= <

[∫
drΦ∗(r, C ; X)∇XdΦ(r , C ; X)

]
+<

[∫
drΦ∗(r , C ; X)Φ(r , C ; X)

∇Xd |j (X, C) |
|j (X, C) |

]
(3.37)

The �rst term on the right-hand side of Eq. (3.37) is identically zero as it is purely imaginary

(see Eq. (3.32)); the integral in the second term yields 1 thanks to the partial normalisation

condition. This results in

<
[∫

dr
Ψ∗(r , X, C)∇XdΨ(r , X, C)

|j (X, C) |2
∇Xd |j (X, C) |
|j (X, C) |

]
=
(∇Xd |j (X, C) |)2

|j (X, C) |2 , (3.38)

proving that when taking the real part of the last two terms of Eq. (3.36), they exactly

cancel out. Therefore, the condition posed by Eq. (3.35) is ful�lled, as stated above.

Finally it can be shown that the nuclear Hamiltonian of Eq. (3.34) is zero in the chosen

gauge

�n(X, C) =
〈Ψ(X, C) | − 8~ m

mC
+ �̂BO(X) + +̂ext(X, C) + )̂n(X) |Ψ(X, C)〉r

|j (X, C) |2

−&pot(X, C) +&pot(X, C) = 0 , (3.39)

meaning that its gradient is zero as well.

3.5.2 Computational details for the quantum and classical
trajectories

For the quantum and classical trajectory dynamics, the 1000 initial nuclear positions are

sampled from the probability density given by the initial nuclear wavefunction. Special

care needs to be taken when selecting the initial nuclear momenta. While for classical

trajectories, nuclear positions and momenta can be regarded as independent variables,

this is no more the case for quantum trajectories – their nuclear position and momentum

at each time step are related. As shown above, the nuclear momentum at time C and

position X is given by the TDVP G(X, C). Thus, the 1000 initial nuclear momenta for

the sampled initial nuclear positions X0 are given by G(X0, 0). For classical trajectories,
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the initial nuclear momenta are sampled from the momentum probability distribution

computed from the Wigner transform of the initial nuclear wavefunction (in position

representation). For the propagation of the trajectories, a time-step of 10 ~�−1
ℎ

is used,

and one uses the exact time-dependent vector and scalar potentials as obtained from the

quantum dynamics. The time-dependent potentials are not (numerically) available when

the nuclear density is small (< 10−8). Furthermore, classical trajectories are propagated

according to the force computed as (minus) the gradient of the time-dependent scalar

potential. Therefore, numerical errors due to the calculation of the nuclear gradients can

cause the trajectories to move in a region of space where the time-dependent potential is

not available. Those trajectories need to be removed from the ensemble. For this dynamics,

an energy-conservation criterion can be used to remove such unstable trajectories. To

this end, it was imposed that the classical energy should be conserved within a deviation

of 0.01 �ℎ from the initial value at the end of the laser pulse. A maximum of 51 classical

trajectories has been excluded based on this criterion in any of the simulations. It is noted

that the propagation of the quantum and classical trajectories in this framework was

based on the previously obtained exact quantities (TDVP and TDPES) which both require

knowledge of the full nuclear denisty.

3.5.3 Analysis of the trajectories

As discussed above, quantum trajectories can be propagated easily within the EF by

using the TDVP as a nuclear momentum �eld, integrating Eq. (3.17). While the initial

nuclear positions can be randomly sampled from the initial nuclear density, the initial

nuclear momenta have to be chosen as G(X0, C = 0) (where X0 stands for the whole set of

initial positions), as positions and momenta are not independent variables. 1000 quantum

trajectories are propagated using the TDVP calculated at all times from the quantum

dynamics simulations, without and with the Condon approximation.

As expected from their de�nition, the quantum trajectories follow closely the nuclear

density of the quantum wavepacket at all three times previously discussed (see Fig. 3.9).

Only the results for the non-Condon dynamics are shown as the Condon ones are very

similar. Several observations can be made by looking at the time evolution of the quantum

trajectories in the non-Condon case (as shown in the movies of the Supporting Information

of Ref. [70]). First, it can be seen that the motion of the quantum trajectories is dominated

by an evolution in the - direction. Second, the trajectories forming the two split portions
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Fig. 3.9.: Positions of the quantum trajectories at three di�erent times – 0, 10.2 and 31.5 fs (from
left to right) – for a non-Condon dynamics. The full nuclear density from the quantum
dynamics is superimposed (black contour lines). The position of the FC (magenta cross)
point and CI (burgundy triangle) are marked for reference.

Fig. 3.10.: Components of the nuclear momentum in- (P- ) and. (P. ) for each quantum trajectory
at three di�erent times – 0, 10.2 and 31.5 fs (from left to right) – for a non-Condon (top
row) and Condon (bottom row) dynamics. The label a.u. stands for ~/00.

of the nuclear wavepacket that remain in the vicinity of the FC region appear to rotate

around a point close to the initial position of the nuclear wavefunction (but not exactly

at the FC point due to the anharmonicity of the potential energy surface in this region).

Such behaviours were predicted earlier based on the analysis of the shape of the TDVP

(see Sec. 3.4.1). Conversely, within the Condon approximation, the quantum trajectories

representing the nuclear wavepacket around the FC region do not signi�cantly move once

the splitting is complete. This behaviour further supports the stationary nature of the

driving wavefunction in this region and attests that the . -contribution of the momentum

�eld is almost zero at later times in this region (as observed in Fig. 3.7).

The distribution of the nuclear momenta for each quantum trajectory of the swarm

highlights striking di�erences between the non-Condon and Condon dynamics at all
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Fig. 3.11.: Traces of quantum trajectories in space and time for the non-Condon dynamics. These
quantum trajectories were specially initialised on an equally-spaced grid in con�gura-
tion space to enhance clarity. The left panel shows in yellow/orange the trajectories
remaining in the FC region. The right panel depicts in pink/purple the trajectories mov-
ing away from the FC region to reach the photoproduct region. The same trajectories
are shown in both panels.

times (Fig. 3.10). At C = 0, the TDVP is very small in magnitude, i.e., close to zero,

which is why the distribution of initial momenta appears highly localised around (0.0,0.0).

Subsequently, the quantum trajectories acquire larger momenta and start spreading to

�nally be distributed in three distinct areas by C = 31.5 fs in the non-Condon case (top

right panel in Fig. 3.10). The �rst group of trajectories shows large (positive) values for P-
– between 60 and 80 ~0−1

0 – and represents the photoproduct trajectories. Two groups of

trajectories with comparably smaller P- values spread along two lines, reaching values of

−4 ~0−1
0 or 4 ~0−1

0 for P. . These last two groups depict the slow quantum trajectories in

the region where a stationary state is formed. The distribution of nuclear momenta for

the dynamics conducted within the Condon approximation looks signi�cantly di�erent

to the non-Condon case described above (bottom row in Fig. 3.10). At C = 10.2 fs, all the

trajectories have a dominant - -contribution to their nuclear momenta. At C = 31.5 fs, a

partition of the trajectories in momentum space is visible, as observed in the non-Condon

case, forming two main groups – trajectories with a large P- value, and those with smaller

momenta in the - direction. Note that the group with a smaller P- contribution appears

to be further split at the same position in - as in the non-Condon case. A small portion of

the trajectories with very large P- contribution at C = 31.5 fs also start to spread along P. .

The fate of the quantum trajectories over time is made clearer by plotting their traces

in time and space (Fig. 3.11). Note that the quantum trajectories presented here were

initialised from an equally-spaced grid to improve the clarity of the plots in Fig. 3.11. The

trace representation of the quantum trajectories highlights the presence of two groups

of quantum trajectories: the remainders that evolve around the FC region (left panel of

Fig. 3.11) and the leavers that translate the formation of photoproducts (right panel of
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Fig. 3.12.: Positions of the classical trajectories at three di�erent times – 0, 10.2 and 31.5 fs (from
left to right) – for a non-Condon dynamics. The full nuclear density from the quantum
dynamics is superimposed (black contour lines). The position of the FC (magenta cross)
point and CI (burgundy triangle) are marked for reference.

Fig. 3.11). Interestingly, it appears from this analysis that quantum trajectories with a

larger - value in the FC region are more likely to follow the photoproduct path than

those started at C = 0 fs at a smaller value of - . This trace representation for the quantum

trajectories also o�ers an opportunity to show that they do not cross in con�guration

space.210 This non-crossing rule is a strict requirement for quantum trajectories and a

direct consequence of the single-valuedness of the nuclear wavefunction.

An interesting feature of quantum trajectories is that they can easily be transformed into

their more classical analogues by neglecting the so-called quantum potential, which acts as

a non-local glue for the trajectories (see Appendix 3.5.1). Classical trajectories can therefore

be propagated by using the TDPES and TDVP computed from the quantum wavepacket

dynamics, but removing the contribution from the quantum potential &pot(X, C). Hence,

the classical trajectories – initialised from 1000 nuclear positions and momenta sampled

from a Wigner distribution – directly come from the integration of Eqs. (3.19) and (3.20).

The positions of these classical trajectories at C = 0, 10.2, 31.5 fs show a rather good

agreement with the nuclear wavepacket (Fig. 3.12), even if it is clear by comparison with

Fig. 3.9 that the classical trajectories spread more in both - and . direction over time.∗

Looking at the full evolution of the classical trajectories over time further reinforces this

observation (as can be seen in movies of the Supporting Information of Ref. [70]) with

trajectories exhibiting important oscillations along the . coordinate.

The projection of the classical trajectories in nuclear momentum space for the three

selected times (Fig. 3.13) is strikingly di�erent from that of the quantum trajectories dis-

cussed earlier (Fig. 3.10). The distribution of nuclear momenta for the classical trajectories

is spread at all times and does not exhibit the peculiar structure observed for the quantum

∗Note that the same initial positions were used for the classical and quantum trajectories.
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Fig. 3.13.: Components of the nuclear momentum in- (P- ) and . (P. ) for each classical trajectory
at three di�erent times – 0, 10.2 and 31.5 fs (from left to right) – for a non-Condon (top
row) and Condon (bottom row) dynamics. The label a.u. stands for ~/00.

trajectories. The magnitude of the nuclear momenta is also signi�cantly larger in the- and

more speci�cally in the . direction. This observation explains the oscillating behaviour in

the . coordinate described above for the classical trajectories. At C = 31.5 fs, the momenta

distribution separates into only two regions (Fig. 3.13) – one part with momenta distributed

around P- = 0 while the other part is distributed around P- = 70 ~0−1
0 . Interestingly, the

distribution of classical nuclear momenta in the non-Condon case closely resembles the

one in the Condon case, as if the removal of the quantum potential washed out the �ne

di�erences observed during the formation of the stationary state.

To conclude this analysis, the transmission towards photoproducts is calculated, as

performed in Sec. 3.3.2, but here based on the distribution of the quantum and classical

trajectories over time. To this end, the trajectories with - > 3.86 00 are counted for both

quantum and classical trajectories, and in non-Condon and Condon dynamics. Quan-

tum trajectories appear to slightly underestimate the reference transmission probability

(from the quantum dynamics) by around 0.01 for the non-Condon dynamics and 0.02

for the Condon dynamics (left panel of Fig. 3.14). The classical trajectories overestimate

the transmission probability in both non-Condon and Condon cases by 0.04 and 0.05,

respectively (right panel of Fig. 3.14). This deviation is marginal and both quantum and

classical trajectory-based dynamics reproduce reasonably well the qualitative evolution

of the nuclear density while providing quantitative good estimates for the transmission
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Fig. 3.14.: Time trace of the transmission probabilities through the line de�ned by - > 3.86 00
obtained for the quantum (left panel, red lines) and classical trajectories (right panel,
orange lines), in the non-Condon and Condon case. The results from quantum dynamics
(QD) are given for reference (non-Condon with purple lines and Condon with magenta
lines).

probability – an observable that would, for a real molecule, connect to the formation of

photoproducts and thus, to the quantum yield of a photochemical reaction.

One important aspect that needs to be stressed at this point is the fact that both quantum

and classical trajectories bene�ted from the de�nition of the time-dependent potentials

used to propagate them thanks to the formalism of the EF (and within the choice of gauge).

More speci�cally, simulating a full photochemical experiment as done here using quantum

or classical trajectories within a BO picture would have dramatically complexi�ed the

simulations. Transfers, hops, averaging, or spawns would have to be invoked to allow

the trajectories to visit di�erent electronic states due to the in�uence of a laser pulse or

nonadiabatic transitions. The EF simpli�es that by providing the single TDPES and TDVP.

3.6 Conclusions
This chapter introduced a comparison between the BO and EF models of an in-silico pho-

tochemical experiment, from the initial photoexcitation with an ultrashort laser pulse to

the formation of photoproducts. The extensive analysis of the subsequent photodynamics

revealed how to picture a photochemical reaction in the EF formalism and how its quanti-

ties – namely the time-dependent vector and scalar potentials – behave when an external

laser pulse shakes the electronic wavefunction and triggers the formation of a nuclear

wavepacket. As a side-product of the excitation with a laser pulse, the formation of a

stationary state could also be observed in the FC region and the corresponding behaviour
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of the time-dependent potentials. The Condon approximation can alter the dynamics of the

nuclear wavepacket, even if the formation of photoproducts – a representation-free quan-

tity – does not su�er from this approximation in the presented model. Interestingly, the

passage through a CI in the BO picture becomes a non-event in the EF – the singularities

and degeneracies at CIs are in stark contrast with the featureless time-dependent potentials

of the EF. Last but not least, one of the exciting features of the EF was highlighted in the

context of a full photochemical process: the possibility to naturally introduce trajectories

as an approximation for the nuclear dynamics. The propagation of these trajectories is

trivial as the EF has only a single time-dependent vector and scalar potential, meaning

that no hops or spawns are required to describe regions of strong nonadiabaticity. Distin-

guishing between classical and quantum trajectories, the suitability of using trajectories

was evaluated to simulate photochemical processes with the EF and the importance of

properly selecting initial conditions was highlighted.
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Diabolical limitations of AIMS

near conical intersections

4

This chapter is based on the publication:
L. M. Ibele and B. F. E. Curchod, "Dynamics near a conical intersection – a diabolical
compromise for the approximations of ab initio multiple spawning", J. Chem. Phys. 155,
174119 (2021)

4.1 Introduction

Conical intersections are one of the most prominent features of the Born-Oppenheimer

picture. These points of degeneracy of adiabatic states act as funnels for the electronic

population decay and therefore, an accurate description of the nuclear dynamics in the

vicinity of conical intersections (CIs) is crucial for any successful approximated nonadia-

batic dynamics method. In this chapter, the in�uence of the approximations of the AIMS

method is tested for dynamics in close proximity to a CI. To this end, a series of simple

models are used in two dimensions, as this is the lowest dimensionality in which CIs arise.

Earlier works have focused on understanding the in�uence of the independent �rst

generation approximation approximation (IFGA) and the saddle point approximation (SPA)

in the excited-state dynamics of simple model systems.159,164,211,212 Nevertheless, a grey

area still remains around additional contributions to the coupled electron-nuclear dynamics

that are typically neglected in any practical implementations of AIMS: the second-order

nonadiabatic couplings (NACs) and the diagonal Born-Oppenheimer corrections (DBOCs).

As AIMS proposes to perform nonadiabatic dynamics in the adiabatic representation of

the electronic states, one may also enquire about the inclusion of geometric-phase (GP)

e�ects in its formalism. Geometric (or Berry) phase e�ects can emerge when a nuclear

wavepacket evolving on adiabatic potential energy surfaces (PESs) encircles a conical

intersection (see Sec. 2.2.4).54 The inclusion of DBOCs in the dynamics of the TBFs in

AIMS has been discussed in an earlier work,168 and the question of how the lack of GP

might a�ect the AIMS dynamics has already been raised in the past.213–215 No work has,
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however, tested the performance of the AIMS approximations to describe the nonadiabatic

dynamics through conical intersections and the in�uence of the missing NACs, DBOCs,

and GP terms mentioned above.

In this chapter, I want to closely investigate the quality of the coupling elements between

TBFs in AIMS in the context of a dynamics through a conical intersection. In particular,

the attention will be focused on the neglected contributions to these coupling terms in the

original formulation of AIMS. For a reasonable estimation of the capability of AIMS dy-

namics, a numerical comparison is carried out between AIMS, numerically-exact quantum

dynamics (QD), and TSH, for a series of challenging two-state two-dimensional model

systems. The model systems are parametrised to reproduce key features of the excited-state

dynamics of bis(methylene)adamantyl (BMA), butatriene cation, and pyrazine.54,61 The

discussion of the quality of the results is not only based on the excited-state population

traces but also the (reconstructed) ground-state nuclear densities for the di�erent nonadia-

batic methods. In addition to the fully approximate framework of AIMS, it is investigated

how including NACs, DBOCs, and GP e�ects in the coupling terms a�ects the dynamics.

Another aspect that is questioned is the use of Born-Huang versus Born-Oppenheimer

PESs for the dynamics of the TBFs. Overall, it is shown how the original AIMS formalism

can capture qualitatively well the excited-state dynamics on these model systems and that

including additional terms challenges the existing practical approximations of AIMS.

This chapter is organised as follows. First, in Sec. 4.2 it is introduced how GP e�ects can

be included within the AIMS framework while keeping its practical approximations and

on-the-�y character. The two-state two-dimensional model systems used in this chapter

are introduced and the details of the simulations are given in Sec. 4.3 The excited state

population traces obtained with AIMS, numerically-exact QD, and TSH are compared and

discussed for all three models in Sec. 4.4.1, before focusing on the challenging butatriene

cation model and analysing the reconstructed ground-state nuclear densities (Sec. 4.4.2).

Subsequently, it is shown how some of the AIMS approximations can be lifted and how

the dynamics respond to the inclusion of NACs, DBOCs, and GP e�ects, reaching the

limitations of the AIMS framework (Sec. 4.5). Additionally, in Sec. 4.6, it is shown how a

propagation on BH PESs is limited by the AIMS approximations and highlights the missing

GP e�ects. The conclusions are �nally drawn in Sec. 4.7.
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4.2 Inclusion of the geometric phase in AIMS for a two
level system

As introduced in Sec. 2.2.4, a GP arises in the vicinity of conical intersections when using

the adiabatic representation of the electronic states, i.e. the eigenfunctions of �̂BO(r , X),
{Φ� (r ; X)}∞

� =1, which depend parametrically on the nuclear coordinates. When following

a closed path in (parametric) nuclear coordinates, an adiabatic electronic wavefunction

acquires a phase. This phase is exactly c if the path encircles a conical intersection, leading

to a change in sign of the (real) electronic wavefunction that breaks its single-valuedness.

To counteract this e�ect and ensure that the molecular wavefunction is singled valued, one

can introduce a position-dependent phase factor [48W � (X)] for the corresponding nuclear

wavefunction that also changes sign when encircling a conical intersection. Based on the

seminal work by Mead and Truhlar43 on the topic, this phase factor is the same for both

states considered in a two-state system.Hence, one can chose W1(X) = W2(X) = W (X) for a

two state-system.

The diabatic Hamiltonian of the two-state model system used for this chapter has the

form

Ĥdia(X) = )̂n(X)1 +
©«
+11(X) +12(X)
+12(X) +22(X)

ª®¬ . (4.1)

This is in analogy to the Hamiltonian de�ned the Theory Sec. 2.2.2 (Eq. (2.9)). The trans-

formation to diabatic states is mediated again by the adiabatic-to-diabatic transformation

angle \ (X) (Eq. (2.12)). Closer investigation of \ (X) shows that upon encircling a conical

intersection (a point of degeneracy of the adiabatic electronic eigenstates), the phase of

the adiabatic electronic wavefunction (Eq. 2.11) will change by a factor of c .43,59–63 This

factor of c means that the (real) adiabatic wavefunctions, given by Eq. (2.11), will change

their sign by circling around a conical intersection. This phase shift and subsequent

�ip of sign is a manifestation of the geometric phase.59,60 However, the geometric phase

leads to a double-valuedness of the electronic wavefunctions. For a proper description

of the molecular wavefunction (which is now doubled-valued ), one would need to use

doubled-valued boundary conditions for the nuclear wavefunctions as well.

To perform quantum dynamics in the adiabatic representation, it can be more convenient

to perform a transformation of the adiabatic molecular Hamiltonian [�̂m(r , X)] to include

the e�ect of a GP while keeping the standard nuclear wavefunctions.61 As suggested by
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Mead and Truhlar43, the mixing angle \ (X) can be related to the geometric phase and the

adiabatic molecular Hamiltonian can be transformed as

�̂GP
adi (X) = 4

8\ (X)�̂adi(X)4−8\ (X) . (4.2)

The choice of 48\ (X) for the geometric phase is valid in the two-state models used in this

chapter, but it is not universal. A detailed discussion of this choice, its validity, and further

implications are provided in Refs. [52, 216].

This approach will be used for the inclusion of the geometric phase in AIMS. The

molecular Hamiltonian used in full multiple spawning (FMS), �̂m(r, X), will be transformed

into �̂m(r , X) → �̂GP
m (r , X) = 48\ (X)�̂m(r , X)4−8\ (X) . Using this transformed Hamiltonian

in FMS leads to a new set of equations for the Hamiltonian matrix elements, where for

the intrastate couplings the action of the Laplacian (coming from the nuclear kinetic

energy operator) on the phase gives rise to new terms and the FMS matrix elements from

equation 2.55 transform to:

(
〈j̃ ( � )
:

Φ� | �̂GP
m |Φ� j̃

( � )
< 〉r,X

)GP

FMS
= −

3#n∑
d

1
2"d

〈j̃ ( � )
:
| m2
'd
| j̃ ( � )< 〉X + 〈j̃

( � )
:
| �el

� | j̃
( � )
< 〉X

+
3#n∑
d

1
2"d

〈j̃ ( � )
:
| |3d12 |

2 | j̃ ( � )< 〉X +
3#n∑
d

1
2"d

〈j̃ ( � )
:
| (m'd\ )2 | j̃

( � )
< 〉X

−
3#n∑
d

8

2"d

〈j̃ ( � )
:
|
(
m2
'd
\

)
| j̃ ( � )< 〉X −

3#n∑
d

8

"d

〈j̃ ( � )
:
|
(
m'd\

)
m'd | j̃

( � )
< 〉X (4.3)

The last three terms on the right-hand side are the additional terms arising from the

geometric phase.

For the interstate couplings, the presence of the ∇X operator (with the NACVs term)

gives rise to an additional term (last term on the right hand-side) with respect to the FMS

matrix elements given in equation 2.55:

(
〈j̃ (� )
:

Φ� | �̂GP
m |Φ� j̃

( � )
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As stated in Eq. (2.13), it is possible to connect the derivative of the mixing angle ∇X\ (X)
and the NACVs d12(X). Thus, we can rewrite Eqs. (4.3) and (4.4) with the additional

contributions now given in terms of the NACVs 3d12(X) as
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and
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From this set of equations, one can now derive a practical expression for AIMS by

applying a series of approximations. One can expand the electronic energy term as well as

all terms including the NACVs within the SPA to �rst order (SPA1), while all the DBOCs
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and NACs terms (including |3d12(X) |2 and m'd3
d

� �
(X)) are expanded to zeroth order (SPA0).

This framework results in the following equation for the intrastate couplings
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and the following one for the interstate couplings
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Evaluating the AIMS matrix elements within a SPA1’ for the GP-transformed Hamiltonian

�̂GP
m (r , X) yields intrastate and interstate couplings containing both contributions from the

DBOCs and the NACs. It is important to note that this framework preserves the hermiticity

of the AIMS Hamiltonian. These two equations are those employed in the following under

the name GP-SPA1’.
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4.3 Computational details

For this study, a series of two-dimensional, two-state linear vibronic coupling (LVC) models

is used. In the diabatic representation, the general form of the Hamiltonian is given by

Ĥdia(X) = )̂n(X)1 +
©«
+11(X) +12(X)
+12(X) +22(X)

ª®¬ , (4.10)

with the following diabatic electronic energies
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l2

1
2

(
- + 02

)2
+
l2

2
2 .

2 + Δ

2

+22(X) =
l2

1
2

(
- − 02

)2
+
l2

2
2 .

2 − Δ

2
+12(X) = 2. (4.11)

with X = (-,. ). The parameters 0, l1, l2, Δ and 2 are obtained from Ref. [61] and

chosen to create three models representative of the conical intersection for the molecules

bis(methylene)adamantyl (BMA), butatriene cation, and pyrazine. The model potentials

describe, in a diabatic picture, two parabolas displaced in the G direction and shifted in

energy by the parameter Δ. Fig. 4.1 depicts the general shape of the adiabatic potential

energy surfaces for the di�erent molecules. The ground electronic state is indicated by

green contour lines and the excited state with purple ones. We note that in the case of

BMA, Δ = 0.0 �ℎ , which means that the model is symmetric with a CI at XCI = (-CI, .CI) =
(0.0, 0.0)00 (see Fig. 4.1). In the following, units for the nuclear coordinates are given in 00.

The nonadiabatic passage of a nuclear wavepacket through a conical intersection is

simulated using three di�erent methods: AIMS, numerically-exact QD, and TSH.

In the QD simulations, the initial state is given by a Gaussian nuclear wavepacket

with widths f- =

√
2
l1

and f. =

√
2
l2

initialised in the adiabatic excited electronic state

with zero initial nuclear momenta. The widths (f- , f. ) are set to (16.07, 17.30)0−1
0 for

BMA, (14.47, 24.43)0−1
0 for butatriene cation, and (23.41, 21.86)0−1

0 for pyrazine. Following

earlier work by Izmaylov and coworkers,61,63 the nuclear wavepacket is initially posi-

tioned on the Franck-Condon point of the corresponding full-dimensional model, which

gives (15.53, 0.0)00 for BMA, (−2.08, 0.0)00 for the butatriene cation, and (5.10, 0.0)00 for

pyrazine. The full time-dependent Schrödinger equation is solved numerically in the

diabatic representation employing a split-operator formalism.203,204
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Fig. 4.1.: Contour lines of the adiabatic ground (green) and excited (purple) potential energy
surfaces for the three model systems: BMA, butatriene cation, and pyrazine (from top to
bottom). Higher energies are depicted by darker colours. The pink circles indicate the
location of the conical intersection, and the dark blue crosses locate the centre of the
initial Gaussian nuclear wavepacket, with an arrow indicating the initial motion of the
nuclear wavepacket upon relaxation.

The TSH dynamics are carried out with the LVC interface of the SHARC 2.1 program.217,218

For consistency, the dynamics obtained from the LVC interface and the analytical potential

routine of SHARC have been compared and have given identical results. A nuclear time

step of 0.05 fs, that is ∼ 2 ~�−1
ℎ

(atomic time units, atu), is used for the classical propaga-

tion of the nuclei. The energy-based decoherence correction was used with the standard

parameter 0 = 0.1�ℎ . Only the component of the nuclear velocities parallel to the NACVs

was rescaled after a hop, or re�ected after a frustrated hop.

The AIMS dynamics were performed with a modi�ed version of the FMS90 code imple-

mented in MOLPRO.160 The additional correction terms — the GP e�ects (Sec. 4.2) and for

the DBOC, NACs and SPA1 of the NACVs (Sec. 2.5.3) — were included into the overlap

module of FMS90. A time step of 1 ~�−1
ℎ

was used for the propagation of the TBFs, which

was reduced to 0.25 ~�−1
ℎ

in regions of strong nonadiabaticity. The threshold to enter the

spawning mode (absolute value of the nonadiabatic coupling) was set to 0.0001 0−1
0 , with a

minimum population of 0.001 required for a TBF to spawn. The widths of the Gaussians

was chosen to be the same as the initial nuclear wavepacket in the quantum dynamics, and

all AIMS simulations presented employed the independent �rst generation approximation

(IFGA).

The AIMS and TSH dynamics used the same 2000 initial conditions, obtained by sam-

pling randomly the Wigner distribution corresponding to the initial Gaussian nuclear

wavepacket used in each QD simulations. The additional terms included in AIMS and

discussed in Sec. 4.5 caused some numerical instabilities for the AIMS dynamics of a
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Fig. 4.2.: Excited-state population decays for the model of (a) BMA, (b) butatriene cation, and (c)
pyrazine. Three di�erent nonadiabatic dynamics strategies are compared for each model:
QD (black), TSH (green), and AIMS-SPA0 (purple). The colored stars in panel (b) mark
di�erent time snapshots that will be investigated in more detail in the Figs. 4.3 and 4.4.

few initial conditions. As a result, the number of initial conditions used for the di�erent

dynamics discussed in Sec. 4.5 varies between 1980 and 2000.

4.4 Comparison of the nuclear dynamics

4.4.1 Excited-state population decay

To begin with, the excited-state population decay will be investigated for the three di�erent

models, comparing the QD results to the decays predicted by TSH and AIMS within the

SPA0 (Eqs. (2.58) and (2.59)).

The BMA model is set up to recreate the diabatic trapping occurring in the excited-

state dynamics of the full molecule. As a result, the numerically-exact QD dynamics

exhibits an almost complete depletion of the initial excited-state population within the �rst

250 ~�−1
ℎ

(black line in Fig. 4.2a), rapidly followed by a complete revival of the excited-state

population after 625 ~�−1
ℎ

. The excited-state population then decays again back to the

ground electronic state after around 1000 ~�−1
ℎ

. TSH reproduces quite closely the QD

results for the excited-state population (green line in Fig. 4.2a). Deviations are observed

after the �rst decay (at around 250 ~�−1
ℎ

), where TSH does not fully decay the excited-

state population. Another marked di�erence can be observed during the revival of the

excited-state population (at around 750 ~�−1
ℎ

), where TSH predicts that nearly 20% of the

population remains in the ground state. These results are entirely consistent with the

analysis of Izmaylov and coworkers, who rationalised the overall good performance of TSH
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for dynamics around conical intersections by compensation of errors between neglecting

DBOCs and GP e�ects.219,220 The population trace obtained with AIMS-SPA0 for BMA

(purple line in Fig. 4.2a) is almost identical to that obtained with QD, with only a small

deviation observed from the reference during the revival of the excited-state population.

This deviation is smaller than what is observed for TSH, with only 10% of population left

on the ground state for AIMS-SPA0.

The second model is based on the excited-state dynamics of the butatriene cation. The

excited-state population described by QD su�ers an immediate decay, leaving ∼ 15% of

population in the excited state after 350 ~�−1
ℎ

of dynamics (black line in Fig. 4.2b). A

brief increase of this population is observed at around 550 ~�−1
ℎ

before it carries on its

decay. A sudden repopulation of the excited state is however observed between 1500 to

2000 ~�−1
ℎ

, from around 5% to over 30%. The time-trace of the excited-state population is

reproduced qualitatively by both TSH and AIMS-SPA0 (green and purple lines in Fig. 4.2b).

The overall shape of the population trace obtained with AIMS is comparably similar to

the QD reference than that of TSH, but AIMS-SPA0 underestimates the overall decay of

population. The TSH population trace matches that of QD between 850 and 1600 ~�−1
ℎ

.

Perhaps more noticeable, both approximate methods miss the strong repopulation of the

excited state after 1500 ~�−1
ℎ

.

The third and last model studied is based on the photodynamics of pyrazine. The

QD population trace shows an initial decay starting after ∼ 400 ~�−1
ℎ

of dynamics until

the excited-state population reaches ∼ 15% of population after 1000 ~�−1
ℎ

(black line in

Fig. 4.2c). While the population decay dramatically slows down after this �rst transfer,

the excited-state population decreases to less than 5% after 2250 ~�−1
ℎ

of dynamics. A

signi�cant repopulation of the excited state occurs at this time, leading to a maximum of

the excited-state population at around 3200 ~�−1
ℎ

before a decrease is again observed. This

rather complex population trace is quite well mimicked by TSH and AIMS-SPA0 (green

and purple lines in Fig. 4.2c). Both approximate methods describe the initial fast decay of

excited-state population, with AIMS transferring slightly less population to the ground

state than TSH. The plateau is then reached with, for both TSH and AIMS, a slightly higher

excited-state population than what QD predicts (20% with TSH and 23% with AIMS). In

contrast with the dynamics of the butatriene cation described above, both AIMS-SPA0 and

TSH manage to describe the repopulation of the excited state after 2250 ~�−1
ℎ

. The overall

shape of the repopulation (and then decay) observed during the QD is better reproduced
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by AIMS, while the variation of population depicted by TSH is smaller (overestimation

before the repopulation and underestimation after it).

Overall, the TSH and AIMS-SPA0 agree surprisingly well with the QD reference for

these three non-trivial dynamics through a conical intersection. The excellent agreement

between the AIMS and QD results obtained for BMA comes somehow as a surprise as it is

important to remember that the AIMS-SPA0 dynamics presented here uses the saddle point

approximation of zeroth order (SPA0) and the independent �rst generation approximation

(IFGA). The latter was originally justi�ed for the study of molecules in their full dimen-

sionality, but in resonance with previous work212,221 the IFGA appears to perform well for

models with a small number of nuclear degrees of freedom. While these approximations

can explain in part the deviations in population between AIMS and QD observed for the

two other models, it is crucial to realise that the AIMS dynamics presented here do not

account for geometric phase (GP) e�ects and neglect the diagonal Born-Oppenheimer

correction (DBOCs) and second order nonadiabatic coupling terms (NACs). As observed by

Izmaylov for mixed-quantum classical methods,219,220 the somewhat encouraging results

obtained for the three models with AIMS-SPA0 seem to imply that AIMS bene�ts from a

similar cancelation of errors as TSH – the lack of GP e�ects in AIMS is compensated by the

neglect of DBOCs. We note that the BMA model is characterised by a rather asymmetric

DBOC in the branching space, while the models for butatriene cation and pyrazine show

a more symmetric DBOC.61,219 These observations and the results above suggest that

the approximations of AIMS-SPA0 may perform best in general for molecules with less

symmetric DBOCs.

The results reported here are somehow reassuring for the use of AIMS-SPA0 to describe

the dynamics through conical intersections for molecular systems. Given that AIMS-SPA0

encodes more nuclear quantum e�ects than a mixed quantum/classical method like TSH,

it was not given that AIMS-SPA0 would perform well in nonadiabatic dynamics around

conical intersections when NACs and geometric e�ects are signi�cant. Di�erences are,

however, non-negligible, and therefore, in the following, the in�uence of the di�erent

missing terms in the AIMS Hamiltonian matrix elements will be investigated more closely.

From here onward, it will be focused on the butatriene cation model (Fig. 4.2b) as it appears

to be the most challenging model for AIMS-SPA0.
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Fig. 4.3.: Snapshots of the ground-state nuclear density taken at four characteristic times of the
nonadiabatic dynamics of the butatriene cation. The four di�erent times selected are
indicated by the corresponding colored stars in Fig. 4.2. The ground-state nuclear density
is reconstructed for QD (top panels), AIMS-SPA0 (middle panels), and TSH (lower panels).
Pink circles indicate the location of the conical intersection. The colorbar range is rescaled
by a factor of two for the snapshots at 200 ~�−1

ℎ
(left panels).

4.4.2 Ground-state nuclear dynamics for the butatriene cation model

To complement the analysis of the excited-state population dynamics, the ground-state

nuclear density will be visualised as obtained with the di�erent methods. This quantity is

straightforward to access in the QD simulation (it should be noted here that the adiabatic

ground-state nuclear density is plotted). In AIMS-SPA0, the ground-state nuclear density

can be easily reconstructed from the TBFs and their complex coe�cients, owing to the

FMS ansatz discussed above. We note that the use of the IFGA implies that the nuclear

density is reconstructed for each AIMS-SPA0 run (each parent TBF with their respective

child) individually. The overall AIMS-SPA0 nuclear density is obtained by performing an

incoherent average over the nuclear density of each AIMS-SPA0 run. TSH does not o�er

an ansatz for the nuclear wavefunctions due to its independent trajectory approximation.

Hence, the nuclear density in TSH is approximated by broadening each TSH trajectory

with a Gaussian function, whose width is chosen to be identical to that of the TBFs in

AIMS-SPA0.

The ground-state nuclear density is compared at four di�erent times for the butatriene

dynamics – 200, 552, 1000, and 2000 ~�−1
ℎ

, indicated by colored stars in Fig. 4.2b. These times

were selected as they correspond to a speci�c behaviour in the excited-state population

trace: the initial decay of the population (200 ~�−1
ℎ

), the maximum of the weak repopulation
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(552 ~�−1
ℎ

), the beginning of the plateau (1000 ~�−1
ℎ

), and the end of the dynamics after the

repopulation (2000 ~�−1
ℎ

). Fig. 4.3 shows the di�erent snapshots of the ground-state nuclear

density for the QD, AIMS-SPA0, and TSH dynamics (from top to bottom), reconstructed

at these four times. The pink circle in the plots indicates the location of the conical

intersection.

At 200 ~�−1
ℎ

, nuclear density starts to appear in the ground electronic state. While

the location of the nuclear density given by AIMS-SPA0 and TSH matches that of the

QD result, the QD nuclear density shows a nodal region near the position of the conical

intersection, which is not reproduced by either AIMS-SPA0 or TSH. The approximations of

AIMS-SPA0 can be held responsible for this deviation from the QD result, considering that

the AIMS-SPA0 simulation presented invokes the SPA0 and the IFGA (and no geometric

e�ects are included). At later times, the ground-state nuclear density spreads on the

ground-state potential energy surface (see Fig. 4.1), ending up being mostly delocalised

by C = 2000 ~�−1
ℎ

. While AIMS-SPA0 and TSH both reproduce well the overall shape and

localisation of the nuclear density at most times, it is surprising to see how qualitatively

well AIMS-SPA0 captures the main features of the structure of the QD nuclear density, in

particular at C = 552 ~�−1
ℎ

and C = 1000 ~�−1
ℎ

, considering the crude approximation of its

Hamiltonian matrix elements and the use of the IFGA. This good match between QD and

AIMS-SPA0 is further observed in the actual movies of the evolution of the ground-state

nuclear density (as can be seen in the movies of the Supporting Information of Ref. [55]).

This evolution further highlights that the good agreement between the QD and AIMS-SPA0

nuclear densities is not coincidental at the selected times. Comparing the evolution for

the AIMS-SPA0 and TSH dynamics o�ers a clear illustration of the fundamental di�erence

between the two methods. The TSH movie makes it obvious that the motion of the nuclear

density is simply correlated to the dynamics of the independent classical trajectories on

the ground-state potential energy surface. Conversely, the AIMS-SPA0 movie shows that

the complex amplitude is transferred between the TBFs, which serve as moving grid points

on which the nuclear density is distributed.

This observation is further supported by comparing the positions of the TSH trajectories

with that of the TBFs centers in AIMS-SPA0 at the various snapshot times (Fig. 4.4).

Both simulations, AIMS-SPA0 and TSH start with 2000 independent initial conditions, in

AIMS-SPA0 each of these initial conditions spawns additional Gaussians throughout the

dynamics. In AIMS-SPA0, the TBFs evolve from being mainly around . = 0 at 200 ~�−1
ℎ

to
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Fig. 4.4.: Snapshots of the positions of the AIMS-SPA0 TBFs (upper panel) and the TSH trajectories
(lower panel) evolving on the ground state at four characteristic times for the nonadiabatic
dynamics of the butatriene cation. The snapshot times are the same as those presented
in Fig. 4.3 and indicated by colored stars in Fig. 4.2b. Pink circles indicate the location of
the conical intersection.

mostly everywhere in space at later times – an essential element for the success of the

method if one considers that the actual positions of the TBFs are not critical as long as

they o�er a proper support to describe the nuclear wavepacket dynamics, described in

AIMS-SPA0 via the complex coe�cients. This coverage of the con�guration space by the

TBFs is made possible by the spawning algorithm, which increases the number of TBFs

continuously during the dynamics. This growing distribution and spreading of the TBFs

are in stark contrast with the distribution of the TSH trajectories.

4.5 Including new contributions in ab initio multiple
spawning

Having characterised the nonadiabatic dynamics obtained with AIMS-SPA0 for the di�erent

models, in the following it will be investigated how additional contributions to the AIMS

Hamiltonian matrix elements a�ect the dynamics, focusing in particular to some terms

that are usually neglected in AIMS – GP e�ect, DBOCs, and NACs – and discussed above

in Sec. 4.2 and 2.5.3. Figure 4.5 provides an overview of the various ’�avours’ of AIMS that
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Fig. 4.5.: Schematic overview of the hierarchy of the di�erent ’�avours’ of AIMS that will be
discussed in this section, and the terms included in the respective matrix elements.

will be used to simulate the photodynamics of the butatriene cation in the following. The

various matrix elements are given in a symbolic notation, de�ned as:
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First, the in�uence of improving the quality of the intrastate matrix elements in AIMS-

SPA0 is considered by moving to the SPA1 (intrastate-SPA1 in Fig. 4.6a, dark purple dashed

line), that is, by using Eq. (2.60) for the intrastate couplings and maintaining the SPA0

(Eq. (2.59)) for the interstate couplings. No major variations of the population trace can be

observed by improving the intrastate couplings. This observation could be rationalised by

the fact that, within a given AIMS run, TBFs might separate in phase space su�ciently such

that they are not strongly a�ected by their respective intrastate couplings. An interesting
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Fig. 4.6.: Excited-state population decay for the butatriene cation model using di�erent �avors
of AIMS. a) Alterations of the intrastate coupling terms: standard AIMS formulation
using the SPA0 for all coupling terms (AIMS-SPA0, purple line, identical to the population
depicted in Fig. 4.2), using an SPA1 for the intrastate couplings (intrastate-SPA1, dark
purple dashed lines), and removing all intrastate couplings (pITA-AIMS, grey dashed line).
b) Modi�cations of both inter- and intrastate couplings: the standard AIMS formulation
for reference (AIMS-SPA0, purple line), using the SPA1 and including NACs (AIMS+NACs,
grey line), using the SPA1 and including both NACs and DBOCs (AIMS-SPA1’, dark blue
dashed line), using the SPA1’ and adding the GP correction (GP-SPA1’, palatinate line).
The exact QD result is given in black for reference.

test to validate the importance of the coupling between TBFs on the same state consists in

removing all intrastate couplings (pseudo-independent trajectory approximation in AIMS,

pITA-AIMS, in Fig. 4.6a, grey dashed line). Once more, the population trace obtained within

this approximation does not signi�cantly deviate from the original AIMS one, validating

the weak in�uence of the intrastate coupling within the current approximations. It is

important to note that removing the IFGA may signi�cantly alter this result, as all parent

TBFs and their child TBFs would become coupled. Before moving to the next step and

including the NACs and GP e�ects, it is noted the bra-ket averaged Taylor (BAT) expansion

to order zero proposed in Ref. [153] has been tested for the NACVs (instead of the SPA0)

and has yielded a population trace in very close agreement with AIMS-SPA0.

At this point, it is possible to consider including terms in the Hamiltonian matrix

elements that are usually neglected within the conventional AIMS framework, based on

the analysis in Sec. 2.5.3. The �rst step consists in including the NACs in the interstate

couplings. As discussed in the analysis in Sec. 2.5.3, preserving the hermiticity of the

Hamiltonian matrix requires using the SPA1 for the interstate couplings. The resulting

strategy (AIMS+NACs, grey line in Fig. 4.6b), uses the SPA1 for the intrastate couplings

(Eq. (2.60)) and the interstate couplings (Eq. (2.70)), including the NACs. AIMS+NACs
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shows a population transfer initially accelerated in comparison to AIMS-SPA0, but this

acceleration rapidly slows down, and a signi�cantly smaller population transfer towards

the ground state is observed between 400 ~�−1
ℎ

and 750 ~�−1
ℎ

. The excited-state population

then slowly converges towards that of AIMS-SPA0. Based on the earlier consideration with

intrastate-SPA1 and pITA-AIMS, it does not come as a surprise that adding the DBOCs to

this dynamics (AIMS-SPA1’, dark blue dashed line in Fig. 4.6b, using Eq. (2.69) for intrastate

couplings and Eq. (2.70) for interstate couplings) does not alter the population transfer

in comparison to AIMS+NACs, since it uses the identical expression for the interstate

couplings and only adds the DBOC to the intrastate couplings. Overall, the inclusion of

NACs and DBOCs appears to slow down the population transfer for the butatriene cation

model – an observation for AIMS in resonance with earlier �ndings on TSH, where the

inclusion of DBOCs was found to slow down signi�cantly the population transfer.219 (See

Sec. 4.6 below for additional information on the inclusion of DBOCs in AIMS.) The �nal

contribution that can be included is the GP correction within a SPA1’ (GP-SPA1’, palatinate

line in Fig. 4.6), using Eq. (4.8) for intrastate couplings and Eq. (4.9) for interstate couplings.

The population trace obtained with AIMS under the GP-SPA1’ approximation deviates

even more from the AIMS-SPA0 (and QD result), exhibiting a dramatic slow down of the

excited-state population transfer. This result is surprising as one would expect, based on

earlier works,61,219 that including a GP correction in the interstate coupling terms should

increase the nonadiabatic transfer of population.

To shed further light on this observation, it will be focused now on a representative

parent-child TBF pair and their interstate coupling will be monitored when approaching

the conical intersection.∗ Following the strength of the interstate coupling for each TBF

using AIMS-SPA0 (Fig. 4.7b), one can see how the TBFs meet in con�guration space

when their coupling strength is maximal – a behavior encoded in the spawning algorithm.

When now monitoring the strength of the interstate couplings for the same pair of TBFs

but including GP e�ects (GP+SPA1’, Fig. 4.7c), one can immediately observe that the

nonadiabatic strength is almost ten times stronger than without the GP e�ects. Hence, it

appears that, as expected, the nonadiabatic strength is dramatically enhanced when GP

e�ects are included in AIMS. What happens then to the population transfer between this

pair of TBFs?

∗It should be noted that this parent-child TBF pair has been randomly chosen from the set of initial
conditions and that the vast majority of parent-child TBF pairs exhibits similar behaviour.
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Fig. 4.7.: Early dynamics of a representative parent-child TBF pair evolving in di�erent electronic
state: a) Excited-state population transfer with AIMS-SPA0 (purple line), AIMS including
GP e�ects within the SPA1’ (GP-SPA1’, palatinate, solid line), and AIMS including only
the interstate coupling corrections for the GP with the SPA1’ (GP, dashed palatinate
line). b) The e�ective nonadiabatic coupling strength (norm of the Hamiltonian matrix
element for interstate couplings, |� � �m,:< |) between the two TBFs present in the simulation,
depicted along each TBF for the �rst 115 ~�−1

ℎ
of AIMS-SPA0 dynamics. c) The e�ective

nonadiabatic coupling strength (norm of the Hamiltonian matrix element for interstate
couplings – |�GP,� �

m,:< |) between the two TBFs present in the simulation, depicted along
each TBF for the �rst 115 ~�−1

ℎ
of AIMS GP-SPA1’ dynamics. Note that the scale of the

color bar for this panel has been divided by a factor of 10 in comparison to panel (b),
i.e., the e�ective nonadiabatic coupling strength is a factor of 10 larger than it is for
AIMS-SPA0.
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The norm of the Hamiltonian matrix element for the interstate coupling for AIMS-SPA0,(
�
� �

m,:<

)SPA0

AIMS
, or for GP-SPA1’,

(
�

GP,� �
m,:<

)GP-SPA1’

AIMS
, are taken as proxies for the nonadiabatic

coupling strength in a situation without or with GP e�ects. We start by monitoring the

excited-state population trace for this pair of TBFs, using AIMS-SPA0 and GP+SPA1’ for

the matrix elements (Fig. 4.7a). The population trace using AIMS-SPA0 shows a smooth

and monotonic decay. However, upon inclusion of the GP e�ects, one sees that, while

the population starts to decay earlier than in AIMS-SPA0, it then exhibits some rapid

oscillations between 1.0 and 0.5, hindering the population transfer. While the TBFs feel a

much stronger mutual interstate coupling, the nuclear amplitude oscillates in a Rabi-way

between the two TBFs without a stable transfer to the ground-state one. One reason for

that could be that there are at this time only two TBFs in the dynamics (one on each

state), and therefore that once transferred to the TBF in the ground state, the amplitude

cannot spread towards other ground-state TBFs and remains trapped on the child TBF, still

strongly coupled with the parent TBF – leading to an oscillation of the amplitude between

the two TBFs, a sort of overcoherent e�ect due to the locality of the parent/child TBF pair.

Including the GP e�ects only in the interstate couplings (palatinate dashed line in Fig. 4.7a)

further enhances these oscillations. Hence, it appears to have reached in this particular

case one of the limitations of AIMS: the use of the IFGA, which limits the number of

coupled TBFs at the early times. To circumvent this issue, it would be necessary to start the

dynamics with a large number of coupled TBFs. While this solution would potentially be

tractable for a model system, its cost would simply be prohibitive for molecular systems.

This leads to the interesting conclusion that including GP e�ects in AIMS would likely

require getting rid of some of the practical approximations (SPA0 and IFGA) that made

AIMS a successful strategy to investigate the nonadiabatic dynamics of molecular systems.

These tests also reveal that these nonadiabatic processes can be easily described within

these strong approximations by relying on cancellation of errors – a reason why TSH

performs so well for molecular systems. However, trying to account properly for additional

quantum e�ects like GP in AIMS would require a dramatic improvement of its underlying

approximations.
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Fig. 4.8.: Comparison of the potential energy surfaces for the ground state (GS) and the excited
state (ES) of the butatriene cation around the conical intersection. a) Born-Oppenheimer
potential energy surfaces (BO PES). b) Born-Huang potential energy surfaces (BH PES).
c) Cut through the BO PESs (light and dark purple lines) and the BH PESs (light and dark
blue lines) along the axis . = 0.

4.6 Born-Oppenheimer vs. Born-Huang Potential
energy surfaces
Up to this point, the attention has been focused only on the Hamiltonian matrix elements

connecting the TBFs. However, one should keep in mind that, while the dynamics of the

complex coe�cients is obtained via the time-dependent Schrödinger equation, the TBFs

are propagated classically and meant to follow the dynamics of the nuclear wavepackets.

In the standard version of AIMS (AIMS-SPA0), the TBFs evolve on the Born-Oppenheimer

potential energy surfaces (BO PESs) given by n ( � )BO (X). Considering the inclusion of DBOCs

in the Hamiltonian matrix elements of AIMS-SPA0 (see Eq. (2.69)) raises the question

of also including these terms in the dynamics of the TBFs. The resulting Born-Huang

(BH) PESs are then de�ned for the electronic state � as n ( � )BO (X) + � � � (X). The BH PESs

have been investigated extensively for electron transfer processes in the context of non-

Born-Oppenheimer e�ects.222–224 The BO PESs are very similar to the BH PESs for a given

molecule as long as electronic states are far apart in energy. However, one can show for

a two-level system that the DBOCs are proportional to the squared norm of the NACVs

(as discussed earlier, see Eq. (2.65)). Hence, the shape of the BH PESs will dramatically

di�er from that of the BO PESs in the vicinity of a conical intersection, as the NACVs

are inversely proportional to the electronic energy gap between the two coupled states.

Looking at the model for the butatriene cation, one can see that the typical conical shape

of the BO PES (Fig. 4.8a) is completely altered by the inclusion of the DBOCs, leading to

BH PESs both displaying a singularity at the exact location of the conical intersection

(Fig. 4.8b). The addition of this singular barrier on both BH PESs is made more visible in

Fig. 4.8c by performing a cut on the BH and BO PESs along the . = 0 axis.
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Fig. 4.9.: Snapshot at 200 ~�−1
ℎ

of the (a) AIMS ground-state nuclear density and (b) TBFs centers,
for an AIMS dynamics where the TBFs are evolved on BH PESs for the butatriene cation
model. Pink circles indicate the location of the conical intersection.

This comparison between the shape of BO and BH PESs makes it clear that nonadiabatic

dynamics methods based on classical trajectories will be strongly a�ected by this additional

barrier. Earlier work on TSH showed that including the DBOCs in the propagation of

the classical trajectories dramatically hampers the nonadiabatic population transfer.219,220

Hence, focusing now on AIMS-SPA0, it does not come as a surprise that the TBFs are

avoiding the regions of the conical intersection when evolving on the BH PESs (Fig. 4.9b).

Interestingly though, the width of the TBFs makes that the reconstructed ground-state

nuclear density (Fig. 4.9a), combined with the approximate nature of the interstate and

intrastate couplings, still displays some nuclear density in the direct vicinity of the conical

intersection. As expected from the distribution of the TBFs, the overall excited-state

population decay predicted by AIMS-SPA0 when employing BH PESs to propagate the

TBFs is dramatically decelerated (light-blue line in Fig. 4.10) in comparison to the AIMS-

SPA0 on BO PES (purple line in Fig. 4.10). This observation is in line with earlier �ndings

on propagating TBFs on BH PESs within the AIMS-SPA0 formalism,168 and earlier work

on the inclusion of DBOCs only in QD and TSH.54,61,219,220

Accounting for GP e�ects into the AIMS dynamics on BH PESs (at the GP-SPA1’ level,

see Sec. 4.5 above) results in a slight speed-up of the excited-state population transfer.

This behavior is expected due to the enhanced interstate couplings resulting from the

inclusion of the GP (see Fig. 4.7) and shows that TBFs can still interact next to the conical

intersection. However, the classical motion of the TBFs on the BH PESs, combined with

the limitations in the description of the interstate and intrastate couplings and the IFGA

(described above), do not allow for an overall improved description of the excited-state
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Fig. 4.10.: Excited-state population decay with AIMS-SPA0, with TBFs evolving on standard BO
PESs (purple line) or BH PESs (light blue line). The dark blue line shows the propagation
on the BH PES but including the GP corrections in the Hamiltonian matrix elements
(BH PES + GP). The exact QD result is given in black for reference.

population transfer. This �nding reinforces earlier work on the incorporation of DBOCs

in AIMS.167,168

4.7 Conclusions
In this chapter, the in�uence of the missing contributions to the Hamiltonian matrix

elements was analysed in the AIMS method for nonadiabatic dynamics around conical

intersections. Based on three two-dimensional model systems, it was shown that AIMS

– in its original formulation, which means using the SPA0 and IFGA and neglecting the

NACs, DBOCs and GP corrections – o�ers a least a qualitatively correct description of the

dynamics through a conical intersection. The results obtained with AIMS align with what

is observed for the mixed quantum/classical method TSH. As AIMS is not per se a mixed

quantum/classical method but is derived from the in-principle exact FMS framework,

possible improvements of the method can be envisaged. A set of equations was derived

aiming at improving the Hamiltonian matrix elements coupling the TBFs by including

GP corrections. Interestingly, adding terms in the interstate or intrastate couplings out-

side of the realm of the original AIMS approximations does not appear to improve the

description of population transfer at a conical intersection. The limited accuracy in the

Hamiltonian matrix elements combined with the IFGA seems to be responsible for such

shortcomings. Considering that the complexity related to dynamics through a conical
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intersection is particularly enhanced in the three low-dimensional models presented in

this chapter, the adequate behaviour of the original AIMS in such conditions o�ers an

empirical validation for the simulation of nonadiabatic processes in higher dimensions

using this method. The shortcomings of AIMS when improving its Hamiltonian matrix

elements in the adiabatic representation are also highly stimulating for developing new

TBF-based strategies for nonadiabatic dynamics employing dedicated (time-dependent)

diabatic electronic quantities.168,225–227

Testing nonadiabatic molecular dynamics methods in the vicinity of CIs is of high

importance, since CIs are ubiquitous in molecules and act as funnels for the population

decay. The topology of the CI has a strong in�uence on the dynamics of the nuclear

wavefunction of the molecular system. Understanding the limitations of methods at

describing the dynamics around CI is a fundamental step towards the applicability of the

method for full dimensional nonadiabatic molecular dynamics.
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5.1 Introduction
Prior to any actual application aiming at either explaining experimental observations or

predicting a particular molecular behaviour, one has to duly test the approximations of

a given nonadiabatic method and determine the limitations that such approximations

impose on the use of the technique. To this end, model systems are a crucial tool to test and

challenge nonadiabatic dynamics methods.In the context of low-dimensional analytical

test systems, a given model is composed of (i) prede�ned potential energy curves and

nonadiabatic couplings between electronic states – with the focus being on the nuclear

dynamics and not the electronic structure – and (ii) initial conditions for the nuclear

dynamics – initial position and momentum of the nuclear wavepacket/trajectories. Models

are usually designed to probe speci�c di�cult situations of nonadiabatic dynamics, for
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example, decoherence and recoherence, dephasing, etc.16,228 While testing on analytical

and low dimensional models is an important �rst step of assessing the capabilities of

nonadiabatic dynamics methods, ultimately these methods will be used on full-dimensional

molecules. Therefore, two questions need to be addressed: Can processes probed by low

dimensional molecules be related to the nonadiabatic dynamics of real, molecular systems?

And can we transfer the concept of models to real, molecular systems?

The �rst question is legitimate already from an electronic structure perspective, as

moving from one to two nuclear degrees of freedom forces us to account for conical inter-

sections (in the adiabatic representation).43–46 Moving to an even higher number of nuclear

degrees of freedom allows de�ning a two-dimensional branching space – coordinates

along which the electronic degeneracy is lifted – as well as the 3#n − 8 intersection seam –

along which the electronic degeneracy is preserved. Conical intersections are known to be

ubiquitous in the photodynamics of molecular systems and responsible for ultrafast fun-

nelling processes between electronic states. Is it therefore possible, to connect some typical

nonadiabatic processes occurring in molecular systems to some of the features of common

low-dimensional models? Achieving this goal will o�er a series of molecular models to

compare nonadiabatic molecular dynamics methods among each other in the full nuclear

dimensionality of molecules. There is a consensus in the community that such uni�ed

hard benchmark tests,47 using models in higher dimensions, would be highly bene�cial

for benchmarking the di�erent methods available and dissecting their approximations.

The Libra library is a project going in this direction.48

When it comes to the second question, it is important to realise that the key interest of

analytical models in few dimensions is that they are easily transferable to any nonadiabatic

methods because they are based on analytical potential energy curves and couplings as well

as on a clear de�nition of the initial conditions. Such transferability is more challenging

to achieve for ab initio nonadiabatic molecular dynamics, especially since it is desirable to

compute the electronic structure quantities on the �y. What one needs to make accessible

are all the initial conditions, parameters, and simulation protocol of the nonadiabatic

dynamics.

This chapter proposes three molecules — ethylene, 4-N,N’-dimethylaminobenzonitrile

(DMABN) and fulvene — serving as typical examples of key nonadiabatic processes for

molecular systems. The photophysical processes these molecules undergo are reminiscent

of the physics probed by the three so-called Tully models that were proposed by Tully in
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his seminal articles on TSH.16 These molecules can therefore be seen as a set of molecular

Tully models and a new tool towards a more general mean of comparison between methods

for nonadiabatic dynamics.

This chapter is organised as follows. First, an overview of the original Tully models is

provided in Sec. 5.2.1. These models are then related to an exemplary set of molecules in

Sec. 5.2.2. Sec. 5.3.1 provides all the computational details so that the exact same dynamics

can be reproduced, especially concerning the initial conditions and electronic structure.

The population traces of the nonadiabatic dynamics of the three molecules obtained with

AIMS and TSH with and without a decoherence correction (dTSH and TSH, respectively)

are shown in Secs. 5.3.2, 5.3.3, and 5.3.4. The observed dynamics allows us to highlight

connections with the photophysical processes observed in the original Tully models, and

how these molecular model can probe speci�c strengths and limitations of the di�erent

nonadiabatic methods. Subsequently, in Sec. 5.4 two examples are provided that illustrate

how some of these proposed molecular models can be used to assess the performance of

newly proposed �avours of nonadiabatic dynamics methods: The capabilities and cost

of ESSAIMS and OSSAIMS are compared on fulvene with AIMS and TSH in Sec. 5.4.1.

DISH-XF is evaluated in comparison to uncorrected TSH, other common decoherence

corrections (EDC and A-FSSH) and AIMS on two of the proposed molecular Tully models,

ethylene and fulvene, in Sec. 5.4.2. Finally, the conclusions are drawn in Sec. 5.5

5.2 Original Tully models and relation to molecular
systems

5.2.1 Original Tully models

In 1990, Tully proposed a series of three tests in his seminal article on TSH, later called

the Tully models, which are depicted in the upper panel of Fig. 5.1. The Tully models are

one-dimensional, and the potential energy curves and couplings are expressed analytically

(in a diabatic representation).

The main goal of these three models was to test di�erent processes observed during a

typical nonadiabatic dynamics and see how approximate methods performed in comparison

to exact quantum dynamics simulations. The Tully model I (Fig. 5.1a) exempli�es a simple

nonadiabatic event where a one-dimensional particle, whose initial state is described
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Fig. 5.1.: Schematic depiction of the original Tully models (upper panels, a-c) and the molecular
Tully models proposed in this chapter (lower panels, d-e). Upper panel: potential energy
curves as a function of a one-dimensional reactive coordinate for the Tully model I (a,
single avoided crossing), II (b, double avoided crossings), and III (c, re�ection). The
path described by the one-dimensional particle (circle and arrow) exempli�es a possible
outcome of the dynamics probed by each model. Lower panel: time traces of the potential
energies along a TSH trajectory for ethylene (d), DMABN (e), and fulvene (f). The
excited-state dynamics for each molecular Tully model mimics the particle dynamics of
the corresponding one-dimensional Tully models depicted in the upper panel.

by a nuclear wavepacket in say the �rst excited electronic state (blue curve), reaches

an avoided crossing and can transfer towards the ground electronic state (green curve).

The Tully model II (Fig. 5.1b) depicts a somewhat more complicated process, where the

particle encounters two di�erent nonadiabatic regions (dual avoided crossing). The nuclear

wavepacket describing the state of the particle can ’branch’ in the �rst coupling region

– part of the amplitude in the original electronic state is transferred to the coupled state

– and the two wavepackets can meet again in the second coupling region. Interferences

are possible if the two nuclear wavepackets recohere at the second coupling, and their

importance will vary as a function of the initial momentum of the particle. The Tully model

III (Fig. 5.1c) o�ers a way to test re�ection processes: the two potential energy curves are

nearly degenerate at the beginning of the dynamics, and a nonadiabatic coupling region is

located just before the near-degeneracy is lifted. When the particle, initially on the ground

state, is transferred onto the upper state after the crossing, it may re�ect back towards

the coupling region if its momentum is too small to overcome the repulsive potential. We

will discuss later how these di�erent processes stress the approximation of nonadiabatic

methods.
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Since their publication in 1990, the simple model systems described above have been

extensively used to assess the quality of newly-developed methods or test new approxi-

mations or corrections proposed for existing ones. The diversity of strategies tested with

some or all of Tully models is astonishing.

5.2.2 Connecting the original Tully models to molecules in their full
dimension

As mentioned earlier, the Tully models probe interesting physical phenomena caused

by nonadiabatic e�ects, but how well do these one-dimensional models connect with

the nonadiabatic processes observed in (high-dimensional) molecules? In other words,

the original one-dimensional Tully models are employed to test the approximations of

nonadiabatic methods which will be used for high-dimensional molecular systems, but

are the nonadiabatic mechanisms probed in one dimension representative of the coupled

electron-nuclear processes a molecule can su�er?

To begin with, di�erent nonadiabatic processes are highlighted that can take place

during the excited-state dynamics of a molecule and be connected to key features of the

original Tully models. A caveat is needed at this stage: the categories discussed below are

not intended to fully represent the huge diversity of mechanisms in nonadiabatic molec-

ular dynamics but are only meant to draw some (hopefully general) parallels with the

nonadiabatic processes probed in the original Tully models. Upon photoexcitation, certain

molecules exhibit an e�cient decay back to the ground electronic state mediated by one or

more (peaked) conical intersections. A characteristic of such nonadiabatic dynamics is that

electronic states are connected by mostly one e�cient nonadiabatic event – or one passage

through a conical intersection. Such ultrafast and e�cient decay processes are clearly con-

nected with the Tully model I – a single crossing event between a pair of electronic states

(Fig. 5.1a). Examples from the literature of such photodynamics could be simple photoiso-

merisation processes like the one of ethylene,163 protonated formaldimine,229 or retinal.230

Other molecules may su�er a nonradiative decay characterised by numerous passages

through a given intersection seam between a pair of electronic states. This behaviour is

observed when a pair of electronic states remain close in energy, such that the photoexcited

molecule can exchange between them several times. This kind of photodynamics can be

related to the Tully model II – multiple crossings between two electronic states (Fig. 5.1b).

As examples of this category, one can mention molecules having coupled electronic states
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with di�erent characters close in energy (4-N,N’-dimethylaminobenzonitrile, DMABN,

see below), or molecules su�ering photodissociation with electronic states getting close

in energy, stimulating multiple crossings (see for example dithiane231). Another possible

outcome of a nonadiabatic dynamics can be observed when a molecule hits a sloped

conical intersection with a speci�c topography. The molecule can transfer to a di�erent

electronic state following the passage through the intersection, but soon after will re�ect

back towards the same region of the intersection seam where a novel nonadiabatic event

can take place. Such a nonradiative decay, involving subsequent passages through a

nonadiabatic region caused by a re�ection process, is reminiscent of the dynamics ob-

served at low kinetic energy in the Tully model III (Fig. 5.1c). As compared to e�cient

funnelling processes involving peak conical intersections (as mentioned above), sloped

intersections are known to slow down the transfer of populations between the coupled

electronic states.232 Such nonadiabatic dynamics proceeding via a sloped intersection and

involving a form or re�ection process was observed for example in up-funnelling during

collision processes,233 as one contribution to the nonradiative deactivation of fulvene,234

or in diabatic trappings.235

This chapter presents three molecules that, upon electronic excitation, exemplify the

typical nonadiabatic processes described above and therefore constitute a molecular version

of the original Tully models. The original model potentials proposed by Tully may look

somehow ’arti�cial’ (in particular the second and third model), but the correspondence

with the processes described in the previous paragraph becomes clearer if, instead of

looking at the potential energy curves as a function of position, one plots them as a

function of time. In other words, one could compare the potential energy curves as a

function of time, drawn by the dynamics of a molecule. In the upper panel of Fig. 5.1, this

dynamics in the Tully models is shown by sketching the trajectory of a particle. The lower

panel of Fig. 5.1 shows the electronic energies as a function of time for a full atomistic

nonadiabatic molecular dynamics of ethylene, DMABN, and fulvene. In the simple case of

ethylene (Fig. 5.1d), one sees a trivial correspondence between the molecular trajectory

and the one of the particle, both exhibiting a single nonadiabatic event. For the case of

DMABN (Fig. 5.1e), the molecule, originally on the green (potential energy) curve, jumps

to the blue curve after a nonadiabatic transition, before going back to the green curve due

to a passage through a second di�erent nonadiabatic region. The fulvene case (Fig. 5.1f)

shows an example of re�ection following nonadiabatic transition, where the molecule
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transfers from the blue to the green curve, re�ects, and goes back to the same region

of the intersection space, mimicking the one-dimensional trajectory of the Tully model

III.∗ At this stage, it is worth noting that several deactivations paths can compete in any

nonadiabatic process. For example, the particle in the Tully model II could also remain

adiabatically on the lower potential energy curve – a branching of the initial nuclear

wavepacket in two contributions after the �rst nonadiabatic event. Such diversity in the

possible outcomes after a nonadiabatic transition is likely to be further enhanced for

molecular systems as a natural consequence of the larger number of nuclear degrees of

freedom. The increase in nuclear degrees of freedom also comes with alternative fates for

the photoexcited molecule. Coming back to the previous example, the original Tully model

II o�ers the possibility to observe a recoherence in the second nonadiabatic region when

the branched nuclear wavepackets recombine. In molecular systems, it is likely that, while

the molecule may hit multiple times the same intersection seam, it will do so at a di�erent

region of the seam, limiting the possibilities of interferences between the branched nuclear

wavepackets. Hence, Fig. 5.1 is only an illustration of selected possible trajectories that

depict some of the interesting phenomena observed in the original Tully models (a more

detailed comparison between the molecular and original models will be proposed below).

In the following, it is shown that ethylene, DMABN, and fulvene o�er an interesting

molecular version of the original Tully models for testing nonadiabatic molecular dynam-

ics methods. For each molecule, a detailed comparison is provided of the nonadiabatic

dynamics obtained with TSH, TSH with decoherence correction (see Sec. 2.6.3), and AIMS,

using the same level of electronic-structure theory and de�ning a common set of initial

conditions. While an exact solution of the time-dependent molecular Schrödinger equation

is clearly out of reach for such large molecular systems, speci�c features of the nonadiabatic

dynamics for each molecule are highlighted that can be used to probe the approximations

of other nonadiabatic methods.

∗In this latter case, the re�ection for fulvene occurs on the ground state while it takes place on the excited
state in the original Tully model III.
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5.3 Comparing trajectory surface hopping and ab initio

multiple spawning

5.3.1 Computational details

Electronic structure

Energies, nuclear gradients of the energies, and nonadiabatic couplings of ethylene are

computed at the SA(3)-CASSCF(2/2) level of theory236,237 (including the c and c∗ or-

bitals in the active space) and a 6-31G∗ basis set.238,239 Due to the negligible contribu-

tion of S2, only S0 and S1 are included in the nonadiabatic dynamics, as done in ear-

lier works on ethylene.153,240 The lowest four singlet states of DMABN are described

with LR-TDDFT241–243 within the Tamm-Danco� approximation employing the LC-PBE

functional244,245 with a range-separation parameter set to 0.3 0−1
0 and the 6-31G basis

set, using the Gaussian09 program.246 For fulvene, the electronic structure quantities are

computed using SA(2)-CASSCF(6/6)/6-31G∗ (including three pairs of c and c∗ orbitals in

the active space). All SA-CASSCF calculations are carried out with the MOLPRO 2012

program package.247

Nuclear dynamics

Initial conditions for all dynamics (66 for ethylene, 21 for DMABN, and 18 for fulvene)

are sampled stochastically from a Wigner distribution for uncoupled harmonic oscillators

constructed from a frequency calculation at the ground-state optimised geometry of the

respective molecule. For ethylene and DMABN, both geometries and momenta are sampled

from this distribution. In contrast, for fulvene only geometries are Wigner-sampled and

initial momenta were set to zero (unless otherwise stated). All initial conditions are

available from Ref. [248].

The AIMS dynamics are performed with the FMS90/MOLPRO interface.160 The TBFs

are propagated with a time step of 20 ~�−1
ℎ

, reduced to 5 ~�−1
ℎ

in coupling regions. The

threshold to enter the spawning mode is �xed to 3.0 0−1
0 for ethylene and 10.0 0−1

0 for

fulvene (norm of the nonadiabatic coupling vector). Spawning is only allowed for TBFs

with a minimum population of 0.01. For ethylene, TBFs spawned on the ground state are

removed from the propagation if they have been uncoupled to any other TBFs for more

than 200 ~�−1
ℎ

, and the limit of allowed violation of classical energy is set to 0.03 �ℎ . This
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limit for energy conservation is set to 0.01 �ℎ for fulvene. The results of AIMS dynamics

for DMABN are taken from Ref. [121], where the spawning threshold (de�ned in this case

as the scalar product of the nonadiabatic coupling vectors and the nuclear velocities) is

set to 0.005~−1�ℎ , and the minimum TBF population required to spawn is 0.1. All AIMS

simulations use the independent �rst generation approximation.

The TSH simulations are carried out with the SHARC 2.0 program.217,249,250 The same

initial conditions as in the AIMS dynamics are used, but every trajectory is repeated using

10 di�erent random seeds to improve the convergence of the fewest-switches stochastic

process associated with nonadiabatic transitions as described in Sec. 2.6.2. Hence, a total

of 660 TSH runs are performed for ethylene, 210 for DMABN, and 180 for fulvene. A

nuclear time step of 0.5 fs is used (∼ 20 ~�−1
ℎ

), a local diabatisation scheme is employed,

and nonadiabatic couplings are obtained from wavefunction overlaps instead of computing

explicitly the nonadiabatic coupling vectors.251 Velocity rescaling following a surface hop

is performed along the nuclear momenta (unless otherwise stated).

The TSH simulations are carried out with and without the energy-based decoherence

correction184,187 (EDC), which dampens the electronic amplitudes of TSH in case of de-

coherence. The EDC is used as implemented by default in SHARC, and the same set of

random seeds are used for the simulation with and without decoherence correction to

ensure a proper comparison. It has to be noted here that the original implementation of

the EDC is used, where the TSH amplitudes of the non-running states are damped. Recent

discussions revealed that the TSH populations, instead of amplitudes, should have been

corrected, as done for example in Newton-X.187,252,253 The stability of the results has been

tested for both ways of imposing the EDC and no major variations have been observed.

Finally, it is noted that all the TSH trajectories employing the EDC strictly satisfy the

internal consistency criterion detailed in Ref. [184].

Comparability of AIMS and TSH dynamics

As introduced in Sec. 2.5.2, the number of TBFs will grow during an AIMS run as a

result of strong nonadiabatic couplings to account for the transfer of amplitude between

electronic states. As such, AIMS does require fewer runs than TSH to converge, as the

latter needs more runs to ensure proper convergence of the hopping algorithm.254 For an

optimal comparison between AIMS and TSH, it is desirable to adopt a strategy where a

given number of initial conditions are sampled from a Wigner distribution (for uncoupled
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harmonic oscillators) and used for both TSH and AIMS. However, in this work, ten TSH

runs are generated for each set of initial conditions by altering the seed for the random

number generator used in the hopping algorithm.184 As a result, each TSH run starting

from the same initial condition can produce di�erent trajectories due to a di�erent hopping

pattern. The strategy of using multiple TSH runs for each initial condition allows for

a better convergence of the fewest-switches algorithm and dramatically improves the

comparison with the AIMS result while using a common set of initial conditions.184

5.3.2 Molecular Tully Model I – Ethylene

Ethylene is the simplest example of a molecule showing photoinduced isomerisation

through conical intersections, and its photodynamics highlighted the importance of moving

beyond a simple one-dimensional model to study qualitatively this photoisomerisation.163

The nonadiabatic dynamics of ethylene from its �rst excited singlet state has been the sub-

ject of numerous theoretical studies, employing a variety of approaches such as wavepacket

propagation,255 TSH (see e.g., Refs. [256–261]), AIMS (see for example Refs. [262–267]),

MCTDH,268 MCE,148 or the partial linearised path-integral and symmetrical quasi-classical

approach within a quasi-diabatic propagation.240

All methods predict a very similar behaviour for the excited ethylene: after photoexcita-

tion to the bright cc∗ state (S1), internal conversion to the ground state occurs rapidly

through two possible conical intersections. However, the ultrafast deactivation occurs in a

Tully-I like manner, that is, the nuclear wavepacket only undergoes a single nonadiabatic

event via one or the other conical intersection. Thanks to its straightforward dynamical

behaviour, ethylene has already been used in several studies to demonstrate the perfor-

mance of on-the-�y nonadiabatic molecular dynamics methods, for example in Refs .[148,

153, 240, 260]. However, these benchmarks were not performed on a common set of initial

conditions or using similar electronic structure methods, and except for Ref. [240] have

not been consistently compared to other nonadiabatic dynamics methods.

The deactivation of ethylene from its S1 state is simulated with the original TSH,

decoherence-corrected TSH (dTSH, see computational details and Sec. 2.6.3 for more

information), and AIMS, using a set of common initial conditions and the strategy dis-

cussed in Sec. 6.2.2 for an improved comparison. Coining the photodynamics of ethylene a

molecular Tully I model is validated by looking at the average number of hops performed in

dTSH (< Nhops >, Fig. 5.3b): within the �rst 82 fs of dynamics, 80 % of the trajectories have
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Fig. 5.2.: Photodynamics of ethylene as a molecular Tully model I. Time trace of the potential
energies along a representative dTSH trajectory (the active state for the dTSH dynamics
is indicated by �lled circles).

decayed to the ground state and the average cumulative number of hops has only reached

1.3, indicating that most trajectories perform a single hop from S1 to the ground state S0.

Thus, the nonadiabatic dynamics of ethylene towards the ground state involves mostly

a single crossing event, followed by stable dynamics in S0, i.e., without hops back to S1.

This behaviour is illustrated by an exemplary TSH trajectory (Fig. 5.2). The two electronic

states come energetically close and, following the nonadiabatic transition at around 28 fs

when the trajectory hopped to the ground state, they separate again in energy, and the

trajectory remains in the ground state. Focusing now on the AIMS dynamics, it can be

observed that the average number of child TBFs (< Nchildren >), while rising slightly above

the average number of hops, remains below two as expected from a dynamics dominated

by a single avoided crossing.

The time traces of the S1 population obtained with the di�erent methods are overall in

good agreement (Fig. 5.3a). The decay starts after 11 fs of dynamics and the ground state

is largely populated within 80 fs. Despite the overall agreement between the di�erent

methods, small di�erences can be observed. dTSH predicts the fastest decay (with around

20 % of population remaining in the S1 after 82 fs). It was proposed in previous studies

that the more rapid population decay predicted by (d)TSH in comparison to AIMS could

be attributed to the intrinsic overcoherence of TSH. Even though the population traces

obtained with the di�erent methods are close to each other in the present simulations, as

a test it is attempted to reproduce the result obtained with (d)TSH by applying additional

approximation to AIMS. Therefore, the following approximations are enforced to the

AIMS dynamics: (i) setting intrastate couplings between TBFs to zero, (ii) propagating the
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Fig. 5.3.: Photodynamics of ethylene as a molecular Tully model I. a): S1 population decay as
obtained with AIMS (purple, standard error given as a shaded area), TSH (dark green),
and decoherence-corrected TSH (’dTSH’, light green). The population trace of the surface
hopping approach to AIMS (SHAIMS) is given until the approximations underlying this
dynamics are no more valid, i.e., when the child TBFs start to spawn back. b): time traces
of the average number of child TBFs (< Nchildren >) and the average number of hops
(< Nhops >) performed in TSH and dTSH.

amplitudes of the spawned TBFs on the support of the parent TBF, and (iii) enforcing a

perfect overlap between TBFs. These approximations intend to bridge the equations of

motion for the amplitudes in AIMS to those of TSH, and was hence coined Surface Hopping

Approach to AIMS (SHAIMS, c.f. Sec. 2.6.4). Interestingly, the nonadiabatic dynamics

described by SHAIMS closely follows that of dTSH (dashed line in Fig. 5.3) and shows a

faster decay of the S1 population as compared to AIMS. While care has to be taken when

assessing the di�erence in population decay due to the close agreement of the methods,

SHAIMS appears to indicate that a perfect overlap between TBFs would indeed tend to

speed up the transfer of population towards the ground state, as observed for TSH and

dTSH. TSH and dTSH start to diverge noticeably after 35 fs of dynamics while exhibiting

a similar population time trace until this time. This point of divergence is also observed in

the average number of hops between the two TSH methods and can be correlated with

some hops back to S1 taking place in the TSH dynamics but prevented in dTSH thanks to

the use of the decoherence correction. The fact that the hops back do not take place in

dTSH also explains why the SHAIMS strategy agrees more with dTSH after 35 fs (as back

spawns are arti�cially prevented in this analysis method).

In summary, the molecular Tully model I appears to be a good general �rst test for any

newly-developed nonadiabatic dynamics strategy.
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Fig. 5.4.: Photodynamics of DMABN as a molecular Tully model II. Time trace of the potential
energies along a representative dTSH trajectory (the active state for the dTSH dynamics
is indicated by �lled circles).

5.3.3 Molecular Tully Model II – DMABN

As discussed earlier, the original Tully model II depicts a somewhat more complicated

case of nonadiabatic dynamics than the model I, where more than one avoided crossings

can be encountered during the dynamics. It is shown here that a comparable behaviour is

observed at the molecular level during the photodynamics of DMABN. This molecule has

been the subject of di�erent studies looking into the details of its ultrafast decay from the

photoexcited S2 state and using di�erent levels of theory for the electronic structure and

the nuclear dynamic.121,269–271 All previous work agreed on the ultrafast relaxation from

the S2 to the S1 occurring within the �rst 50 fs of dynamics. This ultrafast decay is also in

line with the photodynamics of the parent molecule 4-aminobenzonitrile, studied with

MCTDH.272 However, the S2 and S1 states remain close in energy during the excited-state

dynamics, and the nuclear wavepackets visit subsequent nonadiabatic regions leading to

oscillations of the population between these two states after the initial ultrafast decay.

Such multiple crossings between a pair of electronic states link the photodynamics of

DMABN to the Tully model II.

The average number of hops during the dTSH dynamics of DMABN rises to more than

four within the �rst 200 fs of dynamics (Fig. 5.5b). In stark contrast with the dynamics

of ethylene, the (d)TSH dynamics of DMABN is characterised by a signi�cant number

of nonadiabatic transitions between the same pair of electronic states, further exempli�ed

by the exemplary trajectory shown in Fig. 5.4. Hops between the two states occur at

7, 85.5, 96, 103, 112, 121, 157, and 179 fs. Importantly, the nonadiabatic transitions do
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Fig. 5.5.: Photodynamics of DMABN as a molecular Tully model II. a): S2 population decay as
obtained with AIMS (purple, standard error given as a shaded area), TSH (dark green), and
decoherence-corrected TSH (’dTSH’, light green). b): time traces of the average number
of child TBFs (< Nchildren >) and the average number of hops (< Nhops >) performed in
TSH and dTSH.

not happen in the same region of the intersection seam (the electronic energies at the

di�erent hopping points are di�erent). This observation is crucial as it indicates that the

dTSH trajectories do not hop back and forth between S2 and S1 in the same region of the

intersection seam but instead visit di�erent points of such crossing seam, analogously

to the two avoided crossings in Tully model II. As a corollary to this observation, one

would expect a branching of the nuclear wavepackets after each nonadiabatic transition

without them interfering again at a later time, i.e., with no recoherence.273 This nonadiabatic

dynamics contrasts with the Stueckelberg oscillations observed in the original Tully model

II16 that are caused by a modulation of the nonadiabatic interferences between the two

wavepackets at the second avoided crossings as a function of the initial momentum of the

wavepacket.206

All methods – TSH, dTSH, and AIMS (from Ref. [121]) – predict an ultrafast decay of the

S2 population and the corresponding population traces are similar during the �rst 30 fs (cf.

Fig. 5.5a). After this time, the result of the TSH dynamics starts to deviate more strongly

from that of the other two methods. Interestingly, this speci�c behaviour of TSH starts

to appear when the average number of hops is reaching 2, indicating that, on average,

a TSH trajectory has experienced two hopping events between the same pair of states.

Combining this information with the one discussed above (hops in di�erent regions of the

intersection space) allows us to assume that TSH, in this particular case, su�ers from its lack
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of decoherence. While the nuclear wavepackets should branch after each nonadiabatic

transition, the ITA forces each TSH trajectories to propagate their amplitudes on the

support of a unique trajectory, leading to an overcoherence propagation.221 Importantly, a

large average number of hops between the same pair of states may also defeat the fewest-

switches idea of TSH and insu�ate a mean-�eld character to the excited-state dynamics.16

The described failure of TSH is, however, easily addressed by enforcing decoherence on

the amplitudes carried by each trajectory, as showed by the excellent agreement of dTSH

with AIMS during the entire nonadiabatic dynamics and its reduced number of average

hops. It is noted that decoherence corrections may not o�er an adequate patch to TSH if

recoherences were present in the dynamics.273

The molecular Tully model II can then be used to study the behaviour of a given

nonadiabatic molecular dynamics method during excited-state dynamics with multiple

crossings between the same pair of electronic states. It also o�ers an exciting test for

novel strategies that aim at incorporating decoherence e�ects in mixed quantum/classical

methods beyond the somehow ad hoc corrections of the TSH algorithm.

5.3.4 Molecular Tully Model III – Fulvene

Previous theoretical work on the fulvene molecule has unravelled two possible decay

channels upon photoexcitation on the �rst excited electronic state S1, see for example

Refs. [234, 274–276]. The �rst deactivation pathway is driven by a stretch of the C−−CH2

moiety and involves a strongly sloped conical intersection with S0, while the second one

relies on a twist of the same C−−CH2 moiety and decay through a peaked conical intersection.

In the �rst mechanism, the photogenerated nuclear wavepacket passes through the sloped

conical intersection and is subsequently re�ected on the lower electronic state back towards

the nonadiabatic region where a recrossing takes place, leading to a stepwise decay of

the S1 population. Such a nonadiabatic transition involving a re�ection is reminiscent

of the dynamics generated by the Tully model III (see Fig. 5.1c). More importantly, the

previous theoretical studies also highlighted the strong correlation between the initial

dynamics of the nuclear wavepacket and the decay channel followed.234 Hence, one of

the two deactivation pathways can be privileged by altering the initial conditions for

the dynamics – an observation that will be used in the following to probe the re�ection

mechanism in the nonadiabatic dynamics of fulvene. To ensure a favoured decay of the

nuclear wavepacket through the sloped conical intersections, the initial geometries for the
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Fig. 5.6.: Photodynamics of fulvene as a molecular Tully model III. Time trace of the potential
energies along a representative dTSH trajectory (the active state for the dTSH dynamics
is indicated by �lled circles).

dynamics are sampled from a Wigner distribution but their initial momenta are set to zero

in the �rst place.

The re�ective nature of the nonadiabatic dynamics through the sloped conical inter-

section is illustrated by the exemplary dTSH trajectory presented in Fig. 5.6. During the

dynamics, the two electronic states get closer in energy until the conical intersection is

reached at around 7 fs, leading to a net transfer of population from S1 to S0. However, the

trajectory rapidly re�ects and reaches the same region of con�guration space again after

only 5 fs, where a recrossing occurs and leads to a population back transfer towards S1. The

coupling region is met again after 28 fs of dynamics, this time leading to a stable trajectory

in S0. Importantly, all the recrossings occur at close electronic energies, indicating that

the nuclear wavepacket hits each time a similar region of the intersection seam.

AIMS, dTSH, and TSH show all a signi�cant S1 population decay after 7 fs of dynamics

and agree on the remaining population in the excited state: ∼ 20% after 10 fs (see Fig. 5.7a).

The recrossing leading to back population transfer occurs in all methods shortly after, but

its related population transfer depends on the nonadiabatic dynamics method employed.

While AIMS predicts that only around 30% of population is in the S1 state between 15 and

25 fs, the repopulation process of S1 starts earlier and lasts longer with TSH and dTSH (at

around 12 to 30 fs) and the resulting excited-state population plateaus at higher values

(40% and 50% of S1 population with dTSH and TSH, respectively). Interestingly though, all

methods appear to agree more closely during the subsequent nonadiabatic event occurring

between 35 and 45 fs. The average number of hops tends towards two for TSH and dTSH

within the timescale of our simulation. In contrast, the average number of child TBFs
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Fig. 5.7.: Photodynamics of fulvene as a molecular Tully model III. a): S1 population decay as
obtained with AIMS (purple, standard error given as a shaded area), TSH (dark green),
decoherence-corrected TSH (’dTSH’, light green), decoherence-corrected TSH with veloc-
ity rescaling performed around the nonadiabatic coupling vectors (’dTSHrNACV’, dashed
green), and pseudo independent trajectory approximation in AIMS (’pITA-AIMS’, dashed
palatinate with standard error given as a shaded area). b): time traces of the average
number of child TBFs (< Nchildren >) and the average number of hops performed in
(d)TSH (< Nhops >).

increases stepwise to a value of 5.5 over the same period of time, highlighting that AIMS

spawns new TBFs for the di�erent recrossing events (cf. Fig. 5.7b).

To ensure a conservation of total energy along a (d)TSH trajectory, it is necessary

to adjust the nuclear kinetic energy after each surface hop to account for the loss or

gain in potential energy. Several strategies have been proposed for this task: the most

straightforward approach (implemented as default in several TSH codes) is to rescale

the nuclear velocity vectors isotropically – a strategy used in all (d)TSH runs above.

Alternatively, nuclear velocities can be scaled along the nonadiabatic coupling vectors.

This latter strategy is usually encouraged as it can be justi�ed by semiclassical arguments,

but in practice, it implies the explicit calculation of the nonadiabatic coupling vectors,

which might increase the computational cost of the dynamics. In AIMS, the nuclear kinetic

energy of a newly spawned TBF is by default rescaled along the nonadiabatic coupling

vectors, but can also be done isotropically. The in�uence of the nuclear velocity rescaling

is tested on the result presented above for dTSH and AIMS. In dTSH, rescaling the nuclear

velocities along the nonadiabatic coupling vectors (dTSHrNACV in Fig. 5.7) drastically

alters the population dynamics: the S1 population decays to around 5% during the �rst

nonadiabatic transition and the amount of repopulation of the S1 state is reduced to only
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Fig. 5.8.: Convergence of the dTSHrNACV dynamics of fulvene with respect to the timestep.

around 20%. In contrast, the AIMS dynamics is mostly unchanged when the child TBFs

nuclear velocities are rescaled along the nonadiabatic coupling vectors or isotropically.

However, it can be seen that by reducing the time step during the TSH dynamics, the

population curve obtained with dTSHrNACV shows the stronger repopulation as observed

with dTSH (see Fig. 5.8).178 This observation highlights the importance of converging

dTSH simulations also with respect to their timestep.

A key di�erence between AIMS and (d)TSH is that the TBFs in the former are coupled,

while the trajectories of the latter are all propagated independently as a result of the ITA

(see Sec. 2.6.2). To analyze the role of the role played by the intrastate couplings between

TBFs in AIMS, that is, the coupling between the TBFs evolving on the same electronic

state, the AIMS dynamics are repeated with removing all direct intrastate couplings by

setting the overlap between the TBFs belonging to the same electronic state to zero. This

pseudo independent trajectory approximation in AIMS (pITA-AIMS, dark purple dashed

line in Fig. 5.7) substantially alters the population dynamics originally observed with

AIMS after around 11 fs: an almost complete population decays of S1 is observed, and

the re�ection only brings ∼ 15% of the S1 population back. Interestingly, the population

dynamics of pITA-AIMS is in quite close agreement with that obtained by dTSHrNACV,

pointing out the potential importance of the intrastate coupling between TBFs for the

decay of fulvene through its sloped intersection. However, it is important to remember at

this stage that, while AIMS accounts for both intra- and interstate couplings between the

TBFs emanating from a given parent TBF, the Hamiltonian matrix elements responsible for

such couplings are approximated using the SPA0 (see Sec. 2.5.3). Interestingly, improving
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the description of the intrastate couplings to the SPA1 instead of the SPA0 does not alter

the AIMS dynamics, suggesting that the SPA0 may provide a reasonable description of

the coupling between the TBFs present in the simulation (see below for an additional

discussion on these results).

An exciting aspect of the original one-dimensional Tully models is the possibility to

change the initial momentum of the nuclear wavepacket. Such a variation of the initial

kinetic energy of the nuclear wavepacket permits to probe the nonadiabatic dynamics in

di�erent regimes and also to create speci�c situations involving nonadiabatic interferences

for example (see the discussion on Stueckelberg oscillations above) or transfer of the

nuclear wavepacket above a barrier on the potential energy curves. Playing with the initial

momenta for a molecular system is more challenging to achieve in a controlled way but

was proposed for di�erent molecules as a means of investigating speci�c photochemical

reaction pathways.234,276,277 It is proposed here to reproduce this speci�c feature of the

original Tully models by testing the in�uence of the initial momenta on the nonadiabatic

dynamics of fulvene.

To achieve this goal, a simpli�ed scheme is proposed here where the same set of initial

conditions (described earlier) is used for the nuclear con�gurations, but to which a (single)

set of nuclear momenta is attached that is sampled according to a Wigner distribution

where only the contribution of the C−−CH2 stretching mode is incorporated while all other

contributions are set to zero (overall kinetic energy of 1.71 meV). This choice is motivated

by the discussion above on the deactivation pathways of fulvene: the sloped intersection is

reached by a coordinate containing a substantial contribution from the C−−CH2 stretching.

Hence, adding more kinetic energy along this mode will a�ect the dynamics of fulvene

along the reactive coordinate leading to the sloped conical intersection – a test reminiscent

of the idea of altering the nuclear momentum of a nuclear wavepacket in the original

one-dimensional Tully models. To further enhance the e�ect of this kick in kinetic energy,

a multiplicative factor is applied to the initial set of nuclear velocities (of the (d)TSH

trajectories or AIMS TBFs) to generate additional initial conditions with an increasing

amount of nuclear kinetic energy. While this o�ers a simple testbed for the in�uence of

the initial kinetic energy of the system on the branching ratio between electronic states,

it has to be duly noted that methods incorporating a more accurate description of the

nuclear wavepacket dynamics (such as FMS or vMCG) would also need to correct the initial

wavefunction, that is, the amplitudes carried by each travelling Gaussian, to adequately
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Fig. 5.9.: S1 population after 19.5 fs of dynamics for initial conditions with di�erent initial nuclear
kinetic energy for all methods presented in the central �gure.

perform such a test (see for example Ref. [276]). In Figure 5.9 shows the S1 population

after 19.5 fs of dynamics for AIMS and (d)TSH as a function of the initial kinetic energy

of the trajectories or TBFs, respectively. While the S1 population at this time seems to

only slightly vary for both TSH and dTSH for di�erent kinetic energies, AIMS shows

more variations. The di�erence between the population decay in dTSH and dTSHrNACV

discussed above for the case with zero initial kinetic energy is also visible over the full

range of nuclear kinetic energies: a signi�cantly lower population in S1 is observed after

19.5 fs in dTSHrNACV in all cases. In addition, the good correlation between the result of

dTSHrNACV and pITA-AIMS discussed above is also observed for most tests with higher

initial kinetic energy – both predicting a signi�cantly lower S1 population after 19.5 fs

than all other methods. It has to be noted that dTSHrNACV shows a stronger repopulation

of the S1 in the case of the initial kinetic energy of 7 meV, leading to a closer agreement

with the AIMS dynamics.

From the dynamics proposed here, it appears that the molecular Tully model III requires

a proper description of the non-local behaviour of the nuclear wavepackets involved in the

dynamics. This is translated in AIMS by the importance of intrastate couplings between

the TBFs spawned in S0. While this could constitute an exciting test for methods describing

such couplings131,146,149 and an example of potential issues with the independent trajectory

approximation of (d)TSH, at this stage the earlier caveat should be repeated. AIMS can

describe both intra- and interstate couplings between TBFs, but the integral mediating

such couplings are approximated – see the brief discussion on the SPA in Secs. 2.5.3 and

4.5, and Ref. [212] for more details – and a su�cient number of TBFs are required to

ensure an adequate convergence of the result. More speci�cally, the intrastate coupling is

only crudely approximated and higher order of the SPA can be required in cases where

such couplings are critical (see also the discussion on time-dependent dipole moments in
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Ref. [212]). As mentioned above, additional calculations have been carried out using the

SPA up to �rst order for the set of initial conditions with zero initial kinetic energy, and

only minor di�erences in the population dynamics are observed. While the test comparing

the SPA0 and SPA1 is reassuring, the molecular Tully model III will surely stimulate further

development of AIMS to ensure that intrastate (and interstate) couplings are adequately

described in such cases and to investigate the importance of spawning more child TBFs

when intrastate couplings appear to be important.

5.4 Challenging new nonadiabatic dynamics methods
with the molecular Tully models

Since their proposition, the molecular Tully models have been used in several contexts to

test the limits of nonadiabatic dynamics methods. The methods that have been tested on one

or more of the molecular Tully models include fewest switches surface hopping with Baeck-

An couplings,278 ab initio symmetric quasi-classical approach,279 decoherence induced

surface hopping based on the exact factorisation,178 stochastic selection ab initio multiple

spawning,280 and ab initio multiple spawning with informed stochastic selections.281 In

the following, I want to shortly present two exemplary uses of the molecular Tully models.

5.4.1 Stochastic selection ab initio multiple spawning – fulvene

As introduced in Sec. 2.5.4, the newly proposed SSAIMS method provides an approximation

to AIMS dynamics to reduce the computational cost.169 It monitors the coupling between

(groups of) TBFs and once this coupling falls below a prede�ned threshold, a stochastic

process is initiated and one of the groups of TBFs is eliminated and removed from the

dynamics. This stochastic process is reminiscent of the stochastic hops employed in TSH

even if the stochastic process in SSAIMS does not take place during the nonadiabatic

transitions but later on when TBFs become uncoupled. Therefore, it is inviting to compare

the formalism of SSAIMS in its two �avours — ESSAIMS and OSSAIMS (using an energy

or overlap based criterion for the initialisation of the stochastic selection process, see

Sec. 2.5.4) — with AIMS and TSH, for the quality of the predicted population traces as

well as the computational e�ciency. The molecular Tully model III, fulvene, was shown

above to be quite sensitive to the method employed with signi�cant di�erences between
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Fig. 5.10.: Photodynamics of fulvene – comparison between AIMS, (E/O)SSAIMS, and (d)TSH.
Lower panel: S1 population decay as obtained with AIMS (purple curve), TSH (dark
green curve), dTSH (green dashed curve), ESSAIMS (dark curve, n = 10−5 au), OSSAIMS
(light curve, n = 10−2), dTSH∗ (light green dotted curve, one run per initial condition),
and ESSAIMS∗ ( blue dashed curve, one run per initial condition). Error bars indicate
standard errors.

the population traces predicted by AIMS and TSH. It is therefore a model of choice for the

comparison between (E/O)SSAIMS, AIMS and TSH.

Computational details

The identical AIMS, TSH and dTSH dynamics as described in Sec. 5.3.1 are used for

comparison here. The (E/O)SSAIMS dynamics are performed with the FMS90/MOLPRO

interface, the same electronic structure and AIMS parameters as described for AIMS in

Sec. 5.3.1 are used. The thresholds used for the stochastic selection are 10−5 �ℎ for ESSAIMS

and 10−2 for OSSAIMS. For convergence of the stochastic algorithm, the SSAIMS dynamics

for every initial condition are all repeated 5 times with di�erent random seeds. To ensure

a fair comparison, the dTSH dynamics are repeated 7 times with di�erent random seeds,

so that the maximum of the standard error in the S1 populations match between SSAIMS

and dTSH.

Results

Fig. 5.10 shows the S1 population traces for AIMS, ESSAIMS, OSSAIMS, as well as TSH

and dTSH. Despite the complexity of the re�ection process, both ESSAIMS(n = 10−5 au)
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Fig. 5.11.: Computational e�ort of the photodynamics of fulvene. Top panel: time traces of the
average number of TBFs (< NTBF >) for each method.

and OSSAIMS(n = 10−2) accurately reproduce the initial decay of population and the

�rst revival of S1 population obtained with AIMS. OSSAIMS predicts the same amount

of re�ected population as AIMS, while ESSAIMS only slightly underestimates it. The

stochastic-selection strategies do not fully capture the second, much weaker re�ection

process after 35 fs of dynamics using their respective selection criterion. Looking at the

average number of TBFs during the dynamics, one can deduce that the stochastic selection

algorithm only takes e�ect after 10 fs of dynamics when 2 TBFs are present on average

for all methods. Subsequently, the average number of TBFs in AIMS grows signi�cantly,

up to almost 5, while it decreases in ESSAIMS and OSSAIMS and remains well below 2.

In contrast with the agreement between (E/O)SSAIMS and AIMS, the population trace

predicted by (d)TSH di�ers signi�cantly from that obtained with AIMS, with more than

twice the population appearing in S1 after the re�ection process.†

Matching the standard error of (E/O)SSAIMS with that of (d)TSH requires �ve runs for

the former and seven for the latter, for each initial condition. Therefore, for long periods

of the simulation, where the number of TBFs in (E/O)SSAIMS remains well below 2, its

computational cost is comparable and even lower than the cost of TSH. Interestingly,

AIMS is the least expensive method during the �rst half of the dynamics, until 20 fs

of dynamics, at which points its computational e�ort rises above the one of the fully

converged (E/O)SSAIMS.

The ESSAIMS population trace obtained with only one run per initial condition already

agrees closely with the fully-converged result – within the standard error of the fully

converged ESSAIMS result for most of the simulation, except for the initial decay at 10 fs
†As described above, the simulation parameters of dTSH can have an important in�uence on the population

decay in the dynamics of fulvene.

5.4. Applications of the molecular Tully models 135



and during the short repopulation at 28 fs. Conversely, the dTSH dynamics with a single

run shows signi�cant deviations from its converged result, lying well outside the standard

error for most of the dynamics. This example further highlights the di�erence between

the stochastic processes in (E/O)SSAIMS and (d)TSH: in (d)TSH the stochastic process

is used to describe the nonadiabatic transitions per se, and its convergence is crucial in

complex nonadiabatic processes like here with fulvene; in (E/O)SSAIMS, the stochastic

processes mostly take place after the nuclear wavepacket branching following a conical

intersection, while the nonadiabatic transition itself remains described at the AIMS level.

5.4.2 Decoherence corrections based on the exact factorisation

As introduced in Sec. 2.6.3, a critical aspect when performing a TSH simulation is to

account, at least approximately, for decoherence — which TSH in its original formulation

fails to do. Therefore, one needs to rely on additional decoherence corrections to overcome

the overcoherent nature of TSH. To this end, di�erent schemes have been recently proposed

(see Sec. 2.6.3 for a list), among which decoherence induced surface hopping based on

the exact factorisation (DISH-XF). The performance of DISH-XF has not been compared

yet with other decoherence corrections or with higher-level non-adiabatic dynamics

methods (aside from model systems where exact results are available). Therefore, the main

objective here is to compare the e�ects of the decoherence correction arising from the

exact factorisation to the widely used energy based decoherence correction (TSH-EDC)

and augmented fewest switches surface hopping (A-FSSH). A short explanation of all

di�erent decoherence schemes used in this work is provided in Sec. 2.6.3.

Computational details

The same AIMS calculations as detailed in Sec. 5.3.1 are used for reference here. Identical

electronic structure and initial conditions as described in Sec. 5.3.1 are used for all the dy-

namics for both, ethylene and fulvene. The TSH and DISH-XF, calculations are performed

with the code PyUNIxMD (UNIversal eXcited state Molecular Dynamics, UNI-xMD).282

The TSH-EDC and A-FSSH computations are done with the code SHARC 2.0 (Surface

Hopping including Arbitrary Couplings)217,249,250.

The nuclear time-step is taken as 3C = 0.5 fs unless otherwise stated, while the electronic

time-step is taken 10000 times smaller in UNI-xMD, and 25 times smaller in SHARC (the

default). It has been checked that decreasing the time-step does not alter the results except
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Fig. 5.12.: Population dynamics in ethylene: DISH-XF compared with TSH, TSH-EDC and A-FSSH,
all with isotropic velocity adjustment, along with the reference AIMS results. The
left panel shows the fraction of trajectories Π(1 (C) in the (1 state. The right panels
demonstrates the internal consistency of the surface-hopping methods, with the solid
lines showing Π(1 (C) again, compared with dashed lines showing the (1 electronic
populations d(1,(1 (C).

for the case of fulvene; the convergence is generally better for the decoherence-corrected

schemes than uncorrected ones. As will be discussed, the dynamics in fulvene is somewhat

sensitive to the choice of time-step. The large slope of the crossing region means that a

large number of trajectories encounter the sharp and localised non-adiabatic coupling.

For TSH and DISH-XF, the explicit NACV were used in the equation of motion, while

for TSH-EDC and A-FSSH they were obtained from wavefunction overlaps by default in

SHARC.251 There is little di�erence in the results when using these two approaches, except

for the fulvene molecule where the convergence with respect to time-step is better using

the wavefunction overlap scheme, as mentioned earlier. An isotropic velocity adjustment

was performed after a surface hop unless otherwise stated.

Ethylene

For each of the surface hopping schemes, 10 trajectories for each initial condition are run

but the results are already converged even with 5 trajectories per initial condition. The

width of the Gaussian, f , used to estimate the nuclear density in DISH-XF, is obtained

from the initial distribution of the nuclear trajectories of the C−−C double bond, and it is

set to 0.05.

Fig. 5.12 shows the (1 populations as determined by both the fraction of trajectories

and the electronic populations, computed from the TSH, DISH-XF, TSH-EDC and A-
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Fig. 5.13.: Comparing population dynamics in ethylene for 3 trajectories with the same initial
conditions, TSH, DISH-XF, TSH-EDC and A-FSSH, with isotropic velocity adjustment.
Continuous lines show the populations d(1,(1 (C) while the correspondingly coloured
symbols indicate the active state. Top panels show the electronic energies during
DISH-XF dynamics.

FSSH simulations. For this system, the fraction of trajectories predicted by uncorrected

TSH is very close to the reference AIMS, but there is a notable internal consistency

error, as expected. Averaged over trajectories, the DISH-XF decoherence correction from

exact factorisation and TSH-EDC yield very similar results, increasing the population

transfer compared to the uncorrected TSH, and correcting the internal consistency of

the uncorrected TSH (the electronic populations are practically on top of the fraction of

trajectories in both cases). They appear to agree less well with AIMS but do not deviate

too far and would lie within the standard error of AIMS A-FSSH is closer to AIMS, but it

shows worse internal consistency than TSH-EDC and DISH-XF.

The close agreement of DISH-XF, TSH-EDC and A-FSSH is not obvious, given the di�er-

ent structure of the corrections discussed earlier. Comparing on an individual trajectory

level the electronic populations and active state for the di�erent decoherence corrections,

they show a quite di�erent behaviour (see Fig. 5.13 for three randomly chosen trajecto-

ries). The TSH-EDC correction damps down the populations after a hop in a mostly (but

not entirely) monotonic way, while the DISH-XF tends to be typically non-monotonic,

showing more oscillations and generally takes longer to decohere. The stochastic nature

of the A-FSSH decoherence correction is evident, and suggests, for this molecule, a longer

decoherence time than the other methods.

The di�erent behaviour on an individual trajectory level is re�ected in an average over all

trajectories of the decoherence indicator,27,130,131 de�ned as d10(C) =
∑#traj
�
|� ( � )
(1
�
( � )
(0
|2/#traj.

The DISH-XF dynamics grows to a larger coherence and takes a longer time to decohere

than TSH-EDC, but the overall structure is similar. On the other hand, as clear from the

sample trajectories, A-FSSH remains coherent longer. Although, in the present case, this
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Fig. 5.14.: Decoherence indicator in ethylene: TSH, DISH-XF, TSH-EDC and A-FSSH.

di�erence does not a�ect the overall population dynamics very much, nor the nuclear

geometries (not shown), it opens the question of whether the di�erent behaviour results

in other systems.

Finally, the importance of the choice of velocity adjustment (see Sec. 2.6.3) is evident in

Fig. 5.15, where the top panel shows the results of uncorrected TSH with three di�erent

ways of velocity adjustment and the lower panel shows the DISH-XF case. The spread

in the results shows that, in this case, the choice of velocity adjustment has just about

as much e�ect on the dynamics as the decoherence correction. In particular, while the

internal consistency is very well corrected by the decoherence correction when using

isotropic scaling, errors remain when scaling along NACVs is performed, consistent with

the expectation. When isotropic scaling is used as a “back-up" to scaling along the NACV

in the NACV+iso approach, the error in the internal consistency is again small when the

decoherence correction is applied; the results are close to the isotropic scaling case for

this molecule.

Fulvene

As stated above, fulvene represents a challenging case due to the re�ection process on the

sloped conical intersection. In addition, it has been observed that the choice surface hop-

ping scheme can have substantial in�uences on the predicted population decay. Therefore,

it seems to present an ideal test system for the e�ects of DISH-XF. The f parameter of

DISH-XF is chosen as 0.065, which corresponds to the variance of the initial distribution

of C−−C double bonds of the nuclear trajectories.
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Fig. 5.15.: Comparison of di�erent velocity adjustments in ethylene. Left panel: uncorrected TSH,
Π(1 (C) and d(1,(1 (C), with velocity adjustments of isotropic, NACV, and NACV-iso; right
panel: the same with DISH-XF. AIMS is shown as reference.

Fig. 5.16.: Fulvene populations. Right panel shows the convergence of Π(1 with respect to the
nuclear time-step 3C = 0.1, 0.25, 0.5. Left panel: choosing 3C = 0.1, the fraction of
trajectories Π(1 along with d(1,(1 (dashed), for DISH-XF, TSH-EDC, and TSH against
the AIMS reference.
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The sharply sloped conical intersection gives a large dependence on the time-step 3C

since the interaction region can be missed. It can be seen that as 3C decreases from 0.5,

0.25, 0.1, DISH-XF predicts more population transfer during the initial event (Fig. 5.16, top

panel), as expected when the non-adiabatic couplings are sharply peaked. For DISH-XF,

the 3C = 0.1 are close to converged with respect to dt, as shown by the result with 3C = 0.05.

Partially, this dependence can be mitigated by using wavefunction-overlaps to compute the

coupling terms, with a local diabatisation scheme. The TSH-EDC calculations in SHARC

utilise this scheme, and it was shown in Fig. 5.8 that although TSH-EDC predictions with

3C = 0.5 (green dash-dot line) plateau to a di�erent level after 15 fs (and is closer to

the AIMS result) than that predicted with the 3C = 0.1 and 0.25 calculations, the results

do appear converged with 3C = 0.25. This example highlights the need to check for

convergence with respect to the time-step in these cases. As mentioned earlier, the recent

method of Ref. [283] is promising in this regard. AIMS uses an adaptive time-step so does

not have such sensitivity.

In the lower panel, it can be seen that both decoherence-corrected schemes increase

the population transfer compared to pure TSH, with good internal consistency. Both

TSH-EDC and DISH-XF agree quite well with each other, despite their di�erent operation

mechanisms.

5.5 Conclusions

In this chapter, a molecular version of the original Tully models was proposed, aiming

at o�ering a uni�ed mean of comparison between the di�erent strategies for on-the-�y

nonadiabatic molecular dynamics. First, these tests were used to compare two of the most

commonly employed methods for excited-state dynamics, TSH and AIMS.

The molecular Tully model I, ethylene, o�ers a simple test for nonadiabatic molecular

dynamics as it depicts photodynamics dominated by a single nonadiabatic crossing event.

As such, all methods tested are in good agreement, with a potential tendency for (d)TSH

to exhibit a slightly faster S1 population decay in the early stage of the excited-state

dynamics. The molecular Tully model II, DMABN, stresses the nonadiabatic methods

slightly more as the photodynamics from the S2 excited state involves multiple crossings

between S2 and S1 – a rather challenging dynamics to describe for TSH without a correction

for decoherence. The molecular Tully model III, fulvene, paves the way for numerous
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ways of playing with nonadiabatic methods. The re�ection of the nuclear wavepacket

following passage through the sloped conical intersection as well as the possible intra-

and interstate coupling between the nuclear wavepackets makes it a rather stringent test

for all methods tested. The population dynamics can be altered by varying the initial

conditions (nuclear kinetic energy) of the nonadiabatic dynamics à la Tully. The AIMS

dynamics indicates that intrastate couplings between TBFs are likely to play a role in

the nonadiabatic dynamics of fulvene – a type of couplings not described in (d)TSH due

to its independent trajectory approximation. However, while previous dynamics using

vMCG seem to con�rm the importance of these couplings, the photodynamics of fulvene

exempli�es one of the important limitations of the molecular Tully models presented here:

the lack of exact solutions for these nonadiabatic processes. Nevertheless, the central

goals of these molecular Tully models are to (i) compare the strengths and weaknesses

of di�erent nonadiabatic molecular dynamics and (ii) stimulate the detection of potential

improvements by highlighting processes that stress the existing approximations of a given

method – for example, the saddle-point approximation of AIMS in the present case of

fulvene.

Interestingly, the original Tully models highlighted speci�c features of nonadiabatic

dynamics that were observed in the molecular version of this models, further reinforcing –

if needed – the need for challenging models in low dimensions and providing an essential

connection between the world of chemical physics (exactly-solvable models) and physical

chemistry (photodynamics of molecules).

After their proposition, the molecular Tully models have already been used to test the sta-

bility and performance of several nonadiabatic methods. In this chapter, it was exempli�ed

how the two �avours of SSAIMS (ESSAIMS and OSSAIMS) manage to reproduce the AIMS

dynamics of fulvene, at a cost comparable to TSH. It could be observed that with equally

good agreement, OSSAIMS reduced the cost of the dynamics even further. In addition,

on the Tully models I and III, the DISH-XF formalism was compared to other commonly

employed decoherence schemes for TSH. It was found that the DISH-XF, TSH-EDC, and

A-FSSH decoherence corrections operate in very di�erent ways on an individual trajectory,

but at least for the systems studied, when averaged over the full set of trajectories, the

results for the electronic populations and nuclear geometry dynamics are similar.

Overall, the molecular Tully models propose a �rst step towards a generalisation of

benchmarks for nonadiabatic dynamics methods for full molecular systems. They are

142 Chapter 5 Molecular models to challenge nonadiabatic dynamics



intended of serving as a set of prototypical molecules, where controlled testing of approx-

imations of nonadiabatic dynamics methods is facilitated, which probe some processes

that typically occur in molecules upon photoexcitation.

5.5. Conclusions 143





Probing the limits of

nonadiabatic dynamics with

photoinduced ring-opening

reactions

6

This chapter is based on the publication:
L. M. Ibele∗, Y. Lassmann, T. J. Martínez and B. F. E. Curchod, "Comparing (stochastic-
selection) ab initio multiple spawning with trajectory surface hopping for the photody-
namics of cyclopropanone, fulvene, and dithiane", J. Chem. Phys., 154, 104110 (2021)
∗Contribution: carried out all the TSH and AIMS calculations, all SSAIMS calculations on
dithiane, part of the SSAIMS calculations on cyclopropanone, analysed the data and wrote
the initial draft of the manuscript.

6.1 Introduction

As discussed in Sec. 2.5.3, AIMS can provide very accurate nonadiabatic dynamics simula-

tions on the �y for molecules in their full con�guration space. The method is based on a set

of fully coupled TBFs that can be expanded during the dynamics whenever necessary. In

theory, the number of electronic-structure calculations required per AIMS time step scales

quadratically with the number of TBFs, due to their mutual coupling.∗ As the spawning

algorithm is only designed to create new TBFs, it is not unusual that a large number of

TBFs is carried throughout the dynamics with the nuclear amplitude only distributed

among a few of them – the other TBFs do not contribute to the description of the nuclear

wavepackets anymore or are not coupled to the rest of the swarm. The stochastic selection

ab initio spawning (SSAIMS, cf. Sec. 2.5.4),169 o�ers a way to reduce the cost of an AIMS

simulation with only a minimal loss of accuracy in the description of the nonadiabatic

processes. Proof-of-principle tests of SSAIMS have revealed its potential as a cheaper

∗In most implementations of the AIMS algorithm, this scaling is alleviated by neglecting matrix elements
between TBFs with vanishing nuclear overlap.
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alternative to AIMS, as shown on simplistic molecules in Ref. [169] and this work, on the

molecular Tully III, fulvene, in Sec. 5.4.1.

There are (among others) two situations, where the fully coupled nature of the TBFs

in AIMS has a strong e�ect that limits the applicability: i) if one electronic state leads to

encounter regions of con�guration space where the electronic structure method potentially

becomes unstable and ii) if the dynamics encounters repeated and delocalised crossings of

two or more electronic states which triggers a large number of spawns. In the �rst case,

the coupling of the TBFs limits the use of AIMS drastically: if one TBF out of the large

bundle encounters an instability, the whole dynamics has to be stopped, even if this TBF

is not interacting with the bundle anymore. In the latter case, the large number of TBFs

will make the dynamics computationally very expensive and therefore limits the time

scale and system size accessible in the dynamics. These two situations are both commonly

observed in photoinduced ring-opening processes of molecules. i) The photoinduced

ring-opening often drives a molecule to the ground state with high kinetic energy and

the biradical character facilitates formations of photoproducts which can challenge the

electronic structure method, for example when using active space methods. ii) In the limit

of bond dissociation, a common occurrence is degeneracies between two or more excited

states involving the antibonding or lone-pair orbitals.

Therefore, in this chapter, two prototypical molecules, cyclopropanone and 1,2-dithiane,

are used to probe these two limiting cases of nonadiabatic dynamics, highlighting the

strengths and limitations of both AIMS and TSH and showing the compromise between

accuracy and e�ciency provided by SSAIMS. This chapter illustrates how, through care-

ful choice, molecules can be used as model systems to probe speci�c limiting cases of

nonadiabatic dynamics.

To motivate the adoption of cyclopropanone and 1,2-dithiane as a testbed for SSAIMS,

their photodynamics is brie�y described, illustrated by a schematic depiction of their

nonradiative decay (Fig. 6.1). The dynamics of cyclopropanone has been subject to several

studies in the past.284–287 Photoexcitation to the �rst excited singlet state (S1) triggers a

ring-opening reaction, mediated by carbon-carbon bond breaking followed by subsequent

dissociation into ethylene and CO. The S0 and S1 potential energy curves along an inter-

polation in internal coordinates between the ring-closed Franck-Condon and ring-opened

minimum energy conical intersection is depicted schematically in Fig. 6.1a. The two

electronic states come close in energy during the ring-opening process and separate after
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Fig. 6.1.: Schematic depiction of the potential energy curves for (a) cyclopropanone and (b) 1,2-
dithiane. The arrows indicate the possible nonradiative pathways. See Computational
Details for additional information on the electronic-structure method employed for each
case.

the nonadiabatic transition to the ground state. Thus, for cyclopropanone, one expects

a relatively straightforward transfer of the nuclear wavepacket from S1 to S0, without a

signi�cant contribution of the population back transfer to S1. However, the nonradiative

decay is governed by strong geometrical deformations of the molecule – ring-opening

and subsequent dissociation – which can challenge the employed electronic structure

methods. During an AIMS simulation, it is su�cient that one of the TBFs su�ers from an

electronic-structure instability to stop the propagation of all the TBFs, even if these are

only weakly coupled. SSAIMS could reduce the probability of such a dramatic issue by

ensuring that only strongly coupled TBFs are propagated together. 1,2-dithiane shows

a sulfur-sulfur ring-opening process upon photoexcitation in its �rst excited electronic

state, followed by complex dynamics where the opened ring recloses within 300 fs.231 By

looking at the three lowest singlet states along a linear interpolation in internal coordinates

between the Franck-Condon region, the S1 minimum geometry, and the S1/S0 minimum

energy conical intersection (Fig. 6.1b), it becomes apparent that the three singlet states

become (and remain) nearly degenerate soon after the ring opens. An accurate theoretical

description of the dynamics poses a challenge because of the complex ring-opening and

-closing process. Furthermore, the near degeneracy of the three lowest singlet states can

induce repeated population transfer – yet another challenge for nonadiabatic dynamics

methods.

This chapter is organised as follows: First, the theoretical computational cost of AIMS,

SSAIMS and TSH will be elaborated and a scheme for a meaningful comparison of the

e�ciency of the methods introduced (Sec. 6.1.1. After giving all the computational details
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(Sec. 6.2), the photodynamics of cyclopropanone will be analysed (Sec. 6.3). First, a com-

parison between AIMS and the two �avours of SSAIMS (that use for the initialisation of

the stochastic selection either an energy based criterion — ESSAIMS — or the overlap —

OSSAIMS) will be undertaken concerning the predicted dynamics and number of TBFs

present during the dynamics. Subsequently, the predicted population decay of (SS)AIMS

will be compared to the results of (d)TSH and the theoretical computational cost of the

methods will be evaluated. For 1,2-dithiane (Sec. 6.4), both schemes (ESSAIMS and OS-

SAIMS) are compared to dTSH and AIMS, highlighting how a proper stochastic selection

is crucial to reproduce the AIMS result. Finally, the conclusions are drawn in Sec. 6.5.

6.1.1 Computational cost of AIMS, SSAIMS, and TSH

This chapter aims not only to compare the performance of SSAIMS in describing complex

nonadiabatic dynamics processes with that of AIMS and TSH but also to analyze their

respective computational costs.

A comparison of the computational cost in terms of electronic-structure calls or wall

time is plagued by the algorithmic details related to the implementation of the method

(e.g., adaptive time steps, convergence criteria, or propagation algorithms), which hampers

a formal comparison of the computational burden associated to each technique. To provide

a comparison that is as fair as possible, it is proposed here to focus on the “theoretical

number of electronic-structure calculations” required at each time step of the dynamics,

which unravels the computational e�ort of each method for the di�erent molecular systems

presented. In TSH, this number remains constant over time as only one electronic-structure

call is necessary for each trajectory at every time step, i.e. it is simply the product of

number of initial conditions with the number of repetitions, # TSH
ES = =rep ·#init. In contrast,

the number of electronic structure calls in AIMS and (E/O)SSAIMS will depend on the

number of TBFs present in the dynamics at every time step. In the theoretical limit,

independently of the algorithmic implementation, assuming that the couplings between

all TBFs will be computed, the theoretcial number of electronic structure calculations for

AIMS is given by #AIMS
ES (C) = ∑#init

:=1
1
2#

:
TBF(C) (#

:
TBF(C) +1), while for (E/O)SSAIMS it needs

further account for the number of runs per initial condition (and the fact that the number

of TBFs created for each initial condition might not be the same within di�erent runs),

that is, # (E/O)SSAIMS
ES (C) = ∑=run

9=1
∑#init
:=1

1
2#

:,9

TBF(C) (#
:,9

TBF(C) + 1) The theoretical number of

electronic-structure calculations presented in this work is, without any doubt, an idealised
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representation of the computational e�ort of TSH and (E/O)SSAIMS. Still, it o�ers a formal

and straightforward way of comparing the cost of these di�erent methods and unravelling

the complexity engendered by the couplings between TBFs in AIMS-based techniques.

6.2 Computational details

6.2.1 Electronic structure

Electronic energies, nuclear gradients of the energies, and nonadiabatic couplings are

computed for both molecules studied with SA-CASSCF236,237 and a 6-31G∗ basis set.238,239

For cyclopropanone, an (8/7) active space is used, consisting of the C−−O cc∗ orbitals, the

ff∗ pairs of the adjacent C-C bonds as well as one = lone pair orbital of the oxygen atom,

and the state-averaging procedure was performed for the lowest two singlet states. The

electronic structure of 1,2-dithiane is described with a (6/4) active space that includes

the ff∗ pair of the S−S bond as well as two = lone pair orbitals on the sulfur atoms, and

with a state averaging for the lowest three singlet states. The SA-CASSCF calculations

for 1,2-dithiane are performed with the MOLPRO 2012 program package247 for the TSH

dynamics, and TeraChem288–292 for the AIMS and (E/O)SSAIMS dynamics.

6.2.2 Nuclear dynamics

The AIMS and (E/O)SSAIMS dynamics for cyclopropanone are performed with the FMS90/

MOLPRO interface.160 For 1,2-dithiane, the AIMS implementation in TeraChem is used.120,293

All AIMS and (E/O)SSAIMS dynamics share the very same set of parameters for each

molecule. The TBFs are propagated with a time step of 20 ~�−1
ℎ

, reduced to 5 ~�−1
ℎ

in

regions of strong nonadiabaticity. The criterion to enter the spawning mode use the norm

of the nonadiabatic coupling vectors, with a threshold set to 3.0 0−1
0 for cyclopropanone

and 20.0 0−1
0 for 1,2-dithiane. The minimum population required for a TBF to spawn is

0.01 for cyclopropanone and fulvene, and 0.05 for 1,2-dithiane. The maximum accept-

able overlap between a newly-spawned TBF and the existing pool of TBFs is set to 0.6

for fulvene and cyclopropanone, and 0.5 for 1,2-dithiane. For cyclopropanone, the TBFs

running on the ground electronic state are stopped if they remained uncoupled with any

other TBFs for more than 100 ~�−1
ℎ

. The threshold for total (classical) energy conservation

was set to 0.019 �ℎ for cyclopropanone, 0.005 �ℎ for 1,2-dithiane. The same set of initial
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conditions are used for both (E/O)SSAIMS and AIMS, but the (E/O)SSAIMS runs for each

initial condition are repeated �ve times (with di�erent initial random seeds) to converge

the stochastic processes. Di�erent thresholds for the stochastic selection are used and are

detailed below.

All TSH simulations are performed with the SHARC 2.0 program.217,249,250 The TSH

trajectories are initiated from the very same set of initial conditions as the AIMS/SSAIMS

parent TBFs. Every trajectory is repeated multiple times, typically between 5 and 8 times,

with di�erent random seeds to ensure convergence of the stochastic process for the nona-

diabatic transitions. The number of repetitions was determined such that the maximum

standard error of the S1 population decay of ESSAIMS and (decoherence-corrected) TSH

are in agreement: this criterion was ful�lled with �ve runs for cyclopropanone and eight

for 1,2-dithiane (for each initial condition). The integration time step for the nuclear prop-

agation is set to 0.5 fs (to resemble the 20 ~�ℎ used in (E/OSS)AIMS), a local diabatisation

scheme is used, and the nonadiabatic couplings are constructed from wavefunction over-

laps to avoid the explicit computation of the nonadiabatic coupling vectors.251 Following a

surface hop, the nuclear kinetic energy is rescaled along the nuclear momenta.

All TSH simulations are carried out with and without the energy-based decoherence

correction scheme184,187 (EDC), which accounts for decoherence through a dampening

of the electronic populations in TSH. The decoherence parameter � was set to 0.1 �ℎ ,

as proposed in Ref. [187]. The default implementation of the EDC in SHARC is applied,

and the same random seeds are used for both TSH and dTSH. † All the dTSH trajectories

strictly satisfy the internal consistency criterion discussed in Ref [184], and the standard

error of the dTSH population decay are calculated using the electronic populations of the

trajectories.

6.3 Cyclopropanone – an exemplar scenario of coupled
TBFs leading to instabilities in AIMS

The nonadiabatic dynamics of cyclopropanone has been heavily studied in the past em-

ploying di�erent combinations of TSH �avors and electronic structure methods.284–287 All

these previous studies highlight the fact that the S1 population decay of cyclopropanone

†The original implementation of the EDC in SHARC is employed, where the amplitudes of the non-running
states are damped, instead of the populations, as done, for example, in Newton-X.187,252,253
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following photoexcitation is rather straightforward – the nuclear wavepacket decays

from S1 to S0 without any signi�cant back population transfer. The S1 decay has been

characterised by a latency time in S1 of ∼25 fs, followed by a stepwise decay of the S1

population.287 However, the structural evolution of the molecule is intriguing: upon excita-

tion, one or two of the C−C bonds adjacent to the carbonyl moiety are broken, leading to

dissociation into CO and ethylene within several hundreds of femtoseconds.284–286 Because

of these substantial geometrical rearrangements, a ring-opening process, followed by a full

dissociation, cyclopropanone poses an interesting challenge for nonadiabatic dynamics

methods, in particular for the underlying electronic structure method.

6.3.1 AIMS versus (E/O)SSAIMS

First, the S1 population trace is compared as obtained by AIMS for the photodynamics

of cyclopropanone with that of (E/O)SSAIMS for di�erent selection thresholds (Fig. 6.2).

Due to electronic structure instabilities, AIMS (purple line in Fig. 6.2) can only simulate

the �rst 50 fs of dynamics. The active space employed for SA-CASSCF is not stable

when the molecule dissociates on the ground state. While the coupling between TBFs in

AIMS permits an adequate description of decoherence processes, it comes with the severe

drawback that any instabilities in the propagation of one of the TBFs will prevent the

propagation of the entire branch of coupled TBFs. In the particular case of cyclopropanone,

a dissociating TBF on the ground state remains coupled, even if only weakly, to other TBFs,

and any electronic-structure instability following this dissociation makes it impossible to

run the AIMS dynamics for longer times.

This situation highlights one of the key advantages of the stochastic selection algorithm:

SSAIMS can detect when a TBF (here evolving on the ground state) is only weakly coupled

to the remaining swarm of TBFs, and perform a selection process accordingly. Applying

ESSAIMS with the smallest possible energy threshold (Y = 10−10 �ℎ) allows to prolong the

dynamics up to 75 fs (see light blue dashed curve in Fig. 6.2). The agreement between AIMS

and ESSAIMS(Y = 10−10 �ℎ) in the �rst 50 fs is excellent, with the ESSAIMS population

trace remaining well within the standard error of AIMS. Both methods show that the

S1 population starts decaying after 25 fs, before plateauing at 70 % of S1 population.

ESSAIMS(Y = 10−10 �ℎ) remains stable enough to describe the beginning of the subsequent

S1 population decay. The average number of TBFs for AIMS peaks at 1.4 TBFs (Fig. 6.3) and

stays near this value until the dynamics fails. Despite a relatively low selection threshold,
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Fig. 6.2.: Photodynamics of cyclopropanone – comparison between AIMS and (E/O)SSAIMS with
di�erent thresholds. S1 population decay as obtained with AIMS (purple curve), ESSAIMS
(light blue dashed curve for Y = 10−10 �ℎ , blue curve for Y = 10−5 �ℎ , and dark blue thin
curve for Y = 1 �ℎ), and OSSAIMS (light magenta dashed curve for Y = 0.5, magenta
curve for Y = 0.1). Error bars indicate standard errors.

the average number of TBFs in ESSAIMS(Y = 10−10 �ℎ) is already reduced, with a peak

under 1.25. This number then drops to 1.0 before rising again for the second decay of the S1

population. These results show that some TBFs in AIMS are likely to be only very weakly

coupled. Using a conservative energy threshold for ESSAIMS allows to stochastically select

some weakly-coupled TBFs evolving in S0, but does not fully resolve the instability issues.

Increasing the ESSAIMS threshold permits to enforce a faster uncoupling of the TBFs in

the dynamics. This approximation should further help with the remaining instabilities.

With a threshold Y = 10−5 �ℎ , ESSAIMS is stable enough to describe the full S1 population

decay (see blue curve in Fig. 6.2). The population trace obtained with this threshold remains

within the error bars of AIMS and ESSAIMS(Y = 10−10 �ℎ). The average number of TBFs

does not surpass 1.25 for the ESSAIMS(Y = 10−5 �ℎ) dynamics – well under the average

number of ESSAIMS(Y = 10−10 �ℎ) – and stays below 1.1 for the largest part of the dynamics.

As observed earlier, the average number of TBFs rises initially but drops to almost 1.0

when the �rst plateau is reached. It then increases again every time new TBFs are spawned,

permitting the population transfer to S0.

Out of curiosity, one can �nally test how ESSAIMS would behave when the selection

threshold is set to a very high value, here Y = 1 �ℎ (see dark blue thin curve in Fig. 6.2). In

this extreme case, the stochastic selection is triggered immediately after the spawn of a
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Fig. 6.3.: Photodynamics of cyclopropanone – comparison between AIMS and (E/O)SSAIMS with
di�erent thresholds. Time traces of the average number of TBFs (< NTBF >) for each
method shown in Fig. 6.2.

new TBF (as can be observed in the average number of TBFs), hindering the exchange of

amplitude between the two coupled electronic states.

In addition, the performance of OSSAIMS is tested, where the criterion for the coupling

between TBFs is given by the overlap between the two TBFs considered. An overlap thresh-

old of Y = 0.5, which may at �rst glance appear rather large, leads to a very close agreement

with the population decay observed in AIMS and ESSAIMS (dashed light magenta curve

in Fig. 6.2). Moreover, OSSAIMS achieves this result by requiring a consistently lower

average number of TBFs than ESSAIMS(Y = 10−5 �ℎ). In fact, OSSAIMS(Y = 0.5) uses on

average nearly the same number of TBFs as the extreme ESSAIMS(Y = 1.0 �ℎ), with the

major di�erence that ESSAIMS(Y = 1.0 �ℎ) leads to a poor description of the nonadiabatic

processes. Reducing the OSSAIMS threshold to Y = 0.1 does not improve the S1 population

trace signi�cantly, which remains well within the error bars of ESSAIMS(Y = 10−5 �ℎ).

Once more, the OSSAIMS average number of TBFs with Y = 0.1 is consistently lower

than for ESSAIMS(Y = 10−5 �ℎ), indicating that OSSAIMS could o�er a better compromise

between accuracy and e�ciency.

6.3.2 Comparison between AIMS, (E/O)SSAIMS, and (d)TSH

Having shown how (E/O)SSAIMS makes multiple spawning simulations of cyclopropanone

possible, these results are compared with the ones obtained using the mixed quantum/-

classical method (d)TSH. TSH with and without a decoherence correction (dTSH and TSH,

respectively, shown in Fig. 6.4) describes a very similar S1 population decay for the �rst

75 fs of dynamics. The population decay starts after 25 fs and plateaus at around 65 % of S1
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Fig. 6.4.: Photodynamics of cyclopropanone – comparison between AIMS, (E/O)SSAIMS, and
(d)TSH.S1 population decay as obtained with AIMS (purple curve), TSH (dark green
curve), dTSH (green dashed curve), ESSAIMS (blue curve, Y = 10−5 �ℎ), dTSH∗ (light
green dotted curve, one run per initial condition), and ESSAIMS (light blue dashed curve,
one run per initial condition). Error bars indicate standard errors.

population. After 50 fs, the population transfer resumes, and a di�erence starts appearing

between TSH and dTSH after 70 fs of dynamics, the former showing a slower population

decay than the latter. This deviation between the two methods can be rationalised as

follows. After a hop to the ground state, the decoherence correction enforces a quenching

of the dTSH electronic population to the ground state. In TSH, the electronic coe�cient

for S1 is not dampened, arti�cially increasing the probabilities of hops back to the S1 state,

leading to an overall slowdown of the S1 population decay.

The initial population decay observed in (d)TSH at 25 fs agrees with (E/O)SSAIMS

and AIMS. However, the population trace plateaus in (d)TSH at a lower value than the

spawning methods and is outside of the AIMS standard error. dTSH then predicts a faster

decay of the S1 population than ESSAIMS(Y = 10−5 �ℎ). While the population decay

of TSH seems to agree well with the ESSAIMS population at later times, this is most

likely only an artifact of TSH overcoherence (as detailed above). A similar e�ect of TSH

overcoherence was observed in the photodynamics of ethylene, as detailed in the previous

chapter (c.f. Sec. 5.3.2).17

Focusing on the computational cost of the di�erent methods compared above (Fig. 6.5),

the theoretical number of electronic structure calls per time step is used, as detailed in
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Fig. 6.5.: Photodynamics of cyclopropanone – comparison between AIMS, (E/O)SSAIMS, and
(d)TSH. Theoretical number of electronic structure calculation at each time step for all
methods presented in Fig. 6.4. The no-IFGA curve corresponds to the theoretical cost of
the AIMS dynamics without the independent �rst generation approximation.

Sec. 6.1.1. The number of electronic structure calls for dTSH (and identically TSH) is

constant at 435, as each of the 87 initial conditions were run 5 times. This number is

comparable to the one obtained for ESSAIMS, even if it �uctuates to higher values when

spawning events take place. In contrast, the average number of electronic structure calls

for AIMS is signi�cantly smaller, as there is only one run per initial condition. The AIMS

dynamics starts with 87 necessary calls, and this number increases to 163 within 50 fs,

before the simulation stops due to the instabilities discussed above. As a curiosity, also the

theoretical cost of an AIMS calculation without the IFGA is reported, that is, where all

parents would be coupled from C = 0 (grey line, Fig. 6.5). The advantage of applying the

IFGA in multiple spawning simulations is striking: even for such a trivial nonadiabatic

process, the number of electronic structure calls without the IFGA would make an AIMS

dynamics intractable. At C = 0, 3828 electronic structure calls per time step would be

required, increasing to 7381 calls per time step after the �rst 50 fs.

The use of �ve runs per initial condition is meant to carefully converge the respective

stochastic algorithm of the (E/O)SSAIMS or dTSH dynamics, but it naturally leads to an

increase in the computational e�ort – an e�ort above that of AIMS for the �rst part of the

dynamics. Interestingly, using a single run per initial condition for dTSH (“dTSH* (1 run)”

in Fig. 6.4) only leads to a minor alteration of the population trace. The ESSAIMS result

obtained with only one run is similar for the beginning of the dynamics to the converged

ESSAIMS one, but deviates slightly after around 80 fs of simulation.
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Fig. 6.6.: Photodynamics of 1,2-dithiane – comparison between AIMS, OSSAIMS and dTSH. S1
population decay as obtained with AIMS (purple curve), dTSH (green curve), OSSAIMS
(magenta curve, Y = 0.5), and OSSAIMS∗ (light magenta dashed curve, one run per initial
condition). Error bars indicate standard errors.

6.4 1,2-Dithiane – numerous nonadiabatic transitions
caused by nearly degenerate electronic states

The interesting nonadiabatic dynamics of 1,2-dithiane has been revealed in a study em-

ploying dTSH:231 upon photoexcitation, dithiane commences an ultrafast ring-opening

process in S1 mediated by the breaking of its S−S bond, which allows the molecule to

reorganise and extend for some time until the S−S bond reforms within 300 fs (in line with

earlier experimental work294). This intriguing nuclear dynamics represents a challenge for

nonadiabatic methods. Besides the evident challenge of describing ring-opening processes

from an electronic structure perspective, the excited-state dynamics of dithiane leads

to a situation where the three lowest electronic states can become nearly degenerate.

The interplay between these electronic states and the nonadiabatic transitions resulting

from their near-degeneracy requires a proper treatment of the coupled electron/nuclear

dynamics. Hence, this molecule provides an ideal test for SSAIMS, as its nonadiabatic

dynamics will produce many TBFs, and their interstate and intrastate interactions will be

crucial for an accurate description of the electronic populations.
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Fig. 6.7.: Photodynamics of 1,2-dithiane – comparison between AIMS, OSSAIMS. Time traces of
the average number of TBFs (< NTBF >) for AIMS and OSSAIMS.

Following photoexcitation, AIMS predicts that the S1 population begins to decay after

25 fs (Fig. 6.6), leading to an S1 population drop to 40 % within 60 fs. Subsequently, the S1

population experiences a revival – up to 80 % after 75 fs – and then decreases until around

40 % where it stabilises (with some oscillations). OSSAIMS with a high threshold of Y = 0.5

closely reproduces this behaviour: the initial decay and re�ection are adequately described,

with the only di�erence being that the S1 population is overestimated during the revival

process. After 100 fs, the S1 population of OSSAIMS also oscillates around 40 %, in close

agreement to AIMS. The average number of TBFs (Fig. 6.7) rises almost exponentially

for AIMS, reaching nearly 15 TBFs per initial condition after 155 fs of dynamics. For

OSSAIMS with Y = 0.5, this number remains between 1 and 2 and does not surpass 2.5

TBFs. Furthermore, running only a single run per initial condition for OSSAIMS leads to

an S1 population decay in close agreement to our converged run employing �ve runs per

initial condition (light magenta dashed curve in Fig. 6.6).

The decay of the S1 population in dTSH starts earlier than in (OSS)AIMS, and the revival

in the early part of the dynamics is not reproduced by the mixed quantum/classical method

(green curve in Fig. 6.6). However, the S1 population stabilises at the same level as AIMS

and OSSAIMS (40 %) after 100 fs of dynamics. The maximum standard error of the S1

decay of OSSAIMS (using �ve runs per initial conditions) is reproduced by running each

initial condition eight times with dTSH.

Interestingly, while AIMS, OSSAIMS, and dTSH depict a rather similar S1 population de-

cay, monitoring the S0 population reveals larger deviations between the methods (Fig. 6.8).

OSSAIMS and AIMS show that some population appears in S0 after 50 fs of dynamics,

rising to about 25 % within 100 fs before plateauing between 20 and 25 %. In contrast,
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Fig. 6.8.: Photodynamics of 1,2-dithiane – comparison of AIMS, (E/O)SSAIMS and dTSH. S0 pop-
ulation as obtained with AIMS (purple curve), dTSH (green curve), OSSAIMS (Y = 0.5,
magenta curve), ESSAIMS (blue curve for Y = 10−5 �ℎ , light blue dashed curve for
Y = 10−3 �ℎ). Error bars indicate standard errors.

dTSH predicts that the initial rise of the S0 population takes place earlier (mirroring the

behaviour observed for the S1 decay) and stabilises at a higher population, ∼40 % of pop-

ulation after 100 fs. ESSAIMS with a threshold of Y = 10−3 �ℎ appears to capture rather

well the S0 population dynamics up to 100 fs of dynamics (light blue dashed curve in

Fig. 6.8). However, the S0 population continues to grow until it plateaus at around 40 % of

population, similar to dTSH. The AIMS results could be recovered only by reducing the

selection threshold of ESSAIMS to a value of Y = 10−5 �ℎ .‡

OSSAIMS(Y = 0.5) drastically reduces the cost of the dynamics when a large number

of TBFs are present after ∼200 fs of dynamics (Fig. 6.9), while nevertheless reproducing

the AIMS population dynamics correctly. The cost of ESSAIMS(Y = 10−3 �ℎ) is lower than

that of OSSAIMS(Y = 0.5), and even below the theoretical cost of dTSH (as more runs are

needed for the latter to achieve a similar level of convergence). However, decreasing the

ESSAIMS threshold to Y = 10−5 �ℎ to reach AIMS accuracy leads to a dramatic increase in

the computational cost, even higher than that of AIMS for a large part of the dynamics.

Hence, OSSAIMS once again appears to o�er a good compromise between accuracy and

computational cost. It is interesting to note that the S0 population trace obtained with

ESSAIMS(Y = 10−3 �ℎ) starts to diverge from that of AIMS (at around 90 fs) shortly after

the cost of AIMS greatly surpasses the cost of ESSAIMS (at around 75 fs). Adding to
‡It is noted that a threshold of Y = 10−4 �ℎ does not improve the dynamics signi�cantly.
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Fig. 6.9.: Photodynamics of 1,2-dithiane – comparison of AIMS, (E/O)SSAIMS and dTSH. Theoreti-
cal number of electronic structure calculation at each time step for all methods presented
in Figure 6.8.

this observation the similarity between the dTSH and ESSAIMS(Y = 10−3 �ℎ) population

trace, one can infer that the coupling between trajectories (absent in dTSH and limited in

ESSAIMS with a high threshold) is likely to play a role in the last part of the dynamics.

OSSAIMS, which adequately reproduces the AIMS S0 population trace, includes more

TBFs, and its theoretical cost is comparable to that of AIMS until the plateau is reached

after 100 fs of dynamics.

The di�erence in performance between OSSAIMS and ESSAIMS observed above high-

lights the importance of the selection criterion. In OSSAIMS, the criterion is solely based on

the overlap between TBFs. In ESSAIMS, the selection criterion depends on the o�-diagonal

elements of the Hamiltonian matrix (in the basis of TBFs). As such, the selection process

in ESSAIMS depends on whether the TBFs under consideration evolve on the same state

or di�erent states – in the intrastate case, the Hamiltonian matrix element will contain

the nuclear kinetic energy operator and the electronic energy, while in the interstate case

the Hamiltonian matrix element contains the scalar product of the nonadiabatic coupling

vectors with the nuclear gradient. In practice, we observe that ESSAIMS would be more

likely to initiate a stochastic selection for TBFs evolving on di�erent states than for TBFs

on the same state, as the interstate coupling term is more likely to reach a small value

(due to vanishing nonadiabatic coupling terms) than the intrastate one. OSSAIMS, on the

other hand, does not di�erentiate between these two cases and only focuses on the overlap

between TBFs. A closer look at the respective Hamiltonian matrix elements during the

1,2-dithiane dynamics provides more insight into the di�erence between OSSAIMS and
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ESSAIMS. During the entire OSSAIMS dynamics, the overlap between TBFs remains rather

large, and increasing the selection threshold to 0.7 does not signi�cantly alter the dynamics.

Hence, OSSAIMS will preserve any coupled TBFs, irrespective of their electronic state.

Such couplings between TBFs appear to be critical to reproduce the AIMS dynamics. (It

was found that to recover the result of ESSAIMS with Y = 10−3 �ℎ , it was necessary to

increase the threshold of OSSAIMS to 0.8.) Focusing now on the o�-diagonal elements of

the Hamiltonian matrix, we observe that they range between 10−3 and 10−5 �ℎ for most

of the dynamics. The ESSAIMS thresholds used in our simulations thus represent two

limiting cases – Y = 10−3 �ℎ is larger than the o�-diagonal elements between any TBFs

and will lead to an immediate stochastic selection, while Y = 10−5 �ℎ is a lower limit that

the coupled TBFs only rarely reach. Interestingly, ESSAIMS cannot accurately reproduce

the AIMS dynamics even with an intermediate threshold of Y = 10−4 �ℎ . This shows that

the overlap between TBFs appears to be a robust criterion for SSAIMS, not only for the

speci�c case of 1,2-dithiane but also for the other examples discussed above.

6.5 Conclusion

This chapter illustrated how prototypical molecules undergoing photoinduced ring-opening

can be used to challenge nonadiabatic dynamics methods. The novel framework of

stochastic-selection ab initio multiple spawning (SSAIMS) was applied to describe the

photoinduced ring-opening of di�erent molecules systems to highlight its advantages and

limitations and compare its performance with the mixed quantum/classical method TSH.

The results obtained for cyclopropanone indicate that both OSSAIMS and ESSAIMS can

stabilise an AIMS dynamics su�ering from electronic-structure instabilities for weakly

coupled TBFs. A very small selection threshold, meaning a dynamics that remains very

close to AIMS, could already achieve such a stabilisation. By choosing an adequate

selection threshold, the full decay of the S1 population can be simulated with both �avours

of SSAIMS. The computational cost of (E/O)SSAIMS remains close to that of TSH, with

OSSAIMS requiring on average fewer TBFs for a result almost identical to ESSAIMS. The

challenging photodynamics of 1,2-dithiane requires a large number of TBFs for its depiction.

OSSAIMS was able to reproduce the dynamics predicted by AIMS while decreasing the

computational cost signi�cantly. Interestingly, ESSAIMS with a loose selection criterion

deviates from AIMS and reproduces the dTSH dynamics at longer times, exhibiting the
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e�ect of mimicking the independent trajectory approximation of (d)TSH by considering

the TBFs mostly as uncoupled.

Overall, both OSSAIMS and ESSAIMS proved to be stable and reliable strategies that, in

many cases, could provide AIMS-quality nonadiabatic dynamics at a much-reduced cost,

often competitive with the mixed quantum/classical methods TSH. It has been shown that

ESSAIMS and OSSAIMS achieve a very similar accuracy for both cyclopropanone and

fulvene, with OSSAIMS necessitating slightly fewer TBFs on average while providing a

slightly better agreement with AIMS. For 1,2-dithiane, OSSAIMS predicts the same dynam-

ics as AIMS while reducing the necessary TBFs to below 2.5 on average. In comparison,

ESSAIMS captures the early behaviour of the dynamics well, but at later times collapses

to the dTSH result when using a threshold leading to a comparable cost with OSSAIMS.

Achieving convergence to the AIMS result requires using a dramatically smaller selection

criterion for ESSAIMS, resulting in an overall cost surpassing that of AIMS. Hence, these

three exemplary molecular test systems indicate that OSSAIMS provides a more reliable

and cost-e�cient framework for further applications. It remains to be noted that both

SSAIMS strategies require several test runs to determine an adequate stochastic-selection

criterion.
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Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast
ring opening, Nat. Chem., 12, 795 (2020)
All experiments were carried out by collaborators but are still presented brie�y for context.

7.1 Introduction

Recent advances in time-resolved experimental techniques and computational methods

for studying (coupled) electronic and nuclear dynamics are revolutionising the �eld of

ultrafast photochemistry, enabling direct probing of evolving molecular structures with

unprecedented structural and temporal resolution.295–302 Such studies provide the best

test of our knowledge and understanding of light-initiated chemistry. Photoinduced ring-

opening/closing reactions are a fundamental photochemical reaction, that also lies at the

heart of many processes in nature, for example, the synthesis of previtamin D3 by sunlight.

A direct comparison and synergy of theory and experiments o�er the strongest reference

model for any nonadiabatic dynamics methods.

The photoinduced ring opening of the polyene 1,3-cyclohexadiene303 is widely employed

as a model system for benchmarking and validating ultrafast methods such as ultrafast

X-ray295,301,302 and electron300 di�raction, femtosecond transient X-ray absorption298 and

163



Fig. 7.1.: Schematic of the UV excitation, ring opening and photoionisation of thiophenone. The
molecule is photoexcited from its ring-closed ground state (S0) to an electronically excited
state (S2). It evolves through an optically dark excited state (S1) back to the (vibrationally
excited) S0 state of several possible reaction products. The XUV probe photon energy is
su�cient to ionise thiophenone and all reaction products from both ground and excited
states into several ionic �nal states (D0, D1 and so on). The time-evolving electron kinetic
energy (KE) spectrum (top) thus consists of contributions from the ground and excited
states of thiophenone (denoted as R and R∗, respectively) and from the di�erent products.

fragmentation,304 and time-resolved photoelectron spectroscopy (TRPES).305,306. However,

few other photoinduced ring-opening reactions have been probed so thoroughly and, of

these, even fewer have provided a comprehensive picture of the reaction dynamics on

both the excited and ground (S0) state PESs.

This chapter presents a combined theoretical and experimental study of the UV photoin-

duced ring opening of a prototypical heterocyclic molecule, 2(5H)-thiophenone (C4H4OS,

henceforth thiophenone; see Fig. 7.1). Heterocyclic compounds are fundamental building

blocks in the synthesis of many organic compounds. Studying these ‘single units’ may

help in validating the (necessarily more complex and less resolvable) photochemistry of

ever-larger molecules. The study is conducted in vacuum (that is, under collision-free

conditions) and thus reveals information on the purely intramolecular relaxation pathways,

without the solvation e�ects present in previous matrix-isolation307 and liquid-phase308

studies of this system. Theory and experiment combine to a�ord detailed insights into

both the mechanism and timescale of the initial ring-opening process and the subsequent

evolution of the vibrationally excited ground-state photoproducts.
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The experimental study employs the extreme UV (XUV) radiation provided by the free-

electron laser (FEL) FERMI.309 TRPES310,311 is sensitive to both electronic and structural

dynamics, which is essential for any full understanding of the coupled electronic and

nuclear dynamics that govern most photoinduced reactions. TRPES also allows access to

so-called ‘dark’ states that may not be amenable to study by linear transient absorption

methods. XUV probe pulses (from an FEL or a high harmonic generation source) are

su�ciently energetic to ionise molecules in the electronic ground state S0.

Fig. 7.1 schematically depicts the experiment described in this chapter. Thiophenone,

initially in its ground electronic and vibrational state, is excited by a UV pulse (UV pump)

to the bright S2 state. Subsequently, through an elongation and breaking of the C−S bond,

it relaxes back to the electronic ground state. Due to its high internal energy, it can form

a variety of di�erent photoproducts on the electronic ground state. The experiment can

probe the evolution of thiophenone throughout this reaction with an XUV pulse and

records the signals of the initial thiophenone (KER, in Fig. 7.1, photoexcited thiophenone

during the relaxation (KER∗ ) and, thanks to the high energy of the XUV pulse, also can

probe the ground-state photoproducts (KEP1, KEP2, etc.). By taking the di�erence of KE

and the energy of the probe pulse, one obtains the electron binding energy (BE), i.e. the

ionisation potential (IP). Therefore, TRPES can provide a full picture of the photochemical

experiment, from the initialisation until the formation of photoproducts.

The importance of computational methods becomes clear at this point as well. While

the TRPES provides evidence of the energetic nature of the processes taking place, simula-

tions can directly predict the nuclear dynamics occurring throughout. By computing the

ionisation potential (IP) of the structural evolution obtained from the dynamics, a direct

comparison with the experiment is possible.

This chapter is structured as follows. First, the experiment and its results will be shortly

presented in Sec. 7.2. Subsequently, the computational work carried will be shown. In

the �rst part, the initial ring opening and the excited-state dynamics driving the system

back to the ground state are investigated employing static scans (Sec. 7.3.2) as well as

using nonadiabatic dynamics using trajectory surface hopping (Sec. 7.3.3). In a second

part, the dynamics occurring on the vibrationally excited electronic ground state after

deactivation are investigated. Therefore, long time ab initio molecular dynamics is run

and for validation, the IP of the predicted photoproducts is computed and compared to the

experiment (Sec. 7.4.2). In an attempt to explain the long time dynamics, some trajectories
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Fig. 7.2.: Time-dependent photoelectron spectra of UV-excited thiophenone. a) Measured pho-
toelectron yield as a function of BE and time delay (ΔC ) between the pump and probe
pulses. Negative ΔC corresponds to the FEL pulse preceding the UV pulse and positive
ΔC to the UV pulse preceding the FEL pulse, while the colour represents the normalised
photoelectron intensity. Regions with an intensity below 0.003 are shown in white. b)
Delay-dependent photoelectron yields for three BE ranges selected to illustrate the pho-
toinduced depopulation of the S0 state (red circles), the population of the S2 state (blue
triangles) and the build-up of vibrationally excited S#

0 photoproducts (green crosses). c)
Delay-dependent photoelectron yields �ve contiguous 0.6 eV-wide BE slices that inform
on the evolution from photoexcited S2 to internally excited S#

0 molecules. Statistical error
bars are included but are generally smaller than the symbol size. The dashed lines in c
just join the dots for better visibility. The data in b) have been normalised such that the
maximum value of the �t is at 1 for each curve, whereas the data in c) are displayed on a
common intensity scale.

are propagated for up to 100 ps to estimate their behaviour (Sec. 7.4.3). In Sec. 7.5, some

preliminary experimental and computational results from ultrafast electron di�raction

(UED) experiments are introduced. Finally, conclusions are drawn in Sec. 7.6

7.2 Time-resolved photoelectron spectroscopy

All details on the experiment can be found in Ref. [116]. The experiment measures electron

time-of-�ight spectra of thiophenone as a function of ΔC , which are converted to electron

kinetic energy spectra and then, by energy conservation, into spectra of the valence binding

energies. Fig. 7.2(a) shows such spectra in the form of a two-dimensional plot of electron

yield as functions of binding energy (BE) and ΔC . The dominant feature at BE ∼ 9.7 eV is

due to photoionisation of the “cold” (i.e. non-excited) closed-ring S0-state thiophenone

molecule.312 This peak is depleted by ∼ 20% for positive ΔC , as shown in Fig. 7.2(b) (red

circles), con�rming excitation of ground-state molecules by the UV pulse. A �t to the

166 Chapter 7 Thiophenone: The interplay of time-resolved spectroscopy and
ab initio calculations to unravel complex photochemistry



delay-dependent yield of photoelectrons originating from S0-state parent molecules yields

an upper limit for the temporal instrument response function of f = 72 ± 8 fs. Fig. 7.2(a)

reveals photoelectrons with BEs as low as ∼ 5 eV at the shortest positive ΔC . The prompt

appearance and subsequent decay of this contribution are also emphasised in Fig. 7.2(b),

which shows a Gaussian-shaped transient signal with f = 76 ± 6 fs (blue triangles).

With increasing delay, the signal at BE ∼ 5 eV fades and the peak intensity shifts toward

higher BE. As Fig. 7.2(c) shows, the peak in the intensity vs ΔC transient obtained by

taking contiguous 0.6 eV-wide slices for BE ≥ 5.3 eV shifts to progressively later ΔC with

increasing BE, and the transients gain an increasingly obvious tail.

The thiophenone cation has close-lying ground (D0) and �rst excited (D1) states at a

vertical IP (IPvert) of ∼ 9.7 eV, and higher excited states at IPvert values of 10.58 eV (D2),

12.25 eV (D3) and 14.1 eV (D4).312 Given the present pump photon energy of 4.67 eV, the

signal appearing at a binding energy of ∼ 5 eV at ΔC ≈ 0 is readily attributed to vertical

ionisation of photoexcited molecules in the S2 state to the (unresolved) D0 and D1 states.

Ionisation to the latter is strongly disfavored due to selection rules. The evolution of the

signal at BE ∼ 5 eV, the peak shift towards higher BE at later ΔC , and the more intense tail

in the ΔC traces for higher BE slices all re�ect the complex evolution of the photo-prepared

wavepacket, which the accompanying theory shows involves ultrafast depopulation of

the S2 state to yield “hot”, i.e., highly vibrationally excited, S0 (henceforth S#
0) molecules

(revealed by the green stripe in Fig. 2(a) at BE ∼ 9 eV). Note that any photoelectrons arising

from ionisation of S#
0 molecules to excited D= (= > 1) cation states are likely to appear at

BE > 10 eV, and thus do not a�ect the discussion that follows.

7.3 Initial excited-state dynamics

7.3.1 Computational details

Critical points and linear interpolation in internal coordinates

Critical points of the thiophenone PESs — S0 minimum, S1 minima, and S2/S1 and S1/S0

MECIs — are identi�ed using SA(4)-CASSCF(10/8)236,237 and a 6-31G∗ basis set238,239 as

implemented in Molpro 2012247 . Pathways connecting these di�erent critical points of the

PESs are produced by linear interpolations in internal coordinates (LIICs).313 Electronic en-

ergies for thiophenone are computed along the LIIC pathways at the SA(4)-CASSCF(10/8)
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and XMS(4)-CASPT2(10/8)314,315 levels of theory using, in all cases, a 6-31G∗ basis set.

The electronic energies for the thiophenone cation are also computed along the LIICs

using SA(4)-CASSCF(9/8) and XMS(4)-CASPT2(9/8). All XMS-CASPT2 calculations are

performed with the BAGEL software,316 employing the corresponding SA-CASSCF wave-

function from Molpro 2012 as a starting point. A level shift317 of 0.3 �ℎ is used in all

XMS-CASPT2 calculations to prevent the appearance of intruder states.

Trajectory surface hopping dynamics

The excited-state dynamics of thiophenone following photoexcitation are simulated using

the mixed quantum/classical dynamics method trajectory surface hopping (TSH), employ-

ing the fewest-switches algorithm proposed by Tully.16 The calculations are performed

with the SHARC program package (v2.0)217,249,250. 46 initial conditions for the TSH dy-

namics are sampled stochastically from a Wigner distribution for uncoupled harmonic

oscillators constructed from a frequency calculation at the ground-state optimised geom-

etry of thiophenone. All trajectories are initiated in the bright S2 state of thiophenone.

The TSH dynamics employ a time step of 0.5 fs and SA(4)-CASSCF(10/8) for the electronic

structure using Molpro 2012. The energy decoherence correction scheme by Granucci and

Persico184 is applied to the electronic coe�cients with the default constant of 0.1 �ℎ . Strict

total energy conservation is ensured for each trajectory during the excited-state dynamics.

However, the active space showed instabilities within a few tens of femtoseconds in the S0

state. Such instabilities do not constitute an issue as the TSH dynamics are su�ciently

stable to provide initial conditions for the subsequent ground-state AIMD calculations.

7.3.2 Static calculations

To interpret the dynamics revealed in the TRPES spectra, the lowest-lying PESs of thiophe-

none are computed and di�erent critical points are located. The FC geometry corresponds

to the equilibrium structure of the S0 state of thiophenone, wherein the highest occupied

molecular orbital is an out-of-plane c orbital largely localised on the sulfur atom, hence-

forth labelled =(S). At our chosen pump photon energy, thiophenone is predominantly

excited to its S2 state. At the XMS(4)-CASPT2(10/8) level of theory, the S0 → S2 transition

has =(S)/c∗ character, a calculated transition energy of 4.67 eV and an appreciable oscillator

strength (0.036), re�ecting the constructive overlap of the donating =(S) and accepting c∗

orbitals. The S0 → S1 transition (with a calculated energy of 4.20 eV), by contrast, is dark
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Fig. 7.3.: PESs for the lowest neutral singlet (solid lines; S0 in dark blue, S1 in palatinate, S2 in fuch-
sia, and S3 in peach) and cationic doublet (dashed lines) electronic states of thiophenone
along LIIC pathways between di�erent critical geometries. Electronic energies are ob-
tained using SA(4)-CASSCF(10/8) for the neutral and SA(4)/CASSCF(9/8) for the cationic
form of thiophenone in a) and with XMS(4)-CASPT2(10/8) and XMS(4)/CASPT2(9/8),
respectively, in b). Two LIIC paths of minima and MECIs, (a) (left side in both plots) and
(b) (right side), are located using the SA(4)-CASSCF(10/8) level of theory, are indicated in
with light-grey vertical lines, and the geometries of these critical points on the PESs of
neutral thiophenone are shown in c). LIIC pathways are then computed between each
critical point, and the upper panels of a) and b) shows the electronic energy gap Δ�
between the D0 state of the cation and the second (S2) or �rst (S1) singlet states of neutral
thiophenone for each point along the LIIC pathway.

(the donating O-atom centred, lone pair =(O) orbital lies in the plane of the ring and is

thus orthogonal to the accepting orbital).

Di�erent minimum energy conical intersections (MECI) are located between the S2,

S1 and S0 states of thiophenone, as shown in Fig. 7.3c. All of these MECIs indicate a

ring opening in the excited electronic state (that is, formation of a biradical), followed

by geometrical relaxation. The pathway (b) leading to the energetically lower S1/S0

MECI (indicated as geometries (b) in Fig. 7.3c) shows a ring opening at the S2/S1 MECI

followed by a bending of the C−C−−O moiety, leading to a twisting of the CH2−S moiety

that drives the system to the ground state (S1/S0 MECI). An alternative pathway (a) is

obtained (the geometries are shown in the left half of Fig. 7.3c). This path di�ers in that the
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critical geometries located for the S1 minimum and the S1/S0 MECI exhibit an out-of-plane

con�guration and a linear C−−C−−O moiety.

To determine the possible connections between these critical structures and the re-

laxation pathways of thiophenone following UV photoexcitation, linear interpolations

in internal coordinates (LIICs) are performed using SA(4)-CASSCF(10/8) (Fig 7.3a) and

re�ned with XMS(4)-CASPT2(10/8) (Fig. 7.3b). The overall shape of these pathways is in

excellent agreement with that obtained using XMS(4)-CASPT2(10/8), validating the use of

SA-CASSCF for the nonadiabatic molecular dynamics. The left side of Figs. 7.3a and 7.3b

show the LIIC between the pathway (a), the right side between pathway (b) with the FC

geometry (identifcal for both pathways) being in the middle. Starting from the FC geome-

try, the LIICs smoothly connect the di�erent critical points and con�rm that photoexcited

thiophenone (S2) molecules can relax e�ciently towards the S0 state via the S2/S1 and

S1/S0 seams of intersection in the C−S bond extension coordinate.318 This observation is

similar for both simulated pathways (a) and (b). The energies of the low-lying D0 and

D1 states of the thiophenone cation are also computed along the LIIC pathways (Fig. 7.3,

dashed lines). In the FC region, these states are characterised by the removal of an electron

from, respectively, the =(S) and =(O) lone pair orbitals. The topographies of the various

PESs of neutral thiophenone vary strongly along the LIIC pathways, but the energies of

the D0 and D1 states of the cation show a smooth and very gradual increase. The energy

di�erences (Δ�) between the D0 and the S2/S1 potentials along the LIIC pathways (top

panels in Figs. 7.3a and 7.3b) increase dramatically from the FC point out to the S1/S0

MECI.

It may be useful to introduce brie�y an electronic argument for focusing the discussion

on ionisation to D0 rather than to the D1 state. The S2 state has dominant =(S)/c∗ character

in the FC region. Importantly, the S atom lone pair remains the dominant donating orbital

along the entire decay pathway, from the FC point on S2 to the S2/S1 MECI, and during

the relaxation on S1 towards S1 minimum, eventually reaching the S1/S0 MECI. Similarly,

the D0 state is always formed by loss of an electron from the S atom lone pair along this

LIIC pathway, whereas the D1 state is initially (i.e. in the FC region) characterised by the

removal of an electron from the O lone pair before it gains a larger contribution from the

=(S) orbital towards the end of the LIIC (when the states get closer in energy). Simple

ionisation rules319 suggest that ionisation should be allowed from the visited electronic

state to D0 along the entire LIIC pathway (S2 then S1 after crossing), as their electronic
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state characters di�er by just a single spin-orbital (the accepting orbital in the excitation

of the neutral). The same logic would imply that ionisation from S2 to D1 is disfavored, as

it necessitates (at least in the �rst part of the LIIC) a change of more than one spin-orbital

in the ionisation step.

The calculations allow assignment of the experimentally observed rapid increase in BE

with increasing ΔC to the ultrafast depopulation of the S2 state and electronic deactivation

to the S0 state, resulting in highly vibrationally excited ground-state molecules. The

calculated Δ� values are consistently slightly lower than the experimental BE values. Such

underestimation of (experimental) IP values by (X)MS-CASPT2 methods is well-known266

and, in the present case, can also be related to the choice of basis set (benchmarks with

increasingly large basis sets show improving agreement with the experimental IP).

7.3.3 Excited-state dynamics

The fates of the photoexcited thiophenone molecules are further explored by running

trajectory surface hopping (TSH) calculations from the photoprepared S2 state at the

SA(4)-CASSCF(10/8) level of theory. The trajectories are all initialised on the S2 state

since the computed vertical transitions (at the SA(4)-CASSCF(10/8) level of theory) of 100

Wigner sampled structures indicate that this state is by far the ‘brightest’ when exciting

from the S0 state and lies303 at the appropriate energy for the chosen pump wavelength

(when the transition energy is computed at the XMS-CASPT2 level of theory).

As expected from inspection of the LIIC pathways, the initial S2 population rapidly

decays to the S1 state and population appears almost immediately on the S0 PES, as shown

in Fig. 7.4a.∗ In accord with the LIIC pathways presented above, the nuclear wavepacket

created on S2 exhibits an ultrafast (< 100 fs) decay towards the lower electronic states.

The growth of the S1 population, if �tted by a single exponential, is characterised by a

waiting period of 19 fs and a growing time of 83 fs. The entire excited-state population

is transferred back to the S0 state within 350 fs of UV excitation. Fig. 7.4b displays a

swarm of 46 TSH trajectories that mimic the relaxation dynamics of the thiophenone

wavepacket and demonstrate that the ultrafast deactivation from S2 to S1 to S0 is driven by

a ballistic ring-opening process. The trajectories start to spread after ∼50 fs; most remain

∗The populations are computed as the fraction of trajectories evolving in a given electronic state at a
given time. The displayed population traces match well with those computed from the squares of the TSH
electronic coe�cients, averaged over all trajectories – indicating an internal consistency of the TSH algorithm.
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Fig. 7.4.: Simulations of excited-state dynamics, population and structural analysis. a) Time-
dependence of the S3, S2, S1 and S0-state populations provided by the TSH dynamics (46
trajectories). b) Time-evolution of the C−S bond distance for each of these 46 trajectories,
illustrating the prompt initial bond extension in all cases and (via the colour coding) the
trajectory-dependent evolution from S2 through S1 to the S0 state. The TSH trajectories
are propagated until they experienced electronic structure instabilities in the ground state.
c) Comparison between hopping an S1/S0 MECI geometries (a) and (b) from Fig. 7.3c.
Superimposed last S1/S0 hopping geometries from the TSH dynamics (shown on the left),
grouped into two families according to whether the C−−C−−O angle corresponds to the
bent S1/S0 MECI(b) (76% of the hopping geometries, upper panel) or linear S1/S0 MECI(a)
(24% of the hopping geometries, lower panel).

ring-opened upon becoming S#
0 molecules, but some readopt a (vibrationally hot) cyclic

con�guration.

The conclusions from the TSH calculations match well with the experimental time-

resolved photoelectron yields for the BE ranges selected to span the predicted IPvert values

along the LIIC (Fig. 7.2b,c). The yield in the BE range corresponding to vertical ionisation

from the S2 state (blue trace in Fig. 7.2b) shows a narrow transient signal, the width of

which is largely determined by the instrument response function. With increasing ΔC ,

this transient signal shifts to higher BE, broadens somewhat and gains a longer time tail

(Fig. 7.2c). Recalling the top panels in Fig. 7.3, these observed changes are all consistent

with the wavepacket evolving on the S2 PES (sampled most cleanly by intensities at BE

≤ 5.5 eV) and subsequent non-adiabatic coupling with the S1 state (which are sampled

most e�ciently in the 6 ≤ BE ≤ 7 eV range) and thence with the S0 PES (which start to be

sampled at BE ≥ 7 eV). Ionisation of S#
0 molecules accounts for the tails in the transients

for the higher energy BE slices in Fig. 7.2c; the build-up of S#
0 population (green crosses in

Fig. 7.2b) plateaus at ΔC ≥ 300 fs. These comparisons serve to reinforce the interpretation,

developed from considering the LIIC pathways (Fig. 7.3) that the experimentally observed

increase in BE is a signature of the ultrafast decay of thiophenone (S2 ) molecules to high

S#
0 levels.
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Looking at the hopping geometries to the S0 during the TSH calculations (Fig. 7.4c), it

can be seen that the majority the majority (76%) of the last S1-to-S0 hops observed during

the TSH dynamics takes place for molecular con�gurations similar to the S1/S0 MECI(b) of

the right half of the LIIC pathway (Fig. 7.3). The majority of the structures show a bending

along the C−−C−−O group, as well as an out-of-plane torsion of the C−S moiety. Therefore,

these two structural features might be regarded as the structural signatures of the decay

to the ground state.

7.4 Predicting the dynamics of the hot ground state

7.4.1 Computational details

Ab initio molecular dynamics to t = 2 ps and t = 100 ps

AIMD calculations of the photoproducts formed during the TSH dynamics are conducted on

the S0-state PES using unrestricted DFT with the PBE0 exchange/correlation functional320

and a 6-31G∗ basis set, employing the GPU-accelerated software TeraChem.290 The initial

conditions (nuclear coordinates and velocities) for each AIMD trajectory (22 in total,

drawn randomly from the pool of TSH trajectories) are extracted from the TSH dynamics

when the trajectory reached the S0 state. At this initial point in con�guration space, the

SA-CASSCF wavefunction already exhibits a dominant closed-shell character (con�rmed

at the XMS-CASPT2 level of theory). A small (0.1 fs) time step is used to ensure proper

total energy conservation for all trajectories, and the length of each (constant total energy)

trajectory is set such that the total TSH+AIMD dynamics extend to 2 ps. This strategy

necessarily restricts the dynamics to the S0 PES; the legitimacy of this procedure is validated

by test trajectories on S0, which show the energy separation between the ground and

excited electronic states increasing rapidly upon leaving the region of the S1/S0 seam of

intersection. To explore the long-time dynamics of the di�erent photoproducts, 10 of the

22 trajectories are propagated further, to C = 100 ps, using the same methodology except

for a slightly longer time step of 0.25 fs.

Analysis of the 2 ps AIMD and vertical ionisation energy distribution

The 22 AIMD trajectories propagated until C = 2 ps are used to analyse the distribution of

IPvert values for the S#
0 photoproducts. For each AIMD trajectory, molecular geometries
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Fig. 7.5.: Decision tree for the identi�cation of photoproducts during the AIMD.

are sampled every 10 fs, leading to a pool of > 4, 000 S0 molecular con�gurations. Each

con�guration is assigned to one of the possible photoproducts identi�ed by Murdock et

al.308 based on characteristic atomic connectivities determined by measuring bond lengths

or angles (see Fig. 7.5). If such assignment is not possible, the con�guration is given the

label ’Other’. These are often due to a transient con�guration between two photoproducts.

The IPvert of each con�guration is then computed at the MP2-F12/cc-pVDZ-F12 level of

theory (this level of theory is benchmarked against CCSD(T)-F12/cc-pVDZ-F12). Table 7.1

illustrates the close agreement between the IPvert values computed with CCSD(T)-F12/cc-

pVDZ-F12 and MP2-F12/cc-pVDZ-F12 for di�erent possible photoproducts of thiophenone.

All geometries for these benchmarking calculations are optimized at the MP2/6-311+G**

level of theory. The table also shows energy di�erences between the electronic ground

state energy of the photoproduct and the parent thiophenone molecule. Convergence of

the CCSD(T)-F12 and MP2-F12 results with respect to the basis set size has been tested

by comparing the results obtained with cc-pVDZ-F12 and cc-pVTZ-F12 for thiophenone

and the P3 isomer. Only minor di�erences are observed between the two basis sets:

for thiophenone, the variation in IPvert values between the two basis sets was 0.05 eV

(CCSD(T)-F12) and 0.02 eV (MP2-F12). The level of agreement observed between CCSD(T)-

F12 and MP2-F12 for IPvert values and the convergence observed for both methods with

the cc-pVDZ-F12 basis validate the use of MP2-F12/cc-pVDZ-F12 for the results presented

in the main text.

The resulting distribution of S0 → D0 IPvert values provides an approximation of the

low-energy part of the experimental BE spectra. The same methodology, applied to
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Tab. 7.1.: Ionization potential of thiophenone and photoproducts. Comparison between CCSD(T)-
F12 and MP2-F12 calculated values of the IPvert values of di�erent photoproducts and of
their electronic energies relative to that of the S0 state of thiophenone.

Thiophenone P1 P2 P3 P4 P5 P6

CCSD(T)-F12
IP / eV 9.663 9.177 8.310 8.796 9.206 9.223 7.272
relative to thiophenone
Δ(0 / eV 1.549 1.410 1.455 1.274 1.396 2.878
Δ IP / eV -0.486 -1.353 -0.867 -0.458 -0.440 -2.391
MP2-F12
IP / eV 9.799 9.362 8.368 8.668 9.374 9.392 7.566
relative to thiophenone
Δ(0 / eV 1.567 1.417 1.367 1.386 1.512 2.761
Δ IP / eV -0.436 -1.431 -1.130 -0.425 -0.407 -2.233

ground-state dynamics of cold thiophenone, successfully reproduces the �rst peak in the

experimental He I photoelectron spectrum (cf. Fig. 7.7). All calculations are performed

with Molpro 2012.

7.4.2 Computed photoproducts and ionisation potential

One key feature of the present experimental study is that the response of UV-excited

thiophenone molecules can be followed not just en route to, but also after reaching, the

S0 PES. To simulate the ground-state dynamics, the foregoing non-adiabatic molecular

dynamics calculations using TSH in the lowest four electronic states are combined with ab

initio molecular dynamics (AIMD) on the S0 PES. From an electronic structure perspective,

this requires switching from a SA-CASSCF description (used for the excited-state dynamics)

to an unrestricted density functional theory (UDFT) picture. The SA-CASSCF active space

employed for the TSH dynamics becomes unstable when the trajectories are prolonged

on the S0 PES, but AIMD with UDFT is found to o�er a stable alternative and allowed

long-time simulation of the S#
0 species (see, for example, a previous study by Mignolet

et al.321). To initiate the S#
0 molecular dynamics after passage through the S1/S0 seam of

intersection, the AIMD trajectories are launched from the nuclear coordinates and with the

momenta extracted from the TSH trajectories after the S0 state has been reached. Thus, the

present AIMD simulations are not per se in a ground-state thermal equilibrium, since the

internal energy of the molecule at the start of the S0-state dynamics calculation depends
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Fig. 7.6.: Dynamics on the S0 PES following photoexcitation and non-radiative decay. a) His-
tograms showing the number of occurrences of the various S0 → D0 IPvert values,
grouped by similarity to the molecular geometries identi�ed as P1, P2, P3 and closed-ring
thiophenone, along with a further small group labelled ‘Other’ associated with internally
hot molecules that are in the act of converting between stable isomeric forms at the time
the trajectory is sampled (see text). The calculated IPvert for thiophenone at its optimised
ground-state geometry is indicated by a dashed vertical black line. b) Experimental
(subtracted) photoelectron spectrum summed over the delay range 0.5 ≤ ΔC ≤ 2 ps;
the contribution at BE > 9.8 eV is due to ionisation of (#

0 molecules to excited cationic
states, which are not included in the present calculations. c) Sum of the �ve distributions
of IPvert values shown in a. d) Spin densities (blue) of the optimised structures of the
photoproducts observed and thiophenone, and their negative contributions (green).

on the history of the TSH trajectory in the excited state. Thereby, the approach allows

the description of non-statistical e�ects in the hot S#
0-state dynamics. In total, 22 AIMD

trajectories are propagated until C = 2 ps.

Since each AIMD trajectory is a continuation of an excited-state trajectory, the starting

con�guration in each case involves a ring-opened or highly stretched molecule. The AIMD

simulations reveal the formation of several di�erent photoproducts within the earliest

timescales of these dynamics. Ring closure (resulting in the reformation of hot thiophenone

molecules) is observed, as is the formation of the acyclic isomers 2-thioxoethylketene (P1),

2-(2-sulfanylethyl)ketene (P2) and 2-(2-thiiranyl)ketene (P3) (see Fig. 7.6a for structures).

Interconversion between these isomers is observed in most trajectories within 2 ps. The

histogram labelled ‘Other’ in Fig. 7.6a includes all molecular geometries that could not be

attributed to P1, P2, P3 or closed-ring thiophenone products. These rare other geometries
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often correspond to transient con�gurations in the act of interconverting between the

dominant photoproducts and are mostly observed within 500 fs of accessing the S0-state

PES. It is important to emphasise that these AIMD calculations (and the gas-phase experi-

ments) involve isolated molecules. The potential energy acquired by thiophenone upon

photoexcitation is converted, in part, to nuclear kinetic energy during the nonradiative

decay to the S0 state, but these are closed systems: no energy dissipation is possible and

the resulting S#
0 species are highly energetic. Experimentally, the BEs of the S#

0 species

formed via nonradiative de-excitation are concentrated in a narrow ( 1 eV, full width at

half maximum (FWHM)) band centred at ∼ 9 eV, as shown in Fig. 7.6b. Yet the AIMD

simulations indicate that this ensemble of S#
0 species must contain a range of structures

with high internal energies. Thus, the 22 AIMD outputs are analysed further. Speci�cally,

the molecular geometry is extracted every 10 fs from each AIMD trajectory, yielding a

pool of > 4, 000 geometries. These are grouped by photoproduct and, for each geometry,

the IPvert value between the S0 and D0 states is calculated using MP2-F12/cc-pVDZ-F12 to

provide an estimate of the BE. As Fig. 7.6a shows, the histograms of the IPvert values for

each photoproduct span a narrow range, and the ground-state photoproducts P1, P2 and

P3 display similar IPvert distributions. This re�ects the fact that, in each case, ionisation

involves the removal of an electron from an orbital with a high degree of =(S) character.

The distribution associated with re-formed closed-ring thiophenone species is centred at

slightly higher IPvert values. The 22 AIMD outputs predict a narrow overall distribution of

IPvert values (Fig. 7.6c) that, as Fig. 7.6b shows, matches well with the TRPES data summed

over the delay range 0.5 ≤ ΔC ≤ 2 ps.

For the electrons identi�ed as being involved in the ionisation process, spin densities

are computed (at the MP2/cc-pVDZ level of theory) for the optimised structures of the

molecules observed during the AIMD; thiophenone, and the ketene photoproducts P1,

P2 and P3 observed in the AIMD calculations. Fig. 7.6d shows the spin densities plotted

with an isosurface of 0.02. The spin densities are shown in blue (the green isosurface

shows the negative contributions and o�ers a measure of spin contamination). The spin

densities for thiophenone, P1 and P3 are mainly located on the sulfur atom, consistent

with the previous conclusion that ionisation occurs mainly from the =(S) orbital. In the

case of P2 (second structure in Fig. 7.6d), the spin density is mostly on the C−−C double

bond, suggesting that ionisation occurs from this c orbital. However, it should be noted

that the optimised geometry of the P2 structure may not be fully representative of the
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Fig. 7.7.: Comparison of measured (He I) photoelectron spectrum of thiophenone (Chin et al.,312

solid black trace) and the distributions of computed S0 →D0 IPvert values for ‘cold’ (laven-
der) and ‘hot’ (dark purple) thiophenone molecules. The former histogram, obtained
from AIMD simulations of S0 molecules with internal energy equal to the zero-point
energy only, has been scaled vertically to match the experimental spectrum and illus-
trates the good agreement with the experimental IP. The latter histogram, which shows
the distribution of IPvert values associated with closed-ring ‘hot’ thiophenone species
(computed at the MP2/cc-pVDZ-F12 level of theory) produced after photoexcitation and
subsequent relaxation has been scaled to have the same maximum. Note that the present
protocol has not attempted to model the S0 → D2 ionisation responsible for the BE > 10.4
eV peak in the experimental spectrum.

hot ground-state photoproduct. For the other photoproducts, the histograms of IPvert

values calculated for the structures observed during the AIMD are all centred at the IPvert

value calculated for the optimised point. For P2, the calculated IP at the optimised point

is 8.37 eV, whereas the histogram of IPvert values of the hot photoproduct is centred at

∼ 8.7 eV. Additionally, the distribution of IPvert values for P2 is broader than that for any

of the other structures. To this end, spin densities are computed for the frames of an

AIMD trajectory showing the formation of P2. It is observed that, for such S#
0 geometries,

the spin density is localised not only around the C−−C bond but also on the sulfur atom.

Thus, it can be concluded that the shift to a higher IPvert and the broadening of the IPvert

distribution during the AIMD (cf. the IPvert obtained from the ground-state optimised

structure) can be understood assuming that ionisation to form D0 occurs from the c and

the =(S) orbitals. The characters of the D0 photoproducts accord with that observed in the

previously discussed XMS(4)-CASPT2(9/8) calculations.

For completeness, it is noted that the predicted distribution of S0 → D0 IPvert values

for thiophenone molecules without the extra kinetic energy induced by photoexcitation

and subsequent relaxation (derived from AIMD simulations of thiophenone initiated with

internal energy equal to the zero-point energy only) is centred at yet higher IPvert, is much
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Fig. 7.8.: a) Photoelectron spectra for di�erent pump–probe delays after subtraction of the signal
from ‘unpumped’ thiophenone (S0) molecule. The spectra are o�set vertically for better
visibility. b) Distribution of the photoproducts during the long-time AIMD simulations.
The dots indicate the proportion of a given photoproduct sampled every 0.25 ps. c) The
solid lines show the running average corresponding to the dots of b) (over 15 time steps).

narrower and, as Fig. 7.7 shows, is in very good accord with the lowest energy peak in the

measured He I photoelectron spectrum.312

7.4.3 Estimation of the long timescale ground-state dynamics

Figure 7.8a shows photoelectron spectra recorded at several pump–probe delays in the

range 10 ≤ ΔC ≤ 600 ps. Most of the photoelectron intensity of interest at these large ΔC

values lies in the range 8.0 ≤ BE ≤ 9.6 eV, and the spectrum appears to consist of di�erent

contributions whose weights are ΔC dependent; the intensity of the feature at lower BE

(peaking at BE ≈ 8.8 eV) appears to increase relative to that of the feature peaking at BE

≈ 9.3 eV as ΔC increases.

To explore the possible evolution of the ground-state photoproducts over longer timescales,

10 AIMD trajectories (out of the initial 22) are propagated until C = 100 ps. Issues of partic-

ular interest here are (i) whether the ‘hot’ S#
0 thiophenone photoproducts would eventually

ring open, and (ii) whether the primary photoproducts might undergo further fragmenta-

tion. At the start of the long-time AIMD simulations (i.e., at t = 2 ps), the chosen pool of 10

molecules involved 4 (i.e. 40%) with ‘hot’ thiophenone structures, 4 P1 and 2 P2 structures.

It should be stressed that these proportions are chosen solely to investigate the possible

fate of some speci�c photoproducts (particularly ‘hot’ thiophenone) during the long-time

exploratory AIMD; they do not re�ect the relative photoproduct yields after t = 2 ps (as

shown in Fig. 7.8a). Fig. 7.8b and c show how these photoproduct proportions evolve
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over the full length of the AIMD. Analysis of the (admittedly small number of) long-time

trajectories reveals (1) irreversible conversion of closed-ring to open-ring isomers and (2),

in several cases, unimolecular decay of the S#
0 species to CO + Thioacrolein (CH2CHC(H)S)

products arising from the decay of both ‘hot’ thiophenone and photoproduct P1. The

computed S0 → D0 IPvert value for thioacrolein (9.04 and 8.99 eV for the Z- and E-isomers,

respectively, at the MP2-F12/cc-pVDZ-F12 level of theory) is in very good agreement with

the experimental value.322

The present long time AIMD analysis is statistically limited, but it serves to highlight

possible pathways that can alter the composition of the photoproducts formed on the S0

PES over time in a manner that could account for the long time variation in the TRPES

signal observed in the range 8 ≤ BE ≤ 9.5 eV (Fig. 7.8a). Recalling Fig. 7.6a, all closed-

ring to open-ring transformations (including the fragmentation process) will cause a net

transfer of S#
0 population to species with lower IPvert (that is, lower BE) values—consistent

with the experimental observations (Fig. 7.8a).

7.5 Ultrafast electron diffraction

Since the calculations predict photoproducts of a wide variety of nuclear con�gurations,

additional experiments to the TRPES are desirable since TRPES cannot distinguish between

the photoproducts of thiophenone. Ultrafast electron di�raction can resolve the position

of the nuclei during the photochemical process with femtosecond temporal resolution

and sub-angstrom spatial resolution. Therefore, a megaelectron volt UED experiment was

carried out at the SLAC-MeV UED facility for thiophenone aiming to verify the formation

of the photoproducts predicted by the simulations. The recorded experimental percentage

di�erence signal is shown in Fig. 7.9a. For an interpretation of this experimental data,

the computational references are invaluable. In order to provide more accurate reference

data, the set of previous 46 TSH trajectories of which only 22 have been extended to 2 ps

with AIMD has been extended to 46 AIMD trajectories. All the results presented here are

preliminary.

The simulated trajectories are classi�ed in ring-closed thiophenone (which corresponds

to the reformation of the hot thiophenone after the deactivation), P3 (2-(2-thiiranyl)ketene)

and ring-open species. This summation of ring-open species is done since P1, P2 and

"Other" products (bi-radical) from the previous analysis only di�er by one hydrogen atom
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Fig. 7.9.: a) Ultrafast electron di�raction experiment, scattering intensity in reciprocal space as
a function of delay time. b) Time evolution of the product ratio from the dynamics
simulations. Ring open species includes bi-radical, P1 and P2. c) Simulated reciprocal
space signal integrated over time for each of the photoproducts.

and, therefore, yield very similar reciprocal-space signals (see Fig. 7.9c). The time evolution

of the computationally predicted ratio of products over time is shown in Fig. 7.9b. It can be

seen that immediately after the excitation the ring-open species become dominant, which is

in line with the previous observations. Following the results from the previous simulations

and experiment, it can be assumed that all ring open species observed in the simulation

after 500 fs correspond to either P1 or P2. This is supported by the observation of transient

molecules between products as a minor contribution during the long term dynamics. In

addition, the AIMD trajectories are initialised once they have assumed predominantly

closed-shell character. The simulations predict a majority of P3 being formed with 60 %

of the �nal products corresponding to P3, and similar amounts of thiophenone and ring

open species being formed.

The important next step in this study will be to analyse the experimental data using

the computational results. By �tting the reciprocal-space signal to the simulated ones of

the photoproduct, the experimentally observed photoproducts might be determined. This

might o�er an estimation of whether the computational prediction of photoproducts is

accurate.

7.6 Conclusions

Time-resolved XUV photoelectron spectroscopy studies of the isolated (gas-phase) molecules

at a seeded FEL, in combination with high-level ab initio theory, have enabled detailed

visualisation of the electronic and, particularly, the structural dynamics of this complex
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photoinduced ring-opening reaction. The initial motion following photoexcitation is re-

vealed, as well as the non-adiabatic coupling to the S0 PES as an open-ring biradical, and the

subsequent isomerisations and eventual decay of the highly vibrationally excited S0-state

species. The match between theory and experiment spans both the excited-state decay

rates and the more challenging athermal rearrangements to photoproducts that occur after

non-adiabatic coupling to the S0 state. The use of su�ciently high-energy probe photons is

key to tracking the full decay dynamics, that is, the ultrafast evolution of the photoexcited

wavepacket to the S0 state and the nuclear dynamics of the resulting highly vibrationally

excited S0 molecules. The increase in BE observed immediately post-photoexcitation is

a signature of the ultrafast decay of the nuclear wavepacket from the S2 state, via the S1

state, towards the electronic ground state, enabled by elongation and eventual scission of

the S−CO bond. The evolving molecules couple to the S0 PES with a range of geometries

and nuclear momenta, which govern the subsequent athermal rearrangements of the S#
0

species. These vibrationally excited S0 molecules are highly �uxional and can adopt at least

three identi�ed open-ring structures or re-form the parent thiophenone, and they have

su�cient internal energy to dissociate (by loss of a CO moiety). The deduced ground-state

dynamics serve to bolster a recent prediction that isomerisation of energised molecules

prior to dissociation might well be the rule rather than the exception in many polyatomic

unimolecular processes.323 The IPvert distribution computed from the AIMD trajectories on

the S0 PES reproduces the narrow spread of BEs observed experimentally and can be traced

to the localised nature of the sulfur lone pair orbital that is the dominant contributor to the

HOMO in each species. Distinguishing the various open-ring products by valence-shell

photoelectron spectroscopy is challenging given their very similar �rst IPs.

Ultrafast electron di�raction studies can address such structural challenges and seem to

be able to distinguish some of the computationally predicted photoproducts. It will be of

great interest to disclose whether the experimental data can con�rm the photoproducts.
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Conclusion and Outlook 8
8.1 Summary

The guiding thread of this thesis was to understand what constitutes a good model for

nonadiabatic dynamics and how one can adapt such models to depict the key excited-state

processes in real-life molecular systems. Models are usually known and used in the context

of one-dimensional test systems, where they are applied to assess the capabilities and

limitations of newly developed nonadiabatic dynamics methods. However, connections

between the one-dimensional test system and the application to real, full dimensional

molecules are scarce. This thesis aimed to �ll this gap by exploring di�erent models for

nonadiabatic dynamics: i) the conceptual models that question our view of photochemistry,

ii) the molecular models that are representative of key processes in photochemistry, and

iii) the realistic models that can be directly compared with photochemical experiments.

The �rst part of this thesis mirrored our view of photochemistry, which is heavily

based on the Born-Oppenheimer representation, by the picture provided by the exact

factorisation. A complete photochemical experiment was simulated on a two-dimensional

two-state system, starting from the molecule in its ground state that gets photoexcited by

a laser pulse. After this excitation, the excited nuclear wavepacket evolves on the excited

state until reaching a region of high nonadiabaticity where the wavepacket decays to the

ground state and forms potential photoproducts. This study contrasted this intrinsically

BO picture of the dynamics of nuclear wavepackets with static potential energy surfaces,

conical intersections, transition dipole moments with the exact factorisation picture, where

the nuclear dynamics is governed by a single time-dependent potential energy surface and

a single time-dependent vector potential. In addition, this work presented a framework

for propagating quantum and classical trajectories based on the exact factorisation poten-

tials. One particular curiosity of this study was the observation that the portion of the

wavefunction remaining in the Franck-Condon region was excited to a higher vibrational

eigenstate.
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After that detailed discussion of the representation of the molecular wavefunction, the

next part of this thesis investigated the consequences of the BO picture on approximated

nonadiabatic dynamics. The dynamics predicted by AIMS in the vicinity of conical inter-

sections of di�erent topologies were evaluated on the simplest model systems including

conical intersections — two dimensional two-state systems — in comparison with exact

quantum dynamics and the mixed quantum/classical method TSH. This study found that

AIMS is not only capable of reproducing the population decay reasonably well but also

predicts the evolution of the ground-state nuclear density in very good agreement with

the exact results. This work gave particular attention to the attempt of including higher-

order coupling terms as well as geometric phase e�ect within the AIMS approach. In

doing this, one has to be particularly careful to preserve the hermiticity of the employed

Hamiltonian. However, the limiting factor of improving the description of the couplings

between trajectory basis functions lies in the subtle equilibrium existing between the main

approximations of AIMS. Lifting the saddle point approximation of order zero by including

additional couplings and geometric phase e�ects is hampered by the number of trajectory

basis functions present in the simulation as a result of the independent �rst-generation

approximation.

Having demonstrated the usefulness of low dimensional models to probe nonadiabatic

dynamics methods, the focus was shifted towards applications to real molecular systems

in their full dimensionality. This part of the thesis proposed a set of molecular models to

bridge low dimensional model systems and real molecules. The famous one-dimensional

Tully models are taken as inspiration since they have already been extensively used to

test nonadiabatic dynamics methods. This work established a connection between the

photophysics probed by these models and photoinduced processes occurring in real, full

dimensional molecules. As John Tully said himself: "I have not understood why people

have continued to use the over-simpli�ed 1990 models. It is important to test models and

design improvements based on realistic, multi-dimensional models."324 Subsequently, a set of

three molecules, ethylene, DMABN and fulvene, was introduced as the molecular Tully

models. Based on their dynamics predicted by (decoherence corrected) TSH and AIMS,

this work dissected the challenging photophysical processes these models undergo and

highlighted how these models can be used to assess the capabilities of new nonadiabatic

dynamics methods on full-dimensional molecules. Henceforth, the molecular Tully models

have already been used by the nonadiabatic dynamics community to test a variety of
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methods: fewest switches surface hopping with Baeck-An couplings,278 ab initio symmet-

ric quasi-classical approach,279 decoherence induced surface hopping based on the exact

factorisation,178 stochastic selection ab initio multiple spawning,280 and ab initio multiple

spawning with informed stochastic selections.281 These examples illustrate that there was

a real need within the community for such a set of standardised molecular models. Two

examples of their uses were shortly presented: the evaluation of the performance and

computational e�ciency of stochastic selection AIMS and a comparison of the decoher-

ence induced surface hopping based on the exact factorisation with other, widely used

decoherence correction schemes.

Following on the concept of using challenging molecules as model systems to test

nonadiabatic dynamics methods, two particularly challenging molecules undergoing pho-

toinduced ring-opening reactions were used to probe the performance and computational

e�ciency of the recently proposed stochastic selection AIMS method. This study showed

how the overlap based formulation of stochastic selection AIMS is capable of reliably

reproducing AIMS results at a reduced cost comparable to that of TSH.

Finally, the proof of the pudding is in the direct comparison with time-resolved exper-

iments. This part of the thesis investigated the photoinduced ring-opening reaction of

2(5H)-thiophenone and uncovered its subsequent formation of various photoproducts in

the vibrationally excited ground state. The computational study described the excited-

state dynamics driven by the ballistic ring opening in great agreement with experimental

observables. Immediately upon photoexcitation, the molecule undergoes a ring-opening

process that drives the deactivation to the ground state, combined with an out of plane

twisting and leads to a signi�cant increase in binding energy recorded in the photoelectron

spectrum. Subsequently, ab initio molecular dynamics simulations uncovered a great vari-

ety of formed photoproducts by continuing trajectories for 2 ps in the ground state. The

ionisation potential was calculated along these ab initio molecular dynamics trajectories

and it reproduced well the experimental binding energy. While time-resolved photoelec-

tron spectroscopy is not able to distinguish between the photoproducts of thiophenone,

preliminary data of ultrafast electron di�raction experiments and simulations indicate

the possibility to dissect between ring-open and three- and �ve-membered ring-closed

species.

Overall, this thesis aimed to give a di�erent view and modern perspective on models

within nonadiabatic dynamics and photochemistry. The results presented contribute to
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building a stronger bridge between the chemical physics community – that develops new

nonadiabatic dynamics methods – and the physical chemistry one – which uses these

methods to explain the photodynamics of molecules.

8.2 Outlook

Naturally, this thesis leaves several questions unanswered and triggered new ones too.

Starting from the observation of the formation of a vibrationally excited ground-state

wavepacket during the photoexcitation by an explicit laser pulse, one question arising

is whether this occurs commonly in photochemical experiments. Can this vibrational

excitation form a ground-state wavepacket and could this wavepacket contribute to what

is called "the photochemical reaction"? Since this is generally neither considered in

experiments, where the signature of the equilibrium molecule is subtracted, nor in theory,

where excited-state dynamics are often initialised directly in the excited state without

describing explicitly the excitation, careful investigation of this phenomenon might be of

general interest to the community.

A framework for the propagation of quantum and classical trajectories based on the exact

factorisation was introduced, which requires full knowledge of the full nuclear density and

necessitates precomputing the quantities of the full nuclear con�guration space; however,

the choice of gauge simpli�ed the expressions signi�cantly. The coupled trajectory mixed

quantum/classical method is a proposition of trajectory-based nonadiabatic dynamics

using concepts from the exact factorisation and is applicable to molecules in their full

dimensionality. Further developments of nonadiabatic dynamics methods using the exact

factorisation will carry on in the future, as this ansatz provides a representation-free

description of the dynamics. Given the comparably short history of the exact factorisation

— the exact factorisation of the time-dependent electron-nuclear wave function was �rst

published in 2010 —, there are still many avenues to explore. Instead of using coupled

classical trajectories propagated on the time-dependent scalar and vector potential, a

possibility might be to use an approach based on trajectory basis functions.

One other large focus of this thesis was the development of molecular models to test

nonadiabatic dynamics methods. As such, the molecular Tully models have already been

used to test newly developed strategies. This set could potentially be extended further, such

that a universal benchmark set for nonadiabatic dynamics methods is created, in analogy
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to existing benchmark sets for electronic structure methods. It would be desirable to arrive

at a point, where more and more nonadiabatic dynamics methods have been tested and

compared on a standardised set of real, full dimensional molecules, which ideally probe

various scenarios that can occur upon photoexcitation, for example, degeneracies of states,

decoherence and recoherence, three state conical intersections, dissociation. This would

establish an extensive knowledge on the capabilities of methods, similar to what is done

for electronic structure methods, and facilitate greatly the choice of a suitable nonadiabatic

dynamics method for a given problem.

All the initial conditions that have been used for the dynamics of the molecular test

systems have been made available to facilitate the testing of new methods under the same,

controlled framework. However, these initial conditions can only be used for methods

based on classical trajectories. For a further generalisation of the molecular Tully models,

it would be useful to �nd a way to perform fair comparisons between methods that are

for example based on quantum trajectories or wavepackets. Further investigation in

the initialisation between di�erent methods, for example between those using di�erent

trajectory basis functions, is of great interest to the �eld of nonadiabatic dynamics.

Finally, the joint experimental and theoretical studies on thiophenone (amongst other

comparable studies) have proven the strengths of the combination of these methods. In

the future, due to the increased capabilities of experimental resolution and laser strengths,

more comparable studies can be carried out to unravel photochemical processes occurring

in molecules. Especially, ultrafast electron di�raction appears as a potentially exciting new

approach to probe the photodynamics of molecules as it is directly sensitive to the nuclear

con�guration of the molecule. Nuclear dynamics simulations, i.e. especially nonadiabatic

dynamics and ab initio molecular dynamics, will be crucial tools and their performances

will be duly tested since ultrafast electron di�raction allows for a direct comparison with

respect to nuclear con�gurations and predicted product yields.
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Appendix: Explicit form of the

SPA1 for the first order

nonadiabatic couplings

A

In the following, a derivation of the full expression for the AIMS interstate couplings within

the SPA1 is proposed, neglecting the NACs. Considering a two-dimensional (X = (-,. ))
two-state system (such as the ones investigated in the main text) to introduce all the terms

explicitly. For clarity, atomic units are used throughout this appendix, meaning that (what

is of concern here) ~ = 1 is de�ned.

First, some notations for the NACVs and their derivatives in a vector form is de�ned as:

d� � (X) =
©«
3-
� �
(X)

3.
� �
(X)

ª®¬
m

m-
d� � (X) =

©«
m
m-
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� �
(X)

ª®¬ =
©«
(3-
� �
(X)) (- )

(3.
� �
(X)) (- )

ª®¬
m

m.
d� � (X) =
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m
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m.
3.
� �
(X)

ª®¬ =
©«
(3-
� �
(X)) (. )

(3.
� �
(X)) (. )

ª®¬ . (A.1)

The Taylor expansion to �rst order for the NACVs around the centroid position, X̄, has

the general form:

d� � (X) = d� � (X̄) + P d� � (X̄) (X − X̄) + . . . (A.2)

where

P d� � (X̄) =
©«
(3-
� �
(X)) (- ) (3-

� �
(X)) (. )

(3.
� �
(X)) (- ) (3.

� �
(X)) (. )

ª®¬
�����
X=X̄

(A.3)

is the Jacobian of the NACVs evaluated at the centroid position.
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Using this Taylor expansion to zeroth order as an approximation to the NACVs in the

AIMS interstate matrix elements, we obtain

NACVSPA0 ≡ S−1d� � 〈j̃ (� ): |
m

mX
| j̃ ( � )< 〉X , (A.4)

where d� � = d� � (X̄) denotes the nonadiabatic coupling vector evaluated at the centroid

position of the two TBFs considered. We used the symbolic notation NACVSPA0 to designate

in a general way the AIMS interstate couplings within the SPA0 and without the NACs (or

GP corrections).

The AIMS interstate coupling term between TBFs reads, for the �rst-order term of the

Taylor expansion (Eq. (A.2)),

NACVSPA1 ≡ 〈j̃ (� ): |S
−1P d� � (X − X̄)

m

mX
| j̃ ( � )< 〉X
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0 "−1
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. − .̄:<
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m
m.

ª®¬ | j̃ ( � )< 〉X (A.5)

where P d� � is a short-hand notation for P d� � (X̄); -̄:< and .̄:< are the - and . components

of the centroid position between the two TBFs j̃ (� )
:

and j̃ ( � )< . Developing this expression

and separating the terms leads to:

NACVSPA1 = 〈j̃ (� ): |
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The evaluation of these terms requires the knowledge of the following Gaussian integrals153,164

〈j̃ (� )
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| m
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(A.7)

where U- and U. denote the width of the TBFs in the - and . direction, -̄: , -̄< , .̄: , .̄<
are the central positions of the TBFs j̃ (� )

:
or j̃ ( � )< for the - or . coordinate, and %̄-

:
, %̄-< ,

%̄.
:

, %̄.< are the central momenta of the TBFs j̃ (� )
:

or j̃ ( � )< in - or . .
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Inserting the Gaussian integrals from Eq. (A.7) (and their corresponding expressions

with inverted - and . ) into Eq. (A.6), we can obtain the �nal expressions for NACVSPA1:
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(
"−1
- (3̄-� � )

(- )
[
−1

2 +
8

2
(
-̄<%̄

-
< + -̄: %̄-:

)
+ U-2 (-̄

2
< − -̄ 2

:
) − 1

8U-
( (
%̄-<

)2
−

(
%̄-
:

)2 ) ]
+"−1

. (3̄.� � )
(. )

[
−1

2 +
8

2
(
.̄<%̄

.
< + .̄: %̄.:

)
+ U.2 (.̄

2
< − .̄ 2

:
) − 1

8U.
( (
%̄.<

)2
−

(
%̄.
:

)2 ) ]
+"−1

- (3̄-� � )
(. )

[
− 1

8U.
(
%̄-< + %̄-:

) (
%̄.< − %̄.:

)
+ 84 (.̄< + .̄: )

(
%̄-< + %̄-:

)
+ 8U-4U.

(-̄< − -̄: )
(
%̄.< − %̄.<

)
+ U-2 (.̄< + .̄: ) (-̄< − -̄: )

]
+"−1

. (3̄.� � )
(- )

[
− 1

8U-
(
%̄.< + %̄.:

) (
%̄-< − %̄-:

)
+ 84 (-̄< + -̄: )

(
%̄.< + %̄.:

)
+ 8U.4U-

(.̄< − .̄: )
(
%̄-< − %̄-<

)
+ U.2 (-̄< + -̄: ) (.̄< − .̄: )

]
+"−1

- (3̄-� � )
(- )-̄:<

[
8

2
(
%̄-< + %̄-:

)
+ U- (-̄< − -̄: )

]
+"−1

. (3̄.� � )
(. ).̄:<

[
8

2
(
%̄.< + %̄.:

)
+ U. (.̄< − .̄: )

]
+"−1

- (3̄-� � )
(. ).̄:<

[
8

2
(
%̄-< + %̄-:

)
+ U- (-̄< − -̄: )

]
+"−1

. (3̄.� � )
(- )-̄:<

[
8

2
(
%̄.< + %̄.:

)
+ U. (.̄< − .̄: )

])
·
(
〈j̃ (� )
:
| j̃ ( � )< 〉X

)
(A.8)

All terms of this expression are Hermitian with respect to an exchange of the � and �

indices, except the �rst term of the �rst and second row, highlighted in blue, which upon

expansion read: (
−1

2"
−1
- (3̄-� � )

(- ) − 1
2"
−1
. (3̄.� � )

(. )
)
〈j̃ (� )
:
| j̃ ( � )< 〉X (A.9)

Upon interchanging of � and � and complex conjugation, the derivatives of the nonadiabatic

coupling vectors (at the centroid position) will change sign, (3̄-
� �
) (- ) = −(3̄-

� �
) (- ) and

(3̄.
� �
) (. ) = −(3̄.

� �
) (. ) , and in these terms this sign change is not compensated by any

other factor. (In contrast, in all other terms of Eq. (A.8) the prefactor before the overlap

compensates for that change of sign.)
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From this derivation, it becomes clear that the entire AIMS interstate coupling within

the SPA1 does not ful�l the hermiticity condition. However, the interstate coupling for

the NACs within a SPA0 take the following form:

NACSPA0 =
1
2

(
−"−1

- (3̄-� � )
(- ) −"−1

. (3̄.� � )
(. )

)
〈j̃ (� )
:
| j̃ ( � )< 〉X . (A.10)

As discussed in Sec. 2.5.3, adding this term to the above expression for NACVSPA1 leads to

a compensation of the two anti-Hermitian contributions and restores the hermiticity of

the Hamiltonian.
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