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Abstract

Energetic particles with super-Alfvénic speeds could potentially
drive Alfvénic instabilities in a magnetically confined plasma. The
driven waves can influence the fast particle distribution function as
energetic particles are redistributed or lost to the vessel wall leading
to a reduction in energetic particle confinement and heating efficiency.
This thesis investigates the interaction between particles and waves
via full orbit numerical simulations. The work presented herein takes
steps towards the development of a capability to assess whether future
reactor scenarios will be susceptible to these adverse effects or not.

A full orbit particle tracking code has been developed to calculate
particle trajectories and more importantly to compute particle orbital
frequencies as they are followed in the simulation. Based on the wave-
particle resonance condition, resonant particles are identified using this
code for realistic tokamak geometries.

Experimental observations of fast-ion driven waves on the MAST
tokamak are presented. Magnetic perturbations in the kilo-Hertz range
are detected by a set of high resolution Mirnov coils during the neutral
beam injection heating phase where the mode frequency is observed to
chirp downwards over the course of a magneto-hydrodynamics (MHD)
burst. A decrease in fast-ion deuterium alpha signals is found to be
correlated with the electromagnetic bursts indicating fast ion redistri-
bution during the MHD activity. Simulation results suggest that the
increase in plasma pressure is disproportional to the increase in NBI
heating power in the presence of MHD modes. The effect of instabil-
ities on energetic particle behaviour has been analysed by calculating
resonance maps and resonant particle orbits. Full orbit calculations
show that the chirping frequency broadens the wave-particle resonance
region which can result in enhanced particle transport.

Preliminary attempts have been made to evaluate fast particle
transport induced by chirping modes using the non-linear full orbit
HALO code. The chirping behaviour of the mode frequency is simulated
by an ad-hoc function similar to experimental measurement. Calcula-
tions are performed for a simple cylindrical tokamak geometry and a
mocked-up alpha particle distribution. An n = 6 toroidal Alfvén eigen-
mode (TAE) is found numerically for this equilibrium. The results of

the simulations show that fast particles are transported outwards from




the plasma centre when chirping modes are present while no significant
particle transport is seen when the mode frequency is constant. The
level of transport is affected by either mode amplitude or chirping rate.
These results suggest that the inclusion of a chirping effect is necessary
to study particle redistribution in the presence of fast-ion modes when

considering plasma scenarios in the future.
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CHAPTER

Introduction

1.1 World energy

The energy supply in today’s world primarily relies on traditional fossil fuels,
i.e. oil, natural gas and coal. Renewable and clean energy such as nuclear,
wind, and solar energy only account for a small fraction of energy consump-
tion globally. Fossil fuel is an ancient and accessible energy source but also
limited. Meanwhile, the demand for energy is increasing every year with
the progress in people’s living standard. Another threat is climate change.
A large amount of greenhouse gas emission from fossil fuel burning could
change global climate and bring extreme weather events such as drought,
flood, storm, etc. These are deadly for agriculture and can cause signific-
ant threats and losses to human life. There are problems in clean energy as
well. There is no effective solution for disposing radioactive products from
fission nuclear reactions and currently the only way to deal with them is to
bury them deep underground. Imagine in several decades the earth becomes
a radioactive waste dump. Wind and solar energy is easily influenced by
the geographic location or the factor of weather and thus cannot be an en-

ergy source solely. Fusion energy offers a clean, sustainable alternative power




1.2. Fusion enerqy

source which has the potential to address the issues outlined above.

1.2 Fusion energy

Fusion energy makes use of the energy generated by nuclear fusion reactions
and it could be a potential candidate solution for future energy requirements
because the reactions used do not produce long lived radioactive byproducts,
and they do not emit greenhouse gas like burning fossil fuels. The fuel options
of fusion are various and abundant. According to Einstein’s mass-energy
relationship, the fusing of light elements releases a large amount of binding
energy if the total mass of the final products is smaller than that of the
reacting nuclei. The important nuclear fusion reactions for the isotopes of

hydrogen are given below [1]:

D+D — T+ p+4.03 MeV (1.1)
D + D —? He +n + 3.27 MeV (1.2)
D+ T —* He +n + 17.59 MeV (1.3)
D +* He —* He + p + 18.35 MeV (1.4)

For simplicity of notation, the following symbol replacements are made: deu-
terium — D; hydrogen — p; helium (a) — “He; helium-3 — *He.

In order to fuse, two positively charged nuclei must come into contact,
winning over the repulsive Coulomb force. The need to overcome the Cou-
lomb barrier in nuclear reactions makes them difficult to initiate. The cross
section and reactivity determine the probability of the occurrence of a nuclear
reaction. The cross section measures the probability that a pair of nuclei will
undergo a nuclear fusion reaction and reactivity is defined as the probabil-

ity of reaction per unit time per density of target nuclei, as shown in Fig.
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- 1072 D-T 1
10F . i
220
10 D
o If E <ouv> AN
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Figure 1.1: (a) Experimentally measured fusion cross sections versus centre-
of-mass energy. The critical particle energy for a fusion reaction to take place
is around 10 keV for the D-T reaction and nearly 100 keV for the D-He?
or D-D reactions. The maximum cross section of the D-T reaction is also
prominently higher than those of the other two reactions and occurs at a
relatively low energy of approximately 100 keV. (b) Maxwell-averaged cross
section as a function of temperature for reactions of interest to controlled
fusion. The D-T reaction is advantageous for realising nuclear reactions after
considering a Maxwellian velocity distribution (images taken from [2]).

(a)

LIl The D-T reaction involves the fusion of a deuterium nucleus with a tri-
tium nucleus. It has the highest reactivity at lowest reaction temperature
and hence is the easiest of all the fusion reactions to initiate and produces
a significant amount of nuclear energy. The reactivity of the D-T reaction
(ov) peaks at a temperature of ~ 15 keV. At temperatures as high as this
Deuterium and Tritium are fully ionised and form plasmas.

To realise thermonuclear fusion power, there are two basically different
approaches. The first method is inertial confinement fusion (ICF) [3]. This
is a process in which the surface of a small pellet containing the fusion fuel
is rapidly heated by high-energy lasers or particle beams. By a rocket-like
inward reaction the pellet implodes and then the fusion fuel is compressed
to super high densities and is adiabatically heated until the pellet core is
brought to ignition. Studies and experiments are on going in some research

institutes, such as the National Ignition Facility (NIF) at Lawrence Livermore
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National Laboratory . A recent experiment at NIF generated more than 1.3
MJ of fusion energy - around 70% of the energy put in by the laser, nearly
achieving an ignition (the energy losses are balanced by the alpha-particle
heating) [5]. Another form of nuclear fusion is magnetic confinement fusion
(MCF), whereby the charged plasma is confined by a magnetic field. It is also
the focus of this thesis. One of the most common approaches to MCF is by
means of the tokamak configuration, such as ITER @, JET [7] and JT-60SA
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Figure 1.2: A Lawson diagram shows the requirement of the ion temperature
T;, density n; and energy confinement time 75 for gain factors ) and the op-
erational plasma parameters that fusion devices can achieve. Large tokamak
programs such as JET, DIII-D or JT-60U are close to a net fusion power
@ = 1. One of the scientific objectives of the ITER project is to achieve a
gain factor of () = 10 to demonstrate the feasibility of fusion energy as an
alternative energy source (image taken from ﬂgﬂ)

In 1955, J. D. Lawson proposed a useful expression demonstrating the re-
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quirement for fusion power balance, that is, to produce net fusion energy, the
plasma must be confined by a device at a high temperature T at a sufficiently
high density n and for long enough time 7z so that the fusion power released
is greater than the externally applied heating power and this is often referred
to as the ‘Lawson criterion’ |10} [11]. The power balance equation is written
as

W

Pheat - Prad = 0. (15)
TE

Here, Pjeq is the heating power. The term W/t refers to the thermal con-
duction loss where 7z is the energy confinement time and the plasma stored
energy per unit volume W is given by the density and temperature of electrons
and ions

3
W = §(nle + n.T.). (1.6)

The radiation losses P,.q in fusion plasmas mainly include the Bremsstrahlung
radiation which comes from the Coulomb collision between particles, cyclo-
tron radiation because charged particles orbit around the magnetic field lines,
and line radiation due to incompletely ionised impurities [12]. It is not eco-
nomic to power the plasma constantly using external heating to generate
electricity since this often consumes more energy than the input due to ineffi-
ciencies in energy conversion. Each D-T reaction releases Fy = 17.6 MeV en-
ergy in the form of the kinetic energy of a neutron and an « particle (F, = 3.5
MeV) . Self-sustaining operation can be obtained by self-heating via the pro-
duced « particles so that the external energy supply can be saved. If we

assume that the heating power is provided by « particles, then
Pheat = Pa, (17)

where P, the alpha power per unit volume. If we assume a 50-50 D-T fuel

mixture and equal temperature of ions and electrons, that is, n; = n. = n/2
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and T; =T,, P, can written as
1 2 3
P, = ZEan (ov) W/m”. (1.8)

Attempts have been made to evaluate the radiation losses such as electron-ion
Bremsstrahlung and electron cyclotron radiation with relativistic correction
[13, 14]. If we are being optimistic on the radiation so the emission can
be completely reflected back and absorbed by the plasma, then the power

balance relation can be given by

w
— =P, 1.9
- (19

where the radiation power loss is assumed to be zero for simplicity. Using
the expression for the stored energy in Eq. (1.6), the requirement for a self-

sustaining plasma can be written as

12T

_ 1.10
E, <ov> ( )

nrg >

A Lawson diagram as shown in Fig. [I.2] demonstrates the minimum require-
ments for obtaining varying scientific gain @), factor defined by the ratio of

fusion power and external heating power Pjq:

Qsci = pfus/Pheat- (111)

Eq. corresponds to the (Qs.; = oo curve where there is no heating source
and the plasma temperature is maintained via the collision process with fusion
products, i.e., alpha particles. Progress has been made to improve the energy
confinement and operation towards the self-sustained burning condition via
either MCF or ICF approach on contemporary machines, such as the ITER
project [6], which is targeting a first plasma in 2025 and is aiming at T; ~ 18
keV and a high fusion gain of @@ ~ 10.
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Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 1.3: A schematic diagram of a tokamak. The resulting helical mag-
netic field is contributed by the toroidal magnetic field generated by the blue
toroidal coils and the poloidal magnetic field produced by the grey poloidal
coils and plasma current indicated by the green arrowed line circulating the
torus. The light purple shadow area shows the plasma confined surface. The
helical magnetic field lines sit on this surface which we refer to as the poloidal
flux surface and will be discussed in detail in the next chapter (image taken

from [15]).

1.3 The Tokamak

The tokamak comes from a Russian acronym “Toroidal’'naya Kameras Mag-
nitnymi Katushkami”, which means a device whereby the fusion plasma is
confined in a torus shaped magnetic field in a toroidal chamber. A schem-
atic diagram of a tokamak is presented in Fig. [I.3] The plasma is confined
in a vacuum vessel and the initial plasma is usually formed by the central
solenoid (CS) that supplies a changing magnetic flux through the the torus
and induces a toroidal electric field. A distance between the plasma and the
facing materials is obtained by the helical magnetic configuration. The tor-

oidal components of the field is created by the toroidal field (TF) coils which
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pass through the inner and outer vessel. The motions of charged particles
are the gyro motions following field lines and the end loss can be avoided
by the closed toroidal field. However, this alone is insufficient to confine the
plasma completely. The gradient and curvature of the toroidal magnetic field
lead to opposite drift motions for electrons and ions. Then the charge separ-
ation generates an electric field and plasmas will rapidly hit the wall due to
the £ x B drift. A set of poloidal field (PF) coils is located symmetrically
about the mid-plane for shaping, vertical stability and radial force balance.
It is worth to noting that the driven plasma current is the main source of
the poloidal field rather than the PF current. Combinations of the toroidal
and poloidal magnetic components result in rotating field lines traversing the

torus and confining charged particles.

1.4 The MAST and MAST-U Tokamaks

MAST (short for the Mega Ampere Spherical Tokamak) is a medium-sized
spherical tokamak (ST) based at Culham Centre for Fusion Energy (CCFE).
The concept of the spherical tokamak was initially proposed by Peng and
Strickler in 1986 [16]. STs have low aspect ratio compared to conventional
tokamaks, such as ASDEX Upgrade 17|, DIII-D [18], or ITER [6]. Here
the aspect ratio A is the ratio of the major to minor radius of the plasma,
A = R/a. Typically A is less than 2, such as for MAST/MAST Upgrade, A ~
0.85 m/0.65 m ~ 1.33 [19]; for another medium-sized ST device NSTX/NSTX
Upgrade , A ~ 1.25 — 1.33 [20]. This means that STs look more like a cored
apple than the ring-doughnut shape of a traditional tokamak as shown in Fig.
L4

MAST has recently been upgraded to MAST-U and the construction has
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Figure 1.4: Typical configuration of a spherical (up) and conventional (down)
tokamak. The spherical tokamak is compact and the aspect ration A = R/a
is normally less than 2 (image taken from [21]).

been completed in 2018. The scientific objectives of MAST-U are to explore
the capability of the ST in exhaust, current drive, high beta operation and
plasma confinement [19]. Schematic diagrams of MAST and MAST-U are
presented in Fig. [1.5 The new device has substantially improved features.
These include a super-X divertor configuration |24} 25] which uses expanded
magnetic flux configurations and advanced plasma facing materials to handle
the high heat flux. Due to the longer connection length and flux expansion
the super-X divertor can create significantly reduced target heat fluxes than
a regular divertor. Key parameters for MAST and MAST-Upgrade are sum-
marised in Table. [I.I] The external heating system is also improved from
3.8 MW to 5.0 MW and now includes an extra off-axis beam injector [26].
The effect of off-axis heating on stabilising energetic particle modes and redu-
cing anomalous transport has been confirmed on previous MAST experiments
and TRANSP simulations [27]. The neutral beam injection is the only auxiliary
heat source both on MAST and MAST-U and introduces energetic compon-
ents into the main confined region of the tokamak. The toroidal magnetic
field has also been increased by 50%, and the plasma current and pulse length

are increased to 2MA and 5s, respectively.

The ST device is characterised by low requirement for the toroidal field B,
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Figure 1.5: Schematic diagrams of (a) MAST and (b) MAST-U [23]. A
distinct feature of MAST-U is the super-X divertor configuration indicated
by the red solid lines in (b). The edge plasmas and impurities can be diverted
to the target plates by following the extended magnetic field lines.
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Parameter MAST | MAST-U
Major radius (m) 0.85 0.85
Minor radius (m) 0.65 0.65
Plasma current (MA) 1.3 2.0
Magnetic field at R = 0.85 m (T) | 0.52 0.75
Total NBI power (MW) 3.8 5.0
On-axis power 3.8 2.5
Off-axis power 0 2.5

Pulse length 0.6 5

Table 1.1: Key parameters for MAST and MAST-Upgrade. The designed
size of the plasma in MAST-U remains same as MAST. Operational para-
meters such the magnetic field and the NBI power are improved by 50% and
25%. The additional off-axis power is expected to alleviate the fast-ion driven
instabilities due to a narrow fast ion distribution near the plasma core (table
taken from [19]).

and high normalised plasma pressure (3, which is the ratio of the plasma pres-
sure to the pressure of the magnetic field required to contain the plasma. The
highest toroidal beta of any tokamak has been achieved by START [28], which
was the first generation ST built at Culham. The value of beta measures the
efficiency of a magnetic thermonuclear reactor confining the plasma so the ST
has demonstrated its potential for realising commercial fusion energy. A path
to fusion energy with the ST as a candidate for future fusion device has been
proposed [29-31]. The UK Atomic Energy Authority (UKAEA) recently em-
barked upon the STEP (Spherical Tokamak for Energy Production) program
to build a Spherical Tokamak power station to put electrical power on the

grid by 2040 [32).

1.5 Neutral beam injection

Neutral beam injection (NBI) [33] is an efficient approach for heating plasmas
in present tokamaks. The high energy beams are produced via several steps

as shown in Fig. First, the neutral source gas typically Deuterium is ion-
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Figure 1.6: A schematic diagram of a JET neutral beam injector. Neutral
atoms undergo ionisation, acceleration, neutralisation (and residual ions are
collected by deflection magnets and ion dump) before being injected into the
plasma (image taken from )

ised, generating positively or negatively charged ions. These charged particles
then gain kinetic energy via applied high voltages. After the Deuterium ions
are populated and accelerated, they are transferred into a neutraliser unit
which is filled with neutral gas. The neutralised particles are not affected by
the electromagnetic field in the tokamak and can rapidly deposit at desir-
able locations, such as the plasma core where a large beam energy is always
required. An ion dump unit is installed to collect charged particles after
the neutraliser so only the neutral beam is injected into the tokamak. The
background plasmas are then heated via Coulomb collisions with the injected

particles after the injected particles are ionised.

For large fusion devices, such as JT-60SA or ITER, high beam energy is
required to drive the current and heat the plasma and a negative ion source
is used. This is due to the fact that negatively charged Deuterium ions more
easily lose their electrons and become neutral during neutralisation at high

energies so the efficiency 7 is higher, where 7 is defined by the ratio of the

12



1.5. Neutral beam injection

beam power to the input power. However, the technique of producing negative
ions is much more challenging. This can be understood as it is difficult to
attach an electron to the neutral atom compared with losing an electron from
the neutral atom during ionisation.

The NBI fast-ion distribution function f can be calculated by solving the
Fokker-Planck equation

of

S T (0 Vaf +3-Vsf) = C(f) +0 (1.12)

where ¢ and @ are velocity and acceleration of particles. C (f) and o corres-
pond to the collision operator and the source term due to NBI, respectively.
Simulation codes such as NUBEAM [35], ASCOT [36] RABBIT [37|, or HALO [3§]
solve this equation using Monte Carlo techniques. A typical solution for f
displays three distinct energy peaks corresponding to the full, half and third
fraction of the beam injection energy. These energy components come from
the ionisation of heavier molecules, i.e. D and D3 which are also generated
together with DT ions. In all cases the energy received by the molecule is the
same as they are single charged and gain an energy eV where V' is the voltage
they accelerate through. In the case of a diatomic or triatomic molecule, this
energy is split between two or three Deuterium ions produced when the mo-
lecule dissociates in the plasma leading to half and third components. Fig.
shows a characteristic solution of the fast ion distribution function [37].
In this model, collisions between fast ions are neglected. The half and third
energy components of the NBI appear to merge together, and the background

plasma ions cause slowing down which smears the peaks downwards in energy.

The NBI system on MAST has undergone several upgrades [39-41]. Tt is

equipped with two positive ion injectors (PINIs), denoted by the south-south
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Figure 1.7: A numerical solution of the fast ion distribution shows the full
and half energy components of the NBI on ASDEX Upgrade. The third and
half energy merge together as the background plasma ions slow down and
smears the third peak in energy (image taken from )

(SS) beam and the south-west (SW) beam, and can deliver long pulses for a
duration of up 5 seconds. Each injector can operate with a beam power of up
to 2.5 MW at 70 keV . Fast data acquisition and real time control of the
beam current are implemented so that the beam power can be conditioned
as required . The injected neutral beam changes the particle distribution
function, adding a “bump-on tail” at the high energy region. The gradient in

the particle distribution could drive a series of MHD instabilities [44].

1.6 Diagnostics

MAST has a wide range of plasma diagnostic systems. In this section, only
the key diagnostics used to measure fast-ion driven modes are described. We
start with an overview of the Mirnov coil system, which is an important tool

for identifying and analysing MHD activity.
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1.6.1. Mirnov coil array

1.6.1 Mirnov coil array

The Mirnov coil array measures the current induced by the varying magnetic
components perpendicular to the coil circuits, providing a direct observation
of the electromagnetic behaviours. It is located just above the mid-plane on
the low-field side and at R = 1.7 m, approximately 30 cm away from the
plasma edge. Nine sets of coils are installed at different toroidal locations
and each set consists of three concentric orthogonal coils for measuring three
dimensional fluctuations [45]. The measured signals at various locations are
analysed in spectrograms where both temporal and spatial Fourier decom-

position are applied [46],
1 —jwt
Tk =5 /e Fy dw (1.13)

1 - :
- 7/e_Jthai(w)ejni¢’“ dw (1.14)
2m =

where z;, is the signal from the kth coil at toroidal location ¢,. F} is the
temporal Fourier transform of z; at angular frequency w. «; is the complex
amplitude of each toroidal eigenmode n;. M is the total number of toroidal
modes of the plasma. The Mirnov coil array on MAST has a high resolution
allowing electromagnetic fluctuations at frequencies from 10 kHz up to sev-
eral megahertz to be detected. A typical spectrogram is shown in Fig.
which demonstrates an example of the Fourier decomposition of the magnetic

perturbation measured by the outboard Mirnov array for a MAST discharge.

1.7 Fast ions

As discussed in section [I.2] plasmas need to be heated to maintain a preferen-

tial reaction temperature (7; ~ 15 keV) so that the thermal conduction and
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Figure 1.8: A typical magnetic spectrogram of MAST discharge for shot
#17944. The colour on the 2D graph shows the amplitude of the magnetic
perturbation and dominant harmonics with toroidal mode number n =1 ~ 4
are identified [47].

radiation losses can be compensated or overcome. This cannot only rely on
auxiliary heat because it is difficult and expensive to heat plasmas up to this
temperature. Therefore, the energy released from the D-T fusion product «
particles with an energy of 3.5 MeV should be exploited as much as possible
in order to achieve the power balance and self-sustained burning. On the
other hand, for plasmas without significant D-T reactions, the study of fast
ions can be undertaken by exploiting the development of plasma auxiliary
heating techniques. Fast ions can be generated by NBI and radio frequency
wave heating. Various mechanisms generate fast particle populations with
energies significantly larger than the bulk plasma energy and typically non-
Maxwellian distributions [48]. The energy and spatial gradients of the fast

ion distributions act as a source of free energy and can drive plasma unstable.
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Experimentally, we observe a plethora of different waves and instabilities with
different frequencies, mode numbers and spatial structures while the heating
system is active [49]. These modes, once excited, can cause redistribution
and potentially loss of the driving fast particles. This can result in deleteri-
ous effects such as loss of heating efficiency and wall damage [50-52]. Given
the above it is essential that we understand the interaction of fast particle
populations and waves in plasmas in order to confidently design safe reactor

scenarios.

Some of these MHD events are recognised as Alfvén eigenmodes (AEs)
[53]. AEs can be driven by the radial pressure gradient of energetic particles
that have enough energy to resonate with Alfvén waves. Alfvén waves were
first theoretically predicted by H. Alfvén in 1942 when he studied the mo-
tion of a conducting liquid in a constant magnetic field by combining the
properties of the electromagnetic field and hydrodynamics [54]. These waves
propagate along the direction of the magnetic field with a phase velocity
va = B/\/4mp where p is the mass density of the fluid. The wave frequency
satisfies a dispersion relation given by w = vak) where k) is the parallel
wave number along the field. For a cylindrical and spatially inhomogeneous
plasma, v4(r) and kj(r) are a function only of the position . The dispersion
relation w?® = w} = kf(r)v}(r) displays a continuous spectrum as shown in
Fig. (a), where three poloidal harmonics with mode number |m| =1 -3
are completely independent in a cylinder. The Alfvén continuum is stable
and difficult to excite as the particle energy is usually not high enough to
overcome continuum damping [53]. Also the angular velocity is a function of
radius and consequently the waves undergo strong shearing which results in

damping.

In a tokamak configuration, the toroidicity breaks the poloidal symmetry
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Figure 1.9: (a) Dispersion relation of three waves with poloidal harmonics
of m = —1 ~ —3 in a cylindrical plasma with current and plasma density
gradient [55]; (b) Radial structure of TAE continuum in TFTR for n = 3.
Here, x is the minor radius (image taken from [56]).

which results in the coupling of different poloidal mode components. Alfvén
eigenmodes exist in the gaps of the continuum due to the coupling of two
neighbouring branches of shear Alfvén waves with poloidal number m and
m+1, w = kjnva = —kjm1va. Fig. [1.9(b) shows a typical Alfvén continuum
computed for a TFTR tokamak discharge, together with a discrete eigenfre-
quency for the toroidal Alfvén eigenmode (TAE). The mode has perturbed
electric 0)E; and magnetic 6B, components perpendicular to the equilibrium
magnetic field. Most of the magnitude of a TAE with mode numbers m and
n is peaked in the vicinity of the rational surface with safety factor given by

g = (m+1/2)/n and corresponding frequency is wrap = kjva = va/2qR [55)].

Significant efforts have been made to develop techniques to diagnose fast-
ion driven modes. The radial mode structure in plasma core can be de-
termined by internal plasma measurements with soft x-ray diagnostics [5§]
or electron cyclotron emission (ECE). The magnetic perturbations are ob-
tained by means of cross-correlation analysis with the measurements of the

electron temperature. Both the temperature via ECE and density perturb-
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Figure 1.10: Magnetic spectrogram of Alfvénic activities excited by ICRH
in JET plasmas . The TAE gap is in approximately 200 kHz while the
mode frequency of the elliptic Alfvénic eigenmode (EAE) is about twice wrap.
Here, s can be approximated by s = r/a.

ations using beam spectroscopy are found to be closely consistent with the
predictions obtained in ideal MHD simulations . The measurements of
magnetic perturbations can be performed using a set of high-resolution mag-
netic pick-up coils. The external magnetic diagnostic coils are capable of
detecting perturbations at frequencies from 10 kHz up to several megahertz.
Experimental observations have shown that the typical mode frequency of
TAEs is 100 ~ 200 kHz. The poloidal and toroidal harmonics are analysed
using Fourier decomposition. Fig. [1.10] (a) is a spectrum showing the TAE

bursts with toroidal mode number |n| =1 — 3 [57].

In addition, the energetic population could also destabilise other MHD
modes, known as “energetic particle modes” (EPM) [60]. These modes are
not supported by the bulk plasmas and could exist outside the TAE gap. In
MAST discharges, it can be observed that TAEs develop into EPM with beam
injections , . These EPMs are sometimes referred to as “fishbones” due

to their appearance in the spectrogram.
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1.8. Outline

1.8 Outline

Fast-ion driven instabilities have been observed on various fusion devices [53|
63, [64]. In MAST, TAE and fishbone modes with chirping frequencies are
excited as the energetic neutral beams are injected into plasmas and fast-ion
redistribution takes place simultaneously. The work of this thesis investigates
these processes using full orbit simulations. Equations of charged particle
motions in electromagnetic field, along with the MHD description for plasmas
and a kinetic-MHD model are reviewed in Chapter 2. Based on the hybrid
model, a wave-particle resonance condition which is a function of particle
motion frequencies and wave frequency is derived . In Chapter 3, a particle
pushing code is developed to calculate particle full orbit confined by a 2-
dimensional tokamak magnetic field and the orbital frequencies in poloidal
and toroidal directions as it is orbiting around the tokamak. In Chapter 4,
a plasma discharge in MAST is investigated where TAE and fishbone modes
with chirping frequencies are driven and fast ion redistribution is observed as
the energetic neutral beams are injected into plasmas. Chapter 5 discusses
the HALO model and the simulation of fast ion redistribution induced by the
TAE modes using this model. In Chapter 6, these results are summarised

and future work is outlined.
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CHAPTER 2

Theoretical review

Much of the work of this thesis is concerned with the interaction of fast
particle populations with magnetohydrodynamic waves in plasmas. To un-
derstand such interactions, it is necessary to first understand the basic be-
haviour of charged particles in electromagnetic fields and the ideal MHD
stability of plasmas in confining magnetic fields. This chapter firstly ex-
plores the motion of charged particles in electromagnetic fields. The single
particle description neglects the interaction between charged particles, and
the motion is determined by Newton’s equations of motion and given initial
conditions of positions and velocities. This approximation can give intuitive
physics pictures of charged particle trajectories in some complicated fields
and explain many features of plasmas. It is also the starting point for un-
derstanding the magnetic confinement of plasmas. Then the second section
describes magnetohydrodynamics in which a plasma is considered as a con-
ductive fluid. It combines classical fluid dynamics and electrodynamics and
focuses on the collective behaviours of a plasma rather than the single particle
motion. The MHD description is often used to study the macroscopic prop-
erties of a plasma, such as the macroscopic equilibrium, stability and many

kinds of wave oscillation phenomena. Furthermore, Landau damping [65] is
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2.1.1. Gyro motion

discussed in one dimension. This explains how energy is exchanged between
an electromagnetic wave and particles in the plasma. Lastly, the MHD-kinetic
hybrid model [66] based on guiding centre approximation is reviewed. The
derivation leads to an important and useful formula, known as the condition
of wave-particle resonance. As will be shown in the next chapter, a code has
been developed to identified the resonant particles confined by an equilibrium

field based on this resonance condition.

2.1 Charged particle motion in magnetically

confined devices

2.1.1 Gyro motion

The motion of a particle of charge ¢ and mass m in an electromagnetic field

is governed by the equation [2]

m(fl\tf =q(vxB+E). (2.1)

For a straight and constant magnetic field B = B2, Eq. (2.1) reduces to

Uy = quy,B/m,
Uy = —quy,B/m, (2.2)
v, = 0.

By defining gyro frequency w,. = |q|B/m, the solutions of the motion equa-

tions are

r = (v) Jwe)sin(wt + a) + o,

y = (vL /we) cos(wet + a) + yo, (2.3)

z =)t + 2o,
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2.1.2. ExB drift

where o, Yo, 20, v, v)| and « are determined by initial conditions. v and v
denote the velocity components parallel and perpendicular to the magnetic
field. The particle trajectory in the plane perpendicular to the magnetic field

satisfies the circular equation

(z —20)* + (y — yo)* =12, (2.4)

where r. = v, /w, is the gyro radius or Larmor radius. This is the radius
of gyro motion as the particle rotates around the centre of the orbit (zg, yo).
The centre of the gyro-orbit is referred to as the guiding centre, measuring the
average location during a gyro-period 27 /w.. The gyro motion of a charged
particle circulating around the field line is the fundamental movement in a

magnetic confinement device.

2.1.2 ExB drift

In a magnetic confined plasma, the magnetic field is not straight and constant,
so an analytic solution for the particle motion cannot in general be found.
However, the dominant motion is still the cyclotron motion perpendicular
to the magnetic field line but with a set of superimposed drifts when the
variation of the field is small in time and space. The addition of a finite
electric field causes a drift both perpendicular to E and B, known as ExB

drift. The drift velocity is written as

ExB
B2

(2.5)

Vg =

For the case of a positively charged particle, the electric field accelerates the
motion of the particle when E-v; > 0 and slows down the particle when
E-v, < 0 as the particle attempts to complete each circular gyro-motion.

The acceleration leads to an increasing v, and therefore larger gyro radius r,

23



2.1.5. VB drift

RCZgI)
O GLQQQQQ/

Figure 2.1: (a) Transverse motions of charged particles in a constant magnetic
field; (b) Drift motion in the presence of a small E field. The positive charge
accelerates at the left-half circle and its velocity reaches a maximum value at
the top of the circle, point b; it decelerates at the right-half circle and reaches
a minimum velocity at the bottom of the circle, point d. The gyro radius
increases as the particle moves upwards from d — b and decreases as it moves
downwards from b — d. The particle trajectory cannot be closed and the
particle drifts with a velocity vg.

since r, ~ v, /B while the deceleration reduces r.. Over a gyro-period, the
guiding centre of the gyro-motion overall drifts away from its original location
without the electric field. The drift due to an arbitrary force F applied to
the particle can be found via the substitution E — F/q and is given by

FxB

5 (2.6)

Vp =

2.1.3 VDB drift

A charged particle immersed in a non-uniform magnetic field experiences a
mirror force if the field strength varies along the particle trajectory. When the
magnetic magnitude varies only slightly over the length scale of the Larmor

radius, 7.VB/B<1, the VB drift velocity can be evaluated by
Wy
vyp = B3BXVB (27)

where W, = muv? /2 is the perpendicular kinetic energy. vyp is often ex-
pressed in terms of the magnetic moment u = W, /B,

(—uVB)xB

s (2.8)

VvB =
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2.1.4. Curvature drift

where F = —uV B is the mirror force. The force is in the direction of —V B,
implying a repulsive force from the region where B field is higher to the region

of lower B field.

2.1.4 Curvature drift

A closed and toroidal magnetic field is used to confine fusion plasmas in
order to avoid end losses. The field line is hence not straight and can be
characterised by the radius of curvature vector R.. When the field line is
slightly bent, i.e. R. > r., the motion of a charged particle can be considered
as an addition of the guiding centre drift and the gyro-motion. The guiding

centre curvature drift velocity is given by

mu F xB
I
K = Rc B = s 2.9
qBQRC2 X qBQ ( )
where Re/R? = —b - Vb and b is the unit vector of the magnetic field.

F = mvﬁRC /R, is the centrifugal force felt by the guiding centre due to the
curved B field.

2.1.5 Constants of motion

Along the particle trajectory, several quantities are conserved and can be
derived from Eq. ({2.1). First, a general energy conservation relation can be

found by forming the dot product of the motion equation (2.1)) with v. This

leads to p
v
. —0E -
mv o gE - v,
d/1r d®
2z = _—gVP -v=—qg— 2.10
dt(2mv> VeV =T (2.10)

1
§mvz + q® = constant.

where the electromagnetic field is assumed to be static. It is hence expressed

as the gradient of the scalar potential E = —V®. The conclusion is that
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2.1.5. Constants of motion

the sum of kinetic and potential energy of a charged particle in a static
electromagnetic field is constant. The kinetic energy is conserved when E = 0
indicating that the magnetic field does no work on a charged particle.

The second conservation relation is the canonical toroidal momentum un-
der the condition of toroidal symmetry. The Lagrangian of a charged particle

in the conservative field is given by [67]
. L :
L(x,%,t) = gmx" = qP(x,t) +qx- A, (2.11)

where the vector potential A is defined by B = V x A. The Lagrangian L,

expressed in terms of canonical coordinates (R, ¢, Z), is written as

‘C(Ra (b? Z7 R7 ¢7 Z7t) = §m<R2 =+ Z2 + R2¢2) + Q(RAR + ZAZ + R¢A¢ - (I))
(2.12)
Substituting L(R, ¢, Z, R, ng, Z,t) into the Lagrange equation of motion and

considering only the ¢ equation

d(oL\ oL _ .
it\og) a0 ="

d .
7 (mR? + qRA,) =0, (2.13)

Py = mR2¢ + qRA, = constant.
The canonical toroidal momentum P, is a constant due to the toroidal sym-
metry 0L/0¢ = 0. The second term in P, can be expressed in terms of the
poloidal magnetic flux 1, = 21 RA, leading to P, = mR2d + qb, /2.

The third invariant of interest is the magnetic moment u = mv? /2B.
The magnetic moment is an adiabatic invariant, which is conserved if the
magnetic field varies only slightly over the the scale of the gyro radius. The
motion of the guiding centre along the B field is dominated by the mirror
force,

dy _

— == B 2.14
m dt /LVH ( )
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2.2. Magnetohydrodynamics

Multiplying (2.14)) by v = ds/dt yields

d /1 ds dB
S - —— 2.15
dt (2”“") Wt ds (2:15)
Using energy conservation
d /1 5 1
we have
i <1m 2> _ dB
at\2"") T ar
d dB
—(uB) = y— 2.17
dp
B— =0
dt

This shows that u is a constant in time since B is non-zero.

The consequence of p being a constant of motion is that when a charged
particle is moving in a non-uniform magnetic field, the particle perpendicular
kinetic energy is changing with B field in order to maintain the value of u
as p = W, /B by definition. Hence the parallel energy might reduce to zero
as B grows and then the parallel motion is reversed. The guiding centre can
therefore be trapped between two strong magnetic field locations. This is

known as the bounce motion of the guiding centre.

2.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a way to describe the collective behaviours
of plasmas in an electromagnetic field. The plasmas are divided into many
small fluid elements which still contain relatively large numbers of ions and

electrons, denoted by plasma density n,

Na(r,t) = / falr, v, t) dv. (2.18)

27



2.2. Magnetohydrodynamics

where f,(r,v,t) is the particle distribution function for each species o and
it is normally a function of spatial position, velocity and time. The fluid
velocity u is the average velocity over the total number of particles within
the fluid element,

(v, 1) = :L [vhalrv 1y dv = () (2.19)

with (...) denoting the average over velocity space.

The total pressure tensor has nine elements given by

P = nomy(vv) = ngmouau, + nagme (ww)
(2.20)

P =n.,mo,uu, + po + 74
Here, w = v — u, is the random component of the particle velocity. pa.
and m, represent the diagonal and off-diagonal terms of the pressure tensor,
respectively. When the coordinate is rotated along the field line and the
remaining two coordinates are chosen to be perpendicular to the magnetic

field, the three dependent scalar pressure components can be written as

pL
Pa = DL : (2.21)
Dy
When a local thermodynamic equilibrium state is achieved, the MHD equilib-
rium pressure is isotropic: p; = p; = p and the temperature is 7' = p/n. For
an anisotropic system, p; # p||, Pa = p1(I = bb)+p; bb =p I+ (p;—p.)bb,

where I is the unit tensor and

bb=| o |. (2.22)
1

In a plasma, each fluid element is composed of fully ionised ions and

electrons. As the mass of the ions is greater than the mass of the electrons,

28



2.2. Magnetohydrodynamics

i.e., m; > m,, we can simply neglect electron mass and hence the mass density
can be written as p = nm,;, where n; = n, = n because of quasi-neutrality. In
addition, the momentum of the fluid is also predominantly carried by ions so
the fluid velocity is defined by u = u;. The current density is determined by
the difference of the flow velocity of ions and electrons j = en(u; — u.). The
total pressure is simply the contributions of both species: p = p; + p. = 2nT
and T = (T; + T.)/2. One special situation is when the ions have the same
temperature as the electrons, T; = T, = T, the expression of the pressure
then reduces to p = nT.

The resulting MHD equation set are conservative relations of mass, mo-

mentum and energy coupled with Maxwell’s equations:

dp

E +V-(pu)=0 Mass continuity (2.23)
d
pdiltl +Vp—jxB=0 Momentum balance (2.24)
d

— (ﬁ) =0 Adiabatic equation of state (2.25)

dt \pY
E+uxB=0 Ohm’s law (2.26)
V-E=0 Gauss’s law (2.27)

0B

VxE + i 0 Faraday’s Law (2.28)
VxB — 1j =0 Ampere’s Law (2.29)
V-B=0 No magnetic monopoles (2.30)

where the convective derivative is given by

d 0
R Ava 31
o aﬁ“v (2.31)

In these equations, the fluid variables are the mass density p, the fluid velocity
u and the pressure p. v = 5/3 is the ratio of specific heats. The electromag-

netic variables are the electric field E, the magnetic field B, and the current
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2.8. FEquilibrium

density j. po is the permeability of free space. We have assumed that the
plasma is a perfect conductor in Ohm’s law, that is, the electrical conductiv-
ity is infinite, 0. — oo. This is widely true for fusion plasmas as o, increases
with the plasma temperature T: o, o< T%/2. This set of MHD equations
is also known as ideal MHD equations because of the perfect conductivity
assumption of Ohm’s law.

Due to the assumptions made in deriving the MHD equations, they are
valid for describing processes on temporal and spatial scales which obey the

following relations [68],

AL >, (2.32)
)\H > )\c, (2'33)
T > T, (2.34)

where the characteristic time scale is 7. The perpendicular and parallel length
scales are denoted by A, and A, respectively. . is the gyro radii, A, the mean

free path of a particle and 7, the typical collision time.

2.3 Equilibrium

An MHD equilibrium is achieved when the plasma state is independent of

time, that is, du/dt = 0 in the momentum conservation equation

du

pr +Vp—jxB=0. (-24)

Then the equilibrium condition is given by

jxB=Vp, (2.35)
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2.3.  Equilibrium

where the magnetic force j x B is balanced by the pressure gradient force Vp.

The magnetic force can also be written as

1
ij:M—(VxB)xB:V-T. (2.36)
0

Here, the stress tensor T is given by

1 1
T = —(BB - ~-B*I) (2.37)
Ho 2

where I is the unit stress. The force balance equation ([2.35)) becomes
—Vp+jxB=V-(T—pl), (2.38)

and

T — pl = —(p+ B*/2u0)1 + BB/ 0. (2.39)

The normal component of the total stress is (T —pI)-n = —(p+ B?/2uy)n +
(B - n)B/uo, which implies that the total stress is a combination of the
plasma pressure p, magnetic pressure B2/2/ and the magnetic tension B?/
along the field line driven by the curvature of the field lines. The quantity
B = 2p/poB? evaluated by the ratio of the plasma thermal pressure and the
magnetic pressure is often used as an important plasma equilibrium para-
meter. This factor measures the efficiency of plasma confinement by the
magnetic field and a low value of 5 indicates that a substantial amount of
magnetic pressure is used to contain not much thermal pressure.

From Eq. , it can be easily found that B, j and Vp satisfy the

following relations:

B.Vp=0, (2.40)
j-Vp=0, (2.41)

which imply that both the magnetic field lines and the current lines lie on

the contours of constant pressure but the angle between B and j is arbitrary
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2.8. FEquilibrium

Figure 2.2: Contours of the constant equilibrium pressure are nested toroidal
surfaces. Both the magnetic field and the current lines lie on the constant
pressure surfaces.

ZA

~

Figure 2.3: Poloidal surface S, used to calculate the magnetic flux.

as shown in Fig. These contours are usually referred to as magnetic
flux surfaces or flux surfaces. The limiting situation is that the flux surface
degenerates into a single line and the magnetic field line is also on this single
line. In such case, the magnetic field is purely in the toroidal direction and
this occurs at the magnetic axis in the centre of the device and at the X
points in diverted plasmas [23].

The helicity of the magnetic field line on each flux surface is described
by the safety factor g, defined by ¢ = 2m/i, where ¢ represents the angle
changes in the poloidal plane when the magnetic field line goes around the
torus once (the toroidal angle changes 27). If the magnetic field returns to
the starting point after completing n loops around the torus and m loops
around the poloidal plane, ¢ = n/m is a rational number and the flux surface

is called a rational surface.
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2.3.  Equilibrium

A favourable pressure profile in a tokamak is when the plasmas are hot
and dense near the centre of the poloidal cross section so that the plasmas
are well confined and isolated from the material walls. Hence the contours
of constant pressure are nested toroidal surfaces whose the innermost layer
corresponds to a maximum pressure. In Fig. p = p1, P2, p3 label three
flux surfaces which are wrapped by the field lines. We can define any surface
quantity ¢ to be a function of p so that the magnetic field can be easily

expressed.

From Eq. it follows that B - V¢ = 0 for a system that is ortho-
gonal, implying that if we can choose an orthogonal system with one of the
B components along V), then the strength of this component By, would be
zero since By, = B - Vi by definition. Consequently, the equilibrium degrees

of freedom reduce to two when a flux surface coordinate system is used.

A cylindrical right-handed coordinate system is formed by (R, ¢, Z) as
shown in Fig. 2.3l The magnetic field consists of three components: Bp,
By and Bz. In a flux surface coordinate system, the magnetic field can be
decomposed as B = Byey, + Bsey + Byep, where By = 0. ey, e,, €, are a set
of local orthogonal unit vectors perpendicular to each other, e, = Vi /|V)|

and e, is in the direction of Vi X e,.

The axisymmetric assumption implies that 9/0¢ = 0. Then V-B = 0

can be written as

———(RBg) + - = 0. (2.42)

The poloidal magnetic field B, can be described by a scalar function % in
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2.8. FEquilibrium

this way so that the the above equation is automatically satisfied:

1oy
R= " paz (2.43)
1
1
B,=Br+B; = EVI/J X €4. (2.45)

Here it is only assumed that (p) is a function of pressure and it has no
specific physics significance.

A simple representation of the magnetic field and current can be found
by using the poloidal magnetic flux as a coordinate, defined as:

b, = | B-dS,, (2.46)
S,

where S,, is the poloidal surface as shown in Fig. ﬂ This quantity is defined
on a flux surface and so can be considered a monotonic function of p, that is,
Y, = ¥,(p). Using Eq. (2.44)), the relation between the general 1 function

and the flux surface function 1, can be found via

2w R
by = /0 do /0 RBdR = 213 (2.47)

Ampere’s law in Eq. (2.29) gives the current density j = V x B/ug. Here
j can be decomposed as j = jze,+j, and j, = jrer+jzez so the components

Je, jr and jz are expressed in terms of the magnetic field components:

Jo = :O(aaj? - (983;2)% = —MolRAW, (2.48)
jr = _,ng)z - —Mole‘; (2.49)
jr = mleg, (2.50)
where
F = RB, (2.51)
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2.3.  Equilibrium

and the elliptic operator A* is given by

0,1 0 0? 0? 0? 10
*_po (22 - - 2.52
or\ror) t 922~ om T 072~ Rom (2:52)
The R component of the MHD equilibrium equation is given by
dp . :
iR = JjoBz — jzBy. (2.53)

Substituting Eq. (2.44), (2.48) and (2.50) for By, js and jz into Eq. ([2.53))

and using
dp _ dp dy
L _r77 2.54
dR  dydR’ (2:54)
the equilibrium equation (2.53|) becomes
dp 1dF?
A = —pgR?— — ——— 2.55

where both pressure p(¢) and F(¢) = RB, are functions of the flux surface
label 9. Eq. is known as the Grad-Shafranov (GS) equation [69, |70],
which describes general axisymmetric toroidal equilibria.

The Grad-Shafranov equation describes 2-dimensional MHD equilibrium
in a toroidally confined configuration. The physical variables in the equa-
tion, such as p and v are independent of the toroidal angle, ¢ and yet to
be calculated. Experimental measurements are required to provide boundary
conditions to solve the equation and obtain valid equilibria. EFIT/EFIT++
[71] is a numerical code that is designed to solve the Grad-Shafranov equa-
tion and has been successful in reconstructing MHD equilibrium profiles of
magnetic field and plasma pressure using experimental constraints. The code
uses data from magnetic probes and flux loops to give the shape of the mag-
netic flux surfaces and D, data to determine the plasma boundary location
[72]. On MAST, measurements from the motional stark effect diagnostics

[73] are used to constrain the current distribution at a single time point in
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2.4. MHD instability

each discharge. The electron temperature 7, and density n. are measured by
Thomson scattering system at 29 radial locations across the mid-plane [74].
The ion temperature T; is inferred from the charge exchange recombination
measurements [75|. The equilibrium pressure profile can also be constrained
using n;T; + n 1. and the fast particle contribution to the pressure is omit-
ted. EFIT++ uses a complicated interactive loop to obtain the equilibria. A
functional representation, such as polynomials of some order, is chosen for
the derivatives p/(¢)) and FF'(¢) in Eq. (2.55). Then one starts with an
initial ’guess’ of the plasma shape (flux surfaces) and finds the coefficients
for the representations of p'(¢)) and FF’(¢) which best fit all the data given
this current shape. Profiles of p(1)) and F(¢) can be calculated and the GS
equation is re-solved to obtain a new plasma shape. This process is iterated
to convergence. The components of the magnetic field are derived as given in
Eq. ([2:43), and after interpolating the values of 1. Fig. is
an example of the equilibrium profile for a discharge on MAST reconstructed
by EFIT++ [72]. The contours are the normalised poloidal flux function v,

which is calculated by
¢ - waxis
Yp = —,
2/}wall - waxis

where 1.5 and Yy are boundary values in the simulation. Therefore 1, is

(2.56)

in the range 0 < ¢, < 1. v, = 0 and v,, = 1 indicate the locations of the

magnetic axis and the last closed flux surface (LCFES), respectively.

2.4 MHD instability

For a given MHD equilibrium, it is necessary to examine whether the equilib-
rium is MHD stable or not. This is crucial for the experimental operation of a

tokamak as massive instabilities could result in the whole plasma hitting the
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2.4.1. Linearisation

Figure 2.4: A typical MHD equilibrium profile for a MAST discharge recon-
structed by EFIT/EFIT++. The LCFS is labelled with red solid line and the
magnetic axis is marked with a red cross ‘4’ (taken from [72]).

wall or change the magnetic configuration, enhance particle and energy trans-
port, and ultimately reduce plasma confinement and terminate reactions. In
a plasma, either pressure or electromagnetic field could provide a restoring
force when there is a small perturbation. If this perturbation only oscillates
near its equilibrium position or decays to zero, then the system is considered
stable. However, if the amplitude of the perturbation can grow, the system

is unstable.

2.4.1 Linearisation

Under a small perturbation, a physical quantity Q(r,t) can be expanded

about its equilibrium value Q(r),

Q(r, 1) = Qo(r) + Qu(r, 1), (2.57)
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2.4.1. Linearisation

where @)y is time-independent and () is the first order linear perturbation.

Considering an ideal MHD fluid satisfying

0
P 4 V-(pu) =0,

ot
du
b i B
G Vp+jx B,

0B

B) = > (2.58)

V X (u x B) 5
VXB:MOja

pp~ " = const.

The linear expansion formulation is written as

B = By(r) + By (r, 1),

p = po(r) + pa(r,t),

J =Jo(r) +Ju(r, 1), (2.59)
p = po(r) + pa(r,t),

u = wu(r,t).

Here, a static equilibrium plasma with ug = 0 is considered. Substituting
these expressions into the MHD equations and cancelling all the equilibrium

quantities yields
pr ==V (po§),
p1=—& Vpo—vpoV - &, (2.60)

B1:VX(€XBO),

where the vector £ is defined via u; = 0€/0t representing the displacement
that the plasma is away from its equilibrium position. The momentum equa-

tion becomes

82
po e = F(E) (2.61)
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2.4.2. Normal mode formulation

and F (&) is the force operator given by

F(&) =joxBi+ji xBy—Vp

_ ;O(VXBO) < B, + MlO(VxBl) % Bo + V(€ - Vpo + 110V - £).
(2.62)
2.4.2 Normal mode formulation
Assume all the perturbed quantities have the form of a normal mode:
Q1(r,t) = Q1(r) exp (—iwt). (2.63)
The linearised momentum equation (2.61) can be written as
—?po€ = F(€) (2.64)

where F is given in Eq. (2.62). The force operator F is self-adjoint, that is,
for any two arbitrary vectors £(r) and n(r) both satisfying eigenfunctions of

F as described by Eq. (2.64]), the following relation holds

/n CF(£)dr = /5 - F(n)dr. (2.65)

It is straightforward to define the stability of a mode by making use of
the self-adjoint property of the force operator. Taking the dot product of &*
on Eq. (2.64)) and integrating over the entire volume lead to

~? [ polgfPr = [ & F(g) a, (2.66)

with & being the complex conjugate of £&. Then taking dot product of £ on

the conjugate of Eq. (2.64) and performing the volume integration give

~(w?)" [ polefdr = [ € FE)dr. (2.67)
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2.4.3. Homogeneous plasmas

F is self-adjoint implying the right-hand sides of Eq. and are
equal. Then we have w? = (w?)* where (w?)* is the complex conjugate of w?.
To conclude, the self-adjointness of F ensures that w? is purely real.

The stability of a mode can be defined via the mode frequency w when

w? is a real number:

w? >0 oscillatory stability
(2.68)

w? <0 unstable

The positive w? implies Im(w) = 0 and Re(w) # 0. This corresponds a stable
mode that simply oscillates near its equilibrium position. For a mode with
w? < 0, one branch with Im(w) > 0 exponentially grows with time and thus
is unstable. The stable-unstable transition takes place at w = 0.

A further consequence of F(&) being self-adjoint is that the discrete nor-

mal modes are orthogonal to each other,

/ ol - & dr = G (2.69)

where &, and &, are two solutions to Eq. (2.64). The orthogonal eigenfunc-
tions can be used to span a linear space and thus any small perturbation
of a system can be described by the combination of these basis functions,

£(t) = X an&, exp(—iw,t) with a,, being the expansion coefficient.
n=1

2.4.3 Homogeneous plasmas

A perturbed plasma in an infinite homogeneous field can excite multiple os-
cillatory waves. Without loss in generality, the one-dimensional equilibrium
field B = Bye, is assumed to be along the e, direction. Using the Four-
ier representation, the perturbation can be written in a more general form,
Q:(r,t) = Qi exp[—i(wt — k - )], with wave vector k = ke, + kje,. By re-
placing 0/0t — —iw and V — ik, the linearised momentum equation
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2.4.3. Homogeneous plasmas

reduces to
o€+l Ok {lx [k x (€xBa)l} x By =0, (270)

where pg and pg are equilibrium density and pressure, respectively. Equival-

ently, Eq. (2.70) can be written as the following scalar equations:

(W? — kfv})& = 0, (2.71)
(w? = K1} — k*0})g, — (kLkpv)€ =0, (2.72)
—(kLkyvi)gy + (W = kjvi)é: =0, (2.73)

where vq = /B3 /uopo is the Alfvén speed, v, = y/vpo/po is the adiabatic

sound speed and k? = k% + k‘ﬁ Non-trivial solutions of & require the determ-

inant of this system be zero, giving the dispersion relation

w? = kﬁvi Alfvén wave,

1
w? = 5]{:2(031 +02)(1 £ V1 —a?) fast and slow magnetosonic waves,

(2.74)
with
k2 2,2
2 Il VAU
=4— . 2.75
“ k2 (v4 + vg)? (2.75)
The first solution w? = kﬁvi corresponds to the shear Alvén wave and is

independent of k,. The Alvén waves were first proposed by H. Alfvén when
he studied the coronal heating problem in 1942 [54]. These are transverse
waves with both u; and By perpendicular to By and k. The bending field
line provides a restoring force so the plasma oscillates with the field line,
leading to an energy transformation between the perpendicular plasma kin-
etic energy and the magnetic energy. The positive and negative sign in the
dispersion relation describes the fast and slow magnetosonic waves,
respectively. They are compressional waves producing fluctuations in plasma

pressure and density. Each solution of w represents a mode of the oscillatory
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2.4.4. Landau damping

waves. Since 0 < a? < 1 all w? are positive, implying that plasma waves in
the homogeneous field are stable modes. In more realistic geometries, one re-
tains the general features of compressional and shear Alfvén waves as well as
combinations thereof but that the eigenfunctions become considerably more
complicated and are obtained using linear stability codes such as MISHKA
[76].

2.4.4 Landau damping

Landau damping [65, [77] describes a resonant process of the wave-particle
interaction. This process is collisionless but involves energy transfer between
waves and particles in the plasma. Consider an infinite homogeneous mag-
netic field B = Bye, and a small electrostatic perturbation E = E cos(kz —
wt)e,. The perturbed field is assumed to be parallel to the magnetic field
line and to propagate along the z direction. The drift motion of a charged

particle in such electromagnetic field is governed by the following equations:

d

W_4p cos(wt — kz),

¢ m (2.76)
a7

with initial conditions v(0) = v; and 2(0) = z;.

Since the amplitude of the perturbation is small, the solution to Eq.
can be approximated by the unperturbed term and the first order correction:
v =19+ v; and z = 2y + z;. The leading unperturbed solution corresponds
to a free streaming motion along the magnetic field, given by vy = v and

20(t) = vt + 2. v1 and 2; satisfy the following equations

oy _ Ny cos(wt — kyjt — kz;),

di  m (2.77)
da _,

at "
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2.4.4. Landau damping

with initial conditions v1(0) = 0 and 2;(0) = 0. The first order solution is

given by
E

v = q—[sin(at — kz;) +sin kz,
ma

qk

Z1 = [
mo o

with a = w — kv).

—cos(at — kz;) + coskz; (2.78)

+ tsin kz;],

The change in particle energy per unit time due to the wave is given by

awooda
= @G =B -
dW 8E1<Zo,t) ( ' )

— = Q[UoEl(th) + vg

dt 1 + UlEl(Z(), t)}

32’0

where the second order correction is included. Averaging over all the initial

positions within one wavelength gives an averaged change in particle energy,

B0y ke
dt /.. 2mJo e "

<dW> _q2E2(w, ; wt ot t)
T sin o acosoz cosat ).

(2.80)

Now consider the distribution of the particle velocity fo(vy,vy). Taking an

average over the entire velocity space distribution and integrating by parts

aw Foo aw
) — AN g
< dt >ZZ',’U| —0o0 fO < dt >Zi UH,

<dW> _ @PEPngy [t <wsinat
ziv|

yields

(2.81)

— sin oaf) gfjdv” ,
l

dt C 2mk e o
where f| = (2m/ng) [ fovi dv,. For t — oo, particles with o ~ 0, that is
v = w/k, contribute to the integral. These particles are resonant particles.
When « # 0, the integration vanishes because of the oscillating integrand.

The resulting power gained by all the particles is given by

<dW> _ _7rq2E2nDW (% (2 82)
Z50)

dt 2mk? 6v)w/k’
The conclusion is that the resonant particles have wave phase velocity v ~

w/k. The resonant particles absorb energy from the wave when 0 f;/0v; < 0.

43



2.5. Kinetic-MHD model

|1 A

>V,

> V),

wik ik

(a) Landau damping (b) Landau growth

Figure 2.5: Particles with velocity above resonance gain energy from waves
and lose energy to waves when below resonance. Landau damping occurs

0
when ﬂ < 0 indicating more particles gain energy than lose energy which

0"0”

leads to a net growth in particle energy and damping in wave energy. Landau
growth corresponds to a opposite situation.

Conversely, when 0f)/0v| > 0, the wave can grow because it gains energy
from the resonant particles.

At a small region where v ~ w/k, particles with velocity vj > w/k can
give away their energy to the wave lowering the average velocity to the phase
velocity; slower particles with vy < w/k can gain energy from the wave in-
creasing the average velocity to the phase velocity. As shown in Fig. (a),
df)/0v; < 0 at vy = w/k, there are more particles taking energy from the
wave than those losing energy to the wave. The net particles energy increases
leading to the wave damping. Fig. (2.5)(b) is the case where df)/dv| > 0 at

v = w/k, less particles absorb energy from the wave so the wave can grow.

2.5 Kinetic-MHD model

This section reviews the expression for the linear perturbation to a guiding
centre distribution function due to interaction with a mode field. From this
expression it can be seen that a necessary but not sufficient condition for

large power transfer between the wave and particle populations is that the
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2.5.1. Guiding centre theory

particles satisfy a resonance condition. This section is reproduced mostly

unaltered from [66].

2.5.1 Guiding centre theory

As discussed in section 2.1.1] the motion of the guiding centre can be decom-
posed into parallel streaming vy b, and perpendicular drift motions including

the VB drift, the curvature drift, and E x B drift:
X = U”b + Vv + V., + VExB

. (2.83)
b x (uVB + mvﬁn — ZeE),

=ub+ mw

where X denotes the guiding centre position. w. = ZeB/m is the particle
gyro frequency and b = B/|B|. k = (b - V)b is the curvature vector. The

parallel momentum equation is given by
mi| = —ub-VB+ Zeb - E +muyk - X (2.84)

The Lagrangian of the guiding centre is written as

. 1 1
L= (ZeA+ myb) X+ ;yo’z — Emvﬁ —y— Zed (2.85)

where « is the gyro phase angle, and y = B is the perpendicular kinetic
energy. The Lagrangian is regarded as a function of the new variables in the
phase space, L = E(X,vH,y,oz;X,q')H,y,o'z;t). Substituting £ in the Euler-

Lagrange equations of motion for each component:

C‘;(g';f) —gj 0 — d—uw, (2.86)

Z(gi) — gs =0 = Zf(j) =0 = pu = constant, (2.87)

Z(gf)—gfzo:v:b-x, (2.88)
I I

d, 0L\ 0L S T _

ﬁ(a')_ﬁzo = Ze(E'+-X xB") = uVB+mob,  (289)
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2.5.1. Guiding centre theory

where
10A*
E* = —Vd— - 2.90
™muv
A*=A+ —ub 2.91
+—-vb, (2.91)
B' =V xA" =B+ uVxb. (2.92)
e

Eq. (2.86) and (2.88]) correspond to the definition of the gyro frequency and

the parallel velocity of a charged particle, respectively. Eq. shows
that the magnetic moment g is an adiabatic invariant. The X component of
equation (|2.89) is consistent with the equations of motions and .
This consistency justifies the choice of the Lagrangian £ as stated in Eq.
(12.85)).

The particle energy consists of the kinetic contributions and the electric

potential energy € = mvﬁ /24 puB + Ze®d and the expression for é is written

as
€ = mu)0| + uB + Zed (203)
2.93
) 0A ob\ . 0B 0P

where 0/0t = d/dt — X - V. The first term mu| ) is given by dotting X on
Eq. (2.89):

ZeE* - X = uX - VB +myb X =

Ze A 0b .
mv”v'H = —(Z@V‘I) + {E + mvHE + MVB) - X,

(2.94)

For an axisymmetric equilibrium, i.e. 9/0¢ = 0 the toroidal canonical mo-

mentum of a guiding centre is a constant given by

6 = % = E[(ZeA + mv”b) . X}
o 09
P, = (ZeA +mub) @;; (2.95)
RB RB
Py = qA,R 4+ myj ¢ = Ze, /21 + muy B¢’
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2.5.2. Linear perturbation theory

where the covariant component is 9X/d¢ = 0X /¢ = Rey and 1, is the
poloidal flux surface function.

The Vlasov equation (the kinetic equation neglecting collisions) is given

by

8{ + Zf:lxz gfz =0 (2.96)
where f(x;;t) is the particle distribution function and z;,7 = 1,n denote the
phase space variables. Along the guiding centre trajectory and choosing the
guiding centre variables (X, v),y) as the phase space variables, the Vlasov

equation becomes

of
ot

af .of

X _J
+ Vf—i-l}”a”-i-yay

0 (2.97)

where f is assumed to be independent of . X and ) are given in Eq. 1)
and (2.84), and §y = y(B + X - VB)/B.

2.5.2 Linear perturbation theory

Assume that an electromagnetic perturbation has caused a small variation in
the particle distribution function f and we can write f(X, 9y, 9;t) as a linear
combination of the equilibrium quantity fy and the first order perturbation f;:
f = fo+ fi. The phase variables are also expanded as follows: X = X, + X,

U = U)o+ and § = yo + 1. The linearised drift-kinetic equation is written

as
df, - . 0fo dfo
= —(X; - 2.
SR BT RN (298)
where the total derivative of f; is
dfi _Ofi N ah
“—=_4X . 2.
dt ot +Xo - V14100 v ‘+y oy (2.99)

We transform the right hand side of Eq. (2.98) to derivatives with respect

to the constants of motion € = mvﬁ/? +y + Ze®, pp and Py where fo =
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2.5.2. Linear perturbation theory

fO(QH? P¢7t>
 or % (Moo Ofog O
Xy V=X (50 Vet &TV -+ a?v&), (2.100)
. Ofo . Ofo 0 Ofo O Ofo 0P
Y 8v| — ((96 81)“ o 8u 8UH + 8P¢ 02}”) <2'101)
8f0 . 6f0 Oe 8f0 (9,u 8f0 8P¢
= —_— == 2.102
b, =W (068y+8u8y+8p¢8y) (2.102)

where Ve = ZeV®, Vi = —(y/B*)VB, and Vu; = Vy = 0 because X, v

and y are independent variables in phase space. Then Eq. (2.99) becomes

dfi 9y dfo
- G-m% B,
. 0P, 0fo

+ (X1 VP + i 2 5o, )8P¢ (2.103)

af()}
Oe
We need to express the 0fy/0e, 0fy/0p and 0fy/0P, terms with respect to

+ (Z€X1 V&, + muyiy + yl)

the linearly perturbed Lagrangian £
Recall that the ¢ expression is given in Eq. (2.93)). The first-order correc-

tions to the € equation can be used to evaluate the coefficient of the 0fy/0e

term in Eq. (2.103)):

' : : ZeOA ob :
moy, + pB + Ze®y = ( . 8751 + mU”a—tl) - Xo, (2.104)
DP,

muyi + i + ZeXy - V&, = —LiY — Ze (2.105)

Dt’
where the convective derivative along the unperturbed particle trajectory

D®, /Dt is found by the total derivative of the perturbed scalar potential

®,
. dd, 0P 1)
T (at +X-V )
. 0P,
¢y = ot +Xo - VO + Xy - VO (2.106)
. Do .
P, = Dtl + X, - Vo,
and the term Lt() is defined by
ZedA Jb . 0B 0P
—L = (=22 1. X Ly ZeZ L 2.1
¢ (C o + muj 8t> 0—|—,uat + €at (2.107)
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2.5.2. Linear perturbation theory

Now we need to calculate the 0fy/0P, term in Eq. (2.103)). Py is given in
Eq. (2.95) and the time derivative of P, is written as

op,

) 0P,

Py = X VP 2.108
0= T 5 gy, (2.108)

We have shown that P, is conserved along an unperturbed trajectory as

P¢, = 0L/9d¢p = 0. For a small perturbation, P¢(1) is given by

. . o oV opW
P = (Xu- VPP 4 i) + (S + Ko VR + o052 )

8UH ot (91}”
. . oPY\  DPY  or. )
W _ (x, . op® 4, Lo ) o _ (9%

(2.109)
Here, the terms in the first bracket appear in the 0fy /0P, term in Eq. (2.103)
and can be determined by (9L£/0¢)V) — DPQEI)/Dt:

DP"  apPY op

= +Xo - VP 40— (2.110)
Dt ot ¢ (92}”
(%)“) _[ (aA . DAY . DAY )
9/ 99 3¢ oo
by oy o) :
X (2.111)
+mU||(a¢ R+ —— ¢ €y + 26 Z) 0
8B1 8@1
Rt N Pt
"os ~ "o
The time derivative of perpendicular kinetic energy g is given by
. 0B .
y‘:uB:u(aJrX-VB). (2.112)
Then the perturbed forms of 3 can be written as
: 0B, 3
i = pl (W + Xy VB + Xy - VBy) + VX, - VB, (2.113)
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2.5.2. Linear perturbation theory

where (V) = yoBy/B2. The 0fy/0p term in Eq. (2.103) can be obtained by

constructing 4, /By

U _ o (0B/B) 1 1 ) _

BO = BO( ot +X0 VBl + B X1 VB() 3281X0 OVB(),
(2.114)

D Y5 <)(3(31/BO) < >: <0>D<Bl)

B, 32 -VBy = ot + Xo - V(B1/By) . Di\B,
(2.115)

Now we can substitute Eq. (2.105), (2.109) and (2.115)) into Eq. ([2.103))

leading to

% _ [(&C)(l)_ Dpél)] af() n (—L(l)—ZeD<D1>8fO
dt L) Dt ap(;()) ! dey

(2.116)
n M(0>D<Bl> Ofo
Dt Bo 6,u(0)
The solution to the perturbed distribution function f; can be separated into
two parts
) Ofo dfo By 0o
- p Zed—— — 09— h 2.117
B B S+ e~ H g 1D
where h; is determined by
ey)
din - _ (M) 9fo Lﬁl)% (2.118)
dt 0o 8P<;(§0) Oeg

Note that the first order perturbed Lagrangian can be written as
1 _ Ze
c ( Ay +mupby) - Xo = OBy — Ze®,. (2.119)
We assume that perturbations have the form
LY = LD (4, 0) exp(—iwt — ing) (2.120)

where v is the equilibrium magnetic flux surface function, ¢ is the toroidal

angle used in the cylindrical coordinates and 6 is a generalised poloidal angle
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2.5.3. Resonance condition

defined by VO = Vi x V¢ which are discussed in detail in section 2.3

Consider a single harmonic and we have

(1)
(gg) = —inLW (2.121)
(1)
@‘f) = —iwlW = —jw LM (2.122)
dh
dTl = —i(w— nw*)(gfsﬁ(” (2.123)

where Ll(fl) is given in Eq. (2.107) and w, is defined as

_0fo JOP

T (2.124)

We can separate ¢(t) into a constant part and an oscillating part ¢(t) =
(¢)t 4 &(t) where the constant part (¢) is averaged over bounce period .
Hence the periodic part in £V can be expanded in Fourier series

LY = LD exp(—ing) = iopr exp (—ipwypt), (2.125)
where the Fourier coefficients Y, are determined by

1 [~
Y,=— ?{,C(l) exp (—ipwypt) dt (2.126)
T

where wy, = 27/,
Substitution of Eq. (2.125)) into Eq. (2.123]) and integration over time give
the solution of the non-adiabatic part of the perturbed distribution function

ha

2.5.3 Resonance condition

We consider an axisymmetric toroidal plasma consisting of the thermal and

the hot components with ngy, > ny, and Ti, < T},. The linearised equilibrium
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2.5.3. Resonance condition

equation is obtained by considering these two components
(j x B)V = Vpy) + Vpl”, (2.128)

where the total current density j consists of both the bulk and the energetic
contributions, the thermal plasma pressure py;, is assumed to be isotropic and
the hot plasma pressure py, anisotropic. We can construct the quadratic form

in presence of the energetic contribution
OW = dWymap + 0 Whet. (2.129)

Here, the low energy bulk plasmas are described by the ideal MHD fluid

model and the MHD perturbed energy is given by

OWhmp = —; /E* F (&) d*x

1 (2.130)
= | & GxB)Y — gl ] '
and the energetic component is
1 * (1) 53
Wiy = 5/@ v &z, (2.131)

where the pressure pfll) consists of anisotropic perpendicular and parallel com-

ponents determined by the perturbed distribution function f;
(1) 2
P mu
”1) — / i (2.132)

p!! uB

Recall that the force operator for the ideal MHD plasma is given in Eq. (2.64))

F(€) = —w’pot, [2:61)

where F(£) is self-adjoint and w? is purely real. Thus the MHD potential

energy 0Wymp can be measured by the kinetic energy of the perturbation

OWnep = UJQEk, (2'133)
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2.5.3. Resonance condition

where

B — / o2 dz. (2.134)
As compared to the bulk plasma, the energetic perturbation is small, i.e.
OMWhot < 0Wnap. Thus, 0Wy can be treated as a linear correction to the
total potential energy. 0W could include an imaginary part as the force
operator is no longer self-adjoint in presence of the energetic contribution.

The perturbed quadratic form can be written as
(wT -+ iwi)ZEk = 6WMHD -+ 5Whot (2135)
and the growth rate of the mode ~ is given by

= = — 2.1
Wy 2w2E), (2.136)

v wi Im[Wie

w
where 0W),, is determined by the perturbed distribution function f;. Recall
that the expression for f; has a singular point in the h; term as shown in Eq.
(2.127). The integration of the singular point can produce an imaginary part

and thus contribute to the growth of the mode when

I'=w+n(p) + pwy, = 0. (2.137)

Eq. is also known as the resonance condition. Here, w, = (§) is
defined as the toroidal precession frequency averaged over one bounce period
and p is an arbitrary integer. The resonance take places between energetic
particles and MHD modes. Particles whose orbital frequencies satisfy this
relation could potentially exchange energies with the mode with a frequency
w. The appearance of the resonance condition shows that large changes in the
distribution function can occur when it is satisfied. The resonance condition
is a necessary but not sufficient condition for large energy transfer between
the particle and the waves as this also depends on the factors Y), in Eq.

for the orbit in question.
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2.5.3. Resonance condition

An intuitive interpretation of the wave-particle resonance condition is
described as follows. Suppose a particle on a bounce orbit starts at a position
and completes a bounce orbit in time T, = 27 /w,. The representation of a
wave harmonic is given by Q(r,6,$,t) = exp(—iwt + ing) ;Qm(r)(—imG).
In this time, the phase of the wave advances by an amount A( = w7y. The
particle has also moved forwards by a toroidal angle A¢ = wyT;,. The total
wave phase change the particle experiences after its bounce orbit is the sum
of both, therefore A( = w7}, + nwyTy. For a resonance, this should be some
multiple of 27, that is, A( = w1} + nwyT, = —2pm. Replacing the bounce
period with 27 /wj, leads to the resonance condition w-+nwy+pw, = 0, where p
indicates the wave periods that the particle has advanced with respect to the
wave over one bounce period. The resonance condition suggests that resonant
particles are those which return to the same wave phase after a poloidal

bounce orbit. We will use these results in Chapters 3 and 4 to identify and

study the resonant particles in experimental MAST plasma discharges.
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CHAPTER 3

Particle tracking in

electromagnetic fields

Single particle motion is the fundamental process underlying the behaviour
of a plasma in a magnetic confinement fusion device. Understanding more
complex plasma processes such as wave-particle interaction, plasma heating
and fast ion transport often requires a detailed understanding of the behaviour
of individual particles in electromagnetic fields. In a toroidal confinement
device, the helical magnetic field is characterised by the safety factor ¢ and is
a complex function of position. The motion of a charged particle in such field
will be determined by the numerical solutions to the equations of motion.
In many situations, particles need to be tracked for a very long time in the
simulation code because the gyro motion is fast and the excursion of the
orbit is small compared to the geometry of the experimental device. These
problems can be alleviated by numerically solving the equations of motion
of the guiding centre when the variations of the field are negligible over the
gyro motion and the Lamor radii r. satisfies r. < L. with length scale L, =

B/|VB|. The guiding centre simulation deals with gyro averaged quantities
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3. Particle tracking in electromagnetic fields

and puts emphasis on the drift motions so the computation time can be

significantly reduced.

In MAST, particles produced by deuterium beam injection or alpha particles
released from the nuclear reactions are highly energetic. For simulating these
energetic particles, two facts prevent the guiding centre simulation being a
good approximation of the full orbit calculation. Firstly, MAST is designed
to confine plasmas in an equilibrium with high 8 = 2p/uB? and relatively
low field. The toroidal field at the magnetic axis By ~ 0.5 T, as compared
with 3.6 T in JET. These configurations of MAST can produce a very large
gyro radii for fast ions. On the other hand, MAST is configured with a tight
aspect ratio meaning the gradient and curvature of the field are prominent
throughout and cannot be neglected within the timescale and length scale of
gyro motion. Because of these reasons, the condition r. < L. will not always
be satisfied by MAST fast particles and thus a stable and accurate full orbit

simulation becomes necessary.

The wave-particle resonance condition Eq. is derived in the pre-
vious chapter, one would like to know which particles will resonate with a
mode in order to help understand the dynamics of wave particle interactions.
Therefore, a code is developed to evaluate the relevant bounce and precession
frequencies. This chapter focuses on this code development and is organised
as follows. Section 3.1 outlines the Boris Leapfrog solver which provides an
efficient and accurate method for tracking particles. Section 3.2 presents the
coordinate transformation of the magnetic field between the cylindrical co-
ordinates commonly used to represent fields in axisymmetric tokamaks and
the Cartesian coordinates needed to implement the Boris solver. The initial-
isation of the particle pushing code and the workflow of the code are described

in sections 3.3 and 3.4. The code is validated with an analytical solution as
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shown in section 3.5. As an important application of the code, orbits and
motion frequencies of the plasma in MAST are calculated in sections 3.6 and

3.7.

3.1 The Boris solver

The magnetic field in a tokamak primarily consists of toroidal components
generated by external coils and poloidal components produced by plasma
currents. The solutions to the equations of motion for a charged particle in
such a complex electromagnetic configuration can only be obtained numer-
ically. One common numerical approach is to use finite difference methods
[78]. There are two categories of finite difference methods, explicit and im-
plicit, depending upon if the new time points are used to evaluate the spatial
derivatives. The explicit methods need only old time points to advance spa-
tial locations so they are fast. However, these methods often suffer stability
problems and have requirements on the time intervals. The implicit meth-
ods need new time points to evaluate some spatial derivatives so the spatial
locations are updated iteratively. The implicit methods thus require more
computational effort but they are more stable and allow larger time intervals.
For the particle motion problem, either explicit or implicit methods use the
velocity at time point n to push particles from location n to next location
n + 1. A leapfrog method uses the average velocity at time point v,,;/9 to
move z, to x,; as shown in Fig. , where the initial velocity is given a 1/2
time step behind the initial position. It is a time-centred difference algorithm

and possesses good global stability specially for computing orbital dynamics.

The Boris algorithm [79] is an explicit leapfrog method which is commonly
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3.1. The Boris solver

Initial velocity

V-1/2l V172 | Vns1/2
1

I
t t
Xg X1 X

v

* *

l
T
n Xn+1

N

Initial position
Figure 3.1: Leapfrog scheme. The initial velocity and position are given and
updated in a staggered way. The velocity v,_1/2 is advanced to v,y/2 after
a time interval and the position w,, is updated to x,,; using v,,y/s.
used for advancing a charged particle in a realistic electromagnetic field for
its speed and stability. It is a second order method and conserves phase space

volume which suggests it should have good long term fidelity [80]. Using the

leapfrog scheme, the discretised form of Eq. (2.1)) is written as:

Xnt1 — Xn
HT = Vpt1/2, (3-1)
Vnt1/2 = Vn-1/2 _ 4 E Vpt1/2 + Vpo1/2 B 39
A7 —(En + 5 x B). (3.2)

Here, the electromagnetic fields B,, and E,, are evaluated at x,,. Then E,, can

be cancelled out by introducing new variables v~ and v':

qE, At

no1/a =V — , 3.3
Va-l2 =V = T (3.3)
E, At
Vip41/2 = \a %77 (3-4)
Substituting these expressions into Eq. (3.2)) yields
v —v~ qa, 4 _
- -z B,. .
A7 2m(v +v ) x B, (3.5)
x, is updated to x,,;1 by the velocity at the last half time step v,/
Xn41 = V120t + X, (3.6)
E, At
= (vt + LAt +x,. (3.7)

m 2
Despite v appearing on both sides of Eq. (3.5, this is explicit and v* is
given by

vi=v +v xs (3.8)
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V<
=

Figure 3.2: (a) Two-dimensional tokamak geometry with a circular cross
section where Ry is known as the major radius and r the minor radius. (b)
A position vector P(z,y, z) is projected on the x-y plane giving the radial
component R and the toroidal angle ¢; (c) Relationships between the position
components: x = Rcos¢, y = Rsin¢g and z = Z with ¢ € [—m, 7).

with
vVi=v +v xt, (3.9)
qB,, At
t= — 3.10
B2 (3.10)
2t
= . 3.11

3.2 Coordinate transformations

The Boris scheme has been introduced using Cartesian coordinates which
can be represented by unit vectors e,, e,, and e,. For following the single
particle motion in a toroidal device, the electromagnetic field is often given in
terms of cylindrical coordinates. Because of the axisymmetry of the field, it
is convenient to use cylindrical coordinates so that the system is independent
of the azimuth angle. A right handed cylindrical coordinate system formed
by unit vectors er, e, and ey is illustrated in Fig. [3.2, where R is the radial
position, Z the vertical position and ¢ the toroidal angle. The mathematics
thus can be greatly simplified in the analysis and derivations of the equations.
¢ is periodic with period 27 ranging from —x to +m. A position vector P can

be expressed in terms of the Cartesian and cylindrical coordinate systems,
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respectively,

P = ze, + ye, + ze, = Rep + Zey, (3.12)

where each component is related by

x = Rcos ¢,
y = Rsin ¢, (3.13)
z=/.

Here the vertical components z and Z are identical in these two coordinate
systems.

The simulation also requires the coordinate transformations for the other
vectors such as particle velocity and magnetic field. The transformations can
be generalised by using a Jacobian matrix. The Jacobian J of the transform-
ations from the z, y, z coordinates to the R, ¢, Z coordinates depends only
on ¢ and the derivations are presented as follows.

In cylindrical system, the basis vectors eg, e4, and ez are orthogonal to

each other, defined by

Oz 9y Oz .
€er 58 ar 2| |€=z cos ¢ sing 0f |e,
— oz oy o N I
© o6 9o 06| |V Rsing Rcos¢ 0| |ey| (3.14)
Jdz Oy 0z
€z 07 o7 o0z |2 0 0 1| |e,

where the expression ([3.13) is used to evaluate the partial derivatives. To
convert from covariant to unit basis vectors ey is normalised by dividing by
R. Going forwards eg, e,, and ez represent the unit basis vectors in the

cylindrical system given by

€Rr €y
el =T e, |- (3.15)
(S3A4 e,
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with Jacobian matrix

cos¢ sing 0
J=|—sing cosg 0f- (3.16)
0 0 1

Similarly, the inverse transformation can be realised and the inverse Jacobian

matrix J ! is given by

€, cos¢p —sing 0] |er er
e,| = |sing cos¢ Of |ey| = J! €| - (3.17)
e, 0 0 1| |ez ez

Combining Eq. (3.15) and Eq. (3.17) gives the inner product of the unit

vectors
ere, e€ze, eye, cos¢p —sing 0
ere, ege, eze,| = |sing cosgp Of- (3.18)
€Re. €ye, eze, 0 0 1

An arbitrary vector B can be expressed in terms of a unit basis in either

coordinate system:
B = B,e, + Bye, + B.e, = Brep + Byey + Bey. (3.19)

Taking the dot product of the unit vectors egr, e, and ez in turn on vector

B gives the relations of the components of two system:

ep-B = By = (B,e, + Bye, + B.e,)egr = B, cos ¢ + B, sin ¢, (3.20)
eyB = By = (B,e, + Bye, + B.e,)e, = —B,sin ¢ + B, cos ¢, (3.21)

eZ-B = BZ = (Bxex + Byey + Bzez)ez = Bz. (322)

The coordinate transformations are completed by writing Eq.(3.20) - (3.22))
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in a compact form

Br cosp sing 0| | B, B,
By| = |—sing cos¢ 0| |B,| =J |B,|; (3.23)
By 0 0 1| |B. B,
and
B, cos¢p —sing 0| |Bgr Bgr
B,| = |sin¢ cos¢ O |By| = J! By (3.24)
B, 0 0 1| | Bz By

with determinant det(J) # 0. As one typically stores fields in coordin-
ates, these transformations allow us to convert the field components into a
Cartesian system. Then the Boris solver can be easily implemented by simply

calling these prescribed transformation matrices in the program.

3.3 Initialisation

The initial conditions required for solving the Lorentz motion of a charged
particle are the position Pg(xo, o, 20) and the velocity V(vz0, vy, v20) Te-
gardless of which coordinate system is taken. It is also common that the
initial conditions are expressed in terms of energy £, pitch A = v|/v and po-
sition Po(R, ¢, Z) in order to intuitively describe the particles. Now we just
need one last coordinate, the gyrophase angle «, to initialise the simulation.
The particle velocity will be determined by using (E, A\, R, ¢, Z, «), together
with a prescribed equilibrium field for the given location Py. The procedure
for obtaining the velocity is as follows.

The equilibrium field is expressed in terms of cylindrical unit vectors

B = Bregr+ Byey+ Bzeyz. The magnetic vector by is defined by b = B/|B|.
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One of the perpendicular basis vectors can be chosen as

1

Here the toroidal component is set to zero. The radial and vertical compon-

bJ_l = (—BZeR—i—BReZ). (325)

ents of B are swapped and cast into the radial and vertical components of

1/2 so that

b in order to satisfy b, ;-b)y = 0. b, is corrected by (BZ + B%)
|by 1| = 1is a unit vector. Another perpendicular basis vector can be determ-
ined by the cross product of b ; and by given by b 5 = b xb);. The total
perpendicular basis vector is written as b; = cosab i + sinab 5. Here, the
gyrophase a describes the initial particle position on the gyro plane which is
perpendicular to the field line.

As shown in Fig. 3.1} the velocity is half a time step back as the leapfrog
scheme is staggered. The integrator is initialised by the position at the “0”
time step and the velocity at the “-1/2” time step.

Using vector basis by and b, the initial velocity can be written as V =
vb +vy b, with v and v, to be determined. The total velocity is given by
the particle kinetic energy v = v2mE and the parallel component is given by
the initial pitch A = v /v. Consequently, the particle velocity is expressed in

terms of initial £ and A , V = v2mE(Ab++/1 — A?b ) with m the particle

mass.

3.4 Workflow of the particle pushing code

It is straightforward and convenient to generate simulation markers by means
of seed values (R, ¢, Z, E, A\, &), which intuitively describe a particle’s physical
location in the fusion device, type (passing or trapped) and energy of interest.
As discussed in section and they are converted to the position and

velocity in Cartesian coordinates (X,Y, Z,v,,v,,v,) which are required by
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Figure 3.3: Flowchart to summarise the steps of solving the Lorentz equations
of a charged particle in an equilibrium magnetic field.

the numerical integration with the Boris method. A spline FORTRAN library
is used to interpolate the data of the poloidal flux surface function
reconstructed by the EFIT4++ code and the equilibrium magnetic field for a
given location. The interpolation is realised by a set of cubic polynomials
between knots and the coefficients of the polynomials are determined by the
continuity conditions of the first and second order derivatives at the knots.
Fig. [3.3]is a flowchart to summarise the steps of the particle pushing code.
The full orbit simulations can produce a series of particle information, includ-
ing particle trajectories, temporal evolution of the velocities, guiding centre

locations, poloidal and toroidal motion frequencies etc.

3.5 Code validation

The numerical code is validated by following the exact orbit of a test particle
in a uniform magnetic field. This classical model of the single particle motion
has been discussed in detail in section so the analytical solutions are at
hand and can be used as a benchmark of the numerical results.

The parameters used in the calculation are chosen to be of the same
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Figure 3.4: The constant B field is along the z direction and the computa-
tional trajectory of a deuterium ion on z — y plane is a closed circle.

order as given by the MAST operation. First, the constant magnetic field
B = B, = 0.5 T is set be along the z direction where general Cartesian
coordinates z, y, z are considered. Here the strength of the field of 0.5 Tesla
is a typical value of the toroidal magnetic field at the magnetic axis in MAST.
Then, a deuterium ion is launched with an energy of 80 keV corresponding
to the highest injection energy of the beam on MAST. The initial velocity is
given by assuming that the energy comes from one perpendicular dimension
e, only for simplicity and we have v,y = —2.77 x 10°m-s=2 and v,0 = v.,0 = 0
with a deuterium mass mp = 3.3435 x 1072" kg. The gyro radius can be
obtained by 7. = m|v,|/¢B ~ 0.116 m. We then set the initial location of
the particle as g = 7. and yg = 29 = 0. Because the rotation is in the
diamagnetic direction, the trajectory of the test marker on the perpendicular
plane should be a perfect circle whose the centre is located at x = 0 and

y=0.

The simulation results are illustrated in Fig. [3.4 and [3.5] showing a good
agreement with the theoretical predictions just presented. In Fig. the
particle full orbit is projected on the x — y plane where the direction of B is

along the outward normal to the plane. The particle starts from the location
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Figure 3.5: (a) x and (b) y dimension of the circular gyro orbit.

(0, Y0) and rotates clockwise around the origin with a constant radius. Fig.
shows the motions in  and y dimensions. The oscillations of the curves
separately obey the expected sine and cosine functions. Here the number of
gyro motions Ngy,, that the particle has completed can be deduced from the

number of the sine or cosine waves k during the tracking time, specifically,

N,

eyro = K.
The estimated location of the guiding centre (G.C.) r,. is numerically
evaluated by averaging the particle position r; over one gyro period 7"

Tge = / rdt ~ (“ +2r”1> At, (3.26)

where the trapezoidal rule is applied for approximating the integration. As
shown in Fig. , r,. is well maintained at . = 0 and y. = 0 as expected for
the average of sine or cosine functions. The evaluation can be extended to
find the G.C. of the orbit in a magnetic field that is not analytically defined.
In such cases, the gyro motion can still be decomposed into harmonic motions
but the amplitude of the oscillation is normally a function of time and space
because of drift motions.

The stability of the numerical code is tested by examining the conser-
vation of the particle kinetic energy Ej,. The test marker has been tracked

for 5 ms corresponding to 5 x 107 iterations in the program with time step
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Figure 3.6: Negligible energy variation during the particle tracking.

dt =1 x 1071% s. As can be seen in Fig. the variation in Fj, is only on
the order of 1071? after 15,000 gyro motions. The double precision data type

is used so that rounding errors can be reduced in the numerical results.

3.6 Calculations of particle orbits in MAST

The motivation for the particle pushing code is to calculate the particle or-
bits in MAST with a toroidal magnetic configuration. The equilibrium field
reconstructed by the EFIT++ code for the experiment discharge #29210 is
used throughout this section to demonstrate the typical orbits in MAST. Test
markers are deuterium ions with energy of 15 keV, toroidal angle ¢ = 0, and
gyro angle a = 0 and the specification of the test particle initial conditions
(R, Z, \) will be declared separately for each case developed.

In general, particles that can be confined in a tokamak fall into two
categories: passing and trapped particles. Trapped particles are particles
that are mirror trapped on the outboard side of a tokamak and oscillate
between bounce tips where v = 0. A trapped particle orbit is also commonly
referred to as a banana orbit due to the fact that the poloidal projection of

the orbit resembles a banana shape. Particles whose v is never zero along
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Figure 3.7: Top view of the tokamak showing the toroidal projections of
different types of particle orbits, where X = Rcos¢ and Y = Rsin ¢.

the trajectory are denoted as passing particles. The toroidal projections of
these two kinds of particles are shown in Fig. . Recall that = FE, /B is
an adiabatic invariant. The trapped particle gains £ from £ to maintain
the conservation of p as well as the total energy as it approaches a high
field region. When E) is completely transferred to £, the motion along the
field line is reversed so the particle behaves as if it is trapped in these two
fixed locations where the magnetic field achieves a maximum value B, and
v = 0.

The poloidal projection of a passing particle orbit with |A| = 1 is shown
in Fig. |3.8al The orbit encircles the magnetic axis labelled with a red cross
and completes a circular-like trajectory almost aligned with the shape of the

flux surface. The deviation is due to the cross field drift velocities discussed

in section [2.1.3] and 2.1.4] Fig. depicts poloidal projections of passing

particle orbits. The equilibrium flux surfaces are denoted with dashed lines
while the LCFS is marked with a solid black line. In Fig. the trapped
particle with |A] = 0 traces out a banana-shaped orbit. In contrast to the
passing particle, the trapped particle stays on one side of the magnetic axis.

A non-standard passing orbit referred to as a stagnation orbit [82] is
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(a) Passing particle and stagnation orbit. (b) Trapped particle.

Figure 3.8: Poloidal projections of particle orbits. Markers x show the initial
particle positions.

also illustrated in Fig. The particle is resident near the magnetic axis
and orbits the torus centre. From the poloidal view, it appears to stop at a
single point on the cross section. This is because the magnetic field is purely
toroidal at the magnetic axis so both the VB and curvature drift motions
of this particle are nearly vertical. The vertical drifts can be cancelled out
because of the symmetry in the equatorial plane, which leads to a stagnation
orbit.

Particles that are trapped in a small and narrow region at the low field
side are referred to as deeply trapped particles. The orbit of a deeply trapped
particle is shown in Fig. [3.9a] Two bounce points are close to the initial
location of the particle so Byax &~ Bunin, the poloidal angle 6 ~ 0 and sin 0 = 0,
where 6 is given by

tanf = z . (3.27)

VR? — 7% - Ry

Those particles that can travel a longer distance and nearly complete a closed

circle in the poloidal plane before changing the direction of the parallel motion

are generally called barely trapped particles. An example is plotted in blue
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Figure 3.9: (a) Deeply and barely trapped particle orbits. Both the full orbit
and the G.C. orbit of the deeply trapped particles are illustrated. (b) A
potato orbit whose bounce point is on the magnetic axis marked with the
symbol X.

line in Fig. :

Potato particles are trapped particles with a broader orbit. Fig. [3.95
shows a potato orbit passing through the magnetic axis at a parallel velocity
v| = 0. After leaving the magnetic axis, the particle moves to the low field
region without changing the sign of v| = 0. Potato particles can be considered

as the transitions between passing particles and trapped particles.

Both trapped and passing particles are confined in the tokamak. Those
that cannot be confined by the magnetic field are referred to as lost particles.
The confined-lost domain is defined by the LCFS in the simulation. If a
particle travels outside the LCFS, mathematically when the normalised po-
loidal flux function %, > 1, it will be considered lost. Fig. shows an
example of a lost particle. The guiding centre locations of this particle re-
main inside of the LCF'S but it has reached the boundary at the low field side.

Therefore, the particle is classified as a lost particle. The full orbit simulation
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Figure 3.10: (a) An example of a lost orbit whose the G.C. position maintains
confined but the full orbit is beyond the confined boundary; in the simulation,
the lost boundary is defined as 1, = 1 corresponding to the black solid line.
(b) Plane of Zin;, A = v /v with E' = 15 keV, showing domains of confined
and lost particles in MAST.

places a more strict condition to confine a particle and hence increase the lost
domain. Fig. demonstrates a computed lost-confined region for MAST
plasmas. In the MAST convention, the toroidal component of the magnetic
field is in the counter-current direction so passing particles with v > 0 and

v)| < 0 are referred to as counter- and co-passing particle, respectively.

3.7 Calculations of motion frequencies

Charged particles in a tokamak undergo periodic motions both in the poloidal
and toroidal dimensions. The motion frequencies can be computed while
particles are tracked in the program. In the poloidal direction, the motion
period is calculated by timing when the particle passing through the vertical
position of the magnetic axis Z = Z,. As shown in Fig. the particle

oscillates around the Z = Z; plane in the full orbit simulation, which makes
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Figure 3.11: Calculations of the poloidal frequencies fy by timing a particle
passing through the Z = Z; plane. fy is given by fy = 1/(Ny — N;)dt where
dt is the time interval.
it difficult to track the accurate time when it actually arrives/leaves this
location. However, the guiding centre of the particle passes the Z = Z; plane
only twice (inboard and outboard) to complete a poloidal circle and hence

can be used to compute the poloidal motion frequency fy, given by

1

o= ANar

(3.28)

where dt is the time interval. AN = Ny — Ny, N; and Ny are the number
of time steps when the particle makes its first and second passes through the
Z = Zy plane, respectively.

As a passing particle transits around the torus, its toroidal angle co-

ordinate ¢ varies between —7m and 7 as shown in Fig. |3.12al The toroidal
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Figure 3.12: (a) Temporal evolution of the toroidal angle ¢ of a passing
particle; ¢ periodically changes between —7 to 7. (b) Cumulative toroidal
angle derived from ¢ is a monotonic function of time.

motion frequency f, can be obtained by constructing a monotonically increas-
ing quantity, the cumulative toroidal angle ¢, given by ¢ = ¢ — ¢, where
¢o is the particle initial toroidal angle. ¢ is corrected by 27 every time the
particle passes through the discontinuous boundary, that is,

p=p+2r, +7T— —T;
(3.29)

Y =¢—2r, —m — +m.
The temporal evolution of ¢ derived from ¢ is illustrated in [3.12b The

toroidal frequency fy is given by

_ ¥
Jo = genar (3:30)

where dt is the time step and N the number of time steps. N is recorded when
¢ passes a multiple of 27 as illustrated in table 3.1} The full orbit calculation
leads to an error of up to one gyro period in the estimation of the toroidal
motion period. Therefore, fy is averaged over multiple complete toroidal
motions and the variation of f, reduces as the tracking time increases.

This method of calculating fy is especially necessary for trapped particles.

The profiles of the toroidal angle ¢ and the cumulative toroidal angle ¢ of
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p N fo [kHz]
27 68223 146.58

4 139722 143.14

o7 210800 142.31

8T 277346 144.22
107 347153 144.03

Table 3.1: Data from the simulation results used to calculate the toroidal
motion frequency f, of a passing particle (time step dt = 1 x 107'0).

the trapped particle in Fig. are demonstrated in Fig. Because a
trapped particle will change the direction of v in one bounce motion, the
toroidal coordinate ¢ may oscillate near the &7 boundary multiple times so
¢ cannot be used in the calculations of f4. However, the precession angle can
be calculated by constructing the functions of the cumulative toroidal angle
v similar to those of passing particles. Trapped particles may only occupy
a small part of the torus in many situations since the precession is cancelled
out by the opposite motion along the field line in one bounce motion. fy4 for
a trapped particle is therefore defined by

Ay

Jo = 2mAt’

(3.31)

where Ay is the precession angle within one or several bounce motions and
At is the elapsed time. As shown in Fig. [3.13b] data of N and ¢ are collected
when the particle passes through the Z = Z; plane which allows the precession
angle Ap = s — 1 and precession frequency f,; to be calculable.

The approaches used to calculate the poloidal and toroidal motion fre-
quencies can be extended to non-standard orbits. Stagnation orbits are classi-
fied as passing orbit types as they can rapidly travel around the torus. Potato
orbits are considered as trapped orbits because of the reversed parallel mo-
tions.

Stochastic errors of up to one gyro period are introduced into the calcu-
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Figure 3.13: (a) Temporal evolution of the toroidal angle ¢ of a trapped
particle; (b) Cumulative toroidal angle derived from ¢. Toroidal frequency

fo = (2 — 1) /[2m(N2 — Ny)dt] = (3 — 1) /[2m(N3 — Ny)dt].
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Figure 3.14: Orbit averaging in the calculations of poloidal and toroidal fre-
quencies. The computational noise reduces as the number of orbit averaging
increases.

75



3.7.  Calculations of motion frequencies

A
165 -
160 -
N
T
X 155 - A
&
150 A
1451 A A A A A A A
1010 1079 1078 1077

dt [s]

Figure 3.15: The toroidal frequency of a passing particle converges as dt
reduces. The particle with A = 0.75 is launched from R = 1.0 m and Z = Z.

lations of fp and f, because of the full orbit simulations and gyro averaging.
As can be seen in Fig. [3.14] simulation results for frequencies are messy
and unstructured with stochastic errors when only considering one complete
poloidal or toroidal orbit corresponding n,, = 1. As the number of orbit
averaging n,, increases, the profiles of fy and f, are smoothed out as they

converge and regress to the mean.

The Boris algorithm is second-order accurate [80], and the choice of the
integration time step is often a trade-off between computational time and
accuracy. It is convenient to choose the time step as a fraction of the gyro-
periods of particles in the simulation. In Fig. [3.I5] the toroidal motion
frequency of a passing particle is computed using Eq. [3.31] with different
time steps where the particle with A = 0.75 is launched from R = 1.0 m
and Z = Zj,. The toroidal motion frequency f, is converged to 144 kHz as
the time step dt reduces. For the particle trajectories demonstrated in this
chapter, dt is set to be 1071° s so that particles with short gyro periods which

require small time steps can be simulated correctly.
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3.8 Summary

A full orbit particle pushing code has been developed using the Boris method.
The coordinate transformations between the Cartesian and commonly used
cylindrical system are discussed. The transform matrices are obtained and
implemented in the code. The code is validated against an analytic solution of
the gyro-motion of a charged particle in a constant magnetic field. The code is
then extended to calculate the particle trajectory in a realistic magnetic field.
A method is found to efficiently evaluate the poloidal and toroidal motion
frequencies as the full orbits of particles are followed. Since the particle
periodic frequencies can be determined numerically, the resonant particles
will be easily found based on the wave-particle resonance condition. In the
next chapter, the code is used to evaluate the resonance condition for particles

in MAST experiments with MHD modes.
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CHAPTER 4

Fast-ion driven modes

We have shown in the previous chapter how to determine the particle motion
frequencies in a realistic magnetic field. We will now use the calculated fre-
quencies to derive resonance maps for the interaction of wave fields in plasmas
with fast particle populations. Such maps can aid greatly in the interpret-
ation of the underlying fast particle transport mechanisms in plasmas with
waves and instabilities. As a demonstration of this, in this chapter we fo-
cus on MAST shot #29210 which exhibits large chirping TAEs, fishbones
and a long-lived mode. We will show that resonance maps for this shot can
provide valuable insights into the physics of these processes which can aid in-
terpretation of experimental results. We begin by presenting the experimental

discharge for analysis.

4.1 Plasma scenarios

A set of discharges [61, 62] have been performed to excite instabilities and
study the consequent fast ion behaviour affected by these MHD events on
MAST by means of the NBI. The NBI is primarily responsible for heating

and driving current so that the plasma temperature and current can be raised
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to expected levels. The applied deuterium beams have energies of up to 75

keV (equivalently, 2.7 x 10° m/s) and they are super-Alfvénic. The Alfvén

speed v4 = B/\//Lo(mmi + mene) ~ 7.7 x 105 m/s where B is the magnetic
field strength on the magnetic axis, typically By ~ 0.5 T and the number
density n; = n. ~ 10 m~=3 for MAST plasmas. Therefore, the NBI is also
the source of the energetic population providing free energy so the plasmas
are destabilised. The discharge #29210 is one of the experiments which in-
vestigated Alfvénic instabilities using this approach. Fig. demonstrates
the time trace of key parameters of this discharge. The SS beam is turned
on at 50 ms for a total time of 400 ms while the SW beam is switched on
at t = 180 ms. The two beam injectors are capable of delivering heating at
separate energies. The SS and SW beam powers are 2.0 MW and 1.5 MW,
respectively. The plasma current I, ramps up to 0.9 MA with the beam injec-
tion and maintains a stable state for 100 ms before it disrupts. The periodic
bursts in Mirnov coil signals indicate a series of MHD activities take place.
The data from the Mirnov coils are then analysed by means of Fourier decom-
position as shown in the spectrogram in Fig. [£.2l Throughout the discharge,
MHD modes with frequencies in the range of 0-150 kHz are observed. The
mode analysis is given in Fig. (b), showing the toroidal mode number for
each individual harmonic and dominant modes with n = 1 ~ 3 are identified.
At 140 ms, n = 1 TAEs with strong down chirping frequencies near 80 kHz
are excited. They later develop into stronger n = 1 fishbone oscillations at
lower frequencies around 40 kHz after 180 ms. The discharge ends up with

discrete saturated kink modes with constant frequency until it quenches.

Such instabilities could induce large particle losses across the field lines
and greatly degrade the heating efficiency of the beams. These can be first

identified from the estimations given by the EFIT++4 simulation results. As
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Figure 4.1: Time trace for MAST discharge #29210. (a) NBI power, (b)
plasma current, (c) line integrated electron density, (d) electron temperature
at core, (e) Mirnov coil signals for instability analysis.

discussed in section [2.3) the EFIT ++ code can reconstruct the plasma
equilibrium which both satisfies the GS equations and experimental
constrains. As shown in Fig. [4.3] the pressure estimated by the EFIT++
increases with the beam injection but grows with the beam power dispro-
portionaly. As the addition of the SW beam raises the total beam power
by approximately 75% (2 MW — 3.5 MW), the normalised on-axis pressure
D0/ Patm goes up by ~ 50% (0.12 — 0.18).
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Figure 4.2: (a) The frequencies of MHD bursts and (b) toroidal mode number
of the chirping modes are given in the spectrum of the magnetic perturbations
during beam injection.
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Figure 4.3: On-axis pressure py evaluated using EFIT++ show the changes
in plasma equilibria as the second beam is turned on. pq is normalised by the
atmospheric pressure puim,.

4.2 FIDA diagnostics

Experimentally, the radially resolved information about the fast ion density
and its distribution can be inferred by a fast-ion deuterium alpha (FIDA)
spectrometer[83]. A diagram illustrating the geometry of this diagnostic on
MAST is shown in Fig. [£.4 On MAST, the FIDA shares the viewing optics
of the charge exchange recombination spectroscopy which is used for the ion
temperature and flow measurements. As a fast ion in the plasma captures
an electron from a beam neutral, the resulting fast neutral can be in an
excited state which then radiates D, photons and this is what the toroidal
(tangential) and vertical (perpendicular) FIDA fiber arrays measure. The
light from the fast neutral is Doppler shifted based on the speed of the fast
neutral along the line of sight of the diagnostic and this gives velocity space
information. The fast ion distribution function f(E,\, R, 7) is linked with

FIDA measured signals S via a constructed weight function w(E, \, R, Z) [84,
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Figure 4.4: Top view of the MAST showing the toroidal projections of the
FIDA vertical and toroidal reference views, together with the NBI beamlines
[83].
85):

S = /(w x f)dE d\dR dZ. (4.1)

Fig. shows the dependence of the weight function on radial position R for
the toroidal line of sight FIDA diagnostic. The system is sensitive to particles
above 45 keV with a peak in the weight function located at |A\| ~ 1 for all
energies.

Experimental FIDA measurements are illustrated in Fig. for discharge
#29210. D, emission from the mid-plane is integrated over (£, \) space
giving the temporal evolution of the radial profile of the radiance. Integrated
signals have shown that at R ~ 107 c¢m, observed reductions in FIDA signal
intensity are strongly correlated with the MHD bursts during 140 - 210 ms.
Sudden increases in signal intensity from edge views are also detected after
each massive reduction in the core. The lost fast ion signal is produced by the

interaction with edge neutrals. This appears in both the active and passive
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Figure 4.5: Weight function of the toroidal line of sight FIDA system at three
locations: R = 1.07, 1.14 and 1.20 m, where the minimum energy FE.,;, = 45
keV. Only ions in the coloured region in velocity space can contribute to the
measured FIDA signal. The brightness of the colour scales the sensitivity of
particles to the FIDA diagnostic, implying that a charge exchange reaction
is more likely to take place at A\ = —1.

views. In principle, it should be possible to subtract this out, however a small
error in the relative calibration of an active channel and its corresponding
passive channel, by a small amount, e.g. 10%, could lead to a significant
residual "unsubtracted" component of this lost fast ion/edge neutral emission.
This edge passive emission is present in all channels, but is weaker for channels
viewing closer to the core, because the amount is weighted by the angle
between the line of sight and the flux surface. For core viewing channels,
the line-of-sight intersects edge flux surfaces with a large angle, whereas the
edge channels intersect the surfaces more tangentially, i.e. at a smaller angle.
This results in a smaller contribution to the total signal intensity from lost
fast ions, and thus a more reliable signal for the core channels than the edge
channels. These measurements suggest that fast ions with minimum energy

FEin = 45 keV could be expelled due to the chirping modes. We will next
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Figure 4.6: Marked drops in FIDA radiance are correlated with visible MHD
bursts at 140 ms, 147 ms, 155ms, 173ms, 194 ms and 200 ms.

investigate the behaviour and transport of the fast ions that are responsible

for driving the MHD modes.
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4.3 Calculations of resonance maps

We now perform full orbit tracking by solving the exact equations of motion
in an equilibrium magnetic field calculated using EFIT++ as discussed in
chapter [3] Full orbit equations provide more accurate calculations of the
motion frequencies than the guiding centre equations due to the large Larmor
radii of fast particles in the low toroidal field of the spherical tokamak. It
is for this reason that guiding centre codes cannot be expected to correctly
track particles with high energies in MAST. A comparison between guiding
centre and full orbit schemes for MAST spherical tokamak has been made
in previous studies [86], |87] showing that an overestimate in the neutron rate

arises when guiding centre calculations are used.

Test particles are populated on uniform energy E and pitch A = v /v grids
at R =107 cm and Z = 0 corresponding to the location where large particle
losses are seen in the FIDA signal. The poloidal and toroidal orbit frequencies
of the test particles are estimated as they are tracked in the simulation and
substituted into Eq. to identify the resonant particles. The linear
resonance condition is investigated for varying mode frequency as observed
during a chirp. Resonance maps between n = 1 chirping modes and particles
are presented in Fig. [£.7 Shot times ¢ = 150 and 205 ms are chosen such
that TAEs and fishbones respectively are dominant and produce transport of
fast ions. The chirping modes to be excited are in the range 60-30 kHz and
40-10 kHz for 150 and 205 ms, respectively. This is consistent with what has
been observed in Fig. [4.2] Passing particles with energies up to 80 keV can
interact with the mode via the p = —1 resonance. The fishbone is expected
to have dominant poloidal mode number = -1, implying that this choice of p

resonance where FIDA is sensitive, also corresponds to kj - v ~ w.
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Figure 4.7: Resonance maps identifying particles that can interact with n =1
chirping modes at (a) ¢ = 150 and (b) ¢ = 205 ms. 100 x 100 test markers are
populated at R = 107 cm and Z = 0 cm. Chirping frequencies are sampled
within the range observed. Possible mathematical solutions to the resonance
condition are illustrated in the graphs. Passing and trapped particles are
plotted but there are no lost particles since the initial location is close to the
core.
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Figure 4.8: Orbits of the resonant particles labelled with red and blue crosses
in the resonance map showing in Fig. .7 at £/ = 50 keV.

As the mode frequency decreases, the p = —1 resonance moves towards
lower values of |A\|. Particles at 50 keV marked with red and blue crosses
in Fig. [4.7 are chosen as examples to demonstrate the dependency of the
particle orbit on pitch. As illustrated in Fig. [4.8| (a) - (h), the orbits of the
resonant particles tend to expand outwards and Larmor radius p rises with

decreasing |A|, which is consistent with the relation
p~ (1=A)2-(2mE)'"?/¢B, (4.2)

which is derived from the definition of the magnetic moment p = mv? /2B.
The strength of the wave-particle interaction is a function of pand p = —1
gives resonances that lie within the region of the fast ion phase space accessible
with the FIDA diagnostic. Trial values of p ranging from -100 to 100 have
been examined in the simulation and another branch of resonance, p = 0, can

be found as shown in Fig. 1.7 The p = 0 resonance represents the particles
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for which the toroidal precession frequency matches the mode frequency for
the n = 1 mode. These resonant particles consist of both passing particles
with low energy and trapped particles. Even though these resonant particles
make no contribution to the losses that have been seen in the FIDA signal,

they also can be lost or redistributed in the presence of the mode.

4.4 Resonant transport

As discussed in the previous section, the resonance map is used to identify
resonant particles. The behaviour of those particles affected by modes can be
easily understood by examining their perturbed trajectories. Each particle
trajectory can be specified in terms of constants of motion (E, u, P,) and o =
sign(v))). When there is a fluctuation at a frequency w and toroidal mode
number n, the toroidal canonical angular momentum P, of a particle is no
longer conserved as the axisymmetry of the magnetic field is broken. In this
situation, K = Py — (n/w)E is still constant for a single mode. The small
mode frequency corresponds to smaller variation in energy as dP, = ndE/w.
Test markers are populated to represents this feature, that is, Py is varying
while energy F and magnetic moment p remain nearly constant as a result of
the frequency being small. In Fig. [£.9] particles are localised at the magnetic
axis R = Ry. The energy of these markers are £/ = 50 keV which is chosen to
be in the area where the FIDA diagnostic is capable of responding. Pitch A =
V| /v and the initial vertical location Z,; respectively are functions of x and
P,, allowing both variables to vary implicitly. It is often difficult to determine
the domain of ;1 and P, so this is a common way to generate markers for the

computation with different p and P, using intuitive coordinates.

As discussed in the previous section, once both toroidal and poloidal
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motion frequencies (f, f,) of particles are calculated by tracking their tra-
jectories, the pair (f;, f,) can be substituted into the resonance condition Eq.
and then simulations are iterated over a series of integers for the value
of p. In the Fig. |4.9| (a), p = -1 resonance is the unique solution found for
Eq. . The corresponding resonance map on (u, Py) space is obtained
by calculating the values of (u, Ps) for each test particle in Fig. [4.9| (a) and
then the contours of I' = 0 are projected on a 2D graph in which the axes are
normalised (u, Py), respectively . The resonant region in terms of (u, Py) di-
mensions are shown in Fig. (b). Typical markers sharing the same p and
E on each resonant line are selected for investigating the effect of perturbed
P, due to chirping mode on particle orbits. The orbits of particles (a) - (d)
resonant with modes at frequencies w = 60 — 30 kHz are plotted in Fig. [4.10]
It allows us to consider which particles are resonant over the duration of a
chirp and how a particular particle would have to evolve in terms of its orbit
and P, to remain resonant over the course of the chirp and thus be coherently
transported. Combining Fig. [4.9) (b) and Fig. m, it can be seen that the
perpendicular drift of a particle weakens with the chirp and the size of the
poloidal orbit shrinks. These indicate that the particle travels a shorter dis-
tance in the poloidal dimension and hence the poloidal frequency w, increases
and gets close to its transit frequency w;. The decreasing difference between
w; and w, allows the particle to stay in resonance with the chirping mode

since the resonance condition becomes w = wy — w, where n = 1 and p = —1.

Berk et al. [8§] have studied the spontaneous formation of a hole-clump
pair in phase space in the presence of frequency sweeping phenomena and
pointed out that clumps (an excess of particles) and holes (a deletion of
particles) correspond to up and down chirping frequency, respectively. Now

as only downward chirping is seen experimentally, the hole and clump creation
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Figure 4.9: (a) Resonance map for 100 x 100 particles at R = Ry and E = 50
keV at ¢t = 150 ms; (b) mapping resonance map of (A, Z;,;) onto normalised
(i, Py) phase space. The colours represent the difference between the toroidal
and poloidal motion frequencies.
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Figure 4.10: Orbits of resonant particles with varying Py.

could be asymmetric, indicating that holes are generated and move inwards
as a consequence of losing particle from the core to the edge. As the chirp
progresses downwards in frequency, resonant particles are localised more to-
wards the core of the plasma. A coherent structure is formed in the particle
distribution function in response to the nonlinear travelling wave. A possible
evolution of the particle distribution is demonstrated in Fig. During
the background dissipation, holes are created near the resonance and then
propagate with the new resonance, suggesting that the convection of clumps
outwards cannot explain the observed FIDA signals as the resonance region

transports towards the centre.
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Figure 4.11: Speculative formation and evolution of structures in the particle
distribution F' based on the resonance maps.

4.5 Summary

Using the code developed in Chapter 3 and calculating particle orbital fre-
quencies as described in the previous chapters, a method is found to determine
resonant particles based on the wave-particle resonance condition presented in
Eq. . A MAST experimental discharge #29210 has been analysed by
examining the behaviours of these resonant particles. In this discharge, TAEs
and fishbones are destabilised by means of two powerful neutral beam inject-
ors. Spectrograms obtained from Mirnov coil measurements have shown that
the perturbations are dominated by the n = 1 toroidal harmonic with strongly
chirping frequency. As calculated in EFIT++, heating efficiency largely de-
creases when the transition from TAEs to fishbones takes place. Meanwhile,
it has been found that the magnetic perturbations are closely correlated with
the reduction in integrated FIDA radiance. Changes in D, emission sug-
gest that fast ions have been ejected from the plasma centre during on-axis
neutral beam injection. Based on the wave-particle resonance condition, we
identify resonant particles at a location where significant particle losses have
been measured with FIDA. Full orbit calculations have resolved two branches
of resonance corresponding to p = 0 and p = —1. The chirping mode fre-

quency enhances the population of the particles that can be affected by the
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instabilities and hence has the potential to increase the resonant losses. By
examining the trajectories of the typical resonant particles, it is found that
the resonance shifts inwards with chirping frequencies, which excludes the
outward convective motion of clumps as a reason for fast ion losses observed
in FIDA emissions. In the next chapter, attempts will be made to quantify
particle transport in the presence of these modes using the HALO code which

investigates the nonlinear interaction between waves and particles.
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CHAPTER 5

Fast ion transport due to chirping

modes

5.1 Introduction

In the previous chapter, we have shown experimental observations of fast
ion redistribution induced by the perturbed electromagnetic waves present in
MAST plasma discharges with Toroidal Alfven Eigenmodes (TAEs) or fish-
bone oscillations. Resonance maps have been used to explore the potential
impact of chirping modes on fast particle redistribution. In this chapter, we
take some initial steps towards quantitative modelling of these processes us-
ing the HALO code. HALO [89] is built on the HAGIS code [90] and the LOCUST
code [91]. HAGIS is an existing code that uses guiding centre tracking to non-
linearly evolve modes. It uses flux coordinates and so cannot track particles
outside the separatrix. LOCUST is a full orbit code that uses realistic geomet-
ries and graphics processing units (GPUs) to rapidly track the trajectories
of beam particles and evaluate power deposition on wall components. HALO

adds the nonlinear wave evolution capability of HAGIS into LOCUST resulting
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in a GPU code which can rapidly model the non-linear response of a set of

eigenmodes to a particle population using full orbit tracking.

We develop a simple case where fusion alpha particles drive an n = 6 TAE
in a near cylindrical geometry tokamak and use the HALO code to explore the
impact that an ad-hoc addition of mode chirping has on the alpha particle
redistribution. A fixed amplitude mode and a frequency chirping behaviour
similar to that observed in experiment are prescribed. This model can help
us gain insight into whether the inclusion of chirping is important for un-
derstanding the redistribution and loss of fast particles in reactors. This is
important as previous work studying losses of fast particles in fusion reactors

have considered mode fields with fixed amplitude and frequency [52].

The material of this chapter is organised as follows. Section presents
an overview of the HALO model. Section [5.3] outlines how we implement the
simulation. Plasma scenario is described in section [5.4 Modelling results on
the particle transport due to chirping modes are discussed in section A

summary is given in section [5.6

5.2 The HALO model

5.2.1 Wave-particle energy transfer

Alfvén eigenmodes can be driven unstable in the presence of a fast particle
population in which case the wave fields will evolve in response to the particle
motion. The HALO code is developed to self-consistently calculate the evol-
ution of the MHD modes. A mode with frequency w; and toroidal mode

number n; is represented using a complex electric field with amplitude A;(t)
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and eigenfunction e;(r):
EZ'(I', t) = Ai(t)ei(r)ei("m_wit). (51)

The evolution of A;(t) is related to the power transfer between the particle

population and the wave [89]:

1 1

A=

/ E+ - JaV. (5.2)

Here, Wy, gp is the mode energy contained in the eigenfunction e;:

1 ref-e
20Wynp = — 3
Ho VA

dv, (5.3)

where v4 is the Alfvén velocity. The current density J is computed from the
motion of the particle population and significantly contributed by the reson-
ant particles. To compute the current density the fast particle population is
represented by a set of marker particles thus allowing the above equations to

be discretised. The discretised form of Eq. (5.2)) is written as

1 1

Aj(t) = —————q ) _ES
0 = =S5 AT S B

x;) - vif(x;, Vj)AJJ3Av3, (5.4)

where the sum is over a set of marker particles which are tracked by the code.
f is the fast particle distribution function and Az3Av? is the volume in phase

space that each marker inhabits. The update of A; proceeds as follows. Let

G (x;,v;) be
G(xi,vi) = Wim)ET(Xj)ij(Xj7Vj)A$3AU?’- (5.5)
Then A/(t) becomes
AL = 2 3 G, vy) (5.6
i
and
ﬁigg = ]Alf| z]: G(x;,Vv;). (5.7)




5.2.2. Monte-Carlo modelling

Assume that the variation of A; over an integration timestep is small, then

one can integrate using an approximate analytic formula:

1 t+AL
At + At) = A(t) exp [ Z/ Gx;,vy)dt] . (5.8)
[ As(8)]* 5 e
The integral in the exponent is evaluated by following particles along their
trajectories for one wave update timestep At and usually At > dt where dt
is the integrator timestep. Typically dt ~ 1072 whereas A; ~ 1077 although

there is some flexibility.

5.2.2 Monte-Carlo modelling

The HALO code evaluates the evolution of modes in Eq. by determining
the power transfer between the modes and a set of particles being tracked in
the presence of the mode fields. The marker particles are uniformly distrib-
uted in spatial positions z,y, z, velocity v, pitch A and gyro-angle o where
A = v /v and weighted according to the distribution function. A quasi Monte-
Carlo loading scheme, the Hammersley set [92, 93] is applied to drop particles
over the whole phase space. The loading is uniform (i.e. roughly constant
density of points) but irregular. The Hammersley sequence gives low noise
for the Monte-Carlo simulations and is determined based on the following
principles. Any non-negative integer k& can be expressed in terms of a prime
base p:

k= ao+ aip+ asp® + -+ +a,p, (5.9)

where the coefficient a; is an integer between 0 and p—1. Then a Hammersley

point @, is given by a; and p

(5.10)

®,, is a point between 0 and 1 and can be used to scale a coordinate value for

a particular dimension, i.e., & = Tmin + Pp(Tmax — Tmin) Where Tyax and Ty,
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Figure 5.1: 2D Hammersley set generated by using prime base of 2 and 3.
A total size of 120 markers are distributed uniformly but irregularly in the
space of gyro angle o € [—, 7| and pitch A = v /v € [-1,1].

are the upper and lower limits of the coordinate z, respectively. Six prime
bases 2, 3, 5, 7, 11 and 13 are used to generate particle initial states in HALO.
For each particle with ID k£ we can generate a set of coordinate values by
finding ®, for p = 2,3,5... and scaling this by the range of the coordinate.
Each dimension in phase space is assigned a different prime base and this
results in a uniform but highly irregular loading of the space with good noise
properties. In Fig. [5.1I a 2D Hammersley set is generated on gyro angle «
and pitch A\ space. The prime bases are 2 and 3 for a and A\. Particle markers
are distributed uniformly but highly irregularly in the domain of [—7, 7] and

-1,1].

5.2.3 Noise reduction

The prescription above requires large numbers of markers to converge well.
One way HALO achieves this is via the use of GPUs to track the full orbits
of particles in electromagnetic fields. GPU cards are designed for parallel
processing and can be used for scientific simulations and processing a large
volume of physics/mathematical calculations simultaneously. GPUs are cap-

able of tracking large numbers of particles rapidly but are less efficient than
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CPUs if there is only a few particles as it takes more machine time to launch
a GPU task than a CPU task. Thus the more GPU tasks are requested at
one time, the less machine time each GPU consumes on average.

A second method used in HALO to reduce Monte-Carlo noise is to employ
a delta-f scheme. The delta-f approach is developed to solve the evolution of
the distribution function f which is perturbed via the interaction between
particles and waves in plasmas. f is decomposed into the an equilibrium and

a perturbed part:

F(D,8) = fo(T, ) + df (T, 1) (5.11)
steady markers

where I' represents an arbitrary coordinate in phase space. The equilibrium
fo is a steady state solution of the Vlasov equation and df is represented by
following the orbits of particles in the simulation. The power transfer to the

wave calculated in Eq. (5.4) can be split into two parts by using Eq. (5.11])

and reduces to

1 1
Alt) = ————— Ef(x;) v, Az Av® 12
)= s DB ) vilfo HdDASA?, (512

The cancellation of fy in Eq. (5.12)) is due to the axisymmetric equilibrium,
that is, the contribution from the first term to the integral vanishes because
it is proportional to [ d¢ cosng = 0. Therefore the noise from the evaluation

of the fy term can be also avoided.

5.2.4 Inputs for HALO

To quantify the fast ion transport, a series of codes which solve different
problems is required. The workflow required to perform a HALO simulation
is shown in Fig. The plasma equilibrium is reconstructed by EFIT and

the linear MHD stability code MISHKA is then used to determine the mode
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MISHKA

EFIT HELENA

HALO

Figure 5.2: Workflow of HALO. A plasma equilibrium is provided by EFIT.
Mode eigenfuntions and frequencies are calculated for this equilibrium by the
linear MHD code MISHKA in straight field line coordinates and then converted
to cylindrical coordinates. (image taken from ref. )

eigenfuntions and frequencies for this equilibrium in a straight field line sys-
tem. HELENA provides coordinate transformation maps from straight field line
coordinates to cylindrical coordinates used by HALO. Then HALO can evolve
the mode amplitude along with the perturbed particle distribution function.
A list of plasma parameters, equilibrium profiles, and eigenfunctions used for

the problem of fast ion transport to be discussed in this chapter is as follows.

Equilibrium An MHD equilibrium is required to start the calculation,
providing zero order quantities related to fluid and field, such as the poloidal
flux function, 2D magnetic geometry, and ¢ profile, etc. The equilibrium
magnetic field also contains the instability information of the bulk plasma.

Steady state fast ion distribution function HALO requires a distribu-
tion function fy in constants of motion space. This is because the evolution

of df for each particle requires knowledge of the local gradients of f, with
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respect to £ and Py. fy could be a beam slowing down distribution function,
a distribution caused by ICRF heating, or from fusion alphas as in the case
we will study.

Eigenmode function MHD instabilities are described by the ideal MHD
equations as shown in section [2.4, For an equilibrium of interest, precise
solutions to these equations can be computed by numerical codes , such as
MISHKA [76]. The HALO code will investigate the nonlinear interaction between
the prescribed eigenmodes and particles. As shown in Ref. |89, 94], the
eigenmode functions are obtained by representing the time dependence of
the perturbation in an exponential form expAt. The perturbed magnetic and

electric fields are given by

d ~ d
JOB' = —i (m (dSA2> +n (CZ:QA2>>

JSB® = inA; + 5 (lew/lz>
) 5\ 05 (5.13)
dy .
6B = — | —2qAy | —imA
/ ds (ds 1 2) e
A,
(SEZ - —)\ ¢
c
. dy qR? L
where the Jacobian is J = — and the vector potential is related to two
ds RB¢
velocity variables (vy, vq)
—iv
Ar=— 2
dl/] A~ U1
TgA, = —— 5.14
ds T2 TN (5:14)

and
v1(s,0, ) = eMeine Z em? Z (v;iHl(s) + dv}mHQ(s))
m i=1

N
vy(s,0, ) = eMem? Z o Z (Ufm-hl(s) + dvgmhz(s))

i=1

(5.15)
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where H'(s), H*(s), h'(s) and h*(s) are Hermite quadratic or cubic poly-
nomials. The calculation is carried out in the straight field-line coordinates
(s,0,¢) and then transformed to the conventional cylindrical coordinates us-

ing coordinate maps provided by the HELENA code [95].

5.3 Modelling chirping modes

As described in section [2.4.4] on one dimensional Landau damping, waves can
either damp or grow as they interact with particles. The condition depends
on the sign of the gradient of the particle parallel distribution function with

respect to the particle parallel velocity in the vicinity of wave phase velocity,

0
ie, G = (j)w k- For instance, when G > 0 waves can grow indicating that

(%”

a free energy in particles drives the growth of the waves and G tends to be

flattened as particles lose their kinetic energies. In the hybrid MHD-kinetic

model, drive/damping is affected by both % and aj;OO)
0 opP,

with opposite sign as
€0

shown in Eq. (2.127) and (2.136]). Both particle distribution and mode amp-

litude evolve in time interactively. The HALO model is consistent with both
mechanisms and can explore the further nonlinear phase. Fig. (taken from
Ref. [89]) shows the evolution of the wave and particle energies and the mode
amplitude for a full non-linear simulation of an n = 6 TAE interacting with
an alpha particle slowing down distribution (the exact scenario is described
in the following sections). The eigenmode of interest is a localised TAE mode
which is numerically calculated with the cylindrical equilibrium. The values
of geometry and field give a fast particle orbit width which is comparable
to mode width of n = 6 modes so the power transfer between particles and
modes is expected to be observable in the simulation. One can see that the

energy grows exponentially during the linear phase from ¢ =150 to 300 wave
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Figure 5.3: The energy-exchange occurring between the TAE and alpha
particles (left) and non-linear growth of the TAE (right) (images taken from
Ref. [89])

periods. Later in the non-linear phase, the rate of the energy-exchange slows
down and energies of the particle and wave reach a saturated level lasting for
175 wave periods until the simulation ends. As the mode evolves with time,
the particle distribution function f = fy+ df would change coherently, where
fo is the equilibrium distribution function and assumed to be independent of
time. Therefore it is only df that changes with time and we use df to evaluate
the macroscopic particle transport induced by a mode.

In the previous chapter, strong and continuous chirping in time can be
seen from the measured mode frequency (TAE and fishbone) whereas the
ideal MHD model can only compute and predict a single and constant mode
frequency. The chirping phenomena are widely observed in energetic beam
injection experiments on various fusion devices. In HALO, we can simulate
chirping by adding an ad-hoc damping but the behaviour does not match
what is observed in experiment partly due to lack of collisions. To overcome
this, we impose a chirping structure by hand that roughly matches the scale
of chirping seen in experiment. This might not be physically correct but
should still give us some insight into how important chirping is for particle

redistribution for this case and whether HALO can potentially be used to
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5.8. Modelling chirping modes

Figure 5.4: The mode frequency w(t) is assumed to be a linear function of
time. wy is the eigen-frequency computed by the MISHKA code. The ad-hoc
chirping frequency are realised by a coefficient . n < 1 is for down chirping
modes and 1 > 1 for up chirping modes.

model it.

On MAST, the mode frequency rapidly sweeps down in a nearly linear
way as can be seen in Fig. 1.2 We therefore implement an ad-hoc frequency
chirp by a linear function of time as shown in Fig. [5.4 The frequency
function w(t) is determined by two points (wg,to) and (nwo, tsim). Here, wy
is the eigenfrequency numerically obtained from MISHKA, ¢, = O is the initial
time when the simulation starts and ¢4, is the total simulation time. The
mode frequency in the end is assumed to be a fraction of the eigen-frequency,
defined by a coefficient 7, that is, w(tsm) = Nwo. The expression of a chirp
frequency is written as

w(t) = wo (1 Y )] U 1)> (5.16)

tsim - tO

In HALO, each marker represents a change in the local number of particles
given by
dN =df - J-dV, (5.17)

where J is the Jacobian and dV is the volume element in the hypercube used

to perform the particle loading. For the loading scheme discussed above, the

Jacobian is J = v? and dV = dxdydzdvd\da. The calculated df is binned
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for each particle. In Fig. [5.8] (df) is the averaged df value obtained by the
summation over the total number of particles in a bin and division by the

total phase space volume:

_ XldfiidV) - 3(dfidi)
==y T T n (5.18)

where dV is cancelled out since it is a constant for each particle. (df) is used

to estimate the particle redistribution in the presence of the modes.

5.4 Study scenario

A near cylindrical geometry tokamak configuration is considered. Fig.
shows the plasma equilibrium with a circular cross-section without elongation
or triangularity. It is a relatively simple magnetic geometry used for validating
the HALO code as presented in [89]. The parameters of this configuration are
reasonably close to a typical tokamak with large aspect ratio. The major
radius Ry is at 3 m and the aspect ratio a/Ry = 0.25. The toroidal magnetic
field at Ry = 3 is 3.0 T and ¢y is 1.82.

For this plasma equilibrium, eigenmodes with toroidal mode number
n = 6 and mode frequency wy = 481 kHz are found by the MISHKA code
as demonstrated in Fig. [5.6] From the poloidal cross-section, the perturbed
electromagnetic components are aligned with the flux surface. The relat-
ive magnitude of the magnetic field components are comparable while the
strength of the toroidal electric field E4 and are much lower than that of the
poloidal components Er and E;. Both the radial and vertical components of
the electric field are high in the low field side (LF'S) compared to the high field
side (HFS). However, the distribution is opposite for the poloidal magnetic

fluctuations, that is, Bg and By are relatively weak in the LFS.
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Figure 5.5: A circular equilibrium for benchmarking the HALO code. This
equilibrium represents a simplified conventional tokamak configuration with
a circular poloidal cross section. The magnetic axis is located at R = 3 m.
1y, is the normalised flux surface function and in the range of 0 < v, < 1.
This equilibrium is used for the calculations throughout this chapter.
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Figure 5.6: Solutions of eigenmodes found by MISHKA for the bulk plasma
confined in the circular flux surface as described above.
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The alpha particle distribution function takes a product form given by
fo = h1(Py)h2(E) [52,(96]. Here, h; is sensitive to the plasma temperature and
density profiles and is expressed in terms of Py(1),): hi(FPy) = (1 — Pq%)m. hs
is related to alpha particle drag induced by collisions with thermal electrons
and ions. In this case, we assume a fuel mixture 50:50 for D and T ions with
same temperature at T; = 20 eV and an analytical solution of the Fokker-

Planck equation is written as

. L | E-35MeV (5.19)
2 = . .
v+ 1106 x 103,/T; [keV]

Here, the error function is defined as

2 ? 2
erf z = ﬁ/o e "dt, (5.20)

and v, is the crossover velocity approximately given by

ZiI\3 2T,
Ve = (3\/%7" 1)3 , (5.21)
4 Me
0.5 0.5 . .
where Z; = + . When the alpha particle velocity v equals v,., the

2m,  3m,
drag exerted by the thermal electrons on the alpha particles equals that of

the thermal ions on the alpha particles. For alpha particle velocity below v,

the ion drag dominates and for velocity above v, the electron drag dominates.

5.5 Results

To simplify the problem, the mode amplitude A = dB, /By is assumed to be
a constant when a frequency chirp is prescribed manually. Here, By is the
equilibrium magnetic field on axis and dB, is the maximum radial mode field
on the outboard mid-plane. In Fig. 5.8 A = 1 x 1073 is set to be constant

for the entire simulation time tg, = 6 ms. The chirp coefficient is n = 25%
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Figure 5.7: A mocked-up alpha particle distribution function fy(£, P,) is used
in the simulation. fj is constructed by a product form fo = hy(Py)he(E).
Here, the spatial dependence of fj is given by h; term and the collision drag
from background ions and electrons on alpha particles is described in hsy term.

representing a mode with frequency down sweeping in time. (df) is binned in
R and Z coordinates. A negative (df) indicates that particles leave a region
and cause a decrease in the particle number while a positive (df) corresponds
to an opposite situation. There is a visible decrease in particle number in the
core and an increase from mid-radius towards the edge. Particles are lost from
where the eigenmode is located as shown in Fig. As the simulation time
elapses, particles are redistributed from the plasma centre. In the contour
graph, the plotted data are restricted to +4 times of the standard deviation
of (df) to get rid of outliers in the data and improve the resolution. By
filtering a small section of the data, the transport structure can be seen more
clearly. This is the reason that there are some blank areas in the image.
Particles are asymmetrically lost from the plasma centre and they eventu-
ally leave the confinement region from the outboard side as shown in Fig. [5.9]
where the magnetic axis Ry = 3 m and the outboard and and inboard refer
to the region with R > Ry and R < Ry, respectively. The data is consistent

with the mode moving particles from passing orbits in the core onto trapped
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Figure 5.8: Time slices for ¢ = 1-6 ms of particles being transported from
the plasma centre (blue region) to edge (red region) due to a chirping mode.
(df) is a quantity proportional to the change of the particle number. The
mode amplitude Ay = 1073 is fixed throughout the simulation and the chirp
coefficient is n = 0.25 corresponds to a down chirping frequency. The grey
contours are the poloidal flux function from the equilibrium data and the solid
grey line labels the LCFS. The blank squares come from the data filtering of
+40, where o is the standard deviation of (df).
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Figure 5.9: Asymmetric distribution of the redistributed particles. Inboard
and outboard sides refer the radial location R relative to the magnetic axis
Ry.

and lost orbits.

As particles resonate with the mode, particle constants of motion would
change. In Fig. [5.10] the relationship between (df), energy E and toroidal
angular momentum is investigated. The expression of P, is given in Eq.
and repeated here: P, = Zey,/2n+mRuv,. Ppis a function of particle toroidal
velocity v, and poloidal flux surface function 1, which shows the location of
a particle. Significant particle transport can be seen in the P, dimension.
Particles are lost from the region where P, is negative and accumulated at
the region with P, > 0. Changes in either 9, or v, in the expression of P,
can cause particle redistribution in the P, space. In Fig. (a-c), (df) is

separately binned in terms of Py, v, and 1,. In the 1, dimension, particles
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Figure 5.10: Time slices at 1-6 ms of (df) binned in £ and P, space. P, is
normalised by ey, where ¢y, is the poloidal flux at the boundary (LCFS).
Most of resonant particles are at energy £ < 0.5 MeV. A boundary between
the particle loss and gain appears at P, = 0 surface. Parameters of the
simulation are the mode amplitude Ay = 107 and chirp coefficient n = 0.25.
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Figure 5.11: (df) is binned in one dimensional space (a) toroidal angular
momentum P,; (b) normalised poloidal flux v,,; (c) particle toroidal velocity
V. Py is normalised by e,y where vy, is the poloidal flux surface function at
the boundary (LCFS). Subplots (a) and (c) enjoy high degree of similarity and
the change in v, is likely to be responsible for particle transport in P, space.
Subplot (b) shows particles are transported from plasma centre 1, = 0.1 to
outer region v, = 0.4 and the LFCS ¢, = 1. Eventually those particles
escape the confinement region and hit on the facing wall.

move outwards from v, ~ 0.1 to ¢, ~ 0.4. Some particles cross the LCFS
(¥, ~ 1) and then leave the confinement region. The change in particle
toroidal velocity is qualitatively consistent with the change in F,. When vy
increases/decreases, Py is changing in a consistent way based on the sign of
vy in the equation for P.

A visible particle redistribution has been identified by simulating a chirp-
ing mode with a constant mode amplitude A = Ay in HALO. As a comparison, a

case with a constant mode frequency and evolving mode amplitude A = A(t)
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is considered. The mode linearly grows and eventually saturates. From ¢t =1
ms, particles can be found to leave the plasma centre and spread out reach-
ing outer area or outside of the LCFS. However, the particle transport is
relatively weak overall and the lost region is restricted to the outboard side,
exhibiting different features to the chirping case as shown in Fig. [5.§ where

the lost region is extended to the inboard side.

As discussed in the previous chapter, a chirping frequency would increase
the resonance region, improve wave-particle interaction, and potentially en-
hance particle transport. For a single mode frequency, a certain group of
particles can resonant with the mode. If the mode frequency is continuously
changing with time, more particles will enter into the resonance region and
exchange energy with the mode. To investigate this effect, we fix the mode
amplitude to be A = Ay = 1le —3 and vary the chirp coefficient n in the linear
equation of mode frequency w(t) as defined in Eq. . A total time of 6
ms is simulated and the final particle state are shown in Fig. [5.13] Both up
chirp and down chirp are considered, corresponding to n > 1 and 0 < n < 0,
respectively. Particle redistribution develops and more particles are shifted
outwards as | — 1| increases. 1 = 1 represents a constant mode frequency.
We have run two different non-chirp cases, one with a fixed mode amplitude
and one with a time varying amplitude A(t) which is solved in HALQ. Particle
transport in both cases are comparable and relatively weak compared to those

affected by both up and down chirping modes.

For an eigenmode with constant mode frequency, it has been found the
increasing mode amplitude does not significantly increase the particle trans-
port. However, the situation is different for chirp modes. We have used a
constant mode amplitude Ag = 1072 to study how a down chirping mode

affects the particle transport. Now we vary Ay and a set of different mode
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Figure 5.12: Reduced particle transport in the presence of the eigenmode with

a constant mode frequency wy

481 keV computed by the MISHKA code. The

initial mode amplitude is A(t = 0) = 1073, A(t) evolves in time as the mode

interacts with particles and is solved consistently by the HALQO. The particle

transport level is much lower than those induced by a chirping mode.
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Figure 5.13: The particle transport level varies with the chirp coefficient 7.
Calculations with various 7 track particles for the same time of 6 ms and
all curves shown here are the final measures at ¢ = 6 ms. The mode amp-
litudes for all are constant Ay = 107 except the one marked with A = A(t)
(orange dashed). 7 > 1 and 0 < 1 < 1 correspond to up and down chirp-
ing frequencies, respectively. The particle transport enhances with growing
|n — 1| which states the deviation of the ending mode frequency away from
the initial value wy computed by the MISHKA code. The exception is when
n =1 (non-chirp case). Interestingly whether the mode amplitude evolves in
time or not (orange dashed and green solid lines), the particle transport is
constantly small.

amplitude Ayg = 1072,1073,107%, 107 are selected. HALO tracks particles for 6
ms in the presence of a down chirping mode with a chirp coefficient n = 0.25.
In Fig. , the particle averaged distribution (df) at final state t = 6 ms
is plotted. For the large mode amplitudes, Ay = 1072 and 1073, particles
are redistributed outwards and the change in particle number increases with

increasing mode amplitude.

We quantify the uncertainty of the calculation by using two different
Hammersley sets for loading particles. The quasi-random sequences are de-
termined by setting different values of k in Eq. , ie, k=1,2,3,....,n
and £ = n, + 1,n, + 2,...,2n,, respectively. Here, n, is the total number
of simulated particles. As shown in Fig. , (df) calculated by two sets,

labelled in “H1” and “H2”, agrees well for large mode amplitude Ay = 1072
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Figure 5.14: The mode amplitude has an effect on the particle transport
induced by a down chirping mode. The change in particle number is largely
reduced as the mode amplitude weakens. When Aj is on the order of 10~ or
smaller, the chirping mode will not affect the particle transport. The chirp
coefficient n = 0.25 and the simulation time is 6 ms for all cases.
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Figure 5.15: (df) calculated by two different quasi-random sequences, “H1”
(solid) and “H2” (dashed or dotted). The simulation results are more diverged
with decreasing mode amplitude.

and 1072. The uncertainty appears when A, is as small as Ay = 107* or
1075. We calculate the coefficient of variation (CV), defined by the standard
deviation o and mean p, CV=c/u, which measures the numerical stability
when different Monte Carlo loading sequences are used. It can be seen in Fig.

5.16, as the mode amplitude increases, CV decreases and the dispersion of

the numerical results around their mean values is largely improved.
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Figure 5.16: Coefficient of the variation, CV=0/u, where o and u are the
standard deviation and mean value, respectively. As Ag increases, CV is
reduced and the results are converged for simulating particles with different
initial states.

5.6 Discussion and summary

In this chapter, we have modified the evolution of the mode frequency by hand
and used a mocked-up alpha distribution in HALO to us an indication of the
potential impact of chirping on fast particle loss calculations. As predicted in
the previous chapter using calculated resonance maps, the chirping frequency
widens the wave-particle resonance region and increases the number of the

resonant particles that are redistributed.

The modelling shows the dynamics of particles being transported from
the plasma centre to the edge assuming a time dependent frequency func-
tion. Particles are lost asymmetrically from the core and the lost regions at
the outboard side relative to the magnetic axis are shifted outwards. The

asymmetry could be correlated with the structure of particle passing orbits.

The results also show the particle transport in constants of motion space
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by binning (df) in £ and Py space. A clear boundary of particles being lost
can be found at the Py, = 0 surface. Particles are lost from regions with
Py < 0 and gained in regions with Py > 0. The change in P, depends
on the normalised poloidal flux surface 1,, and particle toroidal velocity vy,
suggesting an evident transport in velocity occurring during wave-particle
resonance.

As a comparison, simulations with a constant mode frequency have also
been implemented. The particle transport is low compared with the chirping
case and not affected by either fixed mode amplitude or time varying mode
amplitude when consistently solving for the non-linear wave particle evolu-
tion in HALO. Furthermore, particle transport increases with |n — 1|. Here,
n is defined as the chirp coefficient and | — 1| shows the degree that the
ending frequency deviates from the initial frequency. This includes up and
down chirping situations since both chirping frequencies have been observed
in experiments.

Even though the particle transport is not influenced by the mode amp-
litude A for a non-chirping frequency, the value of A can change how many
particles are redistributed due to a chirping mode. More particles transport
towards the edge as the constant mode amplitude increases as shown in the
simulations.

In summary, a simplified model using a mocked-up alpha distribution
and an ad-hoc chirp frequency evolution is proposed and simulated in HALO.
Full non-linear modelling shows that eigenmodes with a single and constant
frequency will not cause large particle redistribution. It suggests that at-
tempting to model redistribution and loss of fast particles without a proper

inclusion of the frequency evolution of the modes may well be insufficient.

121






CHAPTER 6

Conclusion

Energetic particle physics is an active research topic in the fusion community
and a good confinement of fast particles is a key factor for realising self-
sustained fusion energy. This thesis explores fast ion transport induced
by perturbed electromagnetic waves through modelling wave-particle inter-
actions and calculating changes in both particle distribution function and
particle number during this process. In Chapter 2, the equations of single
particle motion and the MHD fluid description for plasmas are reviewed. A
kinetic-MHD hybrid model which separately treats thermal and fast plasma
components to investigate the wave-particle interaction is also discussed in
this chapter.

The hybrid model leads to a wave-particle resonance condition which is
expressed in terms of particle motion frequencies and eigenmode frequencies.
This motivates the work in Chapter 3 where a full orbit code is developed
to solve the charged particle Lorentz motion in a tokamak and work out
the poloidal and toroidal motion frequencies as particles complete periodic
motion along the torus and in the poloidal cross section directions.

In chapter 4, an application of the particle pushing code is presented.

The code is used to generate resonance maps using calculated particle motion
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frequencies according to the resonance condition. Experimental evidence of
particles being transported in the presence of chirping modes excited by the
energetic neutral beams on MAST is also discussed in this chapter. Resonance
maps are used to explain this observation and the features of the resonant
particle orbits are investigated in detail.

A quantitative study of particle transport is the subject of Chapter 5. An
n=6 TAE solution is found for a circular tokamak equilibrium configuration.
The effect of the eigenmodes and ad-hoc chirping modes on particle transport
are evaluated by simulating wave-particle interactions and calculating the

perturbed particle distribution function.

6.1 Results

The particle pushing code presented in Chapter 3 has been validated with
an analytic study of cyclotron motion in a constant magnetic field. The full
orbit code is used to compute particle trajectories using a realistic tokamak
magnetic field. Typical particle orbits, i.e. passing and trapped orbits, are
calculated for the MAST magnetic configuration. Non-standard orbits such as
potato and stagnation orbits are found to be localised near on-axis positions.
The capability of the code is then extended to calculate poloidal and toroidal
motion frequencies of particles as full orbits are followed in the simulation.
Calculations of frequencies do not require additional operations or data post-
processing such as Fourier analysis which are always time-consuming and less
efficient for large number of particles. The full orbit code is an important
numerical tool for the work in the next chapter.

In Chapter 4, a MAST plasma discharge is selected to study fast-ion

driven modes and the behaviour of resonant particle orbits. n = 1 TAE and
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fishbone oscillations with strong chirping are detected by the Mirnov coil ar-
ray. The observed mode frequencies are approximately 150 and 40 kHz for
TAE and fishbones, respectively. It has been found that FIDA measurements
are strongly correlated with MHD bursts, indicating a fast particle redistribu-
tion occurring due to the excited instabilities. The full orbit code described
in Chapter 3 has been used to generate resonance maps and identify particles
which satisfy the resonance condition. Those particles could potentially re-
spond to the driven waves. Two branches p = 0 and p = —1 of resonance are
resolved numerically for particles on the mid-plane. The resonant population
is broadened because of a chirping mode frequency which could result in an
enhanced particle redistribution or loss. The orbits examined suggest a direc-
tion for resonant transport induced by the chirping mode, i.e. the resonance

shifts towards the plasma core with decreasing chirping frequencies.

Attempts have been made in Chapter 5 to evaluate the transport of a
mocked-up alpha particle distribution in the presence of chirping modes. An
n=6 TAE with eigenfrequency at 481 kHz is numerically found for a near
cylindrical equilibrium. The chirping behaviour of the mode frequency is pre-
scribed using a linear function of time. Simulations have shown that particles
move outwards from the plasma centre when chirping modes are present while
significant particle transport cannot be seen when the mode frequency is con-
stant. The comparison suggests that the inclusion of a chirping frequency
is important for understanding the redistribution and loss of fast particles.
This result agrees with the conclusion in Chapter 4 which predicts an en-
hanced resonance between waves and particles could exist due to chirping
modes. The resulting redistribution exhibits an asymmetry in position space.
The lost region appears aligned with core passing orbits which implies that

orbit transitions from passing to trapped might also occur. Some passing
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orbits which could enter into the inboard side while circulating the poloidal
cross section could transform into trapped orbits which are mostly located at
the outboard side. Changes in toroidal angular momentum and energy show
particles transport in constants of motion space while they are interacting
with the modes. Effects of mode amplitude and chirping rate on particle
transport are investigated and an increase of either variable could improve

the particle transport for this case.

6.2 Outlook

The effect of chirping modes on fast particle redistribution and loss has
been investigated in HALO using a simple cylindrical tokamak geometry and
mocked-up alpha particle distribution function. To further develop the re-
search, a realistic plasma equilibrium with chirping modes could be a natural
follow-up. Here, the fast ion distribution function varies according to fast
particle source, whether it is NBI, ICRF or fusion products. A research can-
didate is the MAST plasma discharge presented in Chapter 4. Plasmas are
heated by the NBI and chirping TAE and fishbone oscillations are observed.
On the other hand, the MAST-U project has developed a capacity of de-
livering an off-axis NBI heating in order to mitigate fast ion losses due to
instabilities. Therefore, the MAST-U device is a good candidate platform for
exploring whether the behaviours demonstrated in the simple case studied
are replicated in more realistic scenarios.

An appropriate damping mechanism is currently absent in HALO and the
mode does not exhibit realistic chirping which matches experiment. This
is the reason why we use an ad-hoc linear function to describe the mode

evolution during particle redistribution. The current modelling is suggestive

126



0.2. Outlook

but is unsuitable for providing detailed explanations of experimental obser-
vations, i.e. a chirping mode frequency. Work is currently underway to build
a collision operator in HALO which should enable more accurate modelling
of the evolution of modes in devices such as MAST. Once this is complete
it will be possible to self-consistently explore the impact of chirping modes
on fast particle redistribution on devices like MAST-U. The calculated mode
frequency should be consistent with experimental measurements and this can

be a validation of the collisional plasma model.
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