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Abstract

Energetic particles with super-Alfvénic speeds could potentially
drive Alfvénic instabilities in a magnetically confined plasma. The
driven waves can influence the fast particle distribution function as
energetic particles are redistributed or lost to the vessel wall leading
to a reduction in energetic particle confinement and heating efficiency.
This thesis investigates the interaction between particles and waves
via full orbit numerical simulations. The work presented herein takes
steps towards the development of a capability to assess whether future
reactor scenarios will be susceptible to these adverse effects or not.

A full orbit particle tracking code has been developed to calculate
particle trajectories and more importantly to compute particle orbital
frequencies as they are followed in the simulation. Based on the wave-
particle resonance condition, resonant particles are identified using this
code for realistic tokamak geometries.

Experimental observations of fast-ion driven waves on the MAST
tokamak are presented. Magnetic perturbations in the kilo-Hertz range
are detected by a set of high resolution Mirnov coils during the neutral
beam injection heating phase where the mode frequency is observed to
chirp downwards over the course of a magneto-hydrodynamics (MHD)
burst. A decrease in fast-ion deuterium alpha signals is found to be
correlated with the electromagnetic bursts indicating fast ion redistri-
bution during the MHD activity. Simulation results suggest that the
increase in plasma pressure is disproportional to the increase in NBI
heating power in the presence of MHD modes. The effect of instabil-
ities on energetic particle behaviour has been analysed by calculating
resonance maps and resonant particle orbits. Full orbit calculations
show that the chirping frequency broadens the wave-particle resonance
region which can result in enhanced particle transport.

Preliminary attempts have been made to evaluate fast particle
transport induced by chirping modes using the non-linear full orbit
HALO code. The chirping behaviour of the mode frequency is simulated
by an ad-hoc function similar to experimental measurement. Calcula-
tions are performed for a simple cylindrical tokamak geometry and a
mocked-up alpha particle distribution. An n = 6 toroidal Alfvén eigen-
mode (TAE) is found numerically for this equilibrium. The results of
the simulations show that fast particles are transported outwards from
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the plasma centre when chirping modes are present while no significant
particle transport is seen when the mode frequency is constant. The
level of transport is affected by either mode amplitude or chirping rate.
These results suggest that the inclusion of a chirping effect is necessary
to study particle redistribution in the presence of fast-ion modes when
considering plasma scenarios in the future.
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Chapter 1
Introduction

1.1 World energy

The energy supply in today’s world primarily relies on traditional fossil fuels,

i.e. oil, natural gas and coal. Renewable and clean energy such as nuclear,

wind, and solar energy only account for a small fraction of energy consump-

tion globally. Fossil fuel is an ancient and accessible energy source but also

limited. Meanwhile, the demand for energy is increasing every year with

the progress in people’s living standard. Another threat is climate change.

A large amount of greenhouse gas emission from fossil fuel burning could

change global climate and bring extreme weather events such as drought,

flood, storm, etc. These are deadly for agriculture and can cause signific-

ant threats and losses to human life. There are problems in clean energy as

well. There is no effective solution for disposing radioactive products from

fission nuclear reactions and currently the only way to deal with them is to

bury them deep underground. Imagine in several decades the earth becomes

a radioactive waste dump. Wind and solar energy is easily influenced by

the geographic location or the factor of weather and thus cannot be an en-

ergy source solely. Fusion energy offers a clean, sustainable alternative power
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1.2. Fusion energy

source which has the potential to address the issues outlined above.

1.2 Fusion energy

Fusion energy makes use of the energy generated by nuclear fusion reactions

and it could be a potential candidate solution for future energy requirements

because the reactions used do not produce long lived radioactive byproducts,

and they do not emit greenhouse gas like burning fossil fuels. The fuel options

of fusion are various and abundant. According to Einstein’s mass-energy

relationship, the fusing of light elements releases a large amount of binding

energy if the total mass of the final products is smaller than that of the

reacting nuclei. The important nuclear fusion reactions for the isotopes of

hydrogen are given below [1]:

D + D→ T + p + 4.03 MeV (1.1)

D + D→3 He + n + 3.27 MeV (1.2)

D + T→4 He + n + 17.59 MeV (1.3)

D +3 He→4 He + p + 18.35 MeV (1.4)

For simplicity of notation, the following symbol replacements are made: deu-

terium → D; hydrogen → p; helium (α) → 4He; helium-3 → 3He.

In order to fuse, two positively charged nuclei must come into contact,

winning over the repulsive Coulomb force. The need to overcome the Cou-

lomb barrier in nuclear reactions makes them difficult to initiate. The cross

section and reactivity determine the probability of the occurrence of a nuclear

reaction. The cross section measures the probability that a pair of nuclei will

undergo a nuclear fusion reaction and reactivity is defined as the probabil-

ity of reaction per unit time per density of target nuclei, as shown in Fig.
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Figure 3.10 Experimentally measured cross sections for the D–T, D–He3, and D–D fusion reac-
tions as a function of deuteron energy KD = mDv2

D/2 (Glasstone, S., Lovberg, R. (1975). Controlled
Thermonuclear Reactions. New York: Robert E. Krieger Publishing).

exhibit the qualitative behavior sketched in Fig. 3.9. Observe that the D–T cross section has
a peak of about 5 barns at KD ≈ 120 keV. In terms of cross section D–T is clearly favorable
in comparison to D–D or D–He3. As a specific comparison observe that σDT ≈ 100 σDD at
20 keV, which as is shown later, is a typical value for a fusion reactor. For a final point of
comparison, note that the fission cross section for a thermal neutron (i.e., Kn ≈ 0.025 eV)
colliding with 92U235 is about 600 barns. With respect to cross section, fission has a big
advantage compared to fusion.

Assuming that σ (v) is known, it is then straightforward in principle to calculate the
reaction rate as given by Eq. (3.14). This has been done numerically for the main fusion
reactions using equal temperature Maxwellian distribution functions. The results are illus-
trated in Fig. 3.11 as curves of 〈σv〉 vs. temperature T. Observe that for D–T, 〈σv〉 has
a peak value of 9 × 10−22 m3/s at a temperature of 70 keV. Knowing 〈σv〉 one can then
easily calculate the fusion power density as determined by Eq. (3.16) and repeated here for
convenience

Sf = Ef n1n2 〈σv〉. (3.23)

Consider now the optimum ratio of D to T in the D–T reaction. For this case write
n1 = nD and n2 = nT. The optimum ratio is found by noting that overall charge neutrality
requires that the total number of electrons in the fuel ne must equal the total sum of all
positive charges: nD + nT = ne (assuming that the number of alpha particles is small).
Thus, defining k as the fraction of deuterium one can write nD = kne and nT = (1 − k)ne

implying that nD · nT = k(1 − k)n2
e . The product is maximized when k = 1

2 and has the
value nD · nT = 1

4 n2
e . The optimum fuel mixture is a 50%–50% combination of D and T

leading to the final desired expression for the fusion power density:

Sf = 1
4 Ef n2

e 〈σv〉. (3.24)

(a)
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Figure 3.11 Velocity averaged cross section (i.e., 〈σv〉 = Ri j/ni n j ) for the D–T, D–He3, and D–D
fusion reactions as a function of temperature.

Equation (3.24) represents the dominant source of power in the overall power balance of a
fusion system.

Some closing comments on fusion power generation

A further point of interest concerns the fact that one can obtain an analytic approximation
to the evaluation of 〈σv〉 by using an analytic model for σ , which is valid for low energies.
This derivation is not essential to the present discussion since accurate curves of 〈σv〉 have
been presented in Fig. 3.11. However, readers may find it of interest to see how a 〈σv〉
calculation can be carried out from beginning to end. Also, the derivation is helpful for
some of the problems at the end of the chapter. Since the derivation is lengthy and not
essential for the continuity of the discussion it is presented in Appendix A.

There are two additional points to be made. First, the particle energies required to initiate
fusion reactions are on the order of 70 keV. This exceeds the ionization potential by a factor
of more than 1000. The conclusion is that a burning D–T fuel is a fully ionized gas, hereafter
referred to as a plasma. The second point is that, as is shown shortly, Coulomb collisions
combined with power balance requirements result in an optimum operating temperature on
the order of 15 keV, well below the 70 keV maximum of the 〈σv〉 curve. The implication is
that for a Coulomb-induced Maxwellian distribution function, most of the fusion reactions
occur for particles on the tail of the distribution function.

3.5 Radiation losses

3.5.1 Overview of radiation losses

An important, although usually not dominant energy loss mechanism affecting power bal-
ance in a fusion reactor is that due to radiation. There are in fact several types of radiation
losses that can occur: line radiation due to impurities, cyclotron radiation due to particle

(b)

Figure 1.1: (a) Experimentally measured fusion cross sections versus centre-
of-mass energy. The critical particle energy for a fusion reaction to take place
is around 10 keV for the D-T reaction and nearly 100 keV for the D-He3

or D-D reactions. The maximum cross section of the D-T reaction is also
prominently higher than those of the other two reactions and occurs at a
relatively low energy of approximately 100 keV. (b) Maxwell-averaged cross
section as a function of temperature for reactions of interest to controlled
fusion. The D-T reaction is advantageous for realising nuclear reactions after
considering a Maxwellian velocity distribution (images taken from [2]).

1.1. The D-T reaction involves the fusion of a deuterium nucleus with a tri-

tium nucleus. It has the highest reactivity at lowest reaction temperature

and hence is the easiest of all the fusion reactions to initiate and produces

a significant amount of nuclear energy. The reactivity of the D-T reaction

〈σv〉 peaks at a temperature of ∼ 15 keV. At temperatures as high as this

Deuterium and Tritium are fully ionised and form plasmas.

To realise thermonuclear fusion power, there are two basically different

approaches. The first method is inertial confinement fusion (ICF) [3]. This

is a process in which the surface of a small pellet containing the fusion fuel

is rapidly heated by high-energy lasers or particle beams. By a rocket-like

inward reaction the pellet implodes and then the fusion fuel is compressed

to super high densities and is adiabatically heated until the pellet core is

brought to ignition. Studies and experiments are on going in some research

institutes, such as the National Ignition Facility (NIF) at Lawrence Livermore
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National Laboratory [4]. A recent experiment at NIF generated more than 1.3

MJ of fusion energy - around 70% of the energy put in by the laser, nearly

achieving an ignition (the energy losses are balanced by the alpha-particle

heating) [5]. Another form of nuclear fusion is magnetic confinement fusion

(MCF), whereby the charged plasma is confined by a magnetic field. It is also

the focus of this thesis. One of the most common approaches to MCF is by

means of the tokamak configuration, such as ITER [6], JET [7] and JT-60SA

[8].
Progress toward Fusion Energy Breakeven and Gain as Measured against the Lawson Criterion 7

Fig. 2 Experimentally inferred Lawson parameters (ni0τ∗E for MCF and nτ for ICF) of fusion experiments vs. Ti0 for MCF
and 〈Ti〉n for ICF (see Sec. 3 for definitions of these quantities), extracted from the published literature (see Tables 2, 3, and
4). The various contours in the upper right correspond to the required Lawson parameters and ion temperatures required to
achieve the indicated values of scientific gain QMCF

sci for MCF (colored contours) and QICF
sci for ICF (solid and dotted black

contours), assuming representative density and temperature profiles and D-T fuel. For experiments that do not use D-T, the
contours represent a D-T-equivalent value of Qsci. The finite widths of the QMCF

sci contours represent a range of assumed
impurity levels. See the rest of the paper for details on how individual data points are extracted and how the QMCF

sci and QICF
sci

contours are calculated.

original papers [1,2]. We then introduce the mathemat-
ical definitions of the Lawson parameter in the context
of idealized MCF and ICF scenarios, derive the fusion

triple product, and define three forms of fusion energy
gain used by fusion researchers.

Lawson considered the deuterium-tritium (D-T) and
deuterium-deuterium (D-D) fusion reactions:

D + T→ α (3.5 MeV) + n (14.1 MeV) (1)

D + D →
50%

T (1.01 MeV) + p (3.02 MeV) (2)

D + D →
50%

3He (0.82 MeV) + n (2.45 MeV), (3)

where α denotes a charged helium ion (4He2+), p de-
notes a proton, n denotes a neutron, and 1 MeV =

1.6 × 10−13 J. The fusion reactivities 〈σv〉 for thermal
ion distributions for these reactions, as well as the ad-
ditional reactions,

D +3He→ α (3.6 MeV) + p (14.7 MeV) (4)

p +11B→ 3α (8.7 MeV), (5)

are shown in Fig. 4.
As did Lawson, this paper assumes thermal popu-

lations of ions and electrons, i.e., Maxwellian velocity

distributions characterized by a temperature (e.g., Ti
or Te, where sometimes Ti 6= Te), and does not con-
sider non-thermal ion or electron populations such as

those with beam-like distributions. The latter typically
must contend with reactant slowing at a much faster

Figure 1.2: A Lawson diagram shows the requirement of the ion temperature
Ti, density ni and energy confinement time τE for gain factors Q and the op-
erational plasma parameters that fusion devices can achieve. Large tokamak
programs such as JET, DIII-D or JT-60U are close to a net fusion power
Q = 1. One of the scientific objectives of the ITER project is to achieve a
gain factor of Q = 10 to demonstrate the feasibility of fusion energy as an
alternative energy source (image taken from [9]).

In 1955, J. D. Lawson proposed a useful expression demonstrating the re-
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1.2. Fusion energy

quirement for fusion power balance, that is, to produce net fusion energy, the

plasma must be confined by a device at a high temperature T at a sufficiently

high density n and for long enough time τE so that the fusion power released

is greater than the externally applied heating power and this is often referred

to as the ‘Lawson criterion’ [10, 11]. The power balance equation is written

as

Pheat −
W

τE
− Prad = 0. (1.5)

Here, Pheat is the heating power. The term W/τE refers to the thermal con-

duction loss where τE is the energy confinement time and the plasma stored

energy per unit volumeW is given by the density and temperature of electrons

and ions

W = 3
2(niTi + neTe). (1.6)

The radiation losses Prad in fusion plasmas mainly include the Bremsstrahlung

radiation which comes from the Coulomb collision between particles, cyclo-

tron radiation because charged particles orbit around the magnetic field lines,

and line radiation due to incompletely ionised impurities [12]. It is not eco-

nomic to power the plasma constantly using external heating to generate

electricity since this often consumes more energy than the input due to ineffi-

ciencies in energy conversion. Each D-T reaction releases Ef = 17.6 MeV en-

ergy in the form of the kinetic energy of a neutron and an α particle (Eα = 3.5

MeV) . Self-sustaining operation can be obtained by self-heating via the pro-

duced α particles so that the external energy supply can be saved. If we

assume that the heating power is provided by α particles, then

Pheat = Pα, (1.7)

where Pα the alpha power per unit volume. If we assume a 50-50 D-T fuel

mixture and equal temperature of ions and electrons, that is, ni = ne = n/2
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and Ti = Te, Pα can written as

Pα = 1
4Eαn

2〈σv〉 W/m3. (1.8)

Attempts have been made to evaluate the radiation losses such as electron-ion

Bremsstrahlung and electron cyclotron radiation with relativistic correction

[13, 14]. If we are being optimistic on the radiation so the emission can

be completely reflected back and absorbed by the plasma, then the power

balance relation can be given by

W

τE
= Pα, (1.9)

where the radiation power loss is assumed to be zero for simplicity. Using

the expression for the stored energy in Eq. (1.6), the requirement for a self-

sustaining plasma can be written as

nτE >
12T

Eα < σv >
. (1.10)

A Lawson diagram as shown in Fig. 1.2 demonstrates the minimum require-

ments for obtaining varying scientific gain Qsci factor defined by the ratio of

fusion power and external heating power Pheat:

Qsci = Pfus/Pheat. (1.11)

Eq. (1.10) corresponds to the Qsci =∞ curve where there is no heating source

and the plasma temperature is maintained via the collision process with fusion

products, i.e., alpha particles. Progress has been made to improve the energy

confinement and operation towards the self-sustained burning condition via

either MCF or ICF approach on contemporary machines, such as the ITER

project [6], which is targeting a first plasma in 2025 and is aiming at Ti ∼ 18

keV and a high fusion gain of Q ∼ 10.

6



1.3. The Tokamak
1.2. Plasma confinement and fusion devices

Figure 1.2 |Schematic view of a tokamak.

the closest it is to ignition, the better. The alpha particles need to be confined during a long

enough time so that they can transmit their energy back to the plasma. The power gain factor

of fusion reactors is characterized by the ratio, Q, of the fusion power produced to the power

input. This can be expressed as a function of the fraction of the heating power provided by the

alpha particles to the total heating power, which comprises the heating provided by auxiliary

systems, as [3]

Q = 5
fα

1− fα
(1.2)

For an ignited plasma, fα = 1 and therefore Q =∞. If the self-heating by the alpha particles

dominates over other forms of heating, i.e. fα ≥ 1/2, the plasma is said to be in the burning

plasma regime. This condition corresponds to Q ≥ 5.

1.2 Plasma confinement and fusion devices

In stars, the plasma is confined by its own gravitational pull. The gravitational pull of plasmas

created in laboratories is extremely small compared to that of stars and other means must be

used to confine the plasma in a vacuum chamber. Inertial confinement aims at compressing

and heating a fuel target by creating shock waves symmetrically directed towards its center,

usually with the help of high-energy lasers, to initiate fusion reactions [4]. Magnetic con-

finement uses magnetic fields to trap the charged particles constituting the plasma. Under

the influence of the Lorentz force exerted by the magnetic field, charged particles perform a

3

Figure 1.3: A schematic diagram of a tokamak. The resulting helical mag-
netic field is contributed by the toroidal magnetic field generated by the blue
toroidal coils and the poloidal magnetic field produced by the grey poloidal
coils and plasma current indicated by the green arrowed line circulating the
torus. The light purple shadow area shows the plasma confined surface. The
helical magnetic field lines sit on this surface which we refer to as the poloidal
flux surface and will be discussed in detail in the next chapter (image taken
from [15]).

1.3 The Tokamak

The tokamak comes from a Russian acronym “Toroidal’naya Kameras Mag-

nitnymi Katushkami”, which means a device whereby the fusion plasma is

confined in a torus shaped magnetic field in a toroidal chamber. A schem-

atic diagram of a tokamak is presented in Fig. 1.3. The plasma is confined

in a vacuum vessel and the initial plasma is usually formed by the central

solenoid (CS) that supplies a changing magnetic flux through the the torus

and induces a toroidal electric field. A distance between the plasma and the

facing materials is obtained by the helical magnetic configuration. The tor-

oidal components of the field is created by the toroidal field (TF) coils which

7
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pass through the inner and outer vessel. The motions of charged particles

are the gyro motions following field lines and the end loss can be avoided

by the closed toroidal field. However, this alone is insufficient to confine the

plasma completely. The gradient and curvature of the toroidal magnetic field

lead to opposite drift motions for electrons and ions. Then the charge separ-

ation generates an electric field and plasmas will rapidly hit the wall due to

the E × B drift. A set of poloidal field (PF) coils is located symmetrically

about the mid-plane for shaping, vertical stability and radial force balance.

It is worth to noting that the driven plasma current is the main source of

the poloidal field rather than the PF current. Combinations of the toroidal

and poloidal magnetic components result in rotating field lines traversing the

torus and confining charged particles.

1.4 The MAST and MAST-U Tokamaks

MAST (short for the Mega Ampere Spherical Tokamak) is a medium-sized

spherical tokamak (ST) based at Culham Centre for Fusion Energy (CCFE).

The concept of the spherical tokamak was initially proposed by Peng and

Strickler in 1986 [16]. STs have low aspect ratio compared to conventional

tokamaks, such as ASDEX Upgrade [17], DIII-D [18], or ITER [6]. Here

the aspect ratio A is the ratio of the major to minor radius of the plasma,

A = R/a. Typically A is less than 2, such as for MAST/MAST Upgrade, A ∼

0.85 m/0.65 m ∼ 1.33 [19]; for another medium-sized ST device NSTX/NSTX

Upgrade , A ∼ 1.25− 1.33 [20]. This means that STs look more like a cored

apple than the ring-doughnut shape of a traditional tokamak as shown in Fig.

1.4.

MAST has recently been upgraded to MAST-U and the construction has

8
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 32 

托卡马克和一切环形等离子体装置的一个重要无量纲参数是平均大半径和等离子体

小半径之比，称环径比。传统托卡马克的环径比在3-5范围内。美国UCLA的Electric Tokamak

的环径比为5（大半径为5m，等离子体小半径1m），环向磁场0.25T。之所以称为电托卡马

克，是因为他们想通过离子回旋波段的加热引起非双极扩散，产生一个强的径向电场以造

成等离子体旋转，抑制不稳定性，达到第二稳定区。环径比取值的另一极端则产生了一种

新的装置类型，称为球形环。 

 

2.3 球形环 

 

1，结构和特点 

 

1990年代以后，发展了一种新的聚变装置类型，称为球形环(spherical torus)，又称球形

托卡马克(spherical tokamak)，简称ST，是一种低环径比托卡马克，也可认为是传统托卡马

克的变型。 

 

 

 

 

 

 

 

 

 

 

图2-3-1  等离子体截面参数     图2-3-2 球形环和托卡马克等离子体形状比较 

 

环径比（aspect ratio）定义为环形等离子体大半径和小半径之比A=R/a（图2-3-1）。因

为小半径a是在水平方向（垂直对称轴）取的，所以必然有A > 1。传统托卡马克的环径比均

在3以上。A < 1.5的托卡马克称为球形环。目前环径比的最小记录由美国Wisconsin大学的 

Pegasus装置保持，做到1.1。 

 

反的环径比ε=1/A是环效应大小的度量。大的环径比，即小的ε，等离子体接近直柱形

状，其自然截面接近圆形。当环径比减小时，等离子体形状接近球形（图2-3-2）。这是其

动力压强平衡决定的。这时，其截面形状也不再是圆形，而和其比压值有关，产生不同程

度的变形，在垂直方向拉长，并有三角形形变，可用截面参数拉长比（elongation） 1 ，

三角形变形参数（trianglarity） 0 定量表示。它们的定义见图2-3-1。在托卡马克理论中，

垂直方向拉长有利于比压值的增加，而三角形变形有利于稳定。 

 

有三角形变的截面边界在柱坐标系中可描述为 )sincos( 1   aRr 和

 sinaz  ，其中  1

1 sin 。在这一公式中角度变量不是通常采用的θ，而是图2-3-1

所表示的ω。 

 

Figure 1.4: Typical configuration of a spherical (up) and conventional (down)
tokamak. The spherical tokamak is compact and the aspect ration A = R/a
is normally less than 2 (image taken from [21]).

been completed in 2018. The scientific objectives of MAST-U are to explore

the capability of the ST in exhaust, current drive, high beta operation and

plasma confinement [19]. Schematic diagrams of MAST and MAST-U are

presented in Fig. 1.5. The new device has substantially improved features.

These include a super-X divertor configuration [24, 25] which uses expanded

magnetic flux configurations and advanced plasma facing materials to handle

the high heat flux. Due to the longer connection length and flux expansion

the super-X divertor can create significantly reduced target heat fluxes than

a regular divertor. Key parameters for MAST and MAST-Upgrade are sum-

marised in Table. 1.1. The external heating system is also improved from

3.8 MW to 5.0 MW and now includes an extra off-axis beam injector [26].

The effect of off-axis heating on stabilising energetic particle modes and redu-

cing anomalous transport has been confirmed on previous MAST experiments

and TRANSP simulations [27]. The neutral beam injection is the only auxiliary

heat source both on MAST and MAST-U and introduces energetic compon-

ents into the main confined region of the tokamak. The toroidal magnetic

field has also been increased by 50%, and the plasma current and pulse length

are increased to 2MA and 5s, respectively.

The ST device is characterised by low requirement for the toroidal field Bt

9
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Figure 1.4: A schematic showing the structure and dimensions of the MAST tokamak. The

left hand side shows a superimposed image of Dβ emission while the right shows lines of constant

poloidal magnetic field. From Temple (2010) [19].

core charge exchange spectroscopy system which will be described in more detail in section

1.5.

1.4 The plasma edge

The edge of the plasma refers here to the last 5 to 10 cm inside the last closed flux surface

(LCFS) in the MAST plasma. This region interacts both with the scrape-off layer (SOL)

and the inner region of the plasma. In the SOL open field lines carry hot ions and electrons

from the plasma to the divertor while neutrals and impurities enter across the separatrix

(flux surface containing the X-point1) into the plasma and become ionised. The majority

of visible emission from the plasma occurs from this thin layer. Compared to the core the

temperatures are cool and densities low requiring consideration of different processes than

are important compared to the hot core. The region is a transition from core processes and

SOL processes.

1in MAST the terms LCFS and separatrix can generally be used interchangeably

(a)

FIP/P8-26 
 

current drive. To allow for multi-second operation, modifications and improvements have 

also been made to the shine-through protection, residual ion dump, power supplies, vacuum, 

cooling and control & instrumentation on both beam lines. 

 

 
Figure 1: Detail of the MAST Upgrade load assembly after the Core Scope upgrade, 

including a representation of the Super-X divertor configuration. 

 

 

2. Divertor Studies 

The MAST Upgrade project [1] will provide a facility capable of performing a wide range of 

tokamak physics research especially in the area of exhaust physics. In addition to two 

variations on the conventional divertor (CD) configuration, MAST-U is capable of operating 

in three advanced configurations: Super-X (SXD), Snowflake and ‘Long-Inner Leg’, as 

shown in figure 2.  

 

Power handling in these different divertor configurations is of critical importance. It is 

envisaged that by Stage-2 of the upgrade MAST-U will have 10MW NBI and 2MW EBW 

heating. Careful attention has been paid to the precise shape of each of the graphite tiles. Tile 

imbrication has been included to shadow leading edges, and plasma facing fixing holes are 

located away from the target locations to minimise hot spots. A particular innovation has 

been the sculpting of the SXD target tile T5; located close to the TF return limbs the tiles 

have a complex 3D shape to compensate for the TF ripple and produce uniform power 

deposition. The 3D shaping is a technique that could be used in a future device to allow 

maximum use of the volume inside the TF coils.  

(b)

Figure 1.5: Schematic diagrams of (a) MAST [22] and (b) MAST-U [23]. A
distinct feature of MAST-U is the super-X divertor configuration indicated
by the red solid lines in (b). The edge plasmas and impurities can be diverted
to the target plates by following the extended magnetic field lines.

10



1.5. Neutral beam injection

Parameter MAST MAST-U
Major radius (m) 0.85 0.85
Minor radius (m) 0.65 0.65

Plasma current (MA) 1.3 2.0
Magnetic field at R = 0.85 m (T) 0.52 0.75

Total NBI power (MW) 3.8 5.0
On-axis power 3.8 2.5
Off-axis power 0 2.5
Pulse length 0.6 5

Table 1.1: Key parameters for MAST and MAST-Upgrade. The designed
size of the plasma in MAST-U remains same as MAST. Operational para-
meters such the magnetic field and the NBI power are improved by 50% and
25%. The additional off-axis power is expected to alleviate the fast-ion driven
instabilities due to a narrow fast ion distribution near the plasma core (table
taken from [19]).

and high normalised plasma pressure β, which is the ratio of the plasma pres-

sure to the pressure of the magnetic field required to contain the plasma. The

highest toroidal beta of any tokamak has been achieved by START [28], which

was the first generation ST built at Culham. The value of beta measures the

efficiency of a magnetic thermonuclear reactor confining the plasma so the ST

has demonstrated its potential for realising commercial fusion energy. A path

to fusion energy with the ST as a candidate for future fusion device has been

proposed [29–31]. The UK Atomic Energy Authority (UKAEA) recently em-

barked upon the STEP (Spherical Tokamak for Energy Production) program

to build a Spherical Tokamak power station to put electrical power on the

grid by 2040 [32].

1.5 Neutral beam injection

Neutral beam injection (NBI) [33] is an efficient approach for heating plasmas

in present tokamaks. The high energy beams are produced via several steps

as shown in Fig. 1.6. First, the neutral source gas typically Deuterium is ion-

11



1.5. Neutral beam injection

Figure 1.6: A schematic diagram of a JET neutral beam injector. Neutral
atoms undergo ionisation, acceleration, neutralisation (and residual ions are
collected by deflection magnets and ion dump) before being injected into the
plasma (image taken from [34]).

ised, generating positively or negatively charged ions. These charged particles

then gain kinetic energy via applied high voltages. After the Deuterium ions

are populated and accelerated, they are transferred into a neutraliser unit

which is filled with neutral gas. The neutralised particles are not affected by

the electromagnetic field in the tokamak and can rapidly deposit at desir-

able locations, such as the plasma core where a large beam energy is always

required. An ion dump unit is installed to collect charged particles after

the neutraliser so only the neutral beam is injected into the tokamak. The

background plasmas are then heated via Coulomb collisions with the injected

particles after the injected particles are ionised.

For large fusion devices, such as JT-60SA or ITER, high beam energy is

required to drive the current and heat the plasma and a negative ion source

is used. This is due to the fact that negatively charged Deuterium ions more

easily lose their electrons and become neutral during neutralisation at high

energies so the efficiency η is higher, where η is defined by the ratio of the

12



1.5. Neutral beam injection

beam power to the input power. However, the technique of producing negative

ions is much more challenging. This can be understood as it is difficult to

attach an electron to the neutral atom compared with losing an electron from

the neutral atom during ionisation.

The NBI fast-ion distribution function f can be calculated by solving the

Fokker-Planck equation

∂f

∂t
+ (~v · ∇~xf + ~a · ∇~vf) = Ĉ(f) + σ (1.12)

where ~v and ~a are velocity and acceleration of particles. Ĉ(f) and σ corres-

pond to the collision operator and the source term due to NBI, respectively.

Simulation codes such as NUBEAM [35], ASCOT [36] RABBIT [37], or HALO [38]

solve this equation using Monte Carlo techniques. A typical solution for f

displays three distinct energy peaks corresponding to the full, half and third

fraction of the beam injection energy. These energy components come from

the ionisation of heavier molecules, i.e. D+
2 and D+

3 which are also generated

together with D+ ions. In all cases the energy received by the molecule is the

same as they are single charged and gain an energy eV where V is the voltage

they accelerate through. In the case of a diatomic or triatomic molecule, this

energy is split between two or three Deuterium ions produced when the mo-

lecule dissociates in the plasma leading to half and third components. Fig.

1.7 shows a characteristic solution of the fast ion distribution function [37].

In this model, collisions between fast ions are neglected. The half and third

energy components of the NBI appear to merge together, and the background

plasma ions cause slowing down which smears the peaks downwards in energy.

The NBI system on MAST has undergone several upgrades [39–41]. It is

equipped with two positive ion injectors (PINIs), denoted by the south-south

13



1.6. Diagnostics

3 The Fokker-Planck equation and its analytic solution 9

with:

Kl =

∫
K(ξ)Pl(ξ) dξ (22)

u =

(
v3

0 + v3
c

v3 + v3
c

v3

v3
0

)β/3
(23)

and H being the Heaviside step function. For the derivation of this solution it has been
assumed that the coefficients τs, vc and β are constants that do not depend on v, which
is contradicted by our Coulomb logarithm formulas (12)-(19). We treat this by evaluat-
ing the Coulomb logarithms with respect to a reference energy Eref: If the distribution
function is to be evaluated in the interval E1 < E < E0, we use the weighted average

Eref = 0.6E1 + 0.4E0 (24)

which is motivated by the fact that the energy dependence of ln Λi is stronger towards
lower energies.
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Figure 6: (a) Solution of the Fokker-Planck equation (8) using three injection energies.

(b) Calculated TRANSP fast-ion velocity distribution in the plasma center.

Fig. 6(a) shows an example of this solution in the plasma core. We have calculated
the solutions for the full, half and third energy component of the NBI independently
of each other, and added them together. This is possible because in our model (and
also in NUBEAM), collisions between fast ions are neglected. 6(b) shows the result of a
NUBEAM calculation as comparison and the shape of the solutions agree very well.

In the end we are interested in integrals of the distribution function (e.g. fast-ion
current, pressure, heating profiles etc.). Many of these integrals can be solved analytically,
which is ideal for real-time calculations. For example, the fast-ion density is given by:

nfi =

∫ v0

0

∫ +1

−1

f · 2πv2dvdξ =
Sτs

3
ln

(
v3

0 + v3
c

v3
c

)
(25)

In these integrals, the orthogonality relation of the Legendre polynomials is exploited:

1∫

−1

Pn(ξ)Pm(ξ) dξ =
2

2n+ 1
δnm (26)

Figure 1.7: A numerical solution of the fast ion distribution shows the full
and half energy components of the NBI on ASDEX Upgrade. The third and
half energy merge together as the background plasma ions slow down and
smears the third peak in energy (image taken from [37]).

(SS) beam and the south-west (SW) beam, and can deliver long pulses for a

duration of up 5 seconds. Each injector can operate with a beam power of up

to 2.5 MW at 70 keV [42]. Fast data acquisition and real time control of the

beam current are implemented so that the beam power can be conditioned

as required [43]. The injected neutral beam changes the particle distribution

function, adding a “bump-on tail” at the high energy region. The gradient in

the particle distribution could drive a series of MHD instabilities [44].

1.6 Diagnostics

MAST has a wide range of plasma diagnostic systems. In this section, only

the key diagnostics used to measure fast-ion driven modes are described. We

start with an overview of the Mirnov coil system, which is an important tool

for identifying and analysing MHD activity.
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1.6.1. Mirnov coil array

1.6.1 Mirnov coil array

The Mirnov coil array measures the current induced by the varying magnetic

components perpendicular to the coil circuits, providing a direct observation

of the electromagnetic behaviours. It is located just above the mid-plane on

the low-field side and at R = 1.7 m, approximately 30 cm away from the

plasma edge. Nine sets of coils are installed at different toroidal locations

and each set consists of three concentric orthogonal coils for measuring three

dimensional fluctuations [45]. The measured signals at various locations are

analysed in spectrograms where both temporal and spatial Fourier decom-

position are applied [46],

xk = 1
2π

∫
e−jωtFk dω (1.13)

= 1
2π

∫
e−jωt

M∑
i=1

αi(ω)ejniφk dω (1.14)

where xk is the signal from the kth coil at toroidal location φk. Fk is the

temporal Fourier transform of xk at angular frequency ω. αi is the complex

amplitude of each toroidal eigenmode ni. M is the total number of toroidal

modes of the plasma. The Mirnov coil array on MAST has a high resolution

allowing electromagnetic fluctuations at frequencies from 10 kHz up to sev-

eral megahertz to be detected. A typical spectrogram is shown in Fig. 1.8

which demonstrates an example of the Fourier decomposition of the magnetic

perturbation measured by the outboard Mirnov array for a MAST discharge.

1.7 Fast ions

As discussed in section 1.2, plasmas need to be heated to maintain a preferen-

tial reaction temperature (Ti ∼ 15 keV) so that the thermal conduction and
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1.7. Fast ions

highlight two such results,3,6 which are believed to be obser-
vations of modulation between high frequency ��1 MHz�
compressional AEs and low frequency ��20 kHz� tearing
mode activity. The examples are chosen as they provide good
examples of mode activity across a wide range of frequency
and amplitude.

Figure 10 is a spectrogram of an OMAHA B� coil in
MAST discharge #17944. This discharge was a deuterium
plasma with 1.7 MW, 64 keV deuterium neutral beam in-
jected �NBI� applied throughout the discharge lifetime.
Throughout the discharge, and below 250 kHz, weak signa-
ture of plasma noise, possibly 1 / f noise,13 is visible. In the
frequency band 0–200 kHz and 0.8–1.8 MHz coherent indi-
vidual modes of signal strength down to ��B��10−6 T can
be seen, with lifetimes up to 60 ms. Modes in the high fre-
quency band are believed to be compressional AEs �CAEs�.3

At around 260 ms, low frequency �20 kHz and harmonics�
coherent modes activity of signal strength ��B��10−4.7 T is
observed, with toroidal mode numbers in the range 1�n
�4. Simultaneously, fine structure splitting appears about
the 1.3 MHz CAE.

A model for the modulation between frequency compo-
nents, inspired by similar data from earlier discharge #9429,
has been developed Hole and Appel.6 As some of the system
analysis presented in Sec. II sheds light on the physics dis-
cussion of Hole and Appel,6 we revisit these data here. Fig-
ure 11 is a spectrogram of an OMAHA B� coil in MAST
deuterium discharge #9429. This discharge was a deuterium
plasma with 1.25 MW, 45 keV deuterium NBI applied during
the current ramp from 100 to 350 ms, and 600 kW ECRH
applied from 210 to 290 ms. The plasma current plateaus at
780 kA, and is in H-mode from 158 ms. Up to 200 ms there
is intermittent bursting high frequency activity. Two upward
chirping bands separated by 150 kHz can be identified. Each
band consists of a dominant mode �n=8 and n=9 for upper
and lower band, respectively�, and sideband modes of
smaller amplitude with 16 kHz spacing. A separate mode
analysis13 reveals the mode number spacing of these weaker
sidebands is 	n=1. A detailed physics analysis3 suggests that
these are CAEs, aliased in frequency from 1.4 to 1.9 MHz.

In Hole and Appel,6 a modulation model was presented

to describe the phase relations between the frequency com-
ponents. A bicoherence analysis revealed that the frequency
splitting of CAE modes was consistent with modulation of
low frequency modes. Strong evidence was found for fre-
quency and amplitude coupling, with weaker evidence for
phase coupling. Phase coupling was consistent only in the
presence of an assumed strong phase nonlinearity across the
CAE band. In Sec. II we have shown there is indeed evi-
dence for a phase nonlinearity across the 1.4–1.9 MHz band,
and that the nonlinearity of the phase response is affected by
shielding, at least for �BR coils. The nonlinearity in phase
also has the same frequency ramp trend: both phases de-
crease with increasing frequency. The magnitude of the ramp
rate is however vastly different. Over the 60 kHz range from
1.68 to 1.74 MHz, the inferred phase change of Hole and
Appel6 is −4�, whereas the phase change due to shield ef-
fects is −0.01�. It hence seems unlikely that the shielding
effect discussed here could be responsible for phase nonlin-
earity of Hole and Appel.6

V. CONCLUSIONS

We have presented a case study of the design of the new
OMAHA in MAST. The new array was motivated by the
physics need to resolve AEs and other high frequency modes
in MAST. In STs these can be particularly important due to
the low field and relatively large Alfvén gap spacing.

Each Mirnov probe was modeled using an equivalent
circuit comprising coil, matching elements, and transmission
line. Design requirements on the self-resonant frequency
were met using an expression for the coil stray capacitance
Cp and adjusting the wire thickness and insulation. Maximi-
zation of the signal transfer function HV,�B was obtained by
substituting an expression for the coil inductance Lp, and
finding stationary points with respect to the number of coil
turns. Finally, characterization of the transmission line, to-
gether with a choice of impedance matching for the cable to
coil connection determined Lp, and hence the coil length.
One outcome of the coil design analysis is that due to the
finite impedance of the transmission line, the magnitude of
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Figure 1.8: A typical magnetic spectrogram of MAST discharge for shot
#17944. The colour on the 2D graph shows the amplitude of the magnetic
perturbation and dominant harmonics with toroidal mode number n = 1 ∼ 4
are identified [47].

radiation losses can be compensated or overcome. This cannot only rely on

auxiliary heat because it is difficult and expensive to heat plasmas up to this

temperature. Therefore, the energy released from the D-T fusion product α

particles with an energy of 3.5 MeV should be exploited as much as possible

in order to achieve the power balance and self-sustained burning. On the

other hand, for plasmas without significant D-T reactions, the study of fast

ions can be undertaken by exploiting the development of plasma auxiliary

heating techniques. Fast ions can be generated by NBI and radio frequency

wave heating. Various mechanisms generate fast particle populations with

energies significantly larger than the bulk plasma energy and typically non-

Maxwellian distributions [48]. The energy and spatial gradients of the fast

ion distributions act as a source of free energy and can drive plasma unstable.
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1.7. Fast ions

Experimentally, we observe a plethora of different waves and instabilities with

different frequencies, mode numbers and spatial structures while the heating

system is active [49]. These modes, once excited, can cause redistribution

and potentially loss of the driving fast particles. This can result in deleteri-

ous effects such as loss of heating efficiency and wall damage [50–52]. Given

the above it is essential that we understand the interaction of fast particle

populations and waves in plasmas in order to confidently design safe reactor

scenarios.

Some of these MHD events are recognised as Alfvén eigenmodes (AEs)

[53]. AEs can be driven by the radial pressure gradient of energetic particles

that have enough energy to resonate with Alfvén waves. Alfvén waves were

first theoretically predicted by H. Alfvén in 1942 when he studied the mo-

tion of a conducting liquid in a constant magnetic field by combining the

properties of the electromagnetic field and hydrodynamics [54]. These waves

propagate along the direction of the magnetic field with a phase velocity

vA = B/
√

4πρ where ρ is the mass density of the fluid. The wave frequency

satisfies a dispersion relation given by ω = vAk‖ where k‖ is the parallel

wave number along the field. For a cylindrical and spatially inhomogeneous

plasma, vA(r) and k‖(r) are a function only of the position r. The dispersion

relation ω2 = ω2
A = k2

‖(r)v2
A(r) displays a continuous spectrum as shown in

Fig. 1.9 (a), where three poloidal harmonics with mode number |m| = 1− 3

are completely independent in a cylinder. The Alfvén continuum is stable

and difficult to excite as the particle energy is usually not high enough to

overcome continuum damping [53]. Also the angular velocity is a function of

radius and consequently the waves undergo strong shearing which results in

damping.

In a tokamak configuration, the toroidicity breaks the poloidal symmetry
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1.7. Fast ions

revealed that in cylindrical geometry, in addition to the 

continuous SA spectrum, ( ) ( ) ( )rVrkr AA

2222 ≡=ωω , a 

discrete Global Alfvén Eigenmode (GAE) exists
16,17

. The 

mode was found as an extremely high-quality, Q ≡ ω/γ ~ 

10
3
, resonance excited in cylindrical plasma with co-

directed equilibrium magnetic field and current by an  

external antenna. Figure 4 shows the plasma response 

seen as the antenna coil impedance as function of the 

frequency scanned in the antenna. 
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is shown with broken line as a high-quality narrow 

resonance peak below  1/ min ==Ω Aωω . 

In cylindrical geometry, the length of the cylinder 

L determines the lowest parallel wave-vector as 

Lk /2min π=  so that the lowest SA frequency is still 

above zero. The ideal MHD mode GAE with 
min0 AGAE ωω <<  exists if the current profile provides a 

minimum in the Alfvén continuum via the condition: 
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Fig.5. Structure of Alfvén continuum in cylindrical plasma 

with current and plasma density gradient.  

It is important to note that the frequency of GAE is 

actually below the Alfvén continuum. This frequency 

shift is caused by the well-known property of 

electromagnetic waves (to which the SA wave belongs to) 

of forming a waveguide at the extremum of perpendicular 

refraction index. Indeed, the local minimum of the Alfvén 

continuum seen in Fig.5 provides a maximum of the 

perpendicular refraction index ω/rr ckN = . Similarly to 

fiber optics, GAE propagating in a “wave-guide” 

surrounding the region of the extremum refraction index 

has most of the wave energy at the radial position of the 

extremum point. Figure 6 shows the radial structure of the 

GAE wave-fields.  

0

0.5 1.00

JG
01

.4
59

-5
cr

r/a

Re (Er)

Re (Eθ)

E
 (a

.u
.)

Im (Eθ)

Im (Er)

 
Fig.6. Radial structure of Global Alfvén Eigenmode with 

m=-2 in cylindrical plasma with current and density 

gradient.  

 

Due to the frequency shift between GAE and 
min

Aω , the 

eigenfrequency of GAE does not satisfy the local Alfvén 

resonance condition, i.e.  

)(rAGAE ωω ≠     (11)
 

Therefore, although GAE has all the properties of the SA 

wave, it represents a coherent radially-extended wave-

packet, to which the phase mixing effect shown in Figure 

3 does not apply, so GAE has no continuum damping.  

 

II.C.  Toroidal Alfvén Eigenmode (TAE)  

 

In a torus, the wave solutions are quantized in 

toroidal and poloidal directions: 

( ) ( ) ( ) ( ) ..expexp,,, ccimrintitr
m

m +−+−= ∑ ϑφζωζϑφ

n  is the number of wavelengths in toroidal direction and 

m  is the number of wavelengths in poloidal direction. 

The parallel wave-vector for the m -th harmonic of a 

mode with toroidal mode number n , is determined by the 

safety factor ϑζ RBrBrq /)( =  as follows: 

117
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Figure 1.9: (a) Dispersion relation of three waves with poloidal harmonics
of m = −1 ∼ −3 in a cylindrical plasma with current and plasma density
gradient [55]; (b) Radial structure of TAE continuum in TFTR for n = 3.
Here, x is the minor radius (image taken from [56]).

which results in the coupling of different poloidal mode components. Alfvén

eigenmodes exist in the gaps of the continuum due to the coupling of two

neighbouring branches of shear Alfvén waves with poloidal number m and

m+1, ω = k‖mvA = −k‖m+1vA. Fig. 1.9 (b) shows a typical Alfvén continuum

computed for a TFTR tokamak discharge, together with a discrete eigenfre-

quency for the toroidal Alfvén eigenmode (TAE). The mode has perturbed

electric δE⊥ and magnetic δB⊥ components perpendicular to the equilibrium

magnetic field. Most of the magnitude of a TAE with mode numbers m and

n is peaked in the vicinity of the rational surface with safety factor given by

q = (m+1/2)/n and corresponding frequency is ωTAE = k‖vA = vA/2qR [55].

Significant efforts have been made to develop techniques to diagnose fast-

ion driven modes. The radial mode structure in plasma core can be de-

termined by internal plasma measurements with soft x-ray diagnostics [58]

or electron cyclotron emission (ECE). The magnetic perturbations are ob-

tained by means of cross-correlation analysis with the measurements of the

electron temperature. Both the temperature via ECE and density perturb-
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Figure 1.10: Magnetic spectrogram of Alfvénic activities excited by ICRH
in JET plasmas [57]. The TAE gap is in approximately 200 kHz while the
mode frequency of the elliptic Alfvénic eigenmode (EAE) is about twice ωTAE.
Here, s can be approximated by s ≈ r/a.

ations using beam spectroscopy are found to be closely consistent with the

predictions obtained in ideal MHD simulations [59]. The measurements of

magnetic perturbations can be performed using a set of high-resolution mag-

netic pick-up coils. The external magnetic diagnostic coils are capable of

detecting perturbations at frequencies from 10 kHz up to several megahertz.

Experimental observations have shown that the typical mode frequency of

TAEs is 100 ∼ 200 kHz. The poloidal and toroidal harmonics are analysed

using Fourier decomposition. Fig. 1.10 (a) is a spectrum showing the TAE

bursts with toroidal mode number |n| = 1− 3 [57].

In addition, the energetic population could also destabilise other MHD

modes, known as “energetic particle modes” (EPM) [60]. These modes are

not supported by the bulk plasmas and could exist outside the TAE gap. In

MAST discharges, it can be observed that TAEs develop into EPM with beam

injections [61, 62]. These EPMs are sometimes referred to as “fishbones” due

to their appearance in the spectrogram.
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1.8. Outline

1.8 Outline

Fast-ion driven instabilities have been observed on various fusion devices [53,

63, 64]. In MAST, TAE and fishbone modes with chirping frequencies are

excited as the energetic neutral beams are injected into plasmas and fast-ion

redistribution takes place simultaneously. The work of this thesis investigates

these processes using full orbit simulations. Equations of charged particle

motions in electromagnetic field, along with the MHD description for plasmas

and a kinetic-MHD model are reviewed in Chapter 2. Based on the hybrid

model, a wave-particle resonance condition which is a function of particle

motion frequencies and wave frequency is derived . In Chapter 3, a particle

pushing code is developed to calculate particle full orbit confined by a 2-

dimensional tokamak magnetic field and the orbital frequencies in poloidal

and toroidal directions as it is orbiting around the tokamak. In Chapter 4,

a plasma discharge in MAST is investigated where TAE and fishbone modes

with chirping frequencies are driven and fast ion redistribution is observed as

the energetic neutral beams are injected into plasmas. Chapter 5 discusses

the HALO model and the simulation of fast ion redistribution induced by the

TAE modes using this model. In Chapter 6, these results are summarised

and future work is outlined.
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Chapter 2
Theoretical review

Much of the work of this thesis is concerned with the interaction of fast

particle populations with magnetohydrodynamic waves in plasmas. To un-

derstand such interactions, it is necessary to first understand the basic be-

haviour of charged particles in electromagnetic fields and the ideal MHD

stability of plasmas in confining magnetic fields. This chapter firstly ex-

plores the motion of charged particles in electromagnetic fields. The single

particle description neglects the interaction between charged particles, and

the motion is determined by Newton’s equations of motion and given initial

conditions of positions and velocities. This approximation can give intuitive

physics pictures of charged particle trajectories in some complicated fields

and explain many features of plasmas. It is also the starting point for un-

derstanding the magnetic confinement of plasmas. Then the second section

describes magnetohydrodynamics in which a plasma is considered as a con-

ductive fluid. It combines classical fluid dynamics and electrodynamics and

focuses on the collective behaviours of a plasma rather than the single particle

motion. The MHD description is often used to study the macroscopic prop-

erties of a plasma, such as the macroscopic equilibrium, stability and many

kinds of wave oscillation phenomena. Furthermore, Landau damping [65] is
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2.1.1. Gyro motion

discussed in one dimension. This explains how energy is exchanged between

an electromagnetic wave and particles in the plasma. Lastly, the MHD-kinetic

hybrid model [66] based on guiding centre approximation is reviewed. The

derivation leads to an important and useful formula, known as the condition

of wave-particle resonance. As will be shown in the next chapter, a code has

been developed to identified the resonant particles confined by an equilibrium

field based on this resonance condition.

2.1 Charged particle motion in magnetically

confined devices

2.1.1 Gyro motion

The motion of a particle of charge q and mass m in an electromagnetic field

is governed by the equation [2]

m
dv
dt

= q(v×B + E). (2.1)

For a straight and constant magnetic field B = Bẑ, Eq. (2.1) reduces to

v̇x = qvyB/m,

v̇y = −qvxB/m,

v̇z = 0.

(2.2)

By defining gyro frequency ωc = |q|B/m, the solutions of the motion equa-

tions are 

x = (v⊥/ωc) sin(ωct+ α) + x0,

y = (v⊥/ωc) cos(ωct+ α) + y0,

z = v||t+ z0,

(2.3)
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2.1.2. E×B drift

where x0, y0, z0, v⊥, v|| and α are determined by initial conditions. v‖ and v⊥

denote the velocity components parallel and perpendicular to the magnetic

field. The particle trajectory in the plane perpendicular to the magnetic field

satisfies the circular equation

(x− x0)2 + (y − y0)2 = r2
c , (2.4)

where rc = v⊥/ωc is the gyro radius or Larmor radius. This is the radius

of gyro motion as the particle rotates around the centre of the orbit (x0, y0).

The centre of the gyro-orbit is referred to as the guiding centre, measuring the

average location during a gyro-period 2π/ωc. The gyro motion of a charged

particle circulating around the field line is the fundamental movement in a

magnetic confinement device.

2.1.2 E×B drift

In a magnetic confined plasma, the magnetic field is not straight and constant,

so an analytic solution for the particle motion cannot in general be found.

However, the dominant motion is still the cyclotron motion perpendicular

to the magnetic field line but with a set of superimposed drifts when the

variation of the field is small in time and space. The addition of a finite

electric field causes a drift both perpendicular to E and B, known as E×B

drift. The drift velocity is written as

vE = E×B
B2 . (2.5)

For the case of a positively charged particle, the electric field accelerates the

motion of the particle when E·v⊥ > 0 and slows down the particle when

E·v⊥ < 0 as the particle attempts to complete each circular gyro-motion.

The acceleration leads to an increasing v⊥ and therefore larger gyro radius rc
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Figure 2.1: (a) Transverse motions of charged particles in a constant magnetic
field; (b) Drift motion in the presence of a small E field. The positive charge
accelerates at the left-half circle and its velocity reaches a maximum value at
the top of the circle, point b; it decelerates at the right-half circle and reaches
a minimum velocity at the bottom of the circle, point d. The gyro radius
increases as the particle moves upwards from d→ b and decreases as it moves
downwards from b → d. The particle trajectory cannot be closed and the
particle drifts with a velocity vE.

since rc ∼ v⊥/B while the deceleration reduces rc. Over a gyro-period, the

guiding centre of the gyro-motion overall drifts away from its original location

without the electric field. The drift due to an arbitrary force F applied to

the particle can be found via the substitution E→ F/q and is given by

vD = F×B
qB2 . (2.6)

2.1.3 ∇B drift

A charged particle immersed in a non-uniform magnetic field experiences a

mirror force if the field strength varies along the particle trajectory. When the

magnetic magnitude varies only slightly over the length scale of the Larmor

radius, rc∇B/B�1, the ∇B drift velocity can be evaluated by

v∇B = W⊥
qB3 B×∇B, (2.7)

where W⊥ = mv2
⊥/2 is the perpendicular kinetic energy. v∇B is often ex-

pressed in terms of the magnetic moment µ = W⊥/B,

v∇B = (−µ∇B)×B
qB2 , (2.8)
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2.1.4. Curvature drift

where F = −µ∇B is the mirror force. The force is in the direction of −∇B,

implying a repulsive force from the region where B field is higher to the region

of lower B field.

2.1.4 Curvature drift

A closed and toroidal magnetic field is used to confine fusion plasmas in

order to avoid end losses. The field line is hence not straight and can be

characterised by the radius of curvature vector Rc. When the field line is

slightly bent, i.e. Rc � rc, the motion of a charged particle can be considered

as an addition of the guiding centre drift and the gyro-motion. The guiding

centre curvature drift velocity is given by

vκ =
mv2
||

qB2Rc
2 Rc ×B = F×B

qB2 , (2.9)

where Rc/R
2
c = −b · ∇b and b is the unit vector of the magnetic field.

F = mv2
||Rc/Rc is the centrifugal force felt by the guiding centre due to the

curved B field.

2.1.5 Constants of motion

Along the particle trajectory, several quantities are conserved and can be

derived from Eq. (2.1). First, a general energy conservation relation can be

found by forming the dot product of the motion equation (2.1) with v. This

leads to
mv · dv

dt
= qE · v,

d

dt

(1
2mv2

)
= −q∇Φ · v = −qdΦ

dt
,

1
2mv

2 + qΦ = constant.

(2.10)

where the electromagnetic field is assumed to be static. It is hence expressed

as the gradient of the scalar potential E = −∇Φ. The conclusion is that
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2.1.5. Constants of motion

the sum of kinetic and potential energy of a charged particle in a static

electromagnetic field is constant. The kinetic energy is conserved when E = 0

indicating that the magnetic field does no work on a charged particle.

The second conservation relation is the canonical toroidal momentum un-

der the condition of toroidal symmetry. The Lagrangian of a charged particle

in the conservative field is given by [67]

L(x, ẋ, t) = 1
2mẋ2 − qΦ(x, t) + qẋ ·A, (2.11)

where the vector potential A is defined by B = ∇×A. The Lagrangian L,

expressed in terms of canonical coordinates (R, φ, Z), is written as

L(R, φ, Z, Ṙ, φ̇, Ż, t) = 1
2m(Ṙ2 + Ż2 +R2φ̇2) + q(ṘAR + ŻAZ +Rφ̇Aφ − Φ).

(2.12)

Substituting L(R, φ, Z, Ṙ, φ̇, Ż, t) into the Lagrange equation of motion and

considering only the φ equation

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= 0,

d

dt

(
mR2φ̇+ qRAφ

)
= 0,

Pφ ≡ mR2φ̇+ qRAφ = constant.

(2.13)

The canonical toroidal momentum Pφ is a constant due to the toroidal sym-

metry ∂L/∂φ = 0. The second term in Pφ can be expressed in terms of the

poloidal magnetic flux ψp = 2πRAφ, leading to Pφ = mR2φ̇+ qψp/2π.

The third invariant of interest is the magnetic moment µ = mv2
⊥/2B.

The magnetic moment is an adiabatic invariant, which is conserved if the

magnetic field varies only slightly over the the scale of the gyro radius. The

motion of the guiding centre along the B field is dominated by the mirror

force,

m
dv||
dt

= −µ∇||B (2.14)
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2.2. Magnetohydrodynamics

Multiplying (2.14) by v|| = ds/dt yields

d

dt

(1
2mv

2
||

)
= −µds

dt

dB

ds
. (2.15)

Using energy conservation

d

dt

(1
2mv

2
|| +

1
2mv

2
⊥

)
= 0, (2.16)

we have
d

dt

(1
2mv

2
⊥

)
= µ

dB

dt
,

d

dt
(µB) = µ

dB

dt
,

B
dµ

dt
= 0.

(2.17)

This shows that µ is a constant in time since B is non-zero.

The consequence of µ being a constant of motion is that when a charged

particle is moving in a non-uniform magnetic field, the particle perpendicular

kinetic energy is changing with B field in order to maintain the value of µ

as µ = W⊥/B by definition. Hence the parallel energy might reduce to zero

as B grows and then the parallel motion is reversed. The guiding centre can

therefore be trapped between two strong magnetic field locations. This is

known as the bounce motion of the guiding centre.

2.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a way to describe the collective behaviours

of plasmas in an electromagnetic field. The plasmas are divided into many

small fluid elements which still contain relatively large numbers of ions and

electrons, denoted by plasma density n,

nα(r, t) =
∫
fα(r,v, t) dv. (2.18)
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2.2. Magnetohydrodynamics

where fα(r,v, t) is the particle distribution function for each species α and

it is normally a function of spatial position, velocity and time. The fluid

velocity u is the average velocity over the total number of particles within

the fluid element,

uα(r, t) = 1
n

∫
vfα(r,v, t) dv = 〈v〉. (2.19)

with 〈...〉 denoting the average over velocity space.

The total pressure tensor has nine elements given by

P = nαmα〈vv〉 = nαmαuαuα + nαmα〈ww〉

P = nαmαuαuα + pα + πα

. (2.20)

Here, w = v − uα is the random component of the particle velocity. pα

and πα represent the diagonal and off-diagonal terms of the pressure tensor,

respectively. When the coordinate is rotated along the field line and the

remaining two coordinates are chosen to be perpendicular to the magnetic

field, the three dependent scalar pressure components can be written as

pα =


p⊥

p⊥

p||

 . (2.21)

When a local thermodynamic equilibrium state is achieved, the MHD equilib-

rium pressure is isotropic: p⊥ = p|| = p and the temperature is T = p/n. For

an anisotropic system, p⊥ 6= p||, pα = p⊥(I− bb)+p||bb = p⊥I+(p||−p⊥)bb,

where I is the unit tensor and

bb =


0

0

1

 . (2.22)

In a plasma, each fluid element is composed of fully ionised ions and

electrons. As the mass of the ions is greater than the mass of the electrons,
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2.2. Magnetohydrodynamics

i.e.,mi � me, we can simply neglect electron mass and hence the mass density

can be written as ρ = nmi, where ni = ne ≡ n because of quasi-neutrality. In

addition, the momentum of the fluid is also predominantly carried by ions so

the fluid velocity is defined by u = ui. The current density is determined by

the difference of the flow velocity of ions and electrons j = en(ui − ue). The

total pressure is simply the contributions of both species: p = pi + pe = 2nT

and T = (Ti + Te)/2. One special situation is when the ions have the same

temperature as the electrons, Ti = Te = T , the expression of the pressure

then reduces to p = nT .

The resulting MHD equation set are conservative relations of mass, mo-

mentum and energy coupled with Maxwell’s equations:

∂ρ

∂t
+∇·(ρu) = 0 Mass continuity (2.23)

ρ
du
dt

+∇p− j×B = 0 Momentum balance (2.24)
d

dt

( p
ργ

)
= 0 Adiabatic equation of state (2.25)

E + u×B = 0 Ohm’s law (2.26)

∇·E = 0 Gauss’s law (2.27)

∇×E + ∂B
∂t

= 0 Faraday’s Law (2.28)

∇×B− µ0j = 0 Ampere’s Law (2.29)

∇·B = 0 No magnetic monopoles (2.30)

where the convective derivative is given by

d

dt
= ∂

∂t
+ u·∇. (2.31)

In these equations, the fluid variables are the mass density ρ, the fluid velocity

u and the pressure p. γ = 5/3 is the ratio of specific heats. The electromag-

netic variables are the electric field E, the magnetic field B, and the current
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2.3. Equilibrium

density j. µ0 is the permeability of free space. We have assumed that the

plasma is a perfect conductor in Ohm’s law, that is, the electrical conductiv-

ity is infinite, σc →∞. This is widely true for fusion plasmas as σc increases

with the plasma temperature T : σc ∝ T 3/2. This set of MHD equations

is also known as ideal MHD equations because of the perfect conductivity

assumption of Ohm’s law.

Due to the assumptions made in deriving the MHD equations, they are

valid for describing processes on temporal and spatial scales which obey the

following relations [68],

λ⊥ � rc, (2.32)

λ|| � λc, (2.33)

τ � τc, (2.34)

where the characteristic time scale is τ . The perpendicular and parallel length

scales are denoted by λ⊥ and λ||, respectively. rc is the gyro radii, λc the mean

free path of a particle and τc the typical collision time.

2.3 Equilibrium

An MHD equilibrium is achieved when the plasma state is independent of

time, that is, du/dt = 0 in the momentum conservation equation

ρ
du
dt

+∇p− j×B = 0. (2.24)

Then the equilibrium condition is given by

j×B = ∇p, (2.35)
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2.3. Equilibrium

where the magnetic force j×B is balanced by the pressure gradient force ∇p.

The magnetic force can also be written as

j×B = 1
µ0

(∇×B)×B = ∇ ·T. (2.36)

Here, the stress tensor T is given by

T = 1
µ0

(BB− 1
2B

2I) (2.37)

where I is the unit stress. The force balance equation (2.35) becomes

−∇p+ j×B = ∇ · (T− pI), (2.38)

and

T− pI = −(p+B2/2µ0)I + BB/µ0. (2.39)

The normal component of the total stress is (T− pI) ·n = −(p+B2/2µ0)n +

(B · n)B/µ0, which implies that the total stress is a combination of the

plasma pressure p, magnetic pressure B2/2µ0 and the magnetic tension B2/µ0

along the field line driven by the curvature of the field lines. The quantity

β = 2p/µ0B
2 evaluated by the ratio of the plasma thermal pressure and the

magnetic pressure is often used as an important plasma equilibrium para-

meter. This factor measures the efficiency of plasma confinement by the

magnetic field and a low value of β indicates that a substantial amount of

magnetic pressure is used to contain not much thermal pressure.

From Eq. (2.35), it can be easily found that B, j and ∇p satisfy the

following relations:

B · ∇p = 0, (2.40)

j · ∇p = 0, (2.41)

which imply that both the magnetic field lines and the current lines lie on

the contours of constant pressure but the angle between B and j is arbitrary
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B B j j

Magnetic axis

Figure 2.2: Contours of the constant equilibrium pressure are nested toroidal
surfaces. Both the magnetic field and the current lines lie on the constant
pressure surfaces.

Z

R
Sp

φ

Figure 2.3: Poloidal surface Sp used to calculate the magnetic flux.

as shown in Fig. 2.2. These contours are usually referred to as magnetic

flux surfaces or flux surfaces. The limiting situation is that the flux surface

degenerates into a single line and the magnetic field line is also on this single

line. In such case, the magnetic field is purely in the toroidal direction and

this occurs at the magnetic axis in the centre of the device and at the X

points in diverted plasmas [23].

The helicity of the magnetic field line on each flux surface is described

by the safety factor q, defined by q = 2π/ι, where ι represents the angle

changes in the poloidal plane when the magnetic field line goes around the

torus once (the toroidal angle changes 2π). If the magnetic field returns to

the starting point after completing n loops around the torus and m loops

around the poloidal plane, q = n/m is a rational number and the flux surface

is called a rational surface.
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2.3. Equilibrium

A favourable pressure profile in a tokamak is when the plasmas are hot

and dense near the centre of the poloidal cross section so that the plasmas

are well confined and isolated from the material walls. Hence the contours

of constant pressure are nested toroidal surfaces whose the innermost layer

corresponds to a maximum pressure. In Fig. 2.2, p = p1, p2, p3 label three

flux surfaces which are wrapped by the field lines. We can define any surface

quantity ψ to be a function of p so that the magnetic field can be easily

expressed.

From Eq. (2.40) it follows that B · ∇ψ = 0 for a system that is ortho-

gonal, implying that if we can choose an orthogonal system with one of the

B components along ∇ψ, then the strength of this component Bψ would be

zero since Bψ = B · ∇ψ by definition. Consequently, the equilibrium degrees

of freedom reduce to two when a flux surface coordinate system is used.

A cylindrical right-handed coordinate system is formed by (R, φ, Z) as

shown in Fig. 2.3. The magnetic field consists of three components: BR,

Bφ and BZ . In a flux surface coordinate system, the magnetic field can be

decomposed as B = Bψeψ +Bφeφ +Bpep, where Bψ = 0. eψ, eφ, ep are a set

of local orthogonal unit vectors perpendicular to each other, eψ = ∇ψ/|∇ψ|

and ep is in the direction of ∇ψ × eφ.

The axisymmetric assumption implies that ∂/∂φ = 0. Then ∇ · B = 0

can be written as

1
R

∂

∂R
(RBR) + ∂BZ

∂Z
= 0. (2.42)

The poloidal magnetic field Bp can be described by a scalar function ψ in
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2.3. Equilibrium

this way so that the the above equation is automatically satisfied:

BR = − 1
R

∂ψ

∂Z
, (2.43)

BZ = 1
R

∂ψ

∂R
, (2.44)

Bp = BR + BZ = 1
R
∇ψ × eφ. (2.45)

Here it is only assumed that ψ(p) is a function of pressure and it has no

specific physics significance.

A simple representation of the magnetic field and current can be found

by using the poloidal magnetic flux as a coordinate, defined as:

ψp =
∫

Sp

B · dSp, (2.46)

where Sp is the poloidal surface as shown in Fig. 2.3. This quantity is defined

on a flux surface and so can be considered a monotonic function of p, that is,

ψp = ψp(p). Using Eq. (2.44), the relation between the general ψ function

and the flux surface function ψp can be found via

ψp =
∫ 2π

0
dφ
∫ R

0
RBZdR = 2πψ. (2.47)

Ampere’s law in Eq. (2.29) gives the current density j = ∇×B/µ0. Here

j can be decomposed as j = jφeφ+jp and jp = jReR+jZeZ so the components

jφ, jR and jZ are expressed in terms of the magnetic field components:

jφ = 1
µ0

(∂BR

∂Z
− ∂BZ

∂R

)
eφ = − 1

µ0R
∆∗ψ, (2.48)

jR = − ∂Bφ

µ0∂Z
= − 1

µ0R

∂F

∂Z
, (2.49)

jZ = 1
µ0R

∂F

∂R
, (2.50)

where

F = RBφ (2.51)
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and the elliptic operator ∆∗ is given by

∆∗ = R
∂

∂R

( 1
R

∂

∂R

)
+ ∂2

∂Z2 = ∂2

∂R2 + ∂2

∂Z2 −
1
R

∂

∂R
. (2.52)

The R component of the MHD equilibrium equation is given by

dp

dR
= jφBZ − jZBφ. (2.53)

Substituting Eq. (2.44), (2.48) and (2.50) for BZ , jφ and jZ into Eq. (2.53)

and using
dp

dR
= dp

dψ

dψ

dR
, (2.54)

the equilibrium equation (2.53) becomes

∆∗ψ = −µ0R
2 dp

dψ
− 1

2
dF 2

dψ
, (2.55)

where both pressure p(ψ) and F (ψ) = RBφ are functions of the flux surface

label ψ. Eq. (2.55) is known as the Grad-Shafranov (GS) equation [69, 70],

which describes general axisymmetric toroidal equilibria.

The Grad-Shafranov equation describes 2-dimensional MHD equilibrium

in a toroidally confined configuration. The physical variables in the equa-

tion, such as p and ψ are independent of the toroidal angle, φ and yet to

be calculated. Experimental measurements are required to provide boundary

conditions to solve the equation and obtain valid equilibria. EFIT/EFIT++

[71] is a numerical code that is designed to solve the Grad-Shafranov equa-

tion and has been successful in reconstructing MHD equilibrium profiles of

magnetic field and plasma pressure using experimental constraints. The code

uses data from magnetic probes and flux loops to give the shape of the mag-

netic flux surfaces and Dα data to determine the plasma boundary location

[72]. On MAST, measurements from the motional stark effect diagnostics

[73] are used to constrain the current distribution at a single time point in
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2.4. MHD instability

each discharge. The electron temperature Te and density ne are measured by

Thomson scattering system at 29 radial locations across the mid-plane [74].

The ion temperature Ti is inferred from the charge exchange recombination

measurements [75]. The equilibrium pressure profile can also be constrained

using niTi + neTe and the fast particle contribution to the pressure is omit-

ted. EFIT++ uses a complicated interactive loop to obtain the equilibria. A

functional representation, such as polynomials of some order, is chosen for

the derivatives p′(ψ) and FF ′(ψ) in Eq. (2.55). Then one starts with an

initial ’guess’ of the plasma shape (flux surfaces) and finds the coefficients

for the representations of p′(ψ) and FF ′(ψ) which best fit all the data given

this current shape. Profiles of p(ψ) and F (ψ) can be calculated and the GS

equation is re-solved to obtain a new plasma shape. This process is iterated

to convergence. The components of the magnetic field are derived as given in

Eq. (2.43), (2.44) and (2.51) after interpolating the values of ψ. Fig. 2.4 is

an example of the equilibrium profile for a discharge on MAST reconstructed

by EFIT++ [72]. The contours are the normalised poloidal flux function ψn

which is calculated by

ψn = ψ − ψaxis

ψwall − ψaxis
, (2.56)

where ψaxis and ψwall are boundary values in the simulation. Therefore ψn is

in the range 0 ≤ ψn ≤ 1. ψn = 0 and ψn = 1 indicate the locations of the

magnetic axis and the last closed flux surface (LCFS), respectively.

2.4 MHD instability

For a given MHD equilibrium, it is necessary to examine whether the equilib-

rium is MHD stable or not. This is crucial for the experimental operation of a

tokamak as massive instabilities could result in the whole plasma hitting the
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2.4.1. Linearisation

Figure 2.4: A typical MHD equilibrium profile for a MAST discharge recon-
structed by EFIT/EFIT++. The LCFS is labelled with red solid line and the
magnetic axis is marked with a red cross ‘+’ (taken from [72]).

wall or change the magnetic configuration, enhance particle and energy trans-

port, and ultimately reduce plasma confinement and terminate reactions. In

a plasma, either pressure or electromagnetic field could provide a restoring

force when there is a small perturbation. If this perturbation only oscillates

near its equilibrium position or decays to zero, then the system is considered

stable. However, if the amplitude of the perturbation can grow, the system

is unstable.

2.4.1 Linearisation

Under a small perturbation, a physical quantity Q(r, t) can be expanded

about its equilibrium value Q0(r),

Q(r, t) = Q0(r) +Q1(r, t), (2.57)
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2.4.1. Linearisation

where Q0 is time-independent and Q1 is the first order linear perturbation.

Considering an ideal MHD fluid satisfying

∂ρ

∂t
+∇·(ρu) = 0,

ρ
du
dt

= −∇p+ j×B,

∇× (u×B) = ∂B
∂t
,

∇×B = µ0j,

pρ−γ = const.

(2.58)

The linear expansion formulation is written as

B = B0(r) + B1(r, t),

ρ = ρ0(r) + ρ1(r, t),

j = j0(r) + j1(r, t),

p = p0(r) + p1(r, t),

u = u1(r, t).

(2.59)

Here, a static equilibrium plasma with u0 = 0 is considered. Substituting

these expressions into the MHD equations and cancelling all the equilibrium

quantities yields

ρ1 = −∇ · (ρ0ξ),

p1 = −ξ · ∇p0 − γp0∇ · ξ,

B1 = ∇× (ξ ×B0),

(2.60)

where the vector ξ is defined via u1 = ∂ξ/∂t representing the displacement

that the plasma is away from its equilibrium position. The momentum equa-

tion becomes

ρ0
∂2ξ

∂t2
= F(ξ) (2.61)
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2.4.2. Normal mode formulation

and F(ξ) is the force operator given by

F(ξ) = j0 ×B1 + j1 ×B0 −∇p1

= 1
µ0

(∇×B0)×B1 + 1
µ0

(∇×B1)×B0 +∇(ξ · ∇p0 + γp0∇ · ξ).
(2.62)

2.4.2 Normal mode formulation

Assume all the perturbed quantities have the form of a normal mode:

Q̃1(r, t) = Q1(r) exp (−iωt). (2.63)

The linearised momentum equation (2.61) can be written as

−ω2ρ0ξ = F(ξ) (2.64)

where F is given in Eq. (2.62). The force operator F is self-adjoint, that is,

for any two arbitrary vectors ξ(r) and η(r) both satisfying eigenfunctions of

F as described by Eq. (2.64), the following relation holds

∫
η · F(ξ) dr =

∫
ξ · F(η) dr. (2.65)

It is straightforward to define the stability of a mode by making use of

the self-adjoint property of the force operator. Taking the dot product of ξ∗

on Eq. (2.64) and integrating over the entire volume lead to

−ω2
∫
ρ0|ξ|2dr =

∫
ξ∗ · F(ξ) dr, (2.66)

with ξ∗ being the complex conjugate of ξ. Then taking dot product of ξ on

the conjugate of Eq. (2.64) and performing the volume integration give

−(ω2)∗
∫
ρ0|ξ|2dr =

∫
ξ · F(ξ∗) dr. (2.67)
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2.4.3. Homogeneous plasmas

F is self-adjoint implying the right-hand sides of Eq. (2.66) and (2.67) are

equal. Then we have ω2 = (ω2)∗ where (ω2)∗ is the complex conjugate of ω2.

To conclude, the self-adjointness of F ensures that ω2 is purely real.

The stability of a mode can be defined via the mode frequency ω when

ω2 is a real number:
ω2 > 0 oscillatory stability

ω2 < 0 unstable
(2.68)

The positive ω2 implies Im(ω) = 0 and Re(ω) 6= 0. This corresponds a stable

mode that simply oscillates near its equilibrium position. For a mode with

ω2 < 0, one branch with Im(ω) > 0 exponentially grows with time and thus

is unstable. The stable-unstable transition takes place at ω = 0.

A further consequence of F(ξ) being self-adjoint is that the discrete nor-

mal modes are orthogonal to each other,∫
ρ0ξm · ξn dr = δmn, (2.69)

where ξm and ξn are two solutions to Eq. (2.64). The orthogonal eigenfunc-

tions can be used to span a linear space and thus any small perturbation

of a system can be described by the combination of these basis functions,

ξ(t) =
∞∑
n=1

anξn exp(−iωnt) with an being the expansion coefficient.

2.4.3 Homogeneous plasmas

A perturbed plasma in an infinite homogeneous field can excite multiple os-

cillatory waves. Without loss in generality, the one-dimensional equilibrium

field B = B0ez is assumed to be along the ez direction. Using the Four-

ier representation, the perturbation can be written in a more general form,

Q̃1(r, t) = Q1 exp[−i(ωt − k · r)], with wave vector k = k⊥ey + k‖ez. By re-

placing ∂/∂t → −iω and ∇ → ik, the linearised momentum equation (2.61)
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2.4.3. Homogeneous plasmas

reduces to

ω2ρ0ξ + γp0(k · ξ)k + 1
µ0
{k× [k× (ξ ×B0)]} ×B0 = 0, (2.70)

where ρ0 and p0 are equilibrium density and pressure, respectively. Equival-

ently, Eq. (2.70) can be written as the following scalar equations:

(ω2 − k2
‖v

2
A)ξx = 0, (2.71)

(ω2 − k2
⊥v

2
s − k2v2

A)ξy − (k⊥k‖v2
s)ξz = 0, (2.72)

−(k⊥k‖v2
s)ξy + (ω2 − k2

‖v
2
s)ξz = 0, (2.73)

where vA =
√
B2

0/µ0ρ0 is the Alfvén speed, vs =
√
γp0/ρ0 is the adiabatic

sound speed and k2 = k2
⊥+ k2

‖. Non-trivial solutions of ξ require the determ-

inant of this system be zero, giving the dispersion relation

ω2 = k2
‖v

2
A Alfvén wave,

ω2 = 1
2k

2(v2
A + v2

s)(1±
√

1− α2) fast and slow magnetosonic waves,
(2.74)

with

α2 = 4
k2
‖

k2
v2
Av

2
s

(v2
A + v2

S)2 . (2.75)

The first solution ω2 = k2
‖v

2
A corresponds to the shear Alvén wave and is

independent of k⊥. The Alvén waves were first proposed by H. Alfvén when

he studied the coronal heating problem in 1942 [54]. These are transverse

waves with both u1 and B1 perpendicular to B0 and k. The bending field

line provides a restoring force so the plasma oscillates with the field line,

leading to an energy transformation between the perpendicular plasma kin-

etic energy and the magnetic energy. The positive and negative sign in the

dispersion relation (2.74) describes the fast and slow magnetosonic waves,

respectively. They are compressional waves producing fluctuations in plasma

pressure and density. Each solution of ω represents a mode of the oscillatory

41



2.4.4. Landau damping

waves. Since 0 ≤ α2 ≤ 1 all ω2 are positive, implying that plasma waves in

the homogeneous field are stable modes. In more realistic geometries, one re-

tains the general features of compressional and shear Alfvén waves as well as

combinations thereof but that the eigenfunctions become considerably more

complicated and are obtained using linear stability codes such as MISHKA

[76].

2.4.4 Landau damping

Landau damping [65, 77] describes a resonant process of the wave-particle

interaction. This process is collisionless but involves energy transfer between

waves and particles in the plasma. Consider an infinite homogeneous mag-

netic field B = B0ez and a small electrostatic perturbation E = E cos(kz −

ωt)ez. The perturbed field is assumed to be parallel to the magnetic field

line and to propagate along the z direction. The drift motion of a charged

particle in such electromagnetic field is governed by the following equations:

dv

dt
= q

m
E cos(ωt− kz),

dz

dt
= v,

(2.76)

with initial conditions v(0) = vi and z(0) = zi.

Since the amplitude of the perturbation is small, the solution to Eq. (2.76)

can be approximated by the unperturbed term and the first order correction:

v = v0 + v1 and z = z0 + z1. The leading unperturbed solution corresponds

to a free streaming motion along the magnetic field, given by v0 = v‖ and

z0(t) = v‖t+ zi. v1 and z1 satisfy the following equations

dv1

dt
= q

m
E cos(ωt− kv‖t− kzi),

dz1

dt
= v1,

(2.77)
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2.4.4. Landau damping

with initial conditions v1(0) = 0 and z1(0) = 0. The first order solution is

given by
v1 = qE

mα
[sin(αt− kzi) + sin kzi],

z1 = qE

mα
[− cos(αt− kzi) + cos kzi

α
+ t sin kzi],

(2.78)

with α = ω − kv‖.

The change in particle energy per unit time due to the wave is given by

dW

dt
= d

dt

(1
2mv

2
)

= qv · E

dW

dt
= q

[
v0E1(z0, t) + v0

∂E1(z0, t)
∂z0

z1 + v1E1(z0, t)
] (2.79)

where the second order correction is included. Averaging over all the initial

positions within one wavelength gives an averaged change in particle energy,〈
dW

dt

〉
zi

= k

2π

∫ 2π/k

0

dW

dt
dzi,〈

dW

dt

〉
zi

= q2E2

2m
( ω
α2 sinαt− ωt

α
cosαt+ t cosαt

)
.

(2.80)

Now consider the distribution of the particle velocity f0(v‖, v⊥). Taking an

average over the entire velocity space distribution and integrating by parts

yields 〈
dW

dt

〉
zi,v‖

=
∫ +∞

−∞
f0 ·

〈
dW

dt

〉
zi

dv‖,〈
dW

dt

〉
zi,v‖

= −q
2E2n0

2mk

∫ +∞

−∞

(ω sinαt
α

− sinαt
)∂f‖
∂v‖

dv‖,

(2.81)

where f‖ = (2π/n0)
∫
f0v⊥ dv⊥. For t → ∞, particles with α ≈ 0, that is

v‖ ≈ ω/k, contribute to the integral. These particles are resonant particles.

When α 6= 0, the integration vanishes because of the oscillating integrand.

The resulting power gained by all the particles is given by
〈
dW

dt

〉
zi,v‖

= −πq
2E2n0ω

2mk2

(∂f‖
∂v‖

)
ω/k
, (2.82)

The conclusion is that the resonant particles have wave phase velocity v‖ ≈

ω/k. The resonant particles absorb energy from the wave when ∂f‖/∂v‖ < 0.
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f||

v|| v||

f||

ω/k ω/k 
(a) Landau damping (b) Landau growth

Figure 2.5: Particles with velocity above resonance gain energy from waves
and lose energy to waves when below resonance. Landau damping occurs
when ∂f‖

∂v‖
< 0 indicating more particles gain energy than lose energy which

leads to a net growth in particle energy and damping in wave energy. Landau
growth corresponds to a opposite situation.

Conversely, when ∂f‖/∂v‖ > 0, the wave can grow because it gains energy

from the resonant particles.

At a small region where v‖ ≈ ω/k, particles with velocity v‖ > ω/k can

give away their energy to the wave lowering the average velocity to the phase

velocity; slower particles with v‖ < ω/k can gain energy from the wave in-

creasing the average velocity to the phase velocity. As shown in Fig. (2.5)(a),

∂f‖/∂v‖ < 0 at v‖ = ω/k, there are more particles taking energy from the

wave than those losing energy to the wave. The net particles energy increases

leading to the wave damping. Fig. (2.5)(b) is the case where ∂f‖/∂v‖ > 0 at

v‖ = ω/k, less particles absorb energy from the wave so the wave can grow.

2.5 Kinetic-MHD model

This section reviews the expression for the linear perturbation to a guiding

centre distribution function due to interaction with a mode field. From this

expression it can be seen that a necessary but not sufficient condition for

large power transfer between the wave and particle populations is that the
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2.5.1. Guiding centre theory

particles satisfy a resonance condition. This section is reproduced mostly

unaltered from [66].

2.5.1 Guiding centre theory

As discussed in section 2.1.1, the motion of the guiding centre can be decom-

posed into parallel streaming v‖b, and perpendicular drift motions including

the ∇B drift, the curvature drift, and E×B drift:

Ẋ = v‖b + v∇B + vκ + vE×B

= v‖b + 1
mωc

b× (µ∇B +mv2
‖κ− ZeE),

(2.83)

where X denotes the guiding centre position. ωc = ZeB/m is the particle

gyro frequency and b = B/|B|. κ = (b · ∇)b is the curvature vector. The

parallel momentum equation is given by

mv̇‖ = −µb · ∇B + Zeb · E +mv‖κ · Ẋ (2.84)

The Lagrangian of the guiding centre is written as

L = (ZeA +mv‖b) · Ẋ + 1
ωc
yα̇− 1

2mv
2
‖ − y − ZeΦ (2.85)

where α is the gyro phase angle, and y = µB is the perpendicular kinetic

energy. The Lagrangian is regarded as a function of the new variables in the

phase space, L = L(X, v‖, y, α; Ẋ, v̇‖, ẏ, α̇; t). Substituting L in the Euler-

Lagrange equations of motion for each component:

d

dt

(∂L
∂ẏ

)
− ∂L
∂y

= 0 =⇒ α̇ = ωc, (2.86)

d

dt

(∂L
∂α̇

)
− ∂L
∂α

= 0 =⇒ d

dt

( y
ωc

)
= 0 =⇒ µ = constant, (2.87)

d

dt

( ∂L
∂v̇‖

)
− ∂L
∂v‖

= 0 =⇒ v‖ = b · Ẋ, (2.88)

d

dt

( ∂L
∂Ẋ

)
− ∂L
∂X

= 0 =⇒ Ze(E∗ + 1
c
Ẋ×B∗) = µ∇B +mv̇‖b, (2.89)
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2.5.1. Guiding centre theory

where

E∗ = −∇Φ− 1
c

∂A∗

∂t
, (2.90)

A∗ = A + mv

Ze
v‖b, (2.91)

B∗ = ∇×A∗ = B + mc

Ze
v‖∇× b. (2.92)

Eq. (2.86) and (2.88) correspond to the definition of the gyro frequency and

the parallel velocity of a charged particle, respectively. Eq. (2.87) shows

that the magnetic moment µ is an adiabatic invariant. The X component of

equation (2.89) is consistent with the equations of motions (2.83) and (2.84).

This consistency justifies the choice of the Lagrangian L as stated in Eq.

(2.85).

The particle energy consists of the kinetic contributions and the electric

potential energy ε = mv2
‖/2 + µB + ZeΦ and the expression for ε̇ is written

as
ε̇ = mv‖v̇‖ + µḂ + ZeΦ̇

ε̇ = −
(
Ze

∂A
∂t

+mv‖
∂b
∂t

)
· Ẋ + µ

∂B

∂t
+ Ze

∂Φ
∂t

(2.93)

where ∂/∂t = d/dt − Ẋ · ∇. The first term mv‖v̇‖ is given by dotting Ẋ on

Eq. (2.89):

ZeE∗ · Ẋ = µẊ · ∇B +mv̇‖b · Ẋ =⇒

mv‖v̇‖ = −
(
Ze∇Φ + Ze

c

∂A
∂t

+mv‖
∂b
∂t

+ µ∇B
)
· Ẋ,

(2.94)

For an axisymmetric equilibrium, i.e. ∂/∂φ = 0 the toroidal canonical mo-

mentum of a guiding centre is a constant given by

Pφ = ∂L
∂φ̇

= ∂

∂φ̇

[(
ZeA +mv‖b

)
· Ẋ

]
Pφ =

(
ZeA +mv‖b

)
· ∂Ẋ
∂φ̇

Pφ = qAφR +mv‖
RBφ

B
= Zeψp/2π +mv‖

RBφ

B
,

(2.95)
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2.5.2. Linear perturbation theory

where the covariant component is ∂X/∂φ = ∂Ẋ/∂φ̇ = Reφ and ψp is the

poloidal flux surface function.

The Vlasov equation (the kinetic equation neglecting collisions) is given

by
∂f

∂t
+

n∑
i=1

ẋi
∂f

∂xi
= 0 (2.96)

where f(xi; t) is the particle distribution function and xi, i = 1, n denote the

phase space variables. Along the guiding centre trajectory and choosing the

guiding centre variables (X, v‖, y) as the phase space variables, the Vlasov

equation becomes

∂f

∂t
+ Ẋ · ∇f + v̇‖

∂f

∂v‖
+ ẏ

∂f

∂y
= 0 (2.97)

where f is assumed to be independent of α. Ẋ and v̇‖ are given in Eq. (2.83)

and (2.84), and ẏ = y(Ḃ + Ẋ · ∇B)/B.

2.5.2 Linear perturbation theory

Assume that an electromagnetic perturbation has caused a small variation in

the particle distribution function f and we can write f(X, v̇‖, ẏ; t) as a linear

combination of the equilibrium quantity f0 and the first order perturbation f1:

f = f0 + f1. The phase variables are also expanded as follows: Ẋ = Ẋ0 + Ẋ1,

v̇‖ = v̇‖0 + v̇‖1 and ẏ = ẏ0 + ẏ1. The linearised drift-kinetic equation is written

as
df1

dt
= −(Ẋ1 · ∇f0 + v̇‖1 ·

∂f0

∂v‖
+ ẏ1 ·

∂f0

∂y
), (2.98)

where the total derivative of f1 is

df1

dt
= ∂f1

∂t
+ Ẋ0 · ∇f1 + v̇‖0 ·

∂f1

∂v‖
+ ẏ0 ·

∂f1

∂y
. (2.99)

We transform the right hand side of Eq. (2.98) to derivatives with respect

to the constants of motion ε = mv2
‖/2 + y + ZeΦ, µ and Pφ where f0 =
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2.5.2. Linear perturbation theory

f0(ε, µ, Pφ; t):

Ẋ1 · ∇f0 = Ẋ1 ·
(∂f0

∂ε
∇ε+ ∂f0

∂µ
∇µ+ ∂f0

∂Pφ
∇Pφ

)
, (2.100)

v̇‖1 ·
∂f0

∂v‖
= v̇‖1 ·

(∂f0

∂ε

∂ε

∂v‖
+ ∂f0

∂µ

∂µ

∂v‖
+ ∂f0

∂Pφ

∂Pφ
∂v‖

)
, (2.101)

ẏ1 ·
∂f0

∂y
= ẏ1 ·

(∂f0

∂ε

∂ε

∂y
+ ∂f0

∂µ

∂µ

∂y
+ ∂f0

∂Pφ

∂Pφ
∂y

)
, (2.102)

where ∇ε = Ze∇Φ, ∇µ = −(y/B2)∇B, and ∇v‖ = ∇y = 0 because X, v‖

and y are independent variables in phase space. Then Eq. (2.99) becomes
df1

dt
=−

[( ẏ1

B
− y

B2 Ẋ1 · ∇B
)∂f0

∂µ

+
(
Ẋ1 · ∇Pφ + v̇‖1

∂Pφ
∂v‖

) ∂f0

∂Pφ

+
(
ZeẊ1 · ∇Φ0 +mv‖v̇‖1 + ẏ1

)∂f0

∂ε

]
(2.103)

We need to express the ∂f0/∂ε, ∂f0/∂µ and ∂f0/∂Pφ terms with respect to

the linearly perturbed Lagrangian L(1).

Recall that the ε̇ expression is given in Eq. (2.93). The first-order correc-

tions to the ε̇ equation can be used to evaluate the coefficient of the ∂f0/∂ε

term in Eq. (2.103):

mv‖v̇‖1 + µḂ1 + ZeΦ̇1 = −
(Ze
c

∂A1

∂t
+mv‖

∂b1

∂t

)
· Ẋ0, (2.104)

mv‖v̇‖1 + ẏ1 + ZeẊ1 · ∇Φ0 = −L(1)
t − Ze

DΦ1

Dt
, (2.105)

where the convective derivative along the unperturbed particle trajectory

DΦ1/Dt is found by the total derivative of the perturbed scalar potential

Φ1

Φ̇1 = dΦ1

dt
=
(∂Φ
∂t

+ Ẋ · ∇Φ
)(1)

Φ̇1 = ∂Φ1

∂t
+ Ẋ0 · ∇Φ1 + Ẋ1 · ∇Φ0

Φ̇1 = DΦ1

Dt
+ Ẋ1 · ∇Φ0

(2.106)

and the term Lt(1) is defined by

−L(1)
t = −

(Ze
c

∂A1

∂t
+mv‖

∂b1

∂t

)
· Ẋ0 + µ

∂B1

∂t
+ Ze

∂Φ1

∂t
. (2.107)
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Now we need to calculate the ∂f0/∂Pφ term in Eq. (2.103). Pφ is given in

Eq. (2.95) and the time derivative of Pφ is written as

Ṗφ = ∂Pφ
∂t

+ Ẋ · ∇Pφ + v̇‖
∂Pφ
∂v‖

(2.108)

We have shown that Pφ is conserved along an unperturbed trajectory as

Ṗφ = ∂L/∂φ = 0. For a small perturbation, Ṗφ
(1) is given by

Ṗ
(1)
φ =

(
Ẋ1 · ∇P (0)

φ + v̇‖1
∂P

(0)
φ

∂v‖

)
+
(∂P (1)

φ

∂t
+ Ẋ0 · ∇P (1)

φ + v̇‖0
∂P

(1)
φ

∂v‖

)

Ṗ
(1)
φ =

(
Ẋ1 · ∇P (0)

φ + v̇‖1
∂P

(0)
φ

∂v‖

)
+
DP

(1)
φ

Dt
=
(∂L
∂φ

)(1)
.

(2.109)

Here, the terms in the first bracket appear in the ∂f0/∂Pφ term in Eq. (2.103)

and can be determined by (∂L/∂φ)(1) −DP (1)
φ /Dt:

DP
(1)
φ

Dt
=
∂P

(1)
φ

∂t
+ Ẋ0 · ∇P (1)

φ + v̇‖0
∂P

(1)
φ

∂v‖
(2.110)

(∂L
∂φ

)(1)
=
[
Ze

c

(
∂A

(1)
R

∂φ
eR +

∂A
(1)
φ

∂φ
eφ + ∂A

(1)
Z

∂φ
eZ
)

+mv‖

(
∂b

(1)
R

∂φ
eR +

∂b
(1)
φ

∂φ
eφ + ∂b

(1)
Z

∂φ
eZ
)]
· Ẋ0

− µ∂B1

∂φ
− Ze∂Φ1

∂φ

(2.111)

The time derivative of perpendicular kinetic energy ẏ is given by

ẏ = µḂ = µ
(∂B
∂t

+ Ẋ · ∇B
)
. (2.112)

Then the perturbed forms of ẏ can be written as

ẏ1 = µ(0)
(∂B1

∂t
+ Ẋ0 · ∇B1 + Ẋ1 · ∇B0

)
+ µ(1)Ẋ0 · ∇B0, (2.113)
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where µ(1) = y0B1/B
2
0 . The ∂f0/∂µ term in Eq. (2.103) can be obtained by

constructing ẏ1/B0

ẏ1

B0
= y0

B0

(
∂(B1/B0)

∂t
+ Ẋ0 ·

1
B0
∇B1 + 1

B0
ẋ1 · ∇B0

)
− y0

B2
0
B1Ẋ0 ·

1
B0
∇B0,

(2.114)
ẏ1

B0
− y

B2
0
Ẋ1 · ∇B0 = µ(0)

(
∂(B1/B0)

∂t
+ Ẋ0 · ∇(B1/B0)

)
= µ(0) D

Dt

(
B1

B0

)
(2.115)

Now we can substitute Eq. (2.105), (2.109) and (2.115) into Eq. (2.103)

leading to

df1

dt
=−

{[(
∂L
∂φ

)(1)
−
DP

(1)
φ

Dt

]
∂f0

∂P
(0)
φ

+
(
− L(1)

t − Ze
DΦ1

Dt

)
∂f0

∂ε0

+ µ(0) D

Dt

(
B1

B0

)
∂f0

∂µ(0)

} (2.116)

The solution to the perturbed distribution function f1 can be separated into

two parts

f1 = P
(1)
φ

∂f0

∂P
(0)
φ

+ ZeΦ∂f0

∂ε0
− µ(0)B1

B0

∂f0

∂µ(0) + h1 (2.117)

where h1 is determined by

dh1

dt
= −

(
∂L
∂φ

)(1) ∂f0

∂P
(0)
φ

+ L
(1)
t

∂f0

∂ε0
(2.118)

Note that the first order perturbed Lagrangian can be written as

L(1) =
(Ze
c

A1 +mv‖b1
)
· Ẋ0 − µ(0)B1 − ZeΦ1. (2.119)

We assume that perturbations have the form

L(1) = L̂(1)(ψ, θ) exp(−iωt− inφ) (2.120)

where ψ is the equilibrium magnetic flux surface function, φ is the toroidal

angle used in the cylindrical coordinates and θ is a generalised poloidal angle
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defined by ∇θ = ∇ψ × ∇φ which are discussed in detail in section 2.3.

Consider a single harmonic and we have
(
∂L
∂φ

)(1)
= −inL(1) (2.121)(

∂L
∂t

)(1)
= −iωL(1) = −iωL(1)

t (2.122)

dh1

dt
= −i(ω − nω∗)

∂f0

∂ε0
L(1) (2.123)

where L(1)
t is given in Eq. (2.107) and ω∗ is defined as

ω∗ =
∂f0/∂P

(0)
φ

∂f0/∂ε0
. (2.124)

We can separate φ(t) into a constant part and an oscillating part φ(t) =

〈φ̇〉t + φ̃(t) where the constant part 〈φ̇〉 is averaged over bounce period τb.

Hence the periodic part in L(1) can be expanded in Fourier series

L̃(1) = L̂(1) exp(−inφ̃) =
+∞∑
−∞

pYp exp (−ipωbt), (2.125)

where the Fourier coefficients Yp are determined by

Yp = 1
τb

∮
L̃(1) exp (−ipωbt) dt (2.126)

where ωb = 2π/τb.

Substitution of Eq. (2.125) into Eq. (2.123) and integration over time give

the solution of the non-adiabatic part of the perturbed distribution function

h1

h1 = (ω − nω∗)
∂f0

∂ε0

+∞∑
−∞

pYp ×
exp

[
− i(ω + n〈φ̇〉+ pωb)t)

]
ω + n〈φ̇〉+ pωb

. (2.127)

2.5.3 Resonance condition

We consider an axisymmetric toroidal plasma consisting of the thermal and

the hot components with nth � nh and Tth � Th. The linearised equilibrium
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2.5.3. Resonance condition

equation is obtained by considering these two components

(j×B)(1) = ∇p(1)
th +∇p(1)

h , (2.128)

where the total current density j consists of both the bulk and the energetic

contributions, the thermal plasma pressure pth is assumed to be isotropic and

the hot plasma pressure ph anisotropic. We can construct the quadratic form

in presence of the energetic contribution

δW = δWMHD + δWhot. (2.129)

Here, the low energy bulk plasmas are described by the ideal MHD fluid

model and the MHD perturbed energy is given by

δWMHD = −1
2

∫
ξ∗ · F(ξ) d3x

= −1
2

∫ [
ξ∗⊥ · (j×B)(1) − ξ∗⊥ · ∇p

(1)
th

]
d3x

(2.130)

and the energetic component is

δWhot = 1
2

∫
ξ∗⊥ · ∇p

(1)
h d3x, (2.131)

where the pressure p(1)
h consists of anisotropic perpendicular and parallel com-

ponents determined by the perturbed distribution function f1p
(1)
‖

p
(1)
⊥

 =
∫
d3v

mv2
‖

µB

 f1. (2.132)

Recall that the force operator for the ideal MHD plasma is given in Eq. (2.64)

F(ξ) = −ω2ρ0ξ, (2.64)

where F(ξ) is self-adjoint and ω2 is purely real. Thus the MHD potential

energy δWMHD can be measured by the kinetic energy of the perturbation

δWMHD = ω2Ek, (2.133)
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2.5.3. Resonance condition

where

Ek =
∫
ρ0ξ

2 d3x. (2.134)

As compared to the bulk plasma, the energetic perturbation is small, i.e.

δWhot � δWMHD. Thus, δWhot can be treated as a linear correction to the

total potential energy. δW could include an imaginary part as the force

operator is no longer self-adjoint in presence of the energetic contribution.

The perturbed quadratic form can be written as

(ωr + iωi)2Ek = δWMHD + δWhot (2.135)

and the growth rate of the mode γ is given by

γ

ω
= ωi
ωr

= Im[δWhot]
2ω2

rEk
, (2.136)

where δWhot is determined by the perturbed distribution function f1. Recall

that the expression for f1 has a singular point in the h1 term as shown in Eq.

(2.127). The integration of the singular point can produce an imaginary part

and thus contribute to the growth of the mode when

Γ = ω + n〈φ̇〉+ pωb = 0. (2.137)

Eq. (2.137) is also known as the resonance condition. Here, ωφ = 〈φ̇〉 is

defined as the toroidal precession frequency averaged over one bounce period

and p is an arbitrary integer. The resonance take places between energetic

particles and MHD modes. Particles whose orbital frequencies satisfy this

relation could potentially exchange energies with the mode with a frequency

ω. The appearance of the resonance condition shows that large changes in the

distribution function can occur when it is satisfied. The resonance condition

is a necessary but not sufficient condition for large energy transfer between

the particle and the waves as this also depends on the factors Yp in Eq. (2.127)

for the orbit in question.
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2.5.3. Resonance condition

An intuitive interpretation of the wave-particle resonance condition is

described as follows. Suppose a particle on a bounce orbit starts at a position

and completes a bounce orbit in time Tb = 2π/ωb. The representation of a

wave harmonic is given by Q̃(r, θ, φ, t) = exp(−iωt + inφ)∑
m
Qm(r)(−imθ).

In this time, the phase of the wave advances by an amount ∆ζ = ωTb. The

particle has also moved forwards by a toroidal angle ∆φ = ωφTb. The total

wave phase change the particle experiences after its bounce orbit is the sum

of both, therefore ∆ζ = ωTb + nωφTb. For a resonance, this should be some

multiple of 2π, that is, ∆ζ = ωTb + nωφTb = −2pπ. Replacing the bounce

period with 2π/ωb leads to the resonance condition ω+nωφ+pωb = 0, where p

indicates the wave periods that the particle has advanced with respect to the

wave over one bounce period. The resonance condition suggests that resonant

particles are those which return to the same wave phase after a poloidal

bounce orbit. We will use these results in Chapters 3 and 4 to identify and

study the resonant particles in experimental MAST plasma discharges.
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Chapter 3
Particle tracking in

electromagnetic fields

Single particle motion is the fundamental process underlying the behaviour

of a plasma in a magnetic confinement fusion device. Understanding more

complex plasma processes such as wave-particle interaction, plasma heating

and fast ion transport often requires a detailed understanding of the behaviour

of individual particles in electromagnetic fields. In a toroidal confinement

device, the helical magnetic field is characterised by the safety factor q and is

a complex function of position. The motion of a charged particle in such field

will be determined by the numerical solutions to the equations of motion.

In many situations, particles need to be tracked for a very long time in the

simulation code because the gyro motion is fast and the excursion of the

orbit is small compared to the geometry of the experimental device. These

problems can be alleviated by numerically solving the equations of motion

of the guiding centre when the variations of the field are negligible over the

gyro motion and the Lamor radii rc satisfies rc � Lc with length scale Lc =

B/|∇B|. The guiding centre simulation deals with gyro averaged quantities
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3. Particle tracking in electromagnetic fields

and puts emphasis on the drift motions so the computation time can be

significantly reduced.

In MAST, particles produced by deuterium beam injection or alpha particles

released from the nuclear reactions are highly energetic. For simulating these

energetic particles, two facts prevent the guiding centre simulation being a

good approximation of the full orbit calculation. Firstly, MAST is designed

to confine plasmas in an equilibrium with high β = 2p/µB2 and relatively

low field. The toroidal field at the magnetic axis BT ∼ 0.5 T, as compared

with 3.6 T in JET. These configurations of MAST can produce a very large

gyro radii for fast ions. On the other hand, MAST is configured with a tight

aspect ratio meaning the gradient and curvature of the field are prominent

throughout and cannot be neglected within the timescale and length scale of

gyro motion. Because of these reasons, the condition rc � Lc will not always

be satisfied by MAST fast particles and thus a stable and accurate full orbit

simulation becomes necessary.

The wave-particle resonance condition Eq. (2.137) is derived in the pre-

vious chapter, one would like to know which particles will resonate with a

mode in order to help understand the dynamics of wave particle interactions.

Therefore, a code is developed to evaluate the relevant bounce and precession

frequencies. This chapter focuses on this code development and is organised

as follows. Section 3.1 outlines the Boris Leapfrog solver which provides an

efficient and accurate method for tracking particles. Section 3.2 presents the

coordinate transformation of the magnetic field between the cylindrical co-

ordinates commonly used to represent fields in axisymmetric tokamaks and

the Cartesian coordinates needed to implement the Boris solver. The initial-

isation of the particle pushing code and the workflow of the code are described

in sections 3.3 and 3.4. The code is validated with an analytical solution as
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3.1. The Boris solver

shown in section 3.5. As an important application of the code, orbits and

motion frequencies of the plasma in MAST are calculated in sections 3.6 and

3.7.

3.1 The Boris solver

The magnetic field in a tokamak primarily consists of toroidal components

generated by external coils and poloidal components produced by plasma

currents. The solutions to the equations of motion for a charged particle in

such a complex electromagnetic configuration can only be obtained numer-

ically. One common numerical approach is to use finite difference methods

[78]. There are two categories of finite difference methods, explicit and im-

plicit, depending upon if the new time points are used to evaluate the spatial

derivatives. The explicit methods need only old time points to advance spa-

tial locations so they are fast. However, these methods often suffer stability

problems and have requirements on the time intervals. The implicit meth-

ods need new time points to evaluate some spatial derivatives so the spatial

locations are updated iteratively. The implicit methods thus require more

computational effort but they are more stable and allow larger time intervals.

For the particle motion problem, either explicit or implicit methods use the

velocity at time point n to push particles from location n to next location

n + 1. A leapfrog method uses the average velocity at time point vn+1/2 to

move xn to xn+1 as shown in Fig. 3.1, where the initial velocity is given a 1/2

time step behind the initial position. It is a time-centred difference algorithm

and possesses good global stability specially for computing orbital dynamics.

The Boris algorithm [79] is an explicit leapfrog method which is commonly
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3.1. The Boris solver

x0 xn-1 xn xn+1

x x x x. . . .
…

Initial velocity

Initial position

v-1/2 vn-1/2 vn+1/2

Figure 3.1: Leapfrog scheme. The initial velocity and position are given and
updated in a staggered way. The velocity vn−1/2 is advanced to vn+1/2 after
a time interval and the position xn is updated to xn+1 using vn+1/2.

used for advancing a charged particle in a realistic electromagnetic field for

its speed and stability. It is a second order method and conserves phase space

volume which suggests it should have good long term fidelity [80]. Using the

leapfrog scheme, the discretised form of Eq. (2.1) is written as:

xn+1 − xn
∆t = vn+1/2, (3.1)

vn+1/2 − vn−1/2

∆t = q

m
(En + vn+1/2 + vn−1/2

2 ×Bn). (3.2)

Here, the electromagnetic fields Bn and En are evaluated at xn. Then En can

be cancelled out by introducing new variables v− and v+:

vn−1/2 = v− − qEn

m

∆t
2 , (3.3)

vn+1/2 = v+ + qEn

m

∆t
2 , (3.4)

Substituting these expressions into Eq. (3.2) yields

v+ − v−

∆t = q

2m(v+ + v−)×Bn. (3.5)

xn is updated to xn+1 by the velocity at the last half time step vn+1/2:

xn+1 = vn+1/2∆t+ xn (3.6)

= (v+ + qEn

m

∆t
2 )∆t+ xn. (3.7)

Despite v+ appearing on both sides of Eq. (3.5), this is explicit and v+ is

given by

v+ = v− + v′ × s (3.8)
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ϕ = +π   
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ϕ = 0 ϕ  
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Figure 3.2: (a) Two-dimensional tokamak geometry with a circular cross
section where R0 is known as the major radius and r the minor radius. (b)
A position vector P(x, y, z) is projected on the x-y plane giving the radial
component R and the toroidal angle φ; (c) Relationships between the position
components: x = R cosφ, y = R sinφ and z = Z with φ ∈ [−π, π].

with

v′ = v− + v− × t, (3.9)

t = qBn

m

∆t
2 , (3.10)

s = 2t
1 + t2

. (3.11)

3.2 Coordinate transformations

The Boris scheme has been introduced using Cartesian coordinates which

can be represented by unit vectors ex, ey, and ez. For following the single

particle motion in a toroidal device, the electromagnetic field is often given in

terms of cylindrical coordinates. Because of the axisymmetry of the field, it

is convenient to use cylindrical coordinates so that the system is independent

of the azimuth angle. A right handed cylindrical coordinate system formed

by unit vectors eR, eφ and eZ is illustrated in Fig. 3.2, where R is the radial

position, Z the vertical position and φ the toroidal angle. The mathematics

thus can be greatly simplified in the analysis and derivations of the equations.

φ is periodic with period 2π ranging from −π to +π. A position vector P can

be expressed in terms of the Cartesian and cylindrical coordinate systems,
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3.2. Coordinate transformations

respectively,

P = xex + yey + zez = ReR + ZeZ , (3.12)

where each component is related by

x = R cosφ,

y = R sinφ,

z = Z.

(3.13)

Here the vertical components z and Z are identical in these two coordinate

systems.

The simulation also requires the coordinate transformations for the other

vectors such as particle velocity and magnetic field. The transformations can

be generalised by using a Jacobian matrix. The Jacobian J of the transform-

ations from the x, y, z coordinates to the R, φ, Z coordinates depends only

on φ and the derivations are presented as follows.

In cylindrical system, the basis vectors eR, eφ, and eZ are orthogonal to

each other, defined by
eR

eφ

eZ

 =


∂x
∂R

∂y
∂R

∂z
∂R

∂x
∂φ

∂y
∂φ

∂z
∂φ

∂x
∂Z

∂y
∂Z

∂z
∂Z




ex

ey

ez

 =


cosφ sinφ 0

−R sinφ R cosφ 0

0 0 1




ex

ey

ez

 , (3.14)

where the expression (3.13) is used to evaluate the partial derivatives. To

convert from covariant to unit basis vectors eφ is normalised by dividing by

R. Going forwards eR, eφ, and eZ represent the unit basis vectors in the

cylindrical system given by 
eR

eφ

eZ

 = J


ex

ey

ez

 , (3.15)
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3.2. Coordinate transformations

with Jacobian matrix

J =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (3.16)

Similarly, the inverse transformation can be realised and the inverse Jacobian

matrix J−1 is given by

ex

ey

ez

 =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




eR

eφ

eZ

 = J−1


eR

eφ

eZ

 . (3.17)

Combining Eq. (3.15) and Eq. (3.17) gives the inner product of the unit

vectors 
eRex eφex eZex

eRey eφey eZey

eRez eφez eZez

 =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (3.18)

An arbitrary vector B can be expressed in terms of a unit basis in either

coordinate system:

B = Bxex +Byey +Bzez = BReR +Bφeφ +BZeZ . (3.19)

Taking the dot product of the unit vectors eR, eφ and eZ in turn on vector

B gives the relations of the components of two system:

eR·B = BR = (Bxex +Byey +Bzez)eR = Bx cosφ+By sinφ, (3.20)

eφ·B = Bφ = (Bxex +Byey +Bzez)eφ = −Bx sinφ+By cosφ, (3.21)

eZ ·B = BZ = (Bxex +Byey +Bzez)eZ = Bz. (3.22)

The coordinate transformations are completed by writing Eq.(3.20) - (3.22)
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3.3. Initialisation

in a compact form

BR

Bφ

BZ

 =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1




Bx

By

Bz

 = J


Bx

By

Bz

 , (3.23)

and 
Bx

By

Bz

 =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




BR

Bφ

BZ

 = J−1


BR

Bφ

BZ

 (3.24)

with determinant det(J) 6= 0. As one typically stores fields in coordin-

ates, these transformations allow us to convert the field components into a

Cartesian system. Then the Boris solver can be easily implemented by simply

calling these prescribed transformation matrices in the program.

3.3 Initialisation

The initial conditions required for solving the Lorentz motion of a charged

particle are the position P0(x0, y0, z0) and the velocity V0(vx0, vy0, vz0) re-

gardless of which coordinate system is taken. It is also common that the

initial conditions are expressed in terms of energy E, pitch λ = v||/v and po-

sition P0(R, φ, Z) in order to intuitively describe the particles. Now we just

need one last coordinate, the gyrophase angle α, to initialise the simulation.

The particle velocity will be determined by using (E, λ, R, φ, Z, α), together

with a prescribed equilibrium field for the given location P0. The procedure

for obtaining the velocity is as follows.

The equilibrium field is expressed in terms of cylindrical unit vectors

B = BReR+Bφeφ+BZeZ . The magnetic vector b‖ is defined by b|| = B/|B|.
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3.4. Workflow of the particle pushing code

One of the perpendicular basis vectors can be chosen as

b⊥1 = 1√
B2
Z +B2

R

(−BZeR +BReZ). (3.25)

Here the toroidal component is set to zero. The radial and vertical compon-

ents of B are swapped and cast into the radial and vertical components of

b⊥1 in order to satisfy b⊥1·b|| = 0. b⊥1 is corrected by (B2
Z +B2

R)1/2 so that

|b⊥1| = 1 is a unit vector. Another perpendicular basis vector can be determ-

ined by the cross product of b⊥1 and b|| given by b⊥2 = b⊥1×b||. The total

perpendicular basis vector is written as b⊥ = cosαb⊥1 + sinαb⊥2. Here, the

gyrophase α describes the initial particle position on the gyro plane which is

perpendicular to the field line.

As shown in Fig. 3.1, the velocity is half a time step back as the leapfrog

scheme is staggered. The integrator is initialised by the position at the “0”

time step and the velocity at the “-1/2” time step.

Using vector basis b‖ and b⊥, the initial velocity can be written as V =

v||b||+ v⊥b⊥ with v|| and v⊥ to be determined. The total velocity is given by

the particle kinetic energy v =
√

2mE and the parallel component is given by

the initial pitch λ = v‖/v. Consequently, the particle velocity is expressed in

terms of initial E and λ , V =
√

2mE(λb||+
√

1− λ2b⊥) with m the particle

mass.

3.4 Workflow of the particle pushing code

It is straightforward and convenient to generate simulation markers by means

of seed values (R, φ, Z,E, λ, α), which intuitively describe a particle’s physical

location in the fusion device, type (passing or trapped) and energy of interest.

As discussed in section 3.2 and 3.3, they are converted to the position and

velocity in Cartesian coordinates (X, Y, Z, vx, vy, vz) which are required by
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Figure 3.3: Flowchart to summarise the steps of solving the Lorentz equations
of a charged particle in an equilibrium magnetic field.

the numerical integration with the Boris method. A spline FORTRAN library

[81] is used to interpolate the data of the poloidal flux surface function ψ

reconstructed by the EFIT++ code and the equilibrium magnetic field for a

given location. The interpolation is realised by a set of cubic polynomials

between knots and the coefficients of the polynomials are determined by the

continuity conditions of the first and second order derivatives at the knots.

Fig. 3.3 is a flowchart to summarise the steps of the particle pushing code.

The full orbit simulations can produce a series of particle information, includ-

ing particle trajectories, temporal evolution of the velocities, guiding centre

locations, poloidal and toroidal motion frequencies etc.

3.5 Code validation

The numerical code is validated by following the exact orbit of a test particle

in a uniform magnetic field. This classical model of the single particle motion

has been discussed in detail in section 2.1.1 so the analytical solutions are at

hand and can be used as a benchmark of the numerical results.

The parameters used in the calculation are chosen to be of the same
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Figure 3.4: The constant B field is along the z direction and the computa-
tional trajectory of a deuterium ion on x− y plane is a closed circle.

order as given by the MAST operation. First, the constant magnetic field

B = Bz = 0.5 T is set be along the z direction where general Cartesian

coordinates x, y, z are considered. Here the strength of the field of 0.5 Tesla

is a typical value of the toroidal magnetic field at the magnetic axis in MAST.

Then, a deuterium ion is launched with an energy of 80 keV corresponding

to the highest injection energy of the beam on MAST. The initial velocity is

given by assuming that the energy comes from one perpendicular dimension

ey only for simplicity and we have vy0 = −2.77×106 m ·s−2 and vx0 = vz0 = 0

with a deuterium mass mD = 3.3435 × 10−27 kg. The gyro radius can be

obtained by rc = m|v⊥|/qB ≈ 0.116 m. We then set the initial location of

the particle as x0 = rc and y0 = z0 = 0. Because the rotation is in the

diamagnetic direction, the trajectory of the test marker on the perpendicular

plane should be a perfect circle whose the centre is located at x = 0 and

y = 0.

The simulation results are illustrated in Fig. 3.4 and 3.5 showing a good

agreement with the theoretical predictions just presented. In Fig. 3.4 the

particle full orbit is projected on the x− y plane where the direction of B is

along the outward normal to the plane. The particle starts from the location
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Figure 3.5: (a) x and (b) y dimension of the circular gyro orbit.

(x0, y0) and rotates clockwise around the origin with a constant radius. Fig.

3.5 shows the motions in x and y dimensions. The oscillations of the curves

separately obey the expected sine and cosine functions. Here the number of

gyro motions Ngyro that the particle has completed can be deduced from the

number of the sine or cosine waves k during the tracking time, specifically,

Ngyro = k.

The estimated location of the guiding centre (G.C.) rgc is numerically

evaluated by averaging the particle position ri over one gyro period T :

rgc = 1
T

∫ T

0
rdt ≈ 1

T

n∑
i=1

(ri + ri+1)
2 4t, (3.26)

where the trapezoidal rule is applied for approximating the integration. As

shown in Fig. 3.5, rgc is well maintained at xc = 0 and yc = 0 as expected for

the average of sine or cosine functions. The evaluation can be extended to

find the G.C. of the orbit in a magnetic field that is not analytically defined.

In such cases, the gyro motion can still be decomposed into harmonic motions

but the amplitude of the oscillation is normally a function of time and space

because of drift motions.

The stability of the numerical code is tested by examining the conser-

vation of the particle kinetic energy Ek. The test marker has been tracked

for 5 ms corresponding to 5 × 107 iterations in the program with time step

66



3.6. Calculations of particle orbits in MAST

0 5000 10000 15000 20000
Number of gyro motions

0.0

0.5

1.0

1.5

|E
E 0

|/E
0

1e 10

Figure 3.6: Negligible energy variation during the particle tracking.

dt = 1 × 10−10 s. As can be seen in Fig. 3.6, the variation in Ek is only on

the order of 10−10 after 15,000 gyro motions. The double precision data type

is used so that rounding errors can be reduced in the numerical results.

3.6 Calculations of particle orbits in MAST

The motivation for the particle pushing code is to calculate the particle or-

bits in MAST with a toroidal magnetic configuration. The equilibrium field

reconstructed by the EFIT++ code for the experiment discharge #29210 is

used throughout this section to demonstrate the typical orbits in MAST. Test

markers are deuterium ions with energy of 15 keV, toroidal angle φ = 0, and

gyro angle α = 0 and the specification of the test particle initial conditions

(R,Z, λ) will be declared separately for each case developed.

In general, particles that can be confined in a tokamak fall into two

categories: passing and trapped particles. Trapped particles are particles

that are mirror trapped on the outboard side of a tokamak and oscillate

between bounce tips where v‖ = 0. A trapped particle orbit is also commonly

referred to as a banana orbit due to the fact that the poloidal projection of

the orbit resembles a banana shape. Particles whose v‖ is never zero along
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Figure 3.7: Top view of the tokamak showing the toroidal projections of
different types of particle orbits, where X = R cosφ and Y = R sinφ.

the trajectory are denoted as passing particles. The toroidal projections of

these two kinds of particles are shown in Fig. 3.7. Recall that µ = E⊥/B is

an adiabatic invariant. The trapped particle gains E⊥ from E|| to maintain

the conservation of µ as well as the total energy as it approaches a high

field region. When E|| is completely transferred to E⊥, the motion along the

field line is reversed so the particle behaves as if it is trapped in these two

fixed locations where the magnetic field achieves a maximum value Bmax and

v|| = 0.

The poloidal projection of a passing particle orbit with |λ| = 1 is shown

in Fig. 3.8a. The orbit encircles the magnetic axis labelled with a red cross

and completes a circular-like trajectory almost aligned with the shape of the

flux surface. The deviation is due to the cross field drift velocities discussed

in section 2.1.3 and 2.1.4. Fig. 3.8a depicts poloidal projections of passing

particle orbits. The equilibrium flux surfaces are denoted with dashed lines

while the LCFS is marked with a solid black line. In Fig. 3.8b the trapped

particle with |λ| = 0 traces out a banana-shaped orbit. In contrast to the

passing particle, the trapped particle stays on one side of the magnetic axis.

A non-standard passing orbit referred to as a stagnation orbit [82] is
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Figure 3.8: Poloidal projections of particle orbits. Markers ? show the initial
particle positions.

also illustrated in Fig. 3.8a. The particle is resident near the magnetic axis

and orbits the torus centre. From the poloidal view, it appears to stop at a

single point on the cross section. This is because the magnetic field is purely

toroidal at the magnetic axis so both the ∇B and curvature drift motions

of this particle are nearly vertical. The vertical drifts can be cancelled out

because of the symmetry in the equatorial plane, which leads to a stagnation

orbit.

Particles that are trapped in a small and narrow region at the low field

side are referred to as deeply trapped particles. The orbit of a deeply trapped

particle is shown in Fig. 3.9a. Two bounce points are close to the initial

location of the particle so Bmax ≈ Bmin, the poloidal angle θ ≈ 0 and sin θ ≈ 0,

where θ is given by

tan θ = Z√
R2 − Z2 −R0

. (3.27)

Those particles that can travel a longer distance and nearly complete a closed

circle in the poloidal plane before changing the direction of the parallel motion

are generally called barely trapped particles. An example is plotted in blue

69



3.6. Calculations of particle orbits in MAST

0.5 1.0
R [m]

1.0

0.5

0.0

0.5

1.0
Z 

[m
]

barely
deeply

(a) Barely (blue) and deeply trapped
(green) particles.

0.75 1.00 1.25
R [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Z 
[m

]

v|| = 0

(b) Potato orbit.

Figure 3.9: (a) Deeply and barely trapped particle orbits. Both the full orbit
and the G.C. orbit of the deeply trapped particles are illustrated. (b) A
potato orbit whose bounce point is on the magnetic axis marked with the
symbol ×.

line in Fig. 3.9a .

Potato particles are trapped particles with a broader orbit. Fig. 3.9b

shows a potato orbit passing through the magnetic axis at a parallel velocity

v|| = 0. After leaving the magnetic axis, the particle moves to the low field

region without changing the sign of v|| = 0. Potato particles can be considered

as the transitions between passing particles and trapped particles.

Both trapped and passing particles are confined in the tokamak. Those

that cannot be confined by the magnetic field are referred to as lost particles.

The confined-lost domain is defined by the LCFS in the simulation. If a

particle travels outside the LCFS, mathematically when the normalised po-

loidal flux function ψn > 1, it will be considered lost. Fig. 3.10a shows an

example of a lost particle. The guiding centre locations of this particle re-

main inside of the LCFS but it has reached the boundary at the low field side.

Therefore, the particle is classified as a lost particle. The full orbit simulation
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Figure 3.10: (a) An example of a lost orbit whose the G.C. position maintains
confined but the full orbit is beyond the confined boundary; in the simulation,
the lost boundary is defined as ψn = 1 corresponding to the black solid line.
(b) Plane of Zini, λ = v||/v with E = 15 keV, showing domains of confined
and lost particles in MAST.

places a more strict condition to confine a particle and hence increase the lost

domain. Fig. 3.10b demonstrates a computed lost-confined region for MAST

plasmas. In the MAST convention, the toroidal component of the magnetic

field is in the counter-current direction so passing particles with v|| > 0 and

v|| < 0 are referred to as counter- and co-passing particle, respectively.

3.7 Calculations of motion frequencies

Charged particles in a tokamak undergo periodic motions both in the poloidal

and toroidal dimensions. The motion frequencies can be computed while

particles are tracked in the program. In the poloidal direction, the motion

period is calculated by timing when the particle passing through the vertical

position of the magnetic axis Z = Z0. As shown in Fig. 3.11, the particle

oscillates around the Z = Z0 plane in the full orbit simulation, which makes
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Figure 3.11: Calculations of the poloidal frequencies fθ by timing a particle
passing through the Z = Z0 plane. fθ is given by fθ = 1/(N2 −N1)dt where
dt is the time interval.

it difficult to track the accurate time when it actually arrives/leaves this

location. However, the guiding centre of the particle passes the Z = Z0 plane

only twice (inboard and outboard) to complete a poloidal circle and hence

can be used to compute the poloidal motion frequency fθ, given by

fθ = 1
∆Ndt, (3.28)

where dt is the time interval. ∆N = N2 − N1, N1 and N2 are the number

of time steps when the particle makes its first and second passes through the

Z = Z0 plane, respectively.

As a passing particle transits around the torus, its toroidal angle co-

ordinate φ varies between −π and π as shown in Fig. 3.12a. The toroidal
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Figure 3.12: (a) Temporal evolution of the toroidal angle φ of a passing
particle; φ periodically changes between −π to π. (b) Cumulative toroidal
angle derived from φ is a monotonic function of time.

motion frequency fφ can be obtained by constructing a monotonically increas-

ing quantity, the cumulative toroidal angle ϕ, given by ϕ = φ − φ0, where

φ0 is the particle initial toroidal angle. ϕ is corrected by 2π every time the

particle passes through the discontinuous boundary, that is,
ϕ = ϕ+ 2π, +π → −π;

ϕ = ϕ− 2π, −π → +π.
(3.29)

The temporal evolution of ϕ derived from φ is illustrated in 3.12b. The

toroidal frequency fφ is given by

fφ = ϕ

2πNdt, (3.30)

where dt is the time step and N the number of time steps. N is recorded when

ϕ passes a multiple of 2π as illustrated in table 3.1. The full orbit calculation

leads to an error of up to one gyro period in the estimation of the toroidal

motion period. Therefore, fφ is averaged over multiple complete toroidal

motions and the variation of fφ reduces as the tracking time increases.

This method of calculating fφ is especially necessary for trapped particles.

The profiles of the toroidal angle φ and the cumulative toroidal angle ϕ of
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ϕ N fφ [kHz]
2π 68223 146.58
4π 139722 143.14
6π 210800 142.31
8π 277346 144.22
10π 347153 144.03

Table 3.1: Data from the simulation results used to calculate the toroidal
motion frequency fφ of a passing particle (time step dt = 1× 10−10).

the trapped particle in Fig. 3.8b are demonstrated in Fig. 3.13. Because a

trapped particle will change the direction of v|| in one bounce motion, the

toroidal coordinate φ may oscillate near the ±π boundary multiple times so

φ cannot be used in the calculations of fφ. However, the precession angle can

be calculated by constructing the functions of the cumulative toroidal angle

ϕ similar to those of passing particles. Trapped particles may only occupy

a small part of the torus in many situations since the precession is cancelled

out by the opposite motion along the field line in one bounce motion. fφ for

a trapped particle is therefore defined by

fφ = ∆ϕ
2π∆t , (3.31)

where ∆ϕ is the precession angle within one or several bounce motions and

∆t is the elapsed time. As shown in Fig. 3.13b, data of N and ϕ are collected

when the particle passes through the Z = Z0 plane which allows the precession

angle ∆ϕ = ϕ2 − ϕ1 and precession frequency fφ to be calculable.

The approaches used to calculate the poloidal and toroidal motion fre-

quencies can be extended to non-standard orbits. Stagnation orbits are classi-

fied as passing orbit types as they can rapidly travel around the torus. Potato

orbits are considered as trapped orbits because of the reversed parallel mo-

tions.

Stochastic errors of up to one gyro period are introduced into the calcu-
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Figure 3.13: (a) Temporal evolution of the toroidal angle φ of a trapped
particle; (b) Cumulative toroidal angle derived from φ. Toroidal frequency
fφ ≈ (ϕ2 − ϕ1)/[2π(N2 −N1)dt] ≈ (ϕ3 − ϕ1)/[2π(N3 −N1)dt].
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quencies. The computational noise reduces as the number of orbit averaging
increases.
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Figure 3.15: The toroidal frequency of a passing particle converges as dt
reduces. The particle with λ = 0.75 is launched from R = 1.0 m and Z = Z0.

lations of fθ and fφ because of the full orbit simulations and gyro averaging.

As can be seen in Fig. 3.14, simulation results for frequencies are messy

and unstructured with stochastic errors when only considering one complete

poloidal or toroidal orbit corresponding nav = 1. As the number of orbit

averaging nav increases, the profiles of fθ and fφ are smoothed out as they

converge and regress to the mean.

The Boris algorithm is second-order accurate [80], and the choice of the

integration time step is often a trade-off between computational time and

accuracy. It is convenient to choose the time step as a fraction of the gyro-

periods of particles in the simulation. In Fig. 3.15, the toroidal motion

frequency of a passing particle is computed using Eq. 3.31 with different

time steps where the particle with λ = 0.75 is launched from R = 1.0 m

and Z = Z0. The toroidal motion frequency fφ is converged to 144 kHz as

the time step dt reduces. For the particle trajectories demonstrated in this

chapter, dt is set to be 10−10 s so that particles with short gyro periods which

require small time steps can be simulated correctly.

76



3.8. Summary

3.8 Summary

A full orbit particle pushing code has been developed using the Boris method.

The coordinate transformations between the Cartesian and commonly used

cylindrical system are discussed. The transform matrices are obtained and

implemented in the code. The code is validated against an analytic solution of

the gyro-motion of a charged particle in a constant magnetic field. The code is

then extended to calculate the particle trajectory in a realistic magnetic field.

A method is found to efficiently evaluate the poloidal and toroidal motion

frequencies as the full orbits of particles are followed. Since the particle

periodic frequencies can be determined numerically, the resonant particles

will be easily found based on the wave-particle resonance condition. In the

next chapter, the code is used to evaluate the resonance condition for particles

in MAST experiments with MHD modes.
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Chapter 4
Fast-ion driven modes

We have shown in the previous chapter how to determine the particle motion

frequencies in a realistic magnetic field. We will now use the calculated fre-

quencies to derive resonance maps for the interaction of wave fields in plasmas

with fast particle populations. Such maps can aid greatly in the interpret-

ation of the underlying fast particle transport mechanisms in plasmas with

waves and instabilities. As a demonstration of this, in this chapter we fo-

cus on MAST shot #29210 which exhibits large chirping TAEs, fishbones

and a long-lived mode. We will show that resonance maps for this shot can

provide valuable insights into the physics of these processes which can aid in-

terpretation of experimental results. We begin by presenting the experimental

discharge for analysis.

4.1 Plasma scenarios

A set of discharges [61, 62] have been performed to excite instabilities and

study the consequent fast ion behaviour affected by these MHD events on

MAST by means of the NBI. The NBI is primarily responsible for heating

and driving current so that the plasma temperature and current can be raised
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4.1. Plasma scenarios

to expected levels. The applied deuterium beams have energies of up to 75

keV (equivalently, 2.7 × 106 m/s) and they are super-Alfvénic. The Alfvén

speed vA = B/
√
µ0(mini +mene) ∼ 7.7 × 105 m/s where B is the magnetic

field strength on the magnetic axis, typically B0 ∼ 0.5 T and the number

density ni = ne ∼ 1020 m−3 for MAST plasmas. Therefore, the NBI is also

the source of the energetic population providing free energy so the plasmas

are destabilised. The discharge #29210 is one of the experiments which in-

vestigated Alfvénic instabilities using this approach. Fig. 4.1 demonstrates

the time trace of key parameters of this discharge. The SS beam is turned

on at 50 ms for a total time of 400 ms while the SW beam is switched on

at t = 180 ms. The two beam injectors are capable of delivering heating at

separate energies. The SS and SW beam powers are 2.0 MW and 1.5 MW,

respectively. The plasma current Ip ramps up to 0.9 MA with the beam injec-

tion and maintains a stable state for 100 ms before it disrupts. The periodic

bursts in Mirnov coil signals indicate a series of MHD activities take place.

The data from the Mirnov coils are then analysed by means of Fourier decom-

position as shown in the spectrogram in Fig. 4.2. Throughout the discharge,

MHD modes with frequencies in the range of 0-150 kHz are observed. The

mode analysis is given in Fig. 4.2 (b), showing the toroidal mode number for

each individual harmonic and dominant modes with n = 1 ∼ 3 are identified.

At 140 ms, n = 1 TAEs with strong down chirping frequencies near 80 kHz

are excited. They later develop into stronger n = 1 fishbone oscillations at

lower frequencies around 40 kHz after 180 ms. The discharge ends up with

discrete saturated kink modes with constant frequency until it quenches.

Such instabilities could induce large particle losses across the field lines

and greatly degrade the heating efficiency of the beams. These can be first

identified from the estimations given by the EFIT++ simulation results. As
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Figure 4.1: Time trace for MAST discharge #29210. (a) NBI power, (b)
plasma current, (c) line integrated electron density, (d) electron temperature
at core, (e) Mirnov coil signals for instability analysis.

discussed in section 2.3, the EFIT ++ code can reconstruct the plasma

equilibrium which both satisfies the GS equations (2.55) and experimental

constrains. As shown in Fig. 4.3, the pressure estimated by the EFIT++

increases with the beam injection but grows with the beam power dispro-

portionaly. As the addition of the SW beam raises the total beam power

by approximately 75% (2 MW → 3.5 MW), the normalised on-axis pressure

p0/patm goes up by ∼ 50% (0.12 → 0.18).
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during beam injection.
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Figure 4.3: On-axis pressure p0 evaluated using EFIT++ show the changes
in plasma equilibria as the second beam is turned on. p0 is normalised by the
atmospheric pressure patm.

4.2 FIDA diagnostics

Experimentally, the radially resolved information about the fast ion density

and its distribution can be inferred by a fast-ion deuterium alpha (FIDA)

spectrometer[83]. A diagram illustrating the geometry of this diagnostic on

MAST is shown in Fig. 4.4. On MAST, the FIDA shares the viewing optics

of the charge exchange recombination spectroscopy which is used for the ion

temperature and flow measurements. As a fast ion in the plasma captures

an electron from a beam neutral, the resulting fast neutral can be in an

excited state which then radiates Dα photons and this is what the toroidal

(tangential) and vertical (perpendicular) FIDA fiber arrays measure. The

light from the fast neutral is Doppler shifted based on the speed of the fast

neutral along the line of sight of the diagnostic and this gives velocity space

information. The fast ion distribution function f(E, λ,R, Z) is linked with

FIDA measured signals S via a constructed weight function w(E, λ,R, Z) [84,
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Figure 4.4: Top view of the MAST showing the toroidal projections of the
FIDA vertical and toroidal reference views, together with the NBI beamlines
[83].

85]:

S =
∫

(w × f) dE dλ dR dZ. (4.1)

Fig. 4.5 shows the dependence of the weight function on radial position R for

the toroidal line of sight FIDA diagnostic. The system is sensitive to particles

above 45 keV with a peak in the weight function located at |λ| ∼ 1 for all

energies.

Experimental FIDA measurements are illustrated in Fig. 4.6 for discharge

#29210. Dα emission from the mid-plane is integrated over (E, λ) space

giving the temporal evolution of the radial profile of the radiance. Integrated

signals have shown that at R ∼ 107 cm, observed reductions in FIDA signal

intensity are strongly correlated with the MHD bursts during 140 - 210 ms.

Sudden increases in signal intensity from edge views are also detected after

each massive reduction in the core. The lost fast ion signal is produced by the

interaction with edge neutrals. This appears in both the active and passive
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Figure 4.5: Weight function of the toroidal line of sight FIDA system at three
locations: R = 1.07, 1.14 and 1.20 m, where the minimum energy Emin = 45
keV. Only ions in the coloured region in velocity space can contribute to the
measured FIDA signal.The brightness of the colour scales the sensitivity of
particles to the FIDA diagnostic, implying that a charge exchange reaction
is more likely to take place at λ = −1.

views. In principle, it should be possible to subtract this out, however a small

error in the relative calibration of an active channel and its corresponding

passive channel, by a small amount, e.g. 10%, could lead to a significant

residual "unsubtracted" component of this lost fast ion/edge neutral emission.

This edge passive emission is present in all channels, but is weaker for channels

viewing closer to the core, because the amount is weighted by the angle

between the line of sight and the flux surface. For core viewing channels,

the line-of-sight intersects edge flux surfaces with a large angle, whereas the

edge channels intersect the surfaces more tangentially, i.e. at a smaller angle.

This results in a smaller contribution to the total signal intensity from lost

fast ions, and thus a more reliable signal for the core channels than the edge

channels. These measurements suggest that fast ions with minimum energy

Emin = 45 keV could be expelled due to the chirping modes. We will next
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Figure 4.6: Marked drops in FIDA radiance are correlated with visible MHD
bursts at 140 ms, 147 ms, 155ms, 173ms, 194 ms and 200 ms.

investigate the behaviour and transport of the fast ions that are responsible

for driving the MHD modes.
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4.3. Calculations of resonance maps

4.3 Calculations of resonance maps

We now perform full orbit tracking by solving the exact equations of motion

in an equilibrium magnetic field calculated using EFIT++ as discussed in

chapter 3. Full orbit equations provide more accurate calculations of the

motion frequencies than the guiding centre equations due to the large Larmor

radii of fast particles in the low toroidal field of the spherical tokamak. It

is for this reason that guiding centre codes cannot be expected to correctly

track particles with high energies in MAST. A comparison between guiding

centre and full orbit schemes for MAST spherical tokamak has been made

in previous studies [86, 87] showing that an overestimate in the neutron rate

arises when guiding centre calculations are used.

Test particles are populated on uniform energy E and pitch λ = v‖/v grids

at R = 107 cm and Z = 0 corresponding to the location where large particle

losses are seen in the FIDA signal. The poloidal and toroidal orbit frequencies

of the test particles are estimated as they are tracked in the simulation and

substituted into Eq. (2.137) to identify the resonant particles. The linear

resonance condition is investigated for varying mode frequency as observed

during a chirp. Resonance maps between n = 1 chirping modes and particles

are presented in Fig. 4.7. Shot times t = 150 and 205 ms are chosen such

that TAEs and fishbones respectively are dominant and produce transport of

fast ions. The chirping modes to be excited are in the range 60-30 kHz and

40-10 kHz for 150 and 205 ms, respectively. This is consistent with what has

been observed in Fig. 4.2. Passing particles with energies up to 80 keV can

interact with the mode via the p = −1 resonance. The fishbone is expected

to have dominant poloidal mode number = -1, implying that this choice of p

resonance where FIDA is sensitive, also corresponds to k|| · v|| ∼ ω.
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Figure 4.7: Resonance maps identifying particles that can interact with n = 1
chirping modes at (a) t = 150 and (b) t = 205 ms. 100×100 test markers are
populated at R = 107 cm and Z = 0 cm. Chirping frequencies are sampled
within the range observed. Possible mathematical solutions to the resonance
condition are illustrated in the graphs. Passing and trapped particles are
plotted but there are no lost particles since the initial location is close to the
core.
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Figure 4.8: Orbits of the resonant particles labelled with red and blue crosses
in the resonance map showing in Fig. 4.7 at E = 50 keV.

As the mode frequency decreases, the p = −1 resonance moves towards

lower values of |λ|. Particles at 50 keV marked with red and blue crosses

in Fig. 4.7 are chosen as examples to demonstrate the dependency of the

particle orbit on pitch. As illustrated in Fig. 4.8 (a) - (h), the orbits of the

resonant particles tend to expand outwards and Larmor radius ρ rises with

decreasing |λ|, which is consistent with the relation

ρ ∼ (1− λ2)1/2 · (2mE)1/2/qB, (4.2)

which is derived from the definition of the magnetic moment µ = mv2
⊥/2B.

The strength of the wave-particle interaction is a function of p and p = −1

gives resonances that lie within the region of the fast ion phase space accessible

with the FIDA diagnostic. Trial values of p ranging from -100 to 100 have

been examined in the simulation and another branch of resonance, p = 0, can

be found as shown in Fig. 4.7. The p = 0 resonance represents the particles
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for which the toroidal precession frequency matches the mode frequency for

the n = 1 mode. These resonant particles consist of both passing particles

with low energy and trapped particles. Even though these resonant particles

make no contribution to the losses that have been seen in the FIDA signal,

they also can be lost or redistributed in the presence of the mode.

4.4 Resonant transport

As discussed in the previous section, the resonance map is used to identify

resonant particles. The behaviour of those particles affected by modes can be

easily understood by examining their perturbed trajectories. Each particle

trajectory can be specified in terms of constants of motion (E, µ, Pφ) and σ =

sign(v||). When there is a fluctuation at a frequency ω and toroidal mode

number n, the toroidal canonical angular momentum Pφ of a particle is no

longer conserved as the axisymmetry of the magnetic field is broken. In this

situation, K = Pφ − (n/ω)E is still constant for a single mode. The small

mode frequency corresponds to smaller variation in energy as dPφ = ndE/ω.

Test markers are populated to represents this feature, that is, Pφ is varying

while energy E and magnetic moment µ remain nearly constant as a result of

the frequency being small. In Fig. 4.9, particles are localised at the magnetic

axis R = R0. The energy of these markers are E = 50 keV which is chosen to

be in the area where the FIDA diagnostic is capable of responding. Pitch λ =

v‖/v and the initial vertical location Zini respectively are functions of µ and

Pφ, allowing both variables to vary implicitly. It is often difficult to determine

the domain of µ and Pφ so this is a common way to generate markers for the

computation with different µ and Pφ using intuitive coordinates.

As discussed in the previous section, once both toroidal and poloidal
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4.4. Resonant transport

motion frequencies (ft, fp) of particles are calculated by tracking their tra-

jectories, the pair (ft, fp) can be substituted into the resonance condition Eq.

(2.137) and then simulations are iterated over a series of integers for the value

of p. In the Fig. 4.9 (a), p = -1 resonance is the unique solution found for

Eq. (2.137). The corresponding resonance map on (µ, Pφ) space is obtained

by calculating the values of (µ, Pφ) for each test particle in Fig. 4.9 (a) and

then the contours of Γ = 0 are projected on a 2D graph in which the axes are

normalised (µ, Pφ), respectively . The resonant region in terms of (µ, Pφ) di-

mensions are shown in Fig. 4.9 (b). Typical markers sharing the same µ and

E on each resonant line are selected for investigating the effect of perturbed

Pφ due to chirping mode on particle orbits. The orbits of particles (a) - (d)

resonant with modes at frequencies ω = 60− 30 kHz are plotted in Fig. 4.10.

It allows us to consider which particles are resonant over the duration of a

chirp and how a particular particle would have to evolve in terms of its orbit

and Pφ to remain resonant over the course of the chirp and thus be coherently

transported. Combining Fig. 4.9 (b) and Fig. 4.10, it can be seen that the

perpendicular drift of a particle weakens with the chirp and the size of the

poloidal orbit shrinks. These indicate that the particle travels a shorter dis-

tance in the poloidal dimension and hence the poloidal frequency ωp increases

and gets close to its transit frequency ωt. The decreasing difference between

ωt and ωp allows the particle to stay in resonance with the chirping mode

since the resonance condition becomes ω = ωt− ωp where n = 1 and p = −1.

Berk et al. [88] have studied the spontaneous formation of a hole-clump

pair in phase space in the presence of frequency sweeping phenomena and

pointed out that clumps (an excess of particles) and holes (a deletion of

particles) correspond to up and down chirping frequency, respectively. Now

as only downward chirping is seen experimentally, the hole and clump creation
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Figure 4.9: (a) Resonance map for 100× 100 particles at R = R0 and E = 50
keV at t = 150 ms; (b) mapping resonance map of (λ, Zini) onto normalised
(µ, Pφ) phase space. The colours represent the difference between the toroidal
and poloidal motion frequencies.
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Figure 4.10: Orbits of resonant particles with varying Pφ.

could be asymmetric, indicating that holes are generated and move inwards

as a consequence of losing particle from the core to the edge. As the chirp

progresses downwards in frequency, resonant particles are localised more to-

wards the core of the plasma. A coherent structure is formed in the particle

distribution function in response to the nonlinear travelling wave. A possible

evolution of the particle distribution is demonstrated in Fig. 4.11. During

the background dissipation, holes are created near the resonance and then

propagate with the new resonance, suggesting that the convection of clumps

outwards cannot explain the observed FIDA signals as the resonance region

transports towards the centre.

93



4.5. Summary
 

 

 

 

F 

Pφ  

 

F F 

Pφ  

 

Pφ  

 
Resonance New resonance 

Initial state 

t = t0 t = t0 + δt t = t0 + 2δt 

Figure 4.11: Speculative formation and evolution of structures in the particle
distribution F based on the resonance maps.

4.5 Summary

Using the code developed in Chapter 3 and calculating particle orbital fre-

quencies as described in the previous chapters, a method is found to determine

resonant particles based on the wave-particle resonance condition presented in

Eq. (2.137). A MAST experimental discharge #29210 has been analysed by

examining the behaviours of these resonant particles. In this discharge, TAEs

and fishbones are destabilised by means of two powerful neutral beam inject-

ors. Spectrograms obtained from Mirnov coil measurements have shown that

the perturbations are dominated by the n = 1 toroidal harmonic with strongly

chirping frequency. As calculated in EFIT++, heating efficiency largely de-

creases when the transition from TAEs to fishbones takes place. Meanwhile,

it has been found that the magnetic perturbations are closely correlated with

the reduction in integrated FIDA radiance. Changes in Dα emission sug-

gest that fast ions have been ejected from the plasma centre during on-axis

neutral beam injection. Based on the wave-particle resonance condition, we

identify resonant particles at a location where significant particle losses have

been measured with FIDA. Full orbit calculations have resolved two branches

of resonance corresponding to p = 0 and p = −1. The chirping mode fre-

quency enhances the population of the particles that can be affected by the
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4.5. Summary

instabilities and hence has the potential to increase the resonant losses. By

examining the trajectories of the typical resonant particles, it is found that

the resonance shifts inwards with chirping frequencies, which excludes the

outward convective motion of clumps as a reason for fast ion losses observed

in FIDA emissions. In the next chapter, attempts will be made to quantify

particle transport in the presence of these modes using the HALO code which

investigates the nonlinear interaction between waves and particles.
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Chapter 5
Fast ion transport due to chirping

modes

5.1 Introduction

In the previous chapter, we have shown experimental observations of fast

ion redistribution induced by the perturbed electromagnetic waves present in

MAST plasma discharges with Toroidal Alfven Eigenmodes (TAEs) or fish-

bone oscillations. Resonance maps have been used to explore the potential

impact of chirping modes on fast particle redistribution. In this chapter, we

take some initial steps towards quantitative modelling of these processes us-

ing the HALO code. HALO [89] is built on the HAGIS code [90] and the LOCUST

code [91]. HAGIS is an existing code that uses guiding centre tracking to non-

linearly evolve modes. It uses flux coordinates and so cannot track particles

outside the separatrix. LOCUST is a full orbit code that uses realistic geomet-

ries and graphics processing units (GPUs) to rapidly track the trajectories

of beam particles and evaluate power deposition on wall components. HALO

adds the nonlinear wave evolution capability of HAGIS into LOCUST resulting
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in a GPU code which can rapidly model the non-linear response of a set of

eigenmodes to a particle population using full orbit tracking.

We develop a simple case where fusion alpha particles drive an n = 6 TAE

in a near cylindrical geometry tokamak and use the HALO code to explore the

impact that an ad-hoc addition of mode chirping has on the alpha particle

redistribution. A fixed amplitude mode and a frequency chirping behaviour

similar to that observed in experiment are prescribed. This model can help

us gain insight into whether the inclusion of chirping is important for un-

derstanding the redistribution and loss of fast particles in reactors. This is

important as previous work studying losses of fast particles in fusion reactors

have considered mode fields with fixed amplitude and frequency [52].

The material of this chapter is organised as follows. Section 5.2 presents

an overview of the HALO model. Section 5.3 outlines how we implement the

simulation. Plasma scenario is described in section 5.4. Modelling results on

the particle transport due to chirping modes are discussed in section 5.5. A

summary is given in section 5.6.

5.2 The HALO model

5.2.1 Wave-particle energy transfer

Alfvén eigenmodes can be driven unstable in the presence of a fast particle

population in which case the wave fields will evolve in response to the particle

motion. The HALO code is developed to self-consistently calculate the evol-

ution of the MHD modes. A mode with frequency ωi and toroidal mode

number ni is represented using a complex electric field with amplitude Ai(t)
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5.2.1. Wave-particle energy transfer

and eigenfunction ei(r):

Ei(r, t) = Ai(t)ei(r)ei(niφ−ωit). (5.1)

The evolution of Ai(t) is related to the power transfer between the particle

population and the wave [89]:

A′i(t) = − 1
2δWMHD

1
A∗i

∫
E+
i · JdV. (5.2)

Here, δWMHD is the mode energy contained in the eigenfunction ei:

2δWMHD = 1
µ0

∫ e+
i · ei
v2
A

dV, (5.3)

where vA is the Alfvén velocity. The current density J is computed from the

motion of the particle population and significantly contributed by the reson-

ant particles. To compute the current density the fast particle population is

represented by a set of marker particles thus allowing the above equations to

be discretised. The discretised form of Eq. (5.2) is written as

A′i(t) = − 1
2δWMHD

1
A∗i
q
∑
j

E+
i (xj) · vjf(xj,vj)∆x3∆v3, (5.4)

where the sum is over a set of marker particles which are tracked by the code.

f is the fast particle distribution function and ∆x3∆v3 is the volume in phase

space that each marker inhabits. The update of Ai proceeds as follows. Let

G(xj,vj) be

G(xi,vi) = q

2δWMHD

E+
i (xj)vjf(xj,vj)∆x3∆v3. (5.5)

Then A′i(t) becomes

A′i(t) = 1
A∗i

∑
j

G(xj,vj) (5.6)

and
A′i(t)
Ai(t)

= 1
|A2

i |
∑
j

G(xj,vj). (5.7)
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Assume that the variation of Ai over an integration timestep is small, then

one can integrate using an approximate analytic formula:

Ai(t+ ∆t) = Ai(t) exp
 1
|Ai(t)|2

∑
j

∫ t+∆t

t
G(xj,vj)dt

 . (5.8)

The integral in the exponent is evaluated by following particles along their

trajectories for one wave update timestep ∆t and usually ∆t � dt where dt

is the integrator timestep. Typically dt ∼ 10−9 whereas ∆t ∼ 10−7 although

there is some flexibility.

5.2.2 Monte-Carlo modelling

The HALO code evaluates the evolution of modes in Eq. (5.4) by determining

the power transfer between the modes and a set of particles being tracked in

the presence of the mode fields. The marker particles are uniformly distrib-

uted in spatial positions x, y, z, velocity v, pitch λ and gyro-angle α where

λ = v‖/v and weighted according to the distribution function. A quasi Monte-

Carlo loading scheme, the Hammersley set [92, 93] is applied to drop particles

over the whole phase space. The loading is uniform (i.e. roughly constant

density of points) but irregular. The Hammersley sequence gives low noise

for the Monte-Carlo simulations and is determined based on the following

principles. Any non-negative integer k can be expressed in terms of a prime

base p:

k = a0 + a1p+ a2p
2 + · · ·+ arp

r, (5.9)

where the coefficient ai is an integer between 0 and p−1. Then a Hammersley

point Φp is given by ai and p

Φp = a0

p
+ a1

p2 + a2

p3 + · · ·+ ar
pr+1 . (5.10)

Φp is a point between 0 and 1 and can be used to scale a coordinate value for

a particular dimension, i.e., x = xmin + Φp(xmax − xmin) where xmax and xmin
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Figure 5.1: 2D Hammersley set generated by using prime base of 2 and 3.
A total size of 120 markers are distributed uniformly but irregularly in the
space of gyro angle α ∈ [−π, π] and pitch λ = v‖/v ∈ [−1, 1].

are the upper and lower limits of the coordinate x, respectively. Six prime

bases 2, 3, 5, 7, 11 and 13 are used to generate particle initial states in HALO.

For each particle with ID k we can generate a set of coordinate values by

finding Φp for p = 2,3,5... and scaling this by the range of the coordinate.

Each dimension in phase space is assigned a different prime base and this

results in a uniform but highly irregular loading of the space with good noise

properties. In Fig. 5.1, a 2D Hammersley set is generated on gyro angle α

and pitch λ space. The prime bases are 2 and 3 for α and λ. Particle markers

are distributed uniformly but highly irregularly in the domain of [−π, π] and

[-1,1].

5.2.3 Noise reduction

The prescription above requires large numbers of markers to converge well.

One way HALO achieves this is via the use of GPUs to track the full orbits

of particles in electromagnetic fields. GPU cards are designed for parallel

processing and can be used for scientific simulations and processing a large

volume of physics/mathematical calculations simultaneously. GPUs are cap-

able of tracking large numbers of particles rapidly but are less efficient than
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CPUs if there is only a few particles as it takes more machine time to launch

a GPU task than a CPU task. Thus the more GPU tasks are requested at

one time, the less machine time each GPU consumes on average.

A second method used in HALO to reduce Monte-Carlo noise is to employ

a delta-f scheme. The delta-f approach is developed to solve the evolution of

the distribution function f which is perturbed via the interaction between

particles and waves in plasmas. f is decomposed into the an equilibrium and

a perturbed part:

f(Γ, t) = f0(Γ, t)︸ ︷︷ ︸
steady

+ df(Γ, t)︸ ︷︷ ︸
markers

(5.11)

where Γ represents an arbitrary coordinate in phase space. The equilibrium

f0 is a steady state solution of the Vlasov equation and df is represented by

following the orbits of particles in the simulation. The power transfer to the

wave calculated in Eq. (5.4) can be split into two parts by using Eq. (5.11)

and reduces to

A′i(t) = − 1
2δWMHD

1
A∗i
q
∑
i

E+
i (xi) · vi(��f 0 + df)∆x3∆v3, (5.12)

The cancellation of f0 in Eq. (5.12) is due to the axisymmetric equilibrium,

that is, the contribution from the first term to the integral vanishes because

it is proportional to
∫
dφ cosnφ = 0. Therefore the noise from the evaluation

of the f0 term can be also avoided.

5.2.4 Inputs for HALO

To quantify the fast ion transport, a series of codes which solve different

problems is required. The workflow required to perform a HALO simulation

is shown in Fig. 5.2. The plasma equilibrium is reconstructed by EFIT and

the linear MHD stability code MISHKA is then used to determine the mode

102



5.2.4. Inputs for HALO
M. Fitzgerald, J. Buchanan, R.J. Akers et al. / Computer Physics Communications 252 (2020) 106773 5

Perturbed fields do not appear in these equilibrium invariants, it
is only the trajectories that are perturbed.

F0 = F
(
E (xi (t) , vi (t)) , µ (xi (t) , vi (t)) , Pφ (xi (t) , vi (t)) ;

sgn(v∥ (0))
)

(47)

Pφ (x, v) = mRvφ + Zeψ0 (x) (48)

E (x, v) =
1
2
mv2 (49)

µ (x, v) =

1
2mv

2
⊥

B0(x)
+ O

(ρ
L

)
(50)

where we have written only the lowest order in gyroradius ex-
pansion ρ

L for the gyroinvariant. Applying the chain rule to the
equilibrium equation we arrive at our delta-f scheme in cylindri-
cal coordinates

d
dt
δfi (t) = −δ̇vR

[
mvR

(
∂F0
∂E

)
µ,Pφ

+
∂µ

∂vR

(
∂F0
∂µ

)
E,Pφ

]

− δv̇Z

[
mvZ

(
∂F0
∂E

)
µ,Pφ

+
∂µ

∂vZ

(
∂F0
∂µ

)
E,Pφ

]

− δv̇φ

[
mvφ

(
∂F0
∂E

)
µ,Pφ

+ mR
(
∂F0
∂Pφ

)
µ,E

+
∂µ

∂vφ

(
∂F0
∂µ

)
E,Pφ

]
(51)

with all quantities understood to be measured along a marker tra-
jectory (xi (t) , vi (t)), and δv̇ ≡

Ze
m

(vi (t)× δB (xi (t) , t)+ δE (xi (t) , t)).
When ω

Ω
≪ 1 as expected for low-n shear Alfvén waves, the

∂F0
∂µ

contributions to δf may be ignored and we set µ (t) = µ(0).

Now we obtain an explicit expression for the work done by the
wave on the delta f markers

f (x, v, t) ≈

∑
i

δ (x − xi (t)) δ (v − vi (t)) [F0 (x, v)

+ δfi (t)]∆3xi∆3vi (52)

J i,fast (x, t) = Ze
∑

i

viδ (x − xi (t)) [F0 (x, vi)+ δfi(t)]∆3xi∆3vi

(53)

Ȧi,fast
(
t;ωj

)
= −

1
2δWTAE

eiωjtZe
∑

i

e†
(
xi(t);ωj

)
· vi [F0 (xi (t) , vi (t))+ δfi (t)]∆3xi∆3vi (54)

In a 2-D equilibrium, the function F0 (x, v) is axisymmetric, which
implies that we have contributions from the equilibrium pro-
portional to

∫
dφcosnφ which vanish identically. Dropping the

equilibrium contribution therefore reduces the noise significantly,
owing to the smallness of δf when compared with F0

Ȧi,fast
(
t;ωj

)
= −

1
2δW

eiωjtZe
∑

i

e†
(
xi(t);ωj

)
viδfi (t)∆3xi∆3vi

(55)

As mentioned earlier, correct treatment of the adiabatic con-
tribution to the mode evolution requires the inclusion of the
neutralizing partner electrons δJ e,partner (x, t). The natural way to
include the neutralizing partner electron contribution in HALO is
for each marker to have a correction to its velocity in the complex

Fig. 1. Alfvénic workflow currently implemented in HALO.

power transfer calculation to remove the E × B motion giving

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjtZe
∑

i

e†
(
xi (t) ;ωj

)
(vi − vE×B)

× δfi (t)∆3xi∆3vi (56)

vE×B (xi (t) , t) =
δE (xi (t) , t)× B (xi (t) , t)

B2 (xi (t) , t)
(57)

4. Applications

4.1. MHD eigenmodes from MISHKA for TAE studies

The Alfvénic eigenmode workflow currently implemented in
HALO is shown schematically in Fig. 1 and is the basis for the ex-
amples presented in the rest of this paper. A solution to the Grad–
Shafranov equation in cylindrical coordinates is first obtained
either via a reconstruction process from experiment via EFIT [21],
by prediction, or by postulate. In particular, the profiles p(ψ) and
FF ′(ψ) and the location of the boundary is required. With the
equilibrium profiles and boundary known, a second solution of
the Grad–Shafranov equation must be obtained in a straight-field
line coordinate system using the HELENA [22] code. This solution
produces a high-fidelity equilibrium reconstruction suitable for
linear MHD analysis, as well as a coordinate mapping between the
cylindrical and straight field line coordinate systems. The high-
fidelity equilibrium is provided to the MISHKA [23] linear MHD
code and a set of eigenmodes of interest are computed.

The MISHKA eigenmodes are represented with the perturbed
fluid velocity in the straight field-line coordinates (s, θ, ϕ). For
ideal modes, MISHKA outputs two variables (v1, v2) where v1 is
related to the contravariant radial (s) component of the perturbed
flow velocity Ṽ and v2 is related to V̂ 2

=

[
Ṽ × B0

]
1

v1(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v1m,iH

1 (s)+ dv1m,iH
2 (s)

)
(58)

v2(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v2m,ih

1 (s)+ dv2m,ih
2 (s)

)
(59)

where the second summation is over radial grid points. The
radial dependence is represented using Hermite polynomial basis

Figure 5.2: Workflow of HALO. A plasma equilibrium is provided by EFIT.
Mode eigenfuntions and frequencies are calculated for this equilibrium by the
linear MHD code MISHKA in straight field line coordinates and then converted
to cylindrical coordinates. (image taken from ref. [89].)

eigenfuntions and frequencies for this equilibrium in a straight field line sys-

tem. HELENA provides coordinate transformation maps from straight field line

coordinates to cylindrical coordinates used by HALO. Then HALO can evolve

the mode amplitude along with the perturbed particle distribution function.

A list of plasma parameters, equilibrium profiles, and eigenfunctions used for

the problem of fast ion transport to be discussed in this chapter is as follows.

Equilibrium An MHD equilibrium is required to start the calculation,

providing zero order quantities related to fluid and field, such as the poloidal

flux function, 2D magnetic geometry, and q profile, etc. The equilibrium

magnetic field also contains the instability information of the bulk plasma.

Steady state fast ion distribution function HALO requires a distribu-

tion function f0 in constants of motion space. This is because the evolution

of df for each particle requires knowledge of the local gradients of f0 with
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5.2.4. Inputs for HALO

respect to E and Pφ. f0 could be a beam slowing down distribution function,

a distribution caused by ICRF heating, or from fusion alphas as in the case

we will study.

Eigenmode functionMHD instabilities are described by the ideal MHD

equations as shown in section 2.4. For an equilibrium of interest, precise

solutions to these equations can be computed by numerical codes , such as

MISHKA [76]. The HALO code will investigate the nonlinear interaction between

the prescribed eigenmodes and particles. As shown in Ref. [89, 94], the

eigenmode functions are obtained by representing the time dependence of

the perturbation in an exponential form expλt. The perturbed magnetic and

electric fields are given by

JδB1 = −i
(
m

(
dψ

ds
Â2

)
+ n

(
dψ

ds
qÂ2

))

JδB2 = inA1 + ∂

∂s

(
dψ

ds
Â2

)

JδB3 = ∂

∂s

(
dψ

ds
qÂ2

)
− imA1

δEi = −λAi
c

(5.13)

where the Jacobian is J = dψ

ds

qR2

RBφ

and the vector potential is related to two

velocity variables (v1, v2)

A1 = −iv2

λ
dψ

ds
qÂ2 = −v1

λ

Â2 ≡ [A×B0]1 /B2
0

(5.14)

and

v1(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v1
m,iH

1(s) + dv1
m,iH

2(s)
)

v2(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v2
m,ih

1(s) + dv2
m,ih

2(s)
) (5.15)
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where H1(s), H2(s), h1(s) and h2(s) are Hermite quadratic or cubic poly-

nomials. The calculation is carried out in the straight field-line coordinates

(s, θ, φ) and then transformed to the conventional cylindrical coordinates us-

ing coordinate maps provided by the HELENA code [95].

5.3 Modelling chirping modes

As described in section 2.4.4 on one dimensional Landau damping, waves can

either damp or grow as they interact with particles. The condition depends

on the sign of the gradient of the particle parallel distribution function with

respect to the particle parallel velocity in the vicinity of wave phase velocity,

i.e., G = (∂f‖
∂v‖

)ω/k. For instance, when G > 0 waves can grow indicating that

a free energy in particles drives the growth of the waves and G tends to be

flattened as particles lose their kinetic energies. In the hybrid MHD-kinetic

model, drive/damping is affected by both ∂f0

∂ε0
and ∂f0

∂P
(0)
φ

with opposite sign as

shown in Eq. (2.127) and (2.136). Both particle distribution and mode amp-

litude evolve in time interactively. The HALO model is consistent with both

mechanisms and can explore the further nonlinear phase. Fig. 5.3 (taken from

Ref. [89]) shows the evolution of the wave and particle energies and the mode

amplitude for a full non-linear simulation of an n = 6 TAE interacting with

an alpha particle slowing down distribution (the exact scenario is described

in the following sections). The eigenmode of interest is a localised TAE mode

which is numerically calculated with the cylindrical equilibrium. The values

of geometry and field give a fast particle orbit width which is comparable

to mode width of n = 6 modes so the power transfer between particles and

modes is expected to be observable in the simulation. One can see that the

energy grows exponentially during the linear phase from t =150 to 300 wave
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Fig. 5. Nonlinear growth and saturation of the TAE (right), and comparison between change in wave energy and sum of change in particle energy (left).

What remains to be shown is that there is sufficient temporal
and spatial resolution in order to faithfully compute the wave
power transfer in the nonlinear phase, conserving total energy.

The long-term nonlinear behaviour of the TAE alpha-particle
benchmark is given in Fig. 5, showing the classic growth and
saturation expected, and the conservation of energy between
waves and particles. As the field grows, particle orbits deviate
significantly from equilibrium orbits and can become resonantly
trapped within the wave potential. The field energy grows as
A2, whereas the region in phase space that can supply energy
grows approximately as A3/2. When the two energies become
comparable, the exponential growth slows until saturation when
the gradients in the distribution are removed via phase-mixing
of trapped orbits on a timescale comparable with the nonlinear
bounce frequency [6].

A further test of nonlinear evolution is the creation of
Bernstein–Greene–Kruskal (BGK) nonlinear waves that chirp in
frequency. These holes and clumps in phase-space result from
the shearing of trapped particle islands as the amplitude of the
saturated state is modulated by damping [30,31].

A marginally unstable version of the TAE benchmark was
created by considering an additional source current in the wave
equation

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjt
∫

dx e†
(
x;ωj

) [
δJ fast (x, t)+ δJd (x, t)

]
(75)

this can be rewritten as an equation for the time varying growth-
rate

Ȧ
(
t;ωj

)
=
(
γfast (t)− i∆ωfast (t)

)
A
(
t;ωj

)
+ (γd (t)− i∆ωd (t)) A

(
t;ωj

)
(76)

To produce nonlinear chirping, we assume a linear damping
contribution γd (t) = γd,∆ωd (t) = 0

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjt
∫

dx e†
(
x;ωj

)
δJ fast (x, t)+ γdA

(
t;ωj

)
(77)

The nonlinear TAE benchmark described earlier was repeated
with a linear damping term included such that γd

γL
= 0.9. Fig. 6

gives the amplitude and frequency evolution of the marginally
unstable evolution. The rapid amplitude modulation is typical of
marginally stable TAE simulations performed with HAGIS [32]
and with other codes [33]. Also evident is the expected steady
production of BGK modes sweeping in frequency symmetrically

Fig. 6. Amplitude (above) and Fourier spectrogram (below) of the TAE
benchmark made marginally unstable.

above and below the eigenfrequency as expected from the bump-
on-tail theory [34] and observed in previous TAE calculations [35]
and has been observed in experiment [36].

4.6. Conserved quantities and convergence

The full-orbit motion of δf markers is described by the tra-
jectories obtained from the Lagrangian given by Eq. (D.14) as
solved using the orbit-following portions of the LOCUST-GPU
code [15] with either of the phase-volume preserving Boris or
Strang particle orbit integrators [37].

For fully self-consistent HALO solutions, Eqs. (51) and (55), as
well as the particle trajectories specified by Eq. (D.14) are inte-
grated simultaneously in time as an initial value problem. Parti-
cles are loaded in 6D phase space using a quasi-random Hammer-
sley sequence [38] in order to reduce noise in the power transfer
integral. The rapid variation in the quantity e†

(
xi(t);ωj

)
vi gov-

erns the power transfer timescale, with only the drift contribution
having any consequence for Alfvénic modes which oscillate on
an ω ≈ k∥vA timescale. Slower still is the growth time of
Ȧ as dictated by the perturbative model. In order to integrate
the rapidly varying power transfer between infrequent wave
amplitude updates, a 6th order finite difference scheme was used.

Figure 5.3: The energy-exchange occurring between the TAE and alpha
particles (left) and non-linear growth of the TAE (right) (images taken from
Ref. [89])

periods. Later in the non-linear phase, the rate of the energy-exchange slows

down and energies of the particle and wave reach a saturated level lasting for

175 wave periods until the simulation ends. As the mode evolves with time,

the particle distribution function f = f0 +df would change coherently, where

f0 is the equilibrium distribution function and assumed to be independent of

time. Therefore it is only df that changes with time and we use df to evaluate

the macroscopic particle transport induced by a mode.

In the previous chapter, strong and continuous chirping in time can be

seen from the measured mode frequency (TAE and fishbone) whereas the

ideal MHD model can only compute and predict a single and constant mode

frequency. The chirping phenomena are widely observed in energetic beam

injection experiments on various fusion devices. In HALO, we can simulate

chirping by adding an ad-hoc damping but the behaviour does not match

what is observed in experiment partly due to lack of collisions. To overcome

this, we impose a chirping structure by hand that roughly matches the scale

of chirping seen in experiment. This might not be physically correct but

should still give us some insight into how important chirping is for particle

redistribution for this case and whether HALO can potentially be used to
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𝝎
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Figure 5.4: The mode frequency ω(t) is assumed to be a linear function of
time. ω0 is the eigen-frequency computed by the MISHKA code. The ad-hoc
chirping frequency are realised by a coefficient η. η < 1 is for down chirping
modes and η > 1 for up chirping modes.

model it.

On MAST, the mode frequency rapidly sweeps down in a nearly linear

way as can be seen in Fig. 4.2. We therefore implement an ad-hoc frequency

chirp by a linear function of time as shown in Fig. 5.4. The frequency

function ω(t) is determined by two points (ω0, t0) and (ηω0, tsim). Here, ω0

is the eigenfrequency numerically obtained from MISHKA, t0 = 0 is the initial

time when the simulation starts and tsim is the total simulation time. The

mode frequency in the end is assumed to be a fraction of the eigen-frequency,

defined by a coefficient η, that is, ω(tsim) = ηω0. The expression of a chirp

frequency is written as

ω(t) = ω0

(
1 + (t− t0)(η − 1)

tsim − t0

)
(5.16)

In HALO, each marker represents a change in the local number of particles

given by

dN = df · J · dV, (5.17)

where J is the Jacobian and dV is the volume element in the hypercube used

to perform the particle loading. For the loading scheme discussed above, the

Jacobian is J = v2 and dV = dxdydzdvdλdα. The calculated df is binned
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for each particle. In Fig. 5.8, 〈df〉 is the averaged df value obtained by the

summation over the total number of particles in a bin and division by the

total phase space volume:

〈df〉 =
∑
i(dfiJidV )∑
i JidV

=
∑
i(dfiJi)∑
i Ji

, (5.18)

where dV is cancelled out since it is a constant for each particle. 〈df〉 is used

to estimate the particle redistribution in the presence of the modes.

5.4 Study scenario

A near cylindrical geometry tokamak configuration is considered. Fig. 5.5

shows the plasma equilibrium with a circular cross-section without elongation

or triangularity. It is a relatively simple magnetic geometry used for validating

the HALO code as presented in [89]. The parameters of this configuration are

reasonably close to a typical tokamak with large aspect ratio. The major

radius R0 is at 3 m and the aspect ratio a/R0 = 0.25. The toroidal magnetic

field at R0 = 3 is 3.0 T and q0 is 1.82.

For this plasma equilibrium, eigenmodes with toroidal mode number

n = 6 and mode frequency ω0 = 481 kHz are found by the MISHKA code

as demonstrated in Fig. 5.6. From the poloidal cross-section, the perturbed

electromagnetic components are aligned with the flux surface. The relat-

ive magnitude of the magnetic field components are comparable while the

strength of the toroidal electric field Eφ and are much lower than that of the

poloidal components ER and EZ . Both the radial and vertical components of

the electric field are high in the low field side (LFS) compared to the high field

side (HFS). However, the distribution is opposite for the poloidal magnetic

fluctuations, that is, BR and BZ are relatively weak in the LFS.
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Figure 5.5: A circular equilibrium for benchmarking the HALO code. This
equilibrium represents a simplified conventional tokamak configuration with
a circular poloidal cross section. The magnetic axis is located at R = 3 m.
ψn is the normalised flux surface function and in the range of 0 ≤ ψn ≤ 1.
This equilibrium is used for the calculations throughout this chapter.

Figure 5.6: Solutions of eigenmodes found by MISHKA for the bulk plasma
confined in the circular flux surface as described above.
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The alpha particle distribution function takes a product form given by

f0 = h1(Pφ)h2(E) [52, 96]. Here, h1 is sensitive to the plasma temperature and

density profiles and is expressed in terms of Pφ(ψp): h1(Pφ) =
(
1− P 2

φ

)10
. h2

is related to alpha particle drag induced by collisions with thermal electrons

and ions. In this case, we assume a fuel mixture 50:50 for D and T ions with

same temperature at Ti = 20 eV and an analytical solution of the Fokker-

Planck equation is written as

h2 = 1
v3 + v3

c

erf
 E − 3.5 MeV

106× 103
√
Ti [keV]

 . (5.19)

Here, the error function is defined as

erf z = 2√
π

∫ z

0
e−t

2
dt, (5.20)

and vc is the crossover velocity approximately given by

vc ≡
(

3
√
π
meZ1

4

) 1
3
√

2Te
me

, (5.21)

where Z1 = 0.5
2mp

+ 0.5
3mp

. When the alpha particle velocity v equals vc, the

drag exerted by the thermal electrons on the alpha particles equals that of

the thermal ions on the alpha particles. For alpha particle velocity below vc,

the ion drag dominates and for velocity above vc the electron drag dominates.

5.5 Results

To simplify the problem, the mode amplitude A = dBr/B0 is assumed to be

a constant when a frequency chirp is prescribed manually. Here, B0 is the

equilibrium magnetic field on axis and dBr is the maximum radial mode field

on the outboard mid-plane. In Fig. 5.8, A = 1 × 10−3 is set to be constant

for the entire simulation time tsim = 6 ms. The chirp coefficient is η = 25%
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Figure 5.7: A mocked-up alpha particle distribution function f0(E,Pφ) is used
in the simulation. f0 is constructed by a product form f0 = h1(Pφ)h2(E).
Here, the spatial dependence of f0 is given by h1 term and the collision drag
from background ions and electrons on alpha particles is described in h2 term.

representing a mode with frequency down sweeping in time. 〈df〉 is binned in

R and Z coordinates. A negative 〈df〉 indicates that particles leave a region

and cause a decrease in the particle number while a positive 〈df〉 corresponds

to an opposite situation. There is a visible decrease in particle number in the

core and an increase from mid-radius towards the edge. Particles are lost from

where the eigenmode is located as shown in Fig. 5.6. As the simulation time

elapses, particles are redistributed from the plasma centre. In the contour

graph, the plotted data are restricted to ±4 times of the standard deviation

of 〈df〉 to get rid of outliers in the data and improve the resolution. By

filtering a small section of the data, the transport structure can be seen more

clearly. This is the reason that there are some blank areas in the image.

Particles are asymmetrically lost from the plasma centre and they eventu-

ally leave the confinement region from the outboard side as shown in Fig. 5.9,

where the magnetic axis R0 = 3 m and the outboard and and inboard refer

to the region with R > R0 and R < R0, respectively. The data is consistent

with the mode moving particles from passing orbits in the core onto trapped
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Figure 5.8: Time slices for t = 1-6 ms of particles being transported from
the plasma centre (blue region) to edge (red region) due to a chirping mode.
〈df〉 is a quantity proportional to the change of the particle number. The
mode amplitude A0 = 10−3 is fixed throughout the simulation and the chirp
coefficient is η = 0.25 corresponds to a down chirping frequency. The grey
contours are the poloidal flux function from the equilibrium data and the solid
grey line labels the LCFS. The blank squares come from the data filtering of
±4σ, where σ is the standard deviation of 〈df〉.

112



5.5. Results

0.5

0.0

0.5
<d

f>

1e 8 Time = 1.0 ms

inboard
outboard

Time = 2.0 ms

inboard
outboard

0.5

0.0

0.5

<d
f>

1e 8 Time = 3.0 ms

inboard
outboard

Time = 4.0 ms

inboard
outboard

0.00 0.25 0.50 0.75 1.00
n

0.5

0.0

0.5

<d
f>

1e 8 Time = 5.0 ms

inboard
outboard

0.00 0.25 0.50 0.75 1.00
n

Time = 6.0 ms

inboard
outboard

Figure 5.9: Asymmetric distribution of the redistributed particles. Inboard
and outboard sides refer the radial location R relative to the magnetic axis
R0.

and lost orbits.

As particles resonate with the mode, particle constants of motion would

change. In Fig. 5.10, the relationship between 〈df〉, energy E and toroidal

angular momentum is investigated. The expression of Pφ is given in Eq. (2.95)

and repeated here: Pφ = Zeψp/2π+mRvφ. Pφ is a function of particle toroidal

velocity vφ and poloidal flux surface function ψp which shows the location of

a particle. Significant particle transport can be seen in the Pφ dimension.

Particles are lost from the region where Pφ is negative and accumulated at

the region with Pφ > 0. Changes in either ψp or vφ in the expression of Pφ

can cause particle redistribution in the Pφ space. In Fig. 5.11 (a-c), 〈df〉 is

separately binned in terms of Pφ, vφ and ψn. In the ψn dimension, particles
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Figure 5.10: Time slices at 1-6 ms of 〈df〉 binned in E and Pφ space. Pφ is
normalised by eψbry where ψbry is the poloidal flux at the boundary (LCFS).
Most of resonant particles are at energy E < 0.5 MeV. A boundary between
the particle loss and gain appears at Pφ = 0 surface. Parameters of the
simulation are the mode amplitude A0 = 10−3 and chirp coefficient η = 0.25.
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Figure 5.11: 〈df〉 is binned in one dimensional space (a) toroidal angular
momentum Pφ; (b) normalised poloidal flux ψn; (c) particle toroidal velocity
vφ. Pφ is normalised by eψbry where ψbry is the poloidal flux surface function at
the boundary (LCFS). Subplots (a) and (c) enjoy high degree of similarity and
the change in vφ is likely to be responsible for particle transport in Pφ space.
Subplot (b) shows particles are transported from plasma centre ψn = 0.1 to
outer region ψn = 0.4 and the LFCS ψn = 1. Eventually those particles
escape the confinement region and hit on the facing wall.

move outwards from ψn ∼ 0.1 to ψn ∼ 0.4. Some particles cross the LCFS

(ψn ∼ 1) and then leave the confinement region. The change in particle

toroidal velocity is qualitatively consistent with the change in Pφ. When vφ

increases/decreases, Pφ is changing in a consistent way based on the sign of

vφ in the equation for Pφ.

A visible particle redistribution has been identified by simulating a chirp-

ing mode with a constant mode amplitude A = A0 in HALO. As a comparison, a

case with a constant mode frequency and evolving mode amplitude A = A(t)
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is considered. The mode linearly grows and eventually saturates. From t = 1

ms, particles can be found to leave the plasma centre and spread out reach-

ing outer area or outside of the LCFS. However, the particle transport is

relatively weak overall and the lost region is restricted to the outboard side,

exhibiting different features to the chirping case as shown in Fig. 5.8 where

the lost region is extended to the inboard side.

As discussed in the previous chapter, a chirping frequency would increase

the resonance region, improve wave-particle interaction, and potentially en-

hance particle transport. For a single mode frequency, a certain group of

particles can resonant with the mode. If the mode frequency is continuously

changing with time, more particles will enter into the resonance region and

exchange energy with the mode. To investigate this effect, we fix the mode

amplitude to be A = A0 = 1e−3 and vary the chirp coefficient η in the linear

equation of mode frequency ω(t) as defined in Eq. (5.16). A total time of 6

ms is simulated and the final particle state are shown in Fig. 5.13. Both up

chirp and down chirp are considered, corresponding to η > 1 and 0 < η < 0,

respectively. Particle redistribution develops and more particles are shifted

outwards as |η − 1| increases. η = 1 represents a constant mode frequency.

We have run two different non-chirp cases, one with a fixed mode amplitude

and one with a time varying amplitude A(t) which is solved in HALO. Particle

transport in both cases are comparable and relatively weak compared to those

affected by both up and down chirping modes.

For an eigenmode with constant mode frequency, it has been found the

increasing mode amplitude does not significantly increase the particle trans-

port. However, the situation is different for chirp modes. We have used a

constant mode amplitude A0 = 10−3 to study how a down chirping mode

affects the particle transport. Now we vary A0 and a set of different mode
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Figure 5.12: Reduced particle transport in the presence of the eigenmode with
a constant mode frequency ω0 = 481 keV computed by the MISHKA code. The
initial mode amplitude is A(t = 0) = 10−3. A(t) evolves in time as the mode
interacts with particles and is solved consistently by the HALO. The particle
transport level is much lower than those induced by a chirping mode.

117



5.5. Results

0.0 0.2 0.4 0.6 0.8 1.0
n

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

<d
f>

1e 8

= 1.5
= 1.25
= 1
= 1, A=A(t)
= 0.5
= 0.25
= 0.01

Figure 5.13: The particle transport level varies with the chirp coefficient η.
Calculations with various η track particles for the same time of 6 ms and
all curves shown here are the final measures at t = 6 ms. The mode amp-
litudes for all are constant A0 = 10−3 except the one marked with A = A(t)
(orange dashed). η > 1 and 0 < η < 1 correspond to up and down chirp-
ing frequencies, respectively. The particle transport enhances with growing
|η − 1| which states the deviation of the ending mode frequency away from
the initial value ω0 computed by the MISHKA code. The exception is when
η = 1 (non-chirp case). Interestingly whether the mode amplitude evolves in
time or not (orange dashed and green solid lines), the particle transport is
constantly small.

amplitude A0 = 10−2, 10−3, 10−4, 10−5 are selected. HALO tracks particles for 6

ms in the presence of a down chirping mode with a chirp coefficient η = 0.25.

In Fig. 5.14, the particle averaged distribution 〈df〉 at final state t = 6 ms

is plotted. For the large mode amplitudes, A0 = 10−2 and 10−3, particles

are redistributed outwards and the change in particle number increases with

increasing mode amplitude.

We quantify the uncertainty of the calculation by using two different

Hammersley sets for loading particles. The quasi-random sequences are de-

termined by setting different values of k in Eq. (5.9), i.e., k = 1, 2, 3, ..., np

and k = np + 1, np + 2, ..., 2np, respectively. Here, np is the total number

of simulated particles. As shown in Fig. 5.15, 〈df〉 calculated by two sets,

labelled in “H1” and “H2”, agrees well for large mode amplitude A0 = 10−2
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Figure 5.14: The mode amplitude has an effect on the particle transport
induced by a down chirping mode. The change in particle number is largely
reduced as the mode amplitude weakens. When A0 is on the order of 10−4 or
smaller, the chirping mode will not affect the particle transport. The chirp
coefficient η = 0.25 and the simulation time is 6 ms for all cases.

Figure 5.15: 〈df〉 calculated by two different quasi-random sequences, “H1”
(solid) and “H2” (dashed or dotted). The simulation results are more diverged
with decreasing mode amplitude.

and 10−3. The uncertainty appears when A0 is as small as A0 = 10−4 or

10−5. We calculate the coefficient of variation (CV), defined by the standard

deviation σ and mean µ, CV=σ/µ, which measures the numerical stability

when different Monte Carlo loading sequences are used. It can be seen in Fig.

5.16, as the mode amplitude increases, CV decreases and the dispersion of

the numerical results around their mean values is largely improved.

119



5.6. Discussion and summary

0.0 0.2 0.4 0.6 0.8 1.0
n

10 4

10 3

10 2

10 1

100

101

102

/

A0 = 1e-2 1e-3 1e-4 1e-5

Figure 5.16: Coefficient of the variation, CV=σ/µ, where σ and µ are the
standard deviation and mean value, respectively. As A0 increases, CV is
reduced and the results are converged for simulating particles with different
initial states.

5.6 Discussion and summary

In this chapter, we have modified the evolution of the mode frequency by hand

and used a mocked-up alpha distribution in HALO to us an indication of the

potential impact of chirping on fast particle loss calculations. As predicted in

the previous chapter using calculated resonance maps, the chirping frequency

widens the wave-particle resonance region and increases the number of the

resonant particles that are redistributed.

The modelling shows the dynamics of particles being transported from

the plasma centre to the edge assuming a time dependent frequency func-

tion. Particles are lost asymmetrically from the core and the lost regions at

the outboard side relative to the magnetic axis are shifted outwards. The

asymmetry could be correlated with the structure of particle passing orbits.

The results also show the particle transport in constants of motion space
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by binning 〈df〉 in E and Pφ space. A clear boundary of particles being lost

can be found at the Pφ = 0 surface. Particles are lost from regions with

Pφ < 0 and gained in regions with Pφ > 0. The change in Pφ depends

on the normalised poloidal flux surface ψn and particle toroidal velocity vφ,

suggesting an evident transport in velocity occurring during wave-particle

resonance.

As a comparison, simulations with a constant mode frequency have also

been implemented. The particle transport is low compared with the chirping

case and not affected by either fixed mode amplitude or time varying mode

amplitude when consistently solving for the non-linear wave particle evolu-

tion in HALO. Furthermore, particle transport increases with |η − 1|. Here,

η is defined as the chirp coefficient and |η − 1| shows the degree that the

ending frequency deviates from the initial frequency. This includes up and

down chirping situations since both chirping frequencies have been observed

in experiments.

Even though the particle transport is not influenced by the mode amp-

litude A for a non-chirping frequency, the value of A can change how many

particles are redistributed due to a chirping mode. More particles transport

towards the edge as the constant mode amplitude increases as shown in the

simulations.

In summary, a simplified model using a mocked-up alpha distribution

and an ad-hoc chirp frequency evolution is proposed and simulated in HALO.

Full non-linear modelling shows that eigenmodes with a single and constant

frequency will not cause large particle redistribution. It suggests that at-

tempting to model redistribution and loss of fast particles without a proper

inclusion of the frequency evolution of the modes may well be insufficient.
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Chapter 6
Conclusion

Energetic particle physics is an active research topic in the fusion community

and a good confinement of fast particles is a key factor for realising self-

sustained fusion energy. This thesis explores fast ion transport induced

by perturbed electromagnetic waves through modelling wave-particle inter-

actions and calculating changes in both particle distribution function and

particle number during this process. In Chapter 2, the equations of single

particle motion and the MHD fluid description for plasmas are reviewed. A

kinetic-MHD hybrid model which separately treats thermal and fast plasma

components to investigate the wave-particle interaction is also discussed in

this chapter.

The hybrid model leads to a wave-particle resonance condition which is

expressed in terms of particle motion frequencies and eigenmode frequencies.

This motivates the work in Chapter 3 where a full orbit code is developed

to solve the charged particle Lorentz motion in a tokamak and work out

the poloidal and toroidal motion frequencies as particles complete periodic

motion along the torus and in the poloidal cross section directions.

In chapter 4, an application of the particle pushing code is presented.

The code is used to generate resonance maps using calculated particle motion
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frequencies according to the resonance condition. Experimental evidence of

particles being transported in the presence of chirping modes excited by the

energetic neutral beams on MAST is also discussed in this chapter. Resonance

maps are used to explain this observation and the features of the resonant

particle orbits are investigated in detail.

A quantitative study of particle transport is the subject of Chapter 5. An

n=6 TAE solution is found for a circular tokamak equilibrium configuration.

The effect of the eigenmodes and ad-hoc chirping modes on particle transport

are evaluated by simulating wave-particle interactions and calculating the

perturbed particle distribution function.

6.1 Results

The particle pushing code presented in Chapter 3 has been validated with

an analytic study of cyclotron motion in a constant magnetic field. The full

orbit code is used to compute particle trajectories using a realistic tokamak

magnetic field. Typical particle orbits, i.e. passing and trapped orbits, are

calculated for the MAST magnetic configuration. Non-standard orbits such as

potato and stagnation orbits are found to be localised near on-axis positions.

The capability of the code is then extended to calculate poloidal and toroidal

motion frequencies of particles as full orbits are followed in the simulation.

Calculations of frequencies do not require additional operations or data post-

processing such as Fourier analysis which are always time-consuming and less

efficient for large number of particles. The full orbit code is an important

numerical tool for the work in the next chapter.

In Chapter 4, a MAST plasma discharge is selected to study fast-ion

driven modes and the behaviour of resonant particle orbits. n = 1 TAE and
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fishbone oscillations with strong chirping are detected by the Mirnov coil ar-

ray. The observed mode frequencies are approximately 150 and 40 kHz for

TAE and fishbones, respectively. It has been found that FIDA measurements

are strongly correlated with MHD bursts, indicating a fast particle redistribu-

tion occurring due to the excited instabilities. The full orbit code described

in Chapter 3 has been used to generate resonance maps and identify particles

which satisfy the resonance condition. Those particles could potentially re-

spond to the driven waves. Two branches p = 0 and p = −1 of resonance are

resolved numerically for particles on the mid-plane. The resonant population

is broadened because of a chirping mode frequency which could result in an

enhanced particle redistribution or loss. The orbits examined suggest a direc-

tion for resonant transport induced by the chirping mode, i.e. the resonance

shifts towards the plasma core with decreasing chirping frequencies.

Attempts have been made in Chapter 5 to evaluate the transport of a

mocked-up alpha particle distribution in the presence of chirping modes. An

n=6 TAE with eigenfrequency at 481 kHz is numerically found for a near

cylindrical equilibrium. The chirping behaviour of the mode frequency is pre-

scribed using a linear function of time. Simulations have shown that particles

move outwards from the plasma centre when chirping modes are present while

significant particle transport cannot be seen when the mode frequency is con-

stant. The comparison suggests that the inclusion of a chirping frequency

is important for understanding the redistribution and loss of fast particles.

This result agrees with the conclusion in Chapter 4 which predicts an en-

hanced resonance between waves and particles could exist due to chirping

modes. The resulting redistribution exhibits an asymmetry in position space.

The lost region appears aligned with core passing orbits which implies that

orbit transitions from passing to trapped might also occur. Some passing
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orbits which could enter into the inboard side while circulating the poloidal

cross section could transform into trapped orbits which are mostly located at

the outboard side. Changes in toroidal angular momentum and energy show

particles transport in constants of motion space while they are interacting

with the modes. Effects of mode amplitude and chirping rate on particle

transport are investigated and an increase of either variable could improve

the particle transport for this case.

6.2 Outlook

The effect of chirping modes on fast particle redistribution and loss has

been investigated in HALO using a simple cylindrical tokamak geometry and

mocked-up alpha particle distribution function. To further develop the re-

search, a realistic plasma equilibrium with chirping modes could be a natural

follow-up. Here, the fast ion distribution function varies according to fast

particle source, whether it is NBI, ICRF or fusion products. A research can-

didate is the MAST plasma discharge presented in Chapter 4. Plasmas are

heated by the NBI and chirping TAE and fishbone oscillations are observed.

On the other hand, the MAST-U project has developed a capacity of de-

livering an off-axis NBI heating in order to mitigate fast ion losses due to

instabilities. Therefore, the MAST-U device is a good candidate platform for

exploring whether the behaviours demonstrated in the simple case studied

are replicated in more realistic scenarios.

An appropriate damping mechanism is currently absent in HALO and the

mode does not exhibit realistic chirping which matches experiment. This

is the reason why we use an ad-hoc linear function to describe the mode

evolution during particle redistribution. The current modelling is suggestive
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but is unsuitable for providing detailed explanations of experimental obser-

vations, i.e. a chirping mode frequency. Work is currently underway to build

a collision operator in HALO which should enable more accurate modelling

of the evolution of modes in devices such as MAST. Once this is complete

it will be possible to self-consistently explore the impact of chirping modes

on fast particle redistribution on devices like MAST-U. The calculated mode

frequency should be consistent with experimental measurements and this can

be a validation of the collisional plasma model.
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