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Abstract 

Background 

Menstrual disturbances, namely amenorrhea and oligomenorrhea are relatively common 

disorders in female endurance athletes as a result of low energy availability (LEA). LEA is 

characterised by the perturbation of several hormones of which are involved in the regulation 

of bone (re)modelling and also those with cardio-protective properties. The impact on bone 

health is relatively well understood, but the extent of cardiometabolic risk factors ranging 

along a scale of both time and severity of menstrual disturbances is yet to be determined.  

Methods 

In this observational study, 4 amenorrheic athletes (AA), 3 oligomenorrheic athletes (OA) and 

5 eumenorrheic athletes (EA) completed the LEAF-Q and received measurements of stature, 

mass, resting heart rate, resting blood pressure, waist circumference, body composition using 

bioelectrical impedance analysis and dual energy X-ray absorptiometry (DXA). Bone Mineral 

Density was measured by DXA at the total body, total hip, femoral neck, and anterior-

posterior lumbar spine (L1-L4). 

Results 

There were statistically significant differences in the total body and lumbar spine BMD Z-

scores between amenorrheic and eumenorrheic athletes. Mean BMD Z-scores (-1.13 - 1.33) 

for the amenorrheic group were not outside of the normal range (>-0.2). Total body water 

(TBW) was at the top end of the normal range for the amenorrheic group, but not statistically 

significant from the eumenorrheic group. TBW was, negatively associated with waist:height 

ratio (R=-.874, p=<.001). Waist:height ratio was positively associated with total body BMD Z-

score (R=.741, P=.006). BMD total body (Z-score) was positively associated with percentage 

body fat (PBF) (R=.682, p=0.015). 

Conclusions 

This study confirms the findings of previous work, that exemplify the differences in bone 

density between amenorrheic and eumenorrheic endurance athletes. Further studies need 

to be undertaken to confirm bone loss and better understand the time-course for any bone 

loss from onset of menstrual disturbance. Due to COVID-19 restrictions, the study sample size 

was limited and biochemical markers of cardiometabolic status were possible.  
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Chapter 1  - Introduction 

  

1.1 Background 

Menstrual Disturbances in Female Athletes  

Menstrual disturbances, namely amenorrhea and oligomenorrhea are relatively common 

disorders, and there has been difficulty determining the prevalence of each condition due to 

variability in type and its definition (DiPietro & Stachenfeld, 2006). Previously, the prevalence 

of amenorrhea in particular has been reported to be between 3.4% to 66% in some segments 

of the athletic population (Loucks & Horvath, 1985. Shangold, Rebar, Wentz, et al., 1990. Otis, 

1992), compared with 2% to 5% in the general population. The much greater range between 

the athletic population is potentially reflective of how sport specific the prevalence of 

amenorrhea can be, especially given that there’s such a tight range in the general population. 

Although amenorrhea can affect female athletes in any sport, there is often a higher 

prevalence reported in sports that are endurance based (Nattiv et al., 2007), and in sports 

that have a community of which emphasise leanness being of high importance, such as 

gymnastics and dance (Zanker et al., 2004). 

In particular, in female athletes’ functional hypothalamic amenorrhea (FHA) is the most 

common (Sonntag and Ludwig, 2012) and FHA is responsible for 20–35 % of secondary 

amenorrhea cases (Practice Committee of the American Society for Reproductive Medicine, 

2006). This is reflective of altered levels of sex hormones and particularly common for those 

partaking in endurance sports, such as long-distance running, cycling, and swimming, the 

focus of this study. This is due to the energetically demanding nature of the exercise (Hutson 

et al., 2020) that can often cause female athletes to be at risk of being in an energy deficit. An 

energy deficit can lead to the development of the health and performance consequences of 

low energy availability (LEA) described in the relative energy deficiency in sport (RED-S) 

clinical model (Ackerman et al., 2019).  

Low Energy Availability 

LEA is defined as an energy deficiency relative to the balance between energy intake in the 

form of food, and energy expenditure required for activities of daily living, healthy bodily 

functions, growth, and exercise activities such as training and competition (Mountjoy et al, 
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2015). LEA is experienced by many athletes, with cross sectional studies highlighting that 

anywhere from 51% (Koehler et al., 2013) to 63% (Melin et al., 2014) of female endurance 

athletes suffer from low or reduced energy availability. LEA is characterised by the 

perturbation of several hormones of which are involved in the regulation of bone 

(re)modelling and also those with cardio-protective properties (De Souza & Williams, 2004). 

Therefore, the numerous athletes at risk of LEA and consequently of disrupting bone 

remodelling and exposing themselves to an unhealthy cardiometabolic profile suggests that 

this is a problematic area of sport that needs to be addressed. This is not only to aid sports 

performance but to ensure the optimum health of female athletes as a whole population. 

FHA is the most severe menstrual disturbance that LEA causes and is a reversible cause of 

ovarian disruption characterized by the absence of menses and chronic oestrogen deficiency 

(Alloway et al., 2016). 

Relative Energy Deficiency in Sport (RED-S) 

The International Olympic Committee (IOC) advise that early identification of LEA in athletes 

is crucial to prevent development of adverse health and performance outcomes, because LEA 

is the underlying aetiology of Relative Energy Deficiency in Sport (RED-S). The syndrome of 

RED-S is characterised by impaired physiological functioning caused by LEA and includes, but 

is not limited to, impairments of metabolic rate, menstrual function, bone health, immunity, 

protein synthesis and cardiovascular health (Mountjoy et al, 2014). RED-S is an expansion of 

the female athlete triad, a model that links LEA, menstrual disturbances, and low bone 

mineral density (BMD) to one another and includes male athletes (De Souza et al., 2017). RED-

S in female athletes is often characterised by irregular menstrual cycles, known as 

oligomenorrhea, or an absence of menstrual cycles, known as amenorrhea and low BMD. 

Alongside these health complications, an unfavourable lipid profile (Rickenlund et al., 2005) 

and lower resting glucose levels (Tornberg et al., 2017), of which are often associated with an 

increased risk to cardiovascular health, have been suggested to be consequences of RED-S.  

Menstrual disturbances are most prevalent in sports emphasizing leanness and endurance 

sports such as running (Nattiv et al., 2007), where it may be as high as 50–65% (Melin et al., 

2015. Dusek, 2001). Due to the high prevalence in endurance sports, this research thesis 

focuses on female athletes within this population, as previous research demonstrates that it 

is an at-risk group for RED-S. 
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Biological Pathways 

A normal menstrual cycle depends on a successfully functioning hypothalamic-pituitary-

ovarian (HPO) axis (Gordon et al., 2017), which is modulated by energy availability and 

exposure to stresses such as exercise. If the exercise carried out has an energy demand 

greater than the energy available, or if energy availability is low, the HPO axis is modulated 

by an increase in the activity of the hypothalamic-pituitary-ovarian axis (HPA) and 

subsequently suppresses gonadotrophin release (Mastorakos, 2008). Consequently, this 

affects the menstrual cycle and ovulation. This is because the hormonal synthesis, follicular 

development and increased luteal phase thermogenesis are energy-consuming processes 

(Harber, 2004) but aren’t critical processes for survival. Therefore, when the body is in a state 

of low energy availability these processes are disrupted by the cessation of the HPO axis and 

an increase in the activity of the HPA axis, ceasing the release of gonadotrophins and so 

stopping the menstrual cycle, to reserve energy for more critical bodily processes (Koltun & 

De Souza et al., 2020). 

A lack of oestrogen, termed hypoestrogenism, is consequently associated with the 

suppression of the HPO axis, as a result of LEA. Hypoestrogenism is due to the release of 

gonadotrophins, FSH and LH, being suppressed, resulting in the diminishment of oestrogen 

production and the reproductive system, to allow essential physiological mechanisms to 

continue (Gibbs et al, 2011). Oestrogen plays a key role in activating and stimulating bone 

remodelling and inhibits reabsorption of bone (Khosla et al., 2012). As such, hypoestrogenism 

compromises peak bone mineral accrual during adolescence and young adulthood and also 

the maintenance of BMD in later life. Ihle and Louckes (2004) demonstrated that bone 

formation is impaired within as little as 5 days of the onset of LEA in non-athletic women. 

Oestrogen has also been proven to have cardio-protective properties, and as a result, women 

with irregular menstrual cycles have been shown to have an increased risk for cardiovascular 

disease (CVD) (Solomon et al., 2013-2017). 
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1.2 Study Rationale 

The risks associated with hypoestrogenism in amenorrheic athletes have been highlighted in 

many studies (Hutson et al., 2021). In elite female athletes with functional hypothalamic 

amenorrhea for at least 2 years, there was an inverse correlation between BMD and 

cardiovascular blood biomarkers which reported higher total cholesterol, apolipoprotein-A , 

and very-low-density lipoprotein when BMD was lower (Soleimany et al., 2012). This study 

highlighted both a relationship between and the decline of bone health and cardiovascular 

health, resulting from a lack of oestrogen and more broadly due to LEA.  

Research Gaps 

Evolving research demonstrates a continuous need for a better understanding of how 

menstrual disturbances resulting from LEA affects biological processes and leads to an overall 

decline in health and sports performance. There are key physical health concerns associated 

with amenorrhea and oligomenorrhea and there is a need for research to understand the 

altered hormonal profiles that consequently arise and the risks that they pose to both bone 

and cardiovascular health. In addition, research needs to be conducted in different athletic 

populations to ensure preventative measures can be taken for those in high-risk groups and 

that those in positions of leadership can understand prevention and early detection. 

This research aims to investigate the altered physical profiles of athletes with menstrual 

disturbances when compared to eumenorrheic athletes, and how these changing profiles 

pose a risk to bone and cardiovascular health. It will focus specifically on endurance-based 

athletes, as keeping the study specific is more likely to produce reliable results reflective of a 

particular athletic population. 

 

1.3 Research Aims 

In this study the following research questions were addressed: 

1. Are there differences between the cardiometabolic profile of female endurance 

athletes with and without menstrual disturbances? 

2. Are there any differences between the skeletal profile of female endurance 

athletes with and without menstrual disturbances? 
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Answering these questions provided an insight into, and a better understanding of the 

cardiometabolic and skeletal profile of endurance-based athletes with menstrual 

disturbances, built off an existing knowledge of their associations with LEA and RED-S 

(Mountjoy et al., 2018). 
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Chapter 2. Literature Review 

2.1 Menstrual Disturbances in Female Athletes  

Reproductive function in women is dependent on the maintenance of metabolic homeostasis 

in each individual. This allows for an operational hypothalamic-pituitary-gonadal axis, which 

is the physiological function that results in a successful, undisrupted menstrual cycle. In 

situations where there is inadequate energy intake, termed low energy availability (LEA), to 

support all physiological functions, energy is repartitioned away from costly metabolically 

processes including growth and reproduction (Koltun & De Souza et al., 2020). This is in order 

to favour the most necessary processes for immediate organism survival, for example cellular 

maintenance, thermoregulation, and locomotion (Wade et al., 1992). As a result of energy 

repartitioning, the reproductive axis can be suppressed, leading to the development of 

menstrual disturbances. Further to this, it is evident that LEA plays a causal role on the 

induction of menstrual disturbances (Williams et al., 2001). 

  

LEA has many consequences, but one of the most common in female athletes is menstrual 

disturbances, namely amenorrhea and oligomenorrhea. However, menstrual disturbances 

can range in their degree of severity, often from subclinical luteal phase defects, which often 

go undiagnosed, through to oligomenorrhea and amenorrhea (Nattiv et al., 2007) at the end 

of the continuum. De Souza et al. (2009) estimated that approximately 50 % of women who 

exercise regularly experience subtle menstrual disorders and approximately 30 % of women 

have amenorrhea. 

It should be noted though, that even oligomenorrhea and amenorrhea operate on their own 

separate continuums and also range in degree of severity, often determined by their duration 

and additional symptoms/side effects. Athletes who do not experience menstrual 

disturbances are known as eumenorrheic, which is defined as a normal menstrual cycle at an 

interval that is near the median for young adult women. In young adult women, menstrual 

cycles recur at a median interval of 28 d that varies with a standard deviation of 7 d (Nattiv et 

al., 2007). Menstrual disorders in athletes are associated with broader diagnoses', falling 

under the Female Athlete Triad (FAT) and Relative Energy Deficiency in Sport (RED-S) as an 

element of each of these clinical entities. These entities only include severe menstrual 
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disturbances, defined as amenorrhea and oligomenorrhea. However, irrelevant of their 

severity, all menstrual disturbances present a clinical concern, due to their association with a 

hypoestrogenic state, which contributes to longer term health complications both for the 

cardiovascular system (O'Donnell and De Souza, 2004) and bone health (Prior et al., 1990). 

Notably though, these menstrual disturbances do exist along a continuum, ranging from mild 

and moderate subclinical concerns to severe clinical outcomes (De Souza, Koltun & Williams, 

2019). 

2.1.1 Amenorrhea 

Amenorrhea is the ‘absence of menstrual bleeding’ and can be classified as either primary or 

secondary. In relation to the 2014 International Olympic Committee's consensus statement, 

primary amenorrhea is defined as not having menarche, which is the first menstrual bleeding, 

by the age of 15 (American Society of Reproductive Medicine Practice Committee, 2008). 

Whereas, secondary amenorrhea is defined as established menstrual cycles with an absence 

of menstrual bleeding for 6 months or for a length of time equivalent to a total of at least 3 

of her previous cycle lengths (West, 1998. Redman and Loucks, 2005).  

  

Amenorrhea is a relatively common disorder, and there has been difficulty determining its 

prevalence due to variability in type and its definition. Previously amenorrhea has been 

reported to be between 3.4% to 66% in some segments of the athletic population (Loucks & 

Horvath, 1985. Shangold, Rebar, Wentz, et al., 1990. Otis, 1992), compared with 2% to 5% in 

the general population. The much greater range between the athletic population is 

potentially reflective of how sport specific the prevalence of amenorrhea can be, especially 

given that there’s such a tight range in the general population. Updated individual prevalence 

estimates of primary and secondary amenorrhea in 13 (n=2216) and 34 studies (n=5607), 

respectively, ranged from 0%– 56.0% and 1%–60.0% (Gibbs, Williams & De Souza, 2013). Even 

updated data highlights a broad range within the athletic population as did the previous 

estimates, suggesting that even over a 20-30 year period, amenorrhea remains a highly 

fluctuating issue dependent on the sporting population researched (Lania et al., 2019). 

It has been highlighted by many studies over a sustained period of time, that amenorrhea is 

more prevalent in sports that emphasise and encourage leanness (Carlberg et al., 1983. 

Torstveit and Sundgot-Borgen, 2005. Nattiv et al., 2007. De Souza et al., 2014), such as 
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endurance and aesthetic based sports (Table 1). Athletes competing in sports that emphasise 

leanness are also at a higher risk of developing disordered eating patterns and a decline in 

athletic performance (Krentz and Warschburger, 2011). These categories are further 

examined in Table 2, with endurance-based sports including middle and long distance running 

as well as cycling. Likewise, aesthetic-based sports include gymnastics and dance, but distance 

running can also fall under this category. The estimated prevalence of amenorrhea amongst 

distance runners is as high as 60% (Pollock et al., 2010), highlighting a necessary need for 

further understanding into the physiological and psychological impacts of these disorders. 

Table 1: Proportion of Female Athletes with Menstrual Disturbances by Sport Category. 

(Adapted from data collected from a Norwegian population, by Torstveit and Sundgot-

Borgen, 2005). 

Sports Category N % With Menstrual Disturbance 

Technical 7 13.5  

Endurance 59 30.5 

Aesthetic 20 30 

Weight-Class 17 5.9 

Ball-Game 158 12.7 

Power 19 15.8 

Anti-gravitational 9 11.1 
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Table 2: The Estimated Prevalence of Low Energy Availability (LEA), Amenorrhea and Bone 

Mineral Density (BMD) in entire Female Athlete Populations, per Endurance based or 

Aesthetic based sport. 

Category 
of Sport 

Type of Sport Estimated 
prevalence of LEA 
in population 

Estimated 
prevalence of 
amenorrhea in the 
population 

Estimated 
prevalence of low 
BMD 

 
 
Endurance 
  

Middle/Long 
Distance 
Running 

18–58% sub-
elite/elite middle-
distance female and 
male athletes 
(Melin et al., 2019) 
*best estimate 
found 
  

60%  (Pollock et al., 
2010) 

40-45% (Melin et al., 
2015; Pollock et al., 
2010; Tam et al., 2018) 

Cycling Estimated at 70-
90% (Viner et al., 
2015), but a small 
sample size (10) was 
used. 

 Not been determined  Not been determined 
in women 

 
 
 
 
 
 
 
Aesthetic  

Dancers 57% (N, Keay et al., 
2020) 

51% of professional 
dancers 
34% of amateur 
dancers (Bacchi et al., 
2013) 
44% in ballet  

23-40% of the lumbar 
spine 

Gymnastics 44.8% (Silva and 
Paiva, 2015) 

Primary amenorrhea - 
15–20% of elite 
female 
gymnasts (Helge and 
Kanstrup, 2002). 
  
Secondary 
amenorrhea - 40–60% 
of this 
population (Zanker et 
al., 2004) 
  

Despite primary or 
secondary 
amenorrhea, late 
adolescent and young 
adult gymnasts were 
shown to have greater 
BMD than normally 
active females (Helge 
and Kanstrup, 2002) or 
females engaged in 
less osteogenic 
activities such as 
running (Robinson et 
al., 1995) 
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 Functional Hypothalamic Amenorrhea 

Functional Hypothalamic Amenorrhea (FHA) is one of the most common causes of secondary 

amenorrhea and is responsible for 20–35 % of secondary amenorrhea cases. However,  FHA 

is only responsible for approximately 3% of primary amenorrhea cases (Practice Committee 

of the American Society for Reproductive Medicine Current evaluation of amenorrhea, 2006). 

Amenorrheic athletes most often experience FHA as their type of amenorrhea, as low energy 

availability affects the output of the hypothalamic gonadotropin-releasing hormone (Sonntag 

and Ludwig, 2012), which is what subsequently alters the menstrual cycle in these 

circumstances. 

 

2.1.2 Oligomenorrhea 

Oligomenorrhea which, alongside amenorrhea, is associated with the FAT and RED-S, is 

specifically defined as the presence of irregular and inconsistent menstrual cycle intervals 

greater than 45 days (Mountjoy et al., 2014). This is defined through the exclusion of the 

presence of hyperandrogenic profiles, where the body produces excess testosterone and 

disrupts the menstrual cycle (Rosenfield & Ehrmann, 2016). Oligomenorrheic cycles can 

present with or without an ovulatory event (De Souza et al., 2010), therefore arguably making 

this condition more difficult to identify. The estimated range in prevalence of oligomenorrhea 

in athletic populations was 3.5 %–52.5 % (23 studies: n=4044) (Gibbs, Williams & De Souza, 

2013). Similarly, to amenorrhea, this encompasses a broad range, suggesting that menstrual 

disturbances as a whole are specific to sporting populations. Additionally, the range for 

oligomenorrhea may be so broad as inconsistent menstrual cycles, as opposed to 

amenorrhea, are harder to define and consistently track in individual athletes.  

It is evident that menstrual disturbances have always been a pressing issue among female 

athletes, shown through the extent of past research studies exemplifying this. Prior to the 

formation of RED-S, many studies evaluating the full female athlete triad among competitive 

athletes, all of whom were representing a variety of sports, highlighted that the prevalence 

of oligomenorrhea or amenorrhea ranged from 18.8%–54% (Hoch et al, 2009. Nichols et al, 

2006). This demonstrates that menstrual disturbances within the athletic population have 
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always been present, and that there is a continual need to further the understanding of the 

homeostatic disruption low energy availability causes. 

 

2.1.3 Eumenorrhea 

Eumenorrhea is defined as menstrual cycles at intervals near the median interval for young 

adult women. In young adult women, menstrual cycles recur at a median interval of 28 d that 

varies with a standard deviation of 7d (Nattiv et al., 2007), therefore regular cycles occur at 

intervals between 21 and 35 days. However, in adolescents, the cycles range between 21 and 

45 days (ACOG committee, 2006). Therefore, the spectrum of menstrual disturbances ranges 

from Functional Hypothalamic Amenorrhea at the more severe end to eumenorrhea at the 

optimal end, and this is shown in Figure 1. Although a more simplified diagram of a much 

more complex entity now, it explicitly indicates that optimal energy availability promotes 

bone health and development indirectly by preserving eumenorrhea and oestrogen 

production that restrains bone resorption, and directly stimulating the production of 

hormones that promote bone formation. As a result, BMD is often above average for the 

healthy athlete’s age (Nattiv et al., 2007). This diagram emphasises simplistically the 

importance of athletes being eumenorrheic and having a normally functioning menstrual 

cycle in order to promote optimal bone health and reduce the risk of injury from fractures, to 

allow for peak performance. Therefore, amenorrhea is not a condition that should be 

considered 'normal' or acceptable in female athletes (Rosen, 2018) as it hinders both long 

term and short-term success. 

 

Figure 1: Changes in energy availability and the hormonal profile of female athletes across 

a continuum (Taken from De Souza et al., Current Status of the Female Athlete Triad: 

Update and Future Directions 2017, volume 15, p577–587).  
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Despite both the clinical entities of RED-S and the female athlete triad ranging in level of 

severity on a spectrum similarly to what is shown in Figure 1, with amenorrhea being at the 

extreme end, it has been proven that this continuum is relative to the individual. The 

individuality of this continuum is evident in studies by Loucks and Horvath (1984) who 

confirmed that there is no specific body fat percentage below which regular menses ceases. 

Some athletes with amenorrhea regain their menses after intervals of rest, even without an 

increase in body mass or body fat, suggesting that amenorrhea is not caused solely by low 

body mass or body fat (Torstveit and Sundgot-Borgen, 2003). Athletes who appear to be at 

the greatest risk of developing oligomenorrhea and amenorrhea do share some common 

factors, such as beginning training at an early age (prior to the age that normal menarche 

starts, 12 to 16 years of age), adhering to intense training regimens (Snow-Harter, 1994) but 

most importantly have low energy availability as seen in Figure 1. 

 

2.1.4 Luteal Phase Defects 

The luteal phase is one stage of your menstrual cycle, and it occurs after ovulation and around 

12-14 days before menses. During this time, the lining of the uterus thickens to prepare for a 

possible pregnancy. Therefore, luteal phase defects lead to the improper growth of the lining 

due to a lack of progesterone (Reed & Carr, 2015).  

  

Luteal Phase defect can often go unnoticed in athletes, as it does not tend to result in a lack 

of menses. Therefore, athletes who appear to be eumenorrheic often have their menstrual 

disturbance going undiagnosed. A study conducted by Loucks and Thuma (2003) highlighted 

that disruptions in the pulsatility of the luteinising hormone can be seen after only 5 days of 

reduction in energy availability (EA) to 30 kcal/kg FFM per day, highlighting that menstrual 

disturbances such as luteal phase defects can be brought about in a short period of time, 

reinforcing the continuum that they range across.  

  

These findings have been extended more recently in a study carried out by Koltun et al., 

(2020) which highlighted that reducing EA by 10 units from 38 kcal/kgFFM/d to 28 

kcal/kgFFM/d over 3 to 4 menstrual cycles, via an intervention similar to that which may be 

used by women trying to lose weight, is sufficient to significantly reduce LH pulse frequency 

and increase the likelihood of developing luteal phase defects and anovulation. Therefore, 
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low energy availability is the catalyst that causes menstrual disturbances ranging from luteal 

phase defects to functional hypothalamic amenorrhea. 

 

2.2 Causes of Menstrual Disturbances in Female Athletes 

2.2.1 The Energy Availability Threshold  

Energy availability (EA) is defined as the daily dietary energy intake minus the daily exercise 

energy expenditure corrected for fat-free mass (FFM) (Loucks, 2004). The spectrum of EA 

ranges from optimal EA to LEA, with or without the presence of disordered eating (Nattiv et 

al., 2007). This means that athletes who do not struggle with an eating disorder, but do not 

consume enough dietary energy in relation to the extent of their exercise, can still have low 

energy availability and menstrual disturbances too. Rigorously controlled laboratory trials in 

women have shown that the optimal EA for healthy physiological function is typically achieved 

at an EA of 45 kcal/kg FFM/day (188kJ/ kg FFM/day) (Loucks and Heath, 1994. Loucks and 

Thuma, 2003). More recently, it has become clear that many athletes affected by the FAT and 

RED-S do not exhibit pathologic eating behaviours, and so, as previously mentioned, their LEA 

is unintentional (Melin et al., 2015). 

  

It is noted that an EA of 30 kcal/kg/ FFM roughly equates to the average resting metabolic 

rate (RMR), and so EA <30 kcal/kg FFM per day affects bone remodelling and disrupts 

menstrual function and bone mineralization (Loucks and Thuma, 2011). Many systems are 

substantially perturbed at an EA <30kcal/kg FFM/day (125kJ/kg FFM/day), making it 

historically a targeted threshold for LEA (Mountjoy et al., 2018). As LEA has proven to be 

successful in explaining markers of suboptimal health and function in both laboratory (Loucks 

& Heath, 1994. Loucks & Thuma, 2003) and field settings (Melin et al., 2014. Vanheest et al., 

2014), an  assessment of energy availability could serve as a tool for diagnosis as well as in 

prevention and management of RED-S or the FAT (Mountjoy 2018). However, recent evidence 

suggests that this cut-off of below 30 kcal/kg FFM/day does not predict amenorrhea in all 

women (Lieberman et al., 2018; Reed et al., 2015) and that further research is needed to 

understand menstrual disturbances on the less extreme end of the spectrum, such as luteal 

phase defects and oligomenorrhea, before an athlete becomes amenorrheic. 
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Further to this, the correlation between EA and menstrual disturbances has also been 

demonstrated in non-athletes, in a study by Reed et al. (2015), EA was reduced via 

manipulation of energy intake and exercise energy expenditure over several menstrual cycles 

in untrained, previously eumenorrheic subjects. The study found that the frequency of 

menstrual disturbances (including luteal phase defects, anovulation, and oligomenorrhea) 

were affected by the magnitude of energy deficit compared to baseline needs, again 

reinforcing that energy availability is displayed along a continuum with differing menstrual 

disturbances.  However, a specific threshold of EA below which menstrual disturbances 

occurred was not identified, suggesting it is unique to the individual.  This continuum differs 

in each individual and further understanding is needed in order to diagnose menstrual 

disturbances faster, whilst also investigating their impacts on other parts of the body. 

Likewise, although there is clear evidence of the correlation between EA and menstrual 

disturbances,  there is still a lack of understanding for the interplay of change in short-term 

and long-term EA and more subtle menstrual disruption. 

 

Energy Availability in Eumenorrheic Athletes 

A study by Reed et al. (2015) involved a cross-sectional analysis of EA. This was measured 

using 3-day diet logs to determine energy intake and a combination of exercise logs and heart 

rate monitoring to measure estimated exercise energy expenditure in female athletes with 

eumenorrhea and various menstrual disturbances. They reported that the mean EA was 

>30.0kcal/kg FFM/day in all the groups and EA did not discriminate subclinical forms of 

menstrual disturbance. However, EA was lower in amenorrheic athletes compared with 

eumenorrheic athletes (mean 30.9 vs 36.9 kcal/kg FFM/day). Therefore, although 

Eumenorrheic athletes will have a significantly higher EA than their amenorrheic 

counterparts, there is not necessarily a defined threshold consistent for every individual to 

comply to, in terms of what classifies each person as having optimal or low EA. 

 

Low Energy Availability 

Low energy availability (LEA) is defined as inadequate energy intake relative to exercise 

energy expenditure, and it is the main factor triggering the unfavourable health and 

performance consequences associated with RED-S (Mountjoy et al., 2018). Since the 
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publication of the International Olympic Committee (IOC) consensus papers on RED-S in 2014 

and 2018 (Mountjoy et al.), scientific evidence for the risk of and performance consequences 

of LEA has grown. The prevalence of LEA in various sporting populations is estimated to range 

from 22% to 58% (Logue et al., 2020). However, an accurate estimation of the prevalence of 

LEA remains problematic due to continuing variability in the methods used to estimate EA 

(Logue et al, 2018). 

 

2.2.2 Pathological causes of amenorrhea 

There are many causes pathological and physiological causes of both primary and secondary 

amenorrhea, as a result of both internal and external factors dependent upon the individual. 

Pathophysiological types of amenorrhea include FHA, often associated with LEA, and 

therefore externally contributing factors. On the other hand, amenorrhea can be caused by 

diseases, stemming from genetic and environmental factors, or a combination of both. For 

example, Polycystic Ovarian Syndrome (PCOS), which results from an imbalance of female sex 

hormones and leads to cysts, containing an egg that would be used for fertilisation, on the 

ovarian antral follicles. This cyst prevents ovulation and disrupts the menstrual cycle, resulting 

in amenorrhea. Although both types of amenorrhea are caused by different initial factors, 

amenorrhea in both cases results from disrupted secretion of the pulsatile gonadotropin-

releasing hormone (GnRH) from the hypothalamus (Golden and Carlson et al., 2008). 

Pathophysiology of Functional Hypothalamic Amenorrhea   

As previously highlighted, Functional Hypothalamic Amenorrhea (FHA) is a type of secondary 

amenorrhea accounting for around 30% of cases in women of reproductive age, and the most 

common in female athletes. It is a form of menstrual dysfunction which results from LEA and 

therefore leads to hormonal changes likely occurring to conserve energy for more important 

bodily functions or to use the body’s energy reserves for vital processes (De Souza et al., 

2020). LEA alters levels of metabolic hormones and substrates, for example, insulin, cortisol, 

growth hormone, insulin-like growth factor-I (IGF-I), 3,3,5-triiodothyronine, ghrelin, leptin, 

peptide tyrosine– tyrosine, glucose, fatty acids, and ketones (Wade and Jones, 2004), 

disrupting homeostasis in the body. 
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Both metabolic challenges and psychological stressors are implicated in the pathogenesis of 

FHA (Genazzani et al., 1995). FHA is characterized by the absence of menses and profound 

hypoestrogenism due to suppression of the hypothalamic-pituitary-ovarian (HPO) axis by the 

aberration of GnRH secretion (Sonntag and Ludwig, 2012). There are three main types of FHA, 

all of which are interrelated: stress-related amenorrhea, weight loss-related amenorrhea, and 

exercise-associated amenorrhea (Meczekalski et al., 2008). Therefore, the causative agents; 

undernutrition, weight loss, excessive exercise or a combination of all factors are what cause 

LEA and result in the metabolic imbalance associated with the development of FHA. The 

imbalances seen are a form of adaptation in order to reduce total energy expenditure, 

whereby the body attempts to obtain a new energy balance and steady state (Loucks, 2013).  

  

As exercise carries an energetic cost it may therefore act as a metabolic stressor, and so an 

athlete may have a stable BMI and not excessively low in body mass or fat levels yet have 

impaired physiological function due to LEA (Drew et al., 2017. Loucks, 2013). The causative 

agents of menstrual disturbances are multifactorial, as there are many neuro-modulatory 

signals that alter hypothalamic GnRH function, without the athlete having to necessarily fall 

below a certain threshold definition.  These agents include both inhibitory and stimulatory 

inputs, aligning GnRH function with the internal and external milieu, or environment, of the 

individual (Navarro and Kaiser, 2013). An overview of each of the biological pathways affected 

by LEA can be seen in Figure 2, exemplifying the multifactorial nature of menstrual 

disturbances. 

  

The key mechanism that is disrupted and results in FHA is the suppression of the gonadotropin 

releasing hormone (GnRH) in the hypothalamic-pituitary-ovarian axis. This results in low 

follicle stimulating hormone (FSH) and luteinizing hormone (LH) being released from the 

anterior pituitary. Due to the lack of these hormones, the feedback mechanism here is 

disrupted and so the ovarian granulosa cells do not receive a signal to produce oestradiol, one 

of the three forms of oestrogen (Shufelt, Torbati & Dutra, 2017). 
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Figure 2 : The different biological pathways affected by LEA, their outcomes and how they 

lead to oestrogen deficiency and therefore menstrual disturbances (Adapted from 

O’Donnell, Goodman & Harvey, Cardiovascular Consequences of Ovarian Disruption: A 

Focus on Functional Hypothalamic Amenorrhea in Physically Active Women 2011, volume 

96(12), p 3638–3648). 

  

2.2.3 Axis Changes 

The Hypothalamic-Pituitary-Ovarian Axis (Figure 2 - blue)  

FHA is caused by the disruption of the hypothalamic-pituitary-ovarian (HPO) axis, a tightly 

regulated system controlling female reproduction that allows for the cyclic production of 

gonadotropic and steroid hormones and is essential for reproductive health. This cycle is 

tightly regulated to select a dominant follicle for ovulation, meanwhile priming the 
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endometrium for implantation  (Mikhael et al., 2019). This complex regulation can be 

negatively impacted when pathologies occur within any juncture of the HPO axis. 

  

LEA results in the suppression of the HPO axis due to the disruption of the leptin-controlled 

pathway (Figure 2) (Laughlin and Yen, 1997. Cunningham et al., 1999. Hilton and Loucks, 

2000). Leptin is the product of an obesity gene, and it is produced in several organs (Hama et 

al., 2004). Leptin's main physiological role is to regulate hunger and satiety (Dhillon and 

Belsham, 2011), essentially controlling appetite and responding to energy availability (Chan 

and Mantzoros, 2005), also acts centrally to influence reproduction. Leptin's effects are only 

exerted over a narrow range of concentrations  (Caprio et al., 2001), and so responds to a 

negative energy balance, meaning that menstruation is not possible if leptin levels drop below 

a critical level (Korsten-Rech, 2011). Many studies have confirmed that the energy balance is 

more negative and overall energy availability lower in adult athletes with menstrual 

disturbances compared to eumenorrheic controls (Morghental, 2002). 

  

This is due to the fact that leptin's plasma level is directly related to total body fat stores, as 

Leptin increases after a couple of days of overfeeding and levels decreases within hours with 

the onset of hunger. The changes in leptin concentration are primarily regulated by insulin, 

cortisol, and reproductive hormones. Leptin acts in hypothalamic centres to modulate long 

term responses the body's declining energy state. Therefore, when the body starts to move 

into a negative energy imbalance, away from the usual positioning, leptin levels decrease, and 

the response to this is a reduction in oestradiol, which subsequently leads to menstrual 

disturbances (Yenilmez, 2020).  

  

Functional Hypothalamic Amenorrhea (FHA) is classified as hypogonadotropic hypogonadism 

related to an aberration of the pulsatile release of gonadotropin-releasing hormone (GnRH) 

from the hypothalamus (Gordon, 2010). Lower energy availability and therefore lower 

concentration of leptin results in the suppression of the pulsatile secretion hypothalamic 

gonadotrophin-releasing hormone (GnRH) (Marquez and Molinero, 2013). Therefore, this 

deficient secretion of the GnRH occurs as a result of low energy availability, disrupting a 

leptin-controlled pathway, as the presence of Leptin stimulates the release of gonadotropins 

from the hypothalamus, by stimulating GnRH pulsatility (Figure 3) (Carro et al., 1997). 
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Subsequently, this deficient secretion of GnRH leads to a reduced secretion of the 

gonadotrophins' named luteinising hormone (LH) and follicle stimulating hormone (FSH), as 

seen in Figure 3, which are usually secreted by the pituitary gland secondary to pulsatile 

stimulation by hypothalamic GnRH.  

 

As result, the lack of circulating gonadotrophins then prevents full folliculogenesis (Hamm et 

al., 2004) and ovulatory ovarian function and stimulation (Spicer and Francisco, 1997) and 

causes a fall in the levels of oestradiol, an oestrogen steroid hormone (Figure 3), and 

progesterone (Meczekalski et al., 2008). It has been demonstrated that providing exogenous 

GnRH or gonadotropins restores folliculogenesis and therefore provides evidence for the 

involvement of this disrupted pathway (Knobil and Plant, 1978). 

  

 

Figure 3: The effect of hormonal abnormalities associated with FHA on suppressing the 

hypothalamic–pituitary–ovarian axis (From Roberts et al., Current understanding of 

hypothalamic amenorrhoea 2020, volume 11, p 2042018820945854.) 

FHA, functional hypothalamic amenorrhoea; FSH, follicle-stimulating hormone; GnRH, 

gonadotrophin-releasing hormone; IGF-1, insulin-like growth factor 1; LH, luteinising hormone; T3, 

triiodothyronine;T4,thyroxine.  
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The Hypothalamic-Pituitary-Adrenal Axis (Figure 2 – green) 

The HPO axis and the hypothalamic–pituitary–adrenal (HPA) axis are tightly linked (Figure 2), 

with the HPA axis activated by nutritional or other psychological stress, reducing GnRH 

secretion and subsequent LH pulsatility from the pituitary gland (Mastorakos, 2008). A typical 

feature of FHA is hypothalamic–pituitary–adrenal axis activation, related to stressing factors, 

and this is believed to be one of the important pathogenetic factors in FHA patients 

(Meczekalski et al., 2008). A reduction in GnRH drive is closely linked with the activation of 

the HPA axis in both amenorrheic athletes and non-athletes. This link is because, when a form 

of stress activates the HPA axis, this in turn increases corticotrophin-releasing hormone (CRH) 

secretion and sequentially (Figure 2), increased secretion of adreno-corticotrophin from the 

pituitary and cortisol from the adrenal gland (Loucks et al., 2001).  

  

The administration of CRH has been shown to inhibit gonadotrophin release in both healthy 

female volunteers (Barbarino et al., 1989) and monkeys (Xiao et al., 1989), yet conversely 

administration of a CRH antagonist stimulates release of GnRH (Nikolarakis et al., 

1988). Furthermore, it has been shown that seemingly minor stressors in monkeys, that alone 

would have minimal impact on reproductive function, can interact synergistically. As a result, 

the combinations of stressors cause a greater impairment of the reproductive axis than any 

single stressor alone (Williams et al., 2007). The hypothalamic–pituitary disturbances in FHA 

are deemed to be on a spectrum, as are the Female Athlete Triad and RED-S; the clinical 

entities encompassing FHA. They can be very broad and include a lower mean frequency of 

LH pulses, the complete absence of LH pulsatility, as well as a normal-appearing secretion 

pattern and higher mean frequency of LH pulses (Genazzani, 2005). 

  

Notably, the mechanistic link between LEA and menstrual disturbances is proposed to act 

through a slowing of LH pulse frequency, which is a proxy indicator of decreased 

gonadotropin-releasing hormone pulsatility (Berga et al., 1989). Initial cross-sectional 

investigations observed conflicting results and report low (Ronkainen, 1985), high (Schwartz, 

1981) and similar (Yahiro, 1987) basal LH concentrations in oligomenorrheic athletes 

compared with healthy women. However, when examining the pulsatile secretion of LH, 

exercising women with menstrual disturbances displayed slower LH pulse frequency 

compared with eumenorrheic athletes and with sedentary women with regular menstrual 
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cycles (Loucks et al., 1989. Pirke et al., 1990). This highlights how LH pulsatility, alongside 

menstrual disturbances, acts along a spectrum of differing severity, unique to each individual. 

However, it in the longer term, it still remains unclear how reduced EA over a sustained 

duration, for example over years, relates to LH pulsatility and how a slowing of LH pulsatility 

translates to alterations in menstrual cycle quality (De Souza et al., 2019). Therefore, the long-

term effects of EA and how that impacts the location of menstrual disturbances on a spectrum 

over a given time is not well understood.  

  

The Hypothalamic-Pituitary Thyroid Axis (Figure 2 – blue) 

T3 is the most active form of thyroid hormone and physiological processes, such as growth, 

metabolism, body temperature, and heart rate, are regulated by T3. In addition, resting 

energy expenditure (REE), total daily energy expenditure and oxygen consumption are also 

tightly coupled with measures of total T3 (Danforth & Burger, 1989). There are multiple early 

studies from animal and human experiments that demonstrates how general energy and 

macronutrient intake directly influence on thyroid hormone status and indirectly on REE 

(Burger et al., 1980., Rosenbaum et al., 2000., Wimpfheimer et al., 1979). 

 

Measurements of total T3 are commonly used to indicate the presence of an energy 

deficiency, as it is suggested that reductions in serum total T3 concentrations initiate energy 

conservation mechanisms, in order to restore homeostasis (Burger et al., 1980., Wimpfheimer 

et al., 1979). Studies of sedentary, regularly menstruating women demonstrated the effect of 

manipulating EA on total T3. This was done through both increased exercise energy 

expenditure and decreased energy (caloric) intake. In response to the induction of a low EA, 

reductions in total T3 were observed. Subsequently this was prevented when individuals were 

given extra calories to compensate for the induced energy deficiency (Loucks et al., 1993). 

Therefore, total T3 is a biomarker sensitive to changes in EA, and hence an indicator of LEA, 

whether this is associated with changes in energy restriction and/or changes in exercise 

training in women (Loucks et al., 1993., Loucks & Heath, 1994). 

 

A number of studies have highlighted that there are causal links between reproductive 

function and energy status, indicated through T3 levels. The induction and reversal of 

amenorrhea in female monkeys was correlated with changes in circulating total T3, with a 
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significant 18% increase in T3 levels observed during resumption of regular menses (14). 

Additionally, in humans, low concentrations of total T3 have been linked to reproductive 

dysfunction in exercising women with amenorrhea (Berga et al. 1989., De Souza et al., 2007., 

Loucks et al., 1992). For example, Loucks et al. (1992) demonstrated that amenorrheic female 

athletes had suppressed total T3 concentrations compared to their eumenorrheic 

counterparts.  

 

In reference to menstrual disturbances acting along a continuum, changes in total T3 are 

present in a dose response manner, such that increases in T3 (as a form of energy 

conservation) are observed with increasing severity of menstrual disturbances (De Souza et 

al., 2007). These studies suggest that menstrual dysfunction is linked to energy conservation 

mechanisms, as low T3 levels are observed when an underlying energy deficiency is present 

and the regaining of successful menstrual function is associated with the restoration of an 

adequate energy intake relative to energy expenditure (Williams et al., 2001, Williams et al., 

2001), which can be observed by increases in total T3 (Allaway, Southmayd & De Souza, 2016).  

 

Hypoestrogenism 

The term for FHA was originally called hypothalamic hypoestrogenism, as the final 

endocrinological consequence of impairment in GnRH and gonadotropin pulsatile secretion 

is profound hypoestrogenism. The cause of hypoestrogenism is due to decreased LH and FSH 

secretion, which results in a   deficiency of endogenous oestrogen (Grossman-Rimon, 2019). 

The hypoestrogenic status has a negative influence on different aspects of female health, not 

only in menopausal women but also in young individuals (Gordon, 2010. Meczekalski et al., 

2008). Particularly in young women, normoestrogenism and metabolic homeostasis have a 

critical significance for normal bone metabolism, the cardiovascular system and mental health 

(Meczekalski et al., 2014). Therefore, prolonged hypoestrogenism which occurs in young 

women may have important consequences on women’s future health. The effects of LEA on 

reproductive hormones and menstrual function in female athletes have been well described 

(Loucks, Verdun & Heath, 1998; Tornberg et al., 2017) although the complex hormonal 

signalling pathways underpinning these effects are still being fully elucidated. 
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2.2.4 Additional Common Hormonal Abnormalities 

Peripheral hormones such as leptin, adiponectin, ghrelin, PYY, and cortisol cross the blood-

brain barrier and exert varying effects on regulatory mechanisms within the hypothalamus. 

These hormones also control activation and inhibition of appetite through neuronal activity 

in the ARC, a key nucleus of the hypothalamus. Alongside this, GnRH pulsatility within the PVN 

and ARC is modulated by these hormones and so consequently, FSH and LH production and 

secretion from the anterior pituitary is impacted, thus resulting in reduced oestrogen 

production (Allaway, Southmayd & De Souza, 2016). 

  

 

Figure 4: A diagram demonstrating the complexity of endocrine disruption caused by LEA 

and the alteration of each hormone (Allaway, Southmayd & De Souza, The physiology of 

functional hypothalamic amenorrhea associated with energy deficiency in exercising 

women and in women with anorexia nervosa 2016, volume 25(2), p 91-119). 

GH, growth hormone; IGF-1, insulin-like growth factor 1; GnRH, gonadotropin releasing hormone; 

LH, luteinizing hormone; FSH, follicle stimulating hormone. 

 

Glucocorticoids and Catecholamines 

GnRH may be suppressed by further hormonal abnormalities that are associated with FHA. 

Firstly, the hormones glucocorticoids and catecholamines are also known to inhibit gonadal 

function in response to the stress of exercise (Wheatley et al., 2012). Specifically, 

corticotrophin releasing hormone (CRH) as mentioned, growth hormone (GH) and insulin-like 

growth factor (IGF-1), thyroxine and melatonin could also play a role (Figure  2) (Mendelson 

and Warren, 2010).   
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Ghrelin  

The hormone ghrelin is an anorexigenic peptide that stimulates appetite but reduces fat 

utilization and oxidation and also affects GnRH pulsatility (Barreiro and Tena-Sempre, 2004). 

Several studies have suggested that ghrelin can interact directly with hypothalamic neurons, 

and therefore leading to the suppression of the release of gonadotropin, thus impairing 

fertility. It has been suggested that this is an effect that is dependent of the oestradiol milieu 

(Yeo and Colledge, 2018). This is because the induced changes in ghrelin levels associated 

with an energy deficiency are an important factor involved in the suppression of the HPO axis 

(Hill, Elmquist & Elias, 2008., Budak et al., 2006). Evidently, ghrelin has been linked to 

reproductive function through both direct and indirect actions that alter GnRH pulsatility (Hill, 

Elmquist & Elias, 2008., Budak et al., 2006) and lead to the suppression of LH secretion and 

pulsatility (Scheid et al., 2013., Vulliemoz et al., 2004., Misra et al., 2005, Fernández-

Fernández et al., 2004). 

 

Although exercising or underweight amenorrheic patients are characterized by a significantly 

greater serum ghrelin elevation than those who remain with stable weight (De Souza et al., 

2004), ghrelin is responsible for the prolongation of amenorrhea in subjects who have 

regained normal weight (Schneider and Warren, 2006). This is because ghrelin potentially 

serves as a biomarker of increased energy efficiency (i.e., lower energy expenditure) in 

humans (St-Pierre et al., 2004), as administration has shown weight gain as a result (Wren et 

al., 2000), and suggests a slowing of the patients RMR. This offers an explanation as to why 

women who have regained normal weight or ceased exercise but still show distorted eating 

patterns, can have prolongation of amenorrhea as they still have low energy availability 

(Schneider and Warren, 2006). 

  

Kisspeptin  

Kisspeptin is a principal regulatory protein important for initiating secretion of GnRH, and its 

signalling has been implicated as the common intermediate signalling factor, acting 

downstream of leptin and other neuro-modulatory signalling systems to modulate activity of 

GnRH (McCarthy, 2013). Kisspeptin’s regulatory role comes from binding to GnRH neurons to 

increase gonadotropin release, with a preferential stimulatory effect for the release of LH 

(Skorupskaite, George, Anderson, 2014., Chan et al., 2012., Dhillo et al., 2007., George, 
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Anderson, Millar, 2012., Jayasena et al., 2014., Jayasena et al., 2013., Jayasena et al., 2013., 

Jayasena et al., 2010., Jayasena et al., 2009), as administration of kisspeptin54 to women with 

FHA stimulated an increase in LH pulse frequency (Jayasena et al., 2009., Jayasena et al., 

2010., Jayasena et al., 2014). When there is a notable reduction in GnRH secretion as a result 

of food deprivation, this is found to be coupled with a reduction in kisspeptin secretion 

(Castellano et al., 2005., Castellano et al., 2013., Luque et al., 2007., Smith et al., 2006).   

 

Adiponectin 

More recently adiponectin, a hormone of which levels rise with prolonged fasting and weight 

reduction, has been determined to reduce basal and GnRH-stimulated LH secretion 

(Rodriguez-Pacheco et al., 2007), and so high levels of adiponectin are present in energy 

deficient female athletes (Roupas and Georgopoulos, 2011). 

  

2.3 The Female Triad and RED-S 

2.3.1 The Female Athlete Triad  

The Female Athlete Triad (Figure 4) is defined as a clinical entity that refers to the relationship 

between three interrelated components: energy availability (EA), menstrual function and 

bone health (Nativv et al., 2007).  Although any one of these components can occur in 

isolation, LEA  often begins a cycle in which all three occur in sequence - hence the entity 

being described as a “Triad” (Mountjoy, 2014). LEA causes a decrease in endogenous 

oestrogen (Figure 2 and 3), which can eventually result in an imbalance in bone remodelling 

leading to low bone mass or osteoporosis (Ilhe and Loucks, 2004).  

  

The pathophysiology underpinning the Female Athlete Triad is described as a continuous 

spectrum over a period of time, where the athlete can move from either end. It ranges from 

the healthy athlete with optimal EA, regular menses, and healthy bones to the opposite end, 

characterised by amenorrhea, low EA and osteoporosis (Figure 4) (Nativv et al., 2007). Further 

research has determined that this phenomenon is not a triad but a syndrome resulting from 

relative energy deficiency and affects many aspects of physiological and psychological health. 

Therefore, it was  suggested that each component of the Triad develops on a continuum and 

that there are Triad “stages" (Figure 1). If the early stages are not treated properly, people 

can progress toward the extremes of the Triad (De Souza, 2003). Therefore, the prevalence 
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of the Female Athlete Triad and each of its components can range extensively in sports 

populations due the spectrum of severity that the entity covers.  

  

 

  

Figure 4: The Female athlete triad (Nattiv et al., The female athlete triad: ACSM position 

stand 2007, volume 39, p 1867-1882). The ideal female athlete is to the far right of the 

spectrum, which defines optimal health. 

  

According to the American College of Sports Medicine, females who participate in sports that 

emphasise low body mass are at the greatest risk for developing one or more of the 

components of the Female Athlete Triad, including disordered eating (Otis et al, 1997). These 

include but are not limited to gymnastics, dance, swimming, and endurance-based events 

such as long-distance running. This increased risk is sometimes due to the pressure placed on 

women to achieve or maintain an unrealistically low body mass, particularly in sports that 

emphasise a small physique and leanness. More recently, studies (Clark et al., 2018) have 

shown that the Female Athlete Triad occurs frequently amongst athletes who engage in 

sporting events whereby the physiological and/or athletic requirement for an excellent 

performance is hinged on maintaining a low percentage of body fat. In many cases this 

pressure can lead to low energy availability (LEA) in an individual and so leads to the 

development of components of the Female Athlete Triad (Otis et al, 1997).  
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 A systemic review of nine studies (n=991) reported the prevalence of the Triad for one, any 

two and all three components. The prevalence of one component of the Triad ranged from 

16 to 60%, the prevalence of any two Triad components ranged from 2.7 to 27%, and the 

prevalence of all three Triad conditions presenting simultaneously ranged from 0 to 16% 

(Gibbs et al, 2013). Likewise, the review stated that participation in a lean or aesthetic-based 

sport increased the prevalence of each combination of Triad components. As a result of the 

emphasis placed on low body mass in many different sports, several small trials suggest that 

the prevalence of disordered eating amongst female athletes could be as high as 62% in some 

sports (West, 1998). Notably, endurance athletes for example, can also inadvertently reduce 

their calorie intake and therefore energy availability through large amounts of daily exercise, 

whilst continuing to consume the same diet as someone sedentary (Edwards et al, 1993).  

Therefore, many athletes can experience components of the Female Athlete Triad as a result 

of LEA often when they go through an intense period of training and may not adjust their 

calorie intake accordingly, rather than just through self-restrictive practices. 

  

2.3.2 Relative Energy Deficiency in Sport 

The definition of the Female Athlete Triad is very narrow, and it does not incorporate the 

variety of physiological conditions associated with LEA. As well as this it fails to acknowledge 

similar pathophysiology in men. As a result, the International Olympic Committee introduced 

the term RED-S, an abbreviation for Relative Energy Deficiency in Sport, in order to expand 

on the concept of the Female Athlete Triad and acknowledge a wider range of outcomes as 

well as its application to male athletes (Mountjoy et al., 2014).  RED-S is defined as the 

impaired physiological functioning caused by relative energy deficiency and includes, but is 

not limited to, impairments of metabolic rate, menstrual function, bone health, immunity, 

protein synthesis and cardiovascular health (Figure 5) (Mountjoy et al, 2014). Figure 5 

highlights the expanded concept of the Female Athlete Triad, and where it fits into RED-S, 

aiming to acknowledge a wider range of outcomes as well as acknowledging those seen in 

men. The cause of RED-S is energy deficiency, relative to the balance between dietary energy 

intake and energy expenditure required for health and activities of daily living, growth, and 

sporting activities. Therefore, the aetiological factor of this syndrome is low energy availability 

(LEA) (Mountjoy et al, 2014). LEA occurs due to a reduction in energy intake (EI)  and/or an 

increased exercise load and causes adjustments to body systems to reduce energy 
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expenditure, leading to a disruption of hormonal, metabolic and functional characteristics 

(Loucks, 2004). 

 

Figure 5: A summary of the health complications caused by RED-S (Mountjoy et al., The IOC 

consensus statement: beyond the female athlete triad—relative energy deficiency in sport 

(RED-S) 2014, volume 48(7), p 491-497). 

*Psychological consequences can either precede RED-S or be the result of RED-S.(Mountjoy 

et al, 2014) 

As RED-S encompasses more health complications than the Female Athlete Triad, it has a 

much higher prevalence amongst the athletic population, ranging anywhere from 6% -100% 

depending on the sport (Logue et al, 2018). Similarly, to the Triad, a high prevalence of LEA is 

observed in individuals participating in sports where a low body mass and leanness is 

desirable as it is believed to improve performance or appearance, of which are concomitant 

with the high energy demand of the training regime (Dipla et al, 2020). In addition to this, 

significantly more athletes participating in individual sports are at risk of LEA compared to 

those partaking in team sports (Slater et al., 2016).This is potentially due to the nature of 
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many individual sports being more reliant on body image and size, for example gymnastics in 

comparison to a team sport like football.  

 

As a result of these complications, LEA and hence RED-S, can have a detrimental effect on 

athletic performance (Figure 6) as a result of the many health complications. For example, 

LEA-related menstrual dysfunction is associated with increased bone stress injury risk which 

can impair training and competition availability (Enns and Tiidus, 2010). Thus, low EA may be 

a contributor to poor sports performance due to associated detrimental endocrine effects 

(Elliott-Sale et al., 2018). Likewise, there can also be a decrease in neuromuscular 

performance, and this was observed in elite endurance athletes with menstrual dysfunction 

in contrast to eumenorrheic endurance athletes (Tornberg et al., 2017). The decreased 

neuromuscular performance was associated with lower fat free mass in the leg, glucose, 

oestrogen, T3, and elevated cortisol. While these findings are unable to provide sufficient 

evidence of a causal link between these biomarkers and performance, the interrelationship is 

biologically possible. This is because it is possible that consistently low blood glucose levels 

may lead to increased cortisol and reduced T3, in addition to lower muscle mass in the long 

term (Tornberg et al., 2017). Therefore, RED-S encompasses these elements of sports 

performance not previously identified in the Female Athlete Triad. 
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Figure 6: The sports performance consequences associated with RED-S (Mountjoy et al., The 

IOC consensus statement: beyond the female athlete triad—relative energy deficiency in 

sport (RED-S) 2014, volume 48(7), p 491-497). 

 

2.4 Bone Health 

Healthy athletes typically have bone mineral density (BMD) that is 5% to 30% greater than 

their sedentary counterparts (Nichols et al., 2000. Nichols et al., 2007). Maintenance of this 

elevated BMD could lead to a 50 to 80% fracture risk reduction (Johnston and Slemenda, 

1994. Kanis et al., 2001. Nordstrom et al., 2005. Nichols et al., 2007). However, many female 

athletes are at risk of developing the FAT or RED-S as a result of LEA, which can lead to poor 

bone health. Poor nutritional intake and therefore LEA, which leads to impaired menstrual 

function and impacts bone health, attenuates the beneficial effects of exercise. Therefore, 

female amenorrheic athletes have lower bone mineral density (BMD) than eumenorrheic 

athletes and nonathletic controls (Russell et al., 2009), increasing their risk for fractures.  
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Bone tissue is dynamic and constantly being remodelled by osteoclasts, which resorb old 

bone, and osteoblasts, which form new bone (Feng and McDonald, 2011). This is done under 

the control of polypeptides, steroid hormones, thyroid hormones, cytokines, and growth 

factors (Ackerman and Misra, 2011). LEA has independent negative effects on reproductive 

function and bone health, alongside low levels of gonadal steroids also being detrimental to 

bone health. Amenorrheic and Oligomenorrheic female athletes function at a low oestrogen 

state, and oestrogen's principal role in bone is to directly act on osteoblasts, and acting 

indirectly on osteoclasts to prevent bone resorption. Therefore, a hypoestrogenic state, due 

to LEA, cause disruption of bone remodelling and accelerated bone resorption by osteoclasts 

(Riggs et al., 2003) and reduced BMD. Moreover, low body mass may also decrease BMD (Joy, 

Kussman and Nattiv, 2016). Currently, the age of peak bone mass acquisition is approximately 

18–20 years, and if low oestrogen status or low body mass is present at puberty, it is not 

possible to acquire maximal bone mass, leading to low BMD/osteoporosis (Matkovic et al., 

1994. Russell and Misra, 2010).  

  

Athletes should have a 5% to 15% higher bone mineral density (BMD) than age-matched 

nonathlete (Movaseghi et al., 2012). Altered bone mineral density will increase bone fragility 

and increase the likelihood of osteoporosis and the risk of fractures (Raisz and Rodan, 2003). 

The incidence of stress fractures is 2 to 4 times greater in amenorrheic athletes than 

eumenorrheic controls (Joy, Kussman and Nattiv, 2016) , and bone density has been shown 

to negatively correlate with the number of missed menstrual cycles since menarche (Raj, 

Creech and Rogol, 2020), demonstrating the tight link between hypoestrogenism and bone 

health (Figure 4). Therefore, understanding the mechanism for bone loss in exercising women 

with LEA may be as a result of independent effects of hypoestrogenism on bone. 

  

2.4.1 Bone Mass in Amenorrheic and Oligomenorrheic Athletes 

BMD in Amenorrheic and Oligomenorrheic Athletes 

Many early studies have investigated the influence of menstrual status on bone mass in 

women of reproductive age (Prior et al., 1990. Carbon, Pettersson et al., 1992. and Drinkwater 

et al.1999), showing that amenorrheic women of reproductive age had lower BMD than 

women with regular menstrual periods, and that the bone loss was more notable in the 

lumbar spine than in other parts of the skeleton. The lack of difference in femoral neck BMD 
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often noted in earlier studies was noted to be as result of the faster bone remodelling process 

in trabecular bones, such as the lumbar spine, than in cortical bones (Petterson et al., 1999). 

In order for the effects of amenorrhea to be expressed in cortical bone, it has been suggested 

that a duration of 5–6 years of amenorrhea was necessary (Myerson et  al., 1992).  This 

highlights the notion of menstrual disturbances and the extent of their complications as being 

on a continuum, with longer term health implications dependent on duration and extent of 

LEA. 

 

Drinkwater et al., (1986) stated that 'the amenorrhea is the factor that determines bone loss, 

but the age at onset of amenorrhea, especially when the amenorrhea appears before women 

reach their peak bone mass, is of greater importance than the duration of amenorrhea'. 

Although this is still relevant, as maximal bone mass acquisition takes place between the ages 

of 18-20, this could now be updated to suggest that it is the age at which a female athlete 

first has LEA as opposed to amenorrhea, as the defining factor in BMD. This is because the 

metabolic imbalances that LEA causes is what initiates menstrual disturbances. However, it is 

also important to consider other factors, such as stress when determining the initial catalyst 

for an athlete's menstrual disturbance. 

  

Although the most severe bone loss has been associated with amenorrhea, oligomenorrhea 

has also been associated with low BMD in female athletes, and therefore, less severe 

menstrual disturbances should not be dismissed clinically (Tomten et al., 1998. Cobb et al., 

2003). Cobb et al., (2003) reported that oligomenorrheic athletes have a lumbar spine BMD 

that is only 69% of that observed in an aged-matched cohort of menstruating controls. 

Likewise, it is important to note that not only is BMD associated with an individual's current 

menstrual status, whether that be amenorrheic or oligomenorrheic, but also their history of 

menstrual disturbances, as shown by Drinkwater et al. (1990). Therefore, there can be a 

cumulative impact of decreased endogenous oestrogen over many years.  

  

Fat Deposits 

Regional fat deposits, such as subcutaneous, visceral and marrow fat, have been implicated 

in the regulation of bone mass at extremes of LEA (Ackerman et al., 2016). In adult females, 

visceral adipose tissue (VAT) has deleterious effects on bone, especially on femoral and 
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cortical bone areas, whereas subcutaneous adipose tissue (SAT) has a positive association 

with bone mass (Gilsanz et al., 2009).  Marrow adipose tissue (MAT) has a common progenitor 

mesenchymal stem cell lineage with osteoblasts. Therefore, many osteoporotic states such 

as anorexia nervosa are associated with decreased BMD and increased MAT (Bredella, 2009), 

but this is still a developing area of knowledge.  

  

Caloric restriction alone, which is putting the body into a state of LEA, but in the absence of 

changes in oestrogen, has been shown to be an important factor in bone loss (Shapses et al., 

1998). This is further evident in studies where oral contraceptive use in patients with anorexia 

or in women with exercise-associated amenorrhea is not associated with complete recovery 

of BMD (Zipfel et al., 2001). Similarly, resumption of menses in formerly amenorrheic athletes 

does not result in complete recovery of BMD, which has also been shown to decrease further 

in amenorrheic athletes if left untreated (Drinkwater et al., 1986. Drinkwater and Keen, 1997). 

Therefore, in addition to considering the degree of hypoestrogenism as a contributor of bone 

loss in amenorrheic athletes, the impact of LEA alone can also be pursued as a potential cause 

of diminished BMD. This may be because, as previously mentioned, fat deposits have 

deleterious effects on bone, and are implicated at extremes of LEA, suggesting a role for 

changing fat deposits in low BMD.  

  

Contrastingly, it has been shown that weight gain in women with anorexia nervosa was 

associated with significant central fat accumulation relative to the extremities (Grinspoon et 

al., 2001). This redistributed weight gain may offer an explanation as to why BMD can remain 

low in previously amenorrheic athletes that have gained weight, highlighting a further role 

for fat deposits in their influence over bone mass. Although further research is needed to 

investigate the link between fat deposits and BMD in amenorrheic athletes, there is evidence 

of a link. 

  

The Oestrogen Pathway  

Oestrogen deficiency, a known cause of low BMD, increases adipocyte differentiation, and 

rodent studies have demonstrated a dose-related decrease in MAT following oestrogen 

administration (Gao et al., 2014), suggesting a potential interplay between fat deposits and 
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hypoestrogenism that promotes bone resorption. The benefits of exercise include increases 

in both muscle mass and BMD; however, it has been concluded that the beneficial effects of 

weight-bearing exercise on BMD  in eumenorrheic athletes are attenuated in oligomenorrheic 

and amenorrheic athletes as a result of hypoestrogenism (Nichols et al., 2007. Ackerman et 

al., 2011). 

Findings from a study by Drinkwater et al. (1990) demonstrated that as menstrual 

irregularities became more severe, the negative association between body mass and bone 

health became stronger. This suggested an important interaction between menstrual pattern, 

body mass and vertebral density, highlighting a potential role for energy balance in menstrual 

disturbances. Further to this, the study also reinforces that LEA influences menstrual 

disturbances and causes hypoestrogenism, which further leads to a decline in bone health. 

 

The Insulin-like Growth Factor (IGF)-Pathway 

IGF-1, a nutrition-dependent factor that stimulates osteoblast function and bone formation, 

is a useful factor to measure, especially in cases of FHA, low bone mass (Gordon et al., 

2001). Optimal bone accrual during adolescence and early adulthood is dependent on the 

rising levels of IGF-1, and the antiresorptive and also bone anabolic effects of rising sex 

steroids (Soyka et al., 2000), highlighting an intertwining link between the HPO axis and IGF-

1 (Figure 2). 

The effects of caloric restriction, and therefore LEA, may independently affect bone through 

energy deficit-induced decreases in bone trophic factors, such as IGF-1 (Zanker and Cooke, 

2004). It has been identified that the lowest levels of the bone formation markers were 

observed in the amenorrheic athletes with the lowest total T3 and IGF-1 (Zanker and Swayne, 

1998. Ihle and Loucks, 2004.) .  

 

Implications for athletes 

 For athletes, low BMD increases the risk of stress fractures and osteoporosis in later life 

(Myburgh et al., 1990), meaning that they would not be able to compete or train to their full 

potential. The setbacks of injury would impede athletic performance (Figure 6), which could 

form part of a vicious cycle where athletes take greater measures, whether this is increasing 
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exercise or reducing calorific intake, to achieve their goals. Likewise, it is also important to 

bear in mind that athletes with menstrual disturbances who compete in non-weight bearing 

sports may experience greater detrimental effects on their bone health than those in weight 

bearing sports, as this can attenuate, to an extent, low BMD caused by LEA. 

 

2.5 Cardiometabolic health 

The cardiometabolic health of amenorrheic athletes is an aspect of FHA that has not been 

extensively documented nor understood. This is particularly due to the lack of longitudinal 

studies and therefore the long-term cardiovascular consequences that amenorrheic athletes 

face. It has been confirmed that the oestrogen E2 has a cardio-protective role, and therefore 

hypoestrogenism, which is the manifestation and accumulation of the final consequences of 

complex hormonal changes from FHA, would result in cardiovascular disease risk factors 

(Hoch et al., 2003). Therefore, the independent and combined effects of chronic 

hypoestrogenism and exercise, together with subclinical dietary behaviours typically 

observed in amenorrheic athletes, warrants closer examination (O'Donnell and De Souza, 

2012).  

 

2.5.1  Oestrogen and Cardiometabolic Health 

Hypoestrogenism 

 As both amenorrheic athletes and postmenopausal women are hypoestrogenic, studies in 

postmenopausal women can be used as a point of comparison to determine the potential 

cardiometabolic implications of FHA. This is because there are currently no existing long-term 

studies of cardiometabolic health in amenorrheic athletes. However, the altered vascular 

health outcomes reported in amenorrheic athletes in the short term, alongside 

postmenopausal comparison studies, are suggestive of increased risk for premature 

cardiovascular disease (CVD) (O'Donnell and De Souza, 2012). Hypoestrogenism in 

postmenopausal women is associated with unfavourable effects upon serum lipids (Ridker et 

al., 2000) endothelial function (Lieberman et al., 1994) haemostatic parameters (Rosenson et 

al.,1998) blood flow (Moreau et al., 2003) homocysteine (Yildirir et al., 2002) and antioxidant 

status (Yen et al., 2001) as a result of hypoestrogenism. 
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Recent data in amenorrheic athletes demonstrate impaired endothelial function (Hoch et al., 

2003), elevated low- and high-density lipoprotein levels (Drinkwater et al., 1993), reduced 

circulating nitrates and nitrites (Stacey et al., 1998), and increased susceptibility to lipid 

peroxidation (Ayres et al., 1998) as cardiovascular consequences of hypoestrogenism. 

Predictive serum markers of cardiovascular health, such as homocysteine and C-reactive 

protein, are yet to be assessed in amenorrheic athletes, but are elevated in postmenopausal 

women (O'Donnell and De Souza, 2012). Although the clinical significance is not known, these 

markers are also suggestive of an increased risk of premature CVD.  

  

Once a protective cardiovascular role for oestrogen (E2) had been identified, impaired 

cardiovascular health was suggested as an additional risk for hypoestrogenism in female 

athletes (Hoch et al., 2003). Oestrogen is known to decrease low-density lipoprotein (LDL) 

oxidation and the accumulation of oxidized LDL in the intima, which are crucial steps in the 

atherosclerotic process. Atherosclerosis is a process in which blood, fats such as cholesterol 

and other substances build up on your artery walls. Eventually, deposits called plaques form 

which can eventually lead to blood clots, and therefore oestrogen helps prevent this from 

occurring (Rickelunde et al, 2015). Although endogenous E2 is considered to be 

cardioprotective,  the Women’s Health Initiative trial that used hormone replacement 

therapy (HRT) on postmenopausal women identified a significantly increased risk of adverse 

cardiovascular events (Wenger, 2003). Therefore, although comparing amenorrheic athletes 

to postmenopausal women can be a highly useful comparison, it is important to consider that 

the administration of exogenous hormones to postmenopausal women is likely to result in 

different outcomes than endogenous E2 in premenopausal women, due to their stage in life 

and bodily requirements (O'Donnell and De Souza, 2004). A cardioprotective effect of 

endogenous oestrogen in premenopausal women is widely supported, however what remain 

less clear are the implications of persistently low oestrogen levels in much younger 

amenorrheic athletes. 
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2.5.2  Cardiometabolic health in Amenorrheic athletes  

2.5.2.1 Lipid Metabolism  

Low Density Lipoproteins 

Low Density Lipoproteins (LDLs) have a key role in the transportation of cholesterol to all 

tissues, but primarily to adipose cells and the liver (Feingold & Grunfeld, 2012). Approximately 

60–80% of circulating LDL-C is taken up by the liver via receptor-dependent mechanisms 

(Dietschy, 1997). Apolipoprotein B, the major protein moiety of LDL, acts as the ligand to the 

LDL receptor in the liver (Liscum & Munn, 1999), enabling the mechanisms to take place. 

  

Dietary cholesterol and fatty acids consumed influence the circulating levels of LDL-C in the 

body, mediated by altering either hepatic (liver) LDL receptor activity, LDL-C production rate, 

or both. When the intake of dietary cholesterol is increased, expansion of the pools of newly 

synthesised sterol occurs within liver cells. This results in the downregulation of the LDL 

receptors, causing a plasma increase in the concentration of LDL-C (Dietschy, 1997). If 

elevated serum levels of LDL-C are greater than 3.37 mmol/L, this is recognised as an 

independent risk factor for CVD (NIH Consensus statement, 2003). 

 

Studies observing LDL-C levels (Kaiserauer et al., 1989. Friday et al., 1993. Thompson et al., 

1997. Ayres et al., 1998. Baer. 1999) and LDL particle size (Kaiserauer, 1989) in amenorrheic 

athletes have been reported, but findings are questionable, due to variable methodologies 

and small sample sizes. The contradictory literature currently available on this highlights that 

LDL-C levels have been both reported to be significantly elevated (Friday et al., 1993. 

Kaiserauer, 1989), and reported as non-significant differences (Baer et al., 1999. Akahoshi et 

al., 2001) in amenorrheic compared with eumenorrheic athletes. Therefore, it is not clear 

whether the reported elevation in LDL-C levels seen in amenorrheic athletes are of clinical 

significance. However, in an extensive review of postmenopausal women, Schwertz and 

Penckofer (2001) identified that 25–50% of the potential cardioprotective effect of E2 is 

associated with its effect on blood lipids and lipoproteins, suggesting that these levels are 

disrupted in a hypoestrogenic state. This identified range of potential cardioprotective effects 
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may potentially suggest that the differing duration of amenorrhea in the patients tested may 

impact the clinical significance of the LDL level reported, highlighting that the extent of 

menstrual disturbances move along a continuum (Figure 2). 

  

Further to this, studies that report elevated LDL-C levels in amenorrheic athletes (Friday et 

al., 1993. Kaiserauer, 1989) also either show statistical significance, present in the Kaiserauer 

study, or a strong trend, present in the Friday study, for both reduced calorie intake and 

dietary fat intake. The paradoxical increase in circulating LDL-C despite reduced dietary fat 

intake in these studies is consistent with findings in chronically hypoestrogenic anorexia 

nervosa patients (Feillet et al., 2000). This opposes the typical functioning previously 

described, where an increase in cholesterol and dietary fat leads to increased LDL plasma 

levels. Mechanisms for this phenomenon in the anorexia nervosa patient group are 

associated with the known down-regulatory effect of altered thyroid hormones, i.e., reduced 

total triiodothyronine (T3), and lowered E2 levels (Feillet et al., 2000) on the cellular number 

of hepatic LDL receptors. As a result, this contributes to increased plasma LDL-C levels 

(Homma et al., 2002). Therefore, it is possible that this is one of the body's coping mechanisms 

for adjusting to LEA . 

  

Similarly, to the anorexia nervosa group, amenorrheic athletes have also displayed low total 

T3 status (Loucks et al., 1992. Thong et al. 2000), a lower calorie intake (Kaiserauer, 1989) and 

significantly less calories derived from dietary fat (Drinkwater et al., 1993) when compared to 

the eumenorrheic controls. These studies suggest that, although to a lesser extent than those 

observed in anorexia nervosa patients, the metabolic aberrations observed in amenorrheic 

athletes may explain their elevated LDL-C levels (O'Donnell and De Souza, 2004). 

  

As previously discussed, the findings provide evidence for the suggestion that dietary 

restriction and therefore LEA are placed upon a moving continuum, as amenorrheic athletes 

that have the greatest nutritional aberrations demonstrate the least favourable LDL-C 

profiles. Likewise, along  this continuum time may also interplay, as it is possible that the 

longer the episode of amenorrhea, the greater the risk of elevated LDL-C.  
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Furthermore, De Souza and O'Donnell (2004) suggest that the downregulation of LDL 

receptors due to hypoestrogenism and altered thyroid status may also play a role in 

cholesterol metabolism in amenorrheic athletes, but this has not been thoroughly 

researched. 

  

High Density Lipoproteins (HDL) 

HDL particles correlate inversely with the risk of CVD (Roeters van Lennep, 2002) and are anti-

atherogenic (Spieker et al., 2002), highlight its cardio-protection properties. HDL  has a role in 

reverse cholesterol transport whereby it scavenges surplus cholesterol from peripheral 

tissues for delivery to and disposal by the liver for excretion via bile. This involves 

apolipoprotein A-I, one of the two major proteins associated with HDL (Guetta et al., 1996). 

Reverse cholesterol transport is important for cellular cholesterol homeostasis, and it is a 

result of apolipoprotein A-I promotion of cholesterol efflux from the cells via receptor and 

non-receptor mediated mechanisms (Segrest et al., 2000). The antioxidant properties of HDL 

are shown through studies where HDL attenuates LDL oxidation and inhibits the atherogenic 

effect of oxidised LDL-C (Bonnefront-Rousselot et al., 1999), which contribute to healthy 

endothelial function. 

  

Reductions in HDL-C levels is notable after menopause, potentially due to diminishing levels 

of E2. E2 has stimulatory effects on apolipoprotein A-I as well as beneficial roles in HDL-C 

metabolism and modifying HDL-C levels, composition and distribution, and augmenting 

cholesterol efflux (Ulloa et al., 2002). However, similarly to LDL levels, study findings are 

variable in amenorrheic athletes, including significantly elevated (Drinkwater et al., 1993), 

similar (Ayres et al., 1998) and non-significant trends toward lower (Baer, 1999) HDL-C 

concentrations in amenorrheic compared with eumenorrheic athletes. However, endurance-

trained female athletes possess much higher HDL-C levels compared with sedentary women 

(Podl et al., 1994) and eumenorrheic and amenorrheic athletes also demonstrate significantly 

increased HDL-C levels compared with eumenorrheic sedentary controls (Thompson et al., 

1997). This suggests that exercise has cardioprotective benefits that may attenuate the risks 

of amenorrhea in some incidences, highlighting a reason for inconsistency in findings. This is 

supported through a study that found elevated HDL-C levels in female runners, irrespective 

of menstrual status, with the highest levels observed in those running the greatest distances 
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(Williams, 1996). This suggests that there are oestrogen-independent mechanisms effecting 

the HDL-C increase.  

2.5.2.2 Glucose 

The aetiology of FHA involves persistent LEA and therefore low glucose availability, which 

poses a variety of cardiovascular and muscular risks (Loucks and Thuma, 2003). Firstly, the 

inability to maintain sufficient glucose supply to the contracting muscle has been shown to 

decrease the intracellular calcium (Ca2+)concentration via a depressed release rate of Ca2+ 

from the sarcoplasmic reticulum(Gejl et al., 2014). In terms of athletic consequences, this is 

potentially contributing to the fatigue and delayed recovery in athletes with RED-S. Therefore, 

alterations in glucose homeostasis, alongside those seen in endogenous sex steroids, stress 

hormone levels and circulating thyroid hormones, may contribute to lowered neuromuscular 

performance in female athletes  (Tornberg et al., 2017).  

Cortisol is a steroid hormone released in response to starvation and intense exercise, resulting 

in a decrease in plasma glucose.  This is because a major function of cortisol is to maintain 

plasma glucose concentrations by breaking down skeletal muscle into amino acids for 

gluconeogenesis by the liver. Therefore, an amenorrheic athlete with either or both LEA and 

an intense training routine, would have  increased levels of cortisol in response to this stress, 

and would lead to a further reduction in blood glucose levels, inducing muscle atrophy and 

reduced athletic performance. A study by Tornberg et al. (2017) found that the amenorrheic 

athletes had lower blood glucose, T3, FFM, and higher cortisol as well as cortisol-to-insulin 

levels compared with the eumenorrheic control group and that this may all, directly or 

indirectly, contribute to the observed reduced neuromuscular performance. In addition to 

this, 86% percent of the amenorrheic athletes were hypoglycaemic, not only in the fasted and 

rested state but also after low-intensity exercise. Therefore, this reinstates that amenorrheic 

athletes have a general inability to maintain glucose homeostasis. As a result, blood glucose 

levels have been shown to influence athletic performance (Bangsbo et al., 1992). Energy 

supply is partly maintained by increased proteolysis, mainly from skeletal muscles, to produce 

free amino acids for the increased gluconeogenesis in the liver (Darmaun et al., 1988). 

Gluconeogenesis is the metabolic process by which organisms produce sugars (namely 

glucose) for catabolic reactions from non-carbohydrate precursors.  
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The reason for elevated cortisol levels in amenorrheic athletes are in response to a fall in 

insulin because insulin is important in the regulation of glucose metabolism and in the 

prevention of muscular proteolysis (Darmaun et al., 1988). Therefore, if proteolysis is not 

prevented due to a fall in insulin, gluconeogenesis would increase and therefore the levels of 

circulating blood glucose would decrease. This is supported by studies that show that glucose 

infusions suppress cortisol (Maclaren et al., 1999), linking low blood glucose levels to higher 

proteolysis and muscle atrophy, because a higher cortisol-to-insulin ratio has been shown to 

accelerate proteolysis (Myerson et al., 1991).  

 

2.6  Summary 

To conclude, the extent of energy availability an athlete possesses ranges from LEA to optimal 

EA on a continuum, alongside the period of time to which an athlete has experienced their 

particular degree of energy availability. This corresponds to the extent of menstrual 

disturbance the athlete experiences and the length of time that it occurs for. Therefore, the 

degree of severity of the menstrual disturbance corresponds to the health complications that 

the athlete experiences, such as low BMD, an unfavourable lipid profile and low blood glucose 

levels. These complications determine an athlete’s ability to perform and will impact the 

quality and time in which athletes are able to dedicate to training and competing. This 

highlights how RED-S is an increasingly important area of research as more information about 

the clinical entity emerges. RED-S needs to better understood in order to be able to prevent, 

diagnose and provide help to those experiencing menstrual disturbances and LEA, whether 

through restricted eating or just because they use more energy exercising than they consume 

through dietary intake. 

Lastly, although this remains an area not yet well understood, female athletes with prolonged 

FHA appear to be at a higher risk of cardiovascular complications in the future. Studies in pre-

menopausal adult women have shown that having hypothalamic hypoestrogenism is 

associated with a higher risk of coronary artery disease (Merz et al., 2003). In addition, female 

athletes are also at risk of having abnormal lipid profiles, including elevated total cholesterol 

and low-density lipoprotein levels (Rickenlund et al., 2005) as a result of the down regulatory 

effects of reduced T3 and E2 levels. Heightened LDL plasma levels are an independent risk 
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factor for CVD. Dependent upon the type of exercise the athlete participates and the extent 

of their menstrual disturbance, HDL levels could either fall or show no significant difference, 

therefore further research is needed to determine the cardiometabolic risk to amenorrheic 

athletes with altered HDL profiles. As it is apparent that athletes in a state of LEA are at a 

greater risk of cardiovascular complications, it remains an important area of research in order 

to prevent the long-term complications associated with menstrual disturbances. 
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Chapter 3 - Methodology 

3.1 Research Approach and Study Design 

This research study adopted a positivist research ontological approach. This reflects the 

scientific enquiry nature of the study design and the quantitative results achieved, which were 

used to determine differences and correlations between the four study groups. 

In this cross-sectional study comparing cardiometabolic risk factors and bone health, female 

athletes underwent a dual-energy x-ray absorptiometry (DXA) to assess bone density and 

body composition. Female amenorrhoeic athletes (AA), oligomenorrheic athletes (OA) and 

eumenorrheic athletes (EA) were included in this study.  

3.2 Ethical approval 

The study was approved by the NHS Ethics Committee (REC reference: 21/NE/0074) and the 

Department of Sport and Exercise Sciences Ethics Sub-Committee, with specific consideration 

to ionising radiation protection and ensuring compliance to Covid-secure protocols. All 

participants provided  signed informed consent prior to participating in the study and the 

research was conducted in accordance with the ethical principles of the Declaration of 

Helsinki. 

Ethical approval granted by the NHS ethics Committee was for the use of DXA scans within 

this study. This is because DXA involves the utilisation of ionising radiation through low energy 

X-rays. The latest DXA scanners with fan beams, as used in this study, provides improved 

images for diagnostic radiographic quality. The effective dose for the current study 17 μSv 

(microsievert) which compares to 2.5 days of natural background radiation. Justification of 

effective dose is always required for DXA scans used in research and clinical practice, with a 

net benefit to the individual involved and the wider study. All participants received copies of 

the DXA results and had the opportunity to ask questions about the scan and their results.  

COVID-19 Restrictions 

Ethical approval was granted by the Department of Sport and Exercise Sciences Ethics Sub-

Committee for all tests including finger-prick blood samples and the additional body 

measurements taken. This ethical review ensured that the rights, safety, dignity, and well-
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being of research participants are safeguarded and, where applicable, legal requirements in 

sample legislation are met. Research only went ahead as the potential benefits outweighed 

any potential risks to the donors of the samples, as the finger-prick blood test is a relatively 

non-invasive procedure. The samples of human biological material were treated as donations 

and research involving these samples were conducted with respect and transparency. The 

ethical review was vital in ensuring that an environment of trust and respect with participants 

was created, recognising the altruism of providing samples for use (MRC ethics series, 2014). 

Unfortunately, however, due to COVID-19 restrictions this section of the study was unable to 

go ahead. 

3.3 Study Sample 

3.3.1 Sampling Methodology  

Due to the travel restrictions as a result of Covid-19 and the specific requirements for 

participants in this research, non-probability (or non-random) sampling was used for this 

study. This is due to only certain groups of female athletes being able to take part because of 

the exclusion and inclusion criteria and their capacity to travel to Durham University. 

Therefore, recruitment of participants was based off of convenience and meant that if the 

participant met the exclusion and inclusion criteria, and was willing to travel, they could 

partake in the research. Therefore, this study doesn’t allow for the generalization of the 

findings to other groups of females in wider settings. 

More specifically, a voluntary response sampling method was undertaken. Details of the 

research project were broadcasted across universities, sports teams and the wider public with 

my contact details attached, and participants willing to be involved volunteered themselves. 

This was the most appropriate method of sampling as the research involved slightly more 

intrusive elements, with finger prick blood samples and DXA scans, and the research subject 

can be as a sensitive matter. Therefore, participant volunteering was deemed more suitable 

than randomly selecting individuals from each group and contacting them directly myself, due 

to the nature of the research conducted. 
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3.3.2 Exclusion and Inclusion Criteria 

A total of 12 pre-menopausal female endurance athletes (aged19-42) were recruited from 

university and amateur cycling, athletics, and swimming clubs in the UK. Participants were 

grouped according to their menstrual cycle status. Four athletes were amenorrheic, 3 

oligomenorrheic and 5 eumenorrheic. Participants were required to confirm that they were 

not pregnant before participating in the study as it would prevent them from receiving a DXA 

scan. Participants falling under the category of ‘amenorrheic’ would have had established 

menstrual cycles at some point, but at the time of the study they have had an absence of 

menstrual bleeding for 6 months or for a length of time equivalent to a total of at least 3 of 

her previous cycle lengths (West, 1998. Redman and Loucks, 2005). Those that fall under the 

category of oligomenorrheic have menstrual cycle intervals greater than 45 days (Mountjoy 

et al., 2014). 

Participants were non-smokers, did not have a BMI that classified as overweight and have no 

history of medical conditions that impact bone health, such as: hypothyroidism, 

hyperthyroidism, diabetes mellitus, hypercortisolism, and renal or gastrointestinal disease. 

Participants were excluded if they used medications that may affect bone metabolism such 

as: oral contraceptives, Depo Provera, anabolic steroids, glucocorticoids, or anticonvulsants, 

in the preceding three months. Consumption of calcium and vitamin supplements were 

accepted into the inclusion criteria. Finally, participants also had no cardiovascular disease, 

or immediate family hereditary history. 

It was also necessary to exclude women had a history of medical conditions impacting bone 

health, as well as those who had taken medications that affect bone metabolism in the three 

preceding months, as this study was looking at the effects of LEA on BMD. BMD is influenced 

by the success of bone metabolism as a continual cycle of bone growth and resorption. When 

energy intake is insufficient to meet the demands of exercise, luteinizing hormone (LH) 

pulsatility is weakened and results in a decline in oestrogen production, a hormone known to 

inhibit bone resorption (Loucks et al., 1998). Therefore, if there were any additional, external 

factors influencing bone metabolism, and thereby BMD, rather than LEA alone, the results 

may be distorted.  
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Participants also had to have no form of cardiovascular disease or a hereditary history in 

immediate family, as this study was investigating the impact of low energy availability on the 

cardiometabolic profile. In turn, this was used to determine whether athletes with menstrual 

disturbances were at an increased risk of cardiovascular disease (CVD) when looking at their 

lipid profile. Therefore, if there were external factors that increased the risk of CVD or altered 

the lipid profile, the results would have been impacted. 

Study characteristics criteria Participant 

Amenorrheic 
Athlete 

Oligomenorrheic 
Athlete 

Eumenorrheic 
Athlete 

Eumenorrheic 
Non-Athlete 

Female, premenopausal non-
smoker adults who aren’t 
pregnant and don’t have an 
overweight BMI 

    

No medical conditions that 
impact bone health 

    

No cardiovascular disease (or 
immediate family history?) 

    

No medication that may 
affect bone metabolism 

    

Complete a minimum of 3 
hours of continuous aerobic 
exercise/week 

    

Primary sport is swimming, 
running, or cycling 

    

Menstrual disturbances     

Table 3: The inclusion and Exclusion Criteria for each group partaking in the study. Green 

represents the traits of the participants in each group, and red represents the traits that 

each group didn’t have. 

 

COVID-19 Mitigations 

A sample size of 60-100 people was the initial aim for this study, however due to the impacts 

of covid-19 and a reduced timeframe to complete this project, the sample size was 

significantly reduced so that the study could still go ahead. Additionally, a comparison group 

of non-athletes that were eumenorrheic were also part of the initial study plan, being 

recruited from the University and the wider community throughout the UK. They would have 

been selected if they did not meet the requirements for the athlete status criteria 

determined, but they did meet the other inclusion/exclusion criteria  
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Participant Athletic Status 

Athlete status and therefore the participants in this study, were required to be endurance 

athletes who complete a minimum of 3 hours of continuous aerobic exercise over the course 

of each week with their primary sport being either cycling, swimming or middle to long 

distance running. The 3 hours can be broken up into different amounts of time throughout 

the week, but the activity within that time must be continuous, i.e., 30 minutes of running. 

 

3.4 Original Protocol  

 

Figure 7: A flow diagram outlining the protocol conducted. The step outlined in red was the 

element not able to go ahead due to COVID-19. 
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Prior to arrival, energy availability was assessed using the validated Low Energy Availability in 

Females Questionnaire (LEAF-Q) (Melin et al, 2014), which was sent to participants via email 

as a link to a google forms questionnaire. The results were then collected and stored against 

each participant’s unique ID number, alongside their results from the blood samples and the 

DXA scan. 

Participants arrived at the laboratory at 08:00 in a euhydrated, rested state (no exercise that 

day), following an overnight fast of at least 8 hours. They were also instructed to abstain from 

caffeine and alcohol for 24 h before the appointment. To ensure participants arrived 

euhydrated they consumed 500 mL of water 1 hour prior to arrival time (Gibson et al., 2019).   

Upon arrival, participants were taken one at a time into a separate room and were asked to 

remain seated for one minute, before measuring their resting blood pressure and heart rate. 

Following this, the stature and body mass of each participant was taken using a stadiometer 

(XX, United Kingdom) and calibrated electronic scales respectively (XX, United Kingdom). 

Stature was recorded in centimetres (cm) to the nearest millimetre and body mass, in 

kilograms (kg) to the nearest 0.1 kg. BMI (body mass/height2 [kg/m2 ]) was calculated for the 

purposes of comparison to obesity tables and the DXA results. A waist circumference 

measurement was taken and recorded to the nearest millimetre. Following these 

measurements, each participant then stepped onto a Tanita monitor to determine their 

bioelectrical impedance measurement of body composition, providing a bodily percentage of 

water and fat.  

Participants were then asked to void their bladder and take a pregnancy test prior to the DXA 

scan. Participants wore light-weight clothing and removed their shoes and any jewellery prior 

to height and body mass measurements. Upon a negative pregnancy test result, a whole-body 

DXA scan was performed in a supine position.  

3.5 COVID-19 restrictions 

The body measurements would have originally been followed by a capillary blood sample 

collected from a finger prick, with all measurements being conducted immediately. Glucose 

would have been measured using the HB 201+ and HDL, triglycerides and total cholesterol 

levels were measured using the CardioChek PA. The format in which both pieces of equipment 

used for this analysis would have followed manufacturer’s instructions. LDL levels were 

calculated using the results from the data collected by CardioChek PA. 
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Blood Sample Analysis (planned, but not performed) 

Analysis of the blood sample would have determined each participant’s fasting glucose, total 

cholesterol, high-density lipoprotein (HDL) and triglycerides measurements using blood 

chemistry analysers. It was planned to use the HB 201+ for fasting glucose, with 

measurements performed twice for accuracy. The HB 201+ is used in accordance with 

manufacturer’s instructions where a new, separate microcuvette is used for every sample 

taken, with the correct disposal of each one afterwards. The test results appear after 

approximately 60 seconds.  

 

The Cardiochek PA is to be in accordance with manufacturer’s instructions. This involves the 

use of a new, separate test strip for each sample taken and the correct disposed of each strip 

afterwards. Test results appear within 90 seconds. Additionally, each day the Cardiochek PA 

should be checked for correct functioning using the grey check strip test and control solutions 

are used between batches of test strips.  

 

These measurements are then used to calculate the individual’s low-density lipoproteins using the 

Friedewald equation (Friedewald, Levy & Fredrickson., 1972): 

 

LDL-c (mg/dL) = TC (mg/dL) − HDL-c (mg/dL) − TG (mg/dL)/5 

 

LDL= Low-density lipoproteins 

TC= Total Cholesterol 

HDL= High-density lipoproteins 

TG= Triglycerides 

 

3.6 Revised Protocol (in light of COVID-19 restrictions) 

Bone density, body composition and visceral fat measurements 

Narrow fan beam dual energy X-ray absorptiometry (Lunar iDXA, GE Healthcare, Madison, WI) 

was used to evaluate left total hip BMD, left femoral neck BMD, anterior-posterior lumbar 

spine BMD (L1-L4) and total and regional body composition (lean mass, fat mass and visceral 
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fat mass). BMD Z-scores were produced for each of the 3 regions, with precision estimates 

(coefficient of variation) of 0.4% for lumbar spine BMD and 0.9% for femoral neck BMD. 

Precision errors for lean and fat mass measurements are 0.5% and 0.9%, respectively (mean 

age, 25 years) (Hind, Oldroyd & Truscott., 2011). BMD Z-scores are the number of standard 

deviations above or below the mean for the patient's age, sex, and ethnicity. Normal BMD is 

a Z-score greater than -1 in all measured sites and a Z-score of less than -2 in at least one of 

the measured sites indicates osteoporosis (Lewieki et al., 2004). 

Daily calibration checks and DXA quality control observations were carried out prior to each 

scanning session using the GE Lunar calibration phantom and aluminium spine phantom. The 

DXA machine operator followed the manufacturer’s guidelines on patient positioning and 

scan acquisition for the duration of the data collection (GE Healthcare, 2020), with identical 

scanning parameters used for each individual’s scan. There was (no significant) drift in 

calibration for the study period during which the 12 athletes were measured.  

The results for each individual were then compared to tables for age-matched and sex-specific 

reference intervals for iDXA derived VAT mass and the BMD Z-scores in adults of both the 

general population and athletes by using UK reference population data (GE Lunar Encore 

V.15.0, GE Healthcare, Madison, Wisconsin). 

 

3.7 Statistical Analysis 

3.7.1 Independent and Dependent Variables 

The independent variables in this study were menstrual status and athletic status of the 

population selected. The study split the participants into three groups, amenorrheic athletes, 

oligomenorrheic athletes and eumenorrheic athletes with statistical tests also compared two 

groups, with menstrual disturbances as a collective group and eumenorrheic athletes.  

The dependent variables in this study, within multiple different analyses were BMD Z-scores 

for total BMD, total hip, femoral neck, and posterior lumbar spine; BMI, body water 

percentage, body fat percentage, android:gynoid ratio, waist:height ratio, waist:hip ratio, 

waist circumference; resting blood pressure and heart rate; and body composition. 
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Dependent variables would have also included glucose, HDL, total cholesterol and LDL levels 

if the blood tests were able to take place. 

3.7.2 Statistical tests 

Statistical analyses were performed using the software SPSS version 27 (Armonk, NY: IBM 

Corp). Body composition variables (body water percentage, percentage body fat, 

android:gynoid ratio, BMI, waist circumference, waist:height ratio, waist:hip ratio, VAT) and 

bone density variables (total body BMD, total hip BMD, femoral neck BMD and anterior-

posterior lumbar spine BMD), were first tested for data distribution formally by using the 

Shapiro Wilks test for normality. All variables were normally distributed, therefore parametric 

tests were used. Descriptive statistics (mean and ± standard deviation) were reported for each 

of the three groups.  

Independent T-Tests were performed to determine whether there was a significant difference 

firstly between the menstrual disturbances (including both amenorrheic and oligomenorrheic 

athletes) and the eumenorrheic athletes, and then more specifically between amenorrheic 

and eumenorrheic athletes. An independent T-test compare BMD Z scores for the menstrual 

disturbances and eumenorrheic group, and the amenorrheic and eumenorrheic group. 

Therefore, the amenorrheic and oligomenorrheic athlete groups were jointly and individually 

compared to those that were eumenorrheic to see if there was a statistically significant 

difference for each subject group. Independent T-tests were also carried out for each of the 

body composition variables in the same way.  

Pearson’s correlation test was used to determine whether any of the variables correlated, to 

help deduce whether a change in one variable may take place alongside a change in another, 

or whether a change in one variable may be causing the change in another. Correlations were 

tested between Waist:height ratio and BMD, BMD total body and body water percentage, 

BMI and total body BMD, PBF and BMD total body, BMD total body and BMD lumbar spine, 

BMD total body and VAT, and BMD total body and android:gynoid ratio, with all 12 

participants used to determine a correlation. Statistical significance was identified as p < 0.05. 
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Chapter 4 – Results 

4.1 Participant Descriptive 

Table 4: Range for Participant Descriptive 

 

4.2 Tests for Normality 

The data for the body composition variables (Table 9 & 11); total body water, PBF, 

android:gynoid ratio, waist circumference, waist:height ratio, waist:hip ratio, lean mass, 

visceral fat mass and BMI were all normally distributed  (p value ranges 0.074-0.905 & 0.068-

0.944). The data for bone mineral density variables (Table 10 & 12); total hip, femoral neck, 

lumbar spine and total body Z-score were all normally distributed (p value range 0.2-0.957 &  

0.085- 0.973). 

4.3 Body Composition  

TBW in the menstrual disturbances group was higher than the control group (Table 5), and 

higher in the amenorrheic group compared to the eumenorrheic group (Table 6), although 

this did not reach statistical significance.  

Waist:height ratio was significantly lower (Table 6) in amenorrheic v eumenorrheic athletes 

(mean= 0.38 (SD-0.013) – 0.44 (SD-0.03), p=0.19). There were no significant differences between 

the combined menstrual disturbances group and eumenorrheic group (p>0.05). For waist:hip 

ratio, android:gynoid ratio and percentage body fat there was no significant difference 

between any groups (p=>0.05). 

 

 

 

Variable Range Mean Standard Deviation 

Age 19-42 25 7.68 

Height (cm) 155.2-177.1 165.64 6.04 

Weight (kg) 43.2-71.5 54.37 8.31 

BMI (kg/m2) 16.3-25.2 19.73 2.67 
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Table 5: Mean and Standard Deviation for body composition of Menstrual Disturbances 

and Control Group 

*waist:height ratio was significantly different in the amenorrheic v eumenorrheic athletes 

 

Table 6: Mean and Standard Deviation for body composition variables of Amenorrheic, 

Oligomenorrheic and Eumenorrheic Athletes 

 

 

 

Measurement Participant Type 

 Menstrual Disturbances  Control Group  Normal Range 

 N Mean SD N Mean SD  

TBW (%) 7 57.79 3.113 5 55.384 5.18 45-60% 

BMI (kg/m2) 7 18.96 2.28 5 20.82 3.04 18.5–24.9. 

Waist:Hip Ratio 7 0.71 0.028 5 0.75 0.06 ≤0.85  

Body Fat (%) 7 22.31 5.46 5 24.72 7.45 14-31% 

Android:Gynoid 
Ratio 

7 0.57 0.21 5 0.72 0.28 ≤0.8 

Waist:Height 
Ratio 

7 0.40 0.028 5 0.435 0.03 <0.5 

Visceral Fat 
Mass  

7 0.91 0.39 5 1.36 0.88  

Lean Mass (%) 7 74.197 5.113 5 71.884 6.934 70-90% 

Measurement Participant Type 

 Amenorrheic  Oligomenorrheic  Eumenorrheic  Normal 
Range 

 N Mean SD N Mean SD N Mean SD  

TBW (%) 4 59.24 2.99 3 55.85 2.42 5 55.38 5.184 45-60% 

BMI (kg/m2)  4 17.65 1.03 3 20.70 2.45 5 20.82 3.04 18.5–24.9. 

Waist:Hip Ratio 4 0.7* 0.02 3 0.73 0.03 5 0.75* 0.06 ≤0.85 

Body Fat (%) 4 19.15 4.57 3 26.53 3.38 5 24.72 7.45 14-31% 

Android:Gynoid 
Ratio 

4 0.47 0.11 3 0.7 0.27 5 0.72 0.28 ≤0.8 

Waist:Height 
Ratio 

4 0.38 0.013 3 0.43 0.03 5 0.44 0.03 <0.5 

Visceral Fat 
Mass  

4 0.68 0.26 3 1.23 0.31 5 1.36 0.88  

Lean Mass (%) 4 77.13 4.253 3 70.293 3.361 5 71.884 6.934 70-90% 
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4.4 Dual Energy X-Ray Absorptiometry  

4.4.1 Bone Mineral Density 

Total body BMD Z-score was lower (Table 7) in amenorrheic v eumenorrheic athletes (1.3 v 

2.5, p=0.004). There was no significant difference in total body BMD Z-score (Table 8) 

between the combined menstrual disturbances group and control group (p>0.05). 

Lumbar spine (L1-L4) BMD Z-score was significantly lower (Table 7) in amenorrheic v 

eumenorrheic athletes (-1-1 v 0.1, p= 0.041). 

Table 7: Mean and Standard Deviation for BMD in Amenorrheic, Oligomenorrheic and 

Eumenorrheic Athletes 

 
 

Measurement 

Participant Type 

Amenorrheic  Oligomenorrheic  Eumenorrheic  Normal 
Range 

 N Mean SD N Mean SD N Mean SD  
 
 
>-1.0 
(Mountjoy 
et al., 2015) 

 
 
BMD Z score 

Total Hip 4 0.5 0.87 3 1.3 2.25 5 1.0 0.57 

Femoral Neck 4 0.2 -1.05 3 1.5 1.65 5 1.0 0.63 

Anterior-
Posterior 
Lumbar Spine 

4 -1.1** 0.7 3 0.5 1.32 5 0.1** 0.75 

Total BMD 4 1.3* 0.42 3 2.5 1.76 5 2.5* 0.45 

*Total body BMD Z-score was significantly different in the amenorrheic v eumenorrheic athletes 

**Lumbar spine BMD Z-score was significantly different in the amenorrheic v eumenorrheic athletes 

 Table 8: Mean and Standard Deviation for BMD variables of Menstrual Disturbances and 

Control Group 

 

 

 
 

Measurement 

Participant Type  

Menstrual Disturbances  Control Group  Normal Range 

 N Mean SD N Mean SD  
 
 
>-1.0 

 
 
BMD Z score 

Total Hip 7 0.8 -1.5 5 1.0 0.57 

Femoral Neck 7 0.7 1.4 5 1.1 0.75 

Anterior-Posterior 
Lumbar Spine 

7 0 1.27 5 0.1 0.752 

 Total BMD 7 1.8 1.24 5 2.5 0.451 
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4.5 Associations between variables  

Waist:height ratio  

Waist:height ratio was positively correlated with total body BMD Z-score, r=0.741, p = 0.006. 

This demonstrates that as the waist:height ratio increases, this is strongly correlated with an 

increase in total body BMD  Z-score.  

Likewise, waist:height ratio was strongly, negatively correlated with TBW, r=0-.874, p = 

<0.001. This highlights that as waist:height ratio decreases, body water percentage increases, 

and further demonstrating that amenorrheic athletes have a lower waist:height ratio and a 

higher TBW percentage. 

Total body BMD Z-score 

Total body BMD Z-score was moderately and inversely correlated with TBW, r=0-.562, p = 

0.047, suggesting that when body water percentage decreases, total BMD starts to increase. 

Total body BMD Z-score was also strongly, positively correlated between with BMI , r=0.748, 

p = 0.005. This suggests that a lower BMI is often indicative of a lower BMD total body Z-score 

and vis versa.  

Total body BMD Z-score was moderately, positively correlated with PBF, r=.682, p = 0.015. 

Total body BMD Z score was strongly, but not perfectly positively correlated with the lumbar 

spine (L1-4) BMD Z-score, r=0.786, p = 0.0024. 

BMD total body (Z score) was moderately positively correlated with android:gynoid ratio, 

r=.640, p = 0.25.  

No correlations 

 However, there was no significant correlation between waist:height ratio and the lumbar 

spine (L1-L4), nor BMD total body (Z-score) and visceral fat percentage, or visceral fat 

percentage and waist:height ratio. 
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Chapter 5 – Discussion  

This study aimed to examine the differences in both the skeletal profile and cardiometabolic 

health of female athletes with menstrual disturbances v eumenorrheic athletes.  In doing so, 

the main findings were that there was a significant difference in the total body and lumbar 

spine BMD Z-score of the amenorrheic v eumenorrheic athletes, with amenorrheic athletes 

having lower Z-scores. The study also found that amenorrheic athletes had a total body water 

(%) result at the top end of the normality range, and that this is a variable that could be further 

investigated in a larger sample size. Due to the impacts of COVID-19, blood tests were not 

able to be carried out and so the cardiometabolic health of the athletes was not thoroughly 

investigated. However, determining the results of these blood tests would be an important 

area of research for future studies. 

5.1 Bone Mineral Density 

Total body Bone Mineral Density (Z score) 

The Z-score is the BMD compared to an age matched score. A Z-score below -2.0 indicates 

that your bone density is lower than it should be for someone of your age. This was raised to 

-1.0 in athletes (Mountjoy et al., 2015). Neither the menstrual disturbances group nor the 

amenorrheic group had a Z-score low enough to fall outside of the normal range. However, 

when the adjustment for athlete Z-scores is taken into account, the amenorrheic group mean  

falls slightly outside the normal range for athletes, at -1.1. 

Despite total body BMD Z-scores being in the normal range for all three study groups, there 

was a statistically significant difference between the amenorrheic and eumenorrheic athletes. 

This difference demonstrates a marked decrease in BMD when amenorrhea is an influencing 

factor. There is a possibility that the amenorrheic athletes’ BMD Z-score is lower than the 

eumenorrheic group, but not below the normal range, as the impact of running may mask the 

effect of amenorrhea on BMD. This is a possibility as exercise can be osteogenic, with athletes 

typically having higher BMD, favourable adaptations to bone microarchitecture, particularly 

at weight-bearing sites, and greater bone strength than their sedentary counterparts (Scofield 

& Hecht, 2012). 
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A study (Piaseki et al., 2018) comparing amenorrheic and eumenorrheic female distance 

runners and non-athletic controls observed that amenorrheic runners had a lower bone 

mineral density in the trunk, lumbar spine, ribs and pelvis than eumenorrheic athletes and 

controls. In contrast, the tibia (shinbone) cortical bone strength indicators were greater in 

both athlete groups than controls, suggesting that long bones differ in their response to 

amenorrhea from bones in the trunk (vertebrae, ribs and sternum). Similarly, to 

eumenorrheic athletes, the amenorrheic athletes had a larger and stronger tibia and femur 

than controls. As the tibia carries the majority of the body’s weight, this indicated that the 

bone response to regular loading is not attenuated by amenorrhea.  

Pysanki’s study may provide a suggestion as to why the results of this research study  indicate 

a statistically significant difference in BMD Z scores between the amenorrheic and 

eumenorrheic groups, yet the amenorrheic group still had a BMD within the normal range. 

Piaseki’s study, alongside this research study, highlight the impact of menstrual status on 

BMD. They both suggest that the implications of menstrual disturbances were masked by the 

bone’s response and strengthening to the loading activity of exercise, namely long-distance 

running.  

Both studies exemplify the concept of menstrual disturbances as a continuum and suggest 

that future studies are required to investigate the point at which the benefits of bone 

remodelling from exercise are hindered by the duration of the menstrual disturbance. This is 

because it is possible that the loading effects of exercise on BMD will not attenuate the impact 

of amenorrhea on bone remodelling indefinitely. Therefore, it is likely that having 

amenorrhea for a certain length of time will eventually lead to an unfavourable skeletal profile 

in athletes.  

Statistically significant results were only observed between the amenorrheic and 

eumenorrheic groups, and not the oligomenorrheic group. This may be due to the limitation 

in sample size and equally may also reflect the notion of menstrual disturbances on a 

continuum to a further extent, as the severity and potentially the time in which an athlete has 

been oligomenorrheic may impact their BMD. Likewise, when the oligomenorrheic was 

grouped with the amenorrheic group to form menstrual disturbances and compared to the 

control, no statistically significant results were found.  
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Lumbar Spine BMD 

Contrastingly to total body BMD, in the study previously mentioned (Piaseki et al., 2018) the 

torso, lumbar spine, rib, and hips of amenorrheic athletes had a lower BMD than those of the 

eumenorrheic athletes and controls. Although, it is important to note that this study didn’t 

incorporate separate hip and spine scans. However, this finding suggested to be due to these 

specific bones not being loaded during running as a result of impact damping, as these upper 

body bones minimally absorbed the impact of each foot fall and were limited in their direct 

contribution of the surrounding muscles to locomotion. Therefore, it was argued that the 

detrimental impact of amenorrhea on these bones is not compensated by the osteogenic 

effect of increased loading through exercise. Noticeably in this research study, BMD z-score 

was lower in the lumbar spine for all three groups. As all amenorrheic athletes in this research 

study had running as their primary sport, this may explain why the mean lumbar spine BMD 

Z-score of the amenorrheic group was in the athletic risk category (<-1.0) for osteopenia. The 

Z-score may be in this category as the benefits of loading exercise aren’t experienced in this 

region of the body, despite the total body BMD Z score being within the normal range. 

Additionally, there was a significant difference in the anterior-posterior lumbar spine (L1-L4) 

Z-score between the amenorrheic and eumenorrheic athlete groups. Therefore, amenorrheic 

athletes have a lower spine BMD Z-score than eumenorrheic athletes at a 95% confidence 

interval. . The spine is made up of trabecular bone and trabecular loss is more rapid than cortical 

bone loss. Therefore, the use of DXA scans at the spine confirm this  detrimental effect of 

hypoestrogenism on trabecular bone. However, again there was no difference between the 

menstrual disturbances and control group, and this may be as a result of the small sample 

size. Therefore, the lumbar spine is a key area to be monitored, as it is rich in trabecular bone 

and submitted to little or no weight-bearing during exercise (Young et al., 1994), unless 

specifically targeted. 

Trabecular bone resides within the medullary cavity of the ends of tubular bones and 

vertebral bodies. It is an open-celled porous cancellous network constituted as 30% 

mineralized matrix volume and 70% void volume.  It has a high surface area/bone matrix 

volume and so provides a large area facilitating the initiation of bone remodelling. This is a 

liability when remodelling becomes unbalanced and accelerated as the negative balance 

results in thinning, and if resorption is deep, results in perforation of the plates (Roelofs et al., 
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2012). This liability may offer an explanation as to why there was a strong, but not perfect 

positive correlation between the total body BMD and the anterior posterior lumbar spine 

BMD, as trabecular bone only makes up 20% of total bone in the body, suggesting that the 

lumbar spine is faster to deteriorate than cortical bone, which makes up the majority of the 

body and therefore influences the total body BMD score. This may also be suggestive of why 

the lumbar spine BMD isn’t perfectly correlated with other BMD variables, as this decreases 

at a faster rate, for example, there is more metabolically active bone at the spine rather than 

at the hip. This is because the hip is made up of a combination of trabecular and cortical bone, 

as opposed to trabecular bone alone.  

 

Femoral Neck and Total Hip 

In a recent study of hip geometry using DXA in athletes , it was demonstrated that the cross-

sectional area of the femoral neck and shaft was significantly smaller in oligomenorrheic and 

amenorrheic athletes compared with eumenorrheic athletes however it was similar to that 

observed in the non-athletes’ group (Ackerman et al., 2013, Duckham et al., 2013). This 

continues to exemplify the benefits of loading on bone health in exercise, as it can often 

attenuate the impact of menstrual disturbances on bone turnover up until a point. Other 

studies have observed no difference in femoral neck cross-sectional area between 

amenorrheic and eumenorrheic athletes. This coincides with the findings of this study, as 

there was no statistically significant difference between any of the groups’ results for femoral 

neck and total hip. Currently there are inconsistencies in findings for bone strength at the hip 

as a result of menstrual disturbances. This demonstrates the lack of knowledge and 

understanding present on menstrual status as a continuum, and whether set markers such as 

time and severity can be defined for a clearer perspective. 

In a 2007 study (Nichols et al.), athletes were grouped according to the type of mechanical 

loading conferred by their sport. Regularly menstruating athletes participating in high and 

odd impact sports (track sprinters and field events, soccer, softball, volleyball, tennis, and 

lacrosse) demonstrated significantly greater hip BMD compared with repetitive (endurance 

running) and nonimpact (swimmers) athletes and highlighted the strong influence of sport 

loading modality on the BMD of athletes. 
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The largest differences were observed when loading modality and menstrual status were 

combined. Athletes participating in the most osteogenic activities and presenting with the 

most regular menstrual cycles demonstrate greater bone mass than athletes who participate 

in less osteogenic sports and present with irregular or absent menstrual cycles. The athletes 

in the amenorrheic group of this research study had endurance running as their primary sport, 

as opposed to cycling or swimming. This may suggest why the total hip and femoral neck BMD 

was not in the risk category for osteopenia, as the benefits of repetitive exercise loading at 

the hip attenuated the detrimental effects of menstrual disturbances on BMD. However, it is 

possible that this would have been more noticeable in athletes of high and odd impact sports, 

as opposed to repetitive. 

 

5.2 Total Body Water 

Early studies have described a negative water balance during the first 4 to 5 days of energy 

deprivation, which then diminishes rapidly. If this energy deprivation continues, the rate of 

water loss is reduced markedly and water is conserved (Drenick, 1980). It is now well known 

that, in numerous patients, malnutrition is associated with abnormalities of sodium-

potassium pumps, inducing an increase in sodium and water retention (Allison, 2004) and 

alters the usual proportions of intracellular and extracellular water distributions. One study 

by Rigaud et al. (2010) suggested that an increase in body extracellular water frequently 

occurs in anorexic patients under a BMI of 15–16 kg/m2. This moderated inflation in 

extracellular water disappears thereafter, during refeeding. The amenorrheic athletes in this 

research study had an average BMI of 17.65kg/m2, and therefore below 18.5kg/m2, the 

lowest BMI on the boundary of healthy. However, the amenorrheic athletes did not have a 

BMI quite as low as those in Rigaud’s study. This may suggest why they had body water 

percentages at the top end of the normal range but were not statistically significant to the 

eumenorrheic group.  

As discussed in the literature review, menstrual disturbances are distributed along a 

continuum, which incorporates the severity of the menstrual disturbance i.e., luteal phase 

defects, oligomenorrhea or amenorrhea and the duration of which the menstrual disturbance 

has lasted. The amenorrheic group in this study had 0-2 periods in the last 12 months, 

however no data was taken to determine the date of the last period, so the duration of 

https://www.sciencedirect.com/topics/nursing-and-health-professions/adenosine-triphosphatase-potassium-sodium
https://www.sciencedirect.com/topics/nursing-and-health-professions/adenosine-triphosphatase-potassium-sodium
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amenorrhea in this group is unknown but can be estimated to be a minimum of 10-12 months. 

Therefore, this would be an area of improvement for this study, as this information would be 

valuable when viewing menstrual disturbances as a continuum. 

This study also showed that body water percentage was strongly, negatively correlated with 

waist:height ratio, highlighting that as waist:height ratio decreases, body water percentage 

increases, and further demonstrating that amenorrheic athletes have a lower waist:height 

ratio and a higher body water percentage. This is most likely due to the decrease in overall 

body mass, indicated by a lower waist:height ratio, which inversely correlates to the overall 

percentage of body water as a proportion of total body mass, increasing. 

This difference in body water percentage between the amenorrheic and eumenorrheic group 

may have been more apparent and statistically significant had there been a larger sample size 

and if amenorrhea could be further subdivided into two groups dependent on the duration 

of this menstrual disturbance.  Additionally, earlier research with BIA has shown significant 

differences in body mass and total body water measurements between the late follicular and 

mid-luteal phases (Tomazo-Ravnik and Jakopič, 2006), therefore this is another factor that in 

future studies, needs to be taken into account as this may affect particularly the results of the 

eumenorrheic group.  

Additionally, this study showed that body water percentage was moderately, negatively 

correlated with BMD total body (Z-score). Therefore, a lower BMD Z-score was associated 

with a higher body water percentage. A low BMD Z-score is often associated with 

hypoestrogemia, a decrease in endogenous oestrogen, which causes a disruption of calcium 

deposition into the bone (Elliot-Sale et al., 2018) and the greater the period of time a woman 

has been amenorrheic is often indicative of the severity of their low BMD score (Jagielska et 

al., 2017). This indicates that although body water percentage doesn’t cause this disruption of 

bone density, or vice versa, the correlation between the two highlights that body water 

percentage is an important variable that is impacted due to menstrual disturbances. 

5.3 Waist:Height Ratio 

There was a significant difference between the waist:height ratio of the amenorrheic and 

eumenorrheic group, and as this ratio is used to demonstrate fat distribution and risk for 

obesity, this difference is suggesting that the amenorrheic group had a significantly lower 
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body mass and body fat for their height. This implies that amenorrhea can be associated with 

low body mass, again reinforced through the mean BMI of 17.65 in this group. Although a low 

body mass can be associated with amenorrhea, the range of  BMI in this group (16.3 – 18.6) 

is indicative that having a BMI classified as underweight is not a prerequisite for menstrual 

disturbances. This is further exemplified in the oligomenorrheic group, who had BMI ranging 

from 18.2-23.1, with the majority of the group having a BMI classified as healthy, yet 

experiencing menstrual cycle disturbances. 

Waist:height ratio was also positively correlated with BMD total body, and BMD total body 

was also positively correlated with BMI and moderately, positively with percentage body fat. 

If an athlete is subject to LEA, they would be in a calorie deficit and therefore weight loss 

would come alongside this, suggesting why these different variables are correlated. However, 

as previously reinforced, having a low body mass or being underweight are not prerequisites 

for menstrual disturbances. 

 

5.4 Study Considerations 

One key limitation to this study is that this is not a longitudinal study and data are collected 

as one-off measurements rather than multiple measurements being reviewed over an 

extended period of time. Therefore, as we only took these measurements once, and each 

athlete will have a different severity of RED-S, dependent on when they started to have 

menstrual disturbances, we will only see their physical profile at one point in time. This can 

be limiting to the study as it may make the participants’ data less comparable to one another, 

as menstrual disturbances, alongside their implications, are positioned along a spectrum. This 

results in athletes with more severe menstrual disturbances that have lasted significantly 

longer, likely having a more unfavourable bone and cardiometabolic profile than those who 

have only more recently experienced menstrual disturbances. In addition, another study 

limitation is that the sample size is relatively small, making it potentially difficult to draw 

completely reliable and significant conclusions. 
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Chapter 6: Conclusions and Future Directions 

 

This study confirms the findings of previous studies, that exemplify the differences in bone 

health in amenorrheic in comparison to eumenorrheic female endurance athletes. The study 

reinforces that there is often a significant difference in the bone health of these two groups, 

with total body BMD and lumbar spine (L1-4) Z-score being significantly lower in the 

amenorrheic athletes v eumenorrheic athletes. However, the benefits of loading and impact-

based exercise, such as running, can attenuate the risk posed by menstrual disturbances to 

bone remodelling, but only to an extent. Future studies should be longitudinal, with larger 

sample sizes to assess and better understand the point at which the time the menstrual 

disturbance has lasted for and the severity of it outweigh the benefits brought about from 

exercise and are detrimental to bone health. 

Menstrual disturbances are also thought to have cardiometabolic health implications, and a 

protocol for this study was in place to investigate that. However, due to COVID-19 restrictions, 

there was an inability to carry out blood tests and have measurements for glucose, 

lipoproteins, triglycerides and cholesterol. This led to a lack of understanding and research on 

cardiometabolic impacts of menstrual disturbances in this study. Furthermore, there is a lack 

of longitudinal studies and therefore the long-term cardiovascular consequences that 

amenorrheic athletes face. It has been confirmed that the oestrogen E2 has a cardio-

protective role, and therefore hypoestrogenism, which is the manifestation and accumulation 

of the final consequences of complex hormonal changes from FHA, would result in 

cardiovascular disease risk factors. Therefore, the independent and combined effects of 

chronic hypoestrogenism and exercise, together with subclinical dietary behaviours typically 

observed in amenorrheic athletes, warrants closer examination (O'Donnell and De Souza, 

2012). 
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Chapter 7: Appendix 

Table 9: Shapiro Wilks Test for Normality for all body composition outcome variables in 

the Menstrual Disturbances and Control group 

Category Athlete Menstrual Status df Sig. 

Body Water Percentage control 5 .905 

Menstrual disturbance 7 .447 

Percentage Body Fat Control 5 .152 

Menstrual Disturbance 7 .464 

Android:Gynoid Ratio Control 5 .446 

Menstrual Disturbance 7 .537 

Waist Circumference Control 5 .074 

Menstrual Disturbance 7 .471 

Waist:Height Ratio Control 5 .806 

Menstrual Disturbance 7 .141 

Waist:Hip Ratio Control 5 .605 

Menstrual Disturbance 7 .897 

BMI Control 5 .295 

Menstrual Disturbance 7 .390 

 

Table 10: Shapiro Wilks Test for Normality for all bone density outcome variables in the 

Menstrual Disturbances and Control group 

 

Category Athlete Menstrual Status df Sig. 

Total Body BMD (Z-Score) control 5 .957 

Menstrual disturbance 7 .151 

Total Hip (Z-Score) Control 5 .200 

Menstrual Disturbance 7 .700 

Anterior-Posterior Lumbar 

Spine L1-L4 

Control 5 .651 

Menstrual Disturbance 7 .521 

Femoral Neck Control 5 .266 

Menstrual Disturbance 7 .500 
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Table 11: Shapiro Wilks Test for Normality for all body composition outcome variables in 

the Amenorrheic, Oligomenorrheic and Control group 

 

 

 

 

 

 

Category Athlete Menstrual Status df Sig. 

Body Water Percentage Amenorrhea 4 .068 

Eumenorrhea 5 .944 

Oligomenorrhea 3 .450 

Percentage Body Fat Amenorrhea 4 .291 

Eumenorrhea 5 .152 

Oligomenorrhea 3 .369 

Android:Gynoid Ratio Amenorrhea 4 598 

Eumenorrhea 5 .446 

Oligomenorrhea 3 .938 

Waist Circumference Amenorrhea 4 .459 

Eumenorrhea 5 .074 

Oligomenorrhea 3 702 

Waist:Height Ratio Amenorrhea 4 .104 

Eumenorrhea 5 .806 

Oligomenorrhea 3 .242 

Waist:Hip Ratio Amenorrhea 4 .577 

Eumenorrhea 5 .605 

Oligomenorrhea 3 .780 

BMI Amenorrhea 4 .611 

Eumenorrhea 5 .295 

Oligomenorrhea 3 .933 
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Table 12: Shapiro Wilks Test for Normality for all bone density outcome variables in the 

Amenorrheic, Oligomenorrheic and Control group 

Category Athlete Menstrual Status df Sig. 

Total Body BMD (Z-Score) Amenorrhea 4 .642 

Eumenorrhea 5 .595 

Oligomenorrhea 3 .685 

Total Hip (Z-Score) Amenorrhea 4 .842 

Eumenorrhea 5 .200 

Oligomenorrhea 3 .085 

Anterior-Posterior Lumbar 

Spine L1-L4 

Amenorrhea 4 .555 

Eumenorrhea 5 .651 

Oligomenorrhea 3 .664 

Femoral Neck Amenorrhea 4 .973 

Eumenorrhea 5 .266 

Oligomenorrhea 3 .174 

 

 

 

 

 

 

 

 

 

 



73 
 

Chapter 8: References 

1. Ackerman, K.E. and Misra, M., 2011. Bone health and the female athlete triad in 

adolescent athletes. The Physician and sportsmedicine, 39(1), pp.131-141. 

2. Ackerman, K.E., Pierce, L., Guereca, G., Slattery, M., Lee, H., Goldstein, M. and Misra, 

M., 2013. Hip structural analysis in adolescent and young adult oligo-amenorrheic 

and eumenorrheic athletes and nonathletes. The Journal of Clinical Endocrinology & 

Metabolism, 98(4), pp.1742-1749. 

3. Ackerman, K.E., Holtzman, B., Cooper, K.M., Flynn, E.F., Bruinvels, G., Tenforde, A.S., 

Popp, K.L., Simpkin, A.J. and Parziale, A.L., 2019. Low energy availability surrogates 

correlate with health and performance consequences of Relative Energy Deficiency 

in Sport. British journal of sports medicine, 53(10), pp.628-633. 

4. Akahoshi, M., Soda, M., Nakashima, E., Tsuruta, M., Ichimaru, S., Seto, S. and Yano, 

K., 2001. Effects of age at menopause on serum cholesterol, body mass index, and 

blood pressure. Atherosclerosis, 156(1), pp.157-163. 

5. Allaway, H.C., Southmayd, E.A. and De Souza, M.J., 2016. The physiology of 

functional hypothalamic amenorrhea associated with energy deficiency in exercising 

women and in women with anorexia nervosa. Hormone Molecular Biology and 

Clinical Investigation, 25(2), pp.91-119. 

6. Allison, S.P. and Lobo, D.N., 2004. Fluid and electrolytes in the elderly. Current 

Opinion in Clinical Nutrition & Metabolic Care, 7(1), pp.27-33. 

7. American Academy of Pediatrics and American College of Obstetricians and 

Gynecologists, 2006. Menstruation in girls and adolescents: using the menstrual 

cycle as a vital sign. Pediatrics, 118(5), pp.2245-2250. 

8. Ayres, S., Baer, J. and Subbiah, M.R., 1998. Exercised-induced increase in lipid 

peroxidation parameters in amenorrhelc female athletes. Fertility and sterility, 69(1), 

pp.73-77. 

9. Bacchi, E., Spiazzi, G., Zendrini, G., Bonin, C. and Moghetti, P., 2013. Low body weight 

and menstrual dysfunction are common findings in both elite and amateur ballet 

dancers. Journal of endocrinological investigation, 36(5), pp.343-346. 

10. Baer, J.T., 1999. Lipid status in female athletes with lower estrogen: Applications to 

cardiovascular risk. American Journal of Health Studies, 15(1), p.29. 



74 
 

11. Bangsbo, J., Graham, T.E., Kiens, B. and Saltin, B., 1992. Elevated muscle glycogen 

and anaerobic energy production during exhaustive exercise in man. The Journal of 

Physiology, 451(1), pp.205-227. 

12. Barreiro, M.L. and Tena-Sempere, M., 2004. Ghrelin and reproduction: a novel signal 

linking energy status and fertility?. Molecular and cellular endocrinology, 226(1-2), 

pp.1-9. 

13. Berga, S.L., Mortola, J.F., Girton, L., Suh, B., Laughlin, G., Pham, P. and Yen, S.S.C., 

1989. Neuroendocrine aberrations in women with functional hypothalamic 

amenorrhea. The Journal of Clinical Endocrinology & Metabolism, 68(2), pp.301-308. 

14. Bonnefont-Rousselot, D., Thérond, P., Beaudeux, J.L., Peynet, J., Le-grand, A. and 

Delattre, J., 1999. High density lipoproteins (HDL) and the oxidative hypothesis of 

atherosclerosis. 

15. Budak, E., Sánchez, M.F., Bellver, J., Cerveró, A., Simón, C. and Pellicer, A., 2006. 

Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with 

the reproductive system. Fertility and sterility, 85(6), pp.1563-1581. 

16. Burger, A.G., Berger, M., Wimpfheimer, K. and Danforth, E., 1980. Interrelationships 

between energy metabolism and thyroid hormone metabolism during starvation in 

the rat. European Journal of Endocrinology, 93(3), pp.322-331. 

17. Carlberg, K.A., Buckman, M.T., Peake, G.T. and Riedesel, M.L., 1983. A survey of 

menstrual function in athletes. European Journal of Applied Physiology and 

Occupational Physiology, 51(2), pp.211-222. 

18. Carro, E., Pinilla, L., Seoane, L.M., Considine, R.V., Aguilar, E., Casanueva, F.F. and 

Dieguez, C., 1997. Influence of endogenous leptin tone on the estrous cycle and 

luteinizing hormone pulsatility in female rats. Neuroendocrinology, 66(6), pp.375-

377. 

19. Caprio, M., Fabbrini, E., Isidori, A.M., Aversa, A. and Fabbri, A., 2001. Leptin in 

reproduction. Trends in Endocrinology & Metabolism, 12(2), pp.65-72. 

20. Castellano, J.M., Navarro, V.M., Fernandez-Fernandez, R., Nogueiras, R., Tovar, S., 

Roa, J., Vazquez, M.J., Vigo, E., Casanueva, F.F., Aguilar, E. and Pinilla, L., 2005. 

Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the 

reproductive axis by kisspeptin in undernutrition. Endocrinology, 146(9), pp.3917-

3925. 



75 
 

21. Castellano, J.M. and Tena-Sempere, M., 2013. Metabolic regulation of 

kisspeptin. Kisspeptin signaling in reproductive biology, pp.363-383. 

22. Chan, J.L. and Mantzoros, C.S., 2005. Role of leptin in energy-deprivation states: 

normal human physiology and clinical implications for hypothalamic amenorrhoea 

and anorexia nervosa. The lancet, 366(9479), pp.74-85. 

23. Chan, Y.M., Butler, J.P., Sidhoum, V.F., Pinnell, N.E. and Seminara, S.B., 2012. 

Kisspeptin administration to women: a window into endogenous kisspeptin secretion 

and GnRH responsiveness across the menstrual cycle. The Journal of Clinical 

Endocrinology & Metabolism, 97(8), pp.E1458-E1467. 

24. Clark, L.R., Dellogono, M.J., Mangano, K.M. and Wilson, T.A., 2018. Clinical menstrual 

dysfunction is associated with low energy availability but not dyslipidemia in division 

I female endurance runners. Journal of Exercise Physiology Online, 21(2), pp.265-277. 

25. Cunningham, M.J., Clifton, D.K. and Steiner, R.A., 1999. Leptin's actions on the 

reproductive axis: perspectives and mechanisms. Biology of reproduction, 60(2), 

pp.216-222. 

26. Danforth Jr, E. and Burger, A.G., 1989. The impact of nutrition on thyroid hormone 

physiology and action. Annual review of nutrition, 9, pp.201-227. 

27. Darmaun, D., Cirillo, D., Koziet, J., Chauvet, D., Young, V.R. and Robert, J.J., 1988. 

Whole body glucose kinetics in type I diabetes studied with [6, 6-2H] and [U-13C]-

glucose and the artificial B-cell. Metabolism, 37(5), pp.491-498. 

28. De Souza, M.J. and Williams, N.I., 2004. Physiological aspects and clinical sequelae of 

energy deficiency and hypoestrogenism in exercising women. Human reproduction 

update, 10(5), pp.433-448. 

29. De Souza, M.J., Lee, D.K., VanHeest, J.L., Scheid, J.L., West, S.L. and Williams, N.I., 

2007. Severity of energy-related menstrual disturbances increases in proportion to 

indices of energy conservation in exercising women. Fertility and sterility, 88(4), 

pp.971-975. 

30. De Souza, M.J., Toombs, R.J., Scheid, J.L., O'Donnell, E., West, S.L. and Williams, N.I., 

2010. High prevalence of subtle and severe menstrual disturbances in exercising 

women: confirmation using daily hormone measures. Human reproduction, 25(2), 

pp.491-503. 



76 
 

31. De Souza, M.J., Nattiv, A., Joy, E., Misra, M., Williams, N.I., Mallinson, R.J., Gibbs, J.C., 

Olmsted, M., Goolsby, M., Matheson, G. and Panel, E., 2014. 2014 Female Athlete 

Triad Coalition Consensus Statement on treatment and return to play of the female 

athlete triad: 1st International Conference held in San Francisco, California, May 

2012 and 2nd International Conference held in Indianapolis, Indiana, May 

2013. British journal of sports medicine, 48(4), pp.289-289. 

32. De Souza, M.J., Koltun, K.J., Etter, C.V. and Southmayd, E.A., 2017. Current status of 

the female athlete triad: update and future directions. Current osteoporosis 

reports, 15(6), pp.577-587. 

33. De Souza, M.J., Koltun, K.J. and Williams, N.I., 2019. The role of energy availability in 

reproductive function in the female athlete triad and extension of its effects to men: 

an initial working model of a similar syndrome in male athletes. Sports 

Medicine, 49(2), pp.125-137. 

34. Dhillo, W.S., Chaudhri, O.B., Thompson, E.L., Murphy, K.G., Patterson, M., 

Ramachandran, R., Nijher, G.K., Amber, V., Kokkinos, A., Donaldson, M. and Ghatei, 

M.A., 2007. Kisspeptin-54 stimulates gonadotropin release most potently during the 

preovulatory phase of the menstrual cycle in women. The Journal of Clinical 

Endocrinology & Metabolism, 92(10), pp.3958-3966. 

35. Dhillon, S.S. and Belsham, D.D., 2011. Leptin differentially regulates NPY secretion in 

hypothalamic cell lines through distinct intracellular signal transduction 

pathways. Regulatory peptides, 167(2-3), pp.192-200. 

36. Dietschy, J.M., 1997. Theoretical considerations of what regulates low-density-

lipoprotein and high-density-lipoprotein cholesterol. The American journal of clinical 

nutrition, 65(5), pp.1581S-1589S. 

37. DiPietro, L. and Stachenfeld, N.S., 2006. The myth of the female athlete triad. British 

journal of sports medicine, 40(6), pp.490-493.Drenick, E.J., 1980. The effects of acute 

and prolonged fasting and refeeding on water, electrolyte, and acid-base 

metabolism. Clinical Disorders of Fluid and Electrolyte Metabolism, pp.1481-1501. 

38. Drew, M.K., Vlahovich, N., Hughes, D., Appaneal, R., Peterson, K., Burke, L., Lundy, B., 

Toomey, M., Watts, D., Lovell, G. and Praet, S., 2017. A multifactorial evaluation of 

illness risk factors in athletes preparing for the Summer Olympic Games. Journal of 

Science and Medicine in Sport, 20(8), pp.745-750. 



77 
 

39. Dipla, K., Kraemer, R.R., Constantini, N.W. and Hackney, A.C., 2020. Relative energy 

deficiency in sports (RED-S): Elucidation of endocrine changes affecting the health of 

males and females. Hormones, pp.1-13. 

40. Duckham, R.L., Peirce, N., Bailey, C.A., Summers, G., Cameron, N. and Brooke-Wavell, 

K., 2013. Bone geometry according to menstrual function in female endurance 

athletes. Calcified tissue international, 92(5), pp.444-450. 

41. Dušek, T., 2001. Influence of high intensity training on menstrual cycle disorders in 

athletes. Croat Med J, 42(1), pp.79-82. 

42. Edwards, J.E., Lindeman, A.K., Mikesky, A.E. and Stager, J.M., 1993. Energy balance in 

highly trained female endurance runners. Medicine and science in sports and 

exercise, 25(12), pp.1398-1404. 

43. Elliott-Sale, K.J., Tenforde, A.S., Parziale, A.L., Holtzman, B. and Ackerman, K.E., 2018. 

Endocrine effects of relative energy deficiency in sport. International Journal of Sport 

Nutrition and Exercise Metabolism, 28(4), pp.335-349. 

44. Enns, D.L. and Tiidus, P.M., 2010. The influence of estrogen on skeletal 

muscle. Sports medicine, 40(1), pp.41-58. 

45. Feillet, F., Feillet-Coudray, C., Bard, J.M., Parra, H.J., Favre, E., Kabuth, B., Fruchart, 

J.C. and Vidailhet, M., 2000. Plasma cholesterol and endogenous cholesterol 

synthesis during refeeding in anorexia nervosa. Clinica chimica acta, 294(1-2), pp.45-

56. 

46. Feingold, K.R. and Grunfeld, C., 2012. Lipids: a key player in the battle between the 

host and microorganisms1. Journal of lipid research, 53(12), pp.2487-2489. 

47. Feng, X. and McDonald, J.M., 2011. Disorders of bone remodeling. Annual Review of 

Pathology: Mechanisms of Disease, 6, pp.121-145. 

48. Fernández-Fernández, R., Tena-Sempere, M., Aguilar, E. and Pinilla, L., 2004. Ghrelin 

effects on gonadotropin secretion in male and female rats. Neuroscience 

letters, 362(2), pp.103-107. 

49. Friday KE, Drinkwater BL, Bruemmer B, Chesnut 3rd C, Chait A 1993 Elevated plasma 

low-density lipoprotein and high-density lipoprotein cholesterol levels in 

amenorrheic athletes: effects of endogenous hormone status and nutrient intake. J 

Clin Endocrinol Metab 77:1605–1609 



78 
 

50. Friedewald, W.T., 1972. FRIEDEWALD, WT, LEVY, RI AND FREDRICKSON, DS 

ESTIMATION OF THE CONCENTRATION OF LOW-DENSITY LIPOPROTEIN 

CHOLESTEROL IN PLASMA, WITHOUT USE OF THE PREPARATIVE ULTRACENTRIFUGE. 

Clinical Chemistry, 18, pp.499-502. 

51. Genazzani, A.D., Gastaldi, M., Volpe, A., Petraglia, F. and Genazzani, A.R., 1995. 

Spontaneous episodic release of adenohypophyseal hormones in hypothalamic 

amenorrhea. Gynecological Endocrinology, 9(4), pp.325-334. 

52. George, J.T., Anderson, R.A. and Millar, R.P., 2012. Kisspeptin-10 stimulation of 

gonadotrophin secretion in women is modulated by sex steroid feedback. Human 

reproduction, 27(12), pp.3552-3559. 

53. Gejl, K.D., Hvid, L.G., Frandsen, U., Jensen, K., Sahlin, K. and Ørtenblad, N., 2014. 

Muscle glycogen content modifies SR Ca2+ release rate in elite endurance 

athletes. Medicine & Science in Sports & Exercise, 46(3), pp.496-505. 

54. Gibbs, J.C., Williams, N.I. and De Souza, M.J., 2013. Prevalence of individual and 

combined components of the female athlete triad. Medicine & Science in Sports & 

Exercise, 45(5), pp.985-996. 

55. Gibbs, J.C., Williams, N.I., Scheid, J.L., Toombs, R.J. and De Souza, M.J., 2011. The 

association of a high drive for thinness with energy deficiency and severe menstrual 

disturbances: confirmation in a large population of exercising women. International 

journal of sport nutrition and exercise metabolism, 21(4), pp.280-290. 

56. Golden, N.H. and Carlson, J.L., 2008. The pathophysiology of amenorrhea in the 

adolescent. Annals of the New York Academy of Sciences, 1135(1), pp.163-178. 

57. Gordon, C.M., 2010. Functional hypothalamic amenorrhea. New England Journal of 

Medicine, 363(4), pp.365-371. 

58. Gordon, C.M., Ackerman, K.E., Berga, S.L., Kaplan, J.R., Mastorakos, G., Misra, M., 

Murad, M.H., Santoro, N.F. and Warren, M.P., 2017. Functional hypothalamic 

amenorrhea: an endocrine society clinical practice guideline. The Journal of Clinical 

Endocrinology & Metabolism, 102(5), pp.1413-1439. 

59. Guetta, V. and Cannon III, R.O., 1996. Cardiovascular effects of estrogen and lipid-

lowering therapies in postmenopausal women. Circulation, 93(10), pp.1928-1937. 



79 
 

60. Hama, H., Saito, A., Takeda, T., Tanuma, A., Xie, Y., Sato, K., Kazama, J.J. and Gejyo, 

F., 2004. Evidence indicating that renal tubular metabolism of leptin is mediated by 

megalin but not by the leptin receptors. Endocrinology, 145(8), pp.3935-3940. 

61. Hamm, M.L., Bhat, G.K., Thompson, W.E. and Mann, D.R., 2004. Folliculogenesis is 

impaired and granulosa cell apoptosis is increased in leptin-deficient mice. Biology of 

reproduction, 71(1), pp.66-72. 

62. Harber, V.J., 2004. Energy balance and reproductive function in active 

women. Canadian journal of applied physiology, 29(1), pp.48-58. 

63. Helge, E.W. and Kanstrup, I.L., 2002. Bone density in female elite gymnasts: impact 

of muscle strength and sex hormones. Medicine and science in sports and 

exercise, 34(1), pp.174-180. 

64. Hill, J.W., Elmquist, J.K. and Elias, C.F., 2008. Hypothalamic pathways linking energy 

balance and reproduction. American Journal of Physiology-Endocrinology and 

Metabolism, 294(5), pp.E827-E832. 

65. Hilton, L.K. and Loucks, A.B., 2000. Low energy availability, not exercise stress, 

suppresses the diurnal rhythm of leptin in healthy young women. American Journal 

of Physiology-Endocrinology And Metabolism, 278(1), pp.E43-E49. 

66. Hoch, A.Z., Pajewski, N.M., Moraski, L., Carrera, G.F., Wilson, C.R., Hoffmann, R.G., 

Schimke, J.E. and Gutterman, D.D., 2009. Prevalence of the female athlete triad in 

high school athletes and sedentary students. Clinical journal of sport medicine: 

official journal of the Canadian Academy of Sport Medicine, 19(5), p.421. 

67. Homma, Y., Homma, K., Iizuka, S. and Iigaya, K., 2002. A case of anorexia nervosa 

with severe hyperlipoproteinemia. International Journal of Eating Disorders, 32(1), 

pp.121-124. 

68. Hutson, M.J., O’Donnell, E., Brooke-Wavell, K., Sale, C. and Blagrove, R.C., 2020. 

Effects of low energy availability on bone health in endurance athletes and high-

impact exercise as a potential countermeasure: a narrative review. Sports Medicine, 

pp.1-13. 

69. Ihle, R. and Loucks, A.B., 2004. Dose‐response relationships between energy 

availability and bone turnover in young exercising women. Journal of bone and 

mineral research, 19(8), pp.1231-1240. 



80 
 

70. International Atomic Energy Agency 

https://www.iaea.org/Publications/Factsheets/English/radlife 

71. Jayasena, C.N., Nijher, G.M., Chaudhri, O.B., Murphy, K.G., Ranger, A., Lim, A., Patel, 

D., Mehta, A., Todd, C., Ramachandran, R. and Salem, V., 2009. Subcutaneous 

injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with 

hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. The 

Journal of Clinical Endocrinology & Metabolism, 94(11), pp.4315-4323. 

72. Jayasena, C.N., Nijher, G.M.K., Abbara, A., Murphy, K.G., Lim, A., Patel, D., Mehta, A., 

Todd, C., Donaldson, M., Trew, G.H. and Ghatei, M.A., 2010. Twice‐weekly 

administration of kisspeptin‐54 for 8 weeks stimulates release of reproductive 

hormones in women with hypothalamic amenorrhea. Clinical Pharmacology & 

Therapeutics, 88(6), pp.840-847. 

73. Jayasena, C.N., Comninos, A.N., Nijher, G.M.K., Abbara, A., De Silva, A., Veldhuis, J.D., 

Ratnasabapathy, R., Izzi-Engbeaya, C., Lim, A., Patel, D.A. and Ghatei, M.A., 2013. 

Twice-daily subcutaneous injection of kisspeptin-54 does not abolish menstrual 

cyclicity in healthy female volunteers. The Journal of Clinical Endocrinology & 

Metabolism, 98(11), pp.4464-4474. 

74. Jayasena, C.N., Abbara, A., Veldhuis, J.D., Comninos, A.N., Ratnasabapathy, R., De 

Silva, A., Nijher, G.M., Ganiyu-Dada, Z., Mehta, A., Todd, C. and Ghatei, M.A., 2014. 

Increasing LH pulsatility in women with hypothalamic amenorrhoea using 

intravenous infusion of Kisspeptin-54. The Journal of Clinical Endocrinology & 

Metabolism, 99(6), pp.E953-E961. 

75. Johnston, C.C. and Slemenda, C.W., 1994. Peak bone mass, bone loss and risk of 

fracture. Osteoporosis international, 4(1), pp.S43-S45. 

76. Joy, E., Kussman, A. and Nattiv, A., 2016. 2016 update on eating disorders in 

athletes: A comprehensive narrative review with a focus on clinical assessment and 

management. British journal of sports medicine, 50(3), pp.154-162. 

77. Kaiserauer, S.U.S.A.N.N.E., Snyder, A.C., Sleeper, M.A.R.K. and Zierath, J.U.L.E.E.N., 

1989. Nutritional, physiological, and menstrual status of distance runners. Medicine 

and Science in Sports and Exercise, 21(2), pp.120-125. 

https://www.iaea.org/Publications/Factsheets/English/radlife


81 
 

78. Kanis, J.A., Johnell, O., Oden, A., Dawson, A., De Laet, C. and Jonsson, B.J.O.I., 2001. 

Ten year probabilities of osteoporotic fractures according to BMD and diagnostic 

thresholds. Osteoporosis International, 12(12), pp.989-995. 

79. Keay, N., Overseas, A. and Francis, G., 2020. Awareness and indicators of low energy 

availability in male and female dancers. medRxiv. 

80. Khosla, S., Oursler, M.J. and Monroe, D.G., 2012. Estrogen and the skeleton. Trends 

in Endocrinology & Metabolism, 23(11), pp.576-581. 

81. Koehler, K., Hoerner, N.R., Gibbs, J.C., Zinner, C., Braun, H., De Souza, M.J. and 

Schaenzer, W., 2016. Low energy availability in exercising men is associated with 

reduced leptin and insulin but not with changes in other metabolic 

hormones. Journal of sports sciences, 34(20), pp.1921-1929. 

82. Koltun, K.J., De Souza, M.J., Scheid, J.L. and Williams, N.I., 2020. Energy availability is 

associated with luteinizing hormone pulse frequency and induction of luteal phase 

defects. The Journal of Clinical Endocrinology & Metabolism, 105(1), pp.185-193. 

83. Korsten-Rech. U. FIMS Position Statement 2011. The female athlete triad. Int 

SportMed J 2011; 12: 156-9. 

84. Krentz, E.M. and Warschburger, P., 2011. Sports-related correlates of disordered 

eating in aesthetic sports. Psychology of Sport and Exercise, 12(4), pp.375-382. 

85. Krentz, E.M. and Warschburger, P., 2013. A longitudinal investigation of sports‐

related risk factors for disordered eating in aesthetic sports. Scandinavian journal of 

medicine & science in sports, 23(3), pp.303-310. 

86. Lania, A., Gianotti, L., Gagliardi, I., Bondanelli, M., Vena, W. and Ambrosio, M.R., 

2019. Functional hypothalamic and drug-induced amenorrhea: an overview. Journal 

of endocrinological investigation, 42(9), pp.1001-1010. 

87. Laughlin, G.A. and Yen, S.S.C., 1997. Hypoleptinemia in women athletes: absence of 

a diurnal rhythm with amenorrhea. The Journal of Clinical Endocrinology & 

Metabolism, 82(1), pp.318-321. 

88. Lewiecki, E.M., Watts, N.B., McClung, M.R., Petak, S.M., Bachrach, L.K., Shepherd, 

J.A., Downs Jr, R.W. and International Society for Clinical Densitometry, 2004. Official 

positions of the international society for clinical densitometry. The Journal of Clinical 

Endocrinology & Metabolism, 89(8), pp.3651-3655. 



82 
 

89. Lieberman, J.L., De Souza, M.J., Wagstaff, D.A. and Williams, N.I., 2018. Menstrual 

disruption with exercise is not linked to an energy availability threshold. Medicine 

and science in sports and exercise, 50(3), p.551. 

90. Liscum, L. and Munn, N.J., 1999. Intracellular cholesterol transport. Biochimica et 

biophysica acta, 1438(1), pp.19-37. 

91. Loucks, A.B., Laughlin, G.A., Mortola, J.F., Girton, L., Nelson, J.C. and Yen, S.S., 1992. 

Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic 

athletes. The Journal of Clinical Endocrinology & Metabolism, 75(2), pp.514-518. 

92. Loucks, A.B. and Callister, R., 1993. Induction and prevention of low-T3 syndrome in 

exercising women. American Journal of Physiology-Regulatory, Integrative and 

Comparative Physiology, 264(5), pp.R924-R930. 

93. Loucks, A.B. and Heath, E.M., 1994. Induction of low-T3 syndrome in exercising 

women occurs at a threshold of energy availability. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 266(3), pp.R817-R823. 

94. Loucks, A.B., Verdun, M., Heath, E.M. and (With the Technical Assistance of T. Law, 

Sr. and JR Thuma), 1998. Low energy availability, not stress of exercise, alters LH 

pulsatility in exercising women. Journal of applied physiology, 84(1), pp.37-46. 

95. Logue, D., Madigan, S.M., Delahunt, E., Heinen, M., Mc Donnell, S.J. and Corish, C.A., 

2018. Low energy availability in athletes: a review of prevalence, dietary patterns, 

physiological health, and sports performance. Sports Medicine, 48(1), pp.73-96. 

96. Logue, D.M., Madigan, S.M., Melin, A., Delahunt, E., Heinen, M., Donnell, S.J.M. and 

Corish, C.A., 2020. Low energy availability in athletes 2020: an updated narrative 

review of prevalence, risk, within-day energy balance, knowledge, and impact on 

sports performance. Nutrients, 12(3), p.835. 

97. Loucks, A.B., Horvath, S.M. and Freedson, P.S., 1984. Menstrual status and validation 

of body fat prediction in athletes. Human biology, pp.383-392. 

98. Loucks, A.B. and Horvath, S.M., 1985. Athletic amenorrhea: a review. Medicine and 

science in sports and exercise, 17(1), pp.56-72. 

99. Loucks, A.B., Laughlin, G.A., Mortola, J.F., Girton, L., Nelson, J.C. and Yen, S.S., 1992. 

Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic 

athletes. The Journal of Clinical Endocrinology & Metabolism, 75(2), pp.514-518. 



83 
 

100. Loucks, A.B. and Thuma, J.R., 2003. Luteinizing hormone pulsatility is disrupted at a 

threshold of energy availability in regularly menstruating women. The Journal of 

Clinical Endocrinology & Metabolism, 88(1), pp.297-311. 

101. Loucks, A.B., 2004. Energy balance and body composition in sports and 

exercise. Journal of sports sciences, 22(1), pp.1-14. 

102. Loucks, A.B., 2013. Energy balance and energy availability. The encyclopaedia of 

sports medicine: An IOC medical commission publication, 19, pp.72-87. 

103. Luque, R.M., Kineman, R.D. and Tena-Sempere, M., 2007. Regulation of 

hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses 

using mouse models and a cell line. Endocrinology, 148(10), pp.4601-4611. 

104. MacLaren, D.P.M., Reilly, T., Campbell, I.T. and Hopkin, C., 1999. Hormonal and 

metabolic responses to maintained hyperglycemia during prolonged 

exercise. Journal of Applied Physiology, 87(1), pp.124-131. 

105. Márquez, S. and Molinero, O., 2013. Energy availability, menstrual dysfunction and 

bone health in sports; an overview of the female athlete triad. Nutricion 

hospitalaria, 28(4), pp.1010-1017. 

106. Matkovic, V., Jelic, T., Wardlaw, G.M., Ilich, J.Z., Goel, P.K., Wright, J.K., Andon, M.B., 

Smith, K.T. and Heaney, R.P., 1994. Timing of peak bone mass in Caucasian females 

and its implication for the prevention of osteoporosis. Inference from a cross-

sectional model. The Journal of clinical investigation, 93(2), pp.799-808. 

107. McCarthy, M.M., 2013. A piece in the puzzle of puberty. Nature neuroscience, 16(3), 

pp.251-253. 

108. Meczekalski, B., Podfigurna-Stopa, A., Warenik-Szymankiewicz, A. and Genazzani, 

A.R., 2008. Functional hypothalamic amenorrhea: current view on neuroendocrine 

aberrations. Gynecological endocrinology, 24(1), pp.4-11. 

109. Meczekalski, B., Katulski, K., Czyzyk, A., Podfigurna-Stopa, A. and Maciejewska-Jeske, 

M., 2014. Functional hypothalamic amenorrhea and its influence on women’s 

health. Journal of endocrinological investigation, 37(11), pp.1049-1056. 

110. Medical Research Council, 2014. MRC ethics series Human Tissue and Biological 

Samples for Use in Research: Operational and Ethical Guidelines. 

https://mrc.ukri.org/publications/browse/human-tissue-and-biological-samples-for-

use-in-research/ 

https://mrc.ukri.org/publications/browse/human-tissue-and-biological-samples-for-use-in-research/
https://mrc.ukri.org/publications/browse/human-tissue-and-biological-samples-for-use-in-research/


84 
 

 

111. Melin, A., Tornberg, Å.B., Skouby, S., Faber, J., Ritz, C., Sjödin, A. and Sundgot-

Borgen, J., 2014. The LEAF questionnaire: a screening tool for the identification of 

female athletes at risk for the female athlete triad. British Journal of Sports 

Medicine, 48(7), pp.540-545. 

112. Melin, A., Tornberg, Å.B., Skouby, S., Møller, S.S., Sundgot‐Borgen, J., Faber, J., 

Sidelmann, J.J., Aziz, M. and Sjödin, A., 2015. Energy availability and the female 

athlete triad in elite endurance athletes. Scandinavian journal of medicine & science 

in sports, 25(5), pp.610-622. 

113. Mendelsohn, F.A. and Warren, M.P., 2010. Anorexia, bulimia, and the female athlete 

triad: evaluation and management. Endocrinology and Metabolism Clinics, 39(1), 

pp.155-167. 

114. Melin, A.K., Heikura, I.A., Tenforde, A. and Mountjoy, M., 2019. Energy availability in 

athletics: health, performance, and physique. International Journal of Sport Nutrition 

and Exercise Metabolism, 29(2), pp.152-164. 

115. Misra, M., Miller, K.K., Kuo, K., Griffin, K., Stewart, V., Hunter, E., Herzog, D.B. and 

Klibanski, A., 2005. Secretory dynamics of ghrelin in adolescent girls with anorexia 

nervosa and healthy adolescents. American Journal of Physiology-Endocrinology and 

Metabolism, 289(2), pp.E347-E356. 

116. Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., 

Meyer, N., Sherman, R., Steffen, K., Budgett, R. and Ljungqvist, A., 2015. The IOC 

relative energy deficiency in sport clinical assessment tool (RED-S CAT). 

117. Noel Bairey Merz, C., Johnson, B.D., Sharaf, B.L., Bittner, V., Berga, S.L., Braunstein, 

G.D., Hodgson, T.K., Matthews, K.A., Pepine, C.J., Reis, S.E. and Reichek, N., 2003. 

Hypoestrogenemia of hypothalamic origin and coronary artery disease in 

premenopausal women: a report from the NHLBI-sponsored WISE study. Journal of 

the American College of Cardiology, 41(3), pp.413-419. 

118. Mikhael, S., Punjala-Patel, A. and Gavrilova-Jordan, L., 2019. Hypothalamic-pituitary-

ovarian axis disorders impacting female fertility. Biomedicines, 7(1), p.5. 

119. Morghental AP. Female athlete triad. J Chiropr Med 2002; 1: 97-106. 



85 
 

120. Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., 

Meyer, N., Sherman, R., Steffen, K., Budgett, R. and Ljungqvist, A., 2014. The IOC 

consensus statement: beyond the female athlete triad—relative energy deficiency in 

sport (RED-S). British journal of sports medicine, 48(7), pp.491-497. 

121. Mountjoy, M. ed., 2014. Handbook of Sports Medicine and Science, The Female 

Athlete. John Wiley & Sons. 

122. Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., 

Meyer, N., Sherman, R., Steffen, K., Budgett, R. and Ljungqvist, A., 2015. Authors’ 

2015 additions to the IOC consensus statement: Relative Energy Deficiency in Sport 

(RED-S). 

123. Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K.E., Blauwet, C., 

Constantini, N., Lebrun, C., Lundy, B., Melin, A., Meyer, N. and Sherman, R., 2018. 

International Olympic Committee (IOC) consensus statement on relative energy 

deficiency in sport (RED-S): 2018 update. International journal of sport nutrition and 

exercise metabolism, 28(4), pp.316-331. 

124. Movaseghi, S., Dadgostar, H., Dahaghin, S., Chimeh, N., Alenabi, T., Dadgostar, E. and 

Davatchi, F., 2012. Clinical manifestations of the female athlete triad among some 

Iranian athletes. Medicine & Science in Sports & Exercise, 44(5), pp.958-965. 

125. Myburgh, K.H., Hutchins, J., Fataar, A.B., Hough, S.F. and Noakes, T.D., 1990. Low 

bone density is an etiologic factor for stress fractures in athletes. Annals of internal 

medicine, 113(10), pp.754-759. 

126. Myerson, M.E.R.L.E., Gutin, B.E.R.N.A.R.D., Warren, M.P., May, M.T., Contento, 

I.S.O.B.E.L., Lee, M.I.C.H.A.E.L., Pi-Sunyer, F.X., Pierson Jr, R.N. and Brooks-Gunn, J., 

1991. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic 

runners. Medicine and science in sports and exercise, 23(1), pp.15-22. 

Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP., 2007. 

American College of Sports Medicine position stand. The female athlete triad. Med 

Sci Sports Exerc 39, pp.1867–1882 

127. Navarro, V.M. and Kaiser, U.B., 2013. Metabolic influences on neuroendocrine 

regulation of reproduction. Current opinion in endocrinology, diabetes, and 

obesity, 20(4), p.335. 



86 
 

128. Nichols, D.L., Bonnick, S.L. and Sanborn, C.F., 2000. Bone health and 

osteoporosis. Clinics in sports medicine, 19(2), pp.233-249. 

129. Nichols, J.F., Rauh, M.J., Lawson, M.J., Ji, M. and Barkai, H.S., 2006. Prevalence of the 

female athlete triad syndrome among high school athletes. Archives of pediatrics & 

adolescent medicine, 160(2), pp.137-142. 

130. Nichols, D.L., Sanborn, C.F. and Essery, E.V., 2007. Bone density and young athletic 

women. Sports Medicine, 37(11), pp.1001-1014. 

131. Nichols, J.F., Rauh, M.J., Barrack, M.T. and Barkai, H.S., 2007. Bone mineral density in 

female high school athletes: interactions of menstrual function and type of 

mechanical loading. Bone, 41(3), pp.371-377. 

132. Nordström, A., Karlsson, C., Nyquist, F., Olsson, T., Nordström, P. and Karlsson, M., 

2005. Bone loss and fracture risk after reduced physical activity. Journal of bone and 

mineral research, 20(2), pp.202-207. 

133. O’Donnell, E. and De Souza, M.J., 2004. The Cardiovascular Effects of Chronic 

Hypoestrogenism in Amenorrhoeic Athletes. Sports Medicine, 34(9), pp.601-627. 

134. O'Donnell, E., Goodman, J.M. and Harvey, P.J., 2011. Cardiovascular consequences of 

ovarian disruption: A focus on functional hypothalamic amenorrhea in physically 

active women. The Journal of Clinical Endocrinology & Metabolism, 96(12), pp.3638-

3648. 

135. Otis, C.L., 1992. Exercise-associated amenorrhea. Clinics in sports medicine, 11(2), 

pp.351-362. 

136. Piasecki, J., Ireland, A., Piasecki, M., Cameron, J., McPhee, J.S. and Degens, H., 2018. 

The strength of weight‐bearing bones is similar in amenorrheic and eumenorrheic 

elite long‐distance runners. Scandinavian journal of medicine & science in 

sports, 28(5), pp.1559-1568. 

137. Pollock, N., Grogan, C., Perry, M., Pedlar, C., Cooke, K., Morrissey, D. and Dimitriou, 

L., 2010. Bone-mineral density and other features of the female athlete triad in elite 

endurance runners: a longitudinal and cross-sectional observational 

study. International journal of sport nutrition and exercise metabolism, 20(5), 

pp.418-426. 

138. Practice Committee of the American Society for Reproductive Medicine, 2006. 

Current evaluation of amenorrhea. Fertility and sterility, 86(5), pp.S148-S155. 



87 
 

139. Prior, J.C., Vigna, Y.M., Schechter, M.T. and Burgess, A.E., 1990. Spinal bone loss and 

ovulatory disturbances. New England Journal of Medicine, 323(18), pp.1221-1227.  

140. Raisz, L.G. and Rodan, G.A., 2003. Pathogenesis of osteoporosis. Endocrinology and 

metabolism clinics of North America, 32(1), pp.15-24. 

141. Raj, M.A., Creech, J.A. and Rogol, A.D., 2020. Female athlete triad. StatPearls 

[Internet]. 

142. Reed, J.L., De Souza, M.J., Mallinson, R.J., Scheid, J.L. and Williams, N.I., 2015. Energy 

availability discriminates clinical menstrual status in exercising women. Journal of the 

International Society of Sports Nutrition, 12(1), pp.1-11. 

143. Redman, L.M. and Loucks, A.B., 2005. Menstrual disorders in athletes. Sports 

Medicine, 35(9), pp.747-755. 

144. Rickenlund, A., Eriksson, M.J., Schenck-Gustafsson, K. and Hirschberg, A.L., 2005. 

Amenorrhea in female athletes is associated with endothelial dysfunction and 

unfavorable lipid profile. The Journal of Clinical Endocrinology & Metabolism, 90(3), 

pp.1354-1359. 

145. Rigaud, D., Boulier, A., Tallonneau, I., Brindisi, M.C. and Rozen, R., 2010. Body fluid 

retention and body weight change in anorexia nervosa patients during 

refeeding. Clinical Nutrition, 29(6), pp.749-755. 

146. Riggs, B.L., Khosla, S., Atkinson, E.J., Dunstan, C.R. and Melton, L.J., 2003. Evidence 

that type I osteoporosis results from enhanced responsiveness of bone to estrogen 

deficiency. Osteoporosis international, 14(9), pp.728-733. 

147. Roberts, R.E., Farahani, L., Webber, L. and Jayasena, C., 2020. Current understanding 

of hypothalamic amenorrhoea. Therapeutic Advances in Endocrinology and 

Metabolism, 11, p.2042018820945854. 

148. Robinson, T.L., Snow‐Harter, C., Taaffe, D.R., Gillis, D., Shaw, J. and Marcus, R., 1995. 

Gymnasts exhibit higher bone mass than runners despite similar prevalence of 

amenorrhea and oligomenorrhea. Journal of Bone and Mineral Research, 10(1), 

pp.26-35. 

149. Rodriguez-Pacheco, F., Martinez-Fuentes, A.J., Tovar, S., Pinilla, L., Tena-Sempere, 

M., Dieguez, C., Castano, J.P. and Malagon, M.M., 2007. Regulation of pituitary cell 

function by adiponectin. Endocrinology, 148(1), pp.401-410. 



88 
 

150. Roelofs, A.J., Stewart, C.A., Sun, S., Błażewska, K.M., Kashemirov, B.A., McKenna, 

C.E., Russell, R.G.G., Rogers, M.J., Lundy, M.W., Ebetino, F.H. and Coxon, F.P., 2012. 

Influence of bone affinity on the skeletal distribution of fluorescently labeled 

bisphosphonates in vivo. Journal of Bone and Mineral Research, 27(4), pp.835-847. 

151. Roeters van Lennep, J.E., Westerveld, H.T., Erkelens, D.W. and van der Wall, E.E., 

2002. Risk factors for coronary heart disease: implications of gender. Cardiovascular 

research, 53(3), pp.538-549. 

152. Rosenbaum, M., Hirsch, J., Murphy, E. and Leibel, R.L., 2000. Effects of changes in 

body weight on carbohydrate metabolism, catecholamine excretion, and thyroid 

function. The American journal of clinical nutrition, 71(6), pp.1421-1432. 

153. Rosenfield, R.L. and Ehrmann, D.A., 2016. The pathogenesis of polycystic ovary 

syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism 

revisited. Endocrine reviews, 37(5), pp.467-520. 

154. Roupas, N.D. and Georgopoulos, N.A., 2011. Menstrual function in 

sports. Hormones, 10(2), pp.104-116. 

155. Rosen, 2018. Amenorrhea in the Female Athlete: 8 Myths Debunked. 

https://www.gaudianiclinic.com/gaudiani-clinic-blog/2018/10/10/amenorrhea-in-

the-female-athlete-8-myths-

debunked#:~:text=Myth%201%3A%20It%20is%20normal,of%20athletic%20or%20fit

ness%20training. 

156. Russell, M. and Misra, M., 2010. Influence of ghrelin and adipocytokines on bone 

mineral density in adolescent female athletes with amenorrhea and eumenorrheic 

athletes. Cytokines, growth mediators and physical activity in children during 

puberty, 55, pp.103-113. 

157. Russell, M., Stark, J., Nayak, S., Miller, K.K., Herzog, D.B., Klibanski, A. and Misra, M., 

2009. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes 

and non-athletic controls. Bone, 45(1), pp.104-109. 

158. Scheid, J.L., De Souza, M.J., Hill, B.R., Leidy, H.J. and Williams, N.I., 2013. Decreased 

luteinizing hormone pulse frequency is associated with elevated 24-hour ghrelin 

after calorie restriction and exercise in premenopausal women. American Journal of 

Physiology-Endocrinology and Metabolism, 304(1), pp.E109-E116. 

https://www.gaudianiclinic.com/gaudiani-clinic-blog/2018/10/10/amenorrhea-in-the-female-athlete-8-myths-debunked#:~:text=Myth%201%3A%20It%20is%20normal,of%20athletic%20or%20fitness%20training
https://www.gaudianiclinic.com/gaudiani-clinic-blog/2018/10/10/amenorrhea-in-the-female-athlete-8-myths-debunked#:~:text=Myth%201%3A%20It%20is%20normal,of%20athletic%20or%20fitness%20training
https://www.gaudianiclinic.com/gaudiani-clinic-blog/2018/10/10/amenorrhea-in-the-female-athlete-8-myths-debunked#:~:text=Myth%201%3A%20It%20is%20normal,of%20athletic%20or%20fitness%20training
https://www.gaudianiclinic.com/gaudiani-clinic-blog/2018/10/10/amenorrhea-in-the-female-athlete-8-myths-debunked#:~:text=Myth%201%3A%20It%20is%20normal,of%20athletic%20or%20fitness%20training


89 
 

159. Schneider, L.F. and Warren, M.P., 2006. Functional hypothalamic amenorrhea is 

associated with elevated ghrelin and disordered eating. Fertility and sterility, 86(6), 

pp.1744-1749. 

160. Schwertz, D.W. and Penckofer, S., 2001. Sex differences and the effects of sex 

hormones on hemostasis and vascular reactivity. Heart & lung, 30(6), pp.401-428. 

161. Skorupskaite, K., George, J.T. and Anderson, R.A., 2014. The kisspeptin-GnRH 

pathway in human reproductive health and disease. Human reproduction 

update, 20(4), pp.485-500. 

162. Scofield, K.L. and Hecht, S., 2012. Bone health in endurance athletes: runners, 

cyclists, and swimmers. Current sports medicine reports, 11(6), pp.328-334. 

163. Segrest, J.P., Li, L., Anantharamaiah, G.M., Harvey, S.C., Liadaki, K.N. and Zannis, V., 

2000. Structure and function of apolipoprotein AI and high-density 

lipoprotein. Current opinion in lipidology, 11(2), pp.105-115. 

164. Shangold, M., Rebar, R.W., Wentz, A.C. and Schiff, I., 1990. Evaluation and 

management of menstrual dysfunction in athletes. Jama, 263(12), pp.1665-1669. 

165. Shufelt, C.L., Torbati, T. and Dutra, E., 2017, May. Hypothalamic amenorrhea and the 

long-term health consequences. In Seminars in reproductive medicine (Vol. 35, No. 

03, pp. 256-262). Thieme Medical Publishers. 

166. Silva, M.R. and Paiva, T., 2015. Low energy availability and low body fat of female 

gymnasts before an international competition. European Journal of Sport 

Science, 15(7), pp.591-599. 

167. Slater, J., McLay-Cooke, R., Brown, R. and Black, K., 2016. Female recreational 

exercisers at risk for low energy availability. International journal of sport nutrition 

and exercise metabolism, 26(5), pp.421-427. 

168. Smith, J.T., Acohido, B.V., Clifton, D.K. and Steiner, R.A., 2006. KiSS‐1 neurones are 

direct targets for leptin in the ob/ob mouse. Journal of neuroendocrinology, 18(4), 

pp.298-303. 

169. Snow-Harter, C.M., 1994. Bone health and prevention of osteoporosis in active and 

athletic women. Clinics in sports medicine, 13(2), pp.389-404. 

170. Soleimany G, Dadgostar H, Lotfian S, Moradi-Lakeh M, Dadgostar E, Movaseghi S 

(2012) Bone mineral changes and cardiovascular effects among female athletes with 

chronic menstrual dysfunction. Asian J Sports Med 3:53–58 



90 
 

171. Solomon, C.G., Hu, F.B., Dunaif, A., Rich-Edwards, J.E., Stampfer, M.J., Willett, W.C., 

Speizer, F.E. and Manson, J.E., 2002. Menstrual cycle irregularity and risk for future 

cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism, 87(5), 

pp.2013-2017. 

172. Sonntag, B. and Ludwig, M., 2012. An integrated view on the luteal phase: diagnosis 

and treatment in subfertility. Clinical endocrinology, 77(4), pp.500-507. 

173. St-Pierre, D.H., Karelis, A.D., Cianflone, K., Conus, F., Mignault, D., Rabasa-Lhoret, R., 

St-Onge, M., Tremblay-Lebeau, A. and Poehlman, E.T., 2004. Relationship between 

ghrelin and energy expenditure in healthy young women. The Journal of Clinical 

Endocrinology & Metabolism, 89(12), pp.5993-5997. 

174. Spicer, L.J. and Francisco, C.C., 1997. The adipose obese gene product, leptin: 

evidence of a direct inhibitory role in ovarian function. Endocrinology, 138(8), 

pp.3374-3379. 

175. Spieker, L.E., Sudano, I., Hürlimann, D., Lerch, P.G., Lang, M.G., Binggeli, C., Corti, R., 
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