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Ben Gilvey

Abstract

In this thesis several aspects of the Partition of Unity Boundary Element

Method (PUBEM) are investigated, with novel results in three main areas:

1. Enriched modelling of wave scattering from polygonal obstacles. The

plane waves are augmented by a set of enrichment functions formed from

fractional order Bessel functions, as informed by classical asymptotic so-

lutions for wave fields in the vicinity of sharp corners. It is shown that

the solution accuracy can be improved markedly by the addition of a very

small number of these enrichment functions, with very little effect on the

run time.

2. High-order formulations. Plane waves are not the only effective means

of introducing oscillatory approximation spaces. High-Order Lagrange

polynomials and high-order Non-Uniform Rational B-Splines (NURBS)

also exhibit oscillation and these are tested and compared against PUBEM.

It is found that these high-order functions significantly outperform the

corresponding low-order (typically quadratic) polynomials and NURBS

that are commonly used, and that for large problems the highest order

tested (11th) has potential to be competitive with PUBEM without the

associated ill-conditioning.

3. Integration. The accuracy of PUBEM traditionally comes at the cost

of the requirement to evaluate many highly-oscillatory integrals. Several

candidate integration strategies are investigated with the aim of find-

ing a robust, accurate and efficient approach. Schemes tested include

the Filon and asymptotic methods, as well as the Method of Station-

ary Phase (MSP). Although these schemes are found to be spectacularly

successful for many cases, they fail for a sufficient number of situations

to cause a complete PUBEM analysis based on these methods to lack

robustness. Conclusions are drawn about the effective use of more tradi-

tional quadrature for robust implementations.
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Chapter 1

Introduction

Acoustic wave propagation is a rich field of study, with many engineering applications,

such as, Non-Destructive Testing (NDT), medical diagnostics ultrasound, SOund Navi-

gation And Ranging (SONAR) and High-Intensity Focused Ultrasound (HIFU). Each of

these methods employ transducers to generate acoustic signals which are to be transmitted

into a domain of interest.

In the early 1900s, long before ultrasound became commonplace, SONAR was im-

plemented on ocean liners (following the Titanic disaster) to detect hazards, and then

submarines during the second world war; during this time, transducer designs improved

and piezoelectric transducers were developed. Following this improvement, ultrasonic

transducers were applied to NDT which typically involved pulsing ultrasonic waves into a

given material, and receiving return signals that have been reflected from artifacts. The

artifacts could be defects, such as cracks in the material or simply geometric properties

which can be used to characterise the material. Since the advent of NDT, vast improve-

ments have been made, for example, in the design of powerful transducers, such as: the

Electro Magnetic Acoustic Transducer (EMAT) which generates Lorentz force to induce

acoustic waves within a given medium; and, the Magnetostrictive Transducer (MsT) which

employs the Wiedemann effect to generate acoustic waves. These designs are capable of

generating horizontal shear waves which are non-dispersive within waveguides such as

pipes and rods.

Following SONAR and NDT was the use of Ultrasound for medical imaging, becoming

popular in the second half of the 20th century as a non-invasive method of diagnosis. By

the 21st century, real-time 3D imaging of the human body was possible. More recently,

extensive research is being performed into High-Intensity Focused Ultrasound (HIFU),

which can be used to focus ultrasound waves on a cancerous region, such as a tumour.

The purpose of this focusing is to heat up and destroy the tumour, with minimal damage

to the surrounding healthy tissue. Such non-invasive techniques have obvious benefit over

surgical intervention.
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With all of these applications (although, specifically in the medical contexts), it is

of great use to produce numerical models which can indicate the outcome of a given

transducer design and placement, for example. A known issue is the fact that in many

of these contexts, the wavelength λ is very small in relation to the artifacts from which

the waves reflect. This causes difficulty for traditional numerical methods, such as the

Finite Element Method (FEM) and the Boundary Element Method (BEM), as typically

a fixed number of degrees of freedom are required per wavelength; thus, if there are many

wavelengths in a domain then many degrees of freedom will be required which results in

computational expense. Many numerical methods have been developed with the aim of

ameliorating the computational cost required to solve high-frequency problems. Examples

of such methods are the Partition of Unity Boundary Element Method (PUBEM) which

is an enriched variant of BEM and high-order BEM which is introduced in this thesis and

employs high-order basis functions.

1.1 Thesis statement

Broadly, the aim of this thesis is to explore numerical aspects of enriched and high-order

boundary element basis functions. The enriched methods tested employ the plane-wave

basis of the Partition of Unity Boundary Element Method with the addition of singular

Bessel functions. The high-order bases include: Lagrange polynomials, trigonometric

functions and Non-Uniform Rational B-Splines (NURBS).

The purpose of testing PUBEM in this thesis, is to observe the behaviour of PUBEM

for novel problems, including interior domains and scattering from corners. The aim is

then to improve upon standard PUBEM by using additional enrichment. Further, it

is well-known that PUBEM integrals can be highly-oscillatory, thus efforts are directed

at developing a robust integration scheme. The purpose of the high-order testing is to

determine if the benefits seen in high-order FEM are shared by BEM, and to offer a point

of comparison for PUBEM.

The results obtained in this thesis were generated by codes written in MATLAB, by

the author.

1.2 Outline of this thesis

Chapters 2 and 3 outline existing literature, whereas from Chapter 4 onward, novel work

is presented. References to relevant literature are provided as required.

• Chapter 2: Theory of acoustics This chapter provides the starting point for nu-

merical acoustics, wherein the Helmholtz equation is derived and numerical solution

is discussed.
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• Chapter 3: Boundary Element Method BEM is introduced in this chapter

along with some relevant literature, then the Boundary integral equation is derived.

Numerical solution of the Boundary Integral Equation is discussed, and PUBEM is

presented.

• Chapter 4: Integration This chapter introduces numerical integration in the

context of BEM, discussing some of the known challenges, such as, singular integrals.

Following this, a large section is devoted to the, more challenging, PUBEM integrals.

Multiple highly-oscillatory integration schemes are developed and tested, along with

a study into the application of standard Gauss-Legendre.

• Chapter 5: Singular enrichment functions for wave scattering by poly-

gons This chapter presents PUBEM and BEM test results for challenging cases

of scattering by corners. An extended BEM scheme (XBEM) and an extended

PUBEM scheme (PUXBEM) are presented, both of which include fractional-order

Bessel functions as enrichment to improve accuracy at corner locations. XBEM and

PUXBEM are tested on numerical examples of scattering by polygons.

• Chapter 6: High-order basis functions This chapter introduces high-order La-

grange functions and NURBS to solve multiple scattering problems and an example

of a wave travelling along the length of a duct. The pollution effect is observed in

the duct and results are compared with PUBEM.

• Chapter 7: Optimal selection of basis for PUBEM This chapter provides

insight into the relationship between the number of elements employed E vs. the

number of plane-waves included per node M in a PUBEM scheme.

• Chapter 8: Conclusions and further work This chapter outlines the successes

the thesis, along with providing recommendation for future research.
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Chapter 2

Theory of acoustics

2.1 The Helmholtz equation

As a sound wave travels through a compressible medium Ω, disturbances in ambient

pressure P and density ρ are caused. Knowledge of these changes may be combined with

the particle velocity V in the equation of mass conservation

∂P

∂t
+ ρc2∇ · V = 0, (2.1)

wherein t represents time and c is the speed of sound, which is specific to the medium

in which the sound is travelling. Using the same variables, we arrive at the linearised

momentum equation

ρ
∂V

∂t
= −∇P. (2.2)

Using (2.1) and (2.2) it is possible to produce the inhomogeneous linearised wave equation,

ρ∇ ·

(
1

ρ
∇P

)
− 1

c2

∂2P

∂t2
= 0, (2.3)

which reduces to the following for homogeneous media.

∇2P − 1

c2

∂2P

∂t2
= 0, (2.4)

where ∇2 is known as the Laplacian operator. For the above equations P = P (p, t) where

p represents locations within the domain of interest, i.e. p ∈ Ω. The work in this thesis

restricts the analysis to time-harmonic cases, i.e. where the acoustic variation is sinusoidal

at all locations with respect to time, that is

P = φ(p)e−iωt (2.5)
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wherein φ ∈ C represents the amplitude of the variation in sound pressure or acoustic

potential, i =
√
−1, and ω is frequency. Inserting this definition in to (2.4) and (2.3)

produces

ρa∇ ·

(
1

ρa
∇φ

)
+ k2φ = 0, (2.6)

for the case wherein the medium in which the sound waves propagate has inhomogeneous

material properties, and

∇2φ(p) + k2φ(p) = 0, p ∈ Ω (2.7)

for the case wherein the medium in which the sound waves propagate has homogeneous

material properties which is known as the Helmholtz equation where k is the wave number

which is defined in terms of the wavelength λ as k = 2π/λ.

2.2 Fundamental solutions

Before deriving the Boundary Integral Equation (BIE) for Helmholtz problems the concept

of fundamental solutions, also known as Green’s functions is introduced. For the analysis

carried out in this thesis the Green’s functions G(p,q) are found by solving the equation

∇2G(p,q) + k2G(p,q) = −δ(p− q), p,q ∈ Ω (2.8)

where the right-hand-side is a Dirac delta function which has singular point source loca-

tions p and may be evaluated at any point q. The Dirac delta function is equal to

δ(p− q) =

+∞, if q = p

0, otherwise

and has the useful property ∫ +∞

−∞
δ(p− q)dq = 1, (2.9)

and ∫ +∞

−∞
δ(p− q)f(q)dq = f(p). (2.10)

Solving (2.8) in 2D provides the following Green’s function

G(p,q) =
i

4
H

(1)
0 (kr), (2.11)

and its derivative
∂G(p,q)

∂n(q)
=
−ik

4
H

(1)
1 (kr)

∂r

∂n
, (2.12)
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where H
(1)
0 is a Hankel function of the first kind and of order zero, H

(1)
1 is a Hankel

function of the first kind and of order one and r is the Euclidian distance between p and

q. Hankel functions are defined as follows,

H(1)
n (kr) = Jn(kr) + iYn(kr), (2.13)

H(2)
n (kr) = Jn(kr)− iYn(kr), (2.14)

where (2.13) and (2.14) are Hankel functions of the first and second kind respectively with

Jn(kr) and Yn(kr) being Bessel functions of the first and second kind respectively.

2.3 Numerical solution

Analytical solutions for (2.7) exist, but typically for very simple problems, for example:

1D problems, such as plane-wave propagation in one direction; 2D problems, such as

the well-known scattering by a cylinder or multiple cylinders, and 3D problems, such as

scattering by a sphere. Some examples of analytical solutions can be found in [1] and

[2]. To solve more general Helmholtz problems though, a numerical method of solution

is required; in this thesis (2.7) is solved numerically, using BEM and enriched versions

of BEM. Naturally, as is the case with numerical methods generally, the solutions are

approximate. Though, some analytical solutions are presented in this thesis because,

particularly when looking at very refined numerical discretisations, it is helpful to have

an exact solution to compare against. Notably, by considering the Helmholtz equation,

time-domain methods are ruled-out, thus not considered in this thesis.

Whilst this thesis focuses on BEM-type methods, there are many alternate numerical

methods that can be employed to solve the Helmholtz equation. An overview of such

methods is provided in this section to highlight core themes, though this is not intended

to be a complete or exhaustive list. For example, there are methods based on statistical

energy descriptions [43], physical optics [44], and finite difference methods [42] which can

be used with success for some acoustics problems, but for brevity, the following discussion

is restricted to element based methods.

Perhaps the most well-known of the numerical methods is FEM, whereby a domain,

over which a given differential equation is to be solved, is discretised into finite elements.

The solution of the differential equation can then be approximated via basis functions

over each element, the amplitudes of which are sought during the solution process. FEM

is used in many fields of engineering and has been extensively tested in acoustics settings

[3–9]. Typically, conventional FEM performs well for Helmholtz problems in the lower-

frequency range, though as frequency increases, so do the number of elements required

which can eventually become prohibitively large, as has been quantified [6, 10]. This

problem is in part due to the pollution effect incurred by FEM [3, 4, 15–17], which is a
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form of numerical dispersion, that progresses over a long distance. Notably, throughout

this thesis, the term ‘high-frequency’ is used to refer examples wherein the wavelength

λ is short relative to the size of the domain of interest. That is, for a problem to be

considered high-frequency k does not necessarily need to be large, instead λ needs to be

small relative to, for example, the boundary of the domain of interest.

To overcome the difficulties associated with using FEM for high-frequency Helmholtz

problems, two main approaches exist. Firstly, high-order basis functions, i.e. increasing

the order of the conventional (usually) low-order polynomial basis. Secondly, enriched

methods (also known as Trefftz methods) whereby alternate basis functions are chosen

which are all canonical solutions to the governing partial differential equation.

Some examples of successful higher-order basis schemes are the Bernstein and Lo-

batto polynomials [19, 20], which show promising results and are further explored as the

Bernstein-Bézier Finite Element Method (BBFEM) [25] and spectral methods [21–24]

which apply global, rather than local, basis functions. Another alternative to the con-

ventional polynomial basis functions are Non-uniform Rational B-splines (NURBS) which

are used to construct geomtetries in Computer Aided Design (CAD). Such geometries

can be conveniently exported from CAD software and used as a discretisation means to

form Isogeometric Finite Element Method (IGAFEM) [18].

Alternatively, enriched methods for Helmholtz problems typically take the form of

wave-based methods, such as, [27–30, 36] wherein oscillatory functions are used to form

the basis. Most relevant to this thesis is the Partition of Unity Method [31, 32] which forms

the ground for methods such as the Partition of Unity Finite Element Method (PUFEM)

[33–35]. Further, a number of discontinuous plane-wave enrichment schemes have also

been presented, such as the Plane-Wave Discontinuous Galerkin Method (PWDG) [37,

38], the Discontinuous Enrichment Method (DEM) [39], and the Ultra-Weak Variational

Formulation (UVWF) [40], which is compared with PUFEM in [41]. Comparisons of

performance between wave-based FEM with high-order FEM schemes is made in [26].
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Chapter 3

Boundary Element Method

In this section the Boundary Integral Equation (BIE) is derived for wave problems in

interior domains and for exterior scattering problems in infinite domains.

3.1 Background

BEM [48] is an element-based method, so there are common features between FEM and

BEM, such as use of piecewise (typically polynomial) basis functions to describe variation

in acoustic potential over each element. Though FEM methods discussed in section 2.3

can involve a volumetric discretisation, i.e. a 2D problem requires computation of area

integrals, and a 3D problem requires computation of volume integrals. Conversely, via

the use of fundamental solutions and Green’s second identity, as will be seen in section

3.2, BEM can reduce the dimensionality of a problem to be solved, i,e, a 2D problem only

requires computation of 1D line integrals, and a 3D problem only requires computation

of 2D surface integrals. Further to the benefit offered by the reduction in dimensional-

ity, as is well-known, BEM proves very useful when considering Helmholtz scattering in

infinite domains. This is because BEM will only require discretisation of the surface of a

scattering object, and once the acoustic potential φ has been computed over the surface

of the object, φ can be computed at any point within the infinite domain, using only the

surface discretisation. Another benefit of BEM for problems in infinite domains due to

the inclusion of Green’s functions in the formulation is that the Sommerfeld radiation

condition [55, 56] is automatically satisfied, i.e. nothing is reflected back from infinity.

A corresponding FEM model would require discretisation of part of the unbounded do-

main, thus limiting the region over which acoustic potential can be evaluated; further,

FEM would require artificial domain truncation along with some non-reflecting boundary

conditions to simulate the Sommerfeld radiation condition.

As is the case with FEM, there exist modified versions of BEM which aim to speed

up the solution or increase accuracy per degree of freedom. Often, the aim of these
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modifications is to allow more efficient solution of high-frequency problems, which can

be challenging for conventional BEM schemes. As a rule of thumb, conventional BEM

requires 8-10 degrees of freedom per wavelength to achieve ‘engineering accuracy’ of 1%.

Similarly to FEM, Trefftz based methods also provide benefit in BEM schemes, which

will be discussed in section 3.5, but before moving on it is important to note that there

are alternative BEM approaches such as fast multipole methods [57–60], low-rank matrix

approximations [61] and use of optimised linear algebra routines [62]. Such methods aim

to increase the efficiency with which a system of BEM equations is solved. Notably,

BEM matrices are densely populated in comparison to FEM matrices. Another popular

flavour of BEM is Isogeometric Boundary Element Method (IGABEM) [45–47], wherein,

similarly to IGAFEM, NURBS are used as basis functions to describe both the variation

in acoustic potential, and the geometry of the domain in which the governing equation is

solved.

3.2 Interior domains

Consider an interior domain, containing a homogeneous medium wherein frequency de-

pendent wave propagation is governed by the Helmholtz equation (2.7). Before moving on

to the formulation, it is important to remember the nature of the fundamental solutions

resulting from a point source, shown in (2.8). This is because in order to form the BIE

it is necessary to exclude a small region surrounding the singular point source resulting

from the fundamental solution. In 2D, this excluded region is a circle with radius ε and

a sphere in 3D with radius ε. The domain, along with the associated boundaries and a

point p are shown in Fig. 3.1.

Making use of Green’s second identity it is possible to write the following,∫
Ωf−Ωε

[φ(q)∇2G(p,q)−G(p,q)∇2φ(q)]dΩ

=

∫
Γ+Γε

(
G(p,q)

∂φ(q)

∂n(q)
− φ(q)

∂G(p,q)

∂n(q)

)
dΓ(q), p ∈ Ωf .

(3.1)

where Ωf is the fluid domain in which the sound will propagate, G(p,q) is the fundamental

solution from (2.11), p is a vector of singular source point locations, each point associated

with a fundamental solution and q are ‘field’ points at which the fundamental solutions

are evaluated, φ(q) is the unknown acoustic potential and n(q) is an outward facing unit

normal vector from Ωf . The singular points associated with the fundamental solutions

are excluded from the domain of interest to allow the following.

∇2φ(q) + k2φ(q) = ∇2G(p,q) + k2G(p,q) = 0, p ∈ Ωf (3.2)
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Figure 3.1: Interior domain Ωf with boundary Γ and point p surrounded by a circle of
radius ε.

which may be rearranged to provide

G(p,q)∇2φ(q)+k2φ(q)G(p,q)

= φ(q)∇2G(p,q) + k2φ(q)G(p,q) = 0, p ∈ Ωf .
(3.3)

The results of (3.3) may be inserted into (3.1) to produce

∫
Ωf−Ωε

[φ(q)∇2G(p,q)+k2G(p,q)φ(q)]dΩ

=

∫
Γ+Γε

(
G(p,q)

∂φ(q)

∂n(q)
− φ(q)

∂G(p,q)

∂n(q)

)
dΓ(q), p ∈ Ωf ,

(3.4)

wherein the left-hand-side is certainly equal to zero due to (3.2), resulting in

∫
Γs+Γε

(
G(p,q)

∂φ(q)

∂n(q)
− φ(q)

∂G(p,q)

∂n(q)

)
dΓ(q) = 0, p ∈ Ωf . (3.5)

It is clear from (3.5) that now only boundary integrals remain. To represent the boundary

of the point source, it is necessary to take ε → 0. Therefore, the first integral over the

boundary of the point source location ε is

lim
ε→0

∫
Γε

G(p,q)
∂φ(q)

∂n(q)
dΓ(q) = 0 (3.6)

– 10 –



and the second is equal to the following

− lim
ε→0

∫
Γε

φ(q)
∂G(p,q)

∂n(q)
dΓ(q) = −φ(p), (3.7)

which is known as the jump term.

−φ(p) +

∫
Γ

(
G(p,q)

∂φ(q)

∂n(q)
− φ(q)

∂G(p,q)

∂n(q)

)
dΓ(q) = 0, p ∈ Ωf . (3.8)

According to the above definitions, the source points p are contained in the fluid domain

Ωf , but it is necessary to move this to the boundary Γ in order to compute φ(p) ∈ Γ

which will allow subsequent computation of acoustic potential at so-called field points

which do not lie on the boundary. For a smooth scattering object this will half the jump

term to provide the following updated version of (3.8).

−φ(p)

2
+

∫
Γ

(
G(p,q)

∂φ(q)

∂n(q)
− φ(q)

∂G(p,q)

∂n(q)

)
dΓ(q) = 0, p,q ∈ Γ. (3.9)

Figure 3.2: Interior domain Ωf with point p located on the boundary Γ.

This is shown in Fig. 3.2, where a single point p is located on the boundary Γ. The

resulting equation is defined entirely over Γ thus reducing the dimensionality of the prob-

lem. As seen above, the jump term is halved on a smooth boundary, but this will not

always be the case, such as for corner locations which will be encountered in this thesis.

This requires the jump term to be multiplied by a new function c(p) which is dependent
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on the geometry. By including c(p) and rearranging, (3.9) is generalised to produce

c(p)φ(p) +

∫
Γ

φ(q)
∂G(p,q)

∂n(q)
dΓ(q) =

∫
Γ

G(p,q)
∂φ(q)

∂n(q)
dΓ(q), p,q ∈ Γ. (3.10)

Figure 3.3: Example angles on which a collocation point may sit. The angle on the left
would result in c(p) = 1

4
, the angle in the middle would result in c(p) = 1

2
and the angle

on the right would result in c(p) = 3
4
. The analysis domain is shown un-shaded.

wherein c(p) is a function of the angle subtended at points p, which is illustrated in

Fig. 3.3.

3.3 Exterior domains

Exterior scattering problems in infinite domains are a category in which BEM performs

particularly favourably in, due to the fact that even though Ωf is infinite it is still possible

to compute acoustic potential at any point, using only boundary integrals. Fig. 3.4 shows

a generic scattering object which includes the same variables as for the interior problem

but with the inclusion of an incident plane wave φinc and a representation of a boundary

at infinity, denoted Γ∞.

In order to apply the above formulation to exterior problems some minor modifications

are required, the first of which is the Sommerfeld radiation condition, given by

lim
r→∞
|r|

n̄−1
2

(
∂φ

∂|r|
− ikφ

)
= 0, (3.11)

where n̄ represents the dimension of the problem. This boundary condition does not

result in a practical change in (3.10), but exists in the theoretical formulation, therefore

is included here for completeness. From (3.11) the following relationship arises on Γ∞.

∂φ

∂|r|
= ikφ, (3.12)
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which may be used in conjunction with the knowledge that

∂φ

∂|r|
=
∂φ

∂n
, (3.13)

which allows us to reformulate (3.10) over the boundary Γ∞ to produce∫
Γ∞

ikφ(q)G(p,q)dΓ∞(q)−
∫

Γ∞

φ(q)
∂G(p,q)

∂n(q)
dΓ∞(q). (3.14)

The fundamental solution in 2D (2.11) and its derivative (2.12) contain Hankel functions

and are repeated here for convenience,

G(p,q) =
i

4
H

(1)
0 (kr), (3.15)

∂G(p,q)

∂n(q)
=
−ik

4
H

(1)
1 (kr)

∂r

∂n
. (3.16)

The asymptotic approximation of H
(1)
0 and H

(1)
1 at infinity are given by

H
(1)
0 (kr) ∼

√
2

πkr
ei(kr−

π
4

) (3.17)

H
(1)
1 (kr) ∼

√
2

πkr
ei(kr−

π
4

) (3.18)

therefore at infinity

H
(1)
1 (kr) = −iH(1)

0 (kr), (3.19)

which can be inserted into (3.14) to produce∫
Γ∞

k

4
φ(q)H

(1)
0 dΓ∞(q)−

∫
Γ∞

k

4
φ(q)H

(1)
0 dΓ∞(q), (3.20)

thus removing any terms to be integrated over Γ∞ which leaves (3.10) unchanged. Often,

infinite domain problems are used to analyse the scattering of an incident wave from an

obstacle, thus, the incident wave is included in (3.10) to produce the BIE for exterior

scattering problems, as follows.

c(p)φ(p) +

∫
Γs

φ(q)
∂G(p,q)

∂n(q)
dΓ(q)

=

∫
Γs

G(p,q)
∂φ(q)

∂n(q)
dΓ(q) + φinc(p), p,q ∈ Γ.

(3.21)

Before moving on to the numerical solution of (3.10) using BEM, it is useful to consider
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Figure 3.4: Generic scattering object where Ωs is the domain of the scatterer, Ωf is
the fluid domain, Γ is the boundary of the scatterer, φinc is the incident wave and Γ∞
represents the boundary at infinity.
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boundary conditions. The Robin boundary condition can be defined as

∂φ(q)

∂n
= αφ(q) + β, q ∈ Γ (3.22)

wherein α and β are coefficients which may be varied depending on requirements. The

Dirichlet condition can be defined as

φ(q) = g, (3.23)

The ‘sound hard’ Neumann condition can be defined as follows

∂φ(q)

∂n(q)
= 0, (3.24)

i.e. α = β = 0 in (3.22) though, the flexibility offered by the Robin condition is required

for some interior problems considered in this thesis; thus, the Robin condition is applied

to the BIE here, as follows,

c(p)φ(p) +

∫
Γ

[
∂G(p,q)

∂n(q)
−αG(p,q)

]
φ(q)dΓ(q)

=

∫
Γ

βG(p,q)dΓ(q) + φinc(p), p,q ∈ Γ.

(3.25)

In the following section (3.25) is discretised for numerical solution.

3.4 Discretisation

In order to solve (3.25) numerically for general cases, the boundary Γ is divided into a

total of E elements. Over each element the geometry, the acoustic potential φ may be

described in terms of a total J basis functions, commonly referred to as shape functions.

These functions are defined in terms of a local coordinate ξ, over a given element e to

provide a description of the geometry as

x =
J∑
j=1

xjΨj(ξ) (3.26)

y =
J∑
j=1

yjΨj(ξ), (3.27)

where xi and yi are local coordinates at nodal locations associated with element e.

A discretisation of a general scattering object is shown in Fig. 3.5 wherein each element

is separated by straight lines, and each element contains 3 nodes. The choice of basis

functions is discussed at length in chapters to follow, but for now the discretisation process
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Figure 3.5: Generic scattering object discretised into quadratic elements with 3 nodes per
elements and the parametric variable ξ.
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is explained in terms of the commonly employed quadratic basis functions. For a quadratic

element, the basis is given by

Ψ1 =
1

2
ξ(ξ − 1) (3.28)

Ψ2 = (1− ξ)(1 + ξ) (3.29)

Ψ3 =
1

2
ξ(ξ + 1), (3.30)

where ξ ∈ [−1, 1]. Ψ1,Ψ2 and Ψ3 are plotted in Fig. 3.6. Typically, the same basis

functions used to describe the geometry are used to describe the acoustic potential φ.

This is referred to as an isoparametric formulation and produces the following expression

for acoustic potential over an element,

φ =
J∑
j=1

φjΨj(ξ). (3.31)

In order to employ the local coordinate system which is a function of ξ over each element,

a coordinate transformation is required. This results in a Jacobian of transformation

which is defined as

Je =

√√√√(dx
dξ

)2

+

(
dy

dξ

)2

, (3.32)

where, for example, dx/dξ and dy/dξ are as follows

dx

dξ
=

J∑
j=1

xj
dΨj

dξ
, (3.33)

dy

dξ
=

J∑
j=1

yj
dΨj

dξ
(3.34)

when basis functions Ψj are employed. It is now possible to produce the discretised form

of (3.25) with E elements and J basis functions per element, given by

c(p)φ(p) +
E∑
e=1

J∑
j=1

∫ 1

−1

[
∂G(p,q)

∂n
−αG(p,q)

]
Ψj(ξ)J

edξφej

=
E∑
e=1

∫ 1

−1

βG(p,q)Jedξ + φinc(p), p,q ∈ Γ,

(3.35)

in which Ψj denotes the basis functions, φej represent the unknown nodal potential, Je

is the Jacobian of the geometric mapping (x, y) → ξ and the conventional ξ ∈ [−1, 1]
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Figure 3.6: Quadratic Lagrangian shape functions.

is employed. Naturally, the Jacobian Je is dependent on the geometric properties of the

domain of interest. In certain examples, such as when considering straight line, or circular

arc, elements, Je will be a constant. In order to solve this equation, we must ’collocate’ at

points p and integrate the resulting (3.35) over the boundary, which is performed element-

by-element. For now, the collocation points p will be equal to the nodal locations of the

elements which is not mandatory but simplifies the interpolation process for φ(p). Non-

nodal collocation will be required for a PUBEM formulation. The resulting linear system

of equations in matrix form is given by,

[
C + H−αg

]{
φ
}

=
{
βg + φinc

}
, (3.36)

where C contains the interpolations of c(p)φ(p), H and αg contain the boundary integrals

from the left hand side of (3.35), φ is the vector of unknown potentials, βg is a vector

containing the boundary integrals from the right hand side of (3.35) and φinc is a vector

of incident wave potential at collocation locations. The parameter used to define the

number of degrees of freedom employed per wavelength is therefore

τ =
(J − 1)Eλ

p̃
, (3.37)

where p̃ is the perimeter of the problem boundary i.e. p̃ =
∫
dΓ. Naturally, solving (3.36)
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recovers the unknown potential φ at nodal locations, which may then be interpolated using

(3.31) to determine φ at non-nodal locations. Following this, recovery of the acoustic

potential at points which are within the fluid domain (i.e. for p ∈ Ωf ) wherein wave

propagation is taking place is straightforward as the nodal potentials φ are now known.

This means that potential φ at points p ∈ Ωf may be obtained simply by performing

the integration performed over the boundary (with the known values of φ inserted into

(3.35)).

Further, it is well known that solutions of (3.35) become non-unique at frequencies

corresponding to the eigenfrequencies of the associated interior problem formed on the

same boundary Γ. In the interest of simplicity, the Combined Helmholtz Integral Equation

Formulation (CHIEF) [87] is employed here to overcome the system degeneracy. CHIEF

requires additional collocation points located in the interior domain Ωs of the scattering

object, resulting in an overdetermined system of equations, that requires an appropriate

solver. It should be noted that there is a popular alternative method of Burton and Miller

[88] which can be regularised as in [89, 90] reducing the hypersingular integrals to weakly

singular.

3.5 PUBEM

3.5.1 Background

PUBEM is inspired by Trefftz methods, whereby the basis functions, in this case plane-

waves, that are employed are chosen because they are known solutions of the governing

equation. Though, PUBEM is not a true Treffz method as the plane-waves are, typically,

multiplied by polynomial shape functions. The result is a plane-wave basis, multiplied

by interpolating functions that have the partition of unity property. This method was

developed by Perrey-Debain et al.[49–51] and has been shown to greatly reduce the num-

ber of degrees of freedom required per wavelength to achieve engineering accuracy of 1%.

In fact, the heuristic requirement of 8-10 degrees of freedom per wavelength (for conven-

tional BEM) can be reduced to approximately 2.5 for a PUBEM scheme in the mid-high

frequency range.

Typically the set of plane-waves of which the PUBEM basis is comprised propagate

at equispaced angles with respect to one another. This even spread of plane-waves, if

sufficient in number, allows solution of general problems which includes concave objects

and reflections from multiple objects. This is noteworthy because there are more problem-

specific enrichment methods wherein leading order behaviour is built-in to the enrichment

[53, 54] to obtain extremely efficient and accurate solutions for certain classes of problem,

for example, scattering by a single convex polygon.
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3.5.2 Derivation

The derivation of PUBEM can follow the same path as for BEM, shown above, until it

comes to selecting the basis functions. For this reason, the derivation provided here can

proceed from (3.35). The same polynomial basis may be employed but enriched such that

the unknown potential is written as a linear combination of plane waves propagating in

different directions, i.e.

φ =
J∑
j=1

M∑
m=1

Ψj(ξ)Ajmeikdjm·q, (3.38)

djm = (cos φ̄jm, sin φ̄jm), φ̄jm =
2π(m− 1)

M
(3.39)

where Ajm are the unknown plane wave amplitudes, djm are the direction vectors of the

plane waves, i =
√
−1 and M is the number of plane waves considered per node. Therefore

the discretised form of (3.35) in a PUBEM setting becomes

c(p)φ(p) +
E∑
e=1

J∑
j=1

M∑
m=1

∫ 1

−1

[
∂G(p,q)

∂n
− αG(p,q)

]
Ψj(ξ)e

ikdjm·qJedξAejm

=
E∑
e=1

∫ 1

−1

βG(p,q)Jedξ + φinc(p), p,q ∈ Γ.

(3.40)

Solving (3.40) results in a vector of unknown amplitudes Ajm, which can then be

multiplied by the corresponding plane-waves to recover the unknown potential φ. To

compute the number of degrees of freedom per wavelength one must compute

τ =
(J − 1)MEλ

p̃
. (3.41)

An example PUBEM element is shown in Fig. 3.7, with M = 4 and J = 3. Additionally,

for M > 1 non-nodal collocation is required, which introduces some slightly more involved

numerical treatment. For example, [C] is now populated by interpolating between nodes

and multiplying by the respective plane-waves.

It is well-known that the linear systems of equations resulting from enriched formu-

lations can suffer from ill-conditioning [52]; in PUBEM, the ill-conditioning is mostly

observed at large τ . Such conditioning problems are expected because, as is well known,

PUBEM performs optimally with a relatively coarse discretisation, i.e. using relatively

large elements and large M . Therefore, when τ is large, there are often many enrichment

waves propagating at equispaced angles. That is, for any given enrichment wave, at any

given node, the neighbouring enrichment waves will be propagating in substantially sim-

ilar directions and therefore will result in substantially similar equations adjacent to one
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Figure 3.7: Quadratic PUBEM element with M = 4 showing the parametric variable ξ.

another within the resulting system of equations. Naturally, such similarity between the

equations, increases the condition number of the associated system of equations.

Typically, the conditioning of the PUBEM systems can be easily managed by control-

ling τ and using a suitable method of solution [52], such as Singular Value Decompo-

sition (SVD). Further, oversampling by adding a surplus of collocation points can also

help to reduce the condition number of the resulting system of equations, though this was

not required to produce the results shown in this thesis. Additionally, it is possible to

perform the PUBEM enrichment in a Galerkin procedure, though in the current work the

collocation form of BEM is employed, such that (3.40) is collocated at a sufficient number

of points p to yield a solvable linear system.

When producing a BEM discretisation one must consider the accuracy required, which

will inform the choice of τ , which in turn will determine the number of elements required.

Perhaps further decisions are required to select the type of basis function and the order

of basis function to be employed. In PUBEM however, one must select the number of

elements to use and the number of plane waves employed per node. To the authors’

knowledge there has been no attempt to define an optimal combination of E and M .

Chapter 7 of this thesis is devoted to providing insight into the relationship between E

and M .
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3.5.3 Exact geometry representation

For PUBEM simulations in particular, exact geometry representation is often required to

unlock the full benefit of enrichment. This is because, as mentioned above, PUBEM per-

forms optimally with a relatively coarse discretisation, i.e. using relatively large elements

and large M . A coarse discretisation, with large relatively large M , may include many

wavelengths within a single element.

The basis functions should be able to accurately represent the potential, but if the

geometry is not exact, geometric errors can be injected into the solution. A common rule

of thumb is that geometric details start to have a significant influence on wave scattering

when their size grows to be similar to the wavelength (and larger). Since the element spans

many wavelengths it is unlikely a simple quadratic description of the geometry will be

sufficient. Additionally, the condition number for PUBEM matrices can be considerably

larger than for standard BEM simulations, thus errors can be magnified which means it

is important to populate the system matrices as accurately as possible.
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Chapter 4

Integration

4.1 Overview

In order to populate the matrices
[
H
]

and
[
G
]

from (3.36) and (3.40) it is necessary to

evaluate boundary integrals. This integration is performed numerically and often requires

special treatment.

A brief primer on traditional quadrature is presented followed by discussion of the

standard BEM integrals. Some more challenging cases such as singular integrals are

covered before presenting the PUBEM integrals to highlight the difference between the

two. The challenges of performing integration of highly-oscillatory PUBEM kernels are

discussed at length, with some conventional methods presented. Following this, a number

of methods are presented which aim to effectively integrate highly-oscillatory functions,

each method is tested on PUBEM integrals. Finally, a more conventional sub-divided

Gauss-Legendre integration scheme is tested, at length, on the PUBEM integrals.

4.1.1 Traditional quadrature

In this section, standard integration techniques are presented, which are used to compute

the integrals from (3.35). For a general case,∫ b

a

f(x)dx. (4.1)

It is possible to perform the integration using a rudimentary Newton-Cotes scheme such

as the composite trapezoidal method wherein an integral is approximated by sub-dividing

the interval of integration into n sub-intervals of width h, as follows

∫ b

a

f(x)dx ≈ h

2
f(a) + h

n−1∑
k=1

f(x+ kh) +
h

2
f(b), (4.2)
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and approximating the integral over each sub-interval using a trapezoid. However, the

dominant method used in FEM, BEM and for the majority of the results in this the-

sis is that of Gaussian-Legendre quadrature. This requires the integral of interest to

be expressed as a weighted sum comprising the value of the integrand at specified sam-

ple points, multiplied by corresponding weights. The formula for a, general, ‘n’ point

quadrature scheme is given by

∫ b

a

f(x)dx ≈ b− a
2

n∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
, (4.3)

where xi and wi are the abscissas and weights respectively, for i = 1, ..., n. The inten-

tion is to select appropriate xi and wi in order to create a scheme which is exact when

approximating polynomials of degree 2n − 1 or less. There are a number of options for

selecting appropriate xi and wi, but the integration performed for this thesis employs

Gauss-Legendre quadrature, in which xi are the roots of the nth Legendre polynomial,

and the weights are provided by the following.

wi =
2

(1− xi)2[P ′n(xi)]2
. (4.4)

As is shown in (3.35) the integrals are defined in terms parametric variable ξ ∈ [−1, 1],

which, due to its limits, allows us to write the Gauss quadrature scheme more compactly

as ∫ 1

−1

f(ξ)dξ ≈
n∑
i=1

wif(ξi). (4.5)

4.2 BEM integrals

From the the BIE in (3.35), there are three types of integral requiring evaluation, which

are: ∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)J

edξ, (4.6)

∫ 1

−1

αG(p,q)Ψj(ξ)J
edξ, (4.7)

and ∫ 1

−1

βG(p,q)Jedξ. (4.8)
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The first of which (4.6), in 2D, can comfortably be computed using (4.5), but it is well-

known that the Green’s function

G(p, q) =
i

4
H1

0 (kr), (4.9)

present in (4.7) and (4.8) is weakly singular as kr → 0, which occurs when a collocation

point lies within the interval of integration. This causes slow convergence using standard

Gauss-Legendre integration. Naturally, this term is not included for the sound-hard scat-

tering problems because, for Neumann problems, α = 0 but for problems in which the

sound hard condition is not appropriate a ‘Robin’ boundary condition

∂φ(q)

∂n
= αφ(q) + β, q ∈ Γ, (4.10)

is applied which introduces the requirement to compute the singular integrals relating to

the α and β terms. The approach taken in this thesis is to employ a Telles transformation

[67]. This entails performing a coordinate transformation, as follows.

ξ(γ) = aγ3 + bγ2 + cγ + d. (4.11)

If we define ξ as the point at which f(ξ) becomes singular and enforce the following

conditions.
dξ

dγ

∣∣∣∣
ξ

= 0 (4.12)

d2ξ

dγ2

∣∣∣∣
ξ

= 0 (4.13)

ξ|γ=−1 = −1 (4.14)

ξ|γ=1 = 1, (4.15)

the constants a, b, c and d can be defined, as follows.

a =
1

Q
(4.16)

b =
−3γ2

Q
(4.17)

c =
3γ2

Q
(4.18)
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d = −b (4.19)

where

Q = 1 + 3γ2. (4.20)

The following relationship can be defined at the singular location.

γ =
3

√
ξξ∗ + |ξ∗|+ 3

√
ξξ∗ + |ξ∗|+ ξ, (4.21)

where

ξ∗ = ξ2 − 1. (4.22)

The result of this transformation is a new integral form,∫ 1

−1

f(ξ(γ))
dξ

dγ
dγ. (4.23)

with a Jacobian, defined by
dξ

dγ
=

3(γ − γ)2

1 + 3γ2 . (4.24)

Due to (4.12) and (4.13) as ξ → ξ the Jacobian dξ
dγ
→ 0, which has a smoothing effect

on the overall behaviour of the integrand. The result is an integral that can be evalu-

ated using standard Gauss quadrature, because the integrand in (4.24) becomes regular

since the Jacobian has cancelled the singularity. The third integral (4.8) is included for

completeness, however, because (4.8) does not contain basis functions, it is not discussed

further in this thesis. Though, naturally, (4.8) is integrated in the same way as (4.7).

4.3 PUBEM integrals

The focus of this section will be the evaluation of the highly oscillatory PUBEM integrals

using approaches from the field of asymptotic analysis. Before these approaches are

presented, some numerical aspects relating to Gauss quadrature and singular integration

are discussed.

The PUBEM integrals mirror (4.6) and (4.7) but with the inclusion of plane-waves, as

follows: ∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)e

(ikd·q)Jedξ, (4.25)

and ∫ 1

−1

G(p,q)Ψj(ξ)e
(ikd·q)Jedξ. (4.26)

In order to increase the number of degrees of freedom for a standard BEM scheme, the
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number of elements E is increased, but if PUBEM is employed there is the option to

increase the number of plane waves included per node M . As soon as M > 1, it becomes

necessary to collocate at non-nodal locations. It is common to employ a relatively coarse

discretisation [63, 64], using large elements, and increasing M to achieve greater accuracy

per degree of freedom. This introduces extra requirements for the numerical solution,

such as:

1 Sub-divided integration

2 Split Telles scheme

These requirements will be briefly discussed here, before moving on to the alternative

integration schemes, but first a simple example is presented to highlight the difference

between BEM and PUBEM integrals. Fig. 4.1 exemplifies BEM and PUBEM discretisa-

tion of a unit square scattering object wherein the BEM discretisation is shown with 10

elements per side and the PUBEM discretisation is shown with a single element per side.

A typical 2D BEM discretisation, using quadratic elements would require 8-10 degrees of

freedom per wavelength, i.e. τ = 8-10 which is usually achieved by selecting an appro-

priate number of elements, whereas a typical 2D PUBEM discretisation would require

τ ≈ 2.5.

As k increases, the PUBEM elements shown in Fig. 4.1 could remain the same size,

i.e. E does not change, but M increases; whereas, in the BEM discretisation the elements

would need to reduce in size, to maintain an appropriate τ . Fig. 4.2 shows BEM and

PUBEM integrands associated with the same unit square example, wherein the bottom

left hand corner of the square is located at (0, 0), k = 500, and the first element of the

discretisation starts at (0, 0) and runs in the positive x-direction. The integrands from

(4.6) and (4.25) for BEM and PUBEM, resulting from collocating at the top left corner

(0, 1), of the abovementioned square are plotted over their respective first elements, shown

as T (ξ) in Fig. 4.2.

This comparison highlights the fact that a PUBEM element can include many wave-

lengths and thus require many Gauss integration points.

4.3.1 Sub-divided integration

In the interest of accurately populating the system matrices, it is necessary to accurately

perform the integration, because even a basis capable of capturing the underlying wave

behaviour, this is of little use if the integration scheme is inadequate. This requirement

for accuracy is particularly important for ill-conditioned systems that would be more than

usually prone to giving erroneous solutions if matrix terms are not carefully computed. For

this reason, unless stated otherwise, PUBEM elements are sub-divided into n integration

– 27 –



1

2

BEM 

element

PUBEM

element

Figure 4.1: Example BEM discretisation (1) and PUBEM discretisation (2).
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Figure 4.2: Comparison of the real and imaginary parts of a BEM integrand (left) and
the real and imaginary parts of a PUBEM integrand (right). Both corresponding to the
first element of the respective BEM and PUBEM discretisations of the unit square, both
of which with a collocation point at (0, 1), k = 500.
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cells, with Gauss-Legendre quadrature applied to each sub-division. This sub-division is

a method of distributing integration points, and does not add further degrees of freedom

to a system. To perform this sub-division over n cells, a coordinate transformation,∫ 1

−1

f(ξ)dξ =
n∑
ĉ=1

∫ 1

−1

f(ξ(ζĉ))
dξ

dζĉ
dζĉ (4.27)

is required, where ζ is a parameter that varies across λ/4, i.e. ζ ∈ [−1, 1] over an

integration cell of length λ/4. shown in Fig. 4.3. This ensures that even for relatively

large elements which include many wavelengths, it is still possible to integrate accurately

by applying a fixed number of Gauss points per wavelength.

-1 1

Figure 4.3: Wave sub-divided into integration cells of length λ
4

using a coordinate change
to ζ.

4.3.2 Split Telles scheme

During the numerical experiments performed in this thesis, it was found that the standard

Telles scheme was not converging for PUBEM integrals as readily as for BEM integrals.

After some testing, it was found that the Telles scheme converges well for cases in which

the singularity is located at ξ = −1, 0 and ξ = 1, which correspond to the nodal locations

of each quadratic element. Conveniently, for a standard BEM scheme, the collocation

points usually share the same locations as the nodes. In PUBEM however, for J nodes

per element and M plane waves per node, there are (J − 1)(M − 1) non-nodal collocation

points. To evaluate these integrals, a split Telles scheme is employed which is found to

converge well for all cases tested in this thesis. The scheme is implemented as follows.

The singular location is defined as ξ and two portions, either side of the singularity,

are defined as η1 ∈ (−1, 1) and η2 ∈ (−1, 1). That is, by mapping ξ ∈ [−1, ξ] to η1 and

mapping ξ ∈ [ξ, 1] to η2. Taking the η1 as an example, for a straight line element, the
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following parameterisation is used.

ξ =
1

2
[(1 + ξ)η1 + ξ − 1], (4.28)

thus

η1 =
2ξ + 1− ξ

1 + ξ
. (4.29)

η1 is then equally split into N1 cells of length λ/4. A parameterisation ρ1 ∈ (−1, 1) is

applied across each cell, as follows.

η1 =
2j + ρ1 − 1

N1

− 1, (4.30)

thus

ρ1 = N1(1 + η1) + 1− 2j. (4.31)

Finally, we apply a Telles scheme with the parameterisation γ1 ∈ (−1, 1), which requires

a further coordinate transformation

ρ1 = aγ3
1 + bγ2

1 + cγ1 + d. (4.32)

The same procedure is used for the η2 portion, but with the the variables ρ2 and γ2. A

given integral I, over a straight line element of length L would therefore be subject to the

following process.

I =

∫ 1

−1

f(η1)J1J2dη1 +

∫ 1

−1

f(η2)J1J3dη2 (4.33)

I =

N1∑
j=1

∫ 1

−1

f(ρ1)J1J2J4dρ1 +

N2∑
j=1

∫ 1

−1

f(ρ2)J1J3J5dρ2 (4.34)

I =

N1∑
j=1

∫ 1

−1

f(γ1)J1J2J4J6dγ1 +

N2∑
j=1

∫ 1

−1

f(γ2)J1J3J5J7dγ2 (4.35)

with the Jacobians defined as

J1 =
L

2
(4.36)

J2 =
1 + ξ

2
(4.37)
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J3 =
1− ξ

2
(4.38)

J4 =
1

N1

(4.39)

J5 =
1

N2

(4.40)

J6 =
3(γ1 − γ1)2

1 + 3γ2
1

(4.41)

J7 =
3(γ2 − γ2)2

1 + 3γ2
2

(4.42)

Resulting from this process are two Telles schemes, applied across sub-divided portions

either side of the singularity, such that the singularity is always located at the end point of

each scheme, thus allowing for greatly improved convergence. Note, J1 assumes a straight

line element, an alternate Jacobian would likely be required for a general element.

4.4 Computation of error

In this chapter, and throughout this thesis, error is defined as ε, which is taken to be

relative error when analysing scalar results and L2 relative error when analysing a vector

of results. The definition of ε can be found in Appendix C.

4.4.1 Error in PUBEM integrals

Before presenting results, it is necessary to determine what level of accuracy is required

from a PUBEM integration scheme, to compute acoustic potential to ‘engineering accu-

racy’ of 1%. Naturally, there is no true one-size-fits-all threshold that can be applied to

every integral to be computed because the magnitude and profile of each integral required

to form a PUBEM matrix can be unique. For example, relatively larger terms in the

PUBEM matrix may have a larger contribution to resulting solution over the boundary.

Nevertheless, in order to determine if the following integration schemes are candidates

for computing PUBEM integrals, it is useful to know, generally, what level of accuracy is

required in the integration scheme.

To estimate this threshold, a simple example of scattering by a unit circle being im-

pinged by a plane-wave travelling in the positive x-direction is tested, with a relatively

coarse discretisation (as is typical in PUBEM schemes) of 4 elements. When the PUBEM

matrix, comprising the PUBEM integrals, is formed an artificial error is injected into

each term. This error is a relative error of ±0.1%, 1%, or 2% wherein the polarity is
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randomised. Firstly, a fixed frequency of k = 25 is analysed, for a range of degrees of

freedom per wavelength τ ; secondly, a fixed number of degrees of freedom per wavelength

is used (τ ≈ 5) and the wavenumber k is varied, both sets of results can be seen in Fig.

4.4.
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Figure 4.4: (left) L2 relative error ε (in φ over Γ) vs. τ for three test cases having
±0.1%, 1%, or 2% injected into the integrals; k = 25. (right) L2 relative error ε (in φ over
Γ) vs. k for three test cases having ±0.1%, 1%, or 2% injected into the integrals; τ ≈ 5.
Notably, as can be s

From Fig. 4.4, it can be seen that injecting a relative error of 2% into each integral

results in an unacceptable level of error in the acoustic potential φ computed over the

boundary Γ. Notably, from the right hand side plot in Fig. 4.4, ε appears to increase,

slightly, as k increases, for fixed τ . This is likely due to the combination of the injected

error and the error associated with the choice of τ becoming larger as k increases and τ

becomes insufficient. In contrast, from the left hand side plot in Fig. 4.4, increasing τ

does not seem to impact ε. This is likely because, in this example, the injected error is

the main source of error that is limiting the accuracy of the solution. Further, from Fig.

4.4 it can be seen that it may be possible in some cases to accept 1% error in the integrals

and still achieve sub-1% error in the overall solution, though, not consistently. Finally,

the integration error of 0.1% is shown to consistently result in an overall solution which

is within the engineering accuracy range. For this reason, in the remainder of Section 4,

integration error above 1% is presumed to be unacceptable.
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4.5 Integration schemes for highly oscillatory inte-

grals

As can be seen in Fig. 4.2 the plane-wave enrichment substantially impacts the integrand,

and can result in a highly-oscillatory integrand, thus it is worth exploring an alternative

to Gauss-Legendre for the PUBEM integrals. There exist a number of alternative in-

tegration approaches with the aim of evaluating highly oscillatory integrals, but to the

authors’ knowledge they are yet to be extended to PUBEM integrals (with the exception

of Numerical Steepest Descent). A brief overview of some relevant methods is given here,

before providing further depth and testing each method individually. The focus of much

of the recent work in this field, and this thesis are Fourier-type integrals, given by

I =

∫ b

a

f(ξ)eikg(ξ)dξ (4.43)

where g(ξ) is the phase function, f(ξ) is slowly varying and smooth, and k is large.

In much of the literature the frequency ω is used in place of k, but they increase and

decrease in tandem, so k can be treated the same way.

Perhaps the simplest of all of the approaches is the Asymptotic Method [70], which

is achieved via repeated integration by parts. The literature states that this method is

simple, but crude and only converges for very high frequency. The method of stationary

phase [74] considers the leading contribution of the integral to be located in a window

surrounding each of the stationary points in the oscillating function. Another alternative

is the method of steepest descent also in [74], where the path of integration is deformed

into the complex plane, removing the oscillatory behaviour from the kernel. This is de-

veloped further as the numerical steepest descent which applies quadrature methods to

the integrals arising from the method of steepest descent. This was explored for PUBEM

integrals in [68], with positive results for isolated examples, however, consistently deter-

mining the path of steepest descent in the presence of stationary points is challenging,

and algorithms have not been developed to identify and accommodate singularities in the

integrand in the complex plane. This prevents numerical steepest descent from becom-

ing a robust alternative to Gauss-Legendre. Another class of alternatives are Levin-type

methods [75] wherein the integrand is reformulated in terms of derivatives, and the result

is approximated. Finally, there are the Filon-type methods, which approximate the slowly

varying function f(ξ) with a suitable polynomial function allowing the evaluation of the

resulting moments analytically.
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4.5.1 PUBEM integral

The candidate integrals (4.25) that are tested in this chapter arise from (3.40), and are

repeated here for convenience, in the general form∫ b

a

∂G(p, q)

∂n
Ψje

ikd·qdΓ, (4.44)

where the derivative of the Green’s function is defined in (2.12), and the exponential

term is a plane wave, with direction vector d. At this point we note that the α and β

terms of (3.40), are also highly oscillatory but we focus on (4.44) because it appears in

all PUBEM simulations, regardless of BCs applied. The cases with singularities are also

important, but the regular integrals account for a large majority of the CPU time taken

for an analysis and are therefore the focus of this work.

We begin by inserting the definition for the derivative of the Green’s function, and the

parameterisation into ξ, to produce

I = −ik
4

∫ 1

−1

H
(1)
1 (kr)Ψj(ξ)e

ikdjm·qJ
∂r

∂n
dξ (4.45)

where J is the Jacobian associated with transforming into ξ. In order to manipulate

(4.45) into a form similar to (4.43) we must approximate the Hankel function with its

asymptotic expansion for a large argument [77] which is given by

Hv(kr) ≈

(
2

πkr

) 1
2

ei(kr−
1
2
vπ− 1

4
π)

∞∑
s=0

is
as(v)

(kr)s
, (4.46)

with

as =
(4v2 − 12)(4v2 − 32)...(4v2 − (2s− 1)2)

s!8s
, a0(v) = 1. (4.47)

This approximation is sufficiently accurate, for the intended use of the current work as

the majority of cases will contain a large argument. Even in cases where the argument is

reduced (when r is small) the approximation error remains reasonable. This is highlighted

in Fig. 4.5, where relative error ε of the approximation of the Hankel function, using only

the first two terms in the series, is plotted against k and r. Inserting (4.46) into (4.45)

produces

I ≈ − i
4

(
2

π

) 1
2

e−
3iπ
4 J̄

S∑
s=0

is
as(1)

ks−
1
2

∫ 1

−1

f(ξ, s)eikg(ξ)dξ, (4.48)

Now we have our PUBEM integral in a form (4.48), which is appropriate for highly

oscillatory integration techniques. Notably, f(ξ, s) and g(ξ) will differ depending on the

definition of each element, thus will be produced later in this section, before each example,
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Figure 4.5: Error in the asymptotic approximation of H
(1)
1 (kr), using (4.46) with only

the first two terms in the series, for small k and r, wherein k is the wavenumber and r is
distance from the Hankel source point.
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Figure 4.6: Variables used to define source point location.

and the Jacobian J̄ is assumed to be constant (appropriate for straight line elements

and circular arc elements but not necessarily a general element). Before producing the

numerical test results, a brief introduction to stationary points is required.

For the examples studied in this thesis g(ξ) is always monotonically increasing, or

decreasing, either side of a ‘stationary point’. At such stationary points the derivative

g′(ξ) → 0 and the behaviour of the integrand becomes non-oscillatory. These stationary

points can cause additional difficulty for highly oscillatory integration schemes, as by

definition they are not intended to evaluate non-oscillatory functions. This phenomenon

will be discussed in detail later in the chapter, but for now a simple example is presented

to highlight the impact that a stationary point has on the integrand.

Consider a flat element shown in Fig. 4.6, with xe = 4. The integrand for two cases

is plotted in Fig. 4.7, both having the same enrichment wave direction φ and the same

wavenumber k = 100, but with different source point locations. Clearly the results differ

significantly. Correspondingly, the following work will be split into two sections:

• Cases in the absence of stationary points

• Stationary point cases

The experimentation conducted in this chapter is performed on flat, straight line ele-

ments and circular arc elements.

4.5.2 In the absence of stationary points

Straight line case

Asymptotic method The asymptotic method relies upon reformulating an integral,

to produce:
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Figure 4.7: (left) Integrand in the absence of stationary points with k = 100, φ = 60◦,
xp = 0.5, yp = 2.5. (right) Integrand containing a stationary point with k = 100, φ = 60◦,
xp = 3, yp = 3.
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I =

∫ b

a

f(ξ)eikg(ξ)dξ =
1

ik

∫ b

a

f(ξ)

g′(ξ)

d

dξ
eikg(ξ)dξ (4.49)

and performing integration by parts on the result, as follows.

I =
1

ik

[
f(b)

g′(b)
eikg(b) − f(a)

g′(a)
eikg(a)

]
− 1

ik

∫ b

a

d

dξ

[
f(ξ)

g′(ξ)

]
eikg(ξ)dξ (4.50)

where the final term can be thought of as the error incurred by only including information

from the end points of the interval. This term, however, is also an oscillatory integral,

on which we can repeat the integration by parts procedure; this may be repeated to an

arbitrarily high order, resulting in the following expression

IA = −
S∑
s

V∑
v=1

1

(−ik)v

[
eikg(b)

g′(b)
σv−1[f ](b)− eikg(a)

g′(a)
σv−1[f ](a)

]
(4.51)

in which

σ0[f ](ξ, s) =f(ξ, s), (4.52)

σv+1[f ](ξ, s) =
d

dξ

σv[f ](ξ, s)

g′(ξ)
. (4.53)

If we consider the PUBEM integral of (4.48), then it can be shown that

f(ξ, s) =
Ψj(ξ)(yq − yp)

rs+
3
2

(4.54)

and

g(ξ) = r + d · q(ξ) =
√

(xm(1 + ξ)− xp)2 + y2
p + xm(1 + ξ) cos(φ̄). (4.55)

wherein ξ is the parametric variable that is used to describe the variation over each

element and s refers to the index in the series form of the asymptotic approximation of

the Hankel function.

Filon method In this section, the Filon method is outlined and implemented for a

straight line element, in the absence of stationary points. The origin of the Filon method

[76] dates back to 1928, but is greatly elaborated on by Iserles in [71] and [72], in which

the ideas of Filon are extended to integrals of the form

I =

∫ b

a

f(ξ)eikg(ξ)dξ, (4.56)
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where f(ξ) and g(ξ) are ‘smooth’ functions. For the PUBEM examples presented in this

thesis there will also be the s-dependence from (4.48), i.e. f(ξ, s) and g(ξ, s). There are a

variety of Filon-type methods which have been derived from the original, but the premise

remains the same in each; f(ξ) is approximated by a polynomial and the oscillatory kernel

is multiplied by the coefficients of that polynomial. This means that the resulting integral

may be evaluated analytically, by parts. The main difference between approaches under

the the umbrella term of Filon-type methods lies in the construction of the interpolating

polynomial. A versatile method is that of the Filon-Clenshaw-Curtis Method (FCC) [73]

where polynomial weights are pre-computed using the Fast Fourier Transform and the

function is sampled at the classic Chebyshev locations. A benefit of this method is that

no derivative information is required and the pre-computed weights allow applicability to

a variety of problems without the requirement of reformulating and solving a new matrix.

The method chosen for this section is that of Iserles [69] is, where f(ξ) is sampled only

at the end points of the interval. The degree of approximating polynomial is increased by

providing derivative information rather than adding extra nodes as in the FCC method.

An advantage of this method of construction is that it targets the end points which are

the key locations in evaluating highly oscillatory integrals.

In order to use the Filon method, the coordinate in which oscillation takes place needs to

be the same as the coordinate of integration, so we undertake a coordinate transformation

of the integral (4.48) to integrate with respect to produce the following.

I2 =

∫ g(b)

g(a)

f2(g, s)eikgdg (4.57)

where

f2(g, s) = f(ξ, s)
dξ

dg
. (4.58)

which is approximated, resulting in the following.

I2 ≈
∫ g(b)

g(a)

Hs,m(g)eikgdg. (4.59)

where the approximating Hermite polynomial Hs,m of degree M is equal to

Hs,m(g) = hs,0 + hs,1g + hs,2g
2 + ...+ hs,Mg

M ≈ fs(ξ(g), s)
dξ

dg
=: f2(g, s). (4.60)

For example a 3rd degree polynomial would be subject to the following interpolation
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conditions:

Hs,m(a) = f2(a, s) (4.61)

Hs,m(b) = f2(b, s) (4.62)

H ′s,m(a) = f ′2(a, s) (4.63)

H ′s,m(b) = f ′2(b, s). (4.64)

For a general M the result is the following.

I ≈
S∑
s=0

M∑
m=0

hs,m

∫ g(b)

g(a)

gmeikgdg. (4.65)

The integrals in (4.65) are referred to as ‘Filon moments’, wherein the mth Filon moment

is defined as follows.

µm =

∫ g(b)

g(a)

gmeikgdg (4.66)

which, for a general case, can be integrated analytically by parts

µm =
M∑
m=0

−
(
i

k

)M+1−m
m!

M !

(
g(b)Meikg(b) − g(a)Meikg(a)

)
(4.67)

Thus, we require only the solution of a small system of equations to determine the Hermite

coefficients hs,m and compute the Filon moments for each value of s. The mapping ξ → g

can be evaluated analytically, using the following.

ξ =
xp − dxg +

√
g2 + c0g + c1

c2

− 1 (4.68)

dξ

dg
=

1

c2

(
− dx +

2g + c0

2
√
g2 + c0g + c1

)
(4.69)

d2ξ

dg2
=

1

c2

√
g2 + c0g + c1

(
1− (2g + c0)2

4(g2 + c0g + c1)

)
(4.70)

c0 = −2xpdx (4.71)

c1 = d2
x(x

2
p + y2

p)− y2
2 (4.72)

c2 = xm(1− d2
x) (4.73)
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The square root term in (4.68) - (4.73) is taken to be positive when dg/dξ > 0 and

negative when dg/dξ < 0. It is also worth noting that when dx = ±1, ξ → ∞ and the

coordinate transformation needs to be replaced by

ξ =
g2 − x2

p − y2
p

2xm(gdx − xp)
− 1 (4.74)

dξ

dg
=
dx(g

2 − x2
p − y2

p)− 2gxp

2xm(gdx − xp)
(4.75)

Comparison Take the case where xe = 4, φ̄ = π
3
, xp = −3 and yp = −3, with a

quadratic, Langrangian basis and taking the N1 function. This is an example in which

the integrand is oscillatory and does not contain a stationary point within the interval of

integration, thus both the Asymptotic method and the Filon method perform well. The

two are compared in Fig. 4.8, wherein k = 1-1000. For the Asymptotic method results,

we take V = 1 and V = 2, with the latter significantly outperforming the former; reducing

the error by approximately 4 orders of magnitude. For the Filon method we compare a

scheme which includes only the first derivative to define the Hermite polynomial, and a

second scheme in which the second derivative is included. We notice a slight increase in

performance when compared with the Asymptotic method, with the results following a

similar, but shifted path.

Ultimately, the intention of employing highly oscillatory integration schemes is to re-

duce the run-time of PUBEM simulations. For this reason, it is beneficial to compare the

resulting solution times with those of Gauss-Legendre. This comparison is shown for dis-

crete examples of k in Table 4.1, with just the first derivative taken for the Filon Method

and, V = 1 for the Asymptotic method. In addition, Table 4.1 includes the timings for

integration performed using the trapezium method, for an extra level of comparison. The

highly-oscillatory schemes are faster than Gauss-Legendre for the frequencies shown and

the solution time does not increase as a function of k, which is an important characteristic

that is not shared by traditional quadrature schemes. Notably, as the frequency increases

it is clear that the accuracy increases, due to the assumption that wave cancellation occurs

within the interval of integration becoming more valid as more wavelengths are included

within the interval of integration. This benefit is not present in the Gauss-Legendre re-

sults, and it is observable that the results remain relatively consistent due to the fact the

there are a fixed number of Gauss points applied per quarter wavelength.

Further, in the formulations of the Asymptotic method and the Filon method, in (4.50)

and (4.59), k can be isolated. Therefore, once an integral has been evaluated, for a single

k, using the Filon method or the asymptotic method it is possible to evaluate the same

integral, but with different k, with very little computational expense. This can allow
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Figure 4.8: Relative error for a non-stationary case using the Asymptotic method with
the 1st derivative (blue) and with the 2nd derivative (red).

accurate evaluation of ranges of integrals, provided there are no stationary points present

within the interval of integration and the bottom end of the k range is still sufficiently

high. Table 4.2 shows results for the same integrals as Table 4.1, but for ranges of k.

Whilst these results are very promising, this is a successful example in which the

highly oscillatory integration schemes perform particularly well. Less successful cases will

be presented and discussed later in this chapter. In addition, the frequencies tested are

high, and it is clear that for this example Gauss-Legendre is competitive time-wise for

k < 500, even though this example is cherry-picked to display the efficacy of Filon and

the Asymptotic method.

Filon Gauss Trapezium
k time ε time ε time ε

500 0.032 1.506e− 06 0.051 1.07e− 07 0.733 1.04e− 07
1000 0.035 9.42e− 08 0.079 1.08e− 07 1.412 1.18e− 06
2000 0.034 2.33e− 08 0.138 1.07e− 07 2.787 1.72e− 06
10000 0.033 1.41e− 09 0.594 1.07e− 07 13.792 2.15e− 06

Table 4.1: Solution time in seconds and relative error ε.
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Gauss Filon Asymptotic
k time ε time ε time ε

500-1500 17.5 1.42e-07 0.23 6.63e-07 0.032 7.83e-07
1500-2500 32.9 1.36e-07 0.24 9.42e-08 0.031 1.14e-07
2500-3500 49.7 1.65e-07 0.22 2.03e-08 0.031 3.81e-08

Table 4.2: Time taken in seconds to evaluate varying ranges of integrals along with average
relative error ε.

Figure 4.9: Location of source point p and and field point q relative to the circular arc
element (of radius R and spanning between the x and y axes) which can be thought of as
forming one quarter of a unit circle scattering object.

Circular arc case

The previous integrals were all evaluated over straight line elements, with substantial

accuracy in the absence of stationary points. It is possible to extend the asymptotic

method formulation to circular arc elements, which is detailed in the following. Consider

an element spanning from the x-axis to the y-axis (π
2
rads), as can be seen in Fig. 4.9.

The arc element can be thought of as forming part of a unit circle scattering object. The

source point (at this stage), may or may not be located on the circle traced by the radius

of the given arc. Thus, the source point p and field point q are defined as follows

p = (R1 cos θ, R1 sin θ), (4.76)

q = (R cos θq, R sin θq). (4.77)

In order to use the definition in terms of the angle θq as opposed to the variable ξ the

mapping must be
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Figure 4.10: Mapping of θq 7→ ξ for the circular arc element spanning between the x and
y axes which can be thought of as forming one quarter of a unit circle scattering object.

θq =
b+ a

2
− b− a

2
ξ, (4.78)

thus, the following can now be defined

ξ =
b+ a

b− a
− 2θq
b− a

, (4.79)

where b = π
2

and a = 0 as shown in Fig. 4.10.

r =
√

(R cos(θq)−R1 cos(θ))2 + (R sin(θq)−R1 sin(θ))2, (4.80)

∂r

∂n(q)
=
rx
r
nx +

ry
r
ny, (4.81)

in which nx = − cos(θq), ny = − sin(θq) , rx = xq − xp and ry = yq − yp. This results in

∂r

∂n(q)
=

(R cos θq −R1 cos θ)(− cos θq)

r(θq)
+

(R sin θq −R1 sin θ)(− sin θq)

r(θq)
(4.82)

=
1

r(θq)
(R1 cos (θ − θq)−R) (4.83)

The plane wave can be defined in terms of the angle φ as follows

d = (dx, dy) = (cos φ̄, sin φ̄), (4.84)
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and therefore

g(θq) = r + dxR cos θq + dyR sin θq. (4.85)

The integral with the asymptotic approximation of the Hankel function included is pre-

sented again here, as follows

I =
−iJ

4

(
2

π

) 1
2

e−
3
4
πi

∞∑
s=0

isas(1)

ks−
1
2

∫ 1

−1

f2(ξ, s)eikg(θq)dξ, (4.86)

where J can be treated as a constant because the element is a circular arc element. By

converting back to θq then we arrive at the following

I =
−iJ

4

(
2

π

) 1
2
e−

3
4
πi

b− a

∞∑
s=0

isas(1)

ks−
1
2

∫ b

a

f2(θq, s)e
ikg(θq)dθq, (4.87)

where

f2(θq, s) =
Nj(θq)(R1 cos (θ − θq)−R)

(r(θq))
s+ 3

2

, (4.88)

and θq is defined as in (4.79). As differentiation with respect to θq is required the following

definition is employed,

Nj(θq) = Nj(ξ(θq)) = Nj

(
−2θq
b− a

+
b+ a

b− a

)
. (4.89)

To demonstrate ability of the asymptotic method in this setting, we may use the asymp-

totic method with only a single derivative taken at the end points, to evaluate a typical

integral that would arise when considering a unit circle being impinged by a plane-wave;

the following parameters are used: R1 = 1, R = 1, θ = 3π/2, φ = π, xp = R1 cos θ and

yp = R1 sin θ. For k = 500, a relative error ε = 1.46e−05 is produced. This is comparable

with the level of accuracy obtained when using the asymptotic method for the straight

line case. Unfortunately, for a typical enrichment wave direction and source point pairing,

there will be at least 1, but up to 3 stationary points. This means that the positive result

shown here would only be possible for a handful of cases. The location and frequency of

stationary points for this case will be discussed further in section 4.5.3.

4.5.3 Stationary point cases

If we now allow the phase function to include stationary points i.e. where g′(ξ) = 0,

then the formulation of high order integration schemes must be altered. The asymptotic

method and the Filon method presented, so far, make the assumption that the oscillatory

nature of the integrand in the middle portion of the element will cause cancellation,

rendering its contribution negligible. This is no longer the case when stationary points
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are included.

In order to determine the location of stationary points, for a straight line case wherein

the element is laying flat on the x-axis. One can use the definition of g(ξ) from (4.55):

g(ξ) = r + d · q(ξ) =
√

(xm(1 + ξ)− xp)2 + y2
p + xm(1 + ξ) cos(φ̄), (4.90)

where xm is the mid-point of the element, xp and yp are the x and y coordinates of the

source point and the x coordinate of the field point is represented by the parametric

mapping xm(1 + ξ), the y coordinate of the field point is zero because the element is

laying on the x-axis. One can set g′(ξ) = 0, to produce

g′(ξ) =
xm(xm(1 + ξ)− xp)√
(xm(1 + ξ)− xp)2 + y2

p

+ xmcosφ̄ = 0, (4.91)

which can be rearranged to

xm(1 + ξ)− xp = −r cos φ̄, (4.92)

because r =
√

(xm(1 + ξ)− xp)2 + y2
p. Due to the fact that this example is limited to

a straight line element laying on the x-axis, (4.92) can be reformulated to provide the

stationary point locations ξ∗, as follows.

ξ∗ =
xp ± |yp cot φ̄|

xm
− 1. (4.93)

If we define a source point as in Fig. 4.6, set φ̄ = π/2, xe = 4 and vary θ and r it is

possible to identify source point locations that will produce a stationary point within the

interval of integration; the results of which are shown in Fig. 4.11, with cases in which

a stationary point will occur within the interval of integration shown in yellow and cases

in which a stationary point will not occur within the interval of integration shown in

blue. The results from Fig. 4.11 indicate that a substantial number cases are stationary,

especially as the source point moves closer to the element over which the integral is to

be evaluated. Notably, stationary points occur when θ = ±φ̄, which is displayed in Fig.

4.12. Either side of ξ∗, it can be shown that g(ξ) is either monotonically increasing or

decreasing. This means that for the straight line case there can only be a single stationary

point within the interval of integration.

Filon method

Consider a flat element, lying on the x-axis, defined according to Fig. 4.6. From (4.93)

we can locate stationary points upon this flat element ξ∗ ∈ (−1, 1). In order to evalu-

ate a stationary point case using the Filon method, a singularity subtraction method is
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Figure 4.11: Source point locations which result in a stationary point within the interval
of integration (yellow) and source point locations which result in a stationary point laying
outside of the interval of integration (blue). Results are obtained by setting φ̄ = π/2, xe =
4 and varying θ and r.
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-+ θ

θ = φ

θ = −φ

Figure 4.12: Polarity definition for g′(ξ) for an arbitrary fixed φ and a flat straight line
element, shown at θ = φ and θ = −φ. Positive and negative areas indicate the areas in
which the g′(ξ) will be positive or negative respectively, thus, g′(ξ) behaves monotonically
either side of a stationary point.

proposed. Filon scheme will then be applied to each side of the stationary point. For

the stationary point case the interpolation conditions for the Hermite polynomial have

an extra criterion, that we must include the stationary point as an interpolation point.

Therefore the Hermite polynomial is defined as

Hs,m(ξ) = hs,0 +hs,1ξ−ξ∗+hs,2(ξ−ξ∗)2 + ...+hs,M(ξ−ξ∗)M ≈ fs(ξ, s) =: F2(ξ, s). (4.94)

If a 5th order Hermite polynomial is employed then the following interpolation conditions

are required.

Hs(a) = F (a, s), H ′s(a) = F ′(a, s) (4.95)

Hs(b) = F (b, s), H ′s(b) = F ′(b, s) (4.96)

Hs(c) = F (c, s), H ′s(c) = F ′(c, s), (4.97)

where a = −1, b = ξ∗ and c = 1. Note that in this case the polynomial approximation

is made before any coordinate transformations have been performed because dξ/dg is

singular at the stationary point location. As the stationary point is subtracted, the Filon

moments are shifted, to provide

µl =

∫ 1

−1

(ξ − ξ∗)leikg(ξ)dξ, (4.98)
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which is split into two intervals, either side of the stationary point. Thus each interval

has a stationary point located at an end point. Thus, the overall result may be defined

as the summation of the moments on either side as follows.

µ` =

(∫ ξ∗

−1

+

∫ 1

ξ∗

)
(ξ − ξ∗)` eikg(ξ)dξ =: Iα + Iβ, (4.99)

In order to compute the moments µl a number of coordinate tranformations are employed.

Taking the Iβ example and using an invertible mapping from ξ 7→ g provides the following:∫ 1

ξ∗
(ξ − ξ∗)leikg(ξ)dξ =

∫ g(1)

g∗
(g − g∗)l dξ

dg
eikgdg (4.100)

After some rearranging and the change of variables; ψ = g − xp cosφ, Iβ becomes

Iβ =
eikxp cosφ

(xm sin2 φ)l

∫ g(1)−xp cosφ

|yp sinφ|
F (ψ)eikψdψ (4.101)

where

F (ψ) =

(
|yp sin(φ) cos(φ)|−cos(φ)ψ+

√
ψ2 − y2

p sin2(φ)

)l(
−cos(φ)+

ψ√
ψ2 − y2

p sin2(φ)

)
.

(4.102)

Using the binomial theorem it is possible to expand F (ψ) to produce a large expression

which, in the interest of brevity, is detailed in Appendix A rather than here. The same

process is followed for the Iα interval. At the heart of evaluating the large expressions for

Iα and Iβ is a set of four integrals. Firstly, ωl and ω̃l as follows.

ω` =

∫ g(1)−xp cos(φ)

|yp sin(φ)|
ψ`eikψdψ (4.103)

ω̃` =

∫ |yp sin(φ)|

g(−1)−xp cos(φ)

ψ`eikψdψ. (4.104)

which can simply be treated analytically by parts shown below for ωl using

ωl(a, b) =
l∑

j=0

(−1)jj!
(
l
j

) [
bl−jeikb − al−jeika

]
(ik)j+1

, (4.105)

where b = g(−1) − xp cos(φ) and a = |yp sin(φ)|; ω̃` can be evaluated in the same way.

Secondly there are the integrals which contain a singularity, and are defined as follows.
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ρ =

∫ g(1)−xp cos(φ)

|yp sin(φ)|

ψj2+2j3√
ψ + |yp sin(φ)|

1√
ψ − |yp sin(φ)|

eikψdψ (4.106)

= eik|yp sin(φ)|
∫ g(1)−xp cos(φ)−|yp sin(φ)|

0

(x+ |yp sin(φ)|)j2+2j3√
x+ 2 |yp sin(φ)|

1√
x

eikxdx (4.107)

= eik|yp sin(φ)|
∫ g(1)−xp cos(φ)−|yp sin(φ)|

0

B(x)
1√
x

eikxdx (4.108)

where x = ψ − |yp sin(φ)| and

B(x) =
(x+ |yp sin(φ)|)j2+2j3√

x+ 2 |yp sin(φ)|
or

(x+ |yp sin(φ)|)j2+2j3+1√
x+ 2 |yp sin(φ)|

. (4.109)

And for the Iα portion

ρ̃ =

∫ |yp sin(φ)|

g(−1)−xp cos(φ)

ψj2+2j3√
ψ + |yp sin(φ)|

1√
ψ − |yp sin(φ)|

eikψdψ

= eik|yp sin(φ)|
∫ 0

g(−1)−xp cos(φ)−|yp sin(φ)|

(x+ |yp sin(φ)|)j2+2j3√
x+ 2 |yp sin(φ)|

1√
x

eikxdx

= eik|yp sin(φ)|
∫ 0

g(−1)−xp cos(φ)−|yp sin(φ)|
B(x)

1√
x

eikxdx, (4.110)

where

B(x) =
(x+ |yp sin(φ)|)j2+2j3√

x+ 2 |yp sin(φ)|
or

(x+ |yp sin(φ)|)j2+2j3+1√
x+ 2 |yp sin(φ)|

(4.111)

Since ρ and ρ̃ are in fact oscillatory integrals, it is possible to apply a Filon scheme. This

requires the computation of the moments νj and ν̃j as follows.

νj =

∫ b

0

xj−
1
2 eikxdx (4.112)

=−
j−1∑
`=0

∏`
n=1

(
j − (n− 1)− 1

2

)
(−ik)`+1

bj−`−
1
2 eikb +

∏j
n=1

(
j − (n− 1)− 1

2

)
(−ik)j

ν0 (4.113)

where

ν0 =

∫ b

0

eikx

√
x

dx =

√
πerf

(√
−ik
√
b
)

√
−ik

(4.114)

for j = 0, 1, · · · . The same process is followed for ν̃j
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ν̃j =

∫ 0

b̃

xj−
1
2 eikxdx (4.115)

=

j−1∑
`=0

∏`
n=1

(
j − (n− 1)− 1

2

)
(−ik)`+1

b̃j−`−
1
2 eikb̃ +

∏j
n=1

(
j − (n− 1)− 1

2

)
(−ik)j

ν̃0. (4.116)

(4.117)

wherein the following expression from [78] is employed

ν̃0 = −

√
πerf

(√
−ik

√
b̃
)

√
−ik

(4.118)

for j = 0, 1, · · · . This is made possible by the error function of a complex argument,

which facilitates the computation of the singular ν0 and ν̃0 integrals.

Numerical example Consider the case when xp = 5, yp = 7, φ̄ = 60. Using (4.93) we

find that there is a stationary point located at ξ∗ = −0.5207259. Thus, to implement the

Filon method for this example we must include ξ = −0.5207259 as one of the interpolation

points, when fitting the Hermite polynomials. A Hermite polynomial must be constructed

for each s, in this case we take S = 2, which requires the construction of 3 Hermite

polynomials. The fit for the s = 0 case is shown in Fig. 4.13. Results for this example

are shown in Fig. 4.14, wherein k = 1-1000 and the conditions of (4.97) are expanded

on, by using higher order derivatives to construct the Hermite polynomial. It is clear

that the method has the capability to produce accurate results, and that the error can

be reduced by including more information to form the interpolating polynomial. The

main drawback with this method is the run-time, in particular when using higher order

derivatives in the construction. Table 4.3 shows the times taken for the Filon schemes

vs. the Gauss schemes. As the motivation for employing integration schemes designed

for highly oscillatory functions is speed, it is clear from the run-times that this scheme is

not a viable alternative to Gauss-Legendre, for the frequency range that we require.

Time(s)
k F ilon1 Filon2 Filon3 Gauss

500 0.28 0.35 0.46 0.051
1000 0.27 0.35 0.46 0.079
2000 0.28 0.35 0.44 0.138
10000 0.29 0.35 0.45 0.594

Table 4.3: Solution time in seconds for Gauss-Legendre and for 3 Filon stationary point
Filon schemes wherein the subscript (1, 2, 3) refers to the number of derivatives taken at
end point and stationary point locations.

– 51 –



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

H
0
( )

F
0

( )

H
0

( )

Figure 4.13: Hermite polynomial fit.
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Figure 4.14: L2 error for a first order stationary point Filon scheme (blue), a second order
scheme (red) and a third order scheme (orange).
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Method of stationary phase

The Method of Stationary Phase (MSP) considers small intervals including stationary

point locations to provide the most important contribution to the overall value of the

integral. The formula for MSP [74] is

I ≈ f(x∗)

√
2π

k|g′′(x∗)|
eikg(x

∗)e±
iπ
4 , (4.119)

in which x∗ represents a stationary point. This can be used to reformulate the PUBEM

integral (4.48), to produce

I ≈ γ

S∑
s=0

isas(1)

ks−
1
2

f(ξ∗, s)

√
2π

k|g′′(ξ∗)|
eikg(ξ

∗)e±
iπ
4 , (4.120)

where

γ =
−iJ

4

(
2

π

) 1
2

e−
3
4
πi. (4.121)

As with the Filon and asymptotic method, this expression is independent of k. When

compared with the Filon-type method proposed to tackle stationary point locations, the

method of stationary phase has the benefit of simplicity and speed.

Straight line case Some preliminary test results are presented here, wherein the

method of stationary phase is used to integrate (4.48) for a flat straight line element.

Initial testing, with PUBEM elements using quadratic Lagrangian functions, shows mod-

erate accuracy for the N2 case, but a reduction in accuracy for the N1 and N3 cases which

indicates that the stationary point location is not the only location that provides a sig-

nificant contribution to the overall value of the integral. For example, taking an element

of length 4, laying on the x-axis with φ̄ = −
√

3
2

, k = 500, xp = −2 and yp = −2 and

integrating using the MSP produces a relative error of ε = 5.8e − 04 for the N2 shape

function, but ε = 0.028 and ε = 0.019 for the N1 and N3 respectively. This is unsurpris-

ing because at the end of the interval there is no cancellation between the positive and

negative parts of the oscillation. It is possible though, to include information at the end

points by employing the asymptotic method via repeated integration by parts. In order

to do this, consider 3 smooth functions (FA, FB and FC) diagrammatically shown in Fig.

4.15.

These blending functions are constructed using portions of sine waves, and defined in

terms of the following points along the ξ-axis such that -1 < ξA < ξB < ξC < 1, where

ξB denotes the stationary point. FB takes the value of 1 in the neighbourhood of the

stationary point, tapering down to 0 at the end points. FA(−1) = 1 and FC(1) = 1, also
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Figure 4.15: Smooth blending functions for including the end point contributions to the
MSP formulation.

tapering to 0 at opposite end locations. Due to the partition of unity the integral (4.48)

may be written as

I =

∫ 1

−1

(FA(ξ) + FB(ξ) + FC(ξ))f(ξ, s)eikg(ξ)dξ (4.122)

Which may be treated separately as

I = IA + IB + IC , (4.123)

where

IA =

∫ A

−1

FA(ξ)f(ξ, s)e(ikg(ξ))dξ (4.124)

IB =

∫ 1

−1

FB(ξ)f(ξ, s)e(ikg(ξ))dξ (4.125)

IC =

∫ 1

B

FC(ξ)f(ξ, s)e(ikg(ξ))dξ. (4.126)

The only integral which contains stationary points is IB which means that IA and IC may

be evaluated using the Asymptotic Method as follows
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IA =
1

ik

[
FA(ξ(A))f(ξ(A), s)

g′(ξ(A))
eikg(ξ(A)) − FA(−1)f(ξ(−1), s)

g′(−1)
eikg(−1)

]
+ O(k−2), (4.127)

IC =
1

ik

[
FC(1)f(1, s)

g′(1)
eikg(1) − FC(ξ(C))f(ξ(C), s)

g′(ξ(C))
eikg(ξ(C))

]
+ O(k−2), (4.128)

whereas IB can be evaluated using the MSP

IB ≈ FB(ξ(B))f(ξ(B), s)

√
2π

k|g′′(ξ(B))|
eikg(ξ(B))e±

iπ
4 . (4.129)

Now the above mentioned element, of length 4 is considered with the same enrichment

wave direction but focusing on results for the case including the N1 shape function (the

N3 can be omitted because it mirrors the N1 case). It can be seen for a range of k in

Fig. 4.16 that if the end point information is included via asymptotic expansion, then the

accuracy in computing the integral containing N1 shape function becomes comparable to

the accuracy in computing the integral containing the N2 shape function, thus resolving

the issue.

Whilst the preliminary results appear positive, the error is still relatively large for

the lower k range, and the example chosen is far from the most challenging. In fact,

stationary points located near the end points of the interval of integration cause the most

difficulty for the MSP. This is highlighted in Fig. 4.17 for a range of k, wherein error

clearly increases as ξ∗ approaches −1 and 1, i.e. the ends of the element.

As each element contains j = 1, ..., J shape functions, each integral contains a shape

function Nj. If J = 3 is selected (i.e. quadratic elements), the highest errors will occur

in the integrals containing the N1 and N3 shape functions wherein the stationary point is

located near the end of the interval of integration. A possible remedy to this is to employ

the trigonometric basis functions of [65] which are produced by the following equations.

N1(ξ) = −1

4
cos(πξ)− 1

2
sin
(π

2
ξ
)

+
1

4
, (4.130)

N2(ξ) =
1

2
cos(πξ) +

1

2
, (4.131)

N3(ξ) = −1

4
cos(πξ) +

1

2
sin
(π

2
ξ
)

+
1

4
. (4.132)

These functions are shown in Fig. 4.18, with their extension past the interval of the ele-

ment represented using a dashed line. This choice is made because considering integrating

over the support of Nj is more useful than integrating element-by-element. Though, the
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Figure 4.16: L2 error for the integral containing the N2 shape function, and a comparison
of the L2 error of the integral containing the N1 shape function evaluated with and without
including the end point contributions.
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Figure 4.17: L2 error incurred by MSP for stationary points ξ∗ located across a straight
line flat element for a range of k.
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continuity between functions across element ends is important and conventional piecewise

Lagrange polynomial functions exhibit only C0 continuity at the shared node. Contrast

this with the trigonometric shape functions which exhibit C1 continuity generally, but

this improves to C∞ continuity if the lengths of the adjacent elements are the same. Fur-

thermore the slowly varying function F (ξ) goes to zero at the ends of the interval, as does

F ′(x) which negates the need to include end-point information.
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Figure 4.18: Trigonometric shape functions.

To illustrate this, we take an example from a circular scattering object, discretised into

4 elements, shown in Fig. 4.19. We find a case which would normally cause difficulty with

stationary behaviour near the end of an element by setting (xp, yp) = (cos(7π
6

), sin(7π
6

))

and φ̄ = 11π
18

. Consider elements e1 and e2 which together span θ = [0, π], with a stationary

point θ∗ = 29π
54

it is possible to integrate over the support of the shape function for the

shared node shown in Fig. 4.19 in terms of θ as follows.

I =

∫ π

0

F (θ)eikg(θ)dθ (4.133)

The basis functions of elements 1 and 2 are combined to form a composite shape function

(which can be considered as a single basis function) for the shared node. Varying k and

comparing the integral over the described support with a reference value, computed using

a converged Gauss-Legendre integration scheme, the results of Fig. 4.20 are produced.

These results indicate a reasonable level of accuracy, which increases as k increases.
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Figure 4.19: Test elements from a circular scattering object with trigonometric support.
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Figure 4.20: Relative error in the integration over the trigonometric support of the shared
node between element 1 and 2 plotted against k.

Targeted Gauss-Legendre

A final approach tested is a so-called targeted Gauss-Legendre scheme, which locates

window functions around stationary point locations and the end points of elements, as

these areas provide the leading order behaviour to the overall value of the integrand. In

order to distinguish this algorithm from the previous algorithms, ρ is used in place of ξ

as the parametric variable across the element. Thus we define a set of window functions

having the dimensions defined according to Fig. 4.21 wherein the window functions are

set equal to 1 at focal points which are located at the ends of the element if considering

the N1 or N2 functions and ρ∗ if there is a stationary point. Each function is tapered

using a sine curve of width δ to produce a smoothing effect. The width ρ̄ represents the

portion of the window which is set equal to 1 and is halved for the end point contributions.

This scheme differs from the other approaches that we have observed thus far because

it still applies traditional quadrature, but only over a portion of the element. A simple

example to illustrate the core of this method is shown in Fig. 4.22 which considers an

N2 shape function with k = 500, xe = 4 and φ̄ = θ = π
2

to enforce a central stationary

point ρ∗. The width of the window function ρ̄ is then widened with the resulting relative

error observed. It was found that including the end point contributions for N2 functions

offered no improvement, but was necessary for N1 and N3 functions which agrees with
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previous results from the MSP testing. Fixing the window size and varying k, produces

the results of Fig. 4.23, which are shown for N1 and N2. Both sets of results improve as

k increases with the results for N1 being more accurate, though double the Gauss points

are required for N1 and N3.

-1 1

0

1

+

Figure 4.21: Window functions for targeted Gauss-Legendre.

4.5.4 Problems with using integration schemes for highly oscil-

latory integrals

Non-stationary cases

For each method discussed above, a number of examples are presented in which the error

is relatively low, to show that there is potential for benefit in certain cases, and that

impressive results may be obtained with very little computational expense. Whilst it is

possible to find many of these cases, by varying k, φ̄, θ, r and xe to suit, due to the general

nature of PUBEM, cases will often arise wherein the results are far from optimal. This is

because, for example, φ̄ is dictated by M and xe is dictated by E.

The results of Fig. 4.8 represent a particularly favourable case; by moving the source

point to a new location, defined by θ = π
6

and r = 4 but maintaining the same element

size and considering the same variation in k the results of Fig. 4.26 are produced, in which

the Filon method fails completely and the results of the Asymptotic method are nearly 8

orders of magnitude less accurate than those shown in Fig. 4.8. Unfortunately, problem

cases arise frequently as a result of stationary and near stationary behaviour. This can be
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Figure 4.22: (left) Example of a window function and associated integrand for N2 with a
stationary point at ξ = 0, (right) L2 error vs. ρ̄ for the same case.
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Figure 4.23: L2 error for the N1 and N2 shape functions using targeted Gauss-Legendre
integration with ρ̄ = 0.2 and δ = 0.15.
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shown by employing a second-order Asymptotic scheme for the original more favourable

example and fixing k = 500 then varying θ and r, which produces the results of Fig. 4.27

wherein the majority of cases have unacceptable error levels, comfortably above 1%. In

addition, the timings shown in Table 4.1 and Table. 4.2 are for first-order schemes which

produce such acceptable levels of error in favourable cases, though a second-order Filon

scheme has a run-time of approximately 0.097s per integral and approximately 0.061s per

integral for a second-order Asymptotic scheme.

Further, near-stationary cases, i.e. cases where a stationary point is adjacent to the

interval of integration, can cause difficulty, even for the second order asymptotic method.

This problem is highlighted in Fig. 4.24 wherein a second order asymptotic integration

scheme is employed to integrate over a straight line element of length xe = 4 with varying

r0 and θ, and with k = 100. The white regions in Fig. 4.24 are areas in which the

relative error ε exceeds 0.01. Still further, for this example, Gauss-Legendre is actually

faster than using the second order asymptotic scheme, and will produce reliable results

for every r0-θ combination. These near-stationary cases cause even greater difficulty for

Targeted Gauss-Legendre and the Filon method.
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Figure 4.24: Regions of relative error ε for second order asymptotic method integrals with
varying r0 and θ, k = 100; yellow regions show ε < 0.001, blue regions show stationary
point locations, and the white regions show near-stationary locations wherein ε > 0.01.

As with the other methods presented there are a number of cases wherein targeted

Gauss does not perform well. For example, Fig. 4.25 shows results with varying θ and r0

with k = 500, φ̄, ρ̄ = 0.2 and δ = 0.15. It is evident from the results that the error in

– 63 –



computing integrals containing the N1 shape function is over 1% for most combinations

of r0 and θ and for almost all combinations the error in computing the N2 shape functions

is over 1%.

0 0

Figure 4.25: L2 error for the N2 case (left) and the N1 case (right), both with φ̄ = π
18

,
k = 500, ρ̄ = 0.2, δ = 0.15, varying θ and r0.

It is important to note at this point that although large k has been considered for the

geometries that are analysed in this thesis that much of the PUBEM literature is devoted

to much lower k, typically in the mid-high frequency range where PUBEM performs well.

Furthermore, to consider a single flat, straight line element is to give strong advantage

to the Filon method and the Asymptotic method as there are far fewer stationary points

than for an arc element, for example. In addition, the stationary points are predictable

with the simple equation (4.93). Another consideration is the element length xe (which

has been set as xe = 4 in the previous examples) would vary subject to requirements

of conditioning. Naturally, the integration schemes, which are designed to treat highly

oscillatory integrals, perform best when there is more oscillation contained within the

interval of integration, due to more cancellation occurring. Reducing xe is tantamount

to reducing the effective k, i.e. kxe is the important parameter, because this provides a

good indication of the amount of oscillation contained within the interval of integration.

This can be seen in Fig. 4.28 wherein k and xe are varied to produce the same apparent

k.

Stationary point cases

As with the non-stationary case there are also a number of issues with stationary point

cases. A reasonable level of accuracy can be obtained using the adapted Filon method as

can be seen in Fig. 4.14, but the algorithm is large. This means that the method is not a

suitable alternative to Gauss-Legendre as the run-times seen in Table 4.3 far exceed that
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Figure 4.28: Integrands resulting from different combinations of xe and k.
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of Gauss-Legendre. Targeted Gauss has also been shown to be ineffective for stationary

cases in Fig. 4.25.

This leaves the MSP which produced some promising results, though in reality not

all cases behave this way. In fact, if MSP is employed to solve a full scattering example

there are a number of challenges. Firstly, there is the requirement to effectively locate

stationary points before integrating, which is possible via a bisection method but this

introduces a considerable computational expense. This problem would be magnified with

more complex geometries which are not constructed of simple straight line or circular arc

elements. To illustrate this, we consider the simple example of a unit circle scattering

object again, with k = 100π, E = 4 and M = 157, with the stationary points located

according to [66]. The resulting relative errors across the system matrix are shown in Fig.

4.29, highlighting the large portion of integrals which are inaccurately computed using

the MSP. There are a number of cases within the matrix which are simply not evaluated

Figure 4.29: Relative error in matrix terms for a circular scattering object, k = 100π,E =
4 and M = 157.

accurately by the MSP, though many of the errors are incurred as a result of the MSP

setting integrals, for which there is no stationary point within the interval of integration,

equal to zero even if the integral is significant in magnitude. If a stationary point occurs

near end point locations where the basis functions are very close to zero, the negative

effect is minimised, though that is not the case if the near stationary point is towards the

centre of the interval of integration. This is possible in cases wherein the source point
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lies within the interval of integration, causing a sharp change in the phase function g(ξ).

An example of this from the above discretisation of a circular scattering object where

(xp, yp) = (cos(1.28), sin(1.28)), φ̄ = 2.86 and with an element spanning from the positive

x-axis to the positive y-axis is show in Fig. 4.30. Fig. 4.30 shows g(ξ) and resulting

integrand, which is near stationary and the integral would be set equal to zero using MSP

when in reality it is equal to 0.03161-0.09879i.
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Figure 4.30: g(ξ) and the resulting integrand for a near stationary case.

To summarise, there are some choice cases for which any of the above highly-oscillatory

integration schemes can produce very accurate results. Though, in PUBEM, it is likely

that the majority of cases will result in unacceptable error. This is due to:

• multiple stationary points within the interval of integration and stationary points

adjacent to the interval of integration

• small r

• small kxe

The cases considered have been very simple geometrically (straight line elements, for

example); to be able to consider general convex objects one would be required to tackle

cases with multiple stationary points which provide considerable difficulty for the above

methods. Further, the small r, resulting from source points close-to or on the interval
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of integration increases the likelihood of encountering stationary and near stationary

points, and for a typical object considered in the thesis there will be many of these

cases. Small elements and low-k have the same, undesirable, effect of diminishing the

oscillation in the integrand. With all of the above issues considered, it is difficult to

imagine a robust implementation solely relying on any of the high-oscillatory integration

techniques presented. That is, apart from very large k problems which may tread into the

territory of ray-tracing and optics methods. One could consider using highly oscillatory

integration techniques to speed up integration for favourable cases and using conventional

Gauss-Legendre in the (more common) less favourable cases, though this would require

implementation of an algorithm to decide where it is appropriate to use Gauss-Legendre,

which itself will require computational expense. Further, if the Gauss points have been

placed once, many of the integration variables will have been computed at those points

which means that it may be favourable to simply re-use them.

All is not lost though, as it appears that creating a robust alternative to Gauss-Legendre

is so difficult because Gauss-Legendre is not actually very expensive, when optimally

designed for PUBEM integrals. For this reason, the following section explores its use

for the PUBEM integrals, more specifically: how many Gauss points per wavelength are

required.

4.6 Gauss-Legendre tailored for PUBEM integrals

Much of the literature on PUBEM is focused on numerical performance of a plane-wave

basis and comparing its efficacy against more conventional bases. As a result of this,

there is yet to be a thorough quantification of the integration techniques performed and

the order of integration required. For this reason, coupled with the difficulties outlined in

Section 4.5, the performance of Gauss-Legendre tailored for PUBEM integrals is studied

in this section. A number of examples are presented, including polygonal and smooth

objects, with the aim of determining how many Gauss points are required to achieve

engineering accuracy. The Gauss-Legendre schemes tested are applied over integration

cells of the interval of integration, and the number of Gauss points per interval, along

with interval size are evaluated.

4.6.1 Straight line element

To begin, consider a flat straight line element, of length 1, lying on the x−axis, with

the starting point (xs, ys) = (0, 0) and end point (xe, ye) = (1, 0) and the following

parameters: enrichment wave direction φ̄ = 60◦; source point located at an angle of

θ = 10◦; and a radius of r0 = 1 (as defined in Fig. 4.6) from the centre of the element

(xc, yc) = (0.5, 0). For ease of plotting, |log10(ε)| is taken wherein ε is the relative error

incurred by each integral, which is shown in Fig. 4.31, plotted against the number of
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Gauss points per cell ngp and the number of cells employed per wavelength. It can be

seen that an ‘engineering accuracy’ of 1% is achieved with relatively few Gauss points, in

fact using a single integration cell per wavelength with 10 Gauss points per cell produces

an error < 10−15. This is however, a single example and the accuracy achieved will differ

according to variables such as k, φ̄, θ and r0. Notably, ε, in the yellow region, wherein

the results are most accurate, appears to be limited to ≈ 10−15. Such limitation is likely

due to reaching the capacity of machine precision. This effect is also shown in subsequent

figures.
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Figure 4.31: |Log10(ε)| for a straight line element having having the starting point
(xs, ys) = (0, 0) and end point (xe, ye) = (1, 0), θ = 10◦, r0 = 1, φ̄ = 60◦ and k = 100.

Firstly, to study the impact that k has on the accuracy of this example, k is varied

from 1-1000 with cells equal in size to the wavelength and 10 Gauss points are applied

over each cell. The results are shown in Fig. 4.32 wherein the relative error ε gradually

increases as k increases. Note that in the plots in this section, a reduction in the quantity

plotted indicates an increase in error. This could become significant for very large k, but

due to the fact that most of the problems of interest do not exceed k = 100 the difference

in accuracy experienced as a result of varying k can be considered to be negligible.

Next, the angle between the source point and the positive x-direction is fixed, such that

θ = 90◦, but φ̄ and r0 are varied, in order to determine what happens to the relative error
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Figure 4.32: |Log10(ε)| for a straight line element having having the starting point
(xs, ys) = (0, 0) and end point (xe, ye) = (1, 0), θ = 10◦, r0 = 1, φ̄ = 60◦ and k = 1− 1000.
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Figure 4.33: |Log10(ε)| for a straight line element having the starting point (xs, ys) = (0, 0)
and end point (xe, ye) = (1, 0), 0 < φ̄ < 360◦, r0 = 1− 10.
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ε at different source point locations. The results from this testing are shown in Fig. 4.33,

and it is evident that the source point location relative to the element has a substantial

impact on the accuracy. For example, as r0 becomes small the integration error becomes

more significant, and unacceptable in some cases. This is expected because the integral

becomes near singular as r0 decreases. Though, as r0 decreases relative to the xe the less

oscillatory the integrand becomes. In addition the error reduces where θ = φ̄, which could

be a result of cancellation between the enrichment wave and the Green’s function. From

Fig. 4.33 we can infer the influence of the relationship between φ̄ and θ, i.e. it can be seen

that relative error is reduced wherein φ̄ = θ due to the cancellation occurring between the

enrichment wave and the Green’s function. In order to explore this relationship further,

a modification is made to the example to use the following parameters: xe = 4, with a

source point fixed at r0 = 4 and θ = 90◦ with φ̄ = 0-180◦. The results for this example

with k = 100 are shown in Fig. 4.34, and it is clear that whilst using a larger number of

Gauss points, the error remains unchanged as φ̄ varies, but when fewer points are used,

the integration error for stationary point cases wherein θ = φ̄ is clearly smaller, with the

highly oscillatory portions providing a challenge. Notably, for this example it is beneficial

to integrate over larger cells, and increase the number of Gauss points to compensate,

rather than applying multiple cells per wavelength and relatively fewer Gauss points per

cell.

4.6.2 Scattering by a square

In order to confirm the number of Gauss points required in a typical scattering simulation,

using straight line elements we consider scattering by a unit square. For this example,

k = 20 and a single element is employed per side with M = 12 to produce τ ≈ 3.8.

Results for this example are shown in Fig. 4.35 where ε is the L2 relative error of the

acoustic potential φ at a vector of points over the boundary Γ of the square and ngp is

the number of Gauss points per cell. It is clear from Fig. 4.35 that an acceptable level of

error is reached comfortably by using a single cell per wavelength with 10 Gauss points

in each cell.

In order to determine if there is a ‘sweet spot’ for ngp vs. Cells
λ

the error is scaled by

the total number of Gauss points employed per element (which is equal to (ngp)(Cells)),

which is shown in Fig. 4.36 by dividing the error by the Gauss points employed per

element. A slight benefit is seen by increasing ngp (rather than decreasing the cell size),

but this is less substantial than for the specific single element case shown in Fig. 4.34.

4.6.3 Circular arc element

The results above are all based on straight line elements, which have been shown to have

fewer stationary points than arc elements, for example. For this reason, attention is turned
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Figure 4.34: |Log10(ε)| for a straight line element having having the starting point
(xs, ys) = (0, 0) and end point (xe, ye) = (4, 0), θ = 90◦, r0 = 4, 0 < φ̄ < 360◦ and
k = 100.
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Figure 4.35: |Log10(ε)| for a square scattering object, k = 20.
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Figure 4.36: |Log10(ε)| scaled for a square scattering object, k = 20.
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to circular arc elements, to study the difference in numerical behaviour; thus, consider a

circular arc element, with a unit radius, of length π
4

spanning from the positive x-direction

to the positive y-direction, with the source point fixed at (xp, yp) = (10, 10) and k = 100.

Results for this case are plotted in Fig. 4.37, which shows similar convergence of relative

error ε as the straight line element results, where again, using larger cells (and ngp) shows

benefit.

For further insight and as was studied with the straight line element, φ̄ is varied and

the results observed in Fig. 4.38, wherein a very small number of Gauss points is seen

to produce very accurate results. Again, there are clear regions in which the integrals

computed using relatively fewer Gauss points struggle and this is likely due to more

oscillatory behaviour resulting from constructive interference between the Green’s function

and the enrichment wave.
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Figure 4.37: Log10(ε) for a circular arc element, with a unit radius, of length π
4

spanning
from the positive x-direction to the positive y-direction and having xp, yp = (10, 10), R =
1, φ̄ = 60◦ and k = 100.

4.6.4 Scattering from a circle

Circular arc elements are now combined to produce an example of scattering by a unit

circle. A relatively coarse discretisation is employed, using only 2 elements with M = 32,

and setting k = 50. This produces λ = 0.1257 and τ = 2.5. Results are displayed in Fig.

4.39 where ε is the L2 relative error of the acoustic potential φ at a vector of points over

the boundary Γ of the circular scattering object. As can be seen in Fig. 4.39, engineering
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Figure 4.38: Log10(ε) for a circular arc element spanning from (−1, 0) to (0, 1) and having
(xp, yp) = (10, 10), R = 1, 0 < φ̄ < 360◦ and k = 100.
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accuracy is comfortably achieved with a single cell per wavelength and 10 Gauss points

are used per cell. The error appears to be limited at approximately ε = 10−3, but that is a

limitation of the relatively low τ . In order to try and determine a sweet-spot, in a similar

manner to the square example, the results in Fig. 4.40 show the error scaled by dividing

by the number of Gauss points used per element, which indicates that using larger cells

with more Gauss points per cell is beneficial, although this seems less pronounced than

when considering only a single element. This confirms the finding of the straight line

element and square example.
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Figure 4.39: Log10(ε) for a circular scattering object, k = 50.

Table 4.4 shows the overall L2 error for a circular scattering object being impinged

by a plane wave, with 4 elements, M = 32 and k = 50. By varying the number of

Gauss points used per cell, along with the cell size we see variations in error, and can

use the total number of Gauss points as a marker for how efficient each scheme is. It is

evident from Table 4.4 that there is benefit in using larger cells, though the benefit is

less pronounced than when considering only a single element. As it was observed that

reducing the distance between the source point and the interval of integration can cause a

dramatic drop in accuracy, it is necessary to inspect the system matrix. The matrix can

be computed by using a highly refined Gauss scheme, then a scheme with fewer points and

noting where the largest errors are incurred, to see if there is a pattern or a dependence on

r. This is shown in Fig. 4.41 wherein the diagonal terms contain the largest errors, which
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Figure 4.40: Log10(ε) scaled for a circular scattering object, k = 50.

ngp Cells/elem Total Gauss points Points/λ L2error
84 2 672 13.44 1.0358e− 05
64 2 512 10.24 6.2163e− 05
48 2 384 7.68 1.1070e− 04
32 2 256 5.12 3.1524e− 04
24 2 192 3.84 0.0031
48 1 192 3.84 0.0041
6 50 1200 24 1.7693e− 06
4 50 800 16 5.4995e− 06
2 50 400 8 7.1584e− 05
2 38 304 6.08 2.6526e− 04
2 25 200 4 0.0488

Table 4.4: L2 error for circular scattering object, k = 50, E = 4, M = 32.
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could suggest that the reduction in r (i.e. the distance between the source point and the

field point) is driving the overall error. Though, the diagonal terms in the matrix are

typically the larger terms, thus one might expect the errors to be larger, we may mitigate

the impact of the varying magnitude of the matrix terms by using a relative error. This

relative error is shown in Fig. 4.42, in which there are still larger errors clustered around

the diagonal terms.

Figure 4.41: Absolute error in matrix terms for scattering by a circle, with E = 4, M = 32
and k = 50.

In order to reduce the impact that the dominant terms in the matrix have on the

overall error we may apply additional Gauss points to cases wherein the source point

lies within the interval of integration; i.e., increasing ngp or reducing the cell size. The

result of including extra Gauss points in these key areas can be seen in Table 4.5 wherein

ngpextra represents the number of Gauss points employed when the source point is within

the element of interest. Four schemes are compared and improved results are presented,

such as, a requirement of only 3.12 Gauss points being required to achieve engineering

accuracy by using a sufficiently large ngp and ngpextra with a relatively large cell size.

To add an extra level of analysis, the schemes described in Table 4.5 are employed for

varying k, with the results shown in Table 4.6. The results show that even whilst varying

k the accuracy is relatively consistent, which of course, is important.
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Figure 4.42: Relative error in matrix terms for scattering by a circle, with E = 4, M = 32
and k = 50.

scheme ngp ngpextra Cells/elem Total Gauss points Points/λ L2error
1 48 64 1 208 4.16 2.4006e− 04
2 24 48 2 240 4.8 1.3676e− 04
3 24 32 2 208 4.16 1.7810e− 04
4 18 24 2 156 3.12 0.0043

Table 4.5: L2 error for circular scattering object, k = 50, E = 4, M = 32.

k scheme1 scheme2 scheme3 scheme4
60 2.5282e− 04 8.0090e− 05 1.6653e− 04 0.0050
70 1.9697e− 04 5.1083e− 05 7.6694e− 05 0.0021
80 1.5642e− 04 7.7985e− 05 8.1775e− 05 0.0019
90 1.9892e− 04 3.2763e− 05 5.3659e− 05 0.0014
100 7.0376e− 05 6.0350e− 05 7.6733e− 05 0.0011

Table 4.6: L2 error for circular scattering object, k = 60− 100, E = 4, M = 38− 64.
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4.6.5 Scattering by a capsule

A final example of scattering by a capsule is presented. The capsule is defined according

to Fig. 4.43 wherein R = 1. The φinc = 0 is studied with with the following parameters:

E = 4, M = 32, and k = 50 which results in τ ≈ 2.6. The real part and absolute value

of the total potential are shown in Fig. 4.44. Using similar Gauss-Legendre schemes to

the schemes employed for the circle, the results of Table 4.7 are produced, which are not

quite as accurate as the results for the circle, though it is clear that achieving engineering

accuracy with approximately 4 Gauss points per wavelength is possible.

Figure 4.43: Capsule geometry.

scheme ngp ngpextra Cells/elem Total Gauss points Points/λ L2error
1 48 64 1 400 4.0 5.8286e− 04
2 28 48 2 448 4.8 5.5610e− 04
3 26 32 2 428 4.28 5.6831e− 04
4 42 48 2 342 3.42 0.0134

Table 4.7: L2 relative error ε for scattering by a capsule, R = 1 k = 50, E = 8, M = 32.

4.6.6 Conclusion

From the above results, it appears that relatively few Gauss points are required (some-

where in the region of 4 per wavelength) to achieve engineering accuracy. This is a

positive result due to the fact that it is difficult to construct a robust alternative to

Gauss-Legendre. These results are for full scattering problems, including a variety of

elements and a suitable range of plane-wave enrichment directions. For special cases

wherein θ and φ̄ combine favourably, highly accurate results can be achieved with signif-

icantly few Gauss points, but as seen in the results for the highly-oscillatory integration
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Figure 4.44: (left) Real part of the total potential, (right) absolute value of total potential.
Capsule scatterer for the case k = 50.

schemes, there will usually exist some more challenging cases, which dictate the overall

results.

4.7 Summary

In this chapter, integration schemes which are designed specifically for evaluating highly

oscillatory integrals, such as the Filon method, the asymptotic method, the method of

stationary phase, and a targeted Gauss-Legendre implementation, have been tested for

PUBEM integrals over straight line and circular arc elements. These integration schemes

performed very well for particular integrals tested, namely when λ is small relative to the

element length, or in the absence of stationary points. Though, for the majority of cases,

these methods will not evaluate integrals with sufficient precision to achieve engineering

accuracy of 1% in the overall solution. A common feature of the problematic cases is

the presence of a stationary point near the end of an element. Further, the cases tested

in this chapter involve relatively simple geometries comprising straight line and circular

arc elements. One might expect more complicated geometries to cause further difficulty

for integration schemes designed specifically for evaluating highly oscillatory integrals for

two reasons. Firstly, because there would likely be an increase in the number of station-

ary points, and the location of these stationary points may only be retrievable via an

iterative method. Secondly, the formulation of the integration schemes will become more

complicated, for example, the coordinate transformation and computation of derivatives
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required for the Filon method are simple for a straight line element, but for generalised

elements, g(ξ) would likely be more complicated and it may not be possible to evaluate

required derivatives analytically.

Further testing in section 4.6 revealed the efficacy of traditional Gauss-Legendre inte-

gration for PUBEM integrals. Specifically, a tailored Gauss-Legendre integration scheme,

such tailoring involving using multiple integration cells per element. The impact that

integration cell size and the number of Gauss points per integration cell has on the overall

solution has been tested for smooth and polygonal geometries. It is possible to achieve

engineering accuracy for some geometries using fewer than 4 Gauss points per wavelength,

but for general cases the results of section 4.6 suggest that using very high-order Gauss

integration over a small number of cells can be sufficient to achieve engineering accuracy.
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Chapter 5

Singular enrichment functions for

wave scattering by polygons

5.1 Introduction

In previous chapters, wave scattering problems have been presented and solved, predom-

inantly for smooth scattering objects. Introducing corners into scattering problems, for

example wave scattering from polygonal objects, such as that shown in Fig. 5.1, pro-

vides additional difficulty for numerical solvers. This additional difficulty arises because

the corner locations introduce singular behaviour into the scattered fields. A conven-

tional BEM basis comprising polynomial shape functions does not contain any singular

behaviour, thus typically requires relatively small elements at corner locations. Similarly,

whilst well suited to high frequency problems, the plane-wave basis of PUBEM does not

include singular behaviour.

Numerical methods, outside of BEM, have been developed to tackle the increase in

degrees of freedom required that is associated with singularities. This is seen, for example,

in the eXtended Finite Element Method (XFEM) in which localised enrichment using

singular functions enhances the computational efficiency in solving fracture mechanics

problems. The asymptotic singular behaviour at corner locations is known and can be

inserted into the approximation space to improve efficiency. This approach has been taken

for Laplace operators [81]; in a UVWF setting [82]; in an MFS setting [83, 84], and in

an FEM setting [85] where the effect of corner singularities on pollution is studied. As

mentioned, when using a conventional set of basis functions without enrichment, relatively

small elements will likely be required, though only in locations in which the effect of

singular behaviour is present in the solution, i.e. not at locations remote from corners.

With this knowledge, alternate schemes have been developed to reduce the number of

degrees of freedom required for geometries containing corners, for example, using a graded

mesh along with a preconditioning strategy [79] and utilising a fast solver [80].
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Figure 5.1: (left) Real part of the total potential, (right) absolute value of total potential.
Unit square scatterer for the case k = 50.

In this chapter, the BEM and PUBEM basis functions, described in sections 3.4 and 3.5

respectively, are extended to include further enrichment which is geared towards modelling

scattering from corners. The aim of this further enrichment is to increase the efficiency,

from a τ standpoint, with which BEM and PUBEM can solve the Helmholtz equation

in the presence of corners. The further enriched BEM formulation will be referred to

herein as eXtended Boundary Element Method (XBEM) and the further enriched PUBEM

formulation will be referred to herein as Partition of Unity eXtended Boundary Element

Method (PUXBEM).

The Helmholtz problems considered in this section involve scattering from sound-hard

objects, with corners. Each polygonal object is defined as Ωs ⊂ R2 and with a boundary

Γ. To form the requisite BIEs for XBEM and PUXBEM, the Neumann Sound-hard

boundary condition is used, wherein

∇φ(x) · n = 0, x ∈ Γ (5.1)

where n is the unit normal at x.
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5.2 XBEM formulation

To form the XBEM BIE, including the singular enrichment, we begin with the BIE for

exterior domains (3.25) then apply the Neumann sound-hard boundary condition (5.1) to

produce the following

c(p)φ(p) +

∫
Γ

∂G(p,q)

∂n
φ(q)dΓq = φinc(p), p,q ∈ Γ (5.2)

where c(p) at corner locations is defined by the exterior angle associated with the corner,

as shown in Fig. 3.3, elsewhere c(p) = 1
2
. The incident wave, which is being scattered by

polygon Ωs, is denoted φinc. In a conventional BEM formulation, as described in section

3.4, a polynomial basis is employed, to describe the acoustic potential φ over each element

as follows,

φ =
J∑
j=1

Ψj(ξ)φ
e
j , (5.3)

wherein φ is described at node j of element e and ξ ∈ [−1, 1]. It is common to take J = 3,

and employ Lagrangian shape functions, which take the form

Ψ1 =
1

2
ξ(ξ − 1) (5.4)

Ψ2 = (1− ξ)(1 + ξ) (5.5)

Ψ3 =
1

2
ξ(ξ + 1). (5.6)

Discretising Γ into E elements and applying the description of φ shown in (5.3) over each

element in the discretisation produces

c(p)φ(p) +
E∑
e=1

J∑
j=1

∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)J

edξφej = φinc(p), p,q ∈ Γ (5.7)

where Je is the Jacobian of the geometric mapping (x, y) → ξ. In order to include the

singular enrichment required to form XBEM, we augment the polynomial expansion (5.3)

to include additional functions ψ, as follows

φ =
J∑
j=1

Ψj(ξ)φ
e
j +

L∑
l=1

ψl(ξ)φ̃
e
l (5.8)

wherein ψl represents term l in an expansion including a total of L, not yet defined,

singular shape functions. Including this enrichment in the discretised BIE (5.7) produces
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the XBEM discretisation

c(p)φ(p) +
E∑
e=1

J∑
j=1

∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)J

edξφej

+
E∑
e=1

L∑
l=1

∫ 1

−1

∂G(p,q)

∂n
ψl(ξ)J

edξφ̃el = φinc(p)

(5.9)

which can be solved in the same way that a conventional BIE can be solved, though now,

over Γ, the potential φ will be recovered from the combination of functions, shown in

(5.8).

5.3 PUXBEM formulation

To form the PUXBEM BIE, including the singular enrichment, we first remember the

form of PUBEM basis (3.39) from section 3.5, as follows

φ =
J∑
j=1

M∑
m=1

Ψj(ξ)A
e
jmeikdjm·q, (5.10)

wherein φ is described over the element e, M is the total number of plane-waves per node,

ξ ∈ [−1, 1], and

djm = (cos φ̄jm, sin φ̄jm), φ̄jm =
2π(m− 1)

M
. (5.11)

Therefore, the discretised PUBEM BIE for exterior problems, with the Neumann sound-

hard condition (5.1) condition imposed, is

c(p)φ(p) +
E∑
e=1

J∑
j=1

M∑
m=1

∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)e

ikdjm·qJedξAejm = φinc(p), p,q ∈ Γ (5.12)

which forms our starting point for PUXBEM. In order to include the singular enrichment

required to form PUXBEM, we augment the PUBEM basis (5.10) to include the additional

functions ψ, as follows

φ =
J∑
j=1

M∑
m=1

Ψj(ξ)A
e
jmeikdjm·q +

L∑
l=1

ψl(ξ)B
e
l , (5.13)

wherein ψl corresponds to the ψl from (5.8) in the XBEM formulation. Including this

enrichment in the discretised PUBEM BIE (5.12) produces the PUXBEM discretisation,
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as follows

c(p)φ(p) +
E∑
e=1

J∑
j=1

M∑
m=1

∫ 1

−1

∂G(p,q)

∂n
Ψj(ξ)e

ikdjm·qJedξAejm

+
E∑
e=1

L∑
l=1

∫ 1

−1

∂G(p,q)

∂n
ψl(ξ)J

edξBe
l = φinc(p), p,q ∈ Γ

(5.14)

where Be
l can be thought of as amplitudes of the singular enrichment functions.

5.4 Modified basis functions

So far, the process of forming the XBEM and PUXBEM BIEs has been presented, which

involves augmenting each BIE to include singular functions ψl, though the function itself

has not been defined. As mentioned, the local behaviour of the solution at corner location

is known, or rather the asymptotic behaviour can be represented by a series solution [91],

as

φ(rb, θb) ≈
N∑
n=1

Jnα(krb) cosnαθb, 0 <
π

α
< 2π, (5.15)

for the Neumann case, where Jnα are Bessel functions which are of fractional order due to

the combination of α and n. rb is the Euclidean distance from a corner to a given point

and θb is the angle from a planar surface adjacent to the corner to given point, both rb

and θb are shown in Fig. 5.2. The variable α can be defined in terms of the exterior angle

at the corner which is π/α. Consider the example of a right-angle, such as a corner of a

square, α = 2/3 as dictated by the above definition. If one takes k = 20, for the same

example, and plots the first six terms in the series Fig. 5.3 is produced. From this plot

of the family of Bessel functions, it is clear that, at rb = 0, only the first term (J2/3(krb))

in the series contains a singular gradient. Therefore, this term is the candidate for use as

an enrichment function. Thus, as opposed to some of the literature, such as Luostari et

al. [82] and Barnett & Betcke [83], only the first term is used as enrichment for XBEM

and PUXBEM. This is due to the target of efficient solution using small τ , i.e. including

more terms in the series (that are not singular) will add to the total number of degrees of

freedom used, though not substantially contribute to capturing the singular behaviour at

corner locations. A second alternative rαb is also considered as a candidate for ψl because

the asymptotic behaviour of the Bessel function candidate, for a small argument, is of the

form rαb . Therefore, the two candidate enrichment functions ψ1,l and ψ2,l are defined as

follows

ψ1,l = rαb cos lαθb (5.16)

ψ2,l = Jlα(krb) cos lαθb. (5.17)

– 89 –



Figure 5.2: Polar coordinate system local to a corner.
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Figure 5.3: Bessel functions with n = 1-6, α = 2
3

and k = 20.
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As the evaluation of ψ1,l and ψ2,l is only required on the boundary Γ, θb will be a

constant on each planar surface, adjacent to the corner of interest. As an example, consider

two planar surfaces of a square, meeting at a right-angle, substantially corresponding to

those shown in Fig. 5.2, θb would take one of two values: θb = 0 and θb = 3π/2. This

provides two options for implementation of the enrichment: formulation A wherein two

degrees of freedom are associated with each singular enrichment function, i.e. a separate

degree of freedom corresponding to each of the edges meeting at the corner in question;

and formulation B wherein a single degree of freedom is associated with each enrichment

function.

The cosine term in (5.15)-(5.17) describes the smooth variation in potential in the

circumferential direction in the vicinity of the corner. While this is of great importance

in finite element and UWVF implementations, we note that in a BEM context we are

required to evaluate only the trace of the functions on the boundary, i.e. inserting θb into

the argument, which will take the value of either 0 or 3π/2, for a right-angled corner. For

clarity, formulation A and formulation B are laid out below. Formulation A:

ūeL 6= ūe+1
1 (5.18)

Be
L 6= Be+1

1 (5.19)

Formulation B:

ūeL = ūe+1
1 (5.20)

Be
L = Be+1

1 (5.21)

Notably, similarly to the plane-wave basis of PUBEM, enriching with Bessel functions

can introduce the requirement to evaluate highly oscillatory integrals. As the focus of

this study into singular enrichment is the efficacy of the functions themselves, a sub-

divided Gauss-Legendre integration scheme is employed with a sufficient number of cells

and Gauss points per cell to remove any integration error from the results.

In subsequent sections, L2 error ε is computed for a number of Helmholtz problems.

ε is taken to be relative error when analysing scalar results and L2 relative error when

analysing a vector of results. The definition of ε can be found in Appendix C. The

reference solutions with which the XBEM and PUXBEM are compared against are ob-

tained by using converged BEM or PUBEM schemes, depending on the problem. This

requirement to produce accurate reference solutions restricts the analysis to problems in

the low-mid frequency range.
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Figure 5.4: Internal point locations for a square scattering object.

5.4.1 Square scattering object

A first example is presented here, comprising a unit square scattering object, a schematic

representation of which is shown in Fig. 5.4 wherein a ring of internal points is presented.

This ring of internal points is defined in terms of a radius rip from the centre of the square

scattering object, and the distance γ with which the radius extends past the corners of

the square scattering object, i.e. rip =
√

0.52 + 0.52 + γ for the unit square. In this

example, the square scattering object is impinged by a plane-wave φinc propagating at an

angle of π
4

from the positive x-axis, with k = 20 and γ = 1. The acoustic potential φ is

evaluated over the boundary Γ then at the ring of internal points, according to section 3.4,

using BEM, XBEM and PUXBEM. The results of this analysis can be seen in Fig. 5.5,

where the degrees of freedom (DoF) are varied and the corresponding L2 relative error ε

is plotted. ψ1 and ψ2 represent the different singular enrichment functions, as defined in

section 5.4.

From Fig. 5.5, it is clear that, per DoF, the enriched schemes significantly outperform

standard BEM. XBEM using either form of singular enrichment function significantly

outperforms standard BEM. The PUXBEM schemes, which include both singular enrich-

ment and plane-wave enrichment offer further improvement, with reduction in ε of over

two orders of magnitude. Notably, for both XBEM and PUXBEM, the form of singular

enrichment, i.e. ψ1 and ψ2 perform similarly, though ψ2 which contains the fractional

order Bessel functions consistently (but marginally) outperforms ψ1.
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Figure 5.5: L2 relative error ε vs. DoF, k = 20.

In order to produce the plot shown in Fig. 5.5, the wavenumber k was fixed, which

restricts the analysis to a single frequency, but allows analysis of the effect that the number

of degrees of freedom has on the solution, using the differing schemes. To provide further

insight, the number of degrees of freedom are fixed at 128, for the same geometry and

angle of incidence but with varying k. The results of which, evaluated at the same ring of

internal points, i.e. γ = 1 are shown in Fig. 5.6. In this example we find that, again, the

enriched schemes XBEM and PUXBEM are substantially more accurate than standard

BEM. Further, it can be seen in Fig. 5.6 that the ψ2 enriched schemes outperform the ψ1

enriched schemes.

Notably, from Fig. 5.6, for low k XBEM schemes are the most accurate, though, the L2

relative error incurred by the XBEM schemes creeps up towards that of the BEM scheme,

as k increases. This increase in error is not entirely surprising because when k increases,

the singularity will become less dominant in comparison to the multiple wavelengths

across the edge of the scattering object. Therefore, at large k, each scheme must be

able to represent the comparatively higher frequency behaviour across each edge, and

the XBEM scheme is similarly equipped to the standard BEM scheme, i.e. comprising

a (predominantly) polynomial basis. Whereas the PUXBEM basis includes plane-waves

which can maintain accuracy more easily as frequency increases. Therefore, it can be

understood, from Fig. 5.6 that XBEM is the superior scheme for low k and PUXBEM is

– 93 –



likely superior for larger k.
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Figure 5.6: L2 relative error vs. k using 128 DoF.

For additional comparison, the internal points at which the L2 relative error is evaluated

are moved, by varying γ. Results of this variation are presented in Table 5.1 for γ = 1-5,

with the number of degrees of freedom fixed at 128, for k = 20. The singular enrichment

employed for the XBEM and PUXBEM results in Table 5.1 is the ψ2 function. Notably,

the benefit from using the singular enrichment is seen, at least for the γ range tested, to

be present further afield. This means that the benefit is not restricted to areas local to

the corners.

γ BEM XBEM PUXBEM
1 2.8354e− 03 4.3427e− 04 2.7960e− 05
2 2.2018e− 03 3.4139e− 04 2.1726e− 05
3 1.8703e− 03 2.9102e− 04 1.8458e− 05
4 1.6527e− 03 2.5755e− 04 1.6312e− 05
5 1.4947e− 03 2.3311e− 04 1.4753e− 05

Table 5.1: Relative error ε using 128 DoF for γ = 1-5.

Henceforth, the XBEM and PUXBEM results presented will employ the ψ2 singular

enrichment functions, this is for ease of plotting as the ψ2 schemes have been shown to

consistently outperform the corresponding ψ1 schemes.
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Use of blending functions

In the results presented in this chapter, so far, there has been no attempt made to enforce

continuity of the singular enrichment functions at the ends of elements. This is because,

as described in (5.8) and (5.13), the singular enrichment functions, multiplied by shape

functions, do not typically provide continuity of the potential solution.

From Fig. 5.3 it can be seen that the fractional order Bessel functions are equal to 0

at rb = 0, which will be located at one end of the element which is immediately adjacent

to a corner at which two edges of a polygon meet in an XBEM or PUXBEM scheme.

Though, considering the variation of the Bessel functions over the edges associated with

the same corner, there is no guarantee that that the same Bessel functions will be equal

to 0 at the opposite ends of the edges, i.e. at rb = L. This introduces a discontinuity into

the formulation. Whilst there are methods which successfully employ discontinuous basis

functions, such as PWDG [37, 38] and DEM [39], it is useful to determine the impact of

the discontinuity in the basis of the XBEM and PUXBEM schemes.

The impact that the discontinuity of the singular enrichment functions has on the

overall solution is tested here by enforcing continuity of the functions, at both end points.

Firstly, an edge of a polygon is defined as having length L wherein 0 < rb < L, with

rb = 0 at the corner that is being enriched. It is possible to include a blending function

w(η) in ψ2, which tapers towards zero at rb = L. Including w(η) in this way enforces

ψ2 = 0 at rb = L. Therefore, ψ2 can be written as follows,

ψ2,l = Jlα(krb) cos(lαθb)w(η) (5.22)

with the following definition of η

η =
2rb
L− β

− L+ β

L− β
(5.23)

where β represents the span in which w(η) is equal to 1, defined as follows

w(η) =

1, if rb < β

0.25(1− η)2(2 + η), otherwise
(5.24)

which is a Hermite function. This Hermite function can be seen in Fig. 5.7, plotted

against rb for 0 < rb < L. β can be seen clearly in Fig. 5.7 along with the tapering of

the Hermite function. On the right hand side of Fig. 5.7 the blended version of ψ2 from

(5.22) is shown tapering to zero, thus enforcing continuity of the basis. Fig. 5.8 shows the

L2 relative error ε, taken over a ring of internal points with γ = 1, against the number of

degrees of freedom for a unit square scattering object being impinged by a plane-wave φinc
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Figure 5.7: (left) Hermite blending function, (right) Blended Bessel function with n = 1,
k = 20 and α = 2

3
.

propagating at an angle of π
4

from the positive x-axis, with k = 20. The 5 sets of results

of shown in Fig. 5.8 correspond to 5 different β spans and indicate that it is actually

more accurate to set β = L, i.e. not blend.

Fig. 5.9 shows results for the for the same square scattering object as Fig. 5.8 but

with k varying and the number of degrees of freedom fixed at 128. These results confirm

that the singular enrichment functions perform best without blending functions. Notably,

from Fig. 5.8 and Fig. 5.9, it appears that including blending functions also reduces the

stability of the results, thus, from hereon the blending functions are not included and the

discontinuity of ψ2 is accepted.

Accuracy locally at a corner

In Table 5.1 it is shown that increasing γ has little impact on the benefits of including

singular enrichment functions. Though, even at γ = 1 the internal points, at which the

the error is computed, are relatively remote from the corners (the square has sides of

length 1). In order to study the impact of singular enrichment functions locally at corners

the internal points are arranged to surround each corner much more closely than γ = 1

as can be seen in Fig. 5.10. In the case of the square scattering object this means that

the internal points are taken over four arcs, each of radius γ, the union of these four sets

of points forms a complete contour, defined as follows

ΓR =
i=4⋃
i=1

ΓiR. (5.25)

Fig. 5.11 shows the L2 relative error ε, taken over ΓR, against γ (for a range of γ − 0.01-

0.2) for a unit square scattering object being impinged by a plane-wave φinc propagating
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Figure 5.8: Relative error vs. DoF for γ = 1, varying β where L is the element length.
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Figure 5.9: Relative error vs. k using 128 DoF, varying β where L is the element length.
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at an angle of π
4

from the positive x-axis with k = 20. The results of Fig. 5.11 indicate

that the standard BEM scheme begins to fail as the evaluation points approach the corner

locations whereas the enriched schemes remain within the engineering accuracy range.

Figure 5.10: Internal point locations for single square scattering object.

Conditioning

When including enrichment functions, such as in PUBEM, it is well-known that the

the resulting system of equations can become ill-conditioned [52]. In particular, this ill-

conditioning increases as the number of enrichment wave directions M increases relative

to the number of elements E. To reduce the condition number of a PUBEM system, the

ratio of M to E can be adjusted by reducing M and increasing E accordingly. Notably,

alternate schemes have been designed to tackle the ill-conditioning in a plane-wave basis

[92], but it has been found that, typically, a suitable solver can be employed to overcome

the ill-conditioning in PUBEM systems.

In this section, the condition number, defined as κ, is tested for BEM, XBEM, and

PUXBEM. Fig. 5.12 presents κ against the number of degrees of freedom for the unit

square being impinged by a plane-wave φinc propagating at an angle of π
4

from the posi-

tive x-axis with k = 20. The results shown in Fig. 5.12 indicate that the conditioning of

PUXBEM is substantially worse than that of BEM and XBEM, though, this is actually

consistent with the literature on PUBEM and as mentioned above, a suitable solver can

reach an accurate solution. Thus, even with this increase in condition number, PUXBEM

is considerably more accurate than XBEM, so the cost of this enrichment from a condition-

ing standpoint seems to be negated by the accuracy gained by employing the enrichment.

Fig. 5.12 also shows that including the relatively few degrees of freedom associated the
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Figure 5.11: Relative error vs. γ using 128 DoF.

singular enrichment of XBEM is enough to increase the condition number of the system

by nearly two orders of magnitude.

Single degree of freedom per Bessel function

As presented in section 5.4 there are two possible formulations for the XBEM and PUBEM

enrichment: formulation A and formulation B. One might expect that formulation B,

i.e. including the corner enrichment as a single degree of freedom would provide the most

accurate solution because formulation B includes the cosine term cos lαθb to unify the

enrichment at each corner whereas formulation A does not account for the variation in

the circumferential direction. Though the results presented in this chapter, so far, for

XBEM and PUXBEM have all used formulation A because it has been found to be more

accurate. In this section, a comparison is made between formulation A and formulation

B to verify that formulation A is more accurate.

Fig. 5.13 presents L2 relative error against k for a square scatterer being impinged

by a plane-wave φinc propagating at an angle of π
4

from the positive x-axis. The results

shown in Fig. 5.13 indicate that using formulation B, whilst more stable, is consistently

outperformed by formulation A for the range of k tested. Therefore, with the exception

of the results shown in Fig. 5.13, formulation A is employed to generate XBEM and

PUXBEM results.
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Figure 5.12: Condition number κ of the H matrix vs. degrees of freedom.
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Figure 5.13: Relative error vs. DoF using a single DoF per ψ2, marked 1DoF and using
a DoF for each edge. The single DoF results were obtained using 124 DoF and the two
DoF results used 128 DoF.
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5.4.2 Multiple square scattering

For numerical schemes which aim to solve general Helmholtz problems, it is important to

be able to model reflections. These reflections can of course occur in interior Helmholtz

problems, but relevant to the the focus of this chapter, these reflections can also occur

when considering non-convex scattering objects or multiple scattering objects. It is use-

ful to determine if XBEM and PUXBEM can still add benefit in the presence of these

reflections.

Up until now, in this chapter, and in this thesis, examples have been presented for

single scattering objects only. In this section a scattering arrangement is considered,

which includes two unit square scattering objects being impinged by a plane-wave φinc

propagating at an angle of π
4

from the positive x-axis with k = 20. The square objects

are positioned according to Fig. 5.15 which shows the real part of the total potential of

the resulting acoustic field, with reflections clearly visible. In order to compare BEM,

XBEM, and PUXBEM, a set of internal points is defined according to Fig. 5.14 with

eight arcs, each of radius γ and centered around one of the eight corners. This choice of

internal point locations is made because using a single ring of internal points would require

a relatively large radius to include both square objects. Using such a large ring would

result in many of the internal points being remote from the corners of the squares that

one might expect would experience the majority of the reflections, i.e. located centrally

in the square scattering arrangement. Accordingly, the set of internal points ΓR is defined

as follows

ΓR =
i=8⋃
i=1

ΓiR (5.26)

For this example the convergence of BEM, XBEM and PUXBEM is compared using an

L2 norm Q taken of the solution vector, defined as follows

Q = ||φ||L2(ΓR). (5.27)

Fig. 5.16 shows the convergence of Q against number of degrees of freedom for the

multiple scattering object arrangement with γ = 0.01. Fig. 5.16 indicates that XBEM

and PUXBEM converge very quickly, towards the same result, using relatively few degrees

of freedom, whereas BEM slowly oscillates towards the same result, requiring a much

greater number of degrees of freedom. Therefore, even in the presence of reflections, there

is substantial benefit in employing singular enrichment functions.
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Figure 5.14: Internal point locations for the two square scattering arrangement.

Figure 5.15: Real part of total potential field resulting from a configuration of two squares
being impinged by an φinc = π

4
.
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Figure 5.16: L2 norm vs. DoF at internal points around two square scattering objects,
where γ = 0.01.

5.4.3 Triangular scattering object

In the above sections, varying singular enrichment functions have been tested, along

with varying k, use of blending functions, numbers of degrees of freedom and multiple

scattering object arrangements. The previous arrangements have included right angles.

In this section, final testing is performed to verify that singular enrichment is suitable for

alternate geometries.

The geometry used for this example is schematically represented in Fig. 5.17, which

shows the internal point locations around a vertex of a unit equilateral triangle, defined in

terms of γ where γ = 0.1. As it has been found from the results presented in Fig. 5.6 that

XBEM is the superior scheme for low k and PUXBEM is superior as k becomes larger,

two examples are presented in this section: the first is BEM vs. XBEM for scattering

from the triangle with k = 2 and the second is PUBEM vs. PUXBEM for scattering from

the triangle with k = 20. For both examples, L2 relative error ε is plotted against the

number of degrees of freedom and the triangular scattering object is being impinged by a

plane-wave travelling directly downwards, in the negative y-direction.

Fig. 5.18 shows the BEM vs. XBEM results and Fig. 5.19 shows the PUBEM vs.

PUXBEM results. From both of these figures, it is clear that there is benefit in including

the singular enrichment, reductions in ε of up to two orders of magnitude. Notably, the
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results for XBEM and, in particular, PUXBEM are less stable than BEM and PUBEM

respectively. This test confirms that the corner enrichment works for 60◦ corners, as well

as right angles, giving confidence in the use of different enrichment functions as informed

by the value of α at each corner.

Figure 5.17: Internal point locations for single triangular scattering object.

5.5 Conclusions

In this chapter, singular enrichment functions have been presented for Helmholtz scatter-

ing problems in BEM and PUBEM settings, with the resulting singular enriched schemes

being introduced as XBEM and PUXBEM respectively. The aim of the singular en-

richment is to reduce the number of degrees of freedom required in BEM analysis for

scattering from corners. To test the singular enrichment functions, multiple examples

have been presented, including: square and triangular geometries wherein k has been var-

ied; the number of degrees of freedom have been varied, and multiple scattering objects

have been considered. Further, two candidate forms of enrichment ψ1 and ψ2 have been

tested, along with the use of blending functions.

The outcome from tests undertaken in this chapter is that there is substantial benefit

in including singular enrichment functions in a BEM or PUBEM setting. Though, XBEM

is slightly more accurate than PUXBEM for low k and PUXBEM is more accurate for

larger k problems. It was found that blending to enforce continuity at end points has

a detrimental effect on the accuracy of the results obtained using singular enrichment

functions. Further, it was found that including a separate singular enrichment function

per side is favourable over just using a single degree of freedom associated with each
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Figure 5.18: Relative error vs. DoF for a triangular scattering object with γ = 0.1, k = 2.
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Figure 5.19: Relative error vs. DoF for a triangular scattering object with γ = 0.1,
k = 20.
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Chapter 6

High-order basis functions

6.1 Introduction

Classical BEM implementations are typically constructed around a low order, piecewise

polynomial basis. Similarly, for isogeometric formulations, typically low order NURBS

basis functions are used. The requirement to model short wave problems (i.e. where

the wavelength is short in comparison to the domain/scatterer size) motivates a different

approach. It has been shown in earlier parts of this thesis that the use of plane waves is

an attractive option to enhance computational efficiency. In this chapter an alternative

approach is tested, which is the use of high-order polynomial or NURBS basis functions

in order to capture highly oscillatory acoustic fields. Outside of BEM, high-order bases

have been studied in detail, such as in spectral methods and FEM [19–24], and in an

IGAFEM setting [18, 102]. Further, outside of BEM, useful comparisons between high-

order methods and Trefftz methods have been made [25, 26]. Though, it appears that

there is yet to be a thorough analysis of high-order Lagrange functions or high-order

NURBS in a BEM setting. Such analysis, along with the comparison of high-order bases

against PUBEM, is the focus of this chapter. Further, the pollution effect which is well-

studied in FEM, observed in a PWDG setting [105], and is known as an error that cannot

be resolved via local mesh refinement and therefore accumulates in other regions of the

model, has has recently been demonstrated and quantified for a number of low-order basis

functions [103]. It appears that the pollution effect is yet to be studied for PUBEM, thus,

a section in this chapter is devoted to examining pollution in both high-order BEM and

PUBEM.

The problems considered in this chapter include internal problems, for which a Robin

boundary condition is required which results in the discretised BIE (3.35), presented here

for convenience:
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c(p)φ(p) +
E∑
e=1

J∑
j=1

∫ 1

−1

[
∂G(p,q)

∂n
−αG(p,q)

]
Ψj(ξ)J

edξφej

=

∫
Γ

βG(p,q)dΓ(q) + φinc(p), p,q ∈ Γ.

(6.1)

6.1.1 Lagrange basis

In this chapter, the Lagrange basis, that was presented in chapter 3, is extended to include

higher order terms. As mentioned in chapter 3, it is common to use a quadratic basis

comprised of 3 basis functions, as follows

Ψ1 =
1

2
ξ(ξ − 1) (6.2)

Ψ2 = (1− ξ)(1 + ξ) (6.3)

Ψ3 =
1

2
ξ(ξ + 1), (6.4)

though, linear and constant elements can also be employed. In this chapter multiple bases

will be tested, so a superscript L is used to indicate a Lagrange basis, such that acoustic

potential φ over element e with J Lagrangian basis functions can be written as follows

φ =
J∑
j=1

ΨL
j (ξ)φej , (6.5)

for which there is a convenient expansion to produce ΨL
j (ξ), as follows

ΨL
j (ξ) :=

∏
0≤m≤J
m6=j

ξ − ξm
ξj − ξm

=
(ξ − ξ0)

(ξj − ξ0)
. . .

(ξ − ξj−1)

(ξj − ξj−1)

(ξ − ξj+1)

(ξj − ξj+1)
. . .

(ξ − ξJ)

(ξj − ξJ)
. (6.6)

To produce the results in this chapter, four Lagrange bases are compared: 3 basis

functions per element; six basis functions per element; nine basis functions per element;

and, twelve basis functions per element. These bases can be seen, plotted for ξ ∈ [−1, 1],

in Fig. 6.1.

6.1.2 NURBS

As indicated in section 6.1, NURBS bases are also tested in this chapter. The concept of

using NURBS as a basis in IGAFEM and IGABEM was introduced in chapter 3, though,

a short introduction to Isogeometric analysis is provided here, before presenting the actual
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Figure 6.1: Lagrangian basis functions with a, b, c and d showing S = 3, 6, 9 and 12
respectively.
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NURBS functions.

NURBS are B-Splines with non-uniform weightings and are often employed in the

creation of CAD geometries. NURBS can provide a convenient choice of basis because they

can be readily imported from CAD software. In this way, the same functions that are used

to describe a given geometry can, for example, be used to describe variation in acoustic

potential over that geometry. This is the core concept of Isogeometric Analysis (IGA) [93].

NURBS provide further benefit by virtue of being smooth and non-negative. IGA is now a

very popular numerical method [94–96], and has been studied in a BEM setting (termed

IGABEM) [97, 98, 106] along with an example using T-splines for acoustics problems

[99]. Notably, the importation of a NURBS geometry from CAD to be used for numerical

analysis is well-suited to BEM, when compared with FEM, because NURBS are used

to describe the edges of a geometry in 2D or the surface of a geometry in 3D which,

conveniently, is all that is required for BEM analysis, whereas in FEM an additional

volumetric description would be required. A final note, enriched NURBS bases have

also been succesfully employed [100, 101] to form the eXtended Isogeometric Boundary

Element Method (XIBEM).

Thus, the second basis studied in this chapter is a NURBS basis, which describes φ as

follows.

φ =
J−1∑
j=0

ΨB
j,p(ξ)φ

e
j , (6.7)

in which the superscript B is used to indicate the NURBS basis, and where

ΨB
j,p(ξ) :=

Nj,p(ξ)wj∑J
i=0Ni,p(ξ)wi

(6.8)

and wj are a set of weights, Nj,p are pth-degree B-spline basis functions, which can be

represented for p > 0

Nj,p(ξ) =
ξ − ξj
ξj+p − ξj

Nj,p−1(ξ) +
ξj+p+1 − ξ
ξj+p+1 − ξj+1

Nj+1,p−1(ξ), (6.9)

and for p = 0

N0,j(ξ) =

1, if ξj ≤ ξ ≤ ξj+1

0, otherwise
(6.10)

Similarly to the orders of Lagrangian basis chosen, four NURBS bases are compared:

3 basis functions per element; six basis functions per element; nine basis functions per

element; and, twelve basis functions per element. These bases can be seen, plotted for

ξ ∈ [−1, 1], in Fig. 6.2.
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Figure 6.2: NURBS basis functions with all weights wj = 1; a, b, c and d show J = 3, 6, 9
and 12 respectively.
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6.1.3 Plane waves.

In contrast to the high-order bases presented above, the third and final basis that is

employed in this chapter is the PUBEM basis which is comprised of a set of plane-waves

propagating at equispaced angles. The PUBEM basis is presented in chapter 3, but shown

here as a reminder.

In PUBEM, the set of plane-waves, typically, is multiplied by a quadratic Lagrangian

basis, as follows

φ =
J∑
j=1

M∑
m=1

ΨL
j (ξ)Ajmeikdjm·q, (6.11)

in which the superscript L is used to indicate that the plane-waves are multiplied by

Lagrange functions, and

djm = (cos θjm, sin θjm), θjm =
2π(m− 1)

M
(6.12)

where M represents the number of plane waves per node, i =
√
−1 and djm are the unit

direction vectors of propagation of the plane waves. The modified version of (3.35) is as

follows,

c(p)φ(p) +
E∑
e=1

S∑
j=1

M∑
m=1

∫ 1

−1

[
∂G(p,q)

∂n
−αG(p,q)

]
ΨL
j (ξ)eikdjm·qJedξAejm

=

∫
Γ

G(p,q)βdΓq + φinc(p),

(6.13)

the solution of which produces a set of unknown amplitudes Ajm from which the acoustic

potential φ can be recovered, according to (6.11).

6.2 Numerical testing

6.2.1 Implementation

In this section high-order NURBS and Lagrange polynomial bases are compared with

PUBEM, error ε is taken to be relative error when analysing scalar results and L2 relative

error when analysing a vector of results. The definition of ε can be found in Appendix C.

Computational efficiency will be presented in terms of the number of degrees of freedom

per wavelength τ . The condition number, κ, of each resulting system of equations is also

observed. Three test cases are considered: scattering by a single cylinder, scattering by

multiple cylinders and a plane wave propagating along the length of a duct, all of which

have analytical solutions. For the exterior scattering problems, the cylindrical obstacles
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are assumed to be perfectly reflecting or ‘sound-hard’, and for the duct the relevant

boundary conditions will be presented. Numerical integration is performed using a sub-

divided Gauss-Legendre quadrature scheme with a sufficient number of integration points

to ensure that the integration error is negligible. A range of discretisations and wave

numbers are tested, with an additional pollution study for the duct case. The number of

degrees of freedom used is denoted Nd.

6.2.2 Scattering by a cylinder

Scattering by a sound-hard cylinder (i.e. a circular obstacle in 2D) in an infinite domain

is a benchmark problem having an analytical solution [2] which is used in this section to

provide reference scattered potential φref . The scattered potential φref at a point p̄ can

be represented by a series solution comprised of Bessel functions, as follows.

φref (p̄) =
J
′
0(ka)

H
′
0(ka)

H0(kr)− 2
∞∑
n=1

in
J
′
n(ka)

H ′n(ka)
Hn(kr) cos(nθ), p̄ ∈ Ωf (6.14)

For example, to represent this example using BEM the BIE (6.1) is used and a sound-hard

Neumann boundary condition is applied on Γ, defined by

∂φ(q)

∂n
= 0, q ∈ Γ. (6.15)

This reduces (6.1) to

c(p)φ(p) +
E∑
e=1

S∑
s=1

∫ 1

−1

∂G(p,q)

∂n
Ψs(ξ)J

edξφes = φinc(p). (6.16)

In this section, a unit cylinder is considered, as a scattering object, being impinged

by a plane-wave travelling in the positive x-direction. The real part and the abso-

lute value of acoustic potential scattered by this unit cylinder k = 2π is shown in

Fig. 6.3. A circular contour, over which error ε is evaluated, is defined by Γε =

{(x, y) : x = 2 cos θ, y = 2 sin θ, θ ∈ (0, 2π)}. For the Lagrange polynomial basis and the

NURBS basis four orders 2, 5, 8 and 11 (as shown in Fig. 6.1 and Fig. 6.2) are considered.

For the PUBEM basis, a fixed number of elements, E = 4 is used, increasing Nd by

incrementing the number plane waves per node, M .

A first example is presented, in which the wavenumber is fixed at k = 2π but Nd is

varied up to ≈ 250, which corresponds to τ ≈ 40. Whilst this τ vastly exceeds the τ ≈ 2.5

required by PUBEM (or any of the bases tested in this chapter) to achieve engineering

accuracy, increasing it to this extent offers valuable insight into the broader numerical

behaviour of the basis. The results for this example, presented in Fig. 6.4, show a clear

improvement in computational efficiency from using higher order functions. These results
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Figure 6.3: (left) Real part of the total potential, (right) absolute value of total potential,
for scattering by a unit cylinder, k = 2π.
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Figure 6.4: L2 relative error ε vs. Nd for scattering by a unit cylinder, k = 2π.
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are somewhat expected as in [106] increase in accuracy is seen as a result of increasing the

order of a NURBS basis from 2-3, for elasticity problems. It is evident that the Lagrange

and NURBS bases offer similar numerical performance, and that the NURBS basis does

not offer the clearer improvement that has been seen in other, predominantly low-order,

IGABEM applications. Though, 3rd order NURBS and Lagrange shape functions are

shown to converge at a similar rate for acoustic scattering by a torus in [99]. An expla-

nation might be as follows. IGABEM can be expected to give improvements over the

classical piecewise polynomial basis for two reasons: (i) the exact geometric description,

and (ii) the smoother, non-negative basis. As long as the geometric error produced by

the Lagrange basis functions is small in comparison with the wavelength, the implications

geometric error on the solution error will be limited. Once the Lagrange models in this

study are sufficiently refined to observe the heuristic rule on the required τ , the geometric

description is certainly of sub-wavelength accuracy, so the difference in the errors is likely

to reduce to the effect of the improved smoothness and non-negativity of the NURBS

basis. It can be seen that this effect is a mild one, so that the errors produced by high

order Lagrange and NURBS bases are rather similar.

In the results shown in Fig. 6.4, PUBEM is seen to quickly achieve a higher level of

accuracy, but is eventually overtaken by the higher order NURBS and Lagrange bases with

the increased severity of ill-conditioning in the PUBEM linear system at large τ [49]. For

comparison, the condition number κ is plotted for the Lagrange and NURBS systems in

Fig. 6.5. These plots indicate that whilst increasing the order of basis functions employed

does increase κ, increasing Nd has no detrimental impact on the condition number.

In contrast, the condition number of PUBEM appears to increase in response to an

increase in the the number of degrees of freedom, as can be seen in Fig. 6.6 which shows

a direct comparison between κ, Nd and ε for the PUBEM case. Further, from Fig. 6.6, it

can be seen that limitations of the solver restrict the accuracy of the solution. However, it

is clear that, as long as a suitable solver is chosen that can deal with such ill-conditioned

matrices, the most accurate PUBEM solutions are to be found from the most poorly

conditioned systems because these systems benefit from the most enriched approximation

space.

Testing, so far, has been restricted to a relatively low k which is not favourable for

PUBEM, because PUBEM performs best in the mid-high frequency range. In order to

provide an extra level of comparison, that may favour PUBEM, another example is tested

for the single cylinder case, in which Nd is fixed, but k varies. It is not possible to

force the number of degrees of freedom used for each basis to equal one another, but for

each discretisation Nd ∈ [220, 224]; the results are displayed in Fig. 6.7. These results

show that, as expected, PUBEM outperforms the other methods at high frequency, but,

importantly, it is evident that the high-order methods function optimally at large τ (i.e. at
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Figure 6.5: (Left) Condition number κ vs. Nd for Lagrange basis, (Right) Condition
number κ vs. Nd for NURBS basis, for scattering by a unit cylinder, k = 2π.

small k when Nd is fixed) whereas the converse is true for PUBEM.

6.2.3 Scattering by three cylinders

In this section, a multiple scattering arrangement is considered, to test the efficacy of each

basis in the presence of reflections. Specifically, the example chosen comprises 3 sound-

hard circular cylinders in an infinite domain, being impinged by an incident plane-wave.

This problem is selected because it has an analytical solution [104], wherein the scattered

potential φref for a set of N cylinders can be represented on the boundary of the vth

cylinder by a series solution comprised of Hankel functions,

φref (av, θv) = − 2i

πkav

∞∑
n=−∞

Avn
H ′n(kav)

einθv , (6.17)

where av is the radius of the vth cylinder, θv is the angle from the positive x-axis of the

vth cylinder to the point of evaluation and Hn is a Hankel function of the first kind and

order n. The infinite series can be truncated, with Avn obtained according to [104]. The

boundary of each cylinder can be denoted as Γ1,Γ2 and Γ3 and evaluate the error norm

evaluated over the union ε so that Γε =
⋃v=3
v=1 Γv.

The three unit cylinders are located at a radius of 3 from the origin (0, 0) with centres

at angles of 0, 2π
3

and 4π
3

, being impinged by a plane wave travelling in the positive x-

direction. The total potential for this example with k = 4π is shown in Fig. 6.8. It is
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Figure 6.6: PUBEM L2 relative error ε and condition number κ for scattering by a unit
cylinder, k = 2π.

0 5 10 15 20 25 30 35 40 45 50
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 6.7: L2 relative error ε for scattering by a unit cylinder, with Nd ∈ 220-224.
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Figure 6.8: (left) Real part of the total potential, (right) absolute value of total potential,
for scattering by three unit cylinders, k = 4π.

evident that with the inclusion of reflections, the solution is more complicated than that

of the single cylinder.

For each cylinder in this example, the same selection of basis functions and discreti-

sations, used for the single cylinder example, are applied. As with the single cylinder

example the wavenumber is fixed at k = 4π, and the degrees of freedom per circle vary

up to ≈ 250. The results for this example are presented in Fig. 6.9 which appear very

similar to those obtained for the single cylinder. It can be seen in Fig. 6.9 that there is

a clear benefit in using high-order basis functions and, again, the Lagrange results are

in close agreement with the NURBS results. It can also be seen in Fig. 6.9 that the

PUBEM results are similar to those obtained for the single cylinder example; reaching a

high level of accuracy quickly, before gradually being overtaken by the high-order NURBS

and Lagrange functions, due to conditioning limitations. This happens slightly later (at

Nd ≈ 210) than for the single cylinder case (Nd ≈ 140), which can be attributed to the

increase in k, because this produces a τ range that is more favourable for PUBEM. The

respective condition numbers of the resulting systems of equations are shown in Fig. 6.10

for the Lagrange and NURBS basis, with the PUBEM condition number in Fig. 6.11. It is

clear that the behaviour is similar to the previous example again, as the lowest condition

numbers are seen in the Lagrange basis, with a slight increase associated with the NURBS

basis and a substantial increase for PUBEM. It is worth noting that using PUBEM offers

an improvement in ε of 4-5 orders of magnitude over the conventional quadratic Lagrange

polynomial basis for much of the range of problem sizes tested.
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Figure 6.9: L2 relative error ε vs Nd (per cylinder) for scattering by three unit cylinders,
k = 4π.
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Figure 6.10: (Left) Condition number κ vs. Nd for Lagrange basis, (Right) Condition
number κ vs. Nd for NURBS basis, for scattering by three unit cylinders, k = 4π.
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Figure 6.11: PUBEM L2 relative error ε and condition number κ for scattering by three
unit cylinders, k = 4π.

6.2.4 Plane wave propagating along the length of a duct

In this section, a third example is considered wherein a plane-wave is propagating along

the length of a duct, which is in essence a 1D problem, but is being analysed here in

2D. As with the other examples in this chapter, the motivation behind selection of this

example is the fact that it has an analytical solution, in this case wherein the potential

at a point p̄ is given by

φref (p̄) = eikx(p̄), p̄ ∈ Ωf . (6.18)

This example is considered as an acoustic cavity problem with Robin boundary con-

ditions α = 0, β = −ik prescribed on the left hand side of the duct, and α = ik, β = 0

on the right hand side; these can be seen along with relevant dimensions in Fig. 6.12.

Along the horizontal boundaries α = 0 is prescribed and β = 0, corresponding to the

‘sound-hard’ condition. The L2 relative error ε is evaluated over a straight line of points

Γε = {(x, y) : x ∈ (0, L), y = W/2}. Results from a test case in a short duct of dimensions

L = 1, W = 1, with k = 4π, are displayed in Fig. 6.13, and it is evident that the error ε

follows a similar pattern to that in the previous examples. That is, increasing the order

of basis functions employed causes a reduction in error, with Lagrange polynomials and

NURBS offering similar performance.
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Figure 6.12: Duct boundary conditions and domain.

To generate the plots showing the L2 relative errors ε for the Lagrange and NURBS

schemes in Fig. 6.13, the discretisation process is straightforward; first select the order

of basis to be employed, then increase the number of elements to give the required total

number of degrees of freedom. Though, the PUBEM discretisation for the same example

is slightly more involved. Before discussing the PUBEM discretisation of the duct, the

discretisation of the first two examples of exterior scattering from cylinders, is described;

a coarse discretisation of 4 elements per cylinder was used, with M chosen to provide

the required number of degrees of freedom, Nd. Therefore, in PUBEM there are two

options, one can increase the total number of elements, E (i.e. h-refinement), or increase

the number of plane waves M included per node (a process akin to p-refinement, and

sometimes called Q-refinement). It has been shown that the latter is favourable [50], until

τ becomes sufficiently large to cause severe ill-conditioning, at which point an increase in

the number of elements, E, with an associated reduction in the number of plane waves M ,

becomes the favourable option. This is similar to the hp-refinement schemes commonly

found in the finite element literature.

In this duct problem, one would expect that including enrichment in the x-direction

would be of benefit because, obviously, then the solution to the problem is contained in

the approximation space and it would be expected that a solution with very low errors

would be obtained. Testing, shows that this indeed the case, and one can also reduce M

to 1 (i.e. including only the x-direction and no other directions in the plane wave basis).

This is demonstrated in Table 6.1, which displays ε for a range of ducts of length L up to

200λ for the case k = 4π, with only a single element used on each side of the duct. It is

evident that a high level of accuracy is consistently achieved for this coarsest of meshes,
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independently of L.

As mentioned, the exact solution is contained in the approximation space, therefore,

high accuracy for such a small number of degrees of freedom shown in Table 6.1 comes as

no surprise. Though, it is perhaps more useful to investigate the performance of PUBEM

where M > 1 and the x-direction is not contained in the basis. It is well known that a

linear combination of (a sufficient number of) plane-waves can reproduce any solution of

the Helmholtz equation, and here the behaviour of PUBEM is explored with this multiple

wave expansion in approximating the plane-wave propagating through the duct. The

results shown in Fig. 6.13 were produced using this set of plane-waves, propagating in

directions (not including θ = 0). From these results, it is clearly still possible to recover

the acoustic potential with high accuracy.
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Figure 6.13: L2 error ε vs. Nd per side for a travelling wave in a duct, k = 4π.

L/λ 2 20 100 200
τ 1 0.1 0.02 0.01
ε 3.0996e− 13 3.5676e− 13 3.5802e− 13 3.4503e− 13

Table 6.1: Relative error ε with M = 1 using only a single element per side, k = 4π.

Pollution error in the duct.

In FEM, pollution error is a commonly studied numerical aspect, though, this is not

the case for BEM. In fact the pollution effect has only recently been investigated for

– 122 –



0 10 20 30 40 50 60
10

1

10
2

10
3

10
4

10
5

0 10 20 30 40 50 60
10

-15

10
-10

10
-5

10
0

10
5

10
10

10
15

10
20

Figure 6.14: (left) Condition number κ for the Lagrange and NURBS basis, (right) Con-
dition number κ and L2 error ε for the plane wave basis, for a travelling wave in a duct,
k = 4π.

BEM by Marburg [103], who used a discretisation comprising piecewise constant, linear

and quadratic basis functions in a BEM approximation of propagation of a plane-wave

along a long, slender, air-filled duct to show the pollution effect. Marburg showed that

the pollution error is an error that increases along the length of the duct and cannot

be resolved by refining the mesh towards the end of the duct. In this section, the same

duct is tested, with the same number of degrees of freedom per side as the finest of

Marburg’s discretisations, but using high-order and plane-wave enriched basis functions.

The dimensions of this example are W = 0.2 m and L = 54.4 m, with the speed of sound

in air taken to be 340 m/s and a frequency of 750 Hz.

The first example considered here is produced by including 1632 degrees of freedom

along each of the long sides of the duct. A local absolute error ε1 = |φ−φref |, is computed

over Γε. The local absolute error ε1 is shown in Fig. 6.15; it is clear that both the

Lagrange and NURBS bases are subject to a pollution effect manifested in degradation

in accuracy with increasing coordinate x. Increasing the order of basis employed does

reduce the overall error, but the error is seen to increase as a function of x. Again, the

results of the Lagrange and NURBS bases are very similar (the condition numbers for this

example are shown in Table 6.2, which shows the conditioning is benign in both cases).

The PUBEM discretisations employed are M = 1, 8, 10 and 12, with the corresponding

number of elements, E, to provide the required number of degrees of freedom per side.
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Lagrange NURBS PUBEM
Order κ Order κ M κ

2 50.3 2 51.5 1 49.6
5 47.8 5 72.8 8 1.9e+ 18
8 90.6 8 1137.3 10 1.3e+ 19
11 1341.6 11 1972.4 12 3.6e+ 18

Table 6.2: Condition number κ for the duct with L = 54.4m, W = 0.2m and f = 750Hz

Figure 6.15: (left) Local error ε1 for the Lagrange basis, (right) Local error ε1 for the
NURBS basis for a travelling wave in a duct having L = 54.4, f = 750Hz, and including
1632 degrees of freedom on each long side.

For the M = 8, 10 and 12 discretisations the plane wave directions are equispaced, but

the x-direction is explicitly excluded from the basis, whereas for the M = 1 case, it is the

only direction included in the basis. Fig 6.16 displays the variation in error ε1 incurred,

by the PUBEM schemes, with position in the duct. For the case M = 1 the errors are

consistently very small, and there is no evidence of any meaningful pollution error. For

M = 8, 10, 12 the errors are highly oscillatory in x, which may perhaps be expected for

errors in the range 10−9 to 10−11, but a small underlying positive gradient is visible that

suggests there is a mild pollution effect when using a plane wave basis. These results for

pollution errors in the PUBEM are consistent with the observations of Gittelson for the

plane-wave enriched Discontinuous Galerkin (PWDG) method [105].
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Figure 6.16: Local error ε1 for the PUBEM basis for a travelling wave in a duct having
L = 54.4, f = 750Hz, and including 1632 degrees of freedom on each long side.

6.3 Conclusions

In this chapter, numerical performance of high-order NURBS and Lagrange polynomial

bases has been compared with the plane-wave basis of PUBEM for three benchmark prob-

lems. It has been shown that a marked improvement in accuracy can be achieved by the

order of NURBS and Lagrange polynomial bases, with a reduction in error of up to 6

orders of magnitude. The resulting condition number of the system of equations increases

along with the order, but for the examples studied (up to 11th order functions per ele-

ment), both systems are well conditioned and the accuracy of the solution is not adversely

affected. The NURBS and Lagrange bases provide very similar numerical solutions in the

relative L2 error norm, though, NURBS prove to be slightly more accurate. PUBEM has

been shown to consistently outperform the lower order bases, but for large τ the 11th

order Lagrange and NURBS bases generate better conditioned linear systems and can

achieve greater accuracy. Additionally, the pollution error in BEM has been observed for

high-order and PUBEM discretisations in an example of a travelling wave in a long duct.

The overall error in the duct can reduced by increasing the order of the basis functions,

or by enriching it, but a pollution error will still develop for waves propagating over a

long distance.
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Chapter 7

Optimal selection of basis for

PUBEM

The results of Chapter 6 provided insight into the order of BEM bases employed, in

particular, indicating that a relatively high-order basis can provide greater accuracy per

degree of freedom than a standard quadratic basis. It is common to employ a standard

basis such as quadratic shape functions or NURBS of order 2 with a plane wave basis,

because it is understood that the plane-waves are doing most of the work in representing

the solution. For this reason, there is yet to be a study into the order of the underlying

basis functions which serve to interpolate the amplitudes of the plane-wave basis.

In this chapter, PUBEM is implemented using a variety of elements, from constant

to order 4. The circular scattering object has proven useful, not just due the analytical

solution, but due to the fact that the results from the circle have been shown to be a good

indicator of performance for other geometries, such as the capsule, and multiple scatterer

arrangements. Thus, a single geometry of a circular scattering object is considered here,

which negates the requirement to repeat many results.

Earlier chapters of this thesis have demonstrated that the accuracy of the solution,

including the management of the system conditioning, can be controlled by making an

appropriate choice of the number of degrees of freedom per wavelength, τ . Therefore, for

a given problem for a scatterer of some known perimeter and for a given wavenumber k,

it becomes a simple matter to determine the optimal number of degrees of freedom to use

in our PUBEM analysis. The total number of degrees of freedom is Nd = (J − 1)EM ,

where E is the number of elements, M is the number of plane wave directions per node

and J is the number of conventional basis functions used per element. Thus, there is

considerable freedom in our choice of E,M, J to accumulate the desired total number

of degrees of freedom. The optimisation of this decision making is the subject of this

chapter. Before presenting the results, note that: the total number of degrees of freedom
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is defined as Nd; ε is an L2 relative error as defined in Appendix C; p is the order of

basis (p = 0 is a constant element), and κ is the condition number of the resulting system

of equations. Due to the requirement of repeating results for each order of basis, there

appear to be a large number of results are presented here, but there are essentially only

two tests performed: varying k and varying Nd.

7.1 Varying k

Firstly the number of degrees of freedom is fixed as follows Nd = 192 and the number

of elements is varied as follows E = 2, 4, 8, 16, then results are compared for each order

of basis function, i.e., p = 0-4. Implicit within the variation of E with a fixed Nd is

the requirement that M varies accordingly, and naturally, as E increases M decreases

and vice versa. Results are shown for each E-M combination for the p = 0 case in Fig.

7.1 wherein k is varied from 1-100 and the resulting error ε and condition number κ

are plotted. Predictably, κ increases as more plane-waves and larger elements are used,

with the lowest κ achieved by the E = 16 discretisation. The error seems to be highest

for E = 16, even though it is the most well-conditioned, with the accuracy generally

increasing, until E drops as low as 2, which produces slightly less accurate results than

the E = 4 case. The accuracy of these results is substantial, considering that the elements

are constant, which means that the plane-waves are doing the vast majority of the work.
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Figure 7.1: L2 relative error epsilon and the corresponding condition number κ, for basis
functions of order p = 0.

The error and condition number with k varying are plotted, for p = 1-4, in Figs. 7.2-7.5

respectively. Overall, the results bear resemblance to the p = 0 case, though, it appears
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that from p ≥ 2 the fewer elements the better, with the E = 2 case outperforming the

E = 4 case.
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Figure 7.2: L2 relative error epsilon and the corresponding condition number κ, for basis
functions of order p = 1.

7.2 Varying the number of degrees of freedom

In Fig. 7.6 results are shown for a fixed wavenumber k = 50 and Nd varied by increasing

M , again for E = 2, 4, 8, 16 and p = 0-4. Again, it is noted that the condition number is

lowest for the E = 16 case and highest for the E = 2 case. Further, we notice that for

this constant element case E = 4 outperforms E = 2.

The error and condition number with Nd varying for p = 1-4 are plotted in Figs.

7.7-7.10 respectively. Overall, the results bear resemblance to the p = 0 case, though,

it appears that again, from p ≥ 2 the fewer elements the better, with the E = 2 case

outperforming the E = 4 case. Thus, it appears that for quadratic or higher-order

elements, it is is optimal to employ as few elements as possible, whereas extra care is

required for constant and linear elements.

7.3 Comparison

The results above are difficult to compare directly, so Fig. 7.11 is provided to present the

most accurate discretisation for each order and compare the error resulting from varying

k and Nd. The results in Fig. 7.11 confirm that above with regards to E = 2 and E = 4,

but generally shows very similar levels of error for each p, meaning that the simplicity

of a constant element, coupled with the accuracy that is possible could provide a strong

benefit over quadratic PUBEM elements.
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Figure 7.3: L2 relative error epsilon and the corresponding condition number κ, for basis
functions of order p = 2.
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Figure 7.4: L2 relative error epsilon and the corresponding condition number κ, for basis
functions of order p = 3.
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Figure 7.5: L2 relative error epsilon and the corresponding condition number κ, for basis
functions of order p = 4.
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Figure 7.6: L2 relative error ε and the resulting condition number κ vs. Nd for discreti-
sations including a total number of elements E = 2, 4, 8, 16. k = 50 and Nd is increased
by increasing M , p = 0.
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Figure 7.7: L2 relative error ε and the resulting condition number κ vs. Nd for discreti-
sations including a total number of elements E = 2, 4, 8, 16. k = 50 and Nd is increased
by increasing M , p = 1.
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Figure 7.8: L2 relative error ε and the resulting condition number κ vs. Nd for discreti-
sations including a total number of elements E = 2, 4, 8, 16. k = 50 and Nd is increased
by increasing M , p = 2.
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Figure 7.9: L2 relative error ε and the resulting condition number κ vs. Nd for discreti-
sations including a total number of elements E = 2, 4, 8, 16. k = 50 and Nd is increased
by increasing M , p = 3.
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Figure 7.10: L2 relative error ε and the resulting condition number κ vs. Nd for discreti-
sations including a total number of elements E = 2, 4, 8, 16. k = 50 and Nd is increased
by increasing M , p = 4.

– 132 –



0 20 40 60 80 100
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

0 50 100 150 200 250
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 7.11: L2 relative error ε vs. k for the most accurate example for each p taken from
the above results (left). L2 relative error ε vs. Nd for the most accurate example for each
p taken from the above results (right).

7.4 Conclusion

In summary, it seems that for the circular scatterer, E = 2 with larger M is the most

accurate, apart from whilst using the constant or linear elements. For more complicated

geometries, more than 2 elements would need to be used but the general indication from

this analysis is that a smaller number of elements tends to be preferable over a large

number of elements. This implies that if we wish to employ E ≤ 2 then p ≥ 2 would

be ideal, though the constant and linear elements are still very accurate, and this slight

increase in error could be offset by improved integration speed achieved by use of simpler

functions.

Even with the results of this section highlighting the efficacy of using large elements

with relatively low order basis functions, a more thorough analysis including more compli-

cated geometries or multiple objects would likely be required to develop a one-size-fits-all

rule for determining an optimal number of elements to use; optimal order of basis func-

tions; and, the corresponding optimal number of plane waves to use per node, for a given

wavenumber.
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Chapter 8

Conclusions and further work

8.1 Conclusions

The work presented in this thesis has been a broad study of the use of oscillatory basis

functions in acoustic modelling. There have been three major aspects that have been

studied in which novel work has been undertaken, these are:

1 Integration schemes for PUBEM

2 Singular basis functions for scattering from corners

3 High-order Lagrange and NURBS schemes

Together, these studies provide a comprehensive investigation of numerical performance

of schemes based on these novel basis functions.

In addition, a short study of the optimal number of elements E vs. the number of

plane waves included per node M was performed. The results showed that highly accurate

results could be achieved using constant elements and a coarse discretisation, as long as

a sufficient number of plane waves were employed.

8.1.1 Integration schemes for PUBEM

The following highly-oscillatory integration schemes were tested:

1 Filon method

2 Asymptotic method

3 Method of stationary phase

4 Targeted Gauss-Legendre

5 Optimised Gauss-Legendre
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All of these integration schemes produced highly accurate results for some cases, but

none produced highly accurate results in all cases. This lead to a study of a standard

Gauss-Legendre scheme with the results suggesting that only around 4 Gauss points are

required per wavelength for PUBEM integrals. Some of this work was published in Journal

of Computational Mathematics (JCM).

A common feature of the problematic cases is the presence of a stationary point close

to the end of an element. In a typical PUBEM analysis, tens of thousands of integrals

could be performed. The ill-conditioning of these systems of equations means that it is

important to evaluate our integrals to a prescribed accuracy because even a relatively

small number of inaccurately evaluated integrals can impact on the overall accuracy of

the solution. It is concluded that a scheme giving robust evaluation of all integrals is im-

portant and this is only provided by Gauss-Legendre. However, results from testing of the

Optimised Gauss-Legendre scheme show that relatively few Gauss points per wavelength

are required. In particular, there is benefit in using relatively large integration cells, with

high-order quadrature.

8.1.2 Singular basis functions for scattering from corners

A study into the numerical behaviour of PUBEM and BEM at corner locations was pre-

sented and additional enrichment functions developed to increase accuracy. The resulting

enriched schemes are termed XBEM and PUXBEM and produce substantial improvement.

For example, the results show that an increase in accuracy of two orders of magnitude is

possible for scattering by polygonal objects, simply by including a fractional order Bessel

function at each corner. A range of k was tested and the number of degrees of free-

dom were varied. Also, the resulting condition numbers were observed. This work was

published in International Journal for Numerical Methods in Engineering (IJNME).

These scheme was shown to work for 90◦ and 60◦ corners and it is confidently predicted

that the scheme would perform well for other angles.

8.1.3 High-order Lagrange and NURBS schemes

High-order basis functions were explored for scattering problems including multiple cylin-

ders in 2D and wave propagation along the length of a duct. A variety of frequencies

and discretisations were tested, with Lagrange and NURBS bases. Further, the results

were compared with PUBEM schemes. Furthermore, the pollution effect was observed

for PUBEM in the duct example. This work was published in Engineering Analysis with

Boundary Elements (EABE).

It was shown that a reduction in error of up to 6 orders of magnitude can be achieved by

increasing the orders of the Lagrange and NURBS bases. Notably the condition numbers

of the resulting systems of equations increased with the order of the bases, though this
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does not appear to adversely impact the results. A mild pollution effect was observed in

the PUBEM results; this is the first time that this has been demonstrated.

For Larger problems, the high-order Lagrange and NURBS schemes appear to be com-

petitive with PUBEM because they converge consistently and their matrix systems are

comparatively well-conditioned.

8.1.4 Optimal selection of basis functions for PUBEM

A PUBEM scheme was implemented, to analyse scattering from a circle, using a variety

of elements, from constant to order 4, with a variety discretisations each having differing

ratios of total number of elements E to number of plane waves per node M . It was

shown that, at least for a circular scattering object, that generally, using relatively few

elements in combination with a relatively large number of plane waves is optimal for

accuracy. This was true even with linear and constant elements with the exception the

very coarsest discretisation of only two elements on the boundary.

8.2 Recommendations for further work

8.2.1 Integration

The integration schemes that were not based on quadrature, whilst interesting, did not

produce a robust alternative to Gauss-Legendre quadrature for highly oscillatory integrals

for k in the mid-high frequency range for which most of the PUBEM literature is focused.

Though, it would be interesting to apply the integration techniques presented in this thesis

for genuine high-frequency problems and to compare the resulting PUBEM solution with,

for example, optics or ray-tracing solutions.

Further, the investigations into the Filon method, the asymptotic method and MSP

were based on quadratic shape functions which are standard in the PUBEM literature. In

light of the possible advantages of the low-order shape functions, it would be interesting

to investigate these schemes, in particular the Filon and asymptotic schemes, for PUBEM

integrals. This would simplify the expressions (in particular for the Filon and Asymptotic

method) which would reduce computation time; and, the more simple slowly varying

function could dampen the underlying end point behaviour which could result in a more

accurate results (remembering how important the end point behaviour is).

Finally, it would be interesting to explore a second-order term in the method of sta-

tionary phase. This could potentially evaluate integrals in which a stationary point is

closer to the end of an element than is allowable with a first-order scheme. Although,

there would likely, still, be cases that are problematic, it may be that these are so small

in number that the overall accuracy of the analysis is acceptable.
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8.2.2 Singular enrichment functions

The singular enrichment functions were a great success, resulting in a substantial increase

in accuracy. This benefit may be transferable to 3D, for polyhedral objects, where similar

enrichment from edges could be applied. It is not immediately clear how the enrichment

functions would be defined at the vertices. Though, there are asymptotic solutions for

scattering from vertices.

8.2.3 High-order basis functions

It was shown that using high-order basis functions provided a reduction in error of 6

orders of magnitude in some cases. It would be interesting to see how this translates to

3D. Further, the pollution effect in BEM was discussed, but only for a single example.

It would be worth exploring this in depth, and comparing with PUBEM, but it is not

straightforward to find appropriate problems to solve. Test problems base on a Hankel

source present challenges because to test pollution effect, one needs many wavelengths

and the decay in the Hankel source over the required number of wavelengths means that

the potentials become too small in the area of interest for meaningful conclusions to be

drawn.

8.2.4 Optimal selection of basis functions for PUBEM

It would be interesting to perform a more thorough analysis of the optimal order of basis to

be used for PUBEM, in order to develop a one-size-fits-all rule for determining an optimal

number of elements to use; optimal order of basis functions; and, the corresponding

optimal number of plane waves to use per node, for a given wavenumber. Such analysis

should include more complicated geometries or multiple objects.
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Appendix A

Stationary points algorithm

To integrate using the Filon method, when stationary points are included within the

interval of integration, it is necessary to perform a number of coordinate transformations,

in order to produce an expression which is amenable to the method. This begins with

the inversion of g(ξ) such that v = g(ξ); from the expression of g(ξ), it can be derived

directly that

ξ = h(v) = −1 +
xp − v cos(φ)±

√
(v − xp cos(φ))2 − y2

p sin2(φ)

xm sin2(φ)
, (A.1)

and

dξ

dv
= h′(v) =

− cos(φ)

xm sin2(φ)
± v − xp cos(φ)

xm sin2(φ)
√

(v − xp cos(φ))2 − y2
p sin2(φ)

. (A.2)

Further, it can be shown that

v∗ = g(ξ∗) = xp cos(φ) + |yp| |sin(φ)| . (A.3)

One can focus on the Iβ portion of the interval with ξ ∈ (ξ∗, 1) and rewrite in terms of

the variable v as

Iβ =

∫ 1

ξ∗
(ξ − ξ∗)` eikg(ξ)dξ =

∫ g(1)

v∗
(h(v)− ξ∗)` h′(v)eikvdv, (A.4)

where

(h(v)− ξ∗) =
− cos(φ)(v − xp cos(φ)) + |yp cos(φ)| |sin(φ)|+

√
(v − xp cos(φ))2 − y2

p sin2(φ)

xm sin2(φ)
,

(A.5)
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and h′(v) is given in (A.2). The h′(v) term is singular at v∗ and in order to convert this

into a form which is easier to treat, a further coordinate transformation ψ = v−xp cos(φ)

is applied which yields

Iβ =

∫ g(1)

v∗
(h(v)− h(v∗))` h′(v)eikvdv =

eikxp cos(φ)(
xm sin2(φ)

)` ∫ g(1)−xp cos(φ)

|yp sin(φ)|
F (ψ)eikψdψ (A.6)

which produces

F (ψ) =

(
± |yp cos(φ)| |sin(φ)| − cos(φ)ψ +

√
ψ2 − y2

p sin2(φ)

)`
(A.7)− cos(φ) +

ψ√
ψ2 − y2

p sin2(φ)

 (A.8)

which can be represented using the binomial theorem (A + B)` =
∑`

i=0

(
`
i

)
A`−iBi =∑`

i=0

(
`
i

)
AiB`−i,

(
`
i

)
= `!

i!(`−i)! as

F (ψ) =
∑̀
j1=0

(
`

j1

)
(± |yp cos(φ)| |sin(φ)| − cos(φ)ψ)`−j1

(√
ψ2 − y2

p sin2(φ)

)j1
− cos(φ) +

ψ√
ψ2 − y2

p sin2(φ)


=
∑̀
j1=0

(
`

j1

) `−j1∑
j2=0

(
`− j1

j2

)
(± |yp cos(φ)| |sin(φ)|)`−j1−j2 (− cos(φ))j2 ψj2 (A.9)

(√
ψ2 − y2

p sin2(φ)

)j1 − cos(φ) +
ψ√

ψ2 − y2
p sin2(φ)


=
∑̀
j1=0

(
`

j1

) `−j1∑
j2=0

(
`− j1

j2

)
(± |yp cos(φ)| |sin(φ)|)`−j1−j2[

(− cos(φ))j2+1 ψj2
(√

ψ2 − y2
p sin2(φ)

)j1
+ (− cos(φ))j2 ψj2+1

(√
ψ2 − y2

p sin2(φ)

)j1−1
]
.

(A.10)

The sum
∑`

j1=0 is split into two separate sums for odd and even j1, to produce
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F (ψ) =

 b `
2
c∑

n=0
j1taking2n

+

b `+1
2
c∑

n=1
j1taking2n−1

( `j1

) `−j1∑
j2=0

(
`− j1

j2

)

(± |yp cos(φ)| |sin(φ)|)`−j1−j2
[
(− cos(φ))j2+1 ψj2×(√

ψ2 − y2
p sin2(φ)

)j1
+ (− cos(φ))j2 ψj2+1

(√
ψ2 − y2

p sin2(φ)

)j1−1
]

=

b `
2
c∑

n=0
j1=2n

(
`

2n

) `−2n∑
j2=0

(
`− 2n

j2

)
(± |yp cos(φ)| |sin(φ)|)`−2n−j2

[
(− cos(φ))j2+1 ψj2

(
ψ2 − y2

p sin2(φ)
)n

+
(− cos(φ))j2 ψj2+1

(
ψ2 − y2

p sin2(φ)
)n√

ψ + |yp sin(φ)|
1√

ψ − |yp sin(φ)|

]

+

b `+1
2
c∑

n=1
j1=2n−1

(
`

2n− 1

) `−(2n−1)∑
j2=0

(
`− (2n− 1)

j2

)
(± |yp cos(φ)| |sin(φ)|)`−(2n−1)−j2

[
(− cos(φ))j2+1 ψj2

(
ψ2 − y2

p sin2(φ)
)n√

ψ + |yp sin(φ)|
1√

ψ − |yp sin(φ)|

+ (− cos(φ))j2 ψj2+1
(
ψ2 − y2

p sin2(φ)
)n−1

]
,

where the bc represent the floor. After this, the binomial expansion

(
ψ2 − y2

p sin2(φ)
)n

=
n∑

j3=0

(
n

j3

)(
−y2

p sin2(φ)
)n−j3 ψ2j3 ,
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is used to provide

Iβ =
eikxp cos(φ)(
xm sin2(φ)

)` ∫ g(1)−xp cos(φ)

|yp sin(φ)|
F (ψ)eikψdψ

=
eikxp cos(φ)(
xm sin2(φ)

)` b
`
2
c∑

n=0

(
`

2n

) `−2n∑
j2=0

(
`− 2n

j2

) n∑
j3=0

(
n

j3

)
(±1)`−2n−j2(−1)n−j3+j2+1

(|yp| |sin(φ)|)`−j2−2j3 |cos(φ)|`−2n−j2 cosj2+1(φ)ωj2+2j3

+
eikxp cos(φ)(
xm sin2(φ)

)` b
`
2
c∑

n=0

(
`

2n

) `−2n∑
j2=0

(
`− 2n

j2

) n∑
j3=0

(
n

j3

)
(±1)`−2n−j2(−1)n−j3+j2

(|yp| |sin(φ)|)`−j2−2j3 |cos(φ)|`−2n−j2 (cos(φ))j2∫ g(1)−xp cos(φ)

|yp sin(φ)|

ψj2+2j3+1√
ψ + |yp sin(φ)|

1√
ψ − |yp sin(φ)|

eikψdψ

+
eikxp cos(φ)(
xm sin2(φ)

)` b
`+1

2
c∑

n=1

(
`

2n− 1

) `−(2n−1)∑
j2=0

(
`− (2n− 1)

j2

) n∑
j3=0

(
n

j3

)
(±1)`−(2n−1)−j2

(−1)n−j3+j2+1 (|yp| |sin(φ)|)`−j2−2j3+1 |cos(φ)|`−(2n−1)−j2 (cos(φ))j2+1∫ g(1)−xp cos(φ)

|yp sin(φ)|

ψj2+2j3√
ψ + |yp sin(φ)|

eikψ√
ψ − |yp sin(φ)|

dψ

+
eikxp cos(φ)(
xm sin2(φ)

)` b
`+1

2
c∑

n=1

(
`

2n− 1

) `−(2n−1)∑
j2=0

(
`− (2n− 1)

j2

) n−1∑
j3=0

(
n− 1

j3

)
(±1)`−(2n−1)−j3

(−1)n−j3+j2−1 (|yp| |sin(φ)|)`−j2−2j3−1 |cos(φ)|`−(2n−1)−j2 (cos(φ))j2 ωj2+2j3+1.

An equivalent process is used to produce a similar expansion for the Iα portion of the

integral Before discussing the specific treatment of the resulting integrals, the Iα expansion

is presented here.

Iα =

∫ ξ∗

−1

(ξ − ξ∗)` eikg(ξ)dξ =

∫ v∗

g(−1)

(h(v)− h(v∗))` h′(v)eikvdv. (A.11)

– 142 –



This is transformed into ψ and the binomial expansion employed to produce the following

expression.

Iα =
eikxp cos(φ)(
xm sin2(φ)

)` ∫ |yp sin(φ)|

g(−1)−xp cos(φ)

F̃ (ψ)eikψdψ

=
eikxp cos(φ)(
xm sin2(φ)

)` b
`
2
c∑

n=0

(
`

2n

) `−2n∑
j2=0

(
`− 2n

j2

) n∑
j3=0

(
n

j3

)
(±1)`−2n−j2(−1)n−j3+j2+1

(|yp| |sin(φ)|)`−j2−2j3 |cos(φ)|`−2n−j2 cosj2+1(φ)ω̃j2+2j3

− eikxp cos(φ)(
xm sin2(φ)

)` b
`
2
c∑

n=0

(
`

2n

) `−2n∑
j2=0

(
`− 2n

j2

) n∑
j3=0

(
n

j3

)
(±1)`−2n−j2(−1)n−j3+j2

(|yp| |sin(φ)|)`−j2−2j3 |cos(φ)|`−2n−j2 (cos(φ))j2∫ |yp sin(φ)|

g(−1)−xp cos(φ)

ψj2+2j3+1√
ψ + |yp sin(φ)|

1√
ψ − |yp sin(φ)|

eikψdψ

− eikxp cos(φ)(
xm sin2(φ)

)` b
`+1

2
c∑

n=1

(
`

2n− 1

) `−(2n−1)∑
j2=0

(
`− (2n− 1)

j2

) n∑
j3=0

(
n

j3

)
(±1)`−(2n−1)−j2(−1)n−j3+j2+1 (|yp| |sin(φ)|)`−j2−2j3+1 |cos(φ)|`−(2n−1)−j2 (cos(φ))j2+1∫ |yp sin(φ)|

g(−1)−xp cos(φ)

ψj2+2j3√
ψ + |yp sin(φ)|

eikψ√
ψ − |yp sin(φ)|

dψ

+
eikxp cos(φ)(
xm sin2(φ)

)` b
`+1

2
c∑

n=1

(
`

2n− 1

) `−(2n−1)∑
j2=0

(
`− (2n− 1)

j2

) n−1∑
j3=0

(
n− 1

j3

)
(±1)`−(2n−1)−j2

(−1)n−j3+j2−1 (|yp| |sin(φ)|)`−j2−2j3−1 |cos(φ)|`−(2n−1)−j2 (cos(φ))j2 ω̃j2+2j3+1.
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Appendix B

Method of Fundamental Solutions

The Method of Fundamental Solutions (MFS) is a numerical technique which can be

employed to solve Helmholtz problems. Consider the total acoustic potential to be equal

to the sum of the scattered and the incident potential, as follows.

φ(x) = φscat(x) + φinc(x), x ∈ Ωs. (B.1)

Considering the derivatives of B.1 and applying the sound-hard boundary condition pro-

vides

∂φscat

∂n
= −∂φ

inc

∂n
, x ∈ ∂Ωs. (B.2)

The MFS places ᾱ = 1, ..., m̄ source points (shown in Fig. B.1) within the scattering

object in order to express the scattered potential as a linear combination of fundamental

solutions

φscat(x) =
m̄∑
ᾱ

AᾱG(ᾱ, β̄), (B.3)

where Aᾱ are the unknown amplitudes which may be found by collocating at β̄ = 1, ..., B̄

points over the boundary ∂Ω and solving the resulting system of equations, with the

following being true at each point β̄ ∈ ∂Ω

∂φscat

∂n
= Aᾱ

∂G(ᾱ, β̄)

∂n
, x ∈ ∂Ω. (B.4)

Though, in order to minimise the residual error Q a least squares scheme can be employed,

wherein

Q :=
B̄∑
β̄

[
∂φinc(xβ̄)

∂n
−

m̄∑
ᾱ

Aᾱ
∂G(ᾱ, β̄)

∂n

]2

. (B.5)
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The amplitudes Aᾱ may be used to recover the scattered potential and combined with

the incident potential, to recover the total potential.

Figure B.1: MFS source point ᾱ and sample point β̄, where r̄ is the Euclidian distance
between them.

– 145 –



Appendix C

Quantification of errors

Throughout this thesis, a number of numerical methods are tested, such as, novel in-

tegration techniques or novel enrichment functions. In order to verify the efficacy of a

given numerical method, it is important to be able to calculate the error with respect

to an reference solution. In this thesis error is defined as ε which can be thought of as

a relative error, though, the method of determining ε differs depending on whether it is

being calculated for a vector of results or a scalar result. When error is calculated for a

vector, an L2 relative error is employed; for example, ε for a vector of acoustic potential

φ evaluated at a vector of points over the boundary Γ is defined as follows

ε(φ; Γε) =
||φ− φref ||L2(Γε)

||φref ||L2(Γε)

, (C.1)

where φref is a reference solution in vector form. Whereas, for a scalar value such as

single integral I the relative error ε is defined as follows

ε =
I − Iref
Iref

(C.2)

where Iref is a reference solution.
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