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CHAPTER 1:  INTRODUCTION 

The Fifth Assessment Report of the IPCC (Stocker et al., 2013) indicates that for a 

range of climate futures precipitation regimes will alter considerably, with extreme 

events more likely under several models.  This has significant implications for the 

monitoring of precipitation-driven hazards at multiple scales worldwide.  On account 

of these changing regimes and the need to better anticipate geomorphological 

responses to them, it is necessary for us to explore effective means of monitoring 

precursory conditions of hazard events and to assess those monitoring methods.  

Hydraulically driven mass movements of soil, accounted for an estimated 89.6 % of 

landslide fatalities globally in 2007 (Petley, 2008) and have the potential to damage 

infrastructure (Eriksson et al., 2009), as well as built (Malone, 2004), and natural 

(Malamud et al., 2004) resources.  These mass movements are caused by a reduction 

in the material strength of the slope, the increased loading of a slope mass or a 

combination of both (Terlien, 1996), all engendered by changes in the moisture 

content of the slope mass and resulting in a reduction of the stability of the slope 

(Crosta and Frattini, 2001).   

The monitoring of slope conditions prior to an anticipated precipitation event is 

important, as it enables assessment of the likelihood of slope deformation or failure 

from a precipitation event.  That is, by knowing the moisture levels of the soil mass 

prior to further moisture potentially entering the soil mass, it is possible, when the 

thresholds for stability are known, to make informed decisions around whether slope 

failure is likely with further precipitation.  Traditionally, the measurement of soil 

moisture has been undertaken in one of two ways – either remotely or in situ -  where 

in situ capacitance-based probes are positioned in the soil mass at depths 

appropriate to the research being undertaken (Vereecken et al., 2008) and / or  

destructive sampling (Schmugge et al., 1980).    Despite its advantages in enabling 

measurement at depth, this point-based methodology coupled with spatial 

interpolation is problematic even when dealing with field-scale monitoring due to 
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the high spatial heterogeneity of soil moisture (Giacomelli et al., 1995); interpolated 

to catchment or regional scales it is an even less valuable means of assessing such a 

significant environmental variable (Wagner et al., 2003; Santi et al., 2013); in 

addition to this, the inefficiencies in terms of time and resources in taking 

measurements or implementing even small-scale built-in monitoring systems 

(Kornelsen and Coulibaly, 2013) and it becomes apparent that in situ monitoring 

approaches are limited in their appropriateness for assessing soil moisture, unless 

at the smallest of spatial scales, and impossible in any context where the site of 

interest is one that is not physically accessible, which is often the case.  Therefore 

over the last few decades, remote sensing of soil moisture using a range of different 

aerial or satellite platforms has become increasingly common – originally in the form 

of optical or thermal sensing, but now, increasingly through RADAR platforms and, 

in particular, through the higher resolution Synthetic Aperture RADAR (SAR) 

platforms (Carlson et al., 1994; Njoku et al., 2003; Kerr, 2007).  This thesis will focus 

on the capacity of one of the most recently launched X-band SAR constellations for 

use in monitoring soil moisture at a landslide test site.  

 

SAR has particular potential as a technology for enabling remote sensing of  the 

precursory conditions of major precipitation events.  It is a form of active radar 

remote sensing that uses the motion of the sensing platform to increase the size of 

the effective aperture of the sensor, thereby increasing the resolution of the images 

it takes.  It works by emitting a pulse of electromagnetic radiation at a surface and 

receiving this pulse back.  The active nature of the sensor means that it achieves a 

higher resolution than passive systems. SAR has the advantage of not being affected 

by cloud cover, and its backscatter amplitude is directly affected by the dielectric 

constant of the soil it penetrates (Ulaby et al. 1986; Sabins, 1996).  In light of the 

recent increase in short wavelength SAR platforms like Sentinel 1, COSMO-

SkyMed, ALOS PALSAR, NovaSAR and ICEYE, and the much-improved revisit 

times these constellations provide for data acquisition when compared to earlier SAR 

platforms, SAR again represents an exciting tool, the potential utilisation of which 

for soil moisture estimation in complex settings has not been fully explored or 

defined through rigorous ground-truthed testing.  Many of the recent constellations 

to be launched use the short X and S-band wavelengths, with these platforms 

offering much higher resolution images (~1m) than, for example, their C-band 

Sentinel 1 counterpart (~10m), but also are affected more by surface roughness 

(Hajnsek et al., 2009).  SAR has predominantly been used in landslide contexts for 
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the monitoring of slow-moving landslide events (Cascini et al. 2010) or the 

assessment of techniques to enable future deformation monitoring (Colesanti et al., 

2003; Strozzi et al., 2005; Colesanti and Wasowski, 2006; Corsini et al., 2006; 

Guzzetti et al., 2009), rather than as a means of monitoring the causes of the 

deformations (Liu et al., 2013). 

In recent years constellations of SAR satellites have become more common, thereby 

reducing the trade-off between image resolution and return-times which had been 

an early stumbling block to SAR utility for environmental scientists (Kelly et al., 

2009).  Despite the increased use of SAR in the environmental sciences for the 

monitoring of soil moisture, there continues to exist a significant challenge in 

estimating soil moisture, particularly at short wavelengths, and that is the impact 

of surface roughness on the backscatter return (Baghdadi et al., 2002). 

1.1 Problem setting 

As established already, it is anticipated that hydraulically driven landslides are 

going to become a more common problem due to climate change.  In situ monitoring 

of soil moisture is limited by the spatial coverage possible, and optical proxies for 

measuring moisture are limited by cloud cover and often low resolution imagery.  

Active aerial or satellite RADAR platforms are recognised as offering significant 

advantages over the more traditional optical or passive RADAR technologies (Kerr, 

2007) by operating at all times of day and regardless of cloud cover, and by providing 

higher resolution imagery (Kerr et al., 2010).  Further to this, the development of 

constellations of satellites bearing active RADAR sensors has optimised the period 

between image acquisitions (Kelly et al., 2009), thereby making active RADAR a 

commonly cited option for soil moisture monitoring (Ulaby et al. 1986; Shi et al., 

1991; Giacomelli et al., 1995; Griffiths and Wooding, 1996; Sabins, 1996; Moran et 

al., 2000; Gorrab et al., 2016; Sekertekin et al. 2020). 

There are, however, considerable challenges in monitoring soil moisture using SAR 

(Wagner and Pathe, 2005).  Among these is the fact that other surface 

characteristics, like surface roughness (Ulaby et al. 1986) and vegetation cover 

(Wagner et al., 1999; Hajnsek et al., 2009; Capodici et al., 2011; Santi et al., 2012) 

impact upon the backscatter signal, such that it is hard to estimate the soil moisture 

component of the backscatter signal (Kerr et al., 2010).  Furthermore, the complex 

surface geometry of landslide-prone areas and the impact this geometry has on SAR 

backscatter (Njoku et al., 2003), by causing image foreshortening and shadowing 



Chapter 1: Introduction 
 

4 
 

together with changes in that slope surface geometry caused by landsliding or 

vegetation change between image acquisitions, potentially rules out the most 

common and simple soil moisture inversion approach: change detection. 

At the time this project was begun, the majority of studies using high resolution SAR 

products had focussed on using them for soil moisture monitoring in agricultural 

contexts, not with a view to monitoring conditionally stable slopes.  This thesis 

explores the appropriateness of using a high resolution single-polarised X-band 

Synthetic Aperture RADAR (SAR) product as a means of remotely sensing a primary 

precursory condition of slope failure – high soil moisture at a geometrically complex 

slow-moving landslide site.  It uses Spotlight 2 data from the COSMO-SkyMed 

platform which became operational the year this project began. 

1.2 Research Aim and Objectives 

The aim of this project is to assess the extent to which the estimation of soil moisture 

at a conditionally stable / seasonally unstable slope is appropriate using single 

polarised X-band Synthetic Aperture Radar delivered through a satellite 

constellation.  To meet this aim, the following objectives were established. 

Objective 1: To describe the relationship between surface soil moisture at a 

penetration depth equal to that of X-band SAR and moisture at depths closer to the 

failure plain and more representative of the wider soil mass.   

This objective is to assess whether X-band – the shortest wavelength commonly used 

in SAR applications – penetrates the soil to a depth at which estimated soil moisture 

is a useful indicator of the state of the soil mass.  The surface-depth relationships 

explored in this objective feed into Objective 2. 

Objective 2: To assess the spatial variability of surface and subsurface soil moistures 

in the soil mass. 

This objective draws on the relationships found in Objective 1, exploring whether the 

spatial resolution of X-band Spotlight2 data is appropriate for the spatial 

autocorrelation of soil moisture in soils prone to landsliding. 

Objective 3: To explore the viability of using high resolution single-polarised X-band 

SAR for monitoring soil moisture on a geometrically complex site with limited a priori 

roughness knowledge. 
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This objective explores how appropriate X-band SAR products are for soil moisture 

monitoring using high resolution imaging modes at a site that is geometrically 

complex, given that the majority of soil moisture estimation has been undertaken 

either in geometrically ideal (flat) conditions, or using large quantities of a priori 

data, or using multi-polarised imagery. 

The thesis is structured so that Objectives 1 and 2, which relate to the understanding 

of the spatio-temporal relationships of soil moisture at multiple depths in the soil 

mass are examined in Chapter 4.  Objective 3 is split across Chapters 5 and 6, with 

Chapter 5 focusing on an analysis of the coherence of the  CSK data used in this 

project, and Chapter 6 exploring wider issues around the viability of constellation-

based satellite imagery and its utilisation by different members of the academic 

community.   

Figure 1.1 Schematic of Objectives within the thesis structure 

1.3 Organisation of the Thesis 

The thesis comprises of six chapters (2-7) beyond this introduction.  The structure of 

the thesis is set out below, with a brief summary of each chapter and its contribution 

towards meeting objectives one to three. 

Chapter 2 is a literature review that positions this thesis within the current state of 

knowledge and research. The chapter outlines the current state of knowledge on 

hydraulically driven landslides, the techniques used for monitoring those landslides, 

and the current uses and limitations of SAR for environmental monitoring.  The gaps 

in the current state of knowledge are highlighted. 

Chapter 3 describes the Hollin Hill landslide observatory, the research that has been 

undertaken at the site previously, the ground-truthing equipment used there for 

monitoring slope conditions, the context of soil moisture remote sensing at the site, 
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and the context for using COSMO-SkyMed (CSK) at the site.  It sets out the methods 

used in processing the in situ and remote sensing data. 

Chapter 4 presents the results and analysis of multi-depth in situ soil moisture 

monitoring undertaken at the Hollin Hill Landslide Observatory co-temporally with 

the CSK acquisitions explored in Chapter 5.  This is followed by a discussion of the 

impacts of the spatio-temporal relationships displayed at the site and the 

implications these have to undertaking SAR processing in chapter 5, thereby 

meeting Objectives 1 and 2. 

Chapter 5 presents the results of CSK image calibration and processing with respect 

to the measured in situ soil moisture data described in Chapter 4.  In this chapter, 

Objective 3 is met and discussed. 

Chapter 6 assesses the viability of using X band SAR to assess soil moisture. This is 

undertaken from two perspectives – that of this particular site, and that of the 

appropriateness of using X band for this particular task.  These findings are 

contextualised by a comparison with the results from other X-band soil moisture 

studies. 

Chapter 7 provides a summary of the discussions of the results presented in chapters 

4, 5 and 6, outlines their novelty, and makes recommendations for future practice in 

this research area for different audiences. 

1.4 Project history 

This thesis is an individual piece of work undertaken between 2014 and 2020 under 

the supervision of Profs John Wainwright and Danny Donoghue at Durham 

University and Dr Colm Jordan at the British Geological Survey (BGS).  The 

fieldwork was undertaken at the Hollin Hill Landslide Laboratory in North 

Yorkshire, which hosts in situ slope monitoring equipment implemented and 

maintained by staff at BGS.  While this work sits in the context of other studies 

undertaken at the site by a variety of different researchers both working at and in 

collaboration with BGS, the experimental design, acquisition and processing of data 

from and relating to the Hollin Hill site was undertaken by myself.  Where others 

have contributed to the project in the form of guidance, help or information, this has 

been directly referenced in the body of the text. 

In 2015 a bid was successfully made for data through the UK Satellite Application 

Catapult, which issued a call for expressions of interest after forming an agreement 
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with the Italian space agency (ASI), from the newly-launched COSMO-SkyMed 

(CSK) constellation.  The research for, design and specification of the application 

was undertaken by me, with minor revisions by the supervisory team prior to 

submission. 

 This thesis explores the utilisation of this data - the highest resolution X-band 

Spotlight2 imagery available to civilian projects, in the context of estimating soil 

moisture at a slow-moving rotational landslide (Jenkins et al. 2006) consisting of 

Lias-derived soils at the British Geological Survey’s (BGS) Landslide Observatory at 

Hollin Hill in North Yorkshire, UK. Nine images, taken roughly one month apart, 

that were tasked for our project are used in this project in combination with 

measurements taken in situ contemporary with the imaging overpasses, are used in 

this project to assess the opportunities that high resolution X-band SAR provides in 

the context of monitoring hydraulically driven landslides.   

This nine-month study was designed to enable evaluation of estimation techniques 

suitable for different stages of the phenological cycle through ground-based surface 

measurements.  This project enables, through the use of empirical data, the 

uncertainty associated with the performance of X-band SAR for soil monitoring over 

different geomorphic and vegetated conditions to be assessed. 

1.5 Novelty 

The novelty of the project has, to some extent, already been stated, in that it uses 

SAR data from the COSMO-SkyMed (CSK) constellation, which became 

operationally shortly before the project began.  Further novelty is provided by the 

characteristics of the field site chosen for the project.  The Hollin Hill site opens up 

a new climatic and geomorphic avenue for CSK-soil moisture studies, which 

previously had been confined predominantly to semi-arid (Riccio et al., 2012; 

Iacobellis et al., 2013; Gorrab et al., 2014), plain (Santi et al., 2012) or high-mountain 

conditions (Paloscia et al., 2014).  The site enables the value of CSK data to be 

assessed in the context of an active slope setting, in a temperate climate using high-

quality ground-truthing data, thereby taking the application of CSK to the next 

stage, through assessing solutions to real-world geomorphic problems.  Furthermore, 

the utility of this site should not be underestimated. The landslide - a slow moving 

hydraulically driven rotational slide in Lias-derived soils -  is representative of 

landslides found across Western Europe and the UK, with Lias-derived slides 

accounting for 15% of recorded landslides in the UK (Jones and Lee, 1994), and 
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seasonal rotational slides being the dominant landslide type in the UK and parts of 

Europe (Evans et al., 2013; Pennington et al., 2015).  In addition to the active clay-

dominant Lias soil, two other distinctive soil types are found at the surface of the 

site, with drainage properties that are quite distinct from each other.  This enables 

studying a wider dynamic range of soil moisture values than would be possible in a 

more homogeneous study site. 

1.6 Summary 

To summarise, soil moisture estimation with SAR has been attempted since the 

1950s, and has been achieved with some success in environments where confounding 

factors are well constrained. This thesis uses new SAR technology in a novel 

environmental context to explore whether soil moisture can be estimated at a 

geometrically complex landslide site, with limited a priori geometrical information, 

as a simulation of a likely scenario for monitoring of a realistic landslide hazard 

scenario.  The project explores the  spatio-temporal relationships of surface soil 

moisture at an active slow-moving landslide site between June 2016 and February 

2017, the relationship between these and measurements at greater depths, and the 

implications of these for defining optimal CSK data processing.   

1.7 Impact of Covid-19 

It was originally envisaged that the scope of this project would be both broader and 

deeper in terms of the questions asked of the data and the extent to which the data 

was processed. Unfortunately, due to the COVID-19 pandemic and the impact this 

had on undertaking planned fieldwork, access to computing labs and supervision and 

its timing just as in-depth processing was about to be undertaken, it was necessary 

to redesign some of the analysis undertaken in this project, and to not undertake 

some. 

Although the original design of the project is somewhat hampered by not being able 

to undertake the micro-scale surface roughness measurements intended, these 

limitations have provided the opportunity to ask questions that wouldn’t have been 

asked, but that have value in that they reflect a research context that would not be 

uncommon for future CSK product users in settings where the data is being used for 

a range of hazard-specific applications – namely, situations where a lack of ground 

truthed surface roughness data at a scale close to that of the incident wavelength is 

to be expected.  This might be where CSK data is being used to monitor precursory 

conditions of a rainfall event in an area where risk of landsliding or flooding is 
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recognised, but where accessibility or scale of the area has made micro-scale surface 

roughness impossible.  The research has, therefore, been able to assess the viability 

of using CSK data for monitoring soil moisture in a context that would not be 

uncommon if wanting to use CSK for hazard assessment in areas where high quality 

a priori data isn’t available.  A discussion of what this means for the viability of using 

CSK for SM monitoring is given in Chapter 6. 

There was also the intention of experimenting with the impact that applying 

different back-scatter – SM models to the data to assess how best to optimise 

processing of CSK data for SM estimation.  Again, due to the limitations the 

pandemic presented in terms of accessing training to be able to do this, this was not 

undertaken.  Chapter 6 does, however, explore the extent to which this limits the 

quality of the results presented in the thesis. 

A full break-down of the methods and anticipated impacts the undertaking of them 

on the analysis of the data in this project is presented in Appendix 2. 
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CHAPTER 2:  LITERATURE REVIEW 

This chapter introduces the literature on the areas of research which underlie this 

thesis, exploring the mechanisms and monitoring methods of hydraulically driven 

landslides, the state of understanding of landslide hydrology and then providing the 

context of SAR – its capabilities and challenges in being used for environmental 

remote sensing.  Overall, this chapter positions the thesis in its broader context 

(Figure 2.1), preparing the ground for the Materials and Methods chapter (Chapter 

3) and the discussions in Chapters 4, 5 and 6. 

 

Figure 2.1 Conceptual Map of thesis context with selected references appended 

 

Mallet et  
al.            2002; 
Mondind et al. 
2019 

Liu et al. 2013; 
Bovenga et al.  
Colesanti et al. 2006 
Mondini et al. 2019 

Barbera 2014 

Hassaballa et al. 2014 
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2.1 Slope Processes 

This section sets out the types of slope failures, the mechanisms behind these slope 

failures and the methods of monitoring causes of slope failures.  Beyond the broad 

introduction to the topic, the focus is limited to reactivated, rainfall-induced 

landslides – the type encountered at Hollin Hill – the study site for this project. 

2.1.1 Characterising Landslides 

The term ‘landslide’ encompasses a range of different types of slope failure, but the 

overarching definition that is most often employed in research, and was adopted by 

the United Nations International Decade for Natural Disaster Reduction (IDNDR), 

is “the movement of a mass of rock, earth or debris down a slope” (Varnes, 1978; 

Cruden, 1991).  A number of classification systems of landslides have been developed 

over the years (Skempton and Hutchinson, 1969; Varnes, 1978; Cruden and Varnes, 

1996; Shroder et al., 2005).   Under Varnes’ (1978) definition of landslide types, which 

provides a systematic set of descriptors for each of the possible landslide types and 

the adapted form (Cruden and Varnes, 1996), which is the most widely used system 

in the English-speaking world (Hungr et al., 2014), there are five kinds of slope 

failure - fall, topple, slide, flow and spread – which are further sub-categorised by 

the material characteristics – rock, debris or earth (see Figure 2.2)  and rate at which 

that slope failure occurs (Brabb, 1991). 
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Figure 2.2 Landslides classifications by type and material.  Source (BGS, 2015a) adapted 

from (Cruden and Varnes, 1996). 

2.1.1.1 Deformation Drivers 
Slope deformations and failures are complex.  It is, however, helpful at this stage to 

provide a simple summary of the underlying physics behind the process.  If we 

consider the soil mass as a block on a slope (see Fig 2), its movement, or lack thereof, 

can be defined by the relationship between the downslope component and friction.  

That is, the block remains stable for as long as the driving forces remain less than 

the resisting forces.  Without any external influences, like rainfall or weathering, 

which change the relative values of these two components, the system sits in stasis.   
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Figure 2.3 Diagram of forces acting on a mass on a slope.  Adapted from(Kirk, 2003). 

Movement at the slip surface in reactivated landslides, like the Hollin Hill landslide, 

occurs when the shear stress exceeds the shear strength along the slip plain, as 

defined by the Mohr-Coulomb relationship (Craig, 1995).  This stress relationship 

was described by (Terzaghi, 1950) in adapting the Coulomb (1776) equation: 

𝑇 = 𝑇  (𝜎 − 𝑢)𝑡𝑎𝑛𝜑       [2.1] 

where To is the cohesive strength of the soil, σ is the normal stress on the slip plane, 

u is the pore pressure and φ is the angle of internal friction.  Slope failures occur 

when Tf  is greater than a slope-specific threshold value.  As such, landslide 

acceleration occurs when effective stress (Picarelli, 2007) or changes in material 

properties occur (Skempton, 1985; Terzaghi et al., 1996). The Mohr-Coulomb 

equation has been further adapted to include two-dimensional slope geometry, 

thereby enabling estimation of the factor of safety (F) for any point on the slope 

where the block thickness and pore pressures are known (Morgenstern and Price, 

1965; Sarma, 1979):   

 

 

where, σn is the normal stress, u is the pore-water pressure and σn-u the effective 

stress, as defined by (Terzaghi, 1936), α is the angle of the slip plane and φ is the 

angle of internal friction.  It should, however be noted that there are limits to the 

utility of this infinite slope model. 

Normal Reaction 

Normal force 

Weight (m*g) 

Friction 

Downslope component 

θ 

[2.2] 

[2.3] 
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Landslides can have many causes, whether they be geological, anthropogenic, or 

morphological (Cruden and Varnes, 1996), but normally just one driver (Varnes, 

1978).  There are thought to be four main drivers of reactivated landslide motion – 

raising of groundwater through precipitation, tectonic activity, drainage-line 

blocking (Chatwin, 1994), and anthropogenic action (Schuster and Highland, 2007).  

It is, however, difficult to ascertain a threshold for slope deformation to result at 

(Rosser, 2010).  For, it is possible for slope failures to occur without noticeable input 

drivers (Froude, 2011).  This can be due to the slope sitting near to the failure 

threshold, thereby meaning that only a small input is required to move it into the 

failure envelope (Rosser, 2010).  Alternatively, a much larger than modelled trigger 

can be required to cause failure (Gerrard and Gardner, 2000), for it is well recognised 

that there is not, necessarily, a proportional relationship between the magnitude of 

a trigger and its impact on slope stability (Phillips, 2006).   

External drivers act to decrease the slope's internal coefficient of friction over time 

(Brunsden and Thornes, 1979; Wieczorek, 1996).  These processes are, 

predominantly, environmentally driven and, in particular, hydraulic (Pelletier et al., 

1997), with there being a strong relationship between increased rainfall and 

increased slope failures in the UK (Figure 2.4).  One of the primary causes of the 

reduction of internal slope friction is the increase in water content of the slope 

(Casagli et al., 1999).  In shallow, soil-based landslides, infiltrated moisture acts as 

a lubricant between soil particles, also reducing the stability of the slope.  At the 

same time, the increase in water within the slope increases the mass of the soil mass 

(Brand, 1981; Ray and Jacobs, 2007), thereby increasing the stress on the slope, 

while also reducing the stress-bearing characteristics of the slope as water cannot 

sustain shear stress (Thiebes, 2012), thereby reducing the stability of the slope.  

Once the cumulative effect of these factors crosses a slope-specific threshold, slope 

failure activates (or reactivates). 
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Figure 2.4 Chart relating rainfall and landslide numbers in the UK between January 

2012 and March 2015 (BGS, 2015b). 

The complexity of associating measured hydrological drivers of slope deformation 

can be seen in the results of empirical studies of the roles of pore pressures (Allison 

and Brunsden, 1990; Matsuura, Asano and Okamoto, 2008) and rainfall intensity 

and duration (Caine, 1980; Wieczorek, 1987; Dahal and Hasegawa, 2008) on slope 

instability. Indeed, several empirical studies have found that there is a non-linear 

relationship between landslide acceleration and pore pressure (Skempton, 1985; 

Corominas et al., 2005; González et al., 2008; Matsuura et al., 2008).  Likewise, 

studies have shown that the same pore pressure values have caused different 

landslide accelerations (Bertini et al., 1984; González et al., 2008). This has, 

therefore, been interpreted as meaning that although deformation is related to 

changes in effective stress due to pore pressures, it is also modified by changes in 

shear strength due to the way particles behave during shearing or restoration of 

material strength during periods of inactivity (Angeli et al., 2004), thereby reducing 

the possibility of reactivation (van Asch et al., 2007). 
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Figure 2.5 Forces acting on a potential failure plane. From (Froude, 2011) adapted 

from (Selby, 1983). 

Given the Mohr-Coulomb relationship and multiple empirical studies (Bhandari, 

1988; Allison and Brunsden, 1990), it is clear that hydrological triggering (Terlien, 

1996) through pore pressure is a key driver of rainfall-induced landslides. It must, 

however, be noted that there are other factors, like the shear strength, the 

hydrogeology, especially the difference between the permeability of the sliding mass 

and the routes for surface water into the slip surface through surface cracking or 

other surface discontinuities (Corominas et al., 1999; van Asch et al., 2007) that 

make attempts at predicting slope behaviour difficult.   

2.1.1.2 Summary of landslide overview 

This section has shown that there is great complexity in the interpretation of slope 

stability due to the heterogeneity of slope materials, conditions and drivers.  It has 

shown that there is a variety of means of measuring and categorising slope stability 

and that the relationship between external hydraulic drivers and slope stability is 

not simple. 

2.2 Monitoring Landslides 

Monitoring of slopes tends to fit into one of two categories – monitoring the drivers 

of deformation, or monitoring deformation itself.  Monitoring of landslide movement 

can be undertaken using a variety of different sensor types.  The following section 

outlines core philosophies of in situ and then remote sensing monitoring techniques. 
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2.2.1 Monitoring Deformation 

Extremely slow and slow moving landslides, like the one focused on in this study, 

have variable movement rates (Petley et al., 2005), though poor spatial and temporal 

resolution of monitoring of slopes have led to them being interpreted by some as 

moving at a steady rate (Petley et al., 2005).  One of the causes of the poor spatial 

resolution mentioned by Petley is that subsurface displacement monitoring can be 

expensive due to equipment costs, is labour intensive in its deployment and, to some 

extent destructive of the material it is used to monitor, and does, necessarily, 

produce point data, which require extrapolation to enable full-slope monitoring.  

Equipment that is often used include inclinometers, extensometers, and Time 

Domain Reflectometry (TDR) (Kane and Beck, 2000; Huisman et al., 2001).  Table 

11 sets out the main technologies applied to measuring slope displacement and their 

typical ranges and accuracies. 

Table 2.1 Typical of representative accuracy values of various pieces of equipment used for 
landslide monitoring.  Source: (Malet, Maquaire and Calais, 2002). 

Method Use Results Typical 
range 

Typical 
accuracy 

Micrometer screw-level Angular displacement da 0.1 rad 4.10−4 
rad 

Fissurometer Differential movement of 
compartments 

dD <20 mm ±0.1 mm 

Levelling vernier pole Opening of small cracks dD <200 mm ±0.5 mm 
Short-base extensometer Opening of cracks dD 25–450 mm ±0.1 mm 
Invar distance-meter Displacements of moving targets dD Up to 40 m ±0.1 mm 
Wire extensometer Displacements of moving targets dD Up to 100 m ±0.5 mm 
Tacheometric level Variation of altitude dZ Variable 20 mm 
Electro-optic distance-meter Displacements of moving targets dD 1–10 km 7 

mm±1–5 
ppm 

Geodetic station Displacements of moving targets dX, dY, 
dZ 

1–10 km 3 
mm±1–5 
ppm 

 

2.2.2 Remote sensing of Deformation 

An alternative to in situ monitoring is remote sensing.  There are various remote 

sensing approaches to monitoring slope movement.  LiDAR (Light Detection and 

Ranging) and TLS (Terrestrial Laser Scanning) are particularly effective at this, 

with InSAR (Interferometric Synthetic Aperture Radar) also being widely used 

(Krieger et al., 2007; Eineder et al., 2009; Liu et al., 2013).  In many cases, however, 

particularly in the case of InSAR, deformation is only assessed after a major event 

due to the complexity of tasking satellite acquisitions in near-real time for non-

emergency events. 
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There are various remote sensing approaches to monitoring slope movement. 

Terrestrial options most commonly used are LiDAR and TLS (Wagner and Pathe, 

2005; Evans et al., 2013; Jebur et al., 2014); these are particularly effective.  Airborne 

and Satellite-based approaches to deformation monitoring used to be based 

predominantly on photogrammetry, but the development of multi-polarised SAR 

platforms has enabled InSAR to be a successful tool for measuring deformation 

(Bovenga et al., 2012; Colesanti and Wasowski, 2006; Krieger et al., 2007; Liu et al., 

2013). Likewise, the reduction in revisit time for single-polarise SAR platforms has 

made surface displacement assessment possible through comparing the change in 

phase between images (Massonnet and Feigl, 1998). 

Table 2.2 Methods and representative accuracies of techniques for remotely sensing slope 
deformation. Adapted from (Malet et al., 2002) . 

Method Use Results Typical 
range 

Typical 
accuracy 

Terrestrial photogrammetry Displacements of moving targets dX, dY, 
dZ 

<200 m 40 mm 

Aerial photogrammetry Displacements of moving targets 
DEM comparison 

dX, dY, 
dZ 

Hflight<500 
m 

100 mm 

Radar interferometry 
(InSAR) 

DEM comparison dX, dY, 
dZ 

Variable 3–5 mm 

DORIS Displacements of moving targets dX, dY, 
dZ 

Variable 2 mm 

 

2.2.3 Monitoring deformation drivers 

There are well-attested challenges for monitoring landslides.  Thresholds for 

hydraulic drivers of slope deformation can often only be calculated retrospectively 

(Caine, 1980) or through modelling, which, inherently, has limitations based on the 

quality of data and the amount of complexity that can be viably achieved 

(Wainwright and Mulligan, 2013). Likewise, precursory conditions can significantly 

influence the onset and scale of landslide activity, which some monitoring 

technologies like rain gauges cannot easily accommodate (Lacasse and Nadim, 2009).  

Indeed, various landslide catalogues and reports seem to show that landslide events 

occur in spite of or despite hydraulic inputs (Gerrard and Gardner, 2000).  Despite 

the challenges associated with monitoring drivers and understanding the functional 

thresholds associated with slope failure, there is nevertheless a growing body of work 

focussing on the monitoring of deformation drivers (Barbera, 2014; Merritt, 2014; 

Uhlemann et al., 2016). 
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2.2.3.1 Remote Sensing of Soil Moisture 

Despite continued use of in situ soil-moisture probes in landslide studies (Merritt et 

al., 2013), there has been limited work on remotely sensed surface soil moisture and 

its relationship with slope instability.  However, recent works by Ray & Jacobs, 

(2007, 2008); Ray et al., (2010), investigating the relationship between remotely 

sensed soil moisture and landsliding events in three different sites – Colorado, US; 

Leyte, Philippines; and Dhading, Nepal – have shown that, in these three cases, 

there is a temporal link between raised soil-moisture values and landslide 

occurrences.  The research used AMSR-E data – passive microwave data, whose soil 

moisture product is available at 25 km resolution – downscaled to 1 km grids.  The 

development of this technique through these papers has focussed increasingly on 

Colorado, in particular, and the relationship between remotely sensed soil moisture 

(which applies to, at most, the top 5 cm of the soil column), and the underlying soil 

moisture values.  The earlier papers (Ray and Jacobs, 2007, 2008), highlight that the 

relationship between rainfall and soil moisture is not as clear-cut as the relationship 

between rainfall and landsliding.   

Various studies have used measurements of the wetness of slopes as proxies for slope 

stability.  A common approach has been that of using moisture indices derived from 

optical satellite imagery, like LandSat or MODIS (e.g. Western et al. 2002; Yang et 

al. 2013; Zhang et al. 2015), which have largely proved to be successful, though, as 

with all optical products, are affected by cloud cover (Kerr et al., 2010). Coe (2012) 

investigated the correlation between a soil-moisture proxy and the rate of movement 

of the deep-seated, groundwater controlled, Slumgullion landslide in Colorado.  In 

this, he found a strong correlation between MDBI index and landslide movement.  

In addition to remotely sensed proxies of soil moisture, there are in situ techniques.  

There are two main types – quasi-point measures of soil moisture, which use a 

capacitance probe inserted in the soil mass to measure the impedance of the soil 

mass (Delta T Devices, 1999), from which the volumetric soil water can simply be 

calculated (Archer et al., 2016).  These sensors can be used at multiple depths and 

are able to be set up to provide automated acquisitions (Kuras et al., 2009; Fersch et 

al., 2018). 

2.2.4 Relating surface soil moisture and slope deformation 

The partitioning of incident precipitation on a slope - that is, into the soil mass or as 

runoff (Beven, 2011), - and the demonstration of the current state of saturation in 
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the soil mass is determined by near-surface soil moisture (Albergel et al., 2012; 

Taylor et al., 2012; Kornelsen & Coulibaly, 2013; Kerr, 2007).  Given the importance 

of gauging the current state of a soil mass in advance of a precipitation event, 

whether this be in the context of preparing for hazards like flooding (Western et al., 

2004) or landslides (Coe, 2012), or for making ecosystem or agricultural decisions 

(Schmugge et al., 2002), monitoring of this parameter is important (Teuling and 

Troch, 2005; Robinson et al., 2008; Seneviratne et al., 2010; Legates et al., 2011).    To 

this end, the importance of surface soil moisture in the hydrological process has 

recently been acknowledged by the Global Climate Observing System (GCOS), who 

made it a key climate variable for monitoring (GCOS-138, 2010).   

Soil moisture has two roles to play in the modelling of landslide activation.  First, it 

can be a direct input to models.  Second, as mentioned above, it can act as a proxy of 

slope conditions, defining the extent to which those conditions will change.  That is, 

a high surface soil moisture reading indicates an increased water-driven stress 

impacting on the slope, but also, that further infiltration into the slope at that point 

is going to be minimised, with an increasing amount of incoming water being 

partitioned into overland flow (Beven, 2011). Later work has focussed on modelling 

the relationship between surface soil moisture and deeper soil moisture, particularly 

in the unsaturated zone, using a Variable Infiltration Capacity (VIC) model.  This 

model uses an adapted form of the Infinite slope stability model to model water and 

energy fluxes within the soil mass (Ray and Jacobs, 2007; Ray et al., 2010), in 

particular using remotely sensed soil moisture as an input for dynamic two-layer 

soil-mass values. 

It should be noted that although surface soil moisture is important in partitioning 

incoming rainfall, it is not just surface moisture that has an impact on slope stability, 

but deeper moisture as well (Leroueil, 2004; Vereecken et al., 2008).  A challenge 

within the modelling component of this project will be to establish how these two (or 

more) zones relate in the context of slope failure.  A further interesting point to 

consider in the context of linking surface and subsurface soil moisture stores is that 

several studies into soil-moisture modelling have found that under certain 

conditions, for example clayey soil (Leroueil, 2004), that subsurface pore pressures 

are not necessarily linked to surface moisture. 
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2.3 Landslide Hydrology 

The route water incident to a soil mass takes is determined by several things, 

including material porosity, surface angle and the hydrophobicity of the material.  

Additional to these, and important in this study is the moisture content of the 

material.  For, as Horton demonstrated (Horton, 1933), if the material is saturated 

incident water is unable to infiltrate and forms overland flow. Within the slope, there 

are similar, though more complex, relationships between the wetness of a material 

and the routing of water through it.   

One of the main challenges for using surface soil moisture as an input to landslide 

monitoring is, necessarily, the vertical disjuncture between what is measured at the 

surface and the conditions near the key failure plane; that is, the fact that moisture 

measured by SAR systems is in the top 5 cm of the soil profile (Pelletier et al., 1997), 

while the failure plane typically sits considerably deeper, normally sitting between 

1 and 4 m below the surface for translational slides in soils (Milledge, 2008) like the 

one being focussed on in this project. 

 As already examined, pore water pressure is a driver of slope deformation.  The 

assumption within hillslope hydrology models is that water flow occurs from high to 

low pressures, as demonstrated by Darcy, and that these hydraulic gradients are 

related to topography (Tetzlaff et al., 2008).  Key characteristics that have been 

identified for the calculation of flow accumulation within the slope include: slope 

steepness, surface topography (Quinn et al., 1991), sediment thickness, hydraulic 

conductivity and upslope contributing area.  The sensitivity of soil saturation to 

these parameters is not well understood, despite multiple studies.  Gallart’s studies 

in Vallcebre, Spain – a slow-moving predominantly clay landslide with higher rates 

of motion at the top of the slope than the bottom, like Hollin Hill - found that while 

topographic index was a reasonable predictor of saturation patterns, sub-grid 

conditions like topography, soil characteristics, non-topographic flow pathways and 

dynamic water flow) were as important in controlling saturation (Gallart et al., 1994; 

Gallart et al., 1997, 2008; Latron and Gallart, 2007). 

2.3.1 Preferential flow 

Traditional hydrological models assume that soils act as continuous porous media.  

However, increasingly, empirical studies are showing that there is significant 

preferential routing of water through soil masses.  This routing occurs through 

discontinuities in the pore structure, in the form of macropores caused by roots and 
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animal burrowing (Beven, 1981; Sidle and Swanston, 1982; Pierson, 1983; 

McDonnell, 1990).  This preferential flow is particularly important in the context of 

landslides, where mass movement has a tendency to produce surface and sub-surface 

fracturing and discontinuities, causing uneven routing of water to the soil mass and 

slip plane, causing local variability in pore pressures and thereby shear stress.  This 

is particularly of interest in the case of the Hollin Hill landslide, where the upper 

portion of the landslide is characterised by multiple, deep (~0.5 m) fissures, and a 

deeper scarp scar (~1 m), which, it is hypothesised, enables preferential flow into 

this part of the slope. 

Studies of the significant heterogeneity in hillslope responses to rainfall events have 

revealed significant complexities in subsurface flows (McDonnell, 1990; Hutchinson 

and Moore, 2000). Traditionally, surface topography has been considered as a 

primary input to modelling of flow routing, however, some studies have found that 

in certain cases bedrock topography or discontinuities can provide a much better 

parameter for calculating spatial saturation patterns (e.g. (Freer et al., 2002), where 

saturation of a uniform, shallow soil, was shown to be controlled by the topography 

of the granitic bedrock). 

Preferential flow is well recognised as being a key challenge to hydrological 

modelling, though, the effects on slope stability can vary, with pipe flow, for example, 

in some cases, improving slope stability, because it provides efficient flow routing 

away from an area, thereby limiting pore pressure build-up (Pierson, 1983).  

Conversely, they enable increased flow into a less well connected area of the slope, 

thereby raising pore pressures in that area and reducing slope stability (McDonnell, 

1990). While the spatial distribution of pipes is poorly understood, it is conjectured 

that, at smaller scales, they may have a greater impact on spatial soil saturation 

than traditional topographical controls (Hutchinson and Moore, 2000). 

2.4 Slope processes Summary 

This section has set out methods of landslide activation and reactivation, examined 

approaches to modelling slope motion and moved on to examine the underlying 

hydrological processes that drive instabilities and philosophies of modelling these.  

It has shown that it is critically important to understand soil moisture at scales key 

for monitoring slope deformation potential.  Having assessed the studies that have 

undertaken this, and their challenges involved in in situ monitoring of this 

parameter, and the integration of the inherently quasi-point nature of in situ soil 
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moisture measurements, the focus of this chapter now turns to SAR and the 

opportunities that it offers for improving the monitoring of soil moisture at scales 

meaningful for landslide- and other hazard-related monitoring. 

2.5 SAR 

This section introduces and discusses Synthetic Aperture Radar (SAR) and its use 

in environmental remote sensing, highlighting methodological developments and 

challenges in the utilisation of the data. 

2.5.1 Introduction to SAR 

Synthetic Aperture Radar (SAR) is a high resolution radar imaging technology used 

for remote sensing of earth surface properties from either aerial or spaceborne 

platforms (Curlander and Mcdonough, 1991). SAR is an active sensor – that is, one 

that both emits and receives pulses of microwaves, as opposed to passive systems 

which just receive background microwave radiation (Kerr et al., 2010).  The system 

emits in the microwave band of the electromagnetic spectrum, and has, therefore, 

the ability to image during both the day and the night; with the ability to also 

penetrate cloud and, dependant on wavelength, rain (Ulaby et al., 1986), SAR has 

been seen to represent an important technique for imaging earth surfaces across 

multiple disciplines ranging from agricultural science to oceanography (Jordan, 

1980; Paloscia et al., 2014).   

To achieve its characteristic high resolution, which can be defined as “the minimum 

separation between two objects of equal reflectivity that will enable them to appear 

individually in a processed radar image” (Olsen, 2007), the platform effectively uses 

its own movement along its orbit to increase the effective size of the antenna, by 

receiving the backscatter signal from the surface at a point a distance from the initial 

point of emission (Sabins, 1996), using a small antenna and a broad beam.  The 

Doppler effect and processing techniques are used to create a resolution akin to the 

very narrow beam used by Real Aperture Radar (RAR) to achieve fine spatial 

resolution narrow beam (ibid.).  The Doppler principle says that there is a difference 

between the frequency of wave emitted and wave received if there is a change in 

velocity between the source and the observer (ibid.) and is applicable to all harmonic 

wave motion, including microwaves.  The resolution of SAR is an order of magnitude 

improvement on that of Real Aperture Radar (RAR) sensors; in the case of satellite 

applications, the resolution of RAR is in the order of 100s of meters, whereas SAR 

resolution is in the 10s (Jordan et al., 1991) or even 1s (ASI, 2009) of meters.  
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In terms of image product size and resolution, the resolution of the image and the 

swath width of the image are inversely proportional (Sabins, 1996), that is, the larger 

the swath width, the coarser the resolution of the image. For example, COSMO-

SkyMed offers a 1m resolution for its Spotlight2 Mode with a swath width of 10km, 

whereas, in its ScanSAR mode, it has a resolution of 100m, but a swath width of 

200km (ASI, 2009).   

To produce an image, the SAR system emits an electromagnetic (EM) pulse at a 

specific wavelength, for a specific duration (a chirp).  The chirps sent are timed such 

that they alternate with the returning energy pulses to the antenna; this is because 

in SAR systems the same antenna sends and receives.  To prevent interference 

between the outgoing and incoming pulses, a duplexer blocks each circuit in turn 

when the other is operating; i.e. when the transmitter emits, the receiver is blocked 

and vice versa (Sabins, 1996).   

Each pixel of SAR data contains complex data, with the phase angle, polarisation, 

and  amplitude of the backscatter return in each pixel value.  Early SAR usage, 

focussed on the amplitude values.  While amplitude is still an important part of SAR 

processing - and is the component this thesis has focussed on - two other components 

of the returning signal are increasingly being used – phase and polarisation - with 

phase being of particular importance in Interferometric SAR (InSAR) (Hansen 2001; 

Massonnet and Souyris 2008), which has been widely used in producing digital 

elevation models (DEM) and in monitoring surface deformation following 

earthquakes or landslides (Massonnet and Feigl 2008), and polarisation being used 

in soil moisture estimation (Ouchi, 2013; Shi et al., 2021) – particularly of vegetated 

surfaces (Jagdhuber et al., 2008; Hajnsek et al., 2009; Martone et al., 2010). 

The scene being imaged is illuminated in the look direction, which is orientated 

normal to the azimuth direction. Unlike visual imaging, radar imaging records 

backscatter values as a function of time, not distance because time can be measured 

more precisely.  The amplitude of the return signal is a function of the interaction 

between the surface and the incident pulse (Sabins, 1996); surface properties 

influencing this include dielectric constant, surface roughness and orientation of 

features (like hillslopes or buildings); pulse properties might include the wavelength, 

polarization and depression angle of the incident energy (Sabins, 1996), which are 

discussed later in this chapter. 
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2.5.2 The history of SAR to the present day 

The first SAR experimentation was undertaken in 1952, using an airborne (Wiley, 

1985), with the first spaceborne system – SEASAT – being launched in 1978 (Jordan, 

1980).  Development of techniques and principles was undertaken through airborne 

SAR and the Shuttle Imaging Radar (SIR) missions, with SIR A and B being L-band 

HH polarisation sensors (Granger, 1983) – B having the ability to change incidence 

angles through a moveable antenna, and C (slightly later in 1994) offering fully 

polarimetric data at X, C and L-bands (Jordan et al., 1991).  Follow-up platforms 

were introduced by several space agencies from the early nineties; in 1991 the ERS1 

SAR spaceborne platform was launched (Attema, 1991), JAXA launched JERS-1 

(Nemoto et al., 1991; Shimada, 2006), RADARSAT-1 (Raney et al., 1991) was also 

launched and their follow-up platforms, ALOS-PALSAR (Rosenqvist et al., 2007) and 

RADARSAT-2 (Moon et al., 2010) respectively.   

In recent years the focus has increasingly been on the development of systems 

capable of producing higher resolution imagery – in the order of meters or tens of 

meters - as evidenced in the development of recent SAR satellites like ALOS 

PALSAR 2, Sentinel 1, TerraSAR-X, TanDEM-X and COSMO-SkyMed generations 

1 and 2, ICEYE and NovaSAR-S (Rosenqvist et al., 2007; Attema et al., 2009; Torre 

& Capece, 2011; Torres et al., 2012; Cohen et al., 2016), with full polarisation 

capability being common.  Another development in SAR imaging capabilities seen in 

recent missions is a change of tack from developing single satellites with multiple 

sensors on them to much smaller and lighter satellites carrying just a SAR sensor.  

This significant reduction in weight (in some cases a whole order of magnitude in 

scale), has enabled multiple satellites, to be sent up at once and arrayed in 

constellations (Ouchi, 2013).  This constellation approach has enabled the revisit 

time of SAR platforms to be much reduced – from the 24, 35, and 46 days of 

RADARSAT-2, ENVISAT-ASAR, and ALOS-PALSAR respectively, to the 7 hours 

(dependant on location and imaging specifications) offered by COSMO-SkyMed 

generation 1 (CSK) (ASI, 2009).   

2.5.3 Geometry and terminology of RADAR processes 

It is useful at this stage of the thesis to outline the main terminology and physics 

underlying SAR imaging.  To summarise, there are 6 main bands (though K band is 

sometimes split into two) (Table 2.3) within the microwave section of the 

electromagnetic spectrum which are used for radar imaging.  The band letters were 

assigned randomly in World War 2 and do not follow alphabetically (Sabins, 1996).  
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The microwave spectrum extends from 0.3GHz and 100cm to 100GHz and 0.3cm 

respectively.  For remote sensing the most common bands used are the longer 

wavelength band, L (15-30 cm), the compromise band, C (3.8-7.5 cm) and the short 

wavelength X-band (2.4-3.8 cm) (Ulaby, Moore and Fung, 1981). 

Table 2.3 Wavelengths and Frequencies of the bands making up the microwave portion of the 

electromagnetic spectrum.  Source: (Sabins, 1996). 

Band designation Wavelength (cm) Frequency (GHz) 
K 0.8-2.4 40-12.5 
X  2.4-3.8 12.5-8 
C 3.8-7.5 8-4 
S 7.5-15 4-2 
L 15-30 2-1 
P 30-100 1-0.3 

 

The relationship between frequency and wavelength is defined by the following 

formula: 

𝜆 =  
ଷ

௩
      [2.3] 

general equation: 

𝑐 = 𝜆 ∗ 𝑣     [2.4] 

where c is (3*108) ms-1, λ is wavelength in cm, and v is frequency in GHz. 

2.5.3.1 Backscatter 

Backscatter is the energy returned to the RADAR sensor after each pulse from the 

sensor.  The backscattering coefficient is expressed as: 

𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
ா௬ ௩ௗ ௬ ௦௦

ா௬ ௧ௗ ௦௧௬ ௬ ௦௨
  [2.5] 

Although the value is normally negative, it is possible for it to be positive on 

occasions where surface geometry (e.g. a concave surface) serves to funnel the 

incident energy back to the antenna, for example in the case of a double bounce or 

dihedral scatterer or an urban area. 

Radar images are predominantly interpreted through the backscatter coefficient – 

σ0 - of each pixel (Ulaby, Moore and Fung, 1986).  The value is measured in dB and 

is calculated through: 

σ = σ0A       [2.6] 
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where σ is the backscattering cross section, σo is the backscattering coefficient of the 

cell and A is the area of the cell (as defined by the azimuth and ground-range 

resolutions).  The σ0 value is most affected by two key components – surface geometry 

and the dielectric constant of the material.  The dielectric constant is almost directly 

proportional to soil moisture (Engman, 1991). 

In general, backscatter values can be classified thus (Sabins, 1996): 

Very high (above -5dB) – Urban; slopes toward emitter; very rough surface; 

steep incidence angle; dihedral scatterers 

High (-10 - 0dB) - rough surface; dense vegetation 

Moderate (-20 - -10 dB) – medium density vegetation; agricultural crops; 

moderately rough surfaces 

Low (below -20dB) - smooth surface; calm water; road; very dry terrain 

2.5.3.2 Pulse geometry 

How the incident pulse interacts with the medium it meets is defined by multiple 

characteristics – geometry of the pulse, geometry of the surface, and the material 

properties of the surface.  This section will expand on the role of each of these, in 

turn. 

2.5.3.3 Polarisation 

The polarisation of the electromagnetic pulse is best defined as being “the behaviour 

in time of the wave field vector...observed at a fixed point in space” (Azzam and 

Bashara, 1987). This applies to both the electrical and magnetic components of the 

EM wave, which oscillate perpendicular to each other and their direction of 

movement. The polarisation of the overall EM wave is the vector resultant from the 

two vector components which make up the EM wave.  The axis of oscillation can be 

either vertical or horizontal (V or H).  When it is reflected by a surface most of it 

keeps that polarization.  This is called ‘parallel polarized’ imagery and is referred to 

as HH or VV, depending on what the orientation of the original incident radiation 

was.  Part of the pulse can be depolarised, however, when it encounters an abrupt or 

gradual change in refractive index, magnetic permeability, permittivity or 

conductivity (Boerner et al., 1997).  The return from this is referred to as cross-

polarized - HV or VH. 
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2.5.3.4 Incidence Angle 

The incidence angle is the angle measured from the vertical at which the radar beam 

is incident to the surface.  It is smaller at the near-side, than it is at the far-side of 

the imaged area.  The average incident angle quoted for an image product is 

measured from the mid-line of the image.  It is generally assumed that all ground 

surfaces are horizontal (Sabins, 1996), however, when the imaged surface is sloped, 

the inclined surface angle impacts the equivalent incident angle (Figure 2.6).  To 

incorporate surface geometry into incidence angle calculations on a pixel-by-pixel 

basis, a high resolution DEM can be used. 

 

Figure 2.6 Diagram of angular relationships between depression angle and relative surface 
angle.  Adapted from: Sabins. 1996. 

There have been several theoretical and empirical studies of the impact of incidence 

angles on the backscatter values on different surface types (Figure 2.7) (Sabins, 

1996).  The relationships are complicated, with the polarisation and wavelength of 

the pulse both impacting on the return values (Ulaby et al., 1982; Dobson et al., 1985; 

Peplinski et al., 1995).   

2.5.3.5 Surface angle effects 

The geometry of the imaged surface also has an impact on the backscatter values 

(Sabins, 1996).  For example, a hillslope facing toward the satellite will have higher 

backscatter values than a flat surface due to two geometric characteristics.  First, 

because the surface is tilted towards the radar, more of the incident ray is reflected 
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back to the sensor.  Second, because the look angle foreshortens the slope (Shimada, 

2010), so a larger area of the slope contributes to a pixel’s backscatter total.  

Conversely, a slope tilted away from the sensor will have lower backscatter returns 

for the same reasons, with the additional challenge of potentially being shadowed by 

facing slopes. 

 

Figure 2.7 Relationship between backscattering coefficient and angle of incidence at different 
frequencies and polarizations when incident with dry tarmac (n.b. it is assumed that HV 
polarization has the same values as VH).  Source: Ulaby et al. 1986. 

2.5.3.6 Surface Roughness 

Backscatter is affected by multiple surface conditions, in particular, surface 

roughness.  Different surface roughnesses have different reflectance properties.  For 

example, flat water bodies, provide little or no backscatter because the radiation 

bounces off in the opposite direction to the incident beam.  Rough surfaces like bare 

soil and lightly vegetated surfaces have higher backscatter values than water, as 

more of the incident beam is reflected back.  Vegetated fields have higher values, 

and forests even higher due to volumetric and dihedral scattering. The highest 

backscatter values are from buildings in urban areas, particularly if they are aligned 

orthogonal to the line of sight of the satellite.  When the radiation hits a smooth 

surface, some energy is scattered in all directions, but most is reflected away.  As 

roughness increases, so the amount of backscatter returning to the receiver 

increases.  
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Figure 2.8 Impacts of surface material and geometry on backscatter returns.  From 

Sabins 1996. 

The effective roughness of a surface is defined by the wavelength of the incident 

pulse and the actual roughness of the surface.  For, at different wavelengths, surface 

roughness resolves differently; what might present a very rough surface at X-band, 

would be effectively smooth at C or S-band; the effective roughness of a surface is 

defined by the Raleigh equation: 

ℎ <
ఒ

଼ ୱ୧୬
      [2.7] 

where h is vertical relief, λ is wavelength and γ is depression angle – the complement 

of the incident angle – of the sensor.  The rougher the surface, the greater the 

backscatter.  The longer the wavelength, the less the effective roughness of the same 

surface. 

2.6 Soil Type 

Although it might be thought that grain size of the soil would impact upon the 

effective surface roughness of the soil, the wavelengths used in SAR are sufficiently 

long that the variation in grain size makes them effectively smooth (Mironov et al., 
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2004).  However, soil type can impact the backscatter due to the effective dielectric 

constant of it.  For, given that it is the dielectric constant of a medium that impacts 

the backscatter from that material, it is the amount of free water that a soil contains 

that mainly impacts its backscatter values.  The dielectric constant is affected by 

grain sizes (Hallikainen et al., 1985; Mironov, 2004; Srivastava et al., 2009), with 

sandy soils having a higher concentration of free water than clay soils, which is why 

the correlation between moisture and backscatter coefficient is stronger in sandy 

soils than clay soils (Mironov et al., 2004) as in sandy soils more water dipoles are 

free to align with the incident electromagnetic waveform (Engman and Chauhan, 

1995). 

 

Figure 2.9 Orientation of polar molecules with and without the presence of an electric field. 
From (Serway et al., 2000). 

In interpreting SAR data using amplitude, the problem of equifinality is 

considerable.  For, it is possible that the same amplitude value could be achieved 

through multiple different surface conditions, made up of different combinations of 

roughness, wetness, and contributory factors from neighbouring pixels. 

2.7 Image resolution 

The spatial resolution of the image is defined by the dimensions at ground level of 

the cell formed by range and azimuth resolutions.  The range and azimuth 

resolutions are determined by both the imaging mode and the wavelength of the 

sensor. 

Range resolution is determined by the depression angle and the pulse length – the 

length of time over which the pulse is emitted; measured in micro seconds (µs). It is 

converted from time to distance by multiplying by the speed of EM: 

𝑅 =
௧

ଶ ୡ୭
      [2.8] 



Chapter 2: Literature Review 
 

32 
 

where, t is the period of the pulse emission, c is the speed of light (3 *108 ms-1) and γ 

is the depression angle from the sensor.  At different depression angles the same two 

points can be either resolved or not resolved based on their distance from the 

antenna.  That is, it is possible for two objects of the same size to be differentially 

resolved on the basis of their distance from the azimuth.  To improve the resolution, 

pulse length can be reduced, but this reduces the amount of energy emitted, and 

therefore, the amount of energy received back.  This is an important consideration 

for the design of projects using SAR, for the size of features desired to be resolved 

needs to be considered when the resolution of the imagery chosen and also any post-

processing of the imagery is designed. 

Azimuth resolution is determined by the width of the terrain ‘illuminated’ by the 

beam.  To be resolved, targets must be further apart than the width of the beam.  

Beam width is not constant.  Rather, it increases with distance from the antenna.  

Azimuth resolution is higher for shorter wavelengths. Beam width is inversely 

proportional to antenna length (5.1).   

𝑅 =
.∗ௌ∗ఒ


       [2.9] 

where S is slant range distance, λ is the wavelength of the pulse and D is antenna 

length. 

Antenna length is limited due to the restrictions on transporting the system into 

orbit in the case of satellites. 

Over recent years the resolution of images has increased considerably due to the 

increased use of shorter wavelength imaging platforms like TerraSAR-X, NovaSAR 

and COSMO-SkyMed.  In Spotlight mode – the highest resolution imaging mode 

common to satellite platforms – images are available at resolutions smaller than 1 

m2 (Paloscia et al., 2012; ASI, 2016; Cohen et al., 2016). 

2.8 Image calibration and correction 

This section sets out the some of the necessary considerations when using SAR data.  

SAR imagery has quite different properties to the optical imagery.  To be able to use 

the complex data in the image, it is necessary to calibrate and correct the image 

before being able to interpret it.  This section outlines some of the steps 

considerations necessary in this. 
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2.8.1 Calibration 

Before entering the operational phase, all SAR sensors undergo a period of imaging 

calibration and validation using ground-based targets with known parameters to 

ensure that sensors are well calibrated (Calabrese et al., 2008; Grimani et al., 2008).  

This is particularly important in the context of the ever-growing number of 

constellation satellites, where inter-calibration across the constellation is key for the 

delivery of appropriate products across the constellation. 

2.8.2 Absolute backscatter returns 

To be able to calibrate reflectance values for the SAR images it is necessary to have 

points of known reflectance value in the image (Gray et al., 1990).  Conventionally, 

these points are provided through the placement of trihedral corner reflectors.  

Trihedral corner reflectors are formed of three conducting plates intersecting at right 

angles (Figure 2.10),  the reflectance of which, if its relative alignment to the satellite 

overpass is known, can be calculated (Ulaby et al., 1982) (Figure 2.11) and thereby 

used as a known value within the image from which other values in that image can 

be cross-calibrated.  The orthogonal structure of the trihedral corner reflector 

ensures that the reflected waves exit in the same direction as the original incident 

waves entered (Shaeffer et al., 2004), meaning that it functions as a perfect reflector 

and appears very bright in the image (Sabins, 1996). 

A comparison of the backscatter returns from corner reflectors, or other structures 

which produce a double bounce, can be used to inter-calibrate images from one or 

more satellite sensors to ensure good calibration between them (Baghdadi et al., 

2015).  On the whole, most calibration work is undertaken by satellite operators prior 

to entering the operational phase, though it is becoming apparent that for some 

constellations there might be a need for product users to assess the inter-calibration 

of the imagery delivered to them (Baghdadi et al., 2015; Gorrab et al., 2015). 
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Figure 2.10 Diagram of orthogonality of a trihedral corner reflector. From (Ulaby et al., 

1982). 

 

Figure 2.11 Relative power level (dB) of corner reflector backscatter at different incident 

and planar angles, with reflector side length 61cm and wavelength 1.25cm. From (Ulaby 

et al., 1982) 
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2.8.3 Correction 

Depending upon the product type ordered by the end-user, some correction 

procedures may need to be undertaken prior to use of the data.  The majority of 

image providers (ASI, 2009) or their over-arching organisations offer extensive 

advise and often tools (ESA, 2020) for the appropriate means for undertaking any 

correction or post-processing.  This section briefly sets out a couple of the corrections 

most commonly necessary to be undertaken with SAR data that has been provided 

with minimal processing undertaken by the provider. 

2.8.4 Geometry 

Side-looking radar systems producing slant-range displays compress the near-side 

features relative to the far-side features.  The transformation used to correct for this 

is 

𝐺 = 𝐻 ቆቀ
ଵ

௦మఊ
ቁ − 1ቇ

.ହ

     [2.10] 

where, G is ground-range distance, H is the height of antenna and γ is the depression 

angle of the sensor. This produces an image which assumes the ground is horizontal, 

and makes no allowance for topographic variations (Sabins, 1996).  To account for 

topography, high resolution digital elevation models (DEMs) are used to calculate 

the local incidence angle on a pixel-by-pixel basis, and therefore correct the 

backscatter return value appropriately, with studies having found that using the 

highest resolution DEM product available to be the optimal approach (Baghdadi et 

al., 2002).  The European space Agency (ESA) have produced a tool within their 

SNAP software to enable this to be undertaken. 

2.9 Speckle 

Speckle is the product of irregular constructive and destructive scattering caused by 

scatterers in nearby pixels. On account of this constructive and destructive 

scattering (Fig 4.1), two adjacent pixels with very similar scatterers in them can 

have markedly different scattering signature. Two philosophies of how to mitigate 

the effects of this interference, and therefore to allow the estimation of soil moisture 

at a pixel-by-pixel basis, predominate – non adaptive and adaptive spatial domain 

filters. 
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2.9.1 Non-adaptive Spatial Domain Filters 

Spatial Domain speckle filtering uses a moving kernel, which assigns a new value to 

the central pixel of the kernel. There are two kinds of non-adaptive filters - mean 

and median filters. These calculate the mean or the median respectively of the kernel 

area and assign it to the middle pixel. Each has different advantages and 

disadvantages. Mean filtering is good for smoothing the data but loses some of the 

image definition. It is, however, better at maintaining the radiometric qualities of 

the pixel. Median filtering is better at preserving texture than the mean filter, but 

modifies the radiometry of homogeneous areas. While being good at removing spot 

noise, this also means that it can often remove narrow linear features. 

2.9.2 Adaptive Spatial Domain Filters 

Adaptive filters, like non-adaptive ones reduce the impact of speckle but are also 

better at maintaining edge information. To do this, they exploit local statistics in the 

moving window.  

2.9.2.1 Lee Filter - Minimum Mean Square Error 

The Lee filter is a weighted sum of the observed central pixel and the mean of the 

window values. The weighting coefficient is a function of heterogeneity in the 

window, which is measured with the coefficient of variation. 

𝑅 = 𝐼 ∗ 𝑊 + 𝐼 ∗ (1 − 𝑊)     [2.11] 

where, W is the weighting function 𝑊 = (1 −
ೠ

మ


మ), Cu is the noise variation coefficient 

ඥ(1 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑘𝑠), Ci is the image variation coefficient σ/lm, Ic is the 

central pixel of the filter window, Im is the mean intensity in the filter window, σ is 

the standard deviation of intensity within the filter window. 

2.9.2.2 Frost Filter - Minimum Mean Square Error 

Like the Lee filter, the Frost filter uses the MMSE approach. It does, however, differ 

on one fundamental point, namely, that it uses the measure of local heterogeneity to 

adapt the size of the kernel window. That is, the greater the local heterogeneity, the 

smaller the kernel window. 

𝑅 =
(భ∗ெభାమ∗ெమା⋯ା∗ெ)

(ெభାெమା⋯ାெ)
      [2.12] 
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where, 𝑀 = 𝑒ି் and 𝐴 = 𝐷𝑎𝑚𝑝𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐶
ଶ,  M is the weighting value, T is the 

Euclidean distance between the centre pixel and the neighbouring pixels and 

DampFactor is the exponential damping factor. 

2.9.2.3 GAMMA MAP Filter - Maximum A Posteriori 

This assumes that the values of the scene underlying the speckle has a gamma 

distribution. 

It functions similarly to the enhanced Lee filter, but with a different filtering model 

for heterogeneous areas. It minimises the loss of texture better than the Frost and 

Lee filters for gamma-distributed areas (oceans, forested and agricultural areas). 

Where there is not a gamma distribution, it leaves the original pixel value. 

𝑅 = (𝐵 ∗ 𝐼 + √𝐷)/(2 ∗ 𝐴)      [2.13] 

2.10 Remote sensing of soil moisture 

There have been various approaches to monitoring soil moisture from space.  

Initially, the fact that wet soil is darker than light soil was utilised in optical surveys 

(Kerr et al., 2010).  Optical surveys then developed to using vegetation indices as 

proxies of soil moisture (Carlson et al., 1994; Dubois et al., 1995; Chauhan et al., 

2003).   However, the presence of cloud cover, in particular when wetting was 

occurring, provided a significant problem for optical imaging methods, especially in 

the context of hazard assessment.   Heat has also been used, for, wet soils have a 

higher thermal inertia and lower temperature than dry soils.  So, thermal inertia 

monitoring has been tried (Kerr et al., 2010).  However, being, again, an optical 

measure, it also is affected by the factors affecting other optical approaches – 

atmospheric effects, masking by clouds, the opacity of vegetation covers.  There were 

also problems with the method itself – it only measures the very surface of the soil, 

which is mainly affected by atmospheric conditions – wind cooling the soil – rather 

than soil processes (Kerr et al., 2010).  Other approaches include passive microwave 

sensors, which, while they have good return times, are limited in their utility for 

many applications by their low spatial resolution - in the order of tens of km (Sabins, 

1996; Olsen, 2007; Kerr et al., 2010; Kornelsen and Coulibaly, 2013).   

Soil moisture estimation by SAR is not limited by many of the challenges optical 

imagery has. It is based on the linear relationship between the dielectric constant of 

the soil and the amplitude of the backscatter response (Engman, 1991). The 

dielectric constant is a phenomenon caused by water molecules aligning themselves 
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with incident electromagnetic waves on account of their dipolar arrangement 

(Serway et al., 2000). At radar wavelengths, the dielectric constant is 3-8 for dry rock 

and soil. For water it is about 80 (Schmugge et al., 1980; Sabins, 1996; Schmugge et 

al., 2002); consequently, for wet soil, the value can be over 25, which, in some cases, 

can be approaching an order of magnitude greater than the dry soil value for the 

same point.  The relationship between radar backscatter and volumetric soil 

moisture is “strong, positive, linear and independent of scale” (Shoshany et al., 2000).  

The most common way to relate soil moisture and the dielectric constant is through 

one of three empirical curves derived by Hallikainen et al. (1985), Dobson et al. (1985) 

and Peplinski et al. (1995).  When microwaves hit a surface, they can either be 

absorbed (attenuated), scattered, reflected or can penetrate and be further absorbed 

or scattered. Wilheit (1978) and Newton et al. (1982) have shown that the depth to 

which radar penetrates is equal to a couple of tenths of a wavelength. 

To calculate the impact of the soil moisture on backscatter, the contribution from 

surface geometry needs to be accounted for either through elimination, measurement 

or modelling.  There have been four different approaches to this problem – change 

detection, physically based theoretical models, empirical models or polarimetry.  For, 

surface roughness has a large impact on backscatter; indeed, it is so significant that 

Baghdadi et al. (2002b) showed that roughness has a greater impact on the SAR 

response than soil moisture – a finding which has since been replicated (Gorrab et 

al., 2015).  This impact on backscatter makes it a prime area of interest in soil 

moisture retrieval, (Verhoest et al., 2008) and one whose characterisation continues 

to create significant challenges for those seeking to estimate soil moisture (Wagner 

and Pathe, 2005). 

Characterising surface roughness at a field scale is difficult.  There are various 

methods of measuring roughness during field studies including pin profilometers at 

multiple scales (Álvarez-Mozos et al., 2006) or laser profilometers (Davidson et al., 

2000, 2001; Mattia et al., 2003).  The heterogeneity of this parameter at a field scale 

means, however, that the extrapolation of these data at a field scale limits the 

accuracy of soil moisture retrieval when these extrapolated roughness values are 

extrapolated (Srivastava et al., 2008).   

2.10.1 Relative soil moisture estimation (change detection) 

Change detection is probably the most common soil moisture estimation technique 

in used in modern studies that focus on soil moisture estimation itself, rather than 
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methodological improvements to soil moisture estimation (Moran et al., 2000; 

Wagner et al., 2003; Kerr et al., 2010; Albergel et al., 2012; Sportouche et al., 2012; 

Ouellette et al., 2017; Zhu et al., 2019; Mattia et al., 2020; Punithraj et al., 2020; 

Zakharov et al., 2020).  Change detection mechanisms compare backscatter signals 

from two or more co-located images of the same location to calculate the change in 

dielectric constant of the soil (Ulaby et al., 1986; Sabins, 1996).  This method works 

on the assumption that one component of the backscatter – the surface roughness – 

remains constant between the two scenes, meaning that any change on a pixel-by-

pixel basis is caused by a change in soil moisture (Moran et al., 2000; Albergel et al., 

2012).  Long repeat times (~1 month) can, however, limit its theoretical efficacy 

(Kerr, 2007), due to changes in vegetation during that time, although vegetation 

modelling or in situ  characterisation field studies undertaken concurrent with SAR 

acquisition significantly improve the viability of it as a method (Hegarat-Mascle et 

al., 2002; Wagner et al., 2003).    The primary advantage of change detection as a 

technique is that it is relatively computationally light and requires minimal in situ  

measurement, additionally, it requires much less detailed, or no, a priori knowledge 

of the site than the approaches set out in the next sections; however, the 

disadvantage is that it requires multiple images of the same geometry (although 

some recent studies (Sahebi and Angles, 2010; Wang et al., 2011; Zhu et al., 2018) 

have sought to utilise different geometries to enhance change detection methods), 

and gives a measure of relative moisture rather than absolute. 

2.10.2 Physically based theoretical models 

Physically based models account for the dielectric constant of the scattering surface.  

The disadvantage of these models is that they require a priori knowledge of surface 

roughness.  Fung's (1994) Integral Equation Model (IEM) is the most well-known of 

these and is based on the Physical Optics Model (POM) (Born and Wolf, 1980; Song 

et al., 2009) and the Small Perturbation Model (SPM) (Dubois et al., 1995; Engman 

and Chauhan, 1995); several improvements and developments along the same theory 

have been proposed more recently (Baghdadi et al., 2002; Song  et al., 2009). 

2.10.3 Empirical models 

Empirical models use the empirical relationship between soil moisture and the 

Normalised Radar Cross Section (NRCS), making them, therefore, generally limited 

to the location of the dataset they are developed at (Baghdadi et al., 2002).  More 

recently, empirical (Oh et al., 1992; Dubois  et al., 1995) models or model extensions 

have been developed.  These have the advantage of allowing inversion with dual 
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polarised observables, but have the disadvantage that they are based on regression 

coefficients from a specific test site, and therefore require re-calibration for each 

different location used.  Somewhat bridging the gap between the theoretical and 

empirical models is the semi-empirical model developed by Shi et al (1991. 

2.10.4 Semi-Empirical models 

Semi-empirical models solve the problem of requiring a priori knowledge of surface 

roughness that theoretical models have, and the site specific problems of empirical 

models by combining characteristics of each – empirically based models and 

scattering theories (Oh  et al., 1992, 2002; Dubois et al., 1995; Shi et al., 1997; D’Urso 

and Minacapilli, 2006; Oh et al., 2013; Kweon and Oh, 2014).  The three most 

commonly used of these models are defined particularly in the polarisations 

required. Of the three earliest, and most often cited approaches to dealing with the 

surface roughness problem, there are three different philosophies:  Oh et al.’s models 

(1992; 2002) require fully polarimetric data, Dubois et al.’s (1995) require dual-

polarisation data, and Shi et al.’s (1997) only require single polarisation data.  More 

recently, however, the research group Oh works in has moved to looking at the 

potential for using single-polarised SAR for soil moisture estimation (Oh  et al., 2011; 

Kweon et al., 2013; Oh et al., 2013; Kweon and Oh, 2014). 

2.10.5 Polarimetry 

Almost all recently launched SAR satellites are capable of producing data in multiple 

polarisations, some as single-polarised products, others as multi-polarised products.  

The increasing availability of multi-polarised products has led many to focus on this 

method for assessing soil moisture as the multi-polarised returns enable better 

assessment of surface geometries and scattering methods (Jagdhuber et al., 2008; 

Hajnsek et al., 2009; Martone et al., 2010; Reigber et al., 2013; Wang et al., 2017). 

Mathematical decompositions using fully-polarised SAR have significant advantages 

over methods like the simple change detection approaches outlined above in terms 

of being able to invert for both soil moisture and vegetation by making use of the 

difference in backscatter in each of the four polarizations (HH, HV, VH, VV). 

Polarimetric SAR proponents use the different responses of surface features to 

different polarisations of EM energy to decompose backscatter responses. Each pixel 

in a PolSAR image has four ’receive’ values attributed to it. These values stem from 

the nature of a PolSAR system, which sends out first one polarisation, then receives 

both polarisations back, then sends the other polarisation and receives both 
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polarisations back. That is, it emits horizontally polarised EM wave, receives the 

horizontally (HH) and vertically (HV) polarised backscatter, then emits vertically 

polarised EM wave, receives the horizontally (HV) and vertically (VV) polarised 

backscatter (Jagdhuber et al., 2008). 

2.11 X-band soil moisture estimation context 

Having considered the processual complexities associated with utilising SAR data 

for soil moisture estimation, it is necessary to focus more closely in on the specific 

challenges associated with utilising the shortest wavelength SAR products, one of 

which – X-band COSMO-SkyMed Spotlight2 data – is central to this project.  In 

recent years the X-band SAR sensors have been deployed on satellite missions, for 

example on TerraSAR-X and the COSMO-SkyMed first (CSK) and second (CSG) 

generations.  The utilisation of X-band SAR for environmental sensing is a divergent 

approach from that previously undertaken, where longer wavelength sensors, like 

the C-band RADARSAT and L-band ALOS PALSAR  had been preferred for 

environmental remote sensing due, in part, to the smaller impact surface roughness 

has on the backscatter return.  Shorter wavelength platforms have, however, become 

more common, particularly, in the context of increased interest in the development 

of satellite constellations, as they provide high resolution SAR data, with the benefit 

of the short return period constellations offer.   

Although constellations have minimised the required trade-off between resolution 

and return-periods, several studies undertaken early on in the operational phase of 

the CSK project have shown that there is some discrepancy in the backscatter 

returns between the four satellites that make up the constellation (Baghdadi et al., 

2015; Gorrab et al. 2015), as well as discrepancy between the CSK and TerraSAR-X 

sensors (Paloscia et al., 2012; Sportouche et al., 2012; Pettinato et al., 2013; Gorrab 

et al., 2014; Baghdadi et al., 2015; Gorrab et al., 2015). 

Sensors using longer wavelengths have predominated in the field of environmental 

monitoring as backscatter returns are less impacted by surface roughness, and 

therefore, soil moisture is easier to estimate (Baghdadi et al., 2002).  Indeed, the 

majority of studies which have used X-band SAR for soil moisture estimation have 

found that the only soil moisture estimation method that is appropriate using a 

single-polarised product is change detection, which assumes surface roughness does 

not change between images (Notarnicola et al., 2010; Gorrab et al., 2015).  Many SAR 

studies have utilised multi-polarised SAR data to enable more robust soil moisture 
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inversions to be undertaken, through the ability this data gives for the better 

estimation of the roughness component of the backscatter return (Jagdhuber et al., 

2008; Martone et al., 2010; Reigber et al., 2013). 

2.12 X-band environmental sensing summary 

The use of X-band SAR for environmental remote sensing is still relatively novel.  

Although the potential to undertake this research direction has existed since the 

understanding of the relationship between dielectric constant and the SAR 

backscatter response was understood some decades ago (Ulaby et al., 1986), it is only 

in the last decade or so that X-band SAR platforms have become available for 

environmental researchers to use.  Although research into how best to estimate soil 

moisture from SAR backscatter has been studied for decades (Kerr, 2007), and 

different processing protocols have been developed for different specific uses in 

highly constrained circumstances, there is even greater uncertainty as to the best 

way to estimate soil moisture from X-band and other short-wavelength SAR 

products, or, indeed, whether this is even realistically achievable (Wagner and 

Pathe, 2005).  For, as methodologies stand at the moment, the majority view is that 

change detection, which has the limitation for time series studies that it assumes 

stationarity of vegetation and its associated roughness, is the best approach for 

estimating soil moisture.  Not only does this approach limit the return period of 

images that can be used, it also only provides a measure of relative moisture, rather 

than a measure of absolute moisture, the utility of which, in the context of 

monitoring a driver of slope instability which is generally accepted as leading to 

instability at a specific threshold, is questionable. 

2.13 COSMO-SkyMed review 

So far this chapter has explored the general context, theory and usages of SAR 

imagery.  The narrower context of this thesis is now considered by summarising the 

extent of research undertaken with COSMO-SkyMed imagery at the time this 

project was undertaken. 

2.13.1 COSMO-SkyMed Usage 

In designing this project, a summary of all published work using the CSK platform 

was undertaken.  Many of the projects highlighted in this review were focussed on 

algorithm development and testing (Notarnicola et al., 2010; Balenzano, et al., 2011; 

Oh et al., 2011; Kweon et al., 2012, 2013; Kweon and Oh, 2014).  These projects can 

be divided into two groups: SAR algorithm testing, with in situ ground truthing, or 
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inversion testing against modelled data (Fontanelli et al., 2013; Iacobellis et al., 

2013).  Another key theme emerging from the papers is that of vegetation monitoring 

(Capodici et al., 2011; Mattia et al., 2012; Santi et al., 2012; Satalino et al., 2012;  

Paloscia et al., 2014) and soil moisture monitoring of bare (Santi et al., 2011; Wang 

et al., 2013; Gorrab et al., 2014; El Hajj et al., 2015; Gorrab et al., 2015) or vegetated 

soil conditions. 

Another subset of projects was focussed on examining COSMO-SkyMed’s data in 

comparison to other sensors (Balenzano et al., 2011; Santi et al., 2011; Paloscia et al., 

2012; Paloscia et al., 2012), in particular TERRASAR-X, for specific roles, or 

comparing the ability to use X-band for environmental sensing with another more 

commonly used band, like C (Notarnicola et al., 2010) or L (Balenzano et al., 2013), 

in specific contexts.  These studies found there to be variation in the backscattering 

returns between the 4 satellites of the constellation, with Baghdadi et al. (2015) 

finding a variation of 1.6 dB between CSK3 and CSK4 images, CSK2 very similar to 

CSK3, and CSK1 1.1dB darker than CSK3. 

2.13.2 Terrain and Vegetation 

Of the 23 papers published, 13 have test sites situated on plains, one has a test site 

on plain and mountainous terrain (Paloscia et al., 2012), one has mountainous 

terrain (Paloscia et al., 2014), and one has hilly terrain (Ciervo et al., 2011; Riccio et 

al., 2012) (none of the papers express their AOI terrain quantitatively); the rest do 

not specify the terrain. 

In terms of vegetation, seven of the papers focus on sites with bare soil (Oh et al., 

2011; Santi et al., 2011; Paloscia et al., 2012; Gorrab et al., 2014; Kweon and Oh, 

2014; Gorrab et al., 2015), seven on agricultural fields featuring predominantly 

wheat, beet and sunflower crops (Balenzano et al., 2011; Kweon et al., 2012, 2013; 

Mattia et al., 2012; Santi et al., 2012; Fontanelli et al., 2013; Iacobellis et al., 2013; 

Paloscia et al., 2014), two on grasslands (Wang et al., 2013; El Hajj et al., 2015), two 

on tree, shrub and rocky sites (Capodici et al., 2011; Paloscia et al., 2014), three are 

not specified (Notarnicola et al., 2010; Paloscia et al., 2012; Riccio et al., 2012). 

There are two main regions where research has been undertaken.  Unsurprisingly, 

given the access conditions from the Italian Space Agency, and their provision of 

funding and data early on in the constellation’s operational phase (Pettinato et al., 

2013), for studies exploring the capabilities of SAR, mainland Italy and Sicily are 

the most common regions; Australia is also used in several papers as a location 
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(Satalino et al., 2012; Wang et al., 2013).  The two other countries covered in papers 

at that point were South Korea (Kweon and Oh, 2014) and Burkina Faso (Ciervo et 

al., 2011; Riccio et al., 2012).  From the body of literature surveyed, revisit times 

ranged from 1 day (Gorrab et al., 2014) to 1 month.  The number of images used 

ranges from five (Capodici et al., 2011) to 28  (Wang et al., 2013). 

This brief survey of the studies published using CSK data showed that there was a 

knowledge gap in the area of soil moisture estimation over sloped terrain in 

temperate climates.  This gap, therefore, represented a fit with the survey site – 

Hollin Hill.  Furthermore, the scope for long time series acquisitions as exhibited by 

the time series survey showed that there was potential to extend this study to 

investigate the appropriateness of SAR use during the whole phenological cycle.  At 

this point, studies had relatively short time series, with the majority of projects 

targeting development of processing methodologies and algorithms or assessing the 

performance of CSK relative to other platforms, with only one (Fontanelli et al., 

2013) using data that spanned a year or more.  Most papers used images collected 

over a period of one to six months. 

2.14 Summary of SAR literature 

Synthetic aperture RADAR is not a new technology, having been first experimented 

with in 1952.  It is, however, a complex technology to use well in the context of 

environmental remote sensing.  Setting imaging parameters appropriately to enable 

soil moisture estimation is becoming more possible through the development of high 

resolution satellite constellations and the shorter return times that they offer, 

thereby making change detection a more viable estimation technique, but it is still 

challenging given the heterogeneity and variability of surface geometries.  Great 

attention has to be paid, therefore, to the system parameters by which imagery is 

gathered, and the appropriateness for use of these images. 

Satellite missions are designed for a broad market (Wagner and Pathe, 2005), and 

therefore do not always provide the specific criteria which are most required by 

environmental scientists.  Likewise, the questions which are asked through SAR 

data – particularly those which query soil moisture in poorly constrained geometric 

contexts – are often inappropriate or currently not possible to ask given the 

challenges posed by surface geometry in the estimation of soil moisture.  So, although 

SAR has many theoretical benefits over optical or other passive remote sensing 
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technologies, there are also challenges in its use that are well recognised by the 

remote sensing community, though not necessarily well solved. 

2.15 Literature review summary 

This chapter has explored the literature surrounding this thesis project.  It has 

shown the current state of remote sensing of landslide drivers, the challenges of 

relating remotely sensed slope characteristics with slope failure, and also set out the 

history, opportunities and limitations of use of SAR for environmental remote 

sensing.  This will be the basis from which each of the next four chapters will build.  

First, in the Materials and Methods Chapter, Chapter 3, and then in the discussion 

undertaken in each of the next three chapters. 
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CHAPTER 3:  MATERIALS AND METHODS 

This chapter describes the fieldsite, the extant and novel in situ data products used 

in this project and their acquisition and calibration, and then gives the context of 

SAR remotes sensing at the field site, before describing the SAR data product used 

in this project and the supplementary data sets which were used to calibrate this 

SAR data product. 

3.1 Field Site 

The study area is the 4.5 hectare Hollin Hill Landslide Observatory in North 

Yorkshire, England (Lat-Long 54.1106°N, 0.9602°W), (Figure 3.1), bounded to the 

North, East and South by arable land and to the West by mixed woodland, used for 

pasture and with an elevation of between 55 and 100 m AOD and an average 

gradient of 12o; to the south sits an ice-marginal drainage channel from the 

Devensian (Chambers et al., 2008).  The site features four slow to very slow moving 

reactivated rotational earth flows (Cruden and Varnes, 1996), comprising of four 

landslide lobes stretching across the face of the slope (Figure 3.2) initiating in Whitby 

Mudstone-derived soils – a clay-dominant regolith (Powell, 1984; Hobbs et al., 2012) 

– and then moving to a translational flow (Varnes, 1978; Cruden and Varnes, 1996) 

over Staithes Sandstone.  The site is highly susceptible to landsliding driven by 

seasonal soil-moisture variations  (Jenkins et al. 2006; BGS, 2016) - a type highly 

representative of landslides across western Europe and the UK and accounting for a 

high proportion of  landslides recorded in Britain (Foster et al. 2007; Gibson et al., 

2013), and is well representative of landslides in stiff clays (Uhlemann et al.), being 

made up of materials from the Lias Formation, which is recorded as having the 

highest incidence of landsliding of any formation in the UK (Jones and Lee, 1994).  

The site has an Oceanic (Cfb) Climate (Koppen, 1936), characterised by warm 

summers (June to August) and cold winters (December to February).   
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Figure 3.2a,b Interpretation of the Hollin Hill landslide features from (Chambers et al., 2011) 

and optical imagery of the site from Google Earth (2020). 

 

 

Figure 3.1 The Hollin Hill Landslide Observatory and its position in the UK 

B 
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February 2017 – Eastern lobe back scarp 

cracking, from translational body, just East 

of cluster 2, looking N 

January 2017 – Eastern lobe scarp and 

translational looking from 10m E of cluster 

2, Looking NNW 

 

November 2016 Eastern lobe from top of 

slope, looking SE 

 

August 2016 – Eastern Lobe back scarp 

cracking, from translational body, just East 

of cluster 2, looking N 

Figure 3.3a-d On-site images of the landslide 

The Landslide Observatory, was set up in 2006 following reports from the farmer-

landowner to the BGS that there was slippage of the slope (Jenkins et al. 2006).  

Although the landslide was originally reported in 2005, there is evidence of previous 

movement, with an inactive lobe underlying and extending beyond the current 

extent of the furthest East active lobe similar to that marked ‘C’ in Figure 3.4 which 

extends beyond the southern boundary of the site (pers. Comm. Archer 2014).  The 

site has two primary benefits for the project, first an active BGS research presence, 

resulting in over a decade of high temporal resolution soil moisture and slope-

deformation data, as well as continued real-time monitoring of these factors at sub-

daily resolutions; and second, easy accessibility (~80 miles journey distance) from 

Durham University.   

a b 

c d 
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The site comprises of four landslide lobes of a poorly draining clay derived from 

Whitby Mudstone that overlies the more southerly Staithes Sandstone-derived soils.  

The Eastern-most lobe is the most active, with substantial cracking at the crown 

(Figure 3.2 and Figure 3.4), and sag ponds near the head of the lobe.  The slide is 

rotational, transitioning to translational further down the slope.   

3.2 Site Geology 

Multiple geophysical studies of the site have been undertaken, including intrusive 

investigations through auguring and drilling (Figure 3.6a,b) (Gunn et al., 2013), 

Electrical Resistive Tomography (ERT) surveys (Chambers et al., 2008; Merritt et 

al., 2013) have shown heterogeneity in the lithology of the site.  The two core 

examples presented in Figure 3.6a,b shows the difference in the materials at two 

sites on the slope – Figure 3.6a shows the composition and potential slip lines in the 

clay of the active eastern lobe, and Figure 3.6b shows the composition of the 

materials near the foot of the slope in the sand.  The lithologies and strength of the 

deposits shown in these figures shows the complexity of the slope.  However, it is 

possible to summarise the general morphology of the slope thus: put simply, the site 

 

Figure 3.4 Diagram of Hollin Hill slope morphology.  From (Merritt et al., 2013). 
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is made up of four different underlying lithologies running in roughly east-west 

bands perpendicular to the line of the slope (Figure 3.5).  The main body of the slope 

consists of Redcar Mudstone, overlaid by Staithes Sandstone, and Whitby Mudstone, 

the material properties of which are shown in Figure 3.7. All of these formations are 

part of the Cleveland Basin Lias Group and were laid down between the Toarcian 

and Sinemurian stages (Hobbs et al., 2012) between 200–170 Ma ago (Knox et al., 

1991) and is made up of marine sediments (Powell, 1984).  Lias deposits, and Whitby 

Mudstone in particular, are susceptible to slope instability (Jones and Lee, 1994). 

The material shows signs of significant weathering to destructuring with low 

strength to a depth of about 6m (Figure 3.6) (Gunn et al., 2013).   

 

Figure 3.5 Bedrock Geology of the Hollin Hill Site.  Source: (BGS, 2016) 
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Figure 3.6a Log of a core taken by Gunn et al. (2013) in the main eastern lobe. Points marked with 

M indicate high moisture content and Figure 6b Log of a core taken by Gunn et al. (2013) in the 

main eastern rotational feature. Points marked with M indicate high moisture content. 

 

Figure 3.7 Percentage mineral composition of Lias materials.  Adapted from: Hobbs et al., (2012). 

a b 
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3.2.1 Glacial History 

The site is thought to have been glaciated during the Anglian period, and to have 

been periglacial, with permafrost freeze-thaw during the Devensian coverage of the 

Vale of York (Gunn et al., 2013), which is thought to have been the cause of the 

fissuring and shear zones of the site material (Jones and Lee, 1994; Gunn et al., 

2013).  The valley floor to the south of the site is part of Sherriff Hutton Carr – an 

embayment from the Devensian period and the site of the ice-marginal Lake 

Mowthorpe (Chambers et al. 2011). The Vale of York is characterised by Lias Group 

formations, which are prone to instability (Jones and Lee, 1994; Foster et al. 2007; 

Merritt, 2014).  Reconnaissance work by BGS of the area surrounding Hollin Hill 

has identified numerous similar rotational slides in the Lias-derived clays of the 

region (Figure 3.8) (Jenkins et al., 2005). 

 

Figure 3.8 Locations of slide features in Lias formation found during BGS reconnaissance 

study.  Hollin Hill is marked as location 6.  From Jenkins et al., (2005) 

3.2.2 Soil 

The soils associated with the lithologies outlined above are: the Hollin Hill 

escarpment is covered by a thin layer of head, ranging from 0.2 m at the head, to 1.3 

m at the base of the slope (Chambers et al. 2011).  This head is a clay with gravel, 

sand and silt inclusions and some organic inclusions, being made up of local 

materials and formed by a combination of surface processes like hillwash and soil 
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creep (Gunn et al. 2013). The Dogger Formation gives rise to free-draining sandy soil 

rich in gravel- to cobble-size rock fragments.  The Whitby Mudstone is heavily 

weathered at the slope surface, forming a badly draining clay soil (Uhlemann et al., 

2016), which makes up the majority of the unstable lobes at the site.  The Staithes 

Sandstone-associated soil is overlain with well-draining loam soil and a thin deposit 

of Aeolian sand over the periglacial head (Uhlemann et al., 2016).   

Investigation of the soil characteristics has been undertaken by the hydro-ecology 

team at BGS, and a simple, three-part soil classification for the site has been created. 

This map (Figure 3.9) of the soil types is used in the rest of the study as it recognises 

that, with the landslide being active, soil type boundaries cannot be neatly associated 

with the lithological boundaries.  In particular, in the case of areas where the Whitby 

Mudstone has slid both recently and long ago, the clay of this formation now overlies 

some of the sand associated with the Staithes Sandstone section.  Furthermore, in 

the case of the older slides, these clay and sand materials have been bioturbated, 

forming a distinct area of soil different from the other two types.  The three types 

identified are: clay, sandy clay and sand (Figure 3.9), with the ‘clay’ class being the 

weathered Whitby Mudstone, the ‘sandy clay’ class being the bioturbated paleo- slip 

Whitby mudstone material and Staithes Sandstone, and the ‘Sand’ class 

representing the Staithes Sandstone-associated soil.    

 

Figure 3.9 Map of soil types at Hollin Hill, where the mobile, upper clay slopes are 

orange, the sandy clay is yellow, and the sand is green. 
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3.2.3 Vegetation 

The site can be classified as having a mixed vegetation regime, predominantly a 

grassed slope, with young, stand-alone deciduous trees that were planted in the early 

2000s on the upper part of the western half of the slope, perhaps in an attempt to 

stabilise the slope.  There are two distinctive vegetation zones at the site.  The clay 

area of the is characterised by short, well cropped lush grasses, with occasional 

clumps of longer reeds, in particular in the area of the sag ponds on the Eastern lobe, 

and in areas just downhill of the surface cracking features, predominantly at the 

head of the slope (Figure 3.10).  The clay-dominant area is well grazed by the herd 

of approximately 15 sheep resident at the site.  The lower, sandy slopes are 

characterised by longer, more structured and clumpy grasses, the length of which 

varies throughout the year, and which, on occasion, are artificially cropped (Figure 

3.11).  This area is less favoured for grazing by the sheep. 

 

June 2016 Upper slopes From cluster 2, NW January 2017 From cluster B, looking NE 

 

November 2016 Cluster A, looking N 

 

February 2017 From Upper Eastern corner 

of site, looking W 

Figure 3.10 Vegetation of the Clay of the site in June, November, January and February 
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August 2016 – From cluster H, looking 

W 

 

November 2016 – From cluster H, 

looking W 

 

December Cluster G, looking ESE 

 

January 2017 Cluster 4 looking SW 

Figure 3.11 Vegetation of the Sand of the site in August, November, December and January 

3.2.4 Displacement Characteristics and Interpretation 

As mentioned in section 2.1.1, it is rare that a landslide, unless it is a simple one, 

moves at the same rate and in the same way throughout the full mass of the slide.  

This is the case at Hollin Hill.  There is evidence of more rapid movement at the head 

and the toe of the landslide, but with slower motion in the middle from the active 

breaking at the head scarp and the breaking up of the toe, with buckling of the 

surface in the middle portion of the slope.  This discontinuity of slope motion can 

most simply be interpreted as being due to a shallower slope angle in the middle 

portion of the site – forming a natural terrace.  The rate of movement of the slope 

changes episodically, with quoted rates varying from 0.5myr-1 (Chambers et al., 2011; 

Merritt et al., 2013) to 3.5 myr-1 (Uhlemann et al., 2016), with most movement 

occurring during the wetter, winter months; this has been interpreted as being due 

to increased pore pressures in the slope material. 
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As was discussed in the section 2.1.1, slope stability in reactivated landslides is 

related to moisture content in the soil mass.  It is posited that part of the cause for 

the landslide is the uneven rates of flow of water from the soil mass.  The upper 

portion of the site is made up of clay derived from the Whitby Mudstone (Figure 

3.12), which has the smallest pore spacings of the three soil types on the site and is, 

therefore, the slowest draining; whereas, the lower portion of the slope is more free-

draining, having higher proportions of sand and silt.  The most geomorphically active 

of these is the clay, which sits at the top of the slope, forming three distinct landslide 

lobes.   

 

Figure 3.12 Cartoon of stratigraphy of the lithology of Hollin Hill and how this 

relates to slope failure.  Source: Uhlemann et al. (2016). 

3.2.5 Field site summary 

Hollin Hill represents an exciting opportunity for the monitoring of soil moisture 

over a time series.  The SensorNET and ALERT systems provide robust, automated 

collection of soil moisture and slope displacement data in near-real time, with robust 

calibration work having been undertaken by the soils and hydrogeology teams at 

BGS.  The historic time series stretching back over six years is valuable in providing 

insight into processes at the site, as well as helping to inform the design of additional 

manual soil moisture measurement methods. 

The site is also valuable in that the slide type and material types are similar to those 

of the most common slide types in the UK, and therefore make the findings in the 

following chapters potentially applicable to utilisation in other UK contexts for 

understanding and monitoring slope deformations. 

The groundwater controlled slide is characterised by shallow rotational features at 

the top of the slope in the Whitby Mudstone Formation through to translational 
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movement over the Staithes Sandstone, forming four distinct active lobes across the 

site which extend to overlay the lower sandstone formations. The different lithologies 

which make up the slope provide significant opportunities for monitoring the 

interaction between soil moisture and slope stability, for example, how slopes drain, 

and how slope stability is impacted.  Furthermore, the boundaries between the 

lithologies coincide with slope deformations and surface hydrological features, like 

surface ponding on the slope just below the Dogger-Whitby boundary and a spring-

line at the Staithes-Redcar boundary.  Geomorphologically, the main deformation 

features occur in the Whitby mudstone, as it accelerates down slope forming lobes.  

3.3 Fieldwork methodology and data descriptions 

This section describes the sets of in situ data created during the field campaign.  The 

timeline of acquisitions is described, as are the data. In total, three in situ datasets 

are described – the shallow sub surface SensorNet soil moisture data, using the 

already extant SensorNet array, the deeper subsurface volumetric soil moisture data 

from CEH’s CRNS COSMOS sensor, and a surface soil moisture data set that uses 

the SensorNET loci and additional loci – the establishment of which is described.  

The SAR data used are described in the final section of this chapter.  The section 

begins with a description of the already extant sensing technologies that are utilised. 

3.3.1 Already Extant In situ sensors 

Prior to this project, Hollin Hill had two automated soil moisture-related sensor 

arrays.  The SensorNET system is an array of 96 soil moisture sensors located in 

eight multi-scalar, nested clusters across the site, designed to enable multi-scalar 

soil moisture variation analysis (Lark, 2011; Marchant et al., 2013).  The COSMOS 

CRNS is part of a national array of sensors deployed by CEH since 2013 (Centre for 

Ecology and Hydrology, 2018) that monitor volumetric soil moisture.   

3.3.1.1 SensorNET 

Hollin Hill has a semi-wireless array of 96 soil moisture sensors which have been 

measuring temperature and pore water pressure at a depth of 10 cm every 15 

minutes since October 2011 to an accuracy of 2% (Marchant et al., 2013).  The sensors 

are located in clusters within the site, four in the clay soil, two on the sandy clay, 

and two on the sand (Figure 3.13).  Each of these eight groups of sensors is made up 

of a multi-scalar nested design enabling multi-scalar soil moisture variation analysis 

to be undertaken (Lark, 2011), as demonstrated in Figure 3.14.  The multi-scalar 

nested design was optimised by Lark et al. to enable robust assessment of soil 



Chapter 3: Materials and Methods 
 

58 
 

moisture variability at multiple spatial scales.  In-depth discussion of the 

optimisation process can be found in Lark (2011). At each node of the SensorNET 

array is set a Decagon 5TE sensor at a depth of 10 cm.  The 5TE measures apparent 

dielectric permittivity (εa) using an electro-magnetic field produced across the three 

prongs of the sensor to estimate the dielectric content of the medium it is in. The 

5TE has a working range of 1 (air) to 80 (water) and with a soil-specific calibration, 

which was undertaken during this project, the sensor can achieve an accuracy of +- 

1 to 2% VWC (Decagon Devices, 2016). 

 

Figure 3.13 Location of SENSORNET clusters at the Hollin Hill Landslide Observatory.  
From BGS (2015a) 

 

To achieve the quoted accuracy,  soil-specific calibrations were undertaken by Nicole 

Archer at BGS using two methods – the first using three intact 6900 cm3 cores of 

material – one for each soil type, with a 5TE implanted at 10 cm depth and data 

logger attached.  These soil blocks were saturated, measurements taken, dried out 

and then measurements taken again.  This is the preferred method as it does not 

disrupt the soil matrix structure.  An additional calibration method was used 

however, as prescribed by Decagon where a soil sample is ground down, four litres 

of it is taken and repacked to the known soil bulk density. A raw reading (or dielectric 

permittivity) of the air-dried soil is taken and then a known quantity of water is 

added, this is then mixed well into the soil and again a raw reading taken, each time 
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also taking a small core of soil to estimate the gravimetric soil moisture. This was 

undertaken five times to create a calibration plot (Archer, pers.comm.) this 

methodology has since been published in (Archer et al., 2016).  Following Archer’s 

calibration work, calibrated and raw values were provided to this project by Philip 

Meldrum at BGS. 

The project design originally entailed using data from all eight SensorNET clusters 

to assess the subsurface spatial relationships, and also the relationship between 

surface and subsurface moisture.  Following discussion with the SensorNET team at 

BGS, only data from three clusters – D, E and G has been provided to this project 

owing to issues with the sensors in the other clusters.  It has also been noted by staff 

at BGS that while these three clusters are the more ‘reliable’ during the study period, 

there is potential that some sensors had errors during the period.  It is important to 

note, therefore, at the outset, that all relationships and findings that are drawn must 

be done so with this caveat in mind, and, indeed, later, when the data are presented 

there is a comment on the criteria used to ensure only data appropriate to be used 

are.  The three clusters, D, E and G correspond to each of the three soil types – Clay, 

Sand and Sandy Clay respectively.  While these data are considered the most reliable 

from the site, there are multiple missing values (Table 4.1). 
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Figure 3.14 Cartoon of the multi-scalar design of the SensorNet array (Lark, 2011). 

3.3.1.2 COSMOS 

CEH installed a COSMOS station at Hollin Hill in March 2014.  The station has 

multiple automated environmental sensors, including a rain gauge, 3D Sonic 

anemometer, and a Cosmic Neutron Ray Sensor (CRNS) which measures the 

number of epithermal, or ‘fast’ neutrons at the soil surface, and from this Volumetric 

Water Content (VWC) is derived through a complex methodology set out in Centre 

for Ecology and Hydrology, (2018) and further expounded upon in Andreasen et al., 

(2016), giving a soil moisture value over an area of up to 12 hectares and to a depth 

ranging from 0.4 m closest to the sensor, to 0.15 m furthest away from the sensor 

(Centre for Ecology and Hydrology, 2018).  The distance over which the CRNS 

measures – approximately 200m (Centre for Ecology and Hydrology, 2018) is 

expected to easily accommodate the autocorrelation length of soil moisture, which 

can lie between 1 and 600 m (Western and Blöschl, 1999), but has been found to 

normally be about 30 to 60 m (Western et al., 2004)   The interpretation of CRNS 

data remains complex, and the behaviour of its outputs in relations to high soil 

moisture heterogeneity is to some extent still poorly understood (Köhli et al., 2015).  

It does, however, if used circumspectly, allow an insight into soil moisture at greater 

depths than the SensorNET system allows for.  The CRNS sensor provides data half 

hourly, with the average of the derived VWC value over the previous half hour 

provided, so as to minimise the effect of noise in the data, which can be considerable 
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(Centre for Ecology and Hydrology, 2018).  The data used in this project is taken 

from the acquisition time of the CRNS that is closest to the time at which the 

ThetaProbe an SensorNet data were acquired.  Because the CRNS system produces 

one data value for the area of its coverage at each acquisition, rather than the 

multiple points for both the SensorNet and ThetaProbe data,  the number of data 

points - one per month, taken at 09:00 on the day of survey – is significantly fewer 

than the other two datasets, numbering nine values in all. 

These two in situ systems, in combination with my own surface soil moisture 

monitoring (see Section 3.3.4) provide a strong basis of data against which to 

compare SAR soil moisture estimates, with the SensorNET data acting as a 

secondary ground-truthing mechanism for the SAR data analysis.  The extant 

sensing technologies relevant to this project are shown in .  This shows the 

technologies that were set up by the BGS shortly after they set up the Landslide 

Observatory at Hollin Hill in the mid-2000s to automatically monitor in situ slope 

conditions.  The supplementary manual monitoring designed and undertaken for 

this project is shown in addition.  Table 3.3 shows the SAR context at Hollin Hill 

prior to this project being undertaken – namely the Airborne NovaSAR emulator 

flights undertaken in June 2014 in conjunction with the UK Space Agency as part of 

a proof of concept test. 

Table 3.1 Extant and novel sensing methods at Hollin Hill 

 

Table 3.2 Context of previous SAR work at Hollin Hill and the imagery commissioned for this 
project 

Previous SAR activities at Hollin 

Hill 

Newly commissioned SAR imagery 

at Hollin Hill 

Airborne SAR emulator (S and X 

band) (June 2014) 

COSMO-SkyMed campaign 

(Spotlight2 X-band) 

 

Extant/Previous Monitoring Additional monitoring 

developed for this study 

SensorNET (Lark 2011) Theta Probe array 

COSMOS CRNS array (Centre for Ecology and 

Hydrology, 2018) 
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3.3.2 In situ data summary 

The Hollin Hill site has been a test-bed for automated contact-sensing (Vereecken et 

al., 2008) of soil moisture for over a decade (Jordan, 2015; Archer et al., 2016; 

Uhlemann et al., 2016) and has more in situ monitoring equipment, and a greater 

density of monitoring points than any other site that has used CSK imagery.  Only 

one project  that was found in the literature, has used the combination of the ground 

truthing methods used in this study, and that used far fewer measurement locations 

(Fersch et al., 2018) - the CEH CRNS sensor as part of the COSMOS-UK programme, 

which records volumetric soil moisture hourly.  There is also an array of sub-surface 

TDR soil moisture sensors distributed across the site, which provides a denser in 

situ ground truthing dataset than that presented in any CSK projects published so 

far to the best of our knowledge. 

3.3.3 Timeline of acquisitions 

The fieldwork for this project was undertaken between June 2016 and February 

2017, concurrent with the data acquisitions by the COSMO-SkyMed (CSK) 

constellation described later in this chapter. Although the experimental design 

aimed for satellite acquisitions being made on a regular, monthly, basis, due to 

satellite scheduling issues and failed acquisitions the time elapsed between images 

is not equal, with some images being considerably less than a month since the 

previous acquisition, and some being considerably more (Figure 3.15).  Fieldwork 

was undertaken as close to co-temporally as safety permitted.  CSK acquisitions 

occurred at 05:58 GMT and, due to late sunrises during the winter months, a start 

time of 09:00 was set for all fieldwork, to ensure the time between image acquisition 

and in situ measurements was similar across all datasets.  Further to this end, 

clusters were visited in the same order on each field visit.  Climatic data from each 

of the acquisition days shows that there was very little change in conditions between 

the satellite acquisition time and that at which in situ work was undertaken.  No 

rain fell during that period on any occasion, and winds were, generally calm.  The 

conditions at 0900 are, therefore, considered an acceptable proxy for those at 05:58.  

In situ surface measurements were taken with a Delta T industries Thetaprobe 

capacitance probe, recorded in notebooks, then entered into a spreadsheet, calibrated 

and entered into a GIS. 
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Figure 3.15 Interval between data acquisitions in days 

For each month soil moisture readings were taken at the same locations, marked by 

plastic pegs at each of the clusters, and in the same order.  This produced ~116 data 

points per acquisition, though with some variation.  Notably, the early acquisitions 

– June and July – have fewer points (92 and 93, respectively) than the other months 

due to the difficulty of finding the original SensorNet marker pegs put in by BGS 

several years previously, many of which had degraded or been broken, and 

unfamiliarity with the site.  Practice and increased familiarity with the difficult 

terrain of the site meant that during the course of the field campaign more data 

points were able to be taken.   

 
 
Table 3.3 Count of surface readings by month 

Month  Count of Readings  
June  92 
July  93 
August  112 
September  110 
October  116 
November  116 
December  117 
January  119 
February  120 
Total  995 
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3.3.4 Description, Acquisition and Calibration of surface data 
3.3.4 

The surface dataset is made up of 14 clusters of point loci. It uses the SensorNET 

node locations to form eight clusters (A-H) of 12 points in addition to eight points at 

each of six (1-6) additional clusters (see figure 3.16).  The positioning of the eight 

SensorNET clusters across the site was designed to ensure that as many different 

soil type and slope angle characteristics of the site could be monitored as possible 

(Pers. Comm. Lark 2016).  It was felt, however, that in order that the most might be 

made of the SAR data used in this project, and given the difficulties of using SAR 

over sloped and heterogeneous surfaces that additional sampling locations would 

enable better assessment of the SAR data product.  Additionally, six more clusters 

of point locations were designed. Three categories were applied to assign cluster 

centroid locations – first, if an area had been previously identified from literature or 

a previous site visit as displaying specific slope or moisture characteristics that were 

deemed to be important for assessing the output of the SAR data; second, that the 

slope of the site, which was classified into 5 classes, should be represented 

proportionally; third, that, as far as possible, an even coverage of the site should be 

obtained to enable the most benefit from the SAR images to be had, through 

comparison with the best possible interpolated surfaces of in situ soil moisture.  

Using these criteria, six new cluster centroids were created, with eight nodes at each 

created, with distance and angle from the centroid randomly assigned by a simple 

Excel random number generator.  The locations of these new points were marked in 

the field using a differential GPS (dGPS) and inert plastic pegs for ease of repeat-

acquisition.  The manual surface moisture dataset therefore consists of 14 clusters, 

eight overlaying the SensorNET clusters, six in new, targeted locations (Figure 3.16).  

Of particular note from these additional clusters is cluster 2, which was created at 

the sag ponds area to assess how wet the area was, with a view to assessing the 

capability of the COSMO-SkyMed sensor to enable estimation of such high soil 

moisture values.  The rationale for this was two-fold.  First, at the time most of the 

research into soil moisture estimation with CSK had been undertaken in 

Mediterranean areas, with minimal assessment of high soil moisture values, second, 

that this high-moisture area had been recognised by Jenkins et al. (2006b) as being 

a key determinant of instability of the lobe. 
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Figure 3.16 Location of SensorNET (A-H) and additional cluster (1-6) centroids 

Surface soil moisture measurements were taken at these new locations, as well as 

each of the SensorNET node locations, using a Delta-T Theta Probe. The Theta probe 

is a hand-held probe measuring impedance, which can then be subsequently 

converted to soil moisture using soil-specific calibrations (Delta T Devices, 1999).  

The probe emits a 100MHz sinusoidal signal through four stainless steel rods, 

forming an array, which are placed vertically into the soil (Figure 3.17).  The wetness 

of the surrounding soil influences the impedance of the array due to the dielectric 

constant – the impedance of the soil due to the current-carrying properties of water 

molecules (Delta T Devices, 1999). From the impedance of the array, the volumetric 

soil moisture can be calculated owing to the almost linear relationship between the 

square root of dielectric constant (√ε) and volumetric soil moisture (θv) (Delta T 

Devices, 1999).  
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Figure 3.17 Theta Probe Design in plan and profile, showing size and arrangement of the 
four-pin array.  All measurements in mm.  Source: (Delta T Devices, 1999). 

The surface data were collected by the ML2x soil moisture probe from Delta-T 

Devices, which measures the conductivity of the soil mass.  In the field, readings in 

mV were read off the handheld Delta-T Devices HH2 moisture meter and written in 

field notebooks.  To improve the accuracy of the calibration from the ML2x probe’s 

mV reading to Volumetric Water Content (VWC) - which is quoted as 0.05 m3.m-3 

when using Delta-T’s supplied generalised calibrations - soil samples were collected 

from the site and calibration experiments undertaken.  This calibration was 

undertaken by Nicole Archer, at BGS, following the prescribed procedure set out by 

Delta-T Devices (1999), which the company quotes as providing an accuracy of 0.01 

m3.m-3 for the temperature range in which this study was carried out.   

Research into the relationship between volumetric water content (θ) and the complex 

refractive index (equivalent to √ε (Delta T Devices, 1999)) shows that this 

relationship is linear (White et al., 1994), with two coefficients, a0 and a1 being soil-

specific. The relationship between √ε and θ is said by Delta-T Devices (1999) to be 

best described for the range of values in the dataset by (Eq. 3.1) – a third order 

polynomial.  
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√ε = 1.07 + 6.4𝑉 − 6.4𝑉2  + 4.7𝑉3  (R2= 0.998)     [3.1] 

 

Figure 3.18 Relationship between ML2x output and √ε.  From Delta-T, 1999. 

To establish the values of a0 and a1 the following method was taken, which involved 

taking an undisturbed sample of each of the three different mapped soil types, 

measuring the volume (L) and then taking readings with the ML2x probe (Vw) and 

calculating ε w from  

ඥε௪ = 1.07 + 6.4𝑉𝑤 − 6.4𝑉𝑤
2  + 4.7𝑉𝑤

3      [3.2] 

The soil sample was then weighed (Ww), oven dried until θ≈0, measured again with 

the ML2x (VD), ) and ε0 calculated (Eq. 3.3), and then weighed again (WD).   

ඥε = 1.07 + 6.4𝑉𝐷 − 6.4V𝐷
2  + 4.7V𝐷

3     [3.3] 

Volumetric water content of the original, pre-dried, sample is then calculated (Eq. 

3.4): 

𝜃௪ =
(ௐೢ ିௐವ)


     [3.4] 

The second value required for soil-specific calibration is: 
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𝑎ଵ =
ඥఌೢିඥఌబ

ఏೢ
      [3.5] 

The values for a0 and a1 for the three soil types, as calculated by Nicole Archer with 

samples taken from the site, are found in  

Table 3.4 a0 and a1 values for the three soil types 

  a0 a1 
Sand 1.42 9.78 
Sandy Clay 1.35 8.92 
Clay 1.6 8.4 

The calibration equation modifies Eq 3.2 with the results of equations 3.3, 3.4 and 

3.5 to produce Eq 3.6: 

√ε =
(ଵ.ା.ସି.ସమ ାସ.య)ିబ

భ
      [3.6] 

Using the soil-specific calibration the error anticipated of each value is ±0.01 m3m-3, 

with the error stemming from errors in the MLx2 measurement.  There are, however, 

other forms of error which might increase this value.  It is supplied by Delta-T under 

the assumption that the probe is inserted exactly vertically into a uniform soil mass.  

This is highly unlikely to be the case given the presence of vegetation cover and the 

probability that some of the soil has been either aerated by slope movement or 

compacted by the sheep on site.  The literature supplied by Delta-T estimates that 

the error associated with the soil mass structure or sampling method might range 

from 0.04 to 0.1 m3 m-3. 

3.4 Remote Sensing history and methods 

3.4.1 Remote Sensing history at Hollin Hill 

In June 2014 a two-day groundtruthing campaign was undertaken by a group from 

BGS, Durham University and Newcastle University as support for the Airbus Space 

and Defence Airborne SAR imaging campaign at Hollin Hill, which was a NERC-

funded airborne simulator for the upcoming NovaSAR-S launch.  The Airborne SAR 

campaign had two primary objectives, first to act as a test-bed for the NovaSAR-S 

platform which was due to be launched in 2016, second to investigate how concurrent 

S and X-band acquisitions perform in the context of soil moisture inversion.  To 

achieve this, the Hollin Hill site was flown over with four different flight alignments 

while both sensors (S and X) were acquiring multi-polarised data (Figure 3.19).  After 
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the first iteration of this flight plan, two 4x4 m quadrats were artificially wetted and 

in situ soil moisture measurements were taken shortly before a second iteration of 

the flight paths.  A third overpass, and further wetting, had been scheduled, but this 

was not undertaken due to flight-time restrictions. 

Figure 3.19 Intended Flight plan for aerial SAR campaign.  Image by Colm Jordan. 

The S-band component of the Airborne SAR campaign was designed to simulate the 

new NovaSAR-S sensor which launched in 2016. At the time it was envisaged that 

involvement in the Airborne SAR project would lead to further involvement with the 

NovaSAR data products during this PhD project through the Satellite Applications 

Catapult. The airborne SAR project was designed to utilise change-detection as a 

method for assessing the impact of soil moisture changes on backscatter returns at 

these two wavelengths, to enable evaluation of the potential for S-band to be used as 

a candidate for soil moisture inversion ahead of the NovaSAR-S launch in 2016. 

Shortly after the airborne SAR field campaign was undertaken, the Satellite 

Applications Catapult created an agreement with the operators of the recently-

launched X-band COSMO-SkyMed (CSK) platform – Agenzia Spaziale Italiana (ASI) 

- to provide low-cost access to their data products, creating a fine-resolution time 
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series dating back to 2011.  It was anticipated that access to these two satellite-based 

data sources would provide the opportunity to assess the abilities of these high 

resolution, short wavelength, SAR sensors in soil moisture estimation.  A bid was 

successfully made for data, with the findings from the Airborne SAR project 

informing the design of the CSK project. 

A total of 136 images, across three processing levels – detected, detected improved, 

and Single Look Complex, were provided by Airbus Space and Defence following the 

field campaign.  Significant issues occurred during the acquisition of the data due to 

flight path and tracking anomalies, which, upon examination of the data, made the 

utilisation of it, as had been intended, challenging, and following processing of the 

imagery within ENVI packages and discussion with the SAR specialists at BGS and 

Nottingham University, it was decided that little could be achieved by way of 

establishing the performance of the sensors for soil moisture estimation. 

Despite the lack of utility of the Airborne SAR data for use in establishing the 

capabilities of S and X-band SAR for change-detection-based soil moisture inversion, 

the project does establish the research priorities and background to the CSK project 

this thesis has become.  It has shown that Hollin Hill was recognised as being a very 

valuable site by Airbus Space and Defence, as well as the Satellite Applications 

Catapult, for the testing of novel soil moisture estimation techniques, both due to 

the extant SensorNET monitoring equipment, and due to the similarity of the site 

soil to many UK-based landslides and, therefore, the potential for its use as a test-

bed for assessing the performance of remote sensing techniques in the context of 

hazard assessment.  Having established the context of SAR usage at Hollin Hill the 

focus of this chapter now turns to the SAR data used in this project. 

3.4.2 Research history summary 

Despite the lack of utility of the Airborne SAR data for use in establishing the 

capabilities of S and X-band SAR for change-detection-based soil moisture inversion, 

the project does establish the research priorities and background to the CSK project 

this thesis has become.  It has shown that Hollin Hill was recognised as being a very 

valuable site by Airbus Space and Defence, as well as the Satellite Applications 

Catapult, for the testing of novel soil moisture estimation techniques, both due to 

the extant SensorNET monitoring equipment, and due to the similarity of the site 

soil to many UK-based landslides and, therefore, the potential for its use as a test-
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bed for assessing the performance of remote sensing techniques in the context of 

hazard assessment. 

3.5 SAR data processing during this project 

This section sets out the SAR data products used in this project, their parameters, 

and how they were processed to enable the meeting of Objective 3 in Chapters 5 and 

6.   

3.5.1 Data Summary 

A time series of monthly Spotlight2 acquisitions was provided by ASI through the 

Satellites Application Catapult bidding process (Project: Corsair008).  Nine COSMO-

SkyMed Spotlight2 images, taken at approximately monthly intervals (Figure 3.20) 

between June 2016 and February 2017.  COSMO-SkyMed is an X-band SAR 

satellite, and in Spotlight2 Mode has a pixel resolution of ~1m.  Images were 

acquired in with the same parameters each time - HH (horizontal-horizontal) 

polarization – chosen because studies have shown that HH polarisation tends to be 

better than VV polarisation for soil moisture estimation (Balenzano, et al., 2011) - at 

an incidence angle of 57o on an ascending path. Images were acquired by different 

satellites in the constellation depending on mission scheduling, and  shows which of 

the four satellites was used in each acquisition.  Images were acquired at 05:58 on 

each acquisition day – three hours before the in situ surface soil moisture readings 

were taken as described in the field campaign set out in previous chapter.  On each 

occasion there was no rainfall between the satellite acquisition and fieldwork, and 

conditions were relatively mild and calm.   
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Figure 3.20 Period between image acquisitions 

Table 3.5 COSMO-SkyMed satellite sensor used to acquire each image 

Month Satellite 
June 2 
July 4 
August 4 
September 3 
October 4 
November 3 
December 4 
January 3 
February 1 

 

3.5.2 Data Product 

Nine single-polarised HH CSK images are used in this study. Data was acquired in 

the Spotlight2 mode, which has 10x10 km2 scene with a spatial resolution of 

approximately 1x1 m2 single look – the highest resolution available from the 

constellation for non-military projects (Agenzia Spatiale Italiana, 2009), and the 

highest resolution commercially available SAR product at the time (Eineder et al., 

2009).   

The CSK sensors are quoted as providing the following imaging quality parameters 

(Agenzia Spatiale Italiana, 2009): 
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 Peak Side Lobe Ratio (PSLR) ≤ -22 dB  

 Integrated Side Lobe Ratio (ISLR) ≤ -12 dB  

 Azimuth Point Target Ambiguity ≤ -40 dB  

 Radiometric Accuracy ≤ -1 dB (single look)  

 Radiometric Linearity ≤ -1.5 dB  

 Radiometric Stability ≤ -1 dB  

 Total Noise Equivalent (NE)°σ ≤ -19 dBm2/m2  

 

ASI offer various levels of data processing for their standard products prior to 

delivery including multilooking, geocoding and terrain correcting (Agenzia Spatiale 

Italiana, 2009).  It was felt that on the basis of the complicated geomorphology of the 

site that it was important that orthorectification should be able to be undertaken 

using a high quality digital terrain model (DTM), given the lack of information from 

ASI regarding the scale of the surface model they would utilise.  This project, 

therefore, uses Level 1A Single-look Complex Slant (SCS) data. This complex format 

data is focussed in slant range azimuth with zero Doppler projection, with the data 

focused, weighted and radiometrically equalised. The processing stages that were 

performed by the Agenzia Spatiale Italiana (ASI) on the raw data to produce this 

level 1A product prior to delivery are (Agenzia Spatiale Italiana, 2009): 

 

 frame synchronization  

 transmission protocol removal  

 packet data filed re-assembly   

 data decompression   

 statistics estimation  

 data formatting 

 gain-receiver compensation 

 internal calibration 

 data focusing 
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Table 3.6 Characteristics of products of different processing options provided by ASI.  From: 

(ASI 2009). 

 

3.5.3 Post-delivery CSK data processing 

ASI provided the Spotlight2 Level 1A data in HDF5 format.  This data was then 

processed, as per e-geos (a subsidiary of ASI) (e-geos, no date) and ESA guidelines in 

ESA’s SNAP software. Images were calibrated and radiometrically corrected, and 

then terrain corrected.  The terrain correction was undertaken with several scales of 

DEM, which are outlined later. 

3.5.4 Software packages used 

Data processing was undertaken in a number of software packages.  Following 

guidance from ASI, the SAR images were calibrated and terrain corrected in ESA’s 

SNAP software (ESA, 2020), while ArcGIS 10.5, QGIS 3.2.2 (Bonn) (QGIS.org, 2020) 

were used for spatial analysis, and ENVI Classic was used for filtering, with the 

Jamovi 1.2 (The Jamovi Project, 2020) environment for R being used for statistical 

analysis. 

3.5.5 Additional data products utilised 

To meet Objective 3, a study was undertaken to assess the impact on correlation 

between in situ VWC values measured by the Theta Probe and the backscatter 

return by the scale of the DTM employed for terrain correction, CSK imagery 

calibrated in SNAP was terrain corrected using five different resolutions of open 

source imagery (Table 3.7). The in situ surface VWC values were then plotted against 

the backscatter value of the corresponding pixel. 
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Table 3.7 Summary of data used for terrain correction 

Imagery Spatial 
resolution 

Date of 
acquisition 

Source 

Environment 
Agency (EA) Lidar 
DTM 

0.25m 2012 Environment Agency (via 
digimap) 

Environment 
Agency (EA) Lidar 
DTM 

0.5m 2012 Environment Agency (via 
digimap) 

Environment 
Agency (EA) Lidar 
DTM 

1m 2012 Environment Agency (via 
digimap) 

Environment 
Agency (EA) Lidar 
DTM 

2m 2012 Environment Agency (via 
digimap) 

SRTM 
Interferometric 
terrain model 

3 Arc Sec ~ 
90m 

2000 USGS 

 

3.6 Chapter Summary 

This chapter has shown the unique opportunity Hollin Hill presents as a test site for 

assessing the performance of CSK soil moisture estimation due to the established 

automated in situ monitoring equipment at the site, the well-established interest in 

developing the site for monitoring slope deformation drivers, and the novelty that 

the site presents with respect to environments CSK had been used for soil moisture 

estimation.  In addition to this, the data sets used in the following chapters of the 

thesis and their acquisition has been described.  
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CHAPTER 4:  FIELD-SCALE SPATIO-TEMPORAL SOIL 

MOISTURE RELATIONSHIPS AT HOLLIN HILL 

OBSERVATORY  

 

4.1 Introduction 

Soil moisture is recognised globally as a key parameter to assess for the enabling of 

monitoring and modelling of environmental hazards or challenges in the context of 

a changing climate (GCOS-138, 2010) however, it is also recognised as being both 

spatially and temporally variable.  This chapter explores the spatio-temporal soil 

moisture relationships at the Hollin Hill Landslide Observatory and how these 

should inform the design and processing of SAR data products.  Hollin Hill is a 

valuable test site for this undertaking as it has three distinct soil types, as well as 

complex slope geometries, which provide evidence of the spatial variability of soil 

moisture in different soil conditions.  Three datasets were used in this study – 

manually taken surface (0-5cm depth) soil moisture measurements using a theta 

probe, shallow (~10cm depth) automated soil moisture measurements from the BGS 

SensorNET array, and deeper (15-40cm) soil moisture data from the CEH CRNS 

sensor.  Between June 2016 and February 2017 soil moisture data was collected on 

a roughly monthly basis to coincide with COSMO-SkyMed acquisitions of the site.  

The soil moisture data collected on these occasions is used in this chapter to explore 

the spatio-temporal relationships exhibited in the three datasets, in the context of 

examining the value of using single-polarised high resolution X-band SAR data for 

moisture-driven landslide monitoring.  Objectives 1 and 2, which were set out in the 

introductory chapter of this thesis are engaged with and their connotations explored. 

This chapter presents the shallow sub-surface, deeper sub-surface, and surface soil 

moisture data, from the SensorNET array, COSMOS CRNS sensor, and the manual 

Theta Probe measurements described in the materials and methods chapter.  

Objectives 1 and 2 are then engaged with through analysis of these three datasets. 
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4.2 Description of the data 

This section describes the three in situ moisture datasets and the methods used in 

their acquisition, calibration, and processing and begins with a brief description of 

the temporal context of the fieldwork. 

This section begins with descriptive statistics of the shallow sub surface soil moisture 

data, as collected by those probes that were operational within the SensorNET array.  

Between 29 (February) and 33 (August) data points are available for each month 

(Table 4.1).  Although these data are the best quality available for the period, an 

investigation of the minima and maxima caused concern.  Only two months have 

positive minima (November and February), with the other seven months having 

technically impossible negative VWC values.  Likewise, February has a maximum 

VWC value of 100 m3.m-3, which is also not possible. 

Table 4.1 Descriptive statistics of raw data SensorNET data 

 Count Missing Mean Median Minimum Maximum Skewness Kurtosis Shapiro-
Wilks 

June 32 4 25.8 28.6 -2.1 56.1 -0.0734 -0.611 0.482 
July 32 4 28.2 33 -3.18 53.8 -0.381 -1.06 0.08 
Aug 33 3 16.2 21.1 -22.6 34.7 -0.769 0.143 0.015 
Sept 31 5 23.1 23.9 -4.53 45.5 -0.134 -1.11 0.145 
Oct 31 5 23.6 25.7 -7.69 56.3 0.0711 -0.629 0.336 
Nov 30 6 39.1 40.3 3.9 85.7 0.134 -0.389 0.663 
Dec 31 5 32.9 33.9 -2.86 82.8 0.289 0.385 0.803 
Jan 30 6 37.9 41.6 -15.9 63.2 -0.93 0.993 0.067 
Feb 29 7 45 45.5 12.5 100 0.71 1.2 0.228 
 

The data were cleaned (Table 4.2) to remove negative VWC values and those above 

80%, which, following discussion with the Hydrology team at BGS, reference to 

anticipated values for these materials in other studies (Gunn et al., 2013), and 

engaging with the literature provided by Decagon (Decagon Devices, 2016) is deemed 

the upper expected limit for measurements from these sensors (Meldrum, Archer 

pers.comm.).  With the data cleaned, there are between 28 (February) and 31 (June) 

data points for each month.   
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Table 4.2 Descriptive statistics of cleaned SensorNET data 

 Count Missing Mean Range Minimum Maximum Skewness Kurtosis Shapiro
-Wilks 

June 31 5 26.7 53.66 2.44 56.1 -0.0037 -0.61 0.35 
July 30 6 30.2 48.82 4.98 53.8 -0.35 -1.12 0.059 
Aug 30 6 19.3 33.01 1.69 34.7 -0.167 -1.6 0.006 
Sept 30 6 24 42.33 3.17 45.5 -0.0708 -1.24 0.059 
Oct 29 7 25.8 53.13 3.17 56.3 0.265 -0.722 0.097 
Nov 29 7 37.5 71 3.9 74.9 -0.136 -0.828 0.464 
Dec 29 7 32.4 54.64 4.26 58.9 -0.179 -0.973 0.445 
Jan 29 7 39.8 55.76 7.44 63.2 -0.376 -0.875 0.229 
Feb 28 8 43 61.5 12.5 74 -0.0569 -0.886 0.563 
 

The summary histograms show an almost bi-modal distribution, quite distinct from 

the unimodal distribution of the surface data (Figure 4.5).  Likewise, the shape of 

the violin plots (Figure 4.2) is more similar between monthly datasets than in the 

case of the surface data (Figure 4.6)  Normal distribution cannot, however, be 

assumed for these data sets, owing to the Shapiro-Wilks values, with none meeting 

the p<0.001 normality criterion (Table 4.2).  While this is unexpected, as one would 

expect to be drawing values from a global dataset that is normally distributed, the 

multiple modes, in the form of different soil types, within the dataset probably is 

interpreted as being the cause of this result. 
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Figure 4.1 Histogram of cleaned SensorNET data 

 

Figure 4.2 Box and violin plot of cleaned SensorNET data 
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4.2.1 Subsurface CRNS (COSMOS) Data 

Brief summary statistics of the CRNS data are presented in Figure 4.3.  Of note, is 

that the maximum value – 63.5 is higher than expected VWC values in literature 

(Centre for Ecology and Hydrology, 2018), and this should give greater confidence 

regarding the high values from the other datasets might be indicative of genuinely 

high moisture contents in the soil mass. These data are used in responding to 

Objective 1. 

 
  COSMOS 

Mean  44.5  

Median  47.3  

Minimum  31.0  

Maximum  63.5  

Skewness  0.289  

Kurtosis  -0.826  

Shapiro-Wilk p  < .001  

 

 

Figure 4.3 Descriptive statistics of COSMOS data 

4.2.2 Descriptive surface spatial statistics 

Using the full dataset - featuring data from all nine months, Figure 4.4 and Table 

4.3 demonstrate that each of the three soil types exhibits a distinctive distribution 

of values.  Sand is drier, more tightly clustered around the mean, and with a high 

density of data points around the mean.  Clay is wetter, with a greater range of 

values and minimal peak to its histogram, showing its data points are well-spread 

across the dataset.  Sandy clay is not as wet as clay and exhibits an unusual 

distribution of data points with an hour-glass type shape to the violin plot, with the 

‘neck’ of the hour glass being just below the mean.  None of the datasets exhibit a 

unimodal distribution.  It is expected that this is due to the variability in soil 

moisture distributions throughout the period. 
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Figure 4.4 Histogram and Box and violin plots of VWC value distribution by soil type 

Table 4.3 Descriptive statistics of VWC for each soil class 

Soil Mean Median Minimum Maximum Skewness Kurtosis 

Clay 0.395 0.379 0.038 0.889 0.321 -0.776 

Sand 0.187 0.155 0.032 0.483 0.628 -0.629 

Sandy 

Clay 

0.328 0.334 0.093 0.733 0.338 -0.904 

 

All the soil types exhibit a positive skewness, with Clay and Sandy Clay being ‘fairly 

symmetrical’ and Sand being ‘moderately skewed’ (Bulmer, 1979).  This is important 

to recognise as it give a measure of how far from a normal distribution that these 

samples are – and indicates that for each sample there is a distinctive distribution 

of data points.  That is, that, for example, values for sand are strongly skewed 

towards lower values.  The skewness standard error is low, with values ranging from 

0.109 - 0.163 (Table 4.3), which indicates that it is possible to be confident in the 

skewness values.   

All datasets have negative kurtosis values, showing that the tails of the distribution 

are of less weight that those found in a normal distribution, and showing that the 

‘outliers’ are of minimal significance relative to the whole dataset.  The implication 

of this is that fewer points sit in the tails of the data than in a normal distribution, 

so it can be interpreted that these points have minimal importance when considering 

methods of SAR processing.  
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4.2.3 Descriptive Surface Temporal Statistics 

It was anticipated that through the nine months of these data the VWC levels would 

change, driven by seasonal variation in temperature and precipitation.  Figure 4.5 

and Figure 4.6 show this to be the case, with two distinctive shapes to the data being 

apparent.  August, September and October are markedly drier than the other 

months, and have much tighter clustering of data points to the mean.  The ‘drier’ 

months, as August-October are here defined, have smaller ranges and lower means 

than the other ‘wetter’ months. 

 

Figure 4.5 Histogram of VWC by month 
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Figure 4.6 Box and violin plots of VWC by month 

The skewness values (Table 4.4) show that all the data are positively skewed apart 

from February which is slightly negatively skewed, with a skewness value 

of -0.0262.  The drier, August-October months are significantly more positively 

skewed than the wetter months.  Of those wetter months, June is more positively 

skewed than the other months, with a skewness value of 1.06, compared to skewness 

values of 0.166 - 0.463 for the other ‘wet’ months.  The standard error for all the 

skewness values sit within the range 0.209 - 0.251.  The skew values indicate that 

data are weighted towards wetter values, which is significant both for our 

understanding of the distribution of the values at the site, but also in terms of remote 

sensing – that higher values have a greater weight. 

Again, examining the kurtosis (Table 4.4), two distinct groups are seen within the 

data, with the drier months August – October exhibiting significantly greater 

kurtosis than the wetter months, with kurtosis values ranging from 2.82 to 4.85, 

showing that the outliers in these datasets are of significant weight relative to the 

main peak body of the dataset.  As with the skewness assessment, June has a 

significantly different Kurtosis value to the other ‘wetter’ months, with a value of 

1.25. Of the other ‘wetter’ months, July, November and February have negative 

kurtosis values of -0.631, -0.232 and -0.612 respectively, with December and January 

having low positive values of 0.337 and 0.247 respectively.  The standard error of the 

kurtosis is similar across the months, with values ranging from 0.414 for November 

to 0.498 for June. This means that there are heavier tails, or more outliers in the 

drier months, than the wetter months.  This indicates, therefore, that outliers are 

less significant in the wetter months.   

  



Chapter 4: Soil Moisture relationships 
 

84 
 

Table 4.4 Descriptive temporal statistics 

Month   Mean  Median  Minimum  Maximum  Skewness  Kurtosis  
June   0.290  0.275   0.091   0.711   1.08   1.25   
July   0.336  0.336   0.072   0.671   0.166   -0.631   
August   0.153  0.141   0.032   0.475   1.27   2.82   
September  0.181 0.172   0.054   0.538   1.72   4.85   
October   0.167  0.155   0.033   0.519   1.77   3.83   
November  0.401  0.396   0.084   0.846   0.273   -0.232   
December  0.393  0.387   0.087   0.809   0.463   0.337   
January   0.487  0.487   0.038   0.885   0.207   0.247   
February   0.522  0.549   0.175   0.889   -0.026   -0.612   
 

4.2.4 Descriptive Statistics by Cluster 

Assessing the data at the next meaningful spatial scale down – clusters – shows that 

there are clear similarities within each soil type, and, likewise, dissimilarities soil 

type to soil type (Figure 4.7 and Figure 4.8).  The most distinctive soil type by 

distribution is sand.  The driest soil type, sand also exhibits the greatest clustering 

of values around the mean, and the smallest inter-quartile and absolute ranges of 

values.  Clay and Sandy Clay have similar distribution profiles, although Clay has a 

greater absolute range of values and wider interquartile ranges.  In the violin plots 

(Figure 4.7), Clay exhibits a narrow violin profile, whereas Sandy Clay has more 

incised and curved profiles.  Looking at individual clusters, Cluster 2 is the wettest, 

with the greatest mean, minimum and maximum, at 0.587, 0.195 and 0.889 

respectively.  Cluster 5 exhibits a shape similar to that of the sand clusters in the 

violin plot and histogram, but it is most likely that this is caused by the steep, in 

some cases overhung terrain , rather than being representative of the VWC potential 

of the material at that location. 

The data for the Sand clusters have positive skew (Figure 4.8 and Table 4.5 

Descriptive Statistics by cluster, with clusters E and F being approximately 

symmetrical, with skewness values of 0.455 and 0.414 respectively, while cluster 6 

is moderately skewed, with a value of 0.886.  Sandy Clay also exhibits a positive 

skew to its data, though, apart from cluster 6 which has a skew of 0.59, to a lesser 

extent to Sand, with skew values from 0.0198 at G through to 0.282 at H.  Clay 

clusters exhibit much less of a pattern in terms of skewness.  Three clay clusters (C, 

1, 2) have a negative skew, with 2 having the greatest negative skew at -0.267, which 

indicates that there are more higher values than lower values in the sample.  The 

other four clusters have relatively strong positive skews, ranging from 0.331 for B to 

0.763 at 5. It is significant that the negative skews are in the areas of the slope where 
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deformation is most apparent.  The implication of this is that the sensing of higher 

values is important for SAR systems to be able to achieve. 

 

Figure 4.7 Box and violin plots of each cluster 

Table 4.5 Descriptive Statistics by cluster 

Soil 
Type 

Cluster Number Mean Minimum Maximum Skewness Kurtosis 

Clay A 81 0.341 0.038 0.722 0.409 -0.897 
  B 76 0.414 0.085 0.889 0.331 -0.482 
  C 63 0.396 0.083 0.743 -0.126 -1.39 
  D 70 0.391 0.138 0.885 0.47 -0.365 
  1 72 0.389 0.11 0.694 -0.018 -1.4 
  2 72 0.587 0.195 0.889 -0.267 -1.03 
  5 70 0.251 0.038 0.7 0.763 0.413 
Sand E 89 0.204 0.046 0.483 0.455 -0.771 
  F 64 0.22 0.066 0.456 0.414 -1.22 
  6 71 0.135 0.032 0.336 0.886 -0.004 
Sandy  G 74 0.313 0.116 0.591 0.019 -1.03 
 Clay H 76 0.346 0.111 0.66 0.282 -1.07 
  3 72 0.371 0.099 0.733 0.189 -1.15 
  4 64 0.278 0.093 0.621 0.59 -0.826 
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Figure 4.8 Histograms of each cluster 

4.2.5 Surface soil moisture Descriptive Statistics – Comparing ‘wet’ and ‘dry’ 

data distributions 

To gain a thorough understanding of soil moisture variability, the above cluster-by 

cluster analysis has been undertaken again but with the data split into ‘dry’ and 

‘wet’ month categories, as these were found in the Descriptive Surface Temporal 

Statistics analysis (Section 4.2.3) to exhibit distinctive data distributions.  Case 

studies of individual months were considered but the size of the dataset is 

insufficient to make meaningful assessments of moisture patterning. 
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The ‘wet’ dataset, with the notable exception of clusters 6 and G, exhibits a more 

even spread of data values within the range of values.  This characteristic is 

apparent across soil types, though is less strongly pronounced in the sand class, 

where the violin diagram (Figure 4.9) shows more pronounced clustering around the 

mean than is evident in the other soil classes (again, with the exception of cluster G, 

which exhibits strong clustering around the mean). 

In the ‘wet’ subset, trends around the overall wetness of clusters relative to each 

other are maintained in the ‘wet’ data, with, as expected, the clay class being, with 

the exception of 5, wetter than Sandy Clay or Sand.  This relationship is maintained 

in the ‘dry’ subset, though to a lesser degree.  In the ‘dry’ subset, cluster 2 is of note, 

given its high soil moisture values.  These do not exist as occasional outliers as in 

the case of cluster B, but rather, account for the full dataset for that cluster. 

Whereas the ‘wet’ subset exhibits narrow violins for the majority of clusters, the ‘dry’ 

subset exhibits greater clustering of data points around the mean.  While this 

clustering is greater for Sand and Sandy Clay, it is also, to a lesser extent, present 

in the Clay clusters as well, with the notable exception, again, of Cluster 2, which 

has two clustering areas, one within the lower-mid quartile, and the other in the 

upper quartile. 

 

 

Figure 4.9 Box and Violin plots of Clusters split by wet and dry months 
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Figure 4.10 Histograms of Clusters split by wet and dry months 

The skewness values for the subsets (Figure 4.10, Table 4.6 and Table 4.7) of the 

data give a more quantitative assessment of the distribution of data within the 

clusters and during the ‘dry’ and ‘wet’ periods.  In the ‘wet’ subset the ‘Sandy Clay’ 

class has the most symmetrical data, with skewness values ranging from -0.16 (H) 

to 0.113 (G).  The Sand and Clay classes are less coherent in their skewness.  In 

Sand, E and F are fairly symmetrical, with values of 0.209 and -0.083, whereas 6 is 

fairly skewed with a value of 0.77.  In the Clay subset, C and 5 are positively skewed, 

with values of 0.821 and 0.828 respectively.  The other clusters can be defined as 

being fairly symmetrical, with skewness values ranging from -0.347 (C) to 0.414 (B).  

Conversely, the ‘dry’ subset of data are more skewed than the ‘wet’ subset.  Overall, 

most of the clusters exhibit a positive skew, with six having a skew that would be 

defined as ‘Highly Skewed’ - in Clay 1.37 (B), 1.18 (D), in Sandy Clay 1.47, (E), 1.23, 

in Sand (G), 1.27 (H), 1.15 (4). It is notable that the skew values for all the clay 

clusters bar cluster 5 increase the positivity of their skew from wet to dry months.  
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This is encouraging as it is what would be expected for a clay soil – one that holds 

water in wetter conditions but can also tend towards dryness during dry periods. 

Table 4.6 Descriptive Statistics for 'wet' months 

Soil Type Cluster Mean Median Minimum Maximum Skewness Kurtosis Std. dev. 
Clay A 0.418 0.432 0.0381 0.722 -0.057 -0.244 0.151 
  B 0.503 0.487 0.214 0.889 0.415 -0.124 0.158 
  C 0.484 0.508 0.188 0.743 -0.347 -0.469 0.131 
  D 0.492 0.467 0.302 0.885 0.821 0.59 0.135 
  1 0.477 0.451 0.264 0.694 0.193 -0.942 0.112 
  2 0.685 0.68 0.382 0.889 -0.242 -0.314 0.119 
  5 0.324 0.318 0.127 0.7 0.828 1.24 0.125 
Sand E 0.264 0.263 0.097 0.483 0.209 -0.726 0.094 
  F 0.283 0.293 0.142 0.456 -0.083 -1.16 0.086 
  6 0.173 0.152 0.072 0.336 0.77 -0.288 0.071 
Sandy 
Clay 

G 0.384 0.387 0.199 0.591 0.113 0.751 0.080 

  H 0.413 0.429 0.13 0.66 -0.16 -0.621 0.132 
  3 0.468 0.459 0.233 0.733 0.075 -0.569 0.123 
  4 0.358 0.371 0.119 0.621 0.048 -0.76 0.135 
 

Table 4.7 Descriptive Statistics for 'dry' months 

Soil Type Cluster Mean Median Minimum Maximum Skewness Kurtosis Std. dev. 
Clay A 0.173 0.174 0.107 0.257 0.384 -0.431 0.0413 
  B 0.214 0.211 0.085 0.475 1.37 2.48 0.0955 
  C 0.158 0.154 0.0836 0.216 -0.193 -0.146 0.0342 
  D 0.199 0.192 0.138 0.343 1.18 2.1 0.0481 
  1 0.179 0.178 0.11 0.249 -0.138 0.524 0.0308 
  2 0.374 0.366 0.195 0.538 0.231 -0.717 0.0955 
  5 0.111 0.107 0.0387 0.213 0.635 0.471 0.0439 
Sand E 0.101 0.0858 0.0464 0.251 1.47 2 0.0478 
  F 0.115 0.116 0.066 0.167 -0.0866 1.16 0.0227 
  6 0.061 0.0592 0.032 0.101 0.355 -0.0010 0.017 
Sandy 
Clay 

G 0.169 0.161 0.116 0.281 1.23 1.5 0.0427 

  H 0.185 0.185 0.111 0.314 1.27 2.42 0.0485 
  3 0.178 0.182 0.0992 0.248 -0.326 0.314 0.0349 
  4 0.143 0.135 0.0931 0.251 1.15 1.02 0.0415 
 

4.3 Summary of dataset overviews 

Having undertaken this descriptive assessment of the spatio-temporal statistics at 

an inter-cluster level, it is possible to make some recommendations regarding the 

necessary format for remotely monitoring soil moisture at a site of this kind.  These 

analyses have shown several important relationships.  They have shown that the 

spatial distribution of surface soil moisture values is strongly associated with soil 

type and that the wettest area, namely Cluster 2, corresponds to the most 

geomorpically active areas of the site.  

One area that has been specifically highlighted in the summary statistics review 

above has been the Cluster 2 area.  This area of the slope was specifically targeted 
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as an area that had been identified during preliminary site visits and from BGS site 

reports (Jenkins et al. 2006; Chambers et al., 2008) as being likely to be influential 

in the hydrology and instability of the slope, sitting at the foot of the scar and above 

the mobile mass.  In each of the previous analyses it has behaved in a markedly 

different way to the rest of the clusters, even within its soil class – clay.  This cluster, 

given that it is the wettest on the site is important in directing recommendation 

about the range of soil moisture values is it necessary for remote sensing applications 

to be able to assess as it represents one extreme of the range of soil moisture values 

present on site.  The highest value at this cluster was 0.889 m3.m-3, which shows that 

these values are present in mobile soil masses and, as such, sensors should be 

calibrated with this in mind.  It is also important to note that this value is not an 

outlier, as is seen in some of the other clay clusters, where maxima of 0.889 and 

0.885 are recorded for Clusters B and D respectively, but rather, these high VWC 

values are repeated in this cluster.  That this area exhibits consistently high VWC 

values both in ‘wet’ and ‘dry’ subsets gives confidence that this is a feature of the 

slope that behaves consistently, holding considerably more water than areas further 

down the slope to it.  Given that other studies show (Jenkins et al. 2006; Chambers 

et al., 2008) that the movement of the slope is initiated from the high soil moisture 

values in this area of the slope, it is a clear indicator of the high VWC of value it is 

important to be able to measure.  

The availability of soil moisture data at three different depths is novel in the context 

of soil remote sensing applications. For, while there has been much focus on the 

groundtruthing of remote sensing estimations of surface soil moisture, there has 

been no reference to the relationship to soil moisture deeper than the remote sensing 

platform can penetrate (Choi and Jacobs, 2007; Vereecken et al., 2008). 

Having looked at this, let us now turn our attention to directly addressing how this 

section of analysis meets Objective 1. 

4.4 Objective 1 

It is attested in landslide hydrology literature that there is no guarantee that surface 

soil moisture is well related to deeper moisture values (Van Asch et al. 1999; Thiebes, 

2012).  This section examines the relationship between the surface soil moisture 

measurements (depth ~0-5 cm) taken during the field campaign with the DeltaT 

probe, shallow subsurface (depth ~ 10 cm) moisture measurements taken by the 

automated SensorNET 5TE probes and deeper subsurface moisture measurements 
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from the COSMOS Cosmic-Ray Neutron Sensor (CRNS).  The single-value nature of 

the COSMOS data for each month means that most of the small-scale analysis will 

be undertaken with just the SensorNET and ThetaProbe data, with a short 

discussion of the way these data sets relate to the deeper moisture being undertaken 

at the end of this section. As with the previous section, the SensorNET and COMSOS 

values are from 0900 hours on the day of the acquisition, to be as close as possible to 

the in situ acquisition time. First, the subsurface soil moisture data for clusters D 

(clay), E (Sand) and G (Sandy clay) is presented, then the data for each soil type 

individually, and then the surface-subsurface relationships are explored for each 

cluster. 

Table 4.8 shows that the descriptive statistics of the two datasets are very similar, 

which gives confidence that it might be possible to model the relationship between 

the two successfully, and also that the data from both datasets does not feature any 

significant unique outliers or artefacts. 

Table 4.8 Descriptive statistics of SensorNET and ThetaProbe 

  SensorNet Thetaprobe 
N 

 
163 

 
163 

 

Missing 
 

0 
 

0 
 

Mean 
 

27.0 
 

26.2 
 

Median 
 

26.3 
 

23.9 
 

Standard deviation 
 

15.8 
 

14.0 
 

Minimum 
 

2.81 
 

4.64 
 

Maximum 
 

63.1 
 

60.2 
 

Skewness 
 

0.228 
 

0.353 
 

Kurtosis 
 

-0.908 
 

-0.931 
 

Shapiro-Wilk p 
 

< .001 
 

< .001 
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Figure 4.11 Distribution of VWC SensorNET and ThetaProbe values 

  

Figure 4.12 Boxplot of VWC values of SensorNET and ThetaProbe 

 

Figure 4.13 Comparison of SensorNet and ThetaProbe VWC values for all soil types 

As anticipated, there is a positive correlation between the SensorNET and 

ThetaProbe VWC datasets (Figure 4.13).  It is not, however, as strong as expected.  

This could be due to sensor error, or different surface-subsurface relationships 

existing in each soil type, or indeed, that there is a time lag between transfers of 

moisture between the layers.  The following analyses explore relationships in each 

soil type, and then at each sensor node, culminating in a discussion of the 

relationship between surface and sub-surface moisture at the site. 

Table 4.9 shows the comparative descriptive statistics of each of the soil types at the 

site.  It shows that for most metrics Sand has the most similar values between the 
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two datasets.  Indeed, it is the only soil type which does not exhibit a normal 

distribution in both datasets.  The SensorNET data have lower minima than the 

ThetaProbe, and higher maxima, with the exception of Clay.  They also have higher 

skewness and normality values, with the exception of Sand, as already mentioned. 

Table 4.9 Descriptive Statistics of all three soil types for SensorNET and ThetaProbe 

  Soil SensorNet Thetaprobe 
Mean 

 
Clay 

 
27.7 

 
34.0 

 

  
 

Sand 
 

15.0 
 

18.6 
 

  
 

Sandy Clay 
 

41.3 
 

31.1 
 

Median 
 

Clay 
 

26.6 
 

33.0 
 

  
 

Sand 
 

11.8 
 

15.2 
 

  
 

Sandy Clay 
 

42.2 
 

35.0 
 

Standard deviation 
 

Clay 
 

10.1 
 

14.2 
 

  
 

Sand 
 

10.3 
 

10.8 
 

  
 

Sandy Clay 
 

11.2 
 

12.9 
 

Minimum 
 

Clay 
 

5.67 
 

13.8 
 

  
 

Sand 
 

2.81 
 

4.64 
 

  
 

Sandy Clay 
 

10.8 
 

11.6 
 

Maximum 
 

Clay 
 

51.3 
 

60.2 
 

  
 

Sand 
 

43.7 
 

41.0 
 

  
 

Sandy Clay 
 

63.1 
 

59.1 
 

Skewness 
 

Clay 
 

0.356 
 

0.148 
 

  
 

Sand 
 

0.805 
 

0.587 
 

  
 

Sandy Clay 
 

-0.259 
 

-0.0276 
 

Kurtosis 
 

Clay 
 

0.518 
 

-1.32 
 

  
 

Sand 
 

-0.269 
 

-0.921 
 

  
 

Sandy Clay 
 

-0.223 
 

-1.14 
 

Shapiro-Wilk p 
 

Clay 
 

0.587 
 

0.036 
 

  
 

Sand 
 

< .001 
 

< .001 
 

  
 

Sandy Clay 
 

0.645 
 

0.003 
 

 

  
Figure 4.14 Histograms of three different soil types for SensorNET and ThetaProbe 

The histograms in Figure 4.14 show the SensorNET and ThetaProbe distributions 

are similar for the Sand data.  In the Clay and Sandy Clay datasets, however, the 

ThetaProbe shows a stronger bi-modal distribution than the SensorNET.  If the 

bimodal distribution is accepted as a function of seasonal variability, this increased 
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strength in the bimodal distribution suggests that the surface exhibits stronger 

responses to wet and dry periods than the subsurface.  Here the data of the four 

clusters are briefly described.  There follows an analysis of what these data mean for 

relating surface and shallow moisture in the slope. 

4.4.1 Cluster D (Clay) 

Sensors D1, D2, D7 and D9 did not function throughout the fieldwork, while sensors 

D3 and D6 stopped working after September.  Likewise, the surface dataset is 

incomplete, with no values having been recorded for D11, and some sensor locations 

sporadically missed. Of those sensors where surface and subsurface recording 

occurred on the same acquisition day, brief summary statistics of the difference 

between the surface and subsurface values are found in Table 4.10, where a positive 

value represents surface soil moisture being higher than subsurface soil moisture. 

 

Figure 4.15 Difference between surface and subsurface soil moisture at cluster D 
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Table 4.10 Summary statistics of surface and sub-surface soil moisture variation at Cluster 
D 

Sensor Count Missing Mean Median Minimum Maximum St. Dev. Range 
D1 0 9 - - - - - - 
D2 0 9 - - - - - - 
D3 4 5 6.01 7.38 -0.828 10.1 4.75 10.9 
D4 8 1 0.922 3.64 -11.3 8.58 7.97 19.9 
D5 8 1 8.58 8.44 -42.5 46.7 25.8 89.2 
D6 2 7 3.58 3.58 -3.8 11 10.4 14.8 
D7 0 9 - - - - - - 
D8 8 1 2.41 1.54 -12.1 17.6 10.7 29.8 
D9 0 9 - - - - - - 
D10 7 2 18.4 13.8 10.9 38.3 9.74 27.4 
D11 0 9 - - - - - - 
D12 1 8 3.47 3.47 3.47 3.47 - 0 

 

4.4.2 Cluster E (Sand) 

Cluster E performs best in an assessment of difference between surface and 

subsurface moisture.  For, not only are the differences between the two datasets 

lower (Table 4.11), they also demonstrate variability in whether that difference is 

positive or negative (Figure 4.16).  Or rather, there are sensors which have both 

positive and negative differences, rather than just one or the other.  There are, 

however, four sensors which should be considered carefully.  E7 and E8 have low 

difference values until November, when the difference values significantly increase, 

and remain increased.  It is possible this is due to a partial failure in the sensors, or 

that the sensors behave differently when a moisture threshold is passed, as the 

surface measurements show that soil moisture increases significantly from October 

to November.  Sensor E3, likewise, has anomalously large difference values for the 

three months it recorded.  E10 has higher than average difference values, with one 

peak difference value in November.  Whether this is indicative of a systematic error 

associated with this sensor or not, it is difficult to confidently assert. 
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Figure 4.16 Difference between surface and subsurface soil moisture at cluster E 

Table 4.11 Summary statistics of surface and sub-surface soil moisture variation at Cluster 
E 

Sensor Count Missing Mean Median Minimum Maximum St. Dev. Range 
E1 9 0 2.1 1.36 -5.51 7.49 3.76 13 
E2 3 6 -12.5 -12.2 -17.2 -8.1 4.58 9.14 
E3 4 5 -37.1 -37.1 -44.8 -29.5 6.29 15.3 
E4 6 3 6.4 5.85 -1.17 15.5 6.39 16.7 
E5 6 3 11.7 7.65 2.51 24.5 9.52 22 
E6 8 1 3.96 4.21 0.197 6.82 2.29 6.62 
E7 7 2 20 25.8 3.84 36.6 13.5 32.8 
E8 8 1 13.6 8.32 4.02 25.7 9.81 21.7 
E9 7 2 0.89 0.455 -6.59 8.3 4.41 14.9 
E10 9 0 -12.8 -14.2 -33.8 3.93 10.9 37.7 
E11 9 0 -4.96 -3.21 -24.3 4.87 9.12 29.1 
E12 8 1 0.927 0.24 -3.47 8.92 4.06 12.4 

 

4.4.3 Cluster G (Sandy Clay) 

The plot (Figure 4.17) for G shows that for all bar G8 and five other one-off instances 

at G4, G5, G10 and G11, all the subsurface readings are lower than the surface 

readings.  G1 is the sensor with the greatest offset, while G2, G3, G4 and G9 have 

similar offsets to each other.  The mean offset from the surface measurements ranges 

from -24.5 (G1) to 13.7 (G8) (Table 4.12), with six of the clusters having a difference 

of less than -10 (G4, G5, G6, G10, G11, G12).  Despite many of the clusters seeming 

to have distinctive offsets, the range in the offset value for each cluster is high, with 

values ranging from 15.1 (G11) to 26.2 (G4). 
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Figure 4.17 Difference between surface and sub-surface soil moisture at cluster G 

Table 4.12 Summary statistics of surface and sub-surface soil moisture variation at Cluster 
G 

Sensor Count Missing Mean Median Minimum Maximum St. Dev. Range 
G1 7 2 -24.5 -21.8 -38.7 -16 9.33 22.7 
G2 7 2 -12.9 -16 -18.7 -3.39 5.91 15.3 
G3 9 0 -18.8 -20.2 -29.2 -10.1 6.87 19.1 
G4 8 1 -9.63 -8.16 -24.2 2.02 9.34 26.2 
G5 8 1 -5.92 -5.75 -14.7 5.96 6.89 20.6 
G6 1 8 -9.15 -9.15 -9.15 -9.15 - 0 
G7 5 4 -12 -13.7 -23.6 -1.49 8.6 22.1 
G8 4 5 13.7 12.1 7.57 22.9 7.45 15.3 
G9 8 1 -12.8 -14 -22 3.69 7.52 25.7 
G10 4 5 -7.34 -8.28 -14.9 2.07 8.78 16.9 
G11 3 6 -4.72 -9.69 -9.8 5.33 8.71 15.1 
 

It is difficult to draw meaningful conclusions from these data as they appear to show, 

as is seen most clearly in Figure 4.15 and Figure 4.17, that the amount of variability 

between surface and subsurface measurements is a function of the behaviour of each 

sensor or is specific to the conditions at that location, rather than being the product 

of global soil moisture variations.  It is necessary, therefore, to question, whether it 

is possible to use this SensorNET dataset for understanding the relationship 

between surface soil moisture and subsurface soil moisture and, indeed, whether a 

modelling of this relationship is even appropriate to undertake.  To better visualise 

the variability in the data, each of the three data subsets – Clay, Sand and Sandy 

Clay have been plotted  and discussed below. 

Figure 4.18, Figure 4.19, and Figure 4.20 show that the relationship between the 

SensorNET and Thetaprobe values is distinctive for each soil type.  Clay has the 
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strongest positive correlation of the three, followed by Sandy Clay and then Sand.  

Standard error for each soil type is highest at the minima and maxima of each 

dataset, and greatest for Clay.   

The expectation of the relationship between surface and subsurface VWC is that 

there should be a very strong positive correlation, in the form of a linear relationship, 

with a gradient of approximately 1 and passing through the origin.  The Clay data 

(Figure 4.18) best equate to this expectation, with a gradient of the best fit line of 

1.0692, and an intercept of 6.2746.  It also has the highest R2 value of the three 

datasets, with a value of 0.4378.  The Sandy Clay has a shallower gradient of 0.609, 

though a similar intercept of 6.018 and an R2 value of 0.2806. Sand has the 

shallowest gradient, at 0.3538, and a similar, though higher intercept at 13.244.  The 

R2 is the lowest of the three datasets, at 0.1148.  It should be noted that the trendline 

is heavily influenced by the tight grouping of low values.  Outside of this grouping, 

the data are seemingly randomly scattered. 

 

Figure 4.18 Plot of Surface VWC against Shallow VWC for Clay 
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Figure 4.19 Plot of Surface VWC against Shallow VWC for Sandy Clay 

 

Figure 4.20 Plot of Surface VWC against Shallow VWC for Sand 
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Figure 4.21 Plot of Surface VWC against Shallow VWC for all soil types 

Figure 4.21 shows that each of the three soil types at the site exhibits a different 

surface-subsurface relationship.  This is most likely due to the different rates of 

wetting or drying that the pore spacings of each material allows.  That Clay has the 

strongest relationship between the three is unsurprising given that it is known from 

Gunn et al.’s study (2013) and the presence of sag pond features in its vicinity to be 

extremely poorly draining, and, by extrapolation, limited in the flow from near 

surface to subsurface due to sitting at capacity. 

4.4.4 Relating COMSOS data and surface and shallow data 

Having assessed the relationships between surface and shallow measurements, it is 

valuable to assess the relationship with deeper soil moisture values, closer to the 

supposed failure surface.  Although the Hollin Hill Landslide has a shallow shear 

surface, estimated by Gunn et al. (2013) to be at a depth of approximately 2 m, it is 

valuable to understand how deeper moisture measures relate to surface 

measurements for several reasons.  First, to establish what the difference is, and 

whether the surface or shallow measurements better relate to the COSMOS data, 

second to assess whether large-scale soil moisture readings like COMSOS have a 

value in calibrating SAR or other remote sensing products (RS2).  In this analysis 
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only surface and shallow data are used from the locations the SensorNET sensors 

were working, to enable a better comparison between the two datasets and 

COSMOS. 

Figure 4.22 and Figure 4.23 show that most ThetaProbe measurements are lower 

than COSMOS data, but that above a threshold between 33.42% and 42.46% some 

ThetaProbe values exceed the COSMOS values.  The SensorNET values both exceed 

and are lower than the COSMOS data at all COSMOS values.  The spread of the 

SensorNET data is greater than that of the ThetaProbe data for most of the monthly 

datasets. 

That the COSMOS readings are generally higher than the other two datasets is not 

wholly surprising. At depth, the impact of surface drying processes like 

evapotranspiration are not present.  Likewise, COSMOS is not a measurement of a 

point, but rather a measurement of the moisture of a volume, at depths ranging from 

approximately 0.4 m by the sensor, to 0.15 at the extent of its range.  Although this 

makes comparison of the quasi-point datasets with it more complicated than the 

comparison directly between them, there are some valuable comments that can be 

made on the relationship.  First, the COSMOS sensor is positioned close to the 

western edge of the active eastern lobe, near the slope transition from clay to sandy 

clay.  This is significant for the measurements of the CRNS have been found to be 

most affected by the moisture values within a few meters of the probe (Köhli et al., 

2015).  Its position, therefore, close to the intersection of significantly different 

hydrologies at the site is valuable as it means that one soil type, and therefore 

hydrology, is not over-represented.  That being said, it must be noted that the sand 

soils are, perhaps, under-represented, which might explain why CRNS values are 

higher than those from the SensorNET and ThetaProbe data. 
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Figure 4.22 Plot of COSMOS VWC against ThetaProbe VWC 

 

Figure 4.23 Plot of COSMOS VWC against SensorNET VWC 

4.4.5 Objective 1 Discussion 

Surface-shallow relationship 

It was envisaged that the SensorNET data would enable the meeting of Objective 1 
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however, preclude this course of action.  First, the data that BGS are able to provide 

are limited to three out of eight clusters.  It would not be appropriate to interpolate 

a global moisture surface from this few data points in this clustered arrangement.  

Likewise, of those data that BGS have provided – those which they deem to be the 

most reliable – the comparison of them with the surface Delta T values indicates 

that much of the variability between surface and subsurface is likely due to an error 

in the VWC measurement by the 5TE sensor, rather than being due to unusual 

moisture routing in the soil mass, given the small vertical distance between the two 

measurement volumes.  It is not possible, of course, presume that the surface soil 

moisture values are entirely trustworthy and without error, but the way that each 

sensor has a relatively distinct error each month is indicative of a systematic error 

in the SensorNET data rather than the DeltaT data.  The only cluster that it might 

be possible to use the data of to model surface-subsurface soil moisture relationships 

is cluster E, if some of the suspicious data points are discarded; but, given the paucity 

of data points that leaves, and given that E covers the most stable area of the site, 

the value of such an attempt is questionable given the focus of this study on soil 

moisture in an active landslide setting. 

Surface-Deep relationship 

As already mentioned, relating such different volumes of soil measured by the 

ThetaProbe and the CRNS makes quantitative assessment of the relationship 

between surface soil moisture values and the deeper CRNS values problematic, 

especially given the known heterogeneity of the hydrogeology in the area the CRNS 

probe measures.  It can, however, be said that the VWC values from the surface 

measurements are lower than those measured by the calibrated CRNS sensor.  This 

is significant for remote sensing, as the wavelength of most SAR platforms means 

that the backscatter of most products does not penetrate more than a few 

centimetres into the soil mass (Kerr, 2007; Eineder et al., 2009; Beven, 2011), and 

therefore, is not affected by the slope material that is wettest, and therefore most 

indicative of slope conditions. 

Objective 1 Conclusions 

This section has assessed the surface, shallow and deep soil moisture relationships 

at Hollin Hill.  It must be recognised that there are issues regarding some of the 

sensors in the SensorNET array, and that the difference in the soil volumes the 

quasi-point measurements and CRNS sensors measure makes the establishment of 
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absolute relationships complex.  However, the relationships between CRNS and the  

point measurements show that, while not fully understood, there appears to be a 

strong relationship between surface/shallow values and deeper subsurface values. 

4.5 Objective 2 

There is an assumption in geographical literature that things that are close together 

will be more similar than things that are further apart (Legendre, 1993).  This is 

referred to as spatial autocorrelation.  Correlations lengths are typically expected to 

be between 30 and 60 m for soil moisture (Western et al., 2004).  The following section 

assesses the scales at which autocorrelation occurs at this site, and the site 

characteristics that define and limit those scales.  To assess spatial autocorrelation, 

measures of semivariance were undertaken for each monthly dataset using the 

Geostatistical Wizard in ESRI’s ArcMap 10.3.1.  The scale at which autocorrelation 

occurs is important for decision making in remote sensing as it informs both the scale 

of window averaging appropriate to apply during image processing and also allows 

better understanding of the range of soil moisture values that might be contained 

within a pixel of a given size.  This section begins with exploring autocorrelation at 

the site-wide scale, and then moves on to explore it at a cluster-scale, thereby 

reporting on both the larger-scale patterning of soil moisture, but also the small-

scale variability at a pixel-specific scale. 

 

Figure 4.24 Unbinned semivariograms for each month of data featuring all data points 

The raw, unbinned semivariograms (Figure 4.24) show that while there is an overall 

trend for the more dissimilar pairs of points to be further apart, there is also 

significant complexity to this finding.  For, in each semi variogram it is apparent 
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that at distances of above ~ 200 metres the difference in paired values decreases to 

close to those values seen in the closest pairs.  Indeed, the high density of points close 

to the x axis along its full 220 m range indicates that there is complexity to the 

spatial patterning of soil moisture at this site.  It is likely that this complexity is, in 

part, caused by the different soil types at the site.  The boundaries between these 

soil types are distinct and so clusters that are close together can have distinctly 

different hydrological properties, likewise clusters far apart can have relatively 

similar material characteristics.  Indeed, the low variance values at the furthest 

distance are exclusively from pairs of points from clusters A and D – both on Clay 

soils (Figure 4.25), which indicates that within the same soil type there can be 

considerable similarity even at a distance, as long as there are similar hydrological 

processes ongoing in that area. 

 

Figure 4.25 Map of pairs with high spatial dissimilarity, but high VWC similarity.  The blue 
lines show the pairings in question 
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Figure 4.26 Monthly semivariograms with binned data and fitted exponential models 
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There are strong similarities between the monthly semivariograms which rules out 

the potential for moisture thresholds by which autocorrelation is limited.  In the 

variogram models produced with the averaged binned data and fitted with an 

exponential model, as seen in Figure 4.26, flattening out of the model does not occur 

within the data range.  This suggests that autocorrelation is not evident in these 

data sets.  The nugget value – normally indicative of measurement error - is 

inconsistent across the datasets (Table 4.13), ranging from 0.00144 in august to 

0.721 in November.  Given the standardised measuring procedure undertaken across 

the data, this is further evidence of the high spatial variability of soil moisture at 

the site. 

Table 4.13 Descriptors of semivariogram models 

Month Partial Sill Nugget Major Range Lag size Lag Number 

June 0.0205 0.0037 240 20 12 

July 0.0276 0.0037 240 20 12 

August 0.0063 0.0014 240 20 12 

September 0.0062 0.0027 240 20 12 

October 0.0109 0.0013 240 20 12 

November 0.0214 0.0072 240 20 12 

December 0.0258 0.0046 240 20 12 

January 0.0245 0.0063 240 20 12 

February 0.0312 0.0064 240 20 12 

 

4.5.1 Cluster-scale autocorrelation 

To better understand autocorrelation at the site, semivariogram analysis has been 

undertaken on a cluster-by cluster basis using two case-study months - one ‘dry’ and 

one ‘wet’ – October (Figure 4.27) and December (Figure 4.28) respectively.  In the 

previous, whole-site assessment the results were not clear because of multiple 

variables, like soil type and slope angle, not being consistent from cluster-to-cluster.  

Within each cluster there is, however, minimal variability in factors which can affect 

VWC. 

Even though it would be expected that a clearer autocorrelation  signature would be 

present in the semivariograms due to the reduction in variables, in many cases this 

in not evident.  Cluster 2 shows no autocorrelation in October, with a pattern-less 

scattering of values within the plot.  In December, there is also little evidence of a 

standard autocorrelation pattern in the Cluster 2 data.  Conversely, some clusters 

do have semivariograms that indicate spatial autocorrelation in both October and 



Chapter 4: Soil Moisture relationships 
 

108 
 

December.  Clusters 3 and D, both of which sit to the Eastern side of the mobile 

Eastern Lobe have plots indicative of  spatial autocorrelation.  The number of data 

points in each cluster is quite small (~8), so it is hard to be confident in assessing the 

autocorrelation cut-off.  The semivariogram for Cluster 4 in October shows that a 

tight grouping of most values close to the X axis, with a few outliers.  This is caused 

by one data point that is significantly different from the rest.  The December data 

from this cluster shows, however, much less similarity point-to-point. 
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Figure 4.27 Semivariogram plots for each cluster (1-6, A-H) in dry case study month, October 
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Figure 4.28 Semivariogram plots for each cluster (1-6, A-H) in wet case study month, 
December 
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4.5.2 Predicted soil moisture surfaces 

To meet Objective 2, an assessment of the anticipated soil moisture spatial 

distribution over the whole site kriged soil moisture surfaces were created using the 

Ordinary Kriging function in the Geostatistical Wizard in ArcMap and in situ data 

from each month.  Although other work on kriging soil moisture has advocated use 

of a Gaussian model (Obroślak and Dorozhynskyy, 2017), an exponential model was 

used for the kriging for two reasons, first that the descriptive statistics show that 

the data cannot be assumed to be normally distributed, second, that tests with data 

from two sample months (September - ‘dry’ - and June - ‘wet’) showed that this was 

the best model type, based on the Root-Mean-Square Standardised Error and the 

Mean Standardised Prediction Error.  Other model types that were assessed but 

rejected were: Circular, Spherical, Rational Quadratic and Stable. 

 

Figure 4.29 Kriged VWC surfaces for each month, with topography underlying 

The kriged VWC surfaces (Figure 4.29) show strong similarities in moisture 

patterning, with the North Eastern quadrant being consistently the wettest and the 

area with the ‘Sand’ soil class being consistently the driest.  The kriging was 
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undertaken without any barriers and yet the moisture patterns, particularly in the 

southern half of the site show some similarity to the topography.  Although the clay 

at the North of the site is considered as being uniform in its composition across the 

site, it is of interest that the Western part of the slope is considerably drier than the 

Eastern part, where most of the slope deformation is initiated.   

While the clustered design of the data will inevitably create artefacts in the kriged 

surfaces, the prediction error scores (Table 4.14) are such that it is possible to be 

confident in the quality of the surfaces in Figure 4.29.  The proximity of the Mean 

predicted error to 0 indicates that the overall error for the kriged surfaces is low and 

although the RMSE standardised error is slightly lower than optimum, it is just 

necessary to be aware that variability is slightly under-predicted by these surfaces. 

Table 4.14 Prediction Errors for kriged surfaces in Figure 16 

Month Mean Root-
Mean-
Square 

Mean Std. Root-
Mean-
Square 
Std. 

Ave Std 
Error 

Mean Std. 
from 
optimum 

RMS 
Std. from 
optimum 

June -0.0003 0.08197 -0.00321 1.0957 0.07249 0.00329 0.09574 

July -0.0015 0.08368 -0.0144 1.1149 0.07471 0.01441 0.11495 

August -0.0002 0.05129 -0.0015 1.1522 0.04371 0.00157 0.15222 

September -0.0001 0.05446 -0.0021 0.9394 0.05858 0.00212 -0.0605 

October 2.40E-05 0.05059 -0.0007 1.1243 0.0451 0.00071 0.12438 

November -0.0014 0.10449 -0.0119 1.0883 0.09552 0.01195 0.08834 

December -0.0032 0.0904 -0.011 1.1144 0.07994 0.01105 0.11441 

January -0.0012 0.09355 -0.0101 1.0196 0.09106 0.01017 0.01963 

February -0.0009 0.09668 -0.0073 1.0364 0.09296 0.00734 0.03642 

 

4.5.3 Objective 2 Discussion 

The rationale behind this objective was to assess the appropriate scales of multi-

looking or adaptive filtering which could appropriately be undertaken with remote 

sensing products.  This is challenging to answer as, on the one hand, this study has 

shown through the data from the smaller surface clusters (1-6) that within the area 

of a CSK cell (~1x1 m) the soil moisture can vary considerably, whereas, the 

autocorrelation analysis has shown that the limit of autocorrelation is about 190 

meters, which is two orders of magnitude greater than the scale of the CSK pixels.  

The recommendation on this, therefore, has to be that the appropriateness of 

multilooking and adaptive or non-adaptive filtering approaches and the scales of 

their use is defined by the objectives of the research being undertaken.  If projects 

are investigating the soil moisture content of soils at a field scale, then the choice of 



Chapter 4: Soil Moisture relationships 
 

113 
 

multilooking and filtering techniques and their scale can be free to the discretion of 

the user, based on the availability of data and the computational capacity, given the 

multi-order of magnitude difference in the autocorrelation length and pixel size.  

However, if targeted, quasi-point information about moisture is required, then it 

should be noted that within the area of the pixel it is probable that there is variation 

in soil moisture values. 

4.5.4 Objective 2 Conclusions - Interpreting spatial autocorrelation and its 

impact on Remote Sensing decision making 

The findings from this section have, however, been inconclusive, both when 

assessing spatial autocorrelation at a site scale and a cluster scale.  This problem, 

due to small-scale variability in soil moisture, is not uncommon in studies seeking to 

interpret point-measure soil moisture data (Vereecken et al., 2008).  Although this 

is frustrating in that it does not allow specific recommendations to be made with 

regards to parameters for processing the COSMO-SkyMed data in later chapters, it 

does serve to highlight that even when multiple site variables are thought to be 

accounted for in the development of a project plan, the highly stochastic nature of 

this variable in a geomorphically active context cannot be fully accounted for. 

This analysis has shown the difficulty in drawing clear conclusions about the scale 

at which autocorrelation exists and is indicative of the complex stochastic nature of 

soil moisture.  This difficulty does, however, have implications for meeting Objective 

2 as it is not possible to confidently assert the scale to which satellite products need 

to be produced to well characterise the spatial variability in soil moisture at site 

similar to this one. 

4.6 Chapter discussion and conclusions 

In addressing Objective 1, it was found that while there is a positive correlation 

between surface and sub-surface soil moisture readings, the strength of the 

relationship is weaker than anticipated.  Given that the routing of moisture below 

the surface is important to understand in the context of modelling slope deformation 

and factors of safety, this presents problems in interpreting what surface readings 

of soil moisture mean for sub-surface moisture and any deformation caused by it.  

This, in and is therefore indicative that should CSK data be used for monitoring 

surface soil moisture as a pre-cursory condition of a large rainfall event, or, indeed, 

as a proxy for any other environmental monitoring, it should be noted that surface 

conditions do not necessarily well define sub-surface conditions and that, therefore, 
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some kind of modelling should be undertaken if subsurface conditions are important 

to the project aim. 

Spatial autocorrelation of soil moisture values was tested in this chapter and the 

threshold for autocorrelation was 190 m.  This is within the scales found in Wester 

and Blöschl’s (1999) survey of studies of autocorrelation, though higher than the 

more commonly cited and found distances of 30-60 m (Western et al., 2004).  

However, as mentioned above, this does not represent a realistic scale to apply 

filtering or other such post-processing techniques for CSK data due to the fine spatial 

resolution of the imagery.  Rather, the intra-cluster variability analysis has shown 

that there is significant variability in soil moisture at distances below the scale of a 

pixel. 

To summarise, this chapter has highlighted the heterogeneity of soil moisture 

distributions at this active landslide site and shown that modelling of expected soil 

moisture at the site did not characterise the measured soil moisture well.  It has also 

shown that surface geometry is an important characteristic to account for, and as 

such SAR acquisition should be tasked with a geometry that is most favourable for 

diminishing the impact of shadowing and foreshortening on the slope that is being 

imaged. 
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CHAPTER 5:  ESTABLISHING THE PERFORMANCE OF 

COSMO-SKYMED PRODUCTS AT ESTIMATING SOIL 

MOISTURE ON VEGETATED SLOPES  

 

This chapter explores the potential of using single polarised X-band COSMO-

SkyMed (CSK) Synthetic Aperture RADAR (SAR) imagery for sensing surface soil 

moisture in a bare soil / lightly vegetated active slope setting.  The investigation 

focuses on the potential of CSK being used for monitoring soil moisture in a 

similar-to-real-world scenario with the following parameters: multiple satellites 

from the constellation are used, and no a priori knowledge of the micro-roughness 

of the site is available.  The purpose of this is to investigate how useful a short 

(~2.5 cm) wavelength product can be in the monitoring of a parameter that is 

spatially and temporally highly variable (see Chapter 4) when X-band backscatter 

return is known to be strongly influenced by both surface geometry and soil 

moisture (Gorrab et al., 2015).  The underlying context for this chapter and the 

questions that it asks is that in a changing climate context, the monitoring of soil 

moisture is increasingly important, in the context of understanding precursory 

conditions of major rainfall events affecting large areas and assessing the 

potential hazard impact that rainfall event might have.  In most cases where SAR 

imagery, such as CSK, might be used for estimating these precursory conditions 

it is unlikely that a priori surface models of a high-enough resolution to account 

for surface scattering for a wavelength of this length are available, despite the 

increase in coarser-resolution and longer-wavelength SAR products being 

deployed in recent years (Attema et al., 2009; Snoeij et al., 2009; Torres et al., 

2012; Balenzano et al., 2013). 
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5.1 Objective 3 – Part 1 

There have been some accounts in the literature that the CSK satellites do not 

show close agreement with each other (Pettinato et al., 2013; Baghdadi et al., 

2015).   This chapter rigorously examines the data product delivered by ASI and 

interrogates the quality of the inter- and intra- sensor calibration quality. 

5.2 Sensor Calibration 

During the commissioning phase of the CSK constellation, extensive work was 

undertaken in absolute radiometric calibration of the sensors using corner 

reflectors and test sites of flat, sparsely vegetated characteristics across Italy 

(Calabrese et al., 2008; Grimani et al., 2008) using a calibration and validation of 

image quality module (CALVAL) to rigorously assess the data being acquired by 

the satellites.  The process included using an iterative calibration technique to 

ensure good calibration and quality of images.  Following on from commissioning, 

the operational phase has been run such that the monthly acquisition schedule 

accommodates imaging of the same areas used during commissioning to enable 

continued testing of the image products being delivered (Grimani et al., 2008).  

The active transponder continues to be used during the operational phase of the 

project, and the corner reflectors were due to remain in use for the early stages 

at least of the operational phase (Calabrese et al., 2008), though their current 

status is unknown.  

It has, however, been recognised that there is a need for good inter-calibration of 

SAR sensors for the measurement of vegetation condition and soil moisture 

(Pettinato et al., 2013). Previous studies have shown that within the CSK 

constellation there is significant variation in image brightness from sensor to 

sensor with Baghdadi et al. (2015) finding differences in HH polarisation at an 

incidence angle of 28.3 of CSK3 being 1.6 dB darker than CSK4, with CSK2 very 

similar to CSK3 (only one CSK3 image was used in the study), and CSK1 having 

the lowest returns, around 1.1 dB darker than CSK2.   

It has been found that the CSK sensors require further inter-calibration, with 

consistent differences between sensors being quoted as being in the range of 3-5 

dB (Gorrab et al., 2014).  This section explores the extent to which this is the case 

with the data used in this study, using two tests.  First, backscatter returns from 

areas of anticipated year-round homogeneous vegetation – in this case, conifer 
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plantations - are compared across the sensors.  Second, strong scatterers from 

areas of the scene which, following analysis of optical imagery, are judged to be 

permanent perfect reflectors, like building corners or similar structures, are 

compared.  Third, the constructive and destructive interference (speckle) on each 

sensor is examined through analysis of returns from a managed large-scale water 

body. 

5.2.1 Invariant scatterer studies 

Conifer stands are recognised as being a valuable asset within a multi-temporal 

set of scenes, as the minimal change in geometry and water content throughout 

the year means they exhibit very little seasonal change, unlike bare earth or 

deciduous forestry.  Given this, to test the inter-calibration of the four CSK 

sensors being used in this study, optical imagery from Google Earth was used to 

locate mature homogeneous conifer stands within the scene (Figure 5.1).  The 

CSK scenes were then subsetted to these areas (Figure 5.2) and the statistics of 

each image in the conifer areas were calculated in QGIS.  The expectation of this 

test would be that either all the images have very similar statistics, or that, as 

with the study by Gorrab et al., (2014), each sensor would have good agreement 

within itself, but be offset from the other sensors.  

Figure 5.1 Example of heterogeneous conifer stand used in study using optical 

imagery from Google Earth (2020). 
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Figure 5.2 Full scene with spatial subset; homogeneous conifer areas used in red 



Chapter 5: COSMO-SkyMed Performance 
 

119 
 

Figure 5.3 Histograms of σ0 values of conifer areas, colour-coded by sensor (Purple, Sensor 

1; Blue, Sensor 2; Green, Sensor 3; Red, Sensor 4) 

Table 5.1 Summary statistics of σ0 values of conifer stand areas 

 
Max Mean Min Median Standard Deviation Sensor 

June 1.225 -16.491 -46.196 -22.579 5.453 2 
July -0.354 -15.105 -43.293 -21.908 5.249 4 
August 0.940 -14.969 -40.227 -19.724 5.420 4 
September 3.318 -14.332 -45.228 -21.051 5.520 3 
October 3.358 -14.845 -40.699 -18.757 5.209 4 
November 3.474 -12.477 -39.234 -17.964 5.168 3 
December 2.766 -14.259 -38.707 -18.052 5.443 4 
January 3.347 -12.480 -38.968 -17.894 5.095 3 
February 4.025 -13.028 -38.152 -17.147 5.288 1 
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The summary statistics (Figure 5.3, Table 5.1) from this test show that there is 

intra- as well as inter-sensor variability.  The median values for Sensor 4 (red) 

range from -21.908 (July) to -18.052 (December).  Likewise, the medians for 

Sensor 3 (green) range from -21.051 (September) to -17.894 (January).  Although 

there is a trend in increasing median values through the time series, this is still 

a concern to note, and one which is replicated in strong scatterer assessment 

below.  Just as intra-sensor variation is apparent, so, inter-sensor variability is 

too.  While caution should be observed given Sensors 1 and 2 provide only one 

image for this study, it is notable that the average median value for the four 

sensors ranges from -22.579 dB (Sensor2) to -17.147 dB (Sensor 1), with a 

difference of 0.641 dB between Sensors 3 and 4 (Table 5.1).  The similarity of the 

averaged medians of Sensors 3 and 4 suggests that the co-calibration of the 

satellites is not necessarily a significant concern and can, if deemed necessary, be 

accounted for by applying a simple, linear, calibration adjustment.  Of more 

significant concern is the variability in the intra-sensor values.   

In Table 5.1 it is notable that January and November (both Sensor 3) are 

significantly lower than their antecedent months - December and October (Sensor 

4).  Considering each sensor in turn, Sensor 2 has the highest backscatter return 

of the three sensors, Sensor 4 (July, August, October, December) has consistent 

median returns, and Sensor 3 (September, November, January) has lower returns 

than the other sensors and a marked difference between September and the other 

two images.  
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Figure 5.4 Median σ0 values for each image, by sensor 

Whereas the September image (Sensor 3) was anomalously positively offset 

relative to the other curves, in this case it sits in the midst of the curves.  

Conversely, July is notable for a higher peak and narrower body than the other 

images.  Although there is greater agreement between the images, there is still 

the suggestion of an offset between the sensors.  This is not, however, consistent.  

January and November (Sensor 3) are very similar, but distinct from September 

(Figure 5.4).  Likewise, October, August and December have similar profiles, yet 

July’s is different.  It is not, therefore possible simply to adjust the brightness 

values of one sensor to align it with other Sensors’ outputs and thereby undertake 

relative soil moisture estimation. 

5.2.2 Strong scatterers 

A further test of sensor co-calibration was undertaken, using a different type of 

artefact in the imaged scenes.  To be able to calibrate reflectance values for the 

SAR images it is necessary to have points of known reflectance value in the image 

(Gray et al., 1990).  Conventionally, these points are provided through the 

placement of trihedral corner reflectors.  Trihedral corner reflectors are formed of 

three conducting plates intersecting at right angles, the reflectance of which, if 

its relative alignment to the satellite overpass is known, can be calculated (Ulaby, 

Moore and Fung, 1982) and thereby used as a known value within the image from 

which other values in that image can be inter-calibrated.  The orthogonal 

structure of the trihedral corner reflector ensures that the reflected waves exit in 
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the same direction as the original incident waves entered (Shaeffer et al., 2004), 

meaning that it functions as a strong scatterer and appears very bright in the 

image (Sabins, 1996).   

 

Figure 5.5 Example strong scatterer on roof of Castle Howard complex.  Note the 

brighter pixels extending orthogonal to the pixel 

Figure 5.6 Optical image of Castle Howard complex.  Area of presumed double 

bounce effect highlighted. 

Although it was not possible to implement the placement of corner reflectors 

during the field campaign, several candidate structures within the scene provide 

radar returns similar to those of corner reflectors.  These structures are found in 

the scenes as pixels with very high backscatter values, and with pixels orthogonal 

to them much brighter through constructive interference.  Seven strong scatterers 
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were chosen from within the whole scene to assess the variability in radar 

returns.  Locations were chosen that from optical imagery appeared to be 

permanent, fixed, features like buildings (Figure 5.5 and Figure 5.6), and where 

backscatter brightness extended orthogonal to the central pixel.  A buffer with 

radius of 5 pixels was created around the supposed source pixel, and the highest 

return value from within that buffer zone was recorded in Figure 5.7.  This 

method was undertaken to ensure that, given the presence of multiple high-value 

pixels in the proximity of the supposed strong scatterer, the source pixel was not 

missed.  The backscatter values for these supposed strong scatterers are 

presented in Figure 5.7, and colour-coded by sensor number – Purple for Sensor 

1, Blue for Sensor 2, Red for Sensor 3, and Green for Sensor 4.  The plot shows 

that there is variability location-to-location, but also, more importantly, there is 

variation within each location.  Of particular note for this are locations 4 and 5.  

Locations 2,3,6 and 7 are the only points that have somewhat consistent readings.   

 

Figure 5.7 Backscatter values at presumed strong scatterer locations, colour-coded by 

sensor 

Figure 5.7 shows that all points have high values, and that some, namely points 

6 and 7 show tight bunching across sensors.  Also apparent is that Sensor 3 (red) 

tends to have amongst the highest returns for each point (3,5,6,7), although it has 
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some of the lowest values for point 1.  Conversely, sensor 4 generally has the 

lowest returns at most points.   

Although values at locations 6 and 7 are tightly grouped, and therefore can be 

assessed with the greatest confidence as being true strong scatterers, and worthy 

of most attention, the other points have a much wider spread of values.  There 

are two possible reasons for this being the case.  First, that the scatterers are 

inconsistent throughout the year, which is unlikely given the careful choice of the 

targets using both optical and radar imagery.  Second, and perhaps more likely, 

is that this is an artefact of satellite viewing angle being variable, despite the 

grant design specifying a repeated look angle.  

It is significant that for the same scatterer and the same sensor there is such 

large variation in backscatter returns.  Even if points 1-5 were to be discounted 

as poorly chosen targets, the variation between sensors at points 6 and 7, which 

seem to perform much better as strong scatterers, is still sufficient that 

consideration needs to be given to the quality of the inter-calibration of the 

constellation.  If each sensor had performed reliably relative to the other sensors 

across all scatterers, it would, again, be possible to confidently make a linear 

offset to inter-calibrate the sensors, but the fact that sensors 3 and 4, in 

particular, demonstrate variable returns relative to the other sensors, this does 

not appear to be an option. 

5.2.3 Speckle assessment 

Another useful form of assessment for calibration is that of speckle.  Speckle is 

caused by irregular constructive and destructive interference caused by scatterers 

in adjacent pixels.  Speckle was assessed by examining the backscatter statistics 

for an area of managed waterbody, presumed to be a reservoir, in the scene 

(Figure 5.8).  The image was calibrated and terrain corrected with 3 arcsec SRTM 

imagery.  Water bodies are expected to have consistently low returns due to 

specular reflection (Sabins, 1996).  Assessing water bodies is a useful tool for 

assessing the inter-calibration of sensors, as the returns should be very similar.  

Any deviation in the amount of speckle between the sensors is necessary to be 

accounted for. 
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Figure 5.8 Subset of example CSK image.  The yellow box represents the area of the lake 

used for speckle assessment  

Figure 5.9 and Table 5.2 show that although there is good agreement between 

most of the images, the images for November and January (Sensor 3) have a 

markedly different distribution of backscatter values to the other months and, 

most importantly, to the other image from Sensor 3.  The means of November and 

January (-18.199, -18.938) are significantly lower than those of the other months, 

which range from -23.482 (February) to -25.129 (July).  Interpretation of this 

different backscatter signature is difficult.  The two images were visually 

inspected to ensure there were no anomalies from processing like striping of the 

image, and they were found to be clear from any anomalies.  Freezing of the water, 

or other issues that might accompany winter, can also be ruled out due to the 

known ambient temperature preceding and during the acquisition. There is the 

potential that seasonal changes associated with changes of inflow and outflow 

might be affecting the water quality, but given that the water body is artificial 

and managed, and the variability exists in later studies as well, it is possible to 

be confident that this is not an artefact of water conditions; the Castle Howard 

estate management team, who maintain the lake, were contacted to find out 

whether there were any significant inflow-outflow events associated with the 

period around the image acquisitions, but were not able to access this 

information.  Wind strength and direction were checked using the COSMOS data 
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from Hollin Hill, and found to be similar for the November and January images 

(4.99 m/s, 180.32o; 2.63 m/s, 165.45o) as the other Sensor 3 image (1.134 m/s, 

169.325o). 

 

Figure 5.9 Frequency distributions of backscatter from lake, colour-coded by sensor 

The distributions in Figure 5.9 are not as expected, both because of the different 

distributions in the November and January data, but also because of the length 

of the tails in the data sets and the lack of normality in the distributions.  It is 

likely that the shortness of the wavelength and the smallness of the pixels causes 

the length of tails as the impacts of destructive and constructive interference are 

made more apparent with these parameters.  The position of the curves is also of 

some surprise, with the median values of these frequency distributions being not 

much lower than the medians of the field site, as shown in Figure 5.4. 
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Table 5.2 summary statistics of lake area 

  Maximum Mean Minimum Median Standard Deviation 

June -5.127 -24.196 -49.759 -27.53 4.486 

July -4.174 -25.129 -52.271 -28.506 4.416 

August -2.721 -25.002 -50.477 -26.881 4.491 

September -0.376 -24.69 -49.395 -24.981 4.554 

October -1.528 -24.75 -41.435 -21.717 4.585 

November -4.895 -18.199 -44.241 -24.443 4.365 

December -4.843 -24.845 -45.911 -25.457 4.499 

January -1.457 -18.938 -44.833 -23.23 4.48 

February -3.197 -23.482 -46.057 -24.711 4.478 
 

The relationship seen in Figure 5.9 was unexpected in terms of the offset of the 

November and January images so the metadata of all the images was rechecked 

and all images were reprocessed to ensure it wasn’t an artefact from 

unintentional inconsistencies in the processing. Indeed, given the dynamic range 

of the backscatter in these images is roughly 50 dB, an offset of roughly 5dB is 

statistically significant and needs to be acknowledged. 

5.2.4 Summary of Objective 3 – Part 1 

The first part of meeting Objective 3 has explored the inter-calibration of the four 

sensors on the COSMO-SkyMed constellation and whether further calibration 

was required during processing as other papers using images from a smaller 

subset of the four sensors have found (Gorrab et al., 2014).   

The three studies have each shown that where a well-calibrated constellation 

would have minimal inter- and intra-sensor variability in studies of this type, 

there is marked inter-sensor variability across the constellation, as well as intra-

sensor variability for Sensor 3 in particular.  The conifer-stand assessment 

showed variability in the intra-sensor values, which are found particularly in 

Sensor 3, and the November and January images, in all three of the tests 

undertaken in this section.  The marked difference in the November and January 

backscatter returns for the open water body in the speckle assessment present 

concerns given that external environmental factors have been ruled out as the 

cause.  If such a deviation from the rest of the images was specific to all the images 

from one sensor then a calibration correction could be applied to all the images 

from that sensor.  But the fact that it is only two images from the sensor that are 
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affected is cause for concern regarding the consistency of the sensor.  These 

concerns are replicated in the strong scatterer assessment, though less 

conclusively.  Few studies that have explicitly explored the calibration of the 

sensors have used multiple CSK3 images, and the variation in backscatter found 

in those was minimal, with Pettinato et al. (2013) finding a slight difference (0.59 

dB) in the mean between their two CSK3 images, although the incidence angle 

between the two images was different by four degrees, which automatically 

means there would be a difference between the two.  

5.3 Chapter Summary  

This chapter has explored two key questions regarding the use of CSK data in a 

real-world scenario.  First, how well calibrated is the constellation, and are there 

any concerns about this calibration?   

The findings from the first question - using the speckle and conifer studies - are 

fairly conclusive – that the inter-sensor calibration is not as simple as applying a 

linear offset as some studies (Baghdadi et al., 2015; Gorrab et al., 2015) 

undertaken early in the operational phase of the constellation have indicated. 

This chapter is certainly not the first study to examine the inter-correlation of X-

band SAR sensors.  Some of the earliest papers following the launch of the CSK 

platform examined this (Paloscia et al., 2012; Pettinato et al., 2013; Baghdadi et 

al., 2015; Gorrab et al., 2015), often with respect to TerraSAR-X – the other X-

band platform operational at the time.  However, it is unique in the distribution 

of images across the four satellites.  Baghdadi et al.’s (2015) study which has been 

cited widely in the community (Gorrab et al., 2015) only made use of one CSK3 

image, which is the sensor which has been found in this study to have the most 

variability.   Baghdadi et al.’s 2015 research into using multiple X-band SAR 

sensors (TerraSARX, CSK1, CSK2, CSK3, CSK4) with forestry stands as targets 

and using five CSK1 images (four descending, one ascending), four CSK2 images 

(all descending) one CSK3 image (descending), and five CSK4 images (all 

descending), all with an incidence angle of 28.3o and acquired between June and 

October 2013 found that each sensor was stable, with variation of less than 1dB, 

but that there was variation between the sensors both across the two platforms, 

and across the CSK platform itself, with variation across the constellation of 

between 1.5dB and 2.7dB.  Rather, the intra-sensor variability, seen particularly 

in sensor 3, which Baghdadi et al. were not able to comment upon because of their 
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access to a single image (2015), makes estimation of appropriate inter-calibration 

methods challenging.   

5.4 Conclusions 

COSMO-SkyMed has been shown by many studies to be a useful and exciting tool 

for use in environmental remote sensing projects in multiple different problem 

settings (see review at the start of the chapter), with its high resolution data and 

short return periods, the constellation has overcome the traditional remote-

sensing trade-off between resolution and return period.  However, attention needs 

to be paid by researchers, in particular by those using multi-temporal and multi-

sensor datasets in the context of increasing use of constellations, to ensure that 

they understand the quality of calibration between their images, particularly if 

they have very few images from one sensor. 

This study has been novel in the delivery of the data across all four satellites in 

the constellation.  The data ordering process did not make reference to whether 

there was a requirement or desire for the images to be collected using just one or 

any of the satellites.  It could be inferred from this that ASI assumed an inter-

calibration quality that rendered whether the data came from the same sensor or 

not immaterial.  This study has, however, shown that it is material, and also that 

for confident inter-sensor calibration to be undertaken, a better understanding of 

the intra-sensor variability is attained. 

Looking forwards, as constellations of remote sensing satellites become more 

prevalent, as a means of reducing revisit times while providing increasingly high 

resolution data products, attention needs to be given during the testing and build 

processes by manufacturers to ensure either good inter-calibration of sensors 

before launch, or undertaken during the processing prior to delivery of products 

to the end user, or a well-publicised and thoroughly tested set of calibration 

methods for end users.  It is worth noting that the second generation of COSMO-

SkyMed satellites (CSG) has been commissioned and the first satellite launched, 

but that only two satellites have been commissioned for this supplementary 

constellation.  The rationale is not known, but it is possible that it could be in 

recognition of the challenge of inter-calibrating a large constellation.
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CHAPTER 6: THE VIABILITY OF USING SAR TO 

MONITOR SOIL MOISTURE 

Multiple studies have shown that there is potential for SAR to be used for monitoring 

soil moisture (Shi et al., 1991; Pettinato et al., 2013; Santi et al., 2013).  However, 

the parameters within which this is possible and useful are limited.  This project has 

already shown that there are challenges associated with the use of CSK data.  This 

chapter explores the relationships found between backscatter and surface and 

subsurface in situ soil moisture measurements in the second part of Objective 3.  It 

then goes on to explore the viability of SAR SM estimation through a discussion of 

the results from this analysis and those from other published studies.  The chapter 

concludes with a diagrammatic schema for assessment of viability of SAR usage for 

soil moisture estimation. 

6.1 Context for this part of the project 

When using RS in the context of pre-event monitoring, the amount and quality of  

surface geometry data available often leaves much to be desired.  This question 

explores whether, when so much of the backscatter response is due to micro-

roughnesses of the surface, much advantage is achieved in using higher-resolution 

DTMs compared to more easily accessible lower-resolution DTMs.  To this end, the 

correlation between in situ VWC measurements and the backscatter coefficient (σ0) 

values of images terrain corrected with 25 cm, 50 cm, 1 m, 2 m DTMs and 90m SRTM 

are compared. 

Noise is recognised as significantly hindering the utilisation of SAR imagery for soil 

moisture estimation.  A common technique for minimising the impact of speckle, is 

applying one of several filtering techniques at different scales.  Low pass filtering 

has long been seen as an appropriate approach for minimising the impact of surface 

roughness anomalies and constructive interference between pixels to improve 

agreement between backscatter and VWC.  There is an  exploration of what, if any, 
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improvement different scales of kernel averaging have on VWC-dB correlation at 

this site, and what the findings from this analysis means in the context of the 

findings relating to spatial variability of soil moisture as shown in the previous 

chapter. 

6.2 Relationships between backscatter and surface and subsurface soil 

moisture measurements 

This opening section presents the relationships between the CSK backscatter values 

and the surface and subsurface in situ soil moisture data that was described in 

chapter 5. 

6.2.1  Correlation between in situ surface soil moisture measurements and 

unfiltered backscatter values 

Surface roughness and topography are well attested (Ulaby et al. 1982; Sabins, 1996) 

as having high degrees of importance in the amount of backscatter return.  Indeed, 

studies using X-band data have noted that backscatter returns are particularly 

affected by these and soil moisture (El Hajj et al., 2015; Gorrab et al. 2015) due to 

the short wavelength of X-band and therefore the increased roughness of surfaces 

relative to longer wavelengths.  Increased relative roughness causes increased 

volumetric scattering. On account of this, Baghdadi and many other SAR users argue 

for the use of high resolution digital elevation model (DEM) use in the processing of 

SAR data (Baghdadi et al. 2002).  It had been anticipated that the effective roughness 

of the site could be derived interferometrically from consecutive images. Preliminary 

work on this in conjunction with Andy Sowter at Geomatic Ventures, Nottingham 

using this CSK dataset, however, found that due to the length of time between 

images that this was not possible as the incoherence of phase was too great.  This 

subsection of the objective explores whether the scale of open source DTMs generally 

available in the UK are viable sources for Terrain Correction for SAR data with this 

resolution and in this type of terrain. The resolutions tested approximate to 10x, 20x, 

40x, 80x and 3600x the length of the incident wavelength of COSMO-SkyMed’s X-

band product, which has a spatial resolution of approximately 1 m. 

6.2.1.1 Results 

This study showed that there is poor correlation between backscatter value and in 

situ VWC values at all DTM scales.  It is expected that the higher the VWC, the 

greater the attenuation of the incident energy, thereby resulting in a negative 

correlation between VWC and backscatter.  Contrary to this expectation, very weak 
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positive correlations are found at all resolutions (Table 6.1).  The Pearson’s r value 

increases with DTM scale from 0.011 for the 0.25 m DTM to 0.028 for the 2 m DTM, 

with the value decreasing to 0.016 for the SRTM image.  The r value is marginally 

greater for the coarsest resolution compared to the three finest resolutions.  

Ultimately, these r values are so low, that the variability is due to noise rather than 

being indicative of anything further. 

Table 6.1 Correlation Matrix of VWC and terrain corrected images 

  

Table 6.1 shows that an analysis of the correlation between in situ measurements of 

VWC and backscatter is weak at all the DTM resolutions used in this study, with 

none of the correlations being significant. However, given the very small variability 

between the best and worst performing DTMs, it can be taken that any scale of DTM, 

when an order of magnitude greater than the incident wavelength, performs as well 

as any other even when the site is geometrically complex.  

The distribution of data was assessed through box and violin plots (Figure 6.2).  

These showed that the distribution of values changes between the different terrain 

correction resolutions, with the 0.25 m, 0.50 m and 1 m resolutions having similar 

distributions, the 2 m DTM dataset having more values grouped around the mean 

than the other datasets, and the SRTM-corrected values being less distributed 

around the mean. 
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Figure 6.1 Correlation matrix for pixel values and surface soil moisture measurements from 

all months at all terrain corrections 

The correlation matrices in Figure 6.1 show that although the r values for the 

resolutions are similar when the data from all months are looked at as a whole, it is 

clear that for each month there are clear differences in values from resolution to 

resolution.  That is, the correlation between the resolutions themselves, rather than 

their correlation with VWC, shows that as the difference in scale increases, the 

correlation reduces.  It is also worth noting that November and January – the 

months with anomalous backscatter responses in these studies do not display 

markedly different correlations to the other months. 
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Figure 6.2 Box and violin plots of data distribution at five different terrain correction scales 
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Figure 6.3 correlation matrices of VWC with 5 terrain correction scales by month 

6.2.1.2 Summary of the relationship between in situ soil moisture values and 

unfiltered backscatter values 

This section has shown that for terrain correction using open source, accessible 

terrain models, there is marginal benefit in reducing the coarseness of the imagery, 

if the imagery you have access to is more than an order of magnitude greater than 

the incident wavelength.  It is recommended, if possible, to utilise terrain models at 

a resolution as close to the length of the incident wave as possible, to ensure that 

roughness and surface geometry is well accounted for.  There is significant noise in 

the data, making relating surface soil moisture and backscatter challenging.  

Nevertheless, the results for some images in this study show similar relationships 

to those described by Balenzano et al. (2011) who found a 5-6% retrieval accuracy 

over vegetated soil. 
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6.2.2 Optimising backscatter-soil moisture relationships through applying 

different filtering types and parameters 

Filtering has long been seen as an appropriate approach for minimising the impact 

of surface roughness anomalies and constructive and destructive interference 

between pixels to improve agreement between backscatter and VWC (Lee, 1980; 

Frost et al., 1982; Lopes et al. 1990).  This section explores the impact of different 

scales of filtering, using both non-adaptive and adaptive filters, for processing CSK 

data and establishing the relationship between σ0 pixel values and in situ VWC 

values.  There is also a discussion, in light of the findings in the previous chapter 

regarding soil moisture spatial variability, about appropriate limits on the size of 

kernels used in these techniques. 

6.2.2.1 Non-adaptive filtering 

Non-adaptive mean spatial domain filtering was undertaken to assess the extent to 

which this technique improved the correlation between in situ soil moisture and σ0.  

The CSK imagery used was calibrated and terrain-corrected with the 2m DTM.  A 

mean approach was chosen because although it can cause a loss of image feature 

integrity – like the loss of linear features – it preserves the radiometric integrity of 

the image better than a median filtering approach. Kernel sizes of 3, 5 and 7 pixels 

were used and compared with the relationship between the non-filtered pixel and 

ground truthed data – referred to in Figure 6.4 as “Window_1”. 
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Figure 6.4 Backscatter-VWC relationships for each image (June-February) at kernel sizes of 

1,3,5,7 pixels. 

Table 6.2 Backscatter-VWC correlations at 4 different kernel sizes 

Kernel Size Point 3 5 7 

June 0.183 0.33 0.432 0.531 

July -0.174 -0.275 -0.351 -0.327 

August -0.12 -0.157 -0.16 -0.143 

September -0.14 -0.145 -0.148 -0.15 

October 0.0283 0.146 0.112 0.148 

November -0.0529 -0.0734 -0.0563 -0.0403 

December 0.158 0.154 0.108 0.0275 

January 0.0265 -0.00678 0.00234 0.0164 

February -0.0734 -0.0143 -0.0732 -0.102 

 

In most cases, the increase in kernel size led to an increase in correlation (Table 6.2 

Backscatter-VWC correlations at 4 different kernel sizes).  This was, however, not 

the case for all images.  January, in particular, the correlation switches from very 

weakly positive to very weakly negative when the frame of reference is increased 

from just the individual pixel to a three-pixel square kernel, and back again to 

positive when the size increases again to 5.  November, likewise, does not follow 

expectations.  Rather, the correlation increases as kernel size increases to 3, but 

reduces with each subsequent kernel size increase.  June shows the strongest 

improvement in correlation as kernel size increases, improving from 0.183 for the 

single pixel, to 0.531 for a 7 pixel kernel.  October, likewise, shows an improvement 

as kernel size increases, however, this improvement is not linear.   
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6.2.2.2 Adaptive filtering 

Adaptive filters, like non-adaptive ones reduce the impact of speckle but are also 

better at maintaining edge information. To do this, they exploit local statistics in the 

moving window, or kernel. Four of the most commonly applied methods of adaptive 

filtering – Frost, Gamma, Lee and Local Sigma – were employed to assess the impact 

they had on the correlation between σ0 and VWC.  The CSK imagery used was the 

August image, calibrated and terrain corrected with the 2m DTM.  Three kernel sizes 

were used in this analysis (Figure 6.5, Table 6.3) – 3 pixels, 5 pixels and 7 pixels.  

These filters, the parameters of which are described below, were chosen both due to 

their popularity for use in environmental remote sensing (Lopes et al., 1990; Mondini 

et al., 2019; Shi & Fung, 1994), but also because they cover the range of different 

adaptive filtering philosophies. 

The Lee filter is a weighted sum of the observed central pixel and the mean of the 

kernel values. The weighting coefficient is a function of heterogeneity in the kernel, 

which is measured with the coefficient of variation (Lee et al., 1998; Lee, 1980).  Like 

the Lee filter, the Frost filter uses the Minimum Mean Square Error (MMSE) 

approach. It does, however, differ on one fundamental point, namely, that it uses the 

measure of local heterogeneity to adapt the size of the kernel. (Frost et al., 1982).  

The Gamma Filter assumes that the values of the scene underlying the speckle have 

a gamma distribution. The filter functions similarly to the enhanced Lee filter in 

that it is designed to minimise the loss of radiometric and textural information, but 

with a different filtering model for heterogeneous areas. It minimises the loss of 

texture better than the Frost and Lee filters for gamma-distributed areas (oceans, 

forested and agricultural areas). Where there is not a gamma distribution, it leaves 

the original pixel value (Shi & Fung, 1994).  Local sigma filters preserve fine texture 

using the local standard deviation of the kernel to establish which pixels are 

appropriate to use for adjusting the central pixel value.  The central pixel is replaced 

using a weighted mean of the pixels deemed appropriate by the standard deviation 

test (Eliason and McEwen, 1990; Harris Geospatial, 2020). 
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Figure 6.5 σ0 - VWC correlations using Frost, Gamma, Lee and Local Sigma adaptive filters 

at kernel sizes of 3,5,7 pixels. 

Table 6.3 Correlation coefficients for Adaptive filters at three kernel sizes. 

Kernel size Frost Gamma Lee Local Sigma 
3 0.0121 0.0122 0.0108 0.0093 
5 0.003 0.003 0.0073 0.0054 
7 0.0001 0.00007 0.0053 0.0083 
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This assessment found that correlation between VWC and σ0 decreased as the kernel 

size increased, with a kernel size of 3 providing the highest correlation values.  None 

of the correlation values were significant. 

6.2.2.3 Filtering summary 

This study has explored the extent to which adaptive and non-adaptive filtering, as 

a method for reducing the impact of constructive and destructive interference, is 

valuable in the context of remotely sensing soil moisture, and the scale to which this 

filtering can appropriately be undertaken.  The non-adaptive low-pass filter 

approach showed an increase in correlation with the increase in size of the kernel 

for most datasets.  This was not, however, the case, with the adaptive filters, where 

the optimum kernel size appeared to be three, with the correlation values of all filters 

reducing with each size increase with the exception of Local Sigma, where 

correlation increased from kernel size five to size seven. 

This study has explored the extent to which adaptive and non-adaptive filtering, as 

a method for reducing the impact of constructive and destructive interference, is 

valuable in the context of remotely sensing soil moisture, and the scale to which this 

filtering can appropriately be undertaken.  The non-adaptive low-pass filter 

approach showed an increase in correlation with the increase in size of the kernel 

for most datasets.  This was not, however, the case, with the adaptive filters, where 

the optimum kernel size appeared to be three, with the correlation values of all filters 

reducing with each size increase with the exception of Local Sigma, where 

correlation increased from kernel size five to size seven. 

6.2.3 Summary of Part 2 of Objective 3 

This section has explored a key question regarding the use of CSK data in a real-

world scenario – namely, how viable estimation of relative soil moisture values from 

single-polarised COSMO-SkyMed data is if limited a priori surface knowledge is 

available. Asking, if low resolution terrain data are the only ones available, because 

the site in question has not been imaged in high resolution before and a high 

resolution surface model cannot be made from available SAR imagery, to what extent 

does the scale of the terrain model matter? Similarly, to what extent and which 

parameters of filtering techniques enhance that soil moisture estimation? 

The findings in the previous section were not straightforward.  The anticipated 

relationship (Ulaby et al. 1981) between σ0 and in situ VWC was not found with any 

scale of terrain correction being applied, although neither was the application of 
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adaptive and non-adaptive filtering on the data, as undertaken in this chapter, much 

benefit in reducing the impact of speckle on the assessment of this.  Rather, weak 

positive and negative correlations were found between VWC and σ0 values at all 

scales of terrain correction utilised, which are similar to findings of others (Zribi et 

al. 2019) where weak positive relationships have been found.  Although this gives 

confidence in this project’s results, the low coefficients of determination associated 

with these relationships challenges the idea that it is possible to reliably use SAR 

for SM estimation.  The finding regarding the scale of DTM used in terrain correction 

is indicative that, to account for the impact of variable terrain on a geometrically 

complex site, it is necessary to terrain correct using a terrain model that is at least 

the same order of magnitude in vertical and horizontal scale as the incident SAR 

wavelength.  This outcome is particularly important given the impact of vegetation 

on increasing the effective roughness of a surface when using very short wavelength 

SAR.  Without recourse to such a terrain correction method, it is inappropriate to 

estimate soil moisture from backscatter returns, whether other forms of processing 

have been undertaken or not because the roughness component has not been well 

quantified and therefore the problem of equifinality presents itself in interpreting 

the backscatter values.  With regards to filtering methodologies, the optimum 

approach will always, in part, be defined by the goal of the research being 

undertaken.  This study found Frost and Gamma filters to perform the best of the 

four approaches and with a kernel size of three, but none of the correlations were 

significant, and therefore, it should not be taken that these are necessarily optimum 

methods for all soil moisture estimation approaches. 

Answering part 2 of Objective 3 has shown that with the parameters of this study, 

there are challenges associated with using X band SAR for monitoring soil moisture, 

particularly when using imagery with the temporal coarseness of the dataset used 

in this project and the limited constraint of surface roughness in the project design.  

As mentioned in the introduction to this project, some of these limitations are ones 

which external circumstances caused – namely the Covid-19 pandemic.  The 

following section outlines the impact these limitations have had on this project and 

also what these restrictions have enabled to be ascertained regarding the parameters 

for soil moisture estimation viability for CSK. 

6.3 Objective 3 conclusions 

This section draws together the findings from the two parts of Objective three.  

Objective 3’s focus has been on analysing the viability of using COSMO-SkyMed data 
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for soil moisture estimation.  Part 1, in Chapter 5 established that there are issues 

associated with inter- and intra- sensor variability within the CSK constellation, and 

discussed the implications of these for using the data product both as a stand-alone 

image, and as part of a time series.  Part 2, in this chapter, has established whether 

using CSK in a coarse time series is viable when limited a priori information is 

available relating to surface roughness, and whether any mitigation of the impacts 

of the constructive and destructive interference that affects SAR images can be 

mitigated in post-processing by using non-proprietary software packages available 

to non-expert SAR users.   

6.4 Contextualising the findings from Objective 3 

Meeting part 2 of Objective 3 has shown that in the context of this research, and 

with these research parameters, that the viability of CSK for SM monitoring has 

significant challenges.  These are seen most clearly in Figure 6.1, which shows that 

for each image the correlation between dB and sigma nought has a small correlation 

coefficient, and the relationship varies between slightly positive and slightly 

negative, meaning that essentially the mean is the best model for the variability 

data. Although it might be argued that this result is indicative of a need for further 

processing of the data and application of backscattering models to improve the fit of 

the data, a survey of studies which related backscatter and in situ soil moisture 

measurements has shown that these results are similar to those achieved by studies 

which undertook modelling, and an anticipated slope is expected as being between 

0.1 and 0.3 (Zribi & Baghdadi, 2015).  A further point to this, is that there is so much 

scatter in the data, as evidenced by Figure 6.1, that any model applied would have 

to do a lot of work to remove the impacts of this, and would, therefore, have the 

potential of reducing the validity of the results. 

The following section assesses the parameters of projects where SAR has been found 

to be a viable tool for SM estimation.  This investigation follows three strands – first, 

establishing projects that have found SM estimation with SAR to be possible, and 

setting out the data that was used by these projects and discussing the confidence it 

is possible to have in their findings.  Second, in discussing these findings relative to 

this project, and third, in combining these two strands into the creation of a decision-

tree for assessing the viability of SAR usage for SM estimation.  The projects are 

summarised in Table 6.4.   
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Table 6.4 Summary of SAR-SM studies - their parameters and their results 

Papers Platform Polarisatio
n 

Number 
of 
images 

Processing 
method 

Image 
interval 

Fieldwork/ 
imagery 
timing 

Surface Landcover In situ 
measurements 

Roughness 
measuremen
ts 

Result  
Bare 

Result 
Vegetated 

Result 
Slope 

Balenzano 
2103 

CSK, 
PALSAR1 

HH, 26deg 8 (4 in 
2010, 4 in 
2011) 

SMOSAR 
algorithm 
(temporally 
dense  
images) 
 

~1 week 1-5 days (no 
precipitation 
between) 

Flat Vegetated – 
(Wheat, 
Tomato, 
Sugar beet) 

Mv 
measurements. 
Method 
undefined 

-  5%-7% m3 
/m3 
accuracy 
(X-,L- 
Band) 

5%-7% m3 
/m3 
accuracy (L 
Band) 

- 

Mattia et 
al. 2012 

CSK; 
PALSAR1 

HH, HV 
Pingpong; 
HH spotlight 

8 SMOSAR 
(Balenzano 
et al. 2011) 

~8 days unspecified Flat Wheat; corn 
and alfalfa;  

Mv 
measurements. 
Method 
undefined 

Soil texture 
maps, DEMs 
(scale 
unspecified), 
vegetation 
height and 
fresh biomass 

n/a 6% to 
DREAM 
hydrological 
model 

- 

Zribi et al. 
2019 

L band, 
PALSAR 

HH, HV 10 AIEM; 
IEM; 
Oh (1992); 
Dubois; 
Baghdadi 

2 weeks 2 hours flat Marigold, 
sorghum, 
turmeric 

Mv – Theta 
Probe; 3 
measurements 
per 0.5 ha field 

soil moisture, 
soil 
roughness, 
and leaf area 
index (LAI) 

0.21 

dB/(vol.%) 

~0.1 
dB/(vol.%) 
RMSE: 
AIEM 2.2 
IEM 2.9 
Oh’92 5.4 
Dubois 2.1 
Baghdadi 
1.2 

- 

Balenzano 
2011 

C band HH, HV 
25 deg 

26 (16 
HH, 10 
HV) 

SMOSAR 
 

~10 days 3-54 days flat winter 
crops, 
maize and 
sugar beet 

-  -  -  5-6% 
retrieval 
accuracy 

- 

El Hajj et 
al. 2016 

TerraSAR-
X; CSK 

HH,HV TSX-7; 
CSK - 16 

Water cloud 
model 

1-60 days 2hrs Flat Irrigated 
grass 

5-30 VWC TDR 
measures ~ 20 
m apart 

LAI, NDVI 
derived from 
optical 
imagery 

N/A RMSE 3.6 
Vol.% for 
NDVI 0.45- 
0.75, and 
6.1 Vol.% 
for NDVI 
0.75- 0.9 

- 

Ryu et al. 
2020 

KOMPSAT
-5; X band; 
Spotlight 

VV 3 Linear 
Water 
Cloud 
Model 
(WCM) 

1-2 
months 

0-3 days Flat Wheat 30-11 points for 
calibration; 16-6 
points for 
validation 

Not specified N/A 0.22-0.52 R2 - 
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Table 6.5 shows a selection of studies that have been undertaken using SAR 

imagery for SM estimation during the last decade.  Studies have been selected to 

be presented because they cover a range of SAR data types and approaches to 

handling the data.  The findings in the table have been fed into the production of 

a set of guidelines for when viability of SAR for soil moisture can be established 

(Figure 6.6). 

Where studies have found X band SAR to be somewhat viable, they have not had 

the amount of ground truthed data, either in terms of number of points, or in 

terms of density of points, that my project has had, with the densest 

measurements that were found to be recorded being every 20 metres (El Hajj et 

al., 2016).  These papers have quoted results that show a relationships between 

backscatter and soil moisture e.g. weak positive correlation (Zribi et al., 2019), of 

5-6% accuracy (Balenzano et al., 2011; Mattia et al., 2012), 3.6%-6.1% RMSE (El 

Hajj et al., 2016), and 0.22-0.52 R2 (Ryu et al., 2020), that compare favourably with 

this project’s.  However, the results in these papers do not, necessarily, indicate 

that SAR can be used as a tool for reliably relating backscatter to soil moisture 

conditions.  Each of these studies accounted for surface roughness, and vegetation 

biomass – both components that have a significant impact on backscatter, and yet 

it can be argued that their results are not considerably better than those 

presented here, nor are they necessarily sufficiently strong for SAR to be 

confidently classed as a viable tool for estimating SM reliably. Likewise, the 

spatial density of the ground-truthing data utilised by these studies means that 

it is likely that the ground truthing data does not accurately represent the soil 

moisture heterogeneity, and that, therefore, the quality of agreement with actual 

surface conditions is not, necessarily, as strong as they have presented. 

The brief summary of projects investigating the potential of SAR-SM estimation 

has shown that the quality of the relationship between backscatter and SM is 

generally limited.  Where backscatter and in situ measurements have been 

compared in these projects, there has often been very limited ground truthing 

data, with only a few measurements per hectare (Zribi et al., 2019).   

6.4.1 Recommendations for assessing viability of SAR 

On the basis of the literature survey outlined above, and the findings from this 

project, there are certain key criteria that need to be considered when assessing 
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the viability of SAR for SM estimation, which are presented with respect to two 

groups of researchers – those who do not specialise in SAR usage, and those who 

do. 

6.4.1.1 SAR non-specialists 

First, is the question being asked one that SAR can be used to answer?  If small-

scale, high resolution SM data, with a high degree of accuracy regarding the 

values of the SM is required – e.g. if the project is looking at remotely monitoring 

a slope with a known SM threshold at which instability occurs, and the slope often 

sits close to that threshold – SAR is unlikely to be an appropriate tool, unless the 

roughness and vegetation parameters can be really well accounted for, and the 

conditionally stable area is large enough that filtering can be undertaken. 

Figure 6.6 provides a rough decision tree for assessing the viability of SAR –SM 

estimation based on the findings from this study and those of the other studies 

covered in this review.  This is aimed, particularly, at those who are looking to 

use SAR as a data product for soil moisture-related study, rather than Remote 

Sensing specialists who are looking to further develop capabilities within  the 

technology.  The recommendations are directed towards this group for two 

reasons; first, because the increasing availability of open source SAR data is 

making it increasingly commonly used outside of the dedicated SAR-remote 

sensing community, and second, because the majority of SAR specialists are 

exploring methods of optimising and developing tools to enhance SAR usage 

capabilities, so the question of viability is one which they themselves are working 

to push. 
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Figure 6.6 Flow chart showing viability of SAR SM estimation, colour-coded by viability, 
where green is good, orange dependent, and red, severely limited. 

Figure 6.6 highlights the importance of relative roughness.  This is a very 

important parameter in the assessment criteria for the viability of SAR.    

Roughness has a significant effect on BS returns, but this effect is greatest when 

the roughness of a surface is high relative to the wavelength of the incident wave.  

That is, depending on the length of the incident wave, the relative roughness of 

same surface varies.  Given this, it is recommended that if roughness is going to 

Relative 

roughness 

Low Equivalent High 

Multi polarised 

SAR? 

Yes No 

In situ vegetation and 

roughness data available? 

No 

Revisit 

Period 

Yes 

Long Short 

Use the multiple polarisations 

 to create an interferogram 

 to allow roughness to 

 adequately be accounted for  

(Jagdhuber, Hajnsek 2009) 

If available, use vegetation biomass 

 and roughness to model non-SM  

components of backscatter 

 (Zribi et al.2019; Balenzano et al.)  

If relative roughness is low, process  

to the level shown in this thesis. 

If the revisit period is between 7-10 days, 

 the temporal density of images should be  

sufficient for change detection to be used, 

 thereby nullifying the roughness impact 

(Susan Moran et al.) 
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be poorly constrained, or is known to be high at the site being imaged, that a 

multi-polarised SAR product is utilised, or additional ground truthing data that 

enables roughness to be well described is obtained. 

6.4.1.2 SAR Specialists 

It is possible, however, make some comments to this specialist group regarding 

how they quantify viability of an approach.  First, are the parameters by which 

they judge viability useful in a real-world situation?  That is, is the quality of 

agreement between backscatter and soil moisture actually useful in real terms – 

does the quality of agreement enable a user of the methodology to answer a 

valuable research question?  Likewise, is the researcher using in situ or modelled 

soil moisture data that is of a sufficient spatial density that it well-describes the 

spatial variability of the soil moisture in that location? If not, how confident can 

they actually be of their results?  A third, and wider-ranging question that is 

worth exploring with this specialist group is the value of their research to the 

wider non-specialist body.  Given that the processing of SAR data is often 

undertaken using a tool developed within the research group, and that is not well 

described in the research, how valuable is it for the rest of the research 

community if a lack of access to that tool - which almost exists as a black-box in 

the context of the reading public – means that the work that the research group 

has done cannot be replicated by the wider research community in their own 

studies?  This ties in with the wider issues of reproducibility in the wider scientific 

community, and is worthy of attention both within the RS community and beyond 

(Baker, 2016). 

6.5 Summary of viability assessment 

SAR is often lauded as a tool that can be used in contexts where optical imagery 

cannot, and particularly in contexts where the provision of results has the 

potential to significantly impact on situations – for example in hazard contexts. 

Although SAR is theoretically viable and its use seems valuable, this needs to be 

caveated by the recognition that there needs to be sufficient additional data 

available to enable key parameters like surface roughness and vegetation 

scattering to be well accounted for in the backscatter signal.  Without this, it will 

be hard to utilise SAR for timely, real-world, uses in understanding and 

mitigating hazards.  
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Though many studies using SAR have shown that SM estimation from SAR is 

possible, the constraints on this are significant.  It is notable that the majority of 

studies where dB/0 relationship is reported as being valuable have used systems 

with longer wavelengths, where effective surface roughness is much lower 

(Mattia et al., 2009; Balenzano et al., 2013; Zribi et al., 2019).  Recent studies with 

shorter wavelength SAR have made use of multi-polarised data (Zhang et al., 

2012)  or image series with small temporal gaps between the images (Balenzano, 

et al., 2011a; Balenzano et al., 2011b, Dille et al., 2021) to reduce the impact of 

vegetation change (Notarnicola et al., 2010; Marin et al. 2015; Zhu et al., 2019; 

Punithraj et al., 2020) or  enable the creation of a surface model through 

interferometry, thus enabling the impact of surface roughness to be well 

accounted for.  It is not possible, therefore, to say that SM estimation with SAR 

is not viable.  It should, however, not be assumed that it is viable in all system 

criteria.  This project has attempted to estimate SM using the hardest 

combination of parameters currently available– single polarised, shortest 

wavelength, images taken over a time series with irregular, large intervals 

between the images.  Indeed, it is notable that many of those who work most with 

SAR tend towards using the longer wavelength C- (Hornacek et al., 2012; 

Rodionova, 2019; Sangwoo et al., 2019; Mattia et al., 2020; Zakharov et al., 2020) 

and L- (Ouellette et al., 2017; Zhu et al., 2018, 2019; Zribi et al., 2019) band 

products because they are recognised as being less challenging to use for soil 

moisture estimation due to the reduced impact of roughness on them. 
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CHAPTER 7:  DISCUSSION AND CONCLUSION 
The introduction to this thesis set out the environmental context for this project 

– namely that under modelled changed climates precipitation regimes were likely 

to cause more hydraulically driven landslides, and that there was a need to assess 

methods of monitoring slopes to assess potential failures.  SAR constellations, 

with their reduced return times between images, and high resolution imagery, 

unhampered by the restrictions of optical or other passive sensing technologies 

were recognised as having the potential to enable monitoring of these slopes.  This 

thesis has explored the complexity of soil moisture – a key GCOS parameter in 

the context of climate change (GCOS-138, 2010) – and the complexity of its 

monitoring using novel X-band Synthetic Aperture Radar data from the COSMO-

SkyMed platform.  The thesis has presented, analysed and discussed four key 

datasets – an in situ surface soil-moisture measurement, an in situ shallow 

subsurface soil-moisture measurement, an in situ sub-surface CRNS soil 

moisture dataset and a satellite-based X-band high-resolution Spotlight2 SAR 

data product. The geographic context of the study was novel – a geomorphically 

active, slow-moving landslide site in a temperate, maritime climate, grazed, and 

comprising of three different soil types. 

The project has enabled the exploration of the capabilities of, and ideal 

methodology for, using CSK Spotlight2 data for estimating soil moisture in an 

environmental context that previous studies had not explored.  It was couched in 

the terms of seeking to establish the limits of soil moisture sensing capabilities of 

the sensor and whether these aligned with the requirements needed based on the 

hydraulic properties of the slope at Hollin Hill.  As part of this, the variability of 

soil-moisture values, as measured in situ using Theta Probes and the SensorNet 

array, were analysed in Chapter 4, and the spatio-temporal relationships 

explored alongside the VWC values in areas most associated with deformation.  

It was found, unsurprisingly, that the geomorphically active areas of the site had 

high VWC values, often higher than those anticipated in the literature (Centre 

for Ecology and Hydrology, 2018), and that the VWC values in these areas were 
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uniformly higher than the stable areas of the slope throughout the time series.  

In addition, the project found high heterogeneity of soil moisture within clusters 

as well as between clusters, which presented a challenge regarding the 

appropriate interpretation of this variation for directing CSK image improvement 

parameters. 

Initial assessments of the CSK data led to the project taking a different route 

from that originally envisaged. Despite the rigorous work undertaken by ASI and 

their partners during the commissioning phases of each satellite (Calabrese et al., 

2008), it had been anticipated from reading the research of other projects working 

with CSK data (Baghdadi et al., 2015) that there might be a need for a simple, 

linear, offset of backscatter returns that would require some post-processing 

inter-sensor calibration before further studies using the data could be 

undertaken.  It was, however, found in this thesis that there was not just inter-

sensor variability, but also intra-sensor variability, in particular on Sensor 3, 

which showed in the persistent scatterer tests to have provided two images which 

had significantly different σ0 returns.  This result seems to contradict the 

expectations of ASI and the projects they provided data for in the early 

operational phases of the project to establish the usability and inter-calibration 

of the constellation (Balenzano et al., 2011), which found some linear offsets 

needed to be applied between sensors (as indeed was found in this study), but that 

where multiple images from the same satellite were used, that there was good 

inter-calibration there.  It is not possible to say whether intra-sensor variability 

is present in Sensors 1 and 2 in the constellation as this project only used one 

image from each of these sensors. However, given the presence of intra-sensor 

variability in Sensor 3, it is important that researchers using multiple CSK 

images perform initial tests - like the ones undertaken in this thesis - before they 

seek to employ the data products in their research.  This is particularly pertinent 

in the case of time series studies, for, as has been evidenced by recent re-

appraisals of studies using the NOAA AVHRR catalogue, where a lack of 

awareness of inter-calibration between sensors occurs, trends and relationships 

can wrongly be interpreted (Van Leeuwen et al., 2006; Alcaraz-Segura et al., 

2010).  

Indeed, given the increasing predominance of multi-satellite constellations being 

used for environmental remote sensing (Kelly et al., 2009), including the second 
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generation of COSMO-SkyMed (CSG) – the first satellite of which launched in 

December 2019 (Telespazio, 2019) – it is necessary to ensure that those using data 

from multiple sensors, whether within the same constellation, or across 

platforms, ensure that their data are rigorously and robustly inter-calibrated 

before use.  Indeed, CSK data have been used in studies published recently (Silva 

Guimarães et al., 2020) where no mention is given to which satellites in the 

constellation have been used in the imaging, nor of the potential for inter-

calibration issues as SAR moves from being a specialist technology, where much 

of the research around it is how to use it, to being a technology that is used by 

those for whom radar remote sensing is not their background, awareness of the 

necessary checks that need to be performed on data should be increased. 

Despite the inter-calibration issues which necessarily directed the thesis in a 

slightly different direction to the one originally intended, all three Objectives that 

were set out in the Introduction were met.  The results of these are recapitulated 

below, and discussed in the context of other research. 

Objective 1: Describe the relationship between surface soil moisture at a 

penetration depth equal to that of X-band SAR and moisture at depths closer to 

the failure plain and more representative of the wider soil mass.   

The relationship between co-located surface (~5 cm) soil moisture capacitance 

probe readings and those at a depth of ~ 10 cm was found to be strong.  Generally, 

the deeper measurements were higher than those at the surface, which is to be 

expected given the well-attested surface drying or preferential routing processes 

occurring in the vadose zone (Calvet and Noilhan, 2000; Robinson et al., 2008; 

Vereecken et al., 2008).   The processes behind the linking of these two depths of 

moisture, nor the more geometrically complex volumetric measurement provided 

by the CRNS probe at the COSMOS station, were established during this project.  

However, that the moisture levels are generally higher at depth is an important 

consideration for those using SAR soil moisture estimations for assessing 

potential slope stability implications of this measurement, as the soil mass may 

be wetter than the near-surface that SAR interacts with. 

Objective 2: To assess the spatial variability of surface and subsurface soil 

moistures in the soil mass. 
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Chapter 4 explored the spatio-temporal soil moisture relationships at Hollin Hill.  

The findings – that each soil type had different surface-subsurface relationships 

– was not surprising.  The repeated spatial distributions of relative soil moisture 

values across the site throughout the time series (Figure 4.29) is common to many 

studies of spatio-temporal soil moisture. Vachaud et al.’s  (1985) ‘temporal 

stability’ (TS) concept of continuous relative ranking of points by wetness has 

been seen to exist at the site.  

The autocorrelation length of surface soil moisture variability was found to be in 

the region of 190 m, which sits within the range of values from 1 m to 600 m found 

by Western and Bloschl (1999) in their survey of soil moisture spatial variability 

patterns.  It was, however, longer than the common distance range found in a 

later summary of spatial soil moisture distribution by Western et al. (2004), which 

quotes the most common lengths as being between 30 and 60 m.   The use of quasi-

point based data at multiple distances allowed for a robust assessment of spatial 

patterns but also highlighted the challenges of using point-based data, due to the 

high heterogeneity of soil moisture at very small scales.  This is an issue which 

has been echoed in several studies in terms of how to interpret and use that 

interpretation of spatial variability of soil moisture (Vereecken et al., 2008; 

Biswas, 2014).   

Objective 3: To explore the viability of using SAR for monitoring soil moisture on 

a geometrically complex site. 

Chapter 5 explored the Spotlight2 CSK data provided to the project by ASI, and 

its utility for estimating soil moisture at Hollin Hill.  The findings were somewhat 

inconclusive due to the intra-sensor variability found through persistent scatterer 

testing of conifer stands and water bodies, where it was found that one sensor at 

least exhibited significant backscatter return variability.  This problem has not, 

to our knowledge, been recognised in other studies using CSK data, although it 

should be noted that studies that have assessed inter-sensor variability have not 

necessarily had access to sufficient images from all sensors in the constellation to 

assess intra-sensor variability on all sensors.  A survey of recently published 

papers using images from multiple CSK sensors has, however, shown that while 

some papers by those who have worked extensively with CSK data (Pettinato et 

al., 2019) do explicitly state their careful calibration work, those who are newer 

to the field, or who are using SAR purely as a tool to answer a question rather 
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than exploring SAR’s potential as a tool, do not necessarily show evidence of 

rigour in assessing the inter-calibration of their data prior to using it (Silva 

Guimarães et al., 2020).  The persistent scatterer studies did show that if the two 

seemingly problematic images (November and January) were removed, a similar 

post-processing linear offset would be required to inter-calibrate the images from 

the four sensors, as Baghdadi et al. (2015) and Gorrab et al. (2015) had found in 

their own assessments of their data.  An assessment of the correlation between 

backscatter value and measured surface in situ soil moisture was undertaken, 

using four different scales of open source DTM data for terrain correction.  The 

results of this were disappointing, though not necessarily surprising.  No 

significant improvement in the correlation was found as the scale of the DTM 

decreased.  This is not necessarily surprising, given Baghdadi et al.’s 2002 study 

regarding the scale of surface corrections needed, but it does highlight the 

challenges of using SAR for soil moisture estimation in a mock-up hazard 

monitoring situation where high-resolution DTMs aren’t necessarily available 

through interferometry or other methods.  It is further backing to Wagner et al.’s 

(2005) assertion that SAR has, so far, in many societally important contexts, 

failed to live-up to the potential it is often touted as having for soil moisture 

estimation. 

This study has not fully answered the question regarding the ideal resolution 

parameters for remote sensing platforms for monitoring soil moisture.  While 

variability in in situ surface soil measurements was found to be high at short 

distances, the necessity of resolving soil moisture measurements to such a 

resolution is dependent on the goals of the research being undertaken.  It can, 

however, be said, that the effect of micro-roughness on the backscatter of an X-

band SAR product and the high impact of speckle relative to the impact of 

dielectric constant on backscatter might warrant the choice of a coarser resolution 

product if undertaking projects without access to appropriate measurements of 

the effective roughness of the site. 

COSMO-SkyMed has been found by many to be an excellent platform for 

environmental remote sensing, with multiple papers showing strong correlations 

between backscatter values and in situ moisture measurements, predominantly 

using SAR platforms with longer wavelengths  like ERS (C–band) (Griffiths and 

Wooding, 1996; Quesney et al., 2000) or ALOS PALSAR (Balenzano et al., 2013; 
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Zribi et al., 2019b).  These papers achieve such results after extensive focus on 

establishing the roughness and vegetation scattering parameters at their study 

sites, and focussing on areas that have easily definable geometries and ground 

covers.  Without this a priori knowledge, and extensive modelling of vegetation 

structures, such time-series based projects would not be able to produce such 

strong backscatter – in situ VWC correlation values. The current requirement for 

such detailed a priori knowledge for soil moisture estimation using single-

polarised SAR products is one that led Wagner and Pathe (2005) a decade and a 

half ago to query whether SAR is fulfilling the promise that it was thought to 

have a few decades ago.  The reliance on empirical in situ observations and 

modelling to enable soil moisture inversion, rather than just relative soil moisture 

estimation offered by change detection mechanisms, renders SAR still to be a very 

unwieldy tool for the estimation of soil moisture.  This is particularly the case 

when using the shorter wavelengths, as has been done in this study; for, the 

impact of change in surface roughness and vegetation is more considerable for 

these wavelengths (Baghdadi et al., 2002). 

7.1 Areas for further research 

7.1.1 Irregularities in CSK CALVAL 

As already highlighted, a further examination into the causes and implications of 

variability within the CSK constellation is pertinent.  Likewise, it would be 

valuable for those involved in the CSK and CSG projects to assess the continued 

functionality of the CALVAL image quality assessment tool being used during the 

operational phase of the constellations. 

7.1.2 Connecting surface soil moisture readings with locations of known 

or highly probable preferential routing. 

Although the additional clusters designed for the manual surface soil moisture 

measurements proved valuable in targeting areas of the landslide that field 

assessments had identified as hydraulically significant for the development of 

slope deformation, these locations did not have any corresponding sub-surface 

point measurements associated with them.  Given that one of these clusters was 

near the sag ponds at the site and would have experienced significant subsurface 

turbation during deformation events, it would be useful to better understand 

whether the necessarily changed structure of the soil there and possible 
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preferential routing associated with the cracking in the area and further up the 

slope at the back-scarp changed the relationship between subsurface and surface 

moisture.  Likewise, it would be useful to understand the full moisture profile of 

that area of the slope better to enable improved understanding of how surface soil 

moisture relates to the full depth of the mobile mass. 

7.1.3 Assessment of the need for high-resolution data for landslide 

monitoring 

The development of constellation platforms over the last 15 years has been lauded 

by many as it has reduced the trade-off between resolution and return period 

(Kelly et al., 2009; Snoeij et al., 2009; Kornelsen and Coulibaly, 2013), which had 

previously been seen as a disadvantage for active remote sensing platforms.  It 

should be questioned whether, in the context of monitoring landslides, where the 

conditions of a large mass are important, rather than point-scale measurements, 

high resolution imagery is as valuable as has been argued.  A better approach 

might well be to use a longer wavelength SAR product, like ALOS PALSAR and 

benefit from reduced effective roughness and greater soil penetration.  High 

resolution for high resolution’s sake is not always necessary, particularly when 

products are not free and open source, as is the case with the CSK and CSG 

products.   

An extension of this is to comment on the need for more extensive access and 

utilisation of the NovaSAR-S product - the airborne emulator of which was used 

in the research undertaken prior to this thesis (Chapter 3) – for the estimation of 

soil moisture.  The high resolution S-band product should perform as a valuable 

dataset, with a mid-range wavelength but better spatial resolution than is 

generally available from L-band products.  

The high resolutions of CSK, CSG and TerraSAR-X have been touted as highly 

valuable for environmental remote sensing.  While this is absolutely the case for 

some applications, there is need for recognition of which environmental remote 

sensing objectives actually are enhanced by such high-resolution data.  Given the 

stochastic nature of many environmental parameters, it is valuable for 

parameters and project goals to be assessed in advance of ordering high-

resolution data, for that imaging mode might not actually be optimal.  For 

example, given that mass movements are driven not by changes at points, but by 
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changes at much larger scales, it might be worth using much coarser resolution 

imagery. 

7.2 Conclusions 

There follows a set of conclusions aimed at two different audiences.  While the 

conclusions are valid and valuable for both groups, it was felt important to 

highlight specifics to each group.  This is because the project has highlighted  

This project has shown that at the Hollin Hill landslide – a slide which has been 

established as being representative, both in terms of materials and function, of 

slides common in the UK and beyond – exhibited greater complexity spatio-

temporal complexity in its surface soil moisture characteristics than is commonly 

cited within the literature on this topic (Objective 1).  This, in combination with 

the study relating surface soil moisture with soil moisture at greater depths in 

the soil mass of the slope, showed that assumptions about spatial heterogeneity 

of soil moisture and autocorrelation of the same are not necessarily appropriate 

in the context of developing soil moisture estimation tools using radar remote 

sensing (Objective 2). 

The project found that the challenges associated with soil moisture estimation 

using X-band SAR are significant when using a time series with roughly monthly 

gaps without in situ roughness measurements.  That being said, it has also 

challenged the positive results that other scholars have presented regarding their 

development of SAR processing algorithms, by highlighting that the quality of 

agreement that they present is little better than that presented in  this study, 

and almost certainly is insufficient to represent a processing methodology that 

could be used in hazard assessment or in conditions where a priori in situ 

measurements are lacking.   

The viability of X band SAR usage for soil moisture estimation was further called 

into question due to the inter- and intra- sensor variability found in the data 

provided by the ASI as part of the project.  The variability in returns from sensor 

3 within the constellation provided significant concerns regarding how images 

can be used – either as stand-alone images, or as part of a time series, when there 

is discrepancy between the backscatter returns between sensors in a constellation 

and between images from the same sensor (Objective 3). 
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Nonetheless, SAR is a really valuable tool, with huge potential for use by 

environmental scientists to enable the further development of current research 

areas where the operation or utilisation of optical imagery is insufficient.  In 

certain situations, SAR offers an alternative to traditional proxies for soil 

moisture, while also offering the potential for DEM creation using interferometry.   

This project has highlighted several key points for RS specialists.  First, that 

while constellations are offering solutions to many of the problems the RS 

community has long recognised in SAR (e.g. return periods, spatial resolution), 

these constellations do not come without potential problems of inter-sensor 

variability. Second, this project has shown that there are multiple scales at which 

SM varies, and therefore that it is valuable to understand this through in situ or 

optical RS SM proxies in advance of accessing SAR data to enable assessment of 

the most appropriate parameters for the SAR imagery that is being sought for 

use. 

7.3 Recommendations 

This research was undertaken in a context where SAR imagery and the tools to 

manipulate it has become increasingly available through freeware platforms like 

Google Earth Engine and the freeware data repositories from which it can directly 

pull.  While the accessibility of RS data is a fantastic step in increasing possible 

research directions, it is important to be mindful that we are also entering into a 

new epoch where remotely sensed data is being used by people for whom remote 

sensing is not their primary research area.  Where previously SAR was the 

domain of those who do research into remote sensing, it is now commonly being 

used by those who have only a rudimentary understanding of the complexities 

and issues associated with the data type.  There are, increasingly, going to be 

more projects that do not necessarily take into account data issues, not because 

there is not an academic integrity in those projects but because the issues are 

unrecognised by non-remote sensing specialists.  With a recognition of the 

breadth of backgrounds of those now using SAR, the recommendations are 

categorised not just by theme, but also by user.  For a more extensive set of 

recommendations and a tool for assessing viability of using SAR when designing 

a project, please see sections 6.4.1 and 6.4.2.  
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7.3.1 Users 

As the assessment of the calibration of the CSK data in this project has shown, 

there should not be an assumption made by users that despite the rigorous 

calibration and validation procedures undertaken by data providers that careful 

assessment of the data does not need to be undertaken prior to use. 

7.3.1.1 Non-specialist academics 

The increasing access of easily downloaded SAR imagery from platforms like 

Google Earth Engine and the Sentinel Hub, combined with the increasingly high 

resolution of imagery and shorter return times offered by constellations has made 

SAR a valuable data source, particularly given some of the issues that optical 

imageries have, and that SAR does not. There is not always information available 

on best practice for calibrating imagery.  It is, therefore, recommended that 

undertaking due diligence in assessing the calibration of imagery before 

beginning using it for projects is essential.  As a minimum, it is recommended 

that: 

- Open source freeware processing methods like ESA’s SNAP and Google 

Earth Engine make processing of imagery quick and relatively 

straightforward.  However, these are to some extent a black box approach, 

where not all the processing parameters are specified or adaptable.  It is 

important to ensure that the objective and rationale for each type of pre-

processing undertaken is well understood in terms of the impact it will have 

on the utility of the processed data product.  

- Radiometric assessment is a valuable tool to use after pre-processing data 

and before engaging in any analysis planned for the data, as this provides 

the opportunity to assess whether the data are well calibrated and whether 

there is the need for any additional calibration to be undertaken.  

Recommended methods for doing this would be to undertake comparative 

radiometric assessments of water bodies or other features in the image – 

for example roads – as shown in Section 5.2.3 124. 

- Care should be taken when using this data that the complexity of 

relationships between backscatter and soil moisture is understood and that 

there needs to be rigor in the engagement with these complexities. 
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7.3.1.2 SAR Specialists 

- In undertaking work where the assessment of tools for estimating soil 

moisture is done, consider whether the parameters used for consideration 

of whether a tool is successful map onto parameters which exist in real-

world scenarios.   

- As constellations become more popular there is a need for dedicated remote 

sensing practitioners to ensure that research is accessible not just within 

the remote sensing community but to those whose research interests are to 

use SAR rather than optimise SAR – that is, people for whom SAR is 

becoming a means to an end, rather than the focus of their research.  It is 

important to consider the accessibility – both in terms of publication 

locations and publication style and content – to ensure that those in the 

academic community for whom remote sensing is not their primary focus, 

are able to make informed decisions on SAR data and processing 

methodologies. 

7.3.2 Industry and Developers 

7.3.2.1 CSK developers 

- CALVAL – can the performance of this continue to be assessed during the 

operational phase of satellites?  Is there a method for highlighting to users 

when calibration issues are picked up?  Is there a method for assessing how 

long a calibration issue has existed when it is spotted? 

- How do you share the inter-calibration issues with users?  Currently the 

ASI documentation does not mention inter- or intra-sensor calibration as 

being a potential issue.  With more users being non-specialists in RS, what 

do they have in place to make sure service users use data appropriately? 

7.3.2.2 Other Developers 

- This project has benefitted greatly from the availability of freeware SAR 

processing packages in the form of ESA’s SNAP software and its associated 

toolboxes.  The provision of these by ESA is to be commended and makes 

the use of SAR products viable for those whose specialism is not in their 

processing.  While this is a great advantage and one which should be lauded 

for the way it opens these datasets up to environmental scientists from 

around the world, a greater set of guidance on how to use SAR data and 
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appropriate checks and calibration steps to be undertaken in advance of 

undertaking analysis with it should be provided.  For, as has been noted 

often in this thesis, SAR behaves quite differently to optical imagery, and 

cannot be used as straightforwardly as many optical products.   

- The project has shown that there are a variety of scales at which surface 

soil moisture varies.  These scales are important to different scientific user 

groups.  Recourse should be given to the findings presented in chapter 4 to 

assess the scales at which it is useful for environmental scientists to be able 

to monitor soil moisture, and future sensor design should take these 

parameters into account during the design and feasibility study phases. 

- The project has also shown that there is a greater range of SM values than 

literature generally recognises and that those values which sit outside the 

expected are the ones most associated with slope instability.  It is, 

therefore, recommended that consideration is given to how systems are 

designed, and processing methodologies are optimised, such that the high 

values which often correspond to greatest instability potential are not 

processed-out or disregarded. 

7.4 Final remarks 

Soil moisture is a valuable parameter to be able to estimate for a range of key 

environmental monitoring or forecasting undertakings including, but not limited 

to agriculture (Engman, 1991), hazard prediction (Gritzner et al., 2001; Ray and 

Jacobs, 2007, 2008; Balenzano et al., 2013; Hassaballa et al. 2014; Sangwoo et al. 

2019), weather forecasting (Calvet and Noilhan, 2000) and climate monitoring 

(Huszár et al., 1999; Seneviratne et al., 2010).  It is anticipated that the 

monitoring of it will increase in importance over the coming decades as climate 

change impacts precipitation regimes.  This thesis has highlighted considerations 

to be made in using high resolution, short wavelength SAR products to 

meaningfully monitor soil moisture in the context of an active landslide site.  

Although some limitations have been found in its use in the particular parameters 

employed in this study, in part due to problems with the data provided, it is 

possible to state that SAR can be viable for the monitoring of relative surface 

moistures at sites similar to Hollin Hill if the response of the slope to changes in 

moisture is well understood, and precursory conditions of the imaging are also 

taken into account when assessing the functional stability of the slope. 
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Data Citations 

COSMO-SkyMed Spotlight2 data was provided to this project through the UK 

Satellite Applications Catapult Corsair agreement with the Italian Space Agency, 

Project Corsair008. 

Lidar Composite Digital Terrain Model England 25cm resolution [ASC geospatial 

data], Scale 1:1000, Tiles: se6768,se6868, Updated: 5 January 2016, Open 

Government Licence, Using: EDINA LIDAR Digimap Service, 

<https://digimap.edina.ac.uk> 

Lidar Composite Digital Terrain Model England 50cm resolution [ASC geospatial 

data], Scale 1:2000, Tiles: se6768,se6868, Updated: 5 January 2016, Open 

Government Licence, Using: EDINA LIDAR Digimap Service, 

<https://digimap.edina.ac.uk> 

Lidar Composite Digital Terrain Model England 1m resolution [ASC geospatial 

data], Scale 1:4000, Tiles: se6768,se6868, Updated: 5 January 2016, Open 

Government Licence, Using: EDINA LIDAR Digimap Service, 

<https://digimap.edina.ac.uk> 

Lidar Composite Digital Terrain Model England 2m resolution [ASC geospatial 

data], Scale 1:8000, Tiles: se6768,se6868, Updated: 5 January 2016, Open 

Government Licence, Using: EDINA LIDAR Digimap Service, 

<https://digimap.edina.ac.uk> 
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Appendix 1 – CSK imagery 
This appendix presents the 9 full images CSK Spotlight images and subsets of the field site without any processing.  The sensor number 

for each image is shown. 
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June – CSK 2 – HH – Spotlight - Full Scene 
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July – CSK4 - HH- Spotlight - Full Scene 
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August – CSK4 – HH – Spotlight - Full Scene 
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September – CSK3 – HH – Spotlight - Full Scene 
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October – CSK4 – HH – Spotlight - Full Scene 
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November – CSK3 – HH – Spotlight - Full Scene 

  



Appendix 1 – CSK Imagery 
 

200 
 

December – CSK4 – HH – Spotlight - Full Scene 
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January – CSK3 – HH – Spotlight - Full Scene 
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June – CSK2; HH; 
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July – CSK4; HH; 
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August – CSK4; HH; 
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September – CSK3; HH; 
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October – CSK4; HH; 
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November CSK3; HH; 
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December – CSK4; HH; 
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January - CSK3; HH; 
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Appendix 2 – COVID-19 Impact 
As set out in chapter 1, there was some work that was curtailed due to the COVID-

19 pandemic.  This appendix briefly sets out the work not undertaken, the 

methods and rationale for the work, and the impact it would have had on the 

thesis if it had been undertaken. 

There are several techniques that it was intended should be undertaken, but that 

it was not possible to undertake due to the Coronavirus pandemic, the closing of 

university facilities and the inability to safely conduct additional fieldwork.  

These further actions are, therefore, described and explained in the following 

section and the impact that it is anticipated that they would have had is set out. 

Surface roughness measurement 

ACTIONS 

As is well attested in the literature, surface roughness has a significant impact 

on backscatter values.  It was intended to use surface profilometers to measure 

the roughness of the site both parallel to and perpendicular to the look direction 

of the satellite.  Measurements were going to be taken in the area of each of the 

clusters at which the in situ ground truthing measurements had been taken.  This 

work was planned for March 2020.   

RATIONALE 

It was recognised that a large proportion of the backscatter signal from the CSK 

would be caused by surface roughness.  The intention was to explore how the 

quality of the estimation improved with surface roughness measurements.  A pin-

profilometer was chosen as this is a tool commonly used for this type of work 

(Davidson et al., 2000; Verhoest et al., 2008; Sahebi and Angles, 2010; Zribi et al., 

2019). 

IMPACT 

Doing this would have improved the understanding of the relationship between 

surface soil moisture and backscatter.  Surface roughness has an impact on 

backscatter that is at least an order of magnitude greater than the impact of soil 
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moisture.  To have surface roughness well established would have made the 

inferences of relationships between backscatter and soil moisture stronger.  

Having better relationships established would have enabled better definition of 

necessary DEM parameters in future. 

Radiometric modelling 

It had been intended to take the radar processing further.  The project did not use 

any form of backscatter modelling to improve soil moisture estimation. 

Further application of backscatter models was not undertaken.  This was due to 

the COVID-19 pandemic and restrictions this placed on training and processing 

opportunities. Additionally, there is an argument that because the relationships 

in the data are very limited already, modelling would have a limited capability to 

improve the results.  

Our intention was to apply a physically based theoretical model.  Physically based 

models account for the dielectric constant of the scattering surface.  The 

disadvantage of these models is that they require a priori knowledge of surface 

roughness.  Fung et al.’s (1994) Integral Equation Model (IEM) is the most well-

known of these and is based on the Physical Optics Model (POM) (Born and Wolf, 

1980; Song, Zhou and Fan, 2009). 

There are three possible types of model, the small perturbation recently 

(Baghdadi et al., 2002; Song, Zhou and Fan, 2009) for when surface roughness is 

small relative to the wavelength and slope is minimal.  The physical optics model 

(Kirchoff model with scalar approximation is valid when the slope is small 

relative to the wavelength. Geometrical optics model (Kirchoff model under 

stationary phase approximation) is ‘generally valid when the average radius of 

curvature and the vertical roughness are large relative to the wavelength’ (Ulaby 

et al. 1986).  Of these three options, the GOM is the most appropriate given the 

short wavelength (~3cm) and the relatively large roughness due to both 

vegetation and surface geometry. 

The Geometric Optic Model (Kirchoff model under stationary phase 

approximation) was chosen because it has the best performance where roughness 

is large relative to the incident wavelength (Shi et al. 1991) – which matches the 

situation at Hollin Hill and is likely to be the case for almost all situations in 
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which X band SAR is used for monitoring the natural environment.  The model is 

described thus: 

𝜎
 (𝜃) =

 () ୣ୶୮(ି௧మ ഇ

మమ)

ଶమ௦రఏ
  

 

where, m is RMS slope and Γ(0) is the ‘Fresnel reflectivity evaluated at normal 

incidence’ (Ulaby et al., 1986) 

It was intended to use the roughness estimates gathered during the final field 

campaign as an input for the roughness component of this equation. 

The application of  these models and assessment of the results from them could 

have given a stronger foundation for comparing the backscatter-soil moisture 

relationships  derived in this study with those from other studies where these 

approaches have been used.  Because some form of model is normally used in 

studies to relate backscatter and soil moisture, it is hard to assess how the un-

modelled relationships in this study compare to those in other studies, because 

there are very few studies that present their data results without some form of 

modelling having been undertaken.   


