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The development of perceptual priors 

Reneta Kiryakova, BSc (Hons), MA. 

 
Abstract 

 
Bayesian inference has come to be regarded as the best, statistically optimal, 

way to deal with the sensory uncertainty inherent in our natural environment. One 

way to cope with such uncertainty is to incorporate our pre-existing knowledge about 

the world. However, we know very little about the circumstances in which human 

observers integrate sensory information with prior knowledge in a way that is close to 

optimal. We understand even less about how the developing brain adapts to the 

environmental statistics, learns to use them efficiently, and what factors may underlie 

the development of this critical perceptual skill. We addressed these questions 

though a series of psychophysical experiments, in which adults and 6- to 11-year-old 

children estimated the location of unseen targets based on a noisy sensory cue and 

a prior distribution that can be learned over the course of the experiment.  

In Chapter 2, we showed that adult observers weighted sensory and prior 

information by their reliabilities but were far from optimal and struggled to generalise 

to untrained reliabilities in complex situations. The findings of Chapter 3 showed that 

6- to 8-year-olds also weighted priors in proportion to their reliability, but they were 

slow to tune their behaviour to the statistics over time and remained furthest from 

optimal. Six- to -eight-year-olds’ performance reached adult-like levels when the 

priors were explicitly shown. Conversely, when the decision rule was made more 

complex, 6- to 8-year-olds’ abilities to distinguish between the priors broke down and 

adults’ performance became more child-like. These findings prompted us to 

investigate whether individual differences, specifically in working memory, may 

predict performance in adults. The distance from optimal was not predicted by 

working memory capacity, beyond general cognitive abilities.  
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Together, these studies offer fresh insights into the capacity and limitations 

both adults and 6-11-year-old children have in learning and efficiently using novel 

environmental statistics.  
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Chapter 1 

General Introduction 
In order to make good, effective decisions in an uncertain, ever changing 

environment, we need to more optimally use all the information we have available to 

us. There are two crucial ways in which evidence can be optimally used: by 

integrating (1) information across different sensory cues, or (2) a sensory cue with 

prior knowledge about the statistical structure of previous events. Cue combination 

and how it develops has recently attracted more attention, but we know very little 

about how we learn to integrate prior and sensory information, what the limits of this 

learning are, how this learning changes over the course of childhood and what 

factors may underlie this ability. Is adults’ ability to generalise learned priors to 

untrained cue reliabilities limited by task complexity? Are children slower to learn and 

use novel priors than adults? Could we improve children’s ability to learn and use 

priors by relaxing working memory demands? Could we make their learning worse 

by adding more levels of sensory uncertainty? Can individual differences in working 

memory capacity explain some of the individual variation in prior integration abilities 

in adults? We address these questions in this thesis.  

This introduction begins with an outline of the aims of the thesis. We then 

provide an overview of the Bayesian framework that is used to address the questions 

outlined above in this thesis. Next, we outline what is known about cue combination 

in order to serve as a benchmark for the second component of optimal inference: 

integration of prior knowledge and sensory information. We first describe how adults 

use multiple cues to improve perception in ambiguous situations and following this, 

outline the developmental course of cue combination. After, we summarise research 

on biases in visual perception in adults and children, before switching my focus to 

‘priors’. In discussing priors, we discuss two distinct types of priors: structural and 

contextual priors, first in adults, and then in children. At the end of this section, we 

highlight the gaps in our knowledge that will be addressed in this thesis. We then 

introduce the limiting evidence of individual differences in the detection of statistical 

regularities and working memory capacity, creating a knowledge gap between the 

two – we then outline how this gap is addressed in this thesis. Finally, we summarise 
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my findings and describe how they contribute to the literature more broadly. We then 

discuss the practical implications of this work, its limitations and future directions 

before summarising the key conclusions from this thesis.  

 

1.1 Thesis Aims 

 The aim of the work described in this thesis was to determine whether adults 

can perform Bayesian inference in more complex situations, what factors influence 

adults’ abilities to efficiently combine prior and sensory information and how 

children’s abilities to learn and use novel perceptual priors efficiently change as 

children get older, gain experience and undergo changes in cognitive functions. We 

approached this question by asking adults and children, aged between 6 and 11 

years to learn novel prior distributions, and to integrate them with sensory input to 

more accurately estimate the location of unseen objects. 

 

1.2 Perception Can be Understood as a Process of Bayesian Inference 

We can trace the beginnings of Bayesian theory all the way back to 

Helmholtz’s work on “unconscious inference”; that the brain deals with the inherently 

ambiguous information from our senses by incorporating prior knowledge of the 

environment (Geisler & Kersten, 2002; Helmholtz, 1925; Kersten et al., 2004). 

Several well-known visual illusions nicely illustrate this (Gregory, 1997; Weiss et al., 

2002). For example, when we see the four ‘Pac-Man’ shapes in Figure 1.1a, we 

perceive an illusory square. We must have inferred, based on previous experiences, 

that by far the most likely reason for such a percept is that there are four black 

circles with a white square on top. Also, the larger context can help us make sense 

of smaller details. For example, the same character can be perceived as the letter ‘B’ 

or the number ‘13’, depending on whether you are focusing on the letters presented 

horizontally (‘A’ and ‘C’) or the numbers presented vertically (‘12’ and ‘14’; Figure 

1.1b). Bayesian Decision Theory (BDT) proposes a normative framework for 

optimally interpreting such ambiguous retinal images (Kersten et al., 2004; Knill & 

Pouget, 2004; Knill & Richards, 1996; Maloney, 2002; Mamassian et al., 2002).  
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Figure 1.1. Perceptual illusions. a. A Kanizsa square: is that four ‘Pac-Man’ figures or 

four black circles with a white square overlaid on top? b. Surfaces that are brighter at 

the top are generally seen as convex and the others as concave, consistent with an 

assumption of light from above. c. Is the character in the centre the letter ‘B’ or the 

number ‘13’? d. Knowing that you are looking for a leopard makes the leopard 

features in the first image stand out more.  

 

BDT has two key components: first, the hypothesis about the world. In its 

simplest form, this component can take the form of a prior distribution (Yuille & 

Kersten, 2006), but is more generally represented by a generative model (Clark, 

2013). We will only be using the term ‘prior’ distributions in the following. The second 

component is the data received from the senses. These data, too, are known by 

different names, such as likelihood (Yuille & Kersten, 2006) or sensory information 

(Clark, 2013). Both terms are used interchangeably throughout this thesis. 

When perception is described as a form of Bayesian inference, the prior and 

the likelihood are probability distributions which, together, influence what we 

perceive. Imagine playing tennis and doing your best to figure out where your 

opponent is likely to serve the ball (Figure 1.2). When playing an opponent for the 

first time, the ‘prior’ is a flat probability distribution: your opponent is equally likely to 

direct their serve either to the middle or to the side of the court. Suppose, over time, 
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you observe more and more balls landing in the same vicinity (following a normal 

distribution with some random noise; red, Figure 1.2). Knowledge of your opponent’s 

previous landing positions could then be used to predict the trajectory of the ball, 

even before it is hit. Combining this prior with the noisy information from your eyes 

(blue, Figure 1.2) via Bayes’ rule gives a posterior probability (orange, Figure 1.2) 

that the ball is going to land in a position 𝑥:  

 
𝑃(𝑥|𝑜) = 𝑐𝑃(𝑜|𝑥)𝑃(𝑥) (1) 

 

where 𝑃(𝑜|𝑥) describes the uncertainty in the sensory information (the likelihood), or 

the probability of different observations given the true world state, 𝑥; 𝑃(𝑥) represents 

the prior belief over possible world states (the prior); and 𝑐 is a normalisation 

constant. 

 

 
 
Figure 1.2. Example of integration of prior expectations and sensory evidence. a. 

When playing tennis, people can benefit from combining what they know from before 

(prior, red) with new sensory information (likelihood, blue). In doing so, they can 

estimate the posterior (red distribution) which helps to make the best, optimal 

decision. 
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A similar approach could be used to understand the perception of visual 

illusions – disambiguation of the central character (as a ‘B’ or ‘13’) in Figure 1.1c is 

an example. The sensory information provided by the character in the middle – its 

shape – matches the number ‘13’ and the letter ‘B’ equally well. Thus, without prior 

information, you would be equally likely to see this as either ‘B’ or ‘13’. Having priors 

can heavily alter what you perceive. When reading the letters horizontally, we might 

expect to see the letter ‘B’. This prior would then shift the resulting posterior 

distribution towards the letter ‘B’. If reading the numbers vertically, however, our prior 

would be for the number ‘13’.  

As argued by Geisler and Kersten (2002), using Bayesian methods brings 

many advantages. Bayesian methods can be used to provide a normative way to 

measure whether people are close to optimal in perceptual tasks (Geisler & Kersten, 

2002). One can then consider the ecological constraints (e.g., limited time, capacity 

limitations in attention and memory), under which the task must be performed, and 

thus gain deeper understanding of the factors that could stop people reaching 

optimal levels. Furthermore, ideal observer predictions are critical in providing 

benchmarks against which to compare human performance (Gardner, 2019; Heng et 

al., 2020; Qamar et al., 2013).  

Secondly, the Bayesian approach tells us how to combine multiple information 

sources when the reliability of each source varies (Geisler & Kersten, 2002). The 

reliability of the different sources can change; we should therefore adapt the way we 

weight each information source based on how reliable they are. In the tennis 

analogy, as uncertainty increases, when playing in fog or at dusk, the Bayesian ideal 

observer should shift more weight to the prior probability distribution (in this case, the 

most likely ball landing position), relative to the visual input.     

We wish to emphasize that because the Bayesian framework generates 

testable predictions, it is often useful even in the absence of evidence for an 

integration strategy (Stine et al., 2020). In cases where there is a mismatch between 

Bayesian predictions and actual performance, one can then consider potential 

alternative strategies that observers could be adopting. This is done by manipulating 

the different components of the model. Doing this might reveal differences between 

not using a piece of information (e.g., the prior) at all and mis-weighting it that would 
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have otherwise gone undetected. As this example illustrates, there are various ways 

in which people can fail to use the (Bayes-)optimal strategy and understanding what 

those ways are is useful to infer and understand some of the (perhaps non-

integration) strategies observers may deploy during everyday perception and action 

(Stine et al., 2020).  

Despite its apparent flexibility, the Bayesian account has been criticised on 

several grounds: one of the most important is that the computations underlying the 
behaviours we observe are not clear (Jones & Love, 2011). With reference to the 

three levels of analysis (i.e., computational, algorithmic and implementation) 
proposed by Marr, the Bayesian approach speaks to the computational level as it 

focuses on normative principles (Marr, 1982). Process models, on the other hand, 
aim to uncover the mechanisms that underlie the decision process (Luce, 1995); 

these speak to Marr’s algorithmic level (Marr, 1982). However, many standard 
Bayesian models also address ‘how questions’ at the algorithmic level. Many 

hypotheses proposed to account for suboptimal decisions focus on algorithmic 
level features such as capacity limitations (in working memory, for example), 
imprecisions, or the inability to employ complex decision rules (Rahnev & Denison, 

2018). Thus, understanding suboptimal decision behaviour requires that we account 
for process-level considerations. In the present thesis, we begin with a normative 

account of how decisions generalise to other contexts (Chapter 2) but as we 
examine sources of suboptimality in human probabilistic inference, we also address 

process-level considerations, such as working memory and task complexity 
(Chapters 3 and 4).  

 

1.3 Cue Combination 
 There are two components of optimal Bayesian inference: (1) cue 

combination, i.e., collating multiple sensory cues, and (2) integration of current 

sensory input with prior knowledge about the statistical structure of previous events. I 

begin by discussing the former.  
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1.3.1 Bayesian Predictions 
 Before asking whether human observers can do what the Bayesian theory 

says, we need to set out the predictions of optimal Bayesian integration – we do so 

here. In a typical cue combination task, there are two cues 𝑐! and 𝑐", both of which 

provide information about the same stimulus, 𝑠. For example, 𝑠 could be the location 

of a stimulus, 𝑐! could be a visual cue for the location, and 𝑐" could be an auditory 

cue. If we assume that these cues are independent and that they are Gaussian with 

variances 𝜎!" and 𝜎"", respectively, then the location of the stimulus as estimated by 

the visual and auditory cues together can be computed as follows: 

 
𝑠# = 𝑤!𝑠! +𝑤"𝑠"	 (1) 

 

where 𝑤! is the weight assigned to the visual estimate, 𝑐!, 𝑤" is the weight 

assigned to the auditory estimate, 𝑐". The combined estimate 𝑠# is considered 

optimal because the variance of the estimate given both cues together is lower than 

that of the individual cues (see Equation 2), thus offering maximum precision – this 

is, in fact, the criteria to judge whether optimal cue integration is achieved. This is 

because it can rule out alternative explanations, such as switching between the 

sensory signals – we know this because if observers switched between cues, 

performance would be worse than the best of the two cues (Alais & Burr, 2019). The 

reduction in combined variance (and consequent gain in precision) is maximal when 

the variances of the sensory signals are reasonably well matched in reliability.  

 

𝜎#" =	
𝜎!"𝜎""

𝜎!" + 𝜎""
	 (2) 

 

Going back to Equation 1, cue weights depend on their relative reliabilities 

(i.e., the inverse of variance), as shown in Equation 3 below. For clarity, only the 

weight for the visual estimate 𝑐! is shown.  
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𝑤! =

1
𝜎!"

1
𝜎!"

+ 1
𝜎""

=
𝜎!"

𝜎!" + 𝜎""
(3) 

 

 By varying the variance of one or both sensory signals, therefore, we could 

determine the degree to which each is being relied on. For example, if the visual cue 

𝑐! is a less reliable source of information, observers should place less relative weight 

on it, compared to the auditory cue 𝑐". The down-weighting of cues that are less 

reliable is also what the ‘ideal observer’ model would predict.  

 Note that within this framework, combining sensory cues is mathematically 

equivalent to combining a prior and a sensory cue – this is done by straightforward 

replacement of one of the cues with the prior. The equations in this section, 

therefore, hold when combining a prior and sensory cue and analogous conclusions 

can be derived. For that reason, Equation 3 is used to compute the weight that the 

ideal observer should assign to the sensory cue in all experiments reported in this 

thesis.  

 

1.3.2 Do Adults Do What the Bayesian Theory Says in Cue Combination 
Tasks? 
As discussed in Section 1.3.1, Bayesian accounts make two predictions: (1) 

observers would be able to form a more reliable (i.e., less variable) percept of the 

environment when they have two sources of information to rely on, rather than only 

one, and (2) when the reliability of the different sources of information is varied, the 

resulting percept would be shifted towards the more reliable of the two sources 

(Clark & Yuille, 1990). Human behaviour generally matches these predictions in 

many cue combination tasks. For example, Ernst and Banks (2002) had four 

participants estimate the height of bars by looking at them or touching them. They 

first measured discrimination performance for the individual cues – visual and haptic 

- separately. Presenting both cues simultaneously, they found that subjects weighted 

by reliability, with less weight assigned to the visual signal when a large amount of 

noise was added to it. However, as was argued by Arnold et al. (2019), of the four 

levels of visual reliability, only one produced a bimodal performance that was clearly 
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distinguishable from that achieved by the better of the cues (Ernst & Banks, 2002). 

Another study had participants localise visual and auditory stimuli – brief ‘blobs’ of 

light or ‘clicks’ of sound – in space, and found that subjects weighted the sensory 

signals according to their sensory reliabilities (Alais & Burr, 2004). This ability – to 

combine cues optimally - has now been reported for a wide range of tasks and 

combinations of cues, such as motion and texture cues to judge depth (Jacobs, 

1999), and visual and proprioceptive cues to judge hand position (van Beers et al., 

1999). Overall, these findings have been taken as evidence that the brain does take 

into account information about the relative reliabilities of cues when making 

perceptual decisions. Also, this ability is not only a ‘cross-modal’ one (Hillis et al., 

2004; Jacobs & Fine, 1999; Louw et al., 2007, Landy & Kojima, 2001), as within the 

visual modality alone, adult humans make optimal use of stereo and texture 

information to estimate slant (Knill & Saunders, 2003).  
 
1.3.3 Sub-optimal Cue Combination? 

We reiterate that the Bayesian model predicts that (1) the discrimination 

threshold when both cues are available should be lower than that of either cue alone, 

and (2) that the discrimination threshold when both cues are available should not be 

higher than optimal predictions (Clark & Yuille, 1990). While some studies find that 

observers’ behaviour matches these predictions (e.g., Ernst & Banks, 2002; Fetsch 

et al., 2009; see Section 1.3.2), others do not (Battaglia et al., 2003; Drugowitsch et 

al., 2014; Meijer et al., 2019). The latter set of studies generally show discrimination 

thresholds with both cues available (combined cue condition) to be significantly 

higher than optimal. For example, Meijer et al. (2019) found that although subjects’ 

discrimination thresholds for the combined condition were lower than the better of 

the unimodal conditions, they were significantly higher than those predicted for 

optimal cue combination (Battaglia et al., 2003, 2011), suggesting that while 

observers can benefit from combining cues, they do not achieve the optimal gain. 

Several studies have shown that deviations from optimal behaviour are not specific 

to audio-visual localisation (Battaglia et al., 2003), but extend to many other tasks 

and combinations of cues (Bentvelzen et al., 2009; Burr et al., 2009; Butler et al., 
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2010; Fetsch et al., 2009; Maiworm & Röder, 2011; Prsa et al., 2012; Rosas et al., 

2005).  

As argued by Jones (2016), one reason why people may mis-weight cues, 

leading to suboptimal behaviour, may be that they are biased towards a given sense 

and that makes them weight it more than they should (i.e., than is optimal) (Fetsch et 

al., 2009; Maiworm & Röder, 2011). In our lifetime, we learn that vision could help 

more precisely localise sounds or estimate how far an object is than other senses – it 

therefore seems possible that in a task with auditory and visual stimuli presented at 

the same time, localisation is systematically biased in the direction of the visual 

stimulus because experience has taught observers that vision is typically the more 

reliable sense for spatial localisation (Battaglia et al., 2003; Meijer et al., 2019; 

Talsma et al., 2010). Another possibility is that observers wrongly estimated how 

reliable the cues were (Jones, 2016; Knill & Saunders, 2003). Even if there is some 

knowledge of one cue being more (or less) reliable than the other, these cues cannot 

be weighted in an appropriate (statistically optimal way) if the observer does not 

know exactly how reliable each cue is (Drugowitsch et al., 2014). This means that if 

the reliabilities are estimated wrongly, the observer could still compute the posterior, 

but it would be different from the true one (Ma, 2019). This is known as ‘model 

mismatch’: the reliabilities that the observer uses are not the same as the imposed 

cue reliabilities (Beck et al., 2012; Ma, 2019). If there is model mismatch, then 

observers are using a Bayesian strategy, but are not doing so optimally (Ma, 2012, 

2019). 

1.3.4 No Cue Combination 
Findings of performance with combined cues being no better than that with 

either cue alone have also been reported (Chen & Tyler, 2015; Drugowitsch et al., 

2014; Landy & Kojima, 2001; Oruç et al., 2003). For example, using a visual/ 

vestibular heading discrimination task, Drugowitsch et al. (2014) not only found that 

the threshold for the combined, multisensory condition was not significantly lower 

than either the visual-only or vestibular-only thresholds (clearly violating prediction 1; 

see Section 1.3.3), but also that the combined threshold was significantly greater 

than that predicted by the optimal model (violating prediction 2; Section 1.3.3). This 

level of suboptimality goes further than that described in Section 1.3.3 (which 
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revealed that sometimes cues are integrated but not weighted according to their 

reliabilities) because it shows that in some cases, cues are not integrated at all 

(Rahnev & Denison, 2018). 

 

1.3.5 At What Age Does This Ability to Combine Cues Develop? 
The vast majority of developmental research on cue combination has found 

abilities to combine cues optimally to emerge only after 8 years of age (Gori et al., 

2008, 2012; Nardini et al., 2010). For example, Gori et al. (2008) asked children 

between the ages of 5 and 10 years to make size and orientation judgments based 

on vision only, haptic only and both visual and haptic information; 5-year-olds relied 

only on one sense (haptic for judging size, vision for judging orientation), but by 8-10 

years, children were able to combine visual and haptic information in a statistically 

optimal way. A similar result was found in another study by the same authors (Gori et 

al., 2012): in younger children (< 12 years), vision dominated audition in bisection 

tasks; only adults combined information across the senses in an optimal manner. 

Nardini et al. (2010) also found that children older than 12 years integrated disparity 

and texture information optimally to reduce their uncertainty in judging surface slant 

but younger children did not. The narrative that emerges would seem to be of 

optimal cue combination in children, older than 8-10 years, and a dominant sensory 

modality at younger ages.  

 This conclusion was confirmed by Nardini et al. (2008), who examined the 

ability of adults, 4-5 year-olds and 7-8-year-olds to return an object to where it was 

originally placed by relying only on visual landmarks, only on self-motion cues or 

both together, and found no sign of integration in children younger than 8 years of 

age. As was pointed out, the experiment was not designed to test for optimality, but 

we still feel that the results support previous findings: adults combine multiple cues 

efficiently, but children younger than 8 years do not, instead relying on a single 

sense (Ernst, 2008). Similarly, Dekker et al. (2015) could not test whether subjects 

combined evidence optimally, but found a lack of adult-like (reliability-weighted) 

integration of stereo and texture information when judging surface slant in children 

younger than 10 years. It is, however, worth noting that not all studies investigating 

sensory integration during development have found delayed development of cue 
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combination ability in younger children (< 12 years) relative to adults. For example, 

Jovanovic and Drewing (2014) found similar multisensory integration abilities in 6-

year-old children and adults. Additionally, Adams (2016) showed that the ability of 

children to optimally combine emerged around 10 years of age, but some basic 

integration abilities, such as weighting sensory signals by their reliability, seem to 

already exist by the age of 4. Other studies have shown younger children to be more 

capable of combining cues than adults. For example, Petrini et al. (2016) tested 10-

11-year-olds and adults in a path reproduction task and found that children near-

optimally combined information across visual and self-motion cues, resulting in lower 

variable error; adults’ behaviour, on the other hand, was indicative of cue 

competition.  

The key conclusion that all the studies agree on is that optimal cue 

combination only occurs in children older than 8 years (though see Negen et al., 

2019; Rohlf et al., 2020). But the studies disagree in two crucial ways. Firstly, there 

was no consensus of what happens before optimal cue combination ‘comes online’, 

with some studies finding sensory dominance (Gori et al., 2008; Nardini et al., 2010) 

and others finding evidence of reliability weighting in children as young as 4 years 

(Adams, 2016). Secondly, there was disagreement between the studies on the exact 

age at which optimal cue combination does occur, with the age at which subjects 

optimally integrate multiple cues changing according to task demands and cue 

combinations (e.g., Dekker et al., 2015; Gori et al., 2008, 2012; Nardini et al., 2013; 

Petrini et al., 2014). For example, Petrini et al. (2014) reported a lack of audio-haptic 

integration even by 12 years. By contrast, in a later study by the same authors 

(Petrini et al., 2016), children were shown to combine visual and self-motion cues 

when navigating as early as 10 years, and thus earlier than suggested by Petrini et 

al. (2014). This suggests that combining information optimally across different 

sensory cues, but also different tasks may show different time courses.  

 

1.3.6 Why Does Optimal Cue Combination Occur So Late?   
 

1.3.6.1 Need for Experience. A potential reason, and quite an obvious one, 

is that somewhere between 8 and 10 years of experience with pairs of cues is 
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needed before these cues can be combined optimally. However, Negen et al. (2018) 

conclusively ruled out this possibility by showing that after two hours of training, 

adults not only learned a new auditory cue but also combined it optimally with a 

visual cue. This is evidenced by the fact that subjects had lower variable error with 

both cues together compared to the best of the two cues. Thus, cue combination 

abilities seem to emerge as we get older, regardless the amount of experience we 

have.  
 
1.3.6.2 Need for calibration. An alternative explanation and one that has 

become increasingly influential in recent years is that children’s senses are still 

calibrating – as would be expected for a growing body – meaning that senses cannot 

be integrated (Gori, 2015; Gori et al., 2008). When we have grown up, our body 

stops growing and remains roughly the same size for the rest of our lives. However, 

our body grows rapidly between birth and adulthood (Ernst, 2008). As young children 

grow up, their arms and legs stretch, for example, and this inevitably brings along a 

difference in proprioceptive signals about limb positions and movement. At the same 

time, inter-pupillary distance - that effective binocular vision depends on – increases. 

The sensory system, therefore, needs to be continuously updated to account for 

changes in body size during childhood (Ernst, 2008). Since mismatches between the 

senses hint at the need for recalibration, it may be more beneficial for the developing 

brain to keep the sensory cues separate and use conflict between them to decide 

whether to integrate or re-calibrate them (Ernst, 2008). Indeed, calibration has long 

been presumed to be a precursor of combining cues optimally (Gori et al., 2008 but 

see Rohlf et al., 2020). 

However, a recent study has challenged this idea, showing that cross-modal 

recalibration emerges later than the ability to combine cues (Rohlf et al., 2020). Five- 

to- eleven-year-olds and adults localised sounds from one of six speakers, uniformly 

spaced along a semi-circle. The source of the sound was indicated by naming the 

animal which was closest to the sound. In multisensory trials, a visual distractor cue 

appeared to the side of the speaker the sound came from. The ventriloquist effect 

(indicating audio-visual integration), that is the shift of sound locations towards the 

visual distractor, was found even in 5-year-old children. By contrast, recalibration to 
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the audio-visual spatial discrepancies was found to first emerge around the age of 8 

years. Rohlf et al.'s (2020) results provide strong evidence against the long-believed 

hypothesis that cross-modal recalibration is a prerequisite for multisensory 

integration.  

 

1.3.6.3 ‘Causal inference’ problem. By comparing different computational 

models, Rohlf and colleagues (2020) were also able to show that the ventriloquist 

effect in both children and adults was best explained by a causal inference model, 

i.e., that takes into consideration uncertainty about whether the cues are from the 

same object (so should be integrated using reliability weighting) or different objects 

(so should be kept separate). Interestingly, Rohlf et al. (2020) found that the model 

parameters varied with age, with younger children having lower prior expectations of 

common source. These findings are particularly important when considering that 

without knowing if the two cues are from the same stimulus, they can neither be 

integrated nor re-calibrated (Ernst, 2008; Kording et al., 2007). So, it could be that 5-

year-olds may be unsure of the underlying causal structure and are still learning to 

assign different sensory cues to the same object (Dekker & Lisi, 2020), rather than 

that they lack the capability to combine cues optimally.   

Why might younger children be uncertain about whether sensory cues are 

from the same or different objects? It may be because bias may be too high to make 

cue combination viable. This hypothesis was supported by Negen et al. (2019) who 

showed that artificially correcting young children’s biases by providing feedback on 

single cue trials allowed them to combine cues. Together, these results show that 

what develops in childhood may not be the basic mechanism allowing children to 

integrate cues, but other factors, such as whether the cues originated from the same 

source (Dekker & Lisi, 2020).  

 

1.3.6.4 Need to Lean Cue Reliabilities. To combine cues optimally, we need 

to know how reliable each cue is. A fourth potential reason for the late maturation of 

optimal cue combination, therefore, is that young children need to learn the reliability 

of each sensory cue. How are the reliabilities of the sensory cues learned? One 

might imagine that they are learned through life-long experience of interacting with 
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the environment. However, this is an unlikely explanation because the amount of 

variance in each sense and the number of environmental scenarios is infinite. 

Another way to learn cue reliabilities from experience is based on the correlation 

between pairs of cues (Jacobs, 2002). It is thought that within each perceptual 

domain, there is a ‘primary’ cue (e.g., vision for orientation, haptics for size and so 

on) that cannot be learned or modified. All other cues are ‘benchmarked’ against this 

cue, such that if their estimates match those given by the primary cue, they too are 

considered reliable. It is therefore possible that younger children may still be learning 

to recognise a given sense as a trustworthy ‘benchmark’. 

 

1.3.6.5 Neural Maturation. Lastly, it could also be that the neural 

mechanisms that support the reliability-weighted integration of cues are immature 

(Rahnev & Denison, 2018). Recent evidence has implicated divisive normalisation, 

whereby the activity of one neuron is modulated by neighbouring neurons (Carandini 

& Heeger, 2013), in the more precise computing of reliability-weighted averages 

(Ohshiro et al., 2011). Thus, one potential explanation for the later onset of reliability-

based cue weighting could be that this normalisation is reduced in younger ages (< 8 

years). To the best of my knowledge, no study has ever tested this hypothesis in 

young children. Still, it is known that symptoms of autism are linked to an increased 

ratio of neural excitation to inhibition, which would result in reduced divisive 

normalisation (Rosenberg et al., 2015; Rubenstein & Merzenich, 2003 but see also 

Van de Cruys et al., 2018). At the same time, impaired ability to integrate 

multisensory information in autism has also been reported (Baum et al., 2015). It is 

thus possible that low-level multisensory weighting processes, such as those that 

depend on divisive normalisation, are immature during early development. Current 

models also suggest that cue integration might depend not only on low-level 

processes (e.g., balance of excitation vs. inhibition) but also on massive 

developmental changes in the cortical structure. For example, it could be that 

pathways from modality-specific brain regions to supramodal network of regions 

dedicated to integrating sensory signals are still developing, resulting in immaturities 

in reliability-based cue weighting (Iliescu & Dannemiller, 2008; Nardini et al., 2008, 

2010). 
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1.4 Biases Towards Previous Stimuli 
As we saw in Section 1.3, observers integrate evidence near-optimally across 

different sensory cues. Information about previous stimuli has also been found to be 

integrated, leading to more precise estimates (Fritsche et al., 2020). In fact, such 

biases or adaptation towards previous stimuli have been suggested to reflect Bayes-

like processes of incorporating information from the past to aid perceptual decisions 

(van Bergen & Jehee, 2019; Kalm & Norris, 2017). We will briefly summarise the 

research evidence for two types of biases below: central tendency and serial 

dependence.  

 

1.4.1 Central tendency and serial dependence 
Central tendency is where perceptual estimates gravitate to the mean of 

recently seen stimuli (Hollingworth, 1910). For example, when estimating uncertain 

time intervals, subjects biased their timing estimates towards the interval duration on 

previous trials (Jazayeri & Shadlen, 2010, 2015). Cicchini et al. (2014) also showed 

that when mapping numbers onto space, observers adapted their responses in 

response to previous trials. Central tendency has been reported for a wide range of 

stimulus types and tasks, such as estimates of line length (Ashourian & 

Loewenstein, 2011; Duffy et al., 2010; Huttenlocher et al., 2000), sweetness (Riskey 

et al., 1979), facial expressions (Corbin et al., 2017; Roberson et al., 2007), hue 

(Olkkonen et al., 2014; Olkkonen & Allred, 2014) and time intervals (Jamieson, 1977; 

Jazayeri & Shadlen, 2010; Ryan, 2011). It has been proposed that such biases 

towards stimuli encountered in the past may arise from an optimal strategy of 

incorporating prior information (bias) into perceptual decisions (Cicchini et al., 2018; 

Kalm & Norris, 2017; van Bergen & Jehee, 2019). Such a strategy is optimal when 

the environment is stable because it is expected that new sensory input will be 

similar to previous input – we can exploit information we have just learned to 

maximise the efficient processing of new sensory inputs. This is also what the 

Bayesian theory says we should do – when sensory evidence is uncertain and 

difficult to judge, we should integrate it with a prior prediction about the current 

stimulus based on what we know from previous trials. A few studies on colour 
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perception show that people do this (Olkkonen et al., 2014); in a series of 

experiments, observers were presented with a ‘reference’ stimulus and, after a 

delay, a ‘test’ stimulus, and asked which appeared more ‘bluer’/ ‘yellower’. In their 

first experiment, Olkkonen et al. (2014) showed that estimates of hue were biased 

towards the mean of stimuli presented during the experiment. In a second 

experiment, Olkkonen et al. (2014) varied the delay between the reference and test 

stimuli, and showed that increased delay from reference to test increased the noise 

in the sensory signals. With increased noise, reliance on prior knowledge (about 

distributions of hues) also became higher. Across all experiments, Olkkonen et al. 

(2014) demonstrated that hue estimates were systematically biased towards the 

average hue, and that bias were larger when sensory uncertainty was higher. This 

bias has been previously implied to result from integrating prior information with 

noisy sensory information (Olkkonen & Allred, 2014 but see also Ashourian & 

Loewenstein, 2011; Jazayeri & Shadlen, 2010). Crucially, the finding of increased 

bias with increasing sensory uncertainty confirms the theoretical predictions of the 

Bayesian model.  

Recent work has exposed another history bias – where choices in the current 

trial are influenced simply by the preceding trial; although note that studies report a 

dependence on stimuli further back in the stimulus sequence; for example, up to 

three trials back (Fischer & Whitney, 2014). This type of bias is treated separately in 

the literature from the central tendency bias (a bias towards the stimulus one trial 

back compared to a bias towards the mean of all stimuli within a series) and has 

been termed serial dependence (van Bergen & Jehee, 2019; Fischer & Whitney, 

2014). As Aston and colleagues (2021) point out, serial dependence has been 

reported for a wide range of visual features, such as orientation (Cicchini et al., 2017; 

Fischer & Whitney, 2014; Fritsche et al., 2017), numerosity (Cicchini et al., 2014; 

Corbett et al., 2011; Fornaciai & Park, 2018), spatial location (Bliss et al., 2017; 

Manassi et al., 2018; Papadimitriou et al., 2015), identity of faces (Liberman et al., 

2014), gender of faces (Taubert, Alais, et al., 2016) and attractiveness (Kondo et al., 

2012; Taubert, Van Der Burg, et al., 2016; Xia et al., 2016).  

The distinction between central tendency bias and serial dependence seems 

unclear. Mattar et al. (2016) sought to disentangle central tendency from serial 
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dependence biases by exploring their respective timescales. The two effects had 

different time scales: serial dependence operated over a shorter timescale and 

central tendency over a longer timescale. The temporal pattern of these effects was 

well captured by a single mechanism which utilized a weighted mixture of previous 

stimuli, where the relative contributions of previous stimuli was determined by an 

exponential integration time constant: when the constant was high, stimuli were 

combined over a relatively long period of time (i.e., central tendency), and when the 

constant was low, the response on the current trial was very similar to the response 

on the immediately preceding trial (i.e., serial dependence). This suggests that the 

distinction between these two types of bias may be linked to them having different 

time constants. It has been proposed that such a mixture mechanism accounts for 

the fact that in our natural environment, statistical patterns do not form only between 

events which occur one after the other, but also those that happen over a much 

longer period (Fritsche et al., 2020). Such a mixture account, therefore, has the 

advantage of not only accounting for effect of the most recently experienced stimuli, 

but of capturing dependencies beyond what we had just seen (Fritsche et al., 2020; 

Kalm & Norris, 2018). 

Why do observers use what they had learned on previous trials as a prior for 

their decisions? Urai et al. (2019) argued that this may seem unexpected at first 

glance, given that in most experiments, stimuli and outcomes are uncorrelated 

across trials (Abrahamyan et al., 2016). However, events and scenes in the natural 

environment are rarely independent from one another (Yu & Cohen, 2009). Thus, it 

was argued that people may wrongly assume that this is also true in laboratory 

experiments (Yu & Cohen, 2009). In support of this idea, people have been shown to 

take into account the expected rate of change of statistics (stable vs. unpredictable) 

and adjust their biases accordingly (Braun et al., 2018; Glaze et al., 2015; Kim et al., 

2017), revealing that people have certain prior expectations about environmental 

stability. Together, these observations may explain the greater weighting given to 

past vs. new observations that is typically observed (Cicchini et al., 2014). However, 

it is important to point out that while assuming that consecutive stimuli are 

statistically related may be incorrect in serial dependence tasks, incorporating prior 
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information from recent decisions is, in fact, a rational heuristic strategy in most 

everyday situations. 

 

1.4.2.2 Central Tendency in the Developed Brain. We know that trial history 

alters the way in which adults interpret incoming sensory signals (Cicchini et al., 

2012, 2014, 2017, 2018). Surprisingly, we know very little about the age at which 

such biases develop in childhood. Indeed, only two studies, to our knowledge, have 

examined the development of central tendency biases. In a line reproduction study, 

Sciutti et al. (2014) showed that just as adults, 7-, 8-, 10, 11- and 13-year-olds 

reproduced the same length as longer or shorter when previous line lengths were 

longer or shorter, respectively. Children showed substantially lower spatial resolution 

than adults but weighted prior knowledge about the mean with sensory signals in a 

constant manner across development. Similarly, Karaminis et al. (2016) asked 6-14-

year-old children and adults to estimate the duration of time intervals and found that 

children as young as 6 biased their estimates towards the mean interval duration on 

previous trials. From these studies, one can only conclude that by the age of 6-7 

years, children can implicitly learn the statistics of a stimulus set (across a range of 

domains) and incorporate these statistics into their decisions (Adams, 2016). 

 

1.5 Priors  

The studies reviewed in the previous section show that outcomes / stimuli on 

one trial can impact subsequent trials, leading to serial dependence and central 

tendency biases. This happens even though successive trials should be treated as 

independent (Lak et al., 2018; Mendonça et al., 2020). Next, we will examine studies 

where consecutive trials are derived from the same distribution (hereafter referred to 

as a prior). Priors can be structural, that is statistical regularities in the natural 

environment that humans learn over their lifetime (e.g., that light comes from above, 

Adams et al., 2004), or contextual – learnt over the course of an experimental 

session.  

 

1.5.1 Structural Priors 
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1.5.1.1 Structural Priors in the Adult Brain. There are many regularities in 

our natural environment (Dong & Atick, 1995; Schwartz et al., 2007; Simoncelli & 

Olshausen, 2001); for instance, in natural visual scenes, objects tend to be static or 

move slowly (Sotiropoulos et al., 2011; Stocker & Simoncelli, 2006; Weiss et al., 

2002; Welchman et al., 2008). Studies have shown that people tend to 

underestimate the speed of moving objects (Blakemore & Snowden, 1999; Pretto et 

al., 2012; Snowden et al., 1998; Stocker & Simoncelli, 2006; Stone & Thompson, 

1992; Thompson, 1982; Weiss et al., 2002; Welchman et al., 2008) and moving 

sounds (Senna et al., 2015). This is exactly what we would expect of an ideal 

observer (Stocker & Simoncelli, 2006; Weiss et al., 2002) because in the natural 

environment, speed estimates are generally noisy and objects tend to move slowly, 

resulting in a prior for slower speeds (Pretto et al., 2012). 

Bayesian methods can explain speed underestimation (Stocker & Simoncelli, 

2006) and assumptions of light coming from above (Gerardin et al., 2007; Langer & 

Bulthoff, 2001; Mamassian & Landy, 2001; Sun & Perona, 1997). Moreover, as we 

show in this paragraph, both priors can change with training, suggesting that 

although people learn such biases over the course of their lifetime, short periods of 

training can make them malleable (Adams et al., 2004, 2010; Champion & Adams, 

2007). After humans were exposed to 1.5 hrs of tactile training, they perceived the 

light direction as shifted by approximately 10° from the baseline prior. In a separate 

experiment, Adams et al. (2010) confirmed that receiving either haptic or visual 

feedback forced observers to re-interpret a shaded stimulus. Moreover, this 

recalibration of individuals’ light priors lasted for several days, suggesting that the 

light-from-above prior can be modified, at least temporarily (Adams et al., 

2010). Also, human adults have been shown capable of learning multiple priors 

related to different illuminations after only a few hours of visual-tactile training 

(Kerrigan & Adams, 2013). Furthermore, Morgenstern et al. (2011) found that the 

light from above prior could be overridden by other cues. Even the prior for slow 

speeds could be flexibly overridden: participants ceased to expect grating stimuli to 

move slowly after spending multiple sessions looking at gratings moving at a faster 

speed (Sotiropoulos et al., 2011). Overall, these findings suggest that people tend to 
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use the statistical regularities in their natural environments, but that the extent to 

which they use these regularities can depend on the context.  

 

1.5.1.2 The Development of Structural Priors. Studies examining whether 

children use regularities in the natural environment – in particular, the light-from-

above prior - in the same way as adults have found mixed results. Croydon et al. 

(2017) found that adults and 7-14-year-old children use a light-from-above prior to a 

similar degree. Moreover, how the light-from-above prior was used did not change 

between 7 and 14 years of age, suggesting that this prior is already present in 

children younger than 7 years. Pickard-Jones et al. (2020) also found no differences 

in the light source direction that 5-, 7-, 9- and 11-year-olds assumed. Moreover, in 

these children, the assumed light direction was widely consistent with estimates 

obtained in adult participants (Andrews et al., 2013), suggesting the direction of the 

prior does not change with age. However, they excluded any child participants who 

did not show sensitivity to stimulus orientation (15 out of 19 5-year-olds and 8 out of 

18 7-year-olds) from the analyses and were thus only able to demonstrate that the 

light-from-above prior was similar to adults in those children who were sensitive to 

the stimulus orientation. Other studies reported increased use of the light-from-above 

prior in older children and adults, compared to younger ages (Stone & Pascalis, 

2010; Thomas et al., 2010). Stone and Pascalis (2010) tested children between the 

age of 4 and 10 years in a shape discrimination task and reported increased 

tendency to interpret stimuli as if light comes from above with increasing age. 

Moreover, Thomas et al. (2010) demonstrated that children between 4 and 12 years 

and adults tended to favour the convex over the concave shape for a shaded polo 

stimulus, and assume that it is lit from above. However, when there was a mismatch 

between shape and lighting direction, convexity was more commonly assumed 

amongst younger ages (< 6 years) and light-from-above by older groups. These 

findings suggest that both convexity and light-from-above priors develop in the first 

few years of life but the way these priors are weighted changes as the child 

develops: convexity biases dominate in younger ages; by contrast, illumination 

biases (e.g., light-from-above) are the dominant ones in late childhood and 

adulthood.  
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The age-dependent increases in the use of the light-from-above that were 

observed by Stone and Pascalis (2010) and Thomas et al. (2010) seem to suggest a 

developmental trajectory over a longer period of time, from age 7 to 12 years of age. 

An alternative explanation is that the ability to use the prior develops at different 

ages, which, at group level, looks like age-related changes (Pickard-Jones et al., 

2020). This raises the obvious question of why some children develop this ability 

earlier than others. People apply what they have learned from past experiences; it is, 

therefore, possible that if past experiences vary between individuals, the specific age 

at which different individuals may begin to use these experiences may also differ. 

The role of experience may be difficult to decouple from brain development and 

maturation by only using natural stimuli because as people get older, along with 

more mature neural networks, they also acquire more experience. As we discuss in 

the next section, using novel stimuli, - that everybody, regardless of age, has the 

same amount of experience with - is necessary to provide a stronger test of the 

effects of prior experiences.  

 

1.5.2 Contextual Priors 
 Having reviewed the evidence for structural priors – that is, natural long-term 

statistics – in both the adult and the developing brain, we shall now consider the 

evidence for shorter-lived novel statistics (also referred to as contextual priors), e.g., 

distributions of hidden targets. This is important to consider because in the natural 

world, there are both long-term statistics that do not change a great deal, such as 

light direction or speed of moving objects, and short-term ones that may be more 

context specific, e.g., distributions of return shots learned with one tennis player 

(Körding & Wolpert, 2004) might not generalise to another. 

 
1.5.2.1 Contextual Priors in the Adult Brain. It has been suggested (Acerbi 

et al., 2012; Körding & Wolpert, 2004) that the acquisition of novel perceptual priors 

partially depends on the complexity of the prior distribution, with more resources 

(e.g., time, memory storage) needed to handle more complex distributions (Acerbi et 

al., 2012; Körding & Wolpert, 2004). As such, we will first discuss studies that use 
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simple prior distributions before we move on to studies with complex prior 

distributions.  

 

1.5.2.1.1 Simple Distributions. There is evidence that when the prior is a 

simple Gaussian, adult observers learn prior uncertainty over time and combine this 

knowledge with current sensory inputs as predicted by an ideal observer. Körding 

and Wolpert (2004) analysed the performance of human adults as they reached to a 

target. Midway through the movement, a visual cue indicating the current position of 

the finger was flashed very briefly (~100ms). This cue was a cloud of dots with 

varying amounts of noise added to it to vary its reliability. The cue was offset to the 

right side of the finger’s true position by a distance, chosen randomly from a normal 

distribution with a mean of 1cm and SD of 0.5 cm; participants were oblivious to the 

offset. The endpoint of the movement was shown at the end, but only of those trials 

in which no external noise was added. After 1,000 learning trials, on trials where the 

cue was not present, participants corrected for the mean offset of the cursor by 

pointing in the opposite direction to the offset by 1cm. When the cue was present, 

participants pointed between the feedback and the mean offset, weighted by their 

reliability in a statistically optimal way. It is worth mentioning that the authors did not 

independently and directly measure sensory uncertainty and so they could not 

determine how optimal participants were in this study. Even so, Körding and Wolpert 

(2004) were the first to show that human adults combine current and prior 

information in a way that is close to ideal.  

Körding and Wolpert's (2004) work has since been extended by Tassinari, 

Hudson, and Landy (2006). They conducted a separate experiment to independently 

record observers’ motor and sensory noise. The study found that subjects’ behaviour 

was in qualitative agreement with a Bayesian observer model but their performance, 
on average, fell short of ideal due to sensory noise in estimating the centroid of the 

stimulus and motor variability during reaching.  

 

1.5.2.1.2 Complex Distributions. Körding and Wolpert (2004) conducted a 

separate experiment using the same reaching task as before (see Section 1.5.2.1.1) 
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but this time with a bimodal distribution. To enable participants to better learn the 

bimodal shape of the distribution, the authors gave feedback on all trials, did not add 

extra noise to the visual cue and doubled the total number of trials, such that there 

were now 2,000 training trials and 2,000 test trials. Using computational modelling, 

the authors inferred observers’ estimated sensory uncertainty and the separation 

between the two Gaussian distributions. The distance between the two distributions 

was estimated to be 4.8cm (across all subjects), close to the true value of 4cm, 

indicating that subjects accurately inferred the bimodal shape of the distribution. 

However, learning occurred on the order of thousands of trials and large individual 

differences remained. This suggests that observers learnt the bimodal distribution, 

but at the cost of using more resources, becoming slower and more variable.  

 More recently, Chalk et al. (2010) had participants estimate the direction of 

motion of coherently moving dots, and found that they began to expect the dots to 

move in the direction(s) they had most frequently seen, as shown by a bias towards 

reporting those directions. When the dots were moving in the most frequent 

directions, participants spotted this faster and more accurately that other, more 

infrequent motion directions. On trials where there were no dots, expectations about 

the most likely motion direction led to participants still reporting seeing dots (i.e., 

hallucinations) and that these dots moved in the most frequently presented 

directions. These data can be well explained by a Bayesian model that combines a 

noisy estimate of the current direction of the dot cloud with a prior about the most 

likely motion direction (Chalk et al., 2010; Karvelis et al., 2018). This observation was 

confirmed when the Bayesian model outperformed all other models the authors 

tested. Together with Körding & Wolpert's (2004) work, this study supports the idea 

that humans can learn and compute with bimodal prior distributions. 

 Using the visual motion estimation task established in the previous study 

(Chalk et al., 2010), Gekas et al. (2013) examined whether participants could learn 

two prior distributions simultaneously, with different colours differentiating between 

the distributions. In one experiment, they used uniform and bimodal distributions, 

and in a second experiment, they used bimodal and trimodal distributions. When the 

underlying distributions were uniform and bimodal, the distributions were aggregated 

and applied equally across all conditions; colour had negligible effects on 
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distinguishing between the distributions. When one distribution was bimodal and the 

other trimodal, observers’ biases were compatible with learning some features of the 

underlying distributions, although they again failed to use this knowledge in the 

correct settings (Gekas et al., 2013). However, adults demonstrated intact ability to 

learn two distinct distributions at once in a distance reproduction experiment where 

the distributions were identified by symbolic cues (Petzschner et al., 2012). A major 

difference between the two studies is the fact that to distinguish between the 

distributions, Petzschner et al. (2012) used symbolic cues in the form of written 

instructions indicating whether the distance to be reproduced would be ‘short’ or 

‘long’; the cue distinguishing the distributions was explicit as opposed to implicit 

(colour) in Gekas et al. (2013). Arguably, even though people have been found to 

learn relationships between arbitrary paired cues over multiple sessions (Ernst, 

2007), there is only weak evidence of colour as an effective cue for categorisation 

(Howard et al., 2013; Seydell, 2010). There have been a few exceptions to this; for 

example, where the stimuli correlate naturally with colour, as in the case of lighting 

(Kerrigan & Adams, 2013).  

On the other hand, Bejjanki et al. (2016) showed that human participants can 

learn two prior distributions at once, with the distinct distributions identified by 

different stimulus locations and colours. Subjects had to locate an invisible ‘bucket’, 

which sometimes appeared on the right, and sometimes on the left side of the 

screen. On each trial, subjects would see some locations people have guessed the 

bucket to be in the past; these guessed locations appeared as either all green or 

white dots, depending on the distribution from which the bucket’s true location was 

drawn. This study shows that participants could learn the two distinct distributions, 

suggesting that they can use colour information to differentiate between the 

distributions. Perhaps more importantly, Bejjanki et al. (2016) and Petzschner et al. 

(2012) used distributions of the same type (e.g., uniform distributions with different 

means, Petzschner et al., 2012), as opposed to complex multimodal distributions, 

such as a mixture of bimodal and uniform distributions as done by Gekas et al. 

(2013). It is therefore possible that using a mixture of distributions of different types 

might have been the limiting factor in some studies (e.g., Gekas et al., 2013).  
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Adult observers can also learn different prior distributions when presented 

sequentially. For instance, Vilares et al. (2012) changed the variance of the prior 

between blocks of trials and found that subjects’ relative weights differed significantly 

between the prior conditions. A similar result was found in a study by Berniker et al. 

(2010): subjects relied more strongly on the current sensory input in the block with 

the wider prior variance. A caveat is that the strongest effects were observed when 

switching from a narrow to wide prior variance than the other way around. An 

enhanced sensitivity for narrower priors when experienced first has been reported by 

other studies, as well. For example, Miyazaki et al. (2005) demonstrated that 

subjects adjust their behaviour faster for narrow-to-wide changes than wide-to-

narrow changes. Kording et al. (2004) also found that subjects decreased their 

reliance on the prior when its variance switched from narrow to wide; subjects did not 

change their weighting of the prior when it switched from wide to narrow. As was 

argued by Trommershauser et al. (2011), one possible reason for the slower 

adaptation to wide-to-narrow changes than the other way around is that when the 

change is from narrow to wide, observers experience a sudden surge of ‘surprising’ 

observations (i.e., unexpected under the narrow prior distribution). In contrast, when 

the change is from wide to narrow, observers have to notice that the stimuli are no 

longer appearing at the edges of the distribution; a process that may take a long time 

(Trommershauser et al., 2011). 

Taken together, these studies suggest that learning and efficient use of prior 

information is heavily influenced by the complexity of the distribution (as was agued 

by Acerbi et al., 2014b): whilst the statistics of a normal distribution can be picked up 

after only ~200 trials (Berniker et al., 2010), adapting to a prior that has a bimodal 

distribution may take longer, requiring no less than thousands of trials (Körding & 

Wolpert, 2004). However, in none of these studies has it been possible to tease 

apart whether it is the learning of the prior or the efficient, statistical optimal use of 

priors that has been affected by complexity. In the next section, we mention briefly 

studies that have sought to tease these two apart.   

 

1.5.2.1.3 Suboptimalities in the Learning or Use of Priors? Suboptimalities 

in perceptual decision-making are well documented; however, it is not known 
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whether these suboptimalities arise due to difficulties in learning and representing 

the prior distribution or learning how to use it efficiently. For example, Acerbi et al. 

(2014b) eliminated the need to learn the prior by explicitly showing it on every trial 

and found that performance did not vary as a function of how complex the 

distribution was, with near identical performance across bimodal and simple 

Gaussian priors. The authors noted previous studies which contrast these data, 

showing that as compared with unimodal priors, evidence of efficient use of bimodal 

priors only begins to show when participants had performed thousands of trials 

(Körding & Wolpert, 2004) or when the data are pooled together (Chalk et al., 2010). 

Comparison between these studies led the authors to conclude that differences in 

behaviour with simple vs. complex distributions reported previously are likely driven 

by difficulty in learning more complex distributions, and not using them efficiently 

(Acerbi et al., 2014b).  

 This interpretation contrasts results by Bejjanki et al. (2016). They tested 

whether observers would be biased in the direction of the prior when no sensory 

information was available (i.e., on prior-only trials). Specifically, a ‘green’ or ‘white’ 

rectangle was rapidly flashed, indicating the side of the screen the ‘bucket’ was 

located. There was no significant difference between observers’ estimates and the 

‘true’ prior means, suggesting that observers had learned the means of the 

underlying distributions. Also, the two priors were weighted differently throughout the 

experiment, suggesting that their variances were also tracked and taken into 

account. This suggests that the suboptimalities are likely to have arisen because of a 

failure to use the prior and sensory information efficiently, not because adult 

observers struggle with learning the statistics of distributions. However, these data 

cannot conclusively demonstrate this because the estimated prior variances were 

not measured directly. Future research is needed to determine the exact source of 

suboptimalities that have been previously observed. 

 

1.5.2.2 Contextual Priors in the Developing Brain. 

 
1.5.2.2.1 Infants Extract Statistical Regularities in Their Environments. 

Infants can implicitly learn statistical regularities, and notice when these regularities 
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had broken down, not only in their natural environments but also within experimental 

tasks themselves in the first year of life (Bulf et al., 2011; Fiser & Aslin, 2002; 

Kirkham et al., 2002, 2007; Tummeltshammer et al., 2017; Tummeltshammer & 

Kirkham, 2013; Wu et al., 2011). Saffran et al. (1996) presented a stream of syllables 

to 8-month-old infants and found that the 8-month-olds learned the transitional 

probabilities between syllables within minutes of exposure. Learning was measured 

through looking times where infants showed longer looking times to the novel 

syllable orderings compared to the familiar syllable orderings. Saffran et al.'s (1996) 

work has been interpreted as revealing a mechanism by which infants use 

conditional probabilities to segment spoken speech into syllables and words (Rohlf et 

al., 2017). Similarly, infants can learn statistical regularities in tone sequences 

around the same age (Saffran et al., 1999) and in visual patterns at 9 months (Fiser 

& Aslin, 2002). For example, Fiser and Aslin (2002) showed that 9-month-old infants 

who were presented with multi-element visual scenes preferred to look at the 

element pairs which appeared together more frequently than those who did not. 

Kirkham et al. (2002) presented 2-, 5- and 8-month-olds with repeated sequences of 

visual stimuli which followed a statistically predictable pattern. After, the infants were 

shown these same sequences but this time mixed with novel sequences which 

consisted of the same stimuli. Kirkham et al. (2002) found that infants in every age 

group looked longer at the novel sequences. This result suggests that infants can 

learn statistical regularities as early as 2 months of age.  

  

1.5.2.2.2 Are Children as Good as Adults at Learning Statistical 
Regularities? Several studies have demonstrated that children are better at learning 

statistical relationships implicitly compared to adults (Janacsek & Nemeth, 2013; 

Nemeth et al., 2013). One example is the study of Jost et al. (2011), who sought to 

identify the neural correlates of statistical learning in 6- to 8-year-olds, 9- to 12-year-

olds and adults: learning-related ERPs peaked earlier in children than adults, 

suggesting that children learned the statistical structure faster (Rohlf et al., 2020). 

Note however that not all studies have found that children are better at extracting 

statistical relationships than adults. For example, experiments by Saffran and 

colleagues (1996, 1999) found that 8-month-old infants are as good as, but no better 
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than, adults in learning the statistical regularities embedded in auditory sequences. 

Better learning in older children and adults has also been reported (Kirkham et al., 

2007; Maybery et al., 1995). Using a visual triplet learning task, Arciuli and Simpson 

(2011) showed that extracting statistical regularities improved between 5 and 12 

years of age, and even further in young adults. This might be explained by the fact 

that learning stimulus triplets is more costly in terms of working memory and other 

cognitive resources than learning the conditional probability of two stimuli as used in 

many other studies (e.g., Emberson et al., 2015; Kouider et al., 2015). This 

interpretation is supported by studies showing that working memory, and executive 

functions more generally, develop over the course of childhood (Zelazo et al., 2008). 

As was pointed out by Rohlf et al. (2020), it is thus possible that greater cognitive 

costs (e.g., higher working memory demands) might have been the limiting factor in 

the study by Arciuli and Simpson (2011). Although the evidence is mixed, it seems 

as though more complex and a higher number of regularities (which draw more 

heavily on still-developing executive functions, Gur et al., 2012; Zelazo et al., 2008) 

seem to be better learned the older the children become.  

 

1.5.2.2.3 Can Children Use Statistical Regularities to Improve 
Perception? Only a small number of studies have examined at what age children 

learn to incorporate prior knowledge optimally. Six-to-eight-year-olds, presented with 

noisy sensory information about the target stimulus (cloud of four dots at one of three 

levels of uncertainty) and explicit knowledge about previous stimuli (the prior), 

weighted the sensory information by its reliability but not the prior when estimating 

the location of a target (Chambers et al., 2018). Older children (> 9 years), on the 

other hand, weighted both sources of information (sensory information and prior) 

according to their reliabilities. These results were interpreted as showing that the 

basic mechanism allowing children to optimally integrate evidence from various 

sources does not develop before 9-10 years of age (Chambers et al., 2018).  

An alternative explanation is that children’s abilities to optimally combine are 

fundamentally limited by ‘resource constraints’, such as insufficient working memory 

capacity or cognitive control (Bejjanki et al., 2019; Bejjanki & Aslin, 2020; Lieder & 

Griffiths, 2019). This hypothesis was supported by Bejjanki et al. (2019) who 
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investigated whether optimal integration of prior knowledge is influenced by task 

demands; when using a simple (Gaussian) prior they found adult-like rate of learning 

and use of prior information while with a bimodal prior they did not: instead, 6-7-year-

old children systematically placed more weight on sensory signals than was optimal, 

even after a thousand trials. Working memory (and other executive functions, such 

as inhibitory control and flexibly switching) may be a factor here. Learning the mean 

and variance of a single distribution unlikely touches the limits of working memory – 

learning the statistics of two underlying distributions at the same time might. This 

idea – that children’s ability to track and optimally use information about the statistics 

of the environment depends on the complexity of the environment, with greater 

complexity drawing more on cognitive resources – is consistent with resource 

rational accounts (Bejjanki & Aslin, 2020; Lieder & Griffiths, 2019). These accounts 

propose that there is an upper limit on the total amount of resource that can be 

invested; if this upper limit is much higher in adults, compared to younger children, 

then limitations in executive functions might be the constraining factor, and not that 

children are limited in, or ultimately lacking the ability to optimally combine.  

 

1.5.2.2.3.1 Executive Function Continues to Develop. Executive functions 

are high-level cognitive processes, such as memory, sustaining attention and 

suppressing impulses (Diamond, 2013). We know that executive functions are linked 

to higher IQ (Arffa, 2007) and educational attainment (Best et al., 2011), and that 

they improve considerably between early childhood and mid-twenties (Best & Miller, 

2010; Gur et al., 2012). Some of the strongest evidence in support of this comes 

from studies reporting increases in connectivity among fronto-parietal regions (Baum 

et al., 2017; Gu et al., 2015; Hagmann et al., 2010; Huang et al., 2015; Power et al., 

2010), known to be important for executive function (Alvarez & Emory, 2006; 

Mansouri et al., 2017; Niendam et al., 2012; Satterthwaite et al., 2013). Altogether, 

multiple lines of evidence suggest that executive functions develop over the course 

of childhood and adolescence. If we assume that learning and using prior knowledge 

in a statistically optimal manner depends, in part, on the recruitment of executive 

functions, this could explain why children do not become adult-like in their abilities to 

optimally combine until later in childhood or adolescence. There are two executive 
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functions– working memory and the ability to store multiple ‘rules and switch 

between them – that we believe are important for understanding how we learn and 

efficiently use novel statistics, in particular. In the following paragraphs, we explain 

what role working memory and cognitive flexibility might play in the ability to combine 

optimally.  

 

1.5.2.2.3.1.1 The Importance of Remembering. Working memory is of 

special interest because it plays a central role in our ability to uncover statistical 

regularities in our environment (Baddeley, 2003, 2007; Bianco et al., 2020). As 

Bianco et al. (2020) argues, the detection of such regularities relies upon our 

memory storing individual experiences for long enough to allow us to figure out how 

they fit together. Working memory, therefore, is likely to play a crucial rule in 

accumulating information from the past, which in fact, is what we know as the prior. 

One could imagine that given that working memory continues to develop across 

adolescence and into early adulthood (Alloway et al., 2006; Crone et al., 2006; 

Gathercole et al., 2004; Luna et al., 2004, 2015; Thomason, Moriah et al., 2009), 

younger children would have a hard time remembering all past events, needed to 

infer the correct underlying regularities. Given these ties between prior learning and 

working memory and the late maturation of prefrontal regions, we might predict that 

adult-like integration of prior information is, at least in part, influenced by cognitive, 

and more specifically, working memory development.  

 

1.5.2.2.3.1.2 The Importance of Remembering and Handling Multiple 
‘Rules’. Secondly, it is possible that the ability to store and alternate between 

multiple ‘rules’ may play a role in learning to weight sensory and prior information 

according to their reliabilities, even if it is not required to support learning of the prior. 

Bejjanki et al.'s (2019) finding that 6-7-year-old children were adult-like in how they 

weighted sensory information when only sensory uncertainty varied, but now when 

both prior and sensory uncertainty varied (increased task complexity) supports this 

assertion. Similarly, it has been shown that 4-year-olds could store information and 

suppress an unwanted response at the time when task ‘rules’ remained stable 

(Davidson et al., 2006) but could not flexibly switch between task rules in similar 
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ways to adults as late as 13 years of age (see also Luciana & Nelson, 1998). Such 

results indicate that the ability to store and flexibly switch between rules might play a 

role in learning to weight by reliability, especially in children, when this ability is still 

developing.  

 
1.5.2.2.4 Filling the Gaps. Very few studies have explored the development 

of prior and sensory information (Bejjanki et al., 2019; Chambers et al., 2018), so we 

know very little about the age-related changes in learning and efficient use of novel 

statistics throughout childhood, or the factors that may underlie the development of 

these abilities. Because another aspect of efficient information integration, 

multisensory cue combination, also does not develop until the age of around 9 years 

(e.g., Gori et al., 2008; Nardini et al., 2008), one could imagine that they share a 

common, central problem with representing, or computing with probabilities. Another 

possibility – which is specific to learning and use of novel statistics – is that children 

are slower to accumulate noisy sensory information over time. This slowness could 

be explained by the fact that the processes of evidence accumulation and reliability-

weighting depend, at least in part, on executive functions (e.g., working memory) 

which are still very much in development (Best & Miller, 2010; Gur et al., 2012). Yet, 

this hypothesis has not yet been tested. To fill this gap, in Chapter 3, we tracked the 

detailed time course of adaptation to novel statistical regularities (Experiment 1) and 

probed two potential sources of slower tuning of children’s behaviour to task 

statistics: i) limited working memory for storing the prior (Experiment 2) and ii) limited 

executive function abilities for learning and implementing multiple weighting rules 

simultaneously (Experiment 3). 

 
1.5.2.3 Individual Differences. Healthy adult observers show considerable 

individual differences in how well they can detect and efficiently use statistical 

regularities in their environments (Frost et al., 2015; Misyak et al., 2010; Siegelman 

& Frost, 2015). As we discussed in Section 1.5.2.2.3.1.1 above, working memory is 

critical to our ability to store recent experiences in memory for long enough to detect 

any underlying patterns. We know that working memory capacity varies greatly 

between individuals (Kane et al., 2007). It has been shown that it is advantageous to 
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have a higher working memory capacity when making decisions under uncertainty 

(Bagneux et al., 2013; Cui et al., 2015), as well as retaining and implementing a new 

decision or rule (Duncan et al., 2012; Pereg & Meiran, 2019).  

 

1.5.2.3.1 Filling the Gaps. As elaborated above, there are inter-individual 

differences in the ability to detect statistical patterns. One source of this variance 

could be individual differences in working memory capacity. Yet, this hypothesis has 

not yet been tested. To fill this gap, in Chapter 4, we asked whether working memory 

capacity, in particular visuospatial working memory capacity, could uniquely explain 

a proportion of the variance in how close to optimal adults are.  

 

1.6 The Caveat 
As many researchers have pointed out (Ma, 2012; Ma & Jazayeri, 2014; 

Maloney & Mamassian, 2009), a key limitation of psychophysical studies is that there 

is no definite evidence that observers are in fact performing Bayesian inference, 

rather than a simpler heuristic, such as reinforcement learning, which approximates 

it. Laquitaine and Gardner (2018) showed that a Switching observer that alternates 

between prior mean and sensory evidence can capture experimental data from a 

motion direction estimation task better than a Bayes-optimal observer, despite the 

mean and standard deviation of estimates matching well with optimal predictions. 

Norton et al. (2019) also found that their data was better accounted for by an 

exponential averaging model with a bias towards equal priors, which was, 

nonetheless, indistinguishable from a flexible variant of the Bayesian model with a 

bias towards equal probability. These studies suggest that just because a Bayesian 

model can explain broad qualitative features of the data, it does not mean that 

subjects perform Bayesian inference. It is important to keep this caveat in mind when 

interpreting our and others’ findings. One way to check whether observers perform 

some form of Bayesian inference is to look at whether subjects can instantly transfer 

probabilistic information from one context to the other (Beierholm et al., 2009a; 

Maloney & Mamassian, 2009). It has previously been shown that likelihood variance 

learning can immediately transfer to a new prior (Sato & Kording, 2014) and that 

priors whose distribution changed on each trial could be immediately computed with 
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(Acerbi et al., 2014a). However, some studies found no evidence of transfer (Frost et 

al., 2015; Hewitson et al., 2018; Yin et al., 2019) and others suggested that the 

ability to transfer differs depending on whether the observer is transferring 

information about the mean or the variance of the distribution (Fernandes et al., 

2014; Feulner et al., 2020).  

 

1.6.1 Filling the Gaps 
In Section 1.6, we showed that although there are many studies on transfer, 

we know very little about the exact circumstances in which observers are able to 

generalise what they learn in one situation to new situations. For example, it may be 

that generalisation becomes more difficult as the complexity of the environment 

increases. Thus, across several experiments in Chapter 2, observers localised a 

hidden target from visual signals (likelihood) and previous target locations (prior). 

Crucially, we manipulated the variance of the likelihood and the prior. Another 

important aspect of the experiments reported in Chapter 2 was the interleaved (as 

opposed to block-based) design for changes in these parameters, which had several 

consequences. For example, it is likely that compared to some previous studies of 

transfer (e.g., Sato & Kording, 2014), our task was substantially more difficult since 

the prior and likelihood variances changed unpredictably trial to trial (see also 

Bejjanki et al., 2016). This also prevented subjects from using a template-match 

strategy. Crucially, we introduced a new level of likelihood variance in the last two of 

the five experimental blocks, which allowed us to test the prediction of transfer: that 

the change in weights in response to the new likelihood variance would be 

immediate. The key research question of the experiments in Chapter 2 was: did adult 

observers immediately change their weight on the sensory cue, or did they need 

more time to adapt to the new variance?  

 

1.7 Conclusions 
The work in this thesis aims to better understand how people learn and make 

efficient, statistically optimal use of novel statistical distributions. In Chapter 2, we 

examined one potential limitation to using statistics in an optimal, that is Bayesian, 

way in adults – environmental complexity. In Chapter 3, we traced the time course of 
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adaptation to such statistics in children and adults and probed some factors that may 

have affected age differences in the extent and rate of this adaptation. Lastly, in 

Chapter 4, we delved into individual differences in working memory in adults and 

asked whether these predict the extent to which different individuals efficiently 

weighted sensory and prior information. Altogether, these studies speak to questions 

about the limits and the development of abilities to use novel environmental statistics 

in an efficient, statistically optimal manner.  

 
1.8 Experimental Chapters  
 
Chapter 2: Bayesian transfer in a complex spatial localization task 

Whether the brain performs some form of Bayesian inference (Chater et al., 

2006; Dayan et al., 1995), or just approximates it, is open for debate. There are a 

number of different ways to rule out simple heuristics (e.g., reinforcement learning) 

but probably the simplest one is to test whether observers generalise previously 

learned information to novel situations (‘Bayesian transfer’; Maloney & Mamassian, 

2009). Across three experiments in Chapter 2, therefore, we apply the ‘Bayesian 

transfer’ approach to investigate whether observers combine information from past 

and current signals in a Bayesian manner in a complex task, or whether they 

implement a heuristic version of the optimal strategy by forming a look-up table. We 

were also interested in whether their strategy might change if (1) they were given 

more information about the underlying statistics (Experiment 2), (2) we increased the 

exposure time to the different prior and likelihood combinations (Experiment 3). We 

investigated this in adult participants only. 

 

Chapter 3: Development of efficient adaptation to novel task statistics 

Research exploring whether and at what age children learn to integrate prior 

knowledge is limited, as is our understanding of either overall age changes in 

learning and efficient use of novel statistics in childhood, or the factors that might 

underlie development of these abilities. Moreover, most previous studies averaged 

performance over the experiment as a whole (Bejjanki et al., 2019; Chambers et al., 

2018). We therefore do not know what the time course of adapting to novel, 

changing task statistics over time is, and whether it differs between adults and 
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children. Studying the time course is important because it can show whether children 

are generally incapable of using prior statistics efficiently, or whether it takes them 

longer to learn how to make efficient use of such statistics. Therefore, in Chapter 3, 

we traced for the first time the time course of how children and adults adapt. In two 

follow-up experiments we probe two potential sources of slower tuning of children’s 

behaviour to task statistics: i) limited working memory for storing the prior 

(Experiment 2) and ii) limited executive function abilities for learning and 

implementing multiple weighting rules simultaneously (Experiment 3). We 

investigated this in adults and children aged between 6 and 11 years. 

 

Chapter 4: Individual differences in working memory capacity and prior 
weighting 
 We know that there is considerable individual variation in the ability to detect 

and extract statistical regularities even in healthy adults (Frost et al., 2015; Misyak et 

al., 2010; Siegelman & Frost, 2015). The storage capacity of working memory, which 

is also known to differ between individuals (Kane et al., 2007), will likely play a key 

role in the acquisition of statistical regularities. Therefore, in Chapter 4, we sought to 

test whether working memory capacity can predict inter-individual variation in prior 

weighting. We investigated this in adults using an individual differences approach. 
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Chapter 2 

Bayesian transfer in a complex spatial localization task 
 

2.1  Introduction 
 

Imagine that you are trying to give your cat a bath, but as soon as it sees the 

bathtub, it gets scared and runs away to the garden (Kording et al., 2007; Vilares & 

Kording, 2011). So, you are walking around your garden, trying to figure out where 

your cat has hidden, and you hear a “meow” (auditory cue). This perceptual cue is 

useful but not perfectly reliable and will not allow you to pinpoint exactly the cat’s 

position. However, from previous experience, you may have learnt that your cat often 

hides in the bushes, furthest from the pond (priors). The uncertainty in the two pieces 

of information that you have (the auditory cue and the prior information) allow them 

to be expressed as probability distributions over location and the optimal strategy for 

estimating the cat’s location is to integrate the sensory and prior information 

according to the rules of Bayesian Decision Theory (BDT). Recent studies show that 

people behave as if they deal with uncertainty in this way, for example, when 

estimating the position of a hidden target (Berniker et al., 2010; Körding & Wolpert, 

2004; Tassinari et al., 2006; Vilares et al., 2012), direction of motion (Chalk et al., 

2010), speed (Stocker & Simoncelli, 2006; Weiss et al., 2002), or the duration of a 

time interval (Acerbi et al., 2012; Ahrens & Sahani, 2011; Jazayeri & Shadlen, 2010; 

Miyazaki et al., 2005). In all of these studies, human observers integrated knowledge 

of the statistical structure of the experiment (acquired from feedback in previous 

trials) with sensory information, taking a weighted average according to their relative 

reliabilities in order to maximise his or her score on the task (Ma, 2012). However, 

other studies report sub-optimal behaviour, finding that even though observers take 

into account the uncertainty of the current and prior information, the weights do not 

match those of an ideal Bayesian observer (Bowers & Davis, 2012; Jones & Love, 

2011; Rahnev & Denison, 2018). The fact that human performance ranges from 

close-to-optimal to largely suboptimal suggests that Bayesian models may describe 

behaviour well in some cases, but not in others. Understanding when BDT can and 

cannot provide an accurate model of human behaviour is an important step towards 
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understanding the computations and approximations used by the brain to support 

adaptive behaviour.  

One factor that may influence how close performance is to BDT (“optimal”) 

predictions is task complexity. For example, Bejjanki, Knill, and Aslin (2016) asked 

observers to estimate the position of an unknown target (a bucket at a fairground), 

whose true location was randomly drawn from one of two Gaussian distributions, 

with different means and variances (priors). On each trial, eight dots were drawn 

from a Gaussian distribution centered on the true location with either a low, medium 

or high variance to form a dot cloud that served as a noisy cue to target location 

(likelihoods). To successfully estimate the position of the target, subjects could use 

both the likelihood, obtained from the displayed dots, and the prior, obtained from the 

distribution of previous target positions that they could learn from the trial-by-trial 

feedback. The study found that subjects adjusted their responses according to the 

reliability of sensory and prior information, giving more weight to the centroid of the 

dot cloud (likelihood) when the variance of the prior was high and the variance of the 

likelihood was low; a signature of probabilistic inference (Ma, 2012). More generally, 

these results are also in agreement with previously described work, which used a 

single prior change (e.g., Berniker et al., 2010; Vilares et al., 2012). However, unlike 

in the studies using only a single prior change, the weight placed on the likelihood 

differed from that of the ideal-Bayes observer whenever the likelihood uncertainty 

was medium or high. The magnitude of the difference varied with both likelihood and 

prior uncertainty. As the likelihood became more uncertain, the difference from 

optimal increased, participants placing more weight on the likelihood than optimal. In 

addition, the difference from optimal was greater in the narrow prior condition. In a 

follow-up experiment, participants experienced one prior distribution only, with 

double the amount of trials used in the original study, finding that subjects’ weights 

on the likelihoods approach optimal with increasing task exposure, suggesting more 

time is required to accurately learn the variances of the prior distributions and that 

learning is disrupted when trying to learn two distributions simultaneously (Bejjanki et 

al., 2016).  

Even in cases when likelihood-weighting might match the prediction of an 

ideal-Bayes observer, Maloney and Mamassian (2009) noted that such “optimal” or 

“near-optimal” performance alone is not enough to show that the brain is following 
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Bayesian principles. Maloney and Mamassian (2009) showed that a reinforcement-

learning model that learns a mapping from stimulus to response (learning a separate 

look-up table for each prior and likelihood pairing in the types of tasks discussed 

here) will also appear to optimally weight prior and likelihood information without 

learning the individual probability distributions.  

Maloney and Mamassian (2009) suggested that the two models may be 

distinguished by asking whether subjects are able to immediately transfer 

probabilistic information from one condition to another (hereafter known as Bayesian 

transfer). These transfer criteria are a strong test for use of Bayesian principles 

because they make very different predictions for how the observer will behave when 

presented with a new level of sensory noise halfway through the task. If people 

follow Bayesian principles, we would expect them to immediately adapt to the new 

sensory uncertainty, and integrate it with an already-learnt prior, without any need for 

feedback-driven learning. On the other hand, the reinforcement-learner would 

require a certain amount of exposure to the new likelihood and prior pairing (with 

feedback) in order to form a look-up table that could then lead to optimal 

performance.  

To our knowledge, only one study has tested Bayesian transfer in the context 

of sensorimotor learning. Sato and Kording (2014) tested the ability of participants to 

generalise a newly learnt prior to a previously learnt likelihood. In their task, Sato and 

Kording (2014) first trained participants to complete the task when only a single 

Gaussian prior was present (either narrow or wide) that could be paired with either a 

low or high uncertainty likelihood by giving feedback on every trial. After 400 trials, 

the prior switched to the other level of uncertainty (narrow to wide or wide to narrow) 

and for the following 200 trials, participants saw the new prior paired only with one of 

the likelihoods (either low or high) and continued to receive feedback. In the second 

part of the experiment, subjects still saw the second prior variability, but now with the 

first likelihood again, which they had so far only seen paired with the first prior. They 

did not provide any feedback in this part of the task to examine how subjects 

transferred their knowledge of the prior to the new likelihood. The weight placed on 

the likelihood in the newly-reintroduced likelihood condition was immediately different 

to the weight placed on the same likelihood before the change in the prior. In other 

words, participants’ behaviour in this likelihood condition changed dependent upon 
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prior uncertainty without any explicit training with this prior and likelihood pairing. 

This is evidence of Bayesian transfer and hence, that participants solved the task 

using Bayesian principles – representing probabilities – rather than a simpler 

strategy such as a look-up table learned by reinforcement. 

Whether the same will hold in more complex scenarios is unclear. Indeed, it 

has been repeatedly pointed out that exact Bayesian computations demand 

considerable computational resources (e.g., working memory, attention) such that 

the brain might not be able to perform these computations in more complex tasks 

and will instead resort to heuristics (Beck, Ma, Pitkow, Latham, & Pouget, 2012; 

Gardner, 2019). We have already seen that performance in more complex tasks is 

far from optimal (e.g., Bejjanki et al., 2016), suggesting that there are limits to 

humans’ ability to learn and optimally integrate prior distributions with sensory 

information when tasks become more complex. Establishing the limits of BDT as a 

model of human behaviour will inform models of information processing in the human 

brain. 

Here we ask whether people will show Bayesian transfer in a complex 

situation with multiple priors and likelihood variances, similar to Bejjanki et al. (2016). 

We report three experiments in which a target is sampled from one of two possible 

prior distributions (with different means and different variances) and then cued with 

one of three possible likelihood variances (with the variance itself also displayed). 

Likelihood and prior variances were identical to those used in Bejjanki et al. (2016) in 

terms of visual angle, in order to match the true (objective) reliabilities of the cue and 

prior across the studies. The first two experiments tested for Bayesian transfer by 

only introducing the high likelihood variance in blocks 4 and 5 of the task. The only 

difference was that in the second experiment, participants were explicitly told that the 

prior variances differed, to test whether this would promote closer-to-optimal 

performance. The last experiment was used to check whether removing the 

additional burden of transfer allows participants to learn the complex environment 

correctly by presenting all likelihood conditions from the start of the experiment – a 

replication of Bejjanki et al. (2016). 

To summarise, in the first experiment, we found that observers did not show 

evidence for Bayesian transfer. When a new high variance likelihood was introduced 

in blocks 4 and 5, they did not weight it less than the familiar medium variance 
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likelihood. This is at odds with the idea that observers perform full Bayesian 

inference, combining prior and likelihood based on relative variances, and thus does 

not provide evidence for Bayesian transfer. In the second experiment, observers did 

show evidence for transfer, weighting the newly-introduced high variance likelihood 

significantly less than the medium variance likelihood. However, in both experiments, 

the weights placed on the medium and high variance likelihoods were much higher 

than optimal. These weights remained sub-optimal in the final experiment where all 

likelihood variances were present from the start of the task. These results extend our 

knowledge of how potentially-Bayesian perceptual processes function in complex 

environments. 

 

2.2   Experiment 1: Testing Transfer to a New Level of Likelihood Variance 
In the first experiment, we tested whether Bayesian transfer would occur in a 

complex environment with two priors, similar to the one used by Bejjanki et al. 

(2016). We trained participants on a spatial localization task with two likelihood 

variances and two prior distributions (with different means and variances). In initial 

training, they were exposed to all four combinations (trials interleaved), with 

feedback. If, like participants in Bejjanki et al. (2016), they weighted the likelihood 

and the prior differently across conditions in line with their differing reliabilities, this 

would show that they had learned and were using the priors. However, such 

reliability-weighting could either be done via Bayesian inference – representing 

probabilities – or via a simpler strategy akin to learning a look-up table (Maloney & 

Mamassian, 2009). To distinguish these possibilities, after the training trials, we 

tested for “Bayesian transfer” by adding a new higher-variance likelihood distribution 

to the task. If participants deal with this newly-introduced likelihood in a Bayesian 

manner, they should immediately rely less on this new likelihood information than 

they did on the likelihoods in previously-trained conditions. Alternatively, if their initial 

learning is more rote in nature (i.e., more like a look-up table), participants would 

begin to place a different weight on the new likelihood only after extensive training 

with feedback.  
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2.2.1 Methods 
 

2.2.1.1 Overview. Subjects performed a sensorimotor decision-making task 

on a computer monitor where they estimated the horizontal location of a hidden 

octopus. The true location was sampled from one of two distinct Gaussian 

distributions that differed in mean and variance (narrow or wide priors). On each trial, 

the relevant prior distribution was indicated by the colour of the likelihood information 

- eight dots that were described to the participant as the “tentacles” of the octopus. 

The horizontal locations of the eight dots were sampled from a Gaussian distribution 

centred on the true location that had either low, medium, or high variability (the 

likelihood). To estimate the octopus’ position, participants could use (although this 

was never explicitly mentioned) both the likelihood and prior information, with the 

subjects able to learn the latter via trial-to-trial feedback. Participants completed five 

blocks of trials. Crucially, in blocks one to three only the low and medium likelihood 

variances were paired with the narrow or wide priors. The high likelihood condition 

was only introduced in blocks four and five to test for evidence of Bayesian transfer.  

 
2.2.1.2 Participants. Participants were recruited from the Durham 

Psychology department participant pool, Durham University newsletter, and by word-

of-mouth. Twenty-six participants were recruited in total (13 female, mean age: 20.1, 

age range: 18-30 years). All participants had normal or corrected-to-normal visual 

acuity, and no history of neurological or developmental disorders. Each participant 

received either course credits or a cash payment of £10 for their time.  

 

2.2.1.3. Ethics. Ethical approval was received from the Durham University 

Psychology Department Ethics Board. All participants gave written, informed consent 

prior to taking part in the study. 

 

2.2.1.4. Stimuli and Apparatus. Stimuli were displayed on a 22-inch iiyama 

monitor (1680 x 1050 pixels), viewed at a distance of 60cm, using the Psychophysics 

Toolbox for MATLAB (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The stimuli 

were set against a blue background (to represent the sea).  
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The position of the octopus was sampled from one of two Gaussian 

distributions (priors): the narrow (standard deviation of 𝜎$% = 1% of screen width) or 

wide (standard deviation of 𝜎$& = 2.5% of screen width) priors. The side of the 

screen associated with each prior was counterbalanced across participants. One 

was always 35% of the way across the screen (from left to right), and the other 70%. 

When the narrow prior was centered on 35%, for example, the wide prior had a 

mean in the opposite side of the screen (i.e., to the right, centered on 70%). When 

the octopus appeared on the left-hand side (drawn from the prior centered on 35%) it 

was white, and when it appeared on the right (drawn from the prior centered on 70%) 

it was black.  

At the beginning of each trial, a cloud of eight dots (0.5% of screen width in 

diameter) appeared on the screen. The horizontal position of each dot was drawn 

from a Gaussian distribution centered on the true octopus location with either low 

(𝜎%% = 0.6% screen width), medium (𝜎%' = 3% screen width), or high (𝜎%& = 6% 

screen width) standard deviation (in the following referring to as low, medium and 

high variance likelihood conditions). The horizontal positions of the dots were scaled 

so that their standard deviation (SD) was equal to the true SD (𝜎%% , 	𝜎%'	𝑜𝑟	𝜎%&) on 

each trial while preserving the mean of the dots. We performed this correction so 

that participants would “see” the same variability across trials for each likelihood 

condition. This ensures that an observer who computes the reliability for the 

likelihood information trial by trial would always calculate the same value within 

likelihood trial types. The vertical positions of the dots were spaced at equal intervals 

from the vertical center of the screen, with half of the dots appearing above, and the 

other half, below the center. The vertical distance between each dot was fixed and 

equal to 1% screen width). Given that the vertical positions of the dots were fixed, 

only the horizontal position of the target was relevant. Participants estimated location 

only along the horizontal axis by moving a vertical green rectangle (measuring 1% of 

screen width in width and 3% of screen width in height) left or right, making this a 

one-dimensional estimation task. Participants received feedback in the form of a red 

dot (0.5% of screen width in diameter) that represented true target position.  

The combination of two priors and three likelihoods led to six trial types (all 

possible prior x likelihood pairings). The task was split into five blocks of trials with 
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300 trials per block. In the first three blocks of the task only four trial types were used 

(75 trials of each paring), with the high likelihood condition not shown in combination 

with either prior. The high likelihood condition was introduced in blocks four and five 

(50 trials per paring), in order to test for Bayesian transfer. Within each block, all trial 

types were interleaved. The trials were broken into runs of 20 trials. Within each run 

the trials for each prior type were arranged such that an ideal learner would have an 

exact estimate of the mean and variance of the prior distributions if evidence was 

accumulated over those 20 trials.  

We also included prior-only trials where subjects were told that a black/white 

octopus was hiding somewhere on the screen and instructed to find it. No sensory 

information was provided (no likelihood information). These trials were interleaved 

with the rest of the trials (one every 9 trials for each prior), and there were 83 trials in 

total, for each of the priors (narrow and wide).  

 

2.2.1.5. Procedure. Participants were instructed to estimate the position of a 

“hidden” octopus, indicating their estimate by adjusting the horizontal location of a 

“net” (green rectangle). Each trial started with the presentation of eight dots that 

remained on screen until the end of the trial (the likelihood information, described to 

the participants as the tentacles of the octopus) (Figure 2.1A). The eight dots could 

have one of three levels of uncertainty: low, medium, or high variance likelihood trials 

(Figure 2.1B). When the level of uncertainty was higher, the dots were more 

dispersed on the screen and, therefore, were a less reliable indicator of the true 

location of the octopus. Participants used the mouse to move the net to their 

guessed position, using a right click to confirm their choice (no time limit). Following 

a response, the true position of the octopus was shown as a red dot on the screen. 

Over the course of the experiment, the feedback served as a second cue to location 

since the true locations of the black and white octopi were drawn from different 

distributions. In other words, participants could learn a prior over each octopus’ 

location. We provided performance feedback on a trial-to-trial basis so that the priors 

could be learned. Specifically, subjects could potentially learn that the two sets of 

octopi (black/white) were drawn from separate Gaussian distributions centred at 

different locations on the screen and with differing levels of uncertainty (narrow and 

wide variance prior trials).  
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Figure 2.1. A) Illustration of the task. Participants were asked to estimate the position 

of a hidden target (the “octopus”, represented as the red dot) by horizontally moving 

a net (green vertical bar). At the beginning of each trial, participants were given noisy 

information about the location of the hidden target in the form of eight dots (the 

likelihood). Participants then moved the net to the estimated location and clicked to 

confirm their response, after which the actual target location was displayed. If the 

target was inside, or overlapped with, the net, a score was added to the participant’s 

score. B) The three likelihood variances. C) Illustration of a Bayes-optimal observer. 

A Bayesian observer would combine information about the prior uncertainty (learnt 

from the distribution of previous target locations) with the likelihood information on a 

given trial to optimally estimate the target location.  
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 To keep participants engaged, we incorporated an animation when the 

participant picked the right location of a cartoon octopus moving into a bucket 

centred at the bottom of the screen. In addition, participants would get one point 

added to their score if they “caught” the octopus. An octopus was caught if the true 

octopus position overlapped with the net placement by at least 50% of the red 

feedback dot’s size. The cumulative score was displayed at the end of each trial. 

Participants completed 5 blocks of 300 trials each for a total of 1500 trials. The five 

experimental blocks were performed in succession with a short break between each 

one. The experiment duration was approximately an hour and a half.  

 

2.2.1.6. Data Analysis. For each individual participant, we regressed 

estimated octopus position against the centroid (mean) of the cloud of dots 

(likelihood) on each trial. All regression analyses were done using a least squares 

procedure (the polyfit function in MATLAB). The slope of the fitted regression line 

quantifies the extent to which participants rely on the current sensory evidence 

(likelihood), as opposed to prior information. A slope of one suggests that 

participants only use likelihood information and a slope of zero suggests that 

participants rely only on their prior knowledge, ignoring the likelihood. A slope 

between zero and one suggests that both likelihood and prior information are taken 

into account, and the steeper the slope, the more participants rely on the likelihood 

and less on the prior information. Accordingly, we will refer to the fitted slope values 

as the weight placed on the likelihood.  

We also computed the weight that would be given to the likelihood in each 

condition by an ideal Bayesian observer with perfect knowledge of the prior and 

likelihood distributions (see Figure 2.1C for an illustration). The optimal weight on the 

likelihood was computed as:	 

𝑤($)*'+% =

1
𝜎%" 𝑛⁄
1

𝜎%" 𝑛⁄ + 1
𝜎$"

 

where 𝜎%" is the variance of the likelihood, 𝑛 is the number of dots that indicate the 

likelihood (in this case, there were 8 dots), and 𝜎$" is the variance of the prior.  



 58 

 To determine the proportion of the variance in responses that is accounted for 

by change in the estimate from the sensory cue, the coefficient of determination (𝑅") 

was calculated by linearly regressing participants’ responses against each estimate 

participants could have taken from the cue (i.e., arithmetic mean, robust average, 

median or mid-range). This was done for the combined data of all subjects in each 

experiment, across all blocks and trial types (prior and likelihood pairings). The 

estimate with the highest 𝑅" value was taken to be the estimate participants had 

most likely used. 

 Statistical differences were analysed using repeated-measures ANOVA with a 

Greenhouse-Geisser correction (Greenhouse & Geisser, 1959) of the degrees of 

freedom in order to correct for violations of the sphericity assumption if 𝜖 ≤ 0.75 and 

a Huynh-Feldt correction otherwise.  

We discarded a trial from analysis if the absolute error for that trial was in the 

top 1% of all absolute errors, computed separately for each prior and likelihood 

pairing across all blocks and participants (this rule excluded at most 13 trials per 

pairing for an individual subject).  

 
2.2.2 Results and Discussion for Experiment 1 

We first checked whether subjects took the mean as an estimate from the 

sensory cue, and not a heuristic, such as the robust average. In tasks similar to ours 

(Bejjanki et al., 2016; Chambers et al., 2018; Vilares et al., 2012), authors assume 

that observers use the mean of the dots as their best estimate of true location from 

the likelihood information. However, we did not explicitly tell our participants how the 

eight dots that formed the likelihood were generated, or that the best estimate they 

could take from them was their mean position, leaving open the possibility that 

observes may have taken a different estimate from the cue than the mean (de 

Gardelle & Summerfield, 2011; Van Den Berg & Ma, 2012). The mean horizontal 

position was found to explain the most amount of variance in participants’ responses 

(𝑅" = 0.996), relative to the robust average (𝑅" = 0.995), median (𝑅" = 0.995) or the 

mid-range of the dots (𝑅" = 0.992). This suggests that the mean of the dots is the 

estimate that participants take from the sensory cue.  
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We then examined whether the weight participants placed on the likelihood, 

relative to the prior, varied with respect to trial type (prior/likelihood pairing) for all the 

trial types present from the beginning of the experiment. Without this basic result – a 

replication of the pattern found by Bejjanki et al. (2016) – we could not expect them 

to transfer knowledge of the learnt prior distributions to the new high variance 

likelihood in the later blocks. This was a qualified success: for these trial types (blue 

and green bars in Figure 2.2), participants showed the predicted pattern, but placed 

more weight on the likelihood than is optimal (compare bar heights to dashed lines in 

Figure 2.2), in line with previous research (Bejjanki et al., 2016; Tassinari et al., 

2006). We conducted a 2 (narrow versus wide variance prior) x 2 (low versus 

medium variance likelihood) x 5 (block) repeated measures ANOVA with the weight 

given to the likelihood (the displayed dots) as the dependent variable. These results 

are shown in Table 2.1 and summarised here. There was a main effect of prior 

variance, with less weight on the likelihood when the prior was narrower (𝑝 < .001).  

There was also a main effect of likelihood variance (𝑝 < .001), where participants 

relied less on the medium variance likelihood. However, there was also a significant 

interaction effect of likelihood and prior (𝑝 = .001). When the prior was narrow, the 

decrease in reliance on the likelihood was smaller as the likelihood variance 

increased (𝑡(25) = 3.57, 𝑝 = .001).  

We found a main effect of block (𝑝 < 	 .001) and an interaction between block 

and likelihood (𝑝 = .014), with the medium variance likelihood weighted significantly 

differently across blocks (simple main effect of block, 𝐹(4,100) = 5.84, 𝑝 <

	.001, 𝜂$+,)*+%" =	 .189, weights decrease with increasing exposure), but not the low 

variance likelihood (no simple main effect of block, 𝐹(4,100) = 1.64, 𝑝 =

.169, 𝜂$+,)*+%" =	 .063). This suggests that participants adjusted, through practice, their 

weights on the medium variance likelihood, getting closer to optimal.  
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Figure 2.2. Mean weight placed on the likelihood information, separated by block and 

prior width in Experiment 1. Lower values represent a greater weight on the prior. 

Blue is low-variance likelihood (a tight array of dots), green is medium-variance 

likelihood (dots somewhat spread out), red is the later-introduced high-variance 

likelihood (highly spread out dots). Dashed lines show optimal-predicted values. 

Error bars are +/- 1 SEM. The far right is the average over blocks. 
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Table 2.1 

Results from a 2 (prior) x 2 (likelihood) x 5 (block) Repeated Measures ANOVA for 

the likelihood variances present from the beginning of the task (low and medium) in 

Experiment 1 

 

Examination of the prior-only trials shows successful learning of the priors. On 

average, subjects’ responses were not significantly different from the prior mean in 

the wide prior condition (𝑡(25) = −0.77, 𝑝 = .450). They were significantly different in 

the narrow prior condition (𝑡(25) = −2.78, 𝑝 = .010), although the bias was extremely 

small (95% CI: [0.06,0.41] percent of the screen width to the left). The median 

standard deviation of responses for all subjects was 1.4% (narrow prior) and 2.5% 

(wide prior): almost identical to the true prior SDs of 1.3% and 2.5%, respectively.  

Participants qualitatively followed the predicted optimal pattern of reweighting: 

like the dashed lines (predictions) in Figure 2.2, actual likelihood weights (bars) were 

higher for the wide prior (right) than the narrow prior (left), and higher for the low 

variance likelihood (blue) than the medium variance likelihood (green). However, 

comparing bar heights with dashed lines (predictions) shows that quantitatively, their 

weights were far from optimal. Participants systematically gave much more weight 

than is optimal to the likelihood when its variance was medium (Figure 2.2, green 

bars vs lines – 𝑝 < .001 in all blocks for the medium likelihood when paired with 

either prior). This over-reliance on the likelihood is in line with previous studies (e.g., 

Bejjanki et al., 2016), although stronger in the present study. Participants, therefore, 

accounted for changes in the probabilities involved in the task (e.g., weighted the 

 F df, dferror p Effect size (𝜂$") 

Likelihood 104.40 1, 25 <.001 .81 

Prior 28.08 1, 25 <.001 .53 

Block 7.72 4, 100 <.001 .24 

Likelihood x prior 12.77 1, 25 .001 .34 

Likelihood x block 3.32 4, 100 .01 .12 

Prior x block .51 4, 100 .21 .06 
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likelihood less when it was more variable), but did not perform exactly as predicted 

by the optimal strategy. 

Having found that participants’ performance was in line with the predicted 

patterns, we could then ask if they would generalise their knowledge to the new high 

likelihood trials added in blocks 4-5 (“Bayesian transfer”), as predicted for an 

observer following Bayesian principles. This should lead immediately to a lower 

weight for the new high variance likelihood than the familiar medium variance 

likelihood. By contrast, lack of a significant difference in weights between the 

medium and high likelihood trial types would suggest that the observer is employing 

an alternative strategy, such as simply learning a look-up table. To test this, we 

performed a 2 (prior) x 3 (likelihood) x 2 (block) repeated measures ANOVA 

(summarise only blocks 4 and 5 – those with all likelihoods present). These results 

are shown in Table 2.2 and summarised here. As above, we found a main effect of 

likelihood, participants placing less weight on the likelihood as it became more 

uncertain (𝑝 < .001). However, post-hoc analyses showed that the weight placed on 

the high likelihood was not significantly lower than the weight placed on the medium 

likelihood (𝑝 = 	 .103). Only the comparison of the weights placed on the likelihood in 

low and high variance trial types was significant (𝑝 < .001). Moreover, there was no 

main effect of block (𝑝 < .28), nor an interaction between block and likelihood (𝑝 =

.48), suggesting that the weight placed on the newly introduced likelihood variance 

did not decrease with increasing exposure.  

Finally, we compared mean weights in block 5 against the optimal Bayesian 

values for each prior and likelihood pairing. In the low variance likelihood trials we 

did not observe significant deviation from the Bayesian prediction, irrespective of 

prior (low variance likelihood, narrow prior: 𝑡(25) = 	 .784, 𝑝 = 	 .440); low variance 

likelihood, wide prior: 𝑡(25) = 	−1.12, 𝑝 = 	 .270). Subjects’ weights differed 

significantly from optimal in all other conditions (𝑝 < 	 .001 in all cases).  

Overall, our results do not exactly match the predictions of a Bayesian 

observer because we find only weak evidence of Bayesian transfer. Specifically, 

while we find a main effect of likelihood, the weight on the high variance likelihood is 

not significantly different to that placed on the medium variance likelihood (although 

the change is in the predicted direction). That said, our results are not simply more 
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consistent with a rote process, since the weight placed on the high likelihood does 

not decrease with increasing exposure (no interaction between likelihood and block). 

 

Table 2.2 

Results from a 2 (prior) x 3 (likelihood) x 2 (block) Repeated Measures ANOVA for 

all likelihood variances in Experiment 1  

 

Our results point mostly away from a simple variance weighted Bayesian 

model being a good model of human behaviour in this particular task. The correct 

pattern of weights was present, but evidence of transfer was weak. Participants were 

also significantly sub-optimal, overweighting the likelihood whenever its variance was 

medium or high. Previous studies have also found that observers give more weight 

to the sensory cue than is optimal (e.g., Bejjanki et al., 2016); even so, the level of 

sub-optimality that we observe here is still drastically higher, compared to previous 

reports. However, Sato and Kording (2014) found better, near-optimal performance 

in those participants who were told that the sensory information can have one of two 

levels of variance, and that the variance will sometimes change, compared to those 

who were not provided with this information. We therefore reasoned that if observers 

are given additional information about the structure and statistics of the task (e.g., 

that the variances of the prior distributions are different), the weight they give to the 

sensory cue may move closer to optimal. If we find weights closer to optimal, we 

may be better able to detect whether transfer had taken place because the effect 

size of a change in the likelihood would be bigger. In fact, we wonder whether the 

 F df, dferror p Effect size (𝜂$") 

Likelihood 50.08 2, 50 <.001 .67 

Prior 15.52 1, 25 .001 .38 

Block 1.21 1, 25 .28 .05 

Likelihood x prior 2.39 1.62, 40.41 .10 .09 

Likelihood x block .75 2, 50 .48 .03 

Prior x block 4.35 1, 25 .05 .15 
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size of this effect could be an important factor behind the lack of significant 

differences observed in Experiment 1, i.e., that the effect size of the change from 

medium to high likelihood was too small for our statistical analysis to reliably detect. 

In view of this, we set out to test whether additional instructions will lead to weighting 

of likelihood and prior information that is closer to optimal. 

 

2.3   Experiment 2: Additional instructions about prior variance 
Experiment 2 was identical to Experiment 1 except for a change in 

instructions. In this experiment, subjects were explicitly (albeit indirectly) informed of 

the different variances of the prior. We hypothesised that giving participants 

additional information about the model structure of the task will move weights closer 

to optimal and make any transfer effects more pronounced.  

 

2.3.1 Methods 
Twelve participants (8 female, mean age: 20.3, age range: 19-22 years) 

participated in Experiment 2.  All participants had normal or corrected-to-normal 

visual acuity, no history of neurological or developmental disorders and had not 

taken part in Experiment 1. Each participant received either course credits or cash 

compensation for their time.  

The experimental set had the same layout as the main experiment, with the 

following difference: in addition to the previously described instructions, subjects in 

this version of the task were told that “it is important to remember that one of the 

octopuses tends to stay in a particular area, whereas the other one moves quite a 

bit!” (i.e., they were indirectly informed that the variances of the priors were different). 

(see Appendix A for full instructions).  

 

2.3.2 Results and Discussion for Experiment 2 
Similarly to what we saw in Experiment 1, the mean and robust average of the 

dots explained the same amount of the variance in participants’ responses (𝑅" =

0.991 for both), followed by the median (𝑅" = 0.990) and the mid-range (𝑅" = 0.989). 

We, thus, proceed with the mean as the estimate from the likelihood.  
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Figure 2.3 shows that the pattern of results was qualitatively similar to those 

of Experiment 1 (see Figure 2.2). A 2 (prior) x 2 (likelihood) x 5 (block) repeated 

measures ANOVA (analysing only the low and medium likelihood trials) revealed that 

subjects placed less weight on the likelihood as its uncertainty increased (main effect 

of likelihood, 𝑝 < .001) and as the prior uncertainty decreased (main effect of prior, 

𝑝 = .002). However, unlike in Experiment 1, there was no significant interaction of 

these factors (𝑝 = .123) (see Table 2.3).  

 

Figure 2.3. Mean weight placed on the likelihood information in each block of 

Experiment 2. Blue is the low-variance likelihood, green is the medium-variance 

likelihood, red is the high-variance likelihood. Dashed lines show optimal values. 

Error bars are +/- 1 SEM.  The far right is the average over blocks. 

 

We found a main effect of block (𝑝 = .02) and an interaction between block 

and likelihood (𝑝 = .01), with participants weighting the likelihood significantly less 

with increasing task exposure (regardless of prior) when its variance was medium 

(𝐹(2.21,25.34) = 3.81, 𝑝 = 	 .03, 𝜂$" =	 .257, with a Greenhouse-Geisser correction), 

but not when it was low (𝐹(4,44) = 0.70, 𝑝 = .60, 𝜂$" =	 .060).  
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Table 2.3 

Results from a 2 (prior) x 2 (likelihood) x 5 (block) Repeated Measures ANOVA for 

the likelihood variances present from the beginning (low and medium) in Experiment 

2 

 

As before, we analysed subjects’ responses in the prior-only trials, finding a 

good quantitative agreement with the true prior mean (narrow prior: 𝑡(11) =

	−0.002, 𝑝 = 	 .999;	wide prior: 𝑡(11) = 	0.35, 𝑝 = 	 .734). The median standard 

deviation (SD) of responses was also remarkably similar to the true prior SDs 

(narrow prior: 1.6% vs. 1.3% in screen units; wide prior: 2.5% for both). 

Again, subjects’ overall performance was suboptimal (as can be seen by 

comparing the height of the bars against the dashed lines – the optimal predictions – 

in Figure 3). Subjects’ placed more weight on both the medium and high variance 

likelihoods than is optimal (𝑝 < .001 in both cases, for both priors). However, it is 

worth noting that the weights placed on the medium and high likelihoods are closer 

to optimal than they were in Experiment 1 (compare bar heights in Figure 2.2 and 

2.3). 

Finally, we tested for transfer to the newly-introduced high likelihood in blocks 

4-5. We conducted a 2 (prior) x 3 (likelihood) x 2 (block) repeated measures ANOVA 

(analysing only blocks 4 and 5 with all likelihoods present). These results are shown 

in Table 2.4 and summarised here. There was a main effect of likelihood, with less 

 F df, dferror p Effect size (𝜂$") 

Likelihood 46.14 1, 11 <.001 .81 

Prior 17.28 1, 11 .002 .61 

Block 3.15 4, 44 .02 .22 

Likelihood x prior 2.80 1, 11 .12 .20 

Likelihood x block 3.73 4, 44 .01 .25 

Prior x block 1.32 2.07, 22.77 .29 .11 
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weight placed on the likelihood as it became more uncertain (𝑝 < .001). Unlike in 

Experiment 1, post-hoc analysis showed that the weight placed on the high likelihood 

was significantly lower than the weight placed on the medium likelihood (𝑝 = .034).  

The weights placed on the likelihood in the low variance trial type were significantly 

lower than those in the medium and high variance trial types (𝑝 < .001 for both). 

Moreover, there was no main effect of block (𝑝 < .64), or an interaction effect of 

block and likelihood (𝑝 < .15), meaning that the weight placed on the newly-added 

likelihood information did not vary with increasing exposure. 

Again, we find a significant difference between subjects’ weights (in block 5) 

and optimal predictions when the likelihood variance was medium or high (𝑝 < .001 

in both cases), but not when it was low, irrespective of prior variance (low likelihood, 

narrow prior: 𝑡(11) = 	 .120, 𝑝 = 	 .907); low likelihood, wide prior: 𝑡(11) = 	−1.29, 𝑝 =

	.163).  

 In line with our prediction of transfer, here we show that the observers put 

lower weight on the high variance likelihood than the medium variance likelihood 

they have experienced before. This is strengthened by the fact that participants’ 

weights did not change significantly with increasing exposure across blocks 4-5.  

 

Table 2.4 

Results from a 2 (prior) x 3 (likelihood) x 2 (block) Repeated Measures ANOVA for 

all likelihood variances in Experiment 2 

 

 F df, dferror p Effect size (𝜂$") 

Likelihood 37.98 2, 22 <.001 .78 

Prior 18.36 1, 11 .001 .63 

Block .23 1, 11 .64 .02 

Likelihood x prior 1.80 2, 22 .19 .14 

Likelihood x block 2.09 2, 22 .15 .16 

Prior x block .17 1, 11 .69 .02 
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To check more directly for differences due to experimental instructions, we 

compared subjects’ performance in the last 2 blocks across the two experiments. We 

ran a 2 (instructions) x 2 (prior) x 3 (likelihood) x 2 (block) mixed ANOVA. We found 

a main effect of instructions (𝐹(1,36) = 6.78, 𝑝 = .013, 𝜂$+,)*+%" = .159) with subjects 

weighting the likelihood significantly less with explicit instructions (Experiment 2), i.e. 

closer to the optimal weightings. We also found an interaction between instructions 

and likelihood (𝐹(1,36) = 4.79, 𝑝 = .011, 𝜂$+,)*+%" = .118), indicating that the main 

effect of instructions is due to a significant decrease in the weight placed on the high, 

relative to the medium likelihood in the explicit instructions (Experiment 2) task, but 

not the original task (Experiment 1).  

 These results show that adding extra instructions to the task that make the 

participant aware of a change in uncertainty between the two priors has an effect. 

The weights placed on the likelihood moved closer to optimal, and the transfer 

criterion was met, which suggests that, perhaps, observers are more likely to adopt a 

Bayes-optimal strategy when more explicit expectations about the correct model 

structure of the task are set.  However, even with the additional instructions, the 

weight given to the sensory cue was still systematically higher than the “optimal” 

weight. Arguably, expecting people to perform optimally is rather unrealistic, as it 

presumes that the observer perfectly knows the environmental statistics. However, 

Bejjanki et al. (2016) found performance much closer to optimal than what we have 

seen in either of our previous experiments. The major difference between their 

experiment and ours’ is the fact that Bejjanki et al. (2016) presented all likelihood 

variances from the start of the task. Therefore, unlike Experiments 1 and 2, which 

were designed in order to provide some evidence of transfer, Experiment 3 sought to 

test whether subjects’ weights would move closer to optimal if we present all 

likelihood variances from the beginning, in a more direct replication of Bejjanki et al. 

(2016). The likelihood and prior variance parameters were identical to those used in 

Bejjanki et al. (2016), and we used a similar number of trials per prior and likelihood 

pairing (250 vs. 200 trials in Bejjanki et al., 2016).  
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2.4. Experiment 3: All likelihoods from the beginning 
Experiment 3 was identical to Experiment 1 (lacking the extra instructions of 

Experiment 2) except that all likelihood variances were included from the beginning 

of the task. The participants experienced all six trial types in every block. 

 

2.4.1 Methods 
Twelve participants (10 female, mean age: 22.6, age range: 19-30 years) took 

part in Experiment 3. All participants had normal or corrected-to-normal visual acuity, 

no history of neurological or developmental disorders and had not taken part in 

Experiment 1 and 2. Each participant received either course credits or cash 

compensation for their time.  

The stimuli and task were identical to those described for Experiment 1, 

except that all likelihood conditions (low, medium and high) were now present from 

the beginning (50 trials of each likelihood/ prior pairing interleaved in the same 

block).  

 

2.4.2 Results and Discussion of Experiment 3 
Again, the mean position of the dots explained the most amount of variance in 

participants’ responses (𝑅" = 0.990). The amount of variance explained decreased 

for the robust average (𝑅" = 0.989), median (𝑅" = 0.988) an the mid-range of the 

dots (𝑅" = 0.985). We, thus, proceed with the mean as the estimate from the 

likelihood.  

Figure 2.4 shows a similar pattern of results to Experiments 1 and 2. Again, a 

2 (prior) x 3 (likelihood) x 5 (block) repeated measures ANOVA shows that the 

likelihood information was weighted less as it became more unreliable (main effect of 

likelihood, 𝑝 < .001). Specifically, subjects placed significantly more weight on the 

low likelihood than on the medium (𝑝 = .001) or high likelihood (𝑝 < .001), and more 

weight on the medium likelihood than the high likelihood (𝑝 = .005). No other main 

effects or interactions were significant (see Table 2.5 for a summary of results).  
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Figure 2.4. Mean weight placed on the likelihood information in each block of 

Experiment 3. Blue is the low-variance likelihood, green is the medium-variance 

likelihood, red is the high-variance likelihood. Dashed lines show optimal values. 

Error bars are +/- 1 SEM.  The far right is the average over blocks. 
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Table 2.5 

Results from a 2 (prior) x 3 (likelihood) x 5 (block) Repeated Measures ANOVA for 

all likelihood variances in Experiment 3 

 

For the prior-only trials, subjects’ responses were, on average, statistically 

indistinguishable from the mean of the wide prior distribution (𝑡(11) = −1.14, 𝑝 =

.278), but were significantly different from the mean of the narrow prior (𝑡(11) =

−3.91, 𝑝 = .002) (although we note that the bias was small (95% CI: [0.24,0.87] 

percent of the screen width to the left). The median standard deviation (SD) of 

responses was 2.2% for the narrow prior condition and 2.6% for the wide prior 

condition; the SD of responses was, therefore, only close to the true variance of the 

wide prior (which was 2.5%). Together, these findings suggest that subjects had not 

learnt either the mean, or the variance of the narrow prior condition. This may 

explain the lack of difference in performance between the narrow and wide prior 

conditions in this task.  

A comparison of subjects’ weights on the likelihoods in block 5 against 

Bayesian predictions showed a significant difference for all likelihood and prior 

pairings (𝑝 < .001), with the exception of the wide prior/ low likelihood condition 

(𝑡(11) = −.362, 𝑝 = .724). 

To sum up, although the correct pattern of weights was present, subjects 

were still substantially sub-optimal, even after experiencing all likelihood variances 

from the start of the task. 

 F df, dferror p Effect size (𝜂$") 

Likelihood 29.90 2, 22 <.001 .73 

Prior 2.74 1, 11 .13 .20 

Block .28 4, 44 .89 .03 

Likelihood x prior 2.67 2, 22 .09 .19 

Likelihood x block .52 8, 88 .84 .05 

Prior x block .87 4, 44 .49 .07 
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Accounting for Suboptimality 

Even when we replicate Bejjanki et al. (2016) very closely with all likelihoods 

from the beginning, our participants are strikingly suboptimal. However, we note that 

in our initial calculations of optimal behaviour, we assumed that observers weight 

sensory and prior information according only to the variance of the dot distribution 

(i.e., external noise). However, many of the studies in the cue combination field that 

have found near-optimal performance used cues that only have internal noise, not 

external (Alais & Burr, 2006; Körding & Wolpert, 2006). It is, therefore, possible that 

our participants are sub-optimal because they fail to take account of external noise, 

only weighting the sensory and prior information by the internal variability (i.e., error 

intrinsic to them) of the sensory cue. Keeping this is mind, we considered the 

predicted weights of a model that only takes into account the internal variability 𝜎%! in 

using the sensory cue.  

We performed a separate control experiment to see how good participants 

were at finding the centroids of dot clouds in the absence of prior information (see 

Appendix B for more details). From this control data, we could calculate observers’ 

internal noise as their responses were not subject to bias from the prior. For each 

participant, their internal variability 𝜎%! was calculated by taking the standard 

deviation of their errors from the centroid of the dots (error = dot centroid - 

response). The predicted weight on the sensory cue was then calculated as 𝑤 =

	𝜎$" (⁄ 𝜎%!
" + 𝜎$"). This equation was the same as the full Bayesian model, the only 

difference being that the external SD of the likelihood (as defined by the 

experimenters) was substituted for the internal SD of the likelihood (measured in the 

control experiment). The variance of the prior was still included in the model. 

We compared subjects’ weights (block 5, Experiment 1) with those predicted 

when only weighting by internal noise and found that they were significantly different 

for all likelihood and prior pairings (𝑝 < .01). Indeed, Figure 2.5 shows that the 

internal noise model still predicts less weight on the sensory cue than we see in our 

data (compare bars and dotted lines). This could reflect participants downweighing 

the prior because it is, in fact, subject to additional internal noise, stemming from a 

need to remember and recall the correct prior from memory. Even so, empirical 
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weights were closer to the internal noise predictions, compared to those, predicted 

by the optimal strategy (with experimentally-controlled cue variance, dashed lines). 

 

Figure 2.5. Mean weight placed on the likelihood information in each block of 

Experiment 1. Blue is the low-variance likelihood, green is the medium-variance 

likelihood, red is the high-variance likelihood. Dashed lines show optimal values. 

Dotted lines show predicted weights when only weighting by internal noise. Error 

bars are +/- 1 SEM. 

 

 In addition, we examined the predictions for an observer model that weights 

sensory information, according to overall variability in the sensory cue. When 

calculating the optimal predicted weights initially, we assumed that the optimal 

observer knew how reliable the dots (i.e., the likelihood) were, and could average 

them perfectly. Since participants will not be perfect at averaging dots, they will be 

more variable in using the sensory cue than the optimal observer. Therefore, the 

truly optimal thing to do is for participants to weight the sensory cue, according to 
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cue is now less reliable (due to the added internal variability), we would expect 

participants to put less weight on it, and more weight on the prior. 

We calculated the overall variability in using the sensory cue as: 

𝜎%"
" =	𝜎%" 𝑛⁄ +	𝜎%!

" 

where 𝜎%" 𝑛⁄  is the external noise in the sensory cue, and 𝜎%!
" is the individual internal 

variability.  

As is expected, Figure 2.6 shows that the predicted weights in this case were 

lower than the optimal weights (compare dotted and dashed lines) as participants 

are worse than the optimal observer in averaging the dots. They placed less weight 

on the sensory cue and more weight on the prior than the optimal observer. We also 

compared these predicted weights to subjects’ weights in the final block (5) in 

Experiment 1, and found that they were still significantly different from the empirical 

data when the variance of the likelihood was medium or high (irrespective of prior 

variance) and when the likelihood variance was low and the prior variance was 

narrow (all 𝑝 < .001). No significant difference was observed when the likelihood 

variance was low, and the prior variance was wide (𝑝 = .79). This means that 

accounting for the added internal variability fails to explain our results as observers 

are placing more weight on the sensory cue than is optimal, not less.  
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Figure 2.6. Mean weight placed on the likelihood information in each block of 

Experiment 1. Blue is the low-variance likelihood, green is the medium-variance 

likelihood, red is the high-variance likelihood. Dashed lines show optimal values. 

Dotted lines show predicted weights when overall variability in using the likelihood is 

taken into account. Error bars are +/- 1 SEM. 
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variability (including both the experimentally imposed likelihood variance and the 
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this model provides a better explanation for subjects’ behaviour than other models 

(see Figure 2.7).  
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Figure 2.7. Average Mean Squared Error (MSE) for the external noise, internal noise 

and overall noise models. MSE calculations were based only on participants, for 

whom control data was available (N = 12; 6 had participated in Experiment 2 and 6 

had participated in Experiment 3). 

 

In summary, our data are best described by a model based on subjects’ 

internally generated noise, as opposed to either a model with the experimentally 

imposed likelihood variance, or a model that accounts for both the experimentally 

imposed likelihood variance and the internal noise.  
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In Experiment 1, we did this by investigating whether observers are able to 

learn the variances of two prior distributions, and instantly integrate this knowledge 

with a new level of sensory uncertainty added mid-way through a task. We found that 

observers placed more weight on the sensory cue (likelihood) when its variance was 

low and the variance of the prior was high; behaviour that is in broad agreement with 

the Bayesian prediction. However, we found only partial evidence of transfer. The 

weight placed on the high variance likelihood was not significantly lower than that 

placed on the medium variance likelihood, which is at odds with the prediction of 

transfer. Importantly, even though qualitatively, our participants behaved like 

Bayesian observers, their performance fell markedly short of optimal.  

In two further experiments we asked: (1) how behavior would be affected by 

additional instructions, which can clarify whether this suboptimality stems from using 

the incorrect model structure of the task; (2) whether experiencing the high likelihood 

variance condition from the start of the experiment would lead to closer-to-optimal 

weighting of the prior and likelihood information. In the first of these two further 

experiments, Experiment 2, we found that subjects’ performance moved closer to 

optimal when they were (indirectly) instructed that the prior variances were different 

– possibly why we were able to detect significant evidence of transfer in the task. 

However, they were still significantly sub-optimal in multiple experimental conditions. 

Participants remained significantly sub-optimal in the final experiment (Experiment 

3), when the need for transfer was removed (all trials types were present from the 

start of the task) and the experiment became a more direct replication of (Bejjanki et 

al., 2016). 

Suboptimal weighting of prior and likelihood information 

We show that observers take uncertainty into account, giving more weight to 

the sensory cue as its variance decreases, a result that is consistent across all three 

experiments. Equally, for a Bayes-like observer, we expect to find that the weight on 

the sensory cue is higher as the prior variance increases, but we found a main effect 

of prior in Experiments 1 and 2 only, and not in Experiment 3. Moreover, while our 

manipulation to the instructions in Experiment 2 moved the weights placed on the 

likelihood closer to optimal, they were still significantly different to the optimal 

predictions.  
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To examine to what extent additional sensory variability in estimating the 

centres of dot-clouds could have affected predictions and performance, we ran a 

separate, control experiment (see Appendix B). This shows that observers are less 

efficient in their use of the likelihood information than an ideal observer: the 

variability of their responses is significantly larger than the true variability of the 

sensory cue in both the low and medium variance likelihood conditions. However, 

this fails to account for suboptimal performance: ideal weights for the likelihood that 

are computed using the measured likelihood variabilities in the control task are still 

significantly lower than those in the empirical data.  

Suboptimal weighting of the prior and likelihood information may also be 

caused by incomplete or incorrect learning of the prior information. However, the 

prior-only trials suggest that the observers learn the means of the priors and 

distinguish between their variances at least in Experiments 1 and 2, if not 

Experiment 3 (under the assumption that standard deviations of subjects’ responses 

are related to the learnt prior variances). Suboptimal weighting of the prior could also 

be due to the use of an incorrect Bayesian generative model (causal structure) by 

subjects, e.g. if they believe that the prior will change over trials then they should 

apply a smaller weight to the prior (could be conceptualized as a meta-prior or 

hyperprior in Bayesian terms, Gelman, Carlin, Stern, & Rubin, 2013). The fact that 

we found an effect of instructions imply that the causal structure assumed by 

subjects can indeed greatly influence behavior (Shams & Beierholm, 2010). 

Other research groups have performed similar experiments but using only a 

single prior distribution (Acerbi et al., 2014a; Berniker et al., 2010; Chambers et al., 

2018; Tassinari et al., 2006; Vilares et al., 2012). These studies also find deviations 

from the optimal predictions; however, the deviations can be accounted for by adding 

extra sources of inefficiency to the model that are due to motor errors, centroid 

calculation errors, and aim point (in reaching tasks) calculation errors (Tassinari et 

al., 2006). Moreover, when trials are blocked by prior condition, it has been shown 

that learning after a switch in the prior variance is slower when the prior variance 

decreases than when it increases, suggesting participants may perform optimally 

after further exposure to the task (Berniker et al., 2010). 

We considered elements of the experimental design that could have resulted 

in suboptimal behavior in a task similar to others in the literature where performance 
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was closer to optimal (e.g., Bejjanki et al., 2016). Firstly, describing the dots as the 

tentacles of an octopus may have caused participants to assume that another 

method of gaining an estimate from the dot colour, other than taking the mean 

horizontal position, was more appropriate in this task (de Gardelle & Summerfield, 

2011; Van Den Berg & Ma, 2012). However, our analysis shows that participant 

responses are not better predicted by the median, mid-range, or robust average, 

than they are by the mean. Secondly, our correction of the dot positions so that their 

SD on each trial was equal to the true likelihood SD may have influenced 

participant’s inferred reliability for the likelihood. However, an observer who 

computes the reliability for the likelihood trial by trial, by taking the dot cloud SD, 

would infer that the likelihood was less reliable ( !
-#
$) as a cue to true location than the 

centroid of the dots would be for an observer who could perfectly calculate the mean 

of the dots ( !
-#/&
$ ). This would lead to an observer placing less weight on the likelihood 

than the ideal observer. Participants in our experiment place more weight on the 

likelihood than the ideal observer, so this is not the source of suboptimality in our 

experiment.  

Finally, whilst the true likelihood and prior reliabilities used in our task were 

matched to those in Bejjanki et al. (2016) observers may have perceived the cue 

(dots) as more reliable than it actually was, which in turn would result in more weight 

placed on the cue than in previous studies (Bejjanki et al., 2016; Vilares & Kording, 

2011). 

It is possible that subjects did not experience enough trials of each prior and 

likelihood uncertainty to reach optimal performance, and indeed, we find evidence of 

decreasing weights on the likelihood with increasing task exposure in both 

Experiments 1 and 2 (main effect of block, although not the rise from block 4 to 5 in 

Experiment 2). Crucially, however, our participants experienced more trials per prior 

than in Bejjanki et al. (2016) (750, compared to 600) where weights were closer to 

optimal, ruling out the possibility that observers did not experience enough trials to 

learn the complex features of the distributions.  

The result that our participants’ performance was so different -in terms of level 

of sub-optimality- compared to Bejjanki et al. (2016) might be explained by a 
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difference in instructions. Specifically, their instructions have a social element that 

ours do not, i.e., in their task, participants were instructed to interpret the likelihood 

dots as “locations that other people have previously guessed the bucket is located 

at” (vs. tentacles of the octopus in ours). This means that in Bejjanki et al. (2016) 

participants would have to take into account how accurate they think other people’s 

guesses are. If we assume that people give lower weight to information that is 

allegedly based on other people’s guesses, this might explain why observers in 

Bejjanki et al. (2016) generally weighted the likelihood less than in our experiments 

(Martino et al., 2017). Another aspect about the instructions that is worth mentioning 

here is that, perhaps, our participants are more likely to assume that the body of an 

octopus is in the center of its tentacles, compared to previous guesses of other 

participants (Bejjanki et al., 2016) or splashes from a coin (Tassinari et al., 2006; 

Vilares et al., 2012). However, had this been the case, we would have expected 

participants’ responses to be better predicted by another estimate, such as the 

robust average, than the mean of the dots, and we found no evidence of this in the 

data.  

Another explanation is that observers were being “optimally lazy”; that is, they 

deviated from optimal performance in a way that had minimal effects on their 

expected reward (Acerbi, Vijayakumar, & Wolpert, 2017). In this case, we would 

expect obtained reward to match well with the predictions of the optimal Bayesian 

model; instead, the predicted reward resulting from optimally combing sensory and 

prior information was higher than that obtained by our observers - particularly when 

the variance of the prior was narrow (Appendix C). Therefore, we have no reason to 

believe that the suboptimal behaviour we observed in our task was due to our 

participants being “optimally lazy” (Acerbi et al., 2017). 

Nevertheless, we could show that the suboptimal behaviour in our task can be 

best explained by assuming that participants were weighting sensory information 

(relative to prior information) only according to the internal variability in using the cue, 

ignoring external noise. It is, thus, interesting to consider it as one potential 

explanation, on the computational level, for the deviations from optimal consistently 

reported in similar studies on combination of sensory and prior information (Bejjanki 

et al., 2016; Berniker et al., 2010; Sato & Kording, 2014; Tassinari et al., 2006; 

Vilares et al., 2012). However, we note that attending to internal noise may be easily 
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mistaken for underweighting the total noise; future work could investigate the extent 

to which suboptimal behaviour is specifically linked to the use of internal variability, 

and not simply a general under-estimation of the total noise in the stimuli.  

Note that the observer model, based on the internally generated noise, can 

still be considered “subjectively” optimal (fully Bayesian), in the sense that observers 

take into account and act according to their internal noise variability (Acerbi et al., 

2014a). This strategy looks sensible but is arguably not Bayes-optimal as an ideal 

observer has to take into account external sources of noise in addition to his or her 

own sensory uncertainty (Kersten et al., 2004; Knill & Richards, 1996).  

Evidence for Bayesian transfer 

We found only partial evidence for transfer in Experiment 1, as there was no 

significant change in the weight placed on the likelihood between the medium and 

high likelihood conditions. In fact, subjects seemed to treat the high variance 

likelihood the same as the medium variance likelihood (that they had experience 

with), suggesting that observers did not adopt a statistically optimal Bayesian 

strategy. Nonetheless, performance did not improve with more trials, suggesting that 

subjects were not implementing a look-up table decision rule, either (Maloney & 

Mamassian, 2009). However, we note that in our data, observers placed much more 

weight on the medium and high likelihoods than is optimal. This means that the 

effect size of a change in likelihood is much less than was expected; thus, the 

observed lack of significant differences might simply be due to lack of statistical 

power in our analysis to detect such small effect sizes. 

Why do we see more convincing evidence of transfer in the instructions task? 

Bayes-like computations demand considerable computational resources (e.g., 

working memory load, attentional focus); it is, therefore, reasonable to expect that if 

a task is sufficiently complex, and there is a lot to learn, subjects will start behaving 

sub-optimally. The impact of additional instructions in Experiment 2 may be to free 

up cognitive resources by providing subjects with (indirect) information about the 

variances of the two prior distributions at the start of the task (Ma, 2012; Ma & 

Huang, 2009). 

Our findings do not allow us to clearly distinguish between the reinforcement-

learning and Bayesian interpretations. We found that when we introduced a new 
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level of (known) uncertainty to the likelihood, observers immediately changed how 

they used this new information in a way that is largely consistent with optimal 

predictions; this effect was significant in the second experiment, but not in the first. 

Thus, we note that this effect is not particularly robust as it depends on the 

experimental procedure used to measure it. Indeed, our findings demonstrate that 

whether this effect is observed in the first place is greatly affected by small changes 

in experimental layout (e.g., instructions, number of trials). The fact that we observe 

no learning during Experiment 3 (no main effect of block), coupled with the 

observation that the weight on the likelihood in the 4th block of Experiment 3 were 

remarkably similar to those in the 4th block of Experiments 1 and 2 makes a weak 

suggestion of a Bayesian interpretation. However, a stronger test of transfer would 

be if participants had received no feedback for the new level of uncertainty. We 

provided trial-by-trial feedback (true target position) to ensure that participants were 

able to learn and recall the correct prior distributions. Therefore, we cannot rule out 

the possibility that our participants used the feedback to directly learn a mapping 

between the high variance likelihood and each prior, instead of the distribution of 

locations.  

Sato and Kording (2014) showed that subjects behave in a Bayes-optimal 

fashion in a sensorimotor estimation task, where they transferred their knowledge 

from the ‘learning phase’ to the prior in the testing phase in the absence of trial-to-

trial feedback, suggesting that people did not learn a simple likelihood-prior mapping. 

This means that the features of our experiments set an approximate upper bound on 

learning; in other words, we can generally expect subjects’ performance to be less 

accurate when performance feedback is not provided.  

Nevertheless, in order to meaningfully test whether observers can transfer 

probabilistic information across different conditions, an experiment where trial-by-trial 

feedback is limited, or excluded altogether, is needed. Hudson, Maloney, and Landy 

(2008) argued that providing only blocked performance feedback, for example, would 

prevent participants from using a “hill-climbing” strategy in the high variance 

likelihood condition (i.e., updating their estimates, based on the feedback from trial to 

trial). Alternatively, Acerbi, Vijayakumar, and Wolpert (2014) found that partial 

feedback (where participants are told whether they “hit” or “missed” the target, but 

the actual target position is not displayed) is sufficient to maintain participant 
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engagement; however, no meaningful information can be extracted from the 

feedback, preventing participants from using it to better their performance. Future 

work could investigate how the removal of full performance feedback would affect 

behaviour in more complex scenarios.  

What are observers if not Bayesian? 

 Some studies suggest that BDT is generally a good descriptive model of 

people’s perceptual and motor performance, but quantitative comparison shows 

divergence from Bayes-optimal behaviour (Bejjanki et al., 2016; Zhou et al., 2018), 

not unlike what we report in this study. These deviations from optimality may have 

arisen because rather than performing the complex computations that a typical 

Bayesian observer would do, observers draw on simpler non-Bayesian, perhaps 

even non-probabilistic, heuristics (Gigerenzer & Gaissmaier, 2011; Zhou et al., 

2018). Laquitaine and Gardner (2018) developed a model that switched between the 

prior and sensory information, instead of combining the two, which was found to 

explain the data better than standard Bayesian models. The authors concluded that 

people can approximate an optimal Bayesian observer by using a switching heuristic 

that forgoes multiplying prior and sensory likelihood. In another study, Norton, 

Acerbi, Ma, and Landy (2018) compared subjects’ behaviour to the ‘optimal’ strategy, 

and well as several other heuristic models. The model fit showed that participants 

consistently computed the probability of a stimulus as belonging to one of two 

categories as a weighted average of the previous category types, giving more weight 

to those seen more recently; subjects’ responses also showed a bias towards seeing 

each prior category equally often (i.e., with equal probability). We note that a 

Reinforcement-Learning (RL) model was also tested, where participants could simply 

update the decision criterion after making an error with no assumptions about 

probability; no participant was best fit by the RL model. This suggests that observers 

are, in fact, probabilistic, i.e., take into account probabilities, though not necessarily 

in the optimal way; instead, they seem to resort to heuristic strategies. However, 

future work should explore which, if any, of these models can capture the behaviour 

on this type of complex localisation task. 
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2.6 Moving from Limits on Using Information Efficiently in Adulthood to 
Childhood 

The question of whether humans making decisions under uncertainty approach 

optimal decision makers has led to much debate (Rahnev & Denison, 2018). One 

way to resolve it is to learn more about the exact circumstances in which observers 

do and do not behave like ideal decision makers. Here we show that the capability of 

adults to rapidly and flexibly perform Bayesian inference is limited in situations of 

greater complexity (see also Rahnev & Denison, 2018). Evidence for this can be 

seen from the fact that 1) performance was very far from optimal values, and 2) there 

was only weak evidence of generalisation to an untrained cue reliability (Experiment 

1, Chapter 2). We have therefore concluded that increasing cognitive complexity is a 

key limiting factor for the implementation of Bayesian inference in adults.  

What about children? We know that although children can extract information 

from environmental statistics within the first few months of life (Fiser & Aslin, 2002; 

Kirkham et al., 2002; Saffran et al., 1996), they do not begin to use them efficiently 

until 8-10-years of age (Bejjanki et al., 2019; Chambers et al., 2018). However, the 

factors that contribute to whether or not children use information efficiently (i.e., in a 

Bayesian, statistically optimal way) have received relatively little attention. Across 

three experiments in Chapter 3, we probe how different factors contribute to the less-

efficient adaptation of young children’s behaviour to novel environmental statistics.  
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Chapter 3 

Development of efficient adaptation to novel task 
statistics 

 
3.1. Introduction 

A fundamental problem for human perception is processing the often 

uncertain and ambiguous information available to our senses. Luckily, our 

environment is highly structured in both space and time. For instance, the world 

tends to be stable over short time scales, and stimuli that have occurred recently are 

likely to reoccur (de Lange et al., 2018). Consequently, we can leverage information 

from the recent past to interpret incoming sensory signals (Beierholm, Rohe et al., 

2020; Fritsche et al., 2017; Summerfield & De Lange, 2014).  

 Human adults can integrate their recent experience of the underlying structure 

of a new environment (prior experience, or priors), with current sensory inputs in a 

statistically (near-)optimal fashion, that is, weighting these information sources by 

their relative reliabilities (Bejjanki et al., 2016; Berniker et al., 2010; Vilares et al., 

2012; Wolpert et al., 2011). However, little is known about development of abilities to 

use novel statistical regularities in this way. We know that infants already show a 

remarkable sensitivity to statistical regularities from an early age (Fiser & Aslin, 

2002; Kirkham et al., 2002; Saffran et al., 1996) – for example, rapidly learning novel 

statistical regularities in spoken speech at 8 months (Saffran et al., 1996) and in 

visual patterns at 9 months (Fiser & Aslin, 2002). Being sensitive to novel statistics is 

crucial, but how effectively are these used to improve perception and decision-

making? Studies comparing children’s performance with adults and ideal observer 

models find that children apparently do not make adult-like use of new statistical 

regularities until age 9 years or later. A crucial test is whether participants shift their 

reliance (weighting) for prior vs. current sensory information as these change in their 

relative reliabilities. For example, when the prior becomes less reliable, the ideal 

observer would give more weight to the current sensory input. To test whether 

children weight a prior by its reliability, Chambers et al. (2018) varied the reliability of 

a visual cue and a prior provided to adults and 6- to 11-year-old children localising 
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visual targets. The ‘prior’ here defines the distribution from which the target locations 

are sampled, and could be learned through experience with past target locations. 

Measuring weights given to each information source, Chambers et al. (2018) found 

that reliability-weighting increased with age: older children (> 9 years) adapted to 

changes in sensory uncertainty, as well as the uncertainty in the prior. By contrast, 

younger children were relatively insensitive to changes to the prior.  

 It therefore seems that although humans already detect and learn novel 

statistical regularities in infancy, it may not be until late childhood that they use these 

efficiently during perceptual tasks. What factors might underlie the long development 

of this critical perceptual skill? Another aspect of efficient information integration – 

reliability-weighted cue combination - also does not develop until the age of around 9 

years (Dekker et al., 2015; Gori et al., 2008; Nardini et al., 2008, 2010), which 

suggests that there could be in part a central issue with representing and / or 

computing with probabilities. However, where learning and use of different statistical 

distributions is concerned, there may be additional, even more basic, task demands 

related to working memory and other executive functions, which develop markedly 

and over long time scales throughout childhood (Best & Miller, 2010; Diamond, 2013; 

Gur et al., 2012). One recent study suggests that, indeed, abilities to overcome such 

central cognitive demands may play a crucial role in development of abilities to make 

efficient use of novel task statistics (Bejjanki et al., 2019). However, research in this 

area is so limited at present that even the central issue of how children’s adaptation 

to task statistics may differ from adults’ is not yet clear. 

In the present studies, we adopt a detailed approach to this problem. Building 

on previous studies which averaged performance over the experiment as a whole 

(Bejjanki et al., 2019; Chambers et al., 2018), we trace for the first time the time 

course of how children and adults adapt to novel, changing task statistics, as they 

are experiencing them. Considering the time-course of adaptation to task statistics 

lets us compare the learning rates and the end-points reached as a function of age, 

and to measure how groups adapt to changes in the prior distribution and other 

experimental manipulations. 

In Experiment 1, we studied the time course of how children and adults adapt 

to underlying task statistics in a target-localisation task with a noisy sensory cue and 
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a prior distribution that can be learned over the course of the experiment. In two 

follow-up experiments we probe two potential sources of slower tuning of children’s 

behaviour to task statistics: i) limited working memory for representing the prior 

(previous locations) and ii) limited executive function abilities for learning and 

implementing multiple weighting rules simultaneously. 

 

3.2  Experiment 1 
 

We tested 6-8 year olds, 9-11-year-olds and adults on a spatial localisation 

task that reveals the time course of adaptation to task regularities (Berniker et al., 

2010). Subjects were asked to estimate the hiding place of a target object by 

integrating information from a noisy visual cue and, potentially, prior knowledge (i.e., 

the distribution of previous target locations). The reliability of the prior was reduced 

halfway through the experiment in order to test whether this change in the prior 

would lead to re-weighting of the prior information, as in Berniker et al. (2010). We 

compared the relative weighting of prior knowledge and sensory input in adults and 

children aged 6 to 11 years. The age range was in accordance with previous studies 

looking at how children combine prior expectations and current sensory information 

(Bejjanki et al., 2019; Chambers et al., 2018), or multiple sensory cues (Gori et al., 

2008; Nardini et al., 2010; Negen et al., 2019).  

An ideal observer would assign more weight to a prior when it is more reliable 

(relative to a sensory cue), and less when it is less reliable. We would also expect 

observers to learn to use a prior with increasing experience. We asked whether 

adults assigned lower weights to less reliable priors overall (H1) and whether they 

changed their weight for each prior with increasing experience (H2). These initial 

tests serve as a baseline and a check that we replicated the expected results in 

adults. We next asked whether there were age differences in overall weights 

assigned to priors (H3), and in the degree of reweighting with increasing experience 

(H4). Finally, we asked whether either child or adult groups’ weights for each prior 

were significantly different from optimal by the end of their experience with it (H5).  
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3.2.1 Methods 
 

3.2.1.1 Overview. We adapted Berniker et al.'s (2010) task into a child-

friendly, ‘octopus-catching’ game (Figure 3.1a). On each trial of the task, the true 

location of an octopus was sampled from a Gaussian distribution centred in the 

middle of the screen and with a narrow (first half of trials) or wide (second half of 

trials) variance. To accurately predict the location of the octopus, subjects could 

combine their prior expectations of where the octopus was likely to appear (that they 

could learn via trial-to-trial feedback) with a noisy sensory cue that changed from trial 

to trial. The cue was a single dot sampled from a Gaussian distribution centred on 

the true location with a fixed variance. To respond, participants moved a green 

vertical bar (i.e., the fishing net) horizontally to try to point as close as they could to 

where the octopus was hiding. 

 

3.2.1.2 Participants. We tested adults (mean age = 21.82 years, age range 

18-33 years of age; n = 19) and two age groups of children (6-8-year-olds: mean age 

= 7.71 years, SD = 0.89 years; n = 15; 9- 11-year-olds: mean age = 10.21 

years, SD = 0.96 years; n = 17). All adult participants across Experiments 1-3 were 

recruited from the undergraduate psychology pool at Durham University and 

received course credit in return for study participation. Similarly, child participants in 

all three experiments were recruited through a database of local families who had 

agreed to be contacted for research studies and received a small toy as a thank you 

gift. In addition, stickers were used to incentivise actual performance in both adult 

and child groups. All participants had normal or corrected-to-normal vision.  

 

3.2.1.3 Ethics. The study was approved by the University Ethics Committee, 

in accordance with GDPR regulations, and carried out according to the principles laid 

down in the 1964 Declaration of Helsinki. All participants (or their caregivers, as 

appropriate) gave informed consent in writing prior to taking part in the study. 

 

3.2.1.4 Stimuli and Apparatus. Stimuli were displayed on a 15-inch Dell 

laptop (1920 x 1080 pixels), viewed at a distance of approximately 60 cm, using the 
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Psychophysics Toolbox for MATLAB (Brainard, 1997; Kleiner et al., 2007; Pelli, 

1997). The background was set to blue, like the sea surface.  

 We define all stimuli in terms of screen units, where the left edge of the 

screen is mapped to 0 and the right edge is mapped to 1. In these units, the position 

of the octopus was sampled from a Gaussian distribution, centered on the middle of 

the screen (𝜇$ = 0.5) with either a narrow (standard deviation (SD) of 𝜎$. = 0.05) or 

wide (SD of 𝜎$/ = 0.2) variance; see Figure 3.1c. These parameters were identical 

to those used in Berniker et al. (2010). All participants experienced the narrow prior 

distribution first, followed by the wide prior distribution. This order was chosen 

because participants in Berniker et al. (2010) displayed a faster rate of learning when 

transitioning from narrow to wide. We therefore chose to focus solely on the narrow-

to-wide change in variance as any developmental changes were more likely to be 

picked up in this order of presentation.  

At the beginning of each trial, a single dot (diameter 0.05) appeared on the 

screen. The horizontal position of the dot was drawn from a Gaussian distribution 

centred on the true octopus’ location with SD 𝜎% = 0.1). The likelihood SD remained 

fixed for the whole duration of the experiment. To respond, participants set the 

position of a vertical green bar (width 0.05, height 3% of screen height) on the 

horizontal axis. Feedback was given in the form of a red dot (diameter 0.05) that 

represented the octopus’ true hiding place.  

To allow us to determine whether adults in our study showed similar pattern of 

cue weights and learning rates to those in Experiment 2 in Berniker et al. (2010), the 

experiment included the same number of trials as those presented by Berniker et al. 

(2010). The experiment consistent of 500 trials, 250 trials for each prior variance 

condition: narrow, wide. 

The experiment took, on average, 50 minutes to complete.  

 

3.2.1.5 Procedure. Participants were told that there were octopuses hiding 

under the sea surface and their job was to estimate their location (Figure 3.1a). On 

each trial they saw a noisy visual cue, a ‘bubble’, after which they used the mouse to 

move a vertical green bar (i.e., a “fishing net”) horizontally to try to click as close as 

they could to where the octopus was hiding. The visual cue remained on the screen 

until participants responded. Feedback, indicating the true location, was given on 
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each trial along a score. Feedback is crucial in order for participants to learn the 

reliability of the prior and to detect when its reliability changes in the second half of 

the experiment. The maximum score was 20 points for a perfect “hit” and decreased 

as a participant’s response became further from the target. For a perfect “hit”, the net 

and the target needed to overlap by at least 50% of the red dot’s width (Figure 3.1b). 

When the participant picked the right location, we also incorporated an animation of 

a cartoon octopus smiling, with “+20” shown above it. If the target was within 70 

pixels of where the participant responded, the participant received 5 points (“+5” was 

shown on the screen). If the target was further than 70 pixels away, the participant 

received no points, and a sad cartoon octopus was shown. Additionally, participants 

“levelled-up” every 100 points, after which they were shown a congratulatory screen 

and offered a sticker for completing the level. To ensure that both children and adults 

were interested in the stickers, each participant was asked to choose their favourite 

kind of sticker among three options. Participants were allowed to keep any stickers 

that they earned during the experiment. Progress towards the next level was always 

shown at the top of the screen, via a progress bar. The cumulative score was 

displayed at the end of each trial. 
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Figure 3.1. (a) An example of an experimental trial sequence. Each trial began with 

the presentation of a noisy visual cue to the target’s current location, a single white 

dot described to participants as a “bubble” the octopus has blown on that trial. A net 

(vertical green bar) was presented at a random place on the screen at the same 

time. Participants estimated the hiding place of the octopus by adjusting the 

horizontal position of the net and pressing the mouse button to confirm their choice. 

Afterwards, feedback was given. Feedback consisted in a visual display of the true 

position of the target and a score that was maximal (20 points) for a perfect ‘hit’ and 

decreased away from the target (to five points for close but non-overlapping 

responses and no points for responses too far away from the target). (b) Reward 

structure: overlap between response and target location, resulting in 20 points (left 

panel); response within 70 pixels of target location, resulting in 5 points (middle 

panel); response further away from 70 pixels from target location, resulting in no 

reward (right panel). (c) SD of the prior. The true octopus’ location (red dot) was 

drawn at random from a Gaussian distribution, centered on the middle of the screen 

and whose SD was ‘narrow’ in the first half of the experiment and ‘wide’ in the 

second half of the experiment. (d) Ideal observer prediction. According to BDT, a 

Bayesian ideal observer combines the prior distribution (the pink distribution) with the 

likelihood function to obtain the ‘optimal’ target location (black dotted line).   

 

3.2.1.6 Analysis. 
 

Calculation of weights 
 To allow us to test our hypotheses about weights given to the prior vs. 

sensory cue, an initial analysis was performed to calculate the weight assigned to 

the cue vs. the prior on each trial. To track how prior weighting may change over with 

time, for each participant, each consecutive twenty-five trials were binned together. 

This binned data was then used to perform linear regression of the estimated 

location (response) as a function of cue location. All regression analyses were done 

using a least squares procedure (the polyfit function in MATLAB). The slope of the 

regression fit is a measure of the weighting subjects placed on the cue, relative to 

the prior’s mean, when estimating the target octopus’ location. Slopes close to zero 
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represent high reliance on the average prior target location, while slopes close to 

one represent high reliance on the sensory cue (i.e., low reliance on the prior). 

Hereinafter, we will refer to the fitted slope values as the weight placed on the 

sensory cue. 

 

Flexibly integrating prior knowledge and the sensory cue 
To test the hypotheses that adults assign lower weights to less reliable priors 

overall (H1) and change their weight for each prior with increasing experience (H2), 

we conducted a repeated-measures ANOVA with the weight on the cue (adults only) 

as the dependent variable and prior variance and bin as the within-participants 

factors. To test hypotheses about age differences in overall weights assigned to 

priors (H3), and in the degree of reweighting with increasing experience (H4), we 

conducted a mixed ANOVA on cue weights, with prior variance and bin as within-

participants factors and age group as a between-participants factor.  

  

Ideal observer predictions 

To test whether any group’s weights for each prior were significantly different 

from optimal by the end of their experience with it (H5; Figure 3.1d), we compared 

participant weights in the final bin of each prior to the weight predicted by the ideal, 

reliability-weighted averaging model for each age group separately using one-

sample t-tests. The ideal (Bayesian) observer prediction is given by:  

𝜔0 =	

1
𝜎%"

1
𝜎%"

+	 1𝜎$"
(1) 

 

where 𝜔0 is the ideal weighting of the likelihood, and  𝜎%" and 𝜎$" are the variances of 

the likelihood and the prior, respectively. In the current study, the variance of the 

likelihood was 𝜎% = 0.1 and the variance of the prior was 𝜎$ = 0.05 (narrow variance) 

or 0.2 (wide variance). Substituting the reliabilities of the prior and likelihood into eqn. 

1 shows that when prior variance was narrow, the ideal weight to place on the cue 

was 0.2. 
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𝜔0 =	
1
0.1"

1
0.1" +	

1
0.05"

= 0.2 (2) 

 

 

The ideal weight to give to the cue changed from 0.2 to 0.8 when the variance 

of the prior became wider.  

 

3.2.2 Results 
 Figure 3.2 shows the weight assigned to the prior during the experiment (solid 

lines; see Calculation of weights). Participants were analysed in three age groups (6-

8 years: upper panel, 9-11 years: middle panel, adults: bottom panel), consistent 

with previous studies that have reported group comparisons (Chambers et al., 2018). 

Also shown in Figure 3.2 is the weight that would be predicted for an ideal Bayesian 

observer (dashed lines). In summary, as described below, all age groups placed 

increasingly more weight on prior information when the prior was narrow (compare 

blue and yellow solid lines in all panels, Figure 3.2). However, the age groups 

differed in the extent to which they weighted the prior information: particularly when 

the prior was narrow, younger participants placed, on average, less weight on the 

prior than older children and adults as they performed more trials (see solid blue 

lines across all panels, Figure 3.2). Figure 3.2 also shows that 6-8-year-olds and 9-

11-year-olds have shallower slopes than adults, suggesting that they adapted slower 

as we elaborate further below.  
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Figure 3.2. Mean weight placed on the cue during Experiment 1, separated by bin 

and prior variance (blue: narrow variance, yellow: wide variance) for each age group 

(6-8-year-olds: upper panel, 9-11-year-olds: middle panel, adults: lower panel). 

There are 25 trials in each bin. Lower values represent a greater weight on the prior. 
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In all panels, each circle is a participant, and error bars are standard errors of the 

mean (s.e.m). The dashed lines indicate optimal predictions (all panels).  

 

 We turn to the analyses addressing our hypotheses, beginning with those 

about the adult participants (Figure 3.2, bottom panel), for whom there is an 

expected pattern of performance based on the earlier Berniker et al. (2010) study 

using a similar method.  

 

Adults assigned less weight to the less reliable prior overall. 

 To test whether adults would assign lower weights to the less reliable prior 

overall (H1), we entered adults’ cue weights shown in Figure 3.2 (bottom panel) into 

2 (prior variance: narrow vs. wide) x 10 (bin) repeated-measures ANOVA. Consistent 

with H1, we found a main effect of prior, 𝐹(1,18) = 	59.35, 𝑝 < .001, 𝜂$" =	 .76, with 

less weight assigned to the less reliable (wide) prior overall.  

 

Adults weighted the narrow prior more with increased experience. 
 This ANOVA also tested whether adults change their weight for each prior 

more with increasing experience (H2). There was a significant effect of bin, 

𝐹(9,162) = 	5.09, 𝑝 = .001, 𝜂$" =	 .22 and a significant interaction between prior and 

bin, 𝐹(9,162) = 	8.84, 𝑝 < .001, 𝜂$" =	 .32. Figure 3.2 indicates that this interaction 

corresponds to a decreasing weight on the cue (i.e., more weight on the prior) while 

participants learned to use the narrow prior (blue points), but an increasing weight on 

the cue as participants changed their behaviour when the new wide prior was 

introduced (yellow points). Thus, adults showed different directions of adaptation in 

the two blocks (interaction), and a significant weighting change was also detected 

individually in the narrow prior block (Figure 3.2, blue), where weighting gradually 

moved towards the optimum (dashed lines). In the wide prior block (Figure 3.2, 

yellow), adults rapidly tended towards a ceiling effect, approaching the optimum 

(dashed lines). That is, they rapidly learned to mostly disregard (assign a low weight 

to) the new wide prior. The speed of this re-weighting from one prior to the next is 

considered further below.  
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Six- to eight-year-olds and 9-11-year-olds assigned less weight to the less 
reliable prior overall. 

To test for age differences in overall weights assigned to priors (H3), we 

conducted a mixed ANOVA on cue weights, with age group (3 levels: 6-8-year-olds, 

9-11-year-olds, and adults) as the between-subjects factor and prior variance (2 

levels: narrow and wide) and bin (10) as the within-subject factors. We found a 

significant main effect of age (𝐹(2,48) = 	7.37, 𝑝 = 	 .002, 𝜂$" =	 .23) and a significant 

age x prior interaction (𝐹(2,48) = 	5.72, 𝑝 = 	 .006, 𝜂$" =	 .19). Simple effects analyses 

showed that the narrow prior was weighted more than the wide at all ages [6-8 

years, 𝑝 = .01; 9-11 years, 𝑝 < .001; adults, 𝑝 < .001]. This indicates that all age 

groups, even the youngest, changed their reliance (weighting) on the prior when its 

reliability changed, in line with efficient (Bayesian) decision-making that takes 

differing reliabilities of prior statistical distributions into account.  

 How rapidly did this re-weighting occur? To assess the timing of this effect, 

we compared the bin of 25 trials before and after the switch in prior variance using 

paired t-tests for each age separately (Figure 3.2, last blue vs first yellow data 

points). We found the wide prior weights to be significantly greater than the narrow 

prior weights in 9-11-year-olds (𝑡(16) = −3.24, 𝑝 = .005) and adults (𝑡(18) =

−5.85, 𝑝 < .001), but not 6-8-year-olds (𝑡(13) = −1.13, 𝑝 = .27). These results 

indicate that 9-11-year-olds and adults adjust very rapidly to a change in prior 

reliability, while for 6-8-year-olds there is no evidence for such an immediate 

adjustment.  

 

Children adapted more slowly to task statistics than adults. 

 This ANOVA also tested for age differences in the degree of reweighting with 

increasing experience (H4). We found an interaction between bin and age group 

(𝐹(13.215,432) = 	1.760, 𝑝 = 	 .047, 𝜂$" =	 .068), indicating that the rates at which 

participants adapted to task statistics changed with age. Because adaptation for the 

two priors is in opposite directions (see Figure 3.2), this overall effect is difficult to 

interpret. To assess where adaptation was present, we ran a repeated-measures 

ANOVA on binned weights for each prior and age group separately. When the prior 

was narrow (Figure 3.2, blue points), there were no significant changes in weights 
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across bins in 6-8-year-olds (𝐹(9,126) = .52, 𝑝 = .85, 𝜂$" =	 .03), but there were in 9-

11-year-olds (𝐹(9,144) = 2.31, 𝑝 = .02, 𝜂$" =	 .12) and adults (𝐹(9,162) = 7.42, 𝑝 <

.001, 𝜂$" =	 .29). When the prior was wide (Figure 3.2, yellow points), participants of 

all ages increased weighting of sensory information over time [effect of bin for wide 

prior; 6-8-year-olds: 𝐹(9,126) = 3.00, 𝑝 = .003, 𝜂$" =	 .17; 9-11-year-olds: 𝐹(9,144) =

2.07, 𝑝 = .03, 𝜂$" =	 .011; adults: 𝐹(9,162) = 5.27, 𝑝 < .001, 𝜂$" =	 .22. However, Figure 

3.2 shows that while adults increased their weights until they reached optimal values 

and remained there, 6-8-year-olds’ and 9-11-year-olds’ weights (top and middle 

panels, yellow dots) steadily rose beyond the optimal line and reached an endpoint 

close to a weight of 1, where there is complete reliance on sensory information.  

 

Weighting for the cue vs. the prior is suboptimal at all ages. 
 Finally, we tested whether either child or adult group’s weights for each prior 

were significantly different from optimal by the end of their experience with it (H5). 

Using one-sample t-tests, we compared each group’s mean weight in the final bin of 

each prior to the optimal weight; see Figure 3.2, last blue and yellow point at each 

age vs. its corresponding dashed (optimum) line. As described in Table 3.1 and seen 

in Figure 3.2, by the end of their experience with the narrow (blue) prior, all age 

groups still placed significantly more weight on the cue than was optimal - i.e., they 

underweighted the prior. When the prior was wide, the weights of 9-11-year-olds and 

adults, but not of 6-8-year-olds, were not statistically distinguishable from optimal. 

Figure 3.2 indicates (last yellow points) that while adults rapidly converged on a 

near-optimal weight, the younger groups progressively gave (even) less weight to 

the prior over time, leading to a sub-optimality that, as with the narrow (blue) prior, 

corresponds to under-weighting of the prior – significant at 6-8 years and 

approaching significance (𝑝 = .07) at 9-11 years (Table 3.1). 
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Table 3.1 

 

Results of one-sample t-tests on difference from optimal for each age group and 

prior.  

 

Age group Prior variance t-statistic df p value 

6-8 years 
Narrow 5.76 14 <. 001 

Wide 7.75 14 < .001 

9-11 years 
Narrow 4.77 16 < .001 

Wide 1.91 16 .07 

Adults 
Narrow 4.05 18 < .001 

Wide -1.10 18 .28 

 

3.2.3 Discussion 
In previous studies, 6-8-year-olds did not change how they weighted prior 

information when it changed in reliability (Chambers et al., 2018). This result was not 

replicated in the 6-8-year-olds in Experiment 1: children were sensitive to changes in 

the underlying statistical distribution. However, we found little to no effect of 

experience on prior weighting in 6-8-year-olds. Overall, 6–8-year-olds learned 

enough about the priors to treat them differently, but this learning was so slow or 

slight that, unlike in 9–11-year-olds and adults, it did not show measurable changes 

across blocks within a prior. Nine- to eleven-year-olds learned to adapt to task 

statistics with experience, but did so more slowly than adults. At the end of the 

narrow prior block, no group reached the optimum (Figure 3.2), but the 6–8-year-old 

group were furthest away. At the end of the wide prior block, this group were also the 

only one significantly different from optimal, again under-using the prior. The 6–8-

year-olds were also the only group not to show a weight change from the final bin of 

one prior to the first bin of the next.  

Why were 6–8-year-old children particularly slow to adapt to the prior? One 

possibility is that younger children have fundamental difficulties combining 

probabilistic information in a Bayesian manner because the basic mechanism 

required for reliability-weighted averaging is not yet developed (Chambers et al., 
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2018). However, children could have more basic difficulties with accurately learning 

the underlying statistics of the task. In our task, the ideal observer would estimate 

the probability distribution from all previous target locations. Working memory is 

needed to remember and store all target locations to successfully perform the task. 

However, the capacity of working memory to represent all the targets’ spatial 

information accurately is likely to be limited – even in adults, but especially in 

children (Best & Miller, 2010; Diamond, 2013; Gur et al., 2012). Such limitations in 

capacity may mean that locations are remembered imprecisely, or that some 

locations, likely those seen earlier on, are forgotten with time. Experiment 2 tested 

the effects of working memory by asking whether children’s abilities to adapt to task 

statistics would more closely approach those of adults if we removed the need to 

remember the locations of previous targets by displaying them on-screen. 

 

3.3. Experiment 2 

 To test the effects of removing working memory demands, in Experiment 2, 

we explicitly displayed all the target locations participants had previously seen. If 

development of working memory is a major factor in performance, then young 

children in particular should show gains in adapting to task statistics as compared 

with Experiment 1. 

We asked whether, within Experiment 2 alone, there still remained any age 

differences in adaptation to the task statistics (i.e., main effect or interactions 

including age) (H6). We next asked whether, comparing Experiment 2 to Experiment 

1, how closely cue weights approach optimal would differ - overall, and crucially, by 

age group (H7). The display of all previous points in Experiment 2 is likely to be an 

advantage during the first (narrow) prior but could be a disadvantage for the second 

(wide), where the earlier (narrow prior) points no longer describe the current 

statistics. Therefore, we anticipated potentially different patterns of gain by prior (as 

well as by age), assessed in an experiment*age*prior interaction. Lastly, we asked 

whether, in this experiment, each group’s performance by the end of each prior was 

still different to optimal (H8). 
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3.3.1 Methods 
 

3.3.1.1 Participants. Fifty new subjects - 19 adults (mean age = 22.68 years, 

SD = 3.01), 17 6-8-year-old children (mean age = 7.51 years, SD = 0.92) and 14 9-

11-year-old children (mean age = 10.52 years, SD = 0.89) - participated in 

Experiment 2. Three children, aged 7, 8 and 9 years, respectively were excluded 

from our analyses due to incomplete data. These exclusions resulted in 19 adults, 15 

6-8-year-olds and 13 9-11-year-olds in the final dataset.  

 

3.3.1.2 Task Description. The same stimuli and procedure from Experiment 

1 were used in Experiment 2. However, in Experiment 2, after each trial, participants 

saw the target dot (feedback) for this trial (in bright red colour) as well as all target 

locations which participants had seen on preceding trials in transparent red colour 

(Figure 3.3b). These target locations remained on the screen for 1 second. 

Participants were told that the feedback summarized all the places the octopus had 

been previously. This information removed the need to memorize all the target 

locations and made the prior explicitly available to the participants. 
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Figure 3.3. (a) Experimental design. The task was the same as in Experiment 1, 

except that as well as the feedback from the immediately preceding trial (in bright red 

colour), at the end of each trial, participants also saw all the feedback they had 

previously seen (in transparent red colour). (b) Timeline showing how the prior 

distribution unfolded over the course of the experiment, i.e., after only a few trials, 

nearly halfway thorough and around three-quarters of the way through, after the prior 

variance had been changed. For illustrative purposes, the display of all target 

locations (feedback) is shown with the prior distributions superimposed; participants 

did not see the distributions in the experiment.  

 

3.3.2 Results 
 In Figure 3.4, we show cue weights replotted from Experiment 1 (solid lines) 

and with working memory demands reduced (Experiment 2, dotted lines). Figure 3.4 

suggests that both child groups weighted the prior in a similar way to adults when 

demands on working memory were lower (compare square symbols across age 

groups), moving closer to optimal values than the children in Experiment 1 (square 

vs. circular symbols compared with dashed optimal prediction lines).   
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Figure 3.4. The weight given to the cue across all 20 trial bins (bin size = 25 trials) for 

each prior variance (blue: narrow variance, yellow: wide variance) and experiment 

(solid: Experiment 1, dotted: Experiment 2) for each age group (6-8-year-olds: upper 

panel, 9-11-year-olds: middle panel, adults: lower panel). Lower values represent a 

greater weight on the prior. The dashed lines indicate optimal predictions. Error bars 

are standard errors of the mean (s.e.m).  
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Adult-like adaptation to task statistics at 6-8 years after a reduction in working 
memory demands. 

 We first asked whether, when working memory demands reduced, there were 

still any age differences in adaptation to the task statistics (H6). To test this, we 

performed a mixed ANOVA on cue weights with prior (narrow, wide) and bins as 

within-subject factors and age group (6-8-year-olds, 9-11-year-olds, adults) as 

between-subject factors. We found a main effect of prior (𝐹(1,44) = 	142.43, 𝑝 <

.001, 𝜂$" =	 .76), no main effect of bin (𝐹(9,396) = 	1.52, 𝑝 = 	 .13, 𝜂$" =	 .03) and an 

interaction of prior*bin (𝐹(9,396) = 	19.19, 𝑝 < .001, 𝜂$" =	 .30), with the weight that 

participants placed on the narrow prior increasing as they experienced more narrow-

prior trials (Figure 3.4, dotted blue lines). Critically, there was no main effect of age 

(𝐹(2,44) = 	 .51, 𝑝 = 	 .60, 𝜂$" =	 .02) and no interaction between age and other factors 

(all 𝑝 > .21). This result reflects the similarity between the dotted (Experiment 2) lines 

across age groups in Figure 3.4: when working memory demands were reduced, 

children as young as 6-8-years adapted their weights using environment statistics to 

a similar extent as older children and adults. The absence of an age*bin*prior 

interaction also suggests that the rate at which weights were adapted over the 

course of the session was similar across age groups.  

 

Reduction in working memory demands affects ‘distance to optimal’ indices at 
all ages.  

We asked whether how closely cue weights approach optimal differed in 

Experiment 2 vs. Experiment 1 (H7). To test this, we computed ‘distance from 

optimal’ indices by taking the absolute distance between the optimal value for each 

prior (0.2 for narrow and 0.8 for wide prior) and each subject’s average weight in the 

last bin of that prior (bin 10 for narrow and bin 20 for wide prior); see Table 3.2. We 

then compared these indices in Experiment 2 with those in Experiment 1. A 2 

(Experiment 1 or Experiment 2) x 3 (age group: 6-8 years, 9-11 years, adults) x 2 

(prior: narrow or wide) mixed ANOVA on absolute distance to optimal revealed no 

interaction between experiment, prior and age, 𝐹(1,92) = 1.001, 𝑝 = .37, 𝜂$" =	 .02. 

However, we found a significant effect of prior, 𝐹(1,92) = 39.35, 𝑝 < .001, 𝜂$" =	 .30, 

and a significant interaction between experiment and prior, 𝐹(1,92) = 24.68, 𝑝 <
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.001, 𝜂$" =	 .21, where absolute distance from optimal was smaller in Experiment 2 

(relative to Experiment 1) when the prior was narrow (𝑝 < .001) but not wide (𝑝 =

.79). We also found a significant effect of experiment, 𝐹(1,92) = 23.93, 𝑝 < .001, 𝜂$" =

	.20, significant effect of age, 𝐹(2,92) = 9.24, 𝑝 < .001, 𝜂$" =	 .16, and an interaction 

between experiment and age, 𝐹(2,92) = 3.25, 𝑝 = .04, 𝜂$" =	 .06. Simple effect 

analyses showed that 6- to- 8-year-olds (𝑝 < .001) and 9- to- 11-year-olds (𝑝 <

.001), but not adults (𝑝 = .37), were significantly closer to optimal in Experiment 2 

than in Experiment 1. Our results, therefore, showed that children showed greater 

gains from reducing working memory demands.  

 

Table 3.2 

 

Means and standard deviations (in parentheses) of absolute distance-from-optimal 

scores displayed for each age group, split by prior variance (narrow, wide) and 

experiment (1, 2). 

 

Prior Experiment Age group 

 6-8 years 9-11 years Adults 

Narrow 

1 
.54  

(.31) 

.48 

(.28) 

.23 

(.18) 

2 
.22 

(.25) 

.18 

(.09) 

.12 

(.09) 

Wide 

1 
.16 

(.06) 

.14 

(.08) 

.09 

(.09) 

2 
.16 

(.19) 

.11 

(.08) 

.14 

(.08) 

 

Integration of sensory and prior information is optimal in adults but sub-

optimal in children.  

To test whether or not each group still differed from optimal weighting by the 

end of each prior (H8), we compared mean weights in the final bin of each prior to 

those predicted for an ideal observer (Figure 3.4, last blue and yellow points vs. 
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dashed lines). Unlike in Experiment 1, adults’ weights did not differ significantly from 

the optimal prediction when the prior variance was narrow (𝑡(18) = 	 .66, 𝑝 = 	 .51) or 

wide (𝑡(18) = 	−1.97, 𝑝 = 	 .06) – although the latter approached significance. In both 

child groups, weights were substantially greater than the optimal predictions when 

the prior variance was narrow [6-8 years: 𝑡(14) = 	2.64, 𝑝 = 	 .01; 9-11 years: 𝑡(12) =

	3.89, 𝑝 = 	 .002]. However, when the prior variance was wide, performance was 

indistinguishable from optimal for both 6-8-year-olds (𝑡(14) = 	−.63, 𝑝 = 	 .53) and 9-

11-year-olds (𝑡(12) = 	 .55, 𝑝 = 	 .59). 

 

3.3.3 Discussion 
Six- to eight-year-olds in Experiment 1 distinguished between the two priors, 

but were slow to adapt to each distribution, not showing weighting changes across 

bins, and remaining far from optimal. Strikingly, the rate and extent of their 

adaptation became adult-like when we made all previous trial outcomes explicitly 

available in Experiment 2. Together, these results suggest that younger children are 

capable of adapting to task statistics in an adult-like manner when those statistics 

need not be represented in working memory. Therefore, memory limitations are likely 

to be a major factor contributing to young children’s slower adaptation to task 

statistics. 

Having identified memory as a challenge for young children’s perceptual 

decision-making in novel environments, we turn to another: the need, potentially, to 

deal with multiple uncertainty levels of either prior or sensory (likelihood) information. 

While 6-8-year-olds in Experiment 1 were able to distinguish the two levels of prior 

uncertainty, 6-8-year-olds in Chambers et al.'s (2018) study could not. However, 

Chambers et al. (2018) had three levels of sensory uncertainty that changed from 

trial to trial, whereas the sensory uncertainty in Experiment 1 was constant 

throughout the experiment. Could it be that 6-8-year-olds in Experiment 1 had an 

easier time differentiating between the prior variances because they did not have to 

learn and apply multiple weighting rules simultaneously? Application of multiple rules 

and switching between them from trial-to-trial, places greater demands on executive 

function and cognitive flexibility, developing substantially throughout childhood 
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(Carlson et al., 2013). We test the effects of increasing these demands in 

Experiment 3.  

 

3.4 Experiment 3 

We asked how children’s abilities to differentiate between prior variances are 

affected by adding a second level of sensory uncertainty. We looked for differences 

in weights given to different priors and likelihoods, and age differences in these, with 

a specific interest in whether each age group would still differentiate between the 

prior variances, giving less weight to the less reliable prior (H9). We also asked 

whether, given the same number of trials per prior, but having to deal with multiple 

likelihoods, adults or children would be less optimal than in Experiment 1 (H10). 

 

3.4.1 Methods 
 

3.4.1.1 Participants. Eighteen adults (mean age = 20.27, age range 18-25 

years of age), 15 6-8-year-old children (mean age = mean age = 7.61, SD = 0.99) 

and 17 9-11-year-old children (mean age = 10.44, SD = 1.11) took part.  

 

3.4.1.2 Experimental Procedure. The basic task parameters were otherwise 

similar to those of Experiment 1, except that we included an additional level of 

sensory uncertainty. As in Experiment 1, the horizontal position of the target was 

sampled from a narrow Gaussian distribution in the first half of trials (trial 1-250) and 

a broad distribution in later trials (trial 251-500). We used the same variance of the 

likelihood (𝜎1	 = 0.1)  as in Experiment 1 but also added a second, low-noise, 

likelihood variance (𝜎1% = 0.02). In each trial, we pseudo-randomly chose one of the 

two variances of the likelihood while ensuring an equal number of trials for each 

likelihood and drew the cue dot by sampling from a normal distribution with the 

chosen variance. We therefore tested four conditions in Experiment 3: low-noise and 

high-noise likelihood paired with narrow and wide prior variances. Subjects 

completed one 1-hr session and experienced 250 trials per prior variance (500 trials 

overall), as before, except that they were split between likelihood variances. 
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3.4.1.3 Data Analysis. To more directly compare prior weightings across 

Experiments 1 and 3 (where there were the same number of prior trials, but these 

were split between two likelihood variances), for every participant, we extracted the 

trials separately for each prior variance. We binned the data for each prior into 10 

bins (bin size = 25 trials); the same as Experiment 1. In each bin, we looked at trials 

with each likelihood variance separately. The number of trials for a given likelihood 

variance assigned to each bin differed – there were at least 11-16 trials of each 

likelihood variance assigned to each bin. As described in Experiment 1, we 

computed the relative cue weights for each of the 20 bins (10 for each prior variance) 

by regressing each participant’s response against the location of the sensory cue.  

 

3.4.2 Results 
Cue weights replotted from Experiment 1 (solid lines) and Experiment 3 

(dotted lines) are shown in Figure 3.5. Figure 3.5 suggests that in Experiment 3, 

child and adult groups performed similarly (compare square symbols across groups), 

with adults weighting the prior less than in Experiment 1 (compare same colour 

conditions, with equal reliabilities, for Experiment 3 – square vs. Experiment 1 – 

circle).  

 



 108 

 
Figure 3.5.  Cue weights across 20 trial bins for each prior and likelihood pairing 

(blue: narrow prior, high likelihood (N/P_H/L), red: narrow prior, low likelihood 

(N/P_L/L), yellow: wide prior, high likelihood (W/P_H/L), green: wide prior, low 

likelihood (W/P_L/L) and age group (top: 6-8 years, middle: 9-11 years, bottom: 

adults) for Experiment 3 (filled squares, dotted lines). The data for the prior/ 

likelihood pairings which were the same in Experiment 1 are also replotted (filled 

circles, solid lines) for comparison. Lower values represent a greater weight on the 
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prior. The horizontal dashed lines indicate optimal predictions. Error bars are 

standard errors of the mean (s.e.m).  

 

Six- to- eight-year-olds do not distinguish between levels of prior uncertainty 

when multiple interleaved levels of sensory uncertainty were introduced. 
 A mixed ANOVA with within-subjects factors prior variance (narrow, wide), 

likelihood variance (low, high) and bin, and between-subjects factor age group (6-8 

years, 9-11 years, adults) revealed a main effect of prior (𝐹(1,47) = 23.39, 𝑝 <

.001, 𝜂$" =	 .33), with weights being significantly lower for narrow variance relative to 

wider variance (Figure 3.5, dotted lines). There was no interaction between prior and 

age (𝐹(2,47) = .55, 𝑝 = .58, 𝜂$" =	 .02), suggesting that the degree of reweighting 

across priors did not vary as a function of age. We also found a main effect of 

likelihood (𝐹(1,47) = 99.86, 𝑝 < .001, 𝜂$" =	 .68) but no interaction between likelihood 

and age (𝐹(2,47) = .70, 𝑝 = .93, 𝜂$" =	 .003), indicating that younger children use 

sensory information to a similar extent as older children and adults. There were no 

other significant interactions involving the factor age, and no main effect of age (all 

𝑝 > .13). Thus, in contrast to Experiment 1 (Figure 3.5, solid lines), which showed 

strong age differences, in Experiment 3 (Figure 3.5, dotted lines), performance 

across age groups was similar. Overall, participants were sensitive to the new 

addition – trial-to-trial changes in the likelihood, but there were no age changes in 

this sensitivity. 

  Simple effects analyses tested whether each age group differentiated 

between the two priors (H9). These revealed that when there were multiple 

interleaved levels of sensory uncertainty, 9-11-year-olds and adults successfully 

differentiated more reliable from less reliable priors (𝑝 = .004 and 𝑝 = .01, 

respectively); 6-8-year-olds, however, did not (𝑝 = .07), suggesting that younger 

children struggle to re-adjust to changes in the environment when they had to learn 

multiple weighting rules at the same time.  

 

Participants were not less optimal when dealing with multiple likelihoods. 
 As in Experiment 2, we examined whether performance in Experiment 3 

would be more or less optimal than performance in Experiment 1. Specifically, we 
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tested whether, given the same number of trials per prior, but having to deal with 

multiple likelihoods, subjects would be less optimal (H10). As in Experiment 2, for 

each prior variance separately, we calculated the absolute distance between 

subjects’ average weights in the last bin of the prior and the optimal value for that 

prior (Table 3.3). We analysed only the trials in Experiment 3 with the high-noise 

likelihood that is the same across experiments 1 and 3. The resulting values were 

then submitted to a 2 (prior: narrow, wide) x 2 (experiment: Experiment 1, 

Experiment 3) x 3 (age group: 6-8-years, 9-11-years, adults) ANOVA. We observed 

a main effect of prior (𝐹(1,95) = 139.14, 𝑝 < .001, 𝜂$" =	 .59), a main effect of age 

(𝐹(2,95) = 8.72, 𝑝 < .001, 𝜂$" =	 .15), but no main effect of experiment (𝐹(1,95) =

.04, 𝑝 = .83, 𝜂$" < .001). There was also no significant age * experiment interaction 

(𝐹(2,95) = 1.78, 𝑝 = .17, 𝜂$" = .03), suggesting that none of the age groups moved 

further from optimal values when they had to alternate between two likelihoods 

compared to when there was only one likelihood (see also Table 3.3).  

 

Table 3.3 

 

Means and standard deviations (in parentheses) of absolute distance-from-optimal 

scores displayed for each age group, split by prior variance (narrow, wide) and 

experiment (1, 3). 

 

Prior Experiment Age group 

 6-8 years 9-11 years Adults 

Narrow 

1 
.54  

(.31) 

.48 

(.28) 

.23 

(.18) 

3 
.49 

(.23) 

.48 

(.16) 

.43 

(.29) 

Wide 

1 
.16 

(.06) 

.14 

(.08) 

.09 

(.09) 

3 
.17 

(.15) 

.12 

(.09) 

.08 

(.04) 
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3.5 General Discussion 
 The present experiments asked why young children might adapt to novel task 

statistics less efficiently than older children and adults. Using a spatial localisation 

task, Experiment 1 found that children aged 6-8 years were sensitive to underlying 

task statistics, differentiating between two statistical prior distributions. However, 

they adapted to these more slowly and less completely than adults did. Nine- to 

eleven-year-olds adapted with experience but more slowly than adults. We next 

probed two potential developmental factors limiting young children’s efficient use of 

task statistics: (i) working memory limits (Experiment 2), and (ii) cognitive flexibility; 

specifically, difficulty in managing multiple rules (Experiment 3). We will discuss each 

in turn.  

Removing the need to learn task statistics and represent these in memory (by 

making previous target locations explicitly available) in Experiment 2 brought 6-8-

year-olds’ weights close to those of older children and adults. Strikingly, with the 

memory demands removed, there were no significant differences in performance 

across age groups, although children’s weighting at the end of the first prior still 

differed significantly from optimal. Our finding of greater, much more adult-like, 

adaptation to statistics in 6-8-year-olds when the demands on memory were reduced 

is in line with marked improvements in working memory during childhood (Zelazo et 

al., 2008). This result goes against the idea that children cannot optimally combine 

before the age of 9 mainly because mechanisms for weighted information integration 

are undeveloped (Chambers et al., 2018; Ernst, 2008). Instead, our data appear to 

be more consistent with the emerging idea that children are fundamentally limited by 

‘resource constraints’, which can arise from limited cognitive functions, such as 

working memory - a conclusion compatible with the ‘resource rational’ account 

recently proposed by Lieder and Griffiths (2019). It is possible that the reason why 

the 6-8-year-olds in Experiment 1 did not adapt to task statistics over time was 

because their working memory capacity did not allow them to retain accurately the 

preceding target locations needed to correctly infer the underlying structure of the 

task.  
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 Interestingly, our results suggest that central cognitive resources also limit 

adult performance, albeit less drastically: reducing working memory demands 

improved performance across all age groups, including adults. When the need to 

remember previous target locations was removed in Experiment 2, adult 

performance was indistinguishable from optimal, unlike in Experiment 1. Sub-optimal 

use of prior information in some previous studies with adults (e.g., Bejjanki et al., 

2016; Vilares et al., 2012) may be explained in part by limitations in even adults’ 

abilities to remember and represent all previous trial outcomes. We note that 

learning the prior distribution could be accomplished equivalently by storing all trials 

in memory, or (computationally less demandingly) by updating summary statistics for 

a distribution based on appropriately weighted new samples. These processes can 

be difficult to distinguish (Hansmann-Roth et al., 2021; Spicer et al., 2020; Sun et al., 

2019), but both require accurate representation and updating in working memory. 

 We further showed that while 6-8-year-old children distinguished between two 

differently reliable priors when they had to learn only one weighting ‘rule’ for each 

(Experiment 1), they were no longer able to do so when they had to learn multiple 

weighting rules simultaneously, to deal with two different levels of sensory noise 

(Experiment 3). This result is consistent with Chambers et al. (2018), who also found 

this lack of prior weighting in a situation with multiple sensory likelihoods. These 

results are in line with extended development of cognitive flexibility: young children 

have shown difficulty in managing multiple rules (Anderson et al., 2011; Harada et 

al., 2018; Huizinga & Van Der Molen, 2007; Zelazo et al., 1996, 2008). Some studies 

which have a multiple-rules paradigm showed age-related improvements in 

performance between the ages of 5 and 8, with adult-like performance in children 

older than 8 years of age (Irwin-Chase & Burns, 2000). In two recent experiments 

closely related to the present question, Bejjanki et al. (2019) showed that 6-7-year-

old children changed their weightings when only the sensory uncertainty changed 

(i.e., single ‘rule), but not when both sensory and prior uncertainty changed in an 

interleaved fashion (multiple ‘rules’ at the same time). These findings support the 

idea that having to store and manage several weighting ‘rules’ may have made 6-8-

year-olds less sensitive to changes in the underlying distributions. Interestingly, this 
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manipulation, too, had a major impact on adults’ performance. Adult performance 

now became so ‘child-like’ that there were no longer any significant age differences.  

 Taken together, our results suggest that although children are sensitive to 

statistical regularities in their environment from an early age, their abilities to use 

these to make effective perceptual decisions depend on development of later-

developing central cognitive abilities, including working memory and cognitive 

flexibility. The suggested memory limitations would imply that when children or 

infants have been shown to detect statistical patterns, the fidelity with which these 

have been learned may improve markedly with age. Actually determining what has 

been learned remains a challenge for either studies with infants (where just 

measuring sensitivity vs chance does not provide this information), or older children 

(where, as here, measuring behavioural choices does not separately measure what 

was learned vs how it was acted upon). New approaches to inferring the statistics 

that are represented – using proxy measures such as responses to unexpected 

stimuli from pupillometry or EEG – may be important future developments in this 

field. Other important directions include testing the degree to which either individual 

differences in, or direct manipulations to, these core cognitive skills, can predict 

efficient use of statistics in children or adults. 

We conclude that accounting for cognitive limitations during development is 

essential for understanding the mechanisms underlying children’s – and adults’ - 

abilities to perceive and act efficiently when faced with novel environments. In the 

real world, such learning is needed in new visuo-motor tasks, new real-world spaces, 

and potentially more abstractly, in new social or educational settings. Future 

research to optimise abilities to learn, accounting for developmental cognitive 

limitations, has potential applications to atypical development, disorders, and optimal 

approaches to education and training in childhood and beyond. 

 

3.6 From Experimental Manipulations to Individual Differences  

Across three experiments, we explored several lines of evidence for which 

factors may affect the learning and efficient use of novel task statistics during 

development. We found that removing the need to learn the statistics and represent 

these in memory (by making previous target locations explicitly available) in 
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Experiment 2 brought 6-8-year-olds’ weights close to those of older children and 

adults, although they still remained far from optimal. Conversely, when they had to 

learn multiple weighting rules simultaneously (increased cognitive effort) in 

Experiment 3, younger children’s abilities to distinguish between the priors broke 

down. Given the seemingly critical role of working memory capacity and cognitive 

flexibility in the efficient adaptation to task statistics, and the considerable individual 

differences we observed, it is possible that individual differences in these factors 

may also predict performance in adults. In Chapter 4, we focus on individual 

differences in working memory.  
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Chapter 4 

Individual differences in working memory capacity do 
not predict efficient adaptation to novel statistics 

 
4.1   Introduction  
 Working memory has a central role in our ability to uncover statistical 

regularities in our environment (Baddeley, 2003, 2007; Bianco et al., 2020). As was 

argued by Bianco et al. (2020), detecting these regularities requires each event that 

is part of this sequence (in our case corresponding to the history of all previous 

target locations) to be retained in memory for long enough for the observer to figure 

out how they fit together. Although Bayesian models assume that behaviour is 

equally affected by all previous events (Geisler, 2011; Kersten & Yuille, 2003), it is 

already well known that while we can probably remember what happened on the 

immediately preceding trial with relative ease, we may not be able to remember what 

happened ten or twenty trials ago; certainly not with the same quality of 

representation as one trial back (Cashdollar et al., 2017; Luck & Vogel, 2013; Ma et 

al., 2014). In keeping with this notion, several studies have shown that their data are 

well explained by fitting an exponential function that weights more recent trials more 

than trials experienced earlier on (Bornstein & Daw, 2012; Harrison et al., 2011). It 

follows that if our participants are not able to retain in memory all the feedback they 

received so far or can only recall up to several trials into the past, they will not be 

able to infer the correct underlying statistical regularities in their environment. Given 

the limits on the capacity of working memory, we expected that higher working 

memory capacity, permitting the storage of more information, would be associated 

with more efficient adaptation to novel task statistics (i.e., be closer to optimal 

values). Indeed, when we made all past target locations explicit in Experiment 2, 

Chapter 3, freeing up memory capacity, both children and adults moved closer to 

optimal values, with adult performance indistinguishable from optimal when the prior 

was narrow. Higher working memory capacity has also been linked to better 

discrimination and faster responsiveness in alternative forced-choice tasks (Ester et 

al., 2014) and better implicit learning of sequences (Frensch & Miner, 1994; Usher & 

McClelland, 2001; Virag et al., 2015). Shared neural underpinnings between the 
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storage capacity of working memory and decision making have also been reported 

(Morcos & Harvey, 2016; Romo et al., 1999; Schott et al., 2019; Shadlen & 

Newsome, 2001). 

To this end, we were interested in exploring whether differences in working 

memory capacity explain inter-individual variations in how close adult participants 

are to optimal. We used the same task that was used in Chapter 3, in which 

participants had to localise unseen targets using a noisy sensory cue and a prior 

distribution that can be learned over the course of the experiment. We decided on 

distance-to-optimal score as our outcome of interest because we were interested in 

whether higher working memory capacity is associated with more efficient adaptation 

to the underlying task statistics. 

Due to the spatial nature of our task, in the present study, we focussed on the 

spatial component of working memory (Baddeley, 2003). Only one test, Corsi block 

task, directly assesses the capability to remember spatial positions and the 

sequence in which they occur (Corsi, 1972; Della Sala et al., 1999; Kessels et al., 

2000). Here, two blocks light up one after the other, and participants have to tap the 

blocks in the same order, with the number of blocks increasing until performance 

breaks down (Corsi, 1972; Kessels et al., 2000). We had decided on the Corsi block 

test because efficient adaptation to statistics of spatial sequences depends on 

abilities of spatial memory and sequential structure. Spatial memory is crucial 

because inferring the probability distribution over target locations (i.e., the prior) 

would require remembering all previous target locations. Holding the sequence of 

trial outcomes in memory – how far back in time a given location appeared (e.g., 

previous trial vs. ten trials in the past) – is important because in the environment that 

change, more recent experiences might signal changes in the environment and 

should therefore be favoured over earlier experiences. As a consequence, it is 

necessary to test whether observers remember spatial sequences. For this reason, 

our study included tasks in which subjects had to recall spatial positions and 

sequences.   

Alternatively, we considered the possibility that observers use different 

strategies to better remember these positions. For example, one observer may 

visualize the spatial environment, while another may internally verbalize and 
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rehearse the spatial locations they were seeing (e.g., ‘the target appeared slightly to 

the right of the centre of the screen’). We reasoned that if verbal memory plays a role 

in the acquisition of statistical regularities, we should find a negative correlation 

between verbal working memory ability and distance-from-optimal score from the 

localisation task. For this purpose, we make use of the backwards digit task (Waters 

& Caplan, 2003; Wilde et al., 2004), which is one of the most established verbal 

working memory span tasks (Conway et al., 2005). In addition, to avoid a confound 

of general cognitive ability, we included a measure of vocabulary knowledge 

measured by the vocabulary sub-test from the Wechsler Abbreviated Scales of 

Intelligence - 2nd edition (WASI-II) (Wechsler, 2011) as a predictor.  

To explore the extent to which efficient use of task statistics in adults depends 

on working memory, a multiple linear regression was conducted. If we find that 

visuospatial, and perhaps verbal working memory significantly predict distance from 

optimal, we can conclude that individual differences in working memory explain a 

significant amount of variance in how efficiently different adults use task statistics, 

above and beyond general cognitive ability. On the other hand, if we find that neither 

of the working memory measures makes a significant contribution, we can conclude 

that working memory is not a major source of variation. We were primarily interested 

in the role of visuospatial working memory – therefore, we conducted a hierarchical 

regression analysis which allowed us to determine whether visuospatial working 

memory contributed unique, independent variance beyond that explained by 

vocabulary knowledge (added in Step 1) and verbal working memory (added to 

vocabulary score in Step 2).  

 

4.2    Materials and methods 
 

4.2.1 Participants 
Sixty-three adults ranging in age between 18 and 35 years with normal or 

corrected-to-normal visual acuity participated in the experiment voluntarily. One 

participant was excluded from these analyses due to incomplete data. The remaining 

62 participants (mean = 20.93; SD = 1.96) were included in our analyses.  
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The sample size of 𝑁 = 64 was selected so that in the multiple regression 

analysis containing three predictors the power to detect a moderate deviation of a 

single linear regression coefficient from 0 (partial 𝑅" = .15) was 1 – 𝛽 = 0.8 (two-

tailed test), with 𝛼 set to 0.05. According to G*Power, the required minimum sample 

size is 64.  

Participants were recruited from the university’s subject pool and received 

course credit or were paid £15 for their participation. The experiment was conducted 

according to the principles expressed in the Declaration of Helsinki. All adults 

participated voluntarily after providing informed written consent. The study was 

approved by the ethics committee of the Department of Psychology, Durham 

University.  

 

4.2.2 Measures  
 

4.2.2.1 Experimental Task. The apparatus, stimuli and task were the same 

as described in Experiment 1, Chapter 3. Participants completed a spatial 

localisation task, where the target was more likely to be in the middle of the screen, 

either clustered closely (narrow variance) or spread out over a larger region (i.e., 

wide variance). A single dot stimulus drawn from a Gaussian distribution gave 

participants noisy information about the current location of the target, and 

participants were asked to estimate its location. The performance measure was a 

distance-from-optimal score.  

 
4.2.2.2 Measures of Working Memory. The Psychology Experiment Building 

Language program (PEBL; Mueller & Piper, 2014) was used to run the working 

memory tasks. The Corsi Test (visuospatial working memory) and Backwards Digit 

span (verbal working memory) were the measures of working memory, and these 

have been validated in adults (Kessels et al., 2000).  

 

Corsi Test 

The Corsi Test (Corsi, 1972) provided a measure of spatial working memory. For 

this test, participants saw a display of nine blue blocks on the screen. The blocks lit 
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up (changed colour to yellow) in a particular order, and the participant used the 

mouse to click on the blocks in the correct order. Feedback was provided as to 

whether the participant was correct or incorrect. First, the participant did 3 practice 

trials of three blocks. They then started with 2 blocks to remember and had 2 trials at 

that level. If they got at least one right, the sequence that must be remembered 

increased by one. If they missed both trials at the same sequence length, the 

program stopped. Memory span was computed as the smallest number of blocks (2) 

plus the total number correct and divided by the number of blocks at each sequence 

length. 

 

Backwards Digit Span 
 This task provided a measure of verbal working memory. Participants were 

shown a string of digits (e.g., 376) in the middle of the screen. The digits were 

presented sequentially for 1.5 seconds per digit. Following presentation of the string 

of digits in random order, participants were instructed to use the numbers on the 

keyboard to type the digits in reverse order (in this case, 673). Feedback of “correct” 

or “incorrect” was provided, as well as the correct answer. The string increased by 

one digit every two trials, from a two-digit string to a maximum of nine digits. The 

task was stopped after two successive incorrect responses on the same digit string. 

Digit span was computed as the maximum number of digits participants could repeat 

in reverse order on at least one trial.  

 

Vocabulary 
The Vocabulary subtest from the Wechsler Abbreviated Scale of Intelligence 

(WASI-II) was used to assess participants’ vocabulary knowledge. In this test, the 

experimenter read out a series of words from the WASI II booklet and the participant 

was asked to describe what they mean. The experimenter then wrote down the 

response in the answer booklet. The responses were manually scored using the 

WASI-II manual after the testing session. There were 31 words in total (3 picture and 

28 verbal), with a maximum score of 59. Testing was terminated after 3 consecutive 

scores of 0. The total correct was calculated by summing the total correct responses 

(2 = correct, 1 = partially correct, 0 = incorrect).  
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4.2.3 General Procedure 
The task order was pseudo-randomised across participants. A list of all 24 

possible sequences was created, and each new participant was assigned the next 

available sequence down the list. After all the sequences were completed once, the 

same sequences were assigned again. The entire testing lasted approximately 1.5 

hours. 

 

4.2.4 Data Analysis 
Data processing, analysis and ideal observer calculations are the same as 

those described in Chapter 3 (details on pages 92-93).  

Individual differences were analysed via a multiple linear regression. Our 

outcome measure, distance-from-optimal score, was computed by subtracting the 

optimal values (0.2 for narrow prior; 0.8 for wide prior) from each subject’s weight 

averaged across the last 25 trials of each prior (details in Chapter 3). We included 

three predictors: (1) the memory span in the Corsi-blocks task that indexes 

visuospatial working memory capacity, (2) the digit span in the Backwards Digit span 

task that indexes verbal working memory capacity, and (3) the number of correctly 

described words in the vocabulary subtest from the WASI-II, which was included as 

a measure of vocabulary knowledge (for a description of how these measures were 

calculated, see Materials and methods).  

We used hierarchical regression to assess the relative contributions of the 

different predictor measures to distance-from-optimal indices. We used F ratio 

statistics to determine the amount that the explained variance changed from one 

model to the next.  

 

4.3    Results 

 We begin by repeating the same analysis used to analyse the data from the 

adult participants in Chapter 3 (rm-ANOVA on cue weights with prior (narrow, wide) 

and bin as factors) to ensure that we could replicate their pattern of performance in 

this new sample of adult participants.  
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Adults assigned less weight to the less reliable prior overall. 
 We conducted a 2 (prior variance: narrow vs. wide) x 10 (bin) repeated-

measures ANOVA on the cue weights. We found, similarly to our findings in Chapter 

3, a main effect of prior, 𝐹(1,62) = 	117.86, 𝑝 < .001, 𝜂$" =	 .65, with less weight 

assigned to the less reliable (wide) prior overall.  

 
Adults weighted the narrow prior more with increased experience. 

 This ANOVA also showed, similarly to our findings in Chapter 3, that there 

was a significant effect of bin, 𝐹(6.38, 395.83) = 	3.19, 𝑝 = .004, 𝜂$" =	 .04, and a 

significant interaction between prior and bin, 𝐹(5.74, 356.37) = 	13.993, 𝑝 < .001, 𝜂$" =

	.18. Figure 4.1 (blue solid line) and simple effects analyses show that the weight 

given to the cue decreased over time when the prior was narrow; the first significant 

drop in cue weight was in bin 2 (𝑝 = .001), and the weight dropped even further in 

bins 8-10 (all 𝑝 < .01). In the wide prior block, the weight placed on the cue 

increased significantly from bin 11 until reaching a plateau around bin 12 (𝑝 < .001), 

Figure 4.1 – compare yellow solid and dashed lines. 

 
Figure 4.1. Mean weight placed on the cue, separated by bin and prior variance 

(blue: narrow variance, yellow: wide variance). There are 25 trials in each bin. Lower 
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values represent a greater weight on the prior. Each circle is a participant, and error 

bars are standard errors of the mean (s.e.m). The dashed lines indicate optimal 

predictions.  

 

 Altogether, we found a similar pattern of results as those reported in Chapter 

3. Here, it is important to highlight that, similarly to the adults in Experiment 1, 

Chapter 3, adults in our current study rapidly approached the optimum when the 

prior was wide (compare solid yellow line vs. dashed yellow (optimal) line, Figure 

4.1). By contrast, although observers moved gradually towards the optimum, they 

were still far from it by the end of the narrow prior trials (solid blue line vs. dashed 

blue (optimal) line, Figure 4.1), showing that adult observers, overall, did deviate 

from optimal. As Figure 4.1 illustrates, there was also a spread in these deviations 

from optimal between individuals (compare light blue and yellow dots vs. their 

corresponding solid line), suggesting that there are considerable individual 

differences.  

 

Regression results 

 We used three measures as predictors: 1) Corsi memory span – calculated by 

adding the smallest number of blocks that needed to be remembered in the correct 

sequence and the total number correctly remembered, and then dividing that by the 

number of blocks at each sequence length; 2) Backwards digit span – computed as 

the number of digits correctly repeated in reverse order on at least one trial, and 3) 

vocabulary score: total number correct. Frequency distributions for all three 

measures are shown in Figure 4.2 (A: Corsi, B: Backwards digit, C: vocabulary). The 

skewness for the distributions is small and clustered around the mean (red line) as 

expected for normal distributions. From these histograms we conclude that the 

predictors are approximately normally distributed, with the mean (red vertical line) 

and variance within the expected range (Kessels et al., 2000; Wechsler, 2011) 
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Figure 4.2. Histograms showing the distribution of scores for the Corsi blocks test 

(A), Backwards digit span (B) and vocabulary (C). Red vertical lines represent the 

mean.  

 

 However, our outcome variable (distance-to-optimal scores) followed a right-

skewed distribution both when the prior was narrow (Figure 4.3A) and wide (Figure 

4.3B), and more importantly, these distributions were significantly different (𝐷 =

.41, 𝑝 < .001, two sample Kolmogorov-Smirnov test). Given that the two priors 

(narrow, wide) showed differences in variability, this would have violated the 

homogeneity of variance assumption for the regression analysis reported below. 

Such a violation is known to result in a higher Type I error rate. Therefore, the 

regression analysis is conducted separately for the narrow prior and the wide prior.  
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Figure 4.3. Histograms showing the distribution of (absolute) distance-to-optimal 

indices when the prior was narrow (A) and wide (B). Red vertical lines represent the 

median.  

 

 Critically, we observed considerable variability in performance across 

individuals in our outcome and each of our predictor measures (Figures 4.2 and 4.3 

and Table 4.1).  
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Table 4.1 

 

Shown are the means and standard deviations (SD; in brackets) and range for both 

outcome measures (distance-from-optimal for narrow and wide prior) and predictor 

measures (vocabulary, Backwards digit span, Corsi blocks) 
 

Measure Mean (SD) Range 

Distance-from-optimal 

(narrow prior) 
0.28 (0.23) 0.0-0.8 

Distance-from-optimal 

(wide prior) 
0.11 (0.07) 0.01-0.35 

Corsi blocks (/9) 5.90 (0.93) 4-8 

Backwards digit span (/10) 6.75 (1.79) 3-10 

Vocabulary (/59) 36.24 (5.00) 23-48 

 
None of the predictors made unique contributions to variability in distance-to-

optimal scores.  

We next sought to determine whether each of our predictor measures 

(vocabulary score, backwards digit span, Corsi memory span) explain unique 

variance in distance-to-optimal indices by using a hierarchical regression (see Table 

4.2 for regression parameters). The residuals were not normally distributed. 

Therefore, we transformed the data by taking the square root of the distance-to-

optimal scores and fitted the models once again. By comparing nested linear 

models, we found that compared to a model with vocabulary alone (adjusted 𝑅" =

−.01), adding backwards digit span did not explain significant additional variance in 

distance-to-optimal scores (model comparison: narrow prior: 𝐹(2,59) = .19, 𝑝 = .82, 

adjusted 𝑅" = −.02; wide prior: 𝐹(2,59) = .30, 𝑝 = .73, adjusted 𝑅" = −.02. 

Moreover, addition of Corsi memory span explained a further 2.6% variance in 

performance when the prior was narrow and 0.6% when the prior was wide, but this 

was not significant for either prior (model comparison: narrow prior: 𝐹(3,58) =

1.55, 𝑝 = .21; wide prior: 𝐹(3,58) = .32, 𝑝 = .80).  
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Table 4.2 

 

Shown are the unstandardized regression coefficients (β), standard errors (SE), R2, 

adjusted R2 and p values from the hierarchical regression predicting distance to 

optimal scores for narrow and wide priors using vocabulary knowledge, verbal 

(Backwards digit span; BD) and visuospatial working memory (Corsi memory span). 

 

 
Variable β SE p R2 

Adjusted 

R2 

Narrow 

prior 

Step 1 Vocabulary .002 .005 .720 .002 -.014 

Step 2 Vocabulary .001 .006 .862 .006 -.027 

 BD -.009 .017 .611   

Step 3 Vocabulary  .001 .006 .917 .032 -.017 

 BD -.011 .017 .516   

 Corsi .040 .032 .217   

Wide 

prior 

Step 1 Vocabulary .001 .003 .534 .006 -.010 

Step 2 Vocabulary .002 .003 .462 .010 -.023 

 BD .004 .009 .636   

Step 3 Vocabulary  .001 .003 .584 .016 -.034 

 BD .003 .009 .691   

 Corsi .010 .017 .544   

 

None of the predictors were correlated with distance-to-optimal scores.  

 Having established that none of the predictors uniquely contributed to 

explaining the variability in distance-to-optimal scores, we next sought to determine 

whether each of these predictors is at all correlated with how close to optimal an 

observer is across the two priors. We computed the Pearson correlation between 

each predictor separately for the narrow (Figure 4.4) and wide prior (Figure 4.5).  

Distance-to-optimal scores were not significantly associated with visuospatial 

working memory capacity when the prior was narrow or wide (see Figures 4.4A and 

4.5A, respectively). Also, no significant relationship was found for either of the prior 

variances between distance-to-optimal and verbal working memory capacity (Figures 
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4.4B and 4.5B) and distance-to-optimal and vocabulary knowledge (see Figure 4.4C 

and 5C).  

 

 
 

Figure 4.4. Correlations between distance-to-optimal scores (narrow prior) and 

visuospatial working memory as measured by the Corsi blocks test (A), verbal 

working memory as measured by the Backwards-digit span (B) and vocabulary 

score (C). 
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Figure 4.5. Correlations between distance-to-optimal scores (wide prior) and 

visuospatial working memory as measured by the Corsi blocks test (A), verbal 

working memory as measured by the Backwards-digit span (B) and vocabulary 

score (C). 
 

4.4. Discussion 
In this study we set out to ascertain whether visuospatial working memory 

explained unique variance, beyond that explained by verbal working memory and 

vocabulary knowledge (as a proxy for general IQ) in how close to optimal observers 

were in a localisation task we used before (Chapter 3). We replicated our previous 

finding of adults changing their reliance on the prior 1) dependent on its reliability, 

and 2) over time (Experiment 1, Chapter 3). However, individual differences in any of 

the measures, visuospatial working memory, verbal working memory or vocabulary 

knowledge - did not explain significant variance in distance-to-optimal indices for 

either of the priors.  
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As mentioned above, we duplicated our previous finding of adults 1) weighted 

the prior according to its relative reliability, assigning less weight to the less reliable 

prior overall, and 2) increased their reliance on the prior as they experienced more 

trials. We replicated this effect in a sample size more than twice that of typical 

psychophysics experiments (roughly 𝑁 = 30, some with as low as seven 

participants, Berniker et al., 2010). These data support the conclusion that adults 

take reliability into account (as ideal observers would) but generally, do not do so 

optimally. 

Combining psychophysics together with cognitive measures allowed us to test 

whether individual differences in working memory and general IQ (with vocabulary 

knowledge used as a proxy) explain variance in how close to optimal individual 

observers are. However, visuospatial working memory capacity, as measured by the 

Corsi memory span, did not uniquely contribute, beyond verbal working memory or 

general cognitive ability. A series of studies demonstrate that parietal regions take 

part in decision making, especially for decisions that require accumulation of 

evidence (Morcos & Harvey, 2016; Schott et al., 2019). Since the parietal cortex has 

also been shown to contribute to the storage of working memory information (Romo 

et al., 1999; Shadlen & Newsome, 2001), we expected a relationship between 

working memory and perceptual decision-making. In fact, a positive correlation of 

working memory and incidental learning of probabilistic sequences (Cashdollar et al., 

2017; Park et al., 2020) and the rate of evidence accumulation (Ester et al., 2014; 

Schmiedek et al., 2007) has also been reported. So why did we not find a 

relationship between working memory and efficient decision-making, when so many 

links have been reported previously?  

The storage capacity of working memory should play a central role in allowing 

information encountered further back in the past to be maintained in memory. In 

doing so, memory capacity may be critical for building the overall prior distribution 

(i.e., learning the prior), but should not be needed to learn how to use the prior 

efficiently. This raises the possibility that adult observers had learned the prior 

distribution equally well (which would explain why there was no effect of working 

memory), but what they are variable in is how good they are at assigning appropriate 
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weights to the prior, relative to the sensory information (which would explain why we 

still observed considerable variation in how close to optimal observers were).   

 

Distance from optimal as a measure of efficient use of novel statistics 

 Another possibility is our choice of outcome variable. We used distance from 

optimal as a proxy for efficient use of novel task statistics. We hypothesised that 

higher working memory capacity, particularly visuospatial, would increase the 

amount of past information that could be stored or processed efficiently, steadily 

shortening the distance from optimal predictions. Distance from optimal thus allowed 

us to determine how efficiently observers use the novel statistics. 

 Nevertheless, there is the possibility that there was actually a relationship 

between distance from optimal and working memory, but our outcome variable might 

not have been sensitive enough to detect such a relationship. In fact, previous 

studies that did report a positive correlation have used more sensitive measures, 

such as reaction times or computational modelling (Ester et al., 2014; Schmiedek et 

al., 2007). Using computational modelling, for example, Ester et al. (2014) was able 

to determine that working memory is linked to drift rates, i.e., the rate at which 

evidence is accumulated over time, but not response threshold (i.e., amount of 

sensory evidence needed to reach a decision). It is therefore possible that our 

outcome measure was useful but provided relatively little information about what 

aspects of the decision-making working memory plays a role in. Future studies could 

use more sensitive measures to clarify the contribution of working memory to 

different parts of the decision-making process.  

 

Corsi blocks as a measure of visuospatial working memory 
 Lastly, it is possible that that the Corsi blocks task was not a sensitive enough 

measure to detect individual differences in distance-from-optimal scores. Corsi 

blocks involves remembering a number of discrete locations in a sequence. In 

contrast, in the localisation task, the targets were at different locations, drawn from a 

continuous spatial distribution. Thus, it is possible that because the Corsi-blocks task 

involves a more discrete form of spatial memory (remembering up to nine distinct 

locations in a sequence), it was not sensitive enough to detect inter-individual 
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variations where the distribution of locations was continuous across space. Future 

studies will need to use measures which provide a more sensitive means for 

capturing individual differences in a continuous localisation task like ours, such as 

delayed estimation (Wilken & Ma, 2004) which also uses a continuous response 

scale.  

 

Does our task require verbal working memory? 

Verbal working memory also had no impact of how close adult observers were 

to optimal, which is what we would expect if verbal working memory was not required 

for the localisation task. It appeared possible that observers may have internally 

verbalised the spatial order of the targets (e.g., where the next target would likely 

appear, relative to the one they have just seen) - a process which would, indeed, rely 

on verbal working memory. However, it is unlikely that such verbal strategies were 

used over the entire experiment. This may explain the lack of a relationship between 

verbal working memory and distance-from-optimal indices in our study. Nonetheless, 

further studies would be required to completely rule out the possibility that verbal 

working memory is involved in learning the task statistics.  

 

The role of general cognitive ability 
 Although we observed considerable variability in our general cognitive 

measure (vocabulary knowledge; WASI-II), we did not find that this variability 

explained differences in how close to optimal different individuals were. This result is 

not surprising given that all of our participants were university students, and as a 

consequence, were potentially quite homogenous in terms of education, 

socioeconomic status and general cognitive capacities. We acknowledge that based 

on our results, we cannot confirm whether this result would hold for the general 

population, but this could be addressed in future work.  

 

Violation of key assumptions  

We checked the data for violations of key regression assumptions, such as 

residual normality and homoscedacity (homogeneity of variance). The residuals were 

not normalised: this is why a square root transformation was applied for the distance-
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from-optimal scores (Bishara & Hittner, 2012). An alternative would be to use a non-

parametric test (Miller, 1986) or generalised linear models where the distribution of 

error can be changed from normal to other error distributions, e.g., Poisson or 

binomial (O’Hara, 2009). However, we believe that the latter, in particular, is more 

problematic than transforming the data because certain models (e.g., Poisson) are 

very sensitive to violations of their normality assumptions, increasing the risk of Type 

I error (Ives, 2015; Warton et al., 2016) (as was argued in Knief and Forstmeier, 

2021).  

 

To summarise our results, we did not find that visuospatial working memory 

predicted individual differences in how close to optimal observers were, beyond what 

is already explained by verbal working memory and general cognitive abilities, and 

regardless of whether the prior was narrow or wide. Future work using computational 

modelling and more sensitive measures will confirm with a greater deal of certainty if 

and how working memory contributes to perceptual decision-making.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 133 

Chapter 5 

General Discussion 
 

5.1   Introduction 

In this thesis, we sought to investigate how observers learn and use novel 

priors efficiently, what the limits of these abilities are, how they change with age and 

what factors that may underlie these abilities. Across three experiments in Chapter 2, 

we examined whether adults’ ability to generalise learned priors to untrained cue 

reliabilities is limited by task complexity. Across three experiments in Chapter 3, we 

then looked at how adults and children adapted to novel statistics and probed some 

of the factors that may affect the extent and rate of this adaptation. These 

experiments were supplemented with an individual differences approach, examining 

whether individual variation in working memory capacity relate to how close to 

optimal adults are (Chapter 4).  

Firstly, we will summarise the central findings of this thesis (Section 5.2). We 

will then explain how these findings build and expand on findings in the existing 

literature (Section 5.3). Then, we will outline the potential implications of our findings 

(Section 5.4), their limitations and possible avenues for future research (Section 5.5). 

 

5.2   Summary of main findings 

 

5.2.1 Chapter 2 
 The existing literature does not currently tell us whether observers can 

immediately transfer probabilistic information in situations that more closely resemble 

the complex and dynamic environments in which humans operate – i.e., where 

statistics can change suddenly. Therefore, across three experiments in Chapter 2, 

we used a task which was made more complex than previously used (Sato & 

Kording, 2014) by interleaving multiple prior and sensory variances. We asked 

whether adults would immediately generalise already learned priors to a new level of 

sensory uncertainty (demonstrated by instant change in cue weighting; "Bayesian 

transfer" (Maloney & Mamassian, 2009) ), which would be consistent with Bayesian 

inference, or whether they would take longer to adapt to the untrained sensory 
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reliability (suggestive of a mechanism similar to reinforcement learning). In 

Experiment 1, we found only weak evidence of transfer, with no differences in 

weights when sensory uncertainty jumped from medium to high. In Experiment 2, 

where participants were explicitly told of the different prior variances, we found 

evidence of transfer, with significantly less weight assigned to the high, relative to the 

medium, sensory uncertainty. In both Experiment 1 and Experiment 2, performance 

was suboptimal. This was also the case in Experiment 3, where all prior and sensory 

variances were included from the beginning (no transfer). We also found that a 

model that weights sensory information by taking into account only its internal noise 

provided a better account of the data than a model that accounted for the external 

noise only and a model that accounted for both internal and external noise in the 

sensory cue. This is the first study (so far as we are aware) to examine abilities to 

transfer in dynamic and complex environments.  

 

5.2.2 Chapter 3 
Despite overwhelming evidence that humans detect and learn novel statistical 

regularities as early as a few months after birth, recent studies have shown that 

children do not begin to use these efficiently until much later (around 9-10 years of 

age; Bejjanki et al., 2019; Chambers et al., 2018). However, the factors underlying 

the long development of this critical perceptual skill have not been explored. Across 

three experiments in Chapter 3, we probed several factors which likely affect the 

ability to efficiently use the statistics. In Experiment 1, we traced the detailed time 

course of how children and adults adapted to novel changing task statistics. We 

found that 6- to 8-year-olds learned enough about the two priors to weight them 

differently, but this learning was so slow that, unlike in 9–11-year-olds and adults, it 

did not show measurable changes over time. In Experiment 2, where all previous 

trial outcomes were explicitly available, 6- to 8-year-olds learned to use the statistics 

faster and more efficiently (i.e., became adult-like, moving closer to optimal), and 

adults’ performance became indistinguishable from optimal values. Experiments 1 

and 2 are the first to directly compare adults and children’s weightings when the prior 

was directly observable and, therefore, did not need to be learned (Experiment 2), as 

opposed to having to be inferred from past events (Experiment 1). Additionally, our 



 135 

results from Experiment 3 have shown for the first time that when several weighting 

‘rules’ had to be stored and managed at the same time, 6- to 8-year-old children’s 

abilities to distinguish between statistical distributions tended to break down, and 

adults’ judgments became more child-like. Overall, these findings show that children 

are sensitive to novel task statistics from a young age but making efficient use of 

these for perceptual decision-making under uncertainty depends on development of 

central cognitive abilities, including working memory and cognitive flexibility. Our 

results suggest how early sensitivity to task statistics may be reconciled with much 

later development of abilities to use these statistics efficiently during perceptual 

decision-making. 
 

5.2.3 Chapter 4 

 Having observed that adults’ performance became indistinguishable from 

optimal when working memory demands were relaxed (Experiment 2, Chapter 3) but 

not otherwise (Chapter 2; Experiment 1, Chapter 3), we intended to deepen our 

understanding of this result. In Chapter 4, we took a different approach by examining 

whether inter-individual differences in working memory capacity are related to how 

close adults are to optimal. We focused on visuospatial working memory due to the 

spatial nature of our task. We also included a measure of verbal working memory 

and vocabulary knowledge as control measures. Using a sample size more than 

three times higher than that used in our previous experiments (63 adults vs. 19 in 

each experiment in Chapter 3), we replicated our findings of adult observers 

changing their reliance on prior, according to its reliability, and over time (Experiment 

1, Chapter 3). However, individual differences in visuospatial working memory, 

verbal working memory or vocabulary did not explain significant variance in distance-

from-optimal indices for either of the prior variances. As far as we are aware, no 

studies to date have examined the relationship between distance-to-optimal indices 

and working memory capacity.   

 

5.3   Contributions to the literature 
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5.3.1 Limited by complexity 
 A strong finding emerging from Chapters 2 and 3 is that the ability to rapidly 

and flexibly perform Bayesian inference is limited in more complex, changing 

environments. Abilities to generalise to untrained reliabilities is a powerful test of 

Bayesian inference ("Bayesian transfer"; Maloney & Mamassian, 2009). Using this 

approach in a more complex task than has been used previously (e.g., Sato & 

Kording, 2014), in Experiment 1 (Chapter 2), we were able to show that adult 

observers did not generalise learned priors of stimulus locations to a new cue 

reliability level (Maloney & Mamassian, 2009). This contrasts with Sato and Kording 

(2014), who used a far simpler visual estimation task and showed that adult 

observers immediately transferred what they had learned about likelihood variances 

to a new prior. The fact that in our study, observers did not generalise and remained 

far from optimal - despite receiving feedback - suggests that complexity poses a 

fundamental constraint on performing Bayesian inference. This conclusion makes 

sense because we know that performing accurate inference is computationally costly 

(e.g., time, memory); therefore, more complex tasks that draw to a much larger 

extent from memory and other resources may render performing optimal inference 

difficult or unfeasible (Beck et al., 2012; Ma, 2012).  

 Importantly, in this thesis, we also show that complexity similarly poses a 

constraint on children’s performance. We showed that 6- to 8-year-old children can 

differentiate between the prior variances, but only when there was a single level of 

sensory uncertainty, making the task much simpler and easier (Experiment 1, 

Chapter 3). However, when this task was made more complex by interleaving two 

levels of sensory uncertainty (in addition to changing prior uncertainty halfway 

through the task), children of the same age did not differentiate between the narrow 

and the wide prior (Experiment 3, Chapter 3). Our results corroborate earlier work by 

Bejjanki et al. (2019), who showed that 6-7-year-old children changed their 

weightings when only the sensory uncertainty changed, but not when both sensory 

and prior uncertainty changed in an interleaved fashion (multiple ‘rules’ at the same 

time, making the task more complex). Similarly, Chambers et al. (2018) found that 

children aged between 6 and 8 years were less sensitive to changes in prior 
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uncertainty than older children and adults when both prior and sensory uncertainty 

changed.  

 Together, our findings speak directly to a long-standing question in the field of 

what the limits of Bayesian inference are. Quite consistent with the role of complexity 

in limiting optimal inference, both adults and children’s performance became worse 

in more complex tasks. 

 

What does this tell us about real-life decisions? 
 Exploring whether people make the best, most efficient use of newly learned 

information in more natural and complex tasks is crucial to understand how people 

handle real-life situations, where the reliability of sensory inputs changes at 

unexpectable times. In simple, stable environments, you could find the optimal 

solution by learning simple rules, such as reinforcement learning. However, these 

would not generalise if the environment changes. By contrast, efficient, Bayesian 

inference allows for flexible behaviour in changing environments. Studies using more 

natural and complex tasks and stimuli therefore provide a crucial test of what people 

learn when they learn to make efficient perceptual inferences. Given the ubiquity of 

the non-stationarity of our environments, our results highlight the need for developing 

interventions that are aimed at helping observers to better detect when the 

environment changes, and to adjust their decisions accordingly.  

 

5.3.2 Adult-like integration of evidence from various sources after 8 years, but 
earlier if you know more about the underlying structure 

Although some basic abilities, such as extracting statistical regularities from 

sensory input, exist in infants (Fiser & Aslin, 2002; Kirkham et al., 2002; Saffran et 

al., 1996), the ability to make efficient use of novel statistical regularities does not 

become adult-like until late childhood. We showed this in Chapter 3, Experiment 1;  

6- to 8-year-olds changed their reliance (weighting) on the prior when its reliability 

changed but the extent and the rate of their adaptation to the task statistics was far 

from adult-like. Chambers et al. (2018) also found a lack of adult-like weighting in the 

same age group. By tracing the time course of adaptation in adults and children 

between the ages of 6 and 11 years, we can now add that although the youngest 
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children learned enough about the priors to treat them differently, this learning was 

so slow that, unlike in 9–11-year-olds and adults, it did not show measurable 

changes over time. And indeed, previous reports of lack of reliability-dependent 

changes in prior weighting in young children (Chambers et al., 2018) could result 

from such slow learning. This slowness contradicts the idea that young children 

cannot use novel statistics in an efficient, adult-like way, and instead aligns more 

closely with the idea that children are extremely slow (much more than adults) to 

learn to make efficient use of these statistics. This conclusion is supported by studies 

from Manning et al. (2020) and Ratcliff et al. (2012) who used computational 

modelling to show that young children accumulate evidence at a slower rate than 

adults.  

 Our results also show that the ability to make more efficient, adult-like use of 

novel statistics can emerge already by the age of 6, provided the underlying task 

structures are made explicit. We show this in Experiment 2 (Chapter 3), where we 

made all previous trial outcomes (aka the prior) explicitly available and found that 6- 

to 8-year-olds’ adapted to the statistics in similar ways to adults, when they had not 

before (Experiment 1, Chapter 3). The difference in performance of 6- to 8-year-olds 

between Experiments 1 and 2 indicate that the 6- to -8-year-olds in Experiment 1 

may not have adapted to novel statistics in a similar way to adults because they 

were uncertain about what those statistics are. We see a parallel to the literature on 

the development of cue combination. In Section 1.3.6.3, we discussed findings of 

children younger than 8 years of age not combining multiple sensory cues in an 

efficient, adult-like way, possibly because they are unsure about whether the cues 

are from the same or different objects (Dekker & Lisi, 2020; Rohlf et al., 2020). This 

idea – that young children may be unsure about the underlying causal structure - 

also gains support from a recent study by Negen et al. (2019); seven-, eight-, nine-, 

and ten-year-old children were presented with an auditory and a visual cue, and told 

that both of these cues indicated the location of an unseen target. The cues were 

from the same location and the correct response was shown at the end of each trial. 

Rohlf et al. (2020), on the other hand, asked participants to localise sounds without 

feedback; also, there was a spatial separation between the visual and auditory 

signals. So, while there is no doubt of what the causal structure was in Negen et al. 
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(2019) (visual and auditory cues originate from the same source), the causal 

structure in Rohlf et al. (2020) was not certain.  

Coming back to our own developmental work, we reiterate that in Experiment 

1 (Chapter 3), the underlying task structure was unknown, and had to be learned 

from feedback; 6-8-year-olds adapted extremely slowly. In Experiment 2 (Chapter 3), 

we showed the participants how the targets were distributed, and thus, reducing the 

ambiguity in the underlying structure of the task and found adult-like adaptation in 

children as young as 6 years. Taken together, these findings provide strong 

evidence that the real bottleneck to children combining optimally is not so much in 

them being incapable of doing so, potentially because of immature neural 

mechanisms, but in uncertainty about the statistical structure of the environment.  

We want to point out that knowing more about the statistics and structure of 

the task also improved adults’ performance. Presenting the prior distribution explicitly 

brought adults’ performance closer to the optimal values in Experiment 2 (compared 

to Experiment 1, Chapter 3), such that it was now indistinguishable from optimal. 

Also, in Chapter 2 we found that adult observers (1) moved closer to optimal, and (2) 

generalised to the untrained likelihood variance when we explicitly told them that 

there were two prior variances, one more reliable than the other (Experiment 2); no 

evidence of transfer was found when this information was not communicated to 

participants (Experiment 1). Similarly, Acerbi et al. (2014) reported that adults could 

compute with complex priors that change on every trial when they were explicit but 

not when the prior distribution(s) had to be learned (Acerbi et al., 2012; Körding & 

Wolpert, 2004). These results reinforce the notion that knowledge of the underlying 

statistics is essential in performing Bayesian inference, to the point that without this 

knowledge, adults struggle to generalise across contexts, and children take longer to 

learn to use information in an efficient, statistically optimal way.  

 

5.3.3 Limited resources 

 As well as incomplete knowledge about the statistical structure, our findings of 

(1) optimal use of novel statistics in adults, and (2) greater, much more adult-like 

adaptation to these statistics in young children (Experiment 2, Chapter 3), can be 

explained equally well by resource-rational theories (Bejjanki & Aslin, 2020; Lieder & 
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Griffiths, 2019). According to this account, there is a fixed amount of resources (e.g., 

storage capacity of working memory) that could be used to learn and efficiently adapt 

to novel statistical priors, especially in children, when working memory and other 

executive functions are still developing (Best & Miller, 2010). In showing all previous 

trial outcomes on-screen, we made the prior distribution known while at the same 

time relaxing demands on working memory, freeing up cognitive resources. This may 

be why the 6- to 8-year-olds in Experiment 2 were adult-like in how they adapted, 

whereas the children in Experiment 1 were not; it is possible that their working 

memory capacity did not allow them to retain accurately the preceding target 

locations needed to correctly infer the underlying structure of the task (Chapter 3). 

These findings are also consistent with parallel improvements in working memory 

during childhood (Zelazo et al., 2008). Interestingly, adults’ performance also 

became indistinguishable from optimal (Experiment 2, Chapter 3). That being said, 

we know that working memory is a limited resource even in adults (Bays & Husain, 

2008) regardless of whether observers 1) remember each individual location, or 2) 

instead maintain a summary representation of what the distribution looks like and 

update that with new samples to more efficiently do the task. These processes can 

be difficult to distinguish (Hansmann-Roth et al., 2021; Spicer et al., 2020; Sun et al., 

2019), but both require accurate representation and updating in working memory. 

Our results from Experiment 3 are also consistent with the resource-rational 

explanation: when multiple interleaved levels of sensory uncertainty were introduced, 

increasing demands upon cognitive resources, the youngest children’s abilities to 

distinguish between statistical distributions broke down, and adults’ judgments also 

became more child-like (Chapter 3). This result is consistent with Chambers et al. 

(2018), who also found this lack of reliability-weighting of the prior in a situation with 

multiple sensory likelihoods. Also, Bejjanki et al. (2019) showed that 6-7-year-old 

children changed their weightings when only the sensory uncertainty changed (i.e., 

single ‘rule), but not when both sensory and prior uncertainty changed in an 

interleaved fashion (multiple ‘rules’ at the same time). Also in line with our findings is 

evidence that cognitive flexibility improves at older ages. Irwin-Chase and Burns 

(2000) found that the ability to manage and switch between different rules improves 

between the ages of 5 and 8 and becomes adult-like after 8 years of age. Other 
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studies have also shown that young children find multiple rules extremely difficult to 

manage (Anderson et al., 2011; Harada et al., 2018; Huizinga & Van Der Molen, 

2007; Zelazo et al., 1996, 2008).  

Altogether, our developmental results support the notion of a resource-rational 

strategy where people economise on the limited cognitive resources they have 

available to learn about the statistics of the environment. Our conclusion - that 

understanding decision making in humans, particularly as they grow older, requires 

that we account for limitations – is in keeping with a long-standing tradition of 

understanding development in terms of cognitive limitations, such as attention and 

working memory (Klahr, 1992; Klahr & Macwhinney, 1996). 

 

We note that the two different explanations – incomplete knowledge of the 

underlying statistics and resource rationality – are not mutually exclusive. In fact, 

finite resource could explain why young children may be more uncertain about the 

same environments that adults are certain about. If children’s abilities to learn about 

and represent the novel statistics are more limited – presumably because they have 

less resource available (e.g., lower memory capacity) – they may be still learning 

what the underlying statistics of the environment are.   

 

5.3.4 Neural explanations 

 Although our data are compatible with many perspectives, the possibility we 

may potentially be able to rule out is that there is an in-principle inability of younger 

children to combine the relevant information in a way that is weighted by reliability. 

Such an inability might be expected if there were a central immaturity in the brain’s 

implementation of weighted averaging. For example, it has been suggested that 

there is a reduction in the amount of inhibition that occurs through divisive 

normalisation and as a consequence, neurons have a smaller impact on the activity 

of nearby singe neurons (Carandini & Heeger, 2013): if true, this would result in 

underweighting of priors, which has been well documented in adults with autism. If 

we assume, in line with this explanation, that children younger than 9 years of age 

have reduced divisive normalisation, children in this group should systematically 

underuse priors, compared to adults. After this age, children should be able to learn 
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and make efficient use of novel statistics in a similar way to adults. While the 

experiments reported in this thesis were not designed to test this theory, the 

experiments in Chapter 3 seem to contradict it, with adult-like adaptation to novel 

task statistics at the age of 6 years as the demands on memory capacity are reduced 

(Experiment 2, Chapter 3). Similarly, when there were multiple ‘weighting’ rules, 6-8-

year-olds became less sensitive to changes in the reliability of the prior. Therefore, 

reduced divisive normalisation does not do a good job of accounting for the less 

weighting of the prior in younger age groups.  

 

 In sum, we believe we have made several novel contributions to the literature 

on the development of perceptual priors. Firstly, similarly to previous studies 

(Bejjanki et al., 2019; Chambers et al., 2018) we did not find evidence for adult-like 

use of novel statistics before 9 years of age in Experiment 1 (Chapter 3). These 

results are also consistent with what has been found in the vast majority of cue 

combination studies in children (Gori et al., 2008; Nardini et al., 2008, 2010): children 

younger than 8 years do not combine multiple sensory cues in a way that gives less 

weight to the less reliable cue. However, more recently, we and others (cue 

combination; Rohlf et al., 2020) have shown that the ability to combine across cues 

and with prior knowledge emerges in young children from the age of 5, provided the 

environmental structure is known, thereby freeing up resources and capacity for 

learning how to combine information optimally. This is a shift away from theories, 

suggesting that the basic mechanism needed to combine information optimally does 

not develop until 9 years of age (Chambers et al., 2018).  

 Secondly, the fact that when we made the prior explicit, and thus removing 

the need to learn it, the performance of 6- to 8-year-old children reached adult-levels 

and moved closer to optimal, provides compelling evidence that previous reports of 

young children’s failures to weight the prior efficiently and in an adult-like way 

(Chambers et al., 2018) are more likely a result of difficulties with learning the prior, 

as opposed to learning how to use it. Although this seems to go against the long-

held belief that children learn novel statistics from a young age (Fiser & Aslin, 2002; 

Kirkham et al., 2002; Saffran et al., 1996), it is worth noting that the infancy studies 

held as evidence that infants are already good at learning new statistical distributions 
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only show whether children can discriminate between familiar and novel stimuli 

above chance; these studies do not tell us how accurately these distributions are 

learned, compared to older children and adults. Incidentally, accuracy of learning 

would be hard to assess with those incidental looking-time methods, as there is no 

explicit task pushing people to be as accurate as possible.  

 

5.4   Implications 

 

5.4.1 Shared underpinnings with cue combination 
 While cue combination and prior and sensory combination are both key 

aspects of Bayesian inference, it is not known whether they are linked and are 

underpinned by a common mechanism. Our findings mark an important step in 

linking the development of cue combination and perceptual priors. Evidence for 

efficient, adult-like adaptation to novel prior statistics (Experiment 1, Chapter 3; 

Bejjanki et al., 2019; Chambers et al., 2018) seems to emerge around the same age 

when children start to combine multiple sensory cues efficiently (Gori et al., 2008; 

Nardini et al., 2008, 2010). This observation has led many to believe that there is a 

common neural mechanism underlying both cue combination and integration of 

priors, perhaps to do with representing and / or computing with probabilities (Ma, 

2012), or the neural mechanism needed to integrate cues (and prior knowledge) in a 

reliability-weighted way (Ohshiro et al., 2011). Our own studies and others (Rohlf et 

al., 2020) now move away from such neural explanations, instead suggesting a 

common problem with uncertainty about the underlying structures, or a much more 

basic, more priors-specific problem of coping with excess demand on immature 

executive functions (Best & Miller, 2010; Diamond, 2013; Gur et al., 2012). More 

studies are now needed to determine to tease apart these alternatives.   
 

5.5   Future Directions and Limitations 
 

5.5.1 The importance of testing beyond 11 years 
Studies that extend beyond 11 years into adolescence would help determine 

the specific age at which integration of prior knowledge becomes adult-like. In 
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Experiment 1, Chapter 3, we found less weighting of priors in children, compared to 

adults, with no significant differences between the 6-8-year-olds and 9-11-year-olds. 

This means that learning and/ or the efficient use of novel priors is not adult-like even 

by the age of 11 years, suggesting that these abilities continue to mature into 

adolescence. However, to our knowledge, research on integrating and weighting 

information by its reliability in adolescence is limited (Haller et al., 2018). 

Adolescence is also a time when working memory (Experiment 2, Chapter 3) and 

other executive functions that efficient prior integration may depend on, e.g., storing 

and switching between multiple ‘rules’ (Experiment 3, Chapter 3) also improve (Best 

& Miller, 2010; Gur et al., 2012). Clearly, given the ties between the delays in 

efficient use of novel statistics and the late maturation of executive functions and the 

brain regions they rely on (Baum et al., 2017; Gu et al., 2015; Hagmann et al., 2010; 

Huang et al., 2015), future studies should examine longitudinal changes over time 

between early childhood, through early teens and into adulthood.  

 

5.5.2 The importance of using computational models 
 Across the three experiments in Chapter 3, we demonstrated differences in 

the learning and efficient use of novel statistics between adults and children aged 6 

to 11 years. However, we did not investigate the mechanisms underlying these 

abilities, or the decision strategies adults vs. children use when performing 

perceptual decision-making tasks. Computational modelling lends itself well to these 

challenges. In the cue combination literature, this approach – of fitting models to 

experimental data – has resulted in a number of insights into the mechanisms and 

algorithms underlying behaviour (Nardini et al., 2008; Rohlf et al., 2020). Using this 

approach, Nardini et al. (2008) showed that adults’ behaviour was most consistent 

with an integration process that computes a reliability-weighted average; by contrast, 

the behaviour of 4- to 5-year-olds and 7- to 8-year-olds was better explained by a 

process that switches between the cues. More recently, model comparison 

demonstrated that a model which accounted for ‘causal uncertainty’, i.e., the 

uncertainty about whether the cues come from one object or different objects fits 

both adult and children’s data better than a model that always integrates or a model 

that always kept the cues separate (Rohlf et al., 2020). Also, by varying the 

parameters of the model, Rohlf et al. (2020) demonstrated that young children are 
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less likely to assume a common source. In sum, by using computational modelling, 

Rohlf et al. (2020) was able to demonstrate that young children can combine cues 

but are generally uncertain about whether the cues come from the same source. And 

indeed, we could also use computational modelling to better understand why young 

children in our studies tend to underweight the prior. For example, it has been 

suggested that adults with autism, who similarly to typical young children also 

underuse priors, do so because they overestimate the volatility in a changing 

environment (Lawson et al., 2017). Behrens et al. (2007) makes sense of this 

observation by saying that when the environment is believed to change very often, 

information from the past (i.e., priors) is not the most informative, and will therefore 

be weighted less. It is therefore possible that much like the lower prior expectations 

of a common source shown by Rohlf et al. (2020), young children could also have 

lower prior expectations that the environment will remain stable. By looking at how 

different model parameters, such as the a priori expectation of environmental 

stability, vary with age, we could better understand the reasons behind the under-

use of priors in young children. All of that being said, distinguishing reliably between 

models and parameters can be very challenging with developmental data (Scarfe & 

Glennerster, 2018)  that is generally more prone to response biases and noise 

(Jones & Dekker, 2017; Manning et al., 2018). 

 Computational modelling approaches have also been applied to model the 

learning process itself (Wilson & Collins, 2019). This is because each trial depends 

on the preceding trial(s); therefore, the ‘classic’ analysis of averaging across trials 

and conditions may not be as informative. In fact, we could apply computational 

models to our behavioural data to find out whether young children adapt more slowly 

to the prior (1) but will eventually reach the same asymptote as adults, or (2) would 

plateau before reaching the adult / optimal asymptote. The number of trials in the 

experiments in Chapter 3 was not sufficient to determine whether 6-8-year-olds, 9-

11-year-olds and adults would all converge to a common asymptote with enough 

exposure; however, in the future, probabilistic learning tasks could be modelled with 

a simple exponential rule with parameters for the learning rate, asymptote and the 

initial weight given to the prior. Observing how the parameters of the specific 

components of the model (e.g., learning rate) vary with age would help us to better 

understand which elements of the model are still developing in children.  
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We could also use computational modelling to quantify how working memory 

contributes to learning. Although simple behavioural analyses could explain the 

broad qualitative patterns we saw in Experiment 2, Chapter 3, it could not tell us 

which mechanisms are more likely to underlie these patterns. Limitations in working 

memory capacity could result in remembering previous locations imprecisely or 

forgetting locations with time (i.e., recency effects). Models that make precise, 

quantifiable predictions would help us better understand and quantify the effects of 

working memory limitations, particularly in the context of learning and decision 

making. 

 

5.5.3 Neural mechanisms that might underlie attenuated priors and the 

importance of eye-tracking methods 
 In Chapter 3, we reported less weighting of the prior in relation to sensory 

input in 6- to 8-year-olds. However, we did not explore the neural mechanism(s) that 

may be underlying the underuse of priors in this age group. Reduced inhibition that 

occurs through divisive normalisation is believed to lead to priors being 

underweighted in adults with autism (Rosenberg et al., 2015). Divisive normalisation 

has further been implicated in the modulatory effects of attention and multisensory 

integration on neural responses (Ohshiro et al., 2011; Reynolds & Heeger, 2009). 

These findings are consistent with the idea that there may be a link between neural 

mechanisms, specifically involving divisive normalisation, and underweighting of 

priors in young children. This should be a major consideration for future studies of 

the development of novel priors. 

 As well as MRI measures which could be used to uncover underlying neural 

mechanisms like reduced divisive normalisation, we could also use eye-tracking 

methods to better understand and interpret our results. Studies have employed eye-

tracking to take pupil diameter measures, shown to encode the trial-by-trial level of 

surprise at the time that feedback was provided (Lavín et al., 2014; Preuschoff et al., 

2011). These pupil measures can, for example, help elucidate whether young 

children in Experiment 1 (Chapter 3) took longer to change their reliance on the prior 

when it changed in reliability because they did not notice relevant feedback, or 

because they did not learn from it. Eye-tracking could also be used to probe what is 

it that people had actually learned about novel statistics. Behavioural measures 
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alone cannot tease apart suboptimality due to not representing the correct 

distribution, or not combining it correctly with current sensory input. One way to do 

this is to occasionally show stimuli that are outliers (e.g., show a target in a location 

that falls outside the range of the distribution, so it is unexpected). If people struggle 

with representing the distribution, we might expect to see increases in pupil size from 

surprise signals generated by such outlying observations. Future studies should 

attempt to repeat our findings but using eye-tracking methods.  

 

5.5.4 Individual differences 
 In Chapter 4, we found that distance-to-optimal indices in adults cannot be 

predicted by individual differences in visuospatial working memory capacity; and 

neither by verbal working memory capacity or vocabulary knowledge. This is despite 

evidence from work by us (Experiment 2, Chapter 3) and others (Bagneux et al., 

2013; Cui et al., 2015; Duncan et al., 2012; Pereg & Meiran, 2019) that working 

memory is crucial for learning new task rules and making decisions under 

uncertainty. Broadly, we concluded that is it possible that unlike in development, in 

adults, there are no longer important differences in working memory capacity that 

limit performance on our localisation task. This suggests that adults have learned the 

novel statistics similarly well, but are variable in other factors, e.g., how good they 

are at assigning appropriate weights to the prior and sensory information. 

Alternatively, it is possible that in order to capture individual differences in working 

memory capacity, we need to use a more sensitive measure. As our measure of 

visuospatial working memory, we used the Corsi blocks task (Corsi, 1972), which is 

one of the most widely used paradigms in visuospatial working memory research. In 

this task, the participant must hold a sequence of up to nine discrete locations in 

memory and then recall the sequence of locations in the correct order. By contrast, 

our task involves remembering locations which are continuously distributed. Could it 

be that the Corsi blocks test was not sensitive enough to detect inter-individual 

variations where the distribution of locations was continuous across space? An 

example of a sensitive measure of visual working memory is the delayed estimation 

task (Ma et al., 2014), which uses a continuous response space, rather than discrete 

‘locations’. Future studies should establish whether using more sensitive measures, 
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like the delayed estimation task, can detect differences in working memory capacity 

and predict individual differences in how close to optimal an observer is. 

 Another consideration in individual differences research is the homogeneity of 

the sample. Our participants were similar in education, socioeconomic position, and 

very likely, in general cognitive ability. Therefore, in the future, studies should 

explore individual differences in the general population. 

 

5.6   Conclusions 

The aim of this thesis was to gain a better understanding of how people learn 

and make efficient, statistically optimal use of novel statistical distributions. We have 

shown that increasing environmental complexity complicates performing Bayesian 

inference. We have also shown that making the environmental structure more 

explicit has a key role in our ability to use novel statistics efficiently in both children 

and adults, with children’s performance reaching adult-like levels and adults’ 

performance matching that of optimal decision makers. Lastly, potentially ruling out 

individual variation in working memory capacity as a source of variation of adults’ 

distance from optimal opens up avenues to 1) replicate our finding but with more 

sensitive measures, and 2) investigate other factors which may impact how close to 

optimal adults get, e.g., how good they are at weighting the information sources 

appropriately.  
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Appendices 
6.1 Appendix A – Instructions for Experiments 1 and 2 (Chapter 2) 
 
Instructions in Experiment 1: 

“We will ask you to play an “octopus” game! 

Imagine that you are on a boat and there are 2 octopuses you are trying to find: one 

is white, and the other one is black. The white octopus has square tentacles and the 

black octopus has circular tentacles. The 2 octopuses live in different parts of the 

sea. Sometimes the octopuses will show their tentacles and at other times they will 

hide at the bottom of the sea.  

Your job is to try and figure out where the octopus is! 

Once you decide on a location, you can click on the green square (your fishing net), 

at which point you will see a red dot, which shows you the true location of the 

octopus on that trial. If the red dot is inside the net, then you correctly guessed the 

location of the octopus and you get a point!” 

 

Instructions in Experiment 2: 

“We will ask you to play an ”octopus” game! 

Imagine that you are on a boat and there are 2 octopuses you are trying to find: one 

is white, and the other one is black. The white octopus has square tentacles and the 

black octopus has circular tentacles. The 2 octopuses live in different parts of the 

sea. Sometimes the octopuses will show their tentacles and at other times they will 

hide at the bottom of the sea.  

[It is important to remember that one of the octopuses tends to stay in a 
particular area, whereas the other one moves quite a bit!] 

Your job is to try and figure out where the octopus is! 

Once you decide on a location, you can click on the green square (your fishing net), 

at which point you will see a red dot, which shows you the true location of the 

octopus on that trial. If the red dot is inside the net, then you correctly guessed the 

location of the octopus and you get a point!” 
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6.2 Appendix B – Control Experiment: Likelihood-only task (Chapter 2) 
Participants consistently performed sub-optimally across all of our 

experiments. However, when we calculated the optimal weight on the likelihood, we 

did so under the assumption that people know the true values of the reliability of the 

sensory cue (i.e., the likelihood). As Sato and Kording (2014) point out, this is clearly 

not always the case: in fact, in order to perform optimally on our tasks, observers 

may need to learn about their likelihood variability, as well as prior variability. We, 

therefore, separately assessed any sensory noise that participants may have had in 

judging the centroid of the set of dots. If we find that subjects’ estimates of the 

reliability of the likelihood differ from the true values, this would mean that subjects 

were using incorrect parameters for the task, which may have led to suboptimal 

performance. We then recomputed the optimal weights based on errors in observers’ 

estimates of centroid location; we could, therefore, test whether subjects were, in 

fact, near-optimal, when their own sensory variability was taken into account.  

Methods 

Subjects (N = 26; 6 had participated in Experiment 2, 6 had participated in 

Experiment 3, and the rest had not completed any of the above tasks) were 

instructed to estimate the centroid of eight dots for different likelihood widths. True 

locations were drawn from a uniform distribution across the screen (no prior). There 

were 90 trials overall, with 30 trials of each likelihood width interleaved in a random 

order. No feedback was given.  

For each participant, their error on each trial was calculated by taking the 

difference between the response and true location for that trial (error = response – 

true). Their variable error for each likelihood condition was calculated as the 

standard deviation of the errors. Outliers were excluded prior to calculating the 

variable error in the same way as described previously.  

Results and Discussion of Control Experiment 

Participants were significantly worse than ideal (variable error was greater 

than the true standard deviation of the likelihoods) in the low (𝑡(25) = 7.45, 𝑝 < .001) 

and medium (𝑡(25) = 3.80, 𝑝 < .001), but not the high (𝑡(25) = 1.48, 𝑝 = .151) 

variance likelihood conditions (Figure 6.8).  
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Figure 6.8. Variable error for each likelihood condition in the likelihood-only task. The 

dashed lines show the true standard deviations of the likelihood in each case (ceiling 

performance). 

 

This suggests that our optimal predictions place too much weight on the 

likelihood, as they were calculated based only on the external variability of the 

sensory cue and failed to also incorporate the added variability from observer’s 

inability to perfectly calculate the dot centroids. We, therefore, recomputed the ideal 

weight for the likelihood, this time using the measured likelihood variances in the 

control experiment; we reasoned that this calculation would give us an optimal 

prediction that better matches our subjects’ performance. Our estimates of the 

likelihood variance increased by 16.66% for the low, 2.96% for the medium and 

5.26% for the high likelihood. With such large differences between the true and 

estimated likelihood variances, we expected that the re-calculated optimal 

predictions (based on subjects’ estimates) will be closer to the observers’ data, 

compared to those based on the true likelihood parameters. We compared these 

optimal values to subjects’ weights in the final block (5) in Experiment 1, and found 

that they were still significantly different from the empirical data when the variance of 

the likelihood was high or medium, irrespective of prior variance (all p < .001) (see 

Figure 6.9). No significant differences were observed when the prior variance was 

wide and the likelihood variance was low (𝑝 = .765).  
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Figure 6.9. Mean weight placed on the likelihood information in each block of 

Experiment 1. Blue is low variance likelihood, green is medium variance likelihood, 

red is high variance likelihood. Dashed lines show optimal values. Dotted lines show 

optimal values, computed using measured likelihood variances in the control 

experiment. Error bars are +/- 1 SEM. 

 

This pattern of results was surprisingly similar to the one we found when using 

the predictions of the optimal Bayesian observer, so this analysis did not affect our 

conclusions on the observers’ suboptimal behaviour. In particular, sensory noise in 

determining the centroid of the “likelihood dots” does not play a major role in 

explaining subjects’ sub-optimality in the task. 
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6.3 Appendix C (Chapter 2) 
The observed lack of statistically significant difference in cue weights does not 

necessarily imply a lack of substantial difference in terms of performance (points), as 

previous studies have shown that participants can be “optimally lazy” by deviating 

from optimal performance in a way that has minimal impact on overall expected 

score in a task (Acerbi et al., 2017). First off, we computed the optimal response 

variability 𝜎3" in using both the cue (overall likelihood variability 𝜎(") and the prior as 

𝜎3" = -"
$	-'$

-"$4	-'$
 

Since we are interested in the performance of the model in terms of reward, we then 

calculated expected gains by first computing the probability of catching an octopus 

on a given trial as 

𝑝 = 𝑃 P−
𝑤
2 ≤ 𝑋 ≤

𝑤
2R 

where 𝑝 is the probability that a random draw 𝑋 from a Gaussian distribution with 

mean 𝜇 (fixed at zero) and standard deviation 𝜎3" will fall within the “hit” distance from 

the true location, and that distance is half the width of the net /
"
. The probability of 

catching the octopus 𝑝 is then multiplied by the number of trials (per trial type in a 

block) to calculate the expected number of points. 

We then compared expected reward to the average reward earned by those 

participants who took part in the control experiment and either Experiment 2 or 

Experiment 3 (N = 12; in block 5 only), and found that optimal integration of the 

sensory cue and prior knowledge (according to participants’ overall noise in using 

the cue) resulted in an expected reward that was higher than what our participants 

achieved, but only when the variance of the prior was narrow; when the prior 

variance was wide, they matched quite well; see Figure 6.10. This result is 

particularly challenging for the notion that people may be “optimally lazy”, as this 

case would result in predicted and obtained reward values being equal. It can be 

seen that contrary to these predictions, our observers were clearly worse than the 

optimal observer, and could earn more points when the variance of the prior was 

narrow; it is, therefore, unlikely that their suboptimal performance could be explained 

by them being “optimally lazy” (Acerbi et al., 2017). 
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Figure 6.10. Mean number of points earned in Block 5 for participants who took part 

in Experiment 2 or Experiment 3 and the control task (N = 12). Blue is low variance 

likelihood, green is medium variance likelihood, red is high variance likelihood. Dot-

dashed lines show optimal reward values, taking into account participants’ overall 

noise. Error bars are +/- 1 SEM. 
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