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Simulations and observables in relativistic

cosmology

Cristian Guzmaro Barrera Hinojosa

Abstract: The huge leap in volume and precision that will be achieved by upcoming large

sky surveys will make our observables sensitive to a number of effects previously ignored, such

as relativistic effects. These can potentially represent new systematics to take into account,

but also new probes for our cosmological models. In this thesis, we explore novel tools to

model these type of effects, with a particular emphasis on frame-dragging — the leading order

post-Newtonian effect — in cosmological N -body simulations.

In the first part, we discuss the implementation of a new code for general-relativistic sim-

ulations in cosmology, gramses. The code is built upon the numerical infrastructure of

the ramses code, and implements a constrained formulation of general relativity in which

scalar and vector modes of the spacetime metric are calculated fully nonlinearly. We per-

form several tests against both theory and well-established, state-of-the-art relativistic codes,

demonstrating that gramses is able to produce robust results. Furthermore, we introduce a

new, general method to generate initial conditions for particles, which circumvents the gauge

issues affecting the standard prescriptions.

In the second part, we focus on exploring the impact of frame-dragging on different scenarios.

Firstly, based on a high-resolution run with gramses, we explore the behaviour of this

effect in different types of dark matter haloes. In particular, we show that, although the

gravitomagnetic force acting on dark matter is small relative to the Newtonian force, it can

be up to one order of magnitude larger than previous literature results. Finally, we explore

the possibility of detecting the gravitomagnetic effect that appears in lensing convergence

maps via cross-correlations with the kinetic Sunyaev-Zel’dovich effect, which is imprinted

in cmb maps. We make forecasts for next-generation weak-lensing surveys such as euclid

and lsst, and cmb experiments such as Simons Observatory and cmb-s4, and find that

the gravitomagnetic effect can be detected on small angular scales, provided that several

foreground contaminations can be reliably removed.

1



Simulations and observables in relativistic

cosmology

Cristian Guzmaro Barrera Hinojosa

A thesis presented for the degree of
Doctor of Philosophy

Institute for Computational Cosmology
Department of Physics

Durham University
United Kingdom

November 2021



Dedicated to
Dedicado a toda mi familia.



Contents

Abstract 1

List of Figures vii

List of Tables x

1 Introduction 1

1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The ΛCDM cosmological model . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Newtonian simulations of structure formation . . . . . . . . . . . . . . . . . . 8

1.4 Relativistic effects in cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Relativistic simulations in cosmology . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The gramses code 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Field equations for the gravitational sector . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The Arnowitt-Deser-Misner formalism . . . . . . . . . . . . . . . . . . 16

2.2.2 The conformal transverse traceless decomposition . . . . . . . . . . . . 18

2.2.3 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 The fully constrained formulation of GR . . . . . . . . . . . . . . . . . 20

2.3 The matter sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



Contents iv

2.4.1 Code units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Multigrid solver for the gravitational sector . . . . . . . . . . . . . . . 29

2.4.4 Particles evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.5 Calculation of matter sources . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Code tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Static tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Dynamical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Cosmological simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 Matter and velocity power spectra . . . . . . . . . . . . . . . . . . . . 48

2.6.2 The shift vector power spectrum . . . . . . . . . . . . . . . . . . . . . 51

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Initial conditions for relativistic N-body simulations 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The gauge choice in gramses . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 The geometric sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 The matter sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 The generation of initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 The displacement vector method . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 The gauge correspondence in Newtonian N -body simulations . . . . . 67

3.4.3 Initial conditions for gramses simulations . . . . . . . . . . . . . . . . 71

3.4.4 A finite difference method for the calculation of initial velocities . . . 74

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents v

4 The frame-dragging effect in a shearing-dust universe 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Linear theory solution for the vector potential . . . . . . . . . . . . . . . . . . 90

4.4 Realising the initial density field with particles . . . . . . . . . . . . . . . . . 92

4.5 Ray tracing and calculation of the relativistic observable . . . . . . . . . . . . 97

4.5.1 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.2 Time stepping for the simulation snapshots . . . . . . . . . . . . . . . 100

4.5.3 Linear solution to the null geodesic equations . . . . . . . . . . . . . . 102

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 The gravitomagnetic effect and vorticity in ΛCDM 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Method and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Vector decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.2 Gauge choice and the constraint for the vector potential . . . . . . . . 117

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 Power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 The vector potential and frame-dragging acceleration in dark matter

haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Detecting the cosmological gravitomagnetic effect via weak lensing-kSZ

cross-correlations 141

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.1 The gravitomagnetic contributions to lensing convergence . . . . . . . 145

6.2.2 The convergence-kSZ cross angular power spectrum . . . . . . . . . . 147



Contents vi

6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1 Modelling the observables . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Comparison of auto- and cross-power spectra from mock maps and the

Limber approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Theoretical signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . 158

6.5.2 Detectability with current and future observations . . . . . . . . . . . 161

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Conclusion 168

7.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A Leapfrog scheme for time evolution of particles 174

B Mapping of linear equations from the CMC-MD gauge 177

B.1 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C Comparison of power spectrum calculation methods for the potentials 183

D The kinetic Sunyaev-Zel’dovich (kSZ) effect 185

E The ISW-weak lensing cross correlation 189

Bibliography 192



List of Figures

2.1 gramses calculation of the relativistic matter density s0 and momentum den-

sity components sy,z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 The same as Figure 2.1 but shows the code calculation of the geometric source
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Chapter 1

Introduction

1.1 General Relativity

Einstein’s General Relativity (GR) is the most successful and accurate description of gravity

to date. In this theory, space and time are no longer the static background in which the

dynamics of bodies takes place, but they are a single, dynamic entity — spacetime — which

can be deformed by the presence of energy and matter. As part of this interplay, particles

are forced to move along geodesic trajectories of the spacetime, giving rise to what we experi-

ence as gravity. The predictions of GR have been confirmed numerous times, starting by the

explanation for the precession of the perihelion of Mercury (Einstein, 1916b) — and anoma-

lous phenomenon at the time — and later by the bending of light by the Sun (Dyson et al.,

1920). More recently, the Gravity Probe B satellite (Everitt et al., 2011) measured the frame-

dragging effect caused by the rotation of the Earth, which twists its surrounding spacetime,

and the ligo-virgo collaboration (Abbott et al., 2016) detected gravitational waves (GW)

— propagating ripples in the spacetime — nearly a century after their prediction (Einstein,

1916a).

The fundamental object in this theory is the spacetime metric, gµν , which defines the invariant

4D line element as

ds2 = gµνdxµdxν , (1.1.1)

where xµ = (x0, x1, x2, x3) are spacetime coordinates. In this thesis, Greek indices run from

0 to 3, whereas Latin indices from 1 to 3, with repeated indices implying summation. In

addition, throughout this Chapter, we adopt units such that the speed of light is set to unity,

c = 1.

1



1.2. The ΛCDM cosmological model 2

The Einstein field equations govern the dynamics of the spacetime in relation to the matter-

energy content. Considering the presence of a Cosmological Constant Λ, these are given

by

Gµν + Λgµν = 8πGTµν , (1.1.2)

where

Gµν ≡ Rµν −
1
2Rgµν , (1.1.3)

is the Einstein tensor, Rµν is the Ricci tensor, R ≡ gµνRµν the Ricci scalar, G is Newton’s

constant, and Tµν is the energy-momentum tensor, which describes the matter-energy content.

The dynamics of the latter can be derived from the contracted Bianchi identities satisfied by

the Einstein tensor,

∇µGµν = 0 , (1.1.4)

which implies the local conservation of energy and momentum,

∇µTµν = 0 . (1.1.5)

In these, ∇µ is the covariant derivative associated with gµν , i.e., ∇µgµν = 0.

A pivotal property of GR is that Eq. (1.1.2) is invariant under general coordinate transfor-

mations, i.e., it is a generally covariant theory. This property represents the freedom that

we have to choose any particular set of coordinates to carry out calculations without losing

physical information. Therefore, from the 10 independent components of gµν , 4 correspond to

coordinate reparameterisations and are therefore not physical. At the same time, Eq. (1.1.4)

reveals the presence of 4 constraint equations, G0µ = 8πGT 0µ, which fix 4 degrees of free-

dom (DOFs), thus leaving 2 dynamical DOFs in the gravitational field in GR (e.g., the two

polarisation states of GWs). In practice, choosing a suitable coordinate system (gauge) can

help to simplify the form of the equations for the particular problem at hand, which can be

relevant from both analytical and computational standpoints.

1.2 The ΛCDM cosmological model

The study of the Universe as a system in which both its constituents and underlying spacetime

evolve in time dates back to Friedmann (1922, 1924); Lemaître (1931); Robertson (1933);

Walker (1937). Although the idea was largely dismissed originally, it started to gain terrain
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after Hubble established that local galaxies were receding at a speed proportional to their

distance (Hubble, 1929), which suggested that the Universe was expanding. Eventually, GR

would become the basis of our current concordance cosmological model, Λcdm.

In order to explain modern observations, the Λcdm model assumes the existence of two

hypothetical components that make up 95% of the total energy budget of our Universe: Cold

Dark Matter (cdm), and a Cosmological Constant, Λ, which represents the simplest form of

Dark Energy. The former corresponds to a matter component that only acts gravitationally,

and was originally motivated by Zwicky (1933) in order to reconcile the large virial velocities

observed in the Coma Cluster with its total mass, and later by the apparently flat rotation

curves of galaxies (Rubin & Ford, 1970). The need for a Λ-term in Eq. (1.1.2) became clear

only about 20 years ago with the discovery of the accelerated cosmic expansion via type Ia

supernovae observations (Riess et al., 1998; Perlmutter et al., 1999), an effect that cannot be

accounted for in a universe that only contains matter and radiation.

Although Λcdm is remarkably successful at explaining a plethora of observations, from the

distribution of galaxies and gravitational lensing, to the Cosmic Microwave Background

(cmb), the physical origins of dark matter and dark energy still remain to be clearly deter-

mined, which has motivated a new generation of large-scale galaxy surveys, such as euclid,

lsst and desi. For instance, there is an ample spectrum of dark matter candidates, which

range from light elementary particles to primordial black holes, and whether this is com-

pletely ‘cold’ is still debated. Likewise, the observed value of Λ is hard to motivate from a

fundamental point of view, and alternative dark energy models via modifications of GR, such

as Hu-Sawicki f(R)-gravity (Hu & Sawicki, 2007) or the DGP braneworld model (Dvali et al.,

2000), are still compatible with current observations. More recently, several tensions between

the inferred value of cosmological parameters from different observations have emerged. For

instance, local measurements of the expansion rate (Riess et al., 2016) seem to differ from

that inferred from cmb measurements (Aghanim et al., 2018) by over 3σ. While the origin

of such discrepancy could be possibly explained by systematic effects in the observations, it

could also be evidence for physics beyond Λcdm.

The Λcdm model is based on the Cosmological Principle, according to which the Universe

can be treated as homogeneous and isotropic over large enough scales. Observations suggest

that such a ‘homogeneity scale’ is around &100 Mpc (e.g., Scrimgeour et al., 2012). The most

general spacetime metric satisfying these properties is the Friedmann-Lemaître-Robertson-
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Walker (FLRW) metric which, adopting the (−,+,+,+) signature, is given by

ds2 = −dt2 + a2(t)γijdxidxj , (1.2.1)

where t is the cosmic (physical) time, xi are comoving Cartesian coordinates, a(t) is the scale

factor, and γij is the metric describing a 3-dimensional space with constant curvature K

which classifies the spatial geometry of the FLRW universe as Euclidean (K = 0), spherical

(K > 0) or hyperbolic (K < 0). The spatial metric in the general case is given by

γijdxidxj = dr2 + χ2(r)(dθ2 + sin2 θdϕ2) , (1.2.2)

where

χ(r) =


r Euclidean case, K = 0 ,

1√
K

sin(
√
Kr) spherical case, K > 0 ,

1√
|K|

sinh(
√
|K|r) hyperbolic case, K < 0 .

(1.2.3)

The scale factor a(t) describes the relative size of the spatial hypersurfaces at different times,

and the expansion rate of is quantified by the Hubble parameter

H(t) ≡ 1
a

da
dt ≡

ȧ

a
, (1.2.4)

which is positive (negative) for an expanding (contracting) universe. Observations show that

our Universe is currently expanding at a rate of H0 = 67.36 ± 0.54 km/s/Mpc (Aghanim

et al., 2018),1 H0 being the Hubble constant.

The matter-energy content of the Universe is typically described as a perfect fluid, whose

energy-momentum tensor can be written as

Tµν = (ρ+ p)uµuν + pgµν , (1.2.5)

where uµ = dxµ/dτ is the four-velocity of the fluid, τ being the proper time, ρ its density

and p its pressure. In the FLRW Universe, the cosmic fluid properties can also be described

as homogeneous and isotropic, i.e., as strictly time-dependent. Since after the end of the

inflationary period, the Universe was first dominated by radiation, then by matter, and

eventually by dark energy, it is essential to understand how the energy-density of the different

1This is the value obtained using cmb data from planck assuming a Λcdm model. Local measurements
based on type Ia supernovae find a value close to H0 = 73.24 ± 1.74 km/s/Mpc (Riess et al., 2016), which
remains in tension with the previous result.
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components evolves. From the ν = 0 component of Eq. (1.1.5), we get the continuity equation

for each component,
dρ
dt + 3H(ρ+ p) = 0 . (1.2.6)

Hence, assuming a constant equation-of-state parameter w = p(t)/ρ(t), we find

ρ(t) = ρ0a
−3(1+w) . (1.2.7)

In Eq. (1.2.7), and in the remainder of this thesis, the subscript 0 is used to denote the

present-day values. This shows that the density of radiation (w = 1/3) and of matter (w = 0)

respectively dilute as ∝ a3 and ∝ a4. Likewise, this shows that the density of Λ (w = −1)

remains constant, as expected.

The evolution of the scale factor is dictated by Eq. (1.1.2). From the 00-component and

trace-part of the ij-component, we find the first and second Friedmann equations,

H2 + K

a2 = 8πG
3 ρ+ Λ

3 , (1.2.8)

dH
dt +H2 = −4πG

3 (ρ+ 3p) + Λ
3 . (1.2.9)

It is customary to write Eq. (1.2.8) using the solutions to Eq. (1.2.7) as

H = H0

√
Ωma−3 + Ωra−4 + ΩKa−2 + ΩΛ , (1.2.10)

where we have introduced a set of dimensionless density parameters (present-day values) for

matter, radiation, Λ, and spatial curvature, respectively defined as

Ωm ≡
ρm,0
ρc,0

, Ωr ≡
ρr,0
ρc,0

, ΩΛ ≡
Λ

3H2
0
, ΩK ≡

−K
H2

0
. (1.2.11)

In these, ρc,0 ≡ 3H2
0/8πG is the critical density of the Universe today. The joint analy-

sis of cmb measurements, including information about temperature, polarisation, and lens-

ing, together with Baryon Acoustic Oscillations (BAO) data from galaxy surveys, finds that

{Ωm,ΩΛ,ΩK} = {0.3111± 0.0056, 0.6889± 0.0056, 0.0007± 0.0019} (Aghanim et al., 2018),

which shows that the Universe is spatially flat to a good approximation. Therefore, we set

ΩK = 0 for the remainder of this thesis.

Finally, solving Eq. (1.2.10) for a universe dominated by each individual species, we find that

a(t) ∝

 t
2

3(1+w) w 6= −1 ,

eHt w = −1 .
(1.2.12)

In particular, the second line of (1.2.12) describes the exponential cosmic expansion driven
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by the cosmological constant Λ, which is expected to take place in the far future when the

Universe is completely dominated by this component.

Naturally, the above description is valid above the homogeneity scale in an statistical sense,

but it is not enough to explain the distribution of cosmic structures and their physical prop-

erties. The most common way to study these is to consider the FLRW as a ‘background’ and

introduce perturbations to represent the inhomogeneities. However, due to the coordinate-

invariance of GR discussed in Section 1.1, there is no unique way to describe such a perturbed

universe, but one is free to fix 4 residual ‘gauge’ DOFs that correspond to the freedom of

choosing a coordinate system.

In the description of the FLRW Universe above, we have implicitly selected a coordinate

system such that particles expanding with the Universe remain at fixed values of the comoving

coordinates, but this does not need to be the case once perturbations are included. In the

latter case, the two options that immediately appear are to attach our coordinate system to

either the points in the unperturbed spacetime, or to the perturbed cosmic fluid. The former

corresponds to the Newtonian gauge, and observers in this gauge will detect peculiar velocities

and gravitational forces. Moreover, the Newtonian limit is straightforward in this gauge, and

hence it is widely used to study structure formation. On the other hand, the second option

corresponds to the synchronous comoving gauge, in which observers will not measure peculiar

velocities nor a gravitational field since they are free-falling with the particles. The drawbacks

of this gauge is that it can become ill-defined if the particles intersect each other, and the

Newtonian limit is not direct. Nonetheless, this gauge plays an important role in the study

of perturbations during inflation.

While the Newtonian gauge only describes two scalar DOFs in the metric, it can be generalized

into the Poisson gauge (or longitudinal gauge). In this gauge, the linearly perturbed metric

takes the form

ds2 = −(1 + 2Φ)dt2 + a2(t) [(1− 2Ψ)δij + hij ] dxidxj + 2δijBidxjdt , (1.2.13)

where Φ and Ψ are scalar DOFs, which correspond to the Bardeen potentials (Bardeen,

1980), Bi correspond to vector DOFs, which satisfy the transverse (divergence-free) condition

∂iB
i = 0, ∂i ≡ ∂/∂xi being the partial derivative with respect to the comoving Cartesian

coordinates, and hij are tensor DOFs, which are transverse and traceless, i.e., ∂ihij = 0 = hii.

Structure formation in Λcdm is mainly driven by the presence of scalars and hence the latter

types of DOFs are typically neglected for such purpose. Likewise, the anisotropic stress is
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usually very small and sets the approximation Φ = Ψ, so that a single, scalar DOFs is to

be determined. Under these assumptions, a combination of the 00 and 0i components of the

Einstein’s equations Eq. (1.1.2) yields the following form of the Poisson equation in Fourier

space

−k2Φ = 4πGa2
[
ρ̄δ − 3H

k2 (ρ̄+ p̄)θ
]
, (1.2.14)

where

δ(x, t) ≡ ρ(x, t)
ρ̄(t) − 1 (1.2.15)

θ(x, t) ≡ ∂ivi , (1.2.16)

are the overdensity and velocity divergence fields, respectively, and quantities with over-

bar represent background values. In addition, the conservation equations ∇µTµi = 0 and

∇µTµ0 = 0, correspond to the relativistic Euler and continuity equations, which respectively

take the form (Ma & Bertschinger, 1995)

θ̇ +Hθ = −∇2Φ , (1.2.17)

δ̇ + θ − 3Φ̇ = 0 . (1.2.18)

The last term in the left-hand side of Eq. (1.2.18) can be interpreted as a GR effect due to

the expansion of the volume elements, which can be shown to be small on scales inside the

horizon, i.e., when k � H, H = aH being the conformal Hubble factor. Similarly, the last

term in the right hand side of Eq. (1.2.14) is suppressed by H/k with respect to ρ̄δ, which

is the source of the gravitational potential in Newtonian gravity. On the other hand, these

terms become important on horizon (k ' H) and super-horizon (k � H) scales and thus are

essential for a consistent description of the Universe on large scales.

Although the standard perturbation theory approach is exceptionally useful to predict the

large-scale properties of the observed Universe, at late times the results start to break down

on scales of tens of Mpc, where the overdensity field starts to become nonlinear and complex

cosmic structures start to develop. Moreover, the perfect-fluid (dust) approximation of cdm

also breaks down at late times as this enters the multi-streaming regime and shell (orbit)

crossing events become frequent. One important consequence of this phenomenon is that the

velocity field of cdm, which in perturbation theory only accounts for a curl-free component

via Eq. (1.2.16), can develop vorticity, which corresponds to a rotational (divergence-free)

component. In fact, vorticity vanishes exactly in a perfect fluid (Lu et al., 2009), hence
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perturbation theory cannot capture this effect at any order adopting such a model. These

limitations serve as motivations for the use of N-body simulations for the accurate study of

our Universe, which we introduce next.

1.3 Newtonian simulations of structure formation

As an alternative to avoid the shortcomings of perturbation theory, we can simplify the

problem of solving GR by adopting the Newtonian limit, which is valid for high densities and

velocities as long as gravity remains weak, and as long as matter is moving slowly compared

to the speed of light, i.e., |v| � c, v being the peculiar velocity. These are reasonably good

approximations for the cosmological dynamics of non-relativistic matter such as cdm, as

confirmed by the remarkable success of Newtonian simulations at explaining the observable

Universe during the last decades (e.g., Springel et al., 2005; Vogelsberger et al., 2014; Schaye

et al., 2015).

In the Newtonian approximation, the relevant set of equations to solve correspond to a self-

gravitating collisionless fluid, given by

∇2ΦN = 4πGρ̄a2δsim , Poisson (1.3.1)

v̇ +Hv + 1
a

(v · ∇)v = −1
a
∇ΦN , Euler (1.3.2)

∂δsim
∂t

+ 1
a
∇ · (1 + δsim)v = 0 , continuity (1.3.3)

where ∇ is the flat-space gradient operator, and we have used δsim to denote the overdensity

field used in the simulations.

However, cosmological N-body simulations do not solve the above fluid equations directly but

rather discretise the fluid in terms of particles, which are regarded as samples of its phase-

space distribution. Since the position and velocity of each individual particle is tracked, the

velocity field of cdm is allowed to have different values at a given position, and in this way

the shell-crossing issue affecting the fluid model approach is avoided. At the same time,

alternatively to solving Eq. (1.3.1), we can directly calculate the force acting on the i-th

simulation particle, located at the position ri, as

Fi = −Gmi

N∑
j 6=i

mj

r3
ij

rij , (1.3.4)

where N is the number of particles in the simulations, mj is the mass of the j-th particle,

rij = ri − rj , and rij = |rij |. Hence, there are two major approaches to calculate the
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gravitational interaction between the particles in a simulation. On the one hand, particle-

mesh (pm) codes solve the Poisson equation (1.3.1) on a grid that covers the whole simulation

volume via a finite difference approximation, and the force acting on a given particle can be

evaluated by interpolating gradients of the gravitational potential to its position. Given

that at late times the density of matter can vary many orders of magnitude from voids —

extremely underdense regions that contain very few or no galaxies — to the core of dark

matter haloes, adaptive-mesh refinement (AMR) codes such as ramses (Teyssier, 2002) can

achieve high spatial (or force) resolution on high-density regions very efficiently.

On the other hand, particle-tree codes, such as gadget-2 (Springel, 2005), use Eq. (1.3.4)

to calculate the short-range force acting on a given particle due to neighbouring particles

by direct summation,2 while the long-range contribution from distant particles — which is

smaller in magnitude — is treated separately to minimise the number of computations; either

by grouping particles together (multipole expansion method), e.g. gadget-2 (Springel, 2005)

and arepo (Weinberger et al., 2020), or by solving Eq. (1.3.1) using mesh-based Fourier

methods (Tree-pm method), e.g. gadget-2 and gizmo (Hopkins, 2015).

Let us now briefly discuss Newtonian simulations from a GR perspective.3 Firstly, we note

that Eqs. (1.3.1)-(1.3.3) do not coincide with their counterparts from the Poisson gauge, Eqs.

(1.2.14)-(1.2.18). This is expected since, by construction, the Newtonian equations are valid

on scales k � H — where relativistic effects are not present, but at the same time it makes

their interpretation on large-scales non-trivial; the latter is critical for modern sky surveys

as these will sample large-scale modes. The modern, relativistic interpretation of Newtonian

simulations is done in terms of the so-called ‘N-body’ gauge (Fidler et al., 2015), which is

fixed such that, the equations of motion for matter, as well as the Poisson equation, take

the exact same form as in the Newtonian theory. This interpretation, however, is done in

the linear regime of GR, and only taking into account scalar perturbations. More in-depth

discussion on this aspect is presented in Chapter 3, as this is crucial for setting up correct

initial conditions from perturbation theory.

Although Newtonian simulations can be given a relativistic interpretation, some relativistic

effects still lie beyond this picture. In particular, the Newtonian approximation does not

solve the equations that govern the vector and tensor DOFs present in Eq. (1.2.13), as well

as that for the second scalar potential, Ψ. Furthermore, some drawbacks become apparent

2In practice, a short-scale cut-off (softening length) is required in order to avoid divergences in Eq. (1.3.4)
when particles are too close to each other.

3This is discussed in detail in Chapter 3.
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when relativistic species are considered and hence the Newtonian approximation is violated.

For instance, the inclusion of neutrino particles in the simulations often requires modifying

the equations of motion to have an approximately relativistic form in order to avoid reaching

super-luminal speeds (Elbers et al., 2020). In addition, it has been argued that the quasi-

static approximation does not hold well in some dark energy models (Sawicki & Bellini,

2015).

1.4 Relativistic effects in cosmology

In the coming decade, a number of large sky surveys, such as desi (Aghamousa et al., 2016),

Euclid (Laureijs et al., 2011), lsst (Weinberg et al., 2013) and ska (Dewdney et al., 2013),

will map the large-scale structure (LSS) of the Universe with exquisite detail, and the resulting

data will allow cosmological parameters to be measured with unprecedented precision. As

the precision and volume of observations keep improving, it is more important than ever

to be able to make correct physical interpretations of these data, and this means that we

must have accurate theoretical predictions of the observables, taking into account various

systematic effects that were neglected in the past, as is the case of GR effects.

A family of relativistic effects come into play when we take into account the fact that our

telescopes do not observe the intrinsic distribution of matter, but its projection into the past

light-cone. This introduces a number of corrections to the galaxy number counts (Bonvin

& Durrer, 2011) which encode physical effects undergone by the photons in their propaga-

tion across the inhomogeneous Universe, such as the Doppler effect, gravitational redshift,

and the integrated Sachs-Wolfe (ISW) effect. They can also affect other observables such

as the brightness-temperature fluctuations from 21 cm intensity mapping experiments, e.g.,

ska (Hall et al., 2013), as well as the luminosity distance from type-Ia supernovae observa-

tions (Bonvin et al., 2006), and similarly the gravitational wave luminosity distance that will

be measured by future detectors such as lisa (Garoffolo et al., 2020).

As mentioned before, the metric DOFs that are missed by Newtonian simulations can also

introduce GR effects in our observables. In particular, the leading-order post-Newtonian cor-

rection to Newtonian gravity corresponds to the gravitomagnetic (frame-dragging) potential

— a vector-type (spin-1) perturbation of the gravitational field that describes the twisting of

the spacetime due to rotational matter flows. The effects of frame-dragging around the Earth

have been detected in the last two decades by the Gravity Probe B satellite (Everitt et al.,
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2011). For this, the satellite was equipped with a set of gyroscopes, and followed a polar orbit

around the Earth for nearly 16 months. According to GR, Earth’s rotation exerts a frame-

dragging effect on the gyroscopes, which causes a precession of about 40 milliarcseconds per

year that is perpendicular to the orbital plane. Taking into account the various systematics

involved, the detection of such a small effect, in agreement with GR, was achieved with a

∼ 20% error.

At the cosmological level, the frame-dragging effect is encoded by Bi in Eq. (1.2.13), but

so far its faint observable signatures are swamped by the Newtonian signal (e.g., Cuesta-

Lazaro et al., 2018). The post-Friedmann expansion developed by Bruni et al. (2014); Milillo

et al. (2015) has enabled to study some of its properties based on Newtonian N -body simu-

lations (Thomas et al., 2015a) in an approximate yet nonlinear way. This has been possible

because, at leading order in such an expansion, the gravitomagnetic field is sourced by the ro-

tational component of the Newtonian momentum field through an elliptic-type (Poisson-like)

equation.

A unified, nonlinear GR treatment of structure formation and spacetime may also shed light

on the long-standing issue of the back-reaction effect (Buchert & Räsänen, 2012), i.e., the

impact of matter inhomogeneities on the cosmic expansion rate. The assumption of a FLRW

background in Newtonian simulations effectively turns the Hubble parameter into an exter-

nal input that is dissociated from the structure formation history. Furthermore, attempts

to include this back-reaction in Newtonian simulations result in null contributions by con-

struction (Buchert & Ehlers, 1997; Kaiser, 2017; Buchert, 2018). Even if the size of the

back-reaction effects remains controversial, and hence it may not fulfill its original purpose of

explaining the observed accelerated cosmic expansion on its own, it has been argued (Heinesen

& Buchert, 2020) that this could still contribute to our understanding of this phenomenon,

and to possibly alleviating the current 3σ tension between the Hubble constant determina-

tion from the local (Riess et al., 2016) and distant (Aghanim et al., 2018) Universe. Recent

studies of back-reaction effects in a GR framework show that local deviations from the aver-

age expansion rate of the Universe can be substantial in underdense regions (Bentivegna &

Bruni, 2016) and might impact our estimation of cosmological parameters in a ΛCDM model

even at the percent level (Macpherson et al., 2018a). In any case, a fully nonlinear, general

relativistic framework is needed in order to reach conclusive answers to this problem in the

late-time Universe (Buchert et al., 2015; Roukema, 2018; Roukema et al., 2019; Vigneron &

Buchert, 2019).
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1.5 Relativistic simulations in cosmology

The development of cosmological simulations of structure formation based on GR has re-

ceived increasing attention in the last few years, not only as a more accurate counterpart to

Newtonian simulations in the era of precision cosmology, but also as a natural framework to

study phenomena beyond the Newtonian approximation. The rise of modern N -body cos-

mological simulations taking a leap beyond the Newtonian approximation was first achieved

by the gevolution code (Adamek et al., 2013, 2014, 2015, 2016a). This code is based on a

weak-field expansion around a FLRW background, in which certain terms in the equations for

the gravitational sector are truncated, while the energy-momentum tensor components can

remain large in amplitude, and become ‘dressed’ by the weakly perturbed metric. Following

the standards set by state-of-the-art Newtonian simulations, in gevolution the dark matter

content of the Universe is described as a particle ensemble, which allows one to track them

even after trajectory-crossing occurs. The latter is crucial for getting a realistic structure

formation history as this phenomenon appears in the formation of virialised dark matter

haloes.

Another interesting path for implementing general relativistic cosmological simulations is to

resort to Numerical Relativity, which condenses the theoretical and numerical tools needed

for modelling relativistic systems. This approach is based on the 3+1 spacetime foliation, in

which the Einstein’s field equations are projected onto 3D hypersurfaces that can be evolved

forward in time. Incidentally, such a formalism was originally developed by Arnowitt et al.

(1959) to construct a Hamiltonian formulation of GR, which plays a central role in theories

of quantum gravity.

Even if the first applications of numerical relativity to study cosmological spacetimes were

explored during the 80’s (Goldwirth & Piran, 1989), modern developments in this direc-

tion arguably started with the cosmograph code (Mertens et al., 2016; Giblin et al., 2016)

and the investigations of Bentivegna & Bruni (2016), followed by that of Macpherson et al.

(2017). Some of these GR codes based on numerical relativity share a common feature of

being developed upon the Einstein Toolkit (Löffler et al., 2012), an open-source community

infrastructure for relativistic astrophysics. These works implement the Baumgarte-Shapiro-

Shibata-Nakamura (BSSN) formulation for a numerically stable spacetime evolution (Naka-

mura et al., 1987; Shibata & Nakamura, 1995; Baumgarte & Shapiro, 1999) — one of the

cornerstones in modern numerical relativity — and general relativistic hydrodynamics for

the matter sector. This latter aspect, however, is different from standard cosmological sim-
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ulations and the approximation of treating cdm as a fluid means that particle trajectories

after shell crossing in bound structures are not exactly followed during the simulation. As

an example, a comparison of fully non-linear GR simulations with pressureless dark matter

fluid and Newtonian N -body simulations shows partial discrepancies inside the (Newtonian)

dark matter haloes where the weak field condition is violated (East et al., 2018), but the

different treatments for matter make the results difficult to assess and hence demands a fully

GR cosmological N -body simulation (East et al., 2019).

The first implementations of three-dimensional N -body simulations based on numerical rela-

tivity were carried out in the late 90’s for the study of black hole formation (Shibata, 1999),

and various groups have implemented these in general relativistic cosmological codes in recent

years. In Giblin et al. (2018) the full Einstein equations are solved using the BSSN formalism

with different gauge conditions, and featuring a tri-cubic spline (TCS) scheme for increasing

the smoothness of the density field described by the particle ensemble. The code introduced in

Daverio et al. (2019) adopts the damped CCZ4 formalism (Bona et al., 2003; Gundlach et al.,

2005; Alic et al., 2012) for solving the Einstein equations coupled to a leapfrog (Kick-Drift-

Kick) scheme for particles, and can achieve a stable evolution of cosmological simulations

up to redshift z ∼ 10. The numerical relativity code from Pretorius & East (2018); East

et al. (2019) is well-established and solves the Einstein equations using a generalised har-

monic formalism (Pretorius, 2005) and AMR. This has been extensively applied for running

simulations of both compact objects and, more recently, to cosmological scenarios. While nu-

merical relativity codes allow one to run full GR simulations, their numerical implementation

and long-term stability are very challenging due to the presence of dynamical DOFs in the

metric. It is well known that the evolution equations for the gravitational sector in the 3 + 1

formalism are only weakly hyperbolic and hence numerically unstable (Kidder et al., 2001),

a problem that in the BSSN formalism is fixed by the introduction of additional dynamical

variables. In addition, solving the evolution equations accurately requires fine time-steps,

which in the case of cosmological simulations can become several orders of magnitude smaller

than the time scale over which the particles are typically evolved. However, assuming that

GW (which are the only dynamical DOF in GR) do not play a significant role in the cosmo-

logical dynamics and its back-reaction on the spacetime, it is possible to follow a formulation

in which we can neglect these so that time evolution is only due to the matter sector. This

is very much in the similar spirit as the ‘waveless theories of gravity’ developed originally by

Isenberg in the late 70’s but unpublished at the time (Isenberg, 2008), and latter by Wilson

& Mathews (1989), who sought the natural generalisation of Newtonian gravity within GR.
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The gramses code, introduced in Chapter 2, follows this approach, and thus represents a

new approach for general-relativistic N -body simulations in cosmology.

1.6 Outline of this Thesis

In this thesis, we aim to develop cosmological N -body simulations based on GR, as a novel

numerical tool for an accurate and efficient modelling of some of the most prominent rela-

tivistic effects. At the same time, we aim to explore in detail the imprints of these effects —

particularly of frame-dragging — in cosmological observables, as well as their role in future

sky surveys.

The remainder of this thesis is organised as follows. In Chapter 2 we introduce gramses,

a newly-developed general-relativistic code for N -body simulations in cosmology based on

ramses. In Chapter 3 we discuss the method used to generate the correct initial conditions

(i.e., particles’ position and velocity) for the GR simulations. In Chapter 4 we study the effect

of frame-dragging in light propagation in a toy Universe, which is used as a test to compare a

coordinate-independent prediction (i.e. an observable in a GR sense) obtained from different

state-of-the-art GR codes for their validation. In Chapter 5 we study the vector modes of

Λcdm, namely the vorticity of the dark matter velocity field, as well as the gravitomagnetic

potential. In Chapter 6 we investigate the detectability of the cosmological frame-dragging

effect via cross-correlations of weak-lensing and the kinetic Sunyaev-Zel’dovich (kSZ) effect

imprinted in the cmb. Finally, in Chapter 7 we discuss the main conclusions and outlooks of

potential research directions that could go beyond the results presented in this thesis.



Chapter 2

The gramses code

2.1 Introduction

In this Chapter we introduce gramses, a new code which combines a set of features of state-

of-the-art general relativistic codes aimed at fully non-linear and background-independent

cosmological structure formation simulations. In order to deal with the nonlinear general

relativistic equations for the gravitational sector in an optimal way for cosmology, gramses

adopts a so-called fully constrained formulation of GR (Bonazzola et al., 2004; Cordero-

Carrión et al., 2008), in which only elliptic-type partial differential equations (PDEs) are

solved to reconstruct the spacetime metric in the absence of GWs (Cordero-Carrión et al.,

2009; Cordero-Carrion et al., 2012). gramses solves these PDEs using multigrid Gauss-

Seidel relaxation, and offers an N -body description for non-relativistic dark matter particles

that supports AMR to increase force resolution in high-density regions, so that the cosmic

web formed in the simulations can be resolved to a high degree of details even after shell

crossing. Our code is based on the publicly-available, free-licensed N -body and hydrodynam-

ical simulation code ramses (Teyssier, 2002), which is efficiently parallelised using Message

Passing Interface (MPI). Particles are evolved along geodesics using a leapfrog method, and

the particle-to-mesh projection and force interpolation is performed in a Cloud-In-Cell (CIC)

scheme (Hockney & Eastwood, Inc., Bristol, PA, USA, 1988).

The Chapter is organised as follows. In Section 2.2 we introduce the equations for the gravi-

tational sector in the fully constrained ADM (3 + 1) formulation of GR, while in Section 2.3

we describe the matter sector. In Section 2.4 we discuss the code structure and the numer-

ical implementations of the GR equations in gramses, and in Section 2.5 we present some

test results for the calculation of the relativistic source terms as well as for the multigrid

15
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and geodesic solvers. Finally, in Section 2.6 we present some first results for cosmological

simulations in a ΛCDM universe, although the generation of initial conditions and physical

implications will be addressed in Chapter 3.

Throughout this Chapter we adopt the (−,+,+,+) signature for the spacetime metric. Ge-

ometric units, where G = c = 1, are used in the theory part of the Chapter for brevity, but

this are restored in Section 2.4 in order to introduce code units (which are used in the actual

equations solved in gramses). Greek indices run from 0 to 3, whereas Latin ones from 1 to

3 only, with repeated indices implying summation.

2.2 Field equations for the gravitational sector

In this section we review some fundamental aspects of numerical relativity that are at the

core of this work. For a comprehensive discussion on these topics we refer the reader to

Alcubierre (2008); Baumgarte & Shapiro (2010); Masaru (2015).

2.2.1 The Arnowitt-Deser-Misner formalism

In the ADM (3+1) formalism (Arnowitt et al., 1959), the 4-dimensional spacetime is foliated

into 3-dimensional hypersurfaces of constant times characterised by some unit vector nµ, with

which we can write a set of evolution and constraint equations for the variables (γij ,Kij),

representing the (induced) spatial metric of the 3-dimensional embedded manifold and its

extrinsic curvature, respectively. The spacetime metric in the ADM formalism is given by

ds2 = gµνdxµdxν = −α2dt2 + γij(βidt+ dxi)(βjdt+ dxj), (2.2.1)

in which the lapse function α and shift vector βi represent gauge (or coordinate) DOF.

The projection of the Einstein equations into the 3-dimensional hypersurfaces yields the

Hamiltonian constraint and the momentum constraint, respectively given by

R+K2 −KijK
ij = 16πρ , (2.2.2)

Dj(Kij − γijK) = 8πSi , (2.2.3)

whereK = γijKij is the trace of the extrinsic curvature, Di the covariant derivative associated

with the spatial metric γij and R the Ricci scalar. Here, we have introduced the energy density

ρ and the momentum density Si measured by a normal observer nµ, which are calculated by
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projecting the energy-momentum tensor as

ρ ≡ nµnνTµν , (2.2.4)

Si ≡ −γiµnνTµν , (2.2.5)

where nµ = (−α, 0). In addition to the constraint equations (2.2.2) and (2.2.3), which offer

no dynamics, the evolution equations for (γij ,Kij) are

(∂t − Lβ)γij =− 2αKij , (2.2.6)

(∂t − Lβ)Kij =−DiDjα+ α(Rij − 2KikK
k
j +KKij)− 8πα

[
Sij −

1
2γij(S − ρ)

]
, (2.2.7)

where

Lβγij = Diβj +Djβi , (2.2.8)

and

LβKij = βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k , (2.2.9)

correspond to Lie derivatives along βi. In addition to the matter source terms (2.2.4) and

(2.2.5), in Eq. (2.2.7) we have defined the spatial stress Sij ≡ γiµγjνTµν , with S = γijSij its

trace.

In order to disentangle the physical and gauge DOF at the nonlinear level we can resort to

decompose (γij ,Kij). As a method to single out a particular degree of freedom in the spatial

metric γij , we use the conformal transformation (Lichnérowicz, 1952)

γij = ψ4γ̄ij , (2.2.10)

where ψ = γ1/3 is the conformal factor, γ̄ij the conformal metric, and γ ≡ det (γij) the

determinant of the metric γij . We also introduce a conformal transformation for the traceless

part of the extrinsic curvature Aij ≡ Kij − γijK/3 as

Aij = ψ−10Āij .

Notice that for raising and lowering indices of the conformal (overbarred) quantities we use

γ̄ij and γ̄ij , respectively. Then, the Hamiltonian (2.2.2) and momentum (2.2.3) constraints

can be rewritten as

8D̄2ψ − ψR̄− 2
3ψ

5K2 + ψ−7ĀijĀ
ij = −16πψ5ρ , (2.2.11)

D̄jĀ
ij − 2

3ψ
6γ̄ijD̄jK = 8πψ10Si . (2.2.12)
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2.2.2 The conformal transverse traceless decomposition

By applying the Conformal Transverse Traceless (CTT) decomposition (York, 1979) (also

known as York-Lichnerowicz formulation), we can further isolate DOF in the extrinsic cur-

vature by decomposing the traceless, symmetric tensor Āij into a transverse-traceless (TT)

part which is divergenceless, and a longitudinal part that is written in terms as the vector

gradient of a vector potential, namely

Āij = ĀijTT + ĀijL , (2.2.13)

with D̄jĀ
ij
TT = 0 and

ĀijL = D̄iW j + D̄jW i − 2
3 γ̄

ijD̄kW
k ≡ (L̄W )ij , (2.2.14)

where W j can be regarded as a vector potential and L̄ is the longitudinal operator (also

known as vector gradient or conformal Killing operator). Then, the momentum constraint

(2.2.12) can be written in terms of the vector potential as

(∆̄LW )i −
2
3ψ

6D̄iK = 8πψ6Si , (2.2.15)

where (∆̄LW )i ≡ D̄jĀ
ij is the vector Laplacian, and we have used that γ̄ij γ̄jk = δki . A

convenient feature about the previous equation is that we can decouple it from the rest in

some particular cases, e.g., if we take K = 0 (a maximal slicing) and identify the conformal

source term as

si ≡ ψ6Si. (2.2.16)

Notice that the TT part of Āij is not constrained by (2.2.15); in fact ĀijTT are dynamical

DOF connected with gravitational waves. Then, if we want to find a solution in the absence

of GW for a given 3-dimensional hypersurface at t = t0 we might take ĀijTT = 0, but since

this is a dynamical quantity, we do not have the freedom to fix this again at a t > t0 time

slice but we would need to solve the evolution equations to propagate them. We will come

back to this point in the next section when we introduce the ‘waveless approximation’.

2.2.3 Gauge fixing

As discussed in the previous subsection, the conformal decomposition and the CTT approach

recast the constraint equations in a convenient form without any assumption about the way

that the system evolves, and then the lapse function α and shift vector βi remain completely
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unspecified. Even if we have complete freedom to choose them as they correspond to picking

a coordinate system, in practice not all options are physically or numerically convenient. For

instance, the simplest option α = 1 and βi = 0, known as geodesic slicing (or synchronous

gauge) is not always suitable since coordinates can become ill-defined at some point during the

evolution of the system, e.g., when shell crossing (or orbit crossing) occurs, as it is expected

for collisionless particles.

In order to study cosmological (i.e., expanding/contracting) spacetimes, a convenient pre-

scription to choose α is by applying the so-called Constant Mean Curvature (CMC) slicing

condition (Smarr & York, 1978a), in which we can set

K = −3H(t) , (2.2.17)

where a fiducial Hubble parameter H ≡ ȧ/a has been introduced (being a a fiducial scale

factor). Then, the lapse function can be found by solving the following constraint arising

from (2.2.2) and the trace of (2.2.7) in terms of conformal variables,

D̄2(αψ) = αψ

[7
8ψ
−8ĀijĀ

ij + 5
12ψ

4K2 + 1
8R̄+ 2πψ4(ρ+ 2S)

]
− ψ5K̇ . (2.2.18)

Notice that in this scheme H (or a) is just a prescribed function for fixing the gauge, and in

principle does not represent average (or background) properties of the universe. Nonetheless,

we can still fix it by demanding that this satisfy the ‘reference’ (or ‘background’) Friedmann

equations

H2 = 8π
3 (ρ̂m + ρΛ) , (2.2.19)

H2 + Ḣ = −4π(ρ̂m + ρΛ + 3P̂ ) , (2.2.20)

where ρ̂m and ρΛ are the homogeneous1 matter and dark energy densities in the reference

spacetime, respectively, and P̂ = Ŝ/3. The advantage of introducing the fiducial Friedmann

equations (2.2.19) and (2.2.20) is that we can subtract ‘background’ quantities from the

full GR equations, which is more numerically convenient than to solve them directly. A

similar idea is also exploited in Giblin et al. (2017), where a reference FLRW spacetime is

conveniently subtracted (but under geodesic slicing), and the application of a fiducial Hubble

parameter as part of the CMC slicing condition is later considered in Giblin et al. (2018). We

1Note that we use an overhat to denote the homogeneous matter quantities in order to avoid confusion
with the overbars used above to denote geometric quantities constructed from the conformal metric γ̄ij . For
ρΛ, on the other hand, we omit the overhat for brevity because it does not have an inhomogeneous part.
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remark that, on itself, this ‘background’ subtraction does not constitute an approximation

nor a perturbative approach, but rather it is simply a reformulation of the equations using a

cosmologically motivated slicing condition.

On the other hand, to fix the remaining gauge freedom let us consider the Minimal Distortion

(MD) condition, in which βi is chosen such that it minimises the time rate of change of γ̄ij
during the propagation of spatial coordinates from one hypersurface to the next one. From

the traceless part of (2.2.6) in terms of conformal quantities, we find

Āij = ψ6

2α
[
(L̄β)ij + ∂tγ̄

ij
]
, (2.2.21)

and the MD gauge condition corresponds to demand (Smarr & York, 1978a,b)

Di(γ1/3∂tγ̄ij) = 0 . (2.2.22)

Let us remark here that, contrary to the decomposition (2.2.14) discussed in the CTT ap-

proach, in (2.2.21) Āij has both longitudinal and transverse components even when the MD

condition (2.2.22) is satisfied. Then, using the MD condition (2.2.22) the momentum con-

straint (2.2.12) translates into the following elliptic equation for the shift vector

(∆̄Lβ)i + (L̄β)ijD̄j lnψ6 = 2ψ−6ĀijD̄jα+ 16πψ4αSi, (2.2.23)

where we have also used the CMC condition to simplify the momentum constraint. In the

rest of this Chapter, we assume that the CMC slicing condition (2.2.17) is satisfied, and we

use the reference FLRW equations (2.2.19) and (2.2.20) to determine K and K̇. Therefore,

the lapse function is fixed by the constraint (2.2.18). On the other hand, while (2.2.23) fixes

the shift vector compatible with the MD gauge condition (2.2.22), as we will discuss below,

solving this equation is not the most convenient option for cosmological simulations, hence

an approximate version will be instead adopted for gramses.

2.2.4 The fully constrained formulation of GR

One of the fingerprints of GR is that gravity is no longer a static field as in Newton’s theory,

where the gravitational potential ΦN is completely ‘slaved’ by the matter distribution, but it

hosts two dynamical DOF representing ripples in the spacetime. Due to their faint nature,

the existence of these GW has been only recently confirmed by LIGO (Abbott et al., 2016,

2017) – about a century after its theoretical prediction (Einstein, 1916a) – and has opened

up a plethora of new possibilities for exploring our Universe. However, in the context of cos-
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mological structure formation and its back-reaction these play a subdominant role, and then

one might try to reconstruct the spacetime in absence of GW while retaining all other virtues

of GR. Therefore, as a natural extension of Newtonian N -body simulations, we propose to

use a formulation of GR featuring only elliptic equations as a first step.

In order to achieve this within the CTT approach, the first step would be to construct the

initial data by choosing a conformally flat metric γ̄ij = δij as well as ĀijTT = 0. However,

after we fix the gauge assuming the MD condition (2.2.22), there is no remaining freedom

to enforce these conditions for t > 0 since hij ≡ γ̄ij − δij and ĀijTT actually satisfy evolution

equations. Then, as a possible way to have a fully constrained system of GR equations where

the effect of GW in the cosmological dynamics is neglected, following Bonazzola et al. (2004);

Cordero-Carrión et al. (2008) we make the approximations

γ̄ij = δij , ĀijTT = 0 ∀t . (2.2.24)

This approach follows the similar spirit as in the ‘waveless theories of gravity’ developed

originally by Isenberg (2008) and later by Wilson & Mathews (1989), and its application is

supported by previous works from both theoretical and numerical standpoints. In Cordero-

Carrión et al. (2009) it has been explicitly shown, by using post-Newtonian expansions, that

the conformal flatness approximation and the neglect of the TT term (2.2.24) are accurate

even in highly relativistic regimes (further details on this point are discussed the in Appendix

of Cordero-Carrión et al. (2009)). Furthermore, in Cordero-Carrion et al. (2012) the authors

discuss a ‘passive’ method to compute the GW emission within this formulation by solving

the hyperbolic evolution equations, but without including its back-reaction onto the dynam-

ics of the system, as well as the so-called fully constrained formulation (FCF, Bonazzola

et al., 2004; Cordero-Carrión et al., 2008; Cordero-Carrión et al., 2014) in which the latter

is properly included. These approaches to go beyond the simple approximation (2.2.24) can

be potentially implemented in gramses, but this will be left for a future version.

Therefore, adopting the conformal flatness approximation we can set ∂tγ̄ij = 0 in (2.2.21),

with which the equation governing the shift vector, (2.2.23), is simplified to (Cordero-Carrión

et al., 2008)

(∆̄Lβ)i = 2∂j
(
αψ−6ĀijL

)
. (2.2.25)

It is worthwhile to remark that the conformal flatness approximation provides two useful

aspects for this approach. On the one hand, it simplifies the dynamical and constraint

equations, in particular because in Cartesian coordinates D̄i → ∂i, which drastically reduces
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the computational complexity of the problem. On the other hand, the metric automatically

satisfies the condition (2.2.22). If the conformal flatness approximation is not used, such as

in the extended versions of the constrained formulation of GR discussed in Cordero-Carrión

et al. (2014), the second point is no longer true, but instead (2.2.22) becomes a condition on

hij , i.e.,

Di(γ1/3∂thij) = 0 . (2.2.26)

Hence, we can regard the interplay between the MD gauge condition and the conformal

flatness approximation as qualitatively similar to the one in the commonly-used Poisson (or

longitudinal) gauge; in this, the analogue of (2.2.26) is the gauge condition ∂ihij = 0 = δijhij

(TT condition) and it is customary (in the context of structure formation) to approximate

hij = 0 to neglect the GW content, which automatically satisfies the latter gauge condition.

It can be useful to count DOFs after having fixed the gauge as well as having adopted

the conformal flatness approximation. We know that (in 4 dimensions) gµν has 4 gauge

(redundant) DOFs which are fixed by the gauge choices, as well as 6 = 2 + 2 + 2 independent

physical DOFs which correspond to the scalar, vector and tensor modes, respectively. The

CMC and MD gauge conditions, Eq. (2.2.17) and Eq. (2.2.22), place conditions on the metric

variables α and γ̄ij and fix the 4 gauge DOFs. It would then appear that the approximations

Eq. (2.2.24) place further conditions on the metric variables and thus over-constrain the

system. This is because γ̄ij effectively contains 5 DOFs (notice that one scalar DOF, ψ, has

already been factored out of γij when defining γ̄ij), all of which are set to zero by using the

conformal flatness approximation, γ̄ij = δij . However, the gauge condition (2.2.22) — which

fixes 3 DOFs — is a subset of γ̄ij = δij , while the latter additionally sets the 2 tensor modes

(associated to GWs) to zero. Hence, the condition (2.2.24) effectively removes all GW content

and its back-reaction on spacetime from the system, and in so far as these back-reactions have

a negligible effect on the structure formation in cosmology, the approximation (2.2.24) is

good. The conformal flatness approximation has been shown to be accurate for astrophysical

systems such as the rotational collapse of cores of (super)massive stars and merger of binary

neutron stars (Cordero-Carrión et al., 2009), where gravity is not exceedingly strong. Hence,

under this approximation, there are four physical non-dynamical DOFs in the system, the

scalar variable ψ which is determined by the Hamiltonian constraint (2.2.11), plus one scalar

and two vector modes contained in the shift vector βi which are obtained from (2.2.25) under

the conformal flatness approximation (this is different from the commonly-used Poisson gauge,

e.g., in gevolution, where the shift only contains vector DOFs). Below in this Chapter we shall
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demonstrate that GR simulations using this formula are able to predict the scalar and vector

modes accurately. A detailed discussion on how the MD gauge singles out the dynamical

wave modes of γ̄ij can be found in Appendix A of Smarr & York (1978b).

Under this fully constrained formulation of GR, the gravitational sector equations can be

conveniently solved with the following sequence of steps:

1. Using the CTT decomposition, we solve the momentum constraint (2.2.15) as an elliptic

equation for the longitudinal part of Āij ,

(∆̄LW )i = 8πsi, (2.2.27)

where si ≡ ψ6Si = γ1/2Si is the conformal momentum density. After this, we construct

the traceless part of the extrinsic curvature as

ĀijL = (L̄W )ij ≡ Āij , (2.2.28)

where in the last step we have neglected ĀijTT due to the approximation (2.2.24).

2. We solve the Hamiltonian constraint (2.2.11), with (2.2.19) subtracted, as an elliptic

equation for the conformal factor ψ

∇̄2ψ = −2πψ−1s0 −
1
8ψ
−7ĀijĀ

ij + 2πψ5ρ̂m , (2.2.29)

where s0 ≡ ψ6ρm = γ1/2ρm is the conformal matter density. Here ∇̄ is D̄ with γ̄ij = δij

due to the conformal flatness approximation.

3. We determine the lapse function from the CMC slicing condition (2.2.17)

∇̄2(αψ) = α

[
2πψ−1(s0 + 2s) + 7

8ψ
−7ĀijĀ

ij + ψ5
(

5K2

12 + 2πρΛ

)]
− ψ5K̇, (2.2.30)

where we have used (2.2.19)-(2.2.20) as well as defined s ≡ ψ6S = √γSii .

4. Finally, we determine the shift vector from the momentum constraint (2.2.25).

5. Then, the current state of the gravitational field is characterised by the spacetime metric

ds2 = −α2dt2 + ψ4δij(βidt+ dxi)(βjdt+ dxj) . (2.2.31)

6. The metric (2.2.31) is used to solve the equations of motion (EOM) for particles, and

evolve the system.
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Notice that in this scheme (2.2.30) plays the role analogous to the Poisson equation in Newto-

nian gravity as it determines the g00 metric component α ∼ 1+Φ. However, (2.2.30) includes

a term that is linearly proportional to α and therefore it formally resembles a finite-range

(Yukawa-like) potential, which means that the gravitational force appears ‘screened’ in the

CMC gauge. This seems to indicate that it would translate in a suppression of the matter

power spectrum at large scales. However, as we will discuss later in Section 2.6, this ‘screen-

ing’ simply represents the effect by the choice of gauge on the simulated matter or velocity

power spectrum.

2.3 The matter sector

In gramses we implement a fully general relativistic N -body system for dark matter follow-

ing the ADM formalism, with which we can describe the matter content in the 3-dimensional

hypersurface and its time evolution, rather than dealing directly with 4-dimensional quanti-

ties. In GR the equation of motion for collisionless particles is the geodesic equation

uµ∇µuν = 0, (2.3.1)

which for the spatial components reads

dui
dt = −αu0∂iα+ uj∂iβ

j − ujuk
2u0 ∂iγ

jk , (2.3.2)

where the time-component u0 is determined from the normalisation condition uµuµ = −1 as

u0 = α−1
√

1 + γijuiuj . (2.3.3)

The relation between uj and the 3-velocity (coordinate velocity) vi ≡ dxi/dt = ui/u0 is

dxi

dt = γijuj
u0 − βi. (2.3.4)

Naturally, the Newtonian limit is recovered with ui � 1, γij → δij , α → (1 + ΦN ) and

βi → 0, where ΦN is the Newtonian gravitational potential, in which case (2.3.2) reduces

to Newton’s second law (in a comoving coordinate system) and dxi/dt = ui. Eq. (2.3.4)

shows the nontrivial relationship between the velocities ui and ui. To be clear, in the code

implementation below we shall only use ui with a lower index, and similarly we always use

βi with an upper index.

After we evolve particles with (2.3.2) and (2.3.4) we can calculate the matter source terms

appearing in the equations for the gravitational sector (2.2.27)-(2.2.30). For this purpose, it
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is convenient to introduce a set of conformal source terms defined as

s0 = √γρ , (2.3.5)

si = √γSi , (2.3.6)

sij = √γSij . (2.3.7)

We will show below that these quantities are analogous to the usual ‘comoving’ ones and

correspond to those actually determined numerically in the CIC scheme. For example, the

‘density’ contrast for s0, defined as δs0/s0, corresponds to the local fluctuation of the par-

ticle number count rather than the relativistic energy density. This is more convenient in

practice because we naturally would like to follow ‘particles’ rather than the ‘density field’

in simulations: the same particle can contribute different energy densities at different places,

and the relativistic correction effect can be calculated according to the local metric γij . We

will discuss the implication of this on the generation of initial conditions in Chapter 3.

2.4 Numerical implementation

Let us now describe the actual implementation of the fully constrained formulation of GR and

the matter evolution equations in gramses. For this purpose, we recast the GR equations

using the code units detailed next. Notice that these are derived from the GR equations in

physical units rather in geometric units, i.e., accounting for all G and c factors.

2.4.1 Code units

The gravitational sector

In order to implement the GR equations in gramses we introduce a set of dimensionless

quantities that are based on H−1
0 for measuring time, the box size L for spatial coordinates,

the critical density ρc = 3H2
0/8πG and the fractional matter density Ωm ≡ ρ̂m,0/ρc (today’s

values satisfying the fiducial FLRW equations (2.2.19) and (2.2.20)):

x̃ = x

L
, dt̃ = H0

dt
a2 , s̃0 = s0

Ωmρc
, s̃i = si

Ωmρcc
s̃ = s

Ωmρcc
, (2.4.1)

c̃ = c

LH0
, K̃ = a2c̃LK, ˜̄Aij = a−1c̃LĀij , Ũ = ac̃2L−1U, Ṽi = ac̃2Vi , (2.4.2)

β̃i = a2c̃βi, b̃ = a2c̃L−1b, B̃i = a2c̃Bi . (2.4.3)
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Notice that, in order to simplify the equations in code units, we have introduced the super-

comoving coordinate time t̃ (Martel & Shapiro, 1998), and for s̃i and s̃ we have introduced a

c−1 factor that’s not present in s̃0. In addition, rather than solving the nonlinear equations

for the conformal factor and the lapse function, it is more convenient to reparametrise them

by definining new variables Φ̃ and Ψ̃ as

α ≡ 1 + Φ̃
a2c̃2 , (2.4.4)

ψ ≡ a1/2
(

1− Ψ̃
2a2c̃2

)
, (2.4.5)

where c̃ is the speed of light in code units. This way, both Φ̃ and Ψ̃ are quantities measuring

deviations from their reference FLRW values (but no linearisation on Φ̃ or Ψ̃ is carried out).

Using this scheme, we can write the momentum constraint (2.2.27) as

( ˜̄∆LW̃ )i = 3Ωmas̃i. (2.4.6)

The Hamiltonian constraint (2.2.29) can be written as(
1− Ψ̃

2a2c̃2

)
˜̄∇

2
Ψ̃ = 3

2aΩm

s̃0 −
(

1− Ψ̃
2a2c̃2

)6
+

˜̄Aij ˜̄Aij

4

(
1− Ψ̃

2a2c̃2

)−6

. (2.4.7)

Next, using the the 2nd Friedmann equation (2.4.12) and the Hamiltonian constraint (2.4.7),

the CMC condition (2.2.30) in code units becomes

˜̄∇
2
[
Φ̃
(

1− Ψ̃
2a2c2

)]
= Q

a2c2 Φ̃ + 3aΩm

2

(
1− Ψ̃

2a2c2

)−1
s̃0 −

(
1− Ψ̃

2a2c2

)6

+ s̃m

 (2.4.8)

+ ˜̄Aij ˜̄Aij
(

1− Ψ̃
2a2c2

)−7

,

where

Q = 3
4aΩm

(
1− Ψ̃

2a2c2

)−1
s̃0 + 5

(
1− Ψ̃

2a2c2

)6

+ 2s̃m

+ 7 ˜̄Aij ˜̄Aij

8

(
1− Ψ̃

2a2c2

)−7

.

(2.4.9)

Finally, the MD condition (2.2.25) in code units is

( ˜̄∆Lβ̃)i = 2a3∂̃j
(
αψ−6 ˜̄Aij

)
. (2.4.10)

In addition, the Friedmann equations (2.2.19) and (2.2.20) in code units are

1
a4
K̃2

12 = 3
4Ωm

(
a−3 ˆ̃ρm,0 + ΩΛ

Ωm

)
, (2.4.11)
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1
a4
K̃2

3 −
1
a2

d(a−2K̃)
dt̃

= −3Ωm

2

(
a−3 ˆ̃ρm,0 + ΩΛ

Ωm
+ ˆ̃S

)
, (2.4.12)

where ˆ̃ρm,0 ≡ ˆ̃S0 = 1 is the homogeneous (comoving) density field in code units, ΩΛ ≡

8πGρΛ/3H2
0 , and

ˆ̃S = 3 ˆ̃P (with s̃ = ψ6S̃).

The matter sector

For writing the EOM for particles in code units, we introduce the following dimensionless

quantities for the particle’s 4-velocity and mass:

ũα = uα

LH0
, m̃ = m

ΩmρcL3 . (2.4.13)

Then, the system consisting of Eqs. (2.3.2)-(2.3.4) becomes

dũi
dt̃

= −W̃ c̃a2∂̃iα+ ũj ∂̃iβ̃
j − αũj ũk

2W̃
c̃a2∂̃iγ

jk , (2.4.14)

ṽi ≡ dx̃i

dt̃
= c̃

W̃
αa2γij ũj − β̃i , (2.4.15)

where

W̃ 2 ≡ (αũ0)2 = c̃2 + γij ũiũj , (2.4.16)

is the Lorentz factor in code units.

Finally, for the numerical implementation of the matter source terms in Eqs. (2.3.5)-(2.3.7)

we need to specify a prescription to calculate them. For this we consider an ensemble of

N identical particles of rest mass m treated in a Cloud-in-cell (CIC) scheme. Then, the

contributions to each matter source term in Eqs. (2.3.5)-(2.3.7) due to a particle at position

(x̃p, ỹp, z̃p) can be calculated (Shibata, 1999) as

(s̃0)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk
m̃W̃

c̃
, (2.4.17)

(s̃l)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk
m̃ũl
c̃
, (2.4.18)

(s̃lm)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk
m̃ũlũm

W̃ c̃
, (2.4.19)

where

f̃+
x ≡ (x̃i+1 − x̃p)/∆x̃i,

f̃+
y ≡ (ỹi+1 − ỹp)/∆ỹi, (2.4.20)

f̃+
z ≡ (z̃i+1 − z̃p)/∆z̃i,
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represent the relative position of the particle inside the i-th cell in the x, y and z direction,

respectively, with f̃−y = 1− f̃+
y , f̃−y = 1− f̃+

y , f̃−z = 1− f̃+
z , and ∆Ṽijk = ∆x̃∆ỹ∆z̃ is the cell

volume.

In the remainder of this Chapter we will only deal with quantities in code units and the tilde

will be dropped to avoid cluttered notation.

2.4.2 Code structure

Let us now describe the logic flow of the global solution scheme implemented in gramses.

We recall that in this code time evolution is only due to particles, and these are evolved in

a leapfrog scheme detailed in Appendix A. At a given timestep n, using the positions and

velocities {xn, un−1/2} for particles and the GR fields values {Ψn,Φn, βi
n} the code takes the

following main steps:

1. Optional (gr_newtonian): Solve Newtonian gravity to get Φn+1
N .

2. Optional (gr_newtonian): Temporarily synchronise velocities with Φn+1
N : un−1/2 7−→

unN .

3. Calculate the source terms of the GR equations using the currently-available velocity

and GR potential fields.

4. Optional (gr_newtonian): Revert the temporary synchronisation done in step 5: unN 7−→

un−1/2.

5. Solve the ten GR field equations: {Ψn,Φn, βi
n} 7−→ {Ψn+1,Φn+1, βi

n+1}.

6. Synchronise velocities (last ‘Kick’ from previous timestep: un−1/2 7−→ un).

7. Update velocities (first ‘Kick’ of the current timestep: un 7−→ un+1/2).

8. Update positions using un+1/2 (‘Drift’: xn 7−→ xn+1).

9. Go to step 1 with the replacement n + 1 7−→ n and repeat the process for the next

timestep.

We address these points in detail in the next subsections.
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2.4.3 Multigrid solver for the gravitational sector

Let us now discuss the main points of the multigrid (Press et al., 2007) implementation of

the GR equations for the gravitational sector. For this purpose, it is convenient to first split

the equations into the Poisson-like ones and the non-Poisson-like ones.

Poisson-like equations

In the solution scheme for the gravitational sector we have eight linear Poisson-type equations

arising from the vector Laplacians (2.4.6) and (2.4.10) respectively, i.e.,

∇2Vi = 3Ωmasi, (2.4.21)

∇2U = −1
4∂jV

j , (2.4.22)

∇2Bi = 2∂j

[(
1 + Φ

a2c2

)(
1− Ψ

2a2c2

)−6
Āij
]
, (2.4.23)

∇2b = −1
4∂jB

j , (2.4.24)

where Wi ≡ Vi + ∂iU and βi ≡ Bi + ∂ib have been used to cast these equations in the form

of a standard Poisson equation.

In order to solve the above equations numerically, we need to represent them in a discrete

form. If we consider a uniform grid with cubic cell size h, these equations are formally

equivalent to

Lh(ϕh) = fh , (2.4.25)

where Lh is the Laplacian operator and fh a source term. The former is discretised using

the standard second order formula

∇2ϕ = 1
h2 (ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k) , (2.4.26)

where ϕl,m,n is the value of the field ϕ in the grid cell with index (l,m, n).

The actual discretisation method for fh depends on the particular source term under con-

sideration. In our implementation, the source fh for Eq. (2.4.21) is calculated using the CIC

scheme, while the sources for the rest of these equations correspond to divergences which are

calculated using finite differences with a 3-point stencil, e.g.,

∂lV
l = 1

2h(V x
i+1,j,k + V y

i,j+1,k + V z
i,j,k+1 − V x

i−1,j,k − V
y
i,j−1,k − V

z
i,j,k−1) , (2.4.27)

∂lĀ
′lm = 1

2h(Ā′xmi+1,j,k + Ā′ymi,j+1,k + Ā′zmi,j,k+1 − Ā′xmi−1,j,k − Ā
′ym
i,j−1,k − Ā

′zm
i,j,k−1) ,(2.4.28)
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where Ā′lm ≡
(
1 + Φ

a2c2

) (
1− Ψ

2a2c2

)−6
Ālm. The extrinsic curvature term itself is calculated

as

Āij = ∂iVj + ∂jVi −
1
2δij∂kV

k + 2∂i∂jU . (2.4.29)

Notice that for the non-diagonal components of Āij we need to calculate cross-derivatives of

U that depend on the diagonal neighbours of the central cell, for which we use a second-

order-accuracy formula. Then, for a cross-derivative in the xy plane (contributing to Āxy)

we use the discrete expression

∂x∂yU = 1
4h2 (Ui+1,j+1,k + Ui−1,j−1,k − Ui−1,j+1,k − Ui+1,j−1,k) , (2.4.30)

and equivalent ones for cross-derivatives in the xz and yz planes.

As a side point, we note that the left-hand sides of Eqs. (2.4.21)-(2.4.24) have the ‘cyclic’

property, e.g., if one sums up the values of ∇2U from all cells with the same y, z (but different

x) coordinates, the result is zero, which is guaranteed by the nature of finite difference. The

same periodic property is also held by the right-hand sides of Eqs. (2.4.22)-(2.4.24) by default,

which means that these equations are numerically ‘self-consistent’. For Eq. (2.4.21), however,

its right-hand side does not automatically satisfy the ‘cyclic’ property, which could potentially

lead to the situation where the two sides of the equation cannot be numerically identical. To

prevent this issue, for Eq. (2.4.21) we have redefined its source term fh as fh − 〈fh〉, where

〈fh〉 is the mean value of fh on the whole domain grid (the finest grid with uniform resolution

that covers the whole simulation box).

The discrete version of Eq. (2.4.25) is then solved using a Gauss-Seidel (pseudo-time) relax-

ation method, which after a given number of iterations converges to a solution ϕ̂h. Then, the

residual at the fine level is defined as

εh ≡ Lh(ϕ̂h)− fh . (2.4.31)

In order to improve the accuracy of the solution found using relaxation on the fine grid h

(and hence reduce εh), instead of keeping iterating on the same grid we can accelerate the

process by moving to a coarser grid with cell size H = 2h, which is then associated with the

multigrid level `− 1 (with ` representing the finest grid). Since in Eq. (2.4.25) the operator

Lh(ϕh) is linear, the coarsified equation is

LH(ϕH)− LH(Rϕ̂h) ≡ LH(δϕH) = −Rεh , (2.4.32)

where R is the restriction operator and δϕH ≡ ϕH −Rϕ̂h. The coarse-level equation (2.4.32)
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is then solved using Gauss-Seidel relaxation and the solution ˆδϕH found after a given number

of iterations is used to correct the fine solution ϕ̂h by means of a prolongation step

ϕ̂h ← ϕ̂h + P( ˆδϕH) , (2.4.33)

where P is the prolongation operator that maps the information from coarse to fine grids.

In practice, we use all coarse levels from (` − 1) down to 1 (the level at which the whole

simulation box is divided into 8 cells) for our multigrid implementation, and arrange them in

a ‘V-cycle’: instead of correcting the level-` solution immediately after solving the equation

on level-(`− 1), the process of solving coarser-level equations goes all the way down to level

1, and the correction process then goes all the way up to level `. This has greatly improved

the speed at which a solution with acceptable accuracy is achieved.

Non-Poisson-like equations

Let us now discuss the implementation of the Hamiltonian constraint and the CMC condition,

which correspond to the nonlinear PDEs solved in the code.

4.3.2.1 Hamiltonian constraint

In the multigrid language, the Hamiltonian constraint (2.4.7) at the fine level can be formally

written as

Lh(Ψh) = fh , (2.4.34)

where

Lh(Ψh) ≡
(

1− Ψh

2a2c2

)
∇2Ψh + 3

2aΩm

(1− Ψh

2a2c2

)6

− 1

− ĀijĀ
ij

4

(
1− Ψh

2a2c2

)−6

,

fh ≡ 3
2aΩm(s0 − 1) . (2.4.35)

Notice that by keeping the density term s0 in the source fh (rather than absorbing it in the

definition of Lh) we avoid using a separate array for restricting s0 from fine to coarse level

but, and thus we only need to restrict the differential operator coefficient ĀijĀij ⊂ Lh(Ψh).

However, as we discussed above for the case of Poisson-like equations, since our solution needs

to satisfy periodic boundary condition, we need to regularise this equation to ensure that the

numerical self-consistency condition 〈Lh
(
Ψh
)
〉 = 0 is satisfied2. Then, dividing both sides of

2Note that in this case 〈fh〉 is guaranteed to be zero by the periodic boundary condition of s0 and the
subtraction of 1 in Eq. (2.4.35).
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Eq. (2.4.34) by
(
1− Ψh

2a2c2

)
and taking the mean on both sides, we identify the regularisation

term

F h = 3
2aΩm

(
1− Ψh

2a2c2

)−1
s0 −

(
1− Ψh

2a2c2

)6
+ ĀijĀ

ij

4

(
1− Ψh

2a2c2

)−7

, (2.4.36)

and the regularised version of (2.4.7) solved in the code reads

L̃h(Ψh) ≡ Lh(Ψh) + 〈F h〉
(

1− Ψh

2a2c2

)
= fh , (2.4.37)

which corresponds to a redefinition of our differential operator at the fine level. Then, the

residual at the fine level is defined as

εhΨ ≡ L̃h(Ψ̂h)− fh . (2.4.38)

Next, at level `− 1 the coarsified version of this nonlinear equation has the generic form

L̃H(ΨH) = L̃H(RΨ̂h)−RεhΨ , (2.4.39)

where Ψ̂h is the solution obtained at the fine level, R is the restriction operator. In principle

we could also regularise the equation at the coarse level, but in practice this is not needed if

the fine level is already regularised.

4.3.2.2 The CMC condition

In order to optimally solve the CMC condition (2.4.8) in the multigrid scheme we introduce

the combination

ξ ≡ Φ
(

1− Ψ
2a2c2

)
, (2.4.40)

which avoids the use of additional arrays for storing the restricted field Ψ while solving for

Φ on coarse levels. Then, in terms of ξ the CMC equation (2.4.8) at the fine level can be

written formally as

Lh(ξh) = fh , (2.4.41)

where

Lh(ξh) ≡ ∇2ξh −
(

1− Ψ
2a2c2

)−1 Q

a2c2 ξ
h , (2.4.42)

fh ≡ 3aΩm

2

(
1− Ψ

2a2c2

)−1
[
s0 −

(
1− Ψ

2a2c2

)6
+ sm

]
+ ĀijĀ

ij
(

1− Ψ
2a2c2

)−7
,
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and Q is given by (2.4.9). After subtracting the mean from both sides, the regularised equation

becomes

Lh(ξh) = fh −
〈
fh
〉
−
〈(

1− Ψ
2a2c2

)−1 Qh

a2c2 ξ
h

〉
≡ f̃h. (2.4.43)

This means that for solving this equation at the coarse level it is sufficient to restrict the op-

erator coefficient
(
1− Ψ

2a2c2

)−1 Q
a2c2 ⊂ L

h(ξh). Further, similar to the Poisson-like equations,

the regularisation term in (2.4.43) is absorbed in the source term, so there is no redefinition

of the differential operator but of fh. Then, the residual at the fine level in this case is

εhξ ≡ Lh(ξ̂h)− f̃h . (2.4.44)

On the other hand, at `− 1 the coarsified equation is

LH(ξH) = LH(Rξ̂h)−Rεhξ , (2.4.45)

where ξ̂h is the solution obtained at the fine level. As in the case of the Hamiltonian constraint,

there is no need to regularise this equation at the coarse level.

2.4.4 Particles evolution

After having reconstructed the spacetime by computing the metric components (γij , α, βi)

in a fully nonlinear fashion, we can then solve the EOM for particles. Drawing the analogy

with the Newtonian case, the geodesic equation can be rewritten effectively as

dui
dt = Fi , (2.4.46)

dxi

dt =
(

1 + Φ
a2c2

)(
1− Ψ

2a2c2

)−4 c

W
δijuj − βi , (2.4.47)

Fi = −W
c
∂iΦ + uj∂iβ

j − W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

∂iΨ , (2.4.48)

where

W 2 ≡ (αu0)2 = c2 + a−2
(

1− Ψ
2a2c2

)−4
δijuiuj . (2.4.49)

In the Newtonian limit the ‘force term’ given by (2.4.48) reduces to Fi → −∂iΦ, but in

the GR case this depends not only on gradients of the various gravitational fields (and on

the fields themselves), but also on ui. In practice, this means that we cannot compute all

the contributions to (2.4.48) in the same way as the default ramses code (or any standard

Newtonian code) does. Therefore, in gramses we divide the Kick step (2.4.46) into a sequence

of 5 substeps, each one updating the particle velocity using one force contribution on the right
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hand side of (2.4.48), which is decomposed as Fi =
∑
j cj(fj)i with

cj = −uj (fj)i = −∂iβj , j = 1, 2, 3 (2.4.50)

c4 = W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

(f4)i = −∂iΨ , (2.4.51)

c5 = W

c
(f5)i = −∂iΦ . (2.4.52)

Notice that in doing this we are using the (partially) updated velocity during each substep. Of

these five substeps, (2.4.52) is the dominant one in most realistic situations as it corresponds

to the standard Newtonian force in the Newtonian limit.

As an attempt to preserve the Stormer-Verlet scheme as best as we can, the last Kick in

the KDK scheme is done following (2.4.50) to (2.4.52), i.e., with the largest contribution to

Fi included last (see Appendix A). In contrast, for the first Kick step (before updating the

particles’ positions) we use the reverse order, i.e., with the largest contribution included first.

Again, this is because that, according to the Stormer-Verlet scheme, during the first Kick

the ‘force’ should be evaluated using un+1/2, which implies an implicit equation for the latter

(since this is the very velocity that we want to update to). Hence, as an approximation we

use the synchronised velocity un and the largest contribution during the first substep of the

Kick, which then yields a velocity un+1/2
∗ that will be the close to un+1/2, and this is then

used in the next substeps to calculate the corrections. Finally, the positions are updated in

the Drift step (2.4.47) in a single calculation once the velocities have been fully updated by

the previous prescription.

2.4.5 Calculation of matter sources

A key difference in the calculation of the general relativistic matter source terms in Eqs. (2.3.5)-

(2.3.7) with respect to the Newtonian case is that the former depend not only on ui but also

on Ψ through the Lorentz factor Eq. (2.4.49). For calculating these we use the already-known

values Ψn, with which the GR equations are solved to get the updated metric components

{Ψn+1,Φn+1, βi
n+1}. This is equivalent to the numerical implementation in the gevolution

code, where the geometric corrections in the energy-momentum tensor at a given timestep

are calculated using the values from the previous timestep (Adamek et al., 2016b). More

explicitly, the CIC quantities depend on these as

s0 ∝W (Ψn, un+1/2) , (2.4.53)

si ∝ un+1/2
i , (2.4.54)



2.5. Code tests 35

sij ∝
u
n+1/2
i u

n+1/2
j

W (Ψn, un+1/2)
. (2.4.55)

Note that as the second ‘Kick’ step – which takes particle velocities from un+1/2 to un+1

and therefore ‘synchronises’ particle velocities – is done after we solve the GR equations, at

the time when the code calculates the matter source terms for the GR equations what are

available are the fully updated positions at timestep (n+ 1), xn+1, and the partially-updated

velocities un+1/2 (which are still delayed by half a timestep). This issue is not present in

the Newtonian case since the gravitational potential (and hence the force) is independent of

the particle velocities, and we expect that the use of un+1/2 instead of un+1 in the matter

source calculation should be a good approximation given the generally small timesteps for

simulations.

Nevertheless, gramses has an option to remedy the fact that we only have un+1/2 to calculate

the GR source terms, by using a temporary ‘Newtonian’ synchronisation from solving the

standard Newtonian gravity. With this option switched on, the code uses the Newtonian

gravitational potential ΦN to temporarily update the velocities un+1/2 7−→ un+1
N , which are

then used to calculate the source terms as a better approximation than using un+1/2 directly

in Eqs. (2.4.53)-(2.4.55). Then, after the GR equations are solved, we can exactly revert the

velocities back to un+1/2, before carrying the Kick step normally (see appendix A).

2.5 Code tests

We have performed several code tests for gramses, particularly aimed to test the imple-

mentations of the linear and nonlinear solvers of the ten GR potentials, the subroutines that

calculate new GR quantities, as well as the geodesic solver.

2.5.1 Static tests

Let us first discuss the tests that require no cosmological evolution, for which we set the

fiducial scale factor to a = 1. The results shown in this section correspond to simulations

with a box size L = 256 Mpc/h and Np = 2563 particles, and they are used to check the

subroutines in gramses to calculate the matter and geometric source terms, and to solve the

relevant PDEs for the gravitational sector.
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Matter and geometric source terms

While in Newtonian N -body simulations the matter density field is the only source term

feeding the gravitational potential, in gramses the picture is more intricate: the Poisson-like

equations (2.4.21)-(2.4.24) feature the momentum density si, the divergence of GR potentials

and also that of the traceless part of the extrinsic curvature, i.e., ∂jĀij . Furthermore, for the

non-Poisson-like equations, (2.4.7) and (2.4.8), we also need to calculate terms such as the

contraction ĀijĀ
ij , the density s0 and the trace s = γijsij . Clearly, the calculation of the

last two quantities is more complicated than that of si since they depend nonlinearly on ui
through the Lorentz factor W as can be seen from (2.4.17)-(2.4.19). Since in the CIC scheme

particles may contribute to different cells depending on their positions, in order to assess the

calculation of these quantities, in the tests we fix the particle positions and velocity values by

hand, as well as Ψ, so we can compare against analytical expressions for the matter source

terms.

Figure 2.1 shows the results for the CIC calculation of s0 and two si components when using a

uniform particle distribution, a velocity field ui = 0.3c sin 2πxi and Ψ = c2 sin 2πx sin 2πy sin 2πz,

where c is the speed of light in code units. We find good agreement since the difference with

respect to their analytical counterparts remains below 10−5, and the structures observed for

this in the bottom panels of Figure 2.1 stem from the shape of the functions on the top

panels.

Regarding the geometric source terms, in Figure 2.2 we show the calculation of ∂iĀyi and

ĀijĀ
ij which involve the discrete formulae, (2.4.28), (2.4.29) and (2.4.30). In order to compare

with analytical expressions for this quantities we use Vi = U = sin 2πx sin 2πy sin 2πz as an

input for the relevant code subroutines. The agreement found from Fig 2.2 is roughly one

order of magnitude worse than for the matter source terms in Fig 2.1 but is still nonetheless

stays around 10−4 for both ∂iĀyi and ĀijĀij . Naturally, the accuracy in the calculation of

these quantities is expected to be different as they depend on how fine is the mesh used

to perform the finite differences involved in their calculations, and the agreement shown in

Fig. 2.2 is consistent with the grid used for these tests. Similar to Fig. 2.1, the structure of

the difference observed in the bottom panels of Fig. 2.2 follows from the shape of the testing

functions.

We have done similar tests as in Figures 2.1 and 2.2, using different choices of particle

velocities, and different functional forms for Ψ, U and Vi. For all these tests we found similar

agreement between the code results and the analytical predictions. For simplicity, the extra
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Figure 2.1: gramses calculation of the relativistic matter density s0 (left panel) and mo-
mentum density components sy,z (right panel). The values are plotted along a circle with
radius r =

√
x2 + y2 = 0.1 (in code units) measured from the box centre in the y-z plane,

for θ ∈ [−π, π]. In the upper panels the blue and red symbols respectively show the code
result and the analytical prediction (see the main text for details), while the lower panels
show their difference.

tests are not shown here.

Homogeneous density field

We next show some test cases for the linear and nonlinear equation solvers implemented in

gramses. The simplest possibility of such tests for the gravitational sector is to reconstruct

the spacetime due to a homogeneous density configuration which corresponds to an FRLW

(Einstein-de Sitter) solution. In our test, we set s0 = 1 and si = s = 0.

Recall that the CMC gauge condition is fixed with the aid of the fiducial Friedmann equations

(2.4.11) and (2.4.12) and hence the Hamiltonian constraint (2.4.7) and CMC condition (2.4.8)

have the ‘background’ solutions Ψ = Φ = 0. Likewise, it is also straightforward to find that

the linear GR equations (2.4.21)-(2.4.24) are trivially solved, i.e., Vi = U = Bi = b = 0, in

this case. In Figure 2.3 we show the numerical solutions for Ψ and Φ that are obtained by

the nonlinear Gauss-Seidel relaxation solver3 implemented in gramses after performing the

relaxation starting from two sets of random initial guesses (green triangles and red circles).

As the figure shows, there is a very good agreement in the numerical solutions to both GR

potentials regardless of the initial guess from where the relaxation is started.

3While technically speaking the CMC gauge condition (2.4.41) is a linear equation, in gramses it is solved
using the same nonlinear relaxation solver as in the Halmiltonian constraint (2.4.34).
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Figure 2.2: The same as Figure 2.1 but shows the code calculation of the geometric source
terms ĀijĀij (left panel) and ∂iĀyi (right panel).

We have tested the solutions to the other GR potentials finding similarly good agreements.

To save space, here we only show the results for the two most complicated equations.

Point-like, sinusoidal and spherically symmetric sources

In order to add some nontrivial features to the test (as opposed to the case with a homoge-

neous matter field), we have also tested gramses’s relaxation solvers for the Poisson-type and

non-Poisson-type equations individually by using various configurations for the source terms.

For instance, for the Poisson-type equations (2.4.22)-(2.4.24) we know that the solution for

a point-like source located at xp is simply given by Green’s function

ϕ = − 1
4π

1
|x− xp|

. (2.5.1)

We test this point-like source scenario by initialising the value of the source in a single cell of

the simulation box (at position xp) to a constant: in the case of (2.4.21) this is equivalent to

having a single particle in the centre of a cell so that it contributes only to that same cell in

the CIC scheme, while for the other linear equations this corresponds to having a non-zero

value for their geometric source terms in a single cell of the domain grid. The left panel

of Figure 2.4 shows the numerical solution to (2.4.22) in such case and its comparison with

the exact analytical solution, (2.5.1). We note that the numerical solution deviates from the

exact one towards the centre of the simulation box as well as towards the box boundary. Both

discrepancies can be understood in terms of the discrete nature of the numerical simulation:
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Figure 2.3: Numerical solutions for the GR potentials Ψ(x) (left panel) and Φ(x) (right panel)
obtained through the Gauss-Seidel relaxation method starting from two different sets of initial
random guesses (red circles and green triangles) in a FRW (Einstein-de Sitter) universe. The
x coordinate spans the whole simulation box in the range [0, 1] in code units. The gramses
solutions for both initial guesses (blue circles and orange squares) after relaxation agree well
with the analytical solution, which is identically zero (black solid line).

on the one hand, when approaching the source position resolution effects become important

and the isotropy respected by the exact solution is broken. On the other hand, towards the

box boundary the effect of the finite box size and the periodic boundary conditions imposed

on the numerical solution causes deviations from the exact solution (2.5.1) which decays at

infinity. Analogue results for the case of a Schwarzschild spacetime in isotropic coordinates

are found in Adamek et al. (2016b) and for point-like mass tests of modified gravity codes,

e.g., Li et al. (2012).

The non-Poisson-type equations (2.4.7) and (2.4.8) do not have exact analytical solutions for

configurations such as point mass to compare against. As an alternative, we have used an

inverse approach in which we choose some functional form for Ψ or Φ by hand and solve

(2.4.7) and (2.4.8) for some of the source terms under certain simplifications, which can be

then used as input to gramses, to check the agreement of its resulting numerical solutions

to Ψ,Φ with the above choices.

In Figure 2.4 we show the results of such procedure using Ψ with two different functional

forms: Ψ(x) = 10−2 sin 2πx and Ψ(r) = exp [−(r − 0.5)2/102] which are then used in Eq. (2.4.7)

to analytically solve for s0 = s0(x) and ĀijĀij = ĀijĀ
ij(r), respectively, assuming all other

source terms to be zero (here r is measured from the centre of the box). These are used

as inputs for the gramses nonlinear solver. For the sinusoidal test (middle panel of Figure
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Figure 2.4: Tests of gramses’s numerical solutions for the GR potentials obtained through
the multigrid Gauss-Seidel relaxation method. Left panel: point-like source test for a Poisson-
type equation. Here x represents the distance to the point-like source, which is placed in
the central cell of the simulation box, in code unit. Middle panel: test of the Ψ equation
with analytical solution Ψ = 10−2 sin 2πx (see the main text for a description of how the
test configuration s0 = s0(x) is set up). Right panel: similar to the middle panel, but
for a test configuration for which the Ψ field has a spherically symmetric solution Ψ(r) =
exp [−(r − 0.5)2/102] (using a source ĀijĀij = ĀijĀ

ij(r) as described in the main text); the
horizontal coordinate spans half of the simulation box along the x direction, in the range
[0.5, 1] in code units. In all cases, the blue and red symbols in the upper subpanel are
respectively the numerical and exact analytical solutions, while the lower subpanel shows
their difference. The orange symbols in the middle panel are the random initial guess for the
relaxation.

2.4) we find that the numerical solution deviates less than 10−5 from the exact solution (we

also include the initial random guess for the relaxation in that plot), while deviations for the

spherically symmetric test (right panel of Figure 2.4) are larger but still better than those

for the point-like test. Similar to the latter case, the numerical solution in the spherically

symmetric test also suffers from the effects of periodic boundary conditions which depends

on the rate at which the tail of the exponential function decays. Like before, we have tried

more test settings and carried out similar tests for other equations as well. As all the tests

result in similar agreement between numerical and exact solutions, we shall not show those

tests here to save space.

Note that, in gramses, the numerical errors of these solutions are controlled by using a

measure of the magnitude of the residual ε defined in Eq. (2.4.31) for the Poisson-like equa-

tions and defined in Eq. (2.4.38) for the non-Poisson-like equations, which is fundamentally

different from standard numerical relativity codes in which the full evolution equations for

the gravitational sector are solved. In the latter, the accuracy of the numerical solutions is

monitored by substituting them into the momentum and Hamiltonian constraint equations,

thereby quantifying the measure of ‘constraint violation’. However, since in the GR formula-

tion implemented in gramses the constraint equations are actually used as part of the the
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solution scheme, the numerical errors are entirely controlled by the residual ε. Some thresh-

old value for ε is specified in order to achieve the desired accuracy through the multigrid

Gauss-Seidel relaxation solvers, which can be made smaller to increase the solution accuracy

at the cost of using more iterations. For example, for our chosen threshold value for ε, the

O(10−5) error in the numerical solution for Ψ shown in Fig. 2.4 (middle panel) is comparable

to the level of Hamiltonian constraint violations typically found in other numerical relativity

codes (Mertens et al., 2016; Daverio et al., 2019).

It is worthwhile to remark that the O(10−5) accuracy used in the above tests might be

insufficient to calculate some GR effects reliably, such as the difference Ψ − Φ, which in

Λcdm is typically around O(10−9) (Adamek et al., 2016a). This would require to set the

target εΨ and εξ (which control the error in Ψ and Φ, respectively) to be well below the latter

value, to ensure that the solutions are accurate enough across the simulation volume. This

is doable, but we have not tested the performance of the code in such a case. Alternatively,

one could modify the code to solve an equation for Ψ − Φ directly, and hence set a target

accuracy for this difference. This will not be pursued here.

2.5.2 Dynamical tests

To test the time integration part of the code, which is determined by the evolution of particles

along geodesics as discussed in Section 2.4.4, we consider two typical scenarios, including an

FLRW robustness test and the evolution of a linear density perturbation. For these tests we

use a box size L = 256 Mpc/h with Np = 1283 particles. The discussion on the cosmological

runs using higher-resolution specifications is presented in Section 2.6.

FLRW robustness test

We now present the test for the robustness of the evolution of a FLRW universe. For this,

we initially set a completely homogeneous and static particle distribution at z = 99 as

determined from the reference Friedmann equations (2.2.19) and (2.2.20). This scenario

represents the simplest test of the geodesic solver as ideally particles should remain at fixed

positions. In order to test the robustness of the numerical FLRW evolution we introduce tiny

initial inhomogeneities by using a space-dependent initial random guess of order O(10−8)

for the solutions of {Vi, U,Bi, b,Ψ,Φ}, with which the multigrid relaxation solvers of the

respective PDEs converge to solutions that are not exactly zero. After this, the geodesic

equations (2.4.46) and (2.4.47) are solved using these solutions and, because the solutions to
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Figure 2.5: The FLRW robustness test for time integration in gramses. An initial numerical
error is introduced in the first time step of the simulation, through a random initial guess
for the relaxation solvers of the gravitational potentials, which drives the particles away from
initial exact homogeneity. We plot the resulting density field s0 at z = 1 along three random
lines, each chosen along one axis of the simulation box, while the dashed horizontal gray line
represents the exact FLRW value, s0 = 1.

the potentials are not exactly homogeneous due to the numerical errors, non-zero gradients

of them and therefore forces result and the particles are driven away from their original

positions, which effectively introduces an initial deviation from homogeneity in the density

field of O(10−14). Then, in the new timestep the CIC source terms use the updated particle

information and the non-exact solutions from the previous timestep are used as initial guesses

for the gravitational solver. In this way, the cycle is repeated in such a way that the numerical

error becomes accumulated over time. In Fig. 2.5 we show the resulting matter density field

obtained at z = 1 along three different directions across the simulation box. The error found

in Fig. 2.5 is of around the same order of magnitude as the typical values obtained for the

FLRW robustness test in other cosmological GR codes (Mertens et al., 2016).

As a sanity check, we have also carried out the same test but by using zeros as the initial

guesses for the relaxation solvers for the different gravitational potentials. In this case, the

initial guess (zero) is the exact solution for all the potentials, and no force is exerted on

the particles, which in turn stay at their initial positions during the whole simulation (exact

FLRW solution). We have also checked that the long wavelength feature of s0 along each

direction shown in Fig. 2.5 is an artefact of the Gauss-Seidel relaxation solver. This type

of solver efficiently eliminates the short wavelength modes of the error in the initial guess,

while long wavelength modes require more iterations and can survive the convergence criteria.

Then, these long wavelength modes in the gravitational potentials get imprinted in the matter
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Figure 2.6: Evolution, between zini = 99 and z = 9, of a single-mode density perturbation
for testing the time integration subroutines of gramses. Left panel: The density field profile
at different output redshifts (circles) and the corresponding linear theory predictions (solid
line). Right panel: Evolution of the V1 potential from both simulation (dots) and linear
theory (solid line), which is linked to the momentum density field through (2.4.21). The
output redshifts (encoded by colour) match those from the density field in the left panel. At
z = 9, the relative deviations at the maxima with respect to the linear theory solutions are
4.0% and 9.6% for s0 and V1, respectively.

sector throughout the evolution of the system, although they do not affect the good agreement

with the exact solution as shown in Fig. 2.5.

Linear density perturbation

As a second test for the geodesic solver, here we present the evolution of a perturbed density

field that is initialised at zini = 99 to δs0 = A sin 2πnx, with A = 10−2 and n = 4. This can

be considered as a single mode of a density field. The linear velocity field is inferred from

the Zel’dovich approximation (Zeldovich, 1970),

vx = AH

2πn cos 2πnx . (2.5.2)

This density perturbation is then evolved by the code on a ΛCDM FLRW background (the

details of this ΛCDM model are the same as for the cosmological tests below and, as they are

not important for the test here, we postpone the mentioning of them to the next section).

In this test, the density perturbation is expected to scale at linear order as ∝ a, and the

momentum (or velocity) field as ∝ a−3/2. The density field profile at different output redshifts

(circles) and the corresponding analytical predictions (solid line) is shown in the left panel

of Fig. 2.6. We find good agreement at all considered redshifts, though it becomes worse

towards low z as expected. At z = 9, the relative deviation with respect to the linear theory
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solution is 4.0% at the maxima.

For the momentum density (or equivalently velocity) field, we show the results for the V1

potential, which is related to it through the momentum constraint (2.4.21), in the right panel

of panel of Fig. 2.6. We find that in this case the solution deviates slightly more rapidly from

the analytical prediction toward late times compared to the density case, but still follows

expectation very well. A somewhat similar situation is also encountered in other numerical

relativity codes, where the momentum constraint violations are usually more severe than

those found for the Hamiltonian constraint (Mertens et al., 2016; Macpherson et al., 2018a;

Daverio et al., 2019). In this case, at z = 9 we find a 9.6% of relative deviation with respect

to the linear theory solution at the maxima.

2.6 Cosmological simulations

In this section we present some of the first results of gramses cosmological simulations in

a ΛCDM universe using three different setups. We use a simulation with comoving box size

L = 512h−1Mpc and Np = 5123 dark matter particles, with the AMR option switched off, to

generate the different maps shown in Fig. 2.7 for visualisation. For the analyses of the matter

and velocity divergence power spectra we use big box size simulation with L = 4h−1Gpc and

Np = 10243, with AMR switched on, and we compare against a Newtonian simulation run

using the default ramses code with identical specifications. Finally, we use a high-resolution

simulation with L = 256h−1Mpc and Np = 5123 for the power spectra of the scalar and

vector modes of the shift vector (again with AMR switched off). The initial conditions (IC)

for both the GR and the Newtonian simulations are generated at zini = 49 using the same

random number sequence as seed in order to suppress the effect of realisation scatter in our

results. For all the simulations, the cosmological parameters used for the ΛCDM model are

{ΩΛ = 0.6928,Ωm = 0.3072,ΩK = 0, h = 0.68}. Since gramses works in a different gauge

than standard N -body simulations, the generation of IC is nontrivial; here we simply mention

that the ICs were generated using a new technique specifically developed for gramses, and

will defer a detailed description of it to Chapter 3. Throughout the analysis, the redshift

values quoted for the relativistic simulation correspond to those determined from the reference

cosmology Eq. (2.2.19) and Eq. (2.2.20) (fixed by the CMC slicing), which coincides with the

background of the Newtonian counterpart.

Fig. 2.7 is a visual illustration of the maps of three GR matter source terms, s0 (top row),

θ = ∇ · u (middle row) and s = γijsij (bottom row), in a slice of constant z coordinate
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randomly selected from the smaller gramses simulation. The three columns correspond to

three different redshifts, z = 9, 4, 1 (in the reference cosmology) from left to right. One can

see that as time advances and structure formation progresses, finer features start to appear

in all three quantities, and their amplitudes also increase; these results are as expected. In

addition, the main features in all three quantities have good correspondences, with high-

density regions having larger values of s0, θ and s, and vice versa. Note the amplitude of s,

which has a maximum of order 10−4 at z = 1 that is much smaller than the perturbation in

s0; according to Eq. (2.4.19), this indicates that (u/c)2 = (ũ/c̃)2 . O(10−4) because in code

units m̃ = 1.

Figure 2.8 presents maps from the same slice as Fig. 2.7, but for various GR quantities or

their scalar combinations. From top to bottom the rows show respectively α, ψ, |β| (the

amplitude of βi) and ĀijĀij . A logarithmic colour scale is used for α, ψ and ĀijĀij , while a

linear colour scale is used for |β|, in order to make the features in the maps clearer. To avoid

the plot getting too cluttered, we have not shown the colour bars. In all cases, the same

colour scheme in Python (the ‘jet’ scheme) is used, but is ‘regulated’ such that the reddest

(bluest) colour represents the maximum (minimum) of the field values in all pixels of a given

map. This is done deliberately: had we used a fixed maximum and minimum value for a

quantity at all redshifts, the z = 9 maps would appear uniform and almost completely erased

of details. In contrast, the ‘regulation’ not only makes the features at high redshifts clearer,

but also demonstrates that, apart from amplitudes, the qualitative patterns of these features

barely evolve in time: indeed, there is hardly any visual difference between the left and the

middle columns. This is because the GR potentials usually satisfy a Poisson-like equation4,

which in Fourier space takes the form k2 × field = source, so that the field value scales as

k−2 and so is dominated by the large-scale modes (the reason why the maps in Figure 2.8

generally lack the much finer details present in the maps of Figure 2.7). These modes remain

linear over time, so that their amplitudes grow quickly while the qualitative patterns change

much more slowly. The maps for α and ψ are almost identical, with their colours flipped,

which is what is expected from Eqs. (2.2.29) and (2.2.30).

4The deviations from Poisson, such as the inclusion of nonlinear source terms or, like the case of ᾱ, the
addition of an extra Yukawa term (i.e., the term linear in ξ in Eq. (2.4.42)), do not affect the qualitative
discussion here.
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Figure 2.7: The evolution of the three matter sources in GR – the density field s0 (top
row), velocity divergence θ = ∇ · u (middle row) and the trace of the anisotropic stress
s ≡ Trsij = γijsij (bottom row) – for three redshifts, z = 49 (left column), 4 (middle
column) and 1 (right column). Each panel shows a 2D slice map with constant z coordinate
selected from the 512 Mpc/h gramses simulation box.
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2.6.1 Matter and velocity power spectra

Having displayed some visualisation of the simulation outputs from gramses in the previous

subsection, we next show a few more quantitative results to illustrate that the code works

properly. Figure 2.9 shows the matter power spectra from the 4h−1Gpc simulations men-

tioned above, for six output redshifts from z = 49 (initial redshift, top left panel) to z = 1

(bottom right panel). Within each panel, the top subpanel shows the absolute power spectra

and the bottom subpanel shows the relative difference between gramses (CMC-MD-gauge

spectrum for the particle number count perturbations, δs0/s0) and ramses (synchronous-

gauge spectrum for the energy density perturbations, δρ/ρ). For comparison, we also show

the linear theory predictions for these two spectra using a modified version of the camb code

(Lewis et al., 2000): these are respectively the blue and black solid lines in the top subpanels,

while the solid lines in the bottom subpanels denote their relative differences. The magenta

symbols in the top subpanels show the gramses results as measured using the power spec-

trum code powmes (Colombi et al., 2009): while they agree with linear theory rather well on

intermediate and small scales, for the largest scale probed at z = 49 powmes fails to recover

the upturn predicted by linear theory (the blue solid line). The orange and red symbols, on

the other hand, are the power spectra for the gramses and ramses simulations measured

using the dtfe code5 (Cautun & van de Weygaert, 2011), which does capture the upturn.

Therefore, in the bottom panels we show the ratio between the spectra measured using dtfe

(red symbols). This comparison poses an interesting question regarding the applicabilities

of the different methodologies to calculate the power spectrum when it deviates significantly

from the usual behaviour observed in the synchronous gauge6 (e.g., on large scales due to the

gauge difference). Furthermore, the prediction of actual observable quantities in GR is not

straightforward and requires the application of ray tracing algorithms acting either in real

time (on-the-fly) or in a post-processing step. The former has been implemented for ramses

in Barreira et al. (2016) and could serve as a starting point to implement a general relativistic

version in gramses in the future.

5The dtfe code tessellates the simulation volume following the Delaunay triangulation scheme, where the
3D space is decomposed into tetrahedrons whose vertices are simulation particles. The (density or velocity
divergence) field value in each tetrahedron is determined by the corresponding particle quantities (mass and
velocity) on its four vertices. The values in the tetrahedrons are then interpolated to a regular grid to give
the field values on the latter, from which the corresponding power spectra can be measured using normal fast
Fourier transform. This is particularly useful for the velocity field, since it can help to avoid the numerical
problem of directly interpolating to a regular grid, which often leads to certain grid cells having zero velocity.
See Cautun & van de Weygaert (2011) for more details.

6Note that at the largest scale probed by powmes the CMC-MD-gauge power spectrum is nearly two orders
of magnitude larger than that in the synchronous gauge.
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Figure 2.9: The comparison of the matter power spectra from our gramses (GR) and ramses
(Newtonian) simulations in the 4 Gpc/h box, at 6 redshifts, from z = 49 (upper left) to z = 1
(lower right). In each panel, the upper subpanel shows the absolute power spectrum measured
using powmes and dtfe, while the lower subpanel shows the ratio between gramses and
ramses. Note that the gramses result is the power spectrum of the particle number count
field in the CMC gauge (PCMC), while the ramses result is that of the energy density field
in the synchronous gauge P S. The solid lines are the corresponding linear theory predictions
for these power spectra obtained using a modified version of camb.

From Figure 2.9 we see that on large scales the simulation result agrees with linear-theory

prediction very well for all redshifts shown. Note that the relative difference between the

two power spectra at the largest scale probed by dtfe starts from ∼ 1500% at z = 49 and

decreases to . 20% at z = 1, which is a very large range of change that is properly reproduced

by gramses. Towards low redshift a small discrepancy from linear theory appears: this is

partly because of the smaller differences between the power spectra in the CMC-MD and

synchronous gauges, and partly because of the coarse time resolution in our simulation (which

has fewer than 50 time steps between z = 49 and z = 1). Due to the low resolution of the

simulation we shall not focus on the results at small scales.

Figure 2.10 is similar to Fig. 2.9, but shows the power spectrum of the velocity divergence

(θ defined above). The blue and black solid lines in the upper subpanels are respectively

the velocity convergence power spectra in the CMC and Newtonian gauge calculated by

a modified version of the camb code, and the solid lines in the lower subpanels are their

relative differences. Here all the simulation spectra have been measured by the dtfe code.
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Figure 2.10: The same as Figure 2.9, but shows the velocity divergence power spectra pre-
dicted by the 4 Gpc/h gramses (GR) and ramses (Newtonian) simulations. The former
makes use of the CMC-MD gauge, while the latter follows the velocity field in the New-
tonian gauge. All simulation results are measured using dtfe, and the solid lines are the
linear-theory predictions obtained using a modified version of camb.

A similar level of agreement between the linear theory predictions and simulations to what

is shown in Figure 2.9 can be found here, where at the largest scale probed by dtfe the

relative difference between the gramses and ramses results changes strongly from ∼ 1000%

at z = 49 to ∼ 20% at z = 1. While the matter power spectra from the gramses GR

simulations are consistently higher than those from the ramses Newtonian simulations, the

velocity power spectra show the opposite trend (this is in agreement with the findings of

Flender & Schwarz (2012), whose uniform-expansion gauge corresponds to our CMC gauge)

– this is partially why the difference between the matter power spectra in the two simulations

decreases over time.

Let us remark here that neither the matter power spectrum Pδδ(k) nor the velocity divergence

power spectrum Pθθ are gauge invariant quantities and the differences on large scales seen

in Figures 2.9 and 2.10 are therefore not physical effects. However, being able to reproduce

the expected gauge effects in our simulations is a useful test of the numerical implementation

itself. We have stated briefly above that the Pδδ measured from the gramses simulations

are the power spectra for the particle number count perturbations in the CMC-MD gauge,

while the Pδδ measured from the ramses simulations are for the energy density field in the
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synchronous gauge. We have also compared Pθθ from ramses with the Newtonian gauge

results from linear theory. These issues are indeed intricately related to the fact that the

initial conditions in our GR simulations have to be generated in a way compatible with our

gauge choice (see, e.g., Fidler et al., 2017b, 2015; Valkenburg & Hu, 2015), and as mentioned

above these topics will be discussed in depth in Chapter 3.

2.6.2 The shift vector power spectrum

Let us now discuss some results on the shift vector power spectrum from gramses. This is

a particularly interesting quantity since it is related to ‘frame-dragging’, a GR effect which

has been measured in the Solar System (Everitt et al., 2011). Contrary to the longitudinal

gauge commonly adopted for late-time cosmology, in the MD gauge the shift vector has both

scalar and vector components, i.e. βi = βis + βiV . In perturbation theory, βiV appears as a

gauge-invariant, second order quantity (at lowest order) that is only sourced by the product

of the first order scalar perturbations δ and v (Matarrese et al., 1998b; Lu et al., 2009) in the

perfect fluid case. However, in N -body simulations the shell-crossing of dark matter particles

induces velocity dispersion and sources the rotational velocity. Expanding Eq. (2.4.21) and

(2.4.23) up to second order in perturbation theory, it can be shown that the dimensionless

power spectrum ∆(k) ≡ k3P (k)/(2π2) for βiV is given by (Lu et al., 2009)

∆βV (k) = 9Ω2
mH

4
0

2a2c2k2

∫ ∞
0

dv
∫ 1+v

|1−v|
duΠ

[
∆δδ(ku)∆vv(kv)− v

u
∆δv(ku)∆δv(kv)

]
, (2.6.1)

where

Π(u, v) = u−2v−4
[
4v2 − (1 + v2 − u2)2

]
, (2.6.2)

and v = k′/k, u =
√

1 + v2 − 2v cos θ, with cos θ = k′iki/
√
k′ik′ik

jkj . Due to the convolution

in (2.6.1) a given k-mode of ∆βV can receive contributions from arbitrarily short and long-

wavelength k′-modes of ∆δδ, ∆vv and ∆δv. This makes its comparison against simulation

results intricate as the latter has intrinsic cut-off scales due to its discrete nature; on the one

hand, the simulation cannot access long-wavelength modes beyond the fundamental mode

k = 2π/L, while on the other hand the contributions coming from short-wavelength modes

can be contaminated by modes beyond the Nyquist frequency k = πN
1/3
p /L. In principle,

there is no clear correspondence between the aforementioned modes and the cutoff scales

needed in (2.6.1) in order to compare faithfully against the simulation results. For our

current comparison we adopt such modes as hard cut-offs and show results only up to 25%

of the Nyquist frequency (Adamek et al., 2014).
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Figure 2.11: Power spectra of the scalar mode (left panel) and vector modes (right panel) of
the shift vector from the gramses simulation with box size L = 256Mpc/h and Np = 5123

particles. The ∆sV
i
power spectrum shown in the right panel is normalised to match the units

of βiV . In each case we show modes up to 25% of the Nyquist frequency of the simulation,
i.e. πN1/3

p /(4L).

We note that, as a consequence of the method for solving the vector Laplacian equations

(2.4.6) and (2.4.10), there is no complete separation of scalar and vector modes of βi and

Wi in (2.4.21)-(2.4.23). While (2.4.22) and (2.4.24) guarantee that U and b are scalars, Bi

and Vi contain both scalar and vector modes. Hence, in order to safely extract βiV = Bi
V

from Bi as a post-processing we apply a discrete curl operator (∇×) to remove any scalar

component in the latter, after which we can use the relation k2Pβv (k) = P∇×β(k) to get

∆βV . As a consistency check we have also calculated the curl of the full momentum density

si which sources βi through the momentum constraint Eq. (2.4.22), a procedure that has

been previously applied to extract the shift vector from Newtonian simulations under a post-

Friedmann approach in Bruni et al. (2014); Thomas et al. (2015c).

Figure 2.11 shows the power spectra for βis (left panel) and βiV (right panel) extracted from

the high-resolution gramses simulation at three redshifts: z = 9 (red), 4 (blue) and 1

(magenta). The solid curves denote the predictions of linear perturbation theory (for βis) and

second order perturbation theory (for βiV ), while the symbols are simulation results; for βiV
the open triangles and filled circles represent respectively the power spectra for sVi and βiV .

In both cases, the solid curves and symbols agree well, especially at higher redshifts.

We find that on large scales the scalar mode of the shift vector (left panel) can be many

orders of magnitude larger than the vector mode (right panel), and thus the curl method

described above is necessary to isolate the latter. As we discussed below Eq. (2.2.25), the
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existence of this scalar mode within the shift vector is a result of the MD gauge condition

(2.2.22), and shows that the fully constrained formulation adopted in gramses successfully

accounts for all the scalar and vector modes of the metric. The specification of cutoffs for

the second order perturbation theory prediction (2.6.1) leads to a power loss in ∆βV and

can affect the matching to simulation results especially on large scales. However, the good

agreement between perturbative and numerical results shown in the right panel of Fig. 2.11

for z = 9 and z = 4 is consistent with previous studies showing that the vorticity component

of the velocity field (which is absent in the perfect fluid approximation) is subdominant with

respect to the product of the first order scalar perturbations δ and v (Bruni et al., 2014;

Jelic-Cizmek et al., 2018).

2.7 Summary

In this Chapter we have presented the gramses code, a new implementation of general rela-

tivistic N -body AMR simulations in cosmology. This code brings together several advantages

of current GR codes under a fully constrained formulation in which dynamical DOF of the

metric can be isolated in a consistent and convenient way for cosmological simulations of

structure formation. The current version of gramses does not include the evolution equa-

tions for tensor modes, the omission of which is expected to have negligible impact on this

kind of simulations and whose implementation is therefore left as a future project. Combined

with the N -body particle methods for standard cosmological simulations, it can accurately

solve the nonlinear Einstein equations all the way down to deeply nonlinear scales on which

particle orbit crossing is frequent. We have discussed the relevant theoretical background

upon which this is based as well as its numerical implementation in detail.

Multigrid relaxation, adaptive mesh refinement and efficient MPI parallelisation are three

of the key features of gramses, which are inherited from its parent code – the publicly-

available N -body and hydrodynamical simulation solver ramses (Teyssier, 2002). These are

what will enable gramses to run large simulations for cosmological volumes while at the same

time resolving scales well within virialised structures. In this Chapter we have opted to not

devote much space to the description of these features, as they are well-established techniques

nowadays and a lot of details can be found from the ramses code paper, references therein

and its derived literature. However, let us briefly mention that the computation of geometric

source terms for the Einstein equations in the ADM formalism – such as ĀijĀij and ∂iĀij –

are actually nontrivial at the boundaries of refined meshes, which is largely due to the fact
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that Āij itself already involves up to second-order derivatives of the GR potentials Vi and

U . Furthermore, the use of AMR increases the memory requirement of the code: without

AMR, the different GR potentials, for a given time step, can be calculated sequentially so

that the same array can be recycled for storing them; with AMR and the associated adaptive

timestepping, the GR potentials must be kept for longer because they are needed to set up

the boundary conditions for the refinement in all subtimesteps, and so we opt to create a

separate array for each GR potential.

We have conducted various code tests to verify that all the source terms are computed

correctly and that the implemented multigrid relaxation and geodesic solvers are reproducing

the correct solutions for test cases where these can be calculated analytically or can be

derived in alternative ways. We also successfully ran a cosmological simulation for a ΛCDM

universe in a general relativistic setting. The maps produced in this GR simulation show

expected features, and a more detailed quantitative analysis shows that the matter and

velocity power spectra from the GR simulation display the expected behaviour for the CMC-

MD gauge on large scales. The L = 4h−1Gpc test simulations used to compare the relativistic

and Newtonian codes also show that gramses is roughly ten times more computationally

expensive than its parent code – ramses. This number can be estimated from the ratio

between the numbers of PDEs that are needed to solve the gravitational sector in each

code, taking into account the fact that the non-Poisson-like equations solved in gramses

are only mildly nonlinear so that they are not significantly more expensive to solve than the

standard Poisson equation. Nonetheless, compared to standard numerical relativity codes,

an advantage of gramses is that no evolution equations for gravity need to be solved in

the formalism implemented so that relatively large time steps can be used. When GW

are also implemented, their finite propagation speed impose additional requirements for the

time stepping of the simulations, which could substantially increase the computational costs,

although we do not expect this to be the case for cosmological simulations.

A few words to compare gramses and gevolution are in order here, considering that they

appear to share some common features. While the current implementation of gramses solves

all the relevant metric DOF from nonlinear elliptic equations, gevolution employs a mixture

of linearised elliptic, parabolic and hyperbolic equations. As gevolution adopts the Poisson

gauge, the vector modes are cleanly isolated within the shift vector βi. This is not the

case in gramses, in which the elliptic equations mix one scalar mode in βi, and a post-

processing step is required if their separation is needed, as discussed in Section 2.6.2. For

tensor modes, in gevolution they are solved from a linearised hyperbolic equation, while these
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are not taken into account in the current gramses version, although the framework allows

one to include them by solving additional nonlinear time evolution equations. In any case, the

facts that gevolution is based on the weak field expansion and utilises Fourier transforms in

the gravitational solver may boost its overall performance, while the AMR nature of gramses

may make it more suitable in situations where one wishes to focus on high-density regions.

The generation of initial condition for gramses simulations will be addressed in Chapter 3.

Nonetheless, we can mention here that in order to generate initial conditions in the CMC-

MD gauge we have modified the camb and 2lptic (Crocce et al., 2006) codes. The former

is used to generate the matter power spectrum implementing the gauge transformations at

the initial redshift zini of the simulation, but also on two neighbouring ones (one at a slightly

higher while the other a slightly lower redshift). Then, our modified 2lptic code realizes this

power spectrum to calculate the particle positions in the standard way, but the velocity is

calculated by finite-differentiating the particle displacements of the two neighbouring snap-

shots. This has the advantage of being independent of an explicit parameterisation of the

growth factor (and growth rate) which can become scale-dependent in certain gauges and

dark energy/modified gravity models and thus violate a basic assumption (scale-independent

linear growth rate) of the default 2lptic code.

The code can be particularly useful for capturing relativistic effects in large-scale simulations

as well as for studying problems beyond the Newtonian approximation such as the effect

of large density contrasts on the surrounding spacetime and its impact on the estimation

of cosmological parameters. Due to perturbed photon geodesics, distant objects can have

observed redshifts, angular positions and fluxes which deviate from the true values. This can

lead to various effects in observations such as in the galaxy density field (Yoo et al., 2009;

Challinor & Lewis, 2011; Bonvin & Durrer, 2011). While subtle, these effects are detectable

using suitable estimators, and their detectability varies with redshift, scale and estimator (e.g.,

Bonvin et al., 2016; Gaztanaga et al., 2017; Bonvin et al., 2017; Borzyszkowski et al., 2017;

Giusarma et al., 2017; Alam et al., 2017b,a). To fully accurately study such effects in future

galaxy surveys and how they could impact on the estimation of cosmological parameters and

constraints on models, realistic mock galaxy catalogues based on cosmological simulations

are needed (Borzyszkowski et al., 2017); such simulations should ideally have large volumes

to capture the very large scale effects, but also resolve nonlinear scales and even virialised

objects to more accurately predict the nonlinear effects (e.g., Zhu et al., 2017; Breton et al.,

2019). Another interesting topic is the back-reaction effect of space-time averaging on the

expansion rate (Buchert & Räsänen, 2012), an effect the exact size of which is still being
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debated and which can have important implications on the understanding of the cosmic

acceleration or cosmological parameter estimations, which is a nonlinear effect that cannot

be fully captured by linear perturbation theory (Bentivegna & Bruni, 2016) and is therefore

better to be quantified using N -body simulations that solve the nonlinear Einstein equations

inside the most nonlinear virialised objects. In addition, the implementation of scalar field

dark energy or modified gravity models in gramses is potentially interesting as it would

allow one to study the evolution of the new DOF inside virialised dark matter haloes and

their impact on the GR effects (Thomas et al., 2015a; Reverberi & Daverio, 2019).



Chapter 3

Initial conditions for relativistic

N-body simulations

3.1 Introduction

In Chapter 2 we have introduced a new code for general relativistic N -body simulations,

gramses (Barrera-Hinojosa & Li, 2020). We will now address the issue of generating particle

initial conditions (ICs) – namely, positions and velocities – for simulations using this and other

general relativistic codes. The proper generation of ICs is an essential part of the pipeline

since the gauge choice in gramses – a combination of constant mean curvature (CMC) slicing

and minimal distortions (MD) – means that standard ICs generated for Newtonian N -body

simulations are not in the gauge used by gramses. This is because, in the linear regime,

where the synchronous gauge is well defined, the density perturbation and velocity field used

in Newtonian simulations are equal to the corresponding quantities in the synchronous and

Newtonian gauges, respectively (Chisari & Zaldarriaga, 2011; Flender & Schwarz, 2012; chan

Hwang et al., 2012). Standard initial condition codes, such as 2lptic (Scoccimarro, 1998;

Crocce et al., 2006), grafic (Bertschinger, 2001) or mpgrafic (Prunet et al., 2008), are

tailored for this type of simulations and use parameterisations for the growth factor and

growth rate that could break down in other gauges. It is therefore necessary to modify

the methods for generating initial particle data to make them compatible with gramses

simulations.

Contrary to numerical relativity codes based on the hyperbolic formulations of General Rel-

ativity (GR), such as Mertens et al. (2016); Macpherson et al. (2017); Daverio et al. (2019),

57
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gramses implements the fully constrained formulation, where the gravitational sector does

not require the specification of ICs as the time evolution is fully encoded in the matter sources,

and therefore the initial particle data is the only type of ICs needed for such simulations, in

an analogous way to standard Newtonian simulations.

For cosmological simulations of this type, the usual approach to generate particle positions

from a given density field is to use the displacement vector field, where one relies on the

fact that the initial density field is nearly homogeneous, and that tiny perturbations arise

from slightly displacing the particles from a regular configuration such as a grid or glass

(Baugh et al., 1995). At first order in perturbation theory, the solution of the displacement

is simply given by the Zel’dovich approximation (Zeldovich, 1970). On the other hand, the

velocity can be calculated by using the first-order continuity equation, although this requires

additional information about the density field, in particular its time evolution, which at the

linear level is encoded in the linear growth rate f1. However, the latter quantity depends

on both the gauge used for the overdensity, as well as the underlying theory of gravity, and

one has to be careful about the parameterisation of f1 adopted even in a non-relativistic

scenario. For instance, it is well-known that the growth rate (and growth factor) becomes

scale-dependent in many modified gravity or dark energy models (Linder & Cahn, 2007;

Narikawa & Yamamoto, 2010). Another potential limitation of this method is that, as we

shall note later, it is possible that the overdensity and velocity fields from a given gauge

do not satisfy the ‘standard’ (or ‘Newtonian’) form of the continuity equation even if the

conservation of the energy momentum tensor holds, since in general the continuity equation

also contains curvature perturbation terms, which for Newtonian N -body simulations can be

properly taken into account (Fidler et al., 2015). A general approach to tackle this problem

has been implemented in falconIC code (Valkenburg & Hu, 2015), which is capable of

generating ICs for a wide range of theories of gravity, including those having perturbations

in non-standard matter components at high redshift, as well as for models with imperfect

fluids such as neutrinos.

In order to circumvent the gauge issues when calculating the velocity field for gramses

simulations, we propose a finite difference method in which, roughly speaking, two particle

snapshots close to the initial redshift — and generated using the same random number seeds

— are compared to obtain the velocity field connecting them. This is a very straightforward

but versatile approach due to the advantage of being independent of an explicit parameterisa-

tion of the growth factor, as the information about the evolution of the density field is drawn

from the comparison of the snapshots. We have implemented this finite difference method
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by modifying the 2lptic code. As the input for solving the displacement vector problem at a

given redshift, the default 2lptic code uses a matter power spectrum rather than the density

field itself. In order to calculate the spectrum in the CMC gauge, we use a modified version

of the camb (Lewis et al., 2000) which implements suitable gauge transformations from the

default synchronous gauge used in such code. Since for the finite difference calculation of the

velocity we need the displacement vectors from two subsequent snapshots, in the modified

2lptic code we additionally input two neighbouring matter power spectra (one at a slightly

higher redshift while the other at a slightly lower redshift than the true initial time). Then,

the code realises these power spectra to calculate the particle positions in the standard way,

but the velocity is calculated by finite differencing the particle displacements from the two

neighbouring snapshots. In this way, the velocity can be calculated even in cases where basic

assumptions of the default 2lptic code, such as scale-independent growth rate, are violated.

The rest of this Chapter is organised as follows. Given that the gauge choice for gramses and

its role in the fully constrained formulation of GR have been described in details in Chapter 2,

in Section 3.2 we only briefly recall some aspects that are relevant for the current project.

In Section 3.3 we discuss the gauge transformations that connect the CMC-MD gauge to the

synchronous and Newtonian gauges, and that allow us to deal with the gauge issues behind the

generation of ICs. In Section 3.4.1 we briefly discuss the standard displacement vector method

for the generation of the particle ICs from an initial matter density field, and we point out

its potential limitations when dealing with general relativistic N -body simulations, while in

Section 3.4.2 we explain how it is compatible with Newtonian simulations. In Section 3.4.3 we

show that this method is also compatible with the generation of particle positions for gramses

by identifying carefully the overdensity variable used in the simulation (Valkenburg & Hu,

2015), but that velocities remain affected by the gauge dependence. As a way to overcome

this gauge issue, in Section 3.4.4 we discuss how to calculate the initial particle velocities

via a finite difference method. Then, in Section 3.5 we present results regarding the ICs for

gramses simulations, as well as a comparison to the standard method. Finally, we wrap up

in Section 3.6 with a summary and some outlook.

As in Chapter 2, in the following we adopt the (−,+,+,+) signature for the spacetime metric

as well as the unit c = 1. Greek indices run from 0 to 3, whereas Latin ones from 1 to 3 only,

with repeated indices implying summation.
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3.2 The gauge choice in gramses

The gauge choice for gramses simulations and its implications in the constrained formulation

of GR has been discussed in detail in Chapter 2. However, for the sake of completeness and

notation we briefly discuss some relevant aspects next. In the 3 + 1 formalism the spacetime

metric takes the form

ds2 = gµνdxµdxν = −α2dt2 + γij
(
βidt+ dxi

) (
βjdt+ dxj

)
, (3.2.1)

where γij is the induced metric on the spatial hypersurfaces, while the lapse function α and

shift vector βi represent the diffeomorphism invariance of GR. Even though in principle we

have the complete freedom to choose the gauge, in practice not all options are physically

or numerically convenient. As an example, the geodesic slicing (or synchronous gauge) is

characterised by α = 1 and βi = 0, but it can become ill-defined when shell crossing (or tra-

jectory crossing) occurs, as is expected for collisionless particles in cosmological simulations.

For this type of simulation, a convenient prescription for α is applying the so-called Constant

Mean Curvature (CMC) slicing condition (Smarr & York, 1978a), in which the trace of the

extrinsic curvature of the spatial hypersurfaces is fixed as a function of time only,

K = −3H(t) , (3.2.2)

where H ≡ ȧ/a represents a fiducial Hubble parameter (with a being a fiducial scale factor).

Here, H (and a) is just a prescribed function for fixing the spacetime foliation and in principle

does not have to represent average (or background) properties of the actual universe. Never-

theless, we can still fix H such that it satisfies some ‘reference’ Friedmann equations (Giblin

et al., 2017, 2018). Under the CMC slicing, the lapse can be found by solving

∇̄2(αψ) = α

[
2πψ−1(s0 + 2s) + 7

8ψ
−7ĀijĀ

ij + ψ5
(

5K2

12 + 2πρΛ

)]
− ψ5K̇ . (3.2.3)

Here, ψ represents the conformal factor which connects γij to the conformal metric γ̄ij through

γij = ψ4γ̄ij , with γ̄ ≡ det(γ̄ij) = 1, ∇̄2 ≡ γ̄ijD̄iD̄j is the covariant Laplace operator associated

with γ̄ij (and D̄i the associated covariant derivative), and Āij is the traceless part of the

extrinsic curvature tensor K̄ij . Furthermore, ρΛ is the dark energy density appearing in the

reference Friedmann equations, and the conformal matter source terms are defined as

s0 = √γρ , (3.2.4)

si = √γSi , (3.2.5)
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sij = √γSij . (3.2.6)

and s = γijsij , where ρ, Si and Sij are the projections of the energy momentum tensor,

Tµν , onto the spatial hypersurfaces. It can be shown that Eqs. (3.2.4)-(3.2.6) are analogous

to the usual ‘comoving’ matter source terms and correspond to those actually determined

numerically such as in a Cloud-in-Cell (CIC) scheme (Masaru, 2015). In particular, in Sec-

tion 3.4.3 we will show that at the linear level the ‘density’ contrast for s0, defined as δs0/s0,

corresponds to local fluctuations in the particle number density rather than the relativistic

energy density ρ. In practice, this is more convenient for N -body simulations as in these we

are interested in following ‘particles’ rather than the full ‘energy density field’ itself: a given

particle can contribute different energy densities at different positions, and the relativistic

correction effect can be calculated once we have the local values of the spatial metric γij .

This has important implications on the generation of ICs as we will see in Section 3.4.1.

After adopting the CMC slicing condition Eq. (3.2.2), we still have gauge freedom to choose

spatial coordinates on each spatial hypersurface as represented by the three degrees of freedom

in βi. Instead of fixing βi ‘statically’, such as in synchronous gauge (where it vanishes at all

times), we can use this freedom to propagate the spatial coordinates from a hypersurface at

t to the next one at t + δt in such a way that the ‘distortion’ of local volume elements due

to coordinate effects is minimised. For this purpose, we apply the Minimal Distortion (MD)

gauge condition (Smarr & York, 1978a,b), in which we demand

Di(γ1/3∂tγ̄ij) = 0 , (3.2.7)

with Di the covariant derivative associated with γij . Using the MD condition Eq. (3.2.7),

the momentum constraint and evolution equation for γij combine into the following elliptic

equation for the shift vector

(∆̄Lβ)i + (L̄β)ijD̄j lnψ6 = 2ψ−6ĀijD̄jα+ 16πψ4αSi, (3.2.8)

where

(L̄β)ij ≡ D̄iβj + D̄jβi − 2/3γ̄ijD̄kβ
k

is a conformal Killing operator and (∆̄Lβ)i ≡ D̄j(L̄β)ij a conformal vector Laplacian. How-

ever, the MD gauge condition Eq. (3.2.8) is actually simplified in the constrained formulation

of GR adopted in gramses, in which tensor modes of the metric are consistently neglected

and hence no evolution equations for gravity are required to be solved. Following Bonazzola
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et al. (2004); Cordero-Carrion et al. (2008), in this scheme we make the approximations

γ̄ij = δij , ĀijTT = 0 ∀t , (3.2.9)

where ĀijTT is the transverse-traceless (TT) part of Āij . This approach follows the same spirit

as the ‘waveless theories of gravity’ developed originally by Isenberg Isenberg (2008) and later

by Wilson and Mathews in Wilson & Mathews (1989). We refer the reader to Chapter 2 for

more discussion on this formalism as well as to Bonazzola et al. (2004); Cordero-Carrion

et al. (2008); Cordero-Carrión et al. (2009) for its foundations and numerical applications to

relativistic simulations of compact objects. With the conformal flatness approximation from

Eq. (3.2.9), Eq. (3.2.8) is simplified to

(∆̄Lβ)i = 2∂j
(
αψ−6ĀijL

)
, (3.2.10)

where ĀijL is the longitudinal part of Āij . We remark that with this gauge condition, the

shift vector βi has both scalar (longitudinal) and vector (transverse) modes, which makes

it different from the shift vector appearing in the commonly-used Poisson gauge where it

contains purely vector perturbations. Throughout this Chapter, we refer to the combinations

of both CMC slicing and MD conditions as the ‘CMC-MD’ gauge, though ‘CMC’ will often

be used for the same meaning in order to avoid cluttered notation.

3.3 Gauge transformations

Since the gauge issue plays an important role in the generation of ICs, in this section we

shall briefly discuss gauge transformations to understand how the main quantities from the

CMC-MD gauge are connected to those in the synchronous and Newtonian gauges at first

order in perturbation theory. A comparison of the latter two gauges to the CMC gauge is

given in Flender & Schwarz (2012) where this is referred to as the ‘Uniform Expansion’ gauge,

but here we will also give details on the MD gauge for the choice of spatial coordinates as

well as on the equations in the 3+1 formalism. For the synchronous gauge and Newtonian

gauge quantities we will stick to the convention of notation of Ma & Bertschinger (1995).
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3.3.1 The geometric sector

Under an infinitesimal reparameterisation of coordinates, xµ → x′µ = xµ + ξµ, the metric

components transform as

gαβ(x) = g′αβ(x) + gµα∂βξ
µ + gµβ∂αξ

µ + ξµ∂µgαβ , (3.3.1)

where g′αβ is the spacetime metric in the new coordinate system, and we have expanded this

around the original spacetime point xµ as

g′αβ(x′) ≈ g′αβ(x) + ξµ∂µgαβ(x).

To connect with standard perturbation theory and the different gauges used in cosmology,

we linearise the 3 + 1 metric in Eq. (3.2.1) around a Friedmann-Lemaître-Robertson-Walker

(FLRW) background with metric diag(−1, a2δij), which coincides with the ‘fiducial’ back-

ground introduced through the CMC slicing condition. Then, we apply Eq. (3.3.1) to obtain

the transformation laws for the perturbed 3 + 1 metric in terms of cosmic time t and co-

moving spatial coordinates xi. The conformal factor defined through the relation γij = ψ4γ̄ij

is perturbed at first order as ψ = a1/2(1 − Ψ/2), while the perturbed conformal metric is

γ̄ij = δij + hij . Therefore, the metric components of the linearised Eq. (3.2.1) are

g00 = − (1 + 2Φ) , (3.3.2)

g0i = βi , (3.3.3)

γij = a2[(1− 2Ψ)δij + hij ] , (3.3.4)

where we have introduced the lapse perturbation Φ ≡ α − 1 and hij is a traceless tensor,

i.e. γijhij = 0. Then, applying the transformation law Eq. (3.3.1) we find that the metric

perturbations transform as

Φ′ = Φ + ξ̇0, (3.3.5)

β′i = βi − ξ̇i − ∂iξ0 + 2Hξi, (3.3.6)

γ′ij = γij − ∂iξj − ∂jξi + 2aȧδijξ0, (3.3.7)

where H ≡ ȧ/a = −K/3 is the Hubble parameter fixed by the CMC foliation, Eq. (3.2.2).

From the trace and traceless parts of (3.3.7) we find, respectively,

Ψ′ = Ψ−Hξ0 + 1
3a
−2δij∂jξi , (3.3.8)

h′ij = hij − a−2(∂jξi + ∂iξj) + 2
3a
−2δkl∂kξlδij . (3.3.9)
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At the linear level, the MD condition Eq. (3.2.7) reduces to

∂ih′ij = 0 , (3.3.10)

so that Eq. (3.3.9) can be used to connect the spatial components of the gauge transformation

variable ξµ with ∂ihij , which can in turn be used to link the spatial coordinates in the two

gauges. It is useful to note that if hij = 0 in a given gauge, such as in the case of Newtonian

gauge (or Poisson gauge in the absence of tensor perturbations), then ξi = 0 and the spatial

coordinates in such a gauge are equivalent to those in the MD gauge (at first order).

3.3.2 The matter sector

For the matter sector, let us consider the energy-momentum tensor of the form

Tµν = (ρ+ P )uµuν + Pδµν + Σµ
ν , (3.3.11)

in which uµ = dxµ/dτ is the 4-velocity of the fluid, ρ is the energy density, P the pressure

and Σµ
ν the anisotropic stress tensor. Under the infinitesimal coordinate reparameterisation,

the transformation law for Eq. (3.3.11) is

Tαβ(x) = T ′αβ(x) + T ′αν∂βξ
ν − T ′µβ∂µξ

α + ξλ∂λT
′α
β. (3.3.12)

Using that −T 0
0 = ρ = ρ̄(1 + δ), where the overbar means that ρ̄ is the background density

(throughout this, overbar always has this meaning when applied to matter quantities and δ

is the density contrast, we find that the latter transforms as

δ = δ′ + 3H(1 + w)ξ0 , (3.3.13)

where we have used the background continuity equation ˙̄ρ+ 3Hρ̄(1 + w) = 0, and w ≡ P̄ /ρ̄

is the equation-of-state parameter for a given species, and again an overbar is used in P̄ to

highlight that this is the mean pressure. Similarly, since T 0
i = (ρ̄ + P̄ )u0ui, where u0 = 1

to first order, and T ij = (P̄ + δP )δij + Σi
j , with Σi

i = 0, we find that the lower-index velocity

transforms as

u′i = ui − ∂iξ0 , (3.3.14)

while the upper-index velocity transforms as

u′i = ui + a−2δij ξ̇j − 2a−2Hδijξj . (3.3.15)
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Equations (3.3.13), (3.3.14) and (3.3.15) can be used to transform the density and velocity

from the CMC-MD gauge to other gauges. In particular, by using the aforementioned fact

that ξi = 0 when connecting the MD gauge with Newtonian gauge in Eq. (3.3.15) we find

that the 4-velocity ui is actually the same in both gauges. However, this is only true for

the upper-index velocity ui, while ui transforms with ∂iξ0 as shown by Eq. (3.3.14). We will

come back to this point later.

For the sake of completeness, in Appendix B we include additional details about the map-

ping between the linearised fields and evolution equations in the CMC-MD gauge and their

counterparts in the synchronous and Newtonian gauges.

3.4 The generation of initial conditions

Before discussing the method for the generation of ICs for particles, we remark that in the

constrained formulation implemented in gramses (Bonazzola et al., 2004; Cordero-Carrion

et al., 2008), the initial data for the metric is entirely determined by the initial particle

data, as there are no dynamical degrees of freedom in the metric (tensor modes) due to the

approximations in Eq. (3.2.9).

At early times, when fluctuations around the FLRW background universe are small, it is

usually assumed that standard perturbation theory is accurate and allows one to set ICs for

N -body simulations, which then take care of the nonlinear evolution throughout the late-time

universe. This is usually done by solving the linear perturbation equations for the coupled

cosmic fluid numerically in a Boltzmann code such as camb (Lewis et al., 2000) or class (Les-

gourgues, 2011; Blas et al., 2011), or even at second order such as in song (Pettinari et al.,

2013). From this, the density and velocity fields of the cosmic fluid are obtained at some high

redshift, typically in the range 49 . zini . 99. In the case of Gaussian initial perturbations,

these are fully characterised by the two-point correlation function (or the power spectrum

in Fourier space). However, in order to actually use this cosmic fluid data as the ICs for an

N -body code, it requires a method for mapping this to the particles’ phase space. For the

following discussion we assume that no vorticity is present at the initial redshift, although

this is naturally developed at late times due to the nonlinear evolution.
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3.4.1 The displacement vector method

The problem of realising an initial matter power spectrum P∆(k; zini) related to some Gaus-

sian random field ∆(x; zini) using a particle distribution can be approached in terms of a

density-displacement duality. Then the generation of particles’ initial positions reduces to

the calculation of a displacement vector χi which maps the positions from a regular grid or

glass configuration (Baugh et al., 1995), qi, to the perturbed positions, xi(q), via

xi(q) = qi + χi(q) . (3.4.1)

Equation (3.4.1) can be regarded as a coordinate transformation from some virtual coordinate

system qi with constant mass (or charge) density per coordinate volume Q̄ to a physical

coordinate system xi where the density field Q(x) = Q̄ [1 + ∆(x)] is inhomogeneous1. By

virtue of mass conservation, this mapping must satisfy

ρ̄d3q = ρ̄ [1 + ∆(x)] d3x . (3.4.2)

Since d3x/d3q = det(J), where J ij = δij + ∂χi/∂qj is the Jacobian of the transformation

(3.4.1), we can expand Eq. (3.4.2) perturbatively if |∂χi/∂qj | � 1. Then, at the linear level

we find

∆(x) = −∂iχi , (3.4.3)

which corresponds to the Zel’dovich approximation (Zeldovich, 1970) and defines the dis-

placement vector at the initial redshift zini. Consequently, the particles’ coordinate velocity

can be calculated as

vi ≡ dxi

dt = χ̇i , (3.4.4)

where we note that, at first order, the spatial components of the 4-velocity and coordinate

velocities coincide, i.e., ui = vi/u0 ≈ vi. Using Eqs. (3.4.3) and (3.4.4), it is straightforward

to show that ∆ and vi satisfy the linear continuity equation,

∂iv
i + ∆̇ = 0 . (3.4.5)

Namely, in this method, the overdensity variable ∆ to which χi is related, and the velocity

variable vi, which is calculated from the latter, are generically linked through the ‘standard’

(‘or Newtonian’) continuity equation, Eq. (3.4.5). For this reason, we can consider {∆, vi} as

1Note that here we use Q (∆) rather than ρ (δ) to denote the density (overdensity) variable since this does
not necessarily correspond to the physical ρ appearing in the energy-momentum tensor Eq. (3.3.11), as we
will see later.
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‘conjugate’ variables. Let us point out that this is the first limitation that this method has

when trying to deal with the generation of ICs for general relativistic simulations, since in

a completely arbitrary gauge there is no guarantee that the continuity equation Eq. (3.4.5)

would actually hold for the ‘density’ and ‘velocity’ that appear in Tµν , and hence the over-

density in such a gauge and the inferred velocity through the displacement vector method are

not necessarily conjugate variables. As we will discuss in Section 3.4.2, this issue is actually

not present in Newtonian N -body simulations.

Naturally, Eq. (3.4.5) shows that, in order to calculate the particles’ velocity we require not

exactly information about the initial density fluctuations ∆(zini) (encoded in P∆(k; zini)), but

indeed about its time evolution. At linear order, the overdensity can be written in terms of a

linear growth factor as ∆(k; z) = D1∆(k; z = 0), with D1 = 1 at z = 0, so that the velocity

is given by

∂iv
i = −Hf1∆ , (3.4.6)

where f1 ≡ d lnD1/d ln a is the linear growth rate. As a result, we can determine the veloci-

ties from Eq. (3.4.6) by using the input density field ∆(zini) alongside with some numerical

values or fit for f1, which depends on the actual model and theory of gravity. In fact, it

is well-known that D1 and f1 are in general scale-dependent in modified gravity and dark

energy models (Linder & Cahn, 2007; Narikawa & Yamamoto, 2010), in which case the sim-

ulation particles are displaced along curved trajectories, rather than straight lines, over time

(Valkenburg & Hu, 2015), even in the linear regime.

3.4.2 The gauge correspondence in Newtonian N-body simulations

In this section, we discuss how the ICs generated by the displacement vector method above are

consistent with standard Newtonian N -body simulations. The reason behind this is that, in

a correspondence between Newtonian theory and GR at the linear level, these simulations use

mixed gauges (Chisari & Zaldarriaga, 2011; Flender & Schwarz, 2012; chan Hwang et al., 2012)

– the density field tracked can be identified as in the synchronous gauge, while the velocity

field corresponds to the Newtonian gauge (but note that one loses track of the synchronous

gauge when structure formation progresses to the nonlinear regime where particle trajectories

cross each other). In order to understand this, let us start with the Newtonian gauge metric

ds2 = −(1 + 2ψ)dt2 + a2(1− 2φ)δijdxidxj , (3.4.7)
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where ψ and φ are the gauge-invariant Bardeen potentials (Bardeen, 1980). In this gauge,

the (00), the (0i) and the traceless part of the (ij) components of the Einstein equation in

Fourier space are correspondingly given by

k2φ+ 3 ȧ
a

(
φ̇+ ȧ

a
ψ

)
= −4πGa2ρ̄δN

tot, (3.4.8)

k2
(
φ̇+ ȧ

a
ψ

)
= 4πGa2

(
ρ̄+ P̄

)
θN

tot, (3.4.9)

k2 (φ− ψ) = 12πGa2
(
ρ̄+ P̄

)
ΘN

tot, (3.4.10)

where θ is the velocity divergence,
(
ρ̄+ P̄

)
Θ ≡ −(k̂ik̂j − 1/3δij)Σi

j , and we have used

a superscript N to denote Newtonian-gauge quantities from the energy-momentum tensor

and the subscript ‘tot’ means this is the total contribution from all matter species (the

symbols without this subscript denote the corresponding quantities for individual species).

The Einstein equations (3.4.8)-(3.4.10) can be combined into

k2φ = −4πGa2ρ̄

[
δN

tot + 3H
k2 (1 + w)θN

tot

]
. (3.4.11)

In addition, the continuity equation ∇µTµ0 = 0 and the Euler equation ∇µTµi = 0 are,

respectively, given as (Ma & Bertschinger, 1995)

δ̇N + (1 + w)
(
θN − 3φ̇

)
+ 3 ȧ

a

(
δP

δρ
− w

)
δN = 0, (3.4.12)

θ̇N + ȧ

a
(1− 3w) θN + ẇ

1 + w
θN − δP/δρ

1 + w
k2δN + k2ΘN − k2ψ = 0 . (3.4.13)

In the linear regime, these equations govern the evolution of δN and θN of each non-interacting

component of the cosmic fluid independently, although the metric perturbations are sourced

by all of them through the Einstein equations (3.4.8)-(3.4.10). In the case of dark matter (as

is the case of N -body simulations), we have ΘN = w = ẇ = δP/δρ = 0, and (3.4.12) and

(3.4.13) reduce respectively to

δ̇N + θN − 3φ̇ = 0, (3.4.14)

θ̇N + ȧ

a
θN − k2ψ = 0, (3.4.15)

where φ̇ 6= 0 and ψ 6= φ in general when the Universe is not matter dominated. Note that

Eq. (3.4.14) actually does not have the standard form of the continuity equation, Eq. (3.4.5),

and thus {δN, viN} are not ‘conjugate’ variables, i.e., they seem to be incompatible with the

displacement vector method Naturally, in the special case of pure dark matter domination,

where φ̇ = 0, Eq. (3.4.14) does take the standard form, and although this renders {δN, viN}
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compatible with the displacement vector method, we note that Eqs. (3.4.11, 3.4.14, 3.4.15)

still take different forms from the particle drift and kick equations and the Poisson equa-

tion used in traditional Newtonian N -body simulations (note that even if φ̇ = 0 is a good

approximation when radiation and the cosmological constant can both be neglected, at late

times we generally have φ̇ 6= 0). Indeed, it is well-known that δN on large scales is different

from the density field measured directly from a snapshot of traditional Newtonian N -body

simulations. One can, nevertheless, still develop a consistent relativistic N -body simulation

in the Newtonian gauge, by solving these equations, together with any evolution equation for

the total anisotropic stress (which is needed to connect φ 6= ψ) within the simulation. This is

in principle the same approach as taken by GR simulation codes such as gevolution (Adamek

et al., 2016b) or gramses.

Next, consider the same set of Einstein equations and matter conservation laws written in

terms of synchronous gauge variables. In this gauge, the metric with scalar perturbations is

given by

ds2 = −dt2 + a2(δij + hδij/3 + h
||
ij)dx

idxj , (3.4.16)

where h
||
ij = (∂i∂j − δij/3)(h + 6η), in which η, h are the two metric potentials (Ma &

Bertschinger, 1995). In this gauge, the relevant equation is the (0i) component of the Einstein

equation,

k2η̇ = 4πGa2
(
ρ̄+ P̄

)
θS

tot, (3.4.17)

where we have used a superscript S to denote synchronous-gauge quantities from the matter

sector. The continuity equation in this gauge takes the form

δ̇S + (1 + w)
(
θS + 1

2 ḣ
)

+ 3 ȧ
a

(
δP

δρ
− w

)
δS = 0 . (3.4.18)

Using the gauge transformations Eq. (3.3.13) and Eq. (3.3.15), it can be shown that δ and θ

in synchronous and Newtonian gauges are related by (Ma & Bertschinger, 1995)

δN = δS − 3H
2k2 (1 + w)

(
ḣ+ 6η̇

)
, (3.4.19)

θN = θS + 1
2
(
ḣ+ 6η̇

)
. (3.4.20)

From Eq. (3.4.19) and (3.4.20), it is clear that the combination δ + 3H
k2 (1 + w)θ is gauge

invariant, i.e.,

δN + 3H
k2 (1 + w)θN = δS + 3H

k2 (1 + w)θS. (3.4.21)
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Therefore Eq. (3.4.11) can be written as

k2φ = −4πGa2ρ̄

[
δS

tot + 3H
k2 (1 + w)θS

tot

]
. (3.4.22)

In a universe with collisionless dark matter and a cosmological constant (i.e., with negligible

contributions from radiation and baryons) we have θS
tot = 0, so that Eq. (3.4.22) becomes

k2φ = −4πGa2ρ̄δS , (3.4.23)

where δS is the density contrast of dark matter only. We recognise Eq. (3.4.23) as taking

the same form as the standard Poisson equation that is being solved in Newtonian N -body

simulations to determine the gravitational potential at each time step, and the overdensity

variable used as the source is equal to that in the synchronous gauge rather than to δN.

Similarly, under the gauge transformation Eq. (3.4.20), for dark matter, Eq. (3.4.18) becomes

δ̇S + θN = 0 , (3.4.24)

where we have used η̇ = 0 which is a consequence of θS
tot = 0 by assuming there is no radiation

or baryons in Eq. (3.4.17). As a result, Eq. (3.4.24) suggests that, under the presence of dark

matter and Λ, synchronous-gauge density contrast and the Newtonian-gauge velocity2 satisfy

the formal continuity equation, Eq. (3.4.5), while δN and viN actually satisfy Eq. (3.4.14).

This fact, together with Eq. (3.4.15) (with ψ = φ) and the Poisson equation Eq. (3.4.23)

suggest that it can then be considered that it is the pair {δS, viN} that is actually solved

in Newtonian N -body simulations (Flender & Schwarz, 2012; Chisari & Zaldarriaga, 2011),

and {δS, viN} are in fact conjugate variables so that the displacement vector method can be

consistently applied to generate the ICs for this kind of simulations. Following (3.4.6), for

Newtonian N -body simulations the velocity can be calculated consistently by solving

∂iv
i
N = −Hf1δ

S . (3.4.25)

2Note that this is a slight abuse of terminology as these two gauges have different spatial hypersurfaces
and one cannot naturally define a ‘Newtonian-gauge’ velocity in the synchronous gauge (Flender & Schwarz,
2012). This, however, does not affect the numerical evaluation, and the ‘θN’ here should be considered as a
combination of synchronous-gauge quantities (cf. Eq. (3.4.20)) that takes the same value as the Newtonian-
gauge velocity θN (with the comparison understood to be done for positions in these two gauges that correspond
to the same point in the unperturbed background spacetime). In addition, note that the velocity is vi

S = 0 in
the synchronous gauge, and the time variation of the energy density contrast δS is only due to deformations in
the spatial part of the metric, so that a particle’s coordinate in the synchronous gauge, xi

S, remains constant
over time; in contrast, in N -body simulations particle coordinates do evolve over time – this suggests that
this ‘mixed-gauge’ view of Newtonian N -body simulations is a practical rather than a fundamental one (see
also Fidler et al. (2015) for a more recent approach to this issue).
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In standard ICs codes such as 2LPTic (Scoccimarro, 1998; Crocce et al., 2006) the growth

rate is parameterised as f1 = Ωm(a)0.6 (Lahav et al., 1991), with Ωm(a) = Ωm,0a
−3/(H/H0)2,

which is valid only for the growth rate of δS in a ΛCDM universe and is fully compatible

with a standard Newtonian simulation. Moreover, this allows one to calculate second order

corrections for the displacement vector based on approximations specific for this scenario,

which serve to generate accurate ICs at even lower redshifts, so that the N -body system can

be evolved for a shorter period of time. In contrast, in GR simulations only the Zel’dovich

approximation has been used so far.

Before moving to the gauge used in gramses, we briefly mention that an alternative approach

to interpret Newtonian N -body simulations from a relativistic point of view are the recently-

proposed N -body (Fidler et al., 2015) and Newtonian motion (Fidler et al., 2016, 2017a)

gauges, in which the coordinate system is defined such that the linearised dynamical equations

of GR match the Newtonian counterparts when considering non-relativistic species, and first-

order corrections arising from the latter can be consistently included (Fidler et al., 2017b;

Adamek et al., 2017a). Interested readers can find more details in these references. Let us

also note that strictly speaking the identification of the synchronous gauge variable δS only

makes sense in the linear regime before particle stream crossing, and it becomes ill-defined in

the nonlinear regime. On the other hand, on the nonlinear, subhorizon, scales, the difference

from the Newtonian gauge density perturbation is suppressed as the gauge difference formally

scales with (aH/k)2, see Eq. (3.4.19). This is a subtle point to bear in mind in the approach

taken here, while a more sophisticated gauge definition can eliminate it: N -body gauge,

for example, offers a unified treatment of these two different regimes by stitching together

different subhorizon patches of space using a global coordinate system.

3.4.3 Initial conditions for gramses simulations

Let us now move on to some relevant aspects for the generation of ICs in the CMC-MD gauge.

As in the case of the previous subsection, we start by presenting the continuity equation in

this gauge, so that we can identify the actual variables being used in gramses simulations

and assess its compatibility with the displacement vector method. It can be shown that the

continuity equation ∇µTµ0 = 0 in the CMC gauge, at linear order, takes the form

δ̇C + (1 + w)
(
∂iu

i
C − 3Ψ̇

)
+ 3 ȧ

a

(
δP

δρ
− w

)
δC = 0, (3.4.26)
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where the subscript/superscript C is used to denote CMC-MD gauge quantities from the

matter sector. If we consider collisionless non-relativistic dark matter, this reduces to

δ̇C + ∂iu
i
C − 3Ψ̇ = 0 . (3.4.27)

Clearly, Eq. (3.4.27) resembles the Newtonian-gauge continuity equation Eq. (3.4.14), and

the term 3Ψ̇ is not present in either the standard form of the continuity equation Eq. (3.4.5),

or in the mixed-gauge version used in Newtonian simulations, Eq. (3.4.24). This additional

term represents a volume change due to relativistic deformations of space, which can create an

under-dense or over-dense region even in the absence of any peculiar motion of matter (Fidler

et al., 2015). In fact, given that an infinitesimal 3-dimensional volume element is distorted,

at linear order, by the factor √γ = a3(1 − 3Ψ), from Eq. (3.2.4) we can show that the

fluctuations in the conformal density field s0 are given by

δs0 ≡
s0 − s̄0
s̄0

= δC − 3Ψ . (3.4.28)

where as before an overbar denotes background value. This corresponds to a particle number

density contrast in the CMC gauge:

δp ≡ δC − 3Ψ , (3.4.29)

with which Eq. (3.4.27) is cast into the standard form of the continuity equation

δ̇p + ∂iu
i
C = 0. (3.4.30)

This indicates that {δp, uiC} are conjugate variables, so that uiC can be generated by using

Eq. (3.4.30) with δp as an input. In this situation, δp can be regarded as fluctuations in the

‘bare’ density field (Valkenburg & Hu, 2015) as the spacetime curvature is not included, and

at the linear level this corresponds to the perturbations in the conformally-scaled density

s0 which is used in gramses. For an N -body simulation, using s0 rather than ρ is more

convenient in practice since we are interested in following ‘particles’ rather than the total

‘energy density field’ itself, and the (non-conformal) energy density field at a given instant

can be separately calculated by inverting Eq. (3.2.4) once the spatial metric γij is solved.

Notice, however, that the identification of δp = δs0 is only made at linear order in perturbation

theory, which is sufficient for the purpose of setting up ICs. At the nonlinear level, the density

field in Eq. (3.2.4) contains additional contributions because ρ = (αu0)2ρ0, where ρ0 is the

actual rest-mass of the system. The extra factor αu0 actually corresponds to a Lorentz factor
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which contributes a quadratic term in the velocity that does not affect the generation of ICs

at the linear level. In gramses, s0 is constructed in a completely nonlinear way using the

particles’ positions and velocities in a Cloud-in-Cell (CIC) scheme, as well as the updated

values of the metric components.

Interestingly, it can be shown that using the gauge transformations Eqs. (3.3.8), (3.3.9) and

(3.3.13), as well as the linearised MD condition Eq. (3.3.10), we can rewrite the right-hand

side of Eq. (3.4.29) in terms of synchronous gauge variables as (bear in mind that δp is the

particle number density contrast in the CMC gauge)

δp = δS − 3η . (3.4.31)

We note that, while η̇ = 0 in the dark-matter and Λ dominated eras, η is in general not zero,

which means that δp and δS differ by a scale-dependent function whose shape has been fixed

by its evolution at higher redshifts, when the contribution of radiation cannot be neglected.

Since it can be shown that uiC = uiN (with contravariant index), as discussed in Section 3.3.2,

the fact that Eq. (3.4.24) and Eq. (3.4.30) have the same form is consistent with δp differing

from δS only by a time-independent quantity.

Notice, however, that Eq. (3.4.30) can be used to calculate the 4-velocity ui (with upper

index) rather than ui, and it is the latter that is the actual variable which appears in the

3 + 1 form of the geodesic equation written as a first-order system which is implemented in

gramses (Baumgarte & Shapiro, 2010). For non-relativistic particles, this is given at linear

order by

dxi

dt = a−2δijuj − a−2δijβi, (3.4.32)

dui
dt = −∂iΦ , (3.4.33)

where the shift vector βi appears explicitly due to to the relation

ui = a2δij
(
uj + βj

)
. (3.4.34)

The correction due to the shift vector in Eq. (3.4.34), which in the MD gauge is given by

Eq. (3.2.10), is taken into account in gramses itself when starting the simulation by solving

the linearised version of the momentum constraint for βi at zini (just for once), i.e.,

(∆̄Lβini)i − 6Ωmβ
i
ini = 6Ωm

a
uiini , (3.4.35)

such that the initial lower-index 4-velocity uini
i can be constructed using Eq (3.4.34), only
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after which does the actual simulation start. Note that this means that the particle velocity

fed into gramses is ui rather than ui.

Even though we have shown that {δp, uiC} are conjugate variables, and that we can calculate

uC
i using Eq. (3.4.34) and Eq. (3.4.35), there is still one remaining caveat which is the fact that

the growth rate of the number density perturbation δp is not known, so that if we insist on

using the analog of (3.4.6) to calculate uiC, then f1 needs to be found numerically by solving

the evolution equation for δp that can be derived from the corresponding Euler equation and

Eq. (3.4.30). This is doable, but it is not the approach that we shall follow here.

Another alternative approach to generate simulation ICs for the CMC gauge is by exploiting

the relation uiC = uiN, and splitting the generation of ICs into two steps: in the first we

generate particle displacements using the power spectrum of δp as input, while in the second

we generate the velocity uiN by applying the standard method based on Eq. (3.4.6), using

the power spectrum of δS (which has scale-independent linear growth) rather than δp. This

actually is a neat and simpler way than the more general method presented in Section 3.4.4,

and there is a potential of applying similar tricks to generate ICs in other gauges (though

we shall not explore this here). We have checked that the relative difference between the

velocity divergence power spectra of the ICs generated by using these two methods is well

below 0.1%.

3.4.4 A finite difference method for the calculation of initial velocities

To avoid using an explicit parameterisation of f1 for the calculation of velocities, we introduce

a finite difference approach. Here, instead of using a single power spectrum P∆(k; zini) at zini

as in the standard displacement vector method based on the Zel’dovich approximation, we

use two additional power spectra P∆(k; z±) from the neighbouring redshifts z± = zini ±∆z,

with ∆z � zini which will provide the information needed about the growth rate of density

perturbations around zini. Then, rather than using Eq. (3.4.5) or Eq. (3.4.6) to calculate the

initial velocity, we take the finite difference ∆xi ≡ xi(z−)−xi(z+) directly from the definition

of coordinate velocity in Eq. (3.4.4), i.e.

vi ≈ ∆xi

∆t = H

a

χi(z−)− χi(z+)
2∆z , (3.4.36)

where χi(z±) are the displacement vectors calculated from P∆(k; z±) via the Zel’dovich ap-

proximation Eq. (3.4.3) at the neighbouring redshifts z±. The advantage of using Eq. (3.4.36)

over Eq. (3.4.6) is that this approach is independent of the underlying theory of gravity or
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gauge used since this information is entirely drawn from the input power spectra (obtained

from a suitable linear Boltzmann code for the model), and can be applied as long as the

density perturbations and velocity needed are conjugate variables. Importantly, to create the

random realisations of χ(zini) and χ(z±) from P∆(k; zini) and P∆(k; z±), the same random

number sequence, and hence random number seeds, should be used to ensure that we have

generated three consecutive snapshots for the ‘same’ particles.

The fact that the velocity calculation in Eq. (3.4.36) relies entirely on the input power spec-

tra to generate the ICs can potentially become problematic due to the generic presence of

radiation at zini in the linear code, which contributes to the growth rate of matter and drives

η̇ away from zero. In order to suppress this effect, the two neighbouring power spectra

P∆(k; z±) can be calculated by evolving P∆(k; zini) under the linear theory assuming matter

domination. We will show how this can be done in particular for the case of gramses ICs in

Section 3.5.

Figure 3.1 illustrates the gauge effects (for synchronous and CMC gauges) on the matter

power spectrum (left panel), as well as the scale dependence of f1 due to radiation in these

two gauges (right panel). Here, the growth rates of δp and δS are obtained by taking finite

difference between snapshots in each gauge. Since in Fourier space Pδδ(k; z) = |δ(k; z)|2, this

is given by

fFD
1 (z) = 1

2a∆z

√
Pδδ(z−)−

√
Pδδ(z+)√

Pδδ(z)
, (3.4.37)

where the FD superscript means that the left-hand side quantity has been obtained using a

finite difference. In this we use the power spectra obtained from a modified version of camb,

which works for different gauges. From the right panel of Fig. 3.1 we can see that, even for

synchronous gauge, the presence of radiation has a noticeable effect at large scales and boosts

the growth rate by ∼ 2% with respect to the linear-theory prediction for a matter dominated

universe (f1 = 1), and there is an approximately 1% suppression on sub-horizon scales, where

gauge effects are not present. For the CMC-MD case, the gauge effects on the overdensities

and the scale dependence of the growth rate are also evident from Fig. 3.1, as we can see

that the power spectra and growth rates agree in both gauges at scales inside the horizon,

but there is a dramatic suppression of the growth rates toward large scales in the CMC-MD

gauge. This effect arises due to the η in Eq. (3.4.31), which dominates the shape of the power

spectrum below k . 10−3hMpc−1, as can be seen from the left panel of Fig. 3.1. Since η does

not evolve considerably on the redshift range shown, at very large scales the matter power

spectrum of δp remains roughly constant in time, resulting in the strongly suppressed growth
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Figure 3.1: Left panel: a comparison of matter power spectra in the CMC-MD gauge (solid
line) and synchronous gauge (dashed line) for three different redshifts – z = 99 (red), 49
(black) and 19 (blue) – as obtained from a modified version of camb. Right panel: the
growth rates in these two gauges calculated by finite difference of two neighbouring power
spectra around the three aforementioned redshifts with ∆z = 0.5, see Eq. (3.4.37). As a
reference, the gray dotted line shows the linear-theory prediction f1 = 1 for synchronous
gauge in a matter dominated universe.

rate depicted in the right panel of Fig. 3.1.

For Newtonian simulations, a common approach to take into account the presence of radi-

ation, at least at the linear level, is through the so-called ‘back-scaling’ method. In this

approach, the input power spectrum used to generate the ICs is given by the linear code

at z = 0 rather than at the actual starting redshift of the simulation. Then, this power

spectrum is evolved backwards, up to zini, using a growth factor derived from Newtonian

theory (where no radiation is present), resulting in a matter power spectrum P̃∆(k; zini) that

does not agree with the Boltzmann code at zini but that allows one to generate ‘artificial’ ICs

that guarantees that the simulation will reproduce the correct matter overdensities on linear

scales at z = 0 due to this particular calibration. An alternative, relativistic back-scaling

approach has been discussed in Fidler et al. (2017b); Adamek et al. (2017a), in which the

resulting output of the simulation is interpreted in terms of a different gauge with the aid of

a modified version of class.

The finite-difference method described above can in principle be used in combination with the

‘back-scaling’ method, with the latter providing the linear power spectra at not just zini but

also z±. However, our ultimate goal is to start from a more accurate IC, while also including

radiation effects in the simulation itself, e.g., by treating radiation as linear perturbations

and interfacing with a Boltzmann code such as camb or class during the N -body simulation

to calculate relevant quantities. The latter is what we plan to do in the future simulations,
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which is another reason why in this Chapter we do not follow the back-scaling approach.

3.5 Results

In this section, we present results on the generation of ICs for gramses using the finite

difference method described in Section 3.4.4. We have implemented this method in 2LPTic

code, so that the initial particle positions are calculated with the Zel’dovich approximation

(3.4.3) at zini, as in the default 2LPTic code3, but their velocities are calculated using

the finite difference expression (3.4.36). For all realisations of the density field we use the

same random seed in order to suppress realisation scatter in our results. As previously

mentioned, the default 2LPTic code uses second-order corrections for the calculation of the

displacement vector, while our method implements only linear perturbations as this is enough

for the purpose of fixing the gauge issues and generating ICs for gramses consistently, so

these are turned off for comparison. Initial conditions generated by this method have been

used to run the first gramses cosmological simulations discussed in Chapter 2, based on

Barrera-Hinojosa & Li (2020). The input matter power spectra for the ICs generation are

obtained from a modified version of camb implementing Eq. (3.4.31) to relate δp to the

synchronous-gauge overdensity δS which is the default variable used in such code.

Let us add some details on how we address the problem of radiation in the generation of

ICs for gramses. The latter appears because the three power spectra outputted by the

Boltzmann code do contain the effects from radiation, but the N-body simulation is only for

dark matter. For this particular case, we can use Eq. (3.4.31) to enforce the η̇ = 0 condition

via

δp(k; z±) = D1(z±)
D1(zini)

δS(k; zini)− 3η(k; zini) , (3.5.1)

where on the right-hand side η is a scale-dependent function constant in time, evaluated at zini.

Then, it is sufficient to calculate the linear growth factor in the synchronous gauge, D1(z),

with which δS can be evolved from zini to z± in the absence of radiation while keeping η fixed

by outputting η(zini) from camb. As a result, Pδδ(k; z±) = |δp(k; z±)|2 can be constructed

from (3.5.1) in such a way that it is completely free from radiation effects and can be used

to generate the velocities for the gramses N -body simulation using Eq. (3.4.36).

3Contrary to the default 2LPTic code, however, we do not use the ‘back-scaling’ of a z = 0 input power
spectrum with a growth factor parameterisation but directly use the one generated by the Boltzmann code at
zini.
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There is an additional subtlety to take into account in order to compare the ICs from this

method against the ones generated from default 2LPTic, which is that the normalisation4 of

the matter power spectra P∆(k; z±) is required as an input (while the default 2LPTic code

only requires this at zini). These have associated values of σ8 at the neighbouring redshifts

z± and directly affect the calculation of the displacement vectors and hence the velocity

via Eq. (3.4.36). Therefore, even the Newtonian velocity calculated by the finite difference

method will not necessarily coincide with what is calculated by using the growth rate f1

parameterisation implicit in the default 2LPTic code. In order to make these comparable,

we can get a linear-theory prediction for the σ8 values at the neighbouring redshifts by

applying the linear growth rate as

σS
8 (z±) = D1(z±)

D1(zini)
σS

8 (zini) , (3.5.2)

so we can use these rather than the camb output values at z±.

Similarly, in the CMC gauge, we can use Eq. (3.5.1) to estimate σp8 from linear theory: its

values at the neighbouring redshifts with fixed η can be calculated as

σp8(z±) =

√[
D1(z±)
D1(zini)

σS
8 (zini)

]2
+ 9[ση8(zini)]2 − 6 D1(z±)

D1(zini)
[
σSη

8 (zini)
]2
, (3.5.3)

where ση8 represents the normalisation of the power spectrum Pηη, and σSη
8 that of the cross

spectra between δS and η. We calculate this cross-term by evaluating Eq. (3.5.3) at the initial

redshift zini, i.e.,

[σSη
8 (zini)]2 = [σS

8 (zini)]2 − [σp8(zini)]2 + 9[ση8(zini)]2

6 . (3.5.4)

This way, we can ensure that the power spectra normalisation at the neighbouring redshifts

is consistent with those constructed from Eq. (3.5.1).

In order to illustrate how well this method works, we generate the ICs for two different setups;

a low-resolution one with a comoving box size of L = 4h−1Gpc and Np = 10243 dark matter

particles, and a high-resolution one with L = 256h−1Mpc and the same number of particles.

We also use two different initial redshifts, and the power spectra measured from these ICs

are compared against linear-theory predictions obtained from the modified camb version.

Figure 3.2 shows the matter power spectrum of the ICs generated by both the standard

4By ‘normalisation’ here we mean the linear-theory root-mean-squared fluctuation of matter smoothed on
8h−1Mpc scales, σ8. In 2lptic code, the value of σ8 is required as an input to get the correct amplitude of
the initial matter density field.
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Figure 3.2: Matter power spectra of ICs generated by both standard and modified 2LPTic
codes. Left panels: results for the low-resolution setup (L = 4h−1Gpc and Np = 10243) for
zini = 99 (top) and zini = 49 (bottom). Right panels: results for the high-resolution setup
(L = 256h−1Mpc and Np = 10243) for zini = 99 (top) and zini = 49 (bottom). In all panels,
the linear-theory predictions for synchronous and CMC gauges are represented by the solid
black and blue lines, respectively. The red circles in the bottom sub-plots represent the ratio
between Pδδ in the CMC-MD and synchronous gauges as measured by dtfe code, while the
solid black line represents the ratio between the linear-theory curves.

and modified version of 2LPTic. In the case of the CMC-MD gauge, this is measured

from the ICs data in two different ways; one is using the dtfe code (Cautun & van de

Weygaert, 2011) along with nbodykit (Hand et al., 2018) (red circles), and the second one

is applying powmes (Colombi et al., 2009) (magenta squares). The reason for this is that the

former captures more accurately the turnover on large scales due to gauge effects but might

lose accuracy towards shorter wavelength modes, while powmes has a better performance
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when approaching the Nyquist frequency but eventually fails at capturing the largest-scale

components appearing in this particular gauge. For the synchronous gauge case (orange

triangles) only DTFE and nbodykit are applied. Figure 3.2 shows good agreement between

the linear-theory predictions and the 2LPTic results for both the high and low resolution

setups and both initial redshifts, although the latter decreases towards larger scales where

gauge effects dominate. On these scales we can also see that the ICs data seem to mismatch

the linear theory prediction curve, but this is normally the case due to realisation scatter and

cosmic variance. However, since the ICs have been generated using the same initial random

seeds in all cases, this effect is removed in the ratio between the power spectra in the two

gauges, as can be seen from the lower subpanels of each panel.

Figure 3.3 is similar to Fig. 3.2, but shows the results for the velocity divergence θ ≡ ∇ · u

power spectra of the ICs generated using the original 2LPTic code (stars) as well as the mod-

ified version implementing the finite difference calculation for the velocity field Eq. (3.4.36)

for both the Newtonian gauge (circles) and CMC-MD gauge (triangles). In all cases, θ is

calculated using the dtfe code. As Eq. (3.4.36) depends on ∆z, we have tried four different

values of ∆z – 1, 0.5, 0.25, 0.05 – to assess the correct magnitude to be used and how this

affects the calculation of the velocity field. In the lower subpanels of each panel, we show

the relative difference between the Newtonian velocity divergences ∂iuiN obtained from the

modified and default 2LPTic code, where sub-percent differences are found for all probed

scales and all ∆z values used, and the amplitude seems robust against spatial resolution. This

result suggests that, at least for the case of Newtonian gauge, the finite difference method

can be used to generate the ICs for cosmological simulations regardless of specifications and

matching the default 2LPTic code accuracy (at least up to first order). Nonetheless, we

notice that using a value of ∆z that is too small might introduce some scatter, while in-

creasing ∆z will monotonically increase the amplitude of the relative difference so that this

might eventually become unacceptable (e.g., larger than O(1%)). From Fig. 3.3 we note that

∆z/zini ∼ 1% is enough to suppress noise while keeping the relative difference with respect

to the default code under 0.03% in all cases.

As we have remarked before, the ICs method generates ui while ui (lower index) is the actual

variable used to solve the geodesic equation in the standard 3 + 1 (ADM) form implemented

in the simulations. Thus, in Fig. 3.3 the results for the θC = ∂iuC
i spectra (triangles) have

been obtained from the initial gramses snapshot, which is outputted after the code solves

Eq. (3.4.35) to get the shift vector βi and calculates uC
i from Eq. (3.4.34) to start the actual

simulation with. This is how gramses operates, so that only ui is needed as an input in
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Figure 3.3: Velocity divergence (θ ≡ ∇ · u) power spectra for the Newtonian gauge measured
from the ICs generated by the standard 2LPTic code (stars) and its modified version (circles),
as well as the CMC-MD result obtained from the gramses correction (triangles) discussed
in the main text. Left panels: results for the low-resolution setup (L = 4h−1Gpc and Np =
10243) for zini = 99 (top) and zini = 49 (bottom). Right panels: results for the high-resolution
setup (L = 256h−1Mpc and Np = 10243) for zini = 99 (top) and zini = 49 (bottom). In all
panels, the linear-theory predictions for Newtonian and CMC-MD gauges are represented by
the solid black and blue lines, respectively. The bottom sub-panels of each plot show the
relative difference between the Newtonian gauge results for the different values of ∆z.

the ICs. In this case, we also find good agreement with the linear-theory expectations for

both simulation setups (left and right panels) and redshifts (top and bottom panels), and the

deviation from linear theory at small scales (which is also present in the Newtonian gauge

cases) is due to spatial resolution effects.

Finally, to briefly illustrate the impact of radiation effects and the σ8 normalisation on the

generation of ICs, in Fig. 3.4 we show the results when linear-theory corrections are not
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Figure 3.4: The impact of radiation and σ8 normalisation on the generation of ICs. The
results from the default 2lptic code, where the linear growth factor D1 is used to ‘back-
scale’ the z = 0 matter power spectrum to zini, is also included (orange triangles). The
default case (brown triangles), which is used as the denominator to calculate the relative
differences in the lower subpanels, also uses the standard 2lptic code but feeds it with the
matter power spectrum at zini and sets D1 = 1. Left panel: matter power spectra for the
overdensity in the synchronous (S) gauge, δS, as well as for the particle number overdensity
δp in the CMC gauge. Right panel: velocity divergence (θ = ∂iu

i) power spectra, where ui
represents the conjugate variable to either δS (N) or δp (CMC); note that in the case of the
CMC gauge the velocity divergence is not ∂iuC

i . The solid curves denote the linear-theory
predictions using the same colours as the previous figures. See the main text for more details
of the symbols.

applied, i.e., when skipping Eqs. (3.5.1)-(3.5.4), as well as the case where the ‘back-scaling’

method of the standard 2lptic is used (orange triangles). In the latter case, a z = 0 power

spectrum from camb is provided as an input and the code uses the theoretical value of D1 to

scale it back to zini. Both panels in Fig. 3.4 show the results from the standard 2lptic code

with no ‘back-scaling’ (i.e., feeding the 2lptic code with the linear power spectrum at zini and

setting D1 = 1; brown triangles) and from the finite difference method for the cases where

either: 1) η is not kept constant for the default gauge used in 2lptic (magenta diamonds) and

the CMC gauge (green squares), and 2) when σ8 is not corrected for the default gauge (cyan

circles) and the CMC gauge (red stars). In this case we use the setup with L = 4h−1Gpc

and Np = 10243, and ∆z = 0.5 for the finite difference calculations.

In the left panel of Fig. 3.4, we show Pδδ for all cases in the top panel, and the relative

differences with respect to the default case (represented by the brown triangles) are shown

in the bottom panel. From the latter, we can see that the back-scaled case (orange triangles)

shows a suppression of up to ∼ 2.5%, which is because radiation and baryons are present

in the forward linear-theory calculation (by camb) all the way down to z = 0, while D1 is
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calculated by assuming a universe with only dark matter and cosmological constant (so that

there is an inconsistency). As expected, the synchronous-gauge results for the cases where

η̇ 6= 0 (magenta diamonds) and where σ8 is not corrected for (cyan circles) agree perfectly

with the default case, since these corrections apply only to the neighbouring snapshots used

for the velocity calculation (via finite difference), while the particle displacements in the ICs

are obtained by using solely the matter power spectrum at zini, which are not affected by

these corrections.

In the right panel of Fig. 3.4, we present the power spectra for the velocity divergences

associated to the overdensity variables for all cases shown in the left panel in the top, and the

relative differences of Pθθ with respect to the default case (Newtonian-gauge velocity obtained

by using the 2lptic code without doing the D1 ‘back-scaling’; brown triangles) are plotted in

the bottom. By comparing the various Newtonian-gauge results it can be seen that, when the

σ8 correction is not used in the finite difference calculation (cyan circles) a constant ∼ 2%

suppression is found, while the effect of η̇ 6= 0 (magenta diamonds) only appears at large

scales. The ‘back-scaled’ case (orange triangles) shows a combination of these behaviours.

The CMC-MD gauge results in the right panel of Figure 3.4 showing the effect of η̇ 6= 0

(green squares) and that of no σ8 correction (red stars) are for the ui velocity obtained

via the finite-difference method using the δp power spectrum. Here, we compare the power

spectra of ∂iuiC (symbols labelled with ‘(CMC)’ in the legend) with those of ∂iuiN (symbols

labelled with ‘(N)’), as we expect the two to be equal to each other since uiC = uiN (see

Appendix B). The default case, the relative differences of all the other cases with respect to

which are shown in the lower subpanel, is ‘2LPTic (N)’, which represents the velocity field

generated using the 2lptic code without back-scaling. The deviations from the default case

can be understood as the effects of η̇ 6= 0 or not applying the σ8 correction. For example,

for ∂iuiN (cyan circles), not correcting for σ8 causes a constant shift; the same constant shift

appears for ∂iuiC (red stars) at k & 0.01hMpc−1, but on even larger scales the deviation gets

larger. On the other hand, not enforcing η̇ = 0 while applying the σ8 correction (purple

diamonds and green squares) leads to good agreement with the default case on small scales,

whilst deviations still remain on large scales k . 0.02hMpc−1.

3.6 Summary

In this Chapter, we have addressed the generation of ICs data for relativistic N -body sim-

ulations, and in particular for gramses. We have revised the standard method where the
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calculations of particles’ positions and velocities are both done using the displacement vec-

tor, highlighting its limitations when it comes to models beyond ΛCDM or gauges other than

synchronous gauge overdensity and Newtonian gauge velocity, {δS, uiN}. In order to overcome

these issues, we have proposed a finite difference calculation for the particles’ velocities such

that no explicit parameterisation of the growth factor (and growth rate) is required.

In this approach, not only do we need the matter power spectrum Pδδ at the initial redshift zini,

but it is also required at two neighbouring redshifts (one slightly higher and the other slightly

lower). Then, an ICs code is applied to realise these three power spectra (using the same

random number seed) to calculate the particle positions at the three redshifts, the central one

of which is used as the real particle positions at zini, while the velocities of the particles are

calculated by finite-differencing their displacements in the two neighbouring snapshots (this

is the simplest way to do finite difference, and more accurate ways are also possible although

they generally require more snapshots to be generated). In this way, the basic assumption

of a scale-independent linear growth rate of the usual ICs codes (for Newtonian simulations)

is avoided, and the method can be applied to generate the initial conditions for any model

– as long as the pair {δ, ui} used obey the formal continuity equation Eq. (3.4.5) – since all

the information needed is drawn from the three input matter power spectra. For illustration,

we have implemented this finite difference method of the velocity in a modified 2lptic code,

and the matter power spectrum for the relevant gauge is calculated using a modified version

of the Boltzmann code camb. The implementation is straightforward, involving minimal

modifications to the default 2lptic code, and we expect this to be true for other standard

N -body ICs codes.

We have discussed additional steps to remove the radiation effects that might propagate from

the power spectra from the Boltzmann code to the N -body initial condition generated by

this approach, as N -body simulations concern only dark matter. These are related to the

dynamics of the synchronous-gauge variable η and can become non-negligible at large scales.

In order to compare with the default 2lptic code, we have also discussed how to correct the

σ8 value at the two neighbouring redshifts z±. Then, by measuring the matter and velocity

divergence power spectra we have shown that the finite difference method can recover the

ICs as generated by the default 2lptic code with sub-percent accuracy at all probed scales

and ∆z-values, independently of the spatial resolution. For the case of ICs for the CMC-MD

gauge, we have compared against the linear-theory predictions for Pδδ and Pθθ, finding also

good agreement. Since this method calculates the upper-index velocity, ui, we have also

described an additional step carried out in gramses itself before the simulation starts which
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allows one to calculate ui, since this is the variable that is actually used in the 3 + 1 form

of the geodesic equation for particles. The ICs generated this way have been used to run

the ΛCDM GR cosmological simulations with gramses presented in Barrera-Hinojosa & Li

(2020), which are discussed in Chapter 2.



Chapter 4

The frame-dragging effect in a

shearing-dust universe

4.1 Introduction

Frame dragging, also known as the Lense–Thirring effect, is a key prediction of GR that

can be pictured as the result of a rotating body twisting its surrounding spacetime, which

prevents nearby observers from remaining at rest with respect to a distant one — an effect

measured in the Solar System by Gravity Probe B (Everitt et al., 2011). This effect is

described by the vector modes of the spacetime metric, which are typically carried by the

non-diagonal components βi ≡ g0i. This is conventionally referred to as the shift vector

or gravitomagnetic vector potential1. Qualitatively, frame dragging plays the gravitational

analogue of electromagnetic induction — so the responsible vector field is often referred to

as gravitomagnetic potential. An important property of the frame-dragging potential is that,

in a post-Friedmann (post-Newtonian) expansion of GR, this represents the lowest order

correction to Newtonian gravity (Bruni et al., 2014), which makes it an ideal target for

testing GR codes.

The aim of this Chapter is to further test gramses and validate that, in a more compli-

cated and physically nontrivial case, the code is able to accurately calculate an intrinsically

relativistic effect, such as frame-dragging, that does not suffer from contamination due to

Newtonian effects. While in principle the code’s prediction can be validated against pertur-

bation theory in a suitable regime, we would also like to validate the solution in the nonlinear

1Naturally, this is in gauges where the shift vector does not vanish, e.g., the Poisson gauge. If it does, then
the vector modes are present in the spatial part of the metric, gij .
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regime. The latter can be done by comparing the results obtained by different GR codes. For

this purpose, we will next introduce the ‘shearing-dust’ universe toy model. Devised a test,

this is not meant to represent a cosmological model of our Universe, but it is a scenario built

in such a way that the frame-dragging effect is particularly large. We will run a simulation for

this shearing-dust universe model using gramses, and the result will be compared against a

set of state-of-the-art GR codes, each one using different numerical implementations and/or

approximations to solve the Einstein equation; the flrw solver (Macpherson et al., 2017)

which is part of the Einstein Toolkit2 (ET), CosmoGRaPH (Mertens et al., 2016) and gevo-

lution (Adamek et al., 2016b). While in this Chapter we will focus on the implementations

and results from gramses, the full comparison can be found in Adamek et al. (2020).

In contrast to Newtonian codes, the comparison of the outputs from different GR codes

presents an extra complication since these can depend on the particular gauge adopted.

Therefore, it is necessary to construct an actual observable quantity that can be used to

‘measure’ the frame-dragging effect under any coordinate system.

Let us set up a scenario where the spacetime metric initially carries only one vector pertur-

bation encoded by the shift vector βi = (βx(y), 0, 0), while for convenience the scalar and

tensor modes are not excited. In addition, let us pick an observer O located at the origin of

the coordinate system at all times, xO = 0, where the metric satisfies the symmetry x→ −x.

Let us also consider two events equidistant from O on the initial spatial hypersurface, A and

B. These are located at xA = (−L, 0, 0) and xB = (0,−L, 0), respectively, and emit a flash of

light in all directions. Hence, the null geodesics followed by the photons, and which connect

each of these two events with the worldline of the observer, are affected in different ways

since the ray coming from A travels close to a plane of symmetry, while the ray coming from

B travels almost orthogonal to it, as sketched in Fig. 4.1. In such a scenario, we then expect

that the photons get ‘lensed’ by the presence of the frame-dragging field, hence an observable

effect is that the angle ϑ between the two incoming rays that is measured by the observer O

is not exactly 90 degrees as it would be in flat spacetime.

Then, considering the observer O at rest, i.e., uµ ∝ (1,0), the dot-product of the spatial

components of the two null vectors kAi and kBj of the respective incoming photons is given by

cosϑ = kA · kB

||kA|| ||kB||

∣∣∣∣∣
O

, (4.1.1)

2einsteintoolkit.org

einsteintoolkit.org
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x

Figure 4.1: Left: Sketch of the shearing-dust universe model. In this, two photons are
shot from A and B toward an observer O located at (x, y) = (0, 0), and their spacetime
trajectories are bent by the frame-dragging field βx that is sourced by the dynamics of a
pressureless fluid (dust). Then, the observer measures a deflection angle between the two
photons, as well as a time delay. Right: 3D (a(t), x, y) rendering of the sketch shown in
the left panel, taken from Adamek et al. (2020). This plot shows how photon trajectories
(white lines) are bent by frame-dragging and eventually intersect with the observer’s wordline
(gray), in general at different times. Lighter (darker) regions in the background correspond
to higher (lower) densities, and the arrows in the bottom depict the matter velocity field on
the initial hypersurface.

where kA · kB = γijkAi k
B
j is the dot-product with respect to the spatial metric γij , and

||k|| =
√

k · k, and |O is used to denote quantities evaluated at the observer’s location. We

remark that this simple expression is valid since, by construction, βi = g0i vanishes at O due

to symmetry. On the other hand, besides deflecting the photons, the frame-dragging field

can also cause a time-delay effect which can result in non-simultaneous arrivals of the flashes

at the observer, as depicted in Fig. 4.1 (right panel). In such a case, the kµ vector arriving

first at O will need to be parallel-transported along the observer’s wordline until the arrival

of the second pulse before Eq. (4.1.1) can be evaluated. This effect will be discussed in detail

in Section 4.5.1. Hence, Eq. (4.1.1) is the observable quantity that we want to measure from

the GR simulations.

Throughout this Chapter, we will geometric units, in which G = c = 1.

4.2 Initial data

We will now construct initial conditions (ICs) for the problem proposed above. We will do

it in such a way that: i) no scalar or tensor modes are excited at the initial hypersurface,
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and ii) the connection to perturbation theory can be done straightforwardly, which makes it

easier to validate the results from simulations in the linear regime.

We start by considering the standard ADM (3+1) metric

ds2 = gµνdxµdxν = −α2dt2 + γij
(
βidt+ dxi

) (
βjdt+ dxj

)
, (4.2.1)

and in order to excite a single vector mode we specify the following initial data for the metric

and extrinsic curvature:

α∗ = 1 , (4.2.2)

βi∗ = 3b
4πa∗

sin 2πy
L
δix , (4.2.3)

γ∗ij = a2
∗δij , (4.2.4)

K∗ = −3H(t∗) , (4.2.5)

Āij∗L = a3
∗

2 (∂iβj + ∂jβi) = a2
∗

3b
4L cos 2πy

L
(δixδyj + δiyδxj) , (4.2.6)

Āij∗TT = 0 , (4.2.7)

where L is the characteristic length scale of the vector perturbation which also determines

the size of the comoving simulation volume, b is a dimensionless amplitude parameter, a is

the scale factor, H the Hubble parameter, K is the trace of the extrinsic curvature, and

the asterisk indicates that a quantity is evaluated on the initial hypersurface. We note

that b will play the role of perturbation parameter in a perturbative expansion, but we will

keep the expressions at the exact level for the moment. Notice that the conformal-flatness

approximation is exact for the spatial metric Eq. (4.2.4), which also satisfies the Dirac gauge

condition, ∂iγij = 0, and K is compatible with the constant-mean-curvature (CMC) slicing

condition, K = −3H, that is adopted in gramses.

Having fixed the ICs for the metric sector above, we can now solve the Hamiltonian and

momentum constraints to obtain compatible initial data for the matter sector in an exact

way. We assume that initially matter can be described as a pressureless perfect fluid (i.e.,

dust), so that the stress-energy tensor is given by

Tµν = ρ0u
µuν , (4.2.8)

where ρ0 is the rest mass-energy density and uµ is the four-velocity of the fluid. The Hamil-

tonian and momentum constraint equations under the conformal-flatness approximation and
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CMC gauge condition are (e.g., Barrera-Hinojosa & Li, 2020)

8D̄2ψ − 2
3ψ

5K2 + ψ−7ĀijĀ
ij = −16πψ5ρ0Γ2 , (4.2.9)

D̄jĀ
ij = 8πψ10ρ0Γui , (4.2.10)

respectively, where Γ ≡ αu0 =
√

1 + γijuiuj is the relativistic Lorentz factor. Given the

metric data Eqs. (4.2.2)-(4.2.7) we have a closed system of equations from which we can

determine ρ∗0 and u∗x. Then, solving Eqs. (4.2.9) and (4.2.10), we find

ρ∗0 = 3

(
16H2

∗L
2 − 3b2 cos2 2πy

L

)2
− 64π2b2 sin2 2πy

L

128πa2
∗L

2
(
16H2

∗L
2 − 3b2 cos2 2πy

L

) , (4.2.11)

u∗x = −a∗
8πb sin 2πy

L√
(16H2

∗L
2 − 3b2 cos2 2πy

L )2 − 64π2b2 sin2 2πy
L

, (4.2.12)

u0
∗ = a−1

∗
16H2

∗L
2 − 3b2 cos2 2πy

L√(
16H2

∗L
2 − 3b2 cos2 2πy

L

)2
− 64π2b2 sin2 2πy

L

, (4.2.13)

along with uy∗ = uz∗ = 0. The velocity profile u∗x = u∗x(y) is shown in the right panel of Fig. 4.1

(bottom part), and describes a counter-stream fluid which is able to excite rotational modes

as desired. This velocity field has a qualitatively similar profile as the frame-dragging field

shown in the left panel of the same figure.

4.3 Linear theory solution for the vector potential

Although the above ICs are fully nonlinear, the evolution of the shift vector is non-trivial to

solve for at the nonlinear level, where also the scalar and tensor degrees of freedom can be

excited. Therefore, it is useful to work out the linear theory solution of the equations solved

in the constrained formulation of GR used by gramses. At first order in the parameter b,

the ICs, Eqs. (4.2.11)-(4.2.12), are given by

ρ∗0 = 3H2
∗

8π +O(b2) , (4.3.1)

u0
∗ = a−1

∗ +O(b2) , (4.3.2)

u∗x = −a∗
πb

2(H∗L)2 sin 2πy
L

+O(b3) , (4.3.3)

and we have the following matter source terms at the initial hypersurface:

ρ∗ ≡ ρ∗0Γ2
∗ = ρ∗0 +O(b2) , (4.3.4)
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S∗i ≡ ρ∗0Γ∗u∗i = ρ∗0u
∗
i +O(b3) , (4.3.5)

where we have used that Γ∗ ≡ α∗u0
∗ = 1 + O(b2). Using these we can solve the momentum

constraint at the initial hypersurface,

(∆̄LW
∗)i = ∂2W ∗i + 1

3∂iδ
kl∂kW

∗
l = 8πs∗i , (4.3.6)

where si = a3Si at the linear level. Since u∗i = (u∗x(y), 0, 0), only the x-component of

Eq. (4.3.6) is actually non-trivial,

(
∆̄LW

∗
)
x

= −3a2
∗πb

2L2 sin 2πy
L

. (4.3.7)

In order to solve the vector Laplacian we decouple this equation in terms of auxiliary variables

as Wi = Vi + ∂iU . Then, we have

∇2V ∗x = −3a2
∗πb

2L2 sin 2πy
L

, (4.3.8)

∇2U∗ = −1
4∂iV

i∗ = 0 =⇒ U∗ = 0, (4.3.9)

where the latter equation shows that there is no scalar mode excited in W ∗i , i.e. ∂iW i
∗ = 0.

Then, integrating Eq. (4.3.8) twice w.r.t. y, we find that

V ∗x = 3a2
∗b

8π sin 2πy
L

. (4.3.10)

Using these solutions, W ∗i = (V ∗x (y), 0, 0), and that W i = γ̄ijWj , we can calculate Āij∗

from Āij = D̄iW j + D̄jW i − 2
3 γ̄

ijD̄kW
k ≡ (L̄W )ij , where the only non-zero component is

Āxy∗ = ∂yW x
∗ , which is given by

Āxy∗ = 3a2
∗b

4L sin 2πy
L

. (4.3.11)

We can now solve the equation for the shift-vector, which at first order is reduced to (∆̄Lβ)i =

2a−3∂jĀ
ij . As before, we note that in our case the only non-vanishing component is

(∆̄Lβ∗)x = 2a−3
∗ ∂yĀ

xy
∗ , (4.3.12)

and using the decomposition βi = Bi + ∂ib this is decoupled into

∇2Bx
∗ = 2a−3

∗ ∂yĀ
xy
∗ , (4.3.13)

∇2b∗ = −1
4∂jB

j
∗ = 0 =⇒ b∗ = 0 , (4.3.14)
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where the latter equation shows that there is no scalar mode excited in the shift, as we

wanted. Then, using Eq. (4.3.11) in Eq. (4.3.13) we conclude that the only non-vanishing

component of the shift vector βi∗ = (Bx
∗ , 0, 0) is

βx∗ = 3b
4πa∗

sin 2πy
L

, (4.3.15)

which is identical to the exact expression of the initial data, Eq. (4.2.3). Indeed, this linear

theory solution is the starting point behind the construction of this problem, which we then

assume to be an exact solution and the matter data has been constructed non-perturbatively

to guarantee that this is the case. Naturally, the solution Eq. (4.3.15) is only valid at the

initial hypersurface. By a similar procedure as above, it can be shown that the vector mode

evolves as

βx(a) = 3b
4π

a2
∗
a3 sin 2πy

L
, (4.3.16)

i.e., it decays over time as ∝ a−3.

4.4 Realising the initial density field with particles

So far, we have fixed the initial data for the metric and curvature, as well as for the density

and velocity field of the fluid. However, in gramses we simulate matter as an N -body

system: let us now discuss how the ICs for the N-body simulations are set up. As usual, in

order to get the initial particles’ positions, we need to sample the initial density field of the

fluid in a discrete way. In this Section we summarise the method to ‘realise’ the density field

in terms of particles, and we highlight some important differences with respect to a standard

cosmological simulation. In order to calculate the initial particles’ positions correctly, we

shall use the initial ‘number’ density field. This is given by

n(y) ≡ρ∗0Γ∗ , (4.4.1)

where Γ∗ = α∗u
0
∗ =

√
1 + γij∗ u∗iu

∗
j is the relativistic Lorentz factor at the initial time. The

relation between Eq. (4.4.1) and the conformal energy density used by gramses to solve the

GR equations (Barrera-Hinojosa & Li, 2020), s0, is

s0 = nΓ . (4.4.2)
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If the velocities are non-relativistic then s0 ≈ n, but the contribution from Γ can be noticeable

in this problem3 when b ∼ (H∗L)2. In any case, it is the number density n which is needed

to generate the particles’ positions for the simulations. Then, using Eq. (4.2.13), the number

density Eq. (4.4.1) takes the form

n(y) = 3
128πL2

√(
16H2

∗L
2 − 3b2 cos2 2πy

L

)2
− 64π2b2 sin2 2πy

L
. (4.4.3)

To calculate the particles’ positions from Eq. (4.4.3) we follow the density-displacement du-

ality approach in one spatial dimension, which is a particular case of the ICs generation

discussed in Chapter 3. Thus, we start by considering the coordinate transformation be-

tween two coordinate systems; the physical one (y) and a virtual one (q), given by

y = q(y) + χ(y) , (4.4.4)

where y correspond to the final (displaced) particles’ positions, q are their coordinates in the

regular (grid/glass-like) configuration used as starting point, and χ represents the displace-

ment field that maps them in such a way that it generates the desired density configuration.

Invoking mass (or more precisely, particle-number) conservation, we have the relation

ndy = 〈n〉dq , (4.4.5)

where

〈n〉 = 1
L

∫ L

0
n(y)dy , (4.4.6)

is the mean particle number density as described by the regular q-coordinates. Now, rather

than inverting the coordinate transformation Eq. (4.4.4) perturbatively for χ (as it is cus-

tomary for cosmological simulations), given that the density field is essentially 1D we can

use Eq. (4.4.5) directly to find the final particles’ perturbed positions y defined through the

implicit equation

1
〈n〉

∫ y

n(y′)dy′ = q(y) . (4.4.7)

We have implemented this approach in Mathematica,4 where the integration of the number

density field in Eq. (4.4.7) is carried out numerically, and a built-in root-finding algorithm is

used to calculate the displaced positions y using the unperturbed values q(y) as the initial

3The magnitude of the parameter b is constrained by the weak energy condition ρ∗0 > 0 at t∗: values
b > 2H2

∗L
2/π are unphysical. For H∗L > π

√
2/3, i.e. for exact perturbations outside the Hubble horizon, the

physical range of b is even more restricted, becoming bounded from above by b < 4
√

3H2
∗L2 − π2/3.

4wolfram.com/mathematica

wolfram.com/mathematica
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guess. The latter are defined in terms of a regular grid with the same size as the one that

will be used by the N -body simulation. The y-positions (ICs) are then read when the initial

particle data is loaded by gramses 5.

There is a subtle and yet important point regarding the applicability of this method to

reconstruct the initial density field Eq. (4.4.3) in comparison to a standard cosmological

simulation of our Universe. In standard cosmological codes, including gramses, the internal

density field is calculated by normalising the number density field by its background value

n̄ (defined as the case where b = 0), i.e. n/n̄, while for the calculation of the particles’

positions in Eq. (4.4.7) the actual density variable used is n/〈n〉, where the brackets denote

the mean (or spatial averaging) that is calculated from Eq. (4.4.6). This is because, in order to

calculate the displacements from the mass-conservation law Eq. (4.4.5), it is the mean value of

the density that corresponds to the regular configuration described by the q-coordinates, and

in general 〈n〉 6= n̄. In principle, the mass-conservation law Eq. (4.4.5) can still be satisfied

if we absorb the difference between these two quantities using the coordinate redefinition

q̃ = n̄/〈n〉q, which amounts to changing the size of the volume occupied by the particles in

the regular configuration. However, for the particular problem under consideration this will

affect the correct periodicity (2π/L) of the density field, which defines the correct periodic

boundary conditions for the problem (and makes it suitable to run using cosmological codes).

The difference between background and mean values appears in the first place due to the

nonlinear initial density field. Indeed, the ratio 〈n〉/n̄ is ' 130% for b ' (H∗L)2, and

thus it might introduce sizeable errors in the ICs if not taken into account properly, which

then propagate to the final frame-dragging observable. In order to correct this miss-match

between n̄ and 〈n〉, while still calculating the displacements in the (correct) way described

above, we have boosted the internal particles’ mass used in the simulation by the factor

〈n〉/n̄, so that the resulting internal number density field used by simulation is correct even

if the displacements where generated using the mean value instead of the background one, as

the density-displacement duality requires. Again, this problem is not present in the ICs of

standard cosmological simulations, as they start at a redshift where the density field is close

to linear.

There is a second potential source of error in the reconstruction of the initial density field

5This is done by init_part in pm/init_part.f90. The code only needs to read standard ICs files (e.g.
gadget-type files generated by the 2LPTic code (Crocce et al., 2006)) that have the correct box size and
number of particles for a given case, but the particle data will be overwritten with the ICs calculated for this
problem.
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which is related to the alignment between the regular distribution (grid) from which the

displacements χ are calculated, and the grid cell centres of the simulation itself, which can

affect the CIC calculations of density and momentum performed in gramses. In principle,

it is natural to make a correspondence between the positions of the particles in the regular

template that are used to generate the ICs, and the simulation’s cell centres.6 In other

words, the particles are regarded as displaced away from fiducial cell centres, which would

later correspond to cell centres in the simulation’s grid where the CIC operates. However, a

sampling problem can occur when the maxima/minima of the number density field actually

lie on the cell boundaries of the q-space, and thus the above correspondence introduces some

error in the CIC calculation of such extreme values, as we will show. In summary, in these

cases we find that calculating χ by displacing particles away from the cell boundaries allows

one to sample such maxima/minima directly and thus does not suffer from this problem.

Let us illustrate this issue by using a simpler expression for the density field, given by (in

this we use ρ rather than n, which does not affect the reasoning)

ρ = 1 +A sin 2πy , (4.4.8)

where A = const., and y ∈ (0, 1). Using the density-displacement method, the displacements

are given by χ = A/(2π) cos 2πy. Now, let us consider the cell centres as the regular template

for the particles. Given a 1-dimensional grid of size N , these correspond to

qi = (2i− 1)/(2N) , (4.4.9)

where i = 1, 2, ..., N labels the cells, and the cell size is ∆y = 1/N . Let us now see how the

CIC scheme samples the minimum of the density field Eq. (4.4.8) that is located at y = 3/4.

In general, this point lies between the cell centres q− (slightly to its left) and q+ (slightly

to its right), and their respective cell indices are given by i− = 3/4N and i+ = 3/4N + 1.7

Then, these cell centres have q-coordinate values and associated displacements given by

q± = 3
4 ±

1
2N , (4.4.10)

χ± = ± A

2π sin π

N
. (4.4.11)

These are schematically represented in Fig. 4.2. In 1D, the CIC assignment to get the density

6Regardless of how exactly the ICs have been generated, when the simulation is initialised the particles are
assigned to the simulation’s cells that initially contain them, and their initial positions slightly deviate from
the cell centres.

7Notice that the point y = 3/4 can be directly sampled by i− if N has a value such that 3/4N is an integer.
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χ+χ−

∆y

ρmin

Figure 4.2: Schematic representation of the grid cells, and the displaced particles that sample
the density field ρ. Coloured dashed lines represent the particles’ clouds (of same size as grid
cells, ∆y), which do not overlap with their host cells completely due to the displacement
field χ. The unperturbed (perturbed) particles’ positions are represented by empty (filled)
circles. The black dashed line on the bottom represents the local shape of the density field,
whose local minimum ρmin lies exactly at the boundary between the two central cells, whose
corresponding particles are displaced away to left (χ−) and right (χ+).

at a given cell centre takes the form

ρCIC(q±) = f±

∆y , (4.4.12)

where f± are the weights of each particle, which can be calculated easily as these correspond

to the overlapping of the particle’s clouds in that cell. As shown by Fig. 4.2, the particles

have been displaced away from the minimum, so that the CIC density at the i± cells only

receives contributions from its own particles, with weights f± = ∆y − |χ±|. Hence, using

Eq. (4.4.11) the CIC density field at the cells i± turns out to be

ρCIC(q±) = 1− AN

2π sin π

N
. (4.4.13)

We can get insight from this result considering the limit where the number of cells is large,

N � 1, where we find that

ρCIC(q±)
∣∣∣
N�1

→ 1− A

2 . (4.4.14)

Equation (4.4.14) shows that, even in an infinitely fine grid, the CIC value of the overdensity

δ = ρ − 1 at the cells that are closest to the peak has a 50% error w.r.t. the density field

being sampled. This shows that no matter how close to the ‘true’ minimum at y = 3/4 the

neighbouring sampling points q± are, the problem will persist as long as these points do not

sample the peaks directly.

Conversely, as shown below, we have found that this problem does not appear when the

regular grid template for particles corresponds to the cell boundaries rather than cell centres,
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so we have adopted this prescription in our calculations. Repeating the above exercise in

such a case, the qwall
i coordinates of the particles in the regular template are

qwall
i = i/N i = 1, 2, ..., N , (4.4.15)

where we have now used the ‘wall’ subscript to distinguish from the previous discussion.

Then, evaluating the displacement field at the positions of the particles associated with the

cells at the left and right of ρmin, qwall
± = qwall

i (i±), we have

χwall
+ = A

2π sin 2π
N
, (4.4.16)

χwall
− = 0 , (4.4.17)

i.e., the particle located exactly at the wall at q− = 3/4 is not displaced, while the ‘next’

particle at q+ = 3/4 + 1/N is displaced to the right. Then, the value of the CIC density on

the right cell is given by

ρCIC(qcent
+ ) = 1− AN

2π sin 2π
N
, (4.4.18)

where qcent
+ is a reminder that ρCIC is always evaluated at the cell centres, regardless of the

prescription used to deposit the particles. This expression only differs from (4.4.13) by a

factor of 2 in the argument of the sin function. Nonetheless, this is critical, as we can check

that in the limit N � 1, the value of the density field on this cell now approaches 1 − A,

which is exactly the value of ρmin.

We remark that the above issue is not present in ICs of standard N-body simulations con-

structed from a glass-like configurations, as such a particle template is not homogeneous.

4.5 Ray tracing and calculation of the relativistic observable

The above ICs can be used to run a simulation of the shearing-dust universe model with

gramses, which can solve the dynamics of matter and geometry. Nonetheless, to calculate

the final observable in this problem we need to consider the impact of frame-dragging on

photons, as depicted in Fig. 4.1, which requires to perform relativistic ray tracing. This

represents a post-processing step. We will now discuss how this aspect is implemented, and

how this is connected to the observable cosϑ given by Eq. (4.1.1). By definition, the geodesic

equations parallel-transport velocity vectors kµ = dxµ/dλ along the integral curves of the

same field,

kµ∇µkν = 0 , (4.5.1)
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for a photon 4-vector kµ, or for non-relativistic matter with the replacement kµ → uµ. In

order to integrate this numerically using the simulation data, we use the 3+1 form of these

equations,

dki
dt = −αk0∂iα+ kj∂iβ

j − 1
2k0kjkk∂iγ

jk , (4.5.2)

dxi

dt = γij
kj
k0 − β

i . (4.5.3)

Since we are interested in describing how the light rays shoot from events A and B propagate

towards the observer at the origin, this system needs to be solved for (xiA, kAi ) and (xiB, kBi ).

Naturally, since these are test rays they do not interact with each other nor affect the prop-

erties of the spacetime. While the arrival of the rays at O imposes clear boundary conditions

for xiA and xiB, the initial conditions for kAi and kBi (i.e. the initial propagation directions)

are not trivial to define in a ‘forward’ ray-tracing sense: in the absence of any perturbation,

the flashes should be shoot from A and B pointing straight towards the observer, but since

the perturbation ‘bends’ the geodesics, these actually need to be shoot at some unknown

angle, otherwise they will simply not arrive at the observer O.

Equations (4.5.2) and (4.5.3) are solved non-perturbatively using a ray-tracing code written

in mathematica which takes as input the spacetime metric data from the simulation8. In

order to get the correct initial shooting directions, this code requires the specification of

an initial guess as well as a search region and applies a root-finding algorithm to find the

actual geodesics connecting the events A and B to the observer at O. With the solutions

for kAi and kBi determined numerically, we can finally evaluate the observable, which for an

observer at rest is given by Eq. (4.1.1) provided the vectors are observed simultaneously. For

non-simultaneous arrivals, one vector needs to be parallel transported along the observer’s

wordline until the second photon arrives. This appears as a higher-order effect in perturbation

theory, and in most cases introduces only minor corrections, although it can be regarded as

another GR observable on its own.

4.5.1 Parallel transport

Let us now discuss the parallel-transport equations, which can be used to evaluate the ob-

servable for the case of the non-simultaneous arrival of the incoming photons from events A

8The original ray-tracing code was written by James Mertens for synchronous gauge applications, and we
have only done some minor modifications to include the non-vanishing shift in our gauge, which contributes
to both the geodesic and parallel-transport equations.
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and B. The parallel transport equation uµ∇µkν = 0 can be written as

dki
dt = −αk0∂iα+ kj∂iβ

j − 1
2u0ulkj∂iγ

lj + α

(
uk
u0 k

0 − kk
)
Kk
i . (4.5.4)

where uµ is the four-velocity of the observer. Given that the parallel transport will be carried

out along the observer’s worldline, Eq. (4.5.4) is meant to be evaluated along this spacetime

curve. In the coordinate system used for the problem, the observer is located at rest at the

origin, thus uµ ∝ (1,0). In addition, we have ∂iα|O = 0 due to the symmetry of the problem.

Therefore, evaluating Eq. (4.5.4) at O, it takes the form

dki
dt

∣∣∣
O

= kj∂iβ
j |O − αkjKj

i |O , (4.5.5)

where we have included the notation |O to highlight that this is integrated purely in time

at y = 0, where the observer remains located at all times. Furthermore, the observable

Eq. (4.1.1) is evaluated using the metric at the time the second ray arrives. It is useful to

express the curvature term using the evolution equation for the spatial metric (which is the

definition of Kij), i.e.

Kij = − 1
2α(∂tγij −Diβj −Djβi) , (4.5.6)

where Di represents the covariant derivative associated to γij . Using that Diβ
j = ∂iβ

j+Γjilβl,

where Γjil are the Christoffel symbols related to the spatial metric γij , we have

dki
dt

∣∣∣
O

= kj∂iβ
j |O + kj

2 γ
jk∂tγik|O −

kj
2 (∂iβj − Γjilβ

l + γjkγil∂kβ
l + γjkγilΓlkmβm)|O .

(4.5.7)

Since under the conformal transformation the Christoffel symbols change as

Γijk = Γ̄ijk + 2(δijD̄k lnψ + δikD̄j lnψ − γ̄jkγ̄ilD̄l lnψ) , (4.5.8)

by using the conformal-flatness condition this is simplified to

Γijk = 2(δij∂k lnψ + δik∂j lnψ − δjk∂i lnψ) , (4.5.9)

where ∂i = δil∂l. Since due to symmetry we also have ∂iψ|O = 0, then Γijk|O = 0 and the

parallel-transport equations reduce to

dki
dt

∣∣∣
O

= kj∂iβ
j |O + kj

2 γ
jk∂tγik|O −

kj
2 (∂iβj + γjkγil∂kβ

l)|O . (4.5.10)

Then, the non-vanishing components of these equations are explicitly written as

dkx
dt

∣∣∣
O

= 1
2 (kxγxx∂tγxx − γyyγxxky∂yβx) |O , (4.5.11)
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dky
dt

∣∣∣
O

= 1
2 (kyγyy∂tγyy − γyyγyyky∂yβy + kx∂yβ

x + ky∂yβ
y) |O . (4.5.12)

This coupled system of first-order in time, ordinary differential equations, needs to be solved

for the kx and ky components of the first light ray arriving at the observer until the second

ray arrives. This is done numerically in a module of the aforementioned ray-tracing code.

4.5.2 Time stepping for the simulation snapshots

In order to carry out the numerical time integration of the geodesic equations (4.5.2) and

(4.5.3) as well as parallel-transport equations (4.5.11) and (4.5.12) in the ray-tracing code,

we use the simulation data as inputs, and hence interpolations in both time and space are

required. For simplicity, we output data (snapshots) from the simulation on a constant-

timestep basis, and we fix this using the criterion

∆t = nt∆x , (4.5.13)

where ∆x = L/N is the spatial resolution of the simulation, and the parameter nt controls

their frequency. Eq. (4.5.13) should not be confused with the timestep of the simulation, which

is internally fixed by the code. nt needs to be tuned in order to suppress time-resolution effects

in the final observable, and we have found that nt = 4 is sufficient for all explored cases.

Since the bending (or lensing) of the null geodesics due to frame dragging results in a time

delay of the light rays compared to their propagation in the background, the simulation should

allow the system to evolve for enough time for these to actually reach the observer. This

time-delay effect is small for most probed values of b and H∗L but can become non-negligible

in the nonlinear regime. If we allow the light rays to travel a number of box-crossings, nL ≥ 1,

the corresponding cosmic time to evolve the simulation is tend = nLL (recall that c = 1) and

the minimum number of snapshots nmin
snap required for a timestep fixed by Eq. (4.5.13) is given

by

nmin
snap =

[
nLN

nt

]
, (4.5.14)

where the brackets denote the nearest-integer part of the number. Since gramses (as well as

ramses) outputs the snapshots based on a list of scale factor values given in the input param-

eters file, we need to calculate the set of a–values corresponding to ∆t fixed by Eq. (4.5.13).

To find this, we can use the 1st Friedmann equation considering Ωm = 1, i.e., H = H0a
−3/2,
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hence the cosmic time at a given a can be calculated as

t = 2
3H0

a3/2 , (4.5.15)

or inverting this expression we can get a(t)

a =
(3H0

2 t

)2/3
. (4.5.16)

By construction, the ICs are specified at a∗ with which we can calculate the initial time t∗
from Eq. (4.5.15), while the subsequent output times are given by tn = t∗ + nsnap∆t, where

nsnap = 1, 2, ..., nmin
snap labels the nsnap-th snapshot of the simulation. Then, using Eq. (4.5.16)

the output scale factors for the simulation are given by

an =
(
a

3/2
∗ + 3H0

2 nsnap∆t
)2/3

. (4.5.17)

As it will become clear from the perturbation theory calculation, it is actually more convenient

to integrate the geodesic equations in term of conformal time, τ , rather than coordinate time

(although for numerical integration it does not make a difference). Repeating the argument

in the case of conformal time, using that a(τ) =
(
H0
2 τ
)2

we find

an =
(
a

1/2
∗ + H0

2 nsnap∆τ
)2

, (4.5.18)

where τn = τ∗ + nsnap∆τ , and ∆τ replaces ∆t in the time-stepping criterion Eq. (4.5.13).

At this point, let us give a word of caution about the gramses (and ramses) snapshots

and their corresponding scale factors. The dump_all subroutine9 – which triggers once the

current scale factor of the simulation is one from the input a-list – is called at the beginning of

each code’s timestep, before any gravity or matter array has been updated, which means that

the data written in a given snapshot is actually delayed by one code timestep. In other words,

the scale factor at which the code outputs the data does not exactly matches that of the

data itself. Naturally, the finer the code timestep is, the smaller the difference between two

consecutive scale factor of the simulation are. This mismatch can introduce percentage-level

errors in the results for the current toy model. However, this is not a real issue for actual

cosmological simulations, which use comparatively much finer timesteps.

9See amr/output_amr.f90 and amr/amr_step.f90.
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4.5.3 Linear solution to the null geodesic equations

Let us now calculate the linear theory prediction for the observable Eq. (4.1.1). In order to

evaluate this we need to solve the geodesic equation at first order in b� 1. In this case, the

system reduces to

dki
dt = kx∂iβ

x , (4.5.19)

dxi

dt = γij
kj
k0 − β

i , (4.5.20)

where k0 is fixed by the null geodesic condition as k0 = α−1
√
γijkikj . Notice that at the

background level dk̄i/dt = 0 and then the trajectories are straight rays, x̄i ∝ τ , where

dτ = dt/a.

Given the form of the shift vector βx = βx(y) in Eq. (4.3.16), from the first line of Eq. (4.5.19)

we have that dkx/dt = dkz/dt = 0, while the remaining equations are

dky
dt = kx∂yβ

x , (4.5.21)

dx
dt = γxx

kx
k0 − β

x , (4.5.22)

dy
dt = γyy

ky
k0 , (4.5.23)

dz
dt = γzz

kz
k0 = 0 . (4.5.24)

To solve this system we consider the rays A and B which end up at the observer O. At first

order, the perturbed rays can be written as

kAx = kA(1 + bcAx ), kAy = kA(0 + bcAy ), kAz = 0 , (4.5.25)

kBx = kB(0 + bcBx ), kBy = kB(1 + bcBy ), kBz = 0 , (4.5.26)

and the conditions for their initial and final positions are

{xA(t∗), yA(t∗)} = {−L, 0} , {xA(tO), yA(tO)} = {0, 0} , (4.5.27)

{xB(t∗), yB(t∗)} = {0,−L} , {xB(tO), yB(tO)} = {0, 0} . (4.5.28)

Taking into account the perturbed rays Eqs. (4.5.25) and (4.5.26), it is straightforward to

show that the observable Eq. (4.1.1) at leading order in the expansion w.r.t. b is given by

cosϑlin = b(cAy + cBx )|O , (4.5.29)

where we have used the lin subscript to denote this is the linear solution. Hence, we notice that
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this does not depend upon the perturbations cAx and cBy . We next calculate the perturbations

needed to evaluate Eq. (4.5.29).

Ray A

For the trajectory of ray A, from Eq. (4.5.22) we find

dxA
dt =

√
γxx − βx (4.5.30)

=⇒ xA(t) = xA(t∗) +
∫ t

t∗
dt′a−1 −

∫ t

t∗
dt′βx(t′, yA(t′)) . (4.5.31)

Let us note that up to first order in b, it is sufficient to evaluate the perturbation βx in

the last term of the r.h.s. along the unperturbed trajectory – just like in the usual Born

approximation – since any correction to this is higher order in the parameter b. Furthermore,

applying Eq. (4.5.23) for ray A we note that is yA ∼ O(b), as in the absence of perturbations

it would travel strictly along the x direction, see Fig. 4.1. Then, expanding the shift vector

argument as sin(2πyA/L) ≈ b − b3/3! + ..., we note that the last term in Eq. (4.5.31) does

not contribute (since βx ∝ b on its own) and we are simply left with

xA(t) = −L+ (τ − τ∗) , (4.5.32)

where we have used that dτ = dt/a. This shows that the x–component of the trajectory for

ray A is not deflected at the linear level. From this we also find the time of arrival set by the

conditions Eq. (4.5.27) is τO = L+ τ∗.

For the y-direction of ray A, let us first solve the equation for kAy to determine the perturbation

cAy . Since kAy = k̄A(0 + bcAy ), with k̄A = const., from Eq. (4.5.21) we find

dkAy
dt = kAx ∂yβ

x (4.5.33)

=⇒ bcAy = B
2π
L

∫ t

t∗
dt′

1
a3 cos 2πyA(t′)

L
+O(b2) ≈ B 2π

L

∫ t

t∗
dt′

1
a3 (4.5.34)

=⇒ cAy (τ) = −2πB
3bL

( 2
H0

)4
τ−2 + κAc (4.5.35)

where we have used that cos b ≈ 1 for b� 1, B = 3ba2
∗/4π is the amplitude of βx, and κAc is

an integration constant. Using this result we can work out yA from Eq. (4.5.23) as

dyA
dt =

√
γxx

kAy
|kAx |

(4.5.36)

=⇒ yA(τ) = b

[
πB

3bL

( 2
H0

)4
τ−2 + κAc τ

]
+ κAy , (4.5.37)
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where in the last line we have used Eq. (4.5.35), and κAy is an integration constant. We can

now use the conditions yA(t∗) = yA(tO) = 0 to determine the integration constants κAc and

κAy , although only the former is necessary for the evaluation of the linear observable. From

this we have

κAc = πB

3bL

( 2
H0

)4 τO + τ∗
τ2
∗ τ

2
O

. (4.5.38)

Using this result into Eq. (4.5.35) and evaluating at τO, after some algebra we find that

cAy |O = 6 +H∗L
(2 +H∗L)3 , (4.5.39)

where we have used that τ∗ = 2/H∗ and H0 = H∗a1/2
∗ .

Ray B

Similarly, for ray B it is straightforward to show that

yB(t) = −L+ (τ − τ∗) , (4.5.40)

so that the trajectory along the y-direction is unperturbed and the time of arrival compatible

with Eq. (4.5.28) is again τO = L + τ∗. This shows that at the linear level both rays A and

B arrive simultaneously at O.

For the x-direction, from Eq. (4.5.22) we have

dxB
dt = ba−1cBx − βx(yB) , (4.5.41)

and then we see that ray B gets deflected along the x direction by the frame-dragging pertur-

bation, as expected. Since cBx (unlike cAy ) remains constant because dkx/dt = 0, integrating

both sides we find

xB(t) = xB(t∗) +
[
b

∫ t

t∗
dt′a−1cBx −

∫ t

t∗
dt′βx(yB(t′))

]
(4.5.42)

= b

[
cBx (τ − τ∗)−

3a2
∗

4π

∫ τ

τ∗
dτ ′a−2 sin 2π(τ ′ − τ∗)

L

]
, (4.5.43)

where in the last step we have used the solution yB(t′) already calculated in Eq. (4.5.40).

Next, in order to determine cBx we use the conditions for the final positions of the rays arriving

at the observer. We then evaluate Eq. (4.5.43) at the time of arrival τO = τ∗+L. From this,

we find

cBx |O = 32π2

H∗L

∫ 2π

0
dξ

cos ξ
(4π +H∗Lξ)3 , (4.5.44)
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where ξ = 2π(τ ′ − τ∗)/L.

Finally, using this last result alongside Eq. (4.5.39) we find that the linear observable given

by Eq. (4.5.29). Thus, we find

cosϑlin = b

[
6 +H∗L

(H∗L+ 2)3 + 32π2

H∗L

∫ 2π

0

cos ξ
(4π +H∗Lξ)3dξ

]
. (4.5.45)

The observable Eq. (4.5.45) allows us to validate the simulation predictions in the linear

regime. We notice that the distance L enters in this result under the combination H∗L,

which is a dimensionless quantity (recall that c = 1). Then, we can also get some insight

about this result by considering two different limits for H∗L; in the case H∗L � 1 we have

cosϑlin ≈ 3b/4, while in the limit H∗L� 1 it behaves as cosϑlin ≈ 2bH−2
∗ L−2. The fact that

in the former case the limiting value is independent of H∗L reflects the fact that the time it

takes for the light to reach the observer is much shorter than the dynamical time scale over

which the perturbation decays. In the second limit, the light rays are able to travel for long

enough time to become sensitive to the damping of the shift vector.

4.6 Results

Let us now discuss the simulation results of the shearing-dust universe. In the following, we

will focus on discussing how the results from gramses compare to linear theory predictions

as well as to other GR codes, and we refer the reader to Adamek et al. (2020) for more details

about the results from the latter. To facilitate the comparison, all GR codes use the same

ray-tracing algorithm (adapted to their respective gauge) to evaluate the final observable

Eq. (4.1.1).

For the parameter space of this problem, we choose ten values for the simulation box L relative

to the initial background Hubble factor, given by H∗L = 2n for n = [−7, ..., 2]. For each value

of H∗L we choose three values of the amplitude parameter as b = [0.5, 0.05, 0.005]× (H∗L)2.

This allows us to explore situations that lie within the linear and nonlinear regimes, as well

as cases where matter evolves for a sufficiently long time to develop shell crossing. Hence, a

total of 30 simulation are run.

Before discussing the results, let us recall that gramses obtains the metric and extrinsic

curvature components by solving elliptic-type equations on a mesh, which means the mesh

resolution places a limit on the accuracy of its solutions through the discretisation error. In the

results shown below we have used a mesh with 2563 cells, while we have found that using 1283
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Figure 4.3: Numerical results for the observable Eq.(4.1.1) obtained from gramses (orange
triangles), as well as from gevolution (red circles), the Einstein Toolkit (blue diamonds) and
cosmograph (green squares). For the latter two, error bars obtained from three different
spatial resolutions are shown. The different cases for the amplitude parameter b are shown in
the different panels, being top (bottom) the closest (farthest) from linear perturbation theory
regime. Plot taken from Adamek et al. (2020).

and 643 cells leads to larger inaccuracies even in the linear regime, where higher-order terms

neglected by the conformal flatness approximation are subdominant. The same discretisation

error occurs for all equations being solved, and so it can affect particle movements and

thereby accumulate over time. It is therefore important to choose a sufficiently fine grid to

suppress this error. Note that for finite differencing at a fixed order, the discretisation error

is determined by the number of cells per side instead of the physical size of a cell. We do not

use AMR for the simulations to facilitate the comparison with GR codes that do not have

such an option.

Figure 4.3 shows the results of the observable Eq. (4.1.1) obtained from gramses simulations

(orange triangles), as well as from other GR codes (as indicated by the legend), for the

different values of the amplitude parameter b (the different panels). The top panel of Fig. 4.3

shows the results for the smallest amplitude of the frame-dragging, i.e., b = 0.005 × H2
∗L

2.

We find agreement between gramses and the linear solution to within 0.02% for all values
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Figure 4.4: Same as the bottom panel of Fig. 4.3, but plotted relative to the result obtained
from CosmoGRaPH rather than to linear theory. Plot taken from Adamek et al. (2020)

of H∗L, as well as good agreement with the other GR codes. The deviation from the linear

solution remains mostly flat in the results from gramses, as this is dominated by the constant

mesh discretisation error from the fixed grid size used.

The middle panel of Figure 4.3 shows the cases with the amplitude parameter fixed as b =

0.05×H2
∗L

2. In this case, we find that measurable deviations from the linear solution start to

appear atH∗L & 1. These deviations follow an overall similar trend in all codes, and are below

∼ 1% for all the box size values used in this study. Nonetheless, the results from gramses

and gevolution (red dots) show a qualitatively similar deviation from the linear prediction,

while the two full (hyperbolic) numerical relativity codes, flrw solver (blue diamonds) and

CosmoGRaPH (green squares), agree within their error bars. The latter are obtained from

runs using three different spatial resolutions. In the case of gramses, errors might arise in

this regime due to the conformal flatness approximation, which neglects tensor modes that

might be excited during the nonlinear evolution of the system at O(b2) and beyond. Notice

that, in contrast, gevolution calculates the tensor modes with the weak-field expansion and

therefore can evaluate their impact on the light propagation with the ray-tracing code within

such an approximation.

The bottom panel of Figure 4.3 shows the most extreme case with b = 0.5 × H2
∗L

2, which

is close to the limit set by the weak energy condition. As expected, in this case we see the

strongest deviations from the linear prediction, although we find that the latter still holds to

a good approximation down to H∗L ' 1, as confirmed by all four codes. We have clipped the

data-points for the most extreme case, H∗L = 4, in the bottom panel of Figure 4.3 to facilitate
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the visualisation of the deviations at smaller H∗L. In this case, we find deviation from the

linear solution for gramses of −0.68, for gevolution of −0.619, and for CosmoGRaPH of

−0.8183± 0.0004. The data point at H∗L = 4 could not be obtained in the case of the flrw

solver, since no null geodesics connecting either A or B to O were found, likely due to the

breakdown of the fluid approximation in this regime. Figure 4.4 shows more clearly the results

from the bottom panel of Fig. 4.3, as the result from each code is not plotted relative to linear

theory but respect to that calculated from CosmoGRaPH. We can observe that gramses

agrees with the latter code to within . 0.1% for small values of H∗L. This difference grows

to ' 100% for the most extreme case H∗L = 4, where tensor modes omitted by gramses

during the evolution can introduce errors with respect to a full numerical relativity code.

In order to support the validity of the previous comparison, we next check the numerical

convergence of the observable presented in Figure 4.3 as a function of resolution. We expect

different rates of convergence for each code, due to different dominant error sources that

depend on the numerical scheme implemented. The convergence rate can be calculated by

evaluating the observable at three different simulation resolutions, ∆x1, ∆x2, and ∆x3. For

a method of order p, the error will be O(∆xp), and the convergence rate of the observable

angle ϑ is given by

C = ϑ∆x1 − ϑ∆x2

ϑ∆x2 − ϑ∆x3

, (4.6.1)

while the theoretical (expected) convergence rate is

Cexpected = ∆xp1 −∆xp2
∆xp2 −∆xp3

. (4.6.2)

Figure 4.5 shows the convergence rate Eq. (4.6.1), relative to the theoretical convergence

rate for each code Eq. (4.6.2). The order of the integration scheme implemented in each

code, p, is shown in the legend. For the comparison, we use the scenario that corresponds

to the top panel of Figure 4.3, given that this is the closest case to the linear regime and

hence under theoretical control. In the case of gramses, the convergence rate is calculated

based on simulations with resolutions of 643, 1283 and 2563 cells. We find that gramses

shows a very consistent convergence rate, which for H∗L . 1 agrees to within 0.3% with the

expected value, and within 4% (0.5%) for H∗L = 2 (4). This behaviour is likely because,

unlike other codes, in gramses the solutions are obtained from elliptic-type equations, hence

time integration for the metric — which can introduce additional errors — is not used.
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Figure 4.5: Convergence rate test, relative to the expected value given by Eq. (4.6.2). The
results from gramses are calculated based on three different resolutions: 643, 1283 and 2563

cells, and are shown in orange triangles, which corresponds to a finite-difference method of
order p = 2. Plot taken from Adamek et al. (2020)

4.7 Summary

In this Chapter, we have implemented and run simulations of a very specific model, dubbed

‘shearing-dust’ universe, where the matter dynamics is allowed to mainly excite the vector

modes of the metric, which is associated with the frame-dragging effect. Being the leading

order post-Friedmann (post-Newtonian) correction to Newtonian gravity, any relativistic code

should aim to calculate this accurately. At the same time, this test has the unique property

that it is applicable only to codes that calculate relativistic effects.

We have used this problem to perform a code validation of gramses, for which we compared

results against perturbation theory, and also with state-of-the-art GR codes. Given that

each code implements a different numerical method and/or a particular approximation of

GR, this study provides a valuable test to assess their consistency and limitations. While

the full results are discussed in Adamek et al. (2020), in this Chapter we have focused on

the details relevant for gramses. In this code, the main limitation comes from the use of

the conformal flatness approximation, in which tensor modes of the metric and curvature are

neglected, and therefore is not possible to study gravitational waves at the moment.10

The comparison shows that, for perturbations with amplitude b = 0.005 ×H2
∗L

2, gramses

is able to match linear theory within 0.02% for all box sizes studied here, and the agreement

amongst the different codes is good overall. For larger perturbations, with amplitudes b ∈

10Extended versions of this scheme that include tensor modes have been proposed in Cordero-Carrion et al.
(2012). These, however, have not been implemented in gramses so far.
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{0.05, 0.5}×H2
∗L

2, the results agree with with linear theory within 0.1% and 1%, respectively,

in the regime where H∗L . 1. In the case of gramses, deviations from the linear solution in

cases well into the linear regime are dominated by the mesh discretisation error, which cause

a constant offset from linear theory. For larger perturbations, the main source of deviations

from the results from other codes is expected to be the conformal flatness approximation,

which neglects tensor modes that could appear during nonlinear evolution, and are within

the expected O(b2) truncation error.

Besides the comparison discussed in this Chapter, it might be useful to investigate other rela-

tivistic effects to further assess the capabilities of the different GR codes on different scenarios.

These include the development of spatial curvature (e.g., Tian et al., 2021), the magnetic part

of the Weyl tensor, and back-reaction of structure formation onto the expansion rate (e.g.,

Macpherson et al., 2018b), among others. As in the present case, the aforementioned effects

do not have a Newtonian counterpart and hence might probe useful for this purpose.



Chapter 5

The gravitomagnetic effect and

vorticity in ΛCDM

5.1 Introduction

While the dynamics of the LSS of the universe is mainly governed by scalar perturbations,

vector and tensor degrees of freedom are promising alternatives for exploring the nature of

dark matter and gravity. The effects of the vector modes of the spacetime metric on matter

such as frame dragging and geodetic precession have been measured in the Solar system

during the last decade (Everitt et al., 2011), but there is still no cosmological signal detected.

The recent observation of radio galaxies showing coherent angular velocities on scales of

∼ 20 Mpc at z = 1 reported by Taylor & Jagannathan (2016) motivates seeking a physical

interpretation in terms of vector modes, but it has not been possible to establish a clear

connection so far (Cusin et al., 2017; Bonvin et al., 2018). More recently, and motivated by

the accurate data provided by Gaia DR2, a simple model to explain the flat rotation curve

of the Milky Way in terms of frame dragging has been proposed in Crosta et al. (2020).

In ΛCDM cosmology, vector modes are typically neglected. In a perfect fluid, vorticity –

the covariant curl of the 4-velocity field – satisfies a homogenous nonlinear equation, hence it

vanishes exactly, i.e. at all orders in perturbation theory (Lu et al., 2009), unless it is either

introduced by initial conditions1 or generated by physics beyond the fluid model. Moreover,

vorticity is not generated by standard inflationary scenarios, and even if it was, this type of

1Even if non zero initially, during expansion a first-order vorticity in a standard perfect fluid is red-shifted
away.
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perturbation quickly decays during the matter-dominated era. Nonetheless, vorticity is found

to be generated dynamically via shell (orbit) crossing of matter, a phenomenon extremely

common at late times whose modelling is beyond the grasp of the single-streaming fluid

regime. Therefore, N -body simulations represent a valuable tool for the study of vorticity

generation (Pueblas & Scoccimarro, 2009; Hahn et al., 2015; Jelic-Cizmek et al., 2018).

In the Poisson gauge, generalising the longitudinal gauge to include tensor and vector per-

turbations (Bertschinger, 1993), the latter are encoded by the non-diagonal spacetime met-

ric components, the shift vector Bi ≡ g0i, and represent in this gauge the gauge-invariant

gravitomagnetic vector potential (Bardeen, 1980). In ΛCDM, safely assuming purely scalar

perturbations at first-order, the shift vector vanishes at the linear level, while at second order

it satisfies a constraint equation sourced by the product of first-order density and velocity

perturbations. However, it is expected that, just like vorticity, the gravito-magnetic field also

receives corrections from phenomena beyond the perfect fluid description.

The impact of vector modes on LSS observables is expected to be small relative to the scalar

perturbations, both from perturbative (Lu et al., 2009) and non-perturbative analyses (Bruni

et al., 2014; Adamek et al., 2016a), although it can represent a new systematic which needs

to be taken into account (Bonvin et al., 2018). For instance, their effect on gravitational

lensing seems not to be strong enough to be detectable by current observations (Thomas

et al., 2015b; Saga et al., 2015; Gressel et al., 2019), and the imprints of the vector potential

in the angular power spectrum and bispectrum of galaxies are also weak (Durrer & Tansella,

2016; Jolicoeur et al., 2019), although a vector perturbation can be isolated from the full

signal if it violates statistical isotropy and defines a preferred frame (see, e.g., Tansella et al.,

2018). On the other hand, the vector potential power spectrum is known to peak around the

equality scale (Lu et al., 2009), and its behaviour as well as impact on observables at highly

nonlinear scales remains largely unexplored, although deviations from perturbation theory

can be significant (Bruni et al., 2014). Furthermore, in popular f(R) gravity models, vector

modes can have considerable deviations from GR on small scales (Thomas et al., 2015a), so

these could also play a role in discriminating cosmological models.

The work of Pueblas & Scoccimarro (2009) provided the first insights into the generation

of vorticity via shell crossing using N -body simulations, which allowed them to quantify its

impact on the density and velocity power spectra estimates from linear perturbation theory.

In particular, vorticity was found to peak in the outskirts of virialised structures as particle

velocities in inner regions are strongly aligned with density gradients, as also found later
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in Hahn et al. (2015) from a different set of simulations. Although – contrary to vorticity

– the investigation of the gravitomagnetic vector field in principle requires a completely

general-relativistic numerical framework as Newtonian simulations only model a single scalar

gravitational potential, Φ, in Bruni et al. (2014) and Thomas et al. (2015c) a novel method to

extract its power spectrum by post-processing the momentum density field from a Newtonian

simulation was introduced. This is motivated by the fact that the leading contribution to the

shift vector in post-Friedmann expansion (Milillo et al., 2015) is sourced by the transverse

part of the momentum density field. Although this method neglects the feedback of the

shift vector into the simulation dynamics, this approximation is well justified as perturbation

theory estimates that the magnitude of the vector potential is at most one percent of the

scalar gravitational potential (Lu et al., 2009).

Cosmological codes which are capable of simulating vector modes of the metric have been

only recently developed (e.g., Adamek et al., 2016b,a; Mertens et al., 2016; Giblin et al.,

2017; Macpherson et al., 2017; Barrera-Hinojosa & Li, 2020), and have proven robust enough

to study different relativistic distortions in the LSS; (see Adamek et al., 2020, for an actual

comparison of frame-dragging observables in a toy universe simulated using these codes).

In particular, the cross correlation between the shift vector and vorticity has been studied

in Jelic-Cizmek et al. (2018) using the relativistic N -body code gevolution (Adamek et al.,

2016b,a), showing that the vector potential is only weakly sourced by vorticity alone, which

is subdominant compared with the density-dependent terms coming from the transverse pro-

jection of the full momentum field, in qualitative agreement with post-Friedmann expansion

results from Bruni et al. (2014); Thomas et al. (2015c).

The objective of this Chapter is to study the vector modes of both the gravitational and

matter velocity fields from large sub-horizon scales down to deeply nonlinear scales using the

gramses code (Barrera-Hinojosa & Li, 2020; Barrera-Hinojosa & Li, 2020), which has been

introduced in Chapter 2. We expand on previous studies in the following ways: (i) similarly

to Jelic-Cizmek et al. (2018), we provide a direct calculation of the gravitomagnetic field,

represented by the shift vector, from the simulation, also relaxing the weak-field approxima-

tion in our approach; (ii) we present results for scales in the deeply nonlinear regime which

have not been previously explored in this context, and which are accessible thanks to the

adaptive-mesh refinement (AMR) capabilities of gramses. For the first time, we explore the

gravitomagnetic vector potential in dark matter haloes in a broad range of halo masses; (iii)

furthermore, we quantify the gravitomagnetic acceleration inside the dark matter haloes and

compare this against the standard gravitational one.
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We note that, with the exception of Jelic-Cizmek et al. (2018), previous studies of vorticity

use simulations that incorporate a softening length scale, a numerical parameter used to

prevent divergences in the calculation of inter-particle forces which also determines the spatial

resolution. In gramses – similarly to gevolution – the metric components and their spatial

derivatives are calculated on a Cartesian mesh. AMR codes, such as gramses, are generally

slower than fixed-mesh-resolution codes such as gevolution which can benefit from efficient

standard libraries such as fftw, but their adaptively-produced mesh structure in high-density

regions allows them to be more focused on the fine details in such regions, without increasing

the overall cost of the simulation substantially. Therefore, they provide complementary ways

to study the vector modes from cosmological simulations.

The rest of this Chapter is organised as follows. In Section 5.2 we fix our notations and

briefly describe the general-relativistic formalism and methods implemented in the gram-

ses code that are relevant for the vector modes. In Section 5.3.1 we show the results for

the different power spectra of the velocity field components as well as of the gravitomagnetic

potential. Then, in Section 5.3.2, we focus on dark matter haloes, providing comparisons of

the gravitomagnetic potential and corresponding acceleration with the scalar counterparts.

Throughout this Chapter, Greek indices are used to label spacetime vectors and run over

(0, 1, 2, 3), while Latin indices run over (1, 2, 3). Unless otherwise stated, we follow the unit

convention that the speed of light c = 1.

5.2 Method and definitions

For the sake of clarity and completeness, let us briefly summarise the terminology and con-

ventions adopted in this Chapter, which in some part stem from gramses ’ implementation

itself.

In order to solve the gravitational sector equations and geodesic equations, gramses adopts

the 3 + 1 formalism in which the spacetime metric takes the form

ds2 = gµνdxµdxν = −α2dt2 + γij
(
βidt+ dxi

) (
βjdt+ dxj

)
, (5.2.1)

where α is the lapse function, βi the shift vector and γij the induced metric on the spatial

hypersurfaces, which in the constrained formulation adopted by gramses is approximated

by a conformally-flat metric, γij = ψ4δij , with ψ being the conformal factor and δij the

Kronecker delta.
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In the 3 + 1 formalism nµ = (−α, 0) is the unit timelike vector normal to the time slices, the

3-dimensional spatial hypersurfaces with metric γij , and Eulerian observers are those with

4-velocity nµ. The energy density ρ and momentum density Si measured by these normal

observers are given by the following projections of the energy-momentum tensor Tµν ,

ρ ≡ nµnνTµν , (5.2.2)

Si ≡ −γiµnνTµν , (5.2.3)

where the action of nµ projects onto the timelike direction, while γµν = gµν + nµnν projects

onto the spatial hypersurface. Eq. (5.2.2) and (5.2.3) are the source terms for the Hamiltonian

constraint and momentum constraint, respectively. Additionally, the spatial stress and its

trace are defined as

Sij ≡ γiµγjνTµν , S = γijSij , (5.2.4)

which, in addition to ρ and Si, appear in the evolution equations for the extrinsic curvature

tensor. In gramses, the (dark) matter sector is represented by an ensemble of non-interacting

simulation particles of rest mass m and four-velocity uµ = dxµ/dτ , where τ is an affine pa-

rameter. The equations for the gravitational sector are numerically solved based on conformal

matter sources, which are scaled using γ = det(γij) as

s0(x) ≡ √γρ ∝ mαu0 , (5.2.5)

si(x) ≡ √γSi ∝ mui , (5.2.6)

sij(x) ≡ √γSij ∝ m
uiuj
αu0 . (5.2.7)

In these, x is a (discrete) position vector on the cartesian simulation grid and the propor-

tionality symbol in each equation stands for the standard cloud-in-cell (CIC) weights used

for the particle-mesh projection (Hockney & Eastwood, Inc., Bristol, PA, USA, 1988). From

Eqs. (5.2.5)-(5.2.7) we have the following useful relations:

s0 = ρΓ , (5.2.8)

si = ρ

Γui , (5.2.9)

sij = ρ

Γ2uiuj , =⇒ s = ρ(1− Γ−2) , (5.2.10)

ui = Γ2 si
s0
, (5.2.11)

where Γ ≡ αu0 =
√

1 + γijuiuj is the Lorentz factor. For a perfect fluid, s ≡ √γS is
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proportional to pressure in linear theory, and then it vanishes for CDM (dust) in this regime.

Naturally, s also vanishes in the non-relativistic limit.

The equations of motion for collisionless particles correspond to the geodesic equation uµ∇µuν =

0, which in the 3 + 1 form reads

dui
dt = −Γ∂iα+ uj∂iβ

j − αujuk2Γ ∂iγ
jk , (5.2.12)

dxi

dt = α
γijuj

Γ − βi. (5.2.13)

In Eq. (5.2.12), the term uj∂iβ
j corresponds to a force that is absent in both the Newtonian

limit and the linear perturbation regime. In the case where βj is purely a vector-type pertur-

bation (e.g., the Poisson gauge), this force term is known as gravitomagnetic force, in formal

analogy with the magnetic Lorentz force.

5.2.1 Vector decomposition

Given that in this Chapter we are particularly interested in vector modes (transverse modes),

we start by splitting a vector field V i (V) as

V = V‖ + V⊥ , (5.2.14)

where V‖ and V⊥ are respectively the scalar (irrotational) and vector (rotational) compo-

nents, i.e., these satisfy

∇×V‖ = 0, ∇ ·V⊥ = 0 . (5.2.15)

In the case of the velocity field2 ui (u), we define the velocity divergence and vorticity as

θ ≡∇ · u , (5.2.16)

ω ≡∇× u . (5.2.17)

As usual, the power spectra of these quantities are respectively defined as

〈
θ(k)θ∗(k′)

〉
= δ(k− k′)(2π)3Pθ(k) , (5.2.18)〈

ωi(k)ω∗j(k′)
〉

= δ(k− k′)(2π)3 1
2

(
δij − kikj

k2

)
Pω(k) , (5.2.19)

2We use u to represent the velocity ui rather than ui, as it is the former that is used in the 3 + 1 form of
the geodesic equations (5.2.12) and (5.2.13) which are implemented in gramses. ui is what we call ‘CMC-
MD-gauge velocity’, and is different from ui. See Chapter 2 for more details.
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and the velocity power spectrum satisfies the relation

P|u| = k2(Pθ + Pω) . (5.2.20)

The power spectrum of the vector modes of the shift vector is defined in analogous way to

Eq. (5.2.19).

5.2.2 Gauge choice and the constraint for the vector potential

For solving the gravitational and geodesic equations, gramses implements a constrained

formulation of GR (Bonazzola et al., 2004; Cordero-Carrión et al., 2009), in which both the

tensor modes of the spatial metric and the transverse-traceless (TT) part of the extrinsic

curvature are neglected during the evolution. In contrast, the scalar and vector modes of

the gravitational field are treated fully nonlinearly. In order to do this in a robust way,

the formalism adopts the constant-mean-curvature slicing (Smarr & York, 1978a; Shibata,

1999; Shibata & Sasaki, 1999) and a minimal-distortion gauge condition under the conformal

flatness approximation (Smarr & York, 1978b). Contrary to the Poisson gauge, in this gauge

the shift vector contains both scalar and vector (1 + 2) degrees of freedom. At linear order,

the latter modes match the gauge-invariant shift vector from the Poisson gauge (Matarrese

et al., 1998a; Lu et al., 2009), while the mismatch in the scalar piece reflects the fact that the

time foliations are different in these two gauges. Then, in this formalism the components of

the shift vector are solved from a combination of the 3+1 evolution equation for the extrinsic

curvature, the momentum constraint and the gauge conditions (Barrera-Hinojosa & Li, 2020)

(∆Lβ)i = 16παψ−6si + ∂j(αψ−6)ĀijL , (5.2.21)

where si = δijsi, (∆Lβ)i := ∂2βi + ∂i(∂jβj)/3 denotes the flat-space vector Laplacian oper-

ator, and

ĀijL = ∂iW j + ∂jW i − 2
3δ

ij∂kW
k , (5.2.22)

is the longitudinal part of the traceless extrinsic curvature tensor. The auxiliary potential

Wi introduced in Eq. (5.2.22) is directly solved from the momentum constraint equation,

(∆LW )i = 16πsi . (5.2.23)

Then, from Eq. (5.2.21) we note that, at leading order, the shift vector is sourced by the

momentum field and thus βi ∝ W i by Eq. (5.2.23), while differences appear at higher order

due to the extrinsic curvature tensor sourcing βi. Given that throughout this Chapter we will
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be interested in the vector modes of the shift vector, this is decomposed in the same fashion

of Eq. (5.2.14), i.e.

βi = Bi + βi‖ , (5.2.24)

where Bi ≡ βi⊥ (B) is referred to as the vector potential or gravitomagnetic potential, and βi‖
is the scalar mode of the shift. Let us note that, using Eq. (5.2.9), the curl of the conformal

momentum density field si (s) can be written non-perturbatively as

∇× s = Γ−1[(1 + δ)ω + ∇δ × u−∇Γ× s] , (5.2.25)

where δ = ρ/ρ̄ − 1 is the density contrast and ρ̄ is the mean density. Previous studies have

shown that the terms δω and ∇δ×u in the r.h.s. of Eq. (5.2.25) are the main sources for the

vector potential (Bruni et al., 2014; Thomas et al., 2015c; Jelic-Cizmek et al., 2018), while

the contribution from vorticity itself is subdominant at all scales. In the r.h.s. of Eq. (5.2.25),

the last term and the overall modulation by the Lorentz Factor Γ arise due to the definition

of s in Eq. (5.2.9), and both contributions vanish in the linear regime and the non-relativistic

limit.

5.3 Results

For the investigation in this chapter, we have run a high-resolution simulation using gramses,

with a comoving box size Lbox = 256 h−1Mpc and Npart = 10243 dark-matter particles,

corresponding to a particle mass resolution of 1.33 × 109 h−1M�. Because gramses makes

use of AMR in high-density regions, the spatial resolution is not uniform throughout the

simulation volume: while the coarsest (domain) grid has Npart cells, corresponding to a

comoving spatial resolution of 0.25 h−1Mpc, the most refined (high density) regions reach a

resolution of 1283 ×Npart grid elements, with corresponding spatial resolution of 2 h−1kpc.

Initial conditions suitable for the relativistic simulation, and based on the Zel’dovich approxi-

mation, were generated at z = 49 with a modified version of 2lptic code (Crocce et al., 2006)

fed with the matter power spectrum obtained from a modified version of camb (Lewis et al.,

2000) that works for the particular gauge needed for gramses. More details on this can be

found in Chapter 3. The cosmological parameters adopted for the simulation are {ΩΛ, Ωm,

ΩK , h} = {0.693, 0.307, 0, 0.68} and a primordial spectrum with amplitude As = 2.1× 10−9,

spectral index ns = 0.96 and a pivot scale kpivot = 0.05 Mpc−1.

In order to measure the velocity fields from simulation snapshots, we use the publicly-available
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dtfe code (Cautun & van de Weygaert, 2011) which is based on the Delaunay tessellation

method, although other methods have been explored in the literature during the last few

years. Notably, the phase-interpolation method introduced in Abel et al. (2012) shows better

performance than dtfe in shell-crossing regions (Hahn et al., 2015), where the finite-difference

estimation of velocity divergence and vorticity across caustics can be problematic due to the

multiply-valued nature of the velocity field. Nonetheless, the power spectra of these two

fields are not strongly affected by this since the volume-weighted contribution from caustics

is negligible, and both methods converge when nonlinear scales are well resolved. In addition,

while the vorticity power spectrum is affected by resolution effects, this is weakly affected

by finite-volume effects (Pueblas & Scoccimarro, 2009; Jelic-Cizmek et al., 2018). We note

that, while the initial velocity field is vorticity-free by construction, spurious vorticity will

be present at some degree due to the numerical errors introduced by particle-mesh projec-

tions. In addition, shell-crossing events – which source vorticity – are rare at high redshift,

and its insufficient sampling restricts the possibility of estimating the velocity field robustly.

Therefore, in this Chapter we shall focus mainly on low redshifts, z < 1.5, at which vorticity

results are expected to be robust. Contrary to the velocity field, the gravitomagnetic poten-

tial is already solved by the code on a Cartesian mesh so there is no need for post-processing

particle-mesh projections.

It is worthwhile to mention that, although the GR simulations do not necessitate the spec-

ification of a cosmological background (Barrera-Hinojosa & Li, 2020), in our approach the

notion of redshift is still used and should be understood as the standard, background one.

This is achieved through the constant-mean-curvature slicing condition, which allows us to

fix the trace of the extrinsic curvature of the spatial hypersurfaces as K = −3H(t), where

the Hubble parameter H can be conveniently fixed via ‘fiducial’ Friedmann equations (Giblin

et al., 2018; Barrera-Hinojosa & Li, 2020). In addition, even though in the gauge adopted

by gramses the scalar gravitational potentials as well as the matter fields are not gauge-

invariant quantities, gauge effects are only prominent on large scales and become strongly

suppressed for modes inside the horizon. Since in this work we are mainly interested in the

latter, as well as in redshifts below z = 1.5 (in which the horizon is already larger than the

box size), we do not explore potential gauge issues further.

Figure 5.1 provides a visual representation of the density field (top left), velocity divergence

(top right), the magnitude3 of the vorticity vector field, ω ≡ |ω| = (ω2
x + ω2

y + ω2
z)1/2 (bottom

3For this we use the flat metric δij .
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Figure 5.1: A slice of the simulation box at z = 0 showing the density (top left), velocity
divergence (top right), vorticity (bottom left) and vector potential magnitude (bottom right)
fields. The velocity values shown are normalised by Hf , where H ≡ aH is the conformal
Hubble parameter and f is the linear growth rate in ΛCDM. The density field is normalised
by its mean value in the simulation box.

left), and the vector potential magnitude, B ≡ |B| = (B2
x +B2

y +B2
z )1/2 (bottom right),

across a slice of the simulation box at z = 0. From this figure, it is clear that the density

field has a similar large-scale distribution to the velocity divergence, consistently with linear

perturbation theory. Since velocity divergence can take negative values, we use a linear scale

on its map, with a cutoff of extreme values to help visualisation. As expected, the velocity

divergence is negative in collapsing regions due to matter in-fall, and positive in voids and
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low-density regions. The vorticity field also shows a clear correlation with both density and

velocity divergence. However, we should bear in mind that, as we have discussed before, the

velocity divergence and vorticity estimated by dtfe are not completely reliable near caustics

(Hahn et al., 2015), and therefore such maps only provide qualitative information and an

accurate picture on large scales.

From the bottom right panel in Fig. 5.1, we observe that the magnitude of the vector potential

has some degree of correlation with the structures observed in density, velocity divergence and

vorticity, particularly in very high-density and low-density regions. As shown by Eqs. (5.2.21)-

(5.2.25), the vector potential is not sourced by any of these components alone but is correlated

with the rotational part of the full momentum density field. This panel also shows that the

distribution of the vector potential magnitude is a great deal smoother than the cases of

matter and velocity fields. This is expected since the vector potential components satisfy

the elliptic-type equation (5.2.21), and then long-wavelength modes become dominant due to

the Laplacian operator ∂2. Although not included here, the same happens in the case of the

conformal factor ψ which satisfies the Hamiltonian constraint (or the Poisson equation in the

Newtonian limit). From the quantitative side, we note that the vector potential magnitude

seems to typically remain between O(10−8) and O(10−7), with some peaks of a few times

O(10−7) only in very specific regions.

We will explore the behaviour of the vector modes in more detail in the next sections.

5.3.1 Power spectra

In this section we analyse the power spectra of the velocity field and gravitomagnetic vector

potential. The auto and cross spectra of matter quantities such as density, velocity diver-

gence and vorticity (which are measured with dtfe from particle data) are calculated using

nbodykit (Hand et al., 2018). In contrast, the vector (as well as scalar) potential values are

calculated and stored by gramses in cells of hierarchical AMR meshes, and the spectrum

is measured by a different code that is able to handle such mesh data directly and to write

it on a regular grid by interpolation (the ‘AMR-FFT method’, He et al., 2015). While the

vector potential spectrum can also be measured in the same way as the matter quantities by

writing its values at the particles’ positions rather than in AMR cells, which means dtfe and

nbodykit can be used, the above method yields better results on small scales; as shown in

Appendix C, the ‘dtfe+nbodikit’ method is affected by shot noise at larger scales than

the ‘AMR-FFT’ method. In all figures, we normalise the velocity power spectra by the fac-
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Figure 5.2: Various auto and cross power spectra involving the velocity field for z = 0 (black),
z = 0.5 (orange), z = 1 (red) and z = 1.5 (blue). The top left and top right panels show
the velocity divergence power spectrum and vorticity power spectrum, respectively, both of
which are normalised by (Hf)2. Bottom left: the cross spectrum between density and velocity
divergence. Since in linear theory Pδθ < 0, we plot its absolute magnitude normalised by Hf .
The discontinuity corresponds to the flip in sign on nonlinear scales, after which density and
velocity divergence become correlated. Bottom right: the power spectrum of δω and ∇δ×u,
which are the main source terms for the metric vector potential, c.f. Eq. (5.2.25). These
are normalised by (Hf)2. In the two left panels, the solid lines denote the corresponding
linear-theory predictions.

tor (Hf)2, where H = aH is the conformal Hubble parameter of the reference Friedmann

universe, and f the linear growth rate in ΛCDM parameterised as (Linder, 2005)

f(a) = Ωm(a)6/11, (5.3.1)

where Ωm(a) = Ωma
−3/(H/H0)2. In this way, the amplitude of Pθ matches that of the

matter power spectrum in the linear regime, where the continuity equation δ = −θ/(Hf) is

expected to hold.
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Figure 5.2 shows the velocity divergence power spectrum (top left panel), the vorticity power

spectrum (top right panel), the cross spectrum between density and velocity divergence (bot-

tom left) and the power spectrum of two different contributions to the momentum field

(bottom right) at different redshifts in the range 0 ≤ z ≤ 1.5. In the case of velocity di-

vergence, we find a very good agreement with linear theory at scales k ≤ 0.1 hMpc−1 for

all redshifts. Above that scale, deviations become stronger towards lower redshifts, and a

localised power loss (‘dip’) eventually develops around k ≈ 1.2 hMpc−1. In the case of the

vorticity power spectrum, we note that towards large scales this is several orders of magnitude

smaller than velocity divergence, while at around k ∼ 1 hMpc−1 the spectrum starts to peak

and they become comparable. Note that, unlike the velocity divergence, there is no standard

perturbation theory prediction for the vorticity as this exactly vanishes in the perfect fluid

description. Interestingly, the ‘dip’ in the velocity divergence power spectrum is at the simi-

lar position to the peak in the vorticity power spectrum, which has been interpreted as the

consequence of shell crossing occurring around those scales, where the angular momentum

can be large enough to dampen the growth of structures as it forces particles to rotate around

them (Jelic-Cizmek et al., 2018).

Note that, due to the high cost4 of GR simulations using gramses, we have not performed

runs with even higher resolutions to check the convergence of the velocity and vorticity

power spectra. A useful convergence test for gevolution simulations was done in Jelic-Cizmek

et al. (2018) (see Fig. 6 there), which shows that the amplitude of Pω decreases as the force

resolution increases. The simulations there have the same box size of Lbox = 256 h−1Mpc, and

the run labelled ‘high resolution 1’ has the same mesh resolution as our domain grid (10243

cells); while this resolution is eight times poorer than that of the run labelled ‘high resolution

2’, which has 20483 cells, the AMR nature of gramses means that higher resolution can

be achieved in high-density regions – with the highest resolution attained in our run being

equivalent to a regular mesh with 1283 × 10243 cells. Hence, since ‘high resolution’ 1 and 2

are already converged in Jelic-Cizmek et al. (2018), we conclude that our simulation has also

converged to at least a similar level.

The cross spectra Pδθ is useful for detecting deviations from linear theory and provides

information about shell crossing. Considering the continuity equation, the linear-theory

4A GR simulation using gramses takes about an order of magnitude longer than an equivalent Newtonian
simulation using default ramses, partly due to the 10 (compared to one) GR metric potentials to be solved,
and partly due to the cost of preparing the source terms for the nonlinear equations that govern the metric
potentials, as well as the additional mpi communications.
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expectation is that Pθδ/(Hf) = −Pδ, but towards shell-crossing scales the initial (linear)

anti-correlation of δ and θ is lost and correlations appear (Hahn et al., 2015). From the

bottom left panel of Fig. 5.2 we find that the anti-correlation drops dramatically and flips

sign at k ≈ 2 hMpc−1 at z = 0, which is slightly higher than the scale at which the vorticity

spectrum peaks as also found in previous studies (Jelic-Cizmek et al., 2018).

The bottom right panel of Fig. 5.2 shows the power spectra of δω and ∇δ × u, which are

the main source terms for the metric vector potential in Eq. (5.2.25). In particular, the

contribution of ω to Eq. (5.2.25) is already small compared to δω on nonlinear scales because

δ � 1. We find good agreement with the z = 0 results shown in Bruni et al. (2014) based on

a post-Friedmann expansion. We find that towards higher redshifts the contribution due to

∇δ × u starts to become larger than that of δω at slightly larger scales.

Although vorticity vanishes in standard perturbation theory, the effective field theory of LSS

(EFTofLSS) predicts that its power spectrum today can be characterised by a power law over

a range of scales (Carrasco et al., 2014). On large scales, we can find the slope of the vorticity

power spectrum by fitting a power law,

Pω(k) = Aωk
nω , (5.3.2)

where nω is the large-scale spectral index, and Aω the amplitude that is not fixed by theory.

The EFTofLSS predicts nω = 3.6 for 0.1 hMpc−1 . k . 0.2 hMpc−1 and nω = 2.8 for

0.2 hMpc−1 . k . 0.6 hMpc−1 (Carrasco et al., 2014). Previous N -body simulations have

found nω ≈ 2.5 for k . 0.1 hMpc−1 (Hahn et al., 2015); a similar value was found at k .

0.4 hMpc−1 in Jelic-Cizmek et al. (2018). Moreover, on scales k & 1 hMpc−1, there is partial

evidence suggesting that the spectral index approaches the asymptotic value nNL
ω → −1.5

(Hahn et al., 2015).

Figure 5.3 shows the best fits of the power law (5.3.2) to the simulation data at z = 0 on large

scales (small scales) with their corresponding spectral index nω (nNL
ω ), and the shaded region

represents the interval of validity for the fit. On large sub-horizon scales, we find nω ≈ 2.7,

which is slightly higher than previous simulations results in the literature, and slightly lower

than the EFTofLSS prediction. Notice, however, that there is not complete overlap between

the region used for the fit and the EFTofLSS prediction used for comparison as the latter

extends up to k ∼ 0.6 hMpc−1 but it is clear that the slope of the power spectrum already

decreases at k ∼ 0.32 hMpc−1. In addition, the slope does not seem to become steeper at

larger scales as predicted by the EFTofLSS, a feature also found by the previous study (Jelic-
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Figure 5.3: Power-law fitting of the vorticity power spectrum at z = 0. The solid blue
and solid red lines show the best fits of the simulation data (black dots) on large and small
scales, respectively, while the shaded regions represent the validity interval for each fit. As
a reference, the dashed magenta line shows the EFTofLSS prediction from Carrasco et al.
(2014) for the region 0.2 hMpc−1 . k . 0.6 hMpc−1, which only has a small overlap with
the fitting region used on large sub-horizon scales.

Cizmek et al., 2018), which is likely related to the large-scale cutoff imposed by the finite

box of the simulation. Toward smaller scales, we find the spectral index nNL
ω ≈ −1.4, which

is slightly less steep than that suggested in Hahn et al. (2015). However, there is a slight but

clear increase in power at around k ∼ 7 hMpc−1 which introduces an oscillatory feature not

captured by a perfect power law.

As originally proposed in Pueblas & Scoccimarro (2009), it is also interesting to characterise

the evolution of the large-scale vorticity power spectrum as

Pω(k; z) =
(
D+(z)
D+(0)

)γω

Pω(k; z = 0) , (5.3.3)

whereD+(z) is the linear growth rate at z and γω a new parameter. In Pueblas & Scoccimarro

(2009), the best-fit value found is γω = 7 ± 0.3 using the snapshots z = 0, 1, 3, which is

overall consistent with Thomas et al. (2015c); Jelic-Cizmek et al. (2018), although the latter

references suggest values γω ≥ 7. Moreover, these have only considered snapshots with z ≤ 1

since the scaling breaks down at higher redshifts, which is likely related to resolution effects

in the sampling of vorticity due to a lower fraction of particles undergoing shell crossing at

higher redshifts.

The top panels of Fig. 5.4 show the results for the best fist of the Dγω
+ scaling of Eq. (5.3.3)
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Figure 5.4: Power-law modelling of the time evolution of the vorticity power spectrum based
on Eq. (5.3.3). Top panels show results for the large scales regime and the bottom panels
analogous results for nonlinear scales. Top left: vorticity power spectra at different redshifts
scaled using γω = 7.7. Shaded regions represent the interval of validity considered for the
fit, and the colours {orange, red, purple, cyan, gray, blue, magenta, green, brown, yellow,
brown, black} correspond to z = {1.5, 1, 0.85, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0}, respectively.
Bottom left: similar to top left panel but for nonlinear scales. Right panels: Time evolution
of the vorticity power spectrum for a set of fixed k-modes as a function of D+(z) (normalised
by today’s value of D+). The solid lines correspond the best fit curves with the respective
power-law indices γω and γNL

ω shown. On the bottom right panel, the data point for z = 1.5
has not been included for the fit, as the bottom left panel shows a clear discrepancy with
lower redshifts.

using several snapshots below z = 1.5. The top left panel of Fig. 5.4 shows the power

spectrum at these various redshifts scaled using (D+(z)/D+(0))7.7, while in the top right

panel we select three different modes from the shaded green region of the top left panel and

find the corresponding value of γω from a best fit to the corresponding vorticity spectra.

We find that there is some scale dependence in γω and the amplitude of the vorticity power

spectrum evolves approximately with γ ≈ 7.7 over the scales 0.08 . k . 0.4 hMpc−1, which is
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higher than other simulation results in the literature (Pueblas & Scoccimarro, 2009; Thomas

et al., 2015c; Jelic-Cizmek et al., 2018). However, compared to the latter two references, in

the case here we are able to fit the amplitude up to z = 1.5 before the scaling breaks down.

Besides the results from Jelic-Cizmek et al. (2018) based on the gevolution code, which works

in a fixed-resolution grid, previous studies of vorticity use N -body simulation codes in which

a softening length scale in the force calculation determines the spatial resolution. In the case

of gramses, the AMR capabilities allow one to achieve high spatial resolution (∼ 2 h−1kpc)

in high-density regions.

We can extend the previous analysis to model the time evolution of the vorticity power spec-

trum at nonlinear scales, in terms of a new scale-independent parameter γNL
ω in Eq. (5.3.3).

From Fig. 5.2, it is clear that the power spectrum evolves more slowly in this regime compared

with large scales, and so we expect γNL
ω to be smaller than γω. In the bottom left panel of

Fig. 5.4, we show the scaling of the vorticity spectra by (D+(z)/D+(0))2.6, where we find that

such evolution works as a good approximation on scales k & 3.2 hMpc−1. In the bottom right

panel we show the best-fit value of γNL
ω for three different k-modes. In this case, unlike in the

previous fit for large sub-horizon scales, we have not considered the z = 1.5 spectrum for the

fit as from the bottom left panel it is already clear that the scaling for such spectrum (orange

solid line) would deviate from the lower redshift results. This result suggests that the am-

plitude of the vorticity power spectrum can be actually estimated using a scale-independent

parameter in the power law of Eq. (5.3.3) on deeply nonlinear scales. However, there is an

obvious scale dependence in the transition between the large- and small-scale regimes which

is not captured by these parameterisations and requires further investigation.

Let us now discuss the results for the vector potential. In ΛCDM cosmology, this appears as

a second-order perturbation at its lowest order, which in the case of a perfect fluid is sourced

by the product of the first-order density contrast and velocity divergence (Matarrese et al.,

1998b; Lu et al., 2009). However, the single-stream fluid description of CDM breaks down at

late times when shell crossing occurs, and then we expect corrections to the vector potential

particularly at quasi-linear and nonlinear scales.

The second-order perturbation theory prediction for the dimensionless power spectrum of B,

∆B(k) ≡ k3

2π2PB(k), (5.3.4)

is given by (Lu et al., 2009)

∆B(k) = 9Ω2
mH

4
0

2a2k2

∫ ∞
0

dw
∫ 1+w

|1−w|
duΠ

[
∆δ(ku)∆v(kw)− w

u
∆δv(ku)∆δv(kw)

]
, (5.3.5)
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Figure 5.5: Left: The dimensionless power spectrum of the vector potential, ∆B(k) =
k3PB(k)/(2π2). The solid lines represent the corresponding second-order perturbation the-
ory predictions (Lu et al., 2009), in which cutoffs have been introduced in the convolution
calculation to accommodate the lack of power in the simulation results on large scales due
to box size. Right: The ratio between the power spectrum of the vector potential and that
of the scalar gravitational potential defined as the fully nonlinear perturbation to the lapse
function, i.e., Φ ≡ α − 1. In both panels, each colour corresponds to z = 0 (black), z = 0.5
(orange), z = 1 (red) and z = 1.5 (blue).

where ∆δ and ∆v are the dimensionless power spectra of the density perturbation and velocity

potential v, ∆δv their cross spectrum, and Π(u,w) = u−2w−4 [4w2 − (1 + w2 − u2)2] is an

integration kernel that depends on w = k′/k and u =
√

1 + w2 − 2w cosϑ, with cosϑ defined

by cosϑ = k′ · k/(kk′). At any given scale, the convolution in Eq. (5.3.5) couples different

k-modes of δ and v. Since the simulation can only access modes within a finite k-range, this is

equivalent to having a large-scale (kmin) and small-scale (kmax) cutoffs in Eq. (5.3.5), therefore

leading to a lower amplitude of PB than the true result. For instance, Adamek et al. (2016a)

found that in order to get good agreement between simulation results and perturbation-theory

calculations using Eq. (5.3.5), the box should be large enough to contain the matter-radiation

equality scale. In practice, to account for this effect due to missing k-modes, to compare with

Eq. (5.3.5), we use the large-scale cutoff kmin ∼ 0.8× 2π/L, i.e. 80 percent of the fundamental

mode of the box, as well as a small-scale cutoff kmax = πN
1/3
part/L, which corresponds to

the Nyquist wavenumber of the coarsest grid used by the simulation. The left panel of

Fig. 5.5 shows the simulation measurements of the dimensionless power spectrum of the vector

potential at four different redshifts, and their corresponding perturbation-theory predictions.

At z ≥ 1 we see good agreement between the simulation and perturbation-theory results up

to k ∼ 0.3 hMpc−1, while at z = 0 discrepancies start already at k ∼ 0.2 hMpc−1, which is
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qualitatively consistent with Adamek et al. (2014); Bruni et al. (2014); see also Andrianomena

et al. (2014) for a prescription of the nonlinear corrections to the perturbation-theory result

using halofit. At highly nonlinear scales the amplitude of the spectrum measured from the

simulation can be more than two orders of magnitude higher than the perturbation-theory

prediction. Note that at all four redshifts the simulation spectra flatten at the largest k-mode

sampled by the simulation box, which can be interpreted as a finite-box effect.

The right panel of Fig. 5.5 shows the ratio between the power spectra of vector potential B

and that of the scalar potential Φ measured from the simulation, the latter defined as the

fully nonlinear perturbation to the lapse function in the metric (5.2.1), i.e. Φ ≡ α − 1. At

z = 0, we find the ratio to be within 2×10−5 and 4×10−5 for 0.2 hMpc−1 . k . 10 hMpc−1,

which is in good agreement with Bruni et al. (2014). The ratio reaches a peak of 5 × 10−5

at k ∼ 15 hMpc−1, after which it starts to decrease. At higher redshift the evolution of B

makes the ratio larger. Our results confirm that the ratio between both potentials reach the

percent-level on nonlinear scales at z = 0. As pointed out by Bruni et al. (2014), though this

ratio is close to the value found in Lu et al. (2009) for the ratio between scalar and vector

modes in perturbation theory, here the fully nonlinear B,Φ fields are used. In fact, the vector

potential power spectrum from the left panel of Fig. 5.5 can be over two orders of magnitude

larger than that found in the latter reference.

5.3.2 The vector potential and frame-dragging acceleration in dark matter

haloes

Let us further analyse the vector potential on nonlinear scales by investigating its magnitude

inside the dark matter haloes from the above general-relativistic simulation. For this we

have generated halo catalogues using the phase-space Friends-of-Friends halo finder rock-

star (Behroozi et al., 2013). From this catalogue we then get their centre positions, radii

R200c and masses M200c. The latter two are defined respectively as the distance from the

halo centre which encloses a mean density of 200 times the critical density of the universe as

a given redshift, and the mass enclosed within such a sphere.

Unfortunately, the small-scales inaccuracies in the estimation of the velocity divergence and

vorticity fields with dtfe due to caustics prevents us from studying their behaviour in haloes

alongside the vector potential. We have tested that indeed, the velocity estimations are

strongly affected by resolution and do not converge either using a resolution for the tessellation

grid similar to the mean inter-particle distance of dark matter particles in the haloes or
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otherwise. The phase-interpolation method was used in Hahn et al. (2015) to successfully

estimate the vorticity in haloes in the case of warm dark matter, but still it is not possible

to robustly measure this from CDM simulations either: this is related to the difficulty of

resolving the perturbations up to highly nonlinear scales in the CDM case, which in models

such as warm dark matter is not required as the spectrum truncates at some finite free-

streaming scale. On the other hand, the scalar and vector potentials are not affected by

the aforementioned issues, as they are directly calculated and stored by gramses in the

hierarchical AMR meshes.

Figure 5.6 shows density (left column), vector potential magnitude (middle column) and

scalar gravitational potential (right column) in the vicinity of three selected dark matter

haloes at z = 0, with masses Mh ≈ 6.5 × 1015 h−1M� (top row), Mh ≈ 3.0 × 1013 h−1M�
(middle row) and Mh ≈ 3.1 × 1012 h−1M� (bottom row). In all cases, the map centre is

aligned with the halo centre and the width of the shown region corresponds to four times the

halo radius R200c. As also shown in Fig 5.1, overall we observe some degree of correlation

between the vector potential and the matter density, but clearly not at the level of the scalar

potential. In particular, in the case of the most massive halo (top row) we can see that

while both potentials peak towards the halo centre, unlike for the scalar potential, the global

maximum of the vector potential within the shown region is actually found in the lower left

part of the map, where there appears to be another, smaller, halo infalling towards the central

one. Again, this qualitative difference is not surprising since the vector potential is sourced

by the transverse part of the momentum density, Eq. (5.2.25), while the matter source term

for the scalar potential is the density contrast itself (up to higher-order terms). As before, we

can also see that both potentials are smoother than the density field owing to the elliptic-type

nature of their equations (Barrera-Hinojosa & Li, 2020), in which short-wavelength modes

are suppressed. In addition, in the most massive halo we can observe that the scalar potential

tends to be more spherically symmetric around the centre than B, which displays large values

in most part of the left and upper part of the map. Indeed, although the low-density (dark)

regions in the bottom right and top left parts of the density map are of similar characteristics,

and these are clearly correlated with the Φ map, these are not correlated with features in the

B map at all.

For the halo shown in the middle row of Fig. 5.6, the density and potential contours have more

similar shapes to each other than in the most massive halo. Nonetheless, the scalar potential

again seems to decay more rapidly outside R200c than the vector potential magnitude. This

also seems to be the case in the halo shown in the bottom panels, although in this case the
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Figure 5.6: Visualisation of three selected dark matter haloes at z = 0, with masses Mh =
6.5×1014 h−1M� (top row),Mh = 3.0×1013 h−1M� (middle row) andMh = 3.1×1012 h−1M�
(bottom row). In each row, each panel shows, from left to right: matter density, magnitude of
the vector potential and absolute magnitude the scalar gravitational potential (since typically
Φ ≤ 0 in the inner parts of a halo). Interpolation has been used to display smoother maps.
All maps are in logarithmic scale.

potentials are smaller and shallower. Note that, for the halo in the middle panels, |Φ| is

largest in the central region (red/orange/green), decays when one moves further away from

the halo centre (blue), but grows again far from the halo (green); this is because this halo

resides in a low-density environment, with a positive environmental contribution to the total
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Figure 5.7: Halo profiles (spherical averages) at z = 0 (left column), z = 0.5 (middle column)
and z = 1 (right column). Each row shows, from top to bottom, density, vector potential
magnitude and its ratio against the scalar gravitational potential. In the case of the potentials,
their spherical-average at R200c has been subtracted from each individual halo profile as a
way to remove their environmental contributions. The upper, middle and lower halo mass
ranges are represented by red, green and blue, respectively, for which the solid line shows
the mean calculated over all haloes in a given mass range, and the shaded regions are the 1σ
regions. The values of Mh shown in the inset are in units of h−1M�.

potential so that the latter crosses zero.

It is important to bear in mind that, although the halo centres are approximately located at

a local maximum of |Φ|, the potentials themselves are not an observable quantity: it is the

gradient of the potentials that contributes as force terms in the geodesic equation (5.2.12),

while the values of the potential themselves can be largely influenced by their environments.

In this subsection, we are mainly interested in haloes which are isolated and therefore less
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Figure 5.8: Evolution of the ratio between the vector potential and the scalar gravitational
potential for the different halo mass ranges. At each redshift, the value shown corresponds
to the average of the ratio for r ≤ R200c. We have only included cases where the number of
haloes in a given mass range is greater than ten at a given redshift. The values of Mh shown
in the inset are in units of h−1M�.

affected by environments. To select such haloes, we try to split the potential at each point

into two contributions: one from the halo itself and one from its environment, i.e., well

beyond a distance R200c from its centre. Since the potentials are not necessarily spherically

symmetric, as it is evident from the top row of Fig. 5.6, as a crude way, we shall take the

spherical average in a radial bin at 2R200c and subtract this from the values at smaller radii,

which allows one to get “shifted” radial halo profiles for both Φ and B that vanish at 2R200c.

For Φ (B) we expect this profile to monotonically increase (decrease) to zero as r increases

to 2R200c, for well-isolated relaxed haloes.

Figure 5.7 shows, from the top to the bottom row, the radial profiles of density, the vector

potential magnitude and its ratio against the scalar gravitational potential. All profiles have

been measured from the centres of a sample of haloes in different mass ranges, for three

redshifts: z = 0 (left column), z = 0.5 (middle column) and z = 1 (right column). For this

we have selected three subsamples of haloes with O(100) haloes each based on mass cuts:

we define a higher mass range Mh ≥ 1014.5 h−1M�, an intermediate mass range with mean

mass M̄h = 1013.5 h−1M�, and a lower mass range with mean mass M̄h = 1012.5 h−1M�. For

each halo from a given mass range, we then calculate the spherical average of the density,

vector potential and scalar potential up to 2R200c, and average over the full population. As

mentioned in the previous paragraph, in the case of the potentials we have subtracted their
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Figure 5.9: Visualisation of three selected dark matter haloes at z = 0, with masses Mh =
2.7×1014 h−1M� (top row),Mh = 3.3×1013 h−1M� (middle row) andMh = 3.2×1012 h−1M�
(bottom row). In each row, each column shows, from left to right: matter density, the mag-
nitude of the gravitomagnetic acceleration and the magnitude of the standard gravitational
acceleration, the latter two in units of h cm/s2. Interpolation has been used to display
smoother maps. All maps are in logarithmic scale.

average values at 2R200c in the profile of each individual halo. In this process, we have

discarded the haloes in which the resulting spherical average of B becomes negative for some

r < R200c after the subtraction, which typically happens in lower mass haloes due to their
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Figure 5.10: Halo profiles (spherical averages) at z = 0 (left column), z = 0.5 (middle
column) and z = 1 (right column). In a given column, each row shows, from top to bottom,
the gravitomagnetic (frame-dragging) acceleration, standard gravitational acceleration and
their ratio. The upper, middle and lower halo mass ranges are represented by red, green and
blue, respectively, for which the solid line shows the mean calculated over all haloes in a given
mass range, and the shaded regions are the 1σ regions. The values of Mh shown in the inset
are in units of h−1M�.

shallow potentials. However, these haloes are the most abundant type and hence we retain

a sample of size O(100) even at z = 1, while the number of haloes in the middle and higher

mass bins is around ∼ 50 at that same redshift.

From Fig. 5.7 we find that at the 1σ level there is a clear correlation between halo mass

and the magnitude of the gravitomagnetic potential, which can differ by up to two orders of

magnitude between halos with masses close to 1012.5 h−1M� and those with masses larger

than 1014.5 h−1M�. In all cases, the vector potential flattens toward the halo centres and it
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decreases towards the outskirts. However, from the bottom row of Fig. 5.7 we find that the

ratio between vector and scalar potentials is roughly constant inside haloes across all masses

and redshifts considered, and the dependence of this ratio upon halo mass is quite weak as

all means lie within 1σ of each other. At z = 0, we find that the ratio is a few times 10−3,

which is roughly consistent with the value inferred from the ratio of O(10−5) between the

power spectra of the vector and scalar potentials at k & O(0.1) hMpc−1, as shown in Fig. 5.5

(note that the subtraction of the environmental contributions in these potentials essentially

removes the long-wavelength contributions to B/Φ, thereby marking this comparison with

Fig. 5.5 reasonable; but as we only look at a small fraction of the total volume, inside a

sub-group of haloes, we of course should not expect an exact equality). At z = 0.5 and z = 1,

the picture is qualitatively the same apart from the increase in the amplitude of the vector

potential.

In CDM simulations, it is well known that the density profile of haloes can be described by

the universal Navarro-Frenk-White (NFW; Navarro et al., 1996) fitting formula, which has

a corresponding analytical prediction for the Newtonian potential profiles of haloes. The

constancy of B/|Φ| inside haloes which is found here implies that it might be straightforward

to derive an analytical fitting function for the B profiles in haloes, which is closely related to

the NFW function, though this will not be pursued here.

Given that Fig. 5.7 shows that the ratio between the vector and scalar potentials is roughly

constant inside the halos – and we have checked that such constant ratio holds even above

z = 1 – we can characterise this ratio by a single number at each halo mass and redshift.

As an extension of the bottom row of Fig. 5.7, Fig. 5.8 shows the mean value of such ratio

calculated within r < R200c at different redshifts. Since the number of haloes in a given

mass bin decreases towards higher redshifts, here we only consider cases in which the number

of haloes in a given mass range is greater than ten at a given redshift. We find that for

all mass bins B/Φ increases almost linearly with redshift. At redshift z = 2 the rate of

change of this ratio with respect to redshift slows down slightly for the lowest mass range

(blue line), after which it picks up again: this could be due to a lack of simulation resolution

at high z. Observationally, the ratio between vector and scalar potentials is particularly

relevant for weak lensing, as post-Newtonian calculations show that the relative correction

to the Newtonian convergence field κ is proportional to B/Φ (Sereno, 2002, 2003; Bruni

et al., 2014). Therefore, Fig. 5.8 suggests that, in the case of dark matter haloes, the lensing

convergence correction due to the gravitomagnetic potential is between the O(10−3) and

O(10−2) level, in agreement with previous studies (Sereno, 2007; Cuesta-Lazaro et al., 2018;
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Tang et al., 2021). Moreover, this only depends weakly on the halo mass and could be

more easily detected on high-mass haloes at high redshifts. However, we note that at higher

orders in the post-Newtonian expansion, new contributions from the time derivative of B

appear (Bruni et al., 2014; Thomas et al., 2015b) as well, which requires further inspection.

Besides investigating the potentials, we can also look at the force that each of these exert on

the particles according to Eq. (5.2.12), which shows that the total force is mainly composed

by two contributions; the standard gravitational force arising from the gradient of the scalar

potential (first term on the r.h.s.), and the gravitomagnetic force (contained in the second

term on the r.h.s.) which is responsible for the frame-dragging effect. The latter is naturally

not taken into account in Newtonian gravity. The third term in the r.h.s of Eq. (5.2.12) is

subdominant and so we shall not explore it here.

Figure 5.9 is a visualisation of the magnitude of the gravitomagnetic acceleration (middle

column) and that of the standard gravitational acceleration (right column) in units of h

cm/s2, in the vicinity of three different dark matter haloes. These haloes have similar masses

to those shown in Fig. 5.6. We find that the forces are correlated with the density field

up to some degree, particularly in the haloes in the middle and bottom rows, although the

gravitomagnetic force seems to be less smooth than the Newtonian one. For the halo in the

top row, there is a clearer difference between the forces compared to the other two cases. The

peaks of the gravitomagnetic acceleration seem to occur at the density peaks but the opposite

is not true, and there is no clear correspondence between their amplitudes. Interestingly, in

this halo the values of gravitomagnetic force around a few times 10−13 h cm/s2 (green region)

extend around the centre and towards the left part of the map, where the density field has

already decreased by various orders of magnitude. This kind of asymmetry between both

kinds of maps might be due to the actual dynamical state of the particles in a given region.

Even if the density is low, if the particles’ velocity happens to be aligned with the gradient

of the vector potential components they will contribute significantly to |u · ∂iB|.

As before, we can calculate the spherical averages of the forces, which allows us to get

radial profiles (although no subtraction from radial bins beyond 2R200c is required this time).

Figure 5.10 shows a comparison of the gravitomagnetic (frame-dragging) acceleration and the

standard gravitational one in dark matter haloes in an analogous way to the scalar and vector

potential profiles shown in Fig. 5.7. We find that the magnitude of the gravitomagnetic force

is larger towards the inner parts of the halo, and the dependence on the halo mass is weaker

than in the case of the scalar gravitational potential. As we discussed before, this can also
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be explained by the fact that the gravitomagnetic force not only depends on density but on

the actual dynamical state of particles. Similarly to the behaviour of B/|Φ|, from Fig. 5.10

we find that the ratio of the two corresponding forces also remains fairly constant inside

the haloes, although in the most massive haloes it tends to increase toward the outskirts.

A weak dependence on halo mass is found at all redshifts. In Adamek et al. (2016a) the

maximum gravitomagnetic acceleration measured from the simulation box at z = 0 is found

to be roughly 7 × 10−12 h cm/s2 for the highest resolution used (125 h−1kpc), while the

value measured from lower resolution runs decreases monotonically. From Fig. 5.10 we find

that this is comparable with our results for haloes in the upper mass range at the 1σ level.

However, we note that for the most massive halo in our simulation, we find the maximum

value of the gravitomagnetic acceleration to be 7× 10−11 h cm/s2, i.e. roughly one order of

magnitude higher. This difference could be explained by the AMR feature of our simulation,

in which the most refined regions are resolved with a resolution of 2 h−1kpc. In addition,

gramses treats the vector potential non-perturbatively, although the difference due to higher-

order corrections is likely to be subdominant with respect to the aforementioned resolution

dependence.

5.4 Summary

We have investigated the vector modes of the matter fields as well as those of the ΛCDM space-

time metric, from large sub-horizon scales to deeply nonlinear scales using a high-resolution

run of the general-relativistic N -body gramses code introduced in Chapter 2. On the one

hand, vorticity vanishes at the non-perturbative level in a perfect fluid description and yet it

is generated dynamically due to the collisionless nature of dark matter. On the other hand,

the metric vector potential – responsible for frame-dragging – appears beyond linear order in

perturbation theory and is not solved for in Newtonian simulations. Therefore, the physics

behind the vector modes is highly non-trivial and numerical simulations play an important

role in their study. Although the relativistic nature of the code is not particularly exploited

from the point of view of vorticity, the vector potential is a prime quantity as this is not part

of Newtonian gravity and therefore not implemented in Newtonian simulations.

To this end, we have run a high-resolution N -body simulation using gramses, that employs

Npart = 10243 particles in a box of comoving size Lbox = 256 h−1Mpc. In gramses, the GR

metric potentials – in the fully constrained formalism and conformally flat approximation –

are solved on meshes in configuration space. The AMR capabilities of gramses allows it
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to start off with a regular grid with 10243 cells, and hierarchically refine it in high-density

regions to reach a spatial resolution of 2 h−1kpc in the most refined places, namely dark

matter haloes. This enables a quantitative analysis of the behaviour of vector modes in such

regions.

The key findings presented in this Chapter are summarised as follows:

1. On scales 0.06 . k . 0.3 hMpc−1, the vorticity power spectrum can be characterised by

the power law in Eq. (5.3.2) with an index nω ≈ 2.7, a value that is overall consistent

with recent simulation results of Hahn et al. (2015); Jelic-Cizmek et al. (2018). On

nonlinear scales (2.3 . k . 20 hMpc−1), the power spectrum can again be described

by a power-law function, but the index changes to nNL
ω ≈ −1.4, close to the asymptotic

value of −1.5 suggested by Hahn et al. (2015); cf. Fig. 5.3.

2. On scales 0.1 . k . 0.4 hMpc−1 the amplitude of the vorticity power spectrum seems

to evolve as ∼ [D+(z)/D+(0)]7.7 at z ≤ 1.5, which is higher than previous values

found in the literature (Thomas et al., 2015c; Jelic-Cizmek et al., 2018). Nonetheless,

these references also found larger values than the scaling with the seventh power orig-

inally proposed in Pueblas & Scoccimarro (2009). On scales k & 3.5 hMpc−1, the

evolution of the amplitude of the power spectrum can be similarly neatly described as

∼ [D+(z)/D+(0)]2.6 up to z = 1; cf. Fig. 5.4.

3. The vector potential power spectrum remains below 4 × 10−5 relative to the scalar

gravitational potential down to k = 20 hMpc−1; cf. Fig. 5.5.

4. Inside dark matter haloes, the magnitude of the vector potential peaks towards the

centres at ∼ 10−7 for haloes more massive than 1014.5 h−1M�, which can reduce by

two orders of magnitude in haloes of masses around 1012.5 h−1M�. Its ratio against

the scalar gravitational potential remains typically a few times 10−3 inside the haloes,

regardless of their mass (cf. Fig. 5.7). The ratio B/|Φ| remains nearly flat within the

halo radius R200c, for the halo redshift (z < 3) and mass (1012.5 ∼ 1015 h−1M�) ranges

checked, and this constant increases roughly linearly with z; cf. Fig. 5.8.

5. The magnitude of the gravitomagnetic acceleration also peaks at the halo centres where

it can reach a few times 10−11 h cm/s2 in haloes above ∼ 1014.5 h−1M�. Its ratio against

the standard gravitational acceleration remains around ∼ 10−5 on average, regardless

of the halo mass and distance from the halo centre; cf. Fig. 5.10. This suggests that the

effect of the gravitomagnetic force on cosmic structure formation is, even for the most
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massive structures, negligible – however, note that we have not studied the behaviour

in low-density regions, i.e., voids.

While we have presented a first study of the gravitomagnetic potential in dark matter haloes

with general-relativistic simulations, there are several possible extensions in this direction.

The analysis of the gravitomagnetic potential and forces done here could be extended to

galaxies, e.g., by constructing a catalogue using certain semi-analytic models. It is then

possible to calculate the gravitomagnetic accelerations of galaxies based on their coordinates

and velocities. However, as we have seen above, this acceleration is much weaker than the

standard gravitational acceleration, and the impact of baryons on small scales still remains

to be assessed. The implementation of (magneto)hydrodynamics in the default ramses code

could be used in conjunction with the general-relativistic implementation of gramses as a

first approximation to address this question, although we generally expect that uncertainties

in baryonic physics should surpass GR effects.

A perhaps more interesting possibility is to self-consistently implement massive neutrinos and

radiation in this relativistic code. In Chapter 3 we have introduced a method to generate

initial conditions for gramses simulations that does not require back-scaling. It is therefore

natural to evolve these matter components which are neglected in traditional simulations

(e.g., Adamek et al., 2017b). On the same vein, a Newtonian (quasi-static) implementation of

modified gravity models on gramses would allow one to study the gravitomagnetic potential

in such types of theory. In particular, the modified gravity code ecosmog (Li et al., 2012; Li

et al., 2013) is based on ramses and can be easily made compatible with gramses for this

purpose.

In this Chapter, we have primarily focused on the general-relativistic physical quantities

that could impact cosmic structure formation, and this can ultimately only be observed by

detecting photons (McDonald, 2009; Croft, 2013; Bonvin et al., 2014; Alam et al., 2017b).

Therefore, besides the gravitomagnetic force acting on massive particles, it is also important

to study how vector modes, as well as other GR effects, could influence the photon trajectories

on nonlinear scales, and what is the consequent impact on observables, e.g. lensing (Thomas

et al., 2015b; Saga et al., 2015; Gressel et al., 2019). This requires the implementation of

general-relativistic ray tracing algorithms (e.g. Barreira et al., 2016; Breton et al., 2019;

Lepori et al., 2020; Reverdy, 2014) and is left as a future project.



Chapter 6

Detecting the cosmological

gravitomagnetic effect via weak

lensing-kSZ cross-correlations

6.1 Introduction

In General Relativity (GR), the propagation of light can be distorted not only by the Newto-

nian (scalar) potential, but also by the vector (spin-1) and tensor (spin-2) degrees of freedom

of the gravitational field. With the advent of various upcoming large-scale structure surveys

such as euclid (Laureijs et al., 2011), lsst (Weinberg et al., 2013) and ska (Dewdney et al.,

2013), a renewed interest to understand in detail the impact of the vector potential on observ-

ables has emerged in recent years (e.g., Schäfer & Bartelmann, 2006; Andrianomena et al.,

2014; Saga et al., 2015; Thomas et al., 2015a; Cuesta-Lazaro et al., 2018; Tang et al., 2021).

There has also been growing interest in the gravitomagnetic effects on smaller astronomical

systems. For instance, it has been argued that the observed flat rotation curves of galaxies

potentially admits an alternative explanation — in the absence of dark matter – by a GR

velocity profile sourced by frame-dragging (Crosta et al., 2020), although a realistic model

for this is still required. Furthermore, a mission specially designed to measure the gravito-

magnetic field of the Milky Way, and of its dark matter halo, has been recently proposed in

Tartaglia et al. (2021).

Although vector modes are not introduced by the standard inflationary model (e.g., Bassett

et al., 2006), the late-time gravitomagnetic potential of the Λ-cold-dark-matter (Λcdm) cos-

mology is generated dynamically: before shell crossing, this is sourced by the coupling of

141
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scalar perturbations of the matter fluid — the overdensity and velocity divergence fields —

and hence this is typically referred to as the scalar-induced cosmological vector mode (Matar-

rese et al., 1994; Lu et al., 2008, 2009). More generally, the gravitomagnetic field is sourced

and sustained over time by the rotational (divergence-free) component of the momentum flux

of matter, and the latter also receives contributions from the vorticity field generated due to,

e.g., shell crossing of CDM. As shown in Lu et al. (2008, 2009), second-order perturbation

theory predicts that, on scales above the matter-radiation equality scale (i.e., the horizon

scale at the time of matter-radiation equality), the power spectrum of the gravitomagnetic

field is strongly suppressed with respect to the Newtonian potential, but on sub-equality

scales the relative amplitude can reach about 1%, which is also supported by N -body simu-

lations (Thomas et al., 2015b; Adamek et al., 2016a; Barrera-Hinojosa et al., 2021).

Even though the effect of the gravitomagnetic force in cosmological structure formation is

small due to the low velocities of non-relativistic matter (Adamek et al., 2016a; Barrera-

Hinojosa et al., 2021) — see also Chapter 5, which is at most of order O(1%) of the speed of

light, it is not a priori obvious that the impact on observations is negligible, since this requires

to quantify the effect on the propagation of photons. However, so far all investigations have

found that the gravitomagnetic effects in light propagation are subdominant with respect to

their Newtonian (scalar) counterparts. For instance, it has been shown that the corrections

to the observed galaxy number counts induced by the vector modes are too small to be

detected by the upcoming surveys (Durrer & Tansella, 2016). Similarly, the second-order

gravitomagnetic corrections to the lensing convergence field have also been found to have an

overall negligible impact in most cases (Schäfer & Bartelmann, 2006; Thomas et al., 2015b;

Cuesta-Lazaro et al., 2018), although these can still dominate over other relativistic effects

in surveys with ska-like source distributions (Andrianomena et al., 2014).

In the context of lensing, B-modes represent a characteristic signal imprinted by vector per-

turbations that, in principle, might be used to disentangle these from the effects of scalar

perturbations (although B-modes are also induced by tensor perturbations, i.e., gravitational

waves, their contribution is subdominant). However, as shown by Saga et al. (2015), a de-

tection of the B-modes is not within the reach of upcoming galaxy surveys, although it has

been argued that the large volume covered by future 21cm observations could improve the

signal-to-noise ratio. In the same spirit, Tang et al. (2021) has recently proposed an estimator

to measure the dipole feature in the lensing convergence field that is induced by the stacked

rotation of clusters, although they predict that this signal is unlikely to be detected by lsst.
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As originally suggested by Schäfer & Bartelmann (2006), a potentially promising and yet

unexplored way to extract the gravitomagnetic effects from lensing observations is via the

cross correlation with a second observable, in particular with the kinetic Sunyaev-Zel’dovich

(kSZ) effect (Sunyaev & Zeldovich, 1980; Ostriker & Vishniac, 1986). The kSZ effect is a

secondary cmb anisotropy induced by the scattering of cmb photons off fast-moving free

electrons in the intergalactic medium. This particular signal is chosen because, just like the

gravitomagnetic field, it is sourced by the momentum field of matter. More precisely, on small

angular scales — where the kSZ effect dominates over the primary cmb — only rotational

modes of the momentum field of matter will survive during the line-of-sight integration and

contribute to this effect (e.g., Zhang et al., 2004). Hence, the cross correlation between the

kSZ effect and the gravitomagnetic convergence field is roughly proportional to the auto-

correlation of either of the two effects. Furthermore, the kSZ effect is uncorrelated with the

Newtonian (scalar) weak-lensing signal at the two-point level due to the statistical isotropy of

the velocity field (Dore et al., 2004), making it an ideal probe to extract the gravitomagnetic

(vector) contribution of the convergence field.

In this Chapter we will explore, for the first time, the detectability of the cosmological grav-

itomagnetic field via cross correlation of the weak-lensing convergence field — that contains

both Newtonian and gravitomagnetic contributions — and the kSZ effect. Because in practice

it is not always easy to separate the kSZ effect from the primary cmb, we shall consider the

cross correlation between the total lensing convergence and a total cmb temperature map,

the latter including the kSZ effect integrated over lines of sight. We will also discuss the

impact of other secondary cmb anisotropies on this cross correlation.

The outline of the remainder of this Chapter is as follows. In Section 6.2 we discuss the

key theoretical aspects of the gravitomagnetic contribution to the weak-lensing convergence

field, its angular power spectrum and the convergence-kSZ cross angular power spectrum.

In Section 6.3 we present the details and specifications of the N -body simulations used to

model the observables. In Section 6.4.1 we describe the methodology that we use to generate

the sky maps for the above observables, while we devote Section 6.4.2 to study in detail

the unphysical (i.e., beyond the effect of cosmic variance) non-zero cross-correlation of kSZ

and the scalar part of the convergence field found from the maps. Then, in Section 6.5 we

present the main results of this study, in which we quantify the signal-to-noise ratio of the

gravitomagnetic signal based on a high-resolution simulation. In Section 6.5.2 we discuss the

detectability of this signal with current and upcoming weak lensing surveys, such as euclid

(Laureijs et al., 2011) and Vera C. Rubin Observatory (lsst; Weinberg et al., 2013), and
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cmb experiments including the Simons Observatory (Ade et al., 2019) and cmb Stage IV

(cmb-s4; Abazajian et al., 2016). Finally, in Section 6.6 we summarise the main results from

this investigation.

6.2 Theory

In this Chapter, we consider a perturbed Friedmann-Lemaître-Robertson-Walker (FLRW)

metric in the weak-field regime. In the Poisson (or longitudinal) gauge including scalar and

vector modes, this is given by (Ma & Bertschinger, 1995; Matarrese et al., 1998b)

ds2 = −
(

1 + 2 Φ
c2

)
c2dt2 + a2

(
1− 2 Ψ

c2

)
dx2 + 2a2 B

c3 · dxcdt . (6.2.1)

Here, t is cosmic time, x are comoving spatial Cartesian coordinates, a is the scale factor,

c is the speed of light, Φ and Ψ are the scalar degrees of freedom corresponding to the

Bardeen potentials, and B ≡ (Bx, By, Bz) is the gauge-invariant vector gravitomagnetic

(frame-dragging) potential (Bardeen, 1980), which satisfies the divergence-free (transverse)

condition ∇·B = 0, where ∇ denotes the derivative with respect to the comoving coordinates.

Throughout this work we will neglect the gravitational slip and set Φ = Ψ, which is identified

as the Newtonian gravitational potential. On the other hand, in the weak-field approximation

the matter fields such as density, velocity and momentum are treated as non-perturbative

fields.

The metric Eq. (6.2.1) can also be obtained in a post-Newtonian (or more precisely, a Post-

Friedmann) expansion up to leading order in 1/c3 (Schneider et al., 1992; Sereno, 2002),

which is valid at all scales (Bruni et al., 2014; Milillo et al., 2015). In this approach, the

dynamics of CDM is not modified by the presence of B at this order in the expansion, but

observables are still affected through its effect on the photon geodesics, which is one of the

main approximations assumed throughout this investigation.

The Newtonian potential satisfies the Poisson equation

∇2Φ = 3H2
0 Ωm

2a δ , (6.2.2)

where δ is the gauge-invariant density contrast, H0 the Hubble constant, and Ωm the present-

day matter density parameter. The gravitomagnetic potential satisfies an analogue elliptic-

type equation, in which the source term is the rotational component of the momentum density
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field. This is given by (Bruni et al., 2014)

1
4∇×∇

2B = 3H2
0 Ωm

2a ∇×
[
(1 + δ)v

c

]
, (6.2.3)

where q = (1+δ)v is the momentum field of matter, v = dx/dt being the peculiar velocity. In

Eq. (6.2.3), the curl operator has been applied on both sides to remove the scalar component

of the momentum field, which does not contribute to B. Eq. (6.2.3) is derived from the 0i-

component of the Einstein equations, keeping the leading-order terms in the post-Friedmann

expansion, which are proportional to 1/c3. At higher orders in this expansion, corrections to

this equation appear at O(1/c5) (Milillo et al., 2015). In contrast, the GR counterpart used

by the gramses code discussed in the previous chapters, e.g. Eq. (5.2.21)1, is formally valid

at all orders in 1/c, and thus it includes as sources not only the relativistic momentum field

of matter — which includes the Lorentz factor and volume deformations — but also a term

proportional to the extrinsic curvature which is not present in Eq. (6.2.3) (at least up to this

order in the expansion).

Note that Eq. (6.2.3) here has different a-factors compared to Eq. (3) of Bruni et al. (2014)

due to the different conventions on the definition of B, which can have either an upper or

lower index, and of the peculiar velocity. The advantage of Eq. (6.2.3) is that, up to a factor

of 1/4, it has the identical form as Eq. (6.2.2) apart from the matter source term, thus putting

the two potentials on equal footing. Furthermore, this also offers a clear and compact way

to write down the total lensing convergence field in the presence of gravitomagnetic effects,

as discussed in the next subsection.

6.2.1 The gravitomagnetic contributions to lensing convergence

In the post-Newtonian regime, the total deflection angle of photons caused by a slowly moving

perfect fluid can be obtained by replacing the standard lensing potential by an effective lensing

potential given as (e.g., Schneider et al., 1992; Sereno, 2003; Schäfer & Bartelmann, 2006)

Φ→ Φ + 1
2cB · n̂ , (6.2.4)

1Notice, however, that in Eq. (5.2.21), the shift vector has also a scalar mode due to the constant-mean-
curvature slicing used in gramses, which is not the case of the Poisson gauge or post-Friedmann expansion,
where B only contains vector modes.
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where n̂ is the unit vector of the line-of-sight (LOS) direction. Therefore, the total lensing

convergence field can be written as

κGR(n̂) = κΦ + κB , (6.2.5)

where the standard (Newtonian) and gravitomagnetic contributions to the convergence field

are respectively given by

κΦ(n̂) =
∫

dχKκΦ(χ)δ(χn̂, z) , (6.2.6)

κB(n̂) =
∫

dχKκB(χ)[q⊥ · n̂](χn̂, z) . (6.2.7)

Here, χ is the comoving distance, q⊥ is the rotational (divergence-free) component of the

momentum field, and KκΦ is the standard weak-lensing kernel

KκΦ(χ) = 3
2
H2

0 Ωm

ac2

∫ χ

0
dχ′χ(χ′ − χ)

χ′
dχ′

dz p
(
z(χ′)

)
, (6.2.8)

while the gravitomagnetic lensing kernel satisfies (Schäfer & Bartelmann, 2006)

KκB = 2
c
KκΦ . (6.2.9)

In these, pz(z) is the normalised source redshift distribution,
∫

dzpz(z) = 1, and the LOS

integration is carried out up to the farthest source. For definiteness, in this work we use a

single source galaxy redshift zs (corresponding to a comoving distance χs) with the source

distribution given by

pz(χ(z)) = δD(χ− χs) , (6.2.10)

in which δD is the Dirac δ function. In reality, pz(χ) is a continuous distribution that depends

on the specific galaxy survey used. Notice that in this post-Friedmann approximation, the

gravitomagnetic convergence field, Eq. (6.2.7), is written in terms of the rotational modes

of the momentum field using (6.2.3), just as it is customary to express κΦ in terms of the

density field via (6.2.2).

Under the Limber approximation, the angular power spectrum of the standard weak-lensing

convergence, Eq. (6.2.6), is given by

CκΦ
` = 9

4
H4

0 Ω2
m

c4

∫ χs

0
dχ(χs − χ)2

χ2
sa(χ)2 Pδ

(
k = `

χ
, z(χ)

)
, (6.2.11)

where Pδ is the 3D matter power spectrum. On the other hand, the angular power spectrum

of the gravitomagnetic contribution, Eq. (6.2.7), has a very similar mathematical structure to
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the kSZ effect — since both effects are sourced by the rotational component of the momentum

field along the LOS — and hence we discuss these two in the next subsection.

6.2.2 The convergence-kSZ cross angular power spectrum

The gravitomagnetic contribution to the lensing convergence power spectrum is about five

orders of magnitude smaller than the standard Newtonian contribution (Andrianomena et al.,

2014), and even with future Stage-IV galaxy surveys such as euclid the former is still

expected to be dominated over by cosmic variance (e.g., Cuesta-Lazaro et al., 2018). As a

result, to detect the gravitomagnetic lensing effect in real observations, the lensing probe has

to be cross correlated with some other observable.

As suggested by Schäfer & Bartelmann (2006) previously, the secondary cmb anisotropy

caused by the kSZ effect (see Appendix D for a brief summary) is a suitable observable to

cross correlate with the gravitomagnetic lensing effect, since the former is also sourced by the

integrated momentum field of matter along the LOS. Moreover, the kSZ effect has negligible

correlation with the standard Newtonian contribution to the total lensing convergence field

at the two-point level, due to the statistical isotropy of the velocity field (Scannapieco, 2000;

Castro, 2003; Dore et al., 2004), which in combination with the previous point allows kSZ to

single out the gravitomagnetic contribution in the lensing signal. In other words, denoting

as b(n̂) = −∆T (n̂)/T̄ the temperature change of cmb photons along the LOS direction n̂

due to the kSZ effect, we have that the angular cross correlation between kSZ and the total

convergence field (which is what observations give) reduces to

〈bκGR〉 = 〈bκB〉 , (6.2.12)

where the angular brackets denote ensemble average.

The vanishing of the cross spectrum between κΦ and the kSZ effect can also be understood

as follows: while the overdensity field can be correlated with a cluster that moves toward us,

in an infinite universe there are equal chances for this to be correlated with one moving away

from us, and thus the average over all possible lines of sight vanishes. At a more general

level, the isotropy of the velocity field implies that, along the LOS, odd statistics of this field

are subdominant with respect to even statistics (Andrei S. Monin, & A. M. Yaglom, 1971;

Jaffe & Kamionkowski, 1998; Scannapieco, 2000; Castro, 2003). This feature makes kSZ an

interesting candidate to potentially extract the gravitomagnetic effect in weak-lensing, and

Eq. (6.2.12) is the signal to measure the gravitomagnetic field that we will study in this
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Chapter. In particular, in this study we will restrict our attention to the post-reionisation

contribution to the kSZ signal, hence we assume that the electron density field closely follows

the density field of baryons. Moreover, for simplicity we assume a fully ionised medium, i.e.,

we set χe = 1 in Eq. (D.0.3).

The angular power spectra of the two sky observables appearing in the right hand side of

Eq. (6.2.12), as well as their cross spectrum, can be derived as follows. Neglecting the

contribution from the longitudinal (curl-free) component of the momentum field to the kSZ

effect, from Eq. (6.2.7) and Eq. (D.0.5) we can write the two effects as a weighted LOS

integral for a general sky observable X which is sourced by the rotational component of the

momentum field of matter along the LOS, i.e.,

X(n̂) =
∫

dχKX(χ)[q⊥ · n̂] (χn̂, z) , (6.2.13)

where the kernels for the gravitomagnetic convergence field and the kSZ effect are respectively

given by Eq. (6.2.9), and

Kb(χ) = σTn̄e,0
c

a(χ)−2e−τ . (6.2.14)

As usual, the cross angular power spectrum between two observables, X and Y , where X,Y =

b, κB (and X can be the same as Y ) is defined as

CXY` δ``′δmm′ =
〈
aX`ma

Y ∗
`′m′

〉
. (6.2.15)

After some standard derivations in the context of Limber integrals (see Appendix D), it can

be shown that the cross angular spectrum of these two momentum-sourced observables is

given by

CXY` = 1
2

∫
dχχ−2KX(χ)KY (χ)Pq⊥

(
k = `

χ
, z(χ)

)
, (6.2.16)

where Pq⊥ is the 3D power spectrum of the rotational component of the momentum field of

matter. In this case, for the power spectrum of a rotational vector field V, such as B or q⊥,

we use the definition

〈
Vi(k)V∗j(k′)

〉
= δD(k− k′)(2π)3 1

2

(
δij − kikj

k2

)
PV(k) , (6.2.17)

where δij is the Kronecker delta. Eq. (6.2.16) is the expression for both the angular auto

power spectrum of κB and kSZ, and the cross angular spectrum between them. We remark

that in the above result, the contribution from the longitudinal component of the momentum

field along the LOS to the kSZ effect has been neglected. As shown by Park et al. (2016), the
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contribution from the longitudinal component peaks on very large angular scales, where this

can dominate over the contribution from the rotational component, but it rapidly decays and

becomes subdominant above ` ∼ 100. Since we are interested in the latter regime, we expect

Eq. (6.2.16) to hold up to a good approximation. We also notice that, although the cross-

correlation of either of these two observables with κΦ is expected to identically vanish due to

the statistical isotropy of the velocity field (Dore et al., 2004), an exact cancellation might

not actually take place in observations due to, e.g., cosmic variance, which can represent a

noise for the physical signal Eq. (6.2.12).

6.3 Simulations

In order to model the convergence field Eq. (6.2.5) and the kSZ effect Eq. (D.0.1) we ulti-

mately require to characterise the density and momentum field of matter, the latter being

intrinsically nonlinear. While these can be respectively calculated from first- and second-order

perturbation theory, at low redshift the results are expected to breakdown above ` ∼ 100.

Given that in this Chapter we are interested in studying the lensing-kSZ cross-correlation on

smaller angular scales, and at the same time quantify the effect of cosmic variance on this

signal, we therefore resort to use a suite of 30 statistically independent N -body simulations

with N = 10243 dark matter particles in a comoving box size Lbox = 1 h−1Gpc, which are

run with the ramses code (Teyssier, 2002), i.e., using Newtonian gravity. The latter is suf-

ficient take into account the gravitomagnetic effects at leading order in the Post-Friedmann

expansion, since the dynamics of CDM is not affected by B at this order, but there is an

effect in the propagation of light (Bruni et al., 2014). Hence, to evaluate the gravitomagnetic

convergence field in Eq. (6.2.7) we can simply use the momentum field from these Newtonian

simulation. The initial conditions were generated at z = 49 with the 2lptic code (Crocce

et al., 2006), using as input a matter power spectrum from camb (Lewis et al., 2000), and

the simulations are evolved from z = 49 to z = 0. The cosmological parameters adopted for

the simulation are [ΩΛ, Ωm, ΩK , h] = [0.693, 0.307, 0, 0.68] and a primordial spectrum with

amplitude As = 2.1× 10−9, spectral index ns = 0.96 and a pivot scale kpivot = 0.05 Mpc−1.

Here ΩΛ and ΩK are, respectively, the density parameters for the cosmological constant Λ

and curvature K, and h is the dimensionless Hubble constant, h ≡ H0/(100 km/s/Mpc).

In addition to the 30 Newtonian simulations described above, we also use a single realisa-

tion of a high-resolution, general-relativistic N -body simulation run with gramses (Barrera-

Hinojosa & Li, 2020; Barrera-Hinojosa & Li, 2020), which adopts the same cosmological pa-
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rameters given above, and it starts from the same seed as one of the 30 Newtonian simulations.

This simulation tracks N = 10243 particles in a simulation box of Lbox = 256 h−1Mpc, and

thanks to adaptive-mesh-refinement (AMR) settings it has resolved scales down to 2 h−1kpc.

Given that this simulation is fully relativistic, the gravitomagnetic field is solved and out-

putted by the code during the evolution, and the gravitomagnetic force acting on CDM

particles is included. This simulation has been recently used to study the vector potential

of Λcdm in Chapter 5, where more details can be found, and it complements the suite of

Newtonian simulations in two particular aspects: firstly, it serves as a fully-relativistic coun-

terpart to the post-Friedmann approach used throughout this investigation, and secondly it

provides a substantial increase in resolution which can be used to test numerical resolution

effects which, as we will show, can play an important role in the noise estimation for the

gravitomagnetic signal from mock maps.

6.4 Methodology

6.4.1 Modelling the observables

To model the lensing convergence field and the kSZ effect, we take two different approaches,

both of which use the particle data (positions and velocities) from the snapshots of the

simulations detailed in Section 6.3. In the first approach, we use this data to interpolate the

density and momentum fields onto a grid, and perform LOS projections to generate mock

sky maps using healpix (Górski et al., 2005). In the second approach, we measure the 3D

power spectra of the density and momentum fields from the simulation data, and use them

to evaluate the theoretical Limber integrals Eqs. (6.2.11, 6.2.16). The 3D spectra of the

density and momentum fields, which are obtained using the dtfe code (Schaap & van de

Weygaert, 2000; Cautun & van de Weygaert, 2011) from particle data, are measured using

nbodykit (Hand et al., 2018). To single out the rotational component of the momentum

field to evaluate Eq. (6.2.16), we take the curl of this field using a 3-point finite-difference

approximation, and use the identity Pq⊥(k) = P∇×q(k)/k2. We carry out this procedure

with the 30 Newtonian N -body simulations.

In the case of the single gramses simulation counterpart, the situation is slightly different

as the vector (as well as scalar) potential values are calculated and stored by the code in the

cells of the hierarchical AMR meshes, and the 3D power spectrum of the gravitomagnetic

field itself is therefore measured using a code that is able to handle such mesh data directly

https://healpix.sourceforge.io/
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Figure 6.1: Examples of full-sky maps for a redshift-zero observer generated by line-of-sight
projections using the particle data from a L = 1 h−1Gpc-box simulation, up to the comoving
distance χs = 2 h−1Gpc (corresponding to zs = 0.83). Top: Projected density field. Bottom:
Projected momentum field in units of km/s. To help visualisation, the maps have been
smoothed using a Gaussian beam with a full-width-half-maximum of 1 degree and only display
a limited range of values (as indicated by the colour bars). No kernel weights have been used
in these line-of-sight projections. The cross-correlation between these example maps will
allow us to pick up the gravitomagnetic effect.
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and to write it on a regular grid by interpolation (He et al., 2015). In this way, the 3D power

spectrum measured from this high-resolution simulation is accurate down to k = 15 hMpc−1

(see Appendix C), which allow us to extend our analysis up to smaller angular scales than

with the 1 h−1Gpc simulations. Comparing the two sets of simulations not only allows us

to assess the impact of simulation resolution, but can also serve as a cross check of the

gravitomagnetic field power spectra calculated in different ways.

The sky maps in the first approach are generated using an onion-shell technique, in which

an observer is placed in a random position of the simulation box and the fields are projected

along different lines of sight in radial shells of fixed comoving distance, in our case with

thickness of 100 h−1Mpc. Then, to generate the convergence field and kSZ maps for the

given observer, the healpix maps of the shells (pixels) are weighted by the appropriate

integration kernels corresponding to each observable, i.e., Eqs. (6.2.8, 6.2.9, 6.2.14). In this

process, the simulation box is tiled multiple times to cover the volume enclosed by a sphere

up to the comoving distance of the source, χs, if needed. Finally, the angular power spectra

of a resulting sky map, or the cross correlation between two different maps, is measured with

anafast subroutines included in healpix.

Figure 6.1 is an example of the full-sky maps of projected density and momentum along the

LOS up to zs = 0.83 for an observer located at z = 0, without applying any kernel weights,

using the data from one of the 1 h−1Gpc-box simulations. A visual inspection of Fig. 6.1

shows a clear correlation between the density (top) and momentum (bottom) field maps.

Along the overdense lines of sight, the projected momentum field can be in either of the two

directions; in an infinite universe one would expect this to be an exact symmetry, which makes

the cross correlation between the projected density and momentum fields vanish. However,

due to the finite box size, this does not happen exactly, as is evident from the fact that in this

particular case there are more lines of sight with positive values of the projected momentum

field (i.e. pointing away from the observer) than negative values. This means that the kSZ-κΦ

cross correlation measured from sky maps made from these simulations would not exactly

vanish on large scales, although it is expected to eventually vanish on small scales, where

the effect of cosmic variance is suppressed. It is therefore important to accurately quantify

the degree of cross-correlation between these two effects, which can become a source of noise

for the physical signal in Eq. (6.2.12). A standard way to measure the degree of correlation
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between two random fields is by the cross-correlation coefficient, defined as

CorrXY (`) = CXY`√
CXX` CY Y`

. (6.4.1)

We will proceed to measure the auto- and cross-angular power spectra from the maps and

compare with the theoretical predictions in Section 6.4.2. In particular, we will present the

cross-correlation coefficient between κΦ and the kSZ effect measured from the sky maps, and

show that the measurement depends sensitively on simulation resolution. However, provided

that the simulation resolution is high enough, our result suggests that the covariance of the

kSZ-κΦ cross angular power spectrum found in the map measurements agrees well with the

corresponding theoretical prediction of sample variance, Eq. (6.4.2) below. Readers who are

not interested in the noise validation can skip directly to Section 6.5 and 6.5.2, where the

scientific results are presented and discussed.

6.4.2 Comparison of auto- and cross-power spectra from mock maps and

the Limber approximation

Given that the cross correlation between κΦ and the kSZ effect vanishes theoretically, the

resulting data when measuring this quantity from the sky maps can be very noisy, with strong

fluctuations around 0 from one `-mode to the next. Thus, for the subsequent analysis we will

bin the spectrum data in `-space, which will cancel out most of the oscillations and reduce

the noise, hence leading to smoother measurements. In the remainder of this Section, we bin

the data into 11 `-bins spaced logarithmically between `min = 40 and `max = 2000.

The top panels in the two rows of Fig. 6.2 show the angular power spectra of the two con-

tributions to the lensing convergence field, i.e., κΦ (top curves) and κB (bottom curves) in

Eq. (6.2.5), and of the kSZ effect (b; middle curves), at different comoving distances of the

lensing source, χs (different panels). These spectra are measured from the healpix maps

(circles) or calculated with the Limber-approximation integrals (black solid line), and for the

former we show the mean and 1σ regions from the 30 realisations with a box size of 1 h−1Gpc.

We find an overall very good agreement between the two methods, especially for κB and kSZ,

up to ` ∼ 1000, where the pixel resolution effect in the healpix maps starts to appear.

Notice that the ratio between the angular power spectrum of κB and κΦ is about O(10−5),

which is of the same order as the ratio between the 3D power spectra of the corresponding

potentials (see, e.g., Fig. 5 of Barrera-Hinojosa et al., 2021).
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Figure 6.2: Top panels: Angular power spectra of the Newtonian (κΦ) and gravitomagnetic
(κB) contributions to the convergence field and the kSZ effect (b) for different comoving
distances up to χs = 2000 h−1Mpc (which corresponds to zs = 0.83) from a redshift-zero
observer. The black solid lines show the Limber-approximated integrals evaluated with the 3D
power spectra measured from the 1 h−1Gpc-box simulations, while blue circles show the mean
of the 30 healpix maps from the same simulations, and shaded blue region the corresponding
1σ standard deviation. Bottom panels: Cross-correlation coefficient of kSZ-κΦ (expected to
be zero in theory). The blue circles and blue shaded area respectively correspond to the mean
and 1σ scatter of the ‘same-seed’ case, while green circles represent the analogue result for
the ‘cross-seed’ case (see main text for details). The cyan, yellow and red circles correspond
to the cross-correlation coefficient obtained from a single, same realisation (seed), with box
size L = 1 h−1Gpc, L = 500 h−1Mpc, and L = 256 h−1Mpc, respectively. The results use
11 `-bins spaced logarithmically between `min = 40 and `max = 2000. The kSZ-κΦ cross-
correlation is only fully consistent with zero for the simulation with the highest resolution
(L = 256 h−1Mpc), indicating that it is necessary to use this high resolution simulation to
make reliable predictions for the signal and noise of the gravitomagnetic effect.
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The bottom panels in the two rows of Fig. 6.2 show the cross-correlation coefficient, Eq. (6.4.1),

for kSZ-κΦ measured from the mock maps. To study this cross correlation in detail, we mea-

sure it in two ways: first by picking both sky maps from the same realisation2 (dubbed ‘same

seed’ below), and then picking each map from a different realisation (dubbed ‘cross seed’).

In the first case, we then average over all 30 realisations as before, while in the second case

we average over all possible combinations. We find that these approaches give very different

results. First, we note that in the ‘cross seed’ case, the mean (green triangles) is consistent

with zero, the standard deviation (green shaded region) is symmetric around the horizontal

dashed line (0), and its magnitude consistently decreases toward small angular scales. In

contrast, in the same-seed case we find that on large and intermediate scales the mean (blue

circles) is not very consistent with zero, and the standard deviation (blue shaded region) is

much larger than in the previous case and does not consistently decrease with `.

In order to pinpoint the origin of the above discrepancy, we have conducted a test of the

numerical resolution. In addition to the ‘same seed’ and ‘cross seed’ results, in the bottom

panels of the two rows in Fig. 6.2 we show the cross-correlation coefficients measured from

sky maps made from simulations that use a single, fixed, initial condition random seed, with

three different box sizes: 1h−1Gpc (cyan symbols), 500 h−1Mpc (yellow) and 256h−1Mpc

(red). We find that: (i) the cross-correlation coefficient consistently decreases with increasing

resolution, with the 256h−1Mpc box giving cross-correlation coefficient values that are very

close to 0; (ii) the deviation of CorrbκΦ(`) from 0 is strongest for lower lensing source reshift

(smaller χs), which is likely because these maps enclose a much smaller volume. Then, since

the LOS projection (in terms of the Limber approximation) probes modes k = `/χ, these sky

maps critically depend on contributions from small scales which may not be well resolved by

some of the simulations. Nevertheless, even for χs = 500h−1Mpc, the 256h−1Mpc box gives

a CorrbκΦ that is very close to 0. Hence, we conclude that this is a numerical resolution effect

due to unresolved scales close to the observer’s location as a consequence of lack of resolution

in the simulations. In the ‘cross-seeds’ case, this issue is not present as each field is taken

from a different realisation and hence are statistically independent, regardless of resolution

effects.

We now compare the covariance of the kSZ-κΦ cross correlation measured from the sky maps

with the theoretical expectation for the effect of cosmic variance. In the latter case, the

2We always use a single simulation box, if necessary tiling it multiple times as described above, to obtain
a given sky map. In this sense, each realisation of map corresponds to a single realisation of simulation.



6.4. Methodology 156

102 103

`

10−35

10−34

10−33

10−32

10−31

10−30

10−29

10−28

10−27

C
ov

[(
C
bκ

Φ
`

)2
]

zs = 0.83

theory

same seed

cross seed

Figure 6.3: Comparison of the covariance of the kSZ (b)-κΦ cross-angular power spectrum
from healpix maps and the theoretical prediction, Eq. (6.4.2), at zs = 0.83. The results use
11 `-bins spaced logarithmically between `min = 40 and `max = 2000. The ‘cross seed’ case
agrees with the theoretical prediction very well, indicating the robustness for the estimate of
cosmic variance.

covariance of the cross angular power spectrum between two Gaussian fields, A and B, is

given by (e.g., Cabré et al., 2007)

Cov
[(
CAB`

)2
]

= 1
∆`fsky(2`+ 1)

[(
CAB`

)2
+ CA` C

B
`

]
, (6.4.2)

where fsky is the observed fraction of the sky, and ∆` is the width of the multipole bins, which

is assumed to be independent of `, i.e., no off-diagonal terms in the covariance matrix. For

the particular case of κΦ and kSZ, the theoretical cross angular power spectrum in the right

hand side of Eq. (6.4.2) vanishes and only the second term in the square bracket contributes.

Figure 6.3 shows the covariance of the cross angular spectrum between κΦ and the kSZ effect

at zs = 0.83 measured from the same-seed maps (blue circles) and cross-seed maps (green

triangles) from the 1 h−1Gpc-box simulations, and the theoretical prediction Eq. (6.4.2) (solid

black line). We find that the latter is in very good agreement with the results from the cross-

seeds case maps across all scales, while the covariance in the same-seed case maps, which is

affected by the resolution effects discussed above, can become over one order of magnitude

larger at around ` ' 500 and thus strongly degrade the signal-to-noise estimation of the

gravitomagnetic signal Eq. (6.2.12). As in the above discrepancy, this is not unexpected

since the sky observables take the form of LOS integrals, hence the numerical resolution
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Figure 6.4: Left panel: Angular power spectrum of the two contributions to the lensing
convergence field and the kSZ effect (b), and the cross angular power spectrum of kSZ-κB.
These are obtained from Limber-approximated integrals evaluated with the 3D power spectra
measured from the simulation with box size L = 256 h−1Mpc. Top right panel: Theoretical
signal-to-noise ratio (SNR) for the kSZ-κB cross-correlation, corresponding to the idealised
case where the noise is dominated by the cosmic variance of the kSZ-κGR signal itself. Bottom
right panel: Cumulative SNR corresponding to the top plot. The results use 23 `-bins spaced
logarithmically between `min = 40 and `max = 104.

errors due to unresolved scales close to the observer’s location can propagate up to higher

redshifts (comoving distances) and contaminate the final result. It is worthwhile to remark

that, even though the lensing kernel down-weights the radial shells that are closer to the

observer, and hence suppresses the relative contribution of these numerical resolution effects

when projecting up to a high redshift (e.g., zs = 0.83 as in our case), the result shows that

the cross correlation is still considerably large compared to the effect of sample variance only.

6.5 Results

In this section, we will more quantitatively assess the gravitomagnetic lensing effect signal

and its detectability. This will be done in the context of cross correlating two observables

— a total lensing convergence field containing the gravitomagnetic effect, and a total cmb

temperature map that contains the (integrated) kSZ effect. We quantify this using the usual
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signal-to-noise ratio (SNR), (
S

N

)2

`
=

(
CAB`

)2

Cov
[(
CAB`

)2] , (6.5.1)

where CAB` is the cross angular spectrum between two generic observables A and B, and Cov

denotes the covariance matrix. In the ideal scenario, the covariance matrix in Eq. (6.5.1)

is dominated by the effect of cosmic variance and Eq. (6.4.2) directly applies. However,

for a realistic estimation of the SNR, the covariance also needs to include the following two

contributions: (i) instrumental noises in the sky maps of A and B; (ii) spurious signals caused

by other physical effects, such as the primary and other secondary cmb anisotropies in the

case of a cmb temperature map.

Our main objective is to forecast the detectability of the gravitomagnetic effect for various

future galaxy surveys and cmb experiments (Section 6.5.2). However, before that, we will

first calculate a ‘theoretical SNR’ (Section 6.5.1), by applying Eq. (6.5.1) while neglecting all

instrumental noises and considering a pure kSZ map with no other cmb primary or secondary

effects. The latter is useful for assessing, in an idealised situation, the potential of isolating

the gravitomagnetic contribution to the total lensing signal by cross-correlating with kSZ —

this can serve as an upper bound of the SNR in real observations.

6.5.1 Theoretical signal-to-noise ratio

Let us first investigate the SNR for the kSZ-κB cross correlation in the most idealised case,

i.e., accounting for only the variance contributed by κGR and kSZ (b) themselves. We will

include other source of noise such as the primordial cmb and instrumental noise in Section

6.5.2.

Because of the good agreement in the noise predictions from theory and maps shown in

Fig. 6.3, to calculate the SNR we resort to using the Limber prediction Eq. (6.2.16) to model

the signal, taking as input the 3D power spectrum measured from the high-resolution simula-

tion, and use Eq. (6.4.2) to quantify the noise, with the two fields A,B being respectively the

kSZ contribution to the cmb temperature fluctuation, b, and the total lensing convergence,

κGR = κΦ + κB. The angular power spectra are binned into 23 `-bins logarithmically spaced

between `min = 40 and `max = 104. Then, using the fact that, at the theory level, the kSZ-κΦ

cross correlation vanishes and hence does not contribute to the first noise term in the square
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bracket of Eq. (6.4.2), the SNR becomes(
S

N

)
`,CV

=
√

∆`fsky(2`+ 1) CbκB
`√(

CbκB
`

)2
+ Cb`C

κGR
`

≈
√

∆`fsky(2`+ 1) CbκB
`√
Cb`C

κΦ
`

, (6.5.2)

where in the second line we have approximated CκGR
` ≈ CκΦ

` since, as shown in Fig. 6.2 and

Fig. 6.4, CκB
` is suppressed by about five orders of magnitude with respect to the Newtonian

contribution, and we have also used that
(
CbκB
`

)2
� Cb`C

κΦ
` (as shown by the left panel of

Fig. 6.4) to neglect the first term in the denominator. Notice that we have used the subscript

CV to highlight that, to obtain this theoretical SNR, only the cosmic variances in κGR and

kSZ (b) are included in the noise.

Given that the high-resolution simulation is fully relativistic, instead of evaluating Eq. (6.2.16)

using the 3D power spectrum of the momentum field measured from the simulation, in this

case we directly use the 3D power spectrum of the gravitomagnetic field that is calculated

and outputted by gramses during the simulation, PB(k), and the integration kernel for the

convergence field Eq. (6.2.7) is modified according to Eq. (6.2.3)3. Conversely to the logic

behind the Post-Friedmann (or Post-Newtonian) approach — in which the gravitomagnetic

effect is ultimately written in terms of the rotational modes of the 3D momentum field —

in this case we use Eq. (6.2.3) to convert PB(k) into Pq⊥(k) to evaluate the kSZ effect using

the same spectrum data. At this point, it is worthwhile to remark that the gravitomagnetic

potential power spectrum measured from the high-resolution simulation (and correspondingly

the 3D momentum power spectrum) suffers from a power suppression due to the small box

size (Zhang et al., 2004; Iliev et al., 2007). Indeed, it has been found that this effect appears

prominently if the matter-radiation equality scale is not sampled (Adamek et al., 2016a;

Barrera-Hinojosa et al., 2021). As discussed in the Appendix B of Park et al. (2013), in the

context of the momentum power spectrum and the kSZ effect (which formally involves the

same calculation), the large-scale power loss can be corrected for by using perturbation theory.

For this, we calculate the ratio between the second-order perturbation theory predictions of

PB(k), Eq. (D.0.19), evaluated in two ways: one which matches the simulation results on

3Although, rigorously speaking, gramses uses a different gauge than the N -body gauge used by the
Newtonian simulations (Fidler et al., 2016), both share the same definition of spatial coordinates, and the
gravitomagnetic potential indeed corresponds to the gauge-invariant one defined in the Poisson gauge.
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large scales (i.e., which is also suppressed by a large-scale cut-off scale4), and another which

does not include any cut-off and hence does not miss any power on large scales. Then, to

get the corrected power spectrum we multiply this ratio to the PB(k) measured from the

simulation, and use this to evaluate Eq. (6.2.16). Although we repeat this procedure for each

available snapshot, we have checked that this correction factor is redshift-independent.

Another important aspect to take into account when evaluating the Limber integrals is the

time evolution of the 3D spectra. Given that we can only measure these from a finite number

of snapshots, to parameterise the time evolution of PB(k, z) and PΦ(k, z) we measure these

from the available simulation snapshots (z = 0, 0.5, 1, 1.5) and interpolate among them. For

the κΦ case we use the linear growth rate D+, given by (Linder, 2005)

D+(a) = exp
∫ a

1
d ln a′Ωm(a′)6/11 , (6.5.3)

with Ωm(a) = Ωma
−3/(H/H0)2, as the ‘time’ variable for the interpolation; more explicitly,

the interpolation is linear in D2
+. Since PB(k, z) is sourced by the rotational component of

the momentum field q = (1 + δ)v, to interpolate this for the calculation of kSZ and κB we

also use the linear continuity equation,

v(k, a) = −iHf
k2 kδ(k, a) , (6.5.4)

where f = d lnD+/d ln a is the linear growth rate; here (HfD+)2 is used as the ‘time’ variable

for the interpolation to ensure that it gives the correct time-evolution behaviour at large linear

scales. Evidently, these interpolations involve a certain degree of approximation at the small

nonlinear scales, but we have checked that our result does not change significantly if we use

fixed simulation snapshots or different time interpolation schemes.

Figure 6.4 represents one of the main results of this investigation. The left panel shows

the angular power spectra of the different effects based on the high-resolution simulation,

which allows us to resolve scales down to ` = 104. The top right panel of Fig. 6.4 shows

the theoretical SNR, in which the error is calculated using Eq. (6.5.2), i.e., by only including

the effects of sample variances in the kSZ-κGR signal, with the angular power spectra therein

corresponding to those shown in the left panel. We find that, with zs = 0.83, a SNR of ' 10

is achieved at ` ' 5000, while this can reach ' 20 at ` ' 104. The bottom right panel of

Fig. 6.4 shows the cumulative SNR corresponding to the top panel of the same figure, which

4This is achieved by restricting the k range (in particularly the lower end) for the matter and velocity
divergence power spectra used in the evaluation of the perturbation-theory result, Eq. (D.0.19), to the same
as probed by the high-resolution simulation.
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Table 6.1: Experimental specifications for the weak lensing surveys and cmb experiments
considered in this work.

Survey ng (galaxies per arcmin2) σε fsky
euclid 30 0.22 0.36
lsst 40 0.22 0.5
Experiment θFWHM [arcmin] ∆T [µK-arcmin] fsky
planck 5 3.1 0.82
cmb-s4 1.4 1 0.4
Simons Obs. 1.4 6 0.4

can reach almost 15 (30) at ` ' 5000 (104). These estimates will, of course, be downgraded

once we have included realistic instrument noises and other spurious effects, as discussed in

the next subsection. The same is expected to occur when baryonic effects are taken into

account, although the latter is beyond the scope of this study.

6.5.2 Detectability with current and future observations

Let us now investigate the detectability of the gravitomagnetic signal with current and future

observations. In real observations, the kSZ effect is imprinted in the measured cmb temper-

ature map along with a number of primary and secondary anisotropies. Because the latter is

what will be used to cross correlate with weak lensing, to assess the detection of the kSZ-κB

cross-correlation, we need to consider all the relevant contributions contained in a full cmb

map. In particular, it is essential to include the cosmic variance effect from the primordial

cmb, as this signal dominates over kSZ on scales down to ` ∼ 3000. We will discuss these

effects and how they are expected to affect the sought-after physical signal below.

The signal-to-noise per individual mode of the lensing-kSZ cross correlation, Eq. (6.2.12), is

given by Eq. (6.5.1), which can now be written more explicitly as

(
S

N

)2

`
=

(
CbκB
`

)2

Cov
[(
CTκGR
`

)2
] , (6.5.5)

where CbκB
` = CbκGR

` is again the physical signal we are after, while CTκGR is the cross

angular power spectrum between the total cmb temperature map (T) and the total lensing

convergence field, κGR. Neglecting the correlations induced by the incomplete sky coverage,

the covariance matrix can be approximated as

Cov
[(
CTκGR
`

)2
]

[∆`fsky(2`+ 1)]−1 ≈
(
CbκB
`

)2
+
(
CT
` +NT

`

) (
CκGR
` +NκGR

`

)
, (6.5.6)
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Figure 6.5: Comparison of the various angular power spectra and noise levels of weak-lensing
surveys and cmb experiments. Left panel: Newtonian (upper solid lines) and gravitomagnetic
(lower solid lines) contributions to the lensing convergence field, which indicate that the latter
is around 5 orders of magnitude smaller, and is well below the expected noise level of future
weak lensing surveys such as lsst. Middle panel: kSZ effect and the lensed cmb signals (as
indicated by legends), and the noise levels for three cmb experiments: planck (dashed), so
(dotted) and cmb-s4 (dot-dashed). The kSZ effect dominates over the lensed cmb signal at
` & 3500. Right panel: the cross spectrum of kSZ-κB (solid lines), which is the signal we are
after, and the absolute value of the cross spectrum between the ISW effect and κΦ (dashed
lines), which represents a potential source of contamination for the kSZ-κB signal. The
dashed, dotted and dot-dashed black lines are, respectively, the expected noise level for the
cross correlation of weak lensing data from an lsst-like survey and cmb data from planck,
so and cmb-s4. The kSZ-κB signal is well above the noise levels of future experiments on
scales ` & 3000. In all panels, the different colours correspond to lensing source redshifts
between zs = 0.4 (purple, lowest amplitude) and zs = 1.4 (red, highest amplitude), with a
separation ∆zs equivalent to a comoving distance of χ = 100 h−1Mpc.

where CT
` is the total angular power spectrum of the cmb temperature, which includes

the kSZ effect, the integrated Sachs-Wolfe (ISW) effect, and the weak lensing of the cmb.

Frequency-dependent secondary effects on the cmb, such as the cosmic infrared background

(CIB) and thermal SZ (tSZ) effect, are assumed to have already been cleaned and hence

are not included in the T map here. For the lensed cmb angular-power spectrum we use

the output from camb, to which we add the kSZ contribution calculated using the Limber

approximation, Eq. (6.2.16). Since the available simulation data only covers up to z = 1.5,

kSZ is only integrated up to this redshift (rather than up to z ∼ 6, which corresponds to the

end of reionisation). When cross correlating a cmb map including other secondary effects

and a galaxy weak lensing map, we need to consider if these secondary cmb signals can

lead to spurious correlations which contaminate the sought-after signal, CbκB , particularly

through cross correlations with κΦ, because |κΦ| � |κB|, so that any such spurious signal

can potentially be as strong as, if not stronger than, CbκB itself. At small angular scales, the

cmb power spectrum is dominated by lensing, with the lensed temperature at sky position ~θ
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approximately given by

T lensed(~θ) = T unlensed(~θ) + ~∇T · ~∇φ , (6.5.7)

where φ is the cmb lensing potential. Because ~∇T has no correlation with the late-time

large-scale structures in theory, we expect the correction term in Eq. (6.5.7) to have zero

theoretical cross correlation with weak lensing κΦ: note this is different from the cases of

cross correlating the cmb lensing deflection angle or convergence field (in both cases ~∇T has

been removed through de-lensing reconstruction (Planck Collaboration et al., 2020)), or the

squared cmb field (e.g., Dore et al., 2004), with weak lensing. On the other hand, the ISW

effect, along with its nonlinear counterpart, the Rees-Sciama (RS) effect, can have a nonzero

cross correlation with weak lensing (Hu, 2002); we have explicitly calculated this spurious

signal using the method described in Appendix E, and found it to be subdominant compared

to the kSZ-κB cross power spectrum CbκB
` at the small angular scales of interest to us, as

will be discussed below. Therefore, in Eq. (6.5.6) we have neglected the contribution from

CISWκΦ
` , thus approximating

(
CTκGR
`

)2
by
(
CbκB
`

)2
.

In Eq. (6.5.6), NX
` represents the contribution from the instrumental noise to the measured

angular power spectrum of each effect. For the lensing signal (cosmic shear), we assume that

the dominant error comes from the intrinsic ellipticity of galaxies, i.e.,

NκGR
` = σ2

ε

ngal
, (6.5.8)

where σ2
ε is the variance of the intrinsic ellipticity of galaxies, and ngal the number of source

galaxies per arcmin2. For the cmb signal, we consider the error due to instrumental noise

and beam smearing, given as (Knox, 1995)

NT
` =

(∆T

T̄

)2
exp

[
`2θFWHM/(8 ln 2)

]
, (6.5.9)

where ∆T is the noise level, T̄ is the mean temperature of the cmb, and θFWHM is the full

width at half-maximum of the beam. Table 6.1 summarises the main specifications of the

lensing surveys and cmb experiments considered in this section.

Figure 6.5 shows various angular power spectra assuming different lensing source redshifts

(colour-coded; see the figure caption) and the noise levels for different weak-lensing surveys

and cmb experiments. The left panel shows the two contributions to the total convergence

field and the expected shape noise level of lsst, which shows that it will not be possible to

detect the gravitomagnetic convergence via lensing alone (Andrianomena et al., 2014; Cuesta-
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Lazaro et al., 2018). The middle panel shows the kSZ signal along with the lensed cmb signal,

which dominates over the former down to ` ∼ 3500, as well as the noise levels of planck

(dashed), and of two next-generation cmb experiments; the Simons Observatory (so, dotted)

and cmb-s4 (dot-dashed). We note that the kSZ effect is above the expected noise levels of

the latter two cmb experiments. Finally, the right panel shows the kSZ-κB cross spectrum

and the total noise. We find that, while for planck the signal is almost completely dominated

by the instrumental resolution on small angular scales, the situation improves considerably

with the Simons Observatory and cmb-s4, in which the signal is well above the noise on

scales ` & 3000, which suggests that a potential future detection can be achieved on very

small angular scales. In the right panel of Fig. 6.5 we have also included the signal due to the

spurious cross correlation between the ISW effect and weak lensing (colour-coded, dashed)

mentioned above. This is calculated from Eq. (E.0.14) using the nonlinear matter power

spectra at different redshifts predicted by camb with halofit. We find that, at ` & 3000,

this spurious signal is over one order of magnitude smaller than the gravitomagnetic signal at

all redshifts, and two orders of magnitude lower at ` & 5000. Furthermore, the signal is below

the noise level expected for all experiments herein considered. Hence, in the following SNR

forecast we use Eq. (6.5.6) to estimate the covariance, in which the ISW-κΦ cross-correlation

is neglected.

Figure 6.6 shows the predicted SNR for different source redshifts (colour-coded; see the figure

caption). In the case of cross correlating lsst with planck (left panel), we find that the

instrumental resolution of planck is the main limiting factor, which does not allow one

to yield a significant detection. However, with the improved resolution of the upcoming

cmb experiments such as cmb-s4 and the Simons Observatory (middle and right panels), a

significant detection might be achieved on small angular scales. With a lensing source redshift

of zs = 1.4 in lsst (right panel), in combination with the Simons Observatory, we find that

the cumulative SNR can reach around 3 (4) at ` ≈ 5000 (104), while in the case of cmb-s4

this can reach almost 5 (9) at ` ≈ 5000 (104). The results are similar in the case of euclid

in combination with the two aforementioned cmb experiments (middle panel), although the

SNR is slightly lower than for lsst due to the smaller sky coverage and mean number of

galaxies expected for this survey. The results show that the majority of the cumulative SNR

comes from ` & 2000, and that the SNR is mainly determined by the beam size of the cmb

experiment, followed by its noise level, ∆T .

From Fig. 6.6 we can also observe that the detection SNR increases with source redshift

in general (for a given cmb experiment). This is expected: as the redshift range for the
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Figure 6.6: Signal-to-noise (SNR; top panels) and cumulative SNR (bottom panels) predic-
tions for the kSZ-κB signal via cross-correlation of different weak-lensing surveys and cmb
experiments for lensing source redshifts between zs = 0.4 (purple, lowest amplitude) and
zs = 1.4 (red, highest amplitude), with a separation ∆zs equivalent to a comoving distance
of χ = 100 h−1Mpc. Left panels: forecast for lsst and planck, which shows that a detec-
tion is not possible due to the angular resolution of the latter experiment. Middle panels:
forecast for euclid in combination with cmb-s4 (solid) and the Simons Observatory (so,
dashed). Right panels: forecast for lsst in combination with cmb-s4 (solid) and the Simons
Observatory (dashed). The angular resolution of next-generation cmb experiments may al-
low a significant detection of the gravitomagnetic effect. The results use 23 `-bins spaced
logarithmically between `min = 40 and `max = 104.

LOS projection increases, the cross correlation between the gravitomagnetic lensing (κB)

and the kSZ effect (b) also enhances; the covariance matrix also increases, but not by as

much given that CT
` is not affected. This implies that it is possible to improve the prospect of

observationally detecting the gravitomagnetic effect by using deeper lensing surveys. Because

our high-resolution simulation does not have snapshots at even higher z, in this work we only

have considered a limited source redshift range, and we plan to revisit this topic in the

future using larger simulations. Likewise, using a cmb lensing signal – whose kernel peaks at

z ∼ 2 – instead of cosmic shear, may also enhance the overall lensing-cmb cross-correlation

signal, and it is likely to boost the SNR. This may also have the benefit of using the lensing

convergence map and the temperature map from a single cmb experiment, without a weak

lensing survey. Existing data from act (Darwish et al., 2021) may provide such a possibility.
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6.6 Summary

In this Chapter, we have explored the possibility of detecting the cosmological gravitomag-

netic (frame-dragging) effect via cross correlation of weak-lensing convergence maps, which

include the gravitomagnetic contributions, with the kSZ effect that is imprinted as a sec-

ondary anisotropy in the cmb temperature maps. The latter is chosen because – apart from

very large angular scales – it is sourced by the rotational modes of the momentum field of

matter along the LOS, just like the former effect, and at the same time is not correlated with

the standard (Newtonian) component of the convergence field at the two-point level (Dore

et al., 2004). Thus, the cross-correlation is able to extract the gravitomagnetic contribution

from a lensing convergence map. To model the cross-correlation signal and its covariance we

have used the data from 30 Newtonian N -body simulations, as well as a single high-resolution,

general relativistic simulation. Performing LOS projections and generating healpix maps,

we have found that small, unresolved scales close to the observer’s location due to an insuf-

ficient simulation resolution can induce significant spurious variance in the cross correlation

between the Newtonian component of the convergence and the kSZ effect. On the other

hand, by cross correlating healpix maps of fields taken from different realisations, such an

artificial noise is not present and the covariance agrees well with the theoretical prediction

of cosmic variance effects, Eq. (6.4.2). Then, to quantify the SNR we resort to model the

signal based on the single high-resolution simulation and the Limber-approximated integral

Eq. (6.2.16), and we estimate the noise by either Eq. (6.4.2), which includes only the effect

of cosmic variance – and allows us to calculate a theoretical upper bound of the SNR – or

Eq. (6.5.6), which also include all the major relevant effects for observations. In the former

case, we find that at zs = 0.83, the cumulative SNR can reach ∼ 15 already at ` ' 5000, and

about 30 at ` ' 104.

We then forecast the SNR for current cmb data from planck, in combination with future-

weak lensing surveys such as euclid and lsst, finding that the gravitomagnetic effect cannot

be robustly probed using this method as the angular resolution of planck is not sufficient

to explore the small angular scales where the theoretical SNR rises most rapidly (Fig. 6.4).

However, based on future cmb experiments such as the Simons Observatory and cmb-s4,

our forecast shows that this effect can be detected decisively, especially with lensing sources

further afield.

The result above is based on the assumption that several important late-time secondary

effects on the cmb, such as the thermal SZ effect and CIB, could be reliably disentangled
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from the primary cmb signal, and the SNR can be degraded if such ‘cleaning’ is not fully

complete. We also expect that at the small scales (` & 3000) where the SNR of the effect is

relatively significant, the impact of baryons on both weak lensing and cmb observables can

also be significant and hence downgrade the SNR. Modelling the impact of baryonic effects on

the SNR above this regime is beyond the scope of this investigation and is left as future work.

On the other hand, given that for the kSZ effect the longitudinal modes of the momentum

field are subdominant with respect to the rotational-modes contribution above ` ∼ 100 (Park

et al., 2016), we do not expect them to affect our predictions.

The realistic possibility of detecting the cosmological gravitomagnetic effect with future weak-

lensing surveys and cmb experiments suggests that it is worthwhile to explore the lensing-kSZ

cross-correlation in the context of dark energy and modified gravity theories, in which the

amplitude of both the kSZ effect (e.g., Bianchini & Silvestri, 2016; Mitchell et al., 2021)

and the gravitomagnetic field (Thomas et al., 2015a; Reverberi & Daverio, 2019) can be

significantly enhanced. Thus, we expect to find a larger signal in these models, which could

potentially be used as a new way to constrain deviations from Λcdm. On the other hand, it

also worthwhile to study the gravitomagnetic effects in cmb lensing and its cross correlation

with cmb temperature maps. Given that the kernel of the former effect peaks at z ∼ 2, this

would allow one to include more signal from higher redshifts than a weak-lensing survey, and

it is likely to boost the SNR. We leave these investigations as future work.



Chapter 7

Conclusion

7.1 Summary of the thesis

In Chapter 2 we have introduced gramses, a new pipeline for nonlinear cosmological N -

body simulations in GR. This code adopts the ADM (3 + 1) formalism of GR, with constant

mean curvature and minimum distortion gauge fixings, which provides a fully nonlinear and

background independent framework for relativistic cosmology. Employing a fully constrained

formulation (Cordero-Carrión et al., 2009), the Einstein equations are reduced to a set of

ten elliptic-type equations which are solved using multigrid relaxation with AMR, and three

hyperbolic equations for the evolution of tensor degrees of freedom. The current version of

gramses neglects the latter by using the conformal flatness approximation, which allows it

to compute the two scalar and two vector degrees of freedom of the metric. We described

the methodology, implementation, code tests and first results for simulations in a ΛCDM

universe. Inheriting the efficient AMR and massive parallelisation infrastructure from the

publicly-available N -body and hydrodynamic simulation code ramses, gramses is ideal for

studying the detailed behaviour of spacetime inside virialised cosmic structures and hence

accurately quantifying the impact of backreaction effects on the cosmic expansion, as well as

for investigating GR effects on cosmological observables using cosmic-volume simulations.

In Chapter 3 we have addressed the generation of ICs for gramses. In the gauge adopted

by this code the linear growth rate is scale-dependent, and the standard method for realising

initial particle data is not straightforwardly applicable. We have introduced a new method,

in which the initial positions of particles are generated from the displacement field realised

for a matter power spectrum as usual, but the velocity is calculated by finite-differencing the

displacement fields around the initial redshift. In this way, all the information required for
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setting up the initial conditions is drawn from three consecutive input matter power spectra,

and additional assumptions such as scale-independence of the linear growth factor and growth

rate are not needed. We implemented this method in a modified version of the 2LPTic code,

and demonstrated that in a Newtonian setting it can reproduce the velocity field given by

the default 2LPTic code with subpercent accuracy. We also showed that the matter and

velocity power spectra of the initial particle data generated for gramses simulations using

this method agree very well with the linear-theory predictions in the particular gauge used by

gramses. Finally, we discussed corrections to the finite difference calculation of the velocity

when radiation is present, as well as additional corrections implemented in gramses to ensure

consistency. The method presented is not restricted to gramses but it can be applied in

ICs generation for GR simulations in generic gauges, and simulations of cosmological models

with scale-dependent linear growth rate.

In Chapter 4, we presented the results of a code comparison of gramses against state-of-the-

art GR codes. In this, we simulated solutions to Einstein’s field equations dominated by the

effect of frame-dragging — the leading order post-Newtonian effect — and we applied a ray-

tracing algorithm to study its effect on the photon propagation. We found that the code is

able to match linear theory with subpercent accuracy where the latter is applicable, and at the

same time it has an overall good agreement with the results from other codes at the nonlinear

regime. Furthermore, in a resolution test the code showed a very consistent convergence rate,

which is likely due to the constrained formulation of GR that is implemented, in which the

gravitomagnetic potential (as well as the scalar potentials) is solved from an elliptic-type

equation and hence avoids errors due to time integration. This demonstrates that gramses

is able to produce robust results for this very important effect.

In Chapter 5 we investigated the vorticity field of cdm and the gravitomagnetic potential,

which correspond to the rotational (vector) components of the gravitational and velocity

fields, respectively. Based on a high-resolution simulation run with gramses, we studied the

generation of vorticity at low redshift, providing fits to the shape and evolution of its power

spectrum over a range of scales. By analysing the gravitomagnetic potential, which is absent

in Newtonian simulations, in dark matter haloes with masses ranging from ∼ 1012.5 h−1M�
to ∼ 1015 h−1M�, we find that its magnitude correlates with the halo mass, peaking in the

inner regions. Nevertheless, on average, its ratio against the scalar gravitational potential

remains fairly constant, below percent level, decreasing roughly linearly with redshift and

showing a weak dependence on halo mass. Furthermore, we showed that the gravitomagnetic

acceleration in haloes peaks towards the core and reaches almost 10−10 h cm/s2 in the most
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massive halo of the simulation. This is found to be about one order of magnitude larger than

results from previous lower-resolution GR simulations in the literature. However, regardless

of the halo mass, the ratio between the gravitomagnetic force and the standard gravitational

force is typically at around the 10−5 level inside the haloes, again without significant radius

dependence. The result confirms that gravitomagnetic effects have negligible impact on struc-

ture formation, even for the most massive structures, although its behaviour in low density

regions remains to be explored. Likewise, the impact on photons and hence observations is

yet to be quantified.

In Chapter 6, we explored the possibility of detecting the lensing effect that is induced by the

gravitomagnetic field by cross-correlating the weak lensing convergence field with a second

observable. For the latter, we use a cmb temperature map imprinted with the kSZ signal since

this effect shares a common origin with frame-dragging: both are sourced by the momentum

field of matter. This approach allows us to extract the gravitomagnetic effect from a total

convergence map because the cross correlation between the standard Newtonian contribution

to the weak-lensing convergence field, κΦ, and the kSZ effect is expected to vanish. We

studied the cross correlations with a suite of large-volume Newtonian N -body simulations

and a small-volume, high-resolution, general-relativistic N -body simulation counterpart. We

showed that insufficient simulation resolution can introduce significant spurious correlations

between κΦ and kSZ.

Based on the high-resolution simulation, we found that the cumulative signal-to-noise ratio

(SNR) of the kSZ-gravitomagnetic convergence field can reach almost 15 (30) at ` ' 5000

(104) if only cosmic variance is considered. Then, we made forecast for next-generation

lensing surveys such as euclid and lsst, and cmb experiments such as Simons Observatory

and cmb-s4, and find that the cumulative SNR can exceed 5 (9) at ` ' 5000 (104). This

result indicates that the cosmological gravitomagnetic effect can be detected, provided that

several foreground contaminations can be reliably removed.

7.2 Future work

In order to make realistic mock observations for the next generation of LSS surveys, we

require simulations with large box size and high spatial (force) resolution. This is a ma-

jor challenge for relativistic codes, which are intrinsically more computationally expensive

than a Newtonian counterpart. In this regard, gramses offers a balance between solving
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a background-free GR formulation that can keep scalar and vector modes fully nonlinear,

and the ability to run large-volume simulations while resolving small scales very accurately,

thanks to amr.

In the context of relativistic effects, there are strong motivations to be able to probe the

small-scale, highly-nonlinear regime, e.g., deep inside dark matter haloes. For example, to

study the characteristic dipole feature that appears in the redshift-space cross-correlation

between different population of galaxies (Bonvin et al., 2014) we need to accurately predict

the gravitational redshifts of galaxies inside haloes (Zhu et al., 2017). On the other hand, in

Barrera-Hinojosa et al. (2021) we have shown that a high-resolution GR simulation predicts

amplitudes of the gravitomagnetic force an order of magnitude larger than a particle-mesh

GR simulation with a lower spatial resolution. Above all, a high resolution GR simulation will

help us resolve the substructures of haloes, allowing us to use techniques such as abundance

matching to populate them by mock galaxies with more realistic spatial distributions to

measure relativistic effects accurately.

The generation of relativistic mock LSS observables comprise two steps: (i) generating mock

galaxies from the simulations and (ii) modelling the light propagation across the inhomoge-

neous universe. For (i), a high-resolution simulation will make it is possible to use both halo

occupation distribution and abundance matching techniques. The most physically realistic

way to implement (ii) is to use ray-tracing facilities, which for gramses can be adapted

from the magrathea code (Reverdy et al., 2017). Such a infrastructure could solve the pho-

ton geodesics connecting sources to observers using the high-resolution (AMR) data of the

spacetime metric from the simulations. Alternatively to ray-tracing, approximate methods

such as liger (Borzyszkowski et al., 2017) can serve to generate mock relativistic effects via

post-processing.

Based on the aforementioned points, which serve as motivation for the use of large-volume,

high-resolution GR simulations, we outline some potential directions for future work below.

Disentangling gravitomagnetic effects in the lensing convergence field

As a natural extension to the investigation presented in Chapter 6, the distortion imprinted

by the gravitomagnetic potential in the lensing convergence field can be investigated using

convergence maps constructed via ray tracing, which naturally include the gravitomagnetic

effects in the photon propagation. This will allow us to evaluate the convergence-kSZ cross

correlation more realistically in comparison with Chapter 6, for instance by accounting for
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the evolution of structures in the simulations. An interesting branch for this project is to

investigate the kSZ-lensing cross correlation in dark energy and modified gravity models,

where both signals are expected to be enhanced, which could potentially lead to developing

a new probe to constrain deviations from Λcdm with future experiments.

Measuring the imprints of relativistic effects in the observed LSS

A characteristic signal of some relativistic effects, such as the Doppler effect and gravitational

redshift, is the asymmetry in the cross correlation between different type of matter tracers

such as faint and bright galaxies, and the 21 cm signal — also manifested as an imaginary

part in the cross-power spectrum (McDonald, 2009) — which is one of the aims of future

LSS surveys. We can measure such a feature with specially designed estimators (e.g., the

‘shell’ estimator introduced in Croft (2013)) or, more commonly, by the odd multipoles in

a multipole expansion (Bonvin, 2014). The dipole term in the cross correlation has been

explored using high-resolution (AMR) Newtonian simulations with ray tracing in Breton et al.

(2019), and more recently in Guandalin et al. (2021) using GR-particle-mesh simulations

with fixed spatial resolution across the simulation volume. On the other hand, the ‘shell’

estimator has been applied to Newtonian simulations with relativistic effects introduced by

hand in Croft (2013) and Zhu et al. (2017), which lack a GR counterpart. Importantly, it has

been shown that uncertainties in how the potential wells of the sub-haloes are mapped to the

potential of galaxies can strongly impact the predictions of the gravitational redshift (Zhu

et al., 2017), making it crucial to evaluate the relativistic signal using realistic mock galaxy

catalogues. Hence, a high-resolution gramses simulation can be very useful to study the

relativistic dipole feature.

7.3 Concluding remarks

The realistic modelling of observables for future sky surveys and cmb experiments requires

N -body simulations that incorporate — at least at some degree — relativistic effects in

the pipeline. In the last few years, cosmological general-relativistic simulations have quickly

evolved to supply this need, with various independent codes now fully functional. Nonetheless,

some challenges still need to be overcome, such as the inclusion of baryonic effects — an

aspect that remains exclusive to Newtonian simulations — which could affect the signal of

the relativistic effects. At the same time, we have found that the cosmological signal of a
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characteristic effect such as frame-dragging can be extracted via cross-correlation methods

for its detection with future experiments.

Approximations such as the constrained formulation of GR implemented in gramses — in

which tensor modes are neglected — or the weak-field expansion of gevolution, are arguably

necessary in order to make large-volume GR simulations of cosmic structure formation com-

putationally feasible and competitive to modelling GR effects for next-generation galaxy

surveys. In the same vein, given that in Chapter 5 we showed that, while AMR capabilities

can be important to accurately quantifying some effects such as frame-dragging in haloes,

its effects on CDM particles remain nonetheless very weak, further optimisations of the sim-

ulations might be possible. Indeed, we have done preliminary tests using gramses as a

post-processing tool to calculate the gravitomagnetic field based on an snapshot of a New-

tonian simulation (which could be regarded effectively as a ‘Post-Friedmann simulation’),

finding similar results to a gramses simulation. Hence, we believe that such a method could

also prove useful for the efficient prediction of relativistic effects, although some effects such

as cosmological back-reaction might still require a full GR simulation.



Appendix A

Leapfrog scheme for time evolution

of particles

gramses uses the usual leapfrog or Stormer-Verlet scheme for particle movements. In this

scheme, the position and momentum (or velocity) of a given particle from step n to step

(n+ 1), with a time interval ∆t, are updated using the following prescription,

pn+1/2 = pn − ∆t
2 Hx

(
xn, pn+1/2

)
, (A.0.1)

xn+1 = xn + ∆t
2
[
Hp(xn, pn+1/2) +Hp(xn+1, pn+1/2)

]
, (A.0.2)

pn+1 = pn+1/2 − ∆t
2 Hx

(
xn+1, pn+1/2

)
, (A.0.3)

where n + 1/2 is the middle between the two neighbouring timesteps tn and tn+1, p is the

conjugate momenta to the canonical variable x, H(x, p) is the Hamiltonian of the system,

and Hx, Hp are the partial derivatives of H(x, p) with respect to x and p respectively. In the

case of Newtonian gravity H = p2/2m+ ΦN (x), where p = mv and ΦN (x) is the Newtonian

gravitational potential, the Hamiltonian H is completely separable for x and v, and the above

operations reduce to the standard Kick-Drift-Kick (KDK) scheme

vn+1/2 = vn − ∆t
2 ∂xΦN (xn) (A.0.4)

xn+1 = xn + ∆tvn+1/2 (A.0.5)

vn+1 = vn+1/2 − ∆t
2 ∂xΦN (xn+1) (A.0.6)

Apparently, this makes the system explicit, i.e., the right-hand sides of Eqs. (A.0.4)-(A.0.6)

do not depend on the quantities (which are at step (n+ 1)) on the left-hand sides. Although

from Eqs. (A.0.4) and (A.0.6) it would seem that we need to do two force calculations per
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time step, this is not actually the case since ∂xΦN (xn+1) in (A.0.6) is the same as the force

in (A.0.4) in the next step, so the second Kick (A.0.6) operation can wait until the following

(i.e., the (n+ 1)th) timestep when ΦN (xn+1) has been solved. In other words, in practice the

second Kick operation (A.0.6) for the nthe timestep is done after the Newtonian potential

is solved in the (n + 1)th timestep; in ramses this is called synchronisation as it finally

‘synchronises’ all particle velocities to the correct time before these velocities can be used to

move (Drift) the particles.

In the case of GR, the Hamiltonian of a free particle,in the 3+1 formalism is

H = α
√
m2 + γijpipj − βipi (A.0.7)

where pi = mui is the (spatial) momentum. Using Hamilton’s equations

dxi

dt = ∂H

∂pi
, (A.0.8)

dpi
dt = −∂H

∂xi
, (A.0.9)

we can derive the equation of motion for this system, i.e., the geodesic equations (2.4.46)-

(2.4.48). We note that in this case the Hamiltonian (A.0.7) is not separable, because there

is the multiplication of γij (which depends on x) and pipj under the square root. Therefore,

the leapfrog system (A.0.1)-(A.0.3) is implicit and not straightforward to implement as in

the Newtonian case. The simplest approximation to make the system explicit is to evaluate

the Hamiltonian derivatives at the wrong phases, i.e.,

un+1/2 = un + ∆t
2 F (xn, un), (A.0.10)

xn+1 = xn + ∆tV(xn, un+1/2), (A.0.11)

un+1 = un+1/2 + ∆t
2 F (xn+1, un+1/2), (A.0.12)

where

Fi = −W
c
∂iΦ + uj∂iβ

j − W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

∂iΨ , (A.0.13)

V i =
(

1 + Φ
a2c2

)(
1− Ψ

2a2c2

)−4 c

W
δijuj − βi. (A.0.14)

Notice that here, for evaluating V(xn, un+1/2) used in (A.0.11) according to (A.0.14), we

use the current value of the gravitational fields (Φ,Ψ, α and βi) and only the quantities

depending on uj (including W ) are updated (to tn+1/2). Likewise, in (A.0.12) the force term

F (xn+1, un+1/2) uses the updated velocities for the explicit dependence on un+1/2 as well as
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for the source terms for the fields at the new timestep. Finally, for repeating the process,

in (A.0.10) we use the updated velocities for the explicit dependences on un and geometric

fields based on the updated particles positions (with sources at un+1/2).

Let us remark that even if in the Hamiltonian formalism the variables (x, p) are independent

(conjugate) variables, and in the second Kick step (A.0.12) the various gravitational fields

appearing in F (xn+1, un+1/2) are solved at the final positions, e.g. Φ(xn+1), the source terms

for their equations have used the velocities un+1/2 because we have not yet synchronised by

the time we evaluate these sources at timestep (n + 1), and thus the fields carry a delayed

information about the velocities by half a timestep. Again, this issue is not present in the

Newtonian case since the gravitational field ΦN is only sourced by the mass density field which

depends only on the particles position but not on their velocities. A possible way to get around

this is to temporarily update the velocity before carrying (A.0.12) using Poisson equation for

the Newtonian gravitational potential ΦN , giving us an estimated updated velocity, namely

un+1
N = un+1/2 − ∆t

2 ∂xΦN , (A.0.15)

which can be used (as an approximation) in the source terms for the GR potentials. After

solving the field equations for these the velocity is then reverted back to un+1/2, after which

‘true’ synchronisation (A.0.12) is performed.

In principle, the above scheme could be further improved by introducing an extra step to

update the position in such a way that the symplecticity of the scheme is restored (although

time-reversal invariance is still broken). However, since for simulations with AMR the adap-

tive timesteps render the KDK scheme non-symplectic even in the Newtonian case, we shall

not explain these alternatives, which are more complicated, in detail here.



Appendix B

Mapping of linear equations from

the CMC-MD gauge

In this Appendix we include further details on the mapping between the linearised version

of gramses equations and their standard synchronous gauge and Newtonian gauge counter-

parts. For simplicity, in this discussion we focus on scalar perturbations only, so that the

gauge transformation can be written as ξµ = (ξ0, ∂iξ), but the results can be extended to

include vector modes straightforwardly.

B.1 Field equations

Let us show the correspondence between the field equations in the synchronous and CMC-MD

gauges at linear level. We shall ignore the prime notation used for the gauge-transformed

variables in Section 3.3 and instead use Φ, βi,Ψ and hij to denote the metric perturbations

in the CMC-MD gauge. For the synchronous gauge metric Eq. (3.4.16), we use the variables

h, h‖ij , η and µ following exactly the convention of Ma & Bertschinger (1995). Using that, at

linear order, the MD gauge condition Eq. (2.2.22) reduces to ∂ihij = 0, from Eq. (3.3.9) we

find the following condition for the spatial transformation ξ

2a−2ξ = h+ 6η . (B.1.1)

Likewise, because the CMC gauge is defined by a condition over K, it is useful to derive the

explicit gauge transformation for this quantity. The extrinsic curvature at the linear level is
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given by

Kij = −H(1− Φ)γij + Ψ̇γij −
a2

2 ḣij + 1
2(∂iβj + ∂jβi) , (B.1.2)

and its trace given by K = −3H(1− Φ) + 3Ψ̇ + a−2δij∂iβj . Then, using the gauge transfor-

mations Eqs. (3.3.5)-(3.3.8) on the right-hand side of the latter, we find that K transforms

as

K = K ′ + 3Ḣξ0 + γij∂i∂jξ0 . (B.1.3)

As expected, Eq. (B.1.3) is independent of ξi and can be used to connect the time coordinate

defined by the CMC foliation with that in any other gauge regardless of the choice of spatial

coordinates. For the case of synchronous gauge, using that KS = −3H−ḣ/2 and Eq. (2.2.17),

we find

ḣ = −6Ḣξ0 − 2γij∂i∂jξ0 , (B.1.4)

where γij∂i∂j = a−2δij∂i∂j ≡ a−2∂2.

Let us now consider the Hamiltonian constraint and Eq. (3.2.3). These are given at the linear

order by

∂2Ψ = 4πGa2δρ, (B.1.5)

∂2Φ + 3Ḣa2Φ = 4πGa2δρ+ 12πGa2δP, (B.1.6)

where δρ = ρ̄δC with δC is the density contrast in the CMC-MD gauge. Using the gauge

transformations Eq. (3.3.8) and Eq. (3.3.13), Eq. (B.1.5) can be rewritten in terms of the

synchronous gauge and gauge transformation variables as

− 1
6∂

2h−H∂2ξ0 + 1
3a
−2∂4ξ = 4πGa2ρ̄δS − 12πGa2H(ρ̄+ P̄ )ξ0 . (B.1.7)

Applying the gauge relations Eq. (B.1.1) and Eq. (B.1.4), the left-hand side of this equation

becomes

−H∂2ξ0 = 1
2a

2Hḣ+ 3HḢa2ξ0 = 1
2a

2Hḣ− 12πGa2(ρ̄+ P̄ )Hξ0 , (B.1.8)

where in the second equality we have used the background relation

Ḣ = −4πG(ρ̄+ P̄ ) . (B.1.9)

Therefore, Eq. (B.1.8) can be simplified as

∂2η + 1
2a

2Hḣ = 4πGa2ρ̄δS , (B.1.10)
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which is the (00) Einstein equation in synchronous gauge (Ma & Bertschinger, 1995).

Next, let us consider how Eq. (B.1.6) transforms. Using the gauge transformations Eq. (3.3.5)

and Eq. (3.3.13), as well as the gauge transformation for the pressure perturbation δPC =

δP S + ˙̄Pξ0, Eq. (B.1.6) can be rewritten as

∂2ξ̇0 + 3Ḣa2ξ̇0 = 4πGa2δρS − 12πGa2H(ρ̄+ P̄ )ξ0 + 12πGa2δP S + 12πGa2 ˙̄Pξ0 . (B.1.11)

In order to eliminate ξ0 and ξ̇0 from the left-hand side of this equation, we take the time

derivative of the gauge relation Eq. (B.1.4), to get

− 1
2 ḧ−Hḣ = 4πG

(
δρS + 3δP S

)
−12πGH(ρ̄+ P̄ )ξ0 +3Ḧξ0 +6HḢξ0 +12πG ˙̄Pξ0 , (B.1.12)

and taking the time derivative of Eq. (B.1.9) allows us to get rid of Ḧ and all terms propor-

tional to ξ0 in the right-hand side of Eq. (B.1.12), leaving

− 1
2 ḧ−Hḣ = 4πG

(
δρS + 3δP S

)
, (B.1.13)

which is equivalent to the linear combination of Einstein equations 2 × (00) + (ii) in syn-

chronous gauge (Ma & Bertschinger, 1995) (where (ii) denotes the trace of the (ij) compo-

nents of the Einstein equation).

Next, let us consider the momentum constraint, which gives the longitudinal part of the

conformal curvature tensor Āij . This is given at linear order by (Barrera-Hinojosa & Li,

2020)

(
∆̄LW

)
i

= ∂2Wi + 1
3∂iδ

kl∂kWl = 8πGa3
(
ρ̄+ P̄

)
uC
i , (B.1.14)

with

Āij =
(
L̄W

)
ij
≡ ∂iWj + ∂jWi −

2
3δij∂kW

k . (B.1.15)

We will use Eq. (B.1.15) to solve Wi first, and then substitute into Eq. (B.1.14) to get an

equation that contains the peculiar velocity. The right-hand side of Eq. (B.1.15) can be

written as

(
L̄W

)
ij

= 2
(
∂i∂j −

1
3δij∂

2
)
W , (B.1.16)

where, given that we specialise to the scalar mode only, we have introduced the variable W

such that Wi = ∂iW . Using the fact that at the linear level Āij = aAij , from the traceless
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part of (B.1.2) we find

Āij = −1
2a

3ḣij + 1
2a (∂iβj + ∂jβi)−

1
3aδ

kl∂kβlδij , (B.1.17)

and, using Eq. (3.3.6) to get rid of βi, as well as Eq. (3.3.9) to get rid of ḣij , we find

Āij = −a
(
∂i∂j −

1
3δij∂

2
)
ξ0 −

1
2a

3
(
∂i∂j −

1
3δij∂

2
)
µ̇ , (B.1.18)

where µ is a synchronous gauge scalar perturbation variable whose relation with h, η is given

below. Combining Eq. (B.1.16) and Eq. (B.1.18) gives the result

W = −1
2aξ0 −

1
4a

3µ̇ . (B.1.19)

Using the gauge transformation for ui, Eq. (3.3.14), in the right-hand side of Eq. (B.1.14),

then applying ∂i on both sides and substituting the result Eq. (B.1.19), we get

−2
3a∂

2∂2ξ0 −
1
3a

3∂4µ̇ = 8πGa3
(
ρ̄+ P̄

) (
∂iuS

i − ∂2ξ0
)
. (B.1.20)

Now, using Eq. (B.1.4) to eliminate ∂2∂2ξ0 from the left-hand side of this equation, as well

as the synchronous gauge relation ∂2µ = h+ 6η, we have

1
3a

3∂2ḣ+ 2Ḣa3∂2ξ0 −
1
3a

3∂2
(
ḣ+ 6η̇

)
=8πGa3

(
ρ̄+ P̄

) (
∂iuS

i − ∂2ξ0
)
. (B.1.21)

Finally, by using the first and second Friedmann equations, we can eliminate the terms

proportional to ∂2ξ0 from the above equation, which reduces to

− 2∂2η̇ = 8πG(ρ̄+ P̄ )θS , (B.1.22)

where θS = ∂iuS
i . This corresponds to the (0i) Einstein equation in synchronous gauge (Ma

& Bertschinger, 1995).

B.2 Equations of motion

Let us provide a complementary derivation of the relation uiC = uiN mentioned in Section 3.3.

For this, we consider the geodesic equations for non-relativistic particles, which at the linear

level are given by Eqs. (3.4.32) and (3.4.33). We next show that in the linear perturbation

regime, the equation for uiC is identical to that of uiN in the Newtonian gauge.

Inverting the relation in Eq. (3.4.34) for ui and taking one time derivative, we have

u̇iC = d
dt
(
γijuC

j − βi
)

= −2HγijuC
j − γij∂jΦ− β̇i , (B.2.1)
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where in the second step we have used Eq. (3.4.32) to get rid of u̇C
j . Now, using Eq. (3.4.34)

and βi = a−2δijβj , we obtain

u̇iC = −2HuiC − γij∂jΦ− γij β̇j . (B.2.2)

To make a connection with the Newtonian gauge we consider the metric Eq. (3.4.7). From

the gauge transformations Eq. (3.3.5)-(3.3.9) we find the following relations between the

CMC-MD and Newtonian gauge metric perturbations

Φ = ψ + ξ̇0, (B.2.3)

βi = −ξ̇i − ∂iξ0 + 2Hξi, (B.2.4)

Ψ = φ−Hξ0 + 1
3γ

ij∂jξi, (B.2.5)

hij = −a−2 (∂jξi + ∂iξj) + 2
3γ

kl∂lξkδij . (B.2.6)

By using the MD gauge condition ∂ihij = 0 in Eq. (B.2.6), we find ξi = 0 in this case. Then,

after applying the gauge transformations for Φ and βi, Eqs. (B.2.3) and (B.2.4), the equation

of motion Eq. (B.2.2) becomes

u̇iC + 2HuiC + γij∂jψ = 0 , (B.2.7)

which is identical to the Newtonian gauge counterpart, u̇iN + 2HuiN + γij∂jψ = 0. This

equation-level equivalence is not surprising given that uiC = uiN, which is a consequence of

ξi = 0.

To make connection with synchronous gauge, we combine the geodesic equations to eliminate

ui and get a second order differential equation for xi,

d2xi

dt2 + 2H dxi

dt + a−2δij∂jΦ + a−2δij β̇j = 0 , (B.2.8)

which is for the CMC-MD gauge. We can rewrite this equation in terms of the gauge trans-

formation and synchonous gauge variables, using Eqs. (3.3.5) and (3.3.6), to find

∂iΦ + β̇i = −∂iξ̈ + 2Ḣ∂iξ + 2H∂iξ̇ . (B.2.9)

The particle coordinate in the synchronous gauge, denoted as xiS, is related to the CMC-MD

gauge coordinate xi as xi = xiS + a−2δij∂jξ. Taking the time derivatives of the latter and

substituting the resulting expressions into Eq. (B.2.8) gives

d2xiS
dt2 + 2H dxiS

dt = 0 , (B.2.10)
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as we expect to find in the synchronous gauge.



Appendix C

Comparison of power spectrum

calculation methods for the

potentials

In Section 5.3.1 of Chapter 5, the power spectrum of density, velocity and vorticity has

been measured from particle-type data using dtfe and nbodykit, while the spectrum of

the scalar and vector potentials has been measured using a different code that is able to

read their values calculated and stored by gramses in cells of hierarchical AMR meshes and

interpolate them to a regular grid for the power spectrum measurement. We call this method

the ‘AMR-FFT’ method, which was introduced in He et al. (2015), where more details can

be found. An alternative to using this AMR-FFT method to calculate the power spectrum of

the potentials is by writing their values with gramses at the particles’ positions rather than

in AMR cells, so that dtfe can be used to read such ‘particle-type’ data and interpolate this

to a regular grid, where nbodykit can be applied to measure the spectrum. We call this

method ‘dtfe+nbodykit’.

Figure C.1 shows the dimensionless power spectra at z = 1 of the scalar potential Φ (left

panel) and the vector potential spectrum (right panel), measured by these two methods,

where solid lines represent the perturbation-theory predictions. In both methods the FFT

grid size is 20483, as is the tessellation grid size used for dtfe. We find that both methods

have good agreement on large scales, specially at k & 0.1 hMpc−1, where the effect of cosmic

variance is not present. However, in the region k & 3 hMpc−1 the AMR-FFT method has

better performance than dtfe+nbodykit which blows up. This is because the AMR-FFT
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Figure C.1: Comparison of the power spectra of the scalar and vector potentials measured
with the AMR-FFT method, and nbodykit combined with dtfe. In both methods the
grid size used for the FFT is 20483, and is equal to the tessellation grid size used in dtfe.
Both panels show the dimensionless power spectrum ∆(k) = k3P(k)/(2π2) of the respective
field. Left: The dimensionless power spectrum of the of the scalar gravitational potential Φ
defined as the fully nonlinear perturbation to the lapse function, i.e., Φ ≡ α − 1. The solid
line represents the first-order perturbation theory prediction of the Bardeen potential from
camb. Right: The dimensionless power spectrum of the vector potential B. The solid line
corresponds to the second-order perturbation theory result from Eq. (5.3.5). All results are
at z = 1.

method can reach higher resolution by using the potential information in the AMR cells,

and because dtfe does a volume weighted average of the field which smears out small-scale

features. Therefore, the spectrum of the scalar and vector potentials from the simulation

shown in Fig. 5.5 are measured by the AMR-FFT method, which yields robust results up to

k ∼ 15 hMpc−1.



Appendix D

The kinetic Sunyaev-Zel’dovich

(kSZ) effect

cmb photons can interact with fast-moving free electrons in the intergalactic medium (IGM)

via inverse Compton scattering, which subsequently changes their energy and imprints a

secondary cmb anisotropy known as the kinetic Sunyaev-Zel’dovich (kSZ) effect (Sunyaev &

Zeldovich, 1980). The temperature fluctuation along the line-of-sight (LOS) vector n̂ due to

this effect can be described by the following LOS integral,

b(n̂) ≡ −∆T (n̂)
T̄

=
∫

dτe−τ n̂ · v
c

= σT

∫
dle−τ nevr

c
, (D.0.1)

in which T̄ is the mean temperature of the cmb, σT and τ are respectively the Thomson

scattering cross section and optical depth, c is the speed of light, ne is the number density of

free electrons, and vr = v · n̂ is the LOS component of the electron velocity field.

Since Eq. (D.0.1) is an effect integrated from z = 0 to the last scattering surface, z ≈ 1100,

the kSZ signal has two distinct contributions, one coming from the post-reinoisation epoch, in

which the IGM is nearly fully ionised and the electron density field closely follows the density

field of baryons; and the contribution from the epoch of reionisation, where ne suffers strong

temporal and spatial variations. As the goal of this paper is to study the cross correlation of

the kSZ effect with a weak lensing survey such as lsst and euclid, throughout the present

analysis we restrict our attention to the post-reionisation kSZ signal.

The specific ionised momentum field of the ionised medium can be defined as

q ≡ χe(1 + δ)v , (D.0.2)
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where δ is the baryon density contrast, and

χe ≡
ne

nH + 2nHe
, (D.0.3)

denotes the ionised fraction, with nH, nHe being the number densities for hydrogen and

helium, respectively. Also, defining

n̄e,0 ≡ nH,0 + nHe,0 , (D.0.4)

Eq. (D.0.1) can be rewritten as

b = σTn̄e,0
c

∫
dχ 1
a2 e
−τq · n̂ , (D.0.5)

where χ is the comoving distance along the LOS. Using the Fourier transform of Eq. (D.0.5),

we get

b = σTn̄e,0
c

∫
dχ 1
a2(χ)e

−τ
∫ d3k

(2π)3 [n̂ · q̃(k, χ)] e−iχk·n̂ , (D.0.6)

where k is the wavevector, i is the imaginary number unit, and q̃ is the momentum vector

in Fourier space. One can decompose q̃ into a longitudinal (scalar) and a rotational (vector)

part:

q̃ = q̃‖ + q̃⊥, with q̃‖ = (q̃ · k̂)k̂ , (D.0.7)

where k̂ is the unit vector in the direction of the wavevector. Substituting this into Eq. (D.0.6)

gives (Park et al., 2013)

b = σTn̄e,0
c

∫
dχ 1
a2(χ)e

−τ
∫ d3k

(2π)3

[
xq̃‖(k, χ)− cos

(
φq̂ − φn̂

)√
1− x2q̃⊥(k, χ)

]
e−ikχx ,

(D.0.8)

where q̃‖ = |q̃‖|, x ≡ k̂ · n̂, φq̂ and φn̂ are respectively the angle between q, n̂ and k. The

exponential function in the integral represents a fast oscillation along the LOS, which means

that the integrand cancels out, leading to negligible integral result. There are two exceptions

to this: (1) if k → 0, or (2) if x → 0. (1) represents a long-wave mode which has a small

amplitude and therefore contributes little to the integral anyway. (2) represents a case where

k is perpendicular to the LOS, n̂. In other words, only the k modes that are perpendicular

to the LOS contribute to the kSZ effect non-negligibly. But in this case we can see from

Eq. (D.0.8) that the first term in the brackets vanishes since x → 0, and therefore only the

rotational momentum field q̃⊥ remains, giving (e.g., Park et al., 2013)

b ' −σTn̄e,0
c

∫
dχ 1
a2(χ)e

−τ
∫ d3k

(2π)3 cos
(
φq̂ − φl̂

)√
1− x2q̃⊥(k, χ)e−ikχx . (D.0.9)
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With some lengthy derivation (see, e.g., Appendix A of Park et al., 2013), one gets the

following expression for the kSZ (b) angular power spectrum

Cb` = 1
2

[
σTn̄e,0
c

]2 ∫
dχ 1
χ2a4(χ)e

−2τPq⊥

(
k = `

χ
, χ

)
, (D.0.10)

where Pq⊥ is the 3D power spectrum of q⊥, the rotational momentum field. Assuming that

the velocity field is completely longitudinal, as it is the case for a pressureless perfect fluid,

Pq⊥ appears only at second order through the following convolution:

Pq⊥(k, z) =
∫ d3k′

(2π)3 (1− µ2)
[
Pδδ

(
|k− k′|

)
Pvv(k′)−

k′

|k− k′|Pδv
(
|k− k′|

)
Pδv(k′)

]
,

(D.0.11)

where µ = k̂ · k̂′. If we define

w ≡ k′/k, u ≡ |k− k′|/k , (D.0.12)

then

µ = 1 + w2 − u2

2w , (D.0.13)

and Eq. (D.0.11) can be recast as

Pq⊥(k, z) = k3

4π2

∫ ∞
0

dw
∫ 1+w

|1−w|
duΠ′

[
Pδδ (ku)Pvv(kw)− w

u
Pδv (ku)Pδv(kw)

]
, (D.0.14)

where

Π′ ≡ uw4w2 − (1 + w2 − u2)
4w2 . (D.0.15)

Given that the gravitomagnetic field is sourced by the rotational modes of the momentum

field through Eq. (6.2.3), Eq. (D.0.14) has a similar form to the gravitomagnetic potential

power spectrum, which in the case of a pressureless perfect fluid is given by, e.g., Lu et al.

(2008)

∆B(k) = 9Ω2
mH

2
0

2a2c2k2

∫ ∞
0

dw
∫ 1+w

|1−w|
duΠ

[
∆δδ(ku)∆vv(kw)− w

u
∆δv(ku)∆δv(kw)

]
, (D.0.16)

where the dimensionless power spectrum ∆ab is defined as

∆ab ≡
k3

2π2Pab , (D.0.17)

with a, b standing for two fields, and

Π ≡ 1
u2w2

4w2 − (1 + w2 − u2)
4w2 . (D.0.18)
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Indeed, substituting Eq. (D.0.17) into Eq. (D.0.16) gives

PB(k) = k

2π2
9Ω2

mH
2
0

2a2c2

∫ ∞
0

dw
∫ 1+w

|1−w|
duΠ′

[
Pδδ(ku)Pvv(kw)− w

u
Pδv(ku)Pδv(kw)

]
, (D.0.19)

which differs from (D.0.14) only in the prefactor (and the fact that here the density and

velocity power spectra are for all matter, rather than free electrons only; the two are closely

related) including a k2.

Following the Appendix A of Park et al. (2013), we can derive a Limber-integral expression

(which has been used extensively in this paper) for the cross angular power spectrum between

κB and the kSZ effect (b). Given the above mathematical similarity between the two effects,

the detailed steps will not be repeated here to be concise as the calculation is similar to the

derivation of the kSZ auto-power spectrum. For generality, consider two 2D fields X(n̂) and

Y (n̂) which are both related to the projection of the LOS momentum field q · n̂:

X,Y (n̂) =
∫

dzKX,Y (χ)
∫ d3k

(2π)3 [n̂ · q̃ (k, z(χ))] e−iχk·n̂ , (D.0.20)

where KX,Y (s) are respectively the LOS projection kernels for observables X and Y , which

are functions of the comoving distance χ. The cross angular power spectrum between X and

Y , CXY` , is defined as

CXY` δ``′δmm′ =
〈
aX`ma

Y ∗
`′m′

〉
, (D.0.21)

where 〈· · · 〉 denotes ensemble average, ∗ denotes the complex conjugate, and aX,Y`m are the

spherical harmonic decomposition coefficients for X and Y ,

aX,Y`m =
∫

d2n̂X,Y (n̂)Y m∗
` (n̂) , (D.0.22)

with Y m
` being the spherical harmonic function of degree ` and order m. Hence, CXY` can

be expressed as a weighted LOS integration of the 3D power spectrum of the rotational

component of the LOS momentum field q · n̂, Pq⊥ , as:

CXY` ' 1
2

∫
dχχ−2KX(χ)KY (χ)Pq⊥

(
k = `

χ
, z(χ)

)
. (D.0.23)



Appendix E

The ISW-weak lensing cross

correlation

In this appendix we derive an expression for the cross angular power spectrum between the

integrated Sachs-Wolfe effect and weak lensing convergence. For simplicity, we assume again

a single lensing source redshift zs. The derivation follows the appendix of Cai et al. (2009),

see also (Seljak, 1996; Smith et al., 2009; Nishizawa, 2014). The cmb temperature fluctuation

induced by the ISW effect along the LOS direction n̂ is given by

Θ ≡ ∆T (n̂)
T̄

= 2
c2

∫ t0

tLSS
Φ̇ (t, χ(t)n̂) dt , (E.0.1)

where T̄ is the mean cmb temperature, t is the cosmic time, χ is the comoving distance

along the LOS, and Φ̇ the time derivative of the gravitational potential Φ; t0 and tLSS are

respectively the values of t at the observer (today) and the last-scattering surface. The

spherical harmonic coefficients of Θ, defined in the same way as in Eq. (D.0.22), can be

expressed as

aΘ
`m = i`

π2c2

∫ t0

tLSS
dt
∫

d3kΦ̇(k, a(χ))j`(kχ)Y m∗
`

(
k̂
)
, (E.0.2)

where i is the imaginary number unit, the scale factor a is written as a function of the

comoving LOS distance χ, χs ≡ χ (zs) the comoving distance of the source, and Φ(k) the

Fourier transform of Φ(χ):

Φ (k) = 1
(2π)3

∫
d3χΦ(χ) exp(ik · χ) . (E.0.3)
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In deriving Eq. (E.0.2), we have used the spherical harmonic expansion of a plane wave:

exp (ik · χ) = 4π
∑
`m

i`j`(kχ)Y m∗
` (k̂)Y m

` (n̂) , (E.0.4)

and the orthonormality of the spherical harmonics:∫
Ω

d2n̂Y m∗
` (n̂)Y m′

`′ (n̂) = δ`′`δm′m , (E.0.5)

where Ω denotes the solid angle, and δ`′` and δm′m are the Kronecker deltas. The spherical

harmonic expansion coefficient of the weak lensing convergence field, κ,

κ (n̂) = 3H2
0 Ωm

2c2

∫ χs

0
dχ(χs − χ)χ

χs

δ

a
, (E.0.6)

can be similarly obtained, as

aκ`m = 3H2
0 Ωm

4π2c2 i`
∫ χs

0
dχ(χs − χ)χ

χsa(χ)

∫
d3kδ(k, a(χ))j`(kχ)Y m∗

`

(
k̂
)
, (E.0.7)

where δ(k, a) is the Fourier transform of the density contrast field at scale factor a. Using

the definition of the cross angular power spectrum given in Eq. (D.0.21), we get, after some

lengthy but straightforward derivation,

CΘκ
` = 3H2

0 Ωm

c5

∫ χs

0
dχχs − χ

χsχ
PΦ̇δ

(
k = `

χ
, a(χ)

)
, (E.0.8)

where we have used cdt = −a(t)dχ, and the 3D cross power spectrum between Φ̇ and δ, PΦ̇δ,

is given by

(2π)3δ(3) (k− k′
)
PΦ̇δ(k, a) =

〈
Φ̇∗(k, a)δ(k′, a)

〉
, (E.0.9)

where δ(3)(k − k′) is the 3D Dirac δ function. To evaluate PΦ̇δ, we make use of the Fourier-

space Poisson equation,

− k2Φ(k) = 3
2H

2
0 Ωm

δ(k)
a

, (E.0.10)

to get the derivative of Φ(k), as

Φ̇(k) = −3
2

(
H0
k

)2
Ωm

[
δ̇(k)
a
− H

a
δ(k)

]
, (E.0.11)

with H = ȧ/a being the Hubble expansion rate at a. Therefore, we have

〈
Φ̇∗(k)δ(k′)

〉
= −3

2

(
H0
k

)2
Ωm

〈
δ̇(k)
a
− H

a
δ(k), δ(k′)

〉
, (E.0.12)

and

PΦ̇δ = −3a
4

(
H0
k

)2
Ωm

d
dt
(
a−2Pδδ(k, a)

)
, (E.0.13)
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where Pδδ is the matter power spectrum. Using the above relation, Eq. (E.0.8) can be

simplified as

CΘκ
` = 9H4

0 Ω2
m

4c4`2

∫ zs

0
dz (χs − χ)χ

χs

d
dz

[
(1 + z)2Pδδ

(
k = `

χ
, z

)]
. (E.0.14)

where we have changed the integration variable and time derivatives to z. The CΘκ
` cross

angular power spectrum is shown in the right panel of Fig. 6.5, for which Eq. (E.0.14) is

evaluated using the nonlinear matter power spectra at different redshifts predicted by camb

with halofit. We find qualitatively similar result to the cross spectrum between the ISW

effect and galaxies (e.g., Fig. 5 of Cai et al., 2009).
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