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Abstract

In computer graphics, triangle mesh has emerged as the ubiquitous shape rep-

resentation for 3D modelling and visualisation applications. Triangle meshes, often

undergo compression by specialised algorithms for the purposes of storage and trans-

mission. During the compression processes, the coordinates of the vertices of the

triangle meshes are quantised using fixed-point arithmetic. Potentially, that can

alter the visual quality of the 3D model. Indeed, if the number of bits per vertex

coordinate is too low, the mesh will be deemed by the user as visually too coarse as

quantisation artifacts will become perceptible. Therefore, there is the need for the

development of quality metrics that will enable us to predict the visual appearance

of a triangle mesh at a given level of vertex coordinate quantisation.

In this thesis, we present the results of four psychophysical experimental studies

to assess the visual quality of quantised meshes. To achieve that, we used triangles

meshes which varied in some important geometric characteristics, such as the number

of triangles, the average shape of the triangles, and the level of detail in their global

shape. The meshes in the experiments were quantised using different quantisation

methods, rendered with the use of various textures and lighting environments. We

employed various experimental designs, such as 2-AFC with or without staircases,

and MLDS, and in all cases lightly trained participants were invited to compare the

visual qualities of the models.

The main findings of our experiments cab be summarised as follows. The dis-

crimination threshold, that is, the level of quantisation below which the viewer can

perceive quantisation artifacts, is lower when dithered quantisation is used instead
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of the most commonly used rounding. A large number of triangles in the mesh,

and rendering methods with high specular components, increase the discrimina-

tion thresholds, that is, they require more bits per vertex coordinate to make the

quantisation artifacts imperceptible. In, perhaps, the strongest result in the thesis,

we established a strong correlation between the discrimination threshold and the

amount of information carried by the mesh, as measured by the file size of the mesh

when compressed with a state-of-the-art method. A fourth experiment, based on a

more complex design and the MLDS method, was not conclusive, but enabled a pre-

liminary investigation on the challenges facing these types of complex experiments

with lightly trained participants.
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Chapter 1

Introduction

Summary

A measure for evaluating the 3D mesh quality is essential for the purpose of de-

termining whether a particular operation on the mesh, including compression and

quantisation, impacts its perceived quality. The number of studies done in the area

of 3D meshes is limited when it is compared with the studies for 2D images, even

though large databases of 3D meshes, which would benefit from such insights, are

in use for many years now [11]. In this thesis, we are addressing this gap in the

literature, by presenting the results of a series of psycho-physical experiments aimed

principally at analysing the effect of the mesh vertex quantisation on the perceived

mesh quality.

1.1 Context and Motivation

Language, imagination, perception, and planning reveals the psychological cognitive

processes of how a human observer experiences and understands the world around.

The ability to receive and process information with the eyes defines the visual per-

ception, which is a part of the human cognition. This makes the human subject not

only the final receiver, but an important part of measuring the perceived quality of

graphics.

Today, graphical data are used in different applications including engineering

1



1.1. Context and Motivation 2

design, video gaming, virtual reality, architectural walk-through and e-commerce.

Since the demands for efficiency and quality have never ceased to increase, 3D

geometric models are often undergoes processing by shape optimization techniques

such as simplification, remeshing and fairing, as well as compression for efficient

storage and transmission, before being actually used in a practical application. In

most cases, these manipulations will lead to artifacts and noises, which may alert

their visual quality of the 3D models.

Figure 1.1: Example of different quality of Bunny model. Left: Two images of

Bunny mesh at low resolution and vertex number of 2500; Right: Two images at

high level of resolution and vertex number of 139990.

Realism in computer graphics is achieved through the use of complex models.

These models are obtained from different sources, such as 3D scanning and modelling

software. These usually demand a huge number of computer resources in terms of

storage space and transmission bandwidth in the raw data format. More computer

resources are needed as the number and complexity of the 3D images increase [81],

as shown in Figure 1.1 where we start with simple Bunny with few triangles to

more complex and almost replicated model of the real one. Thus, leads to the

generation of 3D meshes which is acknowledged to be the most prevalent discrete

virtual surface and volume representation with complex storage, processing, and

visualization. Followed by growing number of 3D meshes and its complexity the

demands for high resource including power, storage space, and bandwidth have

increased subsequently. This calls for efficient compression mechanisms to allow for

real-time interactivity of high quality meshes.

Among the various visualisation applications, triangular meshes are one of the

main representation formats in use, that have been developed for representation of

November 1, 2021



1.1. Context and Motivation 3

3D models. Triangular meshes can be characterized using different features includ-

ing geometry, connectivity, and property data also called attributes. Connectivity

describes the relationship between the vertices while geometry specify location of

the vertices [81]. The data represent different features, such as texture coordinates,

normal vector and material reflectance. Geometry and property data are generally

called vertex data, as they are often attached to vertices. Consequently, most algo-

rithms for the compression of triangular meshes handle geometry and property data

in the same fashion.

Figure 1.2: Polygon components.

Figure 1.2 shows the polygon components. According to http://www.Scratchapixel.

November 1, 2021
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1.1. Context and Motivation 4

com, polygon meshes are considered as the oldest form of geometric representations

that have been used in computer graphics. The individual points are the vertices.

This can be represented in x and y coordinate system in 2D representation. The

vertices can be connected in either clockwise or counterclockwise direction to form

the faces. The ordering of the faces is important as it helps in computing. The edge

is the line connecting the faces. The minimum number of vertices in a face is 3;

such a face is called triangle. When there are four vertices, then this is called, quad

while when there are more than four vertices, then this is called a general polygon.

Triangular meshes are preferred because of their ability to maintain mesh quality.

Mesh quality is defined as the manifoldness, faithfulness and uniformness of the

mesh [70]. This is different from the case of polygon meshes that are not able to

maintain the same level of quality. Faithfulness is the ability of the mesh to preserve

topology and geometry, such as volume and surface area. Manifoldness means that

each point in the surface mesh has a neighborhood that is topologically similar to

a disk [70]. Beyond manifoldness, certain types of meshes, such as general polygon

meshes may cause certain difficulties in generating surface elements that conform to

the finite element computations. Uniformness is associated with the triangle shape,

complexity and regularity. The quality of the triangle in surface mesh is important

in determining its robustness in certain applications [70].

Mesh compression is often being used by the researchers to decrease the size of

the data without severe loss on quality. The early studies on the mechanisms of 3D

mesh compression focused mainly on single-rate compression. The objective of this

was to save the bandwidth between the graphics card and the Central Processing

Unit (CPU). In a single-rate 3D compression, all the geometry and connectivity data

are compressed and decompressed as a whole. This means that the graphics card is

not able to render the original signal or mesh until the whole signal stream has been

received. However, with the advent of the internet, there has been development of

progressive compression and transmission mechanisms. One of the benefits of pro-

gressive compression is that it enhances interactivity. This is because compression

can be interrupted when a user realizes that the mesh, they are downloading is not

in the resolution that they expected [81]. The early mesh compression algorithms

November 1, 2021
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1.1. Context and Motivation 5

are obtained based on the fundamental connectivity coding. Though the geometry

data ask for a greater number of bits rather than the topology data, various methods

have been suggested for effective compression of geometry data devoid of topology

data reference. Further research has resulted in the use of 3D mesh compression

in audio and video technology leading to different developments, such as MP3 and

MPEG-4 among others [81].

Quantisation is a compression mechanism which focuses on compressing contin-

uous infinite values to smaller finite values. The purpose of quantization is to reduce

the number of discrete symbols within a given stream. When this is achieved, then

it becomes easy to compress the stream [41]. For example, reducing the number of

vertices for a given shape makes it easy to reduce the size of the image. Quantization

introduces different errors, such as rounding errors and computational noise [50].

The motivation for our a study is derived from the visualisation impact of the

quantization technique on the mesh quality. Currently, visual applications use float

32 bits or double 64 bits without knowing the ideal size of precision needed in these

applications that will give results that are visually accepted. Hence, using a small

quantisation level l may lead to a significant loss of information and a large l may

lead to redundancy in the mesh, with unnecessary large files as shown in Figure 1.3.

Figure 1.3: Visual mesh quality at various level of quantisation

3D triangle meshes are always quantised. While the standard formats use a

floating point arithmetic of high precision, they quite often are transformed to fixed

point arithmetic, of relatively low resolution. Quantisation can reduce the size of
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3D model without any identifiable quality loss. The triangles x, y, z can be seen as

real numbers quantized at default level l, typically at l = 32 bits (floats) or at l = 64

bits (doubles), for more efficient storage and modeling. Yet, this simple modelling

can be upgraded in complexity by adding more and more triangles.

The use of a float should be reasonable for most of application since it is so

widely used, thus this has to be also checked. Moreover, the compression algorithms

do quantisation to less than 32 bits and we do not know the visual impact of this

procedure on the quality of the mesh. If we know the visual significance of each

bit, we can still use these 32 bits and use the least significant bits for carrying other

information such as in steganography.

1.2 Objectives and Methodology

The research topic of this thesis is to study experimentally the effect of quantisation

on 3D polygonal models and to evaluate the impact of the choice of the level of

quantisation of a mesh on its quality and define methods to assess that without the

need for any user input.

1.2.1 Main objective:

How can we choose the appropriate level of quantisation for a high quality, yet

memory efficient representation of a triangle mesh?

While the issue of finding the appropriate level of mesh quantisation has been

encountered in literature, especially the one related to mesh compression, to the

best of our knowledge, there are no systematic experiments studying the impact of

mesh quantisation, and trying to estimate an optimal quantisation level for triangle

meshes. In our context, an optimal quantisation level is the one that uses the least

number of bits per vertex coordinate, without creating any visible artifacts to the

mesh.

There are many factors to take into consideration that affect the visual quality

of the mesh and the optimal quantisation level. The rendering conditions play a

significant role as they could amplify noise and make it easier for the observer’s eye
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Figure 1.4: Two different Models quantised.Top: The Max-Planck Model. Bottom:

The Cone Model.

to detect the artifacts. For example, specular rendering, where the reflection of light

is strong, makes it easier to detect any noise by human eyes as will be discussed in

some of our experiments. The size and the characteristics of the triangles influence

the surface quality as well. Complex models contains a lot of details with different

types of triangles, make it an easy target to be visually disturb by the choice of

level of quantisation. It is evident that different factors have different visual quality

impact on the models, in Figure 1.4, the size and the complexity of the Max-planck

model will increase the optimal level of quantisation, while the characteristics of the

triangles have an effect on the level of quantisation in the Cone model comprising
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of skinny thin triangles.

1.2.2 Methodology

To accomplish the objective of studying the perceptual impact of mesh quantisation,

we designed four psycho-physical experiments with unquantised and quantised 3D

meshes as stimuli. In three of them we used a Two-Alternative Forced choice (2-

AFC) design in which observers were shown a quantised alongside an unquantised

mesh and were asked to choose the mesh of higher quality. We also designed one

psycho-physical experiment, described in Chapter 6, where the participants were

presented two pairs of quantised meshes and had to choose the pair with the highest

perceived difference between these meshes.

The collected data were used to evaluate and scale the visual quality of the hu-

man performance. In each experiment, we introduce quantised models with both

geometric and texture distortions, conduct a paired-comparison subjective assess-

ment, and invite university subjects to evaluate the visual qualities of the models

under different rendering condition and resolutions. Finally, we evaluated the results

based on the human visual perception and quantisation level.

1.3 Outline

The remainder of this thesis is organised as follow:

Chapter 2 provides a background knowledge on mesh quantisation in terms of

choosing the appropriate level of quantisation in order to process a real-life image and

compress it without having a significant impact on mesh quality. This is because to

present an identical image with respect to the real world [30] it should be quantised at

proper level l, which identifies the factors of mesh quality as it is shown in Figure 1.3.

It covers the elements of rendering, especially surface rendering, where the surface

is the major part affected from quantisation procedure; further discussion includes

the rendering algorithms and volume rendering where some inspiration for studying

how different mesh characteristics affect the perceived quality of the quantised mesh

came from David Roberts’s work on volume rendering and quality perception [87].
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We discuss in detail the measurements of quality on meshes and how these will

influence the visual quality of the renderings of the 3D models. Finally, although

algorithms in computer graphics mostly function in a three-dimensional setting, the

3D model is then mapped for visualisation into a two-dimension image at a the stage

of the overall process [113] called rendering. For that reason, it is very important

to review the literature on the measures of the visual quality of two-dimensional

images as well.

Chapters 3-6 describe the results of four psycho physical experiments.

Chapter 3 Does the quantisation method have any effect on the values of the

optimal quantisation level?

We introduce the first experiment where we differentiate between two common

used methods of quantisation, dithered quantisation and non-dithered (rounding).

The non-dithered method sets the bits above the quantisation level to zero which

could lead to blocky artifacts and alter the visual quality of the 3D object. On

the other hand, in the dithered method, all bits above the quantisation level have

random values and that could cause high frequency noise which again can easily be

detected by the human eyes. We present the results of a user study on estimating

a quantisation threshold above which the quantised triangle mesh is perceived as

indistinguishable from its unquantised original. The experimental design follows

a 2-AFC process. That is, in each trial of the experiment the subject is forced to

choose between two stimuli. The results show that dithering has higher quantisation

threshold and while the difference between the two methods is small, around one

bit per vertex coordinate, it is nevertheless statistically significant.

Chapter 4 What are the factors that play significant role on the perceived

quality of the quantised triangle meshes?

Our study is based on a psychophysical experiment following again a 2-AFC

design. Two versions of the same model are presented to the participant, the original

and the quantised one at a certain level, and they chooses the one with the higher

visual quality. We used three models in total, two of them are the Max-Planck

model at two resolutions, 100K and 5K triangles, respectively, while the third is a

spherical model with 5K triangles. The aim is to establish whether the geometric
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complexity of the model, as manifested by its number of triangles, as well as its

regularity as manifested by various measures of triangle shape quality, affect the

quantisation threshold. We also used two rendering methods one of which had a

much higher specular component than the other.

Our initial results indicate that factors such as the number of triangles in the

mesh, and the strength of the specular component in the reflection model of the

rendering algorithm, do affect the quantisation thresholds.

Chapter 5 Does the geometry of the mesh, that is, the shape of the 3D model

and the properties of the underlying mesh are related to the discrimination threshold

beyond which the quantised and unquantised meshes are perceived as identical?

Our study is based again on a 2-AFC ,psycho physical experiment, where two

stimuli of one model are presented — the original and one which is quantised at a

certain level — and the participant chooses the one with the higher visual quality.

We used four different 3D models, the Max-Planck, the Cone, the Sphere, and the

Human-Head, fixing all the experimental parameters we had studied previously. In

particular, we chose rounding as the quantisation method, we used only meshes

with a large number of triangles, between 200K and 315K, and we used a single

rendering method, which had a high specular component. The results show a strong

and statistically significant correlation between the discrimination threshold and the

amount of geometric information carried by the mesh, as measured by the filesizes

of the compressed meshes.

Figure 1.5: Psychometric Function.
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Chapter 6 In this experiment we want to go beyond the estimation of discrim-

ination thresholds and understand the scaling of the perceived visual quality. We

designed a psycho physical, 2AFC experiment and used Maximum Likelihood Dif-

ference Scaling (MLDS) method for modeling the perceived visual differences when

the vertices of a triangle mesh are quantized at various levels. The aim is to obtain a

scale of the perceived quality in terms of the quantisation level instead of a a single

threshold value as shown in the figure example of difference scaling function, Fig-

ure 1.5. We presented two pairs of images to the observer and asked to choose which

pair consists of more different images than the other. The results were inconclusive,

but indicate that there could be a relationship between quantisation thresholds, ge-

ometric characteristics of the mesh and properties of the rendering style which could

be further studied with larger experiment based on the MLDS method.

Chapter 7 summarizes the contributions of the thesis, and proposes future work

on the assessment of visual quality for 3D objects.
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Chapter 2

Background

Over the last two decades, various mesh compression methods have been proposed

to compress 3D models, usually in the form of triangle meshes, in order to limit the

bandwidth usage and reduce the data transfer time. These operations may introduce

geometric distortions in form of perturbation of vertex coordinates, which might be

visible to a human observer. This is key issue for human-centered applications,

as the visibility of these geometric distortions can directly impact the quality of

experience of the user. It is therefore important to be able to predict or control the

visibility of such geometric distortions.

This chapter is divided into two parts. The first part gives a brief overview about

the 3D models (Section 2.1). In particular, we focus on the rendering methods and

understanding the visual information that the human eyes perceive (Section 2.2).

The second part focuses on the major characteristics of the triangle meshes that

are of relevance to our perceptual studies (Section 2.3), and we discuss the quality

measures, for both 2D images and meshes (Section 2.4). Finally, we discuss the types

and the design of the experiments that we implemented throughout this research,

as well as the software we used.

2.1 3D models (meshes)

3D geometry studies the mathematics of shapes in three-dimensional space, the

points of which are described by a triple consisting of the 3 coordinates x, y and

12
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z, see Figure 2.1. In 3D geometry, the three coordinates determine uniquely the

location of the point in space.

Figure 2.1: x,y,z of Triangle Mesh.

Polygonal meshes consist of three different kinds of mesh primitives: vertices,

edges, faces. The vertex is a point positioned in 3D space, which might in addition

be appended with other information, such as color, normal vector, and texture

coordinates. The edges are connection between two vertices. The faces are ordered

sets of vertices, and consist of three vertices in the faces of a triangle mesh, or

three or more vertices in the faces of general polygonal meshes. The set of faces

describes the topology of the triangle meshes. The information described by the

vertex coordinates is usually referred to as the geometry of the mesh, while the

information described by the faces, that is, the incidence relation between the mesh

vertices is called the connectivity. The incidence relations can be used to specify

for each face the vertices and edges on the bounding loop, for each edge the end

vertices and the faces to which the edge is incident, and for each vertex the incident

edge and face. Two vertices or two faces are called adjacent if there exists an edge

incident to both.

2.2 Rendering

Rendering creates 2D images from 3D models through computational methods. The

geometry of these 3D models may be described in various formats and data struc-

tures, while lighting environments and texture details should also be described.

This mentioned data is transmitted to the rendering program and then the digital
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2D image is produced as an output of this rendering process. In most visual ap-

plications, 3D geometry is described by surfaces, however, the field of volumetric

data rendering has also received considerable attention from the early days of graph-

ics development [52], where several rendering techniques for 3D volumetric data of

scalar or vector quantities are discussed.

In a study regarding surface and volume rendering [105], several surface render-

ing schemes are presented in terms of 3D displaying of data obtained by imaging

devices. Figure 2.2 illustrates a particular data set, which has been used exten-

sively in the literature. The volume renderings of it were not created at the highest

possible resolution because of the constraints in terms of computational power and

the memory requirements associated with volume rendering. Images A and B show

surface renderings, and images C and D show volume renderings.

Figure 2.2: Image A and B are surface renderings and image C and D are volume

renderings [105].

2.2.1 Rendering Algorithms

Rendering processes may make use of real-world illumination captured by special

equipment, or a set of synthetic point or area light sources, or a combination of the

above [30]. Generally, the the generation of a high quality image require the use

of appropriate, efficient rendering processes [53]. The physics behind the various

rendering algorithms are usually described in some basic mathematical form, and
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the most efficient algorithms will split the problem into a large numbers of smaller

problems that will be solved one piece at a time, rather than attempting to solve

the particular instance of the problem for the surface as a whole [76].

2.2.2 Volume Rendering

Johnson and Hansen [55] indicate that various methods have been developed that

approach the rendering problem by focusing on visualising certain geometric primi-

tives; and that most surface rendering techniques essentially rely on surface approx-

imations in terms of how the surface geometric primitives are treated. Moreover,

a whole dimension of the information is significantly underutilised when visualising

volumetric data with the use of surface rendering techniques [15]. Based on this,

volume-rendering techniques have been developed in order to process directly the

volumetric 3D data and produce a 2D image.

In the study by Boucheny et al [7], it was identified that volume rendering

techniques can be used to visualise information related to the spatial layout of the

model, in terms of the supported primitives, and within a dynamic framework.

This study aimed to measure scenarios for the volume rendering techniques for

presenting clear depth indications in a dynamic context. Jänicke and Chen [51]

also studied volume rendering techniques for processing 3D data sets in terms of 2D

projections that demonstrate layered depictions of complicated 3D structures. The

main problem encountered was in analysing the suitability of the various transfer

functions that would lead to suitable visualisations of the various highly complex

and overlapping structures in a 3D volume [6].

The impact of the choice of rendering techniques can be observed in Figure 2.3,

which is based on various volume renderings of a cylinder [7]. Perlin noise was added

to the cylinder, the data was stored as 3D textures and the rendering process had

been conducted through 100 planes, with their accumulation being from back to

front.
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Figure 2.3: The difference images of the renderings of a cylinder produced with

various volume rendering techniques [7].

2.3 Quantisation

Data in form of images, audio files, or videos are often processed for improving

their suitability for a specific application, or for extracting information. In network

communication, data transmit in the form of signals from a source to a destination.

The received signals are processed, and then analysed to extract the information

they carry. As signals can be of different types (analog or digital) their processing

often involves their conversion from one type to another. An analog signal is a

continuous type of signal in which data are represented by time varying quantities.

Whereas, a digital signal is a discrete signal in which data are represented by a

sequence of separate values at any given point of time.

Sometimes data is represented in the digital form but needs to be converted into

analog, i.e. when a modem converts the digital data to analog signals which then

are transmitted over telephone lines. In such situations Digital-to-Analog converters

are required. Generally, in the real world, most of the time, signals are presented

in an analog form i.e. temperature, light, and sound. However, in computing,

information usually needs to be in digital form (1’s or 0’s) because digital computer

systems require discrete binary information. For such purposes, Analog-to-Digital
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converters are being used to convert an analog signal into a digital one, and making

it thus usable by a computing machine [38]. On the other hand, if a signal is

already presented in a discrete form (0s and 1s generated by the computer and then

translated into voltage pulses that can be broadcasted through a wire), then the

extraction of digital information from it is known as Digital-to-Digital encoding [32].

These conversion from Analog-to-Digital, Digital-to-Analog, and Digital-to-Digital

are done based on application requirements and the suitability of the signal type

for specific signal processing operations [38]. These conversion processes are based

on sampling and quantisation. The spatial resolution of an image is defined by the

sampling rate, while, on the other hand, the number of grey shades in an image rep-

resentation are determined by quantisation level of the intensities. Quantisation is a

mapping of infinite values (input) to finite and values (output). This way input val-

ues are digitised, that is, the input is transformed from continuous to discrete [41].

Gray and Neuhoff [41], states that the quantisation levels of the intensity values

need to be high in order for the human visual system to be able to extract detailed

information from the image.

Quantisation can also be seen as discretisation by the division of the allowable

range into small parts. The level of the quantisation, that is, the number of parts

into which we split the allowable range, is critical in a wide range of applications in

image and signal processing. For example, in images, high quantisation levels are

required for applications that require fine shading. Even in very fine quantisations,

there will still be a difference between the input and quantised output, which is

known as the quantisation error. A device or function that is used for quantisa-

tion is known as a quantiser. The simplest and most common form of quantiser

is the zero-memory quantiser. Another class of quantisers is the sequential quan-

tisers, including techniques such as the delta modulation, of the Differential Pulse

Code Modulation (DPCM) systems, and their adaptive versions. Quantisation er-

rors can introduce several knock-on errors in an algorithm, including underflow or

overflow, computational noise, and rounding errors, which, as a consequence, lead

to dissimilarities between the expected ideal and the computed numerical behaviour

of a system.
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Quantisation can be applied on any type of information. For example, audio

quantisation takes an analog signal (i.e. a sound wave) and converts it into a se-

quence of discrete values, each one corresponding to the amplitude of each sam-

ple [86]. The range of the values of the amplitude levels depends on the number of

bits, that is, the level of the quantisation. For example, 8-bit quantisation means

256 possible values. One of the classic examples of quantisation is CDs with music

tracks, encoded in formats such as MP3. Quantisation has also become vital in the

optimisation of deep learning models, as it increases their power of inference upon

deployment in embedded systems.

Adaptive image quantisation involves the determination of various segments in

the image, a method for assessing which parts of the image are less important

and therefore, can be quantised more aggressively with minimal only loss of visual

quality [18]. It should be noted however, that adaptive image quantisation is still

a lossy process, which is thus reducing the quality of the image. Finally, regarding

colour quantisation, there are various techniques which help to represent an image

with the minimum possible number of different colours. In a typical application,

the image would be converted to the GIF format, reducing the number of different

colours to 256.

2.3.1 Mesh quantisation in compression algorithms

Even though still much less prevalent than the ubiquitous 2D images, 3D geometry

in various formats, but essentially encoded by three dimensional coordinates, the x-

coordinate, the y-coordinate and the z-coordinate, is now widely used in animations

and 3D modelling applications. It is thus quite important to develop techniques for

the quantisation and compression of such 3D geometry models, which will reduce

the processing time and would require less memory [115].

Aiming at exploiting the high spatial correlation of adjacent mesh vertices, the

current geometry compression techniques are based on the pre-quantisation of the

vertex positions, the prediction of the quantised positions through various schemes

utilising connectivity information, and the entropy coding of the prediction residu-

als. We note that the IEEE 32-bit floating-point numbers that are used to encode
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uncompressed geometry data, that is, vertex coordinates, support a level of detail

which is beyond the limits of the human perception and way more than the re-

quirements of the vast majority of the common applications. Therefore, in such

situations, quantisation can be safely conducted, without causing any impairment

to the visual quality of the mesh.

Torkhani et al [103], studied experimentally the mesh distortions that are ex-

pected under realistic application scenarios, including the distortions caused from

lossy compression algorithms and network transmission errors. The paper also stud-

ied distortions in 3D mesh animations, which are also used in several applications

and which, often, are also undergoing lossy compression operations that would affect

quality. This issue was also been discussed in [41]. Similar techniques can also be

applied for the compression of general polygonal, rather than triangular, meshes.

As discussed by Peng et al. [81], compression techniques for single-rate mesh re-

quire the connectivity to be encoded in a lossless way, as the connectivity is regarded

a discrete mesh characteristic which must be preserved. In contrast, encoding of ge-

ometry data is usually conducted in a lossy manner. The current mesh compression

algorithms are able to encode the connectivity of the mesh using less than four bits

per vertex, and their performance in terms of the achieved compression ratios, is

close to the optimal theoretical lower bounds. In contrast, the encoding of the mesh

geometry, that is the quantisation of the vertex coordinates, has not been the focus

of previous studies, which almost invariably pick a certain quantisation level empir-

ically. However, in a compressed mesh, the size of the data representing geometry

is significantly larger than that of the connectivity, thus, more recent studies focus

more on geometry coding.

2.4 Quality Measures on Images and Meshes

Quality measures for images are generally based on two main methods: the subjec-

tive method and the objective method [26]. The subjective method refers to human

involvement for the quality evaluation of the images [119]. The objective method

includes a computational process for calculating a measure of the image quality in an
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automatic manner. In terms of the image quality metrics (IQM) within the objec-

tive methods, these can predict the perceived image quality in an automatic and fast

manner. The objective IQMs have been classified into three main categories: those

of full reference, reduced-reference (RF) and no-reference. In terms of the subjective

IQMs, they are based on the judgement of human beings, which make them more

reliable with respect to the quality of images. However, this procedure has been

often criticised as irrelevant, slow, and expensive, when it comes to implementing

it [101].

Despite their obvious drawbacks, the distinctive advantage of the subjective

methods is again that they involve human users for quality evaluation of images,

while the objective comprise of computational methods for image quality. Human

beings are often the end users, especially in mesh animations. Thus, analysing the

perceptual quality of 3D dynamic meshes is being the focus of research studies, and

is consider a critical issue as discussed in [102]. This paper studied the percep-

tual quality of distorted dynamic meshes by collecting human opinion scores in a

large-scale subjective experiment [12].

Quality assessment of an image is essential in many applications [12]. That

study focused on automatic methods for computing quality scores that were vali-

dated by correlating them with the scores that are provided by human observers. [81]

developed image quality assessment processes by studying user perception of struc-

tural data. As described by Weiskopf and Erlebacher [62], in many contexts, the

generation of high quality images is a major challenge, especially when it comes

to visualisation. Indeed, the suitability of image quality metrics for visualisation

depends on many factors, including domain-specific requirements, the needs and ex-

pectations of the user, the source data and the acquisition and processing techniques

that have been used [51].

The simplification method presented by Lindstorm and Turk [69] is based on the

minimisation of the root-mean-squared difference with respect to the generated im-

ages from several views regarding the object that has been simplified in comparison

to the original. In [94], a similar approach is employed, their process comprising

of comparing the structural data of the distorted image against the original image.
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In similar studies, the distinction between full reference, reduced reference, and no

reference is crucial [90].

Image quality metrics compute a value for the image quality in an almost im-

mediate manner. In a survey of image quality measures [101], the authors identified

that the assessment of image quality is still a challenging task in terms of digital

image processing systems, and Peak Signal-to-Noise Ratio (PSNR)

PSNR = 10 log 10
2552

MSE
(2.4.1)

is commonly used in terms of objective IQM, but does not always correlate well

with validating results from respective subjective IQM. Here, 255 is the maximum

grey level of a 8bits/pixel monochrome image, and MSE is the Mean Square Error.

Several other objective image quality metrics have been developed as substitutes for

the PSNR.

In order to control quality when various image processing operations are ap-

plied to an image, IQM could be inserted into the image-processing pipeline for the

optimisation of the algorithmic and parametric settings. A study regarding the per-

formance of image quality measures [26] conducted evaluations of greyscale images

under compression. Figure 2.4 shows different versions of a Lenna image, starting

from the original, and then encoded in the compressed JPEG, EPIC, and RLPQ

formats. The difference in the quality of the image that can be visually observed

in this context, can be quantifying by the various objective image quality metrics,

which can thus be used to control the impact of the image compression algorithms

through parameter selection.

In another related study [108], image quality measures had been studied in re-

lation to the human visual system. Their study included metrics extracting and

utilising structural information with respect to the viewing field. Such measures

are particularly suitable in the analysis of image distortion. This is illustrated in

Figure 2.5, which depicts the visual impact of various types of distortion on the

same image.

In Figure 2.6, this aspect is further illustrated. The figure shows the impact of

changing the values of various image processing algorithmic parameters, affecting

brightness, contrast and other related factors.
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Figure 2.4: The Lena image encoded in various compressed image formats, [26].

2.4.1 Quality measures on meshes

In the context of mesh quantisation, there are again various approaches to the

measuring of the quality of meshes. As per the image quality metrics, in meshes too,

we distinguish between objective and subjective measures. Objective measurements

often involve factors that are closely related to the ability of the mesh to produce
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Figure 2.5: Comparing Boat images which have undergone various types of dis-

tortion: (top left) original image; (top middle) contrast stretched image; (top

right) mean-shifted image; (bottom left) JPEG compressed image; (bottom mid-

dle) blurred image; (bottom right) salt-pepper impulsive noise contaminated image.

See, [108].

images of measurably high quality through rendering processes. Standard objective

mesh quality metrics are based on measures of smoothness, curvature, as well as

the average shape of the mesh triangles. A second class of objective mesh quality

measures are defined through objective measurements of the deviation of a mesh

from an ideal mesh models. Subjective mesh quality measures are also used, usually

based on colour renderings of the mesh.

When studying how noise affects the quality of a mesh, we investigate the rela-

tionship between the strength and type of the noise and the information extracted

by the viewer, rather than the the noise itself. In order to improve the quality of

a noisy mesh, mesh smoothing algorithms can be applied, creating smooth approx-

imations of the original mesh data, which can then be used to obtain the essential

patterns of the underlying data. Smoothing, by eliminating excessive mesh noise,

can be a useful pre-processing step before quantisation. Figure ?? shows the effect

November 1, 2021



2.4. Quality Measures on Images and Meshes 24

Figure 2.6: The impact of the parameter selection for various image processing

algorithms can be quantified by Image Quality Metrics. See, [108].

of a smoothing algorithm on a noise mesh.

Figure 2.7: Smoothing a noisy mesh triangle, see [116].

In terms of quality measures on dynamic meshes, they are categorised by dis-

tortions that have the same strength on a given vertex over all frames, or the same

strength over all vertices for a given frame, [102]. Figure 2.8 shows the distortions of

the first type. Part a shows the original image, in part b noise was added weighted by

a measure of local mesh roughness, and part in part c the added noise was inversely

weighted by the same measure of roughness.

Several denoising methods, in order to maintain the quality of the mesh and

its fidelity to the original data while reducing the noise, utilise mesh fairness. A

related study [47] studied the effect of fairness through the implementation of several

techniques mesh processing techniques on meshes that were created from a Kinect’s
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Figure 2.8: Impact of distortions by added noise on the quality of a mesh, see [102].

depth map of a person, see Figure 2.9. The figure clearly depicts the improvements

in the fairness of the person’s face, through the methods implemented in the study

by Haque and Govindu, [47].

The quality measures that are related to curvature continuity, facilitate the im-

provement of the mesh by curvature-driven techniques. Such techniques work have

the advantage that the new mesh remains close to the original surface and preserves

quite well features such as normals and curvatures. Figure 2.10 depicts the dif-

ferences between the outputs of two remeshing algorithms, one driven by surface

curvature computations, and one where curvature is ignored.

In comparison with the quality measures that have been discussed above, the

quality of a surface can be also be evaluated with the use of visualisation tools.

Visualisation techniques for assessing surface quality include isophotes, reflection

lines, and iso-curve. In terms of assessing curvature continuity and fairness, [108]

recommends two major techniques; iso-curvature lines and lines of curvature. In a

volumetric mesh, unlike the quality measures that have been discussed above, the

use of visualisation tools for assessing mesh quality is restricted to analysing one

layer at a time.

Reflection lines can also be used to evaluate the fairness of a surface. In CAD

applications in particular, where reflection lines are widely used, they can be used to
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Figure 2.9: Mesh fairing by various methods, see [47].

infer an assessment on the quality of the shape design. Figure 2.11, from [103], shows

an example of computation of reflection lines and their use for mesh optimisation.

They also indicate the changes in the directions of the features of the mesh that are

required in order to achieve the desired quality of the designed shape.

Regarding the method of isophotes as a visualisation tool [68], the technique is

examining surfaces through lines of the same light intensity. Isophotes are considered

a useful tool for visualising and highlighting local irregularities and defect, whose

small size within the surface makes them difficult to spot under a wire frame or a

shading based rendering of the surface. The first image in Figure 2.12, from [46],

shows the original surface, while the other two are isophote visualisations.

The curvature based visualisation methods for assessing mesh fairness and mesh

quality are based on two major techniques, see Wang et al. [107]. Iso-curvature lines

and lines of curvature. The Iso-curvature lines are the lines of constant curvature

on a surface. In [45], curvature lines and directions are utilised in order to compute
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Figure 2.10: Outputs of two remeshing algorithms. Left: no curvature computations.

Right: the remeshing process is driven by curvature computations. See [108].

Figure 2.11: Reflection lines optimisation, see [103].

efficiently and then draw the surface’s iso-curvature lines.

In [37], quality measures for optimal meshing of parameterised CAD surfaces

were proposed. Their technique was based on the extension of distortion (quality)

measures for planar meshes to the mentioned parameterised surfaces. The proposed

distortion measures are computed with respect to the parametric surface nodes and

their coordinates. In order to asses validity and the quality of a particular meshing

of the parametric surface, the proposed distortion measure was utilised. The study

also utilised this measure by minimising it on concurrent smooth and untangled

surface meshes [44].

Various evaluation methods for 3D meshes directly utilise metrics for 2D images,

including VDP [20], SSIM [109], RMS error and the Sarnoff VDM [54]. According

to Lavoué et al [65], there are eight key attributes needed for the evaluating the

visual qualities of a mesh and constructing a mesh visual quality metric. Namely,
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Figure 2.12: Isophote visualisations, see [46].

minimum curvatures, maximum curvatures, mean curvatures, Gaussian curvatures,

dihedral angles, geometric Laplacians, Laplacian of the Gaussian curvatures, and

3D geometric position of the vertices. A combination of these geometric attributes

can help in constructing suitable formulas for evaluating 3D mesh quality. These

geometric attributes help in predicting apparent distortions that occur in processed

3D mesh models. It should be noted that such mesh visual quality metrics do

not apply to textured meshes, and compute each of the above individual factors

separately. It was deduced that a combination of the above eight mesh quality

attributes can be quite effective in producing application appropriate mesh quality

measures. According to the studies by Lavoué and Corsini [64] and [17], the definite

factors that contribute most in accurate predictions of the mesh visual quality are

the mean and maximum curvature, as well as dihedral angles. The least performing

predictor of visual mesh quality is the geometric differences, with a correlation factor

of 34%. Moreover, generally, the attributes that are based on Laplacians seem to

give poor outcomes.

The high quality of the mesh triangles guarantees good behaviour of the mesh,

especially when analytic properties of the mesh are studied, [66]. The key metrics

that relate with the quality of mesh triangles are aspect ratio, skewness, orthogo-

nality and smoothness. When a 3D mesh is being created, the average quality of

its triangles can be enhanced by selecting the right design topology and utilising

smoothing algorithms for evenly distributing all the elements and the features of

the model. Perhaps the most important factor that should be maintained is the

aspect ratio, that is, the ratio between the longest and the shortest edge length of

a triangle. That would be always equal to 1 in the case of an ideal mesh consisting

exclusively of equilateral triangles.
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2.5 Types of experiments

2.5.1 Psychophysical experimental designs

In our context, the term experiment refers to process by which the responses of a set

of users is collected and analysed, and the effect on dependent variables is measured

with respect to changes in the independent variables. The term design refers to

the specification of certain procedures with the ultimate aim to assess a hypothesis.

Therefore, a suitable experimental design needs thorough understanding of the en-

vironment in which it will take place. First, the experimental design considers the

variables and their relations within the environment in which takes place, followed

by formulation of the hypotheses, and finally their testing. There are three main

types of experimental design in the literature, based on different strategies: time

based, choice based and standard scale based.

The task based experimental design is a systematic procedure performed under

controlled conditions. The user is assigned a task, and the time to finish this task,

under various factors, is measured. The design of such an experiment should identify

dependent variables, outcome, usability goal, the independent variables, as well as

any other factors that can be under our and manipulated directly [61, 114]. For

describing the task, we need to identify what we think the users should be asked to

do while using the system. Examples include, find the smallest object, or the object

of a specific colour. The user is asked to perform the task and the time of completion,

as well as the success or failure in the completion of the task are recorded [89]. A

drawback of such designs is that an unsupervised user could deviate completely from

the task, making simple statistical methods, such as the average time spent on the

task, unsuitable for the analysis of the results. To give an example, the might needs

to find a particular 3D object, but instead they are spending their time surfing on

the site. Addressing such issues may lead to more complicated designs. However,

overall, this type of design provides high level of control, it is quite straightforward

to replicate, and the type of data that are usually collected are suitable for deep

statistical analysis.

Staircase is one of several methods used for controlling the sequence of trials
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presented to the participants of an experiment. It was first introduced by Dixon

and Mood [22]. The method is quite straightforward, and will be used in our first

experiment to compute discrimination thresholds, that is the lowest possible level

of quantisation that give acceptable mesh quality. The reason for discussing stud-

ies that developed the staircase approach is to analyse this technique in order to

properly understand its implementation regarding mesh quantisation.

In [67], they introduced a novel up-down procedure for the sequential choice of

observations that will presented to the participants, which offered several benefits.

Based on [67], which has in the context of psychoacoustic testing, several variations

of the simple up-down procedure were introduced in the past decades. The main

objective is efficient parameter estimation, that is, as few user trials as possible.

The benefits associated with the up-down method include robustness, simplicity,

high efficiency, relative freedom in the design, and small sample requirement.

Another research paper [83], evaluates the statistics of fatigue strength distri-

bution, employing an up-down staircase method. In order to determine the fatigue

strength and its standard deviation with as much accuracy as possible, the system’s

parameters and their effect were evaluated using the traditional staircase statistic

with a large scale numerical simulation, which enabled the quantification of the stan-

dard deviation and the bias as functions of the staircase step size and the sample

size. Emulating these designs, and employing a yes/no procedure, our first exper-

iment will aim a identifying the difference, if any, amongst the stimuli that have

been produced from 3D models quantised at various levels.

A two-alternative forced choice (2-AFC) is an experimental design for analysing

the participants’ responses through their selection of exactly one of two available

choices, in a time constraint environment. In our case, a 2-AFC staircase will be

based on the responses of the participants to the stimuli by a yes or no. In response

to a yes answer, the intensity of the stimulus will be decreased by one, and the

procedure be repeated iteratively, until the answer is no. In other words, for each

yes or no, an increment of one or, respectively, an increment of one will be done,

with the stimuli hovering back and forth around the threshold. In our experiment,

a trial would be to present to the participant two images and ask them if they are
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identical or not, expecting an either yes or no answer. In this staircase method, the

values of the stimuli concentrate in the region around the threshold, thus making

its estimation an efficient process. However, there are also a drawbacks related to

the expected high variation in a subject’s response to similar stimuli around the

threshold [24].

As far as benefits of 2-AFC are considered, it is the simplest design based on

the choice between two given options. In contrast to scaling methods discussed

next, it offers a threshold measured in physical units. Furthermore, it can be better

than the task based designs due to the unambiguity of the binary decision making

process [36]. This binary nature also makes it an unbiased model, as it will be the

case with our quality discrimination experiments based on the choice between a left

and a right image. Moreover, 2-AFC is based on consistent behavioral outcomes

hence, making it helpful in decision making modeling. Another advantage of using

2-AFC is that it can benefit from user performance enhancement, due to the fact

that on each trial the subjects are provided with more factual information [36]. On

the other hand, its performance mainly depends on the question presented to the

users and their relevant assumptions during the procedure. That is, it can still be

affected by the subject’s personal preferences during decision making.

Generally, one of the most common types of experimental design, one that is

widely being used in practice, is the scale based, where the response of the user is

measured on a standard scale. In scale base designs, the responses correspond to the

user’s subjective attitudes, and they are not considered as absolute measures, but

more of an instant estimation of the user’s emotional state and intention. Moreover,

the approach is uni-dimensional and with limited options for corrective analysis

when, due to various misunderstandings, or lack of experience from the part of the

user, it fails to calculate the correct user attitudes and intentions. Indeed, in most

settings, the development of a universally accepted scale, one which will be easy to

understand and implement, seems to be an elusive goal. on the other hand, scale

based designs can evaluate the data in ordinal, nominal, interval, and ratio formats,

offering thus some design flexibility [28].

The maximum-likelihood methods are designed to estimate the threshold as the
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middle point of the psychometric curve, identified as the 50% level in a yes/no task,

or as the 75% of presentations in 2-AFC. For more details we refer to chapter 5,

where such methods were used. While the simplicity and flexibility of the staircase

method make it the preferred choice in many instances, on the other hand, the

maximum-likelihood estimation procedures might offer some benefits over staircases.

In particular, the duration of the trial is usually longer with a staircase as the stimuli

change by a fixed step size. As a result, robust estimation of thresholds is possible

with just few trials in maximum-likelihood methods, while the staircases require a

number of trials to produce the turnarounds required to calculate the threshold [95].

2.6 Software

various software tools were used in the implementation of the experiments and the

analysis of the results. In particular, Meshlab and Mitsuba were used for producing

and rendering the 3D meshes of the experiments, the interfaces of the experiments

and the collection and analysis of the results was done in Matlab, while Palamedes

was used in the analysis of the results of one of the second experiment.

Figure 2.13: Matlab, Meshlab and Mitsuba software.

Meshlab: The Visual Computing Lab of ISTI - CNR [13] developed a graph-

ical front-end, which called Meshlab. The software provides a friendly interface

which make it easy for the user to experiment with its tools interactively. It is an

open source, portable, and extensible system, for editing and modifying 3D trian-

gle meshes which can be downloaded from this link https://www.meshlab.net/

#download. It provides tools for processing, cleaning and rendering meshes. It is

November 1, 2021

https://www.meshlab.net/#download
https://www.meshlab.net/#download


2.6. Software 33

widely used in various technical fields that require 3D model development and 3D

data handling.

We used the MeshLab software in our experiments for various purposes. From

cleaning the 3D models, remeshing them, for simplification to reduce the number

of vertices, subdivision to increase the number of vertices, and map colouring. The

original models were downloaded from the Visualization Virtual Services (VVS)

workbench.

Matlab: It is a programming language and numeric computing environment

developed by Mathworks. It provide an environment where the programmer could

write and run programs, plot functions, implement algorithms and create user in-

terfaces.

Our experiments place a strong emphasis on the participant’s behaviour and

interaction. Therefore, we needed responsive, intuitive interfaces which would have

been easy for the user to interact with. Thus, we used the Matlab to design each

experiment’s interface along with functions for collecting the data from the partici-

pants’ trials, and in most of the experiments we used Matlab to write the code for

analysing the results.

Palamedes: We used the Palamedes software to fit Psychometric Functions

(PFs) to the data generated by the psychophysical experiment, using the Maximum

Likelihood Estimation (MLE) method. For more details we refer to the chapter 6,

section 6.3.1.

Mitsuba: It is a free open source, research oriented rendering system developed

by the Realistic Graphics Lab at EPFL. It is a physical simulation based rendering

system written in portable C++ and consists of a small set of libraries and more

than 100 various plugins that implement functionality from support of various light

sources and environments to the customisation of rendering algorithms. It comes

with a graphical user interface, which allows the user to interactively explore the

scene, and after choosing a viewpoint, various rendering techniques can be used to

generate a high quality image of the scene. It also supports advanced rendering

techniques such as volumetric rendering.

We used the Mitsuba software for rendering our 3D models with imported com-
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plex complex environments, making the resulted images that were shown to the users

closer to the images that one would expect to see in modern real-life applications.
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Chapter 3

A user study on the effect of

quantisation methods on

thresholds of triangle meshes

3.1 Introduction

Triangle mesh is the ubiquitous shape representation for 3D graphics and visuali-

sation applications. In their simplest form, they consist of a set of vertices, which

are points in R3 connected between them by triangular faces. The encoding of the

vertex coordinates most often makes use of 32-bit floats, however, the use of fixed-

point with less than 32 bits per vertex coordinate is also common, especially when

we want the triangle mesh in a compressed form. While strictly speaking geometry

encoded at any finite precision, including 32-bit floats, is quantised, here following

a widely accepted convention we refer to the process of transformation from 32-bit

floats to fixed-point arithmetic as quantisation, to the resulted mesh as quantised

and to the original mesh as unquantised.

The effect of the quantisation on the visual quality of the mesh naturally depends

on the quantisation level, that is, the number of bits per vertex coordinate. While it

is well-known that coarse quantisations often result to meshes of low visual quality,

to the best of our knowledge there is no systematic study aiming at finding the

minimum number of bits per vertex coordinate that are required for a quantised
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mesh that will be visually indistinguishable from the unquantised. While there

could be several possible explanations for the lack of study of this quantisation

threshold, we note as a prominent one that the threshold seems to depend on several

of the mesh characteristics in conjunction with the rendering algorithm used and

that, generally, it should be considered as application dependent. A classic example

where a quantisation level must be chosen outside the context of a specific visual

applications the testing and evaluation of mesh compression algorithms. In early

seminal papers such as [104], the quantisation levels range from 8 to 10 bits per

vertex, while in some of the more recent approaches surveyed in [71], the standard

quantisation level seems to be 16 bits per vertex coordinate. In [49], general, not

necessarily triangle meshes were tested at quantisation levels ranging from 12 to 16

bits.

The experimental study of quantisation thresholds in this chapter focuses on

the comparison between two different quantisation methods. The first is rounding,

which sets all the bits above the quantisation level to zero. The second method

is dithering, where all bits above the quantisation level are considered as having a

random value. While the simplicity of rounding makes it the most commonly used

quantisation method, dithering has the advantage that the randomised bits could

represent encoded information in applications such as high capacity steganography

[118]. Figure 3.1 shows an example of rounding and dithering at 8 bits per vertex

coordinate.

To the best of our knowledge, in the literature there is no experimental compar-

ison of the visual properties of the two quantisation methods. It is well-known that

truncation creates blocky artifacts, which one could argue are easily detected by the

eye while, on the other hand, dithering causes high frequancy noise which again the

eye is sensitive to it.

The findings of the experiment are summarised as follows:

• Dithering has a higher threshold than rounding, that is, with dithering we

need more bits per vertex coordinate to make the quantised model indistin-

guishable from the unquantised. The increase is small, around one bit per

vertex coordinate in average in our experiments, but nevertheless statistically
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Figure 3.1: Left: Rounding at 8 bits per vertex coordinate. Right: Dithering at 8

bits per vertex coordinate.

significant. To the best of our knowledge, this is the first study establishing

such a result.

• As expected, the characteristics of the mesh model affect the quantisation

threshold. Regarding the type of characteristics affecting most the quantisa-

tion threshold, the first indications we have from our experiment suggest that

the size of the model is more important than smoothness. In particular, larger

models with many triangles and thus more detail require, as expected, more

bits per vertex coordinate.

The main limitation of our approach is that we use only one rendering method.

Moreover, by opting for the interface of experiment to be interactive the renderings
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presented to the participants were of low quality, while on the other hand though it

should be noted that our rendering setting, essentially Phong shading, is often met in

real-world applications. The second limitation is that the set of models we used was

limited to three models in total, even though their characteristics were very diverse.

Overall, while we think that the comparison of the two quantisations methods was

fair and broad enough to have limited only threats to the validity of the main finding

that dithering has higher quantisation thresholds, the results regarding the effect of

the mesh characteristics on the thresholds should be considered preliminary, and of

course, the actual values of the thresholds computed in each case should be treated

with caution as application depended.

3.2 Background

Quantisation techniques are most often studied in the context of signal theory [39].

According to an extensive survey of the technique in [41], rounding, which is histori-

cally the oldest example of quantisation and was first analysed in [96] for estimating

densities by histograms. Dithering was introduced in [88] for improving the visual

quality of a digitally encoded image by removing the visual artifacts caused by coarse

quantisations of the grayscale range.

3.2.1 Perception

Subjective experiments have been employed by various researchers studying 3D

model visual quality degradation under common mesh manipulation processes such

as lossy compression [111], or watermarking [16]. More recent work utilises large

databases containing meshes that have undergone a variety of distortions including

compression, lossy tranmission and noise addition [63, 98], while in [102] dynamic

meshes are considered. The types of mesh distortions studied in those papers are

not as simple and natural as the vertex coordinate quantisations of our case, and

the ultimate aim there is not just a comparison between two specific distortions, but

rather the development and validation of metrics of visual mesh quality which can

then be computed automatically.
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We are not aware of any systematic experimental comparison between the quanti-

sation thresholds of rounding and dithering. It is of course well-known that rounding

creates blocky artifacts, which could be easily detected by the human visual system.

On the other hand, dithering causes high frequency noise which human observers are

also sensitive to. With 2D images, blockiness in the form of averaging of pixel values

over a given area, is known to decrease visual recognition performance [48]. Simi-

larly to the 3D model case, such blocky artifacts may be the result of certain lossy

image compression algorithms. Although dithering in the form of added noise also

degrades performance in many visual tasks [80], it can actually improve performance

when added to a blocky 2D image: the added noise disrupts the high-frequency edge

structure of the blocky image, making it easier to recognise [73].

The perceptual effect of quantisation of a 3D model is, of course, more complex.

The stimulus for the human observer is not the quantised model itself, but a 2D

image that is a result of a rendering process. As such, the perceptual effects of

quantisation depend on the rendering algorithm and, eventually, how blocky the

result appears depends at least partly on how good a job the rendering algorithm

does in smoothing out the quantisation effects. On the other hand, the noise in-

troduced in dithering might itself be highly visible to the observer, possibly making

the quantised version perceptually even more dissimilar from the original.

Given that blockiness resulting from vertex coordinate rounding and high fre-

quency noise introduced by dithering are both causes of visual degradation, it was

difficult formulate a firm hypothesis prior to the execution of the experiment on

how the quantisation thresholds of the two methods compare. Instead, we expected

statistically non-significant differences as the most probable outcome of the experi-

ment and lower dithering thresholds as the second most probable outcome, given the

cues we had from the literature on possible visual improvement of images through

dithering. While the eventual outcome of the experiment was the opposite, i.e.,lower

thresholds for rounding, it should be noted that we did not compare the general vi-

sual quality of the two quantisation methods but something rather more specific,

i.e. the indistinguishability thresholds.
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3.3 Experimental Design

In each trial of the experiment the participant was presented with two meshes, one

unquantised at the left hand side of the screen and a quantised one at the right hand

side of the screen. The participant had to decide if the two meshes were different or

not by giving a Yes/No answer to the question Do the two meshes look the same?.

The interface of the experiment was interactive, allowing the user to use the mouse

to grab any of the two meshes and rotate them, or zoom in and out of them. All

implementation was done in Matlab and a screenshot of the interface is shown in

Figure 3.2.

Figure 3.2: The interactive interface of the experiment.

The three meshes, chosen primarily for their large variation in size, are shown

in Figure 3.3. The smallest was the Cube with 766 vertices, the Eight with 15K

vertices was chosen as mid-sized and the Max-Plank model with 100K vertices as

large. We also note that there is significant variation in the natural characteristics of

the models: the Cube is a CAD model with sharp features, the Eight is an analytic

model that is very smooth and has non-trivial topology, while the Max-Planck is a

natural model which contains both smooth areas and sharp features.

The three models and the two quantisation methods created a 2-dimensional

space of six in total conditions. For each condition the participant was presented

with 20 trials meaning 120 trials in total. The order in which meshes were presented
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Figure 3.3: The models used in the experiments were the Eight, the Max-Planck

and the Cube.

was fixed as Cube, Eight and Max-Planck, while the order in which the quantisation

algorithms were presented was random. After a Yes answer, meaning that the

participant was perceiving the two models as looking the same, meaning in turn

that the quantisation level was on or above the threshold, quantisation level of the

next trial was decremented by one. After a No answer the level of quantisation was

incremented by one. As it has been established in the literature [14,92], in this type

of experiments it is useful to start a staircase series of trials as near to the actual

threshold as possible. Therefore, we established rough estimates of the thresholds

by running a pilot and then the set of 20 trials for each condition was starting at

these estimated thresholds. For example, for the Maxc-Planck model the initial

threshold estimated by the pilot was 12 bits per vertex coordinate for either of the
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two quantisation methods. Figure 3.4 shows a series of renderings for the dithered

quantised Max-Planck model around the initially estimated threshold.

Figure 3.4: From left to right: The Max-Planck model at dithered quantisation

levels of 8,10,12,14 and 16 bit per vertex coordinate.

The pilot was conducted in November 2016 at Durham University while the main

experiment was conducted in January 2017 with participants students from Qassim

University, Saudi Arabia. Ethical clearance for the experiment was obtained from

Durham University.

The experiment conducted in a computer lab with 19-inch screen and a resolution

of 1280 x 1024 pixels. The participants viewed the screen from a distance of 50 cm

facing a desktop. The lab has a natural light and quiet so no distraction could

affect the process. All participant involved in the experiment were computer science

students. At the beginning of the experiment the participants were signing consent

forms and were given a brief oral introduction to the purpose of the experiment.

Next, they were presented with a pre-trial using a mesh that was different from

the three meshes of the main experiment before, finally, being presented with the

main experiment. There were no time limits for any single trial, or for the whole

experiment, and no timings were recorded, however, all participants completed the

experiment in around 30 minutes. Data from twenty one participants in total were

collected and analysed, but as we discuss in Section 3.4.2, data from one participant

were excluded as outliers.
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3.4 Results

For each participant and for each of the six conditions of the experiment we compute

a point estimate of the quantisation threshold, which is not necessarily an integer

number, as follows. From the corresponding set of 20 Yes/No trials we exclude the

first five. The exclusion of a number of initial trials is for allowing the staircase to

reach the threshold and is recommended in [14], if we did not exclude them, the

average would depend on the arbitrary choice of the starting value. The estimate

of the quantisation threshold is then computed as the average of the first two peaks

and the first two valleys.

Next, we screened the results for possible exclusions of outliers. This step is

highly recommended, not only in subjective but also in physical experiments [19].

In a user study, screening for outliers can lead to the exclusion of participants from

all or parts of the analysis, or to the exclusion of results associated with parts of the

experimental dataset [82]. In our case, participant number 16 was found to be above

the average quantisation threshold by more than two standard deviations for four

out of the six conditions and was excluded from any further analysis. We believe that

this participant systematically overestimated the threshold by a high margin due to a

misunderstanding of the instructions. There were three more participants that were

outside the ±2 standard deviation zone in one of the six conditions, but they were

not excluded. We note that here we did not follow the empirical recommendations

of ITU [1] protocol for participant exclusion, firstly because their recommendation

does not explicitly cover the format of our experiment, i.e. a Yes/No staircase, and

secondly because it seems to be very strict when the data are not deemed normally

distributed in which case the outlier zone is ±
√

20 standard deviations.

3.4.1 Normality tests

Table 3.1 shows the results of Shapiro-Wilks normality test for each condition. We

notice that in four out of the six cases the data are classified as non-normal and the

non-normality can be the result of either positive or negative skewness.

Figure 3.5 shows frequency histograms for the Truncated Cube and the Dithered
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S-W p-value skewness

Cube Trunc. .006 1.299

Cube Dith. .003 1.389

Eight Trunc. .376 .032

Eight Dith. .018 -1.182

Max Planck Trunc. .539 -.222

Max Planck Dith. .001 1.914

Table 3.1: The results of the Shapiro-Wilks normality test and the skewness of the

distributions

Max-Planck models. In the case of the Cube, which has a low number of vertices

and thus low quantisation threshold, the non-normality can be attributed to a nat-

urally one-sided distribution of the observed thresholds. That is, the left tail of the

distribution is very short because it was quite unlikely that a participant would un-

derestimate considerably the threshold. On the other hand, for higher quantisation

thresholds as in the case of the Max-Planck model, the high skewness value seems

to be the result of outliers.

Figure 3.5: Left: The frequency histogram of the estimated thresholds for the Cube

with truncation. Right: The frequency histogram of the estimated thresholds for

the Max-Planck with dithering.
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3.4.2 ANOVA test and post-hoc analysis

Since ANOVA tests are considered robust under non-normality conditions, we pro-

ceeded with a 2-way ANOVA test. The quantisation method is significant with

p = 0.045 and F = 4.094, while the mesh model is significant with p < 0.001 and

F = 11.248. Figure 3.6 shows the averages for each condition of the experiment

and we notice that there is a small but consistent across the three meshes difference

between the average thresholds of the two quantisation methods.

Figure 3.6: The means for each mesh for truncation as Eight, Cube and Max-Planck

(top line) and dithering (bottom line).

Finally, in a post-hoc analysis of the results we performed pair-wise comparisons

between the three meshes after collapsing the quantisation method variable. Fig-

ure 3.7 shows boxplots for the three meshes. The difference between mesh 1 and
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mesh 2 was not statistically significant with p = .06 for the Bonferroni correction

test. On the other hand, mesh 3 was significantly different from mesh 1 and mesh

2 with p < 0.001 and p = 0.005 for the corresponding Bonferroni correction tests.

While the focus of the experiment was on the comparison between the two quan-

tisation methods and thus, it was not designed to answer questions regarding the

effect of mesh characteristics on the quantisation threshold, we note that the results

indicate that the size of the mesh is the most important factor in determining the

quantisation threshold.

Figure 3.7: The boxplots of the meshes after collapsing the quantisation method

variable.

The results for the other conditions are shown in the Appendix A.

3.5 Discussion and Conclusion

We presented an experimental study of the quantisation threshold of triangle mesh

vertices, above which a quantised mesh becomes visually indistinguishable from the
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original unquantised. The focus of our study was the comparison between two quan-

tisation methods, rounding and dithering, and our main finding was that dithering

has a higher quantisation threshold than rounding. While that result does not con-

tradict any prior findings of the existing literature, we note that it could not have

been easily predicted before the execution of actual experiment since, in the partic-

ular setting of 3D model quantisation, it was not known a priori whether blockiness

or high frequency noise would prove to be perceptually stronger.

This experiment focused on the comparing between two well know quantisation

algorithms and thus didn’t considered any rendering style. Next, we plan to use

the results of this experiment to inform the design of a larger experiment, aiming

at confirming the correlation between the amount of geometric information in a

mesh, as measured by the number of triangles, the discrimination thresholds, and

properties of the rendering algorithms.
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Chapter 4

A user study on the relationship

between the quantisation

threshold and the characteristics

of the triangle meshes

4.1 Introduction

The advances in 3D mesh representation have widely developed to the point that

they are employed in several mass-market applications, including networked 3D

games, and 3D visualization applications. Triangles meshes, due to reasons such

as, ease of acquisition, manipulation and visualisation, have become the ubiquitous

standard in 3D geometry representation.

3D triangle meshes are always quantised. While the standard formats use a

floating point arithmetic of high precision, they quite often are transformed to fixed

point arithmetic, of relatively low resolution. This can happen through mesh ma-

nipulation algorithms. The most characteristic example is mesh compression, where

the entropy of the vertex position information is reduced using predictive encoding

based on the parallelogram rule [49], which however works at its best after the vertex

positions have been quantised to levels between 8 to 24 bits per coordinate. After

decompression, the vertex coordinates are still essentially encoded with fixed-point
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arithmetic, even though, technically, the format they appear in might be that of

floating-point arithmetic.

The level of the quantisation, that is, the number of bits per vertex coordinate,

is obviously critical for the visual quality of the mesh. By choosing a sufficiently

high number of bits per vertex coordinate, the quantised mesh will be visually

indistinguishable from the original mesh. On the other hand, much higher levels of

quantisation, well beyond the discrimination threshold, will increase unnecessarily

the memory and computational overheads for storing, manipulating and visualising

the triangle mesh, without any tangible benefit in terms of visual quality.

In this chapter we present an initial study of the relationship between the quan-

tisation level threshold, beyond which the quantised mesh is visually indistinguish-

able from the original, and some fundamental characteristics of the mesh, such as

its number of triangles, as well as the choice of rendering method for visualising the

3D model.

Figure 4.1 shows one of the meshes used in the experiment at nine different

quantisation levels, from 6 bits per vertex coordinate to 14 bits per vertex coordinate.

Figure 4.1: The Max-Planck model at resolution 100K diffuse rendering. Left to

Right: from 6 bits per vertex coordinate to 14 bits per vertex coordinate.

Our study is based on a simple two-alternative, forced-choice psychophysical

experiment, where two versions of the same model are presented — the original and

one which is quantised at a certain level — and the user chooses the one with the

November 1, 2021



4.2. Background 50

higher visual quality. We used three models in total, two of them are the Max-

Planck model at two resolutions, 100K and 5K triangles, respectively, while the

third is a spherical model with 5K triangles. The aim is to establish whether the

geometric complexity of the model, as manifested by its number of triangles, as well

as its regularity as manifested by various measures of triangle shape quality, affect

the quantisation threshold. We also used two rendering methods one of which had

a much higher specular component than the other.

Contribution: The experiment established that meshes with larger number

of triangles require higher level of quantisation. As an intuitive explanation for

this, we note that higher resolution models have more detail, which require higher

quantisation levels to be represented with fidelity. Moreover, larger number of tri-

angles resolutions means smaller triangles, the normals of which are more sensitive

to the spatial perturbations caused by the quantisation and thus, the rendering pro-

cess, which is based on normal information, is affected more severely. Moreover, as

expected, renderings based on reflectance models with higher specular component

require higher quantisation level, the reason again being that normal perturbations

are easier to perceive in glossy rendering with a strong specular component.

Limitations: The main limitation of the study is its relatively limited scope.

While we were able to demonstrate the existence of statistically significant relation-

ships between quantisation thresholds, geometric characteristics of the mesh and

rendering settings, we could not quantify them, that is, we did not have enough

data to produce a formula relating, for example, the number of triangles in the

mesh with the quantisation threshold.

4.2 Background

Vertex coordinate quantisation is the first step of all mesh compression algorithms

[71]. Indeed, geometric information encoded in the least significant bits is visually

redundant and moreover, has very high entropy since essentially it is noise, and thus,

it is incompressible from an information-theoretic point of view. The use of 16 bits

per vertex coordinate seems to be emerging as the defacto standard, as far as mesh
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compression is concerned [71].

Quantisation techniques are most often studied in the context of signal the-

ory [39]. According to an extensive survey of the technique in [42], rounding is the

most commonly used and historically the oldest example of quantisation. It was

first analysed back in 1897 [97] for density estimations via histograms. Here, we use

rounding for the quantisation of the spatial coordinates of the mesh vertices. We

note that quantisation techniques applied on the various frequency domain represen-

tations of the mesh geometry, see for example [99], might have significant theoretical

interest, as well as significant applications, but are nevertheless less relevant to the

everyday real-life use of meshes.

A previous study by the authors for determining the visual effect of quantisation,

used a simple yes/no task experiment and was aimed at determining a discrimination

threshold beyond which the quantized mesh is not perceived to differ from the

original [2]. However, the focus there was on understanding the effect the choice

of quantisation method has on the threshold, focusing in particular on the effect of

dither.

The main alternative methodological approach to the subjective psychophysical

experiment we have chosen here, would have been the use of an objective mesh

quality metric. Various such metrics have been proposed in the literature, measur-

ing mesh quality based on criteria, such as size, shape, and smoothness, [5], [33],

[34], [60], [58]. There are also various mesh quality metrics which are computed as

averages over the whole mesh of a single triangle quality metric. Examples of such

metrics, which are often used in practice for mesh optimization, include: edge length

ratio [59], area [107], edge length root mean square [59], inverse mean ratio [74], and

aspect ratio [23].

We note that the use of objective metrics, such as those mentioned above, seems

to be a more appropriate methodology in the context of CAD and Finite Element

Method applications, while in the context of visual applications they are mostly

employed as a cheap alternative to the systematic user studies. For example, as

Vanhoey et al. [106] stated, for two main reasons, only a few subjective studies

have been performed in the field of interactive visualisation: firstly, it is a relatively
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new field with less than twenty years history; secondly, perceptual experiments are

expensive and time-consuming processes. In some of the first studies based on

psychophysical experiments, Rushmeier et al. [93] study the effect of geometry and

texture resolution on the perceived quality, however, all their models are unquantised

and the geometric resolution of the model is its number of triangles. In Rogowitz and

Rushmeier [91], a psychophysical experiment is conducted to establish perceptual

differences between animated 3D models and 2D still renderings of them. Away from

triangle meshes, [77] conduct a psychophysical experiment to study the effect of the

wireframe and the texture resolution on the perceived visual quality of wireframe

models.

The experiment presented in this chapter is based on a two-alternative forced-

choice design. The simplicity of the method makes for experiments that are relatively

simple to design and run, and fare favourably compared to other more complex de-

signs, especially when the number of participants is small [112]. In our context, the

main benefit from the simplicity of the experimental design is that it minimises the

risks to the validity of the results from any misunderstandings, or subjective inter-

pretations of the tasks by the non-expert participants. Indeed, we have conducted

analogous experiments based on the more complex Maximum Likelihood Difference

Scaling design, [72], [9], and we found that although specific users would return

meaningful results, the statistical aggregation of all users was not possible because

of the large proportion of participants who either did not understand the task, or

interpreted it in their own subjective way. Another possibility regarding the type

of the psycho-physical experiment would have been the use of a task based exper-

iment, as for example in [110], where the users are asked to recognise, as fast as

possible, 3D models presented to them at various resolutions. We note that such

designs are rarely used in the assessment of perceptual quality of 3D models, as

they cannot detect very fine grain differences and, moreover, they suffer from high

variance between participants.
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Figure 4.2: The six conditions of the experiment. From left to right: the Max-

Planck at resolution 100K and 5K triangles and the sphere. Diffuse and specular

renderings.

4.3 Experimental Design

The experiment is based on three different triangle mesh models, each one ren-

dered with two different methods. For each of the six model/rendering method

combinations shown in Figure 4.2, nine different stimuli were produced, each one

corresponding to a different quantisation level of the triangle mesh, going from 6

bits per vertex coordinate to 14.

The first two models were the Max-Planck model with 100K triangles, and a

coarser version of it, decimated down to 5K triangles. The aim is the comparison

of the discrimination thresholds of these two models, which will show the relation

between quantisation thresholds and model detail as expressed by the number of

triangles in the mesh. The third model is a sphere with the same number of triangles

as the coarse Max-Planck model. The sphere model is geometrically more regular

than the other two, and consists of triangles that on average are very close to

equilateral as shown by the average edge ratios, which are 0.7 for the Max-100K

model, 0.6 for the Max-5K, and 0.9 for the Sphere-5K. The comparison of the

thresholds between the Sphere-5K and the coarse Max-Planck model Max-5K will

give an indication of how objective mesh quality metric relate to the quantisation
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Figure 4.3: The interface of the experiment.

thresholds.

The first rendering method has a high diffuse component, therefore, it is less

sensitive to small perturbations of the model’s normals that are caused by the quan-

tisation. The second rendering method has a high specular component, resulting

into a rendered surface with the characteristic glossy plastic appearance caused by

the mirror-like reflections of the specular component. Since normal perturbations

are the main source of visual mesh degradation [117], and since a glossy rendering

method is even more sensitive to normal perturbations than a diffuse one, we expect

that it would make quantisation artifacts easier to detect.

Each of the 54 stimuli were presented on a 1280×725 pixels screen and a reso-

lution of 2560×1600 pixels. The observer was presented with quantised alongside

unquantised stimulus from a distance of 50 cm, in a two-alternative forced-choice

experimental design, and in each trial, each participant was asked to choose the

model with highest quality. Figure 4.3 show the interface of the experiment. The

experiment conducted in a room with natural light and there is no distraction could

impact the procedure.

Each of the 54 stimuli, was presented to the participants alongside the cor-

responding unquantised stimulus, in a two-alternative forced-choice experimental

design, and in each trial, each participant was asked to choose the highest-quality

model. See Figure 4.3 for the interface of the experiment.
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Participant number Max-100K Max-5K Sphere-5K

Diffuse Plastic Diffuse Plastic Diffuse Plastic

1 0.7167 0.8222 0.5222 0.7556 0.6222 0.6556

2 0.6667 0.7889 0.5556 0.6944 0.6222 0.6389

3 0.6500 0.7944 0.5778 0.7222 0.5833 0.6556

4 0.6611 0.8167 0.5611 0.7000 0.5833 0.6389

5 0.6389 0.8056 0.5667 0.7167 0.5889 0.6500

6 0.6833 0.8167 0.5222 0.7222 0.5833 0.6500

7 0.6889 0.8111 0.5500 0.7389 0.6000 0.6667

8 0.6778 0.8056 0.5389 0.7111 0.6111 0.6444

9 0.6722 0.8000 0.5611 0.7278 0.5944 0.6556

10 0.7111 0.8278 0.5500 0.7444 0.5722 0.6778

AVG 0.67667 0.8089 0.5506 0.7233 0.5961 0.6534

Table 4.1: Probability of correct answer per condition of the experiment.

Before the experiment the 10 users were given instructions on how to conduct

the experiment, and were given the opportunity to test the interface with models

different from those of the main experiment. For each of the six model/rendering

method combinations the nine quantisation levels were presented to the user in a

random order and the place of the quantised model in each trial, that is, at the left

or at the right of the screen, was again chosen randomly. For each trial the user

had 5 seconds to respond, after which the screen would go blank while awaiting the

user’s response. Each participant repeated the entire 54-trial experiment 10 times.

4.4 Results

The first statistic we analysed is the probability of a correct answer, computed as

the ratio of correct answers to the total number of trials. Table 4.1 shows these

probabilities for each of the 6 conditions of our 2× 3 experimental design.

We observe that:

• On each of the three models, the specular rendering gives a higher probability
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Figure 4.4: Mean values of probability of correct answer for each independent com-

parison group.

of correct answer, that is, a higher probability of detection of quantisation

artifacts, as expected.

• With either rendering method, the detailed Max-Planck model gives a higher

probability of correct answer than the coarse one, indicating that, as expected,

more detailed geometry is more sensitive to quantisation artifacts.

• The comparison between the two models with the same number of triangles

is not so conclusive. We note that, on the one hand, one would expect the

higher quality of the triangles of the Sphere-5K model to make it more resilient

against quantisation noise, however, on the other hand, its very smooth and

regular global shape might function as a very uniform background, on top of

which quantisation artifacts become easier to detect.

in Figure 4.4 the mean values for each comparison group are shown and the no-

interaction between the two factors is evident, because the trend among conditions

is the same for each model (plastic condition has higher means than diffuse condition

in all cases), and for both conditions, the model 1 has the highest mean.

We performed a 2× 3 two-way ANOVA analysis on the probabilities for correct
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answer of the 10 participants of the experiment. The effect of the rendering method

was significant, with p-value 0.0028 (F-statistic 25.896). The effect of the geometric

model was also significant with p-value 0.0088 (F-statistic 9.981). The interaction

between rendering method and geometric model was not statistically significant,

with p-value 0.1290 (F-statistic 0.1290).

4.4.1 Psychometric function fitting

The above statistical analysis allows statistically significant inferences on how model

geometry and rendering method affect the quantisation imperceptibility threshold,

however, it does not produce estimates of those thresholds. To obtain such estimates

we fitted to the data the psychometric function

f(x;α,m, s) = 1− α · Φm,s(x) (4.4.1)

where x denotes quantisation level, Φm,s is the cumulative Gaussian distribution

with mean m and standard deviation s, and α is a third free variable of the model,

representing the asymptotic probability of a wrong answer for high quantisation

levels. A Matlab program was implemented to fit f(x;α,m, s) to a given set of

observations by a maximum likelihood estimation (MLE) of its three free variables

α,m, s.

Notice that we would normally expect the value of α to be equal to 0.5, reduc-

ing the number of free variables to two. That is, for increasingly higher levels of

quantisation, and as quantised and unquantised models become indistinguishable,

we would expect the probability of correct answer to tend to 0.5. Nevertheless, we

treat α as a free variable to be estimated along m and s, allowing for the possibility

of a systematic bias in favour, or against, the quantised model, something which

often was indeed the case.

Fig. 4.5 shows the MLE fitted curves for the six conditions of the experiment.

The estimates of the variables α,m, s are reported in Table 4.2.

Since a Gaussian probability distribution function has its maximum at m, the

corresponding cumulative probability distribution has at m its inflection point,

which is also the point where the maximum of its derivative is obtained. Thus,
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Figure 4.5: Top: Diffuse rendering. Bottom: Specular rendering. Left to Right:

Max-Planck with 100K triangles, Max-Planck with 5K triangles, and Sphere.

Max-100K Max-5K Sphere-5K

Diffuse Plastic Diffuse Plastic Diffuse Plastic

m 10.253 10.498 9.299 9.652 8.524 8.500

s 1.079 0.547 0.782 1.229 0.448 0.524

α 0.613 0.535 0.810 0.543 0.580 0.525

Table 4.2: The free parameters of the psychometric function f(x;α,m, s) estimated

by the MLE method.

m corresponds to the level of quantisation where the probability of a correct an-

swer takes a value exactly at the middle between its absolute maximum of 1 and its

asymptotic minimum (1− α). Therefore, m is the best, in the maximum likelihood

sense, estimate of the imperceptibility threshold.

The values of m in Table 4.2 verify our previous observations that were based

on the raw probabilities of correct answer. For example, on the more detailed Max-

100k model, the user needs a lower increase of the stimulus level to go from a

correct to a wrong answer, as compared against the coarser Max-5K model, hence

the discminination threshold is higher. Perhaps most importantly, we note that the
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differences between the discrimination thresholds of different models and rendering

methods are rather small, indicating that in certain application domains it could

be possible to find universal discrimination thresholds that will also be efficient in

terms of memory usage.

The parameter s, that is, the standard deviation of the Gaussian, controls the

steepness of the transition from the highest to the lowest value of the psychometric

function. We observe that the smooth and regular Sphere-5K has smaller s values

than the more irregular Max-5K model, indicating that the latter degrades more

gradually than the former as the quantisation level decreases.

The parameter α represents the asymptotic minimum of the probability of correct

answer, approached as the value of quantisation level becomes large. The value of

α is expected to be 0.5, that is, as the model quality increases, the user should

eventually be at change level of picking the higher-quality mesh. Surprisingly, in

many cases α differed from 0.5. We note that the diffuse rendering of the Max-5K

model gave the highest value of α, followed by those of Max-100K and the Sphere-

5K. A possible explanation for the much higher α value of the diffuse Max-5K model

is that, under the diffuse rendering, the coarseness of the model produces some sharp

rendering features, which by some participants were interpreted as faithful rendering

of fine surface detail, indicating a higher mesh quality rather than an artifact.

Finally, we performed a two-way ANOVA on the m values computed on each

of the 10 participants separately, that is, on our estimates of the discrimination

thresholds of those individuals shown in table 4.3 organized by model and condition;

subsequently, this were employed for the ANOVA test calculations. As it was also

the case with the raw probability of correct answer, the geometric model had a

significant effect with a p-value 0.0034 (F-statistic 16.554). However, unlike in the

case of raw probability of correct answer, the effect of the rendering method on the

imperceptibility thresholds was not significant, corresponding to a p-value of 0.4078

(F-statistic 0.468). The interaction between geometric model and rendering method,

again, was not significant, corresponding to a p-value of 0.2010 (F-statistic 0.054)

as shown in table 4.4.
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Participant number Max-100K Max-5K Sphere-5K

Diffuse Plastic Diffuse Plastic Diffuse Plastic

1 9.977 10.441 9.273 9.903 8.683 8.735

2 10.297 10.572 10.034 10.891 8.694 8.681

3 10.601 10.582 8.938 8.463 8.235 8.546

4 10.551 10.147 9.093 9.716 8.445 8.750

5 9.817 10.381 9.376 9.847 8.670 8.540

6 9.971 10.645 9.213 10.062 8.605 9.442

7 9.400 10.769 9.241 9.584 8.672 8.117

8 10.938 9.950 9.378 9.054 8.647 8.614

9 9.933 10.501 9.266 8.630 8.392 8.352

10 10.951 10.486 9.289 9.462 8.519 8.360

Table 4.3: Results of fitted parameter m for each user by model and rendering

condition.

Variables Sums of Squares Degree of Freedom Mean Squares F P-Values

Models 15.501 2 7.751 16.554 0.0034

Conditions 0.219 1 0.219 0.468 0.4078

Models/Conditions 0.051 2 0.025 0.054 0.2010

Error 25.283 54 0.468

Total 41.054 59

Table 4.4: ANOVA test results for experiment.

4.5 Conclusions

We presented the results of a two-alternative forced-choice psycho-physical experi-

ment, aiming at studying the quantisation thresholds below which the visual quality

of the mesh can be considered degraded as quantisation artifacts become more and

more perceptible. This preliminary study established that meshes with larger num-

ber of triangles should be quantised at higher levels, while the choice of rendering

method should also be taken into account since a high specular component can

reveal artifacts that are not perceivable under renderings with high diffuse compo-
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nents. There is also some tentative evidence that mesh quality metrics are related

to the quantisation thresholds, however further studies are needed to establish the

nature of that link.

We used the results of this experiment to inform the design of a larger ex-

periment, the scope of which would go beyond establishing the existence of links

between quantisation thresholds and characteristics of the mesh or the rendering

method. Instead, the aim of that extended experiment would be to quantify such

links by establishing simple formulas relating the quantisation threshold with nu-

merical information derived from the mesh, such as the number of its triangles, or

the value of a mesh quality metric.
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Chapter 5

A user study on the impact of the

geometry of the quantised triangle

meshes on the quality perception

and discrimination thresholds

5.1 Introduction

Triangle meshes have emerged as the ubiquitous standard for 3D content repre-

sentation for most graphics applications. Being, essentially, piece-wise linear rep-

resentations of surfaces, triangle meshes are simple and scalable, and benefit from

the existence of specialised sophisticated algorithms covering the whole graphics

pipeline, from mesh generation, to processing and rendering, to transmission and

storage.

The vertex coordinates of a triangle mesh are usually represented by 32-bit floats.

However, at various stages of its life cycle, and most notably during compression for

transmission or storage, the vertex coordinates may be quantised and represented

in a fixed-point arithmetic, typically, by 12, 16 or 24 bits per vertex coordinate. In

this chapter we present the results of a psycho-physical experiment, part of a series

of similar experiments we conducted [2, 3], aiming at studying the visual effect of

such quantisations. In particular, given that vertex coordinate quantisation is an
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irreversible process, we want to study the discrimination threshold, above which an

observer is not able to perceive quantisation artifacts.

In [2], the main focus of the experiment was on the impact of the quantisation

method. We compared rounding, where the least significant bits are put to zero,

and dithering where the least significant bits are randomised, and found that, in

general, dithering has a slightly higher discrimination threshold. In [3], the focus of

the experiment was on the impact of the number of triangles in the mesh, and that

of the rendering method. We found that, generally, larger meshes have higher dis-

crimination thresholds, and also that renderings with a higher specular component

have higher discrimination thresholds.

In this chapter we study the impact of the geometry of the mesh, that is, how the

shape of the 3D model and the properties of the underlying mesh are related to the

discrimination threshold. Our study is based on a two Alternative Forced Choice,

psycho-physical experiment, where two stimuli of one model are presented — the

original and one which is quantised at a certain level — and the participant chooses

the one with the higher visual quality. We used four different 3D models, the Max-

Planck, the Cone, the Sphere, and the Human-Head, fixing all the experimental

parameters we had studied previously. In particular, we chose rounding as the

quantisation method, we used only meshes with a large number of triangles, between

200K and 315K, and we used a single rendering method, which had a high specular

component.

Our first hypothesis was that there is an inverse correlation between the amount

of geometric information carried by a 3D model and its discrimination threshold. In

particular, we hypothesised that the simpler in shape synthetic models, the Sphere

and the Cone, will have higher discrimination thresholds, because it will be easier

for a participant to detect quantisation artifacts on them, while, in contrast, quan-

tisation artifacts will be more difficult to detect on the more complex surfaces of the

natural models. This hypothesis was verified and moreover, in a post-hoc analysis,

we computed a strong, statistically significant correlation between the discrimina-

tion threshold and the filesize of the compressed mesh, which was used as measure

of the amount of geometric information carried by the mesh.
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Figure 5.1: From left to right: The Max-Planck model (top) and the Sphere model

(bottom) quantised at 8, 12 and 14 bits per vertex coordinate, and the original

unquantised model.

For an illustration of our hypothesis, Figure 5.1 shows, at various levels of quan-

tisation, the Max-Planck model, which has the largest filesize when compressed, and

the Sphere models which has the smallest compressed filesize. We notice that when

we use 12 bits per vertex coordinate, quantisation artifacts in the form of surface

texture are still visible on the Sphere, while one cannot detect this type of artifacts

on the Max-Planck model.

Our second hypothesis was that the average quality of the triangles of the mesh

has an impact on the discrimination threshold. In particular we hypothesised that

meshes comprising long thin triangles will have higher discrimination thresholds

compared to meshes comprising well-rounded, near equilateral triangles. That was

also a quite intuitive hypothesis, given that the same amount of spatial perturbation

will most likely cause a larger perturbation of the normals of the thin triangles, which

in turn will be easier to detect in a rendering of high specularity [117]. As a measure

of thinness of a triangle we used the aspect ratio, that is, the ratio of the smallest

edge-length by the largest. Our experiment did not verify that second hypothesis,

as we there was no significant correlation between the mean aspect ratio of the mesh

triangles and the discrimination thresholds.
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5.2 Background

Quantise the triangle mesh is the first step of all mesh compression algorithms [71].

In order to encode the vertex coordinate, most of application frequently utilise the

32-bit floats. On the other hand, when a triangle mesh is needed in the compressed

form, the use of 16 bits per vertex coordinate seems to be the usual practice in mesh

compression [71].

Quantisation techniques are mainly studied from the perspective of signal theory

[40]. According to an extensive survey of the technique in [42], rounding is the most

commonly used and traditional example of quantisation for density estimations via

histograms back in 1897 [97]. Here, we use rounding for the quantisation of the

spatial coordinates of the mesh vertices. We note that quantisation techniques

applied on the various frequency domain representations of the mesh geometry, see

for example [99], might have significant theoretical interest, as well as significant

applications, but are nevertheless less relevant to the everyday real-life use of meshes.

A previous study by the authors for determining the visual effect of quantisation,

used a simple yes/no task experiment and was aimed at determining a discrimination

threshold beyond which the quantized mesh is not perceived to differ from the

original [2]. However, the focus there was on understanding the effect the choice

of quantisation method has on the threshold, focusing in particular on the effect of

dither.

5.3 Experimental Design

In the experiment we used 4 triangle meshes, each consisting of about 100K vertices.

The Max-Planck and the Human Head models are both natural models acquired

through laser scanning of physical objects, and between them the Max-Planck model

has more geometric information. The Sphere and the Cone are synthetic models cre-

ated by CAD software. The Sphere model consists of almost equilateral triangles,

while the Cone mostly comprises long skinny triangles. Overall, the choice of the

models of the experiment aimed at establishing the relationship between the dis-

crimination threshold on the one hand, and two shape related factors on the other,
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that is, the amount of geometric information carried by the mesh, and the average

shape of its individual triangles.

For each of the 4 original unquantised meshes, 10 different quantised meshes were

produced, one for each integer quantisation level, from 8 bits per vertex coordinate

to 16 bits per vertex, while the quantisation level of 20 bits per vertex was also used.

Rendered images were produced from these meshes and were presented to the

participants as the stimuli of the experiment, see Figure 5.3. The high specular com-

ponent of the rendering method resulted into surfaces with a characteristic glossy

appearance. As it was shown in our previous experiment [3], quantisation arti-

facts are easier to detect on high specularity renderings, because they reveal better

the normal perturbations of the underlying mesh, which normal perturbations are

considered the main source of visual degradation in a mesh [117].

The experiment was conducted in Saudi Arabia, in October 2020, over a period

of 25 days, with 20 participants in total.

The stimuli were presented on a computer screen MacBook Pro with a resolution

of 2560 × 1600 pixels. The screen width and height were 30.41 and 21.24 centimeters,

respectively. The observer viewed the screen from a distance of 50 cm. The room,

where the experiment took place, has a natural light and quiet so no distraction

could affect the process. The stimulus size on the screen was 1280 × 725 pixels.

Discrimination thresholds were measured using a two-alternative forced-choice

method. On each trial, the original, unquantised, stimulus and the quantised one

were presented side by side on the screen for 4000 ms. The observer then used the

computer keyboard or mouse to indicate which of the two stimuli has the highset

quality. See Figure 5.3 for the interface of the experiment. The next trial started

after the response.

Each quantisation level was repeated 10 times during the experiment. As there

were four different models and 10 quantisation levels for each model, there were a

total of 4*10*10=400 trials in the experiment for each observer. The order of models

and quantisation levels was randomised across trials. Due to a programming error,

the left/right order of the original and the quantised stimulus was not randomised,

but switched after each trial. That is, on every other trial the original was on the
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Figure 5.2: For each model, the top row shows meshes quantised at levels 8-12. The

bottom row shows meshes quantised at levels 13-16, 20 and the original unquantised

model.
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Figure 5.3: The interface of the experiment.

left, and on every other, on the right.

Before the experiment the participants were given instructions on how to conduct

the experiment. They were then allowed to test the interface and practice the

task. The models in this practice experiment were different from those of the main

experiment.

Following the experiment in [3], we obtain discrimination thresholds by fitting

to the data the psychometric function

f(x;α,m, s) = 1− α · Φm,s(x) (5.3.1)

where x denotes quantisation level, Φm,s is the cumulative Gaussian distribution

with mean m and standard deviation s, and α is a third free variable of the model,

representing the asymptotic probability of a wrong answer for high quantisation

levels. A Matlab program was implemented to fit f(x;α,m, s) to a given set of

observations by a maximum likelihood estimation (MLE) of its three free variables

α,m, s.

Notice that we would normally expect the value of α to be equal to 0.5 in a

two-alternative forced-choice experiment, reducing the number of free variables to

two. That is, for increasingly higher levels of quantisation, and as quantised and

unquantised models become indistinguishable, we would expect the probability of
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correct answer to tend to 0.5. We add α to the model as a free variable to be

estimated along m and s. This is because the left-right order of the two stimuli was

not randomised in the experiment (see above), and thus it is possible that any bias

in the observer’s responses leads to a value of α different from 0.5. If we forced α to

0.5, we would then get biased estimates of the other parameters, which are of main

interest to us. Thus, in order to get a good estimate of the threshold, we also fit α.

5.4 Results

Figure 5.4 shows the MLE fitted curves for the four models of the experiment, and

Table 5.1 summarises the estimates of the variables α,m, s. Since a Gaussian prob-

ability distribution function has its maximum at m, the corresponding cumulative

probability distribution has at m its inflection point, which is also the point where

the maximum of its derivative is obtained. Thus, m corresponds to the level of

quantisation where the probability of a correct answer takes a value exactly at the

middle between its absolute maximum of 1 and its asymptotic minimum (1 − α).

Therefore, m is the best, in the maximum likelihood sense, estimate of the discrimi-

nation threshold. As expected, the values of m for the four models follow the inverse

order of the values of the mean probability of choosing the unquantised model.

As seen in Figure 5.4, the psychometric functions do not asymptote at 0.5. The fit

values for α were systematically smaller than 0.5 indicating that, counter-intuitively,

when there was very little difference between the two stimuli, the observer chose the

quantised one as having a better quality. It is very unlikely that this is a true

perceptual effect, however, as this holds also for the quantisation level 20, which

was practically identical with the original. It is more likely to result from non-

independence of the observer’s responses across trials. Several types of sequential

effects are known to exist between trials in a psychophysical experiment [29, 35].

We do not have enough data here to distinguish between them and we focus on the

other parameters m and s.

As a measure of the amount of geometric information carried by a 3D model we

use the filesize, after applying a state-of-the-art mesh compression algorithm, here
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Figure 5.4: The Maximum Likelihood Estimated psychometric function for each of

the models of the experiment.
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the publicly available Draco software https://google.github.io/draco/. The

use of absolute filesizes it is justified by the fact that the uncompressed meshes

have all about 100K vertices and a filesize of about 22MB in uncompressed .obj

format. Most importantly we are interested in an absolute measure of the amount

of geometric information carried by the mesh, which is provided by its filesize when

compressed with a state-of-the-art compression algorithm, which will try and remove

information redundancies.

As a measure of the average quality of the individual triangles of the mesh, we

computed the average over the triangles of the mesh aspect ratio, that is the length

of the shortest edge of the triangle, divided by the length of the longer. The aspect

ratio of an equilateral triangle is 1, while for long skinny triangles, the aspect ratio

tends to 0. The aspect ratio is one of the various element quality metrics described

in [78]. We note that all the various other metrics also favour equilateral triangles

against thin ones, and we do not expect any different results from their use. We

also note that averaging over triangle quality metrics can be used to derive quality

metrics that would apply to whole meshes [65].

Table 5.1 summarises the variables from the analysis of the experimental results

and the analysis of the models themselves.

Sphere Cone Head Max

m 14.651 13.281 11.210 10.996

s 1.026 1.125 0.996 0.747

α 0.732 0.662 0.598 0.559

slope = α/s 0.713 0.588 0.600 0.748

# Mesh triangles 307.520 314.400 216.928 199.996

Compressed filesize 310.848 342.020 402.932 423.724

Mean aspect ratio 0.9635 0.3913 0.8043 0.6401

Table 5.1: The parameters of the fitted psychometric function (top three rows), the

slope at the inflection point computed as α/s (fourth row), and geometric charac-

teristics of the original meshes (bottom three rows).

The values of m in Table 5.1 verify our previous observations that were based
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on the raw probabilities of correct answer. For example, on the Sphere model, the

user needs a lower increase of the stimulus level (here, the quantisation artifacts)

to go from a correct to a wrong answer, as compared against the Sphere, hence

the discrimination threshold is higher. We also note that the differences between

the discrimination thresholds of different models are rather small, indicating that

in certain application domains it could be possible to find universal discrimination

thresholds that will also be efficient in terms of memory usage. That is, we can use

universal discrimination thresholds that are not, unnecessarily high, e.g. 16 or 24,

rather than 32 bits per vertex.

The steepness of the transition from the highest to the lowest value of the psy-

chometric function depends on its slope at the inflection point. For the type of

psychometric function we employed, this slope is proportional to α/s, see [100], the

values of which are reported in the fourth row of Table 5.1. We observe that the

Sphere and the Max-Planck models have higher slopes, and thus sharper discrim-

ination thresholds than the Cone and the Head models. However, it is clear that

the experiment does not provide enough evidence, not even for a qualitative study

of the issue.

The values of α show a systematic bias in favour of the models quantised at a high

quantisation level, and against the unquantised model. As we mentioned in Section

5.3, we suspect that this could in part be explained by a flaw in the implementation

of the experiment, that is, using alternation rather than the randomisation in the

relative positions of the two stimuli within the interface.

5.4.1 Correlations between discrimination thresholds and

mesh geometry

The results show a clear correlation between the discrimination threshold and the

filesizes of the compressed meshes. Quantitatively, we computed a correlation coef-

ficient of r = −0.9915, with p = 0.0085, indicating a strong inverse correlation, with

a high statistical significance. The result is intuitive, as one would expect that given

the quantisation level, an observers’ ability to detect quantisation artifacts at that

particular scale would depend on the amount of geometric information the artifacts
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are embedded in. That is, at a given level of quantisation, artifacts should easier

to detect over meshes that carry little geometric information, such as the sphere,

rather than on meshes with more geometric information such as the Max-Planck.

In the experiment we used both natural meshes, acquired by laser scanners and

carrying large amounts of information, and synthetic meshes that carried less in-

formation. We note that the correlation between discrimination thresholds and

filesize of the compressed mesh is evident both across the two mesh types, as well

as within each one of them. Regarding the comparison across mesh types, the syn-

thetic meshes, carrying less information, had higher discrimination thresholds than

the natural ones. Within the synthetic mesh type, the Sphere, carrying the least

geometric information, had higher threshold than the Cone. Within the natural

mesh type, the Max-Planck, having more prominent features and carrying more ge-

ometric information, had as expected a larger compressed filesize than the Head,

and eventually a lower discrimination threshold.

We consider this correlation as the most significant result of our experiment.

We note that, generally, and especially in signal theoretic studies, the ratio of the

carrier strength to the amount of noise is considered an important measure of the

expected performance of a system. However, to the best of out knowledge, it is

the first time that a similar observation is made in such a setting, that is, about

the visual perception of a mesh as established by a psycho-physical experiment on

the one hand, and the amount of geometric information carried by that mesh, as

measured by its compressed filesize, on the other.

The analysis of the results does not show any statistically significant correlation

between the discrimination thresholds and the average aspect ratio of the triangles

of the mesh. Specifically, we computed a correlation coefficient of just r = 0.2198,

with p = 0.7802.

The lack of a statistically significant correlation could be interpreted as an indi-

cation of the unsuitability of that mesh quality metric to predict mesh discrimination

thresholds. Indeed, the metric averages aspects ratios over all the triangles of the

mesh, including triangles in the non-visible part of the mesh. On the other hand,

it could be the case that some users were evaluating some meshes by focusing their
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Figure 5.5: Scatter plots of the compressed mesh filesize (left) and the mean aspect

ratio (right), against the discrimination thresholds. The best fitting lines are shown

too.

attention on specific parts of them. Especially, the parts of the mesh which, de-

pending on the mesh position and orientation, and the lighting conditions, reflect

most of the incident light directly on to the camera.

Alternatively, we cannot altogether exclude the possibility that there is such a

correlation, which however must be weaker than that between the compressed filesize

and the discrimination threshold. This possibility could be investigated by a follow-

up experiment with meshes that have similar compressed filesizes and different mean

aspect ratios.

Figure 5.5 shows the scatter-plots of the compressed filesizes and the mean aspect

aspect ratios, respectively, against the discrimination thresholds. The tightness of

the best fitting line in the first scatter-plot illustrates the high correlation between

the compressed filesizes and the discrimination thresholds.

5.5 Conclusions

We presented the results of a two-alternative forced-choice psychophysical experi-

ment, aiming at studying the quantisation thresholds, below which the degradation

of the visual quality of the mesh by the quantisation artifacts can be detected. Our

main finding is that there is a strong inverse correlation between the discrimination
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threshold of a mesh and its filesize after compression. We also studied a possible link

between discrimination thresholds and the quality of the mesh triangles, as measured

by the mean aspect ratio, but we did not detect any significant correlation.

The main limitations of the experiment presented in this chapter stem from its

relatively small size. Next, we plan to investigate the relationship between quanti-

sation thresholds, geometric properties of the mesh and properties of the rendering

algorithms influence the visibility of models. Such a study would require higher

dimensional experiment and perhaps more subtle experimental designs too. In par-

ticular, we plan to use the maximum likelihood difference scaling method which has

been proven to be a powerful approach to similar problems [10,72].
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Chapter 6

A perceptual difference scaling

study on quantised 3D models

6.1 Introduction

Vertex coordinate quantisation is the first step of all mesh compression algorithms

[71]. Indeed, geometric information encoded in the least significant bits is visually

redundant and moreover, it has high entropy and thus, it is incompressible from an

information theoretic point of view. The use of 16 bits per vertex coordinate seems

to emerge as a defacto standard as far as mesh compression is concerned [71].

Previous studies for determining the visual effect of quantisation are based on

simple yes/no task experiments, aiming at determining an undetectability threshold

beyond which the quantised mesh is perceived as identical to the original [2]. Here we

describe a Maximum Likelihood Difference Scaling (MLDS) experiment [72], aiming

at modeling perceived differences as a function of the quantisation level.

In this chapter we present MLDS method to estimate the perceptual scale of

differences in stimulus based on the participant judgment. [72] . The simplest way

to explain MLDS method is to describe the kind of task that it is intended to scale.

Consider the upper and lower pair of images, the arrangement in Figure 6.2 is an

example of a typical trial from a difference scaling experiment. The observer is asked

to check the two pairs of stimuli (‘a quadruple’) then select the pair with the larger

perceptual difference (’up or down’). All four of the image samples selected from

76



6.2. Maximum Likelihood Difference Scaling 77

Figure 6.1: The two Conditions of the MAx-Planck. Left: Plastic. Right: Diffuse.

data set where models are quantised and rendered from Max-Planck model shown

in Figure 6.1. During one trial of an experiment, the subject is asked to make this

decision for a large number of quadruples of image samples, all randomly drawn

from the data set.

6.2 Maximum Likelihood Difference Scaling

The Maximum Likelihood Difference Scaling (MLDS) estimate perceptual scales

based on Maximum Likelihood Estimations. The maximum-likelihood estimation

(MLE) based adaptive psycho-physical procedures have been used nowadays for the

minimization of testing time. In 1982, Shelton et al. [95] compared the MLE with

other techniques and find out that it can converge on the threshold in less time

that means it is more efficient in terms of speed. Therefore, it can be said that

the applications that are time critical should uses MLE algorithm. Also, Green

in 1990 [43], worked on the stimulus selection and analyze that how it affects the

threshold estimation for psychometric functions. He concluded that the effectiveness

of maximum likelihood estimation improves as the number of trials that are used to

threshold estimation value increases [4].
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Figure 6.2: Difference scaling experiment.

Various characteristics of MLE including accuracy and speed were checked in

comparison to a transformed up-down algorithm (an adaptive procedure for the

estimation of points on the psychometric function known as the traditional Levitt

method procedure) in a two-interval forced choice task. It has been witnessed from

the results that a MLE procedure can provide high performance (90%) level and

significant speed advantages than previous transformed up-down approaches. Thus,

this advantage has increased variability, and a potential for the estimated thresh-

olds to follow a skewed distribution. These skewing appeared when relatively low

performance is estimated using MLE technique. However, by increasing the num-

ber of trials or restricting the criteria to stop the trials at the cost of speed can be

an option to overcome these difficulties [4]. Despite this, there are some scenarios

where in short span of time, repeated measurements are required. In such cases,

MLE procedures are better than the traditional Levitt method due to their speed

efficiency with many turnarounds [4].

There have been many examples of successful use of MLE for quantisation, in

areas such as digital image processing and JPEG image compression. Thus, if an

image (JPEG) is previously coded then the information of the quantization table

is sometimes needed during the compression process. This quantisation table infor-

mation helps in minimizing the error of quantisation. In [27], a maximum likelihood

based algorithm has been proposed to detect the JPEG compression history of an
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image. The author has proposed detection method MLE for finding the quantisa-

tion history of image (JPEG). It is important to notice here that only information

related to bitmap of the coded image was available previously, which in combination

with the other method has been used to find out compression history. A detection

algorithm has been proposed which is based on the difference between the neigh-

boring pixels in the histogram form as shown in 6.3, where these differences can

either be 1D or 2D. The comparisons of these histograms helped in analysing the

history of compression that either compression has done before or not. In this study

the histograms are normalised and the absolute difference between these histograms

and between pixels across the boundaries of image are compared. Thus providing

information about the degree of compression of an image.

Figure 6.3: Histrogram for image [27].

In another article, the author used maximum likelihood difference scaling (MLDS),

to estimate the supra threshold differences [10]. This method can be useful in image

compression specifically in measuring the perceptual effects using vector quantiza-

tion. Different rates of vector quantization have also been illustrated, however, this

compression is at the cost of image quality.

In this respect, an ideal compression method is one that maximized the com-

pression while minimized the perceptual distortion. Furthermore, this method has

been implemented over a wide range of images and then results were analyzed. This

approach by-passes the limitations of using rating methods and focused on using

multiscale structural similarity (MS-SSIM) for diverse categories of image. This re-
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search also demonstrated data collection through MLD and in this way enhance the

performance of the method [10].

Charrier et al. [8] proposed an IQA method, based on Maximum Likelihood Dif-

ference Scaling (MLDS), a psychophysical method. The proposed MLDS technique

is forced-choice task and require a limited trials to obtain measureable effects of the

estimation of distortion. The effectiveness of the proposed algorithm is measured

using MLDS in terms of compression quality trade off. MS-SSIM index has been

used as a trial image quality assessment (IQA) algorithm due to its significantly

high correspondence with human ratings.

In non-metric multidimensional scaling (NMDS), MLDS was applied to deter-

mine the scaling problem [56], [72], [57]. It is evident in the literature that there are

mainly two assumptions, firstly, perceptual scale in a scaler quantity and secondly,

this scale propagates on accordance with stimulus. More specifically, it undertakes

that the order of two physical space stimuli and the perceptual scale stimuli denote

the same order. However, advantages of the MLDS method include the unbiased-

ness of MLE and for algorithmic convergence, a small subset of quadruplets. As a

conclusion, correlation between input and output has also been observed.

Devinck and Knoblauch [21] worked on the MLDS for the threshold estimation.

In their research they noticed that a signal detection model (SDM) determines the

discrimination performance. They have used, MLDS in terms of luminance ratio be-

tween the two components, for the measurement of the perceptual strength. MLDS

is centered over a Gaussian, equal-variance, signal detection model and thus result-

ing into a perceptual scale.

Moreover, it has also been said that it is a psycho-physical method that specifies

the efficient description of perceptual scales [57], [72]. Maloney and Yang [72] pro-

posed the model of supra threshold perceptual differences. A maximum likelihood

difference scaling technique has been used for parametric estimation and for the eval-

uation of the method reliability. An approach for testing the efficacy of the method

in various context has also been discussed. It can be noticed from the literature that

threshold stimuli had always been under the observation of researches.

In this respect, in 2010, Emrith [25] presented a research where virtual differ-
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ences for the threshold stimuli were judged by the observer, further based on these

differences a scale is estimated. The method has been used to study variety of vi-

sual domains such as texture properties. In this research, the author studied the

human perception related to the changes in the texture of an image accrued due to

statistical changes. In the proposed technique, first and second order statistic were

kept constant while analysing the 3rd and high order stats through randomization of

phase spectra. Stimuli include natural and synthetically produced images, where for

each observer, pixel wise comparison was done using synthetically produced images.

However, derivation of perceptual scale has been done through difference scaling. In

addition to this, a biologically plausible model was used to calculate the changes of

local measurements of phase congruency.

Furthermore, colour differences and glossiness of an image are the essential at-

tributes of a visual appearance. In 2004, Obein [75] has used maximum likelihood

difference scaling to find out glossiness of surface over an extended range. In their

study, MLD had proven to be a robust method for perceptual scale estimation.

They have gathered the observers’ judgments for 10 coated samples (black color), in

binocular vision and monocular vision. The results demonstrated the relationship

of gloss percept with the specular gloss value and found to be a nonlinear one. It

has been noticed that the sensitivity value is more at edges (extreme) as compare

to the middle. However, in binocular vision, gloss sensitivity is more as compare

to the monocular one. At the end, it has been noticed that gloss difference scales

change in accordance to illumination. Thus, it can be said that gloss scaling is not

dependent on the geometrical variants of the luminous flux over surface of a sample.

When talked about different material, an observer can discriminate the material

(silk, granite, etc.) under viewing conditions and this is considered to be an achieve-

ment of a visual system, however, it is a challenging situation. Early researchers have

focused on the flat but thin filters for the observation of transparency. However, in

this research [10], focus is particularly on the irregular shapes of thick transparent

objects with fluctuated refractive index (for example, ice cube). A vital part of the

visual evidence is distortion that indicates the existence of previously mentioned

objects that has been noticed in the observed shape of other objects. Therefore,
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new category of visual cues has been proposed based on induced distortion. Fur-

thermore, experimental evaluation has also been done through prediction of failure

of success in refractive indices judgement [31].

Along with all the above mentioned properties, physical properties are also im-

portant in image processing that can also be examined through MLD. It has been

observed that most of the literature is centered towards the optical properties how-

ever, physical property like shape is also as important as the visualization of an

image. Researchers have used maximum likelihood difference scaling for the recon-

struction of perceptual scales for perceived viscosity of fluid [79].

Additionally, MLD has also used for the compression of image however, it re-

sulted to relatively poor image quality. In a research by Charrier [10], nine images

have been taken and their quality has been examined with the help of maximum

likelihood difference scaling. Each image is compressed with the help of VQ (vector

quantisation) to 2 distinct colour spaces and up to 10 distinct levels. It has been seen

that an RGB image can be compressed up to 32% on average that leads to changes

in perception and loss in quality. Therefore, the proposed technique provides a fast

and direct way to measure the compression consequences [10]. Effects of different

compression rates as shown in Figure 6.5, using vector quantization compression on

an image is represented in the Figure 6.4. A trade-off between compression rate and

quality can be seen in the figure.

Figure 6.4: (Color online) Effects of VQ compression. The original image (0%

compression) is shown after VQ compression using a codebook based on the LBG

algorithm applied to the image. Larger compressions lead to evident decreases in

image quality [10].
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Figure 6.5: The difference scale values are estimates based on the observer’s judg-

ments of superthreshold perceptual differences between the images portrayed in

6.4 [10].

6.3 Background

The maximum likelihood difference scaling (MLDS) method [72] was applied in this

experiment to determine the perception threshold among a series of visual stim-

uli. The experiment was performed with N = 10 quantization levels L1, L2, ..., LN .

According to the MDLS method, there is a real number ψk associated with each

stimulus level Lk, and such levels are numbered in a way that ψ1<ψ2<...<ψN . In

this particular case, these numbers are the image quality levels from 8 to 12.5 with

a precision of 0.5, as follows:

ψk; k = 1, 2, ..., 10 = 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5 (6.3.1)

The experiment is designed to present the observer with quadruples (La, Lb;Lc, Ld),

which means, two pairs of images a, b and c, d on each trial. The observer is in-

structed to select which pair a, b and c, d is perceived as more different. During the

experiment, the participant observes pairs of images that are considerably different;

that is, image a is evidently different from image b, and image c in evidently dif-

ferent from image d. Nevertheless, the observer is not asked to distinguish the two
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images in each pair, but to order the perceived magnitude of threshold perceptual

differences. Using the MDLS method, the objective is to determine a set of differ-

ence scale values ψ1, ψ2, ..., ψN that correspond to the stimuli, L1, L2, ..., LN , in such

way that given a quadruple (La, Lb;Lc, Ld), the observer judges La, Lb to have more

difference than Lc, Ld precisely when:

ψb − ψa > ψd − ψc (6.3.2)

Thus, these scaling values predict judgments of perceptual difference. It is un-

likely that human observers are 100% reliable in judgment and satisfy the given

criterion, particularly if the differences ψb − ψa and ψd − ψc were very close. Then,

a model that allows the observer to exhibit stochastic variation in judgment is ap-

plied [72], [10], which is based on an equal-variance Gaussian signal detection model.

For this model, the signal ∆ is the difference in the length Lij = |ψj − ψi| of the

intervals, as follows;

δ(a, b; c, d) = Lcd − Lab = ψd − ψc − ψb − ψa (6.3.3)

If the observer chooses the second interval (Lc, Ld) as larger, then the signal is

positive, and if the observer chooses the first interval as larger, δ is negative. Then,

it is assumed that the decision variable employed by the observer is;

∆(a, b; c, d) = δ(a, b; c, d) + ε = Lcd − Lab + ε (6.3.4)

where ε is a Gaussian random variable with mean zero and standard deviation

α > 0.

In the experiment, the observer completes P trials, each based on a quadruple

qm with m = 1, 2, ..., P . Then, the observer’s response is coded as Rm = 0 if the

difference of the first pair is judged larger or Rm = 1 if the second pair’s difference

is judged larger.

The difference scale values Ψ = ψ1, ψ2, ..., ψN and the standard deviation α are
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the parameters to be obtained by maximizing the likelihood function:

L(ψ, α) =

p∏
m=1

φ(
δ(qm)

α
)1−Rm

(1− φ(
δ(qm)

α
))R

m

(6.3.5)

where φ(x) denotes the Gaussian cumulative distribution function, and δ(qm)

was defined in the equation 6.3.3. Without loss of generality, we set ψ1 = 0 and

ψN = 1, leaving N − 1 parameters to estimate: ψ2, ..., ψN − 1 and α.

6.3.1 Palamedes toolbox

Palamedes routine has the brain of MLDS method for deriving the perceptual scale.

It was developed by Prins and Kingdom 2009 [85]. It is a free MATLAB toolbox

and does not require high level programming skills but basic statistical understand-

ing. The routine can be downloaded from http://www.palamedestoolbox.org/

download.html.

All functions in Palamedes are prefixed with PAL, to avoid any confusion with

existing functions in Matlab software. After PAL, are the names of function they

implement. Table 6.1 lists the acronyms we used for MLDS Palamedes routine.

Function Name Meaning

PF Psychometric function

PFML Psychometric function: Maximum likelihood

MLDS Maximum likelihood difference scaling

Table 6.1: Acronyms used in Palamedes software.

The routine draw out parameter estimates describing the perceptual scale based

on the judgment of perceived differences between stimuli from the observer [72], [84].

The stimuli was presented as two pairs of images and the standard errors can be

determined by using a bootstrap procedure. The task is 2AFC, as a pair of stimuli

will be observed as to which appears to have the greatest magnitude.

Palamedes can be used to find out the relative merits in order to establish a

perceptual scale. As found in fitting procedures, free parameters must be estimated

in the beginning of the routine. Specify the type of methods ( the pairs, triads, or
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quadruples), the amount of stimulus levels, the number of repeats for each stimulus

combination, and an estimated internal noise level. Therefore, the arguments should

be as 2,10,40 respectively and the best SDnoise for each user is initially set to 0.3

but in our case we did it manually based in each model. The routine will display a

graph similar to what can be found in Figure 6.5 and an output of the number of

trials that occurred in the simulation. In this study, the number was found to be

around 4200.

To understand the Palamedes, MLDS routine uses simulated data set for the

representation of their operation. So, the first step is the generation of dataset using

the PAL MLDS GeneratestimList routine. This routine is being used for MLDS

demonstration as well as for stimulus generation. After this, we need to simulate the

response of the observer for that perceptual scale to measure the response by using

PAL MLDS SimulateObserver then fitting the data with MLDS using the MLDS

fitting routine PAL MLDS Fit. A function PAL PFML Fit is used to perform a

simplex search. The simplex search will chase after using a likelihood function and

finds a maximum after certain iterations. Precision of parameters can also increase

with the help of available options to change the tolerance. For example, low tolerance

means high precision. In order to decrease the tolerance, the maximum number of

iterations needs to increase using PAL PFML Fit function. The output of this

function is a vector containing all fitted parameters known. PAL MLDS Bootstrap

function is used for bootstrap analysis for error estimation. At the end, results are

demonstrated using demonstration routine PAL MLDS Demo.

Therefore, it can be said that, Palamedes use a maximum likelihood criterion

to fit the psychometric functions among all possible psychometric functions like

all combinations of possible values for the free parameters, Palamedes finds that

psychometric function with a responses that maximum matches to the observer

response.

Palamedes can fit psychometric functions to many different conditions at the

same time, although provide flexibility to the user in defining a model. Statistical

comparisons between models can be done using Palamedes. For examples a test to

check the difference between at least two conditions, like to check the slopes equality
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between the conditions or to check the lapse rate difference from a certain value.

Finally, Palamedes permits to check the goodness-of-fit of a model defined by the

user that defines the efficacy of experiment.

6.4 The Experiment

We followed the experimental design used in [9] for compressed images. We used

Max-Planck model rendered with two different methods, diffuse and plastic, with

ten quantisation levels of the mesh going from l = 8 bits per vertex coordinate (the

Level 1 of our Figures) and going up to to l = 12.5 bits per vertex coordinate (the

Level 10 of our Figures), in intervals of half as shown in Figure 6.6. The mesh

vertices were lying on a regular (2l)× (2l)× (2l) grid.

The aim is to use MLDS estimation method to scale thresholds of this model,

which will show the relation between quantisation thresholds and rendering algo-

rithms and evalute the human performance. Diffuse rendering method is know to

be less sensitive to small perturbations of the model’s normals caused by different

level of quantisation. On the other hand, specular rendering condition has a glossy

plastic surface which makes it more sensitive to normal perturbations than a diffuse

one, we expect that it would make quantisation artifacts easier to detect.

Each participant was presented with four images of quantised meshes of the

Max-Planck model arranged in a 2 × 2 design, see Figure 6.7 for the experiment’s

interface. The participants were asked whether the top or the bottom pair of images

have larger difference. We use all 210 possible combinations of choosing 4 levels out

of the 10, and use one matte and one glossy rendering for a total of 420 trials per

participant.

Prior to the actual experiment the 14 candidates were given instructions about

how they will run and choose the stimuli. For each of the two rendering method

combinations of the ten quantisation levels were presented to the user in random

order. For each trial the user had 6 seconds to respond, after which the screen would

go blank while awaiting the user’s response.
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Figure 6.6: Quantised Max-Planck Models from Level 8 to 12.5. left to right

Diffuse rendering then Plastic rendering.
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Figure 6.7: The design of the MLDS experiment.

6.5 Results and Discussion

We fitted a difference scaling curve on the data collected from each participant

using the Palamedes software. Notice that MLDS is not a statistical aggregation

method requiring large number of participants for valid results and, for example, the

experiment in [9] was based on only two participants. Since the convergence of the

iterative fitting scheme depends on the initial Noise value, we run the optimization

for a range of initial Noise values and chose the result with the highest log-likelihood.

In many of the 14 cases we could not fit a good curve, that is, the error estimates

exceeded the range of the values.

The results of applying a MLDS analysis on each of the 14 participants are

shown below. The horizontal axis is the quantisation level. The vertical axis is the

estimated scaling difference. After analysing the results, we can group them together

in 3 different groups, based on a qualitative analysis of the resulting curves. Group

I comprises of participants 1, 3 and 13. Group II comprises of participants 2, 4, 5,
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6, 7, 8, 9, 10, 11 , and 14. Lastly, group III includes participant 12 only.

Figure 6.8 shows a typical difference scaling curve with low error estimates. We

notice that the curve rises sharply, despite the low 0.5 bit per vertex coordinate

granularity, and levels off at 10 bits, perhaps when a perceptual limit imposed by

screen resolution is reached. In this particular participant, as well in some but not

all of the others participants, the difference between the two coarser quantisations is

not the largest one, indicating that some participants were distinguishing between

different coarse quantisations, while others would only distinguish between coarse

and fine quantisations.

Figure 6.8: Difference scaling curves for participant 1, 3 and 13.

It is evident from Figure 6.8, particularly participant 1, the image quantisation

level has significantly high effect on the image till the quantisation up to Level 6,

but, above that point, small changes in result in least perceived differences in the

image. Similarly, in the participant 3 and 13 the image quantisation level has sig-

nificantly high and sharp effect on the image between the Levels 2 to 3. Where it

took the scaling difference suddenly from approximately 0.1 to 0.9, that means a

clear degradation in the image quality. However, above that point, a plateau can

been observed. Thus, it can be inferred that beyond this threshold image quality

will remain stable even with high level of quantisation. Thus, the results of the

difference scaling do suggest that above the quantisation level, the benefits of im-

age compression come with relatively little change in image quality. That clearly

depicting it as a stable graph with an ideal curve that does not further effecting the

quality as the cost of compression.
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Figure 6.9: Difference scaling curves.

The scaling differences shown in Figure 6.9 exhibit the results from the group

II participants. Irregular curves with abrupt changes can be observed indicating

the low reliability of our statistical modelling method in this case. By taking the

curves at face value, they would be indicating that even small changes at the image

quantization level have consistently high effect on the image quality, throughout the

curve. The more you will compress the image, the more quality will be degraded due

to large scaling differences and above a certain threshold this difference continue to

be high. However, given the wide confidence intervals, shown by the thin vertical

curves, it is really difficult to infer any meaningful information or significant trends

from these type of graphs.

A unique but irregular dangling situation in scaling difference is evident by the

participant 12, shown in Figure 6.10, where more scaling difference has been observed

from 0 to 0.8 which is quite significantly high difference resultant into low quality

of image for the quantization level 1 to 2. However, after level 2, scaling difference

is observed between 0.8 and 1.2 for the rest of all quantization levels. High scaling

difference at one quantization level and then low at other moment, in this way a

zigzag symmetry has been observed.
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Figure 6.10: Difference scaling curves for participant 12.

6.5.1 Quality difference vs differences in visual appearance

From the results, it seems that there was some sort of confusion in participants

regarding the meaning of the trial’s question, and some of them were comparing

image quality, as instructed, while some others were comparing visual differences

between image pairs, irrespective of their quality.

Indeed, there seems to be an inherent difficulty when using the MLDS design,

namely, the non-uniformity of the quality scale when parametrised by the amount

of differences in visual appearance between two models. To demonstrate this by a

schematic example, two different quantisations of the Max-Planck model, both of

them at the high-end of the quality scale, let say at around 90 out of 100, will look

very similar between them, and indeed, very similar to the original. In contrast, two

different quantisations, both of them at the low-end of the quality scale, let say at

around 10 out of 100, could be very different between them in appearance.

To demonstrate this phenomenon, in Figure 6.11 we show the number of times

each pair of quantisation levels, which could either have been (a, b) or (c, d), was

chosen by a certain participant. We notice that we were able to construct good

MLE curves, in the cases of participants 1 and 3. There, the number of times
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that pairs of two coarse quantisations were chosen, for example (8,8.5), (8,9), or

(8.5,9), is relatively low. That is, these participants were able to understand that

two very coarse quantisations, such as for example 8 and 8.5, even though they

were visually very different, they had nevertheless similar very low quality. On the

other hand, participants 5 and 12, they were choosing coarse pairs such as (8,8.5),

(8,9), and (8.5,9) almost every time they were presented to them. That means that

they interpreted the large difference in the visual appearance between two coarse

quantisations as difference in quality. We notice that the corresponding MLE curves

for such participants were bad.

6.6 Conclusion

We presented an Maximum Likelihood difference scaling (MLDS) method to esti-

mate the perceptual scale of differences in stimulus based on the participant judg-

ment [72]. The main goal was to use the MLDS to question the relationship between

quantisation thresholds, geometric characteristics of the mesh and properties of the

rendering style which has been proven to be a powerful approach to similar prob-

lems [10,72].

In all, it was an ambitious undertaking to make use of scaling method for es-

timating the perceived quality of mesh thresholds, even though we have shown at

least that the quantisation had the expected significant impact on discrimination

thresholds, in some cases. The main drawback in our implementation of the experi-

ment was that we did not train the participants sufficiently well for what was a more

complex task than a 2-AFC experiment. In the future, we would like to repeat this

experiment, with better trained participants. In particular, in a follow-up experi-

ment, the participants should be clearly instructed, and trained, to judge differences

in perceived visual quality, not differences in visual appearance.
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Figure 6.11: From top to bottom: participants 1, 3, 5, and 12. The tables on the left,

show the number of times a pair of quantisations was chosen by that participant.

The corresponding MLE curves are shown on the right.
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Chapter 7

Conclusions

In this thesis, we have presented a research study in the area of perceptual 3D mesh

quality. Our main objective was the experimental study of the visual impact of the

quantisation of the vertex coordinates of a 3D triangular mesh. We accomplished this

goal through conducting four experiments to evaluate the participants perception

of quantised meshes, and estimate discrimination thresholds, that is, estimating the

quantisation levels after which the quantised mesh becomes visually indistinguish-

able from the original. Results obtained by these experiments established links and

correlations between discrimination thresholds and a number of factors related to

quantisation processes, rendering methods, and most importantly, characteristics of

the mesh geometry.

7.1 Summary of Contributions

The contributions of this manuscript can be summarized as follows:

• Design, implementation and analysis of an objective experiment to

compare between two quantisation methods, rounding and dither-

ing.

The experimental study focuses on the comparison between two different quan-

tisation methods. Rounding, sets all the bits above the quantisation level to

zero. Dithering, on the other hand, all bits above the quantisation level are
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considered as having a random value. The experimental results showed that

dithering has a higher quantisation threshold than rounding while the differ-

ence between the two methods is small, around one bit per vertex coordinate,

it is nevertheless statistically significant and that was not proven before.

• Designing an experiment to study the psychology of observer per-

formance over the quality of 3D models.

In the experiment we used MLDS for modeling the perceived visual differences

when the vertices of a triangle mesh are quantized at various levels. The aim

was to predict threshold scale where the original model become indistinguish-

able from the quantised one and by that we use this range to compress models

which is better than a single value.

• Build a relationship between the quantisation thresholds and the

size of the mesh and rendering algorithms.

We design an a two-alternative forced-choice psychophysical experiment. Our

results indicate that meshes with larger number of triangles require higher level

of quantisation. As an intuitive clarification for this, we observe that higher

resolution 3D models have more details, which require higher quantisation

levels to be represented with high quality. Moreover, larger number of triangles

resolutions means smaller and skinny triangles, the normals of which are more

sensitive to the spatial perturbations caused by the quantisation and thus,

the rendering process, which is based on normal information, is affected more

severely. Moreover, as expected, renderings based on reflectance models with

higher specular component require higher quantisation level, the reason again

being that normal perturbations are easier to perceive in glossy rendering with

a strong specular component. Briefly, by proving the interactions between the

geometric characteristics and rendering method we could go further with this

study.

• Fit a psychometric function.

To conclude our research on different measurments that affect the quantisation
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level and prove it one by one. We, instantly, followed the design of experiment

3, yet each mesh consist of about 100K vertices and used one rendering con-

dition. The results had proven that there is a clear correlation between the

discrimination threshold and the filesizes of the compressed meshes.

In a nutshell, this thesis work highlights the importance of exploiting the rela-

tionship between geometry, material and lighting information of 3D models and the

psychology of integrating human in the quality evaluating task of visual perception.

As a matter of fact, future research will have to continue investigating these rela-

tionship and the effect of integrating human vision processes on the visual quality

of 3D models.

7.2 Perspective

Several research perspectives appear at the end of this research.

We found that the discrimination thresholds are affected by a multi-

tude of factors.

Even it might be intuitive and small, we found that the blockiness has higher

quantisation level than high frequency noise which was proven to be perceptually

stronger in the first experiment from comparing two quantisation methods. Similarly

to rendering methods, we found an observable impact on quantisation level from

experiment 2 and 3. While we experimented only with common rendering methods,

further investigation could be done on methods that decrease the threshold such as

flat rendering, or sophisticated methods that increase it such as reflection lines.

We found that the relationship between quantisation thresholds and

geometric properties of the mesh was evident.

Important factors were identified to be the size of the mesh (number of triangles)

in experiment 4 while geometry was also important in experiment 3.

We found that quantisation can actually be beneficial.

In literature we found that 16 bits per vertex coordinate is enough for most cases

as the standard quantisation level [71], [49], when they report results in compression,

or watermarking. Yet, we found it best to use 8 to 10 bits.
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The design of the experiment is very important.

Very complex designs for objective experiment are problematic and that is what

we faced in MLDS experiment , while simpler ones seem to work better for untrained

users as in other experiments.

7.2.1 Directions for future work

Taken altogether, the data presented in this thesis provide evidence of the existence

of statistically significant relationships between quantisation thresholds, geometric

characteristics of the mesh and rendering settings, we could not quantify them, that

is, we did not have enough data to produce a formula relating, for example, the num-

ber of triangles or the light information in the mesh with the quantisation threshold,

which we intend for future plan. Particularly, we still need more progression in un-

derstanding the interaction between geometry, material and rendering methods, and

also the connections between these interactions and human visual system.

Additionally, we need to consider if these factors apply to animations and video

as well as images ?. Will similar factors have the same impact on their visual

quality and results as well as the fixed images ?. We need to consider the real-time

interactions as an important factor when measuring the quality of video.

The fields of visual quality of 3D graphical data are still challenging. Indeed, all

the above factors should be considered to deliver efficient quality in future. Overall,

we admit that the research in this area has a promising future.

7.2.2 Relevant publications

Almutairi, Aeshah, Toni Saarela, and Ioannis Ivrissimtzis. ”A user study on quan-

tisation thresholds of triangle meshes.” The Computer Graphics and Visual Com-

puting (CGVC), 2017.

Almutairi, Aeshah, Toni Saarela, and Ioannis Ivrissimtzis. ”A perceptual dif-

ference scaling study on quantized 3D models.” The ACM Symposium on Applied

Perception (ACM SAP), 2018.

Aeshah Almutairi, Ioannis Ivrissimtzis, and Toni Saarela. ”Imperceptibility
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thresholds in quantised 3D triangle meshes.” The 4th International Conference on

Image and Graphics Processing, 2021.

Aeshah Almutairi, Ioannis Ivrissimtzis, and Toni Saarela.”Quality perception

and discrimination thresholds in quantised triangle meshes.” The International Work-

shop on Image Processing (IWIP), 2021 .
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Appendix A

In chapter 2 We present the results of a user study on estimating a quantisation

threshold above which the quantised triangle mesh is perceived as indistinguishable

from its unquantised original. The experiment focuses on the comparison between

two different quantisation methods: rounding, in which all bits above the threshold

are put to zero; and dithering, in which all bits above the threshold are randomised.

We used three different mesh models, mesh 1 Cube, mesh 2 is Eight and mesh 3 is

Max-Planck.

The following figures show the results of the mesh models (Cube, Eight or Max-

Planck) and algorithms (rounding or dithering).
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Figure A.1: The result of Cube with rounding.
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Figure A.2: The result of Cube with dithering.
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Figure A.3: The result of Eight with rounding.
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Figure A.4: The result of Eight with dithering.
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Figure A.5: The result of Max-Planck with rounding.
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Figure A.6: The result of Max-Planck with dithering.
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