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Abstract

This thesis discusses two theoretical statistical problems which have potential uses

in risk assessment. The likely application of the �rst problem is to ecotoxicological

risk assessment, while the second problem has a wide range of potential applica-

tions in risk assessment. The two problems have important mathematical features

in common.

The �rst problem is concerned with key dominance properties for the arithmetic

mean as the sample size increases. We show mathematically that the dominance

properties hold for all distributions with symmetric log-concave densities. A detailed

and comprehensive analysis of what happens when the sample size increases from

one to two for two-component scale and location mixtures of normal distributions

is introduced.

The second problem relates to combining limited probabilistic expert judgements

on multiple quantities in order to provide limited probabilistic information about

a derived quantity. First, a working hypothesis that simpli�es calculations for the

derived quantity is developed. Second, we mathematically show that the working

hypothesis holds for all distributions with symmetric log-concave densities. In ad-

dition, it holds for negatively-skewed Azzalini-style skew-symmetric distributions

with log-concave kernels when two quantities are involved. Moreover, under a spe-

ci�c condition, the working hypothesis is valid whenever the underlying distribu-

tions have log-concave right tail probability functions or partial log-concave right

tail probability functions when two quantities are involved.
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Chapter 1

Introduction and Background

In this chapter, we will discuss the motivation for making a contribution to two topics

in quantitative risk assessment. In addition, an outline of the thesis is provided.

1.1 Motivation

Risk analysis entails three phases: risk assessment, risk management, and risk com-

munication, see WHO (1995); EFSA (2012); and references therein. Risk assessment

is concerned with identifying and evaluating actions that are likely to cause harm.

It entails four branches: hazard identi�cation, hazard characterisation, exposure as-

sessment and risk characterisation. Risk characterisation is a combination of the

other three branches of risk assessment (Renwick et al., 2003). In EC (2000), risk

characterisation is de�ned as \The quantitative or semi-quantitative estimate, in-

cluding attendant uncertainties, of the probability of occurrence and severity of

adverse e�ect(s)/event(s) in a given population under de�ned exposure conditions

based on hazard identi�cation, hazard characterisation and exposure assessment."

The variability in data and uncertainty due to incomplete information a�ect the

conclusions that are made in risk characterisation (Renwick et al., 2003). Quanti-

fying variability and uncertainty is an important part in risk characterisation since

the result will be used in risk management (decision making process). Such quan-

ti�cation can contribute signi�cantly to the transparency and robustness of risk

assessment.

1



1.1. Motivation 2

Uncertainty has various de�nitions. In EFSA (2018b), it is de�ned as

\a general term referring to all types of limitations in available knowledge that a�ect

the range and probability of possible answers to an assessment question."

The two kinds of uncertainty are aleatory uncertainty (also called variability, ob-

jective uncertainty, dissonance, or irreducible uncertainty) and epistemic uncer-

tainty (also called uncertainty, ignorance, incertitude, subjective uncertainty, non-

speci�city, or reducible uncertainty), see Burgman (2005) and EFSA (2018a) among

many in the literature. Aleatory uncertainty can not be reduced by collecting more

information, whereas epistemic uncertainty can.

Uncertainty may be described qualitatively or quantitatively. Quantitative de-

scription may be deterministic or probabilistic. In this thesis, we are concerned with

probabilistic methods. Frequency probability is reasonable in quantifying aleatory

uncertainty, whereas epistemic uncertainty may be quanti�ed by using subjective

probability which re
ects the personal degree of belief. Ramsey (1988) and Savage

(1954/1972) de�ned subjective probabilities in terms of an individual’s preferences as

certain consistency assumptions are satis�ed. Consequently, this probability di�ers

from one expert to another due to the di�erence in their knowledge and experience.

The goal of the thesis is to make contributions to solving two mathematical

problems that are directly relevant to improving the treatment of uncertainty in

two related areas of practical risk assessment. These risk assessment areas and the

associated mathematical problems are described in Subsections 1.1.1 and 1.1.3 and

originate from the work of EFSA. Although the two problems are quite di�erent,

they have important mathematical features in common.

1.1.1 Problem 1: Ecotoxicological Risk Assessment

The �rst problem relates to the applied question of what to do in ecotoxicological

risk assessment if more species are tested than required.

Ecotoxicology is concerned with the ecological e�ects of harmful (toxic) chem-

icals in the natural environment. An important part of the natural environment

is the aquatic compartment: ditches, streams, ponds, rivers, etc.. Ecotoxicological

risk assessment requires a procedure that must be imposed to ensure that a chem-
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ical substance is used safely in the real environment. The risk is characterized by

the risk characterisation ratio (RCR) which compares an acceptable environmental

concentration (AEC), estimated under the hazard assessment, to a predicted envi-

ronmental concentration (PEC), i.e. concentration of a substance expected to be

found in any environment and estimated under exposure assessment. If the PEC is

less than the AEC then the chemical substance is likely to pass. Otherwise further

higher-tier risk assessment is required in order to release such a chemical substance

(ECHA, 2012). Consequently, the decision problem for risk managers in this context

is to specify the AEC. What this means is that users of a chemical in industry and

agriculture are not allowed to create higher concentrations than AEC in the real

environment.

In ecotoxicological risk assessment, the toxicity data which is used in the estima-

tion procedure are species sensitivity values. These values represent the substance’s

concentration that causes a speci�c e�ect (endpoint) which is observable or measur-

able to these species. The commonly used lethal concentration (LC50) represents

the concentration that is responsible for the mortality of 50% of a targeted species

for a speci�c exposure period. Other typical concentration levels are LC10, LC25,

LC75, and LC100.

A simple approach, sometimes taken to this risk management problem, is to

measure a single species’s sensitivity in an experiment, and then divide this value

by a �xed factor which is called theassessment factor(AF), also referred to as safety

(or uncertainty) factor. The AF is expressed as a multiplication of two parts: one

accounts for variability between species (AFspec), while the second part (AFother ) al-

lows for the other uncertainties. The magnitude of each assessment factor is chosen

by experts (often working for regulatory organisations) and it is usually a power of

10. The reasoning underlying the chosen value of the assessment factor is rarely

explicit and is quite opaque in many cases (EFSA, 2005). An AF is applied to allow

for various uncertainties summarized in EFSA (2005) as follows:

� Intra and inter species variation.

� Short-term to long-term toxicity extrapolation.
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� Laboratory data to �eld impact extrapolation.

� Intra and inter laboratory variation of toxicity data.

Scienti�cally, it is clearly bene�cial to test more species as we then learn more about

the inter-species variation in sensitivity. This could be captured using the so-called

Species Sensitivity Distributions(SSDs) model, which means using probability distri-

butions to model the inter-species variation in a particular measure of sensitivity to a

chemical substance. Instead, regulation traditionally applies an AF to the minimum

measured sensitivity value to obtain the AEC (EFSA, 2005). Clearly this minimum

sensitivity value is no larger than the sensitivity value obtained by testing a single

species. Since it is also assumed that a lower environmental concentration/dose will

be better ecologically, using this minimum sensitivity value when computing AEC

leads to reduced ecotoxicological risk. However, the use of minimum sensitivity

value has a negative consequence as well. For a person/company seeking to license

the use of a chemical, testing an additional species either leaves the minimum mea-

sured sensitivity value unchanged or lowers its value. Consequently, the value of

AEC will never increase and will often decrease. Therefore, there is no incentive for

the person/company to test more than the minimum number of species required by

legislation. That minimum number is one in the context we are considering.

It has been realised by EFSA (2005, 2008) that it might be possible to replace

the use of the minimum value by the geometric mean of available sensitivity values

without actually creating a higher risk to ecosystems. Clearly the geometric mean is

no less than the minimum value. However, since practice was not to test more than

one species, then in fact the geometric mean, the minimum value, and the value

of a single species are all equal in that practice. When multiple species are tested,

they also argued that although it is quite possible that the geometric mean is larger

than the single value, there will be less variability between samples for the geometric

mean than for the single value. In addition, that reduced variability might actually

lead to reduced risk, despite the fact that the geometric mean would often be greater

than the single value, because it would reduce the probability of producing a very

high value for AEC. At the same time, there would clearly be some bene�t for the

license seeker for the chemical because using the geometric mean would also reduce
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the probability of producing a very low value of AEC.

Usually log-scale (base 10) of the original toxicity data will be used to have nor-

mal or approximately normal SSDs. The normal distribution is preferable according

to its mathematical properties. For example, the empirical rule which states that

68% of the values fall within one standard deviation from the mean, 95% of the

values fall within two standard deviation of the the mean, and 99:7% of the values

fall within three standard deviation of the mean. In addition, it is symmetric about

its mean. Therefore, dividing the geometric mean of the original data by an AF,

to obtain AEC, becomes subtracting the logarithm of the AF from the arithmetic

mean of the data measured on log-scale (base 10). In what follows, the distribution

on log-scale will be referred to as the LSSD.

The adverse consequences, which a�ect ecological communities in ecosystem, are

measured in EFSA (2005) as the proportion of species for which their endpoints are

below the speci�c hazardous concentration, the so calledfraction exceeded(FE). FE

varies from one assessment to another and its value is never known. However, the

assessment procedure can be designed to control the expected value of FE known

as themean fraction exceeded(MFE). This is called a statistical risk measure. An-

other measure of statistical risk, which measures the probability that the fraction

exceeded (PFE) is greater than some chosen threshold level, is presented in EFSA

(2008). Use of PFE is consistent with the approach in Aldenberg and Jaworska

(2000).

It was found in EFSA (2005) for a normal LSSD that increasing the sample size

while keeping the assessment factor �xed leads to a reduction in the MFE. Later on

in EFSA (2008), these two statistical risk measures are numerically demonstrated to

be lowered as the number of tested species increases for many di�erent probability

distributions.

The unanswered theoretical question is how general this conclusion is, i.e. for

which distributions does risk decrease as the sample size increases. The essential

point is that there is no scienti�c evidence yet to allow a decision in favour of any

family of distributions other than the normal. Chapter 3 of this thesis studies this

mathematical question (see Section 1.2 for more detail).
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A Brief History of the SSD Concept

In Ecotoxicological risk assessment, toxicity data that is used in an estimation proce-

dure are the species tolerance values (laboratory e�ect values or sensitivity values).

The term SSD has several meanings:

� The SSD model uses probability distributions to model inter-species variabil-

ity of some measure of toxicity of a chemical which was �rst introduced by

Kooijman (1987) and Van Straalen and Denneman (1989).

� An empirical SSD distribution is an empirical distribution of measurements of

toxicity of a chemical to some sample of species. This came �rst historically,

see Posthuma et al. (2002) for a comprehensive review.

� SSD-based risk assessment uses either (a) the empirical SSD or (b) the SSD

model together with measurements for a sample of species to deduce the AEC,

as some statistical estimate of some percentile of the SSD, see Aldenberg et

al. (2002).

In this thesis, the SSD concept used is that of SSD models.

In SSD-based risk assessment, the SSD is used to determine the AEC of a sub-

stance. SSDs are used in two ways forward method and inverse method (Van

Straalen, 2002). The forward method is used to estimate the FE, which is also

known as the potentially a�ected fraction (PAF) in Trass et al. (2002) and fraction

a�ected (FA) in Aldenberg and Jaworska (2000). In this method a substance’s con-

centration x is speci�ed in advance and an empirical SSD or a SSD model is used to

estimate the proportion of a�ected species that have an end point which is less than

or equal tox, this is equivalent to obtaining cumulative distribution function of the

SSD at x (FSSD(x)). On the other hand, the inverse method is used to estimate

the threshold or hazardous concentration for which a particular percentage� % of

species have a lower endpoint, the value of� being chosen by the risk manager. This

is equivalent to �nding the percentile of the SSD.

The SSD methodology was more generally criticised by Forbes and Calow (2002).

We refer the reader to Posthuma et al. (2002) for more details. We do not discuss



1.1. Motivation 7

these further because the research in this thesis relevant to ecotoxicology is not

focused on the use of SSDs in risk assessment, but rather on the SSD model as-

sumptions in relation to the geometric mean approach.

1.1.2 Some Concepts Related to Problem 2

In the following, we will introduce some background concepts that are relevant to

the wider context of the second problem introduced in Subsection 1.1.3, but which

are not core to the mathematical work on the problem presented in Chapter 4 of

this thesis.

A Brief Introduction to Expert Knowledge Elicitation

Here, we give the reader a brief introduction to the core ideas of Expert Knowledge

Elicitation (EKE). Expert judgment plays an essential role in quantifying uncer-

tainty when available evidence is limited or costly to obtain. The EKE extracts

knowledge from one or more experts. In such situations, experts may be asked to

give their subjective judgments as probabilities about one or more uncertain quanti-

ties. Experts usually express their knowledge as a probability distribution, whether

fully or partially, although they can use instead partial ordering, preferences, or

estimates for speci�c values. However, expressing their knowledge, partially or fully,

as a probability distribution is the basis of this research as this enables calcula-

tions based on standard probability theory to obtain distributional information for

derived quantities. A full probability distribution requires specifying probabilities

that are associated with all values, whereas partial probability assigns probability

of a quantity being within some range(s) of values or exceeding a speci�c value.

In Bayesian statistics, elicitation is the foundation for constructing the prior dis-

tribution, thereby the posterior distribution is obtained via Bayes Theorem. EKE

is also used in statistics, economics, engineering, di�erent types of forecasting, and

environmental risks, see for example O’Hagan (2012); EFSA (2014); Hanea et al.

(2018); and the references therein.

The elicitation process involves one or more experts who have knowledge about

an uncertain quantity that would be elicited. There will be also usually an elicitor
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(facilitator) who conducts the elicitation exercise and who is quali�ed and familiar

with the elicitation process and understands basic probability theory. There will be

one or more experts depending on, for example, availability, resources, or the com-

plexity of the quantities of interest. If EKE is conducted using more than one expert,

then their judgements are usually combined in a single probability distribution. This

process is called aggregation. Two approaches are often taken:

� Mathematical aggregation (or pooling): The judements are separately elicited,

then a probability distribution is �tted to each of them. Pooling rules (math-

ematical formula) are applied to combine these individual probability distri-

butions mathematically to produce the aggregate distribution. Heterogeneous

beliefs due to expert variability are allowed and even preferred in order to

increase the quality and credibility of the output by adding more experts es-

pecially for complex models. However, the e�ectiveness of such heterogeneous

beliefs depends on the way of combining them, therefore it requires a speci�c

form of pooling rule to produce the aggregate distribution such as a weighted

or un-weighted average.

� Behavioral aggregation: This approach aims to reach a consensus. Compro-

mise and persuasion are used by experts to arrive to such consensus, in which

an aggregate distribution would be appropriate after a number of experts dis-

cuss their knowledge and opinions. This approach results in knowledge sharing

between experts. However, some personalities might prevail in the discussion,

which leads probability distributions to weigh towards a few or a single expert’s

judgements. The behavioral approach is also susceptible to group think.

The most well-known protocols used by practitioners of elicitation are brie
y dis-

cussed in the following.

� Cooke protocol: This protocol applies a mathematical aggregation approach.

It is based on weighing expert responses according to their accuracy in assess-

ing distribution(s) for seed variable(s), which is (are) unknown to the experts.

More weight is assigned to the expert whose predicted probability distribution
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is more accurate. Details of the protocol and the approach to weighting may

be found in Cooke (1991).

� She�eld protocol: SHe�eld ELicitation Framework (SHELF), which is used

in EFSA (2014), is a behavioral aggregation approach. It is erected on two

rounds. In the �rst round, private judgements are made by experts. In the

second round, experts review their judgments. When the elicitor decides that

the discussion has reached a point at which no further bene�cial contribu-

tions can no longer be provided, the experts are asked to come up with joint

aggregated judgements, which means they reach an agreement. Although the

experts might not share the same opinions following the discussion, they ought

to provide reasonable impartial judgements. The optimal number of experts

is considered to be four to eight. Experts involved in the elicitation ought to

be amenable to the opinions of one another.

� Delphi protocol: This protocol is a combination of behavioural and mathemat-

ical aggregation. It involves two or more rounds of judgements. Anonymity

is one of its features, so that the providers of the judgements are anonymous.

Like the SHELF protocol, there is interaction among experts between rounds

where they can share knowledge, but this is limited. At the end individuals

provide their judgments individually, and a pooling rule is required across ex-

pert �nal distributions where the aggregated distribution is obtained by given

equal weight to individual judgements. In situations where there are strongly

di�ering viewpoints, it may be necessary to involve a larger number of experts.

Details of the Delphi approach, including selection of experts may be found in

Rowe and Wright (1999).

A detailed discussion on EKE is beyond this research. For more detailed explanation

we refer the reader interested in EKE, and di�erent protocols that are used by

practitioners of elicitation, to Garthwaite et al. (2005); EFSA (2014); O’Hagan

(2019); and references therein.
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Interval Analysis

In interval analysis, which is also called interval arithmetic, we specify a range for

each input to a calculation or mathematical model and use interval arithmetic to

deduce the corresponding set of output values, see Neumaier (1990) and Moore et

al. (2009). One simple form is to specify an upper or lower limit for each input.

Imprecise Probability

Williams (1975/2007) and Walley (1991) consider that expressing subjective prob-

abilities precisely as given in De Finetti (1964/1992) is unrealistic. Instead, sub-

jective probability should be bounded by lower and upper probabilities to accom-

modate a range of opinions. From the standpoint of Walley (1991) these lower and

upper bound of probabilities represent the maximum amount that an individual

is amenable to pay to sign a contract and the minimum amount that he/she is

amenable to receive to abandon signing the contract. When the maximum amount

for signing the contract and the minimum amount for abandoning signing it coin-

cide, then the common amount is called a fair amount for signing that contract, and

the probability is precise. The partial probability judgements considered in Chapter

4 are a kind of imprecise probability.

When probabilities are speci�ed as ranges rather than numbers, interval analysis

can be used to obtain a range of probability as an output from a correct probability

calculation. Williams (1975/2007) and Walley (1991) gave a motivation and op-

erational de�nition of imprecise probability based on upper and lower prices that

lead to specifying ranges rather than numbers for probabilities. They also showed

that interval analysis is indeed appropriate for calculations. When applied to the

distributions of random variables, we get the concept of probability bounds analysis,

�rst through simple application of the Frechet inequalities as in EFSA (2018a) and

more generally through the methodology of Tucker and Ferson (2003).

Probability Bounds Analysis

A probability box (p-box) or imprecise probability distribution for a random variable

X , where its exact distribution function FX (x) is unknown, is the class of distri-
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bution functions FX (x) satisfying F X (x) < F X (x) < F X (x) 8x where the chosen

upper and lower cumulative distribution functionsF X (x) and F X (x) express im-

precision aboutFX (x). The distance between these bounds represents the amount

of lack of knowledge (epistemic uncertainty) about the unknown distribution func-

tion. Probability bounds analysis (PBA) is a combination of the standard interval

analysis method and classical probability theory (Ferson et al., 2003). It can be

used to evaluate probability boxes for mathematical expressions when there is un-

certainty about the input values, their dependencies, or even the distribution shape.

For example, it can be used to compute bounds on the distribution resulting from

convolution (addition and other arithmetic operations for distributions) or a more

complex function, given bounds on the distributions of the inputs (p-boxes). It can

be used when the range or bound for probability is provided rather than an exact

value. We refer the interested readers to Williamson and Downs (1990); Ferson

(2001); Tucker and Ferson (2003); Ferson et al. (2004); and references therein for a

detailed review.

1.1.3 Problem 2: Combining Minimal Judgements about

Uncertain Quantities

The second problem is related to combining limited probabilistic expert judgements

on multiple uncertain quantities in order to provide limited probabilistic information

about a derived quantity.

Risk assessment is often concerned with rare events (extreme outcomes), i.e. tails

of a distribution, where people have less experience and it is hard to get reliable in-

formation (Burgman, 2005). This leads to uncertainty in the analysis.

Making good use of partial probability judgments made by experts has the po-

tential to play a pivotal role in quantifying uncertainty in risk assessment, thereby

relieving experts of the need to express uncertainty using full probability distribu-

tions.

In many assessments, a model, which is a function of uncertain input quantities,

is developed with the output being a proxy for an uncertain quantity of interest

in the real world. This mathematical model is calledthe assessment calculation
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in EFSA (2018a). This model could be composed of many uncertain quantities

(complex model), or rather few uncertain quantities (simple model)(EFSA, 2014).

The bene�t of the model is that expressing uncertainty about the inputs may be

considered easier than directly expressing uncertainty about the output and that

uncertainty about the output may be deduced from uncertainty about the inputs.

An example of such a model is the Rift Valley Fever Virus model discussed in Chap-

ter 4.

One approach is to specify a full joint (multivariate) probability distribution for

the uncertain input quantities. Then we will know the full probability distribution

of the model output via the assessment calculation. However, in quantifying un-

certainty probabilistically, the most challenging situation is using expert judgment

through an EKE process, as discussed earlier, to specify a full joint (multivariate)

probability distribution for uncertain quantities, for examples see Daneshkhah and

Oakley (2010); O’Hagan (2012); and EFSA (2018b). In practice, it is easier if

those uncertain quantities are judged to be independent. Independence substan-

tially reduces the e�ort of eliciting a joint distribution to eliciting the full proba-

bility independently for each uncertain quantity. In subjective probability theory,

independence (or epistemic independence) in the judgement of experts between two

uncertain quantities means that they would not change their beliefs about the un-

certainty of one of them, given (new) knowledge about the other one, and vice versa,

see for examples Daneshkhah and Oakley (2010); O’Hagan (2012); EFSA (2018b);

and references therein. However, specifying even the full probability distribution

of an individual uncertain quantity is hard for experts. Therefore, they could in-

stead provide partial probability statements for the input quantities in the form of

probability bounds (Ferson et al., 2003). Probability bounds were introduced in

Subsection 1.1.2. The EFSA (2018b) de�nition of probability bound is to specify an

upper bound for the probability that an uncertain quantity exceeds some a speci�c

threshold. However, Ferson’s de�nition is more general.

EFSA (2018a) applies the probability bounds method in two examples: one for

purely uncertain parameters and a second for uncertainty about a variable function

of variable parameters. The simplest approach to combine probability bounds on
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inputs in order to derive a probability bound on the output of an assessment cal-

culation is introduced in EFSA (2018a). It applies to models which do not involve

variable quantities, just uncertain parameters. Moreover, it applies when an assess-

ment calculation is monotonic in each input. If the interest is on extreme values

for the output, then a ‘high’ or ‘extreme’ value is speci�ed for each input, which is

called a threshold for the input. In addition, for each input, an upper bound for

the probability that the input exceeds the threshold has to be provided by expert

judgment, for example through an EKE. Then the assessment calculation is used to

combine the threshold values for the inputs to obtain a threshold for the output. Fi-

nally, the probability bounds analysis approach is applied to obtain an upper bound

on the probability that the output exceeds the calculated threshold. That upper

bound is the sum of the individual upper bounds on the probabilities that inputs

exceed their threshold values. This approach is valid under all possible assumptions

about dependencies and that are consistent with the probability bounds speci�ed

for the inputs distributions. However, the upper bound on the probability for the

output is intrinsically larger than the upper bounds for the inputs and is likely to

be of little use in practice if there are many input quantities or the upper bounds

on the probabilities for the inputs are not very small. Although assuming indepen-

dence or some particular dependence would produce a tighter upper bound on the

probability for the output, the probability bounds answer is not greatly improved

by assuming independence. For example, for two independent uncertain quantities

X 1 and X 2, the upper bound isP (X 1 + X 2 � x1 + x2) � p1 + p2 � p1p2 where

pi = P (X i � x i ); i = 1 ; 2. Note that this upper bound improves on the general up-

per bound only by the amountp1p2 which will usually be much smaller thanp1 + p2.

To tighten the upper bound further, one needs additional assumptions about distri-

bution shape as in Chapter 4 of this thesis.

The question arising here is what information we can obtain from experts about

distribution shape, in addition to the probability bounds on inputs, that would lead

to a useful tighter upper bound for the probability relating to the output of the

assessment calculation. We started by considering the situation whenX 1 and X 2

are independent and (not necessarily identically) normally distributed as will be dis-
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cussed in Example 4.5.1(Section 4.5). We realised thatP (X 1 + X 2 � x1 + x2) is less

than the maximum ofp1 and p2. In addition, if X 1 and X 2 have standard Cauchy dis-

tributions and p1 = p2 = p, P (X 1 + X 2 � x1 + x2) = p, see Example 4.5.2 (Section

4.5). Moreover, ifX 1 and X 2 are independent and identically distributed exponential

random variables with failure rate one,P (X 1 + X 2 � x1 + x2) � 0:292> 0:29 when

p1 = p2 = 0 :29, whereasP (X 1 + X 2 � x1 + x2) � 0:06 < 0:1 whenp1 = p2 = 0 :1.

This means that if X i ; i = 1 ; 2 has exponential distribution with failure rate one,

the upper bound ofP (X 1 + X 2 � x1 + x2) is in some cases less than the maximum

of p1 and p2. These results give a motivation to propose max (p1; p2) as a prac-

tical upper bound for P (X 1 + X 2 � x1 + x2) instead of the worst case, (p1 + p2),

in EFSA (2018a) and the challenge is to establish practical criteria for when this

upper bound applies. Consequently, we formulated a working hypothesis and called

it " combined tails dominance property". This property speci�es an upper bound for

the probability that the convolution of two independent random variables exceeds a

threshold value. The combined tails dominance property is de�ned as follows

De�nition 1.1.1 Two independent random variablesX 1 and X 2 satisfy the com-

bined tails dominance property for probabilitiesp1 and p2 if

P (X 1 + X 2 � x1 + x2) � max (p1; p2) whereP (X i � x i ) = pi ; i = 1 ; 2

When this property holds, the probability bounds calculation produces a tighter and

easily calculated upper bound for the probability for the output than the simple

completely general approach introduced in EFSA (2018a). The goal is to �nd useful

conditions on the distributions ofX 1 andX 2 (and in general more than two variables)

which imply that the property holds, i.e. to understand when the working hypothesis

is valid. In particular, we are interested in conditions about which experts might

reasonably be able to make judgements.

1.1.4 Proschan’s Result

The seminal result by Proschan (1965) will be introduced in detail in Chapter 2.

It applies to all symmetric and log-concave densities and leads in Chapter 4 to

the validation of the combined tails dominance property when the distributions of
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X i ; i = 1 ; 2, in problem 2 have symmetric and log-concave densities as will be seen in

Section 4.4. In addition, by using Proschan’s result, we can show in Chapter 3 that

the two statistical risk measures decrease as the number of tested species increases

when the LSSDs have symmetric and log-concave densities as will be argued in

Section 3.6. The notion of peakedness of probability distributions that underlies

Proschan’s result is a key mathematical connection between the two problems.

1.2 Outline of Thesis

The thesis is in four chapters. Chapter 2 �rstly highlights some properties of log-

concave densities that are used throughout the thesis. Secondly, An important

lemma in Birnbaum (1948) that is used later by Proschan (1965) to prove his sem-

inal result is introduced in detail. Finally, the seminal result in Proschan (1965),

which is used in Sections 3.6 and 4.4, is presented with detailed proof.

Chapter 3 is allocated to show when the dominance properties for the arithmetic

mean hold, i.e when the two statistical risk measures in problem 1, namely the mean

fraction exceeded and the probability that the fraction exceeded is greater than some

chosen threshold level� , decrease as the number of tested species increases. In this

thesis, MFEn and PFEn (� ) denote respectively the mean fraction exceeded and the

probability that the fraction exceeded is greater than some chosen threshold level�

when the sample size isn. We will examine the behaviour of MFEn and PFEn (� )

when LSSDs have symmetric log-concave densities. In addition, we provide a de-

tailed and comprehensive analysis of what happens asn changes from one to two for

MFEn and PFEn (� ) when we consider two-component scale and location mixtures

of normal LSSDs including a complete mathematical theory of limiting behaviour

as parameters tend to extreme values.

In Chapter 4, we assume that the probability bounds in the formP (X i � x i ) �

pi ; i = 1 ; 2 are given, which represent the partial probability judgements about

inputs. Then we will explore for which distributions the combined tails dominance

property in problem 2 is valid. We examine distributions with symmetric log-concave

densities. In addition, we consider negatively-skewed Azzalini-style skew-symmetric
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distributions with log-concave kernels when two quantities are involved. Moreover,

we extend our investigation to accommodate distributions that have log-concave

right tail probability functions where the symmetry of the densities is not necessary.

Also, an extension to the case of having more than two uncertain quantities that

have log-concave right tail probability functions is presented. At the end of this

chapter, we explore the situation where the log-concavity only applies to part of the

right tail probability function when two quantities are involved.

We summarise the research discussed above in Chapter 5. Furthermore, fu-

ture research directions are suggested. A glossary of acronyms that will be used

throughout the thesis is presented at the end of the thesis. Finally, two appendices

are provided. Appendix A.1 provides an evaluation of some integrals used in Chap-

ter 3. Appendix A.2 gives some information about Lambert function in Chapter

4.



Chapter 2

Log-Concave Probability Density

Functions

2.1 Introduction

Proschan (1965) provides a seminal result on peakedness comparison for convex

combinations of independent and identically distributed (iid) random variables,

X i ; i = 1 ; 2; : : : ; n, from a symmetric log-concave density function (see Section

2.3). This result has important interpretation as it implies that (1=n)
P n

i =1 X i is

strictly increasing in peakedness asn increases. Proschan’s result is su�cient to

prove that the dominance properties for the arithmetic mean and the combined

tails dominance property, in the two problems discussed in Chapter 1, hold when

the underlying distributions have log-concave symmetric densities as we will see in

Sections 3.6 and 4.4.

Peakedness was �rst introduced by Birnbaum (1948) in the following de�nition.

De�nition 2.1.1 (Birnbaum, 1948, De�nition). Let X 1 and X 2 be real random

variables andx1 and x2 real constants.X 1 is more peaked aboutx1 than X 2 about

x2 if

P (jX 1 � x1j � t) � P (jX 2 � x2j � t) 8t � 0 (2.1.1)

If the inequality in Equation 2.1.1 is strict, thenX 1 is said to be strictly more peaked

about x1 than X 2 about x2. In casex1 = x2 = 0, we simply say X 1 is (strictly)

17
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more peaked thanX 2. This de�nition was generalized to the multivariate case by

Sherman (1955). See Figure 2.1 for illustration.
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Figure 2.1: (a) The probability density function of X 1 � N(� = 0 ; � 2 = 2) (black)

and X 2 � N(� = 0 ; � 2 = 1) (red), (b) P (jX 1j � t) (black) and P (jX 2j � t) (red) for

t � 0 to illustrate that X 1 is more peaked thanX 2 (De�nition 2.1.1).

Proschan’s result states that ifX i are iid from symmetric log-concave density

function f X and a and b are vectors such that the elements of each vector are non-

negative and sum to one anda strictly majorizes b, as in De�nition 2.1.2, then
nX

i =1

bi X i is strictly more peaked than
nX

i =1

ai X i . This result depends on the notion of

majorization which de�ned as follows:

De�nition 2.1.2 (Marshall et al., 2011, A.1. De�nition). For any vectorsa; b2 Rn ,

a � m b if

8
>>>><

>>>>:

kX

i =1

ai �
kX

i =1

bi ; k = 1 ; : : : ; n � 1

nX

i =1

ai =
nX

i =1

bi

When a � m b, b is said to be majorized bya, where

a1 � � � � � an
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and

b1 � � � � � bn

The term strict majorization is used when
P k

i =1 ai >
P k

i =1 bi ; k = 1 ; : : : ; n � 1.

Extensions of Proschan’s result are many in the literature, among them is Chan

et al. (1987), they considered that the random variables are jointly distributed from

a Schur-concave density, whereas the random variables in Ma (1998) are independent

and non-identically distributed from a symmetric log-concave density, see the review

in Tong (1994). Later on, Ibragimov (2007) showed that the Proschan’s result holds

for convolutions of � symmetric distributions with � > 1. Further studies also

extend Proshan’s result, see for example Xu and Hu (2011); and Zhao et al. (2011).

This chapter highlights some properties of log-concave functions in Section 2.2.

Section 2.3 is devoted to reproducing two important results. The �rst is a lemma by

Birnbaum (1948), which proved that peakedness increases under convolution when

speci�c conditions are satis�ed. This lemma is used later by Proschan (1965) in

order to prove his seminal result as will be seen in Lemma 2.3.3. The second result

is the seminal result by Proschan (1965) with two auxiliary lemmas. All results are

reproduced with detailed proofs.

2.2 Log-Concave Functions and Probability Den-

sities

The log-concavity property is considered throughout the following section and chap-

ters. Hence, some log-concave properties are �rstly presented.

De�nition 2.2.1 A function f : R ! [0;1 ) is said to be log-concave if

f ((1 � t)x0 + tx 1) � f (x0)1� t f (x1)t 8x0; x1 2 R; 8t 2 [0; 1]

or equivalently, a function logf is concave, i.e.

log f ((1 � t)x0 + tx 1) � (1 � t) log f (x0) + t log f (x1) 8x0; x1 2 R; 8t 2 [0; 1]

This de�nition implies that any line that connects two points on the graph of logf

must lie below the graph. For examplef (x) = 1 � x
10; 0 � x � 10 is a log-concave
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function. Therefore, the line that connects logf (1) and logf (8), and the line that

connects logf (2) and logf (9) lie below the curve of logf (x) = log
�
1 � x

10

�
, see

Figure 2.2 for illustration.
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Figure 2.2: A plot of logf (x) = log
�
1 � x

10

�
. The red dotted line connects logf (1)

and logf (8). The green dotted line connects logf (2) and logf (9).

When we have probability density functions, the following properties are true.

� Log-concave probability densities are unimodal, and may be symmetric or

skewed.

� Log-concavity is preserved under convolution of log-concave probability den-

sities.

� The tail of a log-concave density function decays exponentially or faster.

� The right tail probability functions and cumulative distribution functions of

log-concave densities are both log-concave.

Examples of such densities are the normal density, gamma densities with shape

parameter � 1, and beta densities with both parameters� 1. Many properties
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of log-concave densities are discussed in Marshall et al. (1979/2011); An (1998);

Saumard and Wellner (2014); and references therein.

An idea that is closely related to log-concave densities is the concept of monotone

likelihood ratio that is introduced in the following de�nition.

De�nition 2.2.2 The translation family f X (x � � ) ; � 2 R has monotone likeli-

hood ratio in x if

f X (x1 � � 2)
f X (x1 � � 1)

�
f X (x2 � � 2)
f X (x2 � � 1)

8x1 < x 2; � 1 < � 2 (2.2.1)

which applies to allx in the space ofX , wheref x > 0 (Meeden, 1971). This property

will be used in proving the seminal result by Proschan (1965) since the probability

density function f X is log-concave if and only iff X (x � � ) ; � 2 R has monotone

likelihood ratio in x, as will be seen later in this section.

Another related idea is the idea of P�olya Frequency functions of order 2 (PF2)

(Schoenberg, 1951) which is introduced in the following de�nition.

De�nition 2.2.3 A density function f X is of P�olya Frequency function of order 2

(PF2) if

det

0

@f X (x1 � y1) f X (x1 � y2)

f X (x2 � y1) f X (x2 � y2)

1

A � 0

for all a < x 1 < x 2 < b and all a < y 1 < y 2 < b.

The term P�olya Frequency function of order 2 (PF2) is used in Proschan (1965). As

will be seen in the following,f X is PF2 if and only if it is log-concave.

The following connections between the preceding ideas and the log-concave den-

sities are given in Saumard and Wellner (2014) with their proofs.

(a) f X is log-concave density function if and only iff X (x � � ); � 2 R has monotone

likelihood ratio in x.

(b) f X is log-concave density function if and only iff X is a PF2.

Proof . (a) Supposef X is log-concave.f X (x � � ) has monotone likelihood ratio in

x if and only if

f X (x1 � � 2)
f X (x1 � � 1)

�
f X (x2 � � 2)
f X (x2 � � 1)

8x1 < x 2; � 1 < � 2 (2.2.2)
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This holds if and only if

log f X (x1 � � 2) + log f X (x2 � � 1) � log f X (x2 � � 2) + log f X (x1 � � 1) (2.2.3)

Let t = (x2 � x1 )
(x2 � x1+ � 2 � � 1 ) , thus

x2 � x1 = t(x2 � � 1) � t(x1 � � 2)

By adding and subtracting � 1,

(x2 � � 1) � (x1 � � 1) = t(x2 � � 1) � t(x1 � � 2)

Hence,

x1 � � 1 = t(x1 � � 2) + (1 � t)(x2 � � 1)

Similarly,

x2 � � 2 = (1 � t)(x1 � � 2) + t(x2 � � 1)

Sincef X is log-concave,

log f X (x1 � � 1) � t log f X (x1 � � 2) + (1 � t) log f X (x2 � � 1) (2.2.4)

and

log f X (x2 � � 2) � (1 � t) log f X (x1 � � 2) + t log f X (x2 � � 1) (2.2.5)

Adding Equations 2.2.4 and 2.2.5 yields Equation 2.2.3. Therefore, the log-concavity

of f X implies that f X (x � � ) has monotone likelihood ratio inx.

Now suppose thatf X (x � � ) has monotone likelihood ratio inx so that Equation

2.2.3 holds. In particular, it holds if x1; x2; � 1; � 2 satisfy

x1 � � 2 = a < b = x2 � � 1

and

t =
x2 � x1

(x2 � x1 + � 2 � � 1)
=

1
2

Hence,

x2 � x1 = � 2 � � 1
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and

x2 � � 2 = x1 � � 1 (2.2.6)

Moreover,
a + b

2
=

(x1 � � 1) + ( x2 � � 2)
2

(2.2.7)

By using Equation 2.2.6, thus we obtain

x1 � � 1 =
a + b

2
= x2 � � 2

Therefore, Equation 2.2.3 becomes

log f X (a) + log f X (b) � 2 logf X

� a + b
2

�

Thus f X is a log-midpoint-concave. In addition,f X is a Lebesgue measurable func-

tion. Therefore f X is log-concave (Blumberg, 1919; Simon, 2011).

(b) Supposef X is PF2. Thus for x1 < x 2; y1 < y 2,

det

0

@f X (x1 � y1) f X (x1 � y2)

f X (x2 � y1) f X (x2 � y2)

1

A � 0

()

f X (x1 � y2)f X (x2 � y1) � f X (x1 � y1)f X (x2 � y2)

()
f X (x1 � y2 )
f X (x1 � y1 ) � f X (x2 � y2 )

f X (x2 � y1 )

That is f X (x � y) has monotone likelihood ratio inx. By using (a), this is equivalent

to f X is log-concave. 2

In this thesis, we shall use the term log-concave.

2.3 Symmetric Log-Concave Probability Density

Functions

This section reproduces the following:

� The lemma by Birnbaum (1948) in Lemma 2.3.1. This lemma is used later by

Proschan (1965) (see Lemma 2.3.4).
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� Two Auxiliary lemmas that are used by Proschan (1965) to prove his seminal

result in Lemmas 2.3.3 and 2.3.4.

� The seminal result by Proschan (1965) in Theorem 2.3.5.

All the lemmas and theorem are reproduced with detailed proof.

Proshan’s result is relevant to symmetric log-concave density functions. In addi-

tion, it is used later in Sections 3.6 and 4.4 when we consider situations where the

LSSD and the distributions ofX i ; i = 1 ; 2 in respectively problem 1 and problem 2

(see Chapter 1) have symmetric and log-concave density functions.

Lemma 2.3.1 (Birnbaum, 1948, Lemma). LetX 1; X 2; Y1; Y2 be continuous random

variables with probability densities f X 1 ; f X 2 ; f Y1 ; f Y2 such that

(1) X 1 and X 2 are independent,Y1 and Y2 are independent,

(2) f X i (x) = f X i (� x) 8x and f Yi (y) = f Yi (� y) 8y for i = 1 ; 2,

(3) f X 2 and f Y1 are not increasing functions for positive values of the variables,

and

(4) X i is more peaked about 0 thanYi , for i = 1 ; 2.

Let X = X 1 + X 2 and Y = Y1 + Y2. Under these assumptionsX is more peaked

about 0 than Y .

Proof . Let FX i (x) = P (X i � x); FYi (y) = P (Yi � y); for i = 1 ; 2, be the

cumulative distribution functions. For any random variablesX 1; X 2; Y1; Y2 (not

necessarily continuous) where assumption (1) is satis�ed, and anyt,

P (X � t) � P (Y � t) =
Z 1

�1

�
FX 1 (t � s)f X 2 (s) ds � FY1 (t � s)f Y2 (s) ds

�

By adding and subtracting
R1

�1 FY1 (t � s)f X 2 (s) ds, thus

P (X � t) � P (Y � t) =
Z 1

�1
[FX 1 (t � s) � FY1 (t � s)] f X 2 (s) ds

+
Z 1

�1
FY1 (t � s)

�
f X 2 (s) ds � f Y2 (s) ds

�
(2.3.1)

Using integration by parts,
Z 1

�1
FY1 (t � s)

�
f X 2 (s) ds � f Y2 (s) ds

�
=

Z 1

�1

�
FX 2 (s) � FY2 (s)

�
f Y1 (t � s) ds
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Thus Equation 2.3.1 becomes

P (X � t) � P (Y � t) =
Z 1

�1

�
FX 1 (t � s) � FY1 (t � s)

�
f X 2 (s) ds

+
Z 1

�1

�
FX 2 (s) � FY2 (s)

�
f Y1 (t � s) ds

which is equivalent to

P (X � t) � P (Y � t) =
Z 1

�1

�
FX 1 (t � s) � FY1 (t � s)

�
f X 2 (s) ds

+
Z 1

�1

�
FX 2 (t � s) � FY2 (t � s)

�
f Y1 (s) ds

= I 1(t) + I 2(t)

where

I 1(T) =
Z 1

�1

�
FX 1 (t � s) � FY1 (t � s)

�
f X 2 (s) ds

=
Z 1

�1

�
FX 1 (� s) � FY1 (� s)

�
f X 2 (t + s) ds

=
� Z 0

�1
+

Z 1

0

� �
FX 1 (� s) � FY1 (� s)

�
f X 2 (t + s) ds

= A + B (2.3.2)

where

A =
Z 0

�1

�
FX 1 (� s) � FY1 (� s)

�
f X 2 (t + s) ds

which is equivalent to

A =
Z 1

0

�
FX 1 (s) � FY1 (s)

�
f X 2 (t � s) ds (2.3.3)

Using Equation 2.3.3, Equation 2.3.2 becomes

I 1 =
Z 1

0

�
FX 1 (s) � FY1 (s)

�
f X 2 (t � s) ds

+
�
FX 1 (� s) � FY1 (� s)

�
f X 2 (t + s) ds

=
Z 1

0

�
P (X 1 � s) � P (Y1 � s)

�
f X 2 (t � s) ds

+
�
P (X 1 � � s) � P (Y1 � � s)

�
f X 2 (t + s) ds
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Using assumption (2),

I 1 =
Z 1

0

( h
(1 � P (X 1 > s )) � (1 � P (Y1 > s ))

i
f X 2 (t � s) ds

+
�
P (X 1 � s) � P (Y1 � s)

�
f X 2 (t + s) ds

)

=
Z 1

0

(
�
P (Y1 > s ) � P (X 1 > s )

�
f X 2 (t � s) ds

+
�
P (X 1 � s) � P (Y1 � s)

�
f X 2 (t + s) ds

)

By adding and subtracting
�
P (X 1 = s) � P (Y1 = s)

�
f X 2 (t � s) ds, we obtain

I 1 =
Z 1

0

(
�
P (X 1 � s) � P (Y1 � s)

��
f X 2 (t + s) ds � f X 2 (t � s) ds

�

�
�
P (X 1 = s) � P (Y1 = s)

�
f X 2 (t � s) ds

)

=
Z 1

0

�
P (X 1 � s) � P (Y1 � s)

��
f X 2 (t + s) ds � f X 2 (t � s) ds

�

�
Z 1

0

�
P (X 1 = s) � P (Y1 = s)

�
f X 2 (t � s) ds (2.3.4)

Similarly,

I 2 =
Z 1

0

�
P (X 2 � s) � P (Y2 � s)

��
f Y1 (t + s) ds � f Y1 (t � s) ds

�

�
Z 1

0

�
P (X 2 = s) � P (Y2 = s)

�
f Y1 (t � s) ds (2.3.5)

SinceX 1; X 2; Y1; Y2 are continuous random variables, the second integrals in Equa-

tions 2.3.4 and 2.3.5 are zero, and

I 1 =
Z 1

0

�
P (X 1 � s) � P (Y1 � s)

��
f X 2 (t + s) � f X 2 (t � s)

�
ds (2.3.6)

and

I 2 =
Z 1

0

�
P (X 2 � s) � P (Y2 � s)

��
f Y1 (t + s) � f Y1 (t � s)

�
ds (2.3.7)

Using assumption (3), fort � 0,

f X 2 (t + s) � f X 2 (t � s) � 0 if 0 � s � t
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f X 2 (t + s) � f X 2 (t � s) = f X 2 (s + t) � f X 2 (s � t) � 0 if 0 � t � s

Similarly,

f Y1 (t + s) � f Y1 (t � s) � 0 for all t � 0 and s � 0 (2.3.8)

SinceX i are more peaked thanYi , thus for s � 0,

P (X 1 � s) � P (Y1 � s) � 0

P (X 2 � s) � P (Y2 � s) � 0

Hence, both integrands in Equations 2.3.6 and 2.3.7 are non negative8s, thus

P (X � t) � P (Y � t) = I 1(t) + I 2(t) � 0

Hence,

P (X � t) � P (Y � t) � 0 for t � 0 (2.3.9)

and

2P (X � t) � 2P (Y � t) � 0 for t � 0 (2.3.10)

Using assumption (2) and Equation 2.3.10,

P (X � t) + P (X � � t) �
�

P (Y � t) + P (Y � � t)
�

� 0

Hence,

P (jX j � t) � P (jY j � t) � 0 for t � 0 (2.3.11)

Therefore,X is more peaked thanY . 2

Lemma 2.3.2 shows that symmetric log-concave functions are non-increasing

functions. In addition, it will be used in Lemma 2.3.3.

Lemma 2.3.2 Let f X be symmetric around zero, log-concave and 0� a � b. Then

f X (0) � f X (a) � f X (b).

Proof . If f X is log-concave,

1=2 logf X (� a) + 1 =2 logf X (a) � log f X (0)

Sincef X is symmetric around zero, thenf X (� a) = f X (a), thus

f X (a) � f X (0) (2.3.12)
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Similarly,

f X (b) � f X (0) (2.3.13)

Sincef X is log-concave, and for� 2 [0; 1] such that � (0)+(1 � � )b= a, the following

inequality should be true

log f X (a) � � log f X (0) + (1 � � ) log f X (b)

Using Equation 2.3.13,

� log f X (0) + (1 � � ) log f X (b) � � log f X (b) + (1 � � ) log f X (b)

= log f X (b)

Thus,

f X (a) � f X (b) (2.3.14)

Using Equations 2.3.12 and 2.3.14,

f X (0) � f X (a) � f X (b)

2

The seminal result obtained by Proschan (1965) is presented in Theorem 2.3.5.

In addition, he presented two lemmas in order to prove his theorem. However,

Proschan’s proof for the �rst lemma is concise. Therefore, we will reintroduce the

two lemmas in Lemmas 2.3.3 and 2.3.4 with detailed proof for the �rst lemma.

Lemma 2.3.3 (Proschan, 1965, Lemma 2.1). Letf X be a symmetric log-concave

density function, X 1 and X 2 independently distributed with density f X . Then

aX1 + (1 � a)X 2 is strictly increasing in peakedness asa increases from 0 to1
2

Proof . Fix t > 0 and de�ne

H (a; t) = P (aX1 + (1 � a)X 2 � t) =
Z 1

�1
FX

�
t � (1 � a)u

a

�
f X (u) du; 0 < a <

1
2

Di�erentiation under the integral sign is permissible since the derivative of

FX

�
t � (1� a)u

a

�
f X (u) is bounded by a Lebesgue integrable function:

���f X

�
t � (1� a)u

a

�
f X (u)(u � t)

��� � Mf X (u) ju � t j where M is the mode of f X , and
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R1
�1 Mf X (u)(u � t) du < 1 because all moments exist for a log-concave density

(Chen and Samworth, 2013). Then

a2
�

@H(a; t)
@a

�
=

Z 1

�1
f X

�
t � (1 � a)u

a

�
f X (u)(u � t) du (2.3.15)

Rewrite Equation 2.3.15,

a2
�

@H(a; t)
@a

�
=

Z t

�1
f X

�
t � (1 � a)u

a

�
f X (u)(u � t) du

+
Z 1

t
f X

�
t � (1 � a)u

a

�
f X (u)(u � t) du

Set v = t � u in the �rst integral and v = u � t in the second integral. We get

a2@H(a; t)
@a

=
Z 1

0
v

(

f X
�
t + v

�
f X

�
t �

(1 � a)
a

v
�

� f X (t � v) f X

�
t +

(1 � a)
a

v
� )

dv (2.3.16)

By symmetry of f X ,

f X (t + v) f X

�
t � (1� a)

a v
�

� f X (t � v) f X

�
t + (1� a)

a v
�

=

f X (t + v) f X

�
(1� a)

a v � t
�

� f X (v � t) f X

�
t + (1� a)

a v
�

Sincef X is log-concave,

f X (v � t)
f X (v + t)

�
f X

�
(1� a)

a v � t
�

f X

�
(1� a)

a v + t
� (2.3.17)

for 1 � a > a; v > 0 becausev < (1� a)
a v and � t < t , and

f X (v � t) f X

�
(1 � a)

a
v + t

�
� f X

�
(1 � a)

a
v � t

�
f X (v + t) (2.3.18)

So that the integrand in Equation 2.3.16 is not negative. Hence,a
2@H(a;t )

@a � 0, so

that @H(a;t )
@a � 0.

Now suppose@H(a;t )
@a = 0. Since f X is log-concave, the integrand has at most a

�nite number of points of discontinuity because the density is continuous except at

the boundary of its support. Therefore, the integrand must be zero almost every-

where.
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We will consider two cases for the support off X as follows:

Case (1) Finite support as given in Proschan’s proof:

Consider the support off X is an interval (� l; l ). Then we need only considert < l

to make Proschan’s proof work.

De�ne k = (1 � a)=a, and considerv 2 (( l � t)=k;min (( l + t)=k; l � t)). Then we

will examine if t � kv; t � v; t + v; t + kv are within the interval ( � l; l ) for the

speci�ed range of values ofv as follows:

l > t � kv > t � k(l + t)=k = � l =) f X (t � kv) > 0

l > t � v > t � (l � t) = 2 t � l > � l =) f X (t � v) > 0

0 < t + v < t + ( l � t) = l =) f X (t + v) > 0

t + kv > t + k(l � t)=k = l =) f X (t + kv) = 0

So that the integrand is not zero for suchv.

We have shown that there is an interval where the integrand is non-zero and

this contradicts the requirement that the integrand is zero almost everywhere if
@H(a;t )

@a = 0. Therefore @H(a;t )
@a > 0 when f X has �nite support.

Case (2) Support is real line:

In this case, we make the support off X wider than the one proposed by Proschan’s

proof. let v 2 (0; t=k). Then 0 < t � kv and the following relationships are true

0 < t � kv < t � v < t + v < t + kv

Using Lemma 2.3.2, when 0< t � kv < t � v < t + v < t + kv we have

f X (0) � A � B � C � D

where A = f X (t � kv); B = f X (t � v); C = f X (t + v) and D = f X (t + kv). If

C > D , then CA > BD and the integrandCA � BD in Equation 2.3.16 is positive.

Whereas ifC = D implies that A = B since the integrand is supposed to be zero.

Moreover, f X (0) = A = B = C = D sincef X is log-concave, and for� 2 (0; 1) such

that � (0) + (1 � � )( t + kv) = t + v, the following inequality should be true

logC � � log f X (0) + (1 � � ) log D
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SinceC = D ,

� logD � � log f X (0)

However, 0< t + kv, thus f X (0) must be equal toD .

Hence, for the integrand to be zero almost everywhere,f X must be constant for

the speci�ed range of values ofv. Therefore, we obtain the support off X as follows:

the maximum value for f X is corresponding to the maximum value ofv, i.e

t + kv = t + k(t=k) = 2 t

and the minimum value off X is t � k(t=k) = 0. Consequently, f X must be constant

on the interval (0; 2t).

Now suppose that we know thatf X is constant on some interval (� 
; 
 ) where


 � 2t. Considerv 2 (0; min(( 
 + t)=k; 
 � t)). Then

0 < v < 
 � t ! 0 < t + v < 
 =) f X (t + v) > 0

0 < v < 
 � t ! 
 > t � v > t � (
 � t) = 2 t � 
 > � 
 =) f X (t � v) > 0


 > t � kv > t � k(
 + t)=k = � 
 =) f X (t � kv) > 0

So that f X (0) = A = B = C > 0 and soD = f X (0) = A = B = C for the integrand

to be zero. The maximum value oft + kv for the speci�ed range of values ofv is

min (t + k(
 + t)=k; t + k(
 � t)) = min (2 t + 
; k (
 � t) + t)

= 
 + min (2 t; (k � 1)(
 � t))

Since
 � t � t,


 + min (2 t; (k � 1)(
 � t)) � 
 + min (2 t; (k � 1)t)

= 
 + min (2 ; k � 1) t

= 
 + � t

Hence, min (t + k(
 + t)=k; t + k(
 � t)) � 
 + � t where � = min
�
2; k � 1

�
> 0.

Therefore, f X should be constant on the interval (� (
 + � t); (
 + � t)).

We conclude that, whenf X is supposed to be constant on some interval,f X

should be constant on wider than that interval by 2� t.
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By repeating this process, we conclude thatf X is constant on the interval

(� (
 + n� t); (
 + n� t)) for any positive integer n, and so f X is constant on the

whole real line which is impossible. This contradiction means that the integrand

cannot be zero almost everywhere and therefore that@H(a;t )
@a > 0. 2

Lemma 2.3.4 (Proschan, 1965, Lemma 2.2). Letf X be a symmetric log-concave

density function, X 1; : : : ; X n independently distributed with density f X . Then
nX

i =1

ai X i is strictly increasing in peakedness asa1 increases from 0 to1
2c, with

a1 + a2 = c, 0 < c � 1; ai � 0; i = 1 ; : : : ; n and
P n

i =1 ai = 1

Proof . First note that
2X

i =1

ai X i and
nX

i =1

ai X i are each symmetric unimodal random

variables since eachX i is, see Kanter (1977). Suppose that

a1 < b1, a1 < a 2,b1 < b2 , a1 + a2 = c = b1 + b2. Then by Lemma 2.3.3,a1X 1 + a2X 2

is less peaked thanb1X 1 + b2X 2. By Lemma 2.3.1, it follows that
nX

i =1

ai X i is less

peaked than
2X

i =1

bi X i +
nX

i =3

ai X i . Finally, the strictness in Lemma 2.3.4 is because

of the strictness in Lemma 2.3.3. 2

To state Theorem 2.3.5, if a vectorb = ( b1; : : : ; bn ) is majorized by vector

a = ( a1; : : : ; an ), then b can be derived froma by a �nite number of transformations

T of the form

T(a) = � (a1; : : : ; an ) + (1 � � )(a1; : : : ; aj � 1; ak ; aj +1 ; : : : ; ak � 1; aj ; ak+1 ; : : : ; an )

where 0� � � 1, see Hardy et al. (1934).

Theorem 2.3.5 (Proschan, 1965, Theorem 2.3). Letf X be a symmetric log-

concave density function,X 1; : : : ; X n independently distributed with density f X ,

a � m b, a, b not identical,
nX

i =1

ai = 1 =
nX

i =1

bi . Then

nX

i =1

bi X i is strictly more peaked than
nX

i =1

ai X i . i.e

P

 �����

nX

i =1

bi X i

�����
� t

!

< P

 �����

nX

i =1

ai X i

�����
� t

!

; t � 0 (2.3.19)

Proof . bcan be obtained froma by a �nite number of T transformations. Applying

Lemma 2.3.4 in each case, therefore the theorem is proved. 2
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2.4 Conclusions

We have highlighted the lemma by Birnbaum (1948), which proved that peaked-

ness increases under convolution when speci�c conditions are satis�ed, used later by

Proschan (1965) in proving his seminal result on peakedness comparison for convex

combinations of independent and identically distributed random variables from a

symmetric log-concave density function. The Birnbaum’s lemma and Proschan’s

seminal result are reproduced with detailed proofs.



Chapter 3

Dominance of Arithmetic Mean

for Repeated Sampling in Some

Risk Problems

3.1 Introduction

This chapter is devoted to theoretically generalize, to a wider range of distribution

shapes, the dominance properties, �rst introduced in EFSA (2005, 2008) and de-

scribed in Subsection 1.1.1, for the arithmetic mean for LSSDs as the number of

tested species increases. The chapter opens by introducing an example of practical

application by EFSA in Section 3.2. Section 3.3 de�nes the two statistical risk mea-

sures used, including methods of calculation. In Section 3.4, we consider the case

when the LSSD is normal, and in Section 3.5 discuss location-scale families of distri-

butions. In Section 3.6, the generalization to all LSSDs with symmetric log-concave

densities is presented. Subsequently, LSSDs in the form of mixtures of symmetric

log-concave densities acquired our attention. Sections 3.7 and 3.8 are respectively

devoted to two-component scale and location mixtures of normal LSSDs. They

include a comprehensive analysis of what happens to the dominance properties as

parameters tend to extreme values when the number of tested species increases from

one to two. The chapter closes with some conclusions in Section 3.9. A glossary of

acronyms, including those used in this chapter, is presented at the end of the thesis.

34
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3.2 Example of Application by EFSA

The fungicide thiophanate-methyl and its metabolite carbendazim are used on many

crops. However, their residues could have harmful e�ects on the environment.

Therefore, risk assessments are essential for the safety of various groups of organisms.

In EFSA (2018c), the risk assessment was made for the e�ects of the metabolite car-

bendazim on �sh. Five species of �sh were tested: ictalurus punctatus, oncorhynchus

mykiss, cyprinodon variegatus, lepomis macrochirus, and cyprinus carpio. They

were exposed to carbendazim for 96 hours and the concentration, in milligrams per

liter of water (mg/L), that leads to the mortality of 50% of each of the �ve species

was determined as indicated in Table 3.1

Fish
Toxicity

(mg/L)

Ictalurus punctatus 0.019

Oncorhynchus mykiss 0.54

Cyprinodon variegatus > 1:158

Lepomis macrochirus > 3:2

Cyprinus carpio 0.44

Table 3.1: Toxicity data, in (mg/L), for �ve tested species of �sh that were exposed

to carbendazim for 96 hours. Reproduced from EFSA (2018d, Toxicity data for all

aquatic tested species).

Following standard �rst tier regulatory practice, the minimum value of the tox-

icity data in Table 3.1 is 19� g/L (micrograms per liter of water) and, applying the

standard assessment factor of 100, the AEC is 0:19 � g/L. However, for the higher

tier risk assessment, the geometric mean for the toxicity data of the above �ve �sh

is calculated to be 441� g/L and, by applying the assessment factor of 100, the AEC

is 4:41 � g/L. As discussed in Subsection 1.1.1, the basis for using the higher tier

AEC as the �nal value in the risk assessment was established in EFSA (2005) as-

suming that the LSSD was normal and considering the two statistical risk measures:

the mean fraction exceeded and the probability that the fraction exceeded exceeds a
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speci�ed threshold� . The claim is not that replacing the minimum by the geometric

mean leads to reduced risk when more than one species is tested; clearly it does not

since the geometric mean is always greater than or equal to the minimum. Rather,

the justi�cation is that the regulations require only that a single species be tested,

that the minimum is equal to the geometric mean when a single species is tested,

and that the risk using the geometric mean decreases with increasing sample size

for both statistical risk measures.

Note that, as described in Subsection 1.1.1, using log-scale base 10 for the origi-

nal toxicity data means that an equivalent higher tier calculation to obtain the AEC

is to subtract log10 100 = 2 from the arithmetic mean of the log base 10 of the above

�ve toxicity data which is 2 :64 log10 � g/L. Hence, the AEC is 0:64 log10 � g/L. This

quantity will be denoted later by Yn where heren = 5.

3.3 Background

Denote by S1; : : : ; Sn the results of testing a substance onn species, where each

Si is the concentration of the substance that causes a speci�ed e�ect (endpoint).

As discussed in Subsection 1.1.1, a common statistical model in ecotoxicology is

that S1; : : : ; Sn are a random sample from the SSD. On taking the logarithm (base

10), the geometric mean ofS1; : : : ; Sn becomes the arithmetic mean,�X n , of X 1 =

log10 S1; : : : ; X n = log10 Sn , where the valuesX i are randomly sampled from the

LSSD. Moreover, dividing the geometric mean by an AF becomes subtractingc =

log(AF) from �X n . Hence,Yn = �X n � c is the statistic that addresses inter-species

variability. The fraction exceeded FEn = FX (Yn ) is the fraction of species having an

endpoint that is less thanYn , and it is a measure of the fraction of species at risk.

The FEn is in general not observed. However, it is possible to make mathematical

statements about its behaviour under random sampling. We shall use the notation

MFEn , as in EFSA (2008), to stand for the mean fraction exceeded whenn species

are tested. Moreover, we will use PFEn (� ) to stand for the probability that FE n is

greater than some chosen level� .
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The mathematical formulas of MFEn and PFEn (� ) are given below:

MFE n

The Mean Fraction Exceeded MFEn is the expected value of FEn = FX (Yn ), i.e

MFEn = E
�
FX (Yn )

�

=
Z 1

�1
FX (y)f Yn (y) dy (3.3.1)

PFE n (� )

The probability that the fraction exceeded FEn exceeds some chosen level� is

PFEn (� ) = P
�
FX (Yn ) > �

�
(3.3.2)

= P
� �X n > F � 1

X (� ) + c
�

(3.3.3)

In addition, EFSA (2008) requires thatc is large enough to guarantee that

FX (� � c) < � (3.3.4)

where �; � , and FX are the mean, standard deviation, and the cumulative distribu-

tion function of X respectively. This is not an unreasonable requirement because

c = � � F � 1
X (� ) is what is required to move the expected value of�X n to the �

quantile of the LSSD, the quantile that is being targetted.

In the rest of this chapter we are looking at which conditions on the distributions

lead to MFEn or PFEn (� ) decreasing as we increasen. In EFSA (2005), a normal

distribution is assumed for the LSSD. Therefore, we �rst consider the case whenX

is normally distributed in Section 3.4.

3.4 Normal Distribution LSSDs

The normal distribution is parameterized by the mean� and variance� 2. If X �

N (�; � 2); � 2 R; � > 0, then the probability density and the cumulative distribution

functions are respectively given by

f X (x) =
1

�
p

2�
exp

�
� (x � � )2

2� 2

�
; �1 < x < 1

and

FX (x) = �
�

x � �
�

�
; �1 < x < 1 (3.4.1)
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where � is the cumulative distribution function of a standard normal random vari-

able, whose density function is

� (x) =
1

p
2�

exp
�

� x2

2

�
; �1 < x < 1

It is straightforward to show that Yn = �X n � c has a normal distribution with mean

� � c and variance� 2=n, as it is a linear function of the sample mean drawn from

the normal distribution with mean � and variance � 2. Yn has probability density

function

f Yn (y) =
p

n=2�
�

exp

 
� n

�
y � (� � c)

� 2

2� 2

!

; �1 < y < 1

The mean fraction exceeded when the distribution on the log-scale is normal is

evaluated as follows

Using Equation 3.3.1,

MFEn =
p

n=2�
�

Z 1

�1
�

�
y � �

�

�
exp

�
� n(y � (� � c))2

2� 2

�
dy

=
p

n=2�
2�

Z 1

�1

�
1 + erf

�
y � �
p

2�

��
exp

� � n(y � (� � c))2

2� 2

�
dy

=
1
2

+
p

n=2�
2�

Z 1

�1
erf

� y � �
p

2�

�
exp

� � n(y � (� � c))2

2� 2

�
dy

Using the result from Appendix A.1,

MFEn =
1
2

0

@1 + erf

0

@ � c

�
q

2(1 + 1
n )

1

A

1

A

= �

0

@ � c

�
q

1 + 1
n

1

A

It is clear for c > 0 that MFE n decreases asn increases.

In the following, we will examine the behaviour of the probability that the frac-

tion exceeded exceeds a speci�c� when the number of tested species increases in the

case that LSSD is normal, provided that the condition in Equation 3.3.4 is satis�ed.

Recall Equation 3.3.2

PFEn (� ) = P
�
FX (Yn ) > �

�
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SinceFX (x) = �( x � �
� ),

PFEn (� ) = P
�

�
�

Yn � �
�

�
> �

�

= P
�
Yn > � + � � � 1(� )

�

= 1 � �
� p

n(� � � 1(� ) + c)
�

�
(3.4.2)

By using Equations 3.3.4 and 3.4.1, thus we obtain

FX (� � c) = �
�

� c
�

�
< �

Consequently,� � � 1 (� ) + c > 0. In addition, �
� p

n(� � � 1 ( � )+ c)
�

�
in Equation 3.4.2

is increasing asn increases. As a result, PFEn (� ) decreases asn increases provided

that c > � � F � 1
X (� ).

3.5 Location-Scale Family of Distributions

We now show the stability of the domainance properties of the two statistical mea-

sures under changes to the location and/or scale of a distribution.

A location-scale family of distributions is formed by starting with a standard

probability density function f Z and considering the linear transformationX =

� + �Z , whereZ � f Z , � 2 R and � 2 (0; 1 ). � is the location parameter which

is responsible for shifting the graph on the horizontal line to the right or left. The

scale parameter� is responsible for stretching or compressing the probability den-

sity function. The probability density function of X and its cumulative distribution

function are then

f X (x) =
1
�

f Z

�
x � �

�

�

FX (x) = FZ

�
x � �

�

�
(3.5.1)

Proposition 3.5.1 E
�
FZ

� �Zn � c�
��

and P
�
FZ

� �Zn � c�
�

> �
�

decrease, asn in-

creases, if and only ifE
�
FX

� �X n � c� �
��

and P
�
FX

� �X n � c� �
�

> �
�

respectively

decrease.
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Proof : It is su�cient to prove that FZ
� �Zn � c�

�
= FX

� �X n � c� �
�

in order to prove

this proposition. By using Equation 3.5.1,

FZ
� �Zn � c� �

= FX
�� �Zn � c� �

� + �
�

= FX

�� P n
i =1 X i � n�

n�
� c�

�
� + �

�

= FX
� �X n � c� �

�

Therefore, we conclude that if either dominance property holds forFZ , then it holds

for any distribution in the same location-scale family. This happens by re-scaling

c� using the scale parameter of that distribution. For example, if we had proved

only that the dominance properties of the arithmetic mean hold for the standard

normal distribution, then they hold for any normal distribution with mean � 2 R

and standard deviation� > 0. 2

3.6 Symmetric Log-Concave Probability Density

Functions

In this section, we consider distributions with symmetric and log-concave densities.

We shall exploit the seminal result obtained by Proschan (1965), reproduced in

Section 2.3, to prove the following theorem.

Theorem 3.6.1 Let X 1; : : : ; X n be independently distributed with symmetric log-

concave densityf X . As n increases, MFEn decreases and PFEn (� ) decreases pro-

vided that c > � F � 1
X (� ).

Proof . First: To prove MFEn decreases asn increases, we argue as follows:

Recall �rst that Yn = �X n � c. Now

MFEn = E (FX (Yn )) = E (P (X � Yn jYn ))

= P (X � Yn )

where X is an independently sampled value fromf X . Let a1 = � � � = an � 1 =

1=(n � 1); an = 0 and b1 = � � � = bn = 1=n in Theorem 2.3.5. Hence,

P
� �� �X n

�� � t
�

< P
� �� �X n � 1

�� � t
�

8 t � 0 (3.6.1)
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Moreover, log-concavity is preserved under convolution, therefore
P k

i =1 X i is log-

concave. In addition, the linear transformation of log-concave random variables is

log-concave. Consequently,� �X k is log-concave. Furthermore, the symmetry of� �X k

results from the symmetry of �X k . Therefore,X � �X n has the same distribution as

X + �X n . Let a =
�

1
2 ; 1

2(n � 1) ; : : : ; 1
2(n � 1) ; 0

�
and b=

� 1
2 ; 1

2n ; : : : ; 1
2n

�
in Theorem 2.3.5,

P

 ��X + �X n
��

2
� t

!

< P

 ��X + �X n � 1
��

2
� t

!

8 t � 0

Hence,

P
� ��X + �X n

�� � 2t
�

< P
� ��X + �X n � 1

�� � 2t
�

8 t � 0

which is equivalent to

P
� ��X � �X n

�� � 2t
�

< P
� ��X � �X n � 1

�� � 2t
�

8 t � 0 (3.6.2)

By symmetry of X � �X k , Equation 3.6.2 becomes

P
�
X � �X n � � 2t

�
< P

�
X � �X n � 1 � � 2t

�

Set t = c=2, thus we obtain

P
�
X � �X n + c � 0

�
< P

�
X � �X n � 1 + c � 0

�

and

P (X � Yn ) < P (X � Yn � 1)

Therefore, MFEn decreases asn increases.

Second: To prove PFEn (� ) decreases asn increases, sett = F � 1
X (� ) + c > 0 in

Equation 3.6.1, and note symmetry of�X k . Thus

P
� �X n � F � 1

X (� ) + c
�

< P
� �X n � 1 � F � 1

X (� ) + c
�

which is equivalent to

P (FX (Yn ) � � ) < P (FX (Yn � 1) � � )

Therefore, PFEn (� ) decreases asn increases. 2

In Sections 3.7 and 3.8, we consider the two-component scale mixture of normal
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distributions and the two-component location mixture of normal distributions re-

spectively. We consider the two-component scale mixture of normal distributions as

a way of broadening to families of distributions that are heavy tailed distributions.

The two-component location mixture of normal distributions is considered as away

of addressing skewness. In addition, bimodality of the empirical SSD is common

(Fox et al., 2021). Moreover, we chose the mixture of normals due to the possibility

of analytical calculations.

3.7 A Two-Component Scale Mixture of Normal

Distributions

In this section, we consider that the distribution ofX is a scale mixture of normal

(SMN) distribution having two components. Thus

X j� 2 � N(0; � 2) and � 2 � 1 + Bern(1 � w)�, where � =  � 1 > 0, and the

distribution of Bern(1 � w) is the Bernoulli distribution that has probability mass

function 8
><

>:

1 with probability 1 � w; 0 � w � 1

0 with probability w

The mixture components both have zero means and the variances are 1 and > 1.

The probability density function of X � SMN(w;0; 1;  ) is

f X (x) = w� (x) +
(1 � w)

p
 

�
�

x
p

 

�
; �1 < x < 1

3.7.1 MFE n

In this subsection, we �rst obtain MFEn when the distribution of X is a mix-

ture of two normal distributions on both the location and scale parameters, i.e.

X � MN(w; � 1; � 2; � 2
1; � 2

2) where � 1; � 2 2 R; � 2
1; � 2

2 > 0; and 0 � w � 1 are lo-

cation, scale, and weight parameters respectively. Second, we obtain MFEn when

X � SMN(w;0; 1;  ) as a special case. The probability density and characteristic

functions of X � MN(w; � 1; � 2; � 2
1; � 2

2) are given respectively as

f X (x) =
w
� 1

�
�

x � � 1

� 1

�
+

1 � w
� 2

�
�

x � � 2

� 2

�
(3.7.1)
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and

	 X (t) = w	 1(t) + (1 � w)	 2(t); t 2 R (3.7.2)

where

	 j (t) = exp
�

it� j �
t2� 2

j

2

�
; j = 1 ; 2 (3.7.3)

Let X 1; : : : ; X n be independent and identically distributed from the distribution

with density function in Equation 3.7.1. By using Equation 3.7.2, the characteristic

function of �X n is

	 �X n (t) =
�

	 X

�
t
n

�� n

=
�

w	 1

�
t
n

�
+ (1 � w)	 2

�
t
n

�� n

By using Binomial expansion, the previous equation becomes

	 �X n (t) =
nX

k=0

�
n
k

�
wk(1 � w)(n � k) 	 k

1

�
t
n

�
	 (n � k)

2

�
t
n

�

Using Equation 3.7.3, we obtain

	 �X n (t) =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

�
exp

�
it� 1

n
�

t2� 2
1

2n2

�� k �
exp

�
it� 2

n
�

t2� 2
2

2n2

�� (n � k)

=
nX

k=0

�
n
k

�
wk(1 � w)(n � k) exp

�
it (k� 1 + ( n � k)� 2)

n
�

t2 (k� 2
1 + ( n � k)� 2

2)
2n2

�

Consequently, �X n is a mixture of (n+1) normal distributions. Moreover, its proba-

bility density function is

f �X n (x) =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

n exp
�

� (nx � (k� 1+( n � k) � 2 )) 2

2(k� 2
1 +( n � k) � 2

2)

�

p
2� (k� 2

1 + ( n � k)� 2
2)

(3.7.4)

and the characteristic function ofYn is

	 Yn (t) = e� itc 	 �X n (t)

=
nX

k=0

�
n
k

�
wk(1 � w)(n � k) exp

�
it

�
k� 1 + ( n � k)� 2

n
� c

�
�

t2 (k� 2
1 + ( n � k)� 2

2)
2n2

�
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Hence,Yn is a mixture of (n+1) normal distributions. In addition, its probability

density function is

f Yn (y) =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

n exp
�

� (ny � (k� 1+( n � k) � 2 � nc)) 2

2(k� 2
1 +( n � k) � 2

2)

�

p
2� (k� 2

1 + ( n � k)� 2
2)

(3.7.5)

Using Equations 3.3.1 and 3.7.5, thus

MFEn =
w
2

Z 1

�1

nX

k=0

�
n
k

�
wk(1 � w)(n � k) n

p
2� (k� 2

1 + ( n � k)� 2
2)

� exp

 
� (ny � (k� 1 + ( n � k)� 2 � nc))2

2 (k� 2
1 + ( n � k)� 2

2)

! �
1 + erf

�
y � � 1p

2� 1

��
dy

+
(1 � w)

2

Z 1

�1

nX

k=0

�
n
k

�
wk(1 � w)(n � k) n

p
2� (k� 2

1 + ( n � k)� 2
2)

� exp

 
� (ny � (k� 1 + ( n � k)� 2 � nc))2

2 (k� 2
1 + ( n � k)� 2

2)

! �
1 + erf (

y � � 2p
2� 2

)
�

dy

=
1
2

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k)

�
Z 1

�1

n
p

2� (k� 2
1 + ( n � k)� 2

2)
exp

 
� (ny � (k� 1 + ( n � k)� 2 � nc))2

2 (k� 2
1 + ( n � k)� 2

2)

!

�
�

w erf
�

y � � 1p
2� 1

�
+ (1 � w)erf

�
y � � 2p

2� 2

��
dy

Using the result from Appendix A.1,

MFEn =
1
2

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k)

(

w erf

 
(n � k)( � 2 � � 1) � nc

p
2 ((n2 + k)� 2

1 + ( n � k)� 2
2)

!

+(1 � w)erf

 
k(� 1 � � 2) � nc

p
2 (k� 2

1 + ( n2 + n � k)� 2
2)

! )

When X � SMN(w;0; 1;  ), the MFEn will be

MFEn =
1
2

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k)

(

w erf

 
� nc

p
2 ((n2 + k) + ( n � k)(1 + �))

!

+(1 � w)erf

 
� nc

p
2 (k + ( n2 + n � k)(1 + �))

! )

(3.7.6)
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Which is equivalent to

MFEn =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

 

w�

 
� nc

p
n2 + n + ( n � k)�

!

+(1 � w)�

 
� nc

p
n2 + n + ( n2 + n � k)�

! !

(3.7.7)

The previous equation can be rewritten in terms of , thus we obtain

MFEn =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

 

w�

 
� nc

p
n2 + k + ( n � k) 

!

+(1 � w)�

 
� nc

p
k + ( n2 + n � k) 

! !

(3.7.8)

In this section, MFEn are expressed in terms of or � =  � 1 according to the

case that we would like to prove.

The MFEn in Equation 3.7.8 is plotted in Figure 3.1 for sample sizesn = 1 ; : : : ;50

and di�erent values of w in the case whenc = 1 and  = 43. In some of these plots

MFE1 � MFE2, which means that the increase in sample size from one observation

to two observations does not guarantee the decreasing of the mean fraction exceeded.
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Figure 3.1: A plot of MFEn versus n for the SMN(w;0; 1; 43) distribution and

selected values of w.
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Based on Figure 3.1, forc = 1 and  = 43, whenw = 0 :23 we found MFE1 > MFE2.

Whereas, whenw = 0 :35, MFE1 = MFE 2. In addition, when w = 0 :55, MFE1 <

MFE2. Hence, we became interested in exploring the case when MFE1 and MFE2

are equal, since we will know when MFE1 > MFE2, i.e. when MFEn decreases asn

increases from one to two. Using Equation 3.7.8, MFE1 and MFE2 are respectively

given by

MFE1 = (1 � w)2�
�

� c
p

2 

�
+ 2w(1 � w)�

�
� c

p
 + 1

�
+ w2�

�
� c
p

2

�
(3.7.9)

and

MFE2 = (1 � w)2w�
�

� 2c
p

2 + 4

�
+ (1 � w)3�

�
� 2c
p

6 

�

+2w2(1 � w)�
�

� 2c
p

 + 5

�
+ 2w(1 � w)2�

�
� 2c

p
5 + 1

�

+ w3�
�

� 2c
p

6

�
+ w2(1 � w)�

�
� 2c

p
4 + 2

�
(3.7.10)

We shall use the term �MFE 12 to refer to the di�erence between MFE1 and MFE2.

Thus

�MFE 12 = MFE 1 � MFE2 (3.7.11)

By using Equations 3.7.9 and 3.7.10,

�MFE 12 = w3

"

�
�

� 2c
p

4 + 2

�
� �

�
� 2c
p

6

�
+ 2�

�
� 2c

p
 + 5

�
� 2�

�
� 2c

p
5 + 1

�

� �
�

� 2c
p

2 + 4

�
+ �

�
� 2c
p

6 

� #

+ w2

"

�
�

� c
p

2

�
� �

�
� 2c

p
4 + 2

�
� 2�

�
� 2c

p
 + 5

�
� 2�

�
� c

p
 + 1

�

+4�
�

� 2c
p

5 + 1

�
+ �

�
� c

p
2 

�
+ 2�

�
� 2c

p
2 + 4

�
� 3�

�
� 2c
p

6 

� #

+ w

"

2�
�

� c
p

 + 1

�
� 2�

�
� 2c

p
5 + 1

�
� 2�

�
� c

p
2 

�
� �

�
� 2c

p
2 + 4

�

+3�
�

� 2c
p

6 

� #

+

"

�
�

� c
p

2 

�
� �

�
� 2c
p

6 

� #

With respect to w, �MFE 12 is a cubic function with coe�cients that depend on c

and  . Furthermore, �MFE 12 has a value of zero if and only if the real root(s) of
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this cubic function is (are) restricted to be in the interval (0; 1).

Figure 3.2 displays the zero contour of �MFE12 for di�erent values of w. The

vertical axis represents a wide range ofc, and the horizontal axis represents � =

 � 1. Both axes are taken on the log-scale.
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(b) w = 0 :3
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(c) w = 0 :5
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(d) w = 0 :7
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(e) w = 0 :75
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(f) w = 0 :8
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(g) w = 0 :85
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(h) w = 0 :87
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(i) w = 0 :9

Figure 3.2: Plots of the zero contour of �MFE12 with respect to log(�) (x-axis)

and log(c) (y-axis) for the SMN(w;0; 1; �) distribution. Each of the nine panels is

related to a speci�c value ofw. The red dashed lines equation is log(c) = 0 :5 log(�).
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From Figure 3.2, the zero contour of �MFE12 behaves di�erently in three parts.

The �rst part which is formed of the vertical line that appears whenc is small. The

second part which is about the horizontal line that is formed when has a large

value. In the third part, when both c and  have large values, the zero contour of

�MFE 12 appears as a line that is parallel to the line log(c) = 0 :5 log(�). The aim

of the rest of this section and Section 3.8, as we will see later, is to bound the area

where the dominance properties for the arithmetic mean do not hold. Therefore,

we are interested in exploring the limiting behaviour as parameters tend to extreme

values. The purpose of those limiting calculations is to be sure that the behaviour

seen in the �gures is correct for more extreme values of parameters where the numer-

ical methods used to produce the �gures might become unstable. Consequently, we

shall consider three cases:c is small,  approaches1 , and both c and  approach

1 . In addition, we will add lines, the equations for which are obtained by assuming

these three cases, to copies of those �gures in order to verify that the �gures were

showing the correct limiting behaviours. The summary of �ndings for these three

cases is presented in Table 3.2 followed by detailed proofs.

Case A: Smallc

�MFE 12 �
c

p
�

"
2X

k=0

�
2
k

�
w(k+1) (1 � w)(2� k)

s
2

4 + k + (2 � k) 

+
2X

k=0

�
2
k

�
wk(1 � w)(3� k)

s
2

k + (6 � k) 

�
1X

k=0

�
1
k

�
w(k+1) (1 � w)(1� k)

p
2f 1 + k + (1 � k) g

�
1X

k=0

�
1
k

�
wk(1 � w)(2� k)

p
2f k + (2 � k) g

#

Table 3.2: Summary of the behaviour limiting of the zero contour of �MFE12 for

the SMN(w;0; 1;  ) distribution when c is small,  approaches1 , and c and  both

approach1 . Table continues on the next page.
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Case B: approaches1

�MFE 12 !
�

2w(1 � w) � w2(1 � w)
�

�
� � 1

p
�

�
+ (1 � w)2�

� � 1
p

2�

�

� w(1 � w)2�
�

�
r

2
�

�
� (1 � w)3�

�
�

r
2

3�

�

� 2w2(1 � w)�
� � 2

p
�

�
� 2w(1 � w)2�

� � 2
p

5�

�

Case C:c and  both approach1

�MFE 12 !
�

2w(1 � w) � w2(1 � w)
�

�
� � 1

p
�

�
+ (1 � w)2�

� � 1
p

2�

�

� w(1 � w)2�
�

�
r

2
�

�
� (1 � w)3�

�
�

r
2

3�

�

� 2w2(1 � w)�
� � 2

p
�

�
� 2w(1 � w)2�

� � 2
p

5�

�

Table 3.2: Continued from previous page.

The detailed proof of the summary results in Table 3.2 is as follows:

Case A: Smallc

This case corresponds to the vertical lines in Figure 3.2. In the following, we will

explore the equation of the vertical line given a speci�c value ofw.

Equation 3.7.6 can be rewritten in terms of , thus we obtain

MFEn =
1
2

+
1
2

nX

k=0

�
n
k

�
w(k+1) (1 � w)(n � k)

� erf

 
� nc

p
2f n2 + k + ( n � k) g

!

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k+1)

� erf

 
� nc

p
2f k + ( n2 + n � k) g

!

(3.7.12)

For small c, The �rst-order Maclaurin series expansion of MFEn in Equation 3.7.12



3.7. A Two-Component Scale Mixture of Normal Distributions 50

is

MFEn �
1
2

�
c

p
�

"
nX

k=0

�
n
k

�
nw(k+1) (1 � w)(n � k)

p
2f n2 + k + ( n � k) g

+
nX

k=0

�
n
k

�
nwk(1 � w)(n � k+1)

p
2f k + ( n2 + n � k) g

#

Consequently,

�MFE 12 �
c

p
�

"
2X

k=0

�
2
k

�
w(k+1) (1 � w)(2� k)

s
2

4 + k + (2 � k) 

+
2X

k=0

�
2
k

�
wk(1 � w)(3� k)

s
2

k + (6 � k) 

�
1X

k=0

�
1
k

�
w(k+1) (1 � w)(1� k)

p
2f 1 + k + (1 � k) g

�
1X

k=0

�
1
k

�
wk(1 � w)(2� k)

p
2f k + (2 � k) g

#

The previous equation is the equation of the vertical line at any value of when a

speci�c value ofw is given.

Case B: approaches1

When  ! 1 , the zero contour of �MFE 12 forms a horizontal line. The equations

of the horizontal lines in Figure 3.2 are obtained as follows:

By assumingk = n in the �rst summation of Equation 3.7.12, the term that does

not involve  is extracted. Hence,

MFEn =
1
2

+
1
2

n � 1X

k=0

�
n
k

�
w(k+1) (1 � w)(n � k)erf

 
� nc

p
2f n2 + k + ( n � k) g

!

+
1
2

w(n+1) erf

 
� nc

p
2(n2 + n)

!

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k+1) erf

 
� nc

p
2f k + ( n2 + n � k) g

!

Set  ! 1 in the previous equation, thus

MFEn !
1
2

+
w(n+1)

2
erf

 
� nc

p
2(n2 + n)

!

=
1
2

+ w(n+1)
�

�
�

� nc
p

n2 + n

�
�

1
2

�
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Consequently,

MFE1 !
1
2

+ w2
�

�
�

� c
p

2

�
�

1
2

�

and

MFE2 !
1
2

+ w3
�

�
�

� 2c
p

6

�
�

1
2

�

Therefore,

�MFE 12 ! w2
�

�
�

� c
p

2

�
� w�

�
� 2c
p

6

�
�

(1 � w)
2

�
(3.7.13)

Equation 3.7.13 is used to obtainc that makes �MFE 12 ! 0 for a speci�c value of

w, this represents the equation of the horizontal line when ! 1 .

Figure 3.3 presents �MFE12 in Equation 3.7.13 as a function ofc for selected

values ofw. The left panel demonstrates this argument for a wide range ofc. It is

clear that �MFE 12 could be zero forc between 0 and 2. However, it is not clear

for which value ofw. To clarify this argument visually, we set the ranges ofc and

�MFE 12 to be respectively [0; 2] and [� 0:02; 0:02] in the right panel.
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Figure 3.3: �MFE 12 versusc for the SMN(w;0; 1;  ) distribution and selected values

of w when  ! 1 (Equation 3.7.13).
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Figure 3.3 suggests that �MFE12 in Equation 3.7.13 could tend to zero whenw

becomes larger.

Case C:c and  both approach1

As illustrated in Figure 3.2, whenc and  approach1 , the zero contour of �MFE 12

is parallel to log(c) = 0 :5 log(�). The equation of such a line is

log(c) = 0 :5(log(�) � log(� )) (3.7.14)

Therefore, we will obtain � = � =c2 as follows:

Equation 3.7.7 can be written as

MFEn =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

�

 

w�

 
� n

p
(n2 + n)=c2 + ( n � k)� =c2

!

+(1 � w)�

 
� n

p
(n2 + n)=c2 + ( n2 + n � k)� =c2

! !

Let c and � approach in�nity, and notice that � = � =c2 becomes constant. There-

fore,

MFEn !
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

 

w�

 
� n

p
(n � k)�

!

+(1 � w)�

 
� n

p
(n2 + n � k)�

! !

Hence,

�MFE 12 !
�
2w(1 � w) � w2(1 � w)

�
�

�
� 1
p

�

�
+ (1 � w)2�

�
� 1

p
2�

�

� w(1 � w)2�
�

�
r

2
�

�
� (1 � w)3�

�
�

r
2

3�

�

� 2w2(1 � w)�
�

� 2
p

�

�
� 2w(1 � w)2�

�
� 2

p
5�

�
(3.7.15)

Equation 3.7.15 is used to obtain� numerically for a speci�c value ofw.

The �ndings in Case A, Case B, and Case C for selected values ofw are presented

in Table 3.3.
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w Small c  approaches1 c and  both approach1

0.1 log(�) = 6 :31 � log(� =c2) = 5 :13

0.3 log(�) = 3 :82 � log(� =c2) = 2 :56

0.5 log(�) = 3 :36 � log(� =c2) = 1 :88

0.7 log(�) = 3 :77 � log(� =c2) = 1 :57

0.75 log(�) = 4 :14 � log(� =c2) = 1 :52

0.8 log(�) = 4 :85 � log(� =c2) = 1 :47

0.85 log(�) = 7 :13 � log(� =c2) = 1 :43

0.87 � log(c) = � 0:89 log(� =c2) = 1 :41

0.9 � log(c) = 0 :22 log(� =c2) = 1 :39

Table 3.3: The zero contour equations of �MFE12 for the SMN(w;0; 1; �) distribu-

tion, and selected values ofw, when c is small,  approaches1 , and c and  both

approach1 . The numbers in the second, third, and fourth column are rounded to

two decimal places.

In Table 3.3,  is calculated for di�erent values of w. Clearly  decreases to a

certain value, and then it increases. The minimum value of ( min) is calculated

numerically to be 29:8187 atw = 0 :515. Furthermore,� decreases inw. Hence, the

minimum value of � (� min) is numerically found to be 3:777 at w = 0 :9999.

In addition, � min and  min determine respectively the boundary lines

log(c) = 0 :5(log(�) � 1:329)

and

log(�) = 3 :361024

These lines are used to determine the area where �MFE12 / 0, see Figure 3.4 for

illustration.
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Figure 3.4: A plot of the zero contours of �MFE12 with respect to log � (x-axis) and

log(c) (y-axis) for the SMN(w;0; 1; �) distribution, and selected values of w. The

black dashed lines equations are log(�) = 3:361024 and log(c) = 0 :5(log(�) � 1:329)

In order to make comparative plots between the approximations of �MFE12 in

the previous cases and the real contours, the zero contour of �MFE12 for di�erent

values ofw is illustrated with the lines, the equations for which are presented in

Table 3.3, in Figure 3.5.
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(i) w = 0 :9

Figure 3.5: Plots of the zero contour of �MFE12 with respect to log(�) (x-axis) and

log(c) (y-axis) for the SMN(w;0; 1; �) distribution. Each of the nine panels related

to a speci�c value ofw. The equations of dashed lines are presented in Table 3.3.

2
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3.7.2 PFE n(� )

In this subsection, we �rst obtain PFEn (� ) whenX � MN(w; � 1; � 2; � 2
1; � 2

2). Second,

we obtain PFEn (� ) when X � SMN(w;0; 1;  ) as a special case.

De�ne b = F � 1
X (� ) + c, the condition c > � � F � 1

X (� ) introduced earlier in

Equation 3.3.4 is equivalent in this part tob > 0. Hence Equation 3.3.3 becomes

PFEn (� ) = P
� �X n > b

�
(3.7.16)

Using Equations 3.7.4 and 3.7.16, the PFEn (� ) is

PFEn (� ) =
nX

k=0

�
n
k

�
wk(1 � w)(n � k)

�
1 � �

�
nb � (k� 1 + ( n � k)� 2)
(k� 2

1 + ( n � k)� 2
2) =n

��
(3.7.17)

Hence, for SMN(w;0; 1;  ) distribution and n = 1 ; 2; PFE1(� ) and PFE2(� ) respec-

tively are

PFE1(� ) = 1 � (1 � w)�
�

b � � 2

� 2

�
� w�

�
b � � 1

� 1

�
(3.7.18)

and

PFE2(� ) = 1 �

"

(1� w)2�

 
b � � 2p

� 2
2=2

!

+2w(1� w)�

 
b � (� 1 + � 2)=2
p

(� 2
1 + � 2

2)=4

!

+ w2�

 
b � � 1p

� 2
1=2

! #

(3.7.19)

Consequently, whenX � SMN(w;0; 1;  ), Equations 3.7.18 and 3.7.19 respectively

become

PFE1(� ) = 1 � (1 � w)�
�

b
p

 

�
� w� ( b)

and

PFE2(� ) = 1 � (1 � w)2�

 
b

p
 = 2

!

� 2w(1 � w)�

 
b

p
(1 +  )=2

!

� w2�

 
b

p
1=2

!

The di�erence between PFE1(� ) and PFE2(� ) is de�ned as

�PFE 12(� ) = PFE 1(� ) � PFE2(� ) (3.7.20)

Therefore,

�PFE 12(� ) = (1 � w)2�

 
b

p
 = 2

!

+ 2w(1 � w)�

 
b

p
(1 +  )=2

!

+ w2�

 
b

p
1=2

!

� (1 � w)�
�

b
p

 

�
� w� ( b) (3.7.21)
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In Figure 3.6, we display the zero contour of �PFE12(� ) for di�erent values of w.

The vertical axis represents a wide range ofb, while the horizontal axis represents

� =  � 1. Both axes are taken on the log-scale.
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(f) w = 0 :7
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(h) w = 0 :8
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(i) w = 0 :9

Figure 3.6: Plots of the zero contour of �PFE12(� ) with respect to log(�) (x-axis)

and log(b) (y-axis) for the SMN(w;0; 1; �) distribution. Each of the nine panels is

related to a speci�c value ofw. The red dashed lines equation is log(b) = 0 :5 log(�).
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Equation 3.7.21 can be rewritten as

�PFE 12(� ) = w2

(

�

 
b

p
1=2

!

� 2�

 
2b

p
(1 +  )

!

+ �

 
b

p
 = 2

! )

+ w

(

2�

 
2b

p
(1 +  )

!

� 2�

 
b

p
 = 2

!

+ �
�

b
p

 

�

� � ( b)

)

� �
�

b
p

 

�
+ �

 
b

p
 = 2

!

With respect to w, �PFE 12(� ) is a quadratic function with coe�cients depending

on b and  . It equals zero if and only if the real root(s) of this quadratic function

is (are) restricted to be in the interval (0; 1). As illustrated in Figure 3.6, the zero

contour of �PFE 12(� ) behaves di�erently in three di�erent ways depending on the

values ofb;  , and such root(s).

In this section, we will analyse the behaviour of the zero contour of �PFE12(� )

as parameters tend to extreme values. Consequently, we will explore three cases:b

is small,  approaches1 , and b and  both approach1 . The summary of �ndings

will be presented in Table 3.4 followed by detailed proof.

Case A: Smallb

�PFE 12(� ) �
b

p
�

� (1 � w)2
p

 
+ 2w(1 � w)

r
2

1 +  

+ w2 �
(1 � w)

p
2 

�
w

p
2

�

Case B: approaches1

�PFE 12(� ) ! w2�(
p

2b) � w�( b) +
w(1 � w)

2
Case C:b and  both approach1

�PFE 12(� ) ! (1 � w)2�
�
r

2
�

�
+ 2w(1 � w)�

� 2
p

�
�

� w(1 � w) � (1 � w)�
� 1

p
�

�

Table 3.4: Summary of the behaviour limiting of the zero contour of �PFE12(� ) for

the SMN(w;0; 1;  ) distribution when b is small,  approaches1 , and both b and

 approach1 .
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The detailed proof of the summary results in Table 3.4 is as follows:

Case A: Smallb

In this case, we will explore the equations of the vertical lines in Figure 3.6 that are

shown whenb is small as follows:

Equation 3.7.21 is expressed in terms of erf (:), thus

�PFE 12(� ) =
1
2

"

(1 � w)2erf
�

b
p

 

�
+ 2w(1 � w)erf

 
b

p
(1 +  )=2

!

+ w2erf (b)

� (1 � w)erf
�

b
p

2 

�
� w erf

�
b

p
2

� #

For small b,

�PFE 12(� ) �
b

p
�

�
(1 � w)2

p
 

+ 2w(1 � w)
r

2
1 +  

+ w2 �
(1 � w)

p
2 

�
w

p
2

�

Based on a given value ofw, the previous equation is used to calculate that makes

�PFE 12(� ) � 0.

Case B: approaches1

When  ! 1 , the zero contour of �PFE 12(� ) appears as a horizontal line. The

equations of the horizontal lines in Figure 3.6 are obtained as follows:

Let  ! 1 in Equation 3.7.21. Hence,

�PFE 12(� ) ! w2�
� p

2b
�

� w�( b) +
w(1 � w)

2
(3.7.22)

In order to get the equation of the horizontal line for a speci�c value ofw, Equation

3.7.22 is used to obtainb that makes �PFE 12(� ) ! 0

Figure 3.7 presents �PFE12(� ) in Equation 3.7.22 as a function ofb for selected

values ofw. The left panel demonstrates this argument for a speci�c range ofb.

As shown in the �gure, �PFE 12(� ) could be zero forb 2 (0; 2) and �PFE 12(� ) 2

(� 0:1; 0:2). However, it is not clear for which value ofw. To clarify this argu-

ment visually, we set the ranges ofb and �PFE 12(� ) to be respectively [0; 2] and

[� 0:04; 0:04] in the right panel.
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Figure 3.7: �PFE 12(� ) versus b for the SMN(w;0; 1;  ) distribution and selected

values ofw when  ! 1 (Equation 3.7.22).

Figure 3.7 suggests that �PFE12(� ) in Equation 3.7.22 could tend to zero whenw

becomes larger.

Case C:b and  both approach1

As illustrated in Figure 3.6, whenb and � approach in�nity, the zero contour of

�PFE12 forms the line that is parallel to log( b) = 0 :5 log(�). The equation of such

a line is

log(b) = 0 :5(log(�) � log(� )) (3.7.23)

where � = � =b2 is obtained as follows:

Set  = � + 1 in Equation 3.7.21,

�PFE 12(� ) = (1 � w)2�

 p
2b

p
� + 1

!

+ 2w(1 � w)�

 
2b

p
(� + 2)

!

+ w2�

 
b

p
1=2

!

� (1 � w)�
�

b
p

� + 1

�
� w� ( b)
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The previous equation can be rewritten as

�PFE 12(� ) = (1 � w)2�

 p
2

p
� =b2 + 1=b2

!

+ 2w(1 � w)�

 
2

p
� =b2 + 2=b2

!

+ w2�

 
b

p
1=2

!

� (1 � w)�

 
1

p
� =b2 + 1=b2

!

� w� ( b)

Let b and � approach in�nity, and notice that � =b2 becomes constant. De�ne

� = � =b2, therefore

�PFE 12(� ) ! (1 � w)2�
� r

2
�

�
+2w(1 � w)�

�
2

p
�

�
� w(1 � w) � (1 � w)�

�
1

p
�

�

(3.7.24)

Equation 3.7.24 is used to obtain� numerically for a speci�c value ofw.

The �ndings in Case A, Case B, and Case C for di�erent values ofw are presented

in Table 3.5.

w Small b  approaches1 b and  both approach1

0.1 log(�) = 3 :87 � log(� =b2) = 3 :30

0.3 log(�) = 3 :06 � log(� =b2) = 2 :11

0.5 log(�) = 3 :46 � log(� =b2) = 1 :72

0.6 log(�) = 4 :29 � log(� =b2) = 1 :60

0.65 log(�) = 5 :26 � log(� =b2) = 1 :55

0.7 log(�) = 9 :10 � log(� =b2) = 1 :51

0.75 � log(b) = � 0:48 log(� =b2) = 1 :47

0.8 � log(b) = � 0:06 log(� =b2) = 1 :44

0.9 � log(b) = 0 :42 log(� =b2) = 1 :38

Table 3.5: The zero contour equations of �PFE12(� ) for the SMN(w;0; 1; �) distri-

bution, and selected values ofw, when b is small,  approaches1 , and both b and

 approach1 . The numbers in the second, third, and fourth column are rounded

to two decimal places.

Table 3.5 shows that asw increases, decreases until it reaches the minimum

value of  , after that  continues to increase. The minimum value of ( min) is

calculated numerically to be 22:1924 at w = 0 :3154. Moreover,� decreases inw.
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Hence, the minimum value of� (� min) where �PFE 12 ! 0 is numerically found to

be 3:777 at w = 0 :9999. Furthermore,� min and  min respectively determine the

lines

log(�) = 3 :053643

and

log(b) = 0 :5(log(�) � 1:329)

These lines bound the area where �PFE12(� ) / 0. See Figure 3.8 for illustration.
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Figure 3.8: A Plot of the zero contour of �PFE 12(� ) with respect to log(�) (x-axis)

and log(b) (y-axis) for the SMN(w;0; 1; �) distribution, and selected values of w.

The black dashed lines equations are log(�) = 3:053643 and log(c) = 0 :5(log(�) �

1:32896).

In order to make comparative plots between the approximations of �PFE12(� )

in the previous cases and the real contours, the zero contour of �PFE12(� ) for dif-

ferent values ofw is illustrated with the lines, the equations for which are presented

in Table 3.5, in Figure 3.9.
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Figure 3.9: Plots of the zero contour of �PFE12(� ) with respect to log � (x-axis)

and log(b) (y-axis)for the SMN(w;0; 1; �) distribution. Each of the nine panels is

related to a speci�c value ofw. The equations of dashed lines are presented in Table

3.5.
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3.8 A Two-Component Location Mixture of Nor-

mal Distributions

In this section, we consider that the distribution ofX is a location mixture of

normal (LMN) distribution having two components. The mixture components have

means � a and a and both have variances 1. The probability density function of

X � LMN( w; � a; a;1) is

f X (x) = w� (x + a) + (1 � w)� (x � a); a > 0

3.8.1 MFE n

If X � LMN( w; � a; a;1), MFEn is obtained directly from Equation 3.7.6 as a special

case to be

MFEn =
1
2

+
1
2

nX

k=0

�
n
k

�
wk(1 � w)(n � k)

�

(

werf
� 2a(n � k) � nc

p
2(n2 + n)

�
+ (1 � w)erf

� � 2ak � nc
p

2(n2 + n)

� )

Therefore, MFE1 and MFE2 are respectively obtained to be

MFE1 =
1
2

+
1
2

(

w(1 � w)

"

erf
�

2a � c
2

�
+ erf

�
� 2a � c

2

� #

+( w2 + (1 � w)2)erf
�

� c
2

� )

(3.8.1)

and

MFE2 =
1
2

+
1
2

(

w(1 � w)2

"

erf
�

2a � c
p

3

�
+ 2erf

�
� a � c

p
3

� #

+ w2(1 � w)

"

erf
�

� 2a � c
p

3

�
+ 2erf

�
a � c
p

3

� #

+( w3 + (1 � w)3)erf
�

� c
p

3

� )

(3.8.2)

Recall Equation 3.7.11,

�MFE 12 = MFE 1 � MFE2
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By using Equations 3.8.1 and 3.8.2, �MFE12 will be

�MFE 12 =
w3

2

h
erf

� � 2a � c
p

3

�
+ 2erf

� a � c
p

3

�
� erf

� 2a � c
p

3

�
� 2erf

� � a � c
p

3

� i

+
w2

2

h
2erf

� � c
2

�
� 3erf

� � c
p

3

�
� erf

� 2a � c
2

�
� erf

� � 2a � c
2

�

+2erf
� 2a � c

p
3

�
+ 4erf

� � a � c
p

3

�
� 2erf

� a � c
p

3

�
� erf

� � 2a � c
p

3

� i

+
w
2

h
erf

� 2a � c
2

�
+ erf

� � 2a � c
2

�
� 2erf

� � c
2

�
+ 3erf

� � c
p

3

�

� erf
� 2a � c

p
3

�
� 2erf

� � a � c
p

3

� i
+

1
2

h
erf

� � c
2

�
� erf

� � c
p

3

� i

With respect to w, �MFE 12 is a cubic function with coe�cients that depend on c

and a. Furthermore, �MFE 12 has a value of zero if and only if the real root(s) of this

cubic function is(are) restricted to be in the interval (0; 1). Figure 3.10 illustrates

the zero contour of �MFE 12 for di�erent values of w. The vertical axis represents

a wide range ofc, and the horizontal axis representsa. Both axes are taken on the

log-scale.
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Figure 3.10: Plots of the zero contour of �MFE12 with respect to log(a) (x-axis)

and log(c) (y-axis) for the LMN( w; � a; a;1) distribution. Each of the nine panels is

related to a speci�c value ofw. The red dashed line’s equation is log(c) = 3 log(a)



3.8. A Two-Component Location Mixture of Normal Distributions 67

As shown in Figure 3.10, the zero contour of �MFE12 has four distinct behaviours.

Therefore, to bound the area where �MFE12 < 0, we become interested in explor-

ing the limiting behaviour of the zero contour of �MFE 12 for the extreme values of

parameters that are summarized in Table 3.6 and discussed afterwards in detail.

Case A:a and c both approach1 and c = ram

m r �MFE 12

m< 1 r> 0 No zero contour

m=1 r < 1 � w2(1 � w)

r=1 0

1< r< 2 w2(1 � w)

r=2 w2 (1� w)
2

r> 2 No zero contour

m> 1 r> 0 No zero contour

Case B:a approaches1

�MFE 12 ! (w3 + (1 � w)3)�( 2cp
6) � (w2 + (1 � w)2)�( cp

2) + w(1 � w)2

Case C: Smallc and w = 0 :5

�MFE 12 � 0 () a = 1 :63044

Case D: Smalla and c approaches1

No zero contour

Case E: Botha and c small

�MFE 12 � 0 () � = 3(
p

3� 2)
4(1� 2w)w(1� w) ; � = a3=c

Table 3.6: Summary of the behaviour limiting of the zero contour of �MFE12 for the

LMN( w; � a; a;1) distribution in 5 cases when:a and c both approach1 , a ! 1 ,

small c and w = 0 :5, small a and c ! 1 , both a and c small.

The detailed proof of the summary results in Table 3.6 is as follows:

Case A:a and c both approach1

This case corresponds to the straight line that appears in Figure 3.10 whena and c

approach in�nity. Since there are di�erent possible lines, we will examine the case
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when c / am for m < 1; m = 1 and m > 1.

(1) m < 1

When a ! 1 , a > am which means that a approaches in�nity faster than am .

Replacec by ram in Equations 3.8.1 and 3.8.2. Thus

MFE1 =
1
2

+
1
2

(

w(1 � w)

"

erf
�

2a � ram

2

�
+ erf

�
� 2a � ram

2

� #

+( w2 + (1 � w)2)erf
�

� ram

2

� )

(3.8.3)

and

MFE2 =
1
2

+
1
2

(

w(1 � w)2

"

erf
�

2a � ram
p

3

�
+ 2erf

�
� a � ram

p
3

� #

+ w2(1 � w)

"

erf
�

� 2a � ram
p

3

�
+ 2erf

�
a � ram

p
3

� #

+( w3 + (1 � w)3)erf
�

� ram
p

3

� )

(3.8.4)

Let a ! 1 , Equations 3.8.3 and 3.8.4 become

MFE1 !
1
2

+
1
2

n
w(1 � w)

�
erf (1 ) � erf (1 )

�
+ ( w2 + (1 � w)2)erf (�1 )

o

=
1
2

�
1
2

(w2 + (1 � w)2) (3.8.5)

and

MFE2 !
1
2

+
1
2

(

w(1 � w)2
�

erf (1 ) � 2erf (1 )
�

+ w2(1 � w)
�

� erf (1 ) + 2erf ( 1 )
�

� (w3 + (1 � w)3)erf (1 )

)

=
1
2

+
1
2

�
w2(1 � w) � w(1 � w)2 � (w3 + (1 � w)3)

�
(3.8.6)

By using Equations 3.8.5 and 3.8.6, we obtain

�MFE 12 !
1
2

�
� w2 � (1 � w)2 � w2(1 � w) + w(1 � w)2 + w3 + (1 � w)3

�

=
1
2

�
w2(� 1 � (1 � w) + w) + (1 � w)2(� 1 + w + (1 � w))

�

= � w2(1 � w)
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Since �MFE 12 tends to negative value, there is no solution for this case. Conse-

quently, no contours.

(2) m = 1

When m = 1, c = ra. Substitute c with ra in Equations 3.8.1 and 3.8.2, thus

MFE1 =
1
2

+
1
2

(

w(1 � w)

"

erf
�

a(2 � r )
2

�
+ erf

�
� a(2 + r )

2

� #

+( w2 + (1 � w)2)erf
�

� ra
2

� )

(3.8.7)

and

MFE2 =
1
2

+
1
2

(

w(1 � w)2

"

erf
�

a(2 � r )
p

3

�
+ 2erf

�
� a(1 + r )

p
3

� #

+ w2(1 � w)

"

erf
�

� a(2 + r )
p

3

�
+ 2erf

�
a(1 � r )

p
3

� #

+( w3 + (1 � w)3)erf
�

� ra
p

3

� )

(3.8.8)

As a ! 1 , erf
�

a(2� r )
2

�
in Equations 3.8.7 and 3.8.8 tends to di�erent values.

These values are� 1; 0 or 1 when r < 2; r = 2 or r > 2, respectively. Similarly,

erf
�

a(1� r )p
3

�
in Equation 3.8.8 tends to di�erent values. These values are� 1; 0 or 1

when r < 1; r = 1 or r > 1, respectively. Therefore, we shall study the behavior of

�MFE 12 when r < 1; r = 1 ; 1 < r < 2; r = 2, and r > 2.

Table 3.7 summarizes the above cases whenm = 1.

r �MFE 12

r < 1 � w2(1 � w)

r = 1 0

1 < r < 2 w2(1 � w)

r = 2 w2 (1� w)
2

r > 2 There is no solution.

Table 3.7: �MFE 12 for the LMN( w; � a; a;1) distribution when a and c approach

1 , c = ra and r has di�erent values.
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From the table shown above, �MFE12 > 0 whenc = ra; r > 1.

(2.1) r < 1

Let r < 1 in Equations 3.8.7 and 3.8.8. Moreover, leta approach1 , hence

MFE1 !
1
2

+
1
2

(

w(1 � w)erf (1 ) +
�
w(1 � w) + w2 + (1 � w)2�

erf (�1 )

)

=
1
2

�
1
2

(w2 + (1 � w)2) (3.8.9)

and

MFE2 !
1
2

+
1
2

(
�
w(1 � w)2 + 2w2(1 � w)

�
erf (1 )

+
�
2w(1 � w)2 + w2(1 � w) + w3 + (1 � w)3�

erf (�1 )

)

=
1
2

+
1
2

�
� w(1 � w)2 + w2(1 � w) � (w3 + (1 � w)3)

�
(3.8.10)

Using Equations 3.8.9 and 3.8.10,

�MFE 12 !
1
2

�
� w2 � (1 � w)2 + w(1 � w)2 � w2(1 � w) + w3 + (1 � w)3

�

=
1
2

�
w2(� 1 � (1 � w) + w) + (1 � w)2(� 1 + w + (1 � w))

�

= � w2(1 � w)

Since �MFE 12 tends to negative value, there is no solution for this case. Conse-

quently, no contours.

(2.2) r = 1

Let r = 1 in Equations 3.8.7 and 3.8.8,

MFE1 =
1
2

+
1
2

(

w(1 � w)

"

erf
� a

2
�

+ erf
� � 3a

2
�
#

+( w2 + (1 � w)2)erf
� � a

2
�
)
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and

MFE2 =
1
2

+
1
2

(

w(1 � w)2

"

erf
�

a
p

3

�
+ 2erf

�
� 2a
p

3

� #

+ w2(1 � w)

"

erf
� � 3a

p
3

�
+ 2erf (0)

#

+( w3 + (1 � w)3)erf
�

� a
p

3

� )

Set a ! 1 in the previous equations, thus

MFE1 !
1
2

�
1
2

(w2 + (1 � w)2) (3.8.11)

and

MFE2 !
1
2

�
1
2

�
w(1 � w)2 + w2(1 � w) + w3 + (1 � w)3

�

=
1
2

�
1
2

�
w2 + (1 � w)2

�
(3.8.12)

Using Equations 3.8.11 and 3.8.12. Hence,

�MFE 12 ! 0

(2.3) 1 < r < 2

Let 1 < r < 2 in Equations 3.8.7 and 3.8.8. Moreover, leta tend to 1 , so we obtain

MFE1 !
1
2

+
1
2

(

w(1 � w)

"

erf (1 ) + erf ( �1 )

#

+( w2 + (1 � w)2)erf (�1 )

)

=
1
2

�
1
2

(w2 + (1 � w)2) (3.8.13)

and

MFE2 !
1
2

+
1
2

(

w(1 � w)2

"

erf (1 ) + 2erf ( �1 )

#

+ w2(1 � w)

"

erf (�1 ) + 2erf ( �1 )

#

+( w3 + (1 � w)3)erf (�1 )

)

=
1
2

+
1
2

�
� w(1 � w)2 � 3w2(1 � w) � (w3 + (1 � w)3)

�
(3.8.14)
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Using Equations 3.8.13 and 3.8.14. Thus

�MFE 12 !
1
2

�
� w2 � (1 � w)2 + w(1 � w)2 + 3w2(1 � w) + w3 + (1 � w)3

�

=
1
2

�
w2

�
� 1 + 3(1 � w) + w

�
+ (1 � w)2

�
� 1 + w + (1 � w)

��

=
1
2

�
2w2(1 � w)

�

= w2(1 � w)

(2.4) r = 2

Set r = 2 in Equations 3.8.7 and 3.8.8. Then leta tend to 1 , hence

MFE1 !
1
2

+
1
2

(

w(1 � w)
h
erf (0) + erf ( �1 )

i

+( w2 + (1 � w)2)erf (�1 )

)

=
1
2

�
1
2

(w(1 � w) + w2 + (1 � w)2)

=
1
2

�
1
2

(1 � w(1 � w)) (3.8.15)

and

MFE2 !
1
2

+
1
2

(

w(1 � w)2
h
erf (0) + 2erf ( �1 )

i

+ w2(1 � w)
h
erf (�1 ) + 2erf ( �1 )

i

+( w3 + (1 � w)3)erf (�1 )

)

=
1
2

�
1
2

�
2w(1 � w)2 + 3w2(1 � w) + w3 + (1 � w)3

�

=
1
2

�
1
2

(1 � w(1 � w)2) (3.8.16)

Using Equations 3.8.15 and 3.8.16. Thus

�MFE 12 !
1
2

�
w(1 � w) � w(1 � w)2

�

=
1
2

�
w(1 � w)

�
1 � (1 � w)

� �

=
1
2

w2(1 � w)
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(2.5) r > 2

Equations 3.8.7 and 3.8.8 are respectively equivalent to

MFE1 =
1
2

+
1
2

(

w(1 � w)

"

erf
�

� a(r � 2)
2

�
+ erf

�
� a(r + 2)

2

� #

+( w2 + (1 � w)2)erf
�

� ra
2

� )

(3.8.17)

and

MFE2 =
1
2

+
1
2

(

w(1 � w)2

"

erf
�

� a(r � 2)
p

3

�
+ 2erf

�
� a(r + 1)

p
3

� #

+ w2(1 � w)

"

erf
�

� a(r + 2)
p

3

�
+ 2erf

�
� a(r � 1)

p
3

� #

+( w3 + (1 � w)3)erf
�

� ra
p

3

� )

(3.8.18)

Let r > 2 and a tend to 1 in Equations 3.8.17 and 3.8.18, thus we obtain

MFE1 !
1
2

+
1
2

(

w(1 � w)

"

erf
�

� 1
�

+ erf
�

� 1
�
#

+
�
w2 + (1 � w)2�

erf
�

� 1
�
)

=
1
2

+
1
2

�
� 2w(1 � w) � (w2 + (1 � w)2)

�

= 0 (3.8.19)

and

MFE2 !
1
2

+
1
2

(

w(1 � w)2

"

erf
�

� 1
�

+ 2erf
�

� 1
�
#

+ w2(1 � w)

"

erf
�

� 1
�

+ 2erf
�

� 1
�
#

+( w3 + (1 � w)3)erf
�

� 1
�
)

=
1
2

+
1
2

�
� 3w(1 � w)2 � 3w2(1 � w) � (w3 + (1 � w)3)

�

= 0 (3.8.20)

From Equations 3.8.19 and 3.8.20, MFE1 and MFE2 are zeros asa approaches1 .

Therefore, we shall use L’Hôspital’s rule as follows:

lim
a!1

MFE1

MFE2
= lim

a!1

@
@aMFE1
@

@aMFE2
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Di�erentiate Equations 3.8.17 and 3.8.18 with respect toa, hence

@
@a

MFE1 =
w(1 � w)

p
�

"

�
(r � 2)

2
exp

�
�

� a(r � 2)
2

� 2
�

�
(r + 2)

2
exp

�
�

� a(r + 2)
2

� 2
� #

�
r (w2 + (1 � w)2)

2
p

�
exp

�
�

� ra
2

� 2
�

(3.8.21)

and

@
@a

MFE2 =
w(1 � w)2

p
�

"

�
(r � 2)

p
3

exp
�

�
� a(r � 2)

p
3

� 2
�

�
2(r + 1)

p
3

exp
�

�
� a(r + 1)

p
3

� 2
� #

+
w2(1 � w)

p
�

"

�
(r + 2)

p
3

exp
�

�
� a(r + 2)

p
3

� 2
�

�
2(r � 1)

p
3

exp
�

�
� a(r � 1)

p
3

� 2
� #

�
r (w3 + (1 � w)3)

p
3�

exp
�

�
� ra

p
3

� 2
�

(3.8.22)

Divide Equations 3.8.21 and 3.8.22 by exp
�

� a2( r � 2
2 )2

�
. Notice that as a ! 1 ,

exp

 

� a2
� � r +2

2

� 2 �
� r � 2

2

� 2
� !

, exp

 

� a2
� � r

2

� 2 �
� r � 2

2

� 2
� !

,

exp

 

� a2
� � r � 2p

3

� 2 �
� r � 2

2

� 2
� !

, exp

 

� a2
� � r +1p

3

� 2 �
� r � 2

2

� 2
� !

,

exp

 

� a2
� � r +2p

3

� 2 �
� r � 2

2

� 2
� !

, exp

 

� a2
� � r � 1p

3

� 2 �
� r � 2

2

� 2
� !

,

and exp

 

� a2
� � rp

3

� 2 �
� r � 2

2

� 2
� !

tend to zero. Thus

lim
a!1

@
@aMFE1
@

@aMFE2
!

� w(1 � w) (r � 2)
2
p

�

0�

= 1

Hence, there is no solution for this case. Furthermore, there are no contours. 2
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(3) m > 1

When a ! 1 , ram > 2a. Let a ! 1 in Equations 3.8.3 and 3.8.4, thus

MFE1 !
1
2

+
1
2

(

w(1 � w)

"

erf
�

� 1
�

+ erf
�

� 1
�
#

+( w2 + (1 � w)2)erf
�

� 1
�
)

=
1
2

+
1
2

�
� 2w(1 � w) � (w2 + (1 � w)2)

�

= 0

and

MFE2 !
1
2

+
1
2

(

w(1 � w)2

"

erf
�

� 1
�

+ 2erf
�

� 1
�
#

+ w2(1 � w)

"

erf
�

� 1
�

+ 2erf
�

� 1
�
#

+( w3 + (1 � w)3)erf
�

� 1
�
)

=
1
2

+
1
2

�
� 3w(1 � w)2 � 3w2(1 � w) � (w3 + (1 � w)3)

�

= 0

MFE1 and MFE2 are zeros whena tends to 1 . Therefore, we shall use L’Hôspital’s

rule as follows:

lim
a!1

MFE1

MFE2
= lim

a!1

@
@aMFE1
@

@aMFE2

Di�erentiate Equations 3.8.3 and 3.8.4 with respect toa, hence

@
@a

MFE1 =
w(1 � w)

p
�

"
(2 � rmam � 1)

2
exp

�
�

� ram � 2a
2

� 2
�

�
(2 + rmam � 1)

2
exp

�
�

� ram + 2a
2

� 2
� #

�
rmam � 1(w2 + (1 � w)2)

2
p

�
exp

�
�

� ram

2
� 2

�
(3.8.23)
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and

@
@a

MFE2 =
w(1 � w)2

p
�

"
(2 � rmam � 1)

p
3

exp
�

�
� ram � 2a

p
3

� 2
�

�
2(rmam � 1 + 1)

p
3

exp
�

�
� ram + a

p
3

� 2
� #

+
w2(1 � w)

p
�

"

�
(2 + rmam � 1)

p
3

exp
�

�
� ram + 2a

p
3

� 2
�

+
2(1 � rmam � 1)

p
3

exp
�

�
� ram � a

p
3

� 2
� #

�
rmam � 1(w3 + (1 � w)3)

p
3�

exp
�

�
� ram

p
3

� 2
�

(3.8.24)

Divide Equations 3.8.23 and 3.8.24 by
exp

�
�
�

ra m � 2a
2

� 2
�

am � 1 . Notice that as a ! 1 ,

exp
� � ra m +2 a

2

� 2 �
� ra m � 2a

2

� 2
�

, exp
� � ra m

2

� 2 �
� ra m � 2a

2

� 2
�

,

exp
� � ra m � 2ap

3

� 2 �
� ra m � 2a

2

� 2
�

, exp
� � ra m + ap

3

� 2 �
� ra m � 2a

2

� 2
�

,

exp
� � ra m +2 ap

3

� 2 �
� ra m � 2a

2

� 2
�

exp
� � ra m � ap

3

� 2 �
� ra m � 2a

2

� 2
�

,

and exp
� � ra m

p
3

� 2 �
� ra m � 2a

2

� 2
�

tend to 1 . Thus

lim
a!1

@
@aMFE1
@

@aMFE2
!

� rmw (1� w)
2
p

�

0�

= 1

Therefore, there is no solution for this case. Furthermore, there are no contours.

Case B:a approaches1

When a ! 1 , the zero contour of �MFE 12 is a horizontal line. The equations of

the horizontal lines in Figure 3.10 are obtained as follows:

Let a tend to 1 in Equations 3.8.1 and 3.8.2, thus

MFE1 !
1
2

�
1
2

(w2 + (1 � w)2)erf
�

c
2

�

= 1 � w(1 � w) � (w2 + (1 � w)2)�(
c

p
2

) (3.8.25)

and

MFE2 !
1
2

+
1
2

(

w(1 � w)(2w � 1) � (w3 + (1 � w)3)erf
�

c
p

3

� )

=
1
2

� (w3 + (1 � w)3)�
�

2c
p

6

�
+

w(1 � w)(2w � 1) + ( w3 + (1 � w)3)
2
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Consequently,

�MFE 12 ! (w3 + (1 � w)3)�(
2c
p

6
) � (w2 + (1 � w)2)�(

c
p

2
) + w(1 � w)2 (3.8.26)

Equation 3.8.26 is used to obtainc that makes �MFE 12 ! 0 for a speci�c value of

w, which represents the equation of the horizontal line.

Figure 3.11 presents �MFE12 in Equation 3.8.26 as a function ofc for selected

values ofw.
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Figure 3.11: �MFE 12 versusc for the LMN( w; � a; a;1) distribution and selected

values ofw when a ! 1 (Equation 3.8.26).

Figure 3.11 shows that �MFE 12 could tend to zero whenw < 0:5.

Case C: Smallc and w = 0 :5

This case represents the vertical line in Figure 3.10. To obtain its equation, set

w = (1 � w) in Equations 3.8.1 and 3.8.2, thus

MFE1 =
1
2

+
1
2

(
1
4

"

erf
�

2a � c
2

�
+ erf

�
� 2a � c

2

� #

+
1
2

erf
�

� c
2

� )

(3.8.27)
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and

MFE2 =
1
2

+
1
2

(
1
8

erf
�

2a � c
p

3

�
+

1
4

erf
�

� a � c
p

3

�
+

1
8

erf
�

� 2a � c
p

3

�

+
1
4

erf
�

a � c
p

3

�
+

1
4

erf
�

� c
p

3

� )

(3.8.28)

For small c in Equations 3.8.27 and 3.8.28, we obtain

MFE1 �
1
2

�
c

2
p

�
� e� a2

2
+

1
2

�

and

MFE2 �
1
2

�
c

2
p

�
� e

� 4a2
3

2
p

3
+

e� a2
3

p
3

+
1

2
p

3

�

Consequently,

�MFE 12 �
c

2
p

�

� e� (4a2=3) + 2e� (a2=3) �
p

3e� a2 + 1 �
p

3
2
p

3

�

As a result,

�MFE 12 � 0 () a = 1 :63044

by numerical solution.

Case D: Smalla and c approaches1

By using the �rst-order Maclaurin series expansion of each error function with re-

spect to a in Equations 3.8.1 and 3.8.2, we obtain

MFE1 �
1
2

+
1
2

 

w(1 � w)
�

erf (
� c
2

) +
2

p
�

e� c2=4a
�

� (w2 + (1 � w)2)erf (
c
2

) � w(1 � w)
�

erf (
c
2

) +
2

p
�

e� c2=4a
� !

=
1
2

�
1
2

erf (
c
2

) (3.8.29)

and

MFE2 �
1
2

+
1
2

 

w(1 � w)2
�

erf (
� c
p

3
) +

4
p

3�
e� c2=3a

�

+2w2(1 � w)
�

erf (
� c
p

3
) +

2
p

3�
e� c2=3a

�

� 2w(1 � w)2
�

erf (
c

p
3

) +
2

p
3�

e� c2=3a
�

� w2(1 � w)
�

erf (
c

p
3

) +
4

p
3�

e� c2=3a
�

� (w3 + (1 � w)3)erf (
c

p
3

)

!
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Hence,

MFE2 �
1
2

�
1
2

erf (
c

p
3

) (3.8.30)

As c ! 1 , both MFE1 and MFE2 are approximately zero. Therefore, we shall use

L’Hôspital’s rule as follows:

lim
c!1

MFE1

MFE2
= lim

c!1

@
@cMFE1
@
@cMFE2

Di�erentiate Equations 3.8.29 and 3.8.30 with respect toc,

@
@c

MFE1 �
� e� c2

4

2
p

�

and
@
@c

MFE2 �
� e� c2

3
p

3�
Hence,

lim
c!1

@
@cMFE1
@
@cMFE2

� lim
c!1

p
3e� c2

4

2e� c2
3

= lim
c!1

p
3

2e� c2
12

!
p

3
0

= 1

Hence, there is no solution for this case. Furthermore, there are no contours.

Case E: Botha and c small

In this case, the zero contour of �MFE12 forms the line that is parallel to

log(c) = 3 log(a)

The equation of such a line is

log(c) = 3 log(a) � log(� )

Hence, our objective is to obtain� = a3=c.

By using the third-order Maclaurin series expansion of each error function with
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respect toa in Equations 3.8.1 and 3.8.2, we obtain

MFE1 �
1
2

+
1
2

 

w(1 � w)
�

erf (
� c
2

) +
2

p
�

e� c2=4�
a + c

a2

2
+ ( c2 � 2)

a3

6
� �

� (w2 + (1 � w)2)erf (
c
2

)

� w(1 � w)
�

erf (
c
2

) +
2

p
�

e� c2=4�
a � c

a2

2
+ ( c2 � 2)

a3

6
� � !

=
1
2

+
1
2

 

w(1 � w)
2ca2
p

�
e� c2=4 � erf (

c
2

)

!

(3.8.31)

and

MFE2 �
1
2

+
1
2

 

w(1 � w)2
�

erf (
� c
p

3
) +

4
p

3�
e� c2=3�

a +
2
3

ca2 +
4
9

(
2
3

c2 � 1)a3� �

+2w2(1 � w)
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(3.8.32)

For small c, Equations 3.8.31 and 3.8.32 respectively become
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�
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�
(3.8.33)
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(3.8.34)
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By using Equations 3.8.33 and 3.8.34, we obtain

�MFE 12 �
c

2
p

�

 

2w(1 � w)a2e� c2=4 � 1 +
2

p
3

�
4w(1 � w)

p
3
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�

a2 +
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3
� 2

3
ca3 � �

� � !

�MFE 12 � 0, if and only if

2w(1 � w)a2e� c2=4 � 1 +
2

p
3

�
4w(1 � w)

p
3

e� c2=3
�

a2 +
(1 � 2w)

3
� 2

3
ca3 � �

� �
= 0

Let a and c tend to zero in the previous equation, thus

�MFE 12 � 0 () � =
3(

p
3 � 2)

4(1 � 2w)w(1 � w)
(3.8.35)

Since� is positive, w should be greater than (1-w).

In Table 3.8, we provide the lines equations that are obtained in Case A, Case

B, Case C, and Case E for di�erent values ofw. The diagonal line log(c) = log( a)

is common for all values ofw, when both a and c approaches1 (Case A).

w Small c a approaches1 Both a and c small

0.1 � log(c) = 1 :09 �

0.2 � log(c) = 0 :59 �

0.3 � log(c) = � 0:01 �

0.4 � log(c) = � 0:83 �

0.5 log(a) = 0 :49 � �

0.6 � � log(a3=c) = 1 :43

0.7 � � log(a3=c) = 0 :87

0.8 � � log(a3=c) = 0 :74

0.9 � � log(a3=c) = 1 :03

Table 3.8: The zero contour equations of �MFE12 for the LMN( w; � a; a;1) distri-

bution, and selected values ofw, when c is small, a approaches1 , and both a and

c are small. The numbers in the second, third, and fourth column are rounded to

two decimal places.
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In order to make comparative plots between the approximations of �MFE12 in

the previous cases and the real contours, the zero contour of �MFE12 for di�erent

values ofw is illustrated with the lines, the equations for which are presented in

Table 3.8, in Figure 3.12.
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Figure 3.12: Plots of the zero contour of �MFE12 with respect to log(a) (x-axis),

log(c) (y-axis) for the LMN( w; � a; a;1) distribution. Each of the nine panels is

related to a speci�c value ofw. The equations of dashed lines are presented in Table

3.8.
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3.8.2 PFE n(� )

If X � LMN( w; � a; a;1), PFEn (� ) is obtained by making � 1 = � a; � 2 = a and

� 1 = � 2 = 1 in Equation 3.7.17. In addition, for n = 1 ; 2; PFE1(� ) and PFE2(� )

respectively become

PFE1(� ) = 1 � (1 � w)� ( b � a) � w� ( b+ a) (3.8.36)

and

PFE2(� ) = 1 �

(

(1 � w)2�

 
b � a
p

1=2

!

+ 2w(1 � w)�
� p

2b
�

+ w2�

 
b+ a
p

1=2

! )

(3.8.37)

Recall Equation 3.7.20,

�PFE 12(� ) = PFE 1(� ) � PFE2(� )

By using Equations 3.8.36 and 3.8.37

�PFE 12(� ) = (1 � w)2�

 
b � a
p

1=2

!

+ 2w(1 � w)�
� p

2b
�

+ w2�

 
b+ a
p

1=2

!

� (1 � w)� ( b � a) � w� ( b+ a)

which is can be rewritten as

�PFE 12(� ) = w2
�

�
� p

2(b+ a)
�

� 2�
� p

2b
�

+ �
� p

2(b � a)
��

+ w
�

2�
� p

2b
�

� 2�
� p

2(b � a)
�

+ � ( b � a) � � ( b+ a)
�

+ �
� p

2(b � a)
�

� � ( b � a) (3.8.38)

With respect to w, Equation 3.8.38 represents a quadratic function with coe�cients

depending onb and a. Moreover, it equals zero if and only if the real root(s) of this

quadratic function is(are) restricted to be in the interval (0; 1).

The zero contour of �PFE 12(� ) is presented in Figure 3.13 for di�erent values of

w. The vertical axis represents a wide range ofb, while the horizontal axis represents

a. Both axes are taken on the log-scale.
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Figure 3.13: A Plot of the zero contour of �PFE12(� ) with respect to log(a) (x-

axis) and log(b) (y-axis) for the LMN( w; � a; a;1) distribution, and selected values

of w. The dashed line is the diagonal line log(b) = log( a).

The contours in Figure 3.13 are plotted individually in Figure 3.14.
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(a) w = 0 :01
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(b) w = 0 :1
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(c) w = 0 :2
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(d) w = 0 :3
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(e) w = 0 :4

Figure 3.14: Plots of the zero contour of �PFE12(� ) with respect to log(a) (x-

axis) and log(b) (y-axis) for the LMN( w; � a; a;1) distribution. Each of the �ve

panels is related to a speci�c value ofw. The red dashed line is the diagonal line

log(b) = log( a).

We do not include any value ofw � 0:5 in Figures 3.13 and 3.14 because there

are no zero contours if we do so, which means PFEn (� ) decreases asn increases
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from one observation to two for allw � 0:5. The behaviour of the zero contour

of �PFE 12(� ) for extreme parameters is summarized in Table 3.9 and discussed

afterwards in detail.

Case A: Botha and b small

�PFE 12(� ) � 0 () � = 1=(1 � 2w)

Case B:a approaches1

�PFE 12(� ) ! 0 () b= 0

Table 3.9: Summary of the behaviour limiting of the zero contour of �PFE12(� ) for

the LMN( w; � a; a;1) distribution when, both a and b small, anda approaches1 .

The detailed proof of the summary results in Table 3.9 is as follows:

Case A: Botha and b small

In this case, where botha and bare small, the zero contour of �PFE12(� ) in Figures

3.13 and 3.14 forms the line that is parallel to the diagonal line log(b) = log( a). The

equation of such a line is

log(b) = � log(� ) + log( a)

Therefore, we will obtain � = a=bas follows:

Rewrite Equations 3.8.36 and 3.8.37 in terms of erf (:). Hence,

PFE1(� ) = 1 �
1
2

n
(1 � w)erf

�
b � a
p

2

�
+ w erf

�
b+ a
p

2

�
+ 1

o
(3.8.39)

and

PFE2(� ) = 1 �
1
2

(

(1 � w)2erf (b � a) + 2 w(1 � w)erf (b)

+ w2erf (b+ a) + 1

)

(3.8.40)

By using the �rst-order Maclaurin series expansion of each error function with re-
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spect to a in Equations 3.8.39 and 3.8.40, thus we obtain

PFE1(� ) � 1 �
1
2
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(1 � w)
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b
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�

r
2
�

e� b2=2a

!
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2
�
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!

+ 1

)
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1
2

(

erf
�

b
p

2

�
+ (2 w � 1)

r
2
�

e� b2=2a + 1

)

(3.8.41)

and

PFE2(� ) � 1 �
1
2

(

(1 � w)2
�

erf (b) �
2

p
�

e� b2
a
�

+ 2w(1 � w)erf (b)

+ w2
�

erf (b) +
2

p
�

e� b2
a
�

+ 1

)

= 1 �
1
2

(

erf (b) +
�
w2 � (1 � w)2� 2

p
�

e� b2
a + 1

)

(3.8.42)

For small b, Equations 3.8.41 and 3.8.42 respectively become

PFE1(� ) � 1 �
�

b
p

2�
+

(2w � 1)
p

2�
a +

1
2

�
(3.8.43)

and

PFE2(� ) � 1 �

(
b

p
�

+
�
w2 � (1 � w)2� a

p
�

+
1
2

)

= 1 �

(
b

p
�

+ (2 w � 1)
a

p
�

+
1
2

)

(3.8.44)

Using Equations 3.8.43 and 3.8.44. Hence,

�PFE 12(� ) �
b

�
1 � 1=

p
2
�

p
�

(1 + (2 w � 1)a=b)

De�ne � = a=b. Thus

�PFE 12(� ) �
b

�
1 � 1=

p
2
�

p
�

(1 + (2 w � 1)� )

Moreover,

�PFE 12(� ) � 0 () � = 1=(1 � 2w)

since� > 0, w should be less than (1� w).
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Table 3.10 lists di�erent values of log(a=b), for selected values ofw.

w Both a and b small

0.01 log(a=b) = 0 :02

0.1 log(a=b) = 0 :22

0.2 log(a=b) = 0 :51

0.3 log(a=b) = 0 :92

0.4 log(a=b) = 1 :61

Table 3.10: The zero contours equations of �PFE12(� ) for the LMN( w; � a; a;1)

distribution and selected values ofw when both a and b small. The numbers in the

second column are rounded to two decimal places.

In order to make a comparative plot between the approximation of �PFE12(� ) in

Case A and the real contour, the zero contour of �PFE12(� ) is illustrated in Figure

3.15 for di�erent values of w with the line, the equation for which is presented in

Table 3.10.
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Figure 3.15: Plots of the zero contour of �PFE12(� ) with respect to log(a) (x-axis)

and log(b) (y-axis) for the LMN( w; � a; a;1) distribution. Each of the �ve panels is

related to a speci�c value ofw. The equation of the black dashed lines are presented

in Table 3.10

.
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Case B:a approaches1

In this case, the zero contour of �PFE12(� ) does not appear when both axes in

Figure 3.13 are taken on the log-scale. Hence, it is re-presented in Figure 3.16 where

both axes are taken on the original scale.
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Figure 3.16: A Plot of the zero contours of �PFE12 with respect to a (x-axis), b

(y-axis) for the LMN( w; � a; a;1) distribution and selected values ofw.

The zero contour of �PFE 12(� ) when a ! 1 forms the horizontal line. To obtain

the equation of this line, leta tend to 1 in Equations 3.8.39 and 3.8.40, thus

PFE1(� ) ! 1 �
1
2

(� (1 � w) + w + 1)

= 1 � w

and

PFE2(� ) ! 1 �
1
2

�
� (1 � w)2 + 2w(1 � w)erf (b) + w2 + 1

�

= 1 �
1
2

(2w + 2w(1 � w)erf (b))

Therefore,

�PFE 12(� ) ! w(1 � w)erf (b)
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and

�PFE 12(� ) ! 0 () b= 0

Figure 3.17 illustrates the zero contour of �PFE12(� ) with the line b= 0.
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Figure 3.17: A Plot of the zero contours of �PFE12(� ) with respect to a (x-axis)

and b (y-axis) for the LMN( w; � a; a;1) distribution, and selected values ofw. The

black dashed line isb= 0.

3.9 Conclusions

In this chapter, we generalized the dominance properties for the arithmetic mean,

known to be true for normal LSSDs, to all LSSDs with symmetric log-concave den-

sities. Furthermore, we examined two-component scale and location mixtures of

normal LSSDs in the case where the sample size increases from one to two, includ-

ing a complete mathematical theory of limiting behaviour as parameters tend to

extreme values. The study shows that the dominance properties do not always hold

and sheds some light on factors that lead to them not holding. For the �rst part

of the discussion we shall focus on the change from MFE1 to MFE 2 and will brie
y

consider highern at the end.
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The scale and location mixture of normals are considered since some empiri-

cal LSSDs are heavy-tailed or bimodal and analytic mathematical calculations are

tractable. When a LSSD is the two-component scale mixture of normal distribu-

tions, where is the ratio of the variances of the two components andw is the weight

given to the component with smaller variance, we see from Figure 3.2 that MFEn

decreases whenever < 30 for all values ofw and all c > 0. Considering the bound-

ary situation where  = 30, Figure 3.18 compares the probability density functions

of SMN(0.5, 0, 1, 30) and the normal distribution having the same variance and

mean, showing the heavy-tailed nature of the scale mixture. For heavier tails, i.e.

 > 30, MFEn decreases or increases depending on the values ofw and c. However,

applying a su�ciently large c always leads to decreasing MFEn . Similarly, Figure

3.6 shows that PFEn (� ) decreases when < 22 for any value ofw and any b > 0.

Whereas the value ofw a�ects the decision of choosing a value forb (and hence for

c) only when  � 22. Figure 3.19 compares the probability density functions of

the boundary case SMN(0.5, 0, 1, 22) and the normal distribution having the same

variance and mean, showing the heavy-tailed nature of the scale mixture. However,

a su�ciently large value of c guarantees always that PFEn (� ) will decrease.
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Figure 3.18: The probability density function of N(0; 15:5) (black) and SMN

(0:5; 0; 1; 30) distributions (red), both of which have zero mean and variance 15.5.
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Figure 3.19: The probability density function of N(0; 11:5) (black) and SMN

(0:5; 0; 1; 22) distributions (red), both of which have zero mean and variance 11.5.

When the LSSD is a two-component location mixture of normal distributions

located at � a and a, both with unit variance and with weight w for the component

located at � a, we see from Figure 3.10 that MFEn decreases asn increases when

applying small c for a < 1:63 andw = 0 :5, i.e. the LSSD is symmetric. In general,

choosingc to be greater than a guarantees that MFEn decreases for all values of

w. Moreover, whenw > 0:5, i.e. the LSSD is positively skewed, MFEn decreases if

c > ka3 for a < 1 wherek < 1 depends on w. However, whenw < 0:5, i.e. the LSSD

is negatively skewed, MFEn decreases for any value ofc for small a and for small c

for larger values ofa. Regarding PFEn (� ), the property holds for w � 0:5 without

any condition on the value ofb > 0. Additionally, Figures 3.13 and 3.14 show

that PFE n (� ) decreases asn increases whenw < 0:5 and b > a. Taken together,

these results suggestb > a is su�cient to make MFE n and PFEn (� ) decrease asn

increases from one to two. Figure 3.20 illustrates two probability density functions

of LMN(0:5; � 1:63; 1:63; 1) and LMN(0:1; � 4; 4; 1) distribution where respectively

MFEn and PFEn (� ) are stable when two species are tested instead of one and

applying small c.
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(a) LMN(0.5,-1.63,1.63,1)
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(b) LMN(0.1,-4,4,1)

Figure 3.20: The probability density function in (a) makes MFE1 = MFE 2 if small c

is applied. While, the probability density function in (b) makes PFE1(� ) = PFE 2(� )

for small b.

However, assuming the LSSD is two-component scale mixture of normal distri-

butions or two-component location mixture of normal distributions, our �ndings in

Sections 3.7 and 3.8 are based on increasing the tested species from one to two ob-

servations. In Figures 3.21, 3.22, and 3.23, we will illustrate the behaviour of MFEn

and PFEn (� ) as we increase the tested species from one to ten. The values of distri-

butions parameters,c, and b are chosen in the manner that di�erent outcomes can

be shown, and then the dominance properties for the arithmetic mean sometimes

hold. Figure 3.21 shows how MFEn and PFEn (� ) behave if X � SMN(w;0; 1; 43),

Figure 3.22 (a) and (b) show how MFEn behaves ifX � LMN( w; � 2; 2; 1) and

X � LMN( w; � 6; 6; 1) respectively whenw = 0 :2; 0:5; or 0:9, and Figure 3.23 shows

how PFEn (� ) behaves ifX � LMN(0 :1; � 3; 3; 1); b= 2 ; 3; or 4.
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(b)

Figure 3.21: MFEn in Equation 3.7.8 with c = 2 (a) and PFEn (� ) in Equation

3.7.17 with b = 2 (b) for X � SMN(w;0; 1; 43) and w = 0 :2 (black), 0.5 (red), 0.9

(green).
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(a) LMN( w; � 2; 2; 1)
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(b) LMN( w; � 6; 6; 1)

Figure 3.22: MFEn for two LMN distributions with c = 2 and w = 0 :2 (black), 0.5

(red), 0.9 (green).
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Figure 3.23: Plot of PFEn (� ) in Equation 3.7.17 for LMN(0:1; � 3; 3; 1) distribution

and b= 2 (black), 3 (red), 4 (green).

For SMN distribution, Figure 3.21 illustrates that if MFE n or PFEn (� ) decreases

as n changes from 1 to 2, then it will continue decreasing. Although we have no

proof of this, we have not seen any examples where this is not true.

For LMN distributions with location parameters 2 and 6, and forc = 2, we

obtain di�erent outcomes of MFEn for the same value ofw. Figure 3.22 shows that

MFEn is monotonically decreasing asn changes from 1 to 5 when the location pa-

rameter is 2 andw = 0 :2; 0:5, or 0:9. Whereas when the location parameter is 6 and

w = 0 :2, MFEn increases asn changes from 1 to 2, then it starts to decrease. In

addition, when w = 0 :9, MFEn increases asn increases until it reaches 4 and then

it starts to decrease. However, whenw = 0 :5, MFEn is monotonically increasing.

Moreover, Figure 3.23 shows that for LMN(0:1; � 3; 3; 1), PFEn (� ) is monotonically

decreasing whenb = 3 or 4. Whereas it decreases whenb = 2 as n increases until

4, then it begins to increase. Basically, this shows that there are no safe general

conclusions in the LMN distributions.

In summary, based on the selected values ofc, b, and the distribution parame-

ters, Figures 3.21, 3.22, and 3.23 show that MFEn and PFEn (� ) decrease if we test

�ve species instead of one. For other choices ofc, b, and the distribution parame-

ters leading to MFEn or PFEn (� ) increasing, or both increasing, we could prevent
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this outcome by applying a large value ofc which is the parameter under the risk

manager’s control.

Returning to the application to ecotoxicological risk assessment discussed in Subsec-

tion 1.1.1 and Section 3.2, we have learned that if the density of LSSD is symmetric

and log-concave, there is support for the argument in EFSA (2005) and EFSA (2008)

that using the geometric mean forn > 1 leads to reduced risk relative to the use

of a single test result, i.e. n = 1. However, for skewed or heavy-tailed LSSDs as

exempli�ed by two component mixtures of normals, the situation is more complex

and depends on the nature and extent of departure from univariate normality.

The two statistical risk measures, MFEn and PFEn (� ), focus on the fraction of

species FEn that are a�ected, in the sense that their toxicity endpoint is exceeded,

when they are exposed at the level of the AEC. This does match use of the criterion

that the RCR=PEC/AEC should be less than one. If the PEC> AEC, the pesticide

is not allowed to be used. If PEC< AEC, it may be allowed if passes the assessments

of risk to other species groups and to humans. The focus in this chapter has been

on dominance properties for the two risk measures as the sample size changes and

has not involved specifying an acceptable value for MFEn or a value of � and ac-

ceptable value for PFEn (� ). However, if specifying such acceptable values, MFEn

has the advantage that is the expected value of the FEn and that, for using it, no

further decision by risk managers is required other than to specify an acceptable

value for MFEn . Use of PFEn (� ) on the other hand requires risk managers to spec-

ify the value of � as well as an acceptable level of probability that FEn exceeds

� . However, there is evidence (Aldenberg and Jaworska, 2000) that� = 0 :05 is

considered suitable in some situations. Then, the focus is on what size of assess-

ment factor should be applied to obtain acceptable MFEn or PFEn (� ). Hickey et

al. (2009) followed a more sophisticated approach and introduced an asymmetric

LINEX(linear-exponential) loss function from which to derive the AEC rather than

just using the geometric mean. However, it requires sophisticated judgements from

risk managers and we have not considered it here.



Chapter 4

Partial Probability Judgments in

Risk Assessment

4.1 Introduction

As discussed in Subsection 1.1.3, for the second problem we are interested in condi-

tions on the shape of distributions that lead to

P (X 1 + X 2 � x1 + x2) � max (P (X 1 � x1) ; P (X 2 � x2))

as a substitute for the worst case

P (X 1 � x1) + P (X 2 � x2)

whereX 1 and X 2 are two independent uncertain quantities. This we call the com-

bined tails dominance property. In this context, we expect thatP (X 1 � x1) and

P (X 2 � x2) are given as imprecise probabilities which represent partial probability

judgements.

The convenience of the combined tail dominance property is particularly clear

when more quantities are involved. For example, ifP (X i � x i ) = 0 :1 for i =

1; 2; : : : ;10, then the worst case outcome isP (X 1 + � � � + X 10 � x1 + � � � + x10) �

0:1 + � � � + 0 :1 = 1 which provides no information, whereas if the combined tails

dominance property holds, the bound is 0.1 not 1. In what follows, we will explore

situations where we can show that this property does always hold, and others where
96
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we can see that it may not hold.

In the rest of this chapter, an illustrative example of application is presented in

Section 4.2. The seminal result of Proschan (1965) in Section 2.3 is exploited to

explore the validation of the combined tails dominance property for distributions

with symmetric and log-concave density functions in Section 4.4. The normal and

Cauchy distributions are considered in Section 4.5 as illustrative examples. The

peakedness comparison for convex combinations of independent and identically dis-

tributed two random variables, X i ; i = 1 ; 2, from skew-symmetric distributions

with log-concave kernels is discussed in Section 4.6. The reason for this discussion

is to achieve our goal in discovering the validation of the combined tails dominance

property for such distributions when two uncertain quantities are involved. Two

important distributions that will be used later in this chapter are the shifted ex-

ponential (SHE) and the mixture of shifted exponential and lump (SHEL). These

two distributions are presented in Section 4.7. The stochastic dominance property

with some results needed for the rest of this chapter are introduced in Section 4.8.

In Section 4.9, we focus on the log-concavity of the right tail probability function

which may be fully log-concave or partially log-concave. We present an important

theorem that is used later in Sections 4.10 and 4.11. A novel approach is presented

in Sections 4.10 and 4.11 to explore the validation of the combined tails dominance

property for distributions with log-concave right tail probability and distributions

with partial log-concave right tail probability respectively. Section 4.13 presents

some conclusions. A glossary of acronyms, including those used in this chapter, is

presented at the end of the thesis.

4.2 Example of Application by EFSA

Rift Valley Fever Virus (RVFV) is a virus that is transmitted by mosquitoes and

a�ects bu�alo, camels, cattle, goats, and sheep. It causes severe illness and could

transfer to people. The endemic areas are West and East Africa. EFSA (2013)

discussed the uncertainty about the number of infected animals that are exported

in a single year from West Africa to speci�c countries of North Africa and the Near



4.2. Example of Application by EFSA 98

East. The model for the number of infected animals exported to North Africa from

West Africa is

NW = vW � pW � tW

where these uncertain quantities, as presented in EFSA (2013), are:

� NW is the quantity of interest which represents the number of infected animals

arriving in North Africa from the West source in one year.

� vW is the volume of trade from the West source: the number of animals trans-

ported in one year to North Africa from the West source.

� pW is the prevalence of RVFV in animals in the West source: approximates

the proportion of transported animals which are infected.

� tW is the proportion of infected animals which remain infected after transport.

Uncertainties about the quantitiesvW ; pW and tW were judged to be independent,

and their distributions were elicited from experts, using the SHELF protocol in an

EKE process, to be:

� The distribution of vW is scaled beta (3.77, 5.99) on range 10 to 700000.

The beta distribution is used to model continuous random variablesX 2 [0; 1].

Its probability density function is

f X (x) =
xp� 1(1 � x)q� 1

Beta(p,q)
; 0 � x � 1; p > 0; q > 0

where Beta(�; � ) is the beta function and its formula is

Beta(�; � ) =
Z 1

0
t � � 1(1 � t)� � 1 dt

However,X can be scaled and shifted to obtain a scaled beta random variable

on [a; b] by using the transformationY = a+( b� a)X . The probability density

function of the scaled beta distribution on [a; b] is

f Y (x) =
(x � a)p� 1(b � x)q� 1

Beta(p; q)(b � a)p+ q� 1 ; a � x � b; p > 0; q > 0

Hence the probability density function ofvW is

f vW (x) =
(x � 10)2:77(700000� x)4:99

Beta(3:77; 5:99)(700000� 10)3:77+5 :99� 1 ; 10 � x � 700000
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� The distribution of pW is log-normal with parameters� = � 6:7 and � = 1 :11.

A continuous random variableX has a log-normal distributionX � LN( �; � )

if its probability density function is

f X (x) =
1

x�
p

2�
exp

�
�

(ln x � � )2

2� 2

�
; 0 < x < 1 ; � 2 R; � > 0

If X � LN( �; � ), then Y = log X � N(�; � ), the normal distribution with

mean � and standard deviation � . Hence the probability density function of

pW is

f pW (x) =
1

(1:11)x
p

2�
exp

�
�

(ln x + 6 :7)2

2(1:11)2

�
; 0 < x < 1

� In addition, tW � LN( � 1:5; 0:758). Its probability density function is

f tW (x) =
1

(0:758)x
p

2�
exp

�
�

(ln x + 1 :5)2

2(0:758)2

�
; 0 < x < 1

The three probability density functions are shown in Figure 4.1. Following the ap-

proach in (EFSA, 2013), we would then compute the distribution ofNW . This could

easily be done using Monte Carlo or by numerical calculation based on characteristic

functions, noting that the distribution of log NW = log vW + log pW + log tW is the

convolution of the distributions of logvW , logpW and logtW . The result would be

a full probability distribution for NW based on the three full probability distribu-

tions for the individual quantities. However, we should note that the experts did

not directly provide these three distributions. Rather, they were derived by the

EKE facilitator from the partial probability judgements made by the experts and

presented to the experts for them to approve. Therefore, it is interesting to explore

alternative approaches based directly on judgements made by experts. One such

approach is probability bounds analysis, as recommended in EFSA (2018a).

We do not have probability bounds provided by the experts for this example.

Instead, we will work with illustrative probability bounds for vW , pW and tW shown

in red in Figure 4.1: P (vw � 375000)� 0:1, P (pW � 0:5%) � 0:1 and P (tW �

60%) � 0:1. These illustrative values are consistent with the distributions obtained

by the EKE. We then proceed with the probability bounds analysis. First we obtain

the threshold 375000� 0:5% � 60% = 1125 and then calculate the upper bound

probability of P (vW � pW � tW � 1125) to be 0:1+0:1+0:1 = 0:3. The result of the
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probability bounds analysis is a probability bound forNW : P (NW � 1125)� 0:3.

If the combined tails dominance property were to apply, the bene�t would be

that the probability bound would be tighter, namely P (NW � 1125) � 0:1. This

would follow from the facts that logNW = log vW + log pW + log tW and that the

logarithm function is strictly monotonic increasing so that the individual probabil-

ity bounds becomeP (log vw � log 375000)� 0:1, P (log pW � log 0:5%) � 0:1 and

P (tW � log 60%) � 0:1. The combined tails dominance property would then yield

P (log vW +log pW +log tW � log 375000+log 0:5%+log 60%)� max(0:1; 0:1; 0:1) =

0:1 and inverting the logarithm would giveP (NW > 1125) � 0:1. An interesting

question is whether or not it is reasonable to assume the combined tails dominance

property in this example. In Section 4.10, we shall see that the property holds for

random variables having log-concave right tail probability functions if the individual

probabilities in the probability bounds are less than 0:28 as they are here. Moreover,

logX has log-concave right tail probability function if X has log-concave right tail

probability function (Bagnoli and Bergstrom, 2005) andX has log-concave right tail

probability function if it has log-concave probability density function (ibid, 2005).

All normal distributions have log-concave densities as do beta distributions where

the shape parameters exceed 1. Therefore the distributions from the EKE do all

have log-concave right tail probability functions. This is of course not the same as

experts making direct judgements about log-concavity of the right tail probability

function and this issue is considered brie
y in Section 4.9.
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(a) vW � Scaled beta(3:77; 5:99) (b) pW � LN( � 6:7; 1:11)

(c) tW � LN( � 1:5; 0:758)

Figure 4.1: Probability density functions of uncertain quantities (a)vW , (b) pW , and

(c) tW . The vertical red lines show the thresholds for the hypothetical probability

bounds used to illustrate the application of probability bounds analysis and the

potential bene�t of the combined tail dominance property.




































































































































