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Abstract

This thesis discusses two theoretical statistical problems which have potential uses

in risk assessment. The likely application of the first problem is to ecotoxicological

risk assessment, while the second problem has a wide range of potential applica-

tions in risk assessment. The two problems have important mathematical features

in common.

The first problem is concerned with key dominance properties for the arithmetic

mean as the sample size increases. We show mathematically that the dominance

properties hold for all distributions with symmetric log-concave densities. A detailed

and comprehensive analysis of what happens when the sample size increases from

one to two for two-component scale and location mixtures of normal distributions

is introduced.

The second problem relates to combining limited probabilistic expert judgements

on multiple quantities in order to provide limited probabilistic information about

a derived quantity. First, a working hypothesis that simplifies calculations for the

derived quantity is developed. Second, we mathematically show that the working

hypothesis holds for all distributions with symmetric log-concave densities. In ad-

dition, it holds for negatively-skewed Azzalini-style skew-symmetric distributions

with log-concave kernels when two quantities are involved. Moreover, under a spe-

cific condition, the working hypothesis is valid whenever the underlying distribu-

tions have log-concave right tail probability functions or partial log-concave right

tail probability functions when two quantities are involved.
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Chapter 1

Introduction and Background

In this chapter, we will discuss the motivation for making a contribution to two topics

in quantitative risk assessment. In addition, an outline of the thesis is provided.

1.1 Motivation

Risk analysis entails three phases: risk assessment, risk management, and risk com-

munication, see WHO (1995); EFSA (2012); and references therein. Risk assessment

is concerned with identifying and evaluating actions that are likely to cause harm.

It entails four branches: hazard identification, hazard characterisation, exposure as-

sessment and risk characterisation. Risk characterisation is a combination of the

other three branches of risk assessment (Renwick et al., 2003). In EC (2000), risk

characterisation is defined as “The quantitative or semi-quantitative estimate, in-

cluding attendant uncertainties, of the probability of occurrence and severity of

adverse effect(s)/event(s) in a given population under defined exposure conditions

based on hazard identification, hazard characterisation and exposure assessment.”

The variability in data and uncertainty due to incomplete information affect the

conclusions that are made in risk characterisation (Renwick et al., 2003). Quanti-

fying variability and uncertainty is an important part in risk characterisation since

the result will be used in risk management (decision making process). Such quan-

tification can contribute significantly to the transparency and robustness of risk

assessment.

1



1.1. Motivation 2

Uncertainty has various definitions. In EFSA (2018b), it is defined as

“a general term referring to all types of limitations in available knowledge that affect

the range and probability of possible answers to an assessment question.”

The two kinds of uncertainty are aleatory uncertainty (also called variability, ob-

jective uncertainty, dissonance, or irreducible uncertainty) and epistemic uncer-

tainty (also called uncertainty, ignorance, incertitude, subjective uncertainty, non-

specificity, or reducible uncertainty), see Burgman (2005) and EFSA (2018a) among

many in the literature. Aleatory uncertainty can not be reduced by collecting more

information, whereas epistemic uncertainty can.

Uncertainty may be described qualitatively or quantitatively. Quantitative de-

scription may be deterministic or probabilistic. In this thesis, we are concerned with

probabilistic methods. Frequency probability is reasonable in quantifying aleatory

uncertainty, whereas epistemic uncertainty may be quantified by using subjective

probability which reflects the personal degree of belief. Ramsey (1988) and Savage

(1954/1972) defined subjective probabilities in terms of an individual’s preferences as

certain consistency assumptions are satisfied. Consequently, this probability differs

from one expert to another due to the difference in their knowledge and experience.

The goal of the thesis is to make contributions to solving two mathematical

problems that are directly relevant to improving the treatment of uncertainty in

two related areas of practical risk assessment. These risk assessment areas and the

associated mathematical problems are described in Subsections 1.1.1 and 1.1.3 and

originate from the work of EFSA. Although the two problems are quite different,

they have important mathematical features in common.

1.1.1 Problem 1: Ecotoxicological Risk Assessment

The first problem relates to the applied question of what to do in ecotoxicological

risk assessment if more species are tested than required.

Ecotoxicology is concerned with the ecological effects of harmful (toxic) chem-

icals in the natural environment. An important part of the natural environment

is the aquatic compartment: ditches, streams, ponds, rivers, etc.. Ecotoxicological

risk assessment requires a procedure that must be imposed to ensure that a chem-
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ical substance is used safely in the real environment. The risk is characterized by

the risk characterisation ratio (RCR) which compares an acceptable environmental

concentration (AEC), estimated under the hazard assessment, to a predicted envi-

ronmental concentration (PEC), i.e. concentration of a substance expected to be

found in any environment and estimated under exposure assessment. If the PEC is

less than the AEC then the chemical substance is likely to pass. Otherwise further

higher-tier risk assessment is required in order to release such a chemical substance

(ECHA, 2012). Consequently, the decision problem for risk managers in this context

is to specify the AEC. What this means is that users of a chemical in industry and

agriculture are not allowed to create higher concentrations than AEC in the real

environment.

In ecotoxicological risk assessment, the toxicity data which is used in the estima-

tion procedure are species sensitivity values. These values represent the substance’s

concentration that causes a specific effect (endpoint) which is observable or measur-

able to these species. The commonly used lethal concentration (LC50) represents

the concentration that is responsible for the mortality of 50% of a targeted species

for a specific exposure period. Other typical concentration levels are LC10, LC25,

LC75, and LC100.

A simple approach, sometimes taken to this risk management problem, is to

measure a single species’s sensitivity in an experiment, and then divide this value

by a fixed factor which is called the assessment factor (AF), also referred to as safety

(or uncertainty) factor. The AF is expressed as a multiplication of two parts: one

accounts for variability between species (AFspec), while the second part (AFother) al-

lows for the other uncertainties. The magnitude of each assessment factor is chosen

by experts (often working for regulatory organisations) and it is usually a power of

10. The reasoning underlying the chosen value of the assessment factor is rarely

explicit and is quite opaque in many cases (EFSA, 2005). An AF is applied to allow

for various uncertainties summarized in EFSA (2005) as follows:

� Intra and inter species variation.

� Short-term to long-term toxicity extrapolation.
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� Laboratory data to field impact extrapolation.

� Intra and inter laboratory variation of toxicity data.

Scientifically, it is clearly beneficial to test more species as we then learn more about

the inter-species variation in sensitivity. This could be captured using the so-called

Species Sensitivity Distributions (SSDs) model, which means using probability distri-

butions to model the inter-species variation in a particular measure of sensitivity to a

chemical substance. Instead, regulation traditionally applies an AF to the minimum

measured sensitivity value to obtain the AEC (EFSA, 2005). Clearly this minimum

sensitivity value is no larger than the sensitivity value obtained by testing a single

species. Since it is also assumed that a lower environmental concentration/dose will

be better ecologically, using this minimum sensitivity value when computing AEC

leads to reduced ecotoxicological risk. However, the use of minimum sensitivity

value has a negative consequence as well. For a person/company seeking to license

the use of a chemical, testing an additional species either leaves the minimum mea-

sured sensitivity value unchanged or lowers its value. Consequently, the value of

AEC will never increase and will often decrease. Therefore, there is no incentive for

the person/company to test more than the minimum number of species required by

legislation. That minimum number is one in the context we are considering.

It has been realised by EFSA (2005, 2008) that it might be possible to replace

the use of the minimum value by the geometric mean of available sensitivity values

without actually creating a higher risk to ecosystems. Clearly the geometric mean is

no less than the minimum value. However, since practice was not to test more than

one species, then in fact the geometric mean, the minimum value, and the value

of a single species are all equal in that practice. When multiple species are tested,

they also argued that although it is quite possible that the geometric mean is larger

than the single value, there will be less variability between samples for the geometric

mean than for the single value. In addition, that reduced variability might actually

lead to reduced risk, despite the fact that the geometric mean would often be greater

than the single value, because it would reduce the probability of producing a very

high value for AEC. At the same time, there would clearly be some benefit for the

license seeker for the chemical because using the geometric mean would also reduce
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the probability of producing a very low value of AEC.

Usually log-scale (base 10) of the original toxicity data will be used to have nor-

mal or approximately normal SSDs. The normal distribution is preferable according

to its mathematical properties. For example, the empirical rule which states that

68% of the values fall within one standard deviation from the mean, 95% of the

values fall within two standard deviation of the the mean, and 99.7% of the values

fall within three standard deviation of the mean. In addition, it is symmetric about

its mean. Therefore, dividing the geometric mean of the original data by an AF,

to obtain AEC, becomes subtracting the logarithm of the AF from the arithmetic

mean of the data measured on log-scale (base 10). In what follows, the distribution

on log-scale will be referred to as the LSSD.

The adverse consequences, which affect ecological communities in ecosystem, are

measured in EFSA (2005) as the proportion of species for which their endpoints are

below the specific hazardous concentration, the so called fraction exceeded (FE). FE

varies from one assessment to another and its value is never known. However, the

assessment procedure can be designed to control the expected value of FE known

as the mean fraction exceeded (MFE). This is called a statistical risk measure. An-

other measure of statistical risk, which measures the probability that the fraction

exceeded (PFE) is greater than some chosen threshold level, is presented in EFSA

(2008). Use of PFE is consistent with the approach in Aldenberg and Jaworska

(2000).

It was found in EFSA (2005) for a normal LSSD that increasing the sample size

while keeping the assessment factor fixed leads to a reduction in the MFE. Later on

in EFSA (2008), these two statistical risk measures are numerically demonstrated to

be lowered as the number of tested species increases for many different probability

distributions.

The unanswered theoretical question is how general this conclusion is, i.e. for

which distributions does risk decrease as the sample size increases. The essential

point is that there is no scientific evidence yet to allow a decision in favour of any

family of distributions other than the normal. Chapter 3 of this thesis studies this

mathematical question (see Section 1.2 for more detail).
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A Brief History of the SSD Concept

In Ecotoxicological risk assessment, toxicity data that is used in an estimation proce-

dure are the species tolerance values (laboratory effect values or sensitivity values).

The term SSD has several meanings:

� The SSD model uses probability distributions to model inter-species variabil-

ity of some measure of toxicity of a chemical which was first introduced by

Kooijman (1987) and Van Straalen and Denneman (1989).

� An empirical SSD distribution is an empirical distribution of measurements of

toxicity of a chemical to some sample of species. This came first historically,

see Posthuma et al. (2002) for a comprehensive review.

� SSD-based risk assessment uses either (a) the empirical SSD or (b) the SSD

model together with measurements for a sample of species to deduce the AEC,

as some statistical estimate of some percentile of the SSD, see Aldenberg et

al. (2002).

In this thesis, the SSD concept used is that of SSD models.

In SSD-based risk assessment, the SSD is used to determine the AEC of a sub-

stance. SSDs are used in two ways forward method and inverse method (Van

Straalen, 2002). The forward method is used to estimate the FE, which is also

known as the potentially affected fraction (PAF) in Trass et al. (2002) and fraction

affected (FA) in Aldenberg and Jaworska (2000). In this method a substance’s con-

centration x is specified in advance and an empirical SSD or a SSD model is used to

estimate the proportion of affected species that have an end point which is less than

or equal to x, this is equivalent to obtaining cumulative distribution function of the

SSD at x (FSSD(x)). On the other hand, the inverse method is used to estimate

the threshold or hazardous concentration for which a particular percentage α% of

species have a lower endpoint, the value of α being chosen by the risk manager. This

is equivalent to finding the percentile of the SSD.

The SSD methodology was more generally criticised by Forbes and Calow (2002).

We refer the reader to Posthuma et al. (2002) for more details. We do not discuss
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these further because the research in this thesis relevant to ecotoxicology is not

focused on the use of SSDs in risk assessment, but rather on the SSD model as-

sumptions in relation to the geometric mean approach.

1.1.2 Some Concepts Related to Problem 2

In the following, we will introduce some background concepts that are relevant to

the wider context of the second problem introduced in Subsection 1.1.3, but which

are not core to the mathematical work on the problem presented in Chapter 4 of

this thesis.

A Brief Introduction to Expert Knowledge Elicitation

Here, we give the reader a brief introduction to the core ideas of Expert Knowledge

Elicitation (EKE). Expert judgment plays an essential role in quantifying uncer-

tainty when available evidence is limited or costly to obtain. The EKE extracts

knowledge from one or more experts. In such situations, experts may be asked to

give their subjective judgments as probabilities about one or more uncertain quanti-

ties. Experts usually express their knowledge as a probability distribution, whether

fully or partially, although they can use instead partial ordering, preferences, or

estimates for specific values. However, expressing their knowledge, partially or fully,

as a probability distribution is the basis of this research as this enables calcula-

tions based on standard probability theory to obtain distributional information for

derived quantities. A full probability distribution requires specifying probabilities

that are associated with all values, whereas partial probability assigns probability

of a quantity being within some range(s) of values or exceeding a specific value.

In Bayesian statistics, elicitation is the foundation for constructing the prior dis-

tribution, thereby the posterior distribution is obtained via Bayes Theorem. EKE

is also used in statistics, economics, engineering, different types of forecasting, and

environmental risks, see for example O’Hagan (2012); EFSA (2014); Hanea et al.

(2018); and the references therein.

The elicitation process involves one or more experts who have knowledge about

an uncertain quantity that would be elicited. There will be also usually an elicitor
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(facilitator) who conducts the elicitation exercise and who is qualified and familiar

with the elicitation process and understands basic probability theory. There will be

one or more experts depending on, for example, availability, resources, or the com-

plexity of the quantities of interest. If EKE is conducted using more than one expert,

then their judgements are usually combined in a single probability distribution. This

process is called aggregation. Two approaches are often taken:

� Mathematical aggregation (or pooling): The judements are separately elicited,

then a probability distribution is fitted to each of them. Pooling rules (math-

ematical formula) are applied to combine these individual probability distri-

butions mathematically to produce the aggregate distribution. Heterogeneous

beliefs due to expert variability are allowed and even preferred in order to

increase the quality and credibility of the output by adding more experts es-

pecially for complex models. However, the effectiveness of such heterogeneous

beliefs depends on the way of combining them, therefore it requires a specific

form of pooling rule to produce the aggregate distribution such as a weighted

or un-weighted average.

� Behavioral aggregation: This approach aims to reach a consensus. Compro-

mise and persuasion are used by experts to arrive to such consensus, in which

an aggregate distribution would be appropriate after a number of experts dis-

cuss their knowledge and opinions. This approach results in knowledge sharing

between experts. However, some personalities might prevail in the discussion,

which leads probability distributions to weigh towards a few or a single expert’s

judgements. The behavioral approach is also susceptible to group think.

The most well-known protocols used by practitioners of elicitation are briefly dis-

cussed in the following.

� Cooke protocol: This protocol applies a mathematical aggregation approach.

It is based on weighing expert responses according to their accuracy in assess-

ing distribution(s) for seed variable(s), which is (are) unknown to the experts.

More weight is assigned to the expert whose predicted probability distribution
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is more accurate. Details of the protocol and the approach to weighting may

be found in Cooke (1991).

� Sheffield protocol: SHeffield ELicitation Framework (SHELF), which is used

in EFSA (2014), is a behavioral aggregation approach. It is erected on two

rounds. In the first round, private judgements are made by experts. In the

second round, experts review their judgments. When the elicitor decides that

the discussion has reached a point at which no further beneficial contribu-

tions can no longer be provided, the experts are asked to come up with joint

aggregated judgements, which means they reach an agreement. Although the

experts might not share the same opinions following the discussion, they ought

to provide reasonable impartial judgements. The optimal number of experts

is considered to be four to eight. Experts involved in the elicitation ought to

be amenable to the opinions of one another.

� Delphi protocol: This protocol is a combination of behavioural and mathemat-

ical aggregation. It involves two or more rounds of judgements. Anonymity

is one of its features, so that the providers of the judgements are anonymous.

Like the SHELF protocol, there is interaction among experts between rounds

where they can share knowledge, but this is limited. At the end individuals

provide their judgments individually, and a pooling rule is required across ex-

pert final distributions where the aggregated distribution is obtained by given

equal weight to individual judgements. In situations where there are strongly

differing viewpoints, it may be necessary to involve a larger number of experts.

Details of the Delphi approach, including selection of experts may be found in

Rowe and Wright (1999).

A detailed discussion on EKE is beyond this research. For more detailed explanation

we refer the reader interested in EKE, and different protocols that are used by

practitioners of elicitation, to Garthwaite et al. (2005); EFSA (2014); O’Hagan

(2019); and references therein.
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Interval Analysis

In interval analysis, which is also called interval arithmetic, we specify a range for

each input to a calculation or mathematical model and use interval arithmetic to

deduce the corresponding set of output values, see Neumaier (1990) and Moore et

al. (2009). One simple form is to specify an upper or lower limit for each input.

Imprecise Probability

Williams (1975/2007) and Walley (1991) consider that expressing subjective prob-

abilities precisely as given in De Finetti (1964/1992) is unrealistic. Instead, sub-

jective probability should be bounded by lower and upper probabilities to accom-

modate a range of opinions. From the standpoint of Walley (1991) these lower and

upper bound of probabilities represent the maximum amount that an individual

is amenable to pay to sign a contract and the minimum amount that he/she is

amenable to receive to abandon signing the contract. When the maximum amount

for signing the contract and the minimum amount for abandoning signing it coin-

cide, then the common amount is called a fair amount for signing that contract, and

the probability is precise. The partial probability judgements considered in Chapter

4 are a kind of imprecise probability.

When probabilities are specified as ranges rather than numbers, interval analysis

can be used to obtain a range of probability as an output from a correct probability

calculation. Williams (1975/2007) and Walley (1991) gave a motivation and op-

erational definition of imprecise probability based on upper and lower prices that

lead to specifying ranges rather than numbers for probabilities. They also showed

that interval analysis is indeed appropriate for calculations. When applied to the

distributions of random variables, we get the concept of probability bounds analysis,

first through simple application of the Frechet inequalities as in EFSA (2018a) and

more generally through the methodology of Tucker and Ferson (2003).

Probability Bounds Analysis

A probability box (p-box) or imprecise probability distribution for a random variable

X, where its exact distribution function FX(x) is unknown, is the class of distri-
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bution functions FX(x) satisfying FX(x) < FX(x) < FX(x) ∀x where the chosen

upper and lower cumulative distribution functions FX(x) and FX(x) express im-

precision about FX(x). The distance between these bounds represents the amount

of lack of knowledge (epistemic uncertainty) about the unknown distribution func-

tion. Probability bounds analysis (PBA) is a combination of the standard interval

analysis method and classical probability theory (Ferson et al., 2003). It can be

used to evaluate probability boxes for mathematical expressions when there is un-

certainty about the input values, their dependencies, or even the distribution shape.

For example, it can be used to compute bounds on the distribution resulting from

convolution (addition and other arithmetic operations for distributions) or a more

complex function, given bounds on the distributions of the inputs (p-boxes). It can

be used when the range or bound for probability is provided rather than an exact

value. We refer the interested readers to Williamson and Downs (1990); Ferson

(2001); Tucker and Ferson (2003); Ferson et al. (2004); and references therein for a

detailed review.

1.1.3 Problem 2: Combining Minimal Judgements about

Uncertain Quantities

The second problem is related to combining limited probabilistic expert judgements

on multiple uncertain quantities in order to provide limited probabilistic information

about a derived quantity.

Risk assessment is often concerned with rare events (extreme outcomes), i.e. tails

of a distribution, where people have less experience and it is hard to get reliable in-

formation (Burgman, 2005). This leads to uncertainty in the analysis.

Making good use of partial probability judgments made by experts has the po-

tential to play a pivotal role in quantifying uncertainty in risk assessment, thereby

relieving experts of the need to express uncertainty using full probability distribu-

tions.

In many assessments, a model, which is a function of uncertain input quantities,

is developed with the output being a proxy for an uncertain quantity of interest

in the real world. This mathematical model is called the assessment calculation
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in EFSA (2018a). This model could be composed of many uncertain quantities

(complex model), or rather few uncertain quantities (simple model)(EFSA, 2014).

The benefit of the model is that expressing uncertainty about the inputs may be

considered easier than directly expressing uncertainty about the output and that

uncertainty about the output may be deduced from uncertainty about the inputs.

An example of such a model is the Rift Valley Fever Virus model discussed in Chap-

ter 4.

One approach is to specify a full joint (multivariate) probability distribution for

the uncertain input quantities. Then we will know the full probability distribution

of the model output via the assessment calculation. However, in quantifying un-

certainty probabilistically, the most challenging situation is using expert judgment

through an EKE process, as discussed earlier, to specify a full joint (multivariate)

probability distribution for uncertain quantities, for examples see Daneshkhah and

Oakley (2010); O’Hagan (2012); and EFSA (2018b). In practice, it is easier if

those uncertain quantities are judged to be independent. Independence substan-

tially reduces the effort of eliciting a joint distribution to eliciting the full proba-

bility independently for each uncertain quantity. In subjective probability theory,

independence (or epistemic independence) in the judgement of experts between two

uncertain quantities means that they would not change their beliefs about the un-

certainty of one of them, given (new) knowledge about the other one, and vice versa,

see for examples Daneshkhah and Oakley (2010); O’Hagan (2012); EFSA (2018b);

and references therein. However, specifying even the full probability distribution

of an individual uncertain quantity is hard for experts. Therefore, they could in-

stead provide partial probability statements for the input quantities in the form of

probability bounds (Ferson et al., 2003). Probability bounds were introduced in

Subsection 1.1.2. The EFSA (2018b) definition of probability bound is to specify an

upper bound for the probability that an uncertain quantity exceeds some a specific

threshold. However, Ferson’s definition is more general.

EFSA (2018a) applies the probability bounds method in two examples: one for

purely uncertain parameters and a second for uncertainty about a variable function

of variable parameters. The simplest approach to combine probability bounds on



1.1. Motivation 13

inputs in order to derive a probability bound on the output of an assessment cal-

culation is introduced in EFSA (2018a). It applies to models which do not involve

variable quantities, just uncertain parameters. Moreover, it applies when an assess-

ment calculation is monotonic in each input. If the interest is on extreme values

for the output, then a ‘high’ or ‘extreme’ value is specified for each input, which is

called a threshold for the input. In addition, for each input, an upper bound for

the probability that the input exceeds the threshold has to be provided by expert

judgment, for example through an EKE. Then the assessment calculation is used to

combine the threshold values for the inputs to obtain a threshold for the output. Fi-

nally, the probability bounds analysis approach is applied to obtain an upper bound

on the probability that the output exceeds the calculated threshold. That upper

bound is the sum of the individual upper bounds on the probabilities that inputs

exceed their threshold values. This approach is valid under all possible assumptions

about dependencies and that are consistent with the probability bounds specified

for the inputs distributions. However, the upper bound on the probability for the

output is intrinsically larger than the upper bounds for the inputs and is likely to

be of little use in practice if there are many input quantities or the upper bounds

on the probabilities for the inputs are not very small. Although assuming indepen-

dence or some particular dependence would produce a tighter upper bound on the

probability for the output, the probability bounds answer is not greatly improved

by assuming independence. For example, for two independent uncertain quantities

X1 and X2, the upper bound is P (X1 + X2 ≥ x1 + x2) ≤ p1 + p2 − p1p2 where

pi = P (Xi ≥ xi), i = 1, 2. Note that this upper bound improves on the general up-

per bound only by the amount p1p2 which will usually be much smaller than p1 +p2.

To tighten the upper bound further, one needs additional assumptions about distri-

bution shape as in Chapter 4 of this thesis.

The question arising here is what information we can obtain from experts about

distribution shape, in addition to the probability bounds on inputs, that would lead

to a useful tighter upper bound for the probability relating to the output of the

assessment calculation. We started by considering the situation when X1 and X2

are independent and (not necessarily identically) normally distributed as will be dis-
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cussed in Example 4.5.1(Section 4.5). We realised that P (X1 +X2 ≥ x1 + x2) is less

than the maximum of p1 and p2. In addition, if X1 and X2 have standard Cauchy dis-

tributions and p1 = p2 = p, P (X1 +X2 ≥ x1 + x2) = p, see Example 4.5.2 (Section

4.5). Moreover, if X1 and X2 are independent and identically distributed exponential

random variables with failure rate one, P (X1 +X2 ≥ x1 + x2) ≈ 0.292 > 0.29 when

p1 = p2 = 0.29, whereas P (X1 +X2 ≥ x1 + x2) ≈ 0.06 < 0.1 when p1 = p2 = 0.1.

This means that if Xi; i = 1, 2 has exponential distribution with failure rate one,

the upper bound of P (X1 +X2 ≥ x1 + x2) is in some cases less than the maximum

of p1 and p2. These results give a motivation to propose max (p1, p2) as a prac-

tical upper bound for P (X1 +X2 ≥ x1 + x2) instead of the worst case, (p1 + p2),

in EFSA (2018a) and the challenge is to establish practical criteria for when this

upper bound applies. Consequently, we formulated a working hypothesis and called

it ”combined tails dominance property”. This property specifies an upper bound for

the probability that the convolution of two independent random variables exceeds a

threshold value. The combined tails dominance property is defined as follows

Definition 1.1.1 Two independent random variables X1 and X2 satisfy the com-

bined tails dominance property for probabilities p1 and p2 if

P (X1 +X2 ≥ x1 + x2) ≤ max (p1, p2) where P (Xi ≥ xi) = pi; i = 1, 2

When this property holds, the probability bounds calculation produces a tighter and

easily calculated upper bound for the probability for the output than the simple

completely general approach introduced in EFSA (2018a). The goal is to find useful

conditions on the distributions ofX1 andX2 (and in general more than two variables)

which imply that the property holds, i.e. to understand when the working hypothesis

is valid. In particular, we are interested in conditions about which experts might

reasonably be able to make judgements.

1.1.4 Proschan’s Result

The seminal result by Proschan (1965) will be introduced in detail in Chapter 2.

It applies to all symmetric and log-concave densities and leads in Chapter 4 to

the validation of the combined tails dominance property when the distributions of
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Xi; i = 1, 2, in problem 2 have symmetric and log-concave densities as will be seen in

Section 4.4. In addition, by using Proschan’s result, we can show in Chapter 3 that

the two statistical risk measures decrease as the number of tested species increases

when the LSSDs have symmetric and log-concave densities as will be argued in

Section 3.6. The notion of peakedness of probability distributions that underlies

Proschan’s result is a key mathematical connection between the two problems.

1.2 Outline of Thesis

The thesis is in four chapters. Chapter 2 firstly highlights some properties of log-

concave densities that are used throughout the thesis. Secondly, An important

lemma in Birnbaum (1948) that is used later by Proschan (1965) to prove his sem-

inal result is introduced in detail. Finally, the seminal result in Proschan (1965),

which is used in Sections 3.6 and 4.4, is presented with detailed proof.

Chapter 3 is allocated to show when the dominance properties for the arithmetic

mean hold, i.e when the two statistical risk measures in problem 1, namely the mean

fraction exceeded and the probability that the fraction exceeded is greater than some

chosen threshold level α, decrease as the number of tested species increases. In this

thesis, MFEn and PFEn(α) denote respectively the mean fraction exceeded and the

probability that the fraction exceeded is greater than some chosen threshold level α

when the sample size is n. We will examine the behaviour of MFEn and PFEn(α)

when LSSDs have symmetric log-concave densities. In addition, we provide a de-

tailed and comprehensive analysis of what happens as n changes from one to two for

MFEn and PFEn(α) when we consider two-component scale and location mixtures

of normal LSSDs including a complete mathematical theory of limiting behaviour

as parameters tend to extreme values.

In Chapter 4, we assume that the probability bounds in the form P (Xi ≥ xi) ≤

pi; i = 1, 2 are given, which represent the partial probability judgements about

inputs. Then we will explore for which distributions the combined tails dominance

property in problem 2 is valid. We examine distributions with symmetric log-concave

densities. In addition, we consider negatively-skewed Azzalini-style skew-symmetric
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distributions with log-concave kernels when two quantities are involved. Moreover,

we extend our investigation to accommodate distributions that have log-concave

right tail probability functions where the symmetry of the densities is not necessary.

Also, an extension to the case of having more than two uncertain quantities that

have log-concave right tail probability functions is presented. At the end of this

chapter, we explore the situation where the log-concavity only applies to part of the

right tail probability function when two quantities are involved.

We summarise the research discussed above in Chapter 5. Furthermore, fu-

ture research directions are suggested. A glossary of acronyms that will be used

throughout the thesis is presented at the end of the thesis. Finally, two appendices

are provided. Appendix A.1 provides an evaluation of some integrals used in Chap-

ter 3. Appendix A.2 gives some information about Lambert function in Chapter

4.



Chapter 2

Log-Concave Probability Density

Functions

2.1 Introduction

Proschan (1965) provides a seminal result on peakedness comparison for convex

combinations of independent and identically distributed (iid) random variables,

Xi; i = 1, 2, . . . , n, from a symmetric log-concave density function (see Section

2.3). This result has important interpretation as it implies that (1/n)
∑n

i=1Xi is

strictly increasing in peakedness as n increases. Proschan’s result is sufficient to

prove that the dominance properties for the arithmetic mean and the combined

tails dominance property, in the two problems discussed in Chapter 1, hold when

the underlying distributions have log-concave symmetric densities as we will see in

Sections 3.6 and 4.4.

Peakedness was first introduced by Birnbaum (1948) in the following definition.

Definition 2.1.1 (Birnbaum, 1948, Definition). Let X1 and X2 be real random

variables and x1 and x2 real constants. X1 is more peaked about x1 than X2 about

x2 if

P (|X1 − x1| ≥ t) ≤ P (|X2 − x2| ≥ t) ∀t ≥ 0 (2.1.1)

If the inequality in Equation 2.1.1 is strict, then X1 is said to be strictly more peaked

about x1 than X2 about x2. In case x1 = x2 = 0, we simply say X1 is (strictly)

17
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more peaked than X2. This definition was generalized to the multivariate case by

Sherman (1955). See Figure 2.1 for illustration.
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Figure 2.1: (a) The probability density function of X1 ∼ N(µ = 0, σ2 = 2) (black)

and X2 ∼ N(µ = 0, σ2 = 1) (red), (b) P (|X1| ≥ t) (black) and P (|X2| ≥ t) (red) for

t ≥ 0 to illustrate that X1 is more peaked than X2 (Definition 2.1.1).

Proschan’s result states that if Xi are iid from symmetric log-concave density

function fX and a and b are vectors such that the elements of each vector are non-

negative and sum to one and a strictly majorizes b, as in Definition 2.1.2, then
n∑
i=1

biXi is strictly more peaked than
n∑
i=1

aiXi. This result depends on the notion of

majorization which defined as follows:

Definition 2.1.2 (Marshall et al., 2011, A.1. Definition). For any vectors a, b ∈ Rn,

a �m b if



k∑
i=1

ai ≥
k∑
i=1

bi; k = 1, . . . , n− 1

n∑
i=1

ai =
n∑
i=1

bi

When a �m b, b is said to be majorized by a, where

a1 ≥ · · · ≥ an
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and

b1 ≥ · · · ≥ bn

The term strict majorization is used when
∑k

i=1 ai >
∑k

i=1 bi; k = 1, . . . , n− 1.

Extensions of Proschan’s result are many in the literature, among them is Chan

et al. (1987), they considered that the random variables are jointly distributed from

a Schur-concave density, whereas the random variables in Ma (1998) are independent

and non-identically distributed from a symmetric log-concave density, see the review

in Tong (1994). Later on, Ibragimov (2007) showed that the Proschan’s result holds

for convolutions of α symmetric distributions with α > 1. Further studies also

extend Proshan’s result, see for example Xu and Hu (2011); and Zhao et al. (2011).

This chapter highlights some properties of log-concave functions in Section 2.2.

Section 2.3 is devoted to reproducing two important results. The first is a lemma by

Birnbaum (1948), which proved that peakedness increases under convolution when

specific conditions are satisfied. This lemma is used later by Proschan (1965) in

order to prove his seminal result as will be seen in Lemma 2.3.3. The second result

is the seminal result by Proschan (1965) with two auxiliary lemmas. All results are

reproduced with detailed proofs.

2.2 Log-Concave Functions and Probability Den-

sities

The log-concavity property is considered throughout the following section and chap-

ters. Hence, some log-concave properties are firstly presented.

Definition 2.2.1 A function f : R→ [0;∞) is said to be log-concave if

f ((1− t)x0 + tx1) ≥ f(x0)1−tf(x1)t ∀x0, x1 ∈ R, ∀t ∈ [0, 1]

or equivalently, a function log f is concave, i.e.

log f ((1− t)x0 + tx1) ≥ (1− t) log f(x0) + t log f(x1) ∀x0, x1 ∈ R, ∀t ∈ [0, 1]

This definition implies that any line that connects two points on the graph of log f

must lie below the graph. For example f(x) = 1 − x
10

; 0 ≤ x ≤ 10 is a log-concave
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function. Therefore, the line that connects log f(1) and log f(8), and the line that

connects log f(2) and log f(9) lie below the curve of log f(x) = log
(
1− x

10

)
, see

Figure 2.2 for illustration.
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Figure 2.2: A plot of log f(x) = log
(
1− x

10

)
. The red dotted line connects log f(1)

and log f(8). The green dotted line connects log f(2) and log f(9).

When we have probability density functions, the following properties are true.

� Log-concave probability densities are unimodal, and may be symmetric or

skewed.

� Log-concavity is preserved under convolution of log-concave probability den-

sities.

� The tail of a log-concave density function decays exponentially or faster.

� The right tail probability functions and cumulative distribution functions of

log-concave densities are both log-concave.

Examples of such densities are the normal density, gamma densities with shape

parameter ≥ 1, and beta densities with both parameters ≥ 1. Many properties
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of log-concave densities are discussed in Marshall et al. (1979/2011); An (1998);

Saumard and Wellner (2014); and references therein.

An idea that is closely related to log-concave densities is the concept of monotone

likelihood ratio that is introduced in the following definition.

Definition 2.2.2 The translation family fX (x− θ) ; θ ∈ R has monotone likeli-

hood ratio in x if

fX(x1 − θ2)

fX (x1 − θ1)
≤ fX(x2 − θ2)

fX(x2 − θ1)
∀x1 < x2, θ1 < θ2 (2.2.1)

which applies to all x in the space of X, where fx > 0 (Meeden, 1971). This property

will be used in proving the seminal result by Proschan (1965) since the probability

density function fX is log-concave if and only if fX (x− θ) ; θ ∈ R has monotone

likelihood ratio in x, as will be seen later in this section.

Another related idea is the idea of Pólya Frequency functions of order 2 (PF2)

(Schoenberg, 1951) which is introduced in the following definition.

Definition 2.2.3 A density function fX is of Pólya Frequency function of order 2

(PF2) if

det

fX(x1 − y1) fX(x1 − y2)

fX(x2 − y1) fX(x2 − y2)

 ≥ 0

for all a < x1 < x2 < b and all a < y1 < y2 < b.

The term Pólya Frequency function of order 2 (PF2) is used in Proschan (1965). As

will be seen in the following, fX is PF2 if and only if it is log-concave.

The following connections between the preceding ideas and the log-concave den-

sities are given in Saumard and Wellner (2014) with their proofs.

(a) fX is log-concave density function if and only if fX(x− θ), θ ∈ R has monotone

likelihood ratio in x.

(b) fX is log-concave density function if and only if fX is a PF2.

Proof. (a) Suppose fX is log-concave. fX(x − θ) has monotone likelihood ratio in

x if and only if

fX(x1 − θ2)

fX(x1 − θ1)
≤ fX(x2 − θ2)

fX(x2 − θ1)
∀x1 < x2, θ1 < θ2 (2.2.2)



2.2. Log-Concave Functions and Probability Densities 22

This holds if and only if

log fX(x1 − θ2) + log fX(x2 − θ1) ≤ log fX(x2 − θ2) + log fX(x1 − θ1) (2.2.3)

Let t = (x2−x1)
(x2−x1+θ2−θ1)

, thus

x2 − x1 = t(x2 − θ1)− t(x1 − θ2)

By adding and subtracting θ1,

(x2 − θ1)− (x1 − θ1) = t(x2 − θ1)− t(x1 − θ2)

Hence,

x1 − θ1 = t(x1 − θ2) + (1− t)(x2 − θ1)

Similarly,

x2 − θ2 = (1− t)(x1 − θ2) + t(x2 − θ1)

Since fX is log-concave,

log fX(x1 − θ1) ≥ t log fX(x1 − θ2) + (1− t) log fX(x2 − θ1) (2.2.4)

and

log fX(x2 − θ2) ≥ (1− t) log fX(x1 − θ2) + t log fX(x2 − θ1) (2.2.5)

Adding Equations 2.2.4 and 2.2.5 yields Equation 2.2.3. Therefore, the log-concavity

of fX implies that fX(x− θ) has monotone likelihood ratio in x.

Now suppose that fX(x−θ) has monotone likelihood ratio in x so that Equation

2.2.3 holds. In particular, it holds if x1, x2, θ1, θ2 satisfy

x1 − θ2 = a < b = x2 − θ1

and

t =
x2 − x1

(x2 − x1 + θ2 − θ1)
=

1

2

Hence,

x2 − x1 = θ2 − θ1
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and

x2 − θ2 = x1 − θ1 (2.2.6)

Moreover,
a+ b

2
=

(x1 − θ1) + (x2 − θ2)

2
(2.2.7)

By using Equation 2.2.6, thus we obtain

x1 − θ1 =
a+ b

2
= x2 − θ2

Therefore, Equation 2.2.3 becomes

log fX(a) + log fX(b) ≤ 2 log fX

(a+ b

2

)
Thus fX is a log-midpoint-concave. In addition, fX is a Lebesgue measurable func-

tion. Therefore fX is log-concave (Blumberg, 1919; Simon, 2011).

(b) Suppose fX is PF2. Thus for x1 < x2, y1 < y2,

det

fX(x1 − y1) fX(x1 − y2)

fX(x2 − y1) fX(x2 − y2)

 ≥ 0

⇐⇒

fX(x1 − y2)fX(x2 − y1) ≤ fX(x1 − y1)fX(x2 − y2)

⇐⇒
fX(x1−y2)
fX(x1−y1)

≤ fX(x2−y2)
fX(x2−y1)

That is fX(x−y) has monotone likelihood ratio in x. By using (a), this is equivalent

to fX is log-concave. 2

In this thesis, we shall use the term log-concave.

2.3 Symmetric Log-Concave Probability Density

Functions

This section reproduces the following:

� The lemma by Birnbaum (1948) in Lemma 2.3.1. This lemma is used later by

Proschan (1965) (see Lemma 2.3.4).
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� Two Auxiliary lemmas that are used by Proschan (1965) to prove his seminal

result in Lemmas 2.3.3 and 2.3.4.

� The seminal result by Proschan (1965) in Theorem 2.3.5.

All the lemmas and theorem are reproduced with detailed proof.

Proshan’s result is relevant to symmetric log-concave density functions. In addi-

tion, it is used later in Sections 3.6 and 4.4 when we consider situations where the

LSSD and the distributions of Xi; i = 1, 2 in respectively problem 1 and problem 2

(see Chapter 1) have symmetric and log-concave density functions.

Lemma 2.3.1 (Birnbaum, 1948, Lemma). Let X1, X2, Y1, Y2 be continuous random

variables with probability densities fX1 , fX2 , fY1 , fY2 such that

(1) X1 and X2 are independent, Y1 and Y2 are independent,

(2) fXi(x) = fXi(−x) ∀x and fYi(y) = fYi(−y) ∀y for i = 1, 2,

(3) fX2 and fY1 are not increasing functions for positive values of the variables,

and

(4) Xi is more peaked about 0 than Yi, for i = 1, 2.

Let X = X1 + X2 and Y = Y1 + Y2. Under these assumptions X is more peaked

about 0 than Y .

Proof. Let FXi(x) = P (Xi ≤ x), FYi(y) = P (Yi ≤ y), for i = 1, 2, be the

cumulative distribution functions. For any random variables X1, X2, Y1, Y2 (not

necessarily continuous) where assumption (1) is satisfied, and any t,

P (X ≤ t)− P (Y ≤ t) =

∫ ∞
−∞

[
FX1(t− s)fX2(s) ds− FY1(t− s)fY2(s) ds

]
By adding and subtracting

∫∞
−∞ FY1(t− s)fX2(s) ds, thus

P (X ≤ t)− P (Y ≤ t) =

∫ ∞
−∞

[FX1(t− s)− FY1(t− s)] fX2(s) ds

+

∫ ∞
−∞

FY1(t− s)
[
fX2(s) ds− fY2(s) ds

]
(2.3.1)

Using integration by parts,∫ ∞
−∞

FY1(t− s)
[
fX2(s) ds− fY2(s) ds

]
=

∫ ∞
−∞

[
FX2(s)− FY2(s)

]
fY1(t− s) ds
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Thus Equation 2.3.1 becomes

P (X ≤ t)− P (Y ≤ t) =

∫ ∞
−∞

[
FX1(t− s)− FY1(t− s)

]
fX2(s) ds

+

∫ ∞
−∞

[
FX2(s)− FY2(s)

]
fY1(t− s) ds

which is equivalent to

P (X ≤ t)− P (Y ≤ t) =

∫ ∞
−∞

[
FX1(t− s)− FY1(t− s)

]
fX2(s) ds

+

∫ ∞
−∞

[
FX2(t− s)− FY2(t− s)

]
fY1(s) ds

= I1(t) + I2(t)

where

I1(T ) =

∫ ∞
−∞

[
FX1(t− s)− FY1(t− s)

]
fX2(s) ds

=

∫ ∞
−∞

[
FX1(−s)− FY1(−s)

]
fX2(t+ s) ds

=

(∫ 0

−∞
+

∫ ∞
0

)[
FX1(−s)− FY1(−s)

]
fX2(t+ s) ds

= A+B (2.3.2)

where

A =

∫ 0

−∞

[
FX1(−s)− FY1(−s)

]
fX2(t+ s) ds

which is equivalent to

A =

∫ ∞
0

[
FX1(s)− FY1(s)

]
fX2(t− s) ds (2.3.3)

Using Equation 2.3.3, Equation 2.3.2 becomes

I1 =

∫ ∞
0

[
FX1(s)− FY1(s)

]
fX2(t− s) ds

+
[
FX1(−s)− FY1(−s)

]
fX2(t+ s) ds

=

∫ ∞
0

[
P (X1 ≤ s)− P (Y1 ≤ s)

]
fX2(t− s) ds

+
[
P (X1 ≤ −s)− P (Y1 ≤ −s)

]
fX2(t+ s) ds
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Using assumption (2),

I1 =

∫ ∞
0

{[
(1− P (X1 > s))− (1− P (Y1 > s))

]
fX2(t− s) ds

+
[
P (X1 ≥ s)− P (Y1 ≥ s)

]
fX2(t+ s) ds

}

=

∫ ∞
0

{[
P (Y1 > s)− P (X1 > s)

]
fX2(t− s) ds

+
[
P (X1 ≥ s)− P (Y1 ≥ s)

]
fX2(t+ s) ds

}

By adding and subtracting
[
P (X1 = s)− P (Y1 = s)

]
fX2(t− s) ds, we obtain

I1 =

∫ ∞
0

{[
P (X1 ≥ s)− P (Y1 ≥ s)

][
fX2(t+ s) ds− fX2(t− s) ds

]
−
[
P (X1 = s)− P (Y1 = s)

]
fX2(t− s) ds

}

=

∫ ∞
0

[
P (X1 ≥ s)− P (Y1 ≥ s)

][
fX2(t+ s) ds− fX2(t− s) ds

]
−
∫ ∞

0

[
P (X1 = s)− P (Y1 = s)

]
fX2(t− s) ds (2.3.4)

Similarly,

I2 =

∫ ∞
0

[
P (X2 ≥ s)− P (Y2 ≥ s)

][
fY1(t+ s) ds− fY1(t− s) ds

]
−

∫ ∞
0

[
P (X2 = s)− P (Y2 = s)

]
fY1(t− s) ds (2.3.5)

Since X1, X2, Y1, Y2 are continuous random variables, the second integrals in Equa-

tions 2.3.4 and 2.3.5 are zero, and

I1 =

∫ ∞
0

[
P (X1 ≥ s)− P (Y1 ≥ s)

][
fX2(t+ s)− fX2(t− s)

]
ds (2.3.6)

and

I2 =

∫ ∞
0

[
P (X2 ≥ s)− P (Y2 ≥ s)

][
fY1(t+ s)− fY1(t− s)

]
ds (2.3.7)

Using assumption (3), for t ≥ 0,

fX2(t+ s)− fX2(t− s) ≤ 0 if 0 ≤ s ≤ t
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fX2(t+ s)− fX2(t− s) = fX2(s+ t)− fX2(s− t) ≤ 0 if 0 ≤ t ≤ s

Similarly,

fY1(t+ s)− fY1(t− s) ≤ 0 for all t ≥ 0 and s ≥ 0 (2.3.8)

Since Xi are more peaked than Yi, thus for s ≥ 0,

P (X1 ≥ s)− P (Y1 ≥ s) ≤ 0

P (X2 ≥ s)− P (Y2 ≥ s) ≤ 0

Hence, both integrands in Equations 2.3.6 and 2.3.7 are non negative ∀s, thus

P (X ≤ t)− P (Y ≤ t) = I1(t) + I2(t) ≥ 0

Hence,

P (X ≥ t)− P (Y ≥ t) ≤ 0 for t ≥ 0 (2.3.9)

and

2P (X ≥ t)− 2P (Y ≥ t) ≤ 0 for t ≥ 0 (2.3.10)

Using assumption (2) and Equation 2.3.10,

P (X ≥ t) + P (X ≤ −t)−
(
P (Y ≥ t) + P (Y ≤ −t)

)
≤ 0

Hence,

P (|X| ≥ t)− P (|Y | ≥ t) ≤ 0 for t ≥ 0 (2.3.11)

Therefore, X is more peaked than Y . 2

Lemma 2.3.2 shows that symmetric log-concave functions are non-increasing

functions. In addition, it will be used in Lemma 2.3.3.

Lemma 2.3.2 Let fX be symmetric around zero, log-concave and 0 ≤ a ≤ b. Then

fX(0) ≥ fX(a) ≥ fX(b).

Proof. If fX is log-concave,

1/2 log fX(−a) + 1/2 log fX(a) ≤ log fX(0)

Since fX is symmetric around zero, then fX(−a) = fX(a), thus

fX(a) ≤ fX(0) (2.3.12)
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Similarly,

fX(b) ≤ fX(0) (2.3.13)

Since fX is log-concave, and for α ∈ [0, 1] such that α(0)+(1−α)b = a, the following

inequality should be true

log fX(a) ≥ α log fX(0) + (1− α) log fX(b)

Using Equation 2.3.13,

α log fX(0) + (1− α) log fX(b) ≥ α log fX(b) + (1− α) log fX(b)

= log fX(b)

Thus,

fX(a) ≥ fX(b) (2.3.14)

Using Equations 2.3.12 and 2.3.14,

fX(0) ≥ fX(a) ≥ fX(b)

2

The seminal result obtained by Proschan (1965) is presented in Theorem 2.3.5.

In addition, he presented two lemmas in order to prove his theorem. However,

Proschan’s proof for the first lemma is concise. Therefore, we will reintroduce the

two lemmas in Lemmas 2.3.3 and 2.3.4 with detailed proof for the first lemma.

Lemma 2.3.3 (Proschan, 1965, Lemma 2.1). Let fX be a symmetric log-concave

density function, X1 and X2 independently distributed with density fX . Then

aX1 + (1− a)X2 is strictly increasing in peakedness as a increases from 0 to 1
2

Proof. Fix t > 0 and define

H(a, t) = P (aX1 + (1− a)X2 ≤ t) =

∫ ∞
−∞

FX

(
t− (1− a)u

a

)
fX(u) du; 0 < a <

1

2

Differentiation under the integral sign is permissible since the derivative of

FX

(
t−(1−a)u

a

)
fX(u) is bounded by a Lebesgue integrable function:∣∣∣fX ( t−(1−a)u

a

)
fX(u)(u− t)

∣∣∣ ≤ MfX(u) |u− t| where M is the mode of fX , and
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∫∞
−∞MfX(u)(u − t) du < ∞ because all moments exist for a log-concave density

(Chen and Samworth, 2013). Then

a2

(
∂H(a, t)

∂a

)
=

∫ ∞
−∞

fX

(
t− (1− a)u

a

)
fX(u)(u− t) du (2.3.15)

Rewrite Equation 2.3.15,

a2

(
∂H(a, t)

∂a

)
=

∫ t

−∞
fX

(
t− (1− a)u

a

)
fX(u)(u− t) du

+

∫ ∞
t

fX

(
t− (1− a)u

a

)
fX(u)(u− t) du

Set v = t− u in the first integral and v = u− t in the second integral. We get

a2∂H(a, t)

∂a
=

∫ ∞
0

v

{
fX
(
t+ v

)
fX

(
t− (1− a)

a
v

)

−fX (t− v) fX

(
t+

(1− a)

a
v

)}
dv (2.3.16)

By symmetry of fX ,

fX (t+ v) fX

(
t− (1−a)

a
v
)
− fX (t− v) fX

(
t+ (1−a)

a
v
)

=

fX (t+ v) fX

(
(1−a)
a
v − t

)
− fX (v − t) fX

(
t+ (1−a)

a
v
)

Since fX is log-concave,

fX (v − t)
fX (v + t)

≤
fX

(
(1−a)
a
v − t

)
fX

(
(1−a)
a
v + t

) (2.3.17)

for 1− a > a, v > 0 because v < (1−a)
a
v and −t < t, and

fX (v − t) fX
(

(1− a)

a
v + t

)
≤ fX

(
(1− a)

a
v − t

)
fX (v + t) (2.3.18)

So that the integrand in Equation 2.3.16 is not negative. Hence, a2∂H(a,t)
∂a

≥ 0, so

that ∂H(a,t)
∂a
≥ 0.

Now suppose ∂H(a,t)
∂a

= 0. Since fX is log-concave, the integrand has at most a

finite number of points of discontinuity because the density is continuous except at

the boundary of its support. Therefore, the integrand must be zero almost every-

where.
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We will consider two cases for the support of fX as follows:

Case (1) Finite support as given in Proschan’s proof:

Consider the support of fX is an interval (−l, l). Then we need only consider t < l

to make Proschan’s proof work.

Define k = (1 − a)/a, and consider v ∈ ((l − t)/k,min ((l + t)/k, l − t)). Then we

will examine if t − kv, t − v, t + v, t + kv are within the interval (−l, l) for the

specified range of values of v as follows:

l > t− kv > t− k(l + t)/k = −l =⇒ fX(t− kv) > 0

l > t− v > t− (l − t) = 2t− l > −l =⇒ fX(t− v) > 0

0 < t+ v < t+ (l − t) = l =⇒ fX(t+ v) > 0

t+ kv > t+ k(l − t)/k = l =⇒ fX(t+ kv) = 0

So that the integrand is not zero for such v.

We have shown that there is an interval where the integrand is non-zero and

this contradicts the requirement that the integrand is zero almost everywhere if

∂H(a,t)
∂a

= 0. Therefore ∂H(a,t)
∂a

> 0 when fX has finite support.

Case (2) Support is real line:

In this case, we make the support of fX wider than the one proposed by Proschan’s

proof. let v ∈ (0, t/k). Then 0 < t− kv and the following relationships are true

0 < t− kv < t− v < t+ v < t+ kv

Using Lemma 2.3.2, when 0 < t− kv < t− v < t+ v < t+ kv we have

fX(0) ≥ A ≥ B ≥ C ≥ D

where A = fX(t − kv), B = fX(t − v), C = fX(t + v) and D = fX(t + kv). If

C > D, then CA > BD and the integrand CA−BD in Equation 2.3.16 is positive.

Whereas if C = D implies that A = B since the integrand is supposed to be zero.

Moreover, fX(0) = A = B = C = D since fX is log-concave, and for α ∈ (0, 1) such

that α(0) + (1− α)(t+ kv) = t+ v, the following inequality should be true

logC ≥ α log fX(0) + (1− α) logD
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Since C = D,

α logD ≥ α log fX(0)

However, 0 < t+ kv, thus fX(0) must be equal to D.

Hence, for the integrand to be zero almost everywhere, fX must be constant for

the specified range of values of v. Therefore, we obtain the support of fX as follows:

the maximum value for fX is corresponding to the maximum value of v, i.e

t+ kv = t+ k(t/k) = 2t

and the minimum value of fX is t− k(t/k) = 0. Consequently, fX must be constant

on the interval (0, 2t).

Now suppose that we know that fX is constant on some interval (−γ, γ) where

γ ≥ 2t. Consider v ∈ (0,min((γ + t)/k, γ − t)). Then

0 < v < γ − t→ 0 < t+ v < γ =⇒ fX(t+ v) > 0

0 < v < γ − t→ γ > t− v > t− (γ − t) = 2t− γ > −γ =⇒ fX(t− v) > 0

γ > t− kv > t− k(γ + t)/k = −γ =⇒ fX(t− kv) > 0

So that fX(0) = A = B = C > 0 and so D = fX(0) = A = B = C for the integrand

to be zero. The maximum value of t+ kv for the specified range of values of v is

min (t+ k(γ + t)/k, t+ k(γ − t)) = min (2t+ γ, k(γ − t) + t)

= γ + min (2t, (k − 1)(γ − t))

Since γ − t ≥ t,

γ + min (2t, (k − 1)(γ − t)) ≥ γ + min (2t, (k − 1)t)

= γ + min (2, k − 1) t

= γ + ∆t

Hence, min (t+ k(γ + t)/k, t+ k(γ − t)) ≥ γ + ∆t where ∆ = min
(
2, k − 1

)
> 0.

Therefore, fX should be constant on the interval (−(γ + ∆t), (γ + ∆t)).

We conclude that, when fX is supposed to be constant on some interval, fX

should be constant on wider than that interval by 2∆t.
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By repeating this process, we conclude that fX is constant on the interval

(−(γ + n∆t), (γ + n∆t)) for any positive integer n, and so fX is constant on the

whole real line which is impossible. This contradiction means that the integrand

cannot be zero almost everywhere and therefore that ∂H(a,t)
∂a

> 0. 2

Lemma 2.3.4 (Proschan, 1965, Lemma 2.2). Let fX be a symmetric log-concave

density function, X1, . . . , Xn independently distributed with density fX . Then
n∑
i=1

aiXi is strictly increasing in peakedness as a1 increases from 0 to 1
2
c, with

a1 + a2 = c, 0 < c ≤ 1, ai ≥ 0, i = 1, . . . , n and
∑n

i=1 ai = 1

Proof. First note that
2∑
i=1

aiXi and
n∑
i=1

aiXi are each symmetric unimodal random

variables since each Xi is, see Kanter (1977). Suppose that

a1 < b1, a1 < a2,b1 < b2 , a1 + a2 = c = b1 + b2. Then by Lemma 2.3.3, a1X1 + a2X2

is less peaked than b1X1 + b2X2. By Lemma 2.3.1, it follows that
n∑
i=1

aiXi is less

peaked than
2∑
i=1

biXi +
n∑
i=3

aiXi. Finally, the strictness in Lemma 2.3.4 is because

of the strictness in Lemma 2.3.3. 2

To state Theorem 2.3.5, if a vector b = (b1, . . . , bn) is majorized by vector

a = (a1, . . . , an), then b can be derived from a by a finite number of transformations

T of the form

T (a) = α(a1, . . . , an) + (1− α)(a1, . . . , aj−1, ak, aj+1, . . . , ak−1, aj, ak+1, . . . , an)

where 0 ≤ α ≤ 1, see Hardy et al. (1934).

Theorem 2.3.5 (Proschan, 1965, Theorem 2.3). Let fX be a symmetric log-

concave density function, X1, . . . , Xn independently distributed with density fX ,

a �m b, a, b not identical,
n∑
i=1

ai = 1 =
n∑
i=1

bi. Then

n∑
i=1

biXi is strictly more peaked than
n∑
i=1

aiXi. i.e

P

(∣∣∣∣∣
n∑
i=1

biXi

∣∣∣∣∣ ≥ t

)
< P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
; t ≥ 0 (2.3.19)

Proof. b can be obtained from a by a finite number of T transformations. Applying

Lemma 2.3.4 in each case, therefore the theorem is proved. 2
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2.4 Conclusions

We have highlighted the lemma by Birnbaum (1948), which proved that peaked-

ness increases under convolution when specific conditions are satisfied, used later by

Proschan (1965) in proving his seminal result on peakedness comparison for convex

combinations of independent and identically distributed random variables from a

symmetric log-concave density function. The Birnbaum’s lemma and Proschan’s

seminal result are reproduced with detailed proofs.



Chapter 3

Dominance of Arithmetic Mean

for Repeated Sampling in Some

Risk Problems

3.1 Introduction

This chapter is devoted to theoretically generalize, to a wider range of distribution

shapes, the dominance properties, first introduced in EFSA (2005, 2008) and de-

scribed in Subsection 1.1.1, for the arithmetic mean for LSSDs as the number of

tested species increases. The chapter opens by introducing an example of practical

application by EFSA in Section 3.2. Section 3.3 defines the two statistical risk mea-

sures used, including methods of calculation. In Section 3.4, we consider the case

when the LSSD is normal, and in Section 3.5 discuss location-scale families of distri-

butions. In Section 3.6, the generalization to all LSSDs with symmetric log-concave

densities is presented. Subsequently, LSSDs in the form of mixtures of symmetric

log-concave densities acquired our attention. Sections 3.7 and 3.8 are respectively

devoted to two-component scale and location mixtures of normal LSSDs. They

include a comprehensive analysis of what happens to the dominance properties as

parameters tend to extreme values when the number of tested species increases from

one to two. The chapter closes with some conclusions in Section 3.9. A glossary of

acronyms, including those used in this chapter, is presented at the end of the thesis.

34
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3.2 Example of Application by EFSA

The fungicide thiophanate-methyl and its metabolite carbendazim are used on many

crops. However, their residues could have harmful effects on the environment.

Therefore, risk assessments are essential for the safety of various groups of organisms.

In EFSA (2018c), the risk assessment was made for the effects of the metabolite car-

bendazim on fish. Five species of fish were tested: ictalurus punctatus, oncorhynchus

mykiss, cyprinodon variegatus, lepomis macrochirus, and cyprinus carpio. They

were exposed to carbendazim for 96 hours and the concentration, in milligrams per

liter of water (mg/L), that leads to the mortality of 50% of each of the five species

was determined as indicated in Table 3.1

Fish
Toxicity

(mg/L)

Ictalurus punctatus 0.019

Oncorhynchus mykiss 0.54

Cyprinodon variegatus > 1.158

Lepomis macrochirus > 3.2

Cyprinus carpio 0.44

Table 3.1: Toxicity data, in (mg/L), for five tested species of fish that were exposed

to carbendazim for 96 hours. Reproduced from EFSA (2018d, Toxicity data for all

aquatic tested species).

Following standard first tier regulatory practice, the minimum value of the tox-

icity data in Table 3.1 is 19 µg/L (micrograms per liter of water) and, applying the

standard assessment factor of 100, the AEC is 0.19 µg/L. However, for the higher

tier risk assessment, the geometric mean for the toxicity data of the above five fish

is calculated to be 441 µg/L and, by applying the assessment factor of 100, the AEC

is 4.41 µg/L. As discussed in Subsection 1.1.1, the basis for using the higher tier

AEC as the final value in the risk assessment was established in EFSA (2005) as-

suming that the LSSD was normal and considering the two statistical risk measures:

the mean fraction exceeded and the probability that the fraction exceeded exceeds a
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specified threshold α. The claim is not that replacing the minimum by the geometric

mean leads to reduced risk when more than one species is tested; clearly it does not

since the geometric mean is always greater than or equal to the minimum. Rather,

the justification is that the regulations require only that a single species be tested,

that the minimum is equal to the geometric mean when a single species is tested,

and that the risk using the geometric mean decreases with increasing sample size

for both statistical risk measures.

Note that, as described in Subsection 1.1.1, using log-scale base 10 for the origi-

nal toxicity data means that an equivalent higher tier calculation to obtain the AEC

is to subtract log10 100 = 2 from the arithmetic mean of the log base 10 of the above

five toxicity data which is 2.64 log10 µg/L. Hence, the AEC is 0.64 log10 µg/L. This

quantity will be denoted later by Yn where here n = 5.

3.3 Background

Denote by S1, . . . , Sn the results of testing a substance on n species, where each

Si is the concentration of the substance that causes a specified effect (endpoint).

As discussed in Subsection 1.1.1, a common statistical model in ecotoxicology is

that S1, . . . , Sn are a random sample from the SSD. On taking the logarithm (base

10), the geometric mean of S1, . . . , Sn becomes the arithmetic mean, X̄n, of X1 =

log10 S1, . . . , Xn = log10 Sn, where the values Xi are randomly sampled from the

LSSD. Moreover, dividing the geometric mean by an AF becomes subtracting c =

log(AF) from X̄n. Hence, Yn = X̄n − c is the statistic that addresses inter-species

variability. The fraction exceeded FEn = FX(Yn) is the fraction of species having an

endpoint that is less than Yn, and it is a measure of the fraction of species at risk.

The FEn is in general not observed. However, it is possible to make mathematical

statements about its behaviour under random sampling. We shall use the notation

MFEn, as in EFSA (2008), to stand for the mean fraction exceeded when n species

are tested. Moreover, we will use PFEn(α) to stand for the probability that FEn is

greater than some chosen level α.
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The mathematical formulas of MFEn and PFEn(α) are given below:

MFEn

The Mean Fraction Exceeded MFEn is the expected value of FEn = FX(Yn), i.e

MFEn = E
(
FX(Yn)

)
=

∫ ∞
−∞

FX(y)fYn(y) dy (3.3.1)

PFEn(α)

The probability that the fraction exceeded FEn exceeds some chosen level α is

PFEn(α) = P
(
FX(Yn) > α

)
(3.3.2)

= P
(
X̄n > F−1

X (α) + c
)

(3.3.3)

In addition, EFSA (2008) requires that c is large enough to guarantee that

FX(µ− c) < α (3.3.4)

where µ, σ, and FX are the mean, standard deviation, and the cumulative distribu-

tion function of X respectively. This is not an unreasonable requirement because

c = µ − F−1
X (α) is what is required to move the expected value of X̄n to the α

quantile of the LSSD, the quantile that is being targetted.

In the rest of this chapter we are looking at which conditions on the distributions

lead to MFEn or PFEn(α) decreasing as we increase n. In EFSA (2005), a normal

distribution is assumed for the LSSD. Therefore, we first consider the case when X

is normally distributed in Section 3.4.

3.4 Normal Distribution LSSDs

The normal distribution is parameterized by the mean µ and variance σ2. If X ∼

N(µ, σ2); µ ∈ R, σ > 0, then the probability density and the cumulative distribution

functions are respectively given by

fX(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
; −∞ < x <∞

and

FX(x) = Φ

(
x− µ
σ

)
; −∞ < x <∞ (3.4.1)
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where Φ is the cumulative distribution function of a standard normal random vari-

able, whose density function is

φ(x) =
1√
2π

exp

(
−x2

2

)
; −∞ < x <∞

It is straightforward to show that Yn = X̄n− c has a normal distribution with mean

µ − c and variance σ2/n, as it is a linear function of the sample mean drawn from

the normal distribution with mean µ and variance σ2. Yn has probability density

function

fYn(y) =

√
n/2π

σ
exp

(
−n
(
y − (µ− c)

)2

2σ2

)
; −∞ < y <∞

The mean fraction exceeded when the distribution on the log-scale is normal is

evaluated as follows

Using Equation 3.3.1,

MFEn =

√
n/2π

σ

∫ ∞
−∞

Φ

(
y − µ
σ

)
exp

(
−n(y − (µ− c))2

2σ2

)
dy

=

√
n/2π

2σ

∫ ∞
−∞

(
1 + erf

(
y − µ√

2σ

))
exp

(−n(y − (µ− c))2

2σ2

)
dy

=
1

2
+

√
n/2π

2σ

∫ ∞
−∞

erf
(y − µ√

2σ

)
exp

(−n(y − (µ− c))2

2σ2

)
dy

Using the result from Appendix A.1,

MFEn =
1

2

1 + erf

 −c

σ
√

2(1 + 1
n
)


= Φ

 −c

σ
√

1 + 1
n


It is clear for c > 0 that MFEn decreases as n increases.

In the following, we will examine the behaviour of the probability that the frac-

tion exceeded exceeds a specific α when the number of tested species increases in the

case that LSSD is normal, provided that the condition in Equation 3.3.4 is satisfied.

Recall Equation 3.3.2

PFEn(α) = P
(
FX(Yn) > α

)
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Since FX(x) = Φ(x−µ
σ

),

PFEn(α) = P

(
Φ

(
Yn − µ
σ

)
> α

)
= P

(
Yn > µ+ σΦ−1(α)

)
= 1− Φ

(√
n(σΦ−1(α) + c)

σ

)
(3.4.2)

By using Equations 3.3.4 and 3.4.1, thus we obtain

FX(µ− c) = Φ

(
−c
σ

)
< α

Consequently, σΦ−1 (α) + c > 0. In addition, Φ

(√
n(σΦ−1(α)+c)

σ

)
in Equation 3.4.2

is increasing as n increases. As a result, PFEn(α) decreases as n increases provided

that c > µ− F−1
X (α).

3.5 Location-Scale Family of Distributions

We now show the stability of the domainance properties of the two statistical mea-

sures under changes to the location and/or scale of a distribution.

A location-scale family of distributions is formed by starting with a standard

probability density function fZ and considering the linear transformation X =

µ + σZ, where Z ∼ fZ , µ ∈ R and σ ∈ (0,∞). µ is the location parameter which

is responsible for shifting the graph on the horizontal line to the right or left. The

scale parameter σ is responsible for stretching or compressing the probability den-

sity function. The probability density function of X and its cumulative distribution

function are then

fX(x) =
1

σ
fZ

(
x− µ
σ

)
FX(x) = FZ

(
x− µ
σ

)
(3.5.1)

Proposition 3.5.1 E
(
FZ
(
Z̄n − c∗

))
and P

(
FZ
(
Z̄n − c∗

)
> α

)
decrease, as n in-

creases, if and only if E
(
FX
(
X̄n − c∗σ

))
and P

(
FX
(
X̄n − c∗σ

)
> α

)
respectively

decrease.
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Proof : It is sufficient to prove that FZ
(
Z̄n − c∗

)
= FX

(
X̄n − c∗σ

)
in order to prove

this proposition. By using Equation 3.5.1,

FZ
(
Z̄n − c∗

)
= FX

((
Z̄n − c∗

)
σ + µ

)
= FX

((∑n
i=1 Xi − nµ

nσ
− c∗

)
σ + µ

)
= FX

(
X̄n − c∗σ

)
Therefore, we conclude that if either dominance property holds for FZ , then it holds

for any distribution in the same location-scale family. This happens by re-scaling

c∗ using the scale parameter of that distribution. For example, if we had proved

only that the dominance properties of the arithmetic mean hold for the standard

normal distribution, then they hold for any normal distribution with mean µ ∈ R

and standard deviation σ > 0. 2

3.6 Symmetric Log-Concave Probability Density

Functions

In this section, we consider distributions with symmetric and log-concave densities.

We shall exploit the seminal result obtained by Proschan (1965), reproduced in

Section 2.3, to prove the following theorem.

Theorem 3.6.1 Let X1, . . . , Xn be independently distributed with symmetric log-

concave density fX . As n increases, MFEn decreases and PFEn(α) decreases pro-

vided that c > −F−1
X (α).

Proof. First: To prove MFEn decreases as n increases, we argue as follows:

Recall first that Yn = X̄n − c. Now

MFEn = E (FX (Yn)) = E (P (X ≤ Yn|Yn))

= P (X ≤ Yn)

where X is an independently sampled value from fX . Let a1 = · · · = an−1 =

1/(n− 1), an = 0 and b1 = · · · = bn = 1/n in Theorem 2.3.5. Hence,

P
(∣∣X̄n

∣∣ ≥ t
)
< P

(∣∣X̄n−1

∣∣ ≥ t
)
∀ t ≥ 0 (3.6.1)
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Moreover, log-concavity is preserved under convolution, therefore
∑k

i=1Xi is log-

concave. In addition, the linear transformation of log-concave random variables is

log-concave. Consequently, −X̄k is log-concave. Furthermore, the symmetry of −X̄k

results from the symmetry of X̄k. Therefore, X − X̄n has the same distribution as

X + X̄n. Let a =
(

1
2
, 1

2(n−1)
, . . . , 1

2(n−1)
, 0
)

and b =
(

1
2
, 1

2n
, . . . , 1

2n

)
in Theorem 2.3.5,

P

(∣∣X + X̄n

∣∣
2

≥ t

)
< P

(∣∣X + X̄n−1

∣∣
2

≥ t

)
∀ t ≥ 0

Hence,

P
(∣∣X + X̄n

∣∣ ≥ 2t
)
< P

(∣∣X + X̄n−1

∣∣ ≥ 2t
)
∀ t ≥ 0

which is equivalent to

P
(∣∣X − X̄n

∣∣ ≥ 2t
)
< P

(∣∣X − X̄n−1

∣∣ ≥ 2t
)
∀ t ≥ 0 (3.6.2)

By symmetry of X − X̄k, Equation 3.6.2 becomes

P
(
X − X̄n ≤ −2t

)
< P

(
X − X̄n−1 ≤ −2t

)
Set t = c/2, thus we obtain

P
(
X − X̄n + c ≤ 0

)
< P

(
X − X̄n−1 + c ≤ 0

)
and

P (X ≤ Yn) < P (X ≤ Yn−1)

Therefore, MFEn decreases as n increases.

Second: To prove PFEn(α) decreases as n increases, set t = F−1
X (α) + c > 0 in

Equation 3.6.1, and note symmetry of X̄k. Thus

P
(
X̄n ≥ F−1

X (α) + c
)
< P

(
X̄n−1 ≥ F−1

X (α) + c
)

which is equivalent to

P (FX(Yn) ≥ α) < P (FX(Yn−1) ≥ α)

Therefore, PFEn(α) decreases as n increases. 2

In Sections 3.7 and 3.8, we consider the two-component scale mixture of normal
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distributions and the two-component location mixture of normal distributions re-

spectively. We consider the two-component scale mixture of normal distributions as

a way of broadening to families of distributions that are heavy tailed distributions.

The two-component location mixture of normal distributions is considered as away

of addressing skewness. In addition, bimodality of the empirical SSD is common

(Fox et al., 2021). Moreover, we chose the mixture of normals due to the possibility

of analytical calculations.

3.7 A Two-Component Scale Mixture of Normal

Distributions

In this section, we consider that the distribution of X is a scale mixture of normal

(SMN) distribution having two components. Thus

X|σ2 ∼ N(0, σ2) and σ2 ∼ 1 + Bern(1 − w)∆, where ∆ = ψ − 1 > 0, and the

distribution of Bern(1 − w) is the Bernoulli distribution that has probability mass

function 1 with probability 1− w; 0 ≤ w ≤ 1

0 with probability w

The mixture components both have zero means and the variances are 1 and ψ > 1.

The probability density function of X ∼ SMN(w, 0, 1, ψ) is

fX(x) = wφ(x) +
(1− w)√

ψ
φ

(
x√
ψ

)
; −∞ < x <∞

3.7.1 MFEn

In this subsection, we first obtain MFEn when the distribution of X is a mix-

ture of two normal distributions on both the location and scale parameters, i.e.

X ∼ MN(w, µ1, µ2, σ
2
1, σ

2
2) where µ1, µ2 ∈ R; σ2

1, σ
2
2 > 0; and 0 ≤ w ≤ 1 are lo-

cation, scale, and weight parameters respectively. Second, we obtain MFEn when

X ∼ SMN(w, 0, 1, ψ) as a special case. The probability density and characteristic

functions of X ∼ MN(w, µ1, µ2, σ
2
1, σ

2
2) are given respectively as

fX(x) =
w

σ1

φ

(
x− µ1

σ1

)
+

1− w
σ2

φ

(
x− µ2

σ2

)
(3.7.1)
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and

ΨX(t) = wΨ1(t) + (1− w)Ψ2(t); t ∈ R (3.7.2)

where

Ψj(t) = exp

(
itµj −

t2σ2
j

2

)
; j = 1, 2 (3.7.3)

Let X1, . . . , Xn be independent and identically distributed from the distribution

with density function in Equation 3.7.1. By using Equation 3.7.2, the characteristic

function of X̄n is

ΨX̄n(t) =

(
ΨX

(
t

n

))n
=

(
wΨ1

(
t

n

)
+ (1− w)Ψ2

(
t

n

))n
By using Binomial expansion, the previous equation becomes

ΨX̄n(t) =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)Ψk

1

(
t

n

)
Ψ

(n−k)
2

(
t

n

)
Using Equation 3.7.3, we obtain

ΨX̄n(t) =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

(
exp

(
itµ1

n
− t2σ2

1

2n2

))k (
exp

(
itµ2

n
− t2σ2

2

2n2

))(n−k)

=
n∑
k=0

(
n

k

)
wk(1− w)(n−k) exp

(
it (kµ1 + (n− k)µ2)

n
− t2 (kσ2

1 + (n− k)σ2
2)

2n2

)
Consequently, X̄n is a mixture of (n+1) normal distributions. Moreover, its proba-

bility density function is

fX̄n(x) =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

n exp

(
−(nx−(kµ1+(n−k)µ2))2

2(kσ2
1+(n−k)σ2

2)

)
√

2π (kσ2
1 + (n− k)σ2

2)
(3.7.4)

and the characteristic function of Yn is

ΨYn(t) = e−itcΨX̄n(t)

=
n∑
k=0

(
n

k

)
wk(1− w)(n−k) exp

(
it

(
kµ1 + (n− k)µ2

n
− c
)
− t2 (kσ2

1 + (n− k)σ2
2)

2n2

)
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Hence, Yn is a mixture of (n+1) normal distributions. In addition, its probability

density function is

fYn(y) =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

n exp

(
−(ny−(kµ1+(n−k)µ2−nc))2

2(kσ2
1+(n−k)σ2

2)

)
√

2π (kσ2
1 + (n− k)σ2

2)
(3.7.5)

Using Equations 3.3.1 and 3.7.5, thus

MFEn =
w

2

∫ ∞
−∞

n∑
k=0

(
n

k

)
wk(1− w)(n−k) n√

2π (kσ2
1 + (n− k)σ2

2)

× exp

(
− (ny − (kµ1 + (n− k)µ2 − nc))2

2 (kσ2
1 + (n− k)σ2

2)

)(
1 + erf

(
y − µ1√

2σ1

))
dy

+
(1− w)

2

∫ ∞
−∞

n∑
k=0

(
n

k

)
wk(1− w)(n−k) n√

2π (kσ2
1 + (n− k)σ2

2)

× exp

(
− (ny − (kµ1 + (n− k)µ2 − nc))2

2 (kσ2
1 + (n− k)σ2

2)

)(
1 + erf (

y − µ2√
2σ2

)

)
dy

=
1

2
+

1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k)

×
∫ ∞
−∞

n√
2π (kσ2

1 + (n− k)σ2
2)

exp

(
− (ny − (kµ1 + (n− k)µ2 − nc))2

2 (kσ2
1 + (n− k)σ2

2)

)

×
{
w erf

(
y − µ1√

2σ1

)
+ (1− w)erf

(
y − µ2√

2σ2

)}
dy

Using the result from Appendix A.1,

MFEn =
1

2
+

1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k)

{
w erf

(
(n− k)(µ2 − µ1)− nc√

2 ((n2 + k)σ2
1 + (n− k)σ2

2)

)

+(1− w)erf

(
k(µ1 − µ2)− nc√

2 (kσ2
1 + (n2 + n− k)σ2

2)

)}

When X ∼ SMN(w, 0, 1, ψ), the MFEn will be

MFEn =
1

2
+

1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k)

{
w erf

(
−nc√

2 ((n2 + k) + (n− k)(1 + ∆))

)

+(1− w)erf

(
−nc√

2 (k + (n2 + n− k)(1 + ∆))

)}
(3.7.6)
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Which is equivalent to

MFEn =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

(
wΦ

(
−nc√

n2 + n+ (n− k)∆

)

+(1− w)Φ

(
−nc√

n2 + n+ (n2 + n− k)∆

))
(3.7.7)

The previous equation can be rewritten in terms of ψ, thus we obtain

MFEn =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

(
wΦ

(
−nc√

n2 + k + (n− k)ψ

)

+(1− w)Φ

(
−nc√

k + (n2 + n− k)ψ

))
(3.7.8)

In this section, MFEn are expressed in terms of ψ or ∆ = ψ − 1 according to the

case that we would like to prove.

The MFEn in Equation 3.7.8 is plotted in Figure 3.1 for sample sizes n = 1, . . . , 50

and different values of w in the case when c = 1 and ψ = 43. In some of these plots

MFE1 ≤ MFE2, which means that the increase in sample size from one observation

to two observations does not guarantee the decreasing of the mean fraction exceeded.
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Figure 3.1: A plot of MFEn versus n for the SMN(w, 0, 1, 43) distribution and

selected values of w.
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Based on Figure 3.1, for c = 1 and ψ = 43, when w = 0.23 we found MFE1 > MFE2.

Whereas, when w = 0.35, MFE1 = MFE2. In addition, when w = 0.55, MFE1 <

MFE2. Hence, we became interested in exploring the case when MFE1 and MFE2

are equal, since we will know when MFE1 > MFE2, i.e. when MFEn decreases as n

increases from one to two. Using Equation 3.7.8, MFE1 and MFE2 are respectively

given by

MFE1 = (1− w)2Φ

(
−c√
2ψ

)
+ 2w(1− w)Φ

(
−c√
ψ + 1

)
+ w2Φ

(
−c√

2

)
(3.7.9)

and

MFE2 = (1− w)2wΦ

(
−2c√
2ψ + 4

)
+ (1− w)3Φ

(
−2c√

6ψ

)
+2w2(1− w)Φ

(
−2c√
ψ + 5

)
+ 2w(1− w)2Φ

(
−2c√
5ψ + 1

)
+w3Φ

(
−2c√

6

)
+ w2(1− w)Φ

(
−2c√
4ψ + 2

)
(3.7.10)

We shall use the term ∆MFE12 to refer to the difference between MFE1 and MFE2.

Thus

∆MFE12 = MFE1 −MFE2 (3.7.11)

By using Equations 3.7.9 and 3.7.10,

∆MFE12 = w3

[
Φ

(
−2c√
4ψ + 2

)
− Φ

(
−2c√

6

)
+ 2Φ

(
−2c√
ψ + 5

)
− 2Φ

(
−2c√
5ψ + 1

)

−Φ

(
−2c√
2ψ + 4

)
+ Φ

(
−2c√

6ψ

)]

+ w2

[
Φ

(
−c√

2

)
− Φ

(
−2c√
4ψ + 2

)
− 2Φ

(
−2c√
ψ + 5

)
− 2Φ

(
−c√
ψ + 1

)

+4Φ

(
−2c√
5ψ + 1

)
+ Φ

(
−c√
2ψ

)
+ 2Φ

(
−2c√
2ψ + 4

)
− 3Φ

(
−2c√

6ψ

)]

+ w

[
2Φ

(
−c√
ψ + 1

)
− 2Φ

(
−2c√
5ψ + 1

)
− 2Φ

(
−c√
2ψ

)
− Φ

(
−2c√
2ψ + 4

)

+3Φ

(
−2c√

6ψ

)]
+

[
Φ

(
−c√
2ψ

)
− Φ

(
−2c√

6ψ

)]
With respect to w, ∆MFE12 is a cubic function with coefficients that depend on c

and ψ. Furthermore, ∆MFE12 has a value of zero if and only if the real root(s) of
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this cubic function is (are) restricted to be in the interval (0, 1).

Figure 3.2 displays the zero contour of ∆MFE12 for different values of w. The

vertical axis represents a wide range of c, and the horizontal axis represents ∆ =

ψ − 1. Both axes are taken on the log-scale.
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Figure 3.2: Plots of the zero contour of ∆MFE12 with respect to log(∆) (x-axis)

and log(c) (y-axis) for the SMN(w, 0, 1,∆) distribution. Each of the nine panels is

related to a specific value of w. The red dashed lines equation is log(c) = 0.5 log(∆).
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From Figure 3.2, the zero contour of ∆MFE12 behaves differently in three parts.

The first part which is formed of the vertical line that appears when c is small. The

second part which is about the horizontal line that is formed when ψ has a large

value. In the third part, when both c and ψ have large values, the zero contour of

∆MFE12 appears as a line that is parallel to the line log(c) = 0.5 log(∆). The aim

of the rest of this section and Section 3.8, as we will see later, is to bound the area

where the dominance properties for the arithmetic mean do not hold. Therefore,

we are interested in exploring the limiting behaviour as parameters tend to extreme

values. The purpose of those limiting calculations is to be sure that the behaviour

seen in the figures is correct for more extreme values of parameters where the numer-

ical methods used to produce the figures might become unstable. Consequently, we

shall consider three cases: c is small, ψ approaches ∞, and both c and ψ approach

∞. In addition, we will add lines, the equations for which are obtained by assuming

these three cases, to copies of those figures in order to verify that the figures were

showing the correct limiting behaviours. The summary of findings for these three

cases is presented in Table 3.2 followed by detailed proofs.

Case A: Small c

∆MFE12 ≈
c√
π

[
2∑

k=0

(
2

k

)
w(k+1)(1− w)(2−k)

√
2

4 + k + (2− k)ψ

+
2∑

k=0

(
2

k

)
wk(1− w)(3−k)

√
2

k + (6− k)ψ

−
1∑

k=0

(
1

k

)
w(k+1)(1− w)(1−k)√
2{1 + k + (1− k)ψ}

−
1∑

k=0

(
1

k

)
wk(1− w)(2−k)√
2{k + (2− k)ψ}

]
Table 3.2: Summary of the behaviour limiting of the zero contour of ∆MFE12 for

the SMN(w, 0, 1, ψ) distribution when c is small, ψ approaches∞, and c and ψ both

approach ∞. Table continues on the next page.
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Case B: ψ approaches ∞

∆MFE12 →
(

2w(1− w)− w2(1− w)
)

Φ
(−1√

φ

)
+ (1− w)2Φ

( −1√
2φ

)
− w(1− w)2Φ

(
−
√

2

φ

)
− (1− w)3Φ

(
−
√

2

3φ

)
− 2w2(1− w)Φ

(−2√
φ

)
− 2w(1− w)2Φ

( −2√
5φ

)
Case C: c and ψ both approach ∞

∆MFE12 →
(

2w(1− w)− w2(1− w)
)

Φ
(−1√

φ

)
+ (1− w)2Φ

( −1√
2φ

)
− w(1− w)2Φ

(
−
√

2

φ

)
− (1− w)3Φ

(
−
√

2

3φ

)
− 2w2(1− w)Φ

(−2√
φ

)
− 2w(1− w)2Φ

( −2√
5φ

)
Table 3.2: Continued from previous page.

The detailed proof of the summary results in Table 3.2 is as follows:

Case A: Small c

This case corresponds to the vertical lines in Figure 3.2. In the following, we will

explore the equation of the vertical line given a specific value of w.

Equation 3.7.6 can be rewritten in terms of ψ, thus we obtain

MFEn =
1

2
+

1

2

n∑
k=0

(
n

k

)
w(k+1)(1− w)(n−k)

×erf

(
−nc√

2{n2 + k + (n− k)ψ}

)

+
1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k+1)

×erf

(
−nc√

2{k + (n2 + n− k)ψ}

)
(3.7.12)

For small c, The first-order Maclaurin series expansion of MFEn in Equation 3.7.12
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is

MFEn ≈
1

2
− c√

π

[
n∑
k=0

(
n

k

)
nw(k+1)(1− w)(n−k)√
2{n2 + k + (n− k)ψ}

+
n∑
k=0

(
n

k

)
nwk(1− w)(n−k+1)√
2{k + (n2 + n− k)ψ}

]

Consequently,

∆MFE12 ≈
c√
π

[
2∑

k=0

(
2

k

)
w(k+1)(1− w)(2−k)

√
2

4 + k + (2− k)ψ

+
2∑

k=0

(
2

k

)
wk(1− w)(3−k)

√
2

k + (6− k)ψ

−
1∑

k=0

(
1

k

)
w(k+1)(1− w)(1−k)√
2{1 + k + (1− k)ψ}

−
1∑

k=0

(
1

k

)
wk(1− w)(2−k)√
2{k + (2− k)ψ}

]
The previous equation is the equation of the vertical line at any value of ψ when a

specific value of w is given.

Case B: ψ approaches ∞

When ψ →∞, the zero contour of ∆MFE12 forms a horizontal line. The equations

of the horizontal lines in Figure 3.2 are obtained as follows:

By assuming k = n in the first summation of Equation 3.7.12, the term that does

not involve ψ is extracted. Hence,

MFEn =
1

2
+

1

2

n−1∑
k=0

(
n

k

)
w(k+1)(1− w)(n−k)erf

(
−nc√

2{n2 + k + (n− k)ψ}

)

+
1

2
w(n+1)erf

(
−nc√

2(n2 + n)

)

+
1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k+1)erf

(
−nc√

2{k + (n2 + n− k)ψ}

)
Set ψ →∞ in the previous equation, thus

MFEn →
1

2
+
w(n+1)

2
erf

(
−nc√

2(n2 + n)

)

=
1

2
+ w(n+1)

{
Φ

(
−nc√
n2 + n

)
− 1

2

}
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Consequently,

MFE1 →
1

2
+ w2

{
Φ

(
−c√

2

)
− 1

2

}
and

MFE2 →
1

2
+ w3

{
Φ

(
−2c√

6

)
− 1

2

}
Therefore,

∆MFE12 → w2

{
Φ

(
−c√

2

)
− wΦ

(
−2c√

6

)
− (1− w)

2

}
(3.7.13)

Equation 3.7.13 is used to obtain c that makes ∆MFE12 → 0 for a specific value of

w, this represents the equation of the horizontal line when ψ →∞.

Figure 3.3 presents ∆MFE12 in Equation 3.7.13 as a function of c for selected

values of w. The left panel demonstrates this argument for a wide range of c. It is

clear that ∆MFE12 could be zero for c between 0 and 2. However, it is not clear

for which value of w. To clarify this argument visually, we set the ranges of c and

∆MFE12 to be respectively [0, 2] and [−0.02, 0.02] in the right panel.
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(b) c ∈ (0, 2) and ∆MFE12 ∈ (−0.02, 0.02)

Figure 3.3: ∆MFE12 versus c for the SMN(w, 0, 1, ψ) distribution and selected values

of w when ψ →∞ (Equation 3.7.13).
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Figure 3.3 suggests that ∆MFE12 in Equation 3.7.13 could tend to zero when w

becomes larger.

Case C: c and ψ both approach ∞

As illustrated in Figure 3.2, when c and ψ approach∞, the zero contour of ∆MFE12

is parallel to log(c) = 0.5 log(∆). The equation of such a line is

log(c) = 0.5(log(∆)− log(φ)) (3.7.14)

Therefore, we will obtain φ = ∆/c2 as follows:

Equation 3.7.7 can be written as

MFEn =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

×

(
wΦ

(
−n√

(n2 + n)/c2 + (n− k)∆/c2

)

+(1− w)Φ

(
−n√

(n2 + n)/c2 + (n2 + n− k)∆/c2

))

Let c and ∆ approach infinity, and notice that φ = ∆/c2 becomes constant. There-

fore,

MFEn →
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

(
wΦ

(
−n√

(n− k)φ

)

+(1− w)Φ

(
−n√

(n2 + n− k)φ

))

Hence,

∆MFE12 →
(
2w(1− w)− w2(1− w)

)
Φ

(
−1√
φ

)
+ (1− w)2Φ

(
−1√
2φ

)
− w(1− w)2Φ

(
−
√

2

φ

)
− (1− w)3Φ

(
−
√

2

3φ

)
− 2w2(1− w)Φ

(
−2√
φ

)
− 2w(1− w)2Φ

(
−2√
5φ

)
(3.7.15)

Equation 3.7.15 is used to obtain φ numerically for a specific value of w.

The findings in Case A, Case B, and Case C for selected values of w are presented

in Table 3.3.
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w Small c ψ approaches ∞ c and ψ both approach ∞

0.1 log(∆) = 6.31 − log(∆/c2) = 5.13

0.3 log(∆) = 3.82 − log(∆/c2) = 2.56

0.5 log(∆) = 3.36 − log(∆/c2) = 1.88

0.7 log(∆) = 3.77 − log(∆/c2) = 1.57

0.75 log(∆) = 4.14 − log(∆/c2) = 1.52

0.8 log(∆) = 4.85 − log(∆/c2) = 1.47

0.85 log(∆) = 7.13 − log(∆/c2) = 1.43

0.87 − log(c) = −0.89 log(∆/c2) = 1.41

0.9 − log(c) = 0.22 log(∆/c2) = 1.39

Table 3.3: The zero contour equations of ∆MFE12 for the SMN(w, 0, 1,∆) distribu-

tion, and selected values of w, when c is small, ψ approaches ∞, and c and ψ both

approach ∞. The numbers in the second, third, and fourth column are rounded to

two decimal places.

In Table 3.3, ψ is calculated for different values of w. Clearly ψ decreases to a

certain value, and then it increases. The minimum value of ψ (ψmin) is calculated

numerically to be 29.8187 at w = 0.515. Furthermore, φ decreases in w. Hence, the

minimum value of φ (φmin) is numerically found to be 3.777 at w = 0.9999.

In addition, φmin and ψmin determine respectively the boundary lines

log(c) = 0.5(log(∆)− 1.329)

and

log(∆) = 3.361024

These lines are used to determine the area where ∆MFE12 / 0, see Figure 3.4 for

illustration.
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Figure 3.4: A plot of the zero contours of ∆MFE12 with respect to log ∆ (x-axis) and

log(c) (y-axis) for the SMN(w, 0, 1,∆) distribution, and selected values of w. The

black dashed lines equations are log(∆) = 3.361024 and log(c) = 0.5(log(∆)−1.329)

In order to make comparative plots between the approximations of ∆MFE12 in

the previous cases and the real contours, the zero contour of ∆MFE12 for different

values of w is illustrated with the lines, the equations for which are presented in

Table 3.3, in Figure 3.5.



3.7. A Two-Component Scale Mixture of Normal Distributions 55

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(a) w = 0.1

Log( D)
L

o
g

(c
)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(b) w = 0.3

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(c) w = 0.5

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(d) w = 0.7

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(e) w = 0.75

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(f) w = 0.8

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(g) w = 0.85

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(h) w = 0.87

Log( D)

L
o

g
(c

)

-10 -5 0 5 10 15 20

-1
0

-5
0

5
1

0

DMFE12 < 0DMFE12 > 0

(i) w = 0.9

Figure 3.5: Plots of the zero contour of ∆MFE12 with respect to log(∆) (x-axis) and

log(c) (y-axis) for the SMN(w, 0, 1,∆) distribution. Each of the nine panels related

to a specific value of w. The equations of dashed lines are presented in Table 3.3.
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3.7.2 PFEn(α)

In this subsection, we first obtain PFEn(α) whenX ∼ MN(w, µ1, µ2, σ
2
1, σ

2
2). Second,

we obtain PFEn(α) when X ∼ SMN(w, 0, 1, ψ) as a special case.

Define b = F−1
X (α) + c, the condition c > µ − F−1

X (α) introduced earlier in

Equation 3.3.4 is equivalent in this part to b > 0. Hence Equation 3.3.3 becomes

PFEn(α) = P
(
X̄n > b

)
(3.7.16)

Using Equations 3.7.4 and 3.7.16, the PFEn(α) is

PFEn(α) =
n∑
k=0

(
n

k

)
wk(1− w)(n−k)

(
1− Φ

(
nb− (kµ1 + (n− k)µ2)

(kσ2
1 + (n− k)σ2

2) /n

))
(3.7.17)

Hence, for SMN(w, 0, 1, ψ) distribution and n = 1, 2; PFE1(α) and PFE2(α) respec-

tively are

PFE1(α) = 1− (1− w)Φ

(
b− µ2

σ2

)
− wΦ

(
b− µ1

σ1

)
(3.7.18)

and

PFE2(α) = 1−

[
(1−w)2Φ

(
b− µ2√
σ2

2/2

)
+2w(1−w)Φ

(
b− (µ1 + µ2)/2√

(σ2
1 + σ2

2)/4

)
+w2Φ

(
b− µ1√
σ2

1/2

)]
(3.7.19)

Consequently, when X ∼ SMN(w, 0, 1, ψ), Equations 3.7.18 and 3.7.19 respectively

become

PFE1(α) = 1− (1− w)Φ

(
b√
ψ

)
− wΦ (b)

and

PFE2(α) = 1− (1− w)2Φ

(
b√
ψ/2

)
− 2w(1− w)Φ

(
b√

(1 + ψ)/2

)
− w2Φ

(
b√
1/2

)
The difference between PFE1(α) and PFE2(α) is defined as

∆PFE12(α) = PFE1(α)− PFE2(α) (3.7.20)

Therefore,

∆PFE12(α) = (1− w)2Φ

(
b√
ψ/2

)
+ 2w(1− w)Φ

(
b√

(1 + ψ)/2

)
+ w2Φ

(
b√
1/2

)

− (1− w)Φ

(
b√
ψ

)
− wΦ (b) (3.7.21)
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In Figure 3.6, we display the zero contour of ∆PFE12(α) for different values of w.

The vertical axis represents a wide range of b, while the horizontal axis represents

∆ = ψ − 1. Both axes are taken on the log-scale.
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Figure 3.6: Plots of the zero contour of ∆PFE12(α) with respect to log(∆) (x-axis)

and log(b) (y-axis) for the SMN(w, 0, 1,∆) distribution. Each of the nine panels is

related to a specific value of w. The red dashed lines equation is log(b) = 0.5 log(∆).



3.7. A Two-Component Scale Mixture of Normal Distributions 58

Equation 3.7.21 can be rewritten as

∆PFE12(α) = w2

{
Φ

(
b√
1/2

)
− 2Φ

(
2b√

(1 + ψ)

)
+ Φ

(
b√
ψ/2

)}

+ w

{
2Φ

(
2b√

(1 + ψ)

)
− 2Φ

(
b√
ψ/2

)
+ Φ

(
b√
ψ

)

−Φ (b)

}
− Φ

(
b√
ψ

)
+ Φ

(
b√
ψ/2

)

With respect to w, ∆PFE12(α) is a quadratic function with coefficients depending

on b and ψ. It equals zero if and only if the real root(s) of this quadratic function

is (are) restricted to be in the interval (0, 1). As illustrated in Figure 3.6, the zero

contour of ∆PFE12(α) behaves differently in three different ways depending on the

values of b, ψ, and such root(s).

In this section, we will analyse the behaviour of the zero contour of ∆PFE12(α)

as parameters tend to extreme values. Consequently, we will explore three cases: b

is small, ψ approaches∞, and b and ψ both approach∞. The summary of findings

will be presented in Table 3.4 followed by detailed proof.

Case A: Small b

∆PFE12(α) ≈ b√
π

((1− w)2

√
ψ

+ 2w(1− w)

√
2

1 + ψ

+ w2 − (1− w)√
2ψ

− w√
2

)
Case B: ψ approaches ∞

∆PFE12(α)→ w2Φ(
√

2b)− wΦ(b) +
w(1− w)

2

Case C: b and ψ both approach ∞

∆PFE12(α)→ (1− w)2Φ
(√2

φ

)
+ 2w(1− w)Φ

( 2√
φ

)
− w(1− w)− (1− w)Φ

( 1√
φ

)
Table 3.4: Summary of the behaviour limiting of the zero contour of ∆PFE12(α) for

the SMN(w, 0, 1, ψ) distribution when b is small, ψ approaches ∞, and both b and

ψ approach ∞.
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The detailed proof of the summary results in Table 3.4 is as follows:

Case A: Small b

In this case, we will explore the equations of the vertical lines in Figure 3.6 that are

shown when b is small as follows:

Equation 3.7.21 is expressed in terms of erf (.), thus

∆PFE12(α) =
1

2

[
(1− w)2erf

(
b√
ψ

)
+ 2w(1− w)erf

(
b√

(1 + ψ)/2

)
+ w2erf (b)

−(1− w)erf

(
b√
2ψ

)
− w erf

(
b√
2

)]

For small b,

∆PFE12(α) ≈ b√
π

(
(1− w)2

√
ψ

+ 2w(1− w)

√
2

1 + ψ
+ w2 − (1− w)√

2ψ
− w√

2

)
Based on a given value of w, the previous equation is used to calculate ψ that makes

∆PFE12(α) ≈ 0.

Case B: ψ approaches ∞

When ψ → ∞, the zero contour of ∆PFE12(α) appears as a horizontal line. The

equations of the horizontal lines in Figure 3.6 are obtained as follows:

Let ψ →∞ in Equation 3.7.21. Hence,

∆PFE12(α)→ w2Φ
(√

2b
)
− wΦ(b) +

w(1− w)

2
(3.7.22)

In order to get the equation of the horizontal line for a specific value of w, Equation

3.7.22 is used to obtain b that makes ∆PFE12(α)→ 0

Figure 3.7 presents ∆PFE12(α) in Equation 3.7.22 as a function of b for selected

values of w. The left panel demonstrates this argument for a specific range of b.

As shown in the figure, ∆PFE12(α) could be zero for b ∈ (0, 2) and ∆PFE12(α) ∈

(−0.1, 0.2). However, it is not clear for which value of w. To clarify this argu-

ment visually, we set the ranges of b and ∆PFE12(α) to be respectively [0, 2] and

[−0.04, 0.04] in the right panel.
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Figure 3.7: ∆PFE12(α) versus b for the SMN(w, 0, 1, ψ) distribution and selected

values of w when ψ →∞ (Equation 3.7.22).

Figure 3.7 suggests that ∆PFE12(α) in Equation 3.7.22 could tend to zero when w

becomes larger.

Case C: b and ψ both approach ∞

As illustrated in Figure 3.6, when b and ∆ approach infinity, the zero contour of

∆PFE12 forms the line that is parallel to log(b) = 0.5 log(∆). The equation of such

a line is

log(b) = 0.5(log(∆)− log(φ)) (3.7.23)

where φ = ∆/b2 is obtained as follows:

Set ψ = ∆ + 1 in Equation 3.7.21,

∆PFE12(α) = (1− w)2Φ

( √
2b√

∆ + 1

)
+ 2w(1− w)Φ

(
2b√

(∆ + 2)

)

+ w2Φ

(
b√
1/2

)
− (1− w)Φ

(
b√

∆ + 1

)
− wΦ (b)
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The previous equation can be rewritten as

∆PFE12(α) = (1− w)2Φ

( √
2√

∆/b2 + 1/b2

)
+ 2w(1− w)Φ

(
2√

∆/b2 + 2/b2

)

+ w2Φ

(
b√
1/2

)
− (1− w)Φ

(
1√

∆/b2 + 1/b2

)
− wΦ (b)

Let b and ∆ approach infinity, and notice that ∆/b2 becomes constant. Define

φ = ∆/b2, therefore

∆PFE12(α)→ (1−w)2Φ

(√
2

φ

)
+2w(1−w)Φ

(
2√
φ

)
−w(1−w)−(1−w)Φ

(
1√
φ

)
(3.7.24)

Equation 3.7.24 is used to obtain φ numerically for a specific value of w.

The findings in Case A, Case B, and Case C for different values of w are presented

in Table 3.5.

w Small b ψ approaches ∞ b and ψ both approach ∞

0.1 log(∆) = 3.87 − log(∆/b2) = 3.30

0.3 log(∆) = 3.06 − log(∆/b2) = 2.11

0.5 log(∆) = 3.46 − log(∆/b2) = 1.72

0.6 log(∆) = 4.29 − log(∆/b2) = 1.60

0.65 log(∆) = 5.26 − log(∆/b2) = 1.55

0.7 log(∆) = 9.10 − log(∆/b2) = 1.51

0.75 − log(b) = −0.48 log(∆/b2) = 1.47

0.8 − log(b) = −0.06 log(∆/b2) = 1.44

0.9 − log(b) = 0.42 log(∆/b2) = 1.38

Table 3.5: The zero contour equations of ∆PFE12(α) for the SMN(w, 0, 1,∆) distri-

bution, and selected values of w, when b is small, ψ approaches ∞, and both b and

ψ approach ∞. The numbers in the second, third, and fourth column are rounded

to two decimal places.

Table 3.5 shows that as w increases, ψ decreases until it reaches the minimum

value of ψ, after that ψ continues to increase. The minimum value of ψ (ψmin) is

calculated numerically to be 22.1924 at w = 0.3154. Moreover, φ decreases in w.
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Hence, the minimum value of φ (φmin) where ∆PFE12 → 0 is numerically found to

be 3.777 at w = 0.9999. Furthermore, φmin and ψmin respectively determine the

lines

log(∆) = 3.053643

and

log(b) = 0.5(log(∆)− 1.329)

These lines bound the area where ∆PFE12(α) / 0. See Figure 3.8 for illustration.
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Figure 3.8: A Plot of the zero contour of ∆PFE12(α) with respect to log(∆) (x-axis)

and log(b) (y-axis) for the SMN(w, 0, 1,∆) distribution, and selected values of w.

The black dashed lines equations are log(∆) = 3.053643 and log(c) = 0.5(log(∆)−

1.32896).

In order to make comparative plots between the approximations of ∆PFE12(α)

in the previous cases and the real contours, the zero contour of ∆PFE12(α) for dif-

ferent values of w is illustrated with the lines, the equations for which are presented

in Table 3.5, in Figure 3.9.
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Figure 3.9: Plots of the zero contour of ∆PFE12(α) with respect to log ∆ (x-axis)

and log(b) (y-axis)for the SMN(w, 0, 1,∆) distribution. Each of the nine panels is

related to a specific value of w. The equations of dashed lines are presented in Table

3.5.
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3.8 A Two-Component Location Mixture of Nor-

mal Distributions

In this section, we consider that the distribution of X is a location mixture of

normal (LMN) distribution having two components. The mixture components have

means −a and a and both have variances 1. The probability density function of

X ∼ LMN(w,−a, a, 1) is

fX(x) = wφ(x+ a) + (1− w)φ(x− a); a > 0

3.8.1 MFEn

If X ∼ LMN(w,−a, a, 1), MFEn is obtained directly from Equation 3.7.6 as a special

case to be

MFEn =
1

2
+

1

2

n∑
k=0

(
n

k

)
wk(1− w)(n−k)

×

{
werf

(2a(n− k)− nc√
2(n2 + n)

)
+ (1− w)erf

( −2ak − nc√
2(n2 + n)

)}

Therefore, MFE1 and MFE2 are respectively obtained to be

MFE1 =
1

2
+

1

2

{
w(1− w)

[
erf

(
2a− c

2

)
+ erf

(
−2a− c

2

)]

+(w2 + (1− w)2)erf

(
−c
2

)}
(3.8.1)

and

MFE2 =
1

2
+

1

2

{
w(1− w)2

[
erf

(
2a− c√

3

)
+ 2erf

(
−a− c√

3

)]

+w2(1− w)

[
erf

(
−2a− c√

3

)
+ 2erf

(
a− c√

3

)]

+(w3 + (1− w)3)erf

(
−c√

3

)}
(3.8.2)

Recall Equation 3.7.11,

∆MFE12 = MFE1 −MFE2
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By using Equations 3.8.1 and 3.8.2, ∆MFE12 will be

∆MFE12 =
w3

2

[
erf
(−2a− c√

3

)
+ 2erf

(a− c√
3

)
− erf

(2a− c√
3

)
− 2erf

(−a− c√
3

)]
+

w2

2

[
2erf

(−c
2

)
− 3erf

(−c√
3

)
− erf

(2a− c
2

)
− erf

(−2a− c
2

)
+2erf

(2a− c√
3

)
+ 4erf

(−a− c√
3

)
− 2erf

(a− c√
3

)
− erf

(−2a− c√
3

)]
+

w

2

[
erf
(2a− c

2

)
+ erf

(−2a− c
2

)
− 2erf

(−c
2

)
+ 3erf

(−c√
3

)
−erf

(2a− c√
3

)
− 2erf

(−a− c√
3

)]
+

1

2

[
erf
(−c

2

)
− erf

(−c√
3

)]
With respect to w, ∆MFE12 is a cubic function with coefficients that depend on c

and a. Furthermore, ∆MFE12 has a value of zero if and only if the real root(s) of this

cubic function is(are) restricted to be in the interval (0, 1). Figure 3.10 illustrates

the zero contour of ∆MFE12 for different values of w. The vertical axis represents

a wide range of c, and the horizontal axis represents a. Both axes are taken on the

log-scale.
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Figure 3.10: Plots of the zero contour of ∆MFE12 with respect to log(a) (x-axis)

and log(c) (y-axis) for the LMN(w,−a, a, 1) distribution. Each of the nine panels is

related to a specific value of w. The red dashed line’s equation is log(c) = 3 log(a)
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As shown in Figure 3.10, the zero contour of ∆MFE12 has four distinct behaviours.

Therefore, to bound the area where ∆MFE12 < 0, we become interested in explor-

ing the limiting behaviour of the zero contour of ∆MFE12 for the extreme values of

parameters that are summarized in Table 3.6 and discussed afterwards in detail.

Case A: a and c both approach ∞ and c = ram

m r ∆MFE12

m<1 r>0 No zero contour

m=1 r <1 −w2(1− w)

r=1 0

1<r<2 w2(1− w)

r=2 w2(1−w)
2

r>2 No zero contour

m>1 r>0 No zero contour

Case B: a approaches ∞

∆MFE12 → (w3 + (1− w)3)Φ( 2c√
6
)− (w2 + (1− w)2)Φ( c√

2
) + w(1− w)2

Case C: Small c and w = 0.5

∆MFE12 ≈ 0 ⇐⇒ a = 1.63044

Case D: Small a and c approaches ∞

No zero contour

Case E: Both a and c small

∆MFE12 ≈ 0 ⇐⇒ η = 3(
√

3−2)
4(1−2w)w(1−w)

; η = a3/c

Table 3.6: Summary of the behaviour limiting of the zero contour of ∆MFE12 for the

LMN(w,−a, a, 1) distribution in 5 cases when: a and c both approach ∞, a → ∞,

small c and w = 0.5, small a and c→∞, both a and c small.

The detailed proof of the summary results in Table 3.6 is as follows:

Case A: a and c both approach ∞

This case corresponds to the straight line that appears in Figure 3.10 when a and c

approach infinity. Since there are different possible lines, we will examine the case
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when c ∝ am for m < 1,m = 1 and m > 1.

(1) m < 1

When a → ∞, a > am which means that a approaches infinity faster than am.

Replace c by ram in Equations 3.8.1 and 3.8.2. Thus

MFE1 =
1

2
+

1

2

{
w(1− w)

[
erf

(
2a− ram

2

)
+ erf

(
−2a− ram

2

)]

+(w2 + (1− w)2)erf

(
−ram

2

)}
(3.8.3)

and

MFE2 =
1

2
+

1

2

{
w(1− w)2

[
erf

(
2a− ram√

3

)
+ 2erf

(
−a− ram√

3

)]

+w2(1− w)

[
erf

(
−2a− ram√

3

)
+ 2erf

(
a− ram√

3

)]

+(w3 + (1− w)3)erf

(
−ram√

3

)}
(3.8.4)

Let a→∞, Equations 3.8.3 and 3.8.4 become

MFE1 →
1

2
+

1

2

{
w(1− w)

(
erf (∞)− erf (∞)

)
+ (w2 + (1− w)2)erf (−∞)

}
=

1

2
− 1

2
(w2 + (1− w)2) (3.8.5)

and

MFE2 →
1

2
+

1

2

{
w(1− w)2

(
erf (∞)− 2erf (∞)

)
+w2(1− w)

(
− erf (∞) + 2erf (∞)

)
−(w3 + (1− w)3)erf (∞)

}
=

1

2
+

1

2

(
w2(1− w)− w(1− w)2 − (w3 + (1− w)3)

)
(3.8.6)

By using Equations 3.8.5 and 3.8.6, we obtain

∆MFE12 →
1

2

(
− w2 − (1− w)2 − w2(1− w) + w(1− w)2 + w3 + (1− w)3

)
=

1

2

(
w2(−1− (1− w) + w) + (1− w)2(−1 + w + (1− w))

)
= −w2(1− w)
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Since ∆MFE12 tends to negative value, there is no solution for this case. Conse-

quently, no contours.

(2) m = 1

When m = 1, c = ra. Substitute c with ra in Equations 3.8.1 and 3.8.2, thus

MFE1 =
1

2
+

1

2

{
w(1− w)

[
erf

(
a(2− r)

2

)
+ erf

(
−a(2 + r)

2

)]

+(w2 + (1− w)2)erf

(
−ra

2

)}
(3.8.7)

and

MFE2 =
1

2
+

1

2

{
w(1− w)2

[
erf

(
a(2− r)√

3

)
+ 2erf

(
−a(1 + r)√

3

)]

+w2(1− w)

[
erf

(
−a(2 + r)√

3

)
+ 2erf

(
a(1− r)√

3

)]

+(w3 + (1− w)3)erf

(
−ra√

3

)}
(3.8.8)

As a → ∞, erf

(
a(2−r)

2

)
in Equations 3.8.7 and 3.8.8 tends to different values.

These values are −1, 0 or 1 when r < 2, r = 2 or r > 2, respectively. Similarly,

erf

(
a(1−r)√

3

)
in Equation 3.8.8 tends to different values. These values are −1, 0 or 1

when r < 1, r = 1 or r > 1, respectively. Therefore, we shall study the behavior of

∆MFE12 when r < 1, r = 1, 1 < r < 2, r = 2, and r > 2.

Table 3.7 summarizes the above cases when m = 1.

r ∆MFE12

r < 1 −w2(1− w)

r = 1 0

1 < r < 2 w2(1− w)

r = 2 w2(1−w)
2

r > 2 There is no solution.

Table 3.7: ∆MFE12 for the LMN(w,−a, a, 1) distribution when a and c approach

∞, c = ra and r has different values.
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From the table shown above, ∆MFE12 > 0 when c = ra; r > 1.

(2.1) r < 1

Let r < 1 in Equations 3.8.7 and 3.8.8. Moreover, let a approach ∞, hence

MFE1 →
1

2
+

1

2

{
w(1− w)erf (∞) +

(
w(1− w) + w2 + (1− w)2

)
erf (−∞)

}
=

1

2
− 1

2
(w2 + (1− w)2) (3.8.9)

and

MFE2 →
1

2
+

1

2

{(
w(1− w)2 + 2w2(1− w)

)
erf (∞)

+
(
2w(1− w)2 + w2(1− w) + w3 + (1− w)3

)
erf (−∞)

}
=

1

2
+

1

2

(
− w(1− w)2 + w2(1− w)− (w3 + (1− w)3)

)
(3.8.10)

Using Equations 3.8.9 and 3.8.10,

∆MFE12 →
1

2

(
− w2 − (1− w)2 + w(1− w)2 − w2(1− w) + w3 + (1− w)3

)
=

1

2

(
w2(−1− (1− w) + w) + (1− w)2(−1 + w + (1− w))

)
= −w2(1− w)

Since ∆MFE12 tends to negative value, there is no solution for this case. Conse-

quently, no contours.

(2.2) r = 1

Let r = 1 in Equations 3.8.7 and 3.8.8,

MFE1 =
1

2
+

1

2

{
w(1− w)

[
erf
(a

2

)
+ erf

(−3a

2

)]

+(w2 + (1− w)2)erf
(−a

2

)}
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and

MFE2 =
1

2
+

1

2

{
w(1− w)2

[
erf

(
a√
3

)
+ 2erf

(
−2a√

3

)]

+w2(1− w)

[
erf
(−3a√

3

)
+ 2erf (0)

]

+(w3 + (1− w)3)erf

(
−a√

3

)}
Set a→∞ in the previous equations, thus

MFE1 →
1

2
− 1

2
(w2 + (1− w)2) (3.8.11)

and

MFE2 →
1

2
− 1

2

(
w(1− w)2 + w2(1− w) + w3 + (1− w)3

)
=

1

2
− 1

2

(
w2 + (1− w)2

)
(3.8.12)

Using Equations 3.8.11 and 3.8.12. Hence,

∆MFE12 → 0

(2.3) 1 < r < 2

Let 1 < r < 2 in Equations 3.8.7 and 3.8.8. Moreover, let a tend to∞, so we obtain

MFE1 →
1

2
+

1

2

{
w(1− w)

[
erf (∞) + erf (−∞)

]

+(w2 + (1− w)2)erf (−∞)

}
=

1

2
− 1

2
(w2 + (1− w)2) (3.8.13)

and

MFE2 →
1

2
+

1

2

{
w(1− w)2

[
erf (∞) + 2erf (−∞)

]

+w2(1− w)

[
erf (−∞) + 2erf (−∞)

]

+(w3 + (1− w)3)erf (−∞)

}
=

1

2
+

1

2

(
− w(1− w)2 − 3w2(1− w)− (w3 + (1− w)3)

)
(3.8.14)
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Using Equations 3.8.13 and 3.8.14. Thus

∆MFE12 →
1

2

(
− w2 − (1− w)2 + w(1− w)2 + 3w2(1− w) + w3 + (1− w)3

)
=

1

2

(
w2
(
− 1 + 3(1− w) + w

)
+ (1− w)2

(
− 1 + w + (1− w)

))
=

1

2

(
2w2(1− w)

)
= w2(1− w)

(2.4) r = 2

Set r = 2 in Equations 3.8.7 and 3.8.8. Then let a tend to ∞, hence

MFE1 →
1

2
+

1

2

{
w(1− w)

[
erf (0) + erf (−∞)

]
+(w2 + (1− w)2)erf (−∞)

}
=

1

2
− 1

2
(w(1− w) + w2 + (1− w)2)

=
1

2
− 1

2
(1− w(1− w)) (3.8.15)

and

MFE2 →
1

2
+

1

2

{
w(1− w)2

[
erf (0) + 2erf (−∞)

]
+w2(1− w)

[
erf (−∞) + 2erf (−∞)

]
+(w3 + (1− w)3)erf (−∞)

}
=

1

2
− 1

2

(
2w(1− w)2 + 3w2(1− w) + w3 + (1− w)3

)
=

1

2
− 1

2
(1− w(1− w)2) (3.8.16)

Using Equations 3.8.15 and 3.8.16. Thus

∆MFE12 →
1

2

(
w(1− w)− w(1− w)2

)
=

1

2

(
w(1− w)

(
1− (1− w)

))
=

1

2
w2(1− w)
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(2.5) r > 2

Equations 3.8.7 and 3.8.8 are respectively equivalent to

MFE1 =
1

2
+

1

2

{
w(1− w)

[
erf

(
−a(r − 2)

2

)
+ erf

(
−a(r + 2)

2

)]

+(w2 + (1− w)2)erf

(
−ra

2

)}
(3.8.17)

and

MFE2 =
1

2
+

1

2

{
w(1− w)2

[
erf

(
−a(r − 2)√

3

)
+ 2erf

(
−a(r + 1)√

3

)]

+w2(1− w)

[
erf

(
−a(r + 2)√

3

)
+ 2erf

(
−a(r − 1)√

3

)]

+(w3 + (1− w)3)erf

(
−ra√

3

)}
(3.8.18)

Let r > 2 and a tend to ∞ in Equations 3.8.17 and 3.8.18, thus we obtain

MFE1 →
1

2
+

1

2

{
w(1− w)

[
erf
(
−∞

)
+ erf

(
−∞

)]

+
(
w2 + (1− w)2

)
erf
(
−∞

)}
=

1

2
+

1

2

(
− 2w(1− w)− (w2 + (1− w)2)

)
= 0 (3.8.19)

and

MFE2 →
1

2
+

1

2

{
w(1− w)2

[
erf
(
−∞

)
+ 2erf

(
−∞

)]

+w2(1− w)

[
erf
(
−∞

)
+ 2erf

(
−∞

)]

+(w3 + (1− w)3)erf
(
−∞

)}
=

1

2
+

1

2

(
− 3w(1− w)2 − 3w2(1− w)− (w3 + (1− w)3)

)
= 0 (3.8.20)

From Equations 3.8.19 and 3.8.20, MFE1 and MFE2 are zeros as a approaches ∞.

Therefore, we shall use L’Hôspital’s rule as follows:

lim
a→∞

MFE1

MFE2

= lim
a→∞

∂
∂a

MFE1

∂
∂a

MFE2
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Differentiate Equations 3.8.17 and 3.8.18 with respect to a, hence

∂

∂a
MFE1 =

w(1− w)√
π

[
− (r − 2)

2
exp

(
−
(a(r − 2)

2

)2
)

−(r + 2)

2
exp

(
−
(a(r + 2)

2

)2
)]

− r(w2 + (1− w)2)

2
√
π

exp
(
−
(ra

2

)2
)

(3.8.21)

and

∂

∂a
MFE2 =

w(1− w)2

√
π

[
− (r − 2)√

3
exp

(
−
(a(r − 2)√

3

)2
)

−2(r + 1)√
3

exp
(
−
(a(r + 1)√

3

)2
)]

+
w2(1− w)√

π

[
− (r + 2)√

3
exp

(
−
(a(r + 2)√

3

)2
)

−2(r − 1)√
3

exp
(
−
(a(r − 1)√

3

)2
)]

− r(w3 + (1− w)3)√
3π

exp
(
−
( ra√

3

)2
)

(3.8.22)

Divide Equations 3.8.21 and 3.8.22 by exp
(
− a2( r−2

2
)2
)

. Notice that as a→∞,

exp

(
− a2

((
r+2

2

)2 −
(
r−2

2

)2
))

, exp

(
− a2

((
r
2

)2 −
(
r−2

2

)2
))

,

exp

(
− a2

((
r−2√

3

)2 −
(
r−2

2

)2
))

, exp

(
− a2

((
r+1√

3

)2 −
(
r−2

2

)2
))

,

exp

(
− a2

((
r+2√

3

)2 −
(
r−2

2

)2
))

, exp

(
− a2

((
r−1√

3

)2 −
(
r−2

2

)2
))

,

and exp

(
− a2

((
r√
3

)2 −
(
r−2

2

)2
))

tend to zero. Thus

lim
a→∞

∂
∂a

MFE1

∂
∂a

MFE2

→
−w(1− w) (r−2)

2
√
π

0−

= ∞

Hence, there is no solution for this case. Furthermore, there are no contours. 2
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(3) m > 1

When a→∞, ram > 2a. Let a→∞ in Equations 3.8.3 and 3.8.4, thus

MFE1 →
1

2
+

1

2

{
w(1− w)

[
erf
(
−∞

)
+ erf

(
−∞

)]

+(w2 + (1− w)2)erf
(
−∞

)}
=

1

2
+

1

2

(
− 2w(1− w)− (w2 + (1− w)2)

)
= 0

and

MFE2 →
1

2
+

1

2

{
w(1− w)2

[
erf
(
−∞

)
+ 2erf

(
−∞

)]

+w2(1− w)

[
erf
(
−∞

)
+ 2erf

(
−∞

)]

+(w3 + (1− w)3)erf
(
−∞

)}
=

1

2
+

1

2

(
− 3w(1− w)2 − 3w2(1− w)− (w3 + (1− w)3)

)
= 0

MFE1 and MFE2 are zeros when a tends to∞. Therefore, we shall use L’Hôspital’s

rule as follows:

lim
a→∞

MFE1

MFE2

= lim
a→∞

∂
∂a

MFE1

∂
∂a

MFE2

Differentiate Equations 3.8.3 and 3.8.4 with respect to a, hence

∂

∂a
MFE1 =

w(1− w)√
π

[
(2− rmam−1)

2
exp

(
−
(ram − 2a

2

)2
)

−(2 + rmam−1)

2
exp

(
−
(ram + 2a

2

)2
)]

− rmam−1(w2 + (1− w)2)

2
√
π

exp
(
−
(ram

2

)2
)

(3.8.23)
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and

∂

∂a
MFE2 =

w(1− w)2

√
π

[
(2− rmam−1)√

3
exp

(
−
(ram − 2a√

3

)2
)

−2(rmam−1 + 1)√
3

exp
(
−
(ram + a√

3

)2
)]

+
w2(1− w)√

π

[
− (2 + rmam−1)√

3
exp

(
−
(ram + 2a√

3

)2
)

+
2(1− rmam−1)√

3
exp

(
−
(ram − a√

3

)2
)]

− rmam−1(w3 + (1− w)3)√
3π

exp
(
−
(ram√

3

)2
)

(3.8.24)

Divide Equations 3.8.23 and 3.8.24 by
exp

(
−
(
ram−2a

2

)2)
am−1 . Notice that as a→∞,

exp
((

ram+2a
2

)2 −
(
ram−2a

2

)2
)

, exp
((

ram

2

)2 −
(
ram−2a

2

)2
)

,

exp
((

ram−2a√
3

)2 −
(
ram−2a

2

)2
)

, exp
((

ram+a√
3

)2 −
(
ram−2a

2

)2
)

,

exp
((

ram+2a√
3

)2 −
(
ram−2a

2

)2
)

exp
((

ram−a√
3

)2 −
(
ram−2a

2

)2
)

,

and exp
((

ram√
3

)2 −
(
ram−2a

2

)2
)

tend to ∞. Thus

lim
a→∞

∂
∂a

MFE1

∂
∂a

MFE2

→
−rmw(1−w)

2
√
π

0−

= ∞

Therefore, there is no solution for this case. Furthermore, there are no contours.

Case B: a approaches ∞

When a → ∞, the zero contour of ∆MFE12 is a horizontal line. The equations of

the horizontal lines in Figure 3.10 are obtained as follows:

Let a tend to ∞ in Equations 3.8.1 and 3.8.2, thus

MFE1 →
1

2
− 1

2
(w2 + (1− w)2)erf

(
c

2

)
= 1− w(1− w)− (w2 + (1− w)2)Φ(

c√
2

) (3.8.25)

and

MFE2 →
1

2
+

1

2

{
w(1− w)(2w − 1)− (w3 + (1− w)3)erf

(
c√
3

)}

=
1

2
− (w3 + (1− w)3)Φ

(
2c√

6

)
+
w(1− w)(2w − 1) + (w3 + (1− w)3)

2
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Consequently,

∆MFE12 → (w3 + (1− w)3)Φ(
2c√

6
)− (w2 + (1− w)2)Φ(

c√
2

) + w(1− w)2 (3.8.26)

Equation 3.8.26 is used to obtain c that makes ∆MFE12 → 0 for a specific value of

w, which represents the equation of the horizontal line.

Figure 3.11 presents ∆MFE12 in Equation 3.8.26 as a function of c for selected

values of w.
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Figure 3.11: ∆MFE12 versus c for the LMN(w,−a, a, 1) distribution and selected

values of w when a→∞ (Equation 3.8.26).

Figure 3.11 shows that ∆MFE12 could tend to zero when w < 0.5.

Case C: Small c and w = 0.5

This case represents the vertical line in Figure 3.10. To obtain its equation, set

w = (1− w) in Equations 3.8.1 and 3.8.2, thus

MFE1 =
1

2
+

1

2

{
1

4

[
erf

(
2a− c

2

)
+ erf

(
−2a− c

2

)]

+
1

2
erf

(
−c
2

)}
(3.8.27)



3.8. A Two-Component Location Mixture of Normal Distributions 78

and

MFE2 =
1

2
+

1

2

{
1

8
erf

(
2a− c√

3

)
+

1

4
erf

(
−a− c√

3

)
+

1

8
erf

(
−2a− c√

3

)

+
1

4
erf

(
a− c√

3

)
+

1

4
erf

(
−c√

3

)}
(3.8.28)

For small c in Equations 3.8.27 and 3.8.28, we obtain

MFE1 ≈
1

2
− c

2
√
π

(e−a2
2

+
1

2

)
and

MFE2 ≈
1

2
− c

2
√
π

(e−4a2

3

2
√

3
+
e−

a2

3

√
3

+
1

2
√

3

)
Consequently,

∆MFE12 ≈
c

2
√
π

(e−(4a2/3) + 2e−(a2/3) −
√

3e−a
2

+ 1−
√

3

2
√

3

)
As a result,

∆MFE12 ≈ 0 ⇐⇒ a = 1.63044

by numerical solution.

Case D: Small a and c approaches ∞

By using the first-order Maclaurin series expansion of each error function with re-

spect to a in Equations 3.8.1 and 3.8.2, we obtain

MFE1 ≈
1

2
+

1

2

(
w(1− w)

(
erf (
−c
2

) +
2√
π
e−c

2/4a
)

−(w2 + (1− w)2)erf (
c

2
)− w(1− w)

(
erf (

c

2
) +

2√
π
e−c

2/4a
))

=
1

2
− 1

2
erf (

c

2
) (3.8.29)

and

MFE2 ≈
1

2
+

1

2

(
w(1− w)2

(
erf (
−c√

3
) +

4√
3π
e−c

2/3a
)

+2w2(1− w)
(

erf (
−c√

3
) +

2√
3π
e−c

2/3a
)

−2w(1− w)2
(

erf (
c√
3

) +
2√
3π
e−c

2/3a
)

−w2(1− w)
(

erf (
c√
3

) +
4√
3π
e−c

2/3a
)

−(w3 + (1− w)3)erf (
c√
3

)

)
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Hence,

MFE2 ≈
1

2
− 1

2
erf (

c√
3

) (3.8.30)

As c→∞, both MFE1 and MFE2 are approximately zero. Therefore, we shall use

L’Hôspital’s rule as follows:

lim
c→∞

MFE1

MFE2

= lim
c→∞

∂
∂c

MFE1

∂
∂c

MFE2

Differentiate Equations 3.8.29 and 3.8.30 with respect to c,

∂

∂c
MFE1 ≈

−e− c
2

4

2
√
π

and

∂

∂c
MFE2 ≈

−e− c
2

3

√
3π

Hence,

lim
c→∞

∂
∂c

MFE1

∂
∂c

MFE2

≈ lim
c→∞

√
3e−

c2

4

2e−
c2

3

= lim
c→∞

√
3

2e−
c2

12

→
√

3

0

= ∞

Hence, there is no solution for this case. Furthermore, there are no contours.

Case E: Both a and c small

In this case, the zero contour of ∆MFE12 forms the line that is parallel to

log(c) = 3 log(a)

The equation of such a line is

log(c) = 3 log(a)− log(η)

Hence, our objective is to obtain η = a3/c.

By using the third-order Maclaurin series expansion of each error function with
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respect to a in Equations 3.8.1 and 3.8.2, we obtain

MFE1 ≈
1

2
+

1

2

(
w(1− w)

(
erf (
−c
2

) +
2√
π
e−c

2/4
(
a+ c

a2

2
+ (c2 − 2)

a3

6

))
−(w2 + (1− w)2)erf (

c

2
)

−w(1− w)
(

erf (
c

2
) +

2√
π
e−c

2/4
(
a− ca

2

2
+ (c2 − 2)

a3

6

)))

=
1

2
+

1

2

(
w(1− w)

2ca2

√
π
e−c

2/4 − erf (
c

2
)

)
(3.8.31)

and

MFE2 ≈
1

2
+

1

2

(
w(1− w)2

(
erf (
−c√

3
) +

4√
3π
e−c

2/3
(
a+

2

3
ca2 +

4

9
(
2

3
c2 − 1)a3

))
+2w2(1− w)

(
erf (
−c√

3
) +

2√
3π
e−c

2/3
(
a+

1

3
ca2 +

1

9
(
2

3
c2 − 1)a3

))
−2w(1− w)2

(
erf (

c√
3

) +
2√
3π
e−c

2/3
(
a− 1

3
ca2 +

1

9
(
2

3
c2 − 1)a3

))
−w2(1− w)

(
erf (

c√
3

) +
4√
3π
e−c

2/3
(
a− 2

3
ca2 +

4

9
(
2

3
c2 − 1)a3

))
−(w3 + (1− w)3)erf (

c√
3

)

)

=
1

2
+

1

2

(
− erf (

c√
3

) +
4a2w(1− w)√

3π
e−c

2/3
(
c+

a

3
(1− 2w)

(2

3
c2 − 1

)))
(3.8.32)

For small c, Equations 3.8.31 and 3.8.32 respectively become

MFE1 ≈
1

2
+

c

2
√
π

(
2w(1− w)a2e−c

2/4 − 1
)

(3.8.33)

and

MFE2 ≈
1

2
+

1

2

(
− 2c√

3π
+

4a2w(1− w)√
3π

e−c
2/3
(
c+

a

3
(1− 2w)

(2

3
c2 − 1

)))

=
1

2
+

c

2
√
π

(
− 2√

3
+

4w(1− w)√
3

e−c
2/3
(
a2 +

(1− 2w)

3

(2

3
ca3 − a3/c

)))
Set η = a3/c,

MFE2 ≈
1

2
+

c

2
√
π

(
− 2√

3
+

4w(1− w)√
3

e−c
2/3
(
a2 +

(1− 2w)

3

(2

3
ca3 − η

)))
(3.8.34)
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By using Equations 3.8.33 and 3.8.34, we obtain

∆MFE12 ≈
c

2
√
π

(
2w(1− w)a2e−c

2/4 − 1 +
2√
3

− 4w(1− w)√
3

e−c
2/3
(
a2 +

(1− 2w)

3

(2

3
ca3 − η

)))

∆MFE12 ≈ 0, if and only if

2w(1− w)a2e−c
2/4 − 1 +

2√
3
− 4w(1− w)√

3
e−c

2/3
(
a2 +

(1− 2w)

3

(2

3
ca3 − η

))
= 0

Let a and c tend to zero in the previous equation, thus

∆MFE12 ≈ 0 ⇐⇒ η =
3(
√

3− 2)

4(1− 2w)w(1− w)
(3.8.35)

Since η is positive, w should be greater than (1-w).

In Table 3.8, we provide the lines equations that are obtained in Case A, Case

B, Case C, and Case E for different values of w. The diagonal line log(c) = log(a)

is common for all values of w, when both a and c approaches ∞ (Case A).

w Small c a approaches ∞ Both a and c small

0.1 − log(c) = 1.09 −

0.2 − log(c) = 0.59 −

0.3 − log(c) = −0.01 −

0.4 − log(c) = −0.83 −

0.5 log(a) = 0.49 − −

0.6 − − log(a3/c) = 1.43

0.7 − − log(a3/c) = 0.87

0.8 − − log(a3/c) = 0.74

0.9 − − log(a3/c) = 1.03

Table 3.8: The zero contour equations of ∆MFE12 for the LMN(w,−a, a, 1) distri-

bution, and selected values of w, when c is small, a approaches ∞, and both a and

c are small. The numbers in the second, third, and fourth column are rounded to

two decimal places.
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In order to make comparative plots between the approximations of ∆MFE12 in

the previous cases and the real contours, the zero contour of ∆MFE12 for different

values of w is illustrated with the lines, the equations for which are presented in

Table 3.8, in Figure 3.12.
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Figure 3.12: Plots of the zero contour of ∆MFE12 with respect to log(a) (x-axis),

log(c) (y-axis) for the LMN(w,−a, a, 1) distribution. Each of the nine panels is

related to a specific value of w. The equations of dashed lines are presented in Table

3.8.
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3.8.2 PFEn(α)

If X ∼ LMN(w,−a, a, 1), PFEn(α) is obtained by making µ1 = −a, µ2 = a and

σ1 = σ2 = 1 in Equation 3.7.17. In addition, for n = 1, 2; PFE1(α) and PFE2(α)

respectively become

PFE1(α) = 1− (1− w)Φ (b− a)− wΦ (b+ a) (3.8.36)

and

PFE2(α) = 1−

{
(1− w)2Φ

(
b− a√

1/2

)
+ 2w(1− w)Φ

(√
2b
)

+w2Φ

(
b+ a√

1/2

)}
(3.8.37)

Recall Equation 3.7.20,

∆PFE12(α) = PFE1(α)− PFE2(α)

By using Equations 3.8.36 and 3.8.37

∆PFE12(α) = (1− w)2Φ

(
b− a√

1/2

)
+ 2w(1− w)Φ

(√
2b
)

+ w2Φ

(
b+ a√

1/2

)
− (1− w)Φ (b− a)− wΦ (b+ a)

which is can be rewritten as

∆PFE12(α) = w2
(

Φ
(√

2(b+ a)
)
− 2Φ

(√
2b
)

+ Φ
(√

2(b− a)
))

+ w
(

2Φ
(√

2b
)
− 2Φ

(√
2(b− a)

)
+ Φ (b− a)− Φ (b+ a)

)
+ Φ

(√
2(b− a)

)
− Φ (b− a) (3.8.38)

With respect to w, Equation 3.8.38 represents a quadratic function with coefficients

depending on b and a. Moreover, it equals zero if and only if the real root(s) of this

quadratic function is(are) restricted to be in the interval (0, 1).

The zero contour of ∆PFE12(α) is presented in Figure 3.13 for different values of

w. The vertical axis represents a wide range of b, while the horizontal axis represents

a. Both axes are taken on the log-scale.
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Figure 3.13: A Plot of the zero contour of ∆PFE12(α) with respect to log(a) (x-

axis) and log(b) (y-axis) for the LMN(w,−a, a, 1) distribution, and selected values

of w. The dashed line is the diagonal line log(b) = log(a).

The contours in Figure 3.13 are plotted individually in Figure 3.14.
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Figure 3.14: Plots of the zero contour of ∆PFE12(α) with respect to log(a) (x-

axis) and log(b) (y-axis) for the LMN(w,−a, a, 1) distribution. Each of the five

panels is related to a specific value of w. The red dashed line is the diagonal line

log(b) = log(a).

We do not include any value of w ≥ 0.5 in Figures 3.13 and 3.14 because there

are no zero contours if we do so, which means PFEn(α) decreases as n increases
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from one observation to two for all w ≥ 0.5. The behaviour of the zero contour

of ∆PFE12(α) for extreme parameters is summarized in Table 3.9 and discussed

afterwards in detail.

Case A: Both a and b small

∆PFE12(α) ≈ 0 ⇐⇒ η = 1/(1− 2w)

Case B: a approaches ∞

∆PFE12(α)→ 0 ⇐⇒ b = 0

Table 3.9: Summary of the behaviour limiting of the zero contour of ∆PFE12(α) for

the LMN(w,−a, a, 1) distribution when, both a and b small, and a approaches ∞.

The detailed proof of the summary results in Table 3.9 is as follows:

Case A: Both a and b small

In this case, where both a and b are small, the zero contour of ∆PFE12(α) in Figures

3.13 and 3.14 forms the line that is parallel to the diagonal line log(b) = log(a). The

equation of such a line is

log(b) = − log(η) + log(a)

Therefore, we will obtain η = a/b as follows:

Rewrite Equations 3.8.36 and 3.8.37 in terms of erf (.). Hence,

PFE1(α) = 1− 1

2

{
(1− w)erf

(
b− a√

2

)
+ w erf

(
b+ a√

2

)
+ 1
}

(3.8.39)

and

PFE2(α) = 1− 1

2

{
(1− w)2erf (b− a) + 2w(1− w)erf (b)

+w2erf (b+ a) + 1

}
(3.8.40)

By using the first-order Maclaurin series expansion of each error function with re-
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spect to a in Equations 3.8.39 and 3.8.40, thus we obtain

PFE1(α) ≈ 1− 1

2

{
(1− w)

(
erf

(
b√
2

)
−
√

2

π
e−b

2/2a

)

+w

(
erf

(
b√
2

)
+

√
2

π
e−b

2/2a

)
+ 1

}

= 1− 1

2

{
erf

(
b√
2

)
+ (2w − 1)

√
2

π
e−b

2/2a+ 1

}
(3.8.41)

and

PFE2(α) ≈ 1− 1

2

{
(1− w)2

(
erf (b)− 2√

π
e−b

2

a

)
+ 2w(1− w)erf (b)

+w2

(
erf (b) +

2√
π
e−b

2

a

)
+ 1

}

= 1− 1

2

{
erf (b) +

(
w2 − (1− w)2

) 2√
π
e−b

2

a+ 1

}
(3.8.42)

For small b, Equations 3.8.41 and 3.8.42 respectively become

PFE1(α) ≈ 1−
(

b√
2π

+
(2w − 1)√

2π
a+

1

2

)
(3.8.43)

and

PFE2(α) ≈ 1−

{
b√
π

+
(
w2 − (1− w)2

) a√
π

+
1

2

}

= 1−

{
b√
π

+ (2w − 1)
a√
π

+
1

2

}
(3.8.44)

Using Equations 3.8.43 and 3.8.44. Hence,

∆PFE12(α) ≈
b
(
1− 1/

√
2
)

√
π

(1 + (2w − 1)a/b)

Define η = a/b. Thus

∆PFE12(α) ≈
b
(
1− 1/

√
2
)

√
π

(1 + (2w − 1)η)

Moreover,

∆PFE12(α) ≈ 0 ⇐⇒ η = 1/(1− 2w)

since η > 0, w should be less than (1− w).
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Table 3.10 lists different values of log(a/b), for selected values of w.

w Both a and b small

0.01 log(a/b) = 0.02

0.1 log(a/b) = 0.22

0.2 log(a/b) = 0.51

0.3 log(a/b) = 0.92

0.4 log(a/b) = 1.61

Table 3.10: The zero contours equations of ∆PFE12(α) for the LMN(w,−a, a, 1)

distribution and selected values of w when both a and b small. The numbers in the

second column are rounded to two decimal places.

In order to make a comparative plot between the approximation of ∆PFE12(α) in

Case A and the real contour, the zero contour of ∆PFE12(α) is illustrated in Figure

3.15 for different values of w with the line, the equation for which is presented in

Table 3.10.
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Figure 3.15: Plots of the zero contour of ∆PFE12(α) with respect to log(a) (x-axis)

and log(b) (y-axis) for the LMN(w,−a, a, 1) distribution. Each of the five panels is

related to a specific value of w. The equation of the black dashed lines are presented

in Table 3.10

.
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Case B: a approaches ∞

In this case, the zero contour of ∆PFE12(α) does not appear when both axes in

Figure 3.13 are taken on the log-scale. Hence, it is re-presented in Figure 3.16 where

both axes are taken on the original scale.
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Figure 3.16: A Plot of the zero contours of ∆PFE12 with respect to a (x-axis), b

(y-axis) for the LMN(w,−a, a, 1) distribution and selected values of w.

The zero contour of ∆PFE12(α) when a →∞ forms the horizontal line. To obtain

the equation of this line, let a tend to ∞ in Equations 3.8.39 and 3.8.40, thus

PFE1(α) → 1− 1

2
(−(1− w) + w + 1)

= 1− w

and

PFE2(α) → 1− 1

2

(
−(1− w)2 + 2w(1− w)erf (b) + w2 + 1

)
= 1− 1

2
(2w + 2w(1− w)erf (b))

Therefore,

∆PFE12(α)→ w(1− w)erf (b)
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and

∆PFE12(α)→ 0 ⇐⇒ b = 0

Figure 3.17 illustrates the zero contour of ∆PFE12(α) with the line b = 0.
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Figure 3.17: A Plot of the zero contours of ∆PFE12(α) with respect to a (x-axis)

and b (y-axis) for the LMN(w,−a, a, 1) distribution, and selected values of w. The

black dashed line is b = 0.

3.9 Conclusions

In this chapter, we generalized the dominance properties for the arithmetic mean,

known to be true for normal LSSDs, to all LSSDs with symmetric log-concave den-

sities. Furthermore, we examined two-component scale and location mixtures of

normal LSSDs in the case where the sample size increases from one to two, includ-

ing a complete mathematical theory of limiting behaviour as parameters tend to

extreme values. The study shows that the dominance properties do not always hold

and sheds some light on factors that lead to them not holding. For the first part

of the discussion we shall focus on the change from MFE1 to MFE2 and will briefly

consider higher n at the end.
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The scale and location mixture of normals are considered since some empiri-

cal LSSDs are heavy-tailed or bimodal and analytic mathematical calculations are

tractable. When a LSSD is the two-component scale mixture of normal distribu-

tions, where ψ is the ratio of the variances of the two components and w is the weight

given to the component with smaller variance, we see from Figure 3.2 that MFEn

decreases whenever ψ < 30 for all values of w and all c > 0. Considering the bound-

ary situation where ψ = 30, Figure 3.18 compares the probability density functions

of SMN(0.5, 0, 1, 30) and the normal distribution having the same variance and

mean, showing the heavy-tailed nature of the scale mixture. For heavier tails, i.e.

ψ > 30, MFEn decreases or increases depending on the values of w and c. However,

applying a sufficiently large c always leads to decreasing MFEn. Similarly, Figure

3.6 shows that PFEn(α) decreases when ψ < 22 for any value of w and any b > 0.

Whereas the value of w affects the decision of choosing a value for b (and hence for

c) only when ψ ≥ 22. Figure 3.19 compares the probability density functions of

the boundary case SMN(0.5, 0, 1, 22) and the normal distribution having the same

variance and mean, showing the heavy-tailed nature of the scale mixture. However,

a sufficiently large value of c guarantees always that PFEn(α) will decrease.
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Figure 3.18: The probability density function of N(0, 15.5) (black) and SMN

(0.5, 0, 1, 30) distributions (red), both of which have zero mean and variance 15.5.
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Figure 3.19: The probability density function of N(0, 11.5) (black) and SMN

(0.5, 0, 1, 22) distributions (red), both of which have zero mean and variance 11.5.

When the LSSD is a two-component location mixture of normal distributions

located at −a and a, both with unit variance and with weight w for the component

located at −a, we see from Figure 3.10 that MFEn decreases as n increases when

applying small c for a < 1.63 and w = 0.5, i.e. the LSSD is symmetric. In general,

choosing c to be greater than a guarantees that MFEn decreases for all values of

w. Moreover, when w > 0.5, i.e. the LSSD is positively skewed, MFEn decreases if

c > ka3 for a < 1 where k < 1 depends on w. However, when w < 0.5, i.e. the LSSD

is negatively skewed, MFEn decreases for any value of c for small a and for small c

for larger values of a. Regarding PFEn(α), the property holds for w ≥ 0.5 without

any condition on the value of b > 0. Additionally, Figures 3.13 and 3.14 show

that PFEn(α) decreases as n increases when w < 0.5 and b > a. Taken together,

these results suggest b > a is sufficient to make MFEn and PFEn(α) decrease as n

increases from one to two. Figure 3.20 illustrates two probability density functions

of LMN(0.5,−1.63, 1.63, 1) and LMN(0.1,−4, 4, 1) distribution where respectively

MFEn and PFEn(α) are stable when two species are tested instead of one and

applying small c.
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(a) LMN(0.5,-1.63,1.63,1)
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(b) LMN(0.1,-4,4,1)

Figure 3.20: The probability density function in (a) makes MFE1 = MFE2 if small c

is applied. While, the probability density function in (b) makes PFE1(α) = PFE2(α)

for small b.

However, assuming the LSSD is two-component scale mixture of normal distri-

butions or two-component location mixture of normal distributions, our findings in

Sections 3.7 and 3.8 are based on increasing the tested species from one to two ob-

servations. In Figures 3.21, 3.22, and 3.23, we will illustrate the behaviour of MFEn

and PFEn(α) as we increase the tested species from one to ten. The values of distri-

butions parameters, c, and b are chosen in the manner that different outcomes can

be shown, and then the dominance properties for the arithmetic mean sometimes

hold. Figure 3.21 shows how MFEn and PFEn(α) behave if X ∼ SMN(w, 0, 1, 43),

Figure 3.22 (a) and (b) show how MFEn behaves if X ∼ LMN(w,−2, 2, 1) and

X ∼ LMN(w,−6, 6, 1) respectively when w = 0.2, 0.5, or 0.9, and Figure 3.23 shows

how PFEn(α) behaves if X ∼ LMN(0.1,−3, 3, 1); b = 2, 3, or 4.
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Figure 3.21: MFEn in Equation 3.7.8 with c = 2 (a) and PFEn(α) in Equation

3.7.17 with b = 2 (b) for X ∼ SMN(w, 0, 1, 43) and w = 0.2 (black), 0.5 (red), 0.9

(green).
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2 4 6 8 10

n

M
F
E
n

2 4 6 8 10

n

M
F
E
n

2 4 6 8 10

n

M
F
E
n

2 4 6 8 10

n

M
F
E
n

(b) LMN(w,−6, 6, 1)

Figure 3.22: MFEn for two LMN distributions with c = 2 and w = 0.2 (black), 0.5

(red), 0.9 (green).
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Figure 3.23: Plot of PFEn(α) in Equation 3.7.17 for LMN(0.1,−3, 3, 1) distribution

and b = 2 (black), 3 (red), 4 (green).

For SMN distribution, Figure 3.21 illustrates that if MFEn or PFEn(α) decreases

as n changes from 1 to 2, then it will continue decreasing. Although we have no

proof of this, we have not seen any examples where this is not true.

For LMN distributions with location parameters 2 and 6, and for c = 2, we

obtain different outcomes of MFEn for the same value of w. Figure 3.22 shows that

MFEn is monotonically decreasing as n changes from 1 to 5 when the location pa-

rameter is 2 and w = 0.2, 0.5, or 0.9. Whereas when the location parameter is 6 and

w = 0.2, MFEn increases as n changes from 1 to 2, then it starts to decrease. In

addition, when w = 0.9, MFEn increases as n increases until it reaches 4 and then

it starts to decrease. However, when w = 0.5, MFEn is monotonically increasing.

Moreover, Figure 3.23 shows that for LMN(0.1,−3, 3, 1), PFEn(α) is monotonically

decreasing when b = 3 or 4. Whereas it decreases when b = 2 as n increases until

4, then it begins to increase. Basically, this shows that there are no safe general

conclusions in the LMN distributions.

In summary, based on the selected values of c, b, and the distribution parame-

ters, Figures 3.21, 3.22, and 3.23 show that MFEn and PFEn(α) decrease if we test

five species instead of one. For other choices of c, b, and the distribution parame-

ters leading to MFEn or PFEn(α) increasing, or both increasing, we could prevent



3.9. Conclusions 95

this outcome by applying a large value of c which is the parameter under the risk

manager’s control.

Returning to the application to ecotoxicological risk assessment discussed in Subsec-

tion 1.1.1 and Section 3.2, we have learned that if the density of LSSD is symmetric

and log-concave, there is support for the argument in EFSA (2005) and EFSA (2008)

that using the geometric mean for n > 1 leads to reduced risk relative to the use

of a single test result, i.e. n = 1. However, for skewed or heavy-tailed LSSDs as

exemplified by two component mixtures of normals, the situation is more complex

and depends on the nature and extent of departure from univariate normality.

The two statistical risk measures, MFEn and PFEn(α), focus on the fraction of

species FEn that are affected, in the sense that their toxicity endpoint is exceeded,

when they are exposed at the level of the AEC. This does match use of the criterion

that the RCR=PEC/AEC should be less than one. If the PEC>AEC, the pesticide

is not allowed to be used. If PEC<AEC, it may be allowed if passes the assessments

of risk to other species groups and to humans. The focus in this chapter has been

on dominance properties for the two risk measures as the sample size changes and

has not involved specifying an acceptable value for MFEn or a value of α and ac-

ceptable value for PFEn(α). However, if specifying such acceptable values, MFEn

has the advantage that is the expected value of the FEn and that, for using it, no

further decision by risk managers is required other than to specify an acceptable

value for MFEn. Use of PFEn(α) on the other hand requires risk managers to spec-

ify the value of α as well as an acceptable level of probability that FEn exceeds

α. However, there is evidence (Aldenberg and Jaworska, 2000) that α = 0.05 is

considered suitable in some situations. Then, the focus is on what size of assess-

ment factor should be applied to obtain acceptable MFEn or PFEn(α). Hickey et

al. (2009) followed a more sophisticated approach and introduced an asymmetric

LINEX(linear-exponential) loss function from which to derive the AEC rather than

just using the geometric mean. However, it requires sophisticated judgements from

risk managers and we have not considered it here.



Chapter 4

Partial Probability Judgments in

Risk Assessment

4.1 Introduction

As discussed in Subsection 1.1.3, for the second problem we are interested in condi-

tions on the shape of distributions that lead to

P (X1 +X2 ≥ x1 + x2) ≤ max (P (X1 ≥ x1) , P (X2 ≥ x2))

as a substitute for the worst case

P (X1 ≥ x1) + P (X2 ≥ x2)

where X1 and X2 are two independent uncertain quantities. This we call the com-

bined tails dominance property. In this context, we expect that P (X1 ≥ x1) and

P (X2 ≥ x2) are given as imprecise probabilities which represent partial probability

judgements.

The convenience of the combined tail dominance property is particularly clear

when more quantities are involved. For example, if P (Xi ≥ xi) = 0.1 for i =

1, 2, . . . , 10, then the worst case outcome is P (X1 + · · · + X10 ≥ x1 + · · · + x10) ≤

0.1 + · · · + 0.1 = 1 which provides no information, whereas if the combined tails

dominance property holds, the bound is 0.1 not 1. In what follows, we will explore

situations where we can show that this property does always hold, and others where

96
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we can see that it may not hold.

In the rest of this chapter, an illustrative example of application is presented in

Section 4.2. The seminal result of Proschan (1965) in Section 2.3 is exploited to

explore the validation of the combined tails dominance property for distributions

with symmetric and log-concave density functions in Section 4.4. The normal and

Cauchy distributions are considered in Section 4.5 as illustrative examples. The

peakedness comparison for convex combinations of independent and identically dis-

tributed two random variables, Xi; i = 1, 2, from skew-symmetric distributions

with log-concave kernels is discussed in Section 4.6. The reason for this discussion

is to achieve our goal in discovering the validation of the combined tails dominance

property for such distributions when two uncertain quantities are involved. Two

important distributions that will be used later in this chapter are the shifted ex-

ponential (SHE) and the mixture of shifted exponential and lump (SHEL). These

two distributions are presented in Section 4.7. The stochastic dominance property

with some results needed for the rest of this chapter are introduced in Section 4.8.

In Section 4.9, we focus on the log-concavity of the right tail probability function

which may be fully log-concave or partially log-concave. We present an important

theorem that is used later in Sections 4.10 and 4.11. A novel approach is presented

in Sections 4.10 and 4.11 to explore the validation of the combined tails dominance

property for distributions with log-concave right tail probability and distributions

with partial log-concave right tail probability respectively. Section 4.13 presents

some conclusions. A glossary of acronyms, including those used in this chapter, is

presented at the end of the thesis.

4.2 Example of Application by EFSA

Rift Valley Fever Virus (RVFV) is a virus that is transmitted by mosquitoes and

affects buffalo, camels, cattle, goats, and sheep. It causes severe illness and could

transfer to people. The endemic areas are West and East Africa. EFSA (2013)

discussed the uncertainty about the number of infected animals that are exported

in a single year from West Africa to specific countries of North Africa and the Near
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East. The model for the number of infected animals exported to North Africa from

West Africa is

NW = vW × pW × tW

where these uncertain quantities, as presented in EFSA (2013), are:

� NW is the quantity of interest which represents the number of infected animals

arriving in North Africa from the West source in one year.

� vW is the volume of trade from the West source: the number of animals trans-

ported in one year to North Africa from the West source.

� pW is the prevalence of RVFV in animals in the West source: approximates

the proportion of transported animals which are infected.

� tW is the proportion of infected animals which remain infected after transport.

Uncertainties about the quantities vW , pW and tW were judged to be independent,

and their distributions were elicited from experts, using the SHELF protocol in an

EKE process, to be:

� The distribution of vW is scaled beta (3.77, 5.99) on range 10 to 700000.

The beta distribution is used to model continuous random variables X ∈ [0, 1].

Its probability density function is

fX(x) =
xp−1(1− x)q−1

Beta(p,q)
; 0 ≤ x ≤ 1; p > 0, q > 0

where Beta(α, β) is the beta function and its formula is

Beta(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt

However, X can be scaled and shifted to obtain a scaled beta random variable

on [a, b] by using the transformation Y = a+(b−a)X. The probability density

function of the scaled beta distribution on [a, b] is

fY (x) =
(x− a)p−1(b− x)q−1

Beta(p, q)(b− a)p+q−1
; a ≤ x ≤ b, p > 0, q > 0

Hence the probability density function of vW is

fvW (x) =
(x− 10)2.77(700000− x)4.99

Beta(3.77, 5.99)(700000− 10)3.77+5.99−1
; 10 ≤ x ≤ 700000
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� The distribution of pW is log-normal with parameters µ = −6.7 and σ = 1.11.

A continuous random variable X has a log-normal distribution X ∼ LN(µ, σ)

if its probability density function is

fX(x) =
1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
; 0 < x <∞, µ ∈ R, σ > 0

If X ∼ LN(µ, σ), then Y = logX ∼ N(µ, σ), the normal distribution with

mean µ and standard deviation σ. Hence the probability density function of

pW is

fpW (x) =
1

(1.11)x
√

2π
exp

(
−(lnx+ 6.7)2

2(1.11)2

)
; 0 < x <∞

� In addition, tW ∼ LN(−1.5, 0.758). Its probability density function is

ftW (x) =
1

(0.758)x
√

2π
exp

(
−(lnx+ 1.5)2

2(0.758)2

)
; 0 < x <∞

The three probability density functions are shown in Figure 4.1. Following the ap-

proach in (EFSA, 2013), we would then compute the distribution of NW . This could

easily be done using Monte Carlo or by numerical calculation based on characteristic

functions, noting that the distribution of logNW = log vW + log pW + log tW is the

convolution of the distributions of log vW , log pW and log tW . The result would be

a full probability distribution for NW based on the three full probability distribu-

tions for the individual quantities. However, we should note that the experts did

not directly provide these three distributions. Rather, they were derived by the

EKE facilitator from the partial probability judgements made by the experts and

presented to the experts for them to approve. Therefore, it is interesting to explore

alternative approaches based directly on judgements made by experts. One such

approach is probability bounds analysis, as recommended in EFSA (2018a).

We do not have probability bounds provided by the experts for this example.

Instead, we will work with illustrative probability bounds for vW , pW and tW shown

in red in Figure 4.1: P (vw ≥ 375000) ≤ 0.1, P (pW ≥ 0.5%) ≤ 0.1 and P (tW ≥

60%) ≤ 0.1. These illustrative values are consistent with the distributions obtained

by the EKE. We then proceed with the probability bounds analysis. First we obtain

the threshold 375000 × 0.5% × 60% = 1125 and then calculate the upper bound

probability of P (vW ×pW × tW ≥ 1125) to be 0.1+0.1+0.1 = 0.3. The result of the
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probability bounds analysis is a probability bound for NW : P (NW ≥ 1125) ≤ 0.3.

If the combined tails dominance property were to apply, the benefit would be

that the probability bound would be tighter, namely P (NW ≥ 1125) ≤ 0.1. This

would follow from the facts that logNW = log vW + log pW + log tW and that the

logarithm function is strictly monotonic increasing so that the individual probabil-

ity bounds become P (log vw ≥ log 375000) ≤ 0.1, P (log pW ≥ log 0.5%) ≤ 0.1 and

P (tW ≥ log 60%) ≤ 0.1. The combined tails dominance property would then yield

P (log vW +log pW +log tW ≥ log 375000+log 0.5%+log 60%) ≤ max(0.1, 0.1, 0.1) =

0.1 and inverting the logarithm would give P (NW > 1125) ≤ 0.1. An interesting

question is whether or not it is reasonable to assume the combined tails dominance

property in this example. In Section 4.10, we shall see that the property holds for

random variables having log-concave right tail probability functions if the individual

probabilities in the probability bounds are less than 0.28 as they are here. Moreover,

logX has log-concave right tail probability function if X has log-concave right tail

probability function (Bagnoli and Bergstrom, 2005) and X has log-concave right tail

probability function if it has log-concave probability density function (ibid, 2005).

All normal distributions have log-concave densities as do beta distributions where

the shape parameters exceed 1. Therefore the distributions from the EKE do all

have log-concave right tail probability functions. This is of course not the same as

experts making direct judgements about log-concavity of the right tail probability

function and this issue is considered briefly in Section 4.9.
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Figure 4.1: Probability density functions of uncertain quantities (a) vW , (b) pW , and

(c) tW . The vertical red lines show the thresholds for the hypothetical probability

bounds used to illustrate the application of probability bounds analysis and the

potential benefit of the combined tail dominance property.
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4.3 A Simplification

The following theorem shows that we need only look in the rest of the chapter at

the case where the tail probabilities for the individual quantities are equal.

Theorem 4.3.1 Let the distribution functions of independent and continuous ran-

dom variables Xi; i = 1, 2, . . . , n be fixed. Moreover, let pi and xi be such that

pi = P (Xi ≥ xi). In addition, suppose that when p1 = p2 = · · · = pn = p,

P

(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
≤ p (4.3.1)

Consequently, whenever max(p1, . . . , pn) = p,

P

(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
≤ p

Proof. Define x′i so that P (Xi ≥ x′i) = p. Then Equation 4.3.1 is equivalent to

P

(
n∑
i=1

Xi ≥
n∑
i=1

x′i

)
≤ p (4.3.2)

If max(p1, . . . , pn) = p, each pi ≤ p and so

xi ≥ x′i

Using Equation 4.3.2, we find that(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
≤ P

(
n∑
i=1

Xi ≥
n∑
i=1

x′i

)
≤ p

The inequality is strict when min(p1, . . . , pn) < p. 2

4.4 Consequences of Proschan’s Result

In Theorem 4.4.1 we exploit the result by Proschan (1965), which is reintroduced

in Theorem 2.3.5, to show that the combined tail dominance property holds for n

independent and identically random variables having symmetric log-concave densi-

ties.
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Theorem 4.4.1 Let Xi; i = 1, 2, . . . , n be independent and identically random

variables having symmetric log-concave densities. Moreover, let xi be such that

P (Xi ≥ xi) = p. Then

P

(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
< p

Proof. Set a = (1, 0, 0, . . . , 0) and b = (1/n, 1/n, . . . , 1/n) in Theorem 2.3.5. Thus

P

(∑n
i=1Xi

n
≥ t

)
< P (Xn ≥ t) ; t ≥ 0

Let t =
∑n
i=1 xi
n

in the previous inequality, hence

P

(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
< P

(
Xn ≥

∑n
i=1 xi
n

)
Since Xi are iid, the xi are equal for all i. Consequently,∑n

i=1 xi
n

= xi

Therefore,

P

(
n∑
i=1

Xi ≥
n∑
i=1

xi

)
< P (Xn ≥ xn)

= p

Hence, theorem is proved. 2

Moreover, by using Theorem 2.3.5, Theorem 4.4.2 shows that the combined tail

dominance property is stable under re-scaling the distributions in Theorem 4.4.1.

Theorem 4.4.2 Let Xi; i = 1, 2, . . . , n be independent and identically random

variables having symmetric log-concave densities. Moreover, let xi and li > 0 be

such that P (liXi ≥ xi) = p. Then

P

(
n∑
i=1

liXi ≥
n∑
i=1

xi

)
< p

Proof. Set a = (1, 0, 0, . . . , 0) and b = (l1/
∑n

i=1 li, l2/
∑n

i=1 li, . . . , ln/
∑n

i=1 li) in

Theorem 2.3.5. This yields

P

(
n∑
i=1

liXi ≥ t

n∑
i=1

li

)
< P (Xn ≥ t) ; t ≥ 0
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Set t =
∑n
i=1 xi∑n
i=1 li

in the last inequality, thus

P

(
n∑
i=1

liXi ≥
n∑
i=1

xi

)
< P

(
Xn ≥

∑n
i=1 xi∑n
i=1 li

)
= P

(
lnXn ≥

∑n
i=1 lnxi∑n
i=1 li

)
(4.4.1)

Since P (liXi ≥ xi) = p, then we can assume that xi
li

= x. Moreover,

P

(
lnXn ≥

∑n
i=1 lnxi∑n
i=1 li

)
= P

(
lnXn ≥

∑n
i=1 lnlix∑n
i=1 li

)
= P (lnXn ≥ lnx)

= P (lnXn ≥ xn)

= p

Therefore, Equation 4.4.1 becomes

P

(
n∑
i=1

liXi ≥
n∑
i=1

xi

)
< p

2

4.5 Examples

In this section, we show directly that the combined tail dominance property holds

for normal and Cauchy distributions without using Proschan’s result. The normal

distribution is the first choice due to its popularity and mathematical simplicity.

The Cauchy distribution is of interest since if X1 and X2 are independent and

identically distributed random variables, each with a standard Cauchy distribution,

then the sample mean (X1 +X2)/2 has the same standard Cauchy distribution. The

combined tail dominance property holds exactly for Cauchy which is symmetric but

does not have log-concave density function. This result coincides with findings in

Ibragimov (2007), who proved that the seminal result of Proschan (1965) extends

to hold for symmetric distributions with not extremely heavy-tailed densities and

does not hold for distributions with extremely heavy-tailed densities. In addition

the Cauchy distribution is on the boundary between these two cases.
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Example 4.5.1 Let X1 ∼ N(0, σ2
1) and X2 ∼ N(0, σ2

2) be independent. Moreover,

let σ2
1, σ2

2, and 0 < ρ ≤ 1 be such that σ2
1 = ρσ2

2. In addition, let pi be such that

pi = P (Xi ≥ xi) = p for i = 1 and 2. Then

P (X1 +X2 ≥ x1 + x2) < p

Proof. The distribution of X2 is used to find p1, p2, and P
(
X1 +X2 ≥ x1 + x2

)
as

follows:

p1 = P

(
X2 ≥

x1√
ρ

)
p2 = P (X2 ≥ x2)

P (X1 +X2 ≥ x1 + x2) = P

(
Z ≥ x1 + x2√

1 + ρσ2

)
= P

(
X2 ≥

x1 + x2√
1 + ρ

)
(4.5.1)

(1) Assume ρ = 1. If p1 = p2 = p, then x1 = x2, and Equation 4.5.1 becomes

P (X1 +X2 ≥ x1 + x2) = P
(
X2 ≥

√
2x2

)
< P (X2 ≥ x2)

= p

(2) Assume 0 < ρ < 1. If p1 = p2, then x1√
ρ

= x2 and Equation 4.5.1 becomes

P (X1 +X2 ≥ x1 + x2) = P

(
X2 ≥

√
ρ+ 1
√

1 + ρ
x2

)
(4.5.2)

Since (
√
ρ + 1)2 > ρ + 1, thus

√
ρ + 1 >

√
ρ+ 1. Therefore, Equation 4.5.2

becomes

P (X1 +X2 ≥ x1 + x2) < P (X2 ≥ x2)

= p

2

Example 4.5.2 Let Xi; i = 1, 2 be independent and have a Cauchy distribution

with probability density function

fXi(x;x0, σi) =
1

πσi

(
1 +

(
x− x0

σi

)2
)

+
1

2
; x ∈ R
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where x0 ∈ R;σi > 0 are the location and scale parameter respectively. In addition,

let pi be such that pi = P (Xi ≥ xi). If p1 = p2 = p, then P
(
X1 +X2 ≥ x1 +x2

)
= p.

Proof. For no loss of generality, assume x0 = 0. The cumulative distribution

function of Xi ∼ Cauchy(0, σi); i = 1, 2 is

FXi(x) =
1

π
arctan

(
x

σi

)
+

1

2
; x ∈ R

where 0 and σ > 0 are the location and scale parameter respectively. Thus the

sum of two independent Cauchy random variables is again a Cauchy, with the scale

parameters summed.

Let p1 = p2 = p, then x1 = σ1
σ2
x2, and

P
(
X1 +X2 ≥ x1 + x2

)
=

1

2
− 1

π
arctan

((
σ1
σ2

+ 1
)
x2

σ1 + σ2

)

=
1

2
− 1

π
arctan

(
x2

σ2

)
= p

This means that Cauchy distribution is on the boundary between the situation where

the combined tail property holds and situation where it does not. 2

4.6 Skew-Symmetric Distributions with Log-Concave

Kernels

Azzalini and Regoli (2012) define the probability density function of a skew-symmetric

distribution as given in Lemma 4.6.1, which is presented originally in Azzalini and

Capitanio (2003).

Lemma 4.6.1 (Azzalini and Regoli, 2012, Lemma 1). Denote a D-dimensional

probability density function centrally symmetric about zero by f ∗X , a continuous

distribution function on the real line by G∗X , with symmetric density function g∗X ,

so that g∗X exists almost everywhere and is an even function, and an odd function

by γ : RD → R, so that γ(−x) = −γ(x) ∀x ∈ RD. Thus

fX(x) = 2f ∗X(x)G∗X(γ(x)); x ∈ RD (4.6.1)
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is a density function. The perturbation function GX(x) = G∗X
(
γ(x)

)
satisfies

GX(x) ≥ 0, GX(x) +GX(−x) = 1; x ∈ RD

In Lemma 4.6.2, we present the behaviour of the right tail probability of the

convex combination of two iid random variables with density function in Equation

4.6.1 under specific conditions. Subsequently, the obtained result will be used to

prove Theorem 4.6.3 which states that the combined tail dominance property holds

for distributions having such densities when two components are involved.

Lemma 4.6.2 Let fX(x) = 2f ∗X(x)G∗X(αx); x ∈ R, α < 0, where f ∗X and G∗X are

defined in Lemma 4.6.1 such that f ∗X is log-concave and D = 1. Moreover, let X1

and X2 be independently distributed with fX . Then P
(
aX1 + (1 − a)X2 ≤ t

)
is

strictly increasing as a increases from 0 to 1
2

Proof. Fix t > 0 and define

H(a, t) = P (aX1 + (1− a)X2 ≤ t) =

∫ ∞
−∞

FX

(
t− (1− a)u

a

)
fX(u) du; 0 < a <

1

2

Follow the same steps in Lemma 2.3.3 until reaching Equation 2.3.16. Hence,

a2∂H(a, t)

∂a
=

∫ ∞
0

v

{
fX (t+ v) fX

(
t− (1− a)

a
v

)

−fX (t− v) fX

(
t+

(1− a)

a
v

)}
dv

=

∫ ∞
0

vJ(a, v) dv

Since fX(x) = 2f ∗X(x)G∗X(αx),

J(a, v) = 4f ∗X (t+ v)G∗X (α(t+ v)) f ∗X

(
t− (1− a)

a
v

)
G∗X

(
α

(
t− (1− a)

a
v

))
− 4f ∗X (t− v)G∗X (α(t− v)) f ∗X

(
t+

(1− a)

a
v

)
G∗X

(
α

(
t+

(1− a)

a
v

))
Since f ∗X is symmetric around zero, thus we get

J(a, v) = 4f ∗X (t+ v) f ∗X

(
(1− a)

a
v − t

)
G∗X (α(t+ v))G∗X

(
α

(
t− (1− a)

a
v

))
− 4f ∗X (v − t) f ∗X

(
(1− a)

a
v + t

)
G∗X (α (t− v))G∗X

(
α

(
t+

(1− a)

a
v

))
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Furthermore, f ∗X is a log-concave function. Thus for v ≥ 0; t > 0; (1− a)/a > 1,

f ∗X
(
v − t

)
f ∗X
(
v + t

) ≤ f ∗X
( (1−a)

a
v − t

)
f ∗X
( (1−a)

a
v + t

) (4.6.2)

Moreover,

G∗X

(
α
(
t− (1−a)

a
v
))

> G∗X (α(t− v)) and G∗X

(
α
(
t+ (1−a)

a
v
))

< G∗X (α (t+ v))

Hence,

G∗X (α(t− v))G∗X

(
α

(
t+

(1− a)

a
v

))
< G∗X (α(t+ v))G∗X

(
α

(
t− (1− a)

a
v

))
(4.6.3)

By using Equations 4.6.2 and 4.6.3, we get

f ∗X (v − t) f ∗X
(

(1−a)
a
v + t

)
G∗X (α(t− v))G∗X

(
α
(
t+ (1−a)

a
v
))

<

f ∗X (v + t) f ∗X

(
(1−a)
a
v − t

)
G∗X (α(t+ v))G∗X

(
α
(
t− (1−a)

a
v
))

Hence, J(a, v) > 0, which implies ∂H(a,t)
∂a

> 0 as a consequence. 2

Remark. when f ∗X is the probability density of the standard normal distribution,

and G∗X is the cumulative distribution function of the standard normal distribution,

this is the case of having negatively skewed-normal distribution (Azzalini, 1985).

Theorem 4.6.3 Let X1 and X2 be independent and identically distributed with

fX(x) = 2f ∗X(x)G∗X(αx); x ∈ R, α < 0

where f ∗X and G∗X are defined in Lemma 4.6.1 such that f ∗X is log-concave and D = 1.

Moreover, let xi be such that pi = P
(
Xi ≥ xi

)
= p. Then

P
(
X1 +X2 ≥ x1 + x2

)
< p

Proof. Using Lemma 4.6.2, for a < b, a < (1− a), b < (1− b), then

P (aX1 + (1− a)X2 ≤ t) < P (bX1 + (1− b)X2 ≤ t)

which is equivalent to

P (bX1 + (1− b)X2 ≥ t) < P (aX1 + (1− a)X2 ≥ t) (4.6.4)
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Let a = (1, 0) and b = (1/2, 1/2) in Equation 4.6.4. Thus

P
(
X1 +X2 ≥ 2t

)
< P

(
X2 ≥ t

)
; t ≥ 0

Let t = x1+x2
2

in the previous inequality, hence

P
(
X1 +X2 ≥ x1 + x2

)
< P

(
X2 ≥

x1 + x2

2

)
Since Xi; i = 1, 2 are iid, x1 = x2. Therefore,

P
(
X1 +X2 ≥ x1 + x2

)
< P

(
X2 ≥ x2

)
= p

2

Corollary 4.6.4 shows that the combined tail dominance property is stable under

re-scaling either of the distributions in Theorem 4.6.3.

Corollary 4.6.4 Let X1 and X2 be independent and identically distributed with

fX(x) = 2f ∗X(x)G∗X(αx); x ∈ R, α < 0

where f ∗X and G∗X are defined in Lemma 4.6.1 such that f ∗X is log-concave and D = 1.

Moreover, let x1, x2 and k > 0 be such that P (kX1 ≥ x1) = P (X2 ≥ x2) = p. Then

P
(
kX1 +X2 ≥ x1 + x2

)
< p

Proof. Set a = (0, 1) and b = (k/(k + 1), 1/(k + 1)) in Equation 4.6.4. Thus

P (kX1 +X2 ≥ (k + 1)t) < P (X2 ≥ t)

Set t = x1+x2
k+1

in the previous inequality,

P (kX1 +X2 ≥ x1 + x2) < P (X2 ≥
x1 + x2

k + 1
) (4.6.5)

Since P (kX1 ≥ x1) = P (X2 ≥ x2), thus x1 = kx2 and Equation 4.6.5 becomes

P (kX1 +X2 ≥ x1 + x2) < P (X2 ≥ x2)

= p

2
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4.7 SHE and SHEL Distribution Functions

The distribution of the shifted exponential distribution (SHE) is the distribution of

X where X−c is exponentially distributed for some real c. Therefore, the probability

density function, right tail probability function, and characteristic function of X ∼

SHE(c, λ) are given respectively by

fX(x) =

λe
−λ(x−c) , x ≥ c

0 , x < c

(4.7.1)

F̄X(x) =

e
−λ(x−c) , x ≥ c

1 , x < c

(4.7.2)

ψX(t) = eit(c)(1− itλ−1)−1 (4.7.3)

The discrete random variable Y has lump distribution L(c) if its probability mass

function, right tail probability function and characteristic function are given respec-

tively by

fY (x) =

1 , x = c

0 , x 6= c

F̄Y (x) =

0 , x ≥ c

1 , x < c

(4.7.4)

ψY (t) = eitc (4.7.5)

The variable Z has a mixture distribution of shifted exponential and lump (SHEL)

with parameters 0 < w ≤ 1, c ∈ R, λ > 0, simply represented by Z ∼ SHEL(w, c, λ),

if it is distributed like X for x > c with probability w, but takes on the value c with

probability 1−w. Using Equations 4.7.3 and 4.7.5, the characteristic function of Z

is

ψZ(t) = wψX(t) + (1− w)ψY (t)

= weit(c)(1− itλ−1)−1 + (1− w)eit(c) (4.7.6)
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The cumulative distribution function and right tail probability function of Z are

respectively as follows:

FZ(x) = w

 0, x < c,

1− e−λ(x−c), x ≥ c
+ (1− w)

 0, x < c,

1, x ≥ c

=

 0, x < c,

1− we−λ(x−c), x ≥ c
(4.7.7)

F̄Z(x) =

 1, x < c,

we−λ(x−c), x ≥ c
(4.7.8)

where w is the probability of being in the continuous state. Graphs of FZ(x) and

F̄Z(x) in Figure 4.2 are continuous except at the point c, where they have a jump

discontinuity of height (1− w)fY (c) and wfY (c) respectively.
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Figure 4.2: The cumulative distribution (a) and right tail probability function (b)

of Z in Equations 4.7.7 and 4.7.8 respectively.

4.8 Stochastic Dominance

The stochastic dominance (SD) is an approach used for risk assessment in decision

making. It is commonly used in economics to rank different actions by compar-

ing the probability distributions over possible outcomes, taking into account the
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preferences of decision makers (Hanoch and Levy, 1969). There are infinite degree

stochastic dominance (Thistle, 1993). In this thesis, we shall extensively use first-

order stochastic dominance.

The first-order stochastic dominance is defined in Hadar and Russell (1969) as

follows

Definition 4.8.1 The distribution GY is said to first-order stochastically domi-

nate FX (alternatively, Y first-order stochastically dominate X, and use the term

Y <FOSD X to stand for it) if

FX(x) ≥ GY (x) ∀x ∈ R

which is equivalent to

ḠY (x) ≥ F̄X(x) ∀x ∈ R (4.8.1)

For convenience and to be consistent with our interest in F̄X , we work usually with

Equation 4.8.1.

Some properties of first-order stochastic dominance are presented in Propositions

4.8.1 and 4.8.2.

Proposition 4.8.1 If X1 first-order stochastically dominates X2, and Y is indepen-

dent of both X1 and X2, then X1 + Y first-order stochastically dominates X2 + Y .

Proof.

P (X1 + Y ≤ t) =

∫ ∞
−∞

FX1(t− y) dFY (y)

Since X1 <FOSD X2,∫ ∞
−∞

FX1(t− y) dFY (y) ≤
∫ ∞
−∞

FX2(t− y) dFY (y)

= P (X2 + Y ≤ t)

Hence,

P (X1 + Y ≤ t) ≤ P (X2 + Y ≤ t)

i.e. X1 + Y <FOSD X2 + Y 2
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Proposition 4.8.2 If Xi first-order stochastically dominates Yi; i = 1, 2, and

X1, X2 are independent and Y1, Y2 are independent, then X1+X2 first-order stochas-

tically dominates Y1 + Y2.

Proof. By using Proposition 4.8.1,

X1 +X2 <FOSD Y1 +X2 (4.8.2)

Moreover,

Y1 +X2 = X2 + Y1 <FOSD Y2 + Y1

= Y1 + Y2 (4.8.3)

Using Equations 4.8.2 and 4.8.3,

X1 +X2 <FOSD Y1 + Y2

2

4.9 Right Tail Probability Functions

The right tail probability function (complementary cumulative distribution function

or tail distribution) is defined as

F̄X(x) = 1− FX(x)

It has different names such as the survival function in survival analysis, or relia-

bility function in engineering. We will use right tail probability function as our

term for F̄X(x) unless redefined elsewhere in this thesis. The right tail probability

and cumulative distribution functions inherit log-concavity from its corresponding

log-concave density function fX(x) (Bagnoli and Bergstrom, 2005). However the

probability density function of the mirror-image of Pareto distribution is

fX(x) = β(−x)−β−1; x ∈ (−∞,−1], β > 1

which is log-convex, whereas its right tail probability function F̄X(x) = 1− (−x)−β

is log-concave. This means that the class of distributions with log-concave right tail
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probability functions is larger than the class of distributions that have log-concave

densities.

The assumption of log-concavity property of right tail probability functions could

be supported by using Proposition 4.9.1, it shows that the distance is decreasing be-

tween successive quantiles with the tail probability halving each time for a selection

of such quantiles. Therefore there is some possibility that experts would be able to

make such a judgement.

Proposition 4.9.1 If F̄X is log-concave and q > 0 is fixed, then

F̄−1
X (q/4)− F̄−1

X (q/2) ≤ F̄−1
X (q/2)− F̄−1

X (q)

See Figure 4.3 for an illustration of the proposition.
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Figure 4.3: An example of log-concave right tail probability function, F̄X in Proposi-

tion 4.9.1, to illustrate the relationship between the quantiles F̄−1
X (q), F̄−1

X (q/2) and

F̄−1
X (q/4) of three successive right tail probabilities q/4 < q/2 < q.

Proof. If q > 0 is fixed, then

q/4 < q/2 < q
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Hence,

F̄−1
X (q) ≤ F̄−1

X (q/2) ≤ F̄−1
X (q/4)

Using Definition 2.2.1 for t = 1/2, thus

F̄X

(
F̄−1
X (q) + F̄−1

X (q/4)

2

)
≥

(
F̄X
(
F̄−1
X (q)

)) 1
2
(
F̄X
(
F̄−1
X (q/4)

)) 1
2

= q/2

= F̄X
(
F̄−1
X (q/2)

)
Since F̄X is a decreasing function in its argument,

F̄−1
X (q) + F̄−1

X (q/4)

2
≤ F̄−1

X (q/2)

F̄−1
X (q) + F̄−1

X (q/4) ≤ 2F̄−1
X (q/2)

Consequently,

F̄−1
X (q/4)− F̄−1

X (q/2) ≤ F̄−1
X (q/2)− F̄−1

X (q)

2

In Sections 4.10 and 4.11, we develop a novel approach to explore the validity

of the combined tails dominance property for distributions that have log-concave

or partial log-concave right tail probability functions. In the latter case the log-

concavity only applies to the upper part of the right tail probability function. This

approach passes through two phases. In the first phase, which is presented in The-

orem 4.9.1 and the corollary that follows after, we show that the distribution that

has log-concave or partial log-concave right tail probability function is first-order

stochastically dominated by SHE and SHEL distribution respectively. The second

phase shows when the combined tail dominance property holds for SHE and SHEL

distributions. Consequently, we will know when the combined tail dominance prop-

erty holds for the distributions that have log-concave or partial log-concave right

tail probability functions.

Theorem 4.9.1 Let X1 have partial log-concave right tail probability function, i.e.

log-concave right tail probability function for x > c′, and define 0 < w = F̄X1(c
′) ≤ 1.

Moreover, let 0 < p < w and x′ be such that F̄X1(x
′) = p. Then there exists
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X2 ∼ SHEL(w, c, λ), with c ≥ c′ such that X2 first-order stochastically dominates

X1.

Proof. Since log F̄X1 is concave for x > c′, it is absolutely continuous on each closed

subinterval of (c′,M) where the supremum M of the support of X1 may be∞. Left

and right derivatives of log F̄X1 with respect to x exist at every point in (c′,M) and

are monotonically decreasing. The derivative exists at almost all points in (c′,M)

and is Lebesgue integrable.

Moreover, the left-hand derivative of log F̄X1 at x′ is −λ1 which is greater than

or equal to the right-hand derivative at x′ which is equal to −λ2. Let λ satisfy

λ1 ≤ λ ≤ λ2. Note that λ1 > 0, as p < w implies c′ < x′ and the derivative

of log F̄X1 must be negative somewhere in (c′, x′). Furthermore, since the left-hand

derivative is decreasing between c′ and x′, λ1 > 0. Therefore, λ > 0 as a consequence.

In addition, c is chosen so that F̄X2(x
′) = p, i.e. to solve

we−λ(x′−c) = p

After taking the logarithm of both sides and simple algebraic,

c = x′ +
log p

w

λ

Furthermore, If GX(x) = we−λ(x−c); 0 < w < 1, then
(

logGX(x)
)′

= −λ which is

constant for all x. Moreover, for x ∈ (c′, x′),

(
log F̄X1(x)

)′ ≥ −λ1 ≥ −λ =
(

logGX(x)
)′

Hence, ∫ x′

x

(
log F̄X1(t)

)′
dt ≥

∫ x′

x

(
logGX(t)

)′
dt (4.9.1)

log F̄X1(x
′)− log F̄X1(x) ≥ logGX(x′)− logGX(x)

Since
(

log F̄X1(x
′)
)′

=
(

log ḠX(x′)
)′

, log F̄X1(x
′) = logGX(x′) and

GX(x) ≥ F̄X1(x) ∀x ∈ (c′, x′)

Therefore,

GX(c′) ≥ F̄X1(c
′) = w = GX(c)
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Hence, c ≥ c′. See Figure 4.4 for illustration.

c' c x'

log(p)

log(w)

0

log FX1(x)

log FX2(x)

Figure 4.4: log right tail probability functions of X1 and X2 ∼ SHEL(w, c, λ) in

Theorem 4.9.1.

In Figure 4.4 there are three areas that should be examined.

(1) For x ≥ x′, the first derivative of log F̄X1(x) is less than or equal to −λ2 ≤ −λ

which in turn means that∫ x

x′

(
log F̄X1(t)

)′
dt ≤

∫ x

x′

(
log F̄X2(t)

)′
dt

Hence,

log F̄X1(x)− log F̄X1(x
′) ≤ log F̄X2(x)− log F̄X2(x

′) (4.9.2)

Since log F̄X1(x
′) = log F̄X2(x

′), Equation 4.9.2 becomes

log F̄X1(x) ≤ log F̄X2(x)

Therefore,

FX2(x) ≤ FX1(x) ∀x ≥ x′ (4.9.3)

(2) For x ∈ [c, x′), the first derivative of log F̄X1(x) is greater than or equal to

−λ1 ≥ −λ and this leads to∫ x′

x

(
log F̄X1(t)

)′
dt ≥

∫ x′

x

(
log F̄X2(t)

)′
dt
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By applying the same method to solve Equation 4.9.1,

FX2(x) ≤ FX1(x) ∀x ∈ [c, x′) (4.9.4)

(3) For x < c

Since FX2(x) = 0 for this range of x, so it must be the case that

FX2(x) ≤ FX1(x) ∀x < c (4.9.5)

Hence, from Equations 4.9.3, 4.9.4 and 4.9.5, we obtain

FX2(x) ≤ FX1(x) ∀x ∈ R

2

Corollary 4.9.2 Let X1 have log-concave right tail probability function. Moreover,

let x′ be such that F̄X1(x
′) = p. Then there exists X2 ∼ SHE(c, λ) such that

F̄X2(x
′) = p, and X2 first-order stochastically dominates X1.

Proof. Put w = 1 in Proposition 4.9.1, then the proof follows. This problem is

presented in Figure 4.5.

c x'

log(p)

0

log FX1
(x)

log FX2
(x)

Figure 4.5: log right tail probability functions of X1 and X2 ∼ SHE(c, λ) in Corollary

4.9.2.

2
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4.10 Log-Concave Right Tail Probability Func-

tions

In the present section, we consider distributions that have log-concave right tail

probability functions.

4.10.1 Convolution of SHE Distribution Functions

In Lemma 4.10.1 we shall obtain P (X1, X2 ≥ x′1 + x′2) when Xi ∼ SHE(ci, λi); i =

1, 2. Therefore, we can explore when P (X1, X2 ≥ x′1 + x′2) ≤ p.

Lemma 4.10.1 Let Xi ∼ SHE(ci, λi); i = 1, 2 be independent. Moreover, let

λ1 ≤ λ2 and x′i be such that F̄Xi(x
′
i) = p. If d = − ln p and s = λ1

λ2
, then

F̄X1+X2(x
′
1 + x′2)

p
=


e−ds−se−ds−1

1−s ; λ1 < λ2(
1 + 2d

)
e−d ; λ1 = λ2

Proof. Let Xi ∼ SHE(ci, λi); i = 1, 2. Recall Equation 4.7.1

fXi(xi) = λie
−λi(xi−ci); xi ≥ ci

To convolve X1 and X2, let Z = X1 +X2. Therefore, X2 = Z−X1. The probability

density function of Z will be found as follows:

fX1,Z(x1, z) = fX1,X2(x1, z − x1)

∣∣∣∣∂(x1, x2)

∂(x1, z)

∣∣∣∣
= λ1λ2 exp (−λ1(x1 − c1)− λ2(z − x1 − c2)) (4.10.1)

where c1 ≤ x1 ≤ z − c2.

We have two possibilities for the values of λ1 and λ2, either λ1 < λ2 or λ1 = λ2.

(1) If λ1 < λ2, then the probability density function of Z is

fZ(z) =

∫ z−c2

c1

fX1,Z(x1, z) dx1

=
λ1λ2

λ2 − λ1

(
e−λ1(z−(c1+c2)) − e−λ2(z−(c1+c2))

)
; z ≥ c1 + c2
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By integrating the last equation, thus

FZ(z) =
λ1λ2

λ2 − λ1

∫ z

c1+c2

(
e−λ1(t−(c1+c2)) − e−λ2(t−(c1+c2))

)
dt

= 1 +
λ1e

−λ2(z−(c1+c2))

λ2 − λ1

− λ2e
−λ1(z−(c1+c2))

λ2 − λ1

, z ≥ c1 + c2

Hence,

F̄X1+X2(x
′
1 + x′2) =

λ2e
−λ1(x′1+x′2−(c1+c2))

λ2 − λ1

− λ1e
−λ2(x′1+x′2−(c1+c2))

λ2 − λ1

(4.10.2)

=
e−λ1(x

′
1+x′2−(c1+c2))

1− λ1
λ2

−
λ1
λ2
e−λ2(x

′
1+x′2−(c1+c2))

1− λ1
λ2

Since

F̄Xi(x
′
i) = e−λi(x

′
i−ci)

= p

Thus

F̄X1+X2(x
′
1 + x′2) = p

(
e−λ1(x′2−c2) − λ1

λ2
e−λ2(x′1−c1)

1− λ1
λ2

)

Moreover, e−λi(x
′
3−i−c3−i) = p

λi
λ3−i . Hence,

F̄X1+X2(x
′
1 + x′2) = p

pλ1λ2 − λ1
λ2
p
λ2
λ1

1− λ1
λ2


Since s = λ1

λ2
and p = e−d, the last equation becomes

F̄X1+X2(x
′
1 + x′2) = p

(
e−ds − se−ds−1

1− s

)
Hence,

F̄X1+X2(x
′
1 + x′2)

p
=

(
e−ds − se−ds−1

1− s

)
(4.10.3)

(2) If λ1 = λ2 = λ, then Equation 4.10.1 becomes

fX1,Z(x1, z) = λ2 exp (−λ(z − c1 − c2))

Therefore,

fZ(z) =

∫ z−c2

c1

fX1,Z(x1, z) dx1

= λ2 (z − c1 − c2) exp (−λ(z − c1 − c2)) ; z ≥ c1 + c2



4.10. Log-Concave Right Tail Probability Functions 121

By using integration by parts, the last equation becomes

FZ(z) = − (λ (z − c1 − c2) + 1) exp (−λ (z − c1 − c2)) + 1

Therefore,

F̄Z(z) = (λ (z − c1 − c2) + 1) exp (−λ (z − c1 − c2)) ; z ≥ c1 + c2

and

F̄X1+X2(x
′
1 + x′2) = (λ (x′1 + x′2 − c1 − c2) + 1)

× exp (−λ (x′1 + x′2 − c1 − c2)) (4.10.4)

Since e−λ(x′i−ci) = p,

F̄X1+X2(x
′
1 + x′2) = (1− 2 ln p) p2

Moreover, since p = e−d,

F̄X1+X2(x
′
1 + x′2) = p (1 + 2d) e−d

and
F̄X1+X2(x

′
1 + x′2)

p
= (1 + 2d) e−d (4.10.5)

Therefore, the result follows from Equations 4.10.3 and 4.10.5. 2

Define

W (d, s) =
F̄X1+X2(x

′
1 + x′2)

p

=
e−ds − se−ds−1

1− s
(4.10.6)

which represents the ratio of F̄X1+X2(x
′
1 + x′2) to p.

We began by exploring the behaviour of W (d, s) for different values of d as

presented in Figure 4.6.
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Figure 4.6: Plot of W (d, s) for different values of d. The horizontal dashed line

highlights when W (d, s) ≤ 1.

From Figure 4.6, W (d, s) ≤ 1 when s approaches one for a specific value of d. Thus

define

W̃ (d) = lim
s→1

W (d, s)

Using L’Hôspital’s rule,

W̃ (d) = (2d+ 1)e−d (4.10.7)

The previous equation is the same as Equation 4.10.5.

Differentiate Equation 4.10.7 with respect to d. Thus

W̃ ′(d) = e−d
(

1− 2d
)

Therefore, W̃ (d) increases for d < 0.5 and then decreases for d > 0.5. The maximum

value of W̃ (d) is 1.213061 at d = 0.5, see Figure 4.7 for illustration.
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Figure 4.7: Plot of W̃ (d). The red dashed line is at arg max
d

W̃ (d) = 0.5.

Proposition 4.10.1 explores the behaviour of W (d, s) as d increases. In addition,

it will be used later in Theorem 4.10.2.

Proposition 4.10.1 W (d, s), which represents the ratio of F̄X1+X2(x
′
1 + x′2) to p,

is decreasing in d for d > − ln(s)
2 sinh(− ln(s))

and s ∈ (0, 1).

Proof. Differentiating Equation 4.10.6 with respect to d, thus

∂

∂d
W (d, s) =

e−ds
−1 − se−ds

1− s
(4.10.8)

Define a = − ln(s); a > 0. Thus Equations 4.10.6 and 4.10.8 respectively become

W (d, e−a) =
e−de

−a − e−ae−dea

1− e−a

and
∂

∂d
W (d, e−a) =

e−de
a − e−ae−de−a

1− e−a
(4.10.9)

For any a > 0, d = 0,

W (0, e−a) = 1 and
∂

∂d
W (0, e−a) = 1
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Moreover, the denominator of Equation 4.10.9 is always positive and for sufficiently

large d the numerator e−de
a
(

1− e−aed(ea−e−a)
)

is negative. Therefore, ∂
∂d
W (d, e−a)

is negative for sufficiently large d.

In addition, if there is a single d∗ > 0 such that ∂
∂d
W (d∗, e−a) = 0, by continuity

of ∂
∂d
W (d, e−a), W (d, e−a) increases for d < d∗ and decreases for d > d∗.

Equate Equation 4.10.9 to zero,

∂

∂d
W (d, e−a) = 0 ⇐⇒ e−de

a − e−ae−de−a = 0

⇐⇒ e−de
a

= e−ae−de
−a

⇐⇒ ln
(
e−de

a)
= ln

(
e−ae−de

−a
)

⇐⇒ −dea = −a− de−a

⇐⇒ a = d(ea − e−a)

⇐⇒ d = a/2 sinh(a)

thus d∗(a) = a/2 sinh(a) is unique. The Taylor expansion of sinh(a)/a is

sinh(a)/a = 1 +
a2

3!
+
a4

5!
+
a6

7!
+ . . .

which is increasing for a > 0, therefore a/ sinh(a) is decreasing for a > 0, and its

largest value is 1 at a = 0. Thus the largest value of d∗(a) is 1/2. 2

In Theorem 4.10.2, we will prove that the combined tail dominance property

holds (under a specific condition) when considering two random variables that have

shifted exponential distributions.

Theorem 4.10.2 Let Xi ∼ SHE(ci, λi); i = 1, 2 be independent. Moreover, let

λ1 ≤ λ2 and x′i be such that F̄Xi(x
′
i) = p. If p ≤

(
2W−1

(
e−

1
2

2

))−1

≈ 0.2846681,

then

P (X1 +X2 ≥ x′1 + x′2) ≤ p

Proof. Notice that F̄X1+X2(x
′
1 + x′2) ≤ p ⇐⇒ W (d, s) ≤ 1. From Figure 4.6, it

appears that W (d, s) ≤ 1 when W̃ (d) equals to one and this will be proved formally

later. Hence, we will first equate W̃ (d) to one in order to obtain the value of d that
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makes W (d, s) ≤ 1, for s ∈ (0, 1), as follows:

(2d+ 1)e−d = 1→ d+
1

2
=
ed

2
→ − ln(p) +

1

2
=

1

2p

The last equation is equivalent to

− 1

2p
e−

1
2p = −1

2
e−

1
2 → −1

2p
=W−1

(
−e− 1

2

2

)
Hence,

p =

(
−2W−1

(
−e− 1

2

2

))−1

≈ 0.2846681

Thus

d = ln

(
−2W−1

(
−e− 1

2

2

))
≈ 1.256431

whereW−1 is the bottom branch of the LambertW function, see Figure 4.8 for illus-

tration and Appendix A.2 for more detail. Notice that the upper branch W0(−e
− 1

2

2
)

is not of our interest since d will be 0 which is not acceptable in this context.
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Figure 4.8: Two real branches of the Lambert W function.

Now we shall study the behaviour of W (d, s) when s approaches zero and one as

follows:
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(1) s approaches 0

By differentiating Equation 4.10.6 with respect to s. Thus

∂

∂s
W (d, s) =

(
1− (1− s)d

)
e−ds −

(
(1− s)(1 + d

s
) + s

)
e−

d
s

(1− s)2

=

(
1− (1− s)d

)
e−ds −

(
1 + (1− s)d

s

)
e−

d
s

(1− s)2
(4.10.10)

For small s, the first-order Maclaurin series expansion of W (d, s) is

W (d, s) ≈ 1 + (1− d)s

Therefore, W (d, s) < 1 for d > 1 and small s.

(2) s approaches 1

When s approaches one, W (d, s) in Equation 4.10.6 can be rewritten as

W (d, 1− x) =
e−d(1−x) − (1− x)e

−d
(1−x)

x
(4.10.11)

Define f(x) = e−d(1−x)−(1−x)e
−d

(1−x) , hence f(x) is infinitely differentiable for x > 0.

The Maclaurin series expansion of f(x) is obtained as follows:

f ′(x) = de−d(1−x) +

(
d

1− x
+ 1

)
e−

d
(1−x)

f ′′(x) = d2e−d(1−x) − d2

(1− x)3
e−

d
(1−x)

f ′′′(x) = d3e−d(1−x) −
(

3d2

(1− x)4
− d3

(1− x)5

)
e−

d
(1−x)

Hence,

f(0) = 0, f ′(0) = (1 + 2d)e−d, f ′′(0) = 0, and f ′′′(0) =
(
2d3 − 3d2

)
e−d

and

f(x) ≈ (1 + 2d)e−dx+ d2
(
2d− 3

)
e−dx3/6 (4.10.12)

Therefore, the Maclaurin series expansion of W (d, 1− x) for small x is

W (d, 1− x) ≈ (1 + 2d)e−d + d2
(
2d− 3

)
e−dx2/6

= e−d
(

1 + 2d+
d2
(
2d− 3

)
6

x2
)

Hence, for small x, W (d, 1 − x) < e−d(1 + 2d) if and only if the coefficient of x2 is

negative, and the coefficient of x2 is negative if and only if d < 1.5. Therefore, for
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1 < d < 1.5, W (d, s) decreases for s = 0+ and increases for s = 1−.

To know the behaviour of W (d, s) for s between 0 and 1, we shall argue as

follows:

Equation 4.10.10 can be rewritten as

∂

∂s
W (d, s) = (1− s)−2

(
g(ds)− g(ds−1)

)
where

g(x) = (x+ 1− d)e−x

Notice that, for d > 1,

∂

∂s
W (d, s) = 0 ⇐⇒ g(ds) = g(ds−1)

Since g(ds−1) is positive for s ∈ (0, 1), the only possibility for ∂
∂s
W (d, s) to be zero

is when g(ds) > 0, and this happens when d−1
d
< s < 1.

Write s = e−a; 0 < a < − log(d−1
d

), and set

h(a) = log g(de−a)− log g(dea)

Therefore,

h(a) = 0 ⇐⇒ ∂

∂s
W (d, s)

∣∣
s=e−a

= 0

Differentiating h(a) with respect to a,

h′(a) =
d2e−a

(
e−a − 1

)
de−a + 1− d

+
d2ea

(
ea − 1

)
dea + 1− d

=
(d3 − d2(1− d))(e−a + ea) + (1− d)d2(e−2a + e2a)− 2d3

(de−a + 1− d)(dea + 1− d)

=
2d2
(

(2d− 1) cosh(a) + (1− d) cosh(2a)− d
)

(de−a + 1− d)(dea + 1− d)

Since cosh(2a) = 2 cosh2(a)− 1,

h′(a) =
−2d2

(
2(d− 1)

(
cosh2(a)− cosh(a)

)
− cosh(a) + 1

)
(de−a + 1− d)(dea + 1− d)

=
−2d2

(
2(d− 1) cosh(a)− 1

)(
cosh(a)− 1

)
(de−a + 1− d)(dea + 1− d)

The numerator is a quadratic equation in cosh(a) and the denominator of h′(a) is

positive. One root is cosh(a) = 1 and cosh(a) = 1 ⇐⇒ a = 0. The other root is
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cosh(a) = 1
2(d−1)

.

The function h(a) is continuous over the interval
[
0,− log

(
d−1
d

)]
and differen-

tiable over the interval
(
0,− log

(
d−1
d

))
. Since h(0) = 0, and there is at most one

positive a which equals to cosh−1
(

1
2(d−1)

)
such that h′

(
cosh−1

(
1

2(d−1)

))
= 0, there

is at most one positive ao > cosh−1
(

1
2(d−1)

)
such that h(ao) = 0 and satisfies the

Rolle’s theorem (extension of mean value theorem)

h′
(

cosh−1

(
1

2(d− 1)

))
=
h(ao)− h(0)

ao
= 0

This means that, there is at most one turning point of W (d, s) at s = e−ao provided

that d > 1.

Define dSHE = ln
(
−2W−1

(
−e−

1
2

2

))
. Therefore, dSHE ≈ 1.256431 which is between

1 and 1.5.

Moreover, W (d, s) decreases when s = 0+ and increases when s = 1−, for

1 < d < 1.5. Hence, the value of W (dSHE, s) should be less than one at that

turning point. Therefore, W (dSHE, s) ≤ 1. See Figure 4.9 for illustration.
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W
(d
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Figure 4.9: Plot of W (dSHE, s). The horizontal dashed line highlights that

W (dSHEL, s) ≤ 1.

Using Proposition 4.10.1, W (d, s) ≤ 1 for d ≥ dSHE. Therefore, if p ≤
(
−2W−1

(
−e−

1
2

2

))−1

,
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then P (X1 +X2 ≥ x′1 + x′2) ≤ p 2

For numerical illustration, we shall consider Xi ∼ SHE(1, 1); i = 1, 2. Us-

ing Equations 4.7.2 and 4.10.4, the right tail probability functions of Xi at x′i and

X1 +X2 at x′1 + x′2 are respectively given by

F̄Xi(x
′
i) = e−(x′i−1), x′i ≥ 1

and

F̄X1+X2(x
′
1 + x′2) = ((x′1 + x′2 − 2) + 1)

× exp (− (x′1 + x′2 − 2)) ; x′1 + x′2 ≥ 2

Suppose that we take

pi = p = e−dSHE

≈ 0.2846681

Then x′i = 2.256431 and F̄X1+X2(2 (2.256431)) = 0.2846681 = p. If we take pi = p =

0.3, then x′i = 2.203973 and F̄X1+X2 (2(2.203973)) = 0.3067151 > 0.3 = p. Whereas,

if pi = p = 0.2, then x′i = 2.609438 and F̄X1+X2 (2(2.609438)) = 0.168755 < 0.2 = p.

This illustrates the boundary between situations where the combined tails domi-

nance property holds and where it does not, in the case when the distributions of

uncertain quantities Xi; i = 1, 2 are SHE(ci, λi).

4.10.2 Generalization for n > 2

Theorem 4.10.3 generalises the result obtained in Theorem 4.10.2 for n > 2. In

addition, it will be used later in Theorem 4.10.4.

Theorem 4.10.3 Let Xi ∼ SHE(ci, λi); i = 1, 2, . . . , n be independent. Moreover,

let λ1 ≤ λ2 and x′i be such that F̄Xi(x
′
i) = p. If p ≤

(
2W−1

(
e−

1
2

2

))−1

≈ 0.2846681,

then

P (X1 +X2 + · · ·+Xn ≥ x′1 + x′2 + · · ·+ x′n) ≤ p

Proof. We will use mathematical induction to prove this theorem.

(1) Consider n = 2, the statement is true by using Theorem 4.10.2.
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(2) Assume the statement is true for n, hence

P (X1 +X2 + · · ·+Xn ≥ x′1 + x′2 + · · ·+ x′n) ≤ p

(3) We shall prove that it is true for n+ 1 as follows:

The log-concavity of probability density function is preserved under convolu-

tion, hence X1 + X2 + · · · + Xn has log-concave probability density function,

and then has log-concave right tail probability function, and so by Corollary

4.9.2, there exists X∗ ∼ SHE(c∗, λ∗) such that

X∗ <FOSD X1 +X2 + · · ·+Xn (4.10.13)

and

P (X∗ ≥ x′1 + x′2 + · · ·+ x′n) = P (X1 +X2 + · · ·+Xn ≥ x′1 + x′2 + · · ·+ x′n)

≤ p

Therefore, there exists x∗ ≤ x′1 + x′2 + · · ·+ x′n such that

P (X∗ ≥ x∗) = p

By applying Theorem 4.10.2 for X∗, Xn+1 and tail probability p. Thus

P (X∗ +Xn+1 ≥ x∗ + x′n+1) ≤ p (4.10.14)

Moreover, using Equation 4.10.13 and Proposition 4.8.1, we obtain

X∗ +Xn+1 <FOSD X1 +X2 + · · ·+Xn +Xn+1

Therefore,

P
(
X1 +X2 + · · ·+Xn +Xn+1 ≥ x′1 + x′2 + · · ·+ x′n + x′n+1

)
≤

P (X∗ +Xn+1 ≥ x′1 + x′2 + · · ·+ x′n + x′n+1)

≤

P (X∗ +Xn+1 ≥ x∗ + x′n+1) ≤ p

2
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Theorem 4.10.4 shows that the combined tails dominance property holds for dis-

tributions that have log-concave right tail probability functions under a specific

condition.

Theorem 4.10.4 Let Yi; i = 1, 2, . . . , n be independent and have log-concave right

tail probability function. Moreover, let xi be such that F̄Yi(x
′
i) = p.

If p ≤
(
−2W−1

(
−e−

1
2

2

))−1

, then

P
(
Y1 + Y2 + · · ·+ Yn ≥ x′1 + x′2 + · · ·+ x′n

)
≤ p

Proof. Firstly, using Corollary 4.9.2, Yi are first-order stochastically dominated by

Xi ∼ SHE(ci, λi). Secondly, applying Proposition 4.8.2 (n − 1) times implies that

Y1 + Y2 + · · · + Yn is first-order stochastically dominated by X1 + X2 + · · · + Xn.

Thus

P
(
Y1 + Y2 + · · ·+ Yn ≥ x′1 + x′2 + · · ·+ x′n

)
≤

P (X1 +X2 + · · ·+Xn ≥ x′1 + x′2 + · · ·+ x′n)

Finally, using Theorem 4.10.3, then

P
(
Y1 + Y2 + · · ·+ Yn ≥ x′1 + x′2 + · · ·+ x′n

)
≤ p

2

4.11 Partial Log-Concave Right Tail Probability

Functions

In this section, we consider distributions that have partial log-concave right tail

probability functions. This is a generalization of the case in Section 4.10 where the

considered distributions have log-concave right tail probability functions.

4.11.1 Convolution of SHEL Distribution Functions

In Theorem 4.11.1 we shall obtain P (Z1, Z2 ≥ x′1+x′2) when Zi ∼ SHEl(w, ci, λi); i =

1, 2. Therefore, we can explore when P (Z1, Z2 ≥ x′1 + x′2) ≤ p.
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Theorem 4.11.1 Let Zi ∼ SHEL(w, ci, λi); i = 1, 2 be independent. Moreover, let

λ1 ≤ λ2 and x′i be such that F̄Zi(x
′
i) = p < w. If d = − ln(p/w) > 0 and s = λ1

λ2
,

then

F̄Z1+Z2(x
′
1 + x′2)

p
=

wW
∗(d, s) + (1− w)W ∗∗(d, s) ; λ1 < λ2

we−d
(

2
(
d+ 1

w

)
− 1
)

; λ1 = λ2

where

W ∗(d, s) = e−ds−se−
d
s

1−s and W ∗∗(d, s) = e−ds + e−
d
s .

Proof. Using Equation 4.7.6, then the characteristic function of Z1 + Z2 is

ψZ1+Z2(t) = ψZ1(t)ψZ2(t)

= w2ψX1(t)ψX2(t) + w(1− w) (ψX1(t)ψY2(t) + ψY1(t)ψX2(t))

+ ψY1(t)ψY2(t)

= w2eit(c1+c2)
(
1− itλ−1

1

)−1 (
1− itλ−1

2

)−1

+ w(1− w)eit(c1+c2)
((

1− itλ−1
1

)−1
+
(
1− itλ−1

2

)−1
)

+ (1− w)2eit(c1+c2) (4.11.1)

We have two possibilities for the values of λ1 and λ2, either λ1 < λ2 or λ1 = λ2.

(1) Assume λ1 < λ2. By using Equation 4.11.1, the right tail probability function

of Z1 + Z2 is

F̄Z1+Z2(x) = w2F̄X1+X2(x) + w(1− w)
(
F̄X∗1 (x) + F̄X∗2 (x)

)
+ (1− w)2F̄Y ∗(x) (4.11.2)

where X∗i ∼ SHE(c1 + c2, λi), Y
∗ ∼ L(c1 + c2). Using Equations 4.7.2 and

4.7.4,

F̄X∗i (x) = e−λi(x−(c1+c2))

 0, x < c1 + c2,

1, x ≥ c1 + c2

(4.11.3)

F̄Y ∗(x) =

 1, x < c1 + c2,

0, x ≥ c1 + c2

(4.11.4)

For x ≥ c1 + c2, and by using Equations 4.10.2, 4.11.3 and 4.11.4 , Equation
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4.11.2 becomes

F̄Z1+Z2(x
′
1 + x′2) =

w2

λ2 − λ1

(
λ2e

−λ1(x′1+x′2−(c1+c2)) − λ1e
−λ2(x′1+x′2−(c1+c2))

)
+ w(1− w)

(
e−λ1(x

′
1+x′2−(c1+c2)) + e−λ2(x

′
1+x′2−(c1+c2))

)
which is equivalent to

F̄Z1+Z2(x
′
1 + x′2) = w2

e−λ1(x′1+x′2−(c1+c2)) − λ1
λ2
e−λ2(x

′
1+x′2−(c1+c2))

1− λ1
λ2


+ w(1− w)

(
e−λ1(x

′
1+x′2−(c1+c2)) + e−λ2(x

′
1+x′2−(c1+c2))

)
Since

F̄Zi(x
′
i) = we−λi(x

′
i−ci)

= p

Thus

F̄Z1+Z2(x
′
1 + x′2) = wp

e−λ1(x′2−c2) − λ1
λ2
e−λ2(x

′
1−c1)

1− λ1
λ2


+ (1− w)p

(
e−λ1(x

′
2−c2) + e−λ2(x

′
1−c1)

)
Moreover, e−λi(x

′
3−i−c3−i) = ( p

w
)

λi
λ3−i . Hence,

F̄Z1+Z2(x
′
1 + x′2) = wp

( pw)λ1λ2 − λ1
λ2

(
p
w

)λ2
λ1

1− λ1
λ2

+ (1− w)p

(( p
w

)λ1
λ2 +

( p
w

)λ2
λ1

)

Since s = λ1
λ2

and p
w

= e−d,

F̄Z1+Z2(x
′
1 + x′2) = wp

(e−ds − se− ds
1− s

)
+ (1− w)p

(
e−ds + e−

d
s

)
F̄Z1+Z2(x

′
1 + x′2)

p
= wW ∗(d, s) + (1− w)W ∗∗(d, s) (4.11.5)

where W ∗(d, s) = e−ds−se−
d
s

1−s and W ∗∗(d, s) = e−ds + e−
d
s
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(2) If λ1 = λ2 = λ, then Equation 4.11.1 becomes

ψZ1+Z2(t) = w2eit(c1+c2)
(
1− itλ−1

)−2

+ 2w(1− w)eit(c1+c2)
(
1− itλ−1

)−1

+ (1− w)2eit(c1+c2)

Hence, the right tail probability function of Z1 + Z2 is

F̄Z1+Z2(x) = w2F̄X1+X2(x) + 2w(1− w)F̄X∗(x)

+ (1− w)2F̄Y ∗(x) (4.11.6)

where X∗ ∼ SHE(c1 + c2, λ), Y ∗ ∼ L(c1 + c2).

Using Equation 4.7.2,

F̄X∗(x) = e−λ(x−c1−c2) (4.11.7)

For x′1 + x′2 ≥ c1 + c2, using Equations 4.10.4, 4.11.4 and 4.11.7, Equation

4.11.6 becomes

F̄Z1+Z2(x
′
1 + x′2) = w2 (λ (x′1 + x′2 − c1 − c2) + 1)

× exp (−λ (x′1 + x′2 − c1 − c2))

+ 2w(1− w) exp (−λ (x′1 + x′2 − c1 − c2))

Since we−λ(x′i−ci) = p,

F̄Z1+Z2(x
′
1 + x′2) = p2 (1− 2 ln(p/w)) + 2p2

(
1− w
w

)
and

F̄Z1+Z2(x
′
1 + x′2)

p
= we−d

(
2

(
d+

1

w

)
− 1

)
(4.11.8)

Therefore, the result follows from Equations 4.11.5 and 4.11.8. 2

Define W (w, d, s) =
F̄Z1+Z2

(x′1+x′2)

p
, which represents the ratio of F̄Z1+Z2(x

′
1 + x′2)

to p. Hence,

W (w, d, s) = wW ∗(d, s) + (1− w)W ∗∗(d, s)

= w
(e−ds − se− ds

1− s

)
+ (1− w)

(
e−ds + e−

d
s

)
(4.11.9)
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We begin by exploring the behaviour of W (w, d, s), s ∈ (0, 1), for given w and

different values of d as presented in Figure 4.10.
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Figure 4.10: Plot of W (w, d, s) for w = 0.3 and different values of d. The horizontal

dashed line highlights when W (w, d, s) ≤ 1.

Figure 4.10 shows that for w = 0.3, there is a value of d for which W (w, d, 1) = 1,

and such that W (w, d, s) < 1 for all s ∈ (0, 1). Indeed, this is what we are looking

for. Hence, we shall try to find d depending on w that satisfies these results as

follows:

First: We will examine the behaviour of W (w, d, s) when s approaches zero as

follows:

By differentiating Equation 4.11.9 with respect to s. Thus

∂

∂s
W (w, d, s) = w

(
(1− (1− s)d) e−ds −

(
1 + (1− s)d

s

)
e−

d
s

(1− s)2

)

+ (1− w)

(
−de−ds +

d

s2
e−

d
s

)
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For small s, the first-order Maclaurin series expansion of W (w, d, s) is

W (w, d, s) ≈ 1 + w(1− d)s− (1− w)ds

= 1 + (w − d)s

Thus

W (w, d, s) ≈ 1 + (w − d)s

Therefore, W (w, d, s) < 1 for d > w and small s.

Second: We will obtain lims→1W (w, d, s) as follows:

Using L’Hospital’s rule. Thus

lim
s→1

W ∗(d, s) = lim
s→1

e−ds − se− ds
1− s

= e−d
(
1 + 2d

)
(4.11.10)

Using Equation 4.11.10, and lims→1W
∗∗(d, s) = 2e−d. Hence,

lim
s→1

W (w, d, s) = we−d
(

2

(
d+

1

w

)
− 1

)
Define W̃ (w, d) = lims→1W (w, d, s). Hence,

W̃ (w, d) = we−d
(

2

(
d+

1

w

)
− 1

)
(4.11.11)

The previous equation is the same as Equation 4.11.8.

Third: We shall find d that makes W̃ (w, d) equal to one as follows:

Using Equation 4.11.11, and recall p/w = e−d. Thus

we−d
(

2

(
d+

1

w

)
− 1

)
= 1

d+
1

w
− 1

2
=

ed

2w

− ed

2w
+ d+

1

w
− 1

2
= 0

− 1

2p
− ln p+ lnw +

1

w
− 1

2
= 0

Take the exponential of the latter equation and re-arrange it, thus

−1

w
e−( 1

w
− 1

2
) =
−1

p
e−

1
2p
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which is equivalent to

−1

2p
e−

1
2p =

−1

2w
e−( 1

w
− 1

2)

−1

2p
= W−1

(
−1

2w
e−( 1

w
− 1

2)
)

Hence,

p =

(
−2W−1

(
−1

2w
e−( 1

w
− 1

2)
))−1

and

d = ln

(
−2W−1

(
−1

2w
e−( 1

w
− 1

2)
))

+ ln(w)

Define

dSHEL(w) = ln

(
−2W−1

(
−1

2w
e−( 1

w
− 1

2)
))

+ ln(w)

Table 4.1 presents the values of dSHEL(w) and the corresponding p = exp (−dSHEL(w))

for selected values of w.

w dSHEL(w) p

0.1 0.71 0.49

0.2 0.74 0.48

0.3 0.77 0.46

0.5 0.86 0.42

Table 4.1: dSHEL(w) and its corresponding p = exp (−dSHEL(w)) for selected values

of w. The numbers in the second and third column are rounded to two decimal

places.

Figure 4.11 illustrates dSHEL(w) for 0 < w ≤ 1. In addition, we added a red line

showing where dSHEL(w) would equal w in order to highlight the conclusion that

dSHEL(w) > w for all values of w.
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Figure 4.11: Plot of dSHEL(w). The red line is the diagonal line highlighting where

dSHEL(w) = w.

As shown in Figure 4.11, dSHEL(w) > w. Thus W (w, d, s) < 1 for d ≥ dSHEL(w) and

small s.

W (w, dSHEL(w), s) is plotted in Figure 4.12 for different values of w.
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Figure 4.12: Plot of W (w, dSHEL(w), s) for different values of w. The horizontal

dashed line highlights that W (w, dSHEL(w), s) ≤ 1.



4.11. Partial Log-Concave Right Tail Probability Functions 139

Figure 4.12 suggests that d = dSHEL(w) is sufficient to make W (w, d, s) ≤ 1 for

s ∈ (0, 1).

Now we will show how W (w, dSHEL(w), s) behaves when s approaches one as

follows:

When s approaches one, W (w, d, s) in Equation 4.11.9 can be rewritten as

W (w, d, 1− x) = w

(
e−d(1−x) − (1− x)e

−d
(1−x)

x

)
+ (1− w)

(
e−d(1−x) + e−

d
(1−x)

)
(4.11.12)

Define

f(x) = e−d(1−x) − (1− x)e
−d

(1−x)

By using Equation 4.10.12, the Maclaurin series expansion of f(x) is

f(x) ≈ (1 + 2d)e−dx+ d2 (2d− 3) e−dx3/6

The Maclaurin series expansion of (1− w)
(
e−d(1−x) + e−

d
(1−x)

)
in Equation 4.11.12

is

(1− w)e−d
(
2 + d(d− 1)x2

)
Therefore, the Maclaurin series expansion of W (w, d, 1− x) for small x is

W (w, d, 1− x) ≈ e−d
(
w
(
(1 + 2d) + d2 (2d− 3)x2/6

)
+ (1− w)

(
2 + d(d− 1)x2

))
= e−d

(
w + 2wd+ 2(1− w) + w

d2 (2d− 3)

6
x2 + (1− w)d(d− 1)x2

)
Hence,

W (w, d, 1− x) ≈ we−d
(

2

w
− 1 + 2d

)
+ e−d

(
w
d2 (2d− 3)

6
+ (1− w)d(d− 1)

)
x2

(4.11.13)

Equation 4.11.13 is less than we−d
(

2
w
− 1 + 2d

)
if and only if the coefficient of x2 is

negative. Define

do(w) = w
d2

SHEL(w) (2dSHEL(w)− 3)

6
+ (1− w)dSHEL(w)(dSHEL(w)− 1)

It was difficult to see do(w) is always negative when it is plotted. Therefore, −do(w)

will be plotted instead using a logarithmic axis in the following figure.
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Figure 4.13: Plot of −do(w).

Figure 4.13 shows that −d0(w) is always positive, thus d0(w) is always negative

for w ∈ (0, 1). Hence, W (w, dSHEL(w), 1 − x) is less than we−d
(

2
w
− 1 + 2d

)
for s

approaches 1.

Proposition 4.11.1 explores the behaviour of W (w, d, s) as d increases. In addi-

tion, it will be used in Theorem 4.11.2.

Proposition 4.11.1 W (w, d, s), which represents the ratio of F̄Z1+Z2(x
′
1 +x′2) to p,

is a decreasing function in d for
d > 0 ; if s+ w ≤ 1

d >
− ln(s)+ln

(
1−s−1(1−w)
1−s(1−w)

)
2 sinh(− ln(s))

; if s+ w > 1

Proof. Recall Equation 4.11.9

W (w, d, s) = w

(
e−ds − se− ds

1− s

)
+ (1− w)

(
e−ds + e−

d
s

)
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By differentiating with respect to d, thus

∂

∂d
W (w, d, s) = w

(
e−

d
s − se−ds

1− s

)
+ (1− w)

(
−se−ds − 1

s
e−

d
s

)
= −s2e−ds

(
w + (1− s)(1− w)

s(1− s)

)
+ e−

d
s

(
sw − (1− s)(1− w)

s(1− s)

)
(4.11.14)

The sign of Equation 4.11.14 depends on the second part of the right hand side of

the equation, specifically on the quantity sw − (1− s)(1− w) = s + w − 1. Hence,

two cases should be considered:

Case A: If s+w ≤ 1, then e−
d
s

(
sw−(1−s)(1−w)

s(1−s)

)
≤ 0 and ∂

∂d
W (w, d, s) < 0. Therefore,

W (w, d, s) is a monotonically decreasing function in d > 0 and s+ w ≤ 1.

Case B: If s+ w > 1, then we will argue as follows:

Set s = e−a; a > 0, Equations 4.11.9 and 4.11.14 respectively become

W (w, d, e−a) = w

(
e−de

−a − e−ae−dea

1− e−a

)
+ (1− w)

(
e−de

−a
+ e−de

a
)

and

∂

∂d
W (w, d, e−a) = w

(
e−de

a − e−ae−de−a

1− e−a

)
+ (1− w)

(
−e−ae−de−a − eae−dea

)

=
w
(
e−de

a − e−ae−de−a
)
− (1− w)(1− e−a)

(
e−ae−de

−a
+ eae−de

a
)

1− e−a
(4.11.15)

For any a > 0 and d = 0,

W (w, 0, e−a) = 2− w

and

∂

∂d
W (w, 0, e−a) = w − (1− w)

(
e−a + ea

)
= w − 2(1− w) cosh(a)

Hence, ∂
∂d
W (w, 0, e−a) > 0 ⇐⇒ w > 2(1− w) cosh(a).

Moreover, the denominator of Equation 4.11.15 is always positive, and for suffi-

ciently large d the numerator is negative. Therefore, ∂
∂d
W (w, d, e−a) is negative for
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sufficiently large d. In addition, by continuity of ∂
∂d
W (w, d, e−a), if there is a single

d∗ > 0 such that ∂
∂d
W (w, d∗, e−a) = 0, then W (w, d, e−a) increases for d < d∗ and

decreases for d > d∗. Now, for e−a > 1− w, Equate Equation 4.11.15 to zero,

∂
∂d
W (w, d, e−a) = 0

⇐⇒

w
(
e−de

a − e−ae−de−a
)
− (1− w)(1− e−a)

(
e−ae−de

−a
+ eae−de

a
)

= 0

⇐⇒

w
(
e−de

a
+ (1− e−a)

(
e−ae−de

−a
+ eae−de

a
))

=(
we−ae−de

−a
+ (1− e−a)

(
e−ae−de

−a
+ eae−de

a
))

⇐⇒

(1− ea(1− w)) e−de
a

= e−a (1− e−a(1− w)) e−de
−a

⇐⇒

ln
(
(1− ea(1− w)) e−de

a)
= ln

(
e−a (1− e−a(1− w)) e−de

−a
)

⇐⇒

ln (1− ea(1− w))− dea + a− ln (1− e−a(1− w)) + de−a = 0

⇐⇒

d =
a+ln

(
1−ea(1−w)

1−e−a(1−w)

)
ea−e−a

⇐⇒

d =
a+ln

(
1−ea(1−w)

1−e−a(1−w)

)
2 sinh(a)

Define

d∗(w, a) =
a+ ln

(
1−ea(1−w)

1−e−a(1−w)

)
2 sinh(a)

(4.11.16)

Thus d∗(w, a) is unique. Hence, W (w, d, s) is a decreasing function in d for
d > 0 ; if s+ w ≤ 1

d >
− ln(s)+ln

(
1−s−1(1−w)
1−s(1−w)

)
2 sinh(− ln(s))

; if s+ w > 1

2

Moreover, a/ sinh(a) and
ln
(

1−ea(1−w)

1−e−a(1−w)

)
sinh(a)

, in Equation 4.11.16, are both decreasing
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functions in a > 0, therefore, the largest value of d∗(w, a) is at a = 0. Define

d∗U(w) = lim
a→0

d∗(w, a)

Thus

d∗U(w) = lim
a→0

a+ ln
(

1−ea(1−w)
1−e−a(1−w)

)
2 sinh(a)

=
0

0

By using L’Hospital’s rule,

d∗U(w) = lim
a→0

1 +
(

1−e−a(1−w)
1−ea(1−w)

)
−(1−w)ea(1−e−a(1−w))−(1−w)e−a(1−ea(1−w))

(1−e−a(1−w))2

2 cosh(a)

= 3/2− 1/w

We plot dSHEL(w)− d∗U(w) in Figure 4.14 using a logarithmic axis.
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Figure 4.14: Plot of dSHEL(w)− d∗U(w).

Figure 4.14 shows that dSHEL(w) > d∗U(w). As a result, the derivative of W (w, d, s)

with respect to d for d > dSHEL(w) is negative for all s. 2

In principle, based on the examples shown in Figure 4.12 for d = dSHEL(w) and

Proposition 4.11.1 which shows what happens as d increases for fixed w, we believe
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that the following theorem is true. However, there is currently a gap in completing

the proof which is to show that W (w, dSHEL(w), s) ≤ 1 for all w and s.

Theorem 4.11.2 Let Zi ∼ SHEL(w, ci, λi); i = 1, 2 be independent. Moreover, let

λ1 ≤ λ2 and x′i be such that F̄Zi(x
′
i) = p < w. If p ≤

(
−2W−1

(
−1
2w
e−( 1

w
− 1

2)
))−1

,

then

P (Z1 + Z2 ≥ x′1 + x′2) ≤ p

The idea of proof. F̄Z1+Z2(x
′
1 + x′2) ≤ p ⇐⇒ W (w, d, s) ≤ 1. From

the discussion above, in particular Figure 4.12, when d = dSHEL(w), it looks like

W (w, dSHEL(w), s) ≤ 1. Moreover, by using Proposition 4.11.1, if d ≥ dSHEL(w) ,

i.e. p ≤
(
−2W−1

(
−1
2w
e−( 1

w
− 1

2)
))−1

, then

P (Z1 + Z2 ≥ x′1 + x′2) ≤ p

2

Theorem 4.11.2 is interesting in its own right since SHEL distributions are com-

monly encountered in the modeling of property/casualty claim processes (Bahne-

mann, 2015). Moreover, assuming that Theorem 4.11.2 is correct, we can use

stochastic dominance properties to extend easily the validation of the combined

tails dominance property to distributions that have partial log-concave right tail

probability functions, as stated in Theorem 4.11.3.

Theorem 4.11.3 Let Ui; i = 1, 2 be independent and have log-concave right tail

probability function for xi > c′i, and define w = F̄Ui(c
′
i). Moreover, let p < w and x′i

be such that F̄Ui(x
′
i) = p. If p ≤

(
−2W−1

(
−1
2w
e−( 1

w
− 1

2)
))−1

. Then

P
(
U1 + U2 ≥ x′1 + x′2

)
≤ p

Proof. Firstly, from Theorem 4.9.1, there exists Zi ∼ SHEL(w, ci, λ1), ci be such

that p = F̄Zi(x
′
i). Moreover, Zi are first-order stochastically dominating Ui. Sec-

ondly, Proposition 4.8.2 implies that U1 +U2 is first-order stochastically dominated

by Z1 + Z2 , i.e.

P (U1 + U2 ≥ x′1 + x′2) ≤ P (Z1 + Z2 ≥ x′1 + x′2)
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Finally by using Theorem 4.11.2, thus

P
(
U1 + U2 ≥ x′1 + x′2

)
≤ P

(
Z1 + Z2 ≥ x′1 + x′2

)
≤ p

2

For the RVFV example in Section 4.2, if the experts are interested in the upper parts

of the right tail probability functions of those uncertain quantities, then Theorem

4.11.3 can be applied since their distributions have partial log-concave right tail

probability functions.

4.12 Re-Scaling and Shifting

The stability of the combined tails dominance property is examined under chang-

ing the location or re-scaling either of the distributions involved in the following

propositions.

Proposition 4.12.1 If the property holds for F and G and tail probability p, then

it holds for F ∗ and G, where F ∗(x) = F (x+ k) ∀x and ∀k ∈ R.

Proof. P (X + k + Y ≥ x+ k + y) = P (X + Y ≥ x+ y) < p 2

Proposition 4.12.2 If the property holds for F and G and tail probability p, then

it does not necessarily hold for F ∗ and G, where F ∗(x) = F (kx) ∀k > 1.

Proof. Assume X1 ∼ F ≡ SHE(0, λ1) and X2 ∼ G ≡ SHE(c2, λ2) such that

s = λ1
λ2

= 0.2789

Figure 4.15 illustrates that when d = 1.15 which is equivalent to p = 0.3166, the

property holds for s ≤ 0.2789, whereas does not hold for X∗1 ∼ F ∗ ≡ SHE(0, kλ1)

for all k > 1 and G, where s > 0.2789 with the same value of p.



4.13. Conclusions 146

0.0 0.2 0.4 0.6 0.8 1.0

0.
99

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

s

W
(d

, s
)

s=
0.

27
89

Figure 4.15: Plot of W (1.15, s). The horizontal dashed line highlights where

W (d, s) = 1. The vertical dashed line is at s = 0.2789, where W (1.15, s) ≤ 1

for 0 ≤ s ≤ 0.2789.

4.13 Conclusions

The validation of the combined tails dominance property has been investigated by

assuming different distributions. We found that the property holds for all distribu-

tions with log-concave symmetric densities. Moreover, it holds for negatively-skewed

Azzalini-style skew-symmetric distributions with log-concave kernels when two quan-

tities are involved. In addition, we considered distributions that have log-concave

right tail probability functions. In such cases, p, which represents the individual

tail probabilities, needs to be less than or equal to approximately 0.2846681 to lead

to the validation of the combined tails dominance property. Furthermore, distribu-

tions that have partial log-concave right tail probability functions are considered,

and we found that p ≤
(
−2W−1

(
−1
2w
e−( 1

w
− 1

2)
))−1

is needed when two quantities

are involved, where w is the probability of being in the continuous state for the
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mixture of shifted exponential and lump used to dominate distribution having par-

tial log-concave right tail probability function. The stability of the combined tails

dominance property is preserved under changing the location of either of the dis-

tributions involved. However, re-scaling one of them does not guarantee preserving

the property.



Chapter 5

Conclusions and Future Research

Directions

In this thesis, we have presented two statistical problems in risk assessment. These

problems emerge because of different sources of uncertainty that are quantified prob-

abilistically.

The first problem relates to the applied question of what to do in ecotoxicological

risk assessment if more species are tested than required. Specifically, we aimed to

show theoretically certain key dominance properties for the arithmetic mean as the

number of tested species increases. The dominance properties for the arithmetic

mean hold when the mean fraction exceeded and the probability that the fraction

exceeded exceeds a specific proportion decrease as the number of tested species in-

creases.

We have shown mathematically that the dominance properties for the arithmetic

mean hold for all distributions with symmetric log-concave densities as the number

of tested species increases. This result motivated us to examine the mixture of

such distributions. We have presented results for two-component scale and location

mixtures of normal distributions. The findings show that the dominance properties

sometimes hold. However, our investigation was based primarily on increasing the

sample size from one observation to two observations.

The second problem relates to combining limited probabilistic expert judgements

on multiple quantities in order to provide limited probabilistic information about a

148
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derived quantity. In this study, we first proposed a working hypothesis, which we

called the combined tails dominance property, that simplifies calculations for the

derived quantity. The goal of the research is to understand when the combined tails

dominance property is valid.

We have shown mathematically that the combined tails dominance property

is valid for all distributions with symmetric log-concave densities. In addition, it

holds for negatively-skewed Azzalini-style skew-symmetric distributions with log-

concave kernels when two quantities are involved. Furthermore, we enlarged our

zone of investigation by considering distributions that have log-concave right tail

probability functions. This investigation has been extended to the situation where

the log-concavity only applies to part of the right tail probability function of the

distribution. We found that the combined tails dominance property holds for all

distributions that have log-concave right tail probability function when the indi-

vidual tail probabilities are less than or equal to 0.2846681. Moreover, it is valid

when the distributions have partial log-concave right tail probability functions, when

two quantities are involved and when the individual tail probabilities are less than

or equal to
(
−2W−1

(
−1
2w
e−( 1

w
− 1

2)
))−1

, where w is the probability of being in the

continuous state for the mixture of shifted exponential and lump used to dominate

distribution having partial log-concave right tail probability function. The combined

tails dominance property is stable under changing the location of either of the two

distributions, whereas re-scaling either of them does not guarantee the stability of

the property.

These findings suggest that further research could be undertaken in this area

since there is a connection between the two problems, for example what would hap-

pen for the dominance of the arithmetic mean properties if the LSSD has log-concave

right tail probability function or has log-concave cumulative distribution function.

We have presented a unified approach for the second problem if the distribution

has log-concave right tail probability function, and so the questions arises whether

we can exploit those results in order to extend our findings in Chapter 3 to cover

all distributions with log-concave right tail probability functions or log-concave cu-

mulative distribution functions. The reason for this suggestion is that when the
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combined tails dominance property holds for any distribution, it might be possi-

ble to prove that the dominance of the arithmetic mean properties holds as well.

For example, for distributions that have symmetric log-concave densities, we proved

that the combined tails dominance property and the dominance properties for the

arithmetic mean hold in Sections 3.6 and 4.4 respectively. Moreover, in Section 4.5,

the combined tails dominance property holds exactly for Cauchy distribution. In

addition, MFEn and PFEn(α) are constant if the LSSD is Cauchy, since its charac-

teristic function is ψX(t) = exp(− |t|), t ∈ R, therefore the characteristic function of

Yn = X̄ − c is

ψYn(t) = exp (−cit)
(

exp

(
−
∣∣∣∣ tn
∣∣∣∣))n

= exp (−cit− |t|)

Hence, Yn has Cauchy distribution with probability density and cumulative distri-

bution functions as follows:

fYn(y) =
1

π (1 + (y + c)2)
and FYn(y) =

1

2
+

1

π
arctan(y + c); y ∈ R

It is clear that the distribution of Yn does not depend on n, as a result MFEn and

PFEn(α) do not change as the sample size, n, increases.

Another suggestion for further research is that the Cauchy distribution is conven-

tionally considered to be longer-tailed than any mixture of normals, and yet MFEn

and PFEn(α) do not always decrease as n increases from one to two observations

for extreme mixtures of normals. Figure 5.1 shows exactly where the combined tails

dominance property holds for SMN distributions for selected values of the individual

tail probabilities p1 = p2 = p.
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Figure 5.1: Plots of the unit contour of the ratio of P (X1 +X2 ≥ x1 + x2) to p with

respect to log(∆) (x-axis) and log
(

w
1−w

)
(y-axis) for the SMN(w, 0, 1,∆) distribu-

tion. Each of the four panels is related to a specific value of p.

From Figure 5.1, it is clear that the combined tails dominance property does not

always hold for extreme mixtures of normals. So the question is what precludes the

dominance properties for the arithmetic mean for mixtures of normals even though

they have short tails and allows them for Cauchy distributions even though they

have long tails?. We suspect that the answer has something to do with sharp locally

convex bends in the log of the right tail probability function, at least for the second

problem.

It is not so clear that experts will be able to really judge (partial) log-concavity

of the right tail probability function. There are possibly other criteria that might be
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easier for them to judge that would lead to the combined tails dominance property.

Finally, in the work in this thesis on the second problem, we are basically looking

for P (X1 +X2 ≥ x1 + x2) ≤ max (P (X1 ≥ x1) , P (X2 ≥ x2)) as a substitute for the

worst case P (X1 ≥ x1) +P (X2 ≥ x2). It might be easier if we relaxed our criterion

a little. There might be some criterion in between our current working hypothesis

and the worst case that would still be useful and which would follow from something

quite easy for experts to judge. Another area worth investigating is what happens

for functions of X1 and X2 other than X1 +X2.



Acronyms

AEC Acceptable Environmental Concentration

AF Assessment Factor

ATS Adjusted Toxicity Statistic

EKE Expert Knowledge Elicitation

erf Error function

f probability density function of the random variables

in the subscript

F cumulative distribution function of the random variables

in the subscript

FEn Fraction Exceeded, the subscript n is the number

of tested species

FOSD First Order Stochastic Dominance

L Lump

LMN Location Mixture of Normals

LSSD SSD on log-scale (base 10)

MFE/MFEn Mean Fraction Exceeded, the subscript n is the

number of tested species

MN Mixture of Normals

P(E) denotes the probability of the event E

PEC Predicted Environmental Concentration

PFE/PFEn(α) Probability Fraction Exceeded exceeds a chosen α, the

subscript n is the number of tested species

PNEC Predicted No Effect Concentration

R denotes the space of real numbers

SHE Shifted Exponential

SHEL Mixture of shifted exponential and Lump

SMN Scale Mixture of Normals

SSD Species Sensitivity Distribution
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Appendix A

Basic and Auxiliary Results

A.1 Evaluation of Some Integrals

In this appendix, we give the technique to solve the following integral

I(α, β, a, b) =

∫ ∞
−∞

e−(αt+β)2erf (at+ b) dt; α 6= 0, a 6= 0 (A.1.1)

Proof. Let

z = αt+ β (A.1.2)

Then

t =
z − β
α

; α 6= 0 (A.1.3)

and

dt =
1

α
dz (A.1.4)

Using Equation A.1.3, the quantity at+ b becomes

at+ b =
a

α
z − aβ

α
+ b (A.1.5)

Use Equations A.1.2, A.1.4, and A.1.5, Equation A.1.1 becomes

I(α, β, a, b) =
1

α

∫ ∞
−∞

e−z
2

erf

(
a

α
z − aβ

α
+ b

)
dz; α 6= 0, a 6= 0 (A.1.6)

If b = aβ
α

, then Equation A.1.6 becomes

I

(
α, β, a,

aβ

α

)
=

1

α

∫ ∞
−∞

e−z
2

erf
( a
α
z
)
dz; α 6= 0, a 6= 0 (A.1.7)
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Since e−z
2

is even function and erf
(
a
α
z
)

is odd function, e−z
2
erf ( a

α
z) is odd function.

Thus Equation A.1.7 becomes

I

(
α, β, a,

aβ

α

)
= 0 (A.1.8)

To calculate I(α, β, a, b), the technique of taking the derivative under the integral

sign is used.

Note the error function is defined as

erf (x) =
2√
π

∫ x

0

e−t
2

dt

= 2Φ(x
√

2)− 1

The derivative of erf (z) with respect to x is

∂

∂x
erf (z) =

2√
π
e−z

2 ∂

∂x
z

Differentiating Equation A.1.1 with respect to b, we get

∂I(α, β, a, b)

∂b
=

2√
π

∫ ∞
−∞

e−(αt+β)2e−(at+b)2 dt

=
2√
π

∫ ∞
−∞

exp
(
−(α2 + a2)t2 − 2(αβ + ab)t−

(
β2 + b2

))
dt

Substituting u =
√
α2 + a2t, thus we obtain

∂I(α, β, a, b)

∂b
=

2√
π

exp
(
− (β2 + b2) + (αβ+ab)2

α2+a2

)
√
α2 + a2

∫ ∞
−∞

exp

(
−
(
u+

αβ + ab√
α2 + a2

)2
)
du

= 2
exp

(
− (β2 + b2) + (αβ+ab)2

α2+a2

)
√
α2 + a2

= 2
exp

(
−(αb−βa)2

α2+a2

)
√
α2 + a2

since the integral is Gaussian.

Integrate the latter equation from u = aβ
α

to u = b. Thus we get∫ b

aβ
α

∂I(α, β, a, u)

∂u
du = I(α, β, a, b)− I

(
α, β, a,

aβ

α

)
Using Equation A.1.8. Thus

I(α, β, a, b) =
2√

α2 + a2

∫ b

aβ
α

exp

(
− (αu− βa)2

α2 + a2

)
du
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Hence,

I(α, β, a, b) =
2√

α2 + a2

∫ αb−βa√
α2+a2

0

√
α2 + a2

α
e−w

2

dw =

√
π

α
erf

(
αb− βa√
α2 + a2

)
2

A.2 Lambert W Function

The Lambert W function is the inverse of the function

f(x) = xex

Satisfying

W(x)eW(x) = x (A.2.9)

The Lambert W function is a multivalued function denoted by Wk(x). If x < e−1

is real, then W(x) is complex. If −e−1 ≤ x < 0 is real, then there are two real

branches W0(x) and W−1(x). W−1(x) is the bottom branch, and it is equivalent to

W(x) ≤ −1; x ∈ [−e−1, 0). W0(x) is the upper branch (principal branch), witch

is equivalent to W(x) ≥ −1; x ∈ [−e−1,∞), where a branching point located at

(−e−1,−1), If x ≥ 0 is real, then there is a single real value which belongs toW0(x),

see Corless et al. (1996).

The Lambert W function solves equations that have the form

ay + b ln(y) + c = 0; a 6= 0, b 6= 0 (A.2.10)

Define r = ln(y), Equation A.2.10 becomes

aer + br + c = 0 (A.2.11)
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