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Abstract 

Dissolution of tablets into their component parts is an important method by which 

orally-administered formulations are assessed by the pharmaceutical industry.  

Analysis of dissolution is routinely performed using UV-Vis spectroscopy, which enables 

compounds containing chromophores to be monitored in the bulk dissolution media.  

Two additional techniques for monitoring dissolution have been explored with a plan to 

improve analytical resolution and enhance mechanistic understanding. 

The first technique explores surface dissolution imaging (SDI) through UV-Vis 

technology.  Dual-wavelength imaging equipment was used to record changes 

occurring at the interface between a chromophore-containing solid and a liquid during 

dissolution.  The SDI technique was successfully applied to single crystals, solvates and 

gels allowing physical and concentration changes to be monitored concurrently.  Image 

analysis software was additionally applied to the UV-Vis absorbance data and the 

relative stability of a series of solvates was determined. 

The second technique monitors dissolution using mass spectrometry (MS) of the bulk 

liquid.  The detection and quantification of a range of APIs and excipients (with and 

without chromophores) was achieved.  Analysis of multiple components by MS without 

chromatography was found to be subject to significant variability as a result of ion 

suppression and ion enhancement phenomena.  These effects were explored in a step-

wise manner to determine the impact of interference and the potential for developing a 

robust instrumentation configuration to monitor dissolution on-line and in real-time. 

The work concludes that each technique has the potential to enhance our 

understanding of dissolution: SDI through visualising the changes occurring directly in-

between the solid and liquid, and MS by enabling the monitoring of soluble excipients 

in addition to APIs.  Although SDI and MS both have limitations preventing their use in 

conventional dissolution monitoring, each offers a unique opportunity to guide the 

research and development of new chemical entities and formulations, particularly 

those exhibiting challenging poorly soluble behaviour.  
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1. Introduction 

1.1 General introduction to dissolution 

Dissolution in a technical context is the action or process of solvation, and can be 

broadly defined as the mixing of two phases to produce a new homogeneous phase 

known as a solution.1,2  In the context of this work, the new phase is a liquid containing 

one or more initially solid solutes and one or more liquid solvents, with solvation 

defined as the formation of stabilising interactions between solute(s) and solvent(s).1  

Dissolution is a kinetic process and is therefore distinct from solubility, which concerns 

the end result of a thermodynamic equilibrium*.3,4  While the relevance of dissolution 

testing spans multiple settings from pure chemistry to engineering and geology, the 

majority of this work will consider solutes of pharmaceutical relevance.5–7 

Dissolution testing is used routinely throughout pharmaceutical development to 

understand the rate at which a solid-state active pharmaceutical ingredient (API)† 

enters a solution. This may involve its release from a dosage form‡ but may also 

concern the API alone.3,8,9  The purpose of the test has evolved from solely providing a 

quality control check in batch release, to additionally being used in the prediction of 

clinical performance.10,11  In line with this expanding role, dissolution methodologies 

are continuously developed to improve analytical resolution and enhance mechanistic 

understanding.12,13   

This work considers two approaches to monitoring dissolution: (i) surface dissolution 

imaging using UV-Vis and (ii) bulk dissolution monitoring using mass spectrometry.  

Surface dissolution imaging uses UV-Vis technology to record the changes occurring at 

the interface between a solid and liquid.13  The recently developed equipment 

captures an image each second, with a novel detector chip providing spatially resolved 

                                                      
* Thermodynamic equilibrium refers to a fixed temperature (and pressure) with no chemical reactions or 

transfer of matter taking place and therefore no spontaneous change occurring. 
† The API may also be referred to as the drug substance and is defined as the chemical which exerts the 

pharmacological effect on the patient.  API and drug substance will be used interchangeably throughout 
this work. 
‡ The dosage form is the drug or pharmaceutical product, medicine or formulation which includes 

excipients and enables the API to be administered to the patient.  Dosage form, drug product and 
formulation will be used interchangeably throughout this work. 
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absorbance values.  This enables concentration and physical changes to be monitored 

throughout dissolution, with the potential to apply this to a variety of solutes, 

including single crystals and gels.  Mass spectrometry (MS) is an analytical technique 

historically associated with significant cost and expertise.14  The development of user-

friendly equipment has led to its application within dissolution monitoring whereby 

the solvent (or dissolution media) is analysed as a dosage form dissolves.15  Unlike UV 

analysis, MS has the potential to monitor components without a chromophore and 

may allow an enhanced mechanistic understanding of dissolution, particularly in 

relation to the role of excipients in drug release.  

Each technique offers a different perspective to monitoring dissolution, either through 

focussing solely on the interface, or through observing changes in the solvent bulk.  

These contrasting approaches also present distinct challenges.  The introduction to this 

research begins with the theory underpinning dissolution, solubility and crystallisation, 

before discussing conventional methods for dissolution testing in the pharmaceutical 

industry, and then moves on to the fundamentals of UV technology and MS 

equipment.  The aims and objectives are clearly divided into those relevant to surface 

dissolution imaging and those specific to MS.  The overall purpose of the research is to 

explore both the benefits and the limitations of using each approach to further the 

current understanding of dissolution. 

1.2 Mechanisms, models and theory 

A brief exploration of the formation of solids can be considered fundamental to 

understanding their subsequent dissolution.  This section will therefore begin by 

outlining the solid forms landscape before describing crystallisation and 

polymorphism, and their relevance to the pharmaceutical industry.  A summary of the 

relationship between solid state and solubility will be discussed before delving into the 

subsequent impact that these properties have upon dissolution.  The mechanisms of 

disintegration and deaggregation will also be explored before, finally, the many models 

describing the foundations of dissolution are examined. 
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1.2.1 Solid forms landscape 

A macroscopic solid material, such as an API, is comprised of molecules that may be 

arranged in a variety of ways; the packing of these molecules and the interactions 

between them determine its properties and form the basis of crystal engineering.16  

This is a complex topic of the utmost importance to the pharmaceutical industry for 

formulation and drug delivery, as well as intellectual property considerations.17  An 

outline of the solid forms landscape can be seen in Figure 1.1, and while the majority 

of these materials fall outside the scope of this work, they constitute a vast area of 

research and have wide-reaching implications independent of the pharmaceutical 

industry. 

 

Figure 1.1 - Solid forms landscape for molecular materials, reproduced with permission.16 

New candidates for pharmaceutical development are screened at an early stage to 

determine the variety of solid forms available and their subsequent chemical, physical 

and biopharmaceutical properties.18  Typically this process includes consideration of 

stability, dissolution and manufacturability and involves both experimental and 

computational methods to ensure the most appropriate form is selected for 

development.19–21  There are examples of solid-state transformations occurring both 

during development and also after reaching the market, which have had a serious 

impact upon efficacy and therefore patient safety.8,22  Detailed solid-state 
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characterisation early in development is therefore desirable for scientific and 

intellectual property purposes, as well as being essential for safety and regulatory 

requirements.23–25 

1.2.2 Crystallisation, polymorphism and amorphous material 

Historically, crystalline material has been selected for development due to its long 

range order, which enables ease of characterisation, reproducibility and stability, 

relative to its amorphous counterparts.26  The formation of crystalline materials most 

commonly occurs as a non-equilibrium phenomenon from a supersaturated solution 

and is best explained through two key steps: nucleation and growth.27  Nucleation is 

often divided into two categories: primary, which can be homogeneous or 

heterogeneous, and secondary, see Figure 1.2.  Currently it is a poorly understood 

process with both classical and non-classical theories available to describe the 

spontaneous formation of a solid phase.  The common theme for nucleation theory is 

that within a supersaturated solution there is a dynamic assembly and dissociation of 

component molecules or ions encountering, recognising each other and aggregating 

into nuclei of varying size.16,28 

 

Figure 1.2 – Nucleation categories and their definitions. 

Classical nucleation theory (CNT) states that one of these nuclei will eventually exhibit 

more than transient stability by forming at a critical size whereby the energy required 

to form a new and unstable solid-solution interface is recoverable from the free energy 

gain (stability) of creating a bulk crystalline material.16  In CNT these initial nuclei are 
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considered to be spherical, and have the same density, structure and composition as 

the final crystal structure.29  The most relevant non-classical theory suggests that 

nucleation may actually be a two-step process, with formation of an initial disordered 

precursor as a dense liquid phase, prior to the appearance of a crystalline nucleus.30,31  

An outline of these two models is summarised in Figure 1.3. 

 

Figure 1.3 - Classical nucleation theory (top pathway) and the two-step (bottom pathway) 
non-classical nucleation model. 

Following nucleation, further molecules accrete on the surface of a stable nucleus 

within a solution allowing it to evolve into a macroscopic crystalline solid.16  Crystal 

growth is then considered in terms of two steps: i) mass transport of solute ions or 

molecules from the bulk environment through a boundary layer to the crystal surface, 

followed by ii) their incorporation into the crystal.32,33  There are a number of theories 

to explain this growth, with the exact mechanism through which it occurs dependent 

upon two factors: supersaturation of the solution in which it is growing and surface 

roughness of the crystal.16,34  An increasing level of supersaturation is thought to 

increase surface roughness, which in turn influences the ability of the growth unit to 

incorporate into the crystal, and enables multilayer growth mechanisms to occur 

simultaneously thereby influencing surface roughness.16  Additionally, at higher levels 
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of supersaturation there is increased free energy available to form interfaces, thus the 

critical nucleus size for runaway growth to occur is smaller.   

The resulting structures are ultimately influenced by both kinetic and thermodynamic 

contributions, and the processes of nucleation and growth may therefore result in the 

formation of varying structures, both crystalline and non-crystalline.  Crystalline solids 

may appear as polymorphs, whereby long range order remains but the molecules are 

packed differently.  Alternatively amorphous material may be produced, defined by a 

lack of periodicity, which results in materials that are typically less thermodynamically 

stable and exhibit faster dissolution than their crystalline counterparts.16,35  Ostwald’s 

Rule of Stages states that typically the least stable polymorphic form will form first 

(dominated by the first to nucleate), with increasingly stable modifications produced in 

stages.36  The free energy associated with metastable forms means that they are 

expected to be more soluble than their corresponding stable polymorphic form at any 

given temperature; this includes amorphous material which would generally be 

expected to have the highest solubility.35,37–39  Therefore, in understanding the 

formation of solids, we are conversely provided with insight into the dissolution and 

solubility of a substance, and vice versa.  However, it is important to note that these 

processes are not simply opposites.4 

1.2.3 Solubility 

The USP dedicates a general chapter to the topic of solubility and defines equilibrium 

solubility as “the concentration limit, at thermodynamic equilibrium, to which a solute 

may be uniformly dissolved into a solvent when excess solid is present”.40  It measures 

the capacity of a solvent to hold solute and can be considered an end-point, with 

dissolution describing the process through which one arrives there.3,4  If an equilibrium 

is unable to be achieved then any measure of solubility is termed ‘apparent’; it may be 

transiently higher if conditions enable supersaturation but may also be reduced if 

insufficient time is allowed for the solute to dissolve to completion.40  Equilibrium 

solubility is therefore dependent solely upon these previously described 

intermolecular interactions (solute to solute, solvent to solvent and solute to solvent), 

whereas apparent solubility can be affected by numerous properties including the 

conditions of measurement, see Figure 1.4.4,40,41  
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Figure 1.4 – Summary of factors affecting apparent solubility of a solute in solvent where 
equilibrium solubility has not been attained or verified. 

The resulting solution may contain either the original solute chemical entity, which 

might be fully recoverable unaltered by dissolution, or it may contain a compound that 

is different from the original solute, as a result of  ionisation, for example.4  These 

considerations must be taken into account when obtaining solubility measurements, as 

well as when observing dissolution of a substance.  In the case of ionisable acids and 

bases, measurements will be further influenced by the presence of salts or counter-

ions within the solvent or dissolution media.42–44   

The process of dissolution can also initiate solid state changes, hence an understanding 

of the polymorphic landscape is crucial when determining solubility.18,45,46  Historically, 

transformations between forms during experimental studies have made it challenging 

to produce reliable estimates for solubility and dissolution enhancements of solid-state 

modifications, particularly when considering amorphous compounds.35,38,47,48   The 

kinetics of these solution-mediated phase transformations were initially modelled by 

Cardew and Davey in 1985 and reported as a balance between dissolution of a 

metastable form and growth of a relatively stable form (or forms) at supersaturated 

concentrations.45,49–52  This remains relevant to dissolution today as the use of high 

throughput methods in drug discovery has led to an increase in new molecular entities 

(NME) with less favourable characteristics, such as poor solubility.53  One strategy has 
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therefore been to utilise a range of solid-state modifications including polymorphs§, 

salts, cocrystals and more recently coamorphous systems in the search for compounds 

with appropriate characteristics for development.45,54–56  This requires an 

understanding of the relationship between intermolecular interactions and physical 

form, as well as how this influences solubility, dissolution rate and bioavailability, in 

addition to stability and manufacturability.18,25  The pharmaceutical industry has 

therefore been a key driver in developing the ability to predict and control solid state 

properties, so that the physicochemical properties of a compound may be modified 

without impacting upon its pharmacology.54,57,58 

1.2.4 Dissolution 

Dissolution has already been distinguished from solubility by describing it as the 

process through which a molecularly dispersed homogeneous solution is produced 

from a solute and solvent.4  It would therefore follow that the initial solute must 

reduce in size, which may occur through the additional steps of disintegration and 

deaggregation.3  Disintegration, as defined by Markl and Zeitler, is “the mechanical 

breakup of a compressed tablet into small granules” and includes a range of 

mechanisms through which interparticulate bonds are broken.59  Deaggregation, 

however, is a less well understood process, defined as the “chain of events wherein 

particle aggregates from the tablet disintegration process are further subdivided into 

smaller aggregates”.60  Dissolution and disintegration may occur concurrently or in 

succession, and their relationship is outlined in Figure 1.5.  

                                                      
§ The International Conference on Harmonisation (ICH) and the US Food and Drug Administration (FDA) 

classify polymorphs as including anhydrous, hydrate and solvate forms.18 
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Figure 1.5 – The relationship between disintegration, deaggregation and dissolution when 
considering an immediate release orally administered solid formulation. 

Historically, disintegration of the dosage form was considered the limiting step for a 

drug to exert a pharmacological effect, so official disintegration tests were published 

as early as the 1930’s by the Swiss Pharmacopoeia (Helvetica) and adopted in 1950 by 

the US.61,62  The disintegration test remains a valuable tool today and a variety of 

excipients are available to initiate disintegration via multiple mechanisms.59,62–65  The 

relevance of disintegration and deaggregation to dissolution is clear: to increase the 

effective surface area of solute exposed to the solvent.60  However, neither complete 

disintegration nor complete deaggregation implies that dissolution has occurred, 

hence an additional understanding of the solubility of the drug substance is of 

significant importance.41 

The theory of dissolution mechanisms arguably began with the first law of diffusion 

defined by Fick in 1855.66  This defines the rate of mass transfer through a unit area in 

relation to a concentration gradient and describes diffusion mechanisms within liquids, 

whereby a solute moves from a region of high concentration to that of low 

concentration.66  Physical scientists, chemical engineers and eventually pharmaceutical 

scientists expanded upon the diffusion layer concept and defined equations, models 

and theories to incorporate interfacial transport and convection mechanisms.67–72  

However, it was not until the 1950’s that dissolution was linked to the absorption of 

orally administered medication and bioavailability.61,73,74  It took a further ten to 
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twenty years for the impact of formulation upon dissolution to be realised, with the 

first United States Pharmacopoeial (USP) guideline for setting dissolution standards 

published in the 1970s.9,75,76  An extensive history of dissolution research, from 1897 to 

2006, has been detailed by Dokoumetzidis and Macheras; consequently, only the 

theory and models pertinent to this work will be outlined.61   

Assuming disintegration and deaggregation occur readily, dissolution can be 

considered a heterogeneous process in which a transformation takes place at the 

phase boundary between solid and liquid.2,60  In Physiochemical Hydrodynamics, 

Levich breaks this down into three steps:  

i) movement of reacting particles from the bulk solid to the reaction surface,  

ii) chemical transformation of the reacting particle into a dissolved particle on 

the surface, and  

iii) the transfer of products away from the reaction site.77   

This simple explanation focusses on the chemistry of dissolution, however, it can also 

be considered in terms of the more complex processes taking place.  In 2013, 

Siepmann and Siepmann further separated dissolution into five physical phenomena:  

i) wetting of the drug particle,  

ii) breaking of solid state bonds within the drug particle,  

iii) solvation of the individual drug molecules,  

iv) diffusion of the individual solvated drug molecules through the boundary 

layers, and  

v) convection within the well-stirred bulk dissolution media.2 

These processes occur in series, and dissolution rate is limited by the step which occurs 

the most slowly.  From a pharmaceutical sciences perspective there are commonly 

considered to be three models to explore when discussing immediate release 

formulations; the models were outlined by Higuchi in 1967 and are still relevant 

today.8,78  The first is the diffusion layer theory, the second is Danckwert’s model and 

the third is the interfacial barrier model. 

The most commonly applied is the diffusion layer theory, which is the culmination of 

work carried out at the start of the 20th century and discusses only two parts.67,72,70,61,2  
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The first part is formation of a stagnant or boundary layer between the surface of the 

solid and the bulk of the liquid due to adhesive forces.2  There is suggested to be 

negligible mixing within this film relative to the bulk solution, and Higuchi states that 

an equilibrium exists between the solid and liquid.78  The second part involves diffusion 

of solute from an area of high concentration at the surface into the lower 

concentration bulk solution following Fick’s first law.2  Assuming the bulk solution 

undergoes sufficient agitation and remains at a concentration below saturation, then 

diffusion of drug across this boundary layer is considered the rate-limiting step.2,78  

Danckwert’s model, which is also referred to as the penetration and surface renewal 

theory, states that continuously renewed macroscopic packets of solvent access the 

solid-liquid interface and absorb solute by diffusion.78  The packet of solvent with 

dissolved drug is then carried away into the bulk solution and new surfaces are 

exposed for the process to begin again.79  In this model the rate-limiting step is 

convection of the dissolved drug and there is a requirement for eddies or turbulence 

to move the packets through the bulk.78  Finally, the interfacial barrier model which is 

also termed limited solvation theory, considers that the reaction at the surface of the 

solid is not instantaneous and steps i) to iii) described by Siepmann and Siepmann, may 

be the rate-limiting processes rather than the mass transport mechanisms.2,78   

In summary, the three models claim varying levels of importance for each of the 

suggested steps and are best considered in combination.  Siepmann and Siepmann 

recommend using mathematical equations to quantify the mass transport steps and 

highlight appropriate strategies for overcoming poorly soluble immediate release 

formulations.2  For example, the rate at which dissolution occurs (
𝑑𝑊

𝑑𝑡
) can be defined 

using Equation 1.1, and represented, with terms explained, in Figure 1.6.3,8,77 

𝑑𝑊

𝑑𝑡
=

𝐴𝐷(𝐶𝑠 − 𝐶𝑏)

ℎ
 

Equation 1.1 – Diffusion Layer Theory 



12 
 

 

Figure 1.6 - Diffusion layer model for dissolution 

Equation 1.1 is often expressed in multiple formats with varying terms and can be 

referred to as the Noyes-Whitney, Shchukarev or Nernst-Brunner equation.67,77  It 

states that the amount of material dissolved per unit time is dependent upon the 

surface area available at the interface, the drug diffusion coefficient and the inverse of 

the boundary layer thickness in addition to a concentration gradient.  The boundary 

layer is a well-defined parameter within the field of hydrodynamics and is based upon 

Nernst’s Theory which states that immediately adjacent to the surface of a dissolving 

solid there will be an area of liquid which is at a saturated concentration.72  Solute will 

move from this area of saturation (Cs) to the bulk solution (Cb) by molecular diffusion in 

a gradual process rather than a single step as Figure 1.6 might suggest.2,80   

The boundary layer can be reduced in size or theoretically eradicated by amending the 

geometry of the test apparatus or the solvent flow (in the case of flow through cells) 

but predominantly the layer will be present.80  In the case of conventional dissolution 

apparatus, the bulk solution is additionally agitated and undergoing macroscopic 

motion (flow) so it is thought to “entrain” solute particles from the boundary layer and 

transport them throughout the bulk solution by convection.77  The combination of 

mass transport mechanisms are referred to as convective diffusion and the dissolution 

rate-limiting step(s) may vary depending upon intrinsic properties of the API and 
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numerous extrinsic conditions such as media viscosity.  The impact of pH and common 

ion effects upon ionisable APIs can additionally result in an altered Cs at the interface, 

which may lead to reduced (or increased) dissolution rates, precipitation and phase 

transformations, hence the need for such extensive understanding of the API in 

development.42,43,81 

Regardless of the model applied, dissolution is ultimately dependent upon many 

distinct but nevertheless connected processes occurring concurrently in order to 

produce a solution from a solid and liquid.  Monitoring dissolution therefore involves 

reporting the extent of solid dissolving per period of time, and is dependent upon the 

initial interaction between solid and liquid, the stability of the dissolving solid (and the 

liquid dissolving it), physical and chemical properties of each component, and 

diffusivity, in addition to the experimental conditions.  Observing different stages of 

the dissolution process will provide complementary information, hence, applying one 

technique to visualise the interface between solid and liquid, and another to analyse 

the bulk solution has the potential to deepen our understanding of the entire process. 

1.3 Pharmaceutical research and development  

Orally-administered immediate release tablets involve a solid dosage form entering the 

body via the gastrointestinal (GI) tract.82  In simple terms the tablet is swallowed by 

the patient and progresses through the oesophagus into the stomach and intestines; 

the tablet must release API into solution along this route so that it is available for 

systemic absorption, usually via the small or large intestine, and thus able to exert a 

pharmacological effect on the patient**.2,83  It is important to note that absorption can 

only occur from a solution and is dependent upon the API crossing the gastrointestinal 

mucosa, which is termed permeability.3,84   An API must therefore be soluble at the 

point of absorption, sufficiently stable in physiological fluids and present at a suitable 

concentration after any pre-systemic clearance (or first-pass metabolism).3,83,85  The 

amount of API available for absorption and the rate or extent to which it is absorbed 

by the body is defined as bioavailability.3  Dissolution, solubility, permeability and 

                                                      
** Absorption into the systemic circulation is key to exerting a clinical effect for the majority of orally-

administered medication, however there are exceptions (e.g. loperamide to treat diarrhoea). 
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bioavailability are subject to a complex interplay between physicochemical and 

physiological properties, the details of which underpin the relevance and importance 

of dissolution testing to the pharmaceutical industry.85–88   

 

Figure 1.7 – The Biopharmaceutics Classification System (BCS).  Good and poor and high and 
low are used interchangeably with respect to both solubility and permeability. 

The pharmaceutical industry have historically used a framework named the 

biopharmaceutics classification system (BCS) to direct development by categorising 

APIs into four groups according to their dissolution, solubility and intestinal 

permeability89, see Figure 1.7.  Solubility is defined with regard to the highest dose to 

be administered and its ability to dissolve in aqueous media of 250 mL or less, over a 

pH range of 1.2 to 6.8 at 37 ± 1°C.90,91  Permeability determination is comparatively 

complex and can be measured either directly in vivo, using human intestinal 

membrane or can be predicted with one of multiple systems dependent upon the 

stage of development.90,92,93  Regardless of the method used, a highly permeable 

classification requires absorption to be 85% or more of the administered dose.83,92  

Additionally, rapid dissolution is achieved when “85% or more of the labelled amount 

of drug substance dissolves within 30 minutes” or very rapid when “85% or more of the 

labelled amount of drug substance dissolves within 15 minutes”, with strict guidance 

on the dissolution set up including the media.90,91  The BCS uses these definitions to 

provide insight into which key factor (dissolution, dose, permeability or solubility) is 

most likely to limit absorption and influence in vivo performance.93   
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The increasing pressure on pharmaceutical companies to bring medicines to market 

efficiently most often results in development of an API alongside both process and 

formulation.94  A developability classification system (DCS) was proposed in 2010 and a 

refined developability classification system (rDCS) in 2018, to offer further suggestions 

regarding the use of BCS as a guide for API and oral formulation development.93,95  

However, the manufacture, purification or processing of an API (or formulation) may 

be adjusted during development to improve environmental impact, cost efficiency or 

as a consequence of scale up.94,96  This may result in altered particle size distribution or 

morphology, hence a complete understanding of physicochemical properties may not 

be possible.97–99  A quality by design (QbD) approach to development therefore 

encourages the rational development of medicines based on a mechanistic 

understanding of both product and process.63,100  Specifications and controls on input 

materials (APIs, excipients etc) and process parameters are incorporated throughout 

development based on understanding and are used in conjunction with end product 

testing to ensure consistency of product.101  Evaluating dissolution is therefore key to 

defining many of these critical quality attributes and takes place throughout 

development to aid mechanistic understanding, decision-making and in-vitro-in-vivo 

correlations, as well as at the end of routine manufactures to demonstrate quality and 

consistency of batches and ensure the safe and effective delivery of medicine to 

patients.10,61,88,102   

1.3.1 Role of excipients 

Formulating an API into an appropriate dosage form often includes the addition of 

other substances known as excipients, which by definition should have little or no 

pharmacological effect.103,104  Orally-administered immediate release tablets are 

routinely manufactured with excipients for a variety of reasons, see Table 1.1.3  The 

selection of excipient(s) requires scrutiny and rigorous testing to ensure compatibility 

with the API(s) and to understand the impact on bioavailability, formulation, 

manufacturing and stability.99,103,105–108  Discussing the various roles of excipients in 

detail is outside the scope of this work, but it is relevant to note that one excipient 

may have multiple functionalities and may also in some cases be used as an API104; as 
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such excipient monographs contain functionality-related characteristics for guidance in 

addition to identity and purity regulations.109   

Table 1.1 - Commonly used excipients in immediate release oral tablets110 

Type of 

excipient 

Common use in tablets Examples 

Lubricant Manufacturability 

e.g. to aid flow during 

compression 

Magnesium stearate – 

hydrophobic so may impact upon 

wetting and delay dissolution 

Disintegrant Improve bioavailability 

e.g. to aid tablet breaking up 

Croscarmellose sodium – 

hydrophilic and highly absorbent, 

used to enhance disintegration 

Diluent or filler Manufacturability 

e.g. for better homogeneity 

and weight variability 

Lactose, mannitol, 

microcrystalline cellulose – 

chosen to have limited effect on 

dissolution although they may 

help to improve wettability 

Binder Manufacturability 

e.g. to prevent tablet falling 

apart  

Povidone – water-soluble, 

limited impact on dissolution 

Coating Patient acceptability  

e.g. for taste-masking or 

appearance 

Hydroxypropylmethylcellulose 

(HPMC) – can be modified to 

delay dissolution 

The presence of excipients within a formulation has the ability to inhibit or enhance 

dissolution, either by design or as a result of complex interactions (chemical, 

mechanical or physical) within the manufacturing process or with other 

components.111–113  In very simple terms, as a tablet disintegrates the excipient(s) and 
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API will break free from the tablet structure and exist within the dissolution medium as 

either solid particles, as solute or as a combination of both.  The ability to monitor 

release of excipients in addition to API could therefore be used to improve mechanistic 

understanding of the entire dissolution process and draw conclusions as to whether 

the rate-limiting step is disintegration of the dosage form or dissolution of the API.19-21 

1.3.2 Dissolution testing methods 

Conventional dissolution testing methods report the temporally-resolved percentage 

of drug dissolved for a dosage form.114  Figure 1.8 shows a theoretical dissolution plot 

for an orally-administered immediate release tablet with a very rapid release rate.  

Profiles can provide information on API release kinetics in addition to the extent of 

dissolution, assuming samples are taken regularly.115  Additionally they may highlight 

differences that can be attributed to formulation or manufacturing deviations, for 

example an altered drug substance particle size distribution or a variation in 

compression force during tabletting.115 

 

Figure 1.8 – Theoretical dissolution plot showing the percentage of drug dissolved versus 
time in minutes.  Sampling has taken place every minute for a total of thirty minutes.  Very 
rapid dissolution has been displayed by the dosage form, with more than 85% of the drug 
dissolved in less than fifteen minutes.  
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The United States, British and European Pharmacopoeia detail several methods for the 

dissolution testing of routine formulations, with an increasing emphasis on novel 

formulations.114,116,117  For immediate release oral solid dosage forms the most 

commonly used techniques are the basket (apparatus I) or the paddle (apparatus II), 

and in special circumstances, the flow-through cell (apparatus IV).40,114,118,119  A 

reciprocating cylinder (apparatus III) also exists although it is primarily used for 

modified release formulations.40,120,121  The apparatus used depends on the 

characteristics of the dosage form under investigation and the reason for the testing. 

The most appropriate compendial dissolution method for a drug is established during 

development and strictly defined in quality control (QC) methods to ensure patient 

safety and efficacy of the end product.  Extensive information is therefore required 

regarding the methods used, see Table 1.2 in addition to the exact measurements of 

the equipment and any sampling points.  This detail provides some assurance that 

dissolution measurements are comparable, and is listed in individual drug monographs 

to ensure clear guidance on the acceptance criteria for oral formulations.40,121 
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Table 1.2 – Details required for dissolution testing.  

Method parameter Details required 

Apparatus used Basket 

Paddle 

Flow-through cell (detail of design) 

Dissolution medium Composition, including pH 

Temperature (37 ± 0.5°C) 

Volume 

Agitation / hydrodynamics Rotation speed (basket or paddle) 

Position of basket / paddle / sampling 

Geometry of flow-through cell 

Flow rate of dissolution medium (flow cell) 

Timings Frequency of sampling, or 

Method for continuous monitoring 

Analysis Sample preparation(s) required 

Method(s) used 

Active ingredient(s) dissolved per time period 

During development, however, a wider range of method parameters are used, 

particularly with a view to establishing a link with in vivo behaviour.88,102  Alternative 

apparatus may be used to further mimic in vivo conditions, for example the TNO 

Gastro-Intestinal Model (TIM) multi-compartmental apparatus.122  This is an in vitro 

computer-controlled system developed to be dynamic and simulate events within the 

gastrointestinal tract.  Additionally, complex biorelevant dissolution media may be 

used to obtain more physiologically relevant information.10,123  Biorelevant media is 
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the subject of significant research and while not the focus of this work, its impact upon 

sample analysis is important to consider.123  The volume of dissolution media is often 

mentioned with regard to sink conditions and these are defined by the Pharmacopeia 

as “at least three times the saturation volume” for the API in question.40  Non-sink 

conditions can lead to altered release rates and even supersaturation, and are 

particularly problematic for poorly-soluble APIs.124,125  The use of flow-through cell 

technology is able to address this challenge with the option of an open-loop system in 

addition to recirculating dissolution media.118,126 

The hydrodynamics of dissolution testing is a vast topic applicable to phenomena 

ranging from turbulence to boundary layers, and as such requires detailed 

consideration when developing new techniques or comparing results.77  

Hydrodynamics can be influenced by vessel design, sample placement and orientation, 

rotation of the sample, viscosity of the dissolution media and the media flow rates.127–

129  In low viscosity liquids such as aqueous media, the small changes in density that 

occur when a solid dissolves result in natural convection processes, which lead to 

mixing of the media and altered concentration gradients.77   Minor changes in the set 

up or design of apparatus can also lead to changes in turbulence and mass transfer, 

which can lead to significant variation in reported dissolution rates.130–134  

Hydrodynamics are also affected by sampling from the dissolution vessel, which may 

be manual or automatic, depending upon the frequency of sampling as well as the 

complexity of sample preparation required prior to analysis.135  Conventional 

dissolution methods specify a position for sampling apparatus so as to ensure a 

homogeneous sample for analysis.  This provides information on the extent of drug 

dissolved in the bulk of the media, but bypasses the many processes occurring prior to 

this.   

1.3.3 Intrinsic dissolution rate testing 

An additional technique is intrinsic dissolution rate (IDR) testing.  This is defined as the 

amount of drug dissolved per unit time per unit area (currently µg/min/cm2) and is a 

rate phenomenon rather than a measure at equilibrium.  Theoretically, IDR should be 

calculated using sink conditions so that boundary layer thickness is not a variable, and 
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with a non-disintegrating compacted sample, hence the equation for calculating IDR is 

derived from Noyes-Whitney:   

𝑗 =  
𝑉𝑑𝑐

𝑑𝑡
 × 

1

𝐴
 

Equation 1.2 – Intrinsic Dissolution Rate 

where j is referred to as dissolution flow or IDR (µg/min/cm2), V is the dissolution 

media volume (mL), dc is the change in concentration of dissolved drug in the medium 

(mg/mL), dt is the time period over which this change takes place (min) and A is 

surface area of the compacted sample (cm2).136,137  The traditional method to calculate 

IDR involves plotting the cumulative amount of dissolved drug against time, and 

performing a linear regression.40  The result may be curved if sink conditions are not 

maintained, but only the initial linear section is used to produce a dissolution rate in 

units of mass per second, which can then be divided by the surface area of compacted 

API to produce an IDR value.3 

IDR measurements are used primarily to assess and compare inherent dissolution 

properties of an API, usually early in development or after changes to a manufacturing 

or purification process.138,139  They have also been explored as a substitute for 

solubility in classifying drugs for development, for example when using the 

BCS.136,137,140  However, a 2004 paper by Missel states that these dissolution rates are 

the result of both intrinsic and extrinsic factors.  The USP chapter <1087> makes the 

same point and refers to general dissolution rates as dissolution flux, whereby intrinsic 

relates to the API, for example its solid state and physicochemical properties, and 

extrinsic relates to experimental test conditions such as temperature, pH or 

hydrodynamics.40,80 

The conventional apparatus used to calculate IDR values is described in each 

Pharmacopoeia and traditionally includes a rotating disc of compacted sample, known 

as Wood’s Apparatus, although a stationary disc set up is also outlined.40,141  Additional 

techniques include a miniaturised rotating disc, rapid powder tests such as the 

microDISS and a flow-through UV imaging technique.142–145  While each method 

maintains experimental conditions such as pH, temperature and ionic strength, 
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investigations have confirmed that differences in hydrodynamic conditions may result 

in variability between the IDR values obtained using different instrumentation.12,146  

Recent work has also confirmed that there can be both inter-laboratory and intra-

laboratory variability between IDR values obtained using surface dissolution 

equipment, i.e. amongst different sites and instruments, and amongst different 

operators of the equipment.147   

The variability of experimentally-obtained IDR values is of particular relevance when 

considering a substitution of IDR for solubility in classification systems such as the BCS 

or DCS (including refined).93,95,136,148  For example, both 0.1 mg/min/cm2 and 1 to 2 

mg/min/cm2 have been suggested as the boundary between low and high solubility, 

for modified Wood’s apparatus and traditional Wood’s apparatus, respectively.137,140   

While the alternative techniques to calculate IDR may enable mechanistic details and 

biorelevant information to be gleaned earlier in development from smaller amounts of 

API, further work is required to understand how the equipment, particularly surface 

dissolution imaging, may impact upon the calculations.138,139,147,149  ‘Intrinsic’ 

dissolution rates, should therefore encompass more than just a number, particularly if 

multiple techniques are involved or ideally be used only for comparative purposes 

where equipment (and operating procedures) are kept consistent. 

Extensive research into the use of UV imaging for IDR determination has been carried 

out both by Dr Asare-Addo’s research group in Huddersfield University, and by 

Professor Østergaard’s research group at Copenhagen University.  The work from 

Huddersfield highlights the importance of considering compact surfaces when 

determining IDR and arguably provides evidence to support consideration of IDR as 

both a subjective and objective measurement.150–152  Additionally the review of UV 

imaging by Professor Østergaard discusses those same challenges resulting from initial 

surface roughness and the potential for the SDi2 to encourage scientists to consider 

dissolution testing as both a quantitative and qualitative exercise.13 

1.3.4 UV-Vis Spectroscopy 

The concentration of API in a sample is routinely determined by ultra-violet visible 

spectroscopy (UV-Vis) either with or without prior liquid chromatography (LC) to 
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separate additional components of a formulation.114  The use of this analytical 

technique relies upon the API containing a chromophore, which is the section of 

molecule capable of absorbing light, usually due to the presence of π bonds.3  Light of 

a specific wavelength, or energy, results in the excitation of electrons and promotes 

their movement from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO).153,154  This absorbed energy is recorded by the 

spectrophotometer as a loss of transmission of light and corresponds to a specific 

wavelength, thus enabling a spectrum of absorbance versus wavelength to be 

produced.155  

Exposure to discrete wavelengths of light known to induce electronic excitation in the 

sample molecule, can be used to measure concentration (𝑐).154  The extent of 

absorption (𝐴) is in proportion to the number of chromophore-containing molecules 

present in the sample (i.e. the concentration), for a specified range of dilute 

concentrations.153,154  It assumes no molecule is in the shadow of another and that all 

molecules contribute equally to the absorbance of light within the 

spectrophotometer.154  Absorbance and concentration can be related by considering 

the molar absorption coefficient of the compound (𝜀) and the path length of the cell 

across which the light is transmitted (𝑙) using the Beer-Lambert Law.153,154  The molar 

absorption coefficient considers the ease by which the electronic transition can occur 

and is constant for a compound under the same conditions, see Equation 1.3.154,156   

𝐴 = 𝜀𝑙𝑐 

Equation 1.3 - Beer-Lambert Law 

The prior use of calibration standards (or reference spectra) analysed at the same 

wavelength (and preferably by the same equipment) enables the molar absorption 

coefficient of the compound (𝜀) to be calculated and the range of concentrations over 

which the law is applicable to be determined.13,154   It requires that conditions are 

consistent and no other component within the sample absorbs light at this wavelength 

(or they must be separated by LC).154  Formulations encompassing multiple 

chromophore-containing APIs, thus provide a challenge for standard UV-Vis 
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techniques, hence more selective measurement techniques provide a useful 

opportunity.   

A blank containing all other components present in the sample (except the molecule 

being measured) is used to ensure that background signal or noise is taken into 

consideration13 and it is additionally important to note that solvent-solute interactions 

and pH can influence the spectrum.157  The working range of concentration capable of 

measurement with UV-vis spectroscopy depends upon the molar absorption 

coefficient of the molecule being studied; if this value is too high, then absorbance will 

be too great and dilution will be necessary to calculate concentration.154  Possession of 

a chromophore is a limiting factor for monitoring components with UV-Vis 

spectroscopy and typically excludes excipients from being measured by traditional 

techniques.15 

1.3.5 Current challenges and limitations 

Dissolution profiles, rates and extent are influenced by a number of complex 

interlinking factors that can be attributed directly to the ingredients of a formulation 

(for example, polymorphic forms of the API or differing excipient grades) or the 

manufacturing conditions used (for example, dry powder mixing time for 

homogeneity), or they may occur as a result of the environment in which a tablet is 

stored (for example, high relative humidity conditions resulting in water uptake and 

tablet swelling).111,138,158,159  Understanding the dissolution process and impact of each 

factor is an important part of development and allows control of conditions to ensure 

future manufactures result in a product of consistent quality, which is key to the safety 

and efficacy of the dosage form.100  The purpose of this work is not to comment upon 

the biorelevance of dissolution testing techniques; however, compatibility with 

biorelevant and simulated pH media is an important consideration for dissolution 

testing methodology.   

Conventional tablet dissolution techniques provide temporally-resolved information 

on the rate and extent of API release into the bulk media, however, they are limited in 

their ability to monitor excipient release or to demonstrate a thorough understanding 

of how the API is released into solution.13,15  Extracting information on the role of 
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excipients during dissolution as well as visualising the processes involved at a surface 

level have the potential to influence formulation choice and guide manufacturing 

conditions to ensure appropriate release of the API.106  This could ultimately improve 

efficiency of the development process and contribute to quality by design (QbD) 

ensuring that product quality is built in to manufacturing and based on a thorough 

understanding of what makes the medicine safe and effective.10 

This work explores the relevance and importance of two novel dissolution techniques 

to the pharmaceutical industry and will include consideration of drug substance as well 

as drug product.  The two techniques used to explore dissolution are 1) surface 

dissolution imaging using UV-Vis technology and 2) the monitoring of dissolution by 

mass spectrometry.   

1.4 Novel technique one - surface dissolution imaging 

1.4.1 Background 

Surface dissolution imaging focuses on the interface between a solid and liquid.13  

Specialist dissolution equipment entered the commercial market in 2010 with the 

ActiPix™ SDI 300 developed by Paraytec Ltd. (York, U.K.), although earlier versions, 

such as the D100, were used as detectors within the separation sciences, see Table 

1.3.13,160–162   

The instrumentation is able to obtain spatially and temporally resolved UV absorbance 

data, with early versions requiring a band pass filter for single wavelength 

selection.161,163  The last ten years have seen this imaging technology applied to a 

variety of dissolution challenges from understanding intrinsic dissolution rates (IDR) to 

solvent-mediated phase transformations to micro environmental pH monitoring, 

amongst many others.145,164–167  
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Table 1.3 – Surface dissolution imaging equipment development timeline 

Timeline Model name Brief description of characteristics 

2009 ActiPix™ D100 First quantitative UV area imaging detector 

system 

2010  

(commercial) 

ActiPix™ SDI 300 Sample flow cell, syringe pump, single UV 

capability and 7 mm x 9 mm detector for 

surface dissolution imaging 

2013 Sirius SDI Same capabilities as SDI 300 but licensed to 

Sirius, with ActiPix™ Technology 

2016 SDi2 Upgraded SDI with dual wavelength capability, 

whole dose cell, and 28 mm x 28 mm detector.  

Licensed to Sirius initially and then to Pion in 

2017 but uses ActiPix™ Technology 

Introduction of the SDi2 in 2016 has enabled this impressive range of applications to 

be explored further by including dual wavelength imaging across a much larger area 

with two distinct flow cells.13,152,168  The ability to record light intensity data for two 

wavelengths allows either two APIs to be monitored concurrently, or physical changes 

such as swelling or erosion to be visualised alongside UV absorbance 

measurements.13,169  Additionally, employing the use of a whole dose cell with larger 

imaging area enables formulations to be analysed.151  This technique shows great 

potential to explore the minutia of dissolution and expand upon our current 

mechanistic understanding of the processes involved in drug release.13,170   

1.4.2 UV imaging fundamentals 

The surface dissolution imaging equipment, SDi2, includes a light source, integrated 

fluidics, a choice of two flow cells and an imaging system connected to a computer for 

data analysis, see Figure 1.9.  Each part will be described in further detail with regard 

to its functionality and the impact the design has upon the information that can be 

obtained from it. 
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Figure 1.9 - SDi2 instrument outline. 

Light source: 

The light source includes four ultraviolet wavelength LEDs and one visible.  The narrow 

bandwidth light-emitting diodes (LEDs) sit on one of two motorised tracks to enable 

dual capability for any combination of the five wavelengths (255, 280, 300, 320 and 

520 nm).168  The tracks sit side-by-side (horizontally) and move up and down 

depending on which of the LEDs are selected, see Figure 1.10.  Track one sits on the 

left side of the SDi2 relative to the image through the compact flow cell (CFC), which is 

on the right side when looking directly at the LEDs, and contains the first four LEDs 

listed in the method section of the SDi2 software: i) 520, ii) 320, iii) 300 and iv) 255 nm.  

Track two sits to the right hand side relative to the image through the CFC (on the left 

hand side when looking directly at the LEDs) and contains the final four LEDs: v) 520, 

vi) 320, vii) 300 and viii) 280 nm. 
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Figure 1.10 – Pictures taken inside the SDi2: (a) the white square shows the detector with a 
ruler for scale, and (b) a close up of the LEDs showing track two (with LEDs v – viii) on the left 
and track one (with LEDs i – iv) on the right.  The LEDs at the very top were selected for use 
at the time of the photo being taken. 

The ultraviolet wavelengths available are therefore 255, 280, 300 and 320 nm (± 5 nm) 

with a 520 nm (± 5 nm) visible wavelength.  There is much discussion by users 

regarding the number of wavelengths available, however it appears to be a 

compromise for the current design limited in part by the working range of the detector 

(200 – 640 nm) and with a view to enable additional wavelengths in future through 

purchasing alternative LEDs.171  The dual wavelength capability provides a significant 

advantage in interpreting images over its predecessors by enabling differentiation 

between light absorbance as a result of an API in solution versus light scattering due to 

an object physically obscuring the path.13  Additionally, the novelty of simply visualising 

the dissolution process provides further improvement upon conventional 

techniques.172 

Fluidics: 

The fully integrated fluidics consists of tubing, displacement pumps and valves with a 

heater positioned to maintain the temperature of the flowing solvent, see Figure 1.11.  

All the tubing has an inner diameter of 1.4 mm and outer diameter of 3.2 mm, with 

multiple connectors and replaceable seals to reduce leakages. 
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Figure 1.11 - SDi2 fluidics diagram, adapted from the Pion manual.  The initial four way valve 
(1 – 4) is followed by three distinct valves that are either on or off (5 – 7) directing solvent 
around the instrument accordingly. 

The initial four way valve enables the introduction of different solvents or dissolution 

media, and the three distinct valves, which can either be on or off, direct solvent 

around the instrument and through a flow cell.  The set up can exist as a closed loop, 

whereby the solvent is recirculated back through the flow cell, or open loop with the 

“used” solvent pumped directly to waste.  The flow rate throughout the fluidics system 

is defined within the method with the range available dependent upon which flow cell 

is in place.  The whole dose cell (WDC) flow rates range from 6.2 – 24.6 mL/min and 

the compact flow cell (CFC) rates range from 0.8 – 2.2 mL/min.   

Flow cells: 

The compact cell was originally based upon the flow-through cell that was first 

described by Nelson and Shah in 1975.173  Their work used a convective diffusion 

model to predict dissolution rates using compound properties (solubility and diffusion 

coefficient), shear rate and device dimensions (cell width and length).174,175  The cell 

was designed to encourage laminar solvent flow throughout and enable fluid velocity 

to be solved for any point within the cell, thus providing the basis for the SDi2 

detection zone measurements and IDR calculations.80,175 

The whole dose cell is based upon the USP IV design with flow rate guidance to provide 

equivalent linear velocities and sufficient space to study dosage forms up to a 

maximum of 20 mm in length.168  The cell was designed to monitor size changes in 



30 
 

dosage forms such as swelling or erosion, in particular when using matrices for 

extending drug release.151  Both cells are shown in Figure 1.12 to provide an idea of 

size and orientation differences, with blue arrows included to highlight the flow of 

solvent. 

 

Figure 1.12 – Size and orientation comparison of the SDi2 whole dose cell (WDC) on the left 
and compact flow cell (CFC) on the right, with blue arrows showing the direction of solvent 
flow through each cell. 

The CFC has a maximum fill volume of 1.54 mL and uses a specially designed sample 

holder and assembly for weighing out and manually compressing the sample in situ.  

Compaction of the sample is carried out with a load cell to enable this step to be 

repeatedly carried out to determine IDR measurements.  This step has potential to 

impact upon dissolution and consideration should be given to the compaction 

properties of the sample being studied in addition to the surface of the compacted 

sample.150,152,176,177  The cell is positioned in directly in front of the detector and the 

other side of the dark SDi2 compartment from the LEDs, see Figure 1.13. 
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Figure 1.13 – Representation of the compact flow cell complete with detector, LEDs, solvent 
flow and sample holder position. 

In comparison, the WDC has a larger fill volume of 60.3 mL, suitable for tablets and 

capsules.168  The dosage form is held in the sample plug by handmade stainless steel 

wire clasps appropriate to the formulations being studied.  The solvent flow runs from 

bottom to top, with a stopper and 2 mm glass beads in place to smooth flow, and a 

wire mesh sits before the outlet flow to reduce blockages.  The design is based upon 

the USP IV flow-through cell often used for controlled-release dosage forms and poorly 

soluble formulations.118  The cell is placed directly in front of the detector, and across 

the dark SDi2 compartment from the LEDs, see Figure 1.14. 
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Figure 1.14 – Representation of the whole dose cell complete with detector, LEDs, solvent 
flow and sample position.  Note that the drawing is not to scale and the LED illumination is 
perpendicular to the detector, through the whole dose cell viewing window. 

Aside from fill volume, a key difference between cells is the direction of solvent flow; 

bottom to top for the WDC, and left to right for the CFC.  The hydrodynamics within 

each cell are therefore different as a result of volume, shape, sample position and 

gravity.178  The impact of hydrodynamics upon dissolution is extensively studied but is 

particularly relevant to surface dissolution imaging, hence this topic requires further 

consideration for each flow cell depending upon the sample being analysed and will be 

discussed in detail in Chapter 4. Single crystal surface dissolution imaging.179–182 

Imaging: 

Each method for a dissolution run is designed using the SDi2 software.  This allows 

entry of data such as molar absorption coefficients, and controls detection 

wavelengths and solvent flow.  The image size is also amended here - the imaging area 

is 28 x 28 mm with 2048 x 2048 pixels, which gives an effective resolution of 13.75 

µm2.  This area is expressed in pixels using the bottom left corner of the camera chip as 

the origin.  The WDC uses almost the entire area available (24 mm width x 28 mm 

height) but the compact cell uses 28 mm width and only 4 mm height, which can be 
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defined in pixel numbers using the top left 0, 1400 and bottom left 0, 900 as seen in 

Figure 1.15. 

 

Figure 1.15 - Total imaging area in pixels with the smaller compact cell area marked out using 
dashed lines. 

The ActiPix™ Technology detector is a complementary metal oxide semiconductor 

(CMOS) chip composed of photosensitive pixels that measure light intensity.13,183  The 

chip includes a phosphor coated fibre optic taper, which ensures that all light striking 

the sensor array is converted to the visible range to allow the measurement of UV light 

and provides x2.5 magnification.13,168,171,183  The technology was developed for on-line 

monitoring at single UV wavelengths, and uses an area imaging array rather than a 

linear photodiode array; this enables spatially resolved absorbance measurements to 

be obtained.160  The method can be likened to a single beam spectrophotometer 

whereby a reference image is initially obtained so that a light intensity difference 

(absorbance) can be calculated.171  The spatially resolved absorbance measurements 

are represented using a selection of colour maps.  The default settings capture one 

frame per second per wavelength and methods are available to reduce the data size 

burden whilst maintaining either temporal resolution or spatial resolution.168   

The data size burden can be reduced using subsampling and binning.  Subsampling 

reduces temporal resolution by not saving every consecutive image; for example, 

subsampling of 10 saves every 10th frame, retaining the resolution but reducing how 

often data is obtained.  Alternatively a practice known as binning can be used to 

reduce spatial resolution by changing the pixel area over which intensity data is 

collected.  For example, 1 x 1 binning reports data for every pixel, whereas 2 x 2 

binning saves an average across the four pixels thus reducing the effective resolution. 



34 
 

Analysis: 

Finally, the data collection and analysis uses Sirius software on a Windows platform 

and produces a series of images for each wavelength, which can be exported as 

windows media videos.  Each image contains absorbance per pixel through a defined 

colour map, a summary of which can be extracted to Microsoft Excel through use of 

highlighted measuring zones.  Figure 1.16 and Figure 1.17 show images from the 

compact flow cell and whole dose cell, respectively.  The measuring zones are 

highlighted in each image and are used to monitor absorbance throughout dissolution 

for each of the two selected wavelengths.   

 

Figure 1.16 – Image of empty compact flow cell using the jet colour map and SDi2 Analysis 
software.  Axes are referred to as ‘x’ and ‘z’, the wavelength is written above the image (520 
nm), the red arrow shows the direction of solvent flow and the adjustable lower boundary of 
the flow cell is labelled at a height of 1.4 mm.  The default measuring zones are (i) reference, 
(ii) surface and (iii) intrinsic dissolution rate (IDR), with the ability to adjust size and position, 
as well as include up to seven additional zones.  
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Figure 1.17 – Image of empty whole dose flow cell using the jet colour map and SDi2 Analysis 
software.  Axes are referred to as ‘x’ and ‘z’, the wavelength is written above the image (280 
nm), the red arrow shows the direction of solvent flow and the fixed flow cell edges are 
labelled.  The default measuring zones are (i) height, (ii) average and (iii) width, with the 
ability to adjust size and positon, as well as include up to seven additional zones. 

The raw data expressing absorbance per pixel is not easily extracted using the software 

provided so this forms part of the research objectives; image analysis software will be 

applied, with an assessment of the SDi2’s true resolution capabilities to determine 

whether obtaining absorbance values per pixel is both feasible and accurate.  The UV 

wavelength, with calibration, can be used to calculate sample concentrations, and the 

visible wavelength can be used to infer details about the sample’s physical presence 

within the flow cell.13,168,184 

1.4.3 The solid-liquid interface 

The interface between solid and liquid is where transformation to a solution 

begins.2,146  Imaging this phase boundary at both UV and visible wavelengths to 

monitor concentration as well as swelling, erosion or precipitation, has the potential to 

provide novel insights into the wetting, diffusion and convection steps occurring during 

dissolution.2,13,185  Note that an understanding of bond breaking and solvation may 

potentially be inferred or determined using additional technology, but these two steps 

are considered to be outside the scope of this research.2,13  Some of the early imaging 
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studies focussed on measuring concentration gradients at the surface of dissolving 

solids and observing the thickness of boundary layers.161,163  These offer information 

on the ease by which dissolving solid leaves the surface of the solid and moves into the 

bulk, thus enabling calculation of dynamic solubility, diffusion rate and dissolution 

rate.163,175,186  The impact of varying solvent flow rate upon these conditions also 

provided an insight into the role of convective-diffusion theory, however, early work 

was limited in its ability to distinguish between solid surface and API in solution at high 

concentrations.13,161  The dual wavelength capability of the SDi2 will enable this to be 

addressed in yet more detail. 

The solid phase under investigation may consist solely of an API or may be a 

formulation, depending upon the stage of research.3  In the case of pure APIs, UV 

imaging has been discussed as an alternative to traditional intrinsic dissolution tests to 

enable characterisation with even smaller amounts of material and dissolution 

media.145,163,167  Visualising early dissolution events such as the wetting process, has 

enabled the importance of compact surface properties upon initial kinetics to be 

revealed, leading to a recommendation to report IDR only after either the three or five 

minute mark.145,150,152,187,188  The equivalence of IDR values obtained through this 

technique have also been the subject of extensive research.145,150,152,164,165,187–192  The 

IDR calculations are based upon two equations, which will be discussed in detail in 3. 

Surface dissolution imaging intrinsic dissolution rate calculations.  However, the 

software algorithms have yet to be published, preventing manual confirmation of any 

values obtained and leading to a recommendation to use IDR for ranking purposes 

rather than for quantitative comparison with other techniques.13,147,175  Furthering our 

understanding of the software and attempting to replicate IDR calculations will form a 

part of assessing the suitability and exploring the limitations of surface dissolution 

measurements. 

Extensive reviews of UV imaging within pharmaceutical development were published 

in 2017 and 2018.13,167  These discussed details of the formulations explored to date, 

which covered oral, parenteral, transdermal and ophthalmic delivery systems.13,167  

Examples included gel matrices to model soft tissue for drug diffusion, the matching of 

indicator dyes to compound pKa values to visualise surface pH changes, exploration of 
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in situ solid form transformations during dissolution and drug release from implants, 

patches and gels.165,166,193–199  While the majority of these systems fall outside the 

scope of this work, they highlight the versatility of the technique for a range of 

formulations and APIs, and the value of using spatially and temporally resolved UV 

imaging to provide real-time information about drug release, dissolution and 

transport.13,167   

Surface dissolution imaging can be employed to monitor the phase boundary for 

swelling, erosion or precipitation, and to quantify the drug dissolved with respect to 

both time and location, thus providing detailed insights into the mechanics of 

dissolution. There are multiple examples of UV imaging being used to explore the role 

of excipients, particle size reduction and solid state modifications with scope to expand 

on each of these areas further.58,152,185,188,200–202  The recent use of UV and visible 

imaging to compare forms has allowed unexpected physical processes to be reported 

which can explain differences between expected and experimentally-obtained IDR 

values.150,152,170  The option to incorporate a Raman probe within the SDi2 enables the 

direct monitoring of form changes during dissolution, however, in the absence of such 

technology, surface monitoring can provide insights by allowing local concentrations to 

be calculated, the wetting process to be visualised and the balance between 

dissolution and precipitation to be measured.165,170  These insights into solubility 

differences between forms may enable the fundamental understanding of surface 

kinetics at the interface between solid and liquid to be enhanced.138,146   

Single crystals have been extensively explored to further understanding of this solid-

liquid interface and have the potential to provide novel insights into both the 

fundamentals of dissolution and crystal growth, as well as the anisotropic nature of 

crystals.97,138,203  Anisotropy refers to the concept that different faces of a crystal will 

possess different properties as a result of the molecular arrangement or orientation of 

functional groups at each surface.97  This property of crystals has resulted in numerous 

studies over the years attempting to measure face specific energies, dissolution and 

surface defects.204–209  A variety of techniques have been applied to explore single 

crystals such as surface characterisation, optical microscopy, computational modelling, 

including early UV imaging equipment.210–215   
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The dissolution of a single lidocaine crystal was observed using the SDI300 in 2011; the 

apparatus limited monitoring to a single UV wavelength and stagnant solvent 

conditions, but natural convection due to local density gradients was visualised with 

dissolved lidocaine pooling at the bottom of the cell.216  In 2016 this work was 

expanded upon using both the D100 and SDI; this time the single lidocaine crystals 

were observed in a hydrogel matrix to suppress the density gradients, which allowed 

diffusion to be observed without convection.169  Each of the studies developed our 

understanding of single crystal dissolution, however, both were limited by the 

equipment and its ability to monitor only a single wavelength, thereby forcing the 

researchers to choose between visualising physical changes or concentration changes.   

The newly developed SDi2, with its dual wavelength imaging, therefore provides an 

opportunity to explore single crystal dissolution in further detail.  

1.4.4 Image resolution 

The extent of detail able to be obtained from the SDi2 images will depend upon the 

resolution capabilities of the instrumentation.  A thorough discussion of the LEDs, flow 

cells and detector is therefore required with special consideration given to their 

relative positions and any disturbances resulting from objects within the light path.   

The LED motor positions are calibrated to ensure they align with each flow cell and 

imager upon starting an experiment.  A check of LED power also takes place during this 

set up procedure and a dark image is taken to set exposure times, prior to obtaining I0 

(background) readings.  A reference image is automatically obtained at the start of 

every run using a cell full of blank solvent.  This background reference (I0) is spatially 

resolved and applied to each pixel to enable light intensity differences to be calculated, 

which are translated to absorbance values (and potentially concentration).171  

Additionally, a background reference box can be placed within the cell to account for 

changes in the solvent over time, and unlike the initial reference data this can be 

switched on or off.  

A visual representation of each set up for both the compact flow cell and the whole 

dose cell can be found in Figure 1.18 and Figure 1.19, respectively.  These figures 

highlight the set up relative to each axis (x, y and z) but the scale is not representative.  
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The LED tracks are situated approximately 34 cm from the detector and the two tracks 

are 1 cm width apart, with each track having four LEDs.   

 

Figure 1.18 – Outline of the compact flow cell set up with direction of solvent flow and LED 
illumination in relation to position of cell and detector.  Not drawn to scale.  

 

Figure 1.19 – Outline of the whole dose cell set up with direction of solvent flow and LED 
illumination in relation to position of cell and detector.  Not drawn to scale. 

The depth of the CFC, which can be defined as path length, is 0.9 cm and is consistent 

across the width of the cell.  The WDC path length, however, is defined in the manual 

as ≤ 2.8 cm and takes into account the cylindrical nature of the cell.  The changing path 

length is accounted for within the SDi2 software during data analysis of WDC 

dissolution.   
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Figure 1.20 – Representation of LED illumination through the compact flow cell. 

The sample position relative to the cell and detector will differ for each LED, see Figure 

1.20.  This is known as the parallax effect and occurs as a result of viewing an object 

through two different lines of sight.  In addition to the position of the image relative to 

the LEDs, the resolution capabilities of the instrumentation require consideration.  

Pion UK Ltd state the effective pixel size (or resolution) of the SDi2 as 13.75 µm2 within 

the instrument technical specifications.168  Stainless steel balls of approximately 5 mm 

diameter and greater are used to confirm image resolution during set up of the 

equipment.††  If single crystal dissolution is to be explored using the SDi2, the extent to 

which size changes can be confidently monitored and surface concentrations 

measured, will depend upon the relative position of the object as well as the 

resolution of the equipment. 

1.4.5 Aims and objectives: 

The SDi2 is the most recently developed equipment designed to monitor surface 

dissolution and as such would benefit from studies exploring its limitations, assessing 

its suitability to further our understanding of the dissolution process and determining 

its feasibility for additional applications. 

                                                      
†† “The resolution of 13.75 µm2 comes from the theoretical pixel size. The imaging area is 28 mm x 28 

mm with 2048 x 2048 pixels i.e. 28 mm / 2048 pixels = 13.7 µm. This is not something which is 
confirmed or tested by Pion, it is calculated from the specs of the instrument. As part of our QC 
procedure the instrument is used to measure the diameter of a series of known diameter ball bearings 
(as small as 5 mm) to confirm the measurement functionality.” From Analytical Services Scientist at Pion 
(email conversation). 
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The aims and objectives are: 

 to explore the enhanced understanding obtained through visually monitoring 

dissolution with both UV and visible absorbance data, 

 to further understanding of the use of both the novel whole dose cell and the 

compact flow cell with regard to hydrodynamics, 

 to confirm the ability of the SDi2 to monitor and report absorbance per pixel, 

 to explore the fundamentals of the IDR calculations using the SDi2 software, 

 to develop a method for using the SDi2 to monitor single crystal dissolution, 

 to utilise the dual wavelength capability of the SDi2 to monitor single crystal 

dissolution in terms of both concentration changes and physical changes, and 

 to explore the application of image analysis software to the SDi2 absorbance 

data. 

The overall aim is to assess the ability of the SDi2 to elucidate and dissect the 

dissolution process by both magnifying and visualising the process chemically and 

physically.  Surface dissolution imaging will subsequently be applied to the field of 

supramolecular chemistry to explore its ability to rank the stability of polymorphs, 

using both UV and visible data to monitor concentration and size changes of a gel and 

single crystals.  The most recent and extensive review of UV imaging by Professor 

θstergaard (Copenhagen University) focuses on its primary application within 

pharmaceutical analysis - this work aims to extend its reach yet further whilst also 

expanding our understanding of the fundamentals of the technique.13 

1.5 Novel technique two - mass spectrometry 

1.5.1 Background 

The use of off-line mass spectrometry for dissolution testing is first mentioned by 

Wang et al. in a 2006 article discussing analytical techniques for dissolution testing.217  

It references work from 1999 applying tandem mass spectrometry to FOSAMAX® 

dissolution testing218, yet no detailed information or publications pertaining to this 

work could be found in the literature and attempts to correspond with the original 

author were unsuccessful.  A later publication by a member of the original team details 

the use of ion chromatography-ion spray mass spectrometry219 to overcome the lack of 
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chromophore present in alendronate (FOSAMAX®).  Additionally, in 2008, Hoti et al.  

optimised and validated an off-line liquid chromatography electrospray ionisation 

mass spectrometry (LC-ESI-MS) technique for the quality control dissolution testing of 

another molecule lacking a chromophore, rociverine.220  Many other techniques have 

since been developed which include variations on MS, for example ion 

chromatography-inductively coupled plasma mass spectrometry.221–223  However, the 

original discussion outlining mass spectrometry concluded that the major factors 

limiting its use for dissolution testing were the cost of equipment, incompatibility with 

official techniques and a lack of ruggedness and robustness in particular due to 

interferences from ion suppression.217 

The cost and complexity of equipment are significant limitations which the MS 

community have worked hard to address, starting with the miniaturisation of mass 

analysers in the 1990s.224  Further advances in technology have led to the production 

of equipment which is both compact, portable and user-friendly both at its interface 

and when introducing samples.224–227  This in situ equipment enables the gathering of 

high quality data by non-experts224 and more recently has encouraged the monitoring 

of reactions both on-line and in real time.228–230  Validated methods have the potential 

to identify, quantify and selectively monitor single ions, in addition to obtaining 

accurate mass and elucidating structures.224,231 

A more recent study demonstrated the use of on-line electrospray ionisation mass 

spectrometry (ESI-MS) to monitor the dissolution of pharmaceutical tablets.15  The 

primary aim was to monitor components without a chromophore, which cannot be 

done using standard UV-Vis techniques.15  The secondary aim was to monitor the 

process on-line with the potential to obtain information in real-time.  Additionally, 

multiple components were monitored concurrently, unlike UV-Vis technology which 

would require the use of chemometric multicomponent analysis for unravelling the 

signals from the individual components.232  This work confirmed the potential of ESI-

MS for on-line monitoring but again highlighted the need to explore interference from 

APIs, excipients and dissolution media, defined as ion suppression and ion 

enhancement.15  While matrix interference and method robustness continue to 

provide significant challenge, the development of less expensive and more user-
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friendly equipment offers the opportunity to explore mass spectrometry as an 

analytical technique for monitoring dissolution in further detail. 

1.5.2 Mass spectrometry fundamentals 

MS instrumentation varies widely in terms of size, complexity and cost, however, they 

all encompass the following: 

 a technique by which the sample is ionised 

 separation according to m/z (mass-to-charge ratio), and finally, 

 the detection of ions. 

Prior to the analysis and detection of an ion within the high vacuum conditions of the 

mass spectrometer, the analyte or sample must be introduced to the ionisation source, 

see Figure 1.21.233 

 

Figure 1.21 - Outline of sections of a mass spectrometer. 

This outline will discuss the use of electrospray ionisation mass spectrometry 

specifically in relation to monitoring dissolution so will only consider samples 

introduced as liquids.   

Sample introduction 

The introduction of liquid samples is often coupled with chromatography; this upfront 

chemical separation can be used to improve sensitivity by introducing each component 

of the sample to the ionisation step separately.231,234  It can also be used in place of 

diagnostic tests by comparing relative retention times of analytes which aids in 

identification.231,233  Despite the benefits of chromatography, its use prevents real-time 

monitoring of dissolution, hence the ultimate aim is to sample from the dissolution 

bath and pass to the MS instrumentation with no separation.  Throughout this 

development work, samples will be introduced to the mass spectrometer both with 
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and without prior chromatography to build understanding, and will vary from simple 

aqueous solutions to more complex biorelevant systems.   

Electrospray ionisation 

Ionisation is a prerequisite for MS analysis and can be defined as the formation of ions 

or charged particles.233,235  Multiple techniques exist to produce these gaseous ions 

and the choice depends upon the sample properties and analysis required.224,233  

Electrospray ionisation was chosen for this work due to its ability to ionise a range of 

molecules with little fragmentation and to do this directly from aqueous solutions at 

atmospheric pressure.14,236,237  It is a simple and versatile technique, capable of 

producing both singly and multiply charged ions with a high ionisation efficiency.235,237  

ESI was first attempted by Dole and his team in 1968,238 before being developed by 

Yamashita and Fenn in 1984,239 but its breadth of application and popularity has grown 

with the development of the interface between LC and MS.240–242  The main benefit of 

ESI is its sensitivity, however, this can also be considered a disadvantage; all 

components of the solution may be ionised causing interference and leading to 

suppression or enhancement of the primary ion.243   

 

Figure 1.22 - Schematic of electrospray ionisation in positive mode outlining three steps 1) charged 
droplet production, 2) shrinking of droplets and 3) release of ions. 

The process of electrospray ionisation is outlined in Figure 1.22, which is shown in the 

commonly used positive mode for the purposes of this explanation.  Mode refers to 

the electric field applied to the capillary tip and can be “positive” (creation and release 
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of cations) or “negative” (creation and release of anions).  Regardless of the mode, 

there are assumed to be three key steps which occur under atmospheric pressure:  

1) charged droplet production from the Taylor cone formed at the capillary tip, 

2) shrinking of the highly charged droplets and  

3) release of gas-phase ions from the droplets.236,242,244 

Mechanistic explanations of the first two steps are generally in agreement and are 

abundantly available in the literature.235–237,241,242,245–247  To summarise, analyte in the 

form of a solution flows through a capillary tube to which a voltage is applied.  The set 

up can be considered an electrochemical cell; the circuit is completed by the flow of 

charge through both droplets and ions, with oxidation and reduction reactions 

occurring at the capillary and counter electrode, respectively.242,248  The presence of a 

negative counter electrode results in ion movement within the solution and 

encourages an accumulation of positive ions near the surface.  This creates an 

electrostatic (Coulomb) force which pulls against the surface tension creating an 

elliptical shape at the tip of the capillary, which is referred to as a Taylor Cone.  At 

sufficiently high voltages, the repulsion between the excess of positively charged ions 

in the tip results in the cone losing stability and emission of a fine spray is initiated.   

The fine spray is thought to break into highly charged droplets that exist close to the 

Rayleigh stability limit whereby the surface tension counteracts the charge and electric 

field.  As the droplets are heated and subjected to a de-clustering gas such as nitrogen, 

they undergo neutral solvent evaporation, which causes them to shrink whilst their 

charge remains constant.  Desolvation continues until the repulsion created by the 

electric field overcomes the surface tension of the droplet creating another Taylor 

cone and jet fission, generating smaller charged droplets.14,235 

Descriptions of the final ion release mechanism are considered incidental to the 

analyte(s) being studied and are more challenging to determine than the first two 

steps.235,237,246  Three models are commonly described: 1) ion evaporation, 2) charged 

residue and 3) chain ejection.235,237,242  The charged residue model (CRM) and the chain 

ejection model (CEM) are applied to the release of proteins, namely large globular 

species and disordered polymers, respectively.235  Extensive work has been undertaken 
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to simulate protein charging but it is outside the scope of this research.249–251  The ion 

evaporation model (IEM) is most relevant to the low molecular weight species used in 

this work.  These exist in aqueous solution as ions, so the cycle of desolvation and 

fission simply continues until gaseous analyte ions are produced and released.235,242  

Counter and skimmer electrodes continuously draw the ions towards an inlet cone and 

into the mass analyser.233 

Mass analysis 

Mass analysis involves the separation of ions under a vacuum, according to their mass 

to charge ratio (m/z) and can be used to select either a single ion or a range of ions.  

The instrumentation used in this work includes time-of-flight (TOF) and quadrupoles.  

TOF mass analysis separates ions by virtue of velocity differences as they pass through 

the drift region of the flight tube (a section of the MS with no applied field).233  Ions are 

accelerated from the source with a fixed kinetic energy (𝐾𝐸) defined mathematically in 

Equation 1.4, where resultant velocity (v) varies with the mass of the ion (m): 

𝑲𝑬 =
𝟏

𝟐
𝒎𝒗𝟐 

Equation 1.4 - Kinetic energy233 

The length of drift region is constant, so ions with differing m/z reach the detector at 

different time points.  The TOF analyser is capable of accurate mass measurements at 

a fast speed or duty cycle and advances in technology have resulted in designs which 

enable them to be incorporated into smaller MS equipment.227  The single quadrupole 

in comparison is relatively cheap and easy to use as well as being physically small and 

robust, therefore making it a more suitable addition to a portable MS in an analytical 

lab.15,227  Comparatively its data acquisition is slow but still sufficiently fast for 

monitoring dissolution in real-time (minutes rather than seconds) although it is 

generally considered a low resolution instrument.228,233   
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Figure 1.23 – Outline of a quadrupole mass analyser highlighting the electrodes arranged in pairs (A 
and B) and the three axes (x, y and z). 

The quadrupole, shown in Figure 1.23, consists of cylindrical or hyperbolically shaped 

rod electrodes arranged in opposite pairs (A and B).233  The movement of ions is 

influenced by a complex electrical field, which consists of an oscillating radio frequency 

(RF) between the rod pairs and a constant direct current (DC) throughout.  The RF 

subjects the ions to accelerations in the x and y directions as they travel along the z 

axis; their trajectory through the quadrupole will vary according to the m/z ratio and 

potential applied, and if an ion reaches a rod it will discharge avoiding detection.233  

The quadrupole can be used in a scanning mode to separate ions according to their 

m/z ratio or in a selected ion monitoring mode (SIM) to enable only a specified m/z to 

maintain a stable trajectory.227  

Mass detection 

Multiple detectors exist whereby the flow of ions can be converted into a usable 

signal.233  The majority of instruments and those used in this work rely upon the 

photomultiplier technique.252   After passing through the mass analyser, ions hit a 

dynode which emits electrons; these accelerate to a phosphorous screen and stimulate 

the emission of photons.  Photons are detected by a photomultiplier tube where a 

cascade occurs in a sealed vacuum multiplying the original ion by 106 or more.252  In 

this way a single ion produces an amplified signal which remains proportional to the 

initial abundance of the ion and acts as a highly sensitive detector.233,252 



48 
 

The mass spectrum produced displays the relative abundance against m/z where m is 

the mass and z is the charge number.233  Multiple terms can be used to describe the 

mass of molecules, however mass spectrometry uses nominal, monoisotopic and exact 

mass, rather than average or atomic mass.234  The presence of naturally-occurring 

isotopes (variants of the same element with different numbers of neutrons) results in 

mass differences of several Da (Dalton); however the impact of this upon MS 

measurements depends upon the resolution of the detector, i.e. its ability to 

distinguish between peaks for ions of differing m/z.233,253  Electrospray ionisation can 

produce singly and multiply charged ions, but the majority of this work focuses on the 

former. 

1.5.3 Ionisation phenomena 

Electrospray ionisation (ESI) in the context of this research involves filtered analyte 

from the dissolution bath which will consist of multiple components including API(s), 

excipient(s), solvent(s) and dissolution media.  MS frequently uses chromatography to 

separate components so they are ionised one at a time, however, this challenges the 

ability to analyse on-line and prevents real-time data from being obtained.  Using MS 

to monitor dissolution should provide the potential to qualitatively and quantitatively 

determine all components present in solution at each stage of the dissolution process 

as it progresses.15  However, the presence of multiple components in the analyte 

solution during ESI is what leads to the phenomena of ion suppression and 

enhancement.243   

Numerous studies on electrospray fundamentals have investigated the relationship 

between MS response and analyte characteristics, concluding that in addition to the 

design of the ESI source itself and the method used, each component of the solution 

has the potential to alter the ionisation process.243,247,254–256  In this context the 

components include solvent(s), API(s), excipient(s) and dissolution media.  Additives 

such as formic acid and acetic acid are frequently added to mobile MS solvents to 

enhance ionisation and improve signal to noise ratios, whilst unknown impurities and 

leachables from lab equipment may also be present.257,258  Signal interference may 

therefore result from a number of factors.   
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The exact mechanism(s) by which ionisation phenomena occur is not fully understood, 

however, extensive research has been carried out to produce ionisation efficiency 

scales.255,259  Ionisation efficiency can be defined as “the extent to which analyte 

molecules in liquid phase are converted to gas-phase ions and detected” and the 

research lists a range of influencing factors including pKa, pH, hydrophobicity, surface 

activity and molecular volume amongst others.259  To conclude and quote Liigand “all 

these studies show that [the] electrospray mechanism is complex and affected by 

numerous factors”.255  Extending our understanding of ionisation phenomena is 

outside the scope of this research, however, its impact will be investigated for a 

controlled range of compounds, excipients and solvents (including dissolution media) 

to determine whether the effect is reproducible and quantifiable so that we may 

attempt to account for it during the on-line monitoring of dissolution. 

1.5.4 Aims and objectives 

Combining dissolution with mass spectrometry results in multiple challenges, from the 

practical limitations of the equipment, to the more complex phenomena that can 

occur when multiple components are ionised concurrently i.e. ion enhancement and 

suppression.15,217  The continuous acquisition of data and reporting in real-time is a 

challenging proposition for analytical techniques, however visualising change in real 

time provides significant benefits and may enable further understanding of the 

mechanisms involved in dissolution.15,228 

The aims and objectives are: 

 to monitor components of the tablet both with and without a chromophore 

using MS 

 to determine MS signal variability of single APIs and excipients in multiple 

solvents 

 to enable multiple APIs and excipients to be monitored concurrently 

 to determine the impact of dissolution media (both simple and more complex) 

on API and excipient MS signal 

 to explore the impact of ion suppression and ion enhancement from and on 

each component (API, excipient and dissolution media) 
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 to detect and quantify components accurately using MS analysis without 

separation before ionisation, so as to monitor APIs and excipients on-line and in 

real-time, and 

 to reproduce the proof of concept work using different systems and 

equipment. 

The overall aim is to understand whether tablet compositions and dissolution media 

will impact upon ionisation phenomena, determine the extent to which any 

suppression and enhancement are occurring and ultimately adjust quantification 

accordingly to account for them.  Work will include development and validation of the 

equipment set-up for dissolution and mass spectrometry, confirmation of the 

robustness of data, methods to enable on-line monitoring in real time and exploration 

of the most accurate method for analysing data to produce dissolution profiles.  This 

work will be carried out using a range of model APIs, excipients and dissolution media.  
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2. Materials and Methods 

2.1 Materials 

2.1.1 Active Pharmaceutical Ingredients 

A variety of active pharmaceutical ingredients (APIs) were selected based upon their 

differing physicochemical properties.  Each of the APIs was purchased from Sigma-

Aldrich, with the exception of chloramphenicol, which was obtained from Duchefa 

Biochemie.  All were of a standard either meeting USP testing specifications or 

certifying them as reference material, see Table 2.4. 

Table 2.4 - Active pharmaceutical ingredients additional information. 

API Supplier CAS number Chemical 

formula 

Chloramphenicol Duchefa Biochemie 56-75-7 C11H12Cl2N2O5 

Furosemide Sigma-Aldrich 54-31-9 C12H11CIN2O5S 

Guaifenesin Sigma-Aldrich 93-14-1 C10H14O4 

Haloperidol Sigma-Aldrich 52-86-8 C21H23CIFNO2 

Ibuprofen Sigma-Aldrich 15687-27-1 C13H18O2 

Ibuprofen sodium Sigma-Aldrich 31121-93-4 C13H17NaO2 

Ketoprofen Sigma-Aldrich 22071-15-4 C16H14O3 

Paracetamol Sigma-Aldrich 103-90-2 C8H9NO2 

Phenylephrine Sigma-Aldrich 59-42-7 C9H13NO2 

A supply of Beechams® All-In-One over the counter cold and flu tablets was obtained 

from a local Pharmacy.  These contained paracetamol, guaifenesin and phenylephrine 

with multiple excipients in a film-coated immediate release oral tablet, see Table 2.5. 
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Table 2.5 – Range of excipients within the Beechams® tablets. 

Tablet Film coating 

Lactose Purified talc Hypromellose E464 

Microcrystalline 

cellulose 

Povidone Titanium dioxide E171 

Maize starch Potassium sorbate Polyethylene glycol 

4000 

Stearic acid Pregelatinised starch Lactose monohydrate 

Colloidal anhydrous 

silica 

  

2.1.2 Excipients  

A range of commonly used excipients for orally-dosed immediate release formulations 

were obtained as free samples from a variety of manufacturers:   

 DFE Pharma supplied Pharmacel® microcrystalline cellulose, Primojel® sodium 

starch glycollate and Primellose® croscarmellose sodium. 

 Roquette supplied Pearlitol® 160 C mannitol.   

 Meggle Pharma supplied lactose as FlowLac® 100, GranuLac® 70, PrismaLac® 

40 and SorboLac® 400. 

 Peter Greven supplied Ligamed® magnesium stearate. 

 BASF supplied povidone and crospovidone as Kollidon® 30 and CL, respectively. 

 Colorcon supplied Pregelatinised Starch 1500. 

 Forum SPI Pharma supplied Lubripharm® sodium stearyl fumarate. 

All samples were used as received from the supplier with no further characterisation or 

analysis. 

2.1.3 Solvents 

A range of solvents were used for MS analysis which included acetonitrile (MeCN), 

methanol, isopropyl alcohol (IPA) and deionised water.  These were HPLC grade and 

obtained from Fisher Scientific UK, with the exception of deionised water obtained 

from an Ondeo Purite Select Neptune Analytical water purifier within the chemistry 
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department (18.2 Ω).  Formic acid, LCMS grade from Sigma-Aldrich, was used as a 

modifier for electrospray ionisation where required. 

Solvents for surface dissolution imaging and crystallography included HPLC grade 

methanol obtained from Fisher Scientific UK and deionised water obtained from the 

Ondeo Purite Select Neptune Analytical water purifier within the chemistry 

department (18.2 Ω). 

2.1.4 Dissolution media preparation 

Surface dissolution imaging:  

Dissolution media and solvents were prepared in advance and held in glass bottles at a 

raised temperature of 40 to 50 °C overnight (12 hours or more), with a rotating PTFE 

stirrer bar (25 x 6 mm) to enable degassing.  Methanol was additionally submerged in a 

heated water bath and sonicated for a period of time (more than an hour) to remove 

excess gas.  Note that Pion UK Ltd., supplied Nalgene HDPE bottles but these were 

found to degrade (regardless of the media being used) leaving white precipitate that 

could not be removed easily, it also blocked tubing and interfered with dissolution 

imaging.   

Phosphate buffer of pH 6.8 (0.05 M) was prepared using monobasic potassium 

phosphate (KH2PO4) and sodium hydroxide (both supplied by Acros Organics).  Pion 

instructions stated to dissolve 27.22 g of monobasic potassium phosphate in water and 

dilute with water to 1000 mL.  Place 500 mL of the monobasic potassium phosphate 

solution in a 2000 mL volumetric flask, add 224 mL 0.2 M NaOH, then add water to 

volume and test pH. 

Hydrochloric acid 0.1 M solution was prepared from concentrated hydrochloric acid 

(supplied by Fisher Chemicals).  Deionised water was again obtained from an Ondeo 

Purite Select Neptune Analytical water purifier within the chemistry department (18.2 

Ω). 

Mass spectrometry:  

Dissolution media was prepared in advance and held at a temperature of 

approximately 40°C overnight (12 hours or more) to enable degassing.  Multiple 
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versions of each biorelevant dissolution media exist but for the purposes of the mass 

spectrometry work three blank media were produced: simulated gastric fluid (SGF), 

acetate buffer and fasted state simulated intestinal fluid (FaSSIF), see Table 2.6.   

Table 2.6 - Dissolution media ingredients for blank simulated gastic fluid (SGF), acetate 
buffer and blank fasted state simulated intestinal fluid (FaSSIF).   

SGF (blank), pH 1.2 Sodium chloride 0.2 mol 

Hydrochloric acid 0.2 mol 

Pure water To 1 L 

Acetate, pH 4.5 Sodium acetate trihydrate 0.02 mol 

Glacial acetic acid 0.03 mol 

Pure water To 1 L 

FaSSIF (blank), pH 6.8 Sodium dihydrogen phosphate 0.2 mol 

Sodium hydroxide 0.2 mol 

Pure water To 1 L 

The dissolution media are referred to as blank because they do not contain the 

complex additives such as proteins or enzymes but are produced to replicate the pH at 

that section of the gastrointestinal tract. 

2.1.5 Single crystal studies 

The clear nail varnish used for attaching and coating single crystals was stated as 

having the following ingredients: butyl acetate, ethyl acetate, acrylates copolymer, 

dipropylene glycol debenzoate, nitrocellulose, isopropyl alcohol, etocrylene, 

trimethylpentanediyl dibenzoate, CI 60725 (Violet 2). 

Paracetamol single crystals were obtained by slow cooling a saturated solution of 

paracetamol dissolved in deionised water, before leaving the vial open on the bench to 

evaporate under ambient conditions. 

A mono-iodinated 2,4,5-triphenyl imidazole derivative (molecular weight 422.265 

g/mol) referred to as I-TPI was synthesized by Dr Jessica Andrews (Durham University) 

and used to produce a gel for the dissolution studies.  The I-TPI gel forms from a 

methanol solution following a process of heating, sonication and crash cooling.  The I-
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TPI single crystal samples of Form SI and Form SII were obtained by leaving the vial of 

gel partially open on the bench under ambient conditions. 

2.2 Methods and instrumentation for surface dissolution imaging 

2.2.1 Image Analysis Software 

Image analysis was carried out using MATLAB, 2018a 64-bit version using Windows 10, 

developed by MathWorks®.  This “programming and numeric computing platform” 

allows algorithms or code, to be written for multiple functions, including image 

analysis.  Training and support was provided by Dr Daniel Markl at the University of 

Strathclyde, in addition to his writing the original code to extract information from the 

SDi2 images.  This code was further manipulated to refine it for each sample and to 

explore the information that could be obtained with it.  Additional support in 

understanding and manipulating MATLAB code was provided by Dr Marion Weinzierl, a 

Research Software Engineer in the Advanced Research Computing Department at 

Durham University.  The original code is presented in Appendix 1 – MATLAB original 

script with comments. 

2.2.2 Powder X-ray Diffraction 

Powder X-ray diffraction (PXRD) produces a specific pattern, commonly described as a 

fingerprint, for a material based upon its crystal lattice.  It can be used to distinguish 

between polymorphs and produces a characteristic “halo” effect with amorphous 

material.  The distinct patterns are shown on a plot of X-ray diffraction intensity 

against the diffraction angular parameter (2 theta or 2θ). 

The equipment used was a Bruker D7 powder X-ray diffractometer, with samples 

mounted on a silicon single-crystal wafer.  Analysis used CuKα radiation at a 

wavelength of 1.5418 Å and X-rays were produced at an operating voltage of 40 kV 

with an acceleration current of 40 mA.  The range scanned was 4 to 40°, with a step 

size of 0.02° and a scan rate ranging between 0.5 and 1.5 s/step. 

2.2.3 Single Crystal X-ray Diffraction 

Single crystal X-ray diffraction (SCXRD) data was collected by Dr Dimitry S. Yufit 

(Durham University) using one of two instruments: 
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1. Bruker D8Venture diffractometer (Photon100 CMOS detector, IµS-microsource, 

focusing mirrors) equipped with a Cryostream 700+ (Oxford Cryosystems) 

open-flow nitrogen cryostat and using MoKα or CuKα radiation, with 

wavelengths of 0.71073 Å and 1.54178 Å, respectively.   

2. XCalibur Agilent, Sapphire3 diffractometer equipped with a Cryostream 700 

(Oxford Cryosystems) nitrogen cryostat and using MoKα radiation with a 

wavelength of 0.71073 Å. 

Single crystals for only SC-XRD analysis were coated in perfluoro polyether 225 

(crystallography) oil and mounted on a MiTeGen sample holder before being placed 

into the precooled cryostream and subjected to analysis.  An additional method was 

also developed which attached the single crystals to a novel holder using varnish 

instead of crystallography oil to enable them to be used for dissolution after SC-XRD 

analysis.  The data was processed by Dr Dimitry S. Yufit using Bruker APEXII software. 

2.2.4 Surface Dissolution Imaging 

Surface dissolution imaging was carried out using the SDi2, originally produced by 

Sirius Analytical Instruments Ltd, and later by Pion UK Ltd.  The system details of the 

instrumentation and software are provided in Table 2.7.  

Table 2.7 – SDi2 with Actipix Technology detailed system information. 

Product Name SiriusSDi2Collection 

Application version Number 1.2.0.0 

Camera Name Cypress USB StreamerExample 

Camera Driver Version 16908800 

Camera Product FX3 

Camera Chip Type CMV4000v3 

Paraytec Led Mk2 Hub Device Name Camera Hub 

Paraytec Led Mk2 Hub Serial Number A12OVJK5 

Paraytec Led Mk2 Hub Driver Version 135704 

Sirius Hub Firmware Version E460302 – V1.03 

Sirius Heater Serial Number 28/118167 

Sirius SDi2 Analysis Version 3.0.22 
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Surface dissolution imaging utilises UV-vis technology to record and calculate changes 

in absorbance during dissolution.  Detailed discussion of the instrumentation including 

its functionality, equipment set up(s), the method(s) used and data analysis techniques 

are included in detail in each of the three chapters discussing the use of surface 

dissolution imaging in monitoring dissolution. 

Maintenance: 

Pion recommend that the SDi2 is maintained through tubing flushes before and after 

every run, flow rate checks and a monthly assessment of the general running of the 

equipment.  Flow rate checks involve manually running sample through different 

sections of the fluidics and measuring the volume of effluent obtained in a fixed period 

of time.  This is done in triplicate and the error should be less than 10% as 

recommended by Pion.  Monthly assessments include consideration of the heater, 

checking all seals and connections for leaks, cleaning cells thoroughly and checking for 

persistent bubbles.   

QC test: 

In addition, a QC test for the compact flow cell is defined within the SDi2 manual.  

Approximately 3 - 10 mg of ketoprofen sample is weighed into the 3 mm diameter 

holder and compacted using the load cell; 100 kg load over 60 seconds as 

recommended by Pion.  The sample holder, complete with ketoprofen compact, is 

then inserted into the compact flow cell (CFC) and 0.1 M HCl dissolution media passed 

through the cell at a flow rate of 2.16 mL/min for twenty minutes.  The manual 

provides guidance on the expected IDR values (5-8 µg/min/cm2) and cumulative mass 

released (8-12 µg) at a wavelength of 254 nm.  Values obtained outside this range 

require a discussion with Pion to determine the cause of variation. 

Image Resolution: 

The resolution capability of the SDi2 was assessed with grids obtained from Professor 

Østergaard (Copenhagen University) – the same grids were used in the previous work 

by Professor Østergaard’s research group.169  The grids were drawn using AutoCAD 

software and coated on a single side of 180 µm thick acetate to ensure identical line 

widths and distances between lines.  The grid sizes range from 10 – 100 µm (in 10 µm 
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increments), with three additional grids of 200, 300 and 400 µm, whereby each line 

pair is defined as a printed line which absorbs the visible light, plus a transparent space 

between (no visible light absorbed) of equal width. 

An SDi2 method using the CFC was selected to include no subsampling and 1x1 binning 

ensuring that each pixel intensity was saved at a rate of one frame per wavelength per 

second.  Initially each grid was placed flat against the CMOS camera chip and a method 

run with no cell in place and no fluid passing between the LED and CMOS chip.  Two 

wavelengths were selected (255 nm and 520 nm) for completeness and the SDi2 set to 

obtain intensity data for ten minutes as each grid was placed in front of the LEDs in 

turn.   

 

Figure 2.24 – Absorbance map using visible wavelength (520 nm) and the 400 grid.  Shown in 
jet colour map and extracted from frame 24 of 591.  Three distinct parts can be seen in the 
image: 1) 400 to show grid number, 2) vertical lines to test horizontal resolution, 3) 
horizontal lines to test vertical resolution, and 4) diagonal lines for completeness. 

For data analysis, the zones for extracting data were removed or moved to one side 

wherever possible to enable the full images to be viewed.  An image from the visible 

video, shown in Figure 2.24, shows the size of grid on the far left (400 µm), then three 

sets of five lines in three directions to test horizontal, vertical and diagonal resolution. 

2.2.5 UV-Vis Spectroscopy 

UV-vis analysis of samples was conducted using an Agilent Technologies Cary Series 

UV-vis Spectrophotometer.  Standard UV-vis methodology was followed with a scan of 

the blank solvent being taken prior to sample analysis to remove background signal.  

The Agilent was used to scan for absorption across the UV-vis range, from 190 to 1100 

nm, thus enabling the wavelength at which maximum absorption takes place to be 

found (λmax) and guide the SDI method. 
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2.3 Methods and instrumentation for bulk dissolution monitoring 

2.3.1 Compact production 

A Gamlen GTP1 benchtop press was used for the production of compacts.  Compacts 

were produced from simple formulations containing one API plus lactose and lubricant 

where necessary.  Dry mixing was carried out using a Turbula mixer for five minutes 

and homogeneity confirmed by UV-vis absorbance of a dissolved sample relative to a 

series of standards.   

The compaction method used a single fixed load at a speed of 60.0 mm min-1 with a 

die diameter of 6.0 mm and die height of 18.0 mm.  A single compression with a load 

ranging from 50 to 500 kg was used, dependent upon the formulation being 

compressed, and the ejection function was switched on.  Additionally a pre-

compression function ranging from 0 to 300 kg was used for those formulations which 

required it.  

Compacts were visually checked for defects and weighed prior to dissolution.  

Additional quality checks such as hardness, disintegration and friability were not 

carried out due to the limited number of compacts produced. 

2.3.2 Dissolution 

Sotax:  

Early studies used the Sotax AT7 Smart USP II paddle dissolution apparatus at Queen’s 

(former Stockton Campus, Durham University School of Pharmacy).  Each glass vessel 

was filled with 900 mL of dissolution media and held in a water bath at 37°C.  The 

paddle apparatus started stirring at 50 rpm once the tablet had been dropped into the 

vessel to ensure the tablet was not damaged.  Samples of approximately 5 mL were 

taken manually using a syringe with PEEK tubing attachment at a series of time points 

the number of which was dependent upon the API or formulation being studied. 

Durham: 

The dissolution apparatus set up in the MS lab (within the Department of Chemistry at 

Durham) was also based upon the USP II paddle apparatus, and included a round-

bottomed glass dissolution vessel capable of holding over 1000 mL of media held in 

place within a water bath using a metal frame.  A paddle and rotor capable of stirring 
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at 50 rpm was fitted above the vessel and measured to sit at the specified position 

(according to the USP).  Samples could be taken manually through holes in the vessel 

lid using PEEK tubing and a syringe, or a continuous flow of sample could be extracted 

from the vessel using a pump. 

2.3.3 Mass rate attenuator  

A Rheodyne mass rate attenuator (MRA), supplied by Kinesis Scientific Experts, was 

used to dilute flowing samples.  A diagram showing the stages of MRA operation can 

be seen in Figure 2.25. 

 

Figure 2.25 – Flow diagram for the mass rate attenuator (MRA) stages of operation.  The 
central section (highlighted by the dotted lines) of the MRA cycles between the two 
positions with a “mid” step between each change (fill -> mid -> transfer -> mid -> fill -> mid -> 
transfer -> mid and so on). 

The MRA injects aliquots, in the region of 0.022 to 0.300 µL, from a continuous flow of 

dissolution bath sample into a make-up flow of solvent.  This dilution accommodates a 

high concentration of API or excipient, and a simulated pH dissolution media which 

may contain components that are not compatible with ESI-MS at undiluted 

concentrations thereby addressing one of the major challenges of combining 

dissolution and mass spectrometry. 
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The degree of dilution provided by the MRA can be amended during operation by 

varying the flow rates (of both the sample and the solvent) and the split factor setting 

which amends the aliquot volumes (of which there are three channels or “grooves” 

available) and frequency.  Whilst the aliquot of sample is being transferred (i.e. the 

MRA is in the aliquot transfer position), the volume of solvent in the channel will move 

into the waste line, and the groove will be refilled with sample from the dissolution 

bath, which will then transfer into the solvent make-up flow and so on. 

The MRA requires a PEEK tubing bridge to relieve pressure changes that occur as a 

result of the channels switching.  Polyetheretherketone or PEEK tubing is used 

throughout HPLC and MS instruments for its inert non-fluoropolymer properties and 

comes in a range of inner diameter sizes ranging from 0.004 to 0.030 inches.  The 

bridge is in place throughout the whole MRA cycle but is only shown on the “mid” 

stage diagram in Figure 2.25.   

An Excel spreadsheet provided by the MRA manufacturer is used to navigate the 

dilution, split factor and flow rate calculations, see Appendix 2 – Mass rate attenuator 

(MRA) split factor and flow rates 

An example of calculating split ratio from a specified flow rate is as follows:  

 Flow of make-up solvent into MRA is 0.5 mL/min which is the same as the flow 

rate into the QDa 

 Flow of dissolution bath sample into MRA is 1 mL/min which must be sufficient 

to refill the channel before it switches into the solvent make-up flow  

 Therefore a split factor setting of 5 on the MRA would result in a dilution ratio 

of 125:1 using the 0.100 µL channel and running at 0.667 Hz. 

The flow rate into the MRA and therefore QDa was kept at 0.5 mL/min wherever 

possible as this was recommended by Waters as optimal for ionisation.  The 

dissolution bath sample flow rate was varied to accommodate the selected channel 

size and frequency. 
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2.3.4 Mass spectrometry (with and without chromatography) 

Mass spectrometry was carried out primarily using the QDa, and where additional 

information or validation was necessary using the Synapt and the QToF.  Each 

instrument is described below but further details of specific equipment set ups will be 

discussed in the relevant chapters.  Instrument control and data processing for all 

three instruments was performed using MassLynx version 4.1, provided by Waters, UK 

and operated using Windows Versions 7 and 10. 

Acquity QDa Detector:  

Referred to as the “QDa”, this is an electrospray ionisation single quadrupole mass 

detector prototype produced by Waters, UK.  An outline of the QDa is shown in Figure 

2.26. 

 

Figure 2.26 – A simplified schematic of the QDa Detector. 

Designed to be versatile, efficient and relatively easy to use, with a small footprint, this 

work uses the pre-production beta version.  The QDa was utilised in multiple 

configurations to accommodate both on-line and off-line sample analyses without 

chromatography.  The ability of this detector to monitor dissolution in conjunction 

with discussions about its accuracy, precision, robustness and validation will form the 

basis of the three chapters discussing the use of mass spectrometry for monitoring 

dissolution. 

Synapt G2-S High Definition Mass Spectrometer:  

Referred to as the “Synapt”, it is a hybrid high resolution quadrupole time-of-flight 

(QTOF) accurate mass system used with an electrospray ionisation source and 

produced by Waters, UK.  The Synapt was coupled to a Waters Acquity LC with samples 
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able to be injected both with and without bypassing the HPLC C-18 column, see Table 

2.8 for details of both the five and nine minute reverse phase gradient methods used.  

Solvent flow was set to 400 μL min-1 into the Synapt.  The solvent mix was made up of 

water and acetonitrile (of varying composition) both with and without 0.1% v/v formic 

acid.  Regular manual calibrations of the Synapt were carried out to confirm accurate 

mass using a small molecule mix in addition to the automatic internal lock-spray 

calibration during runs. 

Table 2.8 – Solvent method for LCMS with the Synapt, where flow is consistently 0.400 
mL/min and each solvent may or may not have 0.1% v/v formic acid dependent upon the 
sample being studied.  A five (left time column) or nine (right time column) minute method 
can be used. 

Time (mins) % Water % Acetonitrile 

Initial Initial 95 5 

0.50 0.5 95 5 

4.00 7.5 5 95 

4.50 8.3 5 95 

4.51 8.4 95 5 

5.00 9.0 95 5 

QToF Premier Mass Spectrometer:  

Referred to as the “QToF”, it is a high resolution quadrupole time-of-flight accurate 

mass with enhanced sensitivity and selectivity system, used with an electrospray 

ionisation source and produced by Waters, UK.  The QToF was used coupled to a 

Waters Acquity LC with a solvent system of water and acetonitrile (of varying 

gradients) with 0.1% v/v formic acid.   

2.3.5 Sample flow 

Sample flow and injection was enabled by LC systems, which included an Agilent 1100 

HPLC, Alliance 2795 LC and a Waters Acquity LC.  Each provided either aliquots of 

sample or a continuous flow of sample in addition to an MS solvent for dilution.  

Additionally Restek LS class pumps provided a continuous flow of both sample and 

make-up solvents at controlled and specified flow rates. 
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2.3.6 UV-Vis Spectrophotometry 

UV-vis analysis of standards and dissolution samples was conducted using an Agilent 

Technologies Cary Series UV-vis Spectrophotometer and a Jenway 6305 

Spectrophotometer.  Standard UV-vis methodology was followed with a scan of blank 

solvent being taken prior to sample analysis to remove background signal.  The Agilent 

was used to scan for absorption across the UV-vis range, from 190 to 1100 nm, thus 

enabling the wavelength at which maximum absorption takes place to be found (λmax).  

The Jenway was used at a single wavelength to monitor changes in absorption 

between samples and thus enable changes in concentration to be calculated in 

accordance with Beer’s Law. 
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Appendix 1 – MATLAB original script with comments 

The code was written by Dr Daniel Markl at the University of Strathclyde.  It includes 

comments for training purposes and was written to enable the monitoring of size and 

concentration changes for samples in the compact flow cell of the SDi2.  This is the 

original code from which further versions were produced to refine and adjust it 

according to requirements. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% Daniel Markl 

% Version 1.0 

% 

% This script uses export_fig script for exporting figures and shadedErrorBar 

% for displaying error bars as shaded error bars in figures 

% Close  all figures 

close all; 

% Clear workspace 

clear all; 

% Add Utilities folder to matlab path 

addpath(genpath(['..',filesep,'..',filesep,... 'Utilities',filesep])); 

% Flag for saving files/figures 

saving = 1; 

% Flag for plotting 

plotting = 1; 

% Maximum absorbance value 

abs_scale = 2; 

% Define path to the video files 

folderFile = '/Users/daniel/Dropbox (Personal)/Single crystal disso analysis/'; 

% Define filename of the UV imaging video 

filenameUV = '2019_03 CLA50 C ITPI S1 run 1 255 nm without boxes.m4v'; 

% Define filename of the visible imaging video 

filenameVis = '2019_03 CLA50 C ITPI S1 run 1 520 nm without boxes.m4v'; 

% Define filename for saving 
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filename = '2019_03 CLA50 C ITPI S1 RUN 1'; 

% Read UV video 

vidobj1=VideoReader(fullfile(folderFile,filenameUV)); 

% Read vis video file 

vidobj2=VideoReader(fullfile(folderFile,filenameVis)); 

% Get number of frames of UV video 

frames1=vidobj1.NUmberofframes; 

% Get number of frames of vis video 

frames2=vidobj2.Numberofframes; 

% Inititalise videos for saving (if flag "saving" is active 

if saving 

    vFused = VideoWriter(fullfile(folderFile,[filename,'_Fused.avi'])); 

    vFused.FrameRate = vidobj1.FrameRate; 

    open(vFused); 

    vProcessed = VideoWriter(fullfile(folderFile,[filename,'_Processed.avi'])); 

    vProcessed.FrameRate = vidobj1.FrameRate; 

    open(vProcessed); 

end 

% Allocate memory for properties of detected area for each frame 

area_prop = zeros(min(frames1, frames2),4); 

% Allocate memory for absorbance for each frame 

AbsUV_edge_total = zeros(min(frames1, frames2),2); 

f1 = 1627; 

img_VisSampleHolder = read(vidobj2, frames2); 

% Define region of interest (area with the crystal and wire) 

img_ROI = [694.5 211.5 58 25]; 

% Get image of the wire only 

img_VisSampleHolder_gray = img_VisSampleHolder(:,:,2); 

img_VisSampleHolder_gray_crop = imcrop(img_VisSampleHolder_gray,img_ROI); 

img_VisSampleHolder_crop = imcrop(img_VisSampleHolder,img_ROI); 

% Initialise the blob analysis object for analysing the crystal area 
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tMatcher = vision.TemplateMatcher; 

Hblob = vision.BlobAnalysis('AreaOutputPort',true,... 

    'MajorAxisLengthOutputPort',true,... 

    'MinorAxisLengthOutputPort',true,... 

    'PerimeterOutputPort',true, ... 

    'CentroidOutputPort', false, ... 

    'BoundingBoxOutputPort',false); 

% Process each frame  

for f1 = 1:min(frames1, frames2) 

    % Read frame "f1" from UV video file 

    img_UV = read(vidobj1, f1); 

    % Read frame "f1" from vis video file 

    img_Vis = read(vidobj2, f1); 

    % Generate false colour image from both UV and vis images 

    C = imfuse(img_UV,img_Vis,'falsecolor','Scaling','joint','ColorChannels',[0 2 1]); 

    % Use only the green channel 

    C_gray = img_Vis(:,:,2); 

    %% Not used 

%     colormapImg = imcrop(img_Vis,[1540.5 7.5 7 353]); 

% %     fig = figure(1312); 

% %     fig.Position = [200 200 200 1200]; 

%     [Xtest,maptest] = rgb2ind(colormapImg,256); 

% %     [Xtest,maptest] = ind2rgb(Xtest,maptest); 

%     cmap = squeeze(mean(colormapImg(:,:,:),2));  

    % Crop the single channel image, the UV and visible image to the ROI 

    C_crop_gray = imcrop(C_gray,img_ROI); 

    img_UV_crop = imcrop(img_UV,img_ROI); 

    img_Vis_crop = imcrop(img_Vis,img_ROI); 

    % Subtract the samples holder/wire from the single channel image to 

    % separate the crystal 

    C_crop_gray_cut = C_crop_gray - img_VisSampleHolder_gray_crop; 
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    % Binarise the single channgel image / thresholding 

    % The threshold (70/255) was selected manually 

    bw = imbinarize(C_crop_gray_cut,70/255); 

    % Determine the edge of the crystal 

    bw_edge = edge(bw); 

    % Allocate memory 

    indxImg = zeros(size(img_UV_crop,1),size(img_UV_crop,2));    

    % Define the colour map 

    cmap = flipud(jet(256*6))*255; 

    % Get the absorbance for each of the pixel in the image 

    for i_px = 1:size(img_UV_crop,1) 

        for j_px = 1:size(img_UV_crop,2) 

            img_UV_crop_ij = double(squeeze(img_UV_crop(i_px,j_px,:)))';  

            [~,indxImg(i_px,j_px)] = min(sum(abs(img_UV_crop_ij - double(cmap)).^2,2));  

        end 

    end 

    % Calculate the absorbance for each pixel 

    UV_abs = (1-indxImg/size(cmap,1))*abs_scale; 

    % Align the UV image with the visible image 

    % Displacement of 10 pixels - not validated 

    bw_edge_UV = imtranslate(bw_edge,[10, 0],'FillValues',0); 

    % Identify the area of the  

    UV_abs_edge = UV_abs(bw_edge_UV==1); 

    % Create the data for the figure (make the edge red) 

    UV_abs_disp = UV_abs; 

    UV_abs_disp(bw_edge_UV) = 2; 

    C_crop_gray_r = C_crop_gray_cut; 

    C_crop_gray_g = C_crop_gray_cut; 

    C_crop_gray_b = C_crop_gray_cut; 

    C_crop_gray_r(bw_edge) = 255; 

    C_crop_gray_g(bw_edge) = 0; 
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    C_crop_gray_b(bw_edge) = 0; 

    C_crop_gray_disp = cat(3,C_crop_gray_r,C_crop_gray_g,C_crop_gray_b); 

    % Calculate average and standard deviation of the UV absorbance 

    AbsUV_edge_total(f1,1) = mean(UV_abs_edge); 

    AbsUV_edge_total(f1,2) = std(UV_abs_edge); 

    % Create the plot with sub-figures 

    if plotting 

        clf; 

        fig = figure(1); 

        fig.Position = [100 200 1400 600]; 

        str = ['Frame ',num2str(f1),'; Time ',datestr(seconds(f1/vidobj1.FrameRate),'MM:SS')]; 

        annotation('textbox', [0 0.9 1 0.1], ... 

            'String', str, ... 

            'EdgeColor', 'none', ... 

            'HorizontalAlignment', 'center','FontSize',20) 

        subplot(2,3,1), imshow(img_UV_crop,'InitialMagnification',900), title('UV image','FontSize',20) 

        subplot(2,3,2), imshow(img_Vis_crop,'InitialMagnification',900), title('Visible image','FontSize',20) 

        subplot(2,3,3), imshow(bw,'InitialMagnification',900), title('Processed binary image','FontSize',20) 

        subplot(2,3,4), imshow(bw_edge,'InitialMagnification',900), title('Detected crystal 
edge','FontSize',20) 

        subplot(2,3,5), imshow(C_crop_gray_disp,'InitialMagnification',900), title('Detected crystal edge on 
Vis image','FontSize',20)     

        subplot(2,3,6), imagesc(UV_abs_disp), colormap(flipud(double(cmap))./256), axis equal, caxis([0 2]), 
colorbar 

        str = {'Calculted UV absorbance';'with crystal shape';'(displacement of 10 pixels)'}; 

        title(str,'FontSize',20) 

        set(gca,'FontSize',18,'FontWeight','bold','linewidth',2) 

        axis tight; 

        set(gcf,'color','w'); 

        if saving 

            frame = getframe(gcf); 

            writeVideo(vProcessed,frame); 

        end 
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    end 

    % Plot figure and create  

    if plotting 

        clf; 

        fig = figure(112); 

        fig.Position = [100 200 1400 300]; 

        imshow(C) 

      if saving 

            writeVideo(vFused,C); 

        end 

    end 

    % Calculate various properties of the crystal area 

    [area, major, minor, perim] = step(Hblob, bw); 

    if ~isempty(area) 

        area_prop(f1,1) = area(1); 

        area_prop(f1,2) = major(1); 

        area_prop(f1,3) = minor(1); 

        area_prop(f1,4) = perim(1); 

    end 

end 

% Save videos 

if saving 

    close(vFused); 

    close(vProcessed); 

end 

%% 

% Define the resolution of the camera 

res = 13.75; %mu 

% Define the starting frame of the dissolution study 

startID = 90; 

% Correct the data for outliers 
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area_crystal = area_prop(startID:end,1); 

area_crystal = filloutliers(area_crystal,'spline','movmean',50); 

time = linspace(0,length(area_crystal)/vidobj1.FrameRate,length(area_crystal)); 

% Plot the data 

fig = figure(2); 

fig.Position = [400 400 600 400]; 

plot(time/60,(area_crystal)*res^2*10^-6,'k','LineWidth',2) 

xticks(0:1:floor(time(end)/60)) 

xlabel('Time (min)','FontSize',20) 

ylabel('Crystal area (mm^2)','FontSize',20) 

set(gca,'FontSize',20,'FontWeight','bold','linewidth',2) 

         

axis tight; 

set(gcf,'color','w'); 

if saving 

    export_fig(fullfile(folderFile,[filename,'_area']), '-pdf', '-png'); 

end 

major_crystal = area_prop(startID:end,2); 

major_crystal = filloutliers(major_crystal,'spline','movmean',50); 

minor_crystal = area_prop(startID:end,3); 

minor_crystal = filloutliers(minor_crystal,'spline','movmean',50); 

fig = figure(232); 

fig.Position = [400 400 600 400]; 

h1 = plot(time/60,(major_crystal)*res,'k','LineWidth',2); 

hold on; 

h2 = plot(time/60,(minor_crystal)*res,'LineStyle','--','Color',[0.5 0.5 0.5],'LineWidth',2); 

xticks(0:1:floor(time(end)/60)) 

xlabel('Time (min)','FontSize',20) 

ylabel('Lengh of crystal (µm)','FontSize',20) 

set(gca,'FontSize',20,'FontWeight','bold','linewidth',2)    

leg = legend([h2,h1],'Minor axis','Major axis'); 
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leg.Box = 'off'; 

axis tight; 

set(gcf,'color','w'); 

if saving 

    export_fig(fullfile(folderFile,[filename,'_lenght_axis']), '-pdf', '-png'); 

end 

per_crystal = area_prop(startID:end,4); 

per_crystal = filloutliers(per_crystal,'spline','movmean',50); 

fig = figure(23122); 

fig.Position = [400 400 600 400]; 

h1 = plot(time/60,(per_crystal)*res,'k','LineWidth',2); 

xticks(0:1:floor(time(end)/60)) 

xlabel('Time (min)','FontSize',20) 

ylabel('Crystal perimeter (µm)','FontSize',20) 

set(gca,'FontSize',20,'FontWeight','bold','linewidth',2)  

% leg = legend([h2,h1],'Minor axis','Major axis'); 

leg.Box = 'off'; 

axis tight; 

set(gcf,'color','w'); 

if saving 

    export_fig(fullfile(folderFile,[filename,'_perimeter']), '-pdf', '-png'); 

end 

AbsUV_edge_total_crystal = AbsUV_edge_total(startID:end,:); 

AbsUV_edge_total_crystal_ = filloutliers(AbsUV_edge_total_crystal(:,1),'spline','movmean',50); 

AbsUV_edge_total_crystal_std = filloutliers(AbsUV_edge_total_crystal(:,2),'spline','movmean',50); 

fig = figure(3); 

fig.Position = [400 400 600 400]; 

h = shadedErrorBar(time/60,AbsUV_edge_total_crystal_,... 

            AbsUV_edge_total_crystal_std,{'Color',[0.3 0.3 0.3]}); 

        h.edge(1).LineStyle = 'none'; 

        h.edge(2).LineStyle = 'none'; 
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        h.patch.EdgeColor = 'none'; 

        h.patch.FaceAlpha = 0.8; 

        h.mainLine.LineWidth = 2; 

        handlesMain = h.mainLine; 

        handlesShade = h.patch;   

xticks(0:1:floor(time(end)/60)) 

xlabel('Time (min)','FontSize',20) 

ylabel('UV absorbance at crystal edge (a.u.)','FontSize',20) 

set(gca,'FontSize',20,'FontWeight','bold','linewidth',2) 

leg = legend([handlesMain,handlesShade],{'Average UV absorbance','Standard deviation'}); 

leg.Box = 'off';   

axis tight; 

set(gcf,'color','w'); 

if saving 

    export_fig(fullfile(folderFile,[filename,'_abs_edge']), '-pdf', '-png'); 

end
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Appendix 2 – Mass rate attenuator (MRA) split factor and flow rates  

Screenshot of the Excel worksheet – sections encircled with black contain the information for the example calculation. 
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3. Surface dissolution imaging intrinsic dissolution rate calculations 

3.1 Introduction 

The original surface dissolution imaging equipment, the D100, was designed to 

replicate the Nelson and Shah cell and provide laminar flow throughout, thus enabling 

Intrinsic dissolution rates (IDR) to be calculated using a smaller quantity of API.145  The 

SDi2 has developed this idea and the instrument further by including the WDC to 

widen its application, however, the calculation of IDR is limited to the CFC only.  The 

calculation of IDR for ketoprofen in acid is used as a model drug to confirm that the 

SDi2 is functioning correctly.  The process of measuring IDR provides guidance for its 

use with single crystal dissolution, hence it will be discussed in detail. 

The purpose of this discussion of IDR is to understand how varying the SDi2 settings 

can influence the value obtained and whether the instrument calculations can be 

replicated by using the described equations to manually obtain IDR values from 

absorbance.  The unpublished algorithms for calculating IDR are first mentioned in 

Professor Østergaard’s 2018 review and are still relevant today.  The overall objective, 

however, is to obtain a deeper understanding of what can be gleaned from the 

instrument calculations when observing dissolution of single crystals rather than 

compacted samples. 

3.1 Equations for calculations 

The SDi2 analysis software calculates a series of IDR values using the defined zone (see 

Figure 1.16) along with a previously calculated molar absorption coefficient (obtained 

through calibration and also called the extinction coefficient).  The SDi2 data analysis 

software reports IDR values as a plot against time and uses two equations to calculate 

it: 

Equation 3.5: 

j =  ∑
vzMczW∆z

S

H
2⁄

z=0
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Equation 3.6: 

vz =  
3Q

2HW
(1 −  (

(2z − H)2

H2
)) 

where j is the intrinsic dissolution rate (IDR, mg/min/cm2), H is the height of flow cell 

channel (cm), z is the height above the z-origin or surface and is referred to as the pixel 

position, vz is linear velocity at height z (cm/min), M is the molecular weight (g/mol), cz 

is the concentration of sample at row z (mol/cm3), W is the width of the flow cell 

channel which is the path length the light travels through (cm), z is the effective pixel 

height (cm), S is the surface area of the sample (cm2) and Q is the volumetric flow rate 

(cm3/min).  

The equations are valid with the assumption that flow through the CFC is laminar and 

so a parabolic flow profile can be achieved, which enables the linear velocity to be 

calculated for any point within the cell.  Parabolic flow only occurs once laminar flow 

has been established and is best defined with a diagram, see Figure 3.27.77,173,175  The 

schematic highlights a maximum linear velocity found in the centre of the cell at H/2 

and a linear velocity of zero at the cell walls.  The lower surface is referred to as the z 

origin (z0) and is defined by the user during data analysis.  

 

Figure 3.27 – Schematic side view of the compact flow cell showing laminar flow, the 
parabolic flow profile and a series of defined values for calculating intrinsic dissolution rate 
(IDR).  H is the height of the flow cell, z0 represents the lower surface of the cell, and v is the 
linear velocity.  A cross-sectional slice through the flow cell at the grey arrow would produce 
the plot of linear velocity against z-axis position, shown to the right of the schematic. 
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The calculation of IDR is best understood by considering the passage of dissolved 

sample per unit time per unit area through a fixed point, see Figure 3.28.  The CFC is 

considered in terms of pixel rows, with the amount of dissolved sample calculated for 

each row in the lower half of the cell before being added together to produce a value 

for j. 

 

Figure 3.28 - Schematic of compact flow cell with details of intrinsic dissolution rate (IDR) 
measurements. 

True laminar flow assumes there are horizontal straight lines of flow within the CFC 

with no mixing between upper and lower lines, only movement from left to right with 

the solvent flow (termed advection).  In the case of a dissolving compact, which results 

in changing concentrations within this flowing solvent, there will be a drive towards an 

equilibrium of concentration that also results in diffusion of the dissolved sample 

upwards from these lower lines to upper lines, see Figure 3.29.  The movement due to 

diffusion is accounted for through the volumetric flow rate (Q) and the calculation of 

linear velocity (vz).  Linear velocity through the CFC is at its maximum in the centre 

(H/2) as a result of the parabolic flow profile, hence any diffusion above this point will 

be minimal and IDR calculations only summate material passage in the lower half of 

the cell, from z0 to H/2.   
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Figure 3.29 – Schematic of the compact flow cell showing the linear velocity parabolic profile 
and the direction of diffusion (upwards) and advection (left to right). 

This is accounted for in Equation 3.6: wherein the linear velocity for each pixel height is 

calculated.  Linear velocity is equal to the volumetric flow rate divided by the cross 

sectional area of the CFC.  Halfway up the flow cell, 2z will be equal to H and will 

therefore result in the highest linear velocity value.  The lower surface of the cell (z0) 

conversely has a linear velocity value of zero, as shown in Figure 3.27.  The IDR 

calculation methodology likens each pixel row to a spectrophotometer cuvette or cell, 

whereby the thickness of the flow cell is the path length.  The Beer-Lambert Law is 

applied to each row and concentration calculated from the absorbance values.  Each 

row is then summed up to a total per time period and divided by the surface area of 

the compact, which produces an IDR value.   

3.2 Data analysis  

The impact of data analysis upon the IDR value reported by the software will be 

explored in this section.  In the context of this work, data analysis encompasses the 

entire method that is entered into the Sirius SDi2 Analysis software (Version 3.0.22) 

when extracting data from the series of images.  This includes the start and end 

frames, the segment size, the height and width of each of the zones, their placement 

in both the x and z dimension, and any additional zones used.  Each of these will be 

examined in turn using a single ketoprofen QC experiment for consistency.  The 

expected IDR value for a ketoprofen QC check is 5-8 µg/min/cm2 according to the Pion 

manual.168  
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Figure 3.30 – Image of compact flow cell using the jet colour map and showing a compact of 
ketoprofen in place.  The red arrow shows the direction of solvent flow and the adjustable 
lower boundary of the flow cell is labelled at a height of 1.54 mm.  The measuring zones are 
in their default positions with default widths and heights, (i) reference, (ii) surface and (iii) 
intrinsic dissolution rate (IDR). 

Figure 3.30 shows the placement of each of the three default zones in relation to a 

compact of ketoprofen, which is situated below the lower limit of the flow cell, where 

the horizontal zone (ii) is.  Dissolving ketoprofen can be seen to move in the direction 

of solvent flow through the cell and passes initially through zone (ii) and then zone (iii) 

spreading slightly upwards and gradually through the cell as a result of diffusion and 

advection, respectively.  Zone (i) is placed in the flow of incoming solvent so that it 

consistently provides a background reading of the blank solvent for reference if 

required.   

3.2.1 Start frame, end frame and segment size: 

The very start of the imaging process involves the cell filling with dissolution media.  

This influences the starting frame from which IDR values can be extracted.  Although 

no guidance is provided on the shape of the IDR graph in the manual, recent 

experimental work has suggested that IDR values obtained in the first three to five 

minutes (180 to 300 secs) of dissolution should be discarded, as inaccurate 

measurements may result from the release of non-compacted surface powder during 

this time.150,145,187  Additionally, this initial period often requires manual intervention 

to remove air bubbles that result from the empty cell being refilled after the initial 

blank media has been imaged.  In the case of bubbles the cell is tipped to allow gravity 

to encourage the bubble through, which conversely results in more dense solution 

(that with a higher concentration of solute or loose particles) sinking through the cell.  
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The starting frame may therefore be input as zero, but the first section of data may 

need to be discarded when reporting IDR values to compare samples.   

For the purpose of understanding the minutia of dissolution, these starting frames will 

likely offer a vast amount of information about early processes such as wetting of the 

compact.2,13  This paves the way for discussions about the surface exposed to the 

solvent, the impact of compaction upon this and the impact upon the sample being 

investigated, for which significant research has been done recently by Ward et al.150,152  

This is an extensive area of research with numerous ramifications, however, it is not 

the purpose of this work and so it will not be addressed in this section.   

The segment size states the time over which the absorbance values are averaged to 

calculate each IDR value per time period.  The options include 10, 30, 60, 360 and 3600 

seconds.  Figure 3.31 demonstrates the difference in calculated IDR profiles for the 

same experiment analysed using the SDi2 software with segment times of 10, 30 and 

60 seconds as the ketoprofen dissolution is routinely monitored for 20 minutes. 

 

Figure 3.31 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min.  
Intrinsic dissolution rate profile calculated using the default zone settings and varying 
segment sizes of 60 seconds (top), 30 seconds (middle) and 10 seconds (bottom). 
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Following the recent research findings and also the initial release of a bubble, Figure 

3.32 shows the IDR profile after removing the initial five minutes of variable data, and 

highlights the smoothing effect of averaging over sixty instead of ten second segments.  

This may make for more consistent and repeatable IDR profiles for comparison with 

other samples and for further discussion of bulk dissolution.  However, it neglects to 

take into consideration the initial processes occurring between surface and solvent, 

and arguably ignores some of the novelty of utilising surface imaging for exploring 

dissolution. 

 

Figure 3.32 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min 
from five to twenty minutes.  Intrinsic dissolution rate profile calculated using default zone 
settings and varying segment sizes. 

The analysis software provides the averaged IDR (for the defined segment size) and 

also calculates a standard deviation for each value; graphs showing the 10 and 60 

second average IDR with standard deviation error bars are shown in Figure 3.33 for 

comparison.  The smaller error bars for the data obtained using the larger time 

segment imply a more robust measurement.  
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Figure 3.33 – Intrinsic dissolution rate profiles for the 10 and 60 second segment sizes, with 
error bars of standard deviation, calculated by SDi2 Analysis software.  

The spikes or sudden variation in IDR around 410 and 640 seconds can be understood 

by viewing the video of dissolution.  Each spike corresponds to a “glitch” in the images, 

and is unrelated to a change in release of ketoprofen from the compact.  The series of 

images relating to the spike in standard deviation at approximately 410 seconds can be 

seen in Figure 3.34.  A similar change in image is responsible for the spike at 

approximately 640 seconds.  It is not clear why the glitches happen but they appear to 

be linked to the software and can be seen to impact upon the UV and visible images 

slightly differently.  There is no simple method for excluding these frames from the 

data using the SDi2 Analysis software, however, this will be a possibility when using 

image analysis software.  It highlights the importance of viewing the dissolution images 

alongside data interpretation rather than relying upon one in isolation.



83 
 

 

Figure 3.34 – SDi2 compact flow cell images showing a dissolving ketoprofen compact, with 255 nm image on left and 520 nm image on right.  The three 
consecutive image numbers (450 at the top, 451 in the middle and 452 at the bottom) show the glitch that corresponds with the spike in standard 
deviation seen at approximately 410 seconds. 
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The IDR plot in Figure 3.32, appears to show two distinct stages to the dissolution: a 

stable trend between 300 and 720 seconds, and a linear decreasing trend between 720 

and 1200 seconds.  Further analysis of the data confirms again that excluding the initial 

300 seconds significantly improves the overall standard deviation, and suggests that 

separating the data into three sections might help to explain the changes in IDR.  Table 

3.9 shows the IDR averages, standard deviation and relative standard deviation as a 

percentage (% RSD) per time segment used to obtain the data, and also for the 

differing sections over which the data is averaged. 

Table 3.9 – Summary of averaged intrinsic dissolution rates and their standard deviation 
using different length time segments overall, and for each of the three sections of data. 

 Average intrinsic dissolution rate (µg/min/cm2)  

with standard deviation (σ) 

0 – 1200 secs 0 - 300 secs 300 – 720 secs 720 – 1200 secs 

10 sec 

segments 

21.94 

σ = 97.61 

% RSD = 445 

69.54 

σ = 193.38 

% RSD = 278 

7.06 

σ = 0.16 

% RSD = 2.3 

6.54 

σ = 0.18 

% RSD = 2.8  

30 sec 

segments 

22.80 

σ = 71.00 

% RSD =  311 

77.99 

σ = 141.96 

% RSD = 182 

7.05 

σ = 0.09 

% RSD = 1.3 

6.52 

σ = 0.16 

% RSD = 2.5 

60 sec 

segments 

21.50 

σ = 67.59 

 

80.37 

σ = 152.18 

7.04 

σ = 0.07 

6.52 

σ = 0.15 

A regression analysis of the final two segments can be performed to determine the 

linearity of each, see Figure 3.35 and Figure 3.36.  The IDR can be considered stable at 

7.04 µg/min/cm2 between five and twelve minutes, before decreasing linearly.  The 

decrease after twelve minutes is likely due to depletion of ketoprofen from the 

compact and the subsequent loss of a constant surface area.  Inspection of the 

dissolution video shows no significant visual change within the flow cell after twelve 

minutes, but the compact itself is unable to be visually assessed until after the run has 

completed.  Guidance from the USP on reporting IDR states that it should be obtained 

from the initial linear section of the dissolution curve – this corresponds to a region of 
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stable IDR.40  Curvature may suggest experimental problems such as cracking of the 

compact or saturation of the dissolution medium.136  

 

Figure 3.35 – Linear regression analysis for section of IDR between 300 and 720 seconds 
(highlighted region). 
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Equation: y = Intercept + Slope*x
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 Value Error

Intercept 7.08205 0.10722

Slope -7.78289E-5 2.17531E-4

X Intercept 90995.1451 252990.09245

Reduced Chi-Sqr 0.12247

R-Square 0.02496

Pearson's r -0.158
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Figure 3.36 – Linear regression analysis for section of IDR between 720 and 1200 seconds 
(highlighted region). 

The surface absorbance directly above the dissolving compact can be obtained using 

zone (ii) and visualised per time segment, see Figure 3.37.  This provides an additional 

insight into the IDR value and in this instance excludes saturation of the dissolution 

media due to a reduction in surface absorbance over time.  If saturation were 

occurring the absorbance at the surface would be expected to increase initially and 

then remain constant.  Instead it is likely that the compact has been depleted and 

there is insufficient ketoprofen dissolving to maintain the maximum dissolution rate. 
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Figure 3.37 – Surface absorbance values up the height of the cell (z dimension), for a 
dissolving ketoprofen compact at 255 nm per sixty second segment (see key on right). 

Figure 3.37 shows the difference in surface absorbance up and down the z dimension 

and shows an overall reduction throughout dissolution.  Using the peak absorbance at 

a z position of 1.5675 mm, there is a more rapid change from 300 to 660 secs, than 

between 660 and 1200 secs, which is visualised more easily in a plot of surface 

absorbance versus time for that position, see Figure 3.38.  This suggests that there is a 

depletion of ketoprofen available to dissolve from the surface after 660 secs and this 

causes the reduction in IDR value rather than saturation. 
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Figure 3.38 - Surface absorbance after 300 secs for a z position of 1.5675 mm. 

In conclusion, the starting frame for exploring and understanding dissolution should 

ideally be zero, but when reporting IDR for comparative purposes, this should occur 

only after the cell has filled, bubbles have been removed and loose surface powder has 

stopped passing through; this usually requires the first five minutes to be excluded.  

The end frame must be reviewed according to the solubility of the sample being 

assessed, and may require multiple experimental runs to determine whether the plug 

of sample retains a smooth and constant surface area to allow for valid calculations.  

The USP guidance for IDR suggests it should be reported only using the initial linear 

section of the data, which in this instance makes it 7.04 µg/min/cm2 and within the 

Pion expected range of 5-8 µg/min/cm2 for ketoprofen in 0.1 M HCl flowing at 2.16 

mL/min through the CFC.168  Alternatively, if the purpose is to utilise UV-Vis surface 

imaging to unravel the minutia of dissolution, the early frames are likely to provide 

significant information about early processes over and above the data that can be 

obtained using traditional apparatus and bulk dissolution measurements. 
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3.2.2 IDR zone dimensions and placement: 

To understand the relative importance of the dimensions and placement of the 

defined IDR zone (iii), each was altered and the subsequent influence upon reported 

IDR values explored for one experimental data set.  The default settings in the 

software include height of zone as 3 mm, noting that Pion guidance suggests this 

should reach the maximum height at which dissolved sample can be seen, although 

the IDR calculations only include data up to half the height of the cell.  The default 

width setting is 0.5 mm, and the z value should be set to the bottom of the cell.  A 

‘find’ button is present for calculating the internal surface automatically, however, this 

setting is crucial to obtaining accurate IDR values and regularly fails to find the lower 

surface so this should be done manually.  Figure 3.39 highlights the IDR zone variables 

that will be explored to determine the impact they are able to have upon the 

calculated value. 

 

Figure 3.39 – Cropped image of compact flow cell using the jet colour map and showing a 
compact of ketoprofen in place.  The IDR zone is labelled (iii) with default width (0.5 mm) 
and height (3.00 mm), position in x dimension (21.00) referred to as x0 and position in z 
dimension (1.54 mm) referred to as z0. 

Height: 

The guidance states that the minimum height of the zone must be greater than the 

height of the dissolving API.  The dissolving API remained in the lower half of the cell as 

described previously; profile tracking within the SDi2 analysis software was used to 

view the changing concentrations throughout the cell, see Figure 3.40.  Image (a) 
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shows that 1.0 mm above the surface there is no change is absorbance over 50 mAU, 

however, image (b) shows that there is some absorbance below 50 mAU even above 

the 3.0 mm height zone.  This is unlikely to be result of diffusion and can be seen to the 

left of the dissolving compact suggesting that this is background noise. 

 

Figure 3.40 – Cropped and enlarged images of the compact flow cell using the jet colour map 
and showing a compact of dissolving ketoprofen.  Image (a) shows a contour plot with 
absorbance of 50, 150, 250, 350, 450 mAU plotted.  Image (b) shows a contour plot with 
absorbance of 30, 40, 50 and 60 mAU absorbance plotted.  The default IDR zone height (3.0 
mm) and the smallest zone height (1.0 mm) have both been highlighted in each image using 
double ended arrows. 

The impact of zone height upon IDR values can be seen in Figure 3.41 and can be 

concluded to influence the reported values, which range from 5 to 12 µg/min/cm2 for 

the same experiment analysed differently.  The IDR is greatest for heights of 2.0 and 

2.5, and lowest for heights of 1.0 and 1.5. 
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Figure 3.41 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min 
from five to twenty minutes.  Intrinsic dissolution rate profile calculated using a segment size 
of sixty seconds with default zone settings (width 0.5 mm, x at 25.00 mm and z0 of 1.54 mm) 
but varying zone heights.  The standard deviation is shown as error bars. 

Utilising Equation 3.6, a reduction in zone height below half the height of the cell could 

theoretically reduce the amount of material passing through the IDR zone, which 

would result in a reduced IDR value.  Increasing the height above the halfway point, 

however, should have little to no effect upon the calculation as pixel rows above H/2 

will not be included in the summation of Equation 3.5.  The height of the CFC channel 

is 4 mm, hence H/2 is 2 mm, and if z0 is 1.54, then the halfway point would be a z 

position of 3.54 mm.  The heights of 1.5 and 1.0 mm are shorter than the halfway 

position, so any material passing over this height would be missed and result in lower 

IDR values, which is consistent with the data observed.  Heights above 2.0 mm would 

be expected to be consistent as any material observed above the halfway point would 

be excluded from the summation; additionally the change in absorbance observed 

above the halfway point in the cell should be excluded when the reference zone 

background absorbance is removed.  The IDR values for heights of 2.0, 2.5, 3.0 and 3.5 

are not consistent with this explanation and suggest that the equation may not be 
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applied as stated within the data analysis software.  There is, however, more error 

observed with the heights of 2.0 and 2.5 mm, suggesting that 3.0 and 3.5 are most 

appropriate as default zone heights. 

Width: 

The influence of zone width upon IDR can also be assessed, although as expected, this 

has less of an impact relative to height, see Figure 3.42.  The IDR values obtained for 

each variation of width settings is consistent with the default width of 0.5 mm, 

wherein the IDR is around 7 µg/min/cm2.  The exact placement of the zone in the x 

direction is not the same for all of the calculations in order to accommodate the 

change in width, and to avoid artefacts in the images.  A comparison of the mean IDR 

for each width and placement, alongside the overall standard deviation confirms that 

(a) is the most robust option. 

 

Figure 3.42 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min 
from five to twenty minutes.  Intrinsic dissolution rate profile calculated using a segment size 
of sixty seconds with default zone settings (height 3 mm and z0 of 1.54 mm) but varying zone 
widths and slight differences in x placement to accommodate artefacts in the image.  The 
standard deviation is plotted as error bars.  The inset image shows the varying positions 
relative to the default, with x position shown using dotted vertical lines and width shown 
using the double ended arrows, except for (e) and (f) which use a dash to represent 0.25 
mm. 
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Placement in x direction: 

In addition to the dimensions of the zone, the placement of the zone can also be 

amended.  The cell is three dimensional (x, y, z), but only two of these are visualised in 

the images (x, z) with the third being subjected to averaging across the path length (9 

mm).  Note also that the surface concentration data is normalised using a 3 mm 

effective path length (equal to the diameter of the compact surface).  The influence of 

x placement does not appear to consistently increase or decrease the value of IDR 

obtained, see Figure 3.43, but there is variation from 3 to 8.5 µg/min/cm2. 

 

Figure 3.43 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min 
from five to twenty minutes.  Intrinsic dissolution rate profile calculated using a segment size 
of sixty seconds with default zone settings (height 3 mm, width 0.5 mm and z of 1.54 mm) 
but varying placement in the x direction.  Inset is a cropped image showing the x placement 
of each IDR zone, with the default highlighted and labelled (g). 
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There is no clear or consistent pattern, but positions (b to d) stand out as they are not 

impacted by the image glitch (discussed in Figure 3.34) as significantly as the other 

positions (e to i) and therefore have lower RSDs making them a good choice for zone 

placement.  Position (a) also produces data that is distinct from the other positions, 

with more than double the relative standard deviation (RSD) of the default (g), which 

suggests that it may be too close to the dissolving compact and a poor choice for zone 

position.   

One could conclude from an understanding of the calculation that there may be a 

balance between height and position of zone, to accommodate diffusion.  Positioning 

the zone closer to the dissolving compact would allow less time for diffusion to occur 

and theoretically enable a smaller zone height than if it were positioned further away 

from the compact, allowing more time for increased concentration gradients to reach 

higher up the cell.  With this in mind, the optimum position in the x dimension will 

likely be dependent upon the substance dissolving; those which dissolve very quickly 

may benefit from the zone being positioned further away to allow for diffusion and 

advection in order that the concentration may not be so high as to saturate the 

detector.  Alternatively, substances that are very poorly soluble may benefit from the 

zone being closer so as not to be detrimentally influenced by lower limits of detection. 

 

Figure 3.44 – Cropped image of the compact flow cell to highlight the defined bottom surface 
of the cell, with an enlarged z axis to show the full range of z values explored from 1.40 to 
1.64 mm, with z0 suggested as 1.54 mm.   
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Placement in z direction: 

Finally, the determination of the bottom surface of the cell requires careful 

consideration as the z position has the potential to alter the value of IDR obtained, see 

Figure 3.44.  There is a “Find” button present in the software, however, this defined 

the bottom of the cell for this data as 1.00, which is incorrect and forces the IDR value 

to be greater than 13 µg/min/cm2.  Moving the z position by as little as 0.1 mm can be 

seen to change the IDR by up to 2 µg/min/cm2, see Figure 3.45, hence the need for 

consistency in setting up the zones.  There does not seem to be an objective method 

for selecting the z position, but subjectively z = 1.53 / 1.54 looks to be the bottom of 

the inside of the cell. 

 

Figure 3.45 – SDi2 compact flow cell dissolution of ketoprofen in 0.1 M HCl at 2.16 mL/min 
from five to twenty minutes.  Intrinsic dissolution rate profile calculated using a segment size 
of sixty seconds with default zone settings (height 3 mm, width 0.5 mm and x at 25.00 mm) 
but varying placement in the z direction.  Note also that a position of z = 1.51 produced the 
same IDR profile as z = 1.50, a position of z = 1.53 produced the same IDR profile as z = 1.54, 
and z = 1.57 produced the same IDR profile as z = 1.58. 

Figure 3.45 shows a clear trend that as the z position moves up the cell (from 1.54 to 

1.64) more sample solution is missed and therefore the IDR value decreases.  This also 

continues past the bottom of the cell, with IDR increasing down to 1.40 mm, which can 

be seen to be below the surface.  This is potentially due to the presence of the edge of 
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the cell, which alters absorbance values.  Consideration of the contour plots in Figure 

3.40 provides confirmation that small absorbance changes can be seen under the 

bottom surface of the cell.  Defining the bottom is therefore not as simple as 

determining when IDR stops increasing as it will falsely continue to increase past the 

true lower limit of the cell.  It therefore requires subjective assessment by the user, 

which has the potential to introduce error, and has been discussed in detail in the 

recent interlaboratory studies.147 

The physical placement of the CFC relative to the detector is determined by two 

screws, which hold the cell in one fixed position.  The placement of the cell and 

detector relative to the LEDs, however, may be subject to change as the LEDs are 

positioned on two separate tracks.  Each LED has a unique motor position that is 

accessed only through the Sirius Hub Settings (entered as motor steps from 0 to 2000) 

– note however that there are two LEDs each for wavelengths of 520, 320 and 300, so 

selecting consistent LED numbers rather than just wavelengths is important.  This is 

particularly relevant for the analysis of images using advanced software to determine 

the edges of surfaces.  This will be examined in more detail in Chapter 5. Software 

based analysis of dissolution imaging to determine the relative stability of an unusual 

series of solvate polymorphs, as there is scope to overlay images and accurately 

determine the difference between tracks in addition to observing the impact of the 

parallax effect. 

3.2.3 Summary of data analysis: 

The experimental determination of IDR may therefore be influenced significantly by 

the analysis of the data, which includes start and end frames, segment size, and zone 

dimensions and placement.  Arguably, the reason for setting out to determine an IDR 

value may be the most relevant factor in the selection of an appropriate, fit for 

purpose method.  IDR measurements are commonly used to compare APIs during pre-

formulation studies, however, they are also used in predicting BCS and biorelevant 

dissolution properties.136  A recent interlaboratory study was carried out to determine 

the extent of differences between IDR values calculated using an older version of the 

SDI; this work highlighted the importance of following a detailed method for both data 
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collection and data analysis, but confirmed that there is likely intrinsic variability 

between systems.147   

The interlaboratory study defined the z-origin in such a way that is not possible with 

the new SDi2 software, collated data points only between 6 and 20 mins for most 

compounds (with the exception of 21 to 40 mins for tadalafil), undertook six replicates, 

and excluded any outliers from calculations.  The exact method used with regard to 

zone position is not detailed or discussed, however, this new work suggests that it is 

crucial to be consistent with the placement and dimensions of the zone if comparisons 

are to be made between IDR values.  An appropriately detailed method for 

determining IDR should ideally include:  

 start frame, 

 end frame, 

 segment size, 

 zone height, 

 zone width, 

 zone placement in x direction, and 

 zone placement in z direction. 

To summarise, if a robust and comparable IDR is required, the start frame and end 

frame should include only the linear section after the cell has filled and any bubbles 

have been removed, the segment size should be set to sixty seconds, the IDR zone 

height should be between 3.0 and 3.5 and the zone width should be 2.0.  The zone 

placement in both the x and z directions should be defined and consistent, with the x 

position dependent upon solubility and the z position defined for individual 

instruments but reassessed at regular time intervals assuming limited movement of 

the cell in the z dimension.  It may therefore prove prudent to state experimental 

details and settings when reporting or publishing SDI-determined IDR data as there is 

no firm conclusion regarding the relationship between IDR values obtained through 

different types of equipment or the degree of variability expected.144,147,260 
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3.2.4 Manual versus software calculation of IDR 

The additional finding that IDR values obtained using the SDi2 software are 

inconsistent with IDR values manually calculated from the same raw data has been 

explored further in this section.  Equation 3.5 and Equation 3.6 were used to calculate 

IDR manually.  For the SDi2 CFC: H is 0.4 cm, W is 0.9 cm, S is 0.07 cm2 and pixel height 

(z) is 0.001375 cm.  The raw data extracted from the SDi2 is provided in absorbance 

units (AU) and supplied for each time segment (0-198, 198-258, 258-318 secs etc.) and 

pixel in the z direction (1.54, 1.55375, 1.5675 etc.).  This data was input into Microsoft 

Excel and the IDR was manually calculated using the previously described equations.  A 

plot comparing the manually calculated and the SDi2 calculated IDR values is shown in 

Figure 3.46. 

 

Figure 3.46 – Comparison between the manual IDR calculation using equations and raw data, 
and the SDi2 calculated IDR using the Analysis software for the same ketoprofen QC run with 
the same zone dimensions and location. 

The difference between these two values at each time point was calculated and 

plotted, see Figure 3.47.  While the total difference between the values varies, the 

ratio between the two is fairly consistent although it does increase gradually with time.  
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This suggests that there is likely to be a systematic difference between the two 

calculations. 

 

Figure 3.47 – Plot showing the calculated ratio of manual versus software calculated IDR 
values (top), and the total difference between SDi2 calculated and manually calculated IDR 
values (bottom). 

The manual calculation can be broken down into a series of steps:  

 Step 1: absorbance data for each pixel position for each time segment is 

converted to concentration using the previously obtained molar absorption 

coefficient for ketoprofen at a wavelength of 255 nm.  Concentration is equal 

to the absorbance (in AU) divided by the molar absorption coefficient (15800 

M-1cm-1 as stated in the SDi2 manual) and divided by the path length (0.9 cm).  

The concentration is therefore in M (moles per litre).  

 Step 2: velocity at each pixel position (z) is calculated (vz is velocity at z (cm/min 

or mL/min/cm2) using equation 2 which uses the volumetric flow rate (Q = 2.16 

mL/min), the height of the flow cell (H = 0.4 cm), the width of the flow cell (the 

same as the path length, W = 0.9 cm) and the pixel position or height above the 
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surface (z, cm).  The velocity is lowest at the surface (both bottom and top of 

the cell) and greatest in the centre of the cell). 

 Step 3: equation 1 has to be calculated in parts as it involves only the sum of 

data calculated from the surface or z-origin (z = 0) to H/2 (half-way up the 

height of the cell, which is 0.2 cm above the surface).  The surface has been set 

to 1.54 mm, so half-way up is 3.5475 mm.  The velocity at each pixel position 

calculated in step 2 is multiplied by the molecular weight (g/mol), the 

concentration at each position (mol/cm3), the width of the flow cell (W = 0.9 

cm) and the effective pixel height (0.01375 mm but use 0.001375 cm) and 

divided by the surface area of the sample (0.07 cm2). 

 Step 4: the sum of the previous step is calculated for each time segment to 

provide a value for j (IDR, mg/min/cm2) for each time segment, although it is 

reported by the software as µg/min/cm2. 

It is not clear why IDR values calculated manually are different from those calculated 

using the software.  Discussions with pharmaceutical industry experts have not 

uncovered any inconsistencies, other than extracting raw data as AU and not 

concentration, see Figure 3.48, which has been accounted for in the calculations. 

 

Figure 3.48 – SDi2 reported absorbance values both through Sirius software (graph) and 
extracted values (screenshot taken from Excel).  Note that the graph reports in mAU but the 
raw extracted data shows AU, and altering the plot to concentration still results in reported 
values of AU. 

Pion are working to determine the reason for this difference but a recommendation 

would be to exercise caution in interpreting individual IDR values and rather to suggest 
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that they should be used only for ranking purposes until further information can be 

obtained. 

3.2.4 Sample mass released 

In addition to calculating the IDR for samples analysed using the CFC, the SDi2 reports 

sample mass released.  This is calculated by taking the IDR value (µg/min/cm2), 

multiplying it by surface area (0.07 cm2) to provide the mass released per time period 

(µg/min), which can then be multiplied by the time period over which it is extracted 

and units adjusted to provide the mass (in mg) released.  This value can be plotted 

cumulatively against time.  This was calculated manually to confirm the SDi2 

calculation and a comparison of the two is shown in Figure 3.49. 

 

Figure 3.49 – Comparison of manually calculated sample mass released with that calculated 
by the SDi2 Analysis software. 

The small difference between the two values is due to the number of decimal places 

that are reported.  The manual calculation reports five decimal places compared with 

four for the SDi2 data, hence the difference between the two values increases slightly 

over time.  The sample mass released is therefore independent of the surface area 
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from which it is being released, hence it can be used as a measure of dissolution from a 

changing surface size and shape.  If the starting sample mass is known, it can also 

provide information on the percentage of sample released over time. 

3.3 Conclusions 

This chapter shows a single ketoprofen experiment analysed in multiple ways to 

produce different IDR values dependent upon the methods used.  The relative 

importance of start and end images, segment sizes, smoothing, IDR zone dimensions 

and placement are each considered and a tentative conclusion drawn that the optimal 

position of the zone may be dependent upon the properties of the substance being 

monitored. 

The SDi2 has been successfully developed to improve upon the previous designs of 

surface dissolution imaging equipment, primarily by the inclusion of dual wavelength 

capability.  As with all developments there are challenges associated with the software 

and design that only become clear once the equipment is in frequent use.  One 

challenge of note is that there is no cooling system in place with the left side 

compartment of the instrument housing the wiring and electronics resulting in the 

temperature inside the SDi2 often reaching 37°C and above.   

In spite of these challenges, the SDi2 shows great potential for routinely enhancing our 

understanding of dissolution quite simply by recording the visual aspects of the 

process instead of solely relying upon numbers.  While the visual observations may not 

at first glance provide objective data for defining dissolution mechanisms, they 

encourage analysts to consider the process as a whole rather than summarising it as 

simple plots of API released per time.  Reporting this subjective data would further 

support the USP guidance of reporting only the linear sections of IDR plots, which 

could arguably be considered equally subjective and dismissive as to the importance of 

early wetting processes upon dissolution. 

Finally, one possible limitation of the manual IDR calculations is the exclusion of a 

factor to accommodate the change in flow across the width or depth of the flow cell.  

In addition to the parabolic flow profile present in the z-dimension, there will be a 

profile with zero flow at the wall surfaces normal to the line of sight (ie across the 
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width of the cell or in the y-dimension).  Absorbance is averaged across the width of 

the cell, but the overall movement of dissolved sample from left to right will be 

additionally influenced by this flow, hence this could be a source of some of the 

discrepancy between manually calculated and the SDi2 calculated IDR values.  Further 

work would be required to test this as the flow profile for a rectangular channel 

(relative to a circular one) adds complexity to the calculations.261  Enhancing 

understanding of the IDR calculations, particularly by confirmation through manually 

working with the raw data to replicate SDi2 values, would provide reassurance that 

these provide us with the correct information and would enable the pharmaceutical 

industry to take full advantage of this technology during pre-formulation, formulation 

development and technology transfers.  
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4. Single crystal surface dissolution imaging 

4.1 Introduction 

The morphology and surface chemistry of crystalline pharmaceuticals impacts upon 

wettability, (seeded) growth, manufacturability (particularly with regard to flow) and 

dissolution.215  Establishing a link between these properties and the functional groups 

present at crystal surfaces is therefore an important undertaking.  A number of 

specialist techniques have been applied to single crystals for this purpose, including 

microscopies (atomic-force, scanning ion-conductance and optical), Raman 

spectroscopy, and molecular modelling and simulations.210,212,213,215,262,263   

Single crystal dissolution was first studied using real-time UV imaging in 2011.216  The 

ActiPix SDI300 was used with scanning electron microscopy (SEM) to study a lidocaine 

single crystal dissolving in stagnant buffer.  This proof of concept work confirmed that 

UV imaging had great potential to enhance dissolution understanding by spatially and 

temporally mapping concentration gradients around a single crystal.  A further study 

from the same group, used the relatively newer SDI with a single crystal placed in a 

hydrogel and gained additional insights into diffusion boundaries.169  This work 

concluded, however, that image interpretation was limited due to the single 

wavelength imaging available and the resolution capability of the instrumentation 

used. 

The recent release of the SDi2, with its novel dual wavelength imaging, enhanced 

detector chip, fibre optic tapering for 2.5 times magnification and additional whole 

dose flow cell (WDC), provides further opportunity to explore single crystal 

dissolution.13  Utilising both a UV and a visible wavelength allows for differentiation 

between physical obscuration versus a high solution concentration of a UV-absorbing 

species.  For the first time, the technology is able not only to image the boundary 

between solid and liquid, but to distinguish between solid surface and dissolved 

substance.  In addition, the WDC provides a larger imaging area for monitoring these 

changes and a greater volume for visualising concentration gradients than the compact 

flow cell (CFC).  The SDi2 therefore possesses the potential to provide a relatively 

simple and robust method for comparing dissolution properties of single crystals and 
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may also provide an opportunity to explore face specific kinetics.  This research will 

explore its potential and although it will not allow for understanding at a microscopic 

level, the extent of detail that can be confidently obtained will be determined. 

4.2 Method development 

Paracetamol was selected for these studies due to its well-established safety profile 

and low cost.  The solid-form landscape of paracetamol is well-studied and relatively 

large crystals can be grown from supersaturated aqueous solutions by slow 

evaporation within a time-frame of a couple of days.264–266  Paracetamol is currently 

known to exist in three polymorphic forms: Form I, II and III.264  Form III is the most 

elusive and can be transiently obtained by cooling the melt, whereas Forms I and II 

possess the same molecular conformations with different packing, although Form II 

reverts back to I with time.265  Crystals of paracetamol were taken from original 

solutions, dried using filter paper and used the same day.  No further analysis of the 

crystals was deemed necessary for this stage of method development, although single 

crystal X-ray diffraction (SCXRD) confirmed that they were Form I, the commercially 

available polymorph.   

The SDi2 was used for dissolution monitoring with deionised water at 37°C as the 

solvent.  Previous studies utilised the SDI300 and SDI for single crystal dissolution, 

however, the design of the SDi2 is sufficiently different that method development was 

required to determine the most appropriate way in which to study the sample, to test 

the equipment limitations and also to understand the resolution capabilities of the 

detector.  These differences and the methods used to modify the equipment 

appropriately will be discussed in detail throughout this chapter. 

4.2.1 Flow cell hydrodynamics 

The positioning of the crystal within each cell requires consideration in terms of its 

impact upon hydrodynamics.  The SDi2 flow cells have been designed to encourage 

laminar flow throughout, using tapered sides to gradually increase or reduce volumes 

and with the introduction of glass beads into the bottom of the WDC to slow and 

smooth flow.175,267  The placement of an object within either cell will therefore present 

a barrier to flow and result in turbulence.268  This in turn will impact upon diffusion, 
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advection, boundary layers and concentration gradients, and ultimately the 

information we can obtain about a crystal’s dissolution. 

The WDC recommended method includes placing a tablet or capsule within a wire 

holder in the centre of the cell.  The disruption of flow is therefore unavoidable with 

the current design but is likely to be less of a concern for a single crystal compared 

with an oral dosage form due to the vast size difference.  The WDC is designed to 

mimic the USP IV apparatus in order to achieve laminar flow throughout, however, a 

comparison of techniques found the classification of “laminar” to be an over-

simplification, with significant variation in hydrodynamics, not only between 

apparatus, but between locations within the apparatus too.182  Detailed drawings of 

the WDC were unavailable, hence a rough outline is shown in Figure 4.50. 

 

Figure 4.50 – Diagram showing inside the SDi2 whole dose cell from the front (side) and from 
above (aerial), with orange arrows showing the flow of solvent in and out of the cell.  The 
imaging window is shown in blue.  The side view shows the position of the numerous 2 mm 
glass beads in the bottom section, the wire mesh across the top and the holder for inserting 
the sample into the cell on the left.  Not drawn to scale. 

The volume within the CFC is just 1.54 mL compared with 60.3 mL in the WDC, 

suggesting that the same size crystal will have a larger impact upon flow within the CFC 

compared with the WDC.  The SDi2 compact flow cell design differs from the original 

cell designs used for the ActiPix D100, SDi300 and Sirius SDI.  Disruption of the laminar 
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flow through the CFC may theoretically be prevented by placing the crystal entirely 

within the sample holder, with the side of interest facing up into the cell, see Figure 

4.51.  This would also ensure exposure of only one face initially, however, it would 

prevent visual changes to the crystal from being monitored and therefore negate the 

benefits of using dual wavelength imaging. 

 

Figure 4.51 - Example of method for fixing crystal in sample holder.  This would expose only 
one face and would limit the disruption to laminar flow within the CFC. 

The placement of the crystal should therefore enable it to be viewed through the 

imaging area, which is limited to an area of 4 x 28 mm (height by width) within the CFC 

(compared with 28 x 24 mm in the whole dose cell).  The placement is further reduced 

as a result of sample holder positioning, which is central to the width and accessible 

only via the bottom of the CFC.  Detailed drawings of the CFC were unavailable, hence 

a rough outline is shown in Figure 4.52. 
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Figure 4.52 – Diagram showing the inside of the new SDi2 compact flow cell from above 
(aerial) and from the front (side), with orange arrows showing the flow of solvent in and out 
of the cell.  The dimensions of the imaging window are shown in blue.  Both views show the 
position of the 3 mm diameter sample holder.  Not drawn to scale. 

The tubing (of 1.4 mm inner diameter) connects directly to each side of the CFC, with 

tapering to the right and left (shown in the aerial view) but not above or below (as 

seen by the side view).  It should be noted that the SDi2 differs from the original flow 

cell design used in previous imaging equipment (D100, SDI 300 and SDI), see Figure 

4.53, wherein the tapering was above and below the inlet and outlet, but not to the 

left and right.  Extensive work was carried out with the older design to visualise flow 

and confirm its laminar nature, including flow rate tests with microparticles.175   

 

Figure 4.53 – Representation of the original SDI imaging equipment flow cell from the side 
(left) and from above (right).  The orange arrows represent the flow of solvent through the 
cell and the sample holder can be seen in both views. 

There is therefore a change in design from tapering above and below, to tapering at 

the sides, which may impact upon hydrodynamics, particularly with regard to the flow 

of dissolving sample through the cell.  As an aside, the newer design results in pockets 

of air forming both above and below the solvent exit point as the cell fills with solvent, 

which require removal by both tipping and tapping the cell.  However, once the cell is 
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full and free of air, the flow through is still assumed to be laminar, see Figure 4.54.269  

This occurs with steady flow through long straight vessels and results in a parabolic 

profile whereby flow tends from zero at the vessel walls to a maximum velocity in the 

centre.77   

 

Figure 4.54 – Diagram showing the side view through the CFC with a crystal (represented by 
a red box) placed in three different positions showing its impact upon flow: (i) crystal surface 
at bottom of cell enabling laminar flow to continue with a maximum velocity in the centre 
and a tendency to zero at the top and bottom surfaces, (ii) crystal in the centre interrupting 
laminar flow resulting in a wake region (*), and (iii) crystal on the lower surface of the cell 
interrupting laminar flow and resulting in a wake region (*). 

The dissolution and transport of sample through the cell can be considered in terms of 

molecular diffusion, due to differences in concentration, and advection, due to forced 

fluid flow.173  If laminar flow is maintained, advection will occur from left to right, and 

diffusion will occur from bottom to top (normal to flow).  However, if laminar flow is 

disrupted (as is the case in (ii) and (iii) of Figure 4.54) then there may be forced flow in 

additional directions.  Flow through the cell may be further complicated by the impact 

of density changes as the sample dissolves; solvent with a higher concentration of 

sample dissolved will have a higher density than that with a lower concentration 

dissolved, and sink to the bottom of the cell, where the velocity is already reduced.  

Figure 4.55 provides a highly simplified representation of the different directions for 

fluid and sample flow, noting also that the channel is three-dimensional.   
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Figure 4.55 – Diagram showing the side view through the CFC with a crystal (represented by 
a red box) placed in three different positions.  The blue arrows show the direction of fluid 
entering the channel, the red arrows show the expected direction for advection, the green 
arrows show the expected direction for diffusion, and the orange arrows show the likely 
impact of density changes upon flow. 

One method by which this could be simplified would be to operate under stopped flow 

conditions once the cell is filled, which would prevent advection influences.  In ideal 

circumstances the flow cell (and imager) could also be mounted vertically so that the 

effect of density would result in dissolved sample moving to the bottom and out 

through the cell.  Although the current equipment design does not support this, a 

current line of research for the SDi2 is the design of novel cells (primarily through 3D 

printing), which fit into the equipment and allow for alternative orientations and 

dissolution methods. 

An additional consideration is the orientation of the crystal with respect to flow.  The 

crystal has been represented by a box in previous diagrams, however, it is unlikely to 

be symmetrical in shape, with multiple faces, of differing size and shape.  The direction 

of flow relative to each of these faces will further impact upon hydrodynamics.  If 

considering dissolution of just one face, then one train of thought is that this should be 

placed horizontally in the channel to enable solvent to pass over it in a similar way to 

monitoring the IDR of a compact.  Additional CFC designs could again enable further 

exploration of flow at either end of the cell to determine how it differs and therefore 

whether it impacts upon concentration gradients and boundary layers; this would 

further influence the determination of face-specific dissolution kinetics but is outside 

the scope of this work.    

In conclusion, flow cell hydrodynamics have the potential to influence many aspects of 

single crystal dissolution and its interpretation.  They should be considered carefully 

with respect to each cell, to support the positioning of crystals, the method(s) used 
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and the extent of information we can extrapolate from each experiment.  In turn, the 

SDi2 has the potential to provide a significant means to enhance our understanding of 

hydrodynamics by visualising the surfaces and concentration gradients throughout the 

dissolution process.  

4.2.2 Attaching single crystals 

Initial studies with the early imaging equipment used either a stagnant dissolution 

media, a putty-like removable adhesive (Bantex® Tack-all) or a hydrogel to hold the 

crystal in place throughout dissolution.  The SDi2 has two distinct flow cells, each with 

the potential to be used for single crystal dissolution, however, neither was designed 

for this purpose.  Consequently, the most appropriate method to secure a single 

crystal in place required investigation, noting that it should hold the crystal firm whilst 

enabling solvent (dissolution media) to flow through each cell. 

A putty-like removable adhesive (Blu-tack®) was initially used to attach the crystal to 

the sample holder of the compact flow cell (CFC).  This secured the crystal in place to 

an appropriate degree, however, the adhesive took up a lot of space within the CFC, 

see Figure 4.56. 

 

Figure 4.56 - SDi2 compact flow cell 520 nm image of a single paracetamol crystal held in 
place using a putty-like removable adhesive.  The orange arrow in the top left shows the 
direction of solvent flow.  The orange ovals highlight a) an air bubble and b) the putty 
holding the crystal in place.  The crystal can be seen to span the full height of the flow cell. 

The putty proved to be cumbersome and was not sufficiently secure to use within the 

whole dose cell (WDC), so a stainless steel wire clasp was bent into an appropriate 

shape, see Figure 4.57.  This is the method recommended by Pion to hold tablets and 

capsules in place for routine dissolution studies with the SDi2.  The clasp was 

successful at holding the crystal in place within the WDC, however, it obscured a lot of 
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the image thereby making absorbance measurements close to the crystal surface 

challenging to obtain. 

 

Figure 4.57 - SDi2 whole dose flow cell 520 nm image of a single paracetamol crystal held in 
place using a stainless steel wire clasp.  The orange arrow in the top left shows the direction 
of solvent flow.  The orange oval highlights the crystal within the clasp. 

A perfluoro polyether 225 oil (used frequently in crystallography to mount crystals) 

was considered as an alternative adhesive, however the oil spread around the crystal 

and delayed dissolution.  An additional method of attaching the crystal explored the 

use of clear nail varnish to ‘glue’ it to the stainless steel wire.  This could be positioned 

more easily than the oil due to its increased viscosity and dried quickly fixing the 

crystal in position.  Crystals were successfully and securely held in place using this 

method, in both the compact and whole dose flow cells, and even at the maximum 

flow rates for each cell, the images are shown in Figure 4.58.   
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Figure 4.58 – Examples of crystal attachment to stainless steel wire using nail varnish: a) 
crystal is attached to wire which is threaded through rubber bung, b) this bung sits within 
the sample holder to provide a seal preventing loss of solvent, c) sample holder then fits into 
the compact flow cell, and d) whole dose cell is shown with wire threaded in ready for 
crystal to be attached. 

The WDC sample holder has two holes in which to position either end of the wire, 

hence the crystal and wire could be positioned easily.  The CFC sample holder, 

however, is designed to hold a compacted disc of sample, although during the initial 

stages of a run a rubber bung is positioned to prevent solvent leakage and provide a 

flat bottom to the cell.  The wire was able to be carefully pushed through this bung in 

order to secure the crystal in place within the CFC and prevent leakage of solvent, see 

Figure 4.58 (a). 

The coating of an entire crystal in nail varnish for four weeks confirmed that there was 

no visual change in the size or shape of the crystal over time, suggesting the varnish 

did not appreciably dissolve or degrade the crystal.  This was deemed sufficient for the 

stage of research; compatibility with each compound being studied should be explored 

further when necessary.  The additional advantages of using nail varnish to secure the 

crystal are its relatively easy removal using acetone, and its potential to be used to 

coat specific faces of the crystal thus inhibiting dissolution whilst remaining 

transparent.   
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To explore this theory further, a crystal of paracetamol was coated on all faces using 

the varnish, inserted into the WDC and monitored using the 255 nm and 520 nm 

wavelengths.  Figure 4.59 shows the intact paracetamol crystal before and after thirty 

minutes of solvent flow (deionised water at 18 mL/min) confirming that dissolution 

was prevented from occurring on all faces of the crystal.  The difference between 

images is the presence of the solvent front moving through the cell, to highlight that 

these are taken at the very start of the run and no change in absorbance can be 

observed around the crystal confirming that no dissolution is taking place.  Some small 

bubbles have appeared on the wire holder itself by the end of the run, but there is no 

visual change to the crystal viewed either at 255 nm or 520 nm confirming that the 

varnish has been successful. 
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Figure 4.59 – SDi2 whole dose flow cell images for 255 nm (left) and 520 nm (right) with the 
absorbance key (far right).  The orange arrow shows the direction of solvent flow.  The 
images show a single paracetamol crystal coated on all sides in clear nail varnish to inhibit 
dissolution.  The top images were obtained at the start of a run with the solvent front 
approximately 21 mm through the cell, and the bottom images were obtained at the end of 
30 minutes of flowing deionised water through the cell. 

In comparison, a crystal without varnish coating can be seen to dissolve rapidly in the 

flowing water, as shown in Figure 4.60.  The 255 nm image shows a range of false 

colours from dark blue to red (see key for absorbance values), showing UV absorption 

across the cell is variable.  This change is occurring as a result of paracetamol dissolving 

to produce areas within the cell showing a variety of concentrations throughout the 

flowing solvent.  The solvent flows only in one direction (bottom to top) but dissolved 

paracetamol can be seen both above and below the crystal, suggesting that flow 

through the cell is not laminar as the USP IV calculated hydrodynamics may suggest 

but in this instance, they are instead turbulent.  This turbulence is likely a result of 
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gravity and the changing density of the solution as an increasing amount of 

paracetamol dissolves.  This level of detail, however, would not be possible from a 

routine bulk measurement of API release using conventional UV dissolution 

techniques.  This experiment highlights the complexity of dissolution and the interplay 

of hydrodynamics, confirming the benefits from utilising an imaging technique to 

monitor dissolution. 

 

Figure 4.60 – SDi2 whole dose flow cell images for 255 nm (left) and 520 nm (right) with the 
absorbance key (far right).  The orange arrow shows the direction of solvent flow.  The 
images show a single paracetamol crystal attached to wire using nail varnish.  The 255 nm 
image shows variations in absorbance throughout the cell as a result of the dissolving 
paracetamol. 

The 520 nm image is relatively simple, showing only the wire holder with the attached 

single crystal.  The bottom of the crystal is inhibited from dissolving due to the 

presence of the varnish, hence it cannot be easily differentiated from the bottom of 

the wire.  The edge of the crystal fades gradually as it dissolves, allowing the physical 

change to be monitored (through the 520 nm images) in addition to the concentration 

change (through the 255 nm images).  

The placement of the crystal relative to the wire and therefore the solvent will 

influence hydrodynamics and therefore dissolution.  The method was therefore 

adjusted, attaching the crystal on the bottom of the wire and increasing the flow to the 

maximum recommended for the WDC, however, the flow of dissolving paracetamol 

continued to show similar extents of turbulence making it challenging to monitor 

dissolution at the surface due to the movement of dissolving sample in multiple 



117 
 

directions at the same time.  In comparison, flow within the CFC appears to continue 

only in one direction (from left to right), see Figure 4.61.   

 

Figure 4.61 - SDi2 compact flow cell images for 255 nm (top) and 520 nm (bottom) with the 
absorbance key (far right).  The orange arrow shows the direction of solvent flow.  The 
images show a single paracetamol crystal attached to a stainless steel wire loop with 
varnish.  These images were obtained 80 secs after starting solvent flow through the cell.  

The dissolving paracetamol flows with the solvent direction, and as an increased 

amount of paracetamol dissolves, the density of the solution increases resulting in a 

concentration gradient.  This is indicated by a higher absorbance at the bottom of the 

cell relative to further up, which can be monitored and measured simply in comparison 

with the complex gradients observed in the WDC, see Figure 4.60.  The presence of the 

crystal can again be visualised using the 520 nm image, and the difference between 

physical presence of the crystal versus a high concentration of paracetamol observed 

by comparing the 255 nm and 520 nm images.   

Absorbance values using a UV wavelength of 255 nm for both cells reached two 

absorbance units (AU) within eighty seconds of dissolution starting.  The maximum 

absorbance the SDi2 is able to record is two AU with a loss of linearity occurring 

immediately prior to this.168  This prevents concentration from being accurately 

calculated for those regions where the detector has been overloaded, however, one 

can conclude that the absorbance is a result of a high concentration of dissolved 

paracetamol and not a physical obscuration by pieces of crystal, as a result of having 
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both the UV and visible images available for analysis.  This would not have been 

feasible with the earlier instruments and highlights a significant advantage of the SDi2. 

A method to avoid saturation can also be considered, which involves using alternative 

or additional UV wavelengths to the max to enable higher paracetamol concentrations 

to be measured without saturation.  Note that 255 nm was chosen following the Pion 

guidance to select the wavelength closest to the USP monograph recommendation, 

which for chromatographic assays of paracetamol is 230 nm.40   

4.2.3 Calibration of UV absorbance  

The SDi2 is able to monitor two wavelengths per run (also referred to as a method) 

from a discrete range of five: 255, 280, 300, 320 and 520 nm.  The Beer-Lambert Law is 

used to calculate the concentration of a solution, but first the molar absorption 

coefficient (ε) must be obtained through calibration.  Routine UV-Vis spectroscopy 

includes a scan of absorption across multiple wavelengths to determine max; in this 

instance, there may be scope to use multiple wavelengths to gather information on 

the lower concentration areas without falling outside the limit of detection, and also 

the higher concentration areas without saturating the detector.  In addition, Pion 

recommends using the SDi2 instead of alternative UV instrumentation for all 

calibration experiments.  

Solutions of paracetamol, in deionised water, were made at a series of defined 

concentrations, see Table 4.11 for details.  The solutions were analysed at each UV 

wavelength using the CFC to determine linearity.  The calibration method used is 

shown in Table 4.10, and this was run for two wavelengths at a time (255 and 280 nm, 

300 and 320 nm). 

Table 4.10 - SDi2 compact flow cell calibration method. 

Time (min:sec) Flow rate Details Cumulative time 
(secs) 

10:00 3 mL/min Blank deionised water 0 to 600 

00:10 or 00:30 0 mL/min Manually transfer line to 
sample solution 

610 or 630 

00:30 4 mL/min Fill cell quickly 640 or 660 

10:00 3 mL/min Sample 1240 or 1260 
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The absorbance data was extracted using two manually set up zones, see Figure 4.62; 

one which provides an average across the x dimension and one which provides it 

across the z dimension.  An average absorbance for each zone is then calculated per 

time segment, and in theory there should be very little to no difference between the 

two data sets, which is apparent in Figure 4.63.   

 

Figure 4.62 – Explanation of the two orientation options for obtaining absorbance values for 
a manual zone using the SDi2 Analysis software.  To provide an example of how the zones 
work, an absorbance value of 0, 1 or 2 has been assigned to each pixel.  These have then 
been averaged in the horizontal (x) dimension to provide an absorbance value per vertical 
orientation or z pixel.  Additionally they have been averaged in the vertical (z) dimension to 
provide an absorbance value per horizontal orientation or x pixel. 
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Figure 4.63 – SDi2 compact flow cell calibration for paracetamol in deionised water.  
Comparison of absorbance values obtained through averaging data in the vertical direction 
versus the horizontal direction for the same zone.  From a time of 0 to 752 seconds, the 
sample is blank (deionised water) and from 752 seconds, the sample is paracetamol 0.005 
mg / mL in deionised water. 

Figure 4.63 shows a delay between transferring the line to the sample solution and 

observing an increase in absorbance.  This is due in part to the length of tubing 

between sample and cell, in addition to the gradual displacement of blank sample from 

the flow cell, which results in a period of increasing absorbance from 692 secs and 

subsequent stabilisation from 932 secs.  The maximum absorbance observed for each 

concentration at each wavelength was obtained using the SDi2 Analysis software, see 

Table 4.11.   

Table 4.11 – Determining the maximum absorbance for each concentration of paracetamol 
at each UV wavelength available on the SDi2 during the calibrations. 

 Max absorbance (AU) obtained at each concentration 

 0.100 mg/mL  0.050 mg/mL  0.010 mg/mL  0.005 mg/mL 

255 nm > 1.500 1.250 0.300 0.180 

280 nm 1.000 0.525 0.105 0.050 

300 nm 0.110 0.058 0.011 (variable) Not tested 

320 nm 0.010 0.011 Below 0 Not tested 
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The maximum absorbance the SDi2 can report is 2 AU, although the suggested 

maximum absorbance at which detector saturation occurs and linearity is considered 

lost has been recommended by Pion to be 1.5 AU.  Absorbance values are an average 

per defined time segment, and are obtained only from the linear sections of the data 

observed.  For example, in Figure 4.63, the absorbance of deionised water is calculated 

using the average of values obtained between 152 and 752 secs, and sample 

absorbance is calculated using the average of values obtained between 932 and 1292 

secs.  This is assessed and calculated for each calibration run and wavelength.  The 

linearity of the relationship between concentration and absorbance guides the choice 

of UV wavelength(s) that will allow the full range of concentration gradients around a 

single crystal to be calculated.  As an example, Figure 4.64 compares calibration data 

obtained for 255 nm and 280 nm. 

 

Figure 4.64 – SDi2 compact flow cell calibration for paracetamol in deionised water.  
Comparison of calibration plots for UV wavelengths of 255 nm (left) and 280 nm (right).  
Regression analysis has been applied to the linear section of each plot and the details 
included. 

Figure 4.64 shows the calibration plot for 255 nm is linear up to a concentration of 0.05 

mg/mL, and the plot for 280 nm is still linear at a concentration of 0.10 mg/mL.  The 

details of linear regression are inset into each plot.  This data highlights the need to 

use the most appropriate wavelength depending upon the information being sought 

for that experimental run and the range of absorbance values obtained.  It also 

suggests that detector saturation occurs between 1.2 and 1.6 AU, as shown by the loss 
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of linearity on the plot for 255 nm, which corroborates the Pion recommended 

maximum of 1.5 AU.   

Table 4.12 - SDi2 compact flow cell calibration for paracetamol in deionised water.  Summary 
of calibration data for each wavelength, with calculated molar absorption coefficients, and 
recommended lower concentration limits and upper limits for linearity based upon current 
experimental data only.  

 Calculated (ε) molar 

absorption coefficient 

(M-1cm-1) (to 2 d.p.) 

Guide for lower 

concentration limit 

(mg/mL) 

Guide for upper 

concentration limit 

(mg/mL) 

255 nm 3989.24 0.005    0.050 

280 nm 1763.23 0.005 > 0.100 

300 nm 210.08 0.010 > 0.100 

320 nm 12.71 0.050 > 0.100 

A summary of the calibration data for each wavelength can be found in Table 4.12.  

The guide for lower and upper concentration limits are recommendations based upon 

current experimental data and may be expanded upon with additional work.  However, 

the lower concentration limits (limits of detection) for 300 and 320 nm are 0.010 and 

0.050 mg/mL respectively, below these concentrations the absorbance is 

indistinguishable from that of a blank sample of deionised water.  For 255 nm the 

concentration above which linearity is lost is between 0.050 and 0.1 mg/mL, 

extrapolating from the linear section one could predict that a concentration of 0.060 

mg/mL would give an absorbance of 1.5 AU – this should be confirmed with 

experimental data, so the maximum concentration that can be calculated with 

confidence using this data is 0.050 mg/mL.  Comparatively, the maximum 

concentration of paracetamol in deionised water that can be calculated with 

confidence using a wavelength of 280 nm is 0.100 mg/mL.  In summary, this means 

that the full range of concentrations can be calculated from absorbance if the most 

appropriate wavelengths are selected. 

4.3 Results and discussion 

The earlier studies by Østergaard et al. applying surface dissolution imaging to single 

crystals, were able to observe diffusion by using stagnant buffer and hydrogels, both to 
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hold the crystal in place and to simplify the complex hydrodynamics.216  The lidocaine 

crystals used in these studies were chosen for their poor solubility, hence the highly 

soluble paracetamol in this work might be expected to dissolve rapidly.  An almost 

saturated solution of paracetamol in deionised water was considered for use as the 

dissolving solvent to slow dissolution, however, it was not found to be necessary, with 

some of the paracetamol crystals used taking longer than twenty minutes to fully 

dissolve in flowing deionised water at 37°C.  Utilising this novel method for holding 

single crystals and visualising their dissolution, paracetamol crystals were explored 

further with the SDi2 software with regard to monitoring both concentration and size 

changes. 

4.3.1 Monitoring concentration using UV absorbance 

The calculated molar absorption coefficients for each appropriate wavelength were 

used to determine the concentration surrounding a paracetamol crystal dissolving in 

deionised water flowing at 2.16 mL/min.  A wavelength of 280 nm was selected to 

encompass the larger concentration range of 0.005 to at least 0.100 mg/mL, up to an 

absorbance of 1.5.  Absorbance is converted to concentration using the Beer-Lambert 

Law, where in this instance the molar absorption coefficient (ε) for 280 nm is 1763 M-

1cm-1 and the path length (l) is 0.9 cm.  The concentration can also be converted from 

M (moles per litre) to mg/mL by multiplying by the relative molecular mass (151.16 

g/mol).  This can be done manually or the SDi2 Analysis software can be used, although 

a glitch in the software means that when extracting raw data it reverts back to 

providing absorbance (in AU) instead of concentration regardless of the settings used 

to calculate it. 

Three manual zones were set up to monitor concentration changes across and around 

the same crystal analysed in the previous section.  These zones were positioned 

according to Figure 4.65, with the two vertical zones, (ii) and (iii), having a width of 0.1 

mm and the horizontal zone (i) having a height of 0.1 mm to provide sufficient 

resolution and a maximum number of data points for each dimension.  The absorbance 

values were extracted in sixty second segments to reduce the data burden. 
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Figure 4.65 – SDi2 compact flow cell image at 280 nm (left) and 520 nm (right) showing a 
paracetamol crystal held on a steel wire loop and deionised water flowing from left to right 
through the cell.  The absorbance key using the jet colour map is shown to the far right.  
Both images are from the start of dissolution (image number 53).  The three additional zones 
to measure concentration can be seen horizontally (i) and vertically (ii) and (iii) across the 
crystal in both images.  The images have been cropped in the x dimension to focus on the 
crystal and zones. 

Figure 4.65 shows two images of the crystal, one at 280 nm and one at 520 nm.  In 

both images the wire holding the crystal can be seen not as an increase in absorbance, 

but as a decrease due to the wire being present during the start-up section of the 

method, where the absorbance through the cell is blanked with solvent.  The wire was 

placed in the cell for this to determine whether this would be advantageous to the 

method and is therefore seen as background absorbance, hence it appears as a hole 

through the bottom of the crystal in both the UV and the visible wavelength images. 

The data can be extracted from each zone to produce a graph showing absorbance (or 

concentration) per time segment across either the x or z dimension.  Looking first at 

the horizontal zone (i), the change in absorbance across the centre of the crystal can 

be monitored per time segment at different points.  Figure 4.66 shows the variation in 

calculated concentration at specified positions in the x dimension at a z position of 2.6 

mm, for each time segment.  The maximum concentration of 0.12 mg/mL corresponds 

to an absorbance of 1.2 AU, confirming that no value may be at risk of saturation. 
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Figure 4.66 – Calculated concentration using absorbance at 280 nm for specified x positions along the horizontal zone (i) positioned in the z dimension at 
2.6 mm.  Inset picture shows a 280 nm image from the start with zone (i) highlighted in orange and each position plotted on the graph marked by an 
orange ‘x’ and number.  The time segments are 0 to 84 secs, then every 60 secs after that until a total of 2184 secs. 
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The initial 264 seconds corresponds to the time taken for the cell to fill with solvent 

and bubbles to be removed, hence the concentration during this period increases from 

below zero (the absorbance has initially been blanked with solvent as is commonplace 

for UV spectroscopy).  The position to the left of the crystal (1) maintains a 

concentration of zero from this point onwards, providing confidence in the 

methodology and confirming the observations from images, which clearly show an 

absence of dissolved drug to the left of the crystal.  Position (2) shows a linear decline 

phase and then rapidly drops after twenty minutes (1200 secs) but does not reach 

zero.  This position is in the path of the crystal but highlights that a change in 

absorbance can still be observed as the crystal dissolves and shrinks in size.  Positions 

(3) and (4) both show a gradual consistent decline in concentration, with a steeper 

decline after 2000 secs for (4), which can again be linked to the crystal dissolving and 

shrinking in size.  Conversely, positions (5) and (6) show a gradual increase in 

concentration throughout dissolution of the crystal, which is a result of dissolving 

paracetamol diffusing upwards in addition to it flowing from left to right.  Position (7) 

shows a small increase towards the end of reporting, which is also likely a result of 

diffusion.   

Concentration values are calculated from UV absorbance using the Beer-Lambert Law, 

which requires the molecule to be in solution for this to be applicable.  An object such 

as the crystal, being physically present in the light path may therefore render the 

calculation of concentrations invalid.  This would be applicable to positions (2) and (3) 

in this experiment as they are both in the path of the crystal throughout the 

monitoring period.  They have nevertheless been included in this plot to highlight that 

their physical presence does not saturate the detector and is not distinguishable using 

UV absorbance or UV image alone.  In this instance, the dual wavelength capability of 

the instrument is necessary to allow the crystal edge to be detected with the visible 

wavelength and observed in conjunction with the UV image so that concentration 

gradients may be determined for the interface between solid and liquid. 

An alternative method for visualising the data is to plot concentration against x 

position for each time segment; a selection of time segments have been chosen to 

represent different points throughout dissolution, see Figure 4.67.  Three arrows have 
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been placed on the plot to show the three distinct areas: (1) the section immediately 

to the left of the crystal, (2) the section in the vicinity of the crystal and (3) the section 

to the right of the crystal.  Arrows (1) and (2) show a decrease in concentration with 

time, whereas arrow (3) shows an increase. 

 

Figure 4.67 – Calculated concentration using absorbance at 280 nm for four time segments, 
across the horizontal zone (i) and positioned in the z dimension at 2.6 mm.  Three grey 
arrows show the change in concentration (1) to the left of the crystal, (2) in the vicinity of 
the crystal and (3) to the right of the crystal, with time. 

The decline is more rapid for the area highlighted by arrow (1) than (2).  As the crystal 

reduces in size, the area of dissolving paracetamol around it shrinks in size too, which 

leads to the boundary layer around it shifting both downwards and inwards (the 

crystal is held in place at the bottom hence only the top and sides can dissolve).  

However, arrow (3) highlights an area where there is an increase in concentration with 

time and it becomes more diffuse.  As the crystal dissolves and the concentration of 

paracetamol in the cell increases, in addition to advection following the flow of solvent 

from left to right, there will be an increased amount of diffusion occurring up through 

the cell due to the concentration differences between each layer of laminar flow.  
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Diffusion requires time to take place, hence the increase only occurs to the right of the 

crystal. 

Similar plots of concentration versus position in the z dimension for selected time 

segments are shown in Figure 4.68 and Figure 4.70, and these correspond to the 

additional zones highlighted by (iii) and (ii), respectively, in Figure 4.65.  Zone (iii) is 

positioned to the right of the crystal but monitors a vertical segment through the cell.  

The data in Figure 4.68, again shows distinct sections according to position, although in 

this instance they all show a decrease in concentration with time.   

 

Figure 4.68 - Calculated concentration using absorbance at 280 nm for four time segments, 
across the vertical zone (iii) and positioned in the x dimension at 14.4 mm.  Four grey arrows 
highlight the different segments relative to the crystal.  Inset is the UV image showing the 
position of zone (iii) highlighted in orange, in addition to the position of the arrows 
highlighted by the grey crosses on the orange zone line, which correspond to (1), (2), (3) and 
(4). 

Four grey arrows highlight different sections and relate to positions in the z dimension 

marked by grey crosses on the image in Figure 4.68.  Position (1) is close to the z0 

position at the bottom of the cell and reduces in concentration over time, although it 

reports the peak concentration for each time segment, which suggests that dissolving 
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paracetamol sinks down the cell as might be expected due to its increased density 

relative to lower concentrations.  However, the amount of dissolving paracetamol 

sinking to this position reduces over time.  Position (2) shows a much greater decrease 

in concentration, which is again unexpected, but can be explained by viewing both the 

280 nm and 520 nm images around this time point, see Figure 4.69.  The crystal 

changes in shape resulting in position (2) falling just underneath the side of it, hence 

the reduction in absorbance and therefore calculated concentration. 

 

Figure 4.69 – Images from both 280 nm and 520 nm highlighting the change in crystal shape 
at 1764 secs that results in the concentration data observed across zone (iii). 

Position (3) remains in the line of the crystal, hence it does not reduce as rapidly or to 

the same extent as position (2), but reduces more than position (1) suggesting a strong 

influence of density upon the movement of dissolving paracetamol.  This can be 

visualised particularly well in Figure 4.69 with the increased absorbance in the 280 nm 

image at the bottom of the cell.  Position (4) relates to a range of z positions, between 

z = 3.75 and 3.25 mm, but the trend overall shows a decrease in calculated 

concentration as the crystal reduces in size and the dissolving plume of paracetamol 

moves downwards whilst flowing from left to right, suggesting less diffusion occurs 

upwards through the cell. 

The final zone (ii) highlighted in Figure 4.65, has been plotted as concentration per z 

position for a number of time segments, see Figure 4.70.  An additional time segment 

of 2004 to 2064 secs has been added to this plot to aid in understanding the final time 

segment, which is significantly different from the previous ones.  A vertical cursor has 

also been positioned at the bottom surface of the cell, z0, to add clarity to this data - 
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the calculated concentration values plotted at z positions between 1 and 1.54 

therefore relate to positions below the bottom of the CFC and can be ignored. 

 

Figure 4.70 – Calculated concentration using absorbance at 280 nm for five time segments, 
across the vertical zone (ii) and positioned in the x dimension at 13.4 mm.  The vertical 
cursor is positioned at the bottom surface of the cell (z0 = 1.54 mm).  Inset picture shows a 
280 nm image from the start with zone (ii) highlighted in orange and the z0 position marked 
by an orange ‘x’.  

The first three time segments (264 – 324, 984 – 1044 and 1764 – 1824 secs) in Figure 

4.70 show a gradual reduction in calculated concentration for all positions across zone 

(ii).  This zone is positioned upon the crystal, hence the absorbance value, which is 

used to calculate concentration, will reflect the physical presence of the crystal in 

addition to the paracetamol in solution.  It may therefore be more appropriate to 

present these values as absorption rather than concentration.  The observed changes 

over time will be the same whether presented as absorbance or concentration, hence 

they will be referred to as calculated concentration to make the point that they do not 

solely reflect paracetamol in solution.   
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Figure 4.71 - Images from both 280 nm and 520 nm for three time points throughout the 
dissolution of a single paracetamol crystal.  Zone (ii) is highlighted in orange for each image. 

The calculated concentrations for the final two time segments (2004 – 2064 and 2124 - 

2184 secs) do not appear to follow the previous profiles, and must again be 

interpreted using the images available for both wavelengths, see Figure 4.71.  The 

visible images show the presence of an object below the left section of wire and the 

continued presence of an object above the left section of wire.  These artefacts appear 

as increases in concentration on the plot, but when interpreted with the images, 

suggest that they are more likely a result of a bubble attached to the wire in addition 

to the remaining varnish attached to the top of the wire.   

The wire holding the crystal, having been included in the start-up section of the run, 

remains as if it were invisible throughout dissolution, with the absorbance value at this 

position corrected for its presence.  It is tempting therefore to correlate the initial dip 

in concentration at a z position of 1.75 mm for the first four time segments, with the 

wire.  However, upon closer inspection the wire sits at a higher z position of 

approximately 2 mm.  The SDi2 therefore appears to be picking up absorbance 

additional to the physical presence of the wire, with the position of 2 mm for the first 

four time segments showing calculated concentrations above 0.07 mg/mL.  The final 

time segment shows two dips in concentration at z positions of 2 and 2.25 mm, with 

some absorbance between them.  An interesting observation is that the steel wire 

utilised to hold the crystal has a diameter of 0.2 mm.  One possible and very feasible 

explanation is that the position of the wire during the start-up and during the run (with 

crystal attached) has slightly changed, resulting in a shift between blanked positions.  

Additionally the presence of varnish to hold the crystal in place on the wire will affect 

light absorbance and although it will remain present after the crystal has dissolved, it 
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was not present during the start-up runs so will not be blanked out in the same way as 

the wire has been.  One way to resolve this challenge may be to remove the wire 

during the start-up section of the run, although this will add a separate challenge in 

distinguishing the physical presence of the wire versus the crystal.    

Overall, this section highlights the sensitivity of the SDi2 method in detecting changes 

in absorption (and therefore calculated concentration) at different positions 

throughout the cell over time.  It also confirms once again the advantages of being 

able to visualise dissolution using both a UV and a visible wavelength.  The ability to 

understand whether an absorbance relates to a concentration change or a physical 

obscuration is supported greatly by the dual wavelength capability.  It should be noted 

that there is great disparity between the reported maximum solubility of paracetamol 

in water, which is approximately 14 mg/mL at 25°C, and the maximum concentration 

of 0.120 mg/mL observed with the SDi2 (at 37°C).270  This confirms that the solution 

has not reached saturation and sink conditions have been maintained throughout this 

example by means of the flowing of solvent and highlights an additional advantage of 

the SDi2 technique over the more traditional dissolution methods. 

4.3.2 Dissolution flux and mass released using UV absorbance 

The SDi2 Analysis software produces a default report for the CFC when the molar 

absorption coefficient (ε) and molecular mass are inputted.  The report includes 

surface absorbance (mAU), intrinsic dissolution rate (IDR) with standard deviation 

(µg/min/cm2), and sample mass released (mg).  All of these are per time segment and 

according to the defined start and end frames.  These calculations are appropriate 

when analysing a compact of sample, but when using the CFC to monitor the 

dissolution of a single crystal require further consideration.  Figure 4.72 highlights the 

default three zones for the CFC that are used to calculate this report. 
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Figure 4.72 – Image of the compact flow cell with zones highlighted for calculating: (i) 
background reference, (ii) surface absorbance (additionally coloured in white) and (iii) 
intrinsic dissolution rate.  The bottom surface of the flow cell is labelled z0 and both the 
crystal and the wire holding it are circled in orange. 

The background absorbance calculation continues to be useful, but the surface 

absorbance calculation is not appropriate due to the presence of the wire holding the 

crystal and the placement of the crystal in the centre of the cell.  The IDR zone 

monitors absorbance changes and may still be used, but the IDR value it produces is no 

longer relevant because the surface area of the crystal is constantly changing.  Instead 

the raw IDR data (µg/min/cm2) can be manipulated to remove surface area (0.07 cm2) 

and leave the dissolution flux (µg/min), which can be plotted per time period, see 

Figure 4.73.  This data, when used in combination with both the UV and visible images 

throughout dissolution, see Figure 4.74, helps to further understand dissolution of a 

crystal. 
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Figure 4.73 – SDi2 compact flow cell calculated dissolution flux using intrinsic dissolution rate 
data for a paracetamol crystal dissolving in deionised water flowing at 2.16 mL/min.  The 
zone was set up at a position of 23.00 in x dimension, 1.54 in z dimension with a width of 
0.50 mm and a height of 3.00 mm. 

 

Figure 4.74 – SDi2 compact flow cell image at 520 nm (left) and 280 nm (right) showing a 
paracetamol crystal held on wire loop with deionised water flowing from left to right 
through the cell.  In addition to the main crystal held in the centre of the cell on the loop, a 
smaller piece of crystal can be seen at the bottom of the cell to the right.  In the 280 nm 
image the small piece of crystal is hidden by the plume of dissolving paracetamol coming 
from the main crystal and flowing right. 

The initial negative flux seen in Figure 4.73, is likely caused by the solvent front moving 

through the cell and the removal of an air bubble by opening the hatch and tipping the 
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cell.  The initial peak at approximately 250 secs can then be correlated with a small 

piece of crystal detaching from the main body and falling to the bottom of the cell 

whilst continuing to dissolve, see Figure 4.74.  This would increase the surface area 

available for paracetamol to dissolve from and thus increase the dissolution flux, which 

quantifies the amount of paracetamol passing through the zone (labelled (iii) in Figure 

4.72) per minute. 

The sample mass released, which is automatically reported by the SDi2 can also be 

utilised, see Figure 4.75.  This is calculated using the concentration of sample released 

through the IDR zone downstream of the dissolving crystal; the surface area is 

multiplied out to provide the dissolution flux which is then multiplied by the time 

segment with an adjustment for units to provide the mass (in mg) released, and this is 

plotted cumulatively against time. 

 

Figure 4.75 - SDi2 compact flow cell calculated sample mass released for a paracetamol 
crystal dissolving in deionised water flowing at 2.16 mL/min.  The zone was set up at a 
position of 23.00 in x dimension, 1.54 in z dimension with a width of 0.50 mm and a height of 
3.00 mm.  Linear regression has been applied to the section highlighted in yellow, with 
details inset. 
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Figure 4.75 shows a rapid initial release of sample which correlates with the smaller 

piece of crystal detaching from the main body.  A constant rate of mass release is then 

achieved between 600 and 2900 secs, before the mass released plateaus at 0.9 mg, 

confirming the crystal is fully dissolved after 3000 secs.  The continuous (zero order) 

release rate makes it likely that dissolution is occurring through an erosion mechanism, 

which could be further confirmed by looking at how the crystal changes in size with 

time.2,3 

4.3.3 Monitoring size change using visible absorbance 

Monitoring dissolution with dual wavelength capabilities enables a UV wavelength to 

capture concentration changes and the visible (520 nm) wavelength to observe objects 

that are physically obscuring light transmission through the flow cell.  The absorbance 

of visible light can theoretically be used therefore, to infer details about size changes 

during dissolution.  There are two Pion-suggested methods for monitoring size changes 

using the visible wavelength: one for the CFC and one using the WDC.  Both will be 

described and applied to single crystal dissolution, with their advantages and 

limitations discussed, along with a suggested new method for the CFC.  The Pion 

compact flow cell method and then whole dose cell method are explained first as 

these outline the theory and practical aspects of monitoring size change with the 

visible wavelength. 

Method 1 – Pion compact flow cell zones 

Pion recommend a method for monitoring size which utilises the seven available 

additional zones; absorbance is reported every 0.01375 mm in the z axis and every 

0.0137 / 0.0138 mm (alternating) in the x axis, however the minimum zone size 

permitted by the software is 0.02 mm.  The zones can therefore be spread evenly over 

the area to be monitored or the process of extraction can be repeated multiple times 

adjusting the zones to obtain visible absorbance data per 0.02 mm, as shown in Figure 

4.76.   
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Figure 4.76 – Representation of Pion method for monitoring size changes using the visible 
wavelength.  The orange rectangle represents a dosage form or crystal and the blue lines 
represent each of the seven additional zones.  The zones can be positioned in multiple ways 
and used to monitor size across the horizontal axis or the vertical axis. 

The method requires the orientation to be defined as either vertical or horizontal, with 

each providing data per (0.01375 mm) pixel for the oppositely named dimension.  In 

this instance horizontal was selected, with x defined as 12.4 mm and the width as 2 

mm (this encompasses a range of 12.4 to 14.4 mm in the x dimension).  Each of the 

seven zones was arranged to begin at a different z value with each height defined as 

0.02 mm, and this was completed twice thus covering between 3.40 and 3.66 mm in 

the z dimension.  Figure 4.77 shows the starting images from which absorbance 

readings were obtained, with the seven additional zones positioned in the centre of 

the crystal.   
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Figure 4.77 – SDi2 compact flow cell image at 255 nm (top) and 520 nm (bottom) showing a 
paracetamol crystal being held on steel wire loop and deionised water flowing from left to 
right through the cell.  The absorbance key using the jet colour map is shown to the right.  
Both images are from the start of dissolution (image number 230).  The additional zones set 
up to measure size change can be seen faintly across the centre of the crystal in both the 255 
and 520 nm images.  The z dimension is shown from 0 to 6 mm and the x dimension is shown 
from 0 to 28 mm. 

The bottom 520 nm image of Figure 4.77 is the most relevant, as the method utilises 

absorbance of the visible wavelength and this image shows that these additional zones 

extend past either side of the crystal.  The surface absorbance zone has been moved to 

the far left of the cell to aid in understanding the images, but the reference and IDR 

zones have been left in place.  The raw data from these zones can be viewed in the 

SDi2 software as an absorbance profile and can also be extracted as a number of 

absorbance values, see Figure 4.78 and Table 4.13, respectively.  Each of the data sets 

is for a single zone and must be extracted individually.   
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Figure 4.78 – 520 nm absorbance profile for a single zone for data obtained between 263 and 
323 seconds of dissolution of a single paracetamol crystal in deionised water in the compact 
flow cell. 

As an example, the profile shown in Figure 4.78 is one of fourteen for this time 

segment, and there were 26 time segments, making a total of 364 absorbance profiles 

to produce data for the section of crystal between 3.40 and 3.66 mm in the z 

dimension.  Additionally, Table 4.13 provides the same data but in a different manner, 

reporting average absorbance values for each x position for each time segment (and 

repeats this for each zone).  In its entirety there are 145 lines of data to capture each 

pixel, with twenty-six time segments, and all repeated for each of the fourteen zones.  

Table 4.13 – Small section of raw 520 nm absorbance extracted from the SDi2 software for a 
single zone for two time segments to provide an example of the data produced.  For the 
distance of 2 mm in the x dimension there are a total of 145 lines of data to capture each 
pixel with the distance alternating between 0.0137 and 0.0138 mm. 

x (mm) 0 to 263 secs 263 to 323 secs 

12.3887 0.02688 AU 0.02466 AU 

12.4025 0.02757 AU 0.02447 AU 

12.4162 0.03856 AU 0.03203 AU 

The visible absorbance from each of the zones between 3.40 and 3.66 mm in the z 

dimension, was extracted from the SDi2 software into Origin and contour plots were 

produced.  Each plot shows the visible absorbance per pixel (the x values reported 
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alternate between per 0.0137 and 0.0138 mm) in the horizontal dimension and per 

0.02 mm in the z dimension (the smallest height available to select using the SDi2 

software).  This data was obtained for each sixty second segment throughout the thirty 

minutes of dissolution.  This is challenging to represent visually, so data from one of 

the sixty second segments is shown in Figure 4.79. 

 

Figure 4.79 – Contour plot showing absorbance at 520 nm through a small section of a 
paracetamol crystal using a colour map with key provided on the right in absorbance units 
(AU).  This is an average of absorbance data between 263 and 323 seconds, at the start of 
dissolution in deionised water. 

The contour plot in Figure 4.79 shows a low absorbance as blue (< 0.3 AU) and a high 

absorbance as red (> 0.7 AU), noting that this uses 520 nm data and therefore provides 

information about the physical presence of crystal in the light path rather than 

differing concentrations of dissolved paracetamol.  The absorbance in the centre of the 

plot is red and orange confirming the clear presence of an obstacle in the path of the 

visible light.  The absorbance in this 0.28 x 2.00 mm section of image ranges from 

0.0160 to 0.8340 AU, with absorbance gradually reducing from a maximum at the 

centre towards a minimum at the right and left edges, which correlates well with the 

image of the crystal relative to the zones and the cell.  The point at which the solid 
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crystal surfaces become dissolving crystal or solution is not clearly defined, however, 

this is consistent with the presence of the boundary layer between a dissolving solid 

and liquid.  The transition from solid to liquid is considered to be a gradual process 

rather than a distinct step,2 and monitoring dissolution using a visible wavelength 

allows for further exploration of this, particularly with regard to the absorbance values 

which constitute a solid, liquid or in-between “dissolving” section.  

 

Figure 4.80 – Contour plot showing absorbance at 520 nm through a small section of a 
paracetamol crystal using a colour map with key provided on the right in absorbance units 
(AU).  This is an average of absorbance data between 1763 and 1823 seconds of dissolution 
in deionised water. 

Figure 4.79 shows the absorbance values at the start of dissolution, between 263 and 

323 seconds, whereas Figure 4.80 shows the same area after 30 minutes of flowing 

deionised water (at 2.16 mL/min).  Each colour map has a slightly different scale with a 

maximum absorbance in Figure 4.80 of 0.7640 AU, compared with a maximum 

absorbance of 0.8340 AU in Figure 4.79.  This reduction in the maximum visible 

absorbance within the central section provides supporting evidence that the crystal is 

dissolving and therefore becoming less opaque with time.   This inner section of higher 

absorbance (red / orange) reduces in width from Figure 4.79 to Figure 4.80 as the 
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crystal reduces in size due to dissolving and can be quantified by defining, for example, 

0.5690 AU as the transition point between solid and liquid.  In this case the width is 

calculated to reduce from approximately 1.5 mm to 0.75 mm, thus halving over this 

time period (and for this section of the crystal) and this can be repeated for the full 

length of the crystal with some additional work.  Arguably, the definition of an 

absorbance value that represents a transition point between solid surface and liquid is 

an arbitrary one, and its consistency will enable comparison of size changes.  Chapter 

5. Software based analysis of dissolution imaging to determine the relative stability of 

an unusual series of solvate polymorphs, will explore how to support this process 

further through the use of image analysis and the correlation of the UV images with 

the visible data. 

 

Figure 4.81 - Visual representation of each orientation through which to extract absorbance 
data.  The large orange rectangle represents a solid dosage form or crystal.  The blue 
rectangles represent the seven additional zones for monitoring absorbance.  These may be in 
a horizontal orientation, producing absorbance data per 0.01375 mm x 0.02 mm area (h x w), 
or in a vertical orientation, producing absorbance data per 0.02 mm x 0.01375 mm area (h x 
w), which have been represented by the smaller orange rectangles. 

In summary, the Pion method provides an extensive amount of data, which offers an 

opportunity to quantify the visible wavelength images through reporting of 
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absorbance values per 0.01375 x 0.02 mm sections.  The method can also be repeated 

for the opposite dimension, in this case the crystal height by selecting vertical sections 

through the crystal, which would obtain the maximum amount of data from the 

experiment.  The complexity of the data is easier to understand visually, hence Figure 

4.81 has been produced in an attempt to summarise the process.  Extracting data using 

both methods provides information on each dimension (x and z), in addition to 

providing information through time, however, this makes the data even more 

cumbersome, time-consuming and complicated to both extract and analyse. 

Method 2 – Pion whole dose cell software 

The WDC analysis software uses a tablet edge threshold to plot height and width 

changes for whole dose formulations.  The WDC analysis software requires the solid 

particles and tablet edge thresholds to be set manually by the user.  There is no Pion 

recommended setting for what constitutes a solid particle or a tablet edge, the user is 

encouraged to move the cursor over the areas where the edges appear to be on the 

520 nm image and thereby determine an appropriate set of values.  The profile 

tracking setting can be used to aid this by highlighting absorbance for a number of 

contours, see Figure 4.82. 

 

Figure 4.82 – SDi2 whole dose cell image at 520 nm showing a paracetamol crystal being held 
on a steel wire clasp and the solvent front of deionised water moving from bottom to top 
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through the cell (the current frame of 225 shows it at the very top).  The jet colour map has 
been used to display the different absorbance values with the key on the right hand side, 
and profile tracking has been applied with five contours of 200 (grey, outer), 300 (green), 400 
(orange), 500 (white) and 600 (red, inner) mAU. 

The contours are applied to both wavelength images, however, only the 520 nm image 

has been shown for observing size changes.  A significant challenge is that the 

paracetamol crystal and wire cannot easily be distinguished from each other, although 

some of this can be managed through altering the orientation of the crystal and the 

bending of the wire.  As previously mentioned, the challenge of deciding upon an 

absorbance value that defines a solid crystal also remains.  The gradual transition 

between solid, dissolving solid and solution can clearly be seen in the image, so the 

arbitrary definition of a minimum absorbance that constitutes a physical presence in 

the path of the light would simply allow this to be quantified consistently by the 

software.    

 

Figure 4.83 – Plot of visible absorbance versus x position for two time segments (start and 
finish) for a horizontal zone highlighted (and enlarged) in orange on the crystal image (inset). 
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Figure 4.84 – Plot of visible absorbance versus z position for two time segments (start and 
finish) for a vertical zone highlighted (and enlarged) in orange on the crystal image (inset). 

To explore this further for the WDC, two additional zones were set up to monitor 

absorbance both horizontally and vertically through the crystal shown in Figure 4.82.  

Plots showing the visible absorbance at the start and finish for the horizontal zone and 

the vertical zone are provided in Figure 4.83 and Figure 4.84, respectively.  Both figures 

show distinct peaks in visible absorbance that correspond with the position of the 

crystal, which is between 11 and 16 in the x dimension, and between 9 and 13 in the z 

dimension.  Figure 4.84 shows an additional peak, which corresponds to the lower 

section of wire; the zone was extended to include the lower wire in addition to the 

upper wire with crystal attached for comparison purposes.  Both Figure 4.83 and 

Figure 4.84 show a sharp increase in visible absorbance in the presence of both crystal 

and wire, suggesting that the boundaries are distinct and not gradual as was the case 

with the CFC, which may be a result of the WDC turbulent flow disrupting the clear 

definition of any forming boundary layers. 
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Figure 4.85 – SDi2 whole dose cell 520 nm image of paracetamol crystal attached to wire at 
start (left) and end (right) of thirty minutes of deionised water flowing at 4.08 mL/min.  The 
box around the crystal is applied automatically by the software using the tablet edge 
threshold setting, which is 200 mAU in this example. 

Utilising the WDC software and defining the tablet edge threshold as 200 mAU, the 

horizontal and vertical zones were set to encompass the whole crystal, which results in 

a box being drawn around it as shown in Figure 4.85.  The data has been obtained per 

thirty second segments after the solvent front has moved past the crystal (3 minutes 

20 seconds) and can be extracted as graphs of height and width changes (in addition to 

raw data and the video), see Figure 4.86 and Figure 4.87. 
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Figure 4.86 – SDi2 Analysis graph showing the change in height at the tallest point of the 
paracetamol crystal throughout the thirty minutes of flowing deionised water in the whole 
dose cell.  Data obtained from the 520 nm image using an edge threshold of 200 mAU. 

 

Figure 4.87 – SDi2 Analysis graph showing the change in width at the widest point of the 
paracetamol crystal throughout the thirty minutes of flowing deionised water in the whole 
dose cell.  Data obtained from the 520 nm image using an edge threshold of 200 mAU. 
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The graphs provide measurements for the widest and tallest section but are unable to 

account for the finer details of the crystal.  They also include sections of the wire 

holding the crystal, which will be of a consistent size but cannot be excluded or 

subtracted using the SDi2 software.  Adjusting the tablet edge threshold changes the 

absolute size measured but does not change the extent of detail obtained or the 

inclusion of the wire holder.  In summary, this WDC method lacks the finer detail 

required to be able to accurately measure the size change of a crystal throughout 

dissolution, in large part due to the turbulent flow through the cell.  However, it 

provides supporting information about the definition of thresholds and their impact 

upon measurements, and also highlights that it may be possible to incorporate a 

similar threshold method into the CFC section of the SDi2 software for future 

instruments.  

Method 3 – Novel compact flow cell zones 

An alternative, novel method using fewer additional CFC zones was developed and 

explored to understand the information that could be obtained.  Four additional zones 

were applied manually – two obtaining data in the vertical dimension (z) and two 

obtaining data in the horizontal dimension (x).  Two large zones were placed over the 

whole crystal, a smaller zone was placed where the crystal was tallest and another 

smaller zone where the crystal was widest.  The settings and methods used are 

detailed in Figure 4.88 and Table 4.14. 
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Figure 4.88 – Setting up the compact flow cell data analysis method for analysing a change in 
crystal size through the visible wavelength monitoring. 

Table 4.14 – Comparison of details for a novel method of monitoring size change using the 
visible wavelength. 

Zone name Orientation X (mm) Z (mm) Width 

(mm) 

Height (mm) 

Whole crystal (i) Vertical 11 1.5 5.5 3.8 

Whole crystal (ii) Horizontal 11 1.5 5.5 3.8 

Section height (iii) Vertical 12.8 1.5 0.5 3.8 

Section width (iv) Horizontal 12 3.5 3.5 0.5 

The method is described for a paracetamol crystal held with Blu-tac® and dissolved for 

21 minutes in deionised water at 37°C.  This run was selected not because it shows a 

particularly “good” example of single crystal dissolution, but because it highlights the 

varied and extensive information that can be extracted using this method, especially in 

combination with concentration monitoring and the viewing of images.  Visible 

absorbance data was extracted for each zone, per segment of sixty seconds, and 

analysed using Origin software.  A graph for each zone showing absorbance versus 

dimension for each time segment could then be plotted for each zone.  Note that it 

took approximately sixty seconds for the CFC to be completely filled, so data obtained 

prior to this was excluded from each analysis.  The whole crystal zones will be 
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discussed first, with only a small selection of time segments plotted for clarity, see 

Figure 4.89 and Figure 4.90. 

 

Figure 4.89 - Visible absorbance versus x position across the whole crystal in the horizontal 
orientation for a selected number of time segments.  Labels from (a) – (d) show distinct 
sections of the plot and the arrows show the direction of change with time.  Inset is a visible 
image of the crystal from the start of dissolution with the zone highlighted in orange and 
labels matched to the section of the crystal they correspond to. 

Figure 4.89 shows the visible absorbance data per x position, hence it is averaged 

across the z dimension.  The data is reported for the entirety of visible absorbance 

values within the highlighted rectangular zone, hence it incorporates the crystal in 

addition to the adhesive fixing it in place at the bottom.  The areas labelled (a) and (d) 

correspond to the Blu-tac® and the absorbance values in these sections do not change 

throughout dissolution.  The peak labelled (b) reduces throughout dissolution as the 

average absorbance reduces.  This correlates well with a reduction in size of the 

crystal, which would be expected as it dissolves.  The area labelled (c), however, 

increases in average absorbance over time, suggesting that while the left side of the 

crystal is decreasing in size (or opacity / density), the right side actually increases in 

size or becomes more opaque / more dense.   
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Figure 4.90 - Visible absorbance versus z position across the whole crystal in the vertical 
orientation for a selected number of time segments.  Labels from (a) – (c) show distinct 
sections of the plot and the arrows show the direction of change with time.  Inset is a visible 
image of the crystal from the start of dissolution with the zone highlighted in orange and 
labels matched to the section of the crystal they correspond to. 

Figure 4.90 shows the reported visible absorbance per z position, hence this is 

averaged across the x dimension.  The area labelled (a) corresponds with the bottom 

of the flow cell, where the crystal is held in the adhesive, and this remains constant 

throughout dissolution as expected.  The area labelled (b) reduces in average visible 

absorbance across the length of the crystal throughout dissolution, which fits with the 

crystal reducing in size and density as it dissolves, thus becoming less opaque and 

absorbing less visible light.  Label (c) refers to the top of the cell and crystal, and 

remains constant above the z position of 5 mm.   

The area under the plot for each time segment can also be calculated and used to 

represent the size of the crystal and how it changes throughout dissolution, see Figure 

4.92.  A limitation of using one zone to cover the entire crystal is that for whichever 

orientation the data represents, it is an average in the other dimension (in addition to 

always being an average in the y dimension).  Although this results in the 

measurement of absolute size being incorrect (this is compounded by the 

magnification within the SDi2 imaging software), the change in this number from start 

to finish and the rate at which it changes will be consistently calculated and looks to be 
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sufficient to draw comparisons between data.  The start and end visible images with 

the highlighted zone are shown in Figure 4.91 to aid understanding of the additional 

plots in Figure 4.92. 

 

Figure 4.91 – Comparison of start and end images of crystal using visible wavelength, with 
zone highlighted in orange. 
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Figure 4.92 – Compact flow cell data for zones covering the entire crystal in both horizontal 
and vertical orientations.  Left graphs show absorbance versus dimension (either x or z) for 
each time segment with the absolute area under each obtained using Origin software.  Right 
graphs show absolute area plotted against time segment to represent the change in the size 
of crystal throughout dissolution.   

Figure 4.92 shows on the left side the same plots as in Figure 4.89 and Figure 4.90, but 

with all the time segments included, and on the right side the absolute area is plotted 

against each time segment throughout dissolution.  This provides a method of 

quantifying the reduction in average visible absorbance throughout dissolution, and 

concludes that both the horizontal and vertical dimensions reduce at a fairly constant 

rate.  Linear changes in dissolution relate to zero order kinetics and suggest that 

dissolution is occurring through an erosion mechanism, as opposed to a diffusion 

mechanism.3,8  This fits with the reporting of sink conditions within the CFC, which 

would enable high concentrations of dissolved paracetamol to move quickly through 

the cell, primarily by advection, thus dissolution is limited by the rate at which the 

crystal is able to erode rather than diffusion.   
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Erosion is likely to occur more rapidly on the left side of the crystal, as this will be 

experiencing the greatest impact pressure from the flow of solvent.  This incoming 

solvent will also contain little-to-no dissolved paracetamol thereby renewing the 

concentration gradient across the boundary layer.  The right side of the crystal will be 

experiencing a relatively lower solvent pressure, which results in the creation of 

turbulent wake regions or stagnation zones (see previous Figure 4.54 and Figure 

4.93).77,268  Assuming the flow of solvent in this region is sufficiently stagnant and the 

concentration of paracetamol dissolved in this stagnating solvent is increasing 

(dissolved paracetamol movement is limited to only diffusion), the conditions may be 

sufficient to result in growth on this side of the crystal, which could begin to explain 

the increase in average absorbance.  This would require extensive further work to 

confirm, and it would be particularly interesting to identify the solid state properties of 

any areas of growth. 

 

Figure 4.93 – Aerial and side view of the CFC, with a crystal represented by the orange 
diamond and solvent flow represented by the blue arrows.  A blue star suggests a wake 
region whereby the presence of the crystal and adhesive (grey rectangle in the side view) 
interrupts the laminar flow. 

This can be further explored by considering the additional sections of height and 

width, which will be discussed next.  These have again been plotted with only a small 

selection of time segments plotted for clarity, see Figure 4.94 and Figure 4.95. 
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Figure 4.94 – Plot of visible absorbance versus z dimension for the tallest section of the 
crystal.  The arrows labelled (a), (b) and (c) mark three distinct areas of change through time.  
The visible image of the crystal at the start is shown inset, with the zone highlighted in 
orange and the approximate positions of (a), (b) and (c) marked. 

Figure 4.94 shows the change in absorbance with time for the zone positioned through 

the tallest section of the crystal and highlights three main areas of change.  The first 

label (a) is positioned towards the bottom section of the CFC and corresponds to the 

area of the crystal being held in place by Blu-tack® in this instance.  There is no change 

in absorbance here throughout dissolution confirming that although the adhesive was 

found to be bulky and insufficiently stable for the WDC, this data confirms it has 

worked sufficiently well for the CFC and does not swell or change in size or position to 

affect absorbance over time; this is consistent with the previous data for the whole cell 

visible absorbance values.  Between (a) and (b) there is a reduction in visible 

absorbance, suggesting that the crystal becomes less opaque and is dissolving.  

Between (b) and (c) the initial reduction in absorbance can be correlated with the 

reduction in height of the crystal.  By position (c) there is an increase in absorbance, 

which when interpreted with the visible images, highlights a bubble sticking between 

the top of the crystal and the top of the CFC.  The cumbersome nature of the Blu-tack® 

may be partially to blame for this, significantly impacting upon solvent flow through 

the cell, in addition to the large crystal itself. 
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Figure 4.95 - Plot of visible absorbance versus x dimension for the widest section of the 
crystal.  The arrows labelled (a), (b) and (c) mark three distinct areas of change through time.  
The visible image of the crystal at the start is shown inset, with the zone highlighted in 
orange and the approximate positions of (a), (b) and (c) marked. 

Figure 4.95 shows the change in absorbance through time for the zone positioned 

across the widest section of the crystal and again highlights three main areas of 

change.  Label (a) is positioned on the left side of the crystal and through the reduction 

of absorbance at these positions, confirms that the crystal face is undergoing erosion.  

There is little change in the visible absorbance between (a) and (b), in line with the 

central section of crystal remaining in place throughout this run.  Between (b) and (c) 

the absorption data suggests that the crystal face expands in this direction, suggesting 

that as the crystal reduces in height, it increases in width.  Upon viewing in conjunction 

with the UV images, the starting image shows a faint absorption to the right of the 

crystal, which is shown in Figure 4.95 for the 60 – 120 sec segment as the second red 

peak in absorbance at an x position of approximately 14.7 mm.  This shoulder peak 

increases in size and merges into the main peak halfway through the run, appearing to 

suggest that the crystal increases in width.   

To explore this data further the additional method for quantifying and visualising these 

absorbance changes was used.  The area under each absorbance vs dimension graph in 

Figure 4.94 and Figure 4.95 was again calculated and plotted against time segment.  
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The data for each zone is presented in Figure 4.96 along with visible images of the 

crystal at the start and end of dissolution, relative to the monitoring zones, to aid 

understanding.  The images in Figure 4.96 show a clear bubble appearing and moving 

sideways at the top of the crystal, and show a change in absorption to the right of the 

crystal.   

 

Figure 4.96 – Visible images of the crystal at the start and end of dissolution in addition to 
plots of absolute area versus time segment for the section through the crystal height and the 
section across the crystal width. 

The plot of absolute area versus time segments for the crystal height section provides 

confirmatory data that the crystal reduces in height at a constant rate throughout 

dissolution, with the absolute area for the tallest section of the crystal decreasing 

between 60 and 960 seconds.  The exception is the appearance of the bubble, which 

causes a brief increase in absolute absorbance between 960 and 1140 secs before it 

moves away.  The reported data correlates well with the images and with the 

previously reported whole crystal data, which suggests an overall reduction in average 

absorbance with time, confirming that this is most likely due to the crystal reducing in 
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size as it dissolves.  This height change was able to be monitored comparatively simply 

(relative to the previously-described Pion method) using only one zone across the 

tallest section of crystal. 

The measurement of crystal width suggests that the absolute area for the widest 

section of the crystal increases initially for 240 seconds, then decreases, with a number 

of step changes occurring as it reduces.  The visible images show a faint absorption 

area to the right of the crystal that increases in absorbance at the very start of the 

dissolution run.  This supports the previous theory that the area to the right of the 

crystal is subject to less erosion and may instead result in conditions that support 

crystal growth due to the presence of stagnation zones.  The overall width decreases 

however, suggesting that in total, erosion is occurring more rapidly than crystal 

growth, which is supported by viewing the UV images, which show the continuous 

diffusion of dissolving paracetamol through the cell.   To support this, the UV 

absorption across the same section of crystal width was plotted per time segment and 

sample mass released was calculated, see Figure 4.97, Figure 4.98 and Figure 4.99. 

  

Figure 4.97 – UV absorbance through same horizontal section of crystal as the previously 
calculated visible absorbance. 
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Figure 4.98 – UV absorbance with time for each of the x positions highlighted with arrows in 
the previous plot. 

 

Figure 4.99 - Sample mass released calculated using the SDi2 software.  Linear regression has 
been performed and is included (red line) with details reported inset. 
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Figure 4.97 shows the change in UV absorbance (255 nm) across the same horizontal 

section of the crystal.  A selected number of time segments have been included and 

the arrows show the direction of change.  UV absorbance can be seen to decrease 

across the full width of the crystal throughout dissolution to similar extents, but at 

different rates on either side of the crystal, as highlighted in Figure 4.98.  Figure 4.99 

reports the sample mass released throughout the time period monitored and provides 

further confirmation that overall, dissolution is occurring at a constant rate and 

therefore primarily through an erosion mechanism.  The horizontal zone is positioned 

centrally, hence there will be very little diffusion above this point but there will be a 

large influence from density gradients, which results in higher concentration solution 

falling to the bottom of the cell, see Figure 4.100.   

 

Figure 4.100 - CFC 255 nm images of the paracetamol crystal dissolving at the start, middle 
and end of the dissolution run. 

Overall, this data confirms that visible absorbance information can provide a useful 

means to quantify size changes and dissolution mechanisms.  Summary data can be 

extracted through simple methods and may allow dissolution mechanisms to be 

suggested.  The key advantage of the SDi2, however, is the ability to monitor and 

quantify absorbance using two wavelengths, in addition to being able to view images 

of the process.  It is the combination of data from each of these sources that helps to 

build the story of what may be occurring during the dissolution of a single crystal. 

4.4 Conclusions and further work 

This proof of concept work with paracetamol single crystals has enabled development 

of a method to attach single crystals in a flow of solvent in the whole dose cell and in 

the compact flow cell, and has enabled the monitoring of dissolution from a single 
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face.  The novel dual wavelength imaging allows for concentration monitoring through 

UV measurements (with calibration to find the molar absorption coefficient), in 

addition to the monitoring of size and appearance changes through obtaining visible 

absorbance data.  This expands upon the previous single wavelength monitoring work 

by enabling both physical and concentration changes to be observed concurrently as 

well as providing a method for fixing the crystal in place within the flow cell.  An 

extensive range of concentrations can be observed through using additional UV 

wavelengths aside from the max to avoid reaching absorbance values greater than 1.5 

AU, after which linearity is lost.  The concentration at any point within the flow cell 

throughout dissolution can be obtained for an area as small as 0.01375 mm x 0.0200 

mm.   

The influence that a physical obscuration has upon UV absorbance and therefore 

concentration calculations as yet requires further development.  An exploration of the 

alignment between UV and Vis images may support a more precise determination of 

surface edges, although the literature agrees that a transition from solid to liquid 

through the boundary layer is actually the result of a gradual process rather than a 

step change.2  As such the definition of a value to distinguish between solid and liquid 

may be considered unnecessary, and instead the use of a consistent but sensible value 

to enable comparisons to be drawn proves to be sufficient.  In spite of this challenge, 

visualising dissolution in both UV and visible wavelengths provides a huge advantage 

over single wavelength imaging simply by confirming that a physical obscuration is 

present in the cell and may therefore influence the UV absorbance. 

Additionally, although the resolution of SDi2 images by eye is comparable with the 

previous instrument (SDI), the dual wavelength capability of the newer equipment 

enables visible absorbance to be captured throughout dissolution.  This data can then 

be used to extract information about size changes with a resolution of 0.0200 mm x 

0.01375 mm, limited currently by the data extraction technique.  Image analysis should 

support this process further and will allow exploration of this transition between a 

physical presence in the path of light and an absorbance due to a high concentration of 

dissolved sample, in addition to potentially improving resolution capabilities.  This 

work also confirms that visible absorbance data can be extracted as an average 
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absorbance across a defined section, such as the tallest point of the crystal, to enable 

size changes to be calculated more simply. 

Finally, the work flags a number of challenges for the dissolution monitoring of single 

crystals using a CFC, particularly with regard to the hydrodynamics.  The orientation of 

the crystal relative to solvent flow influences dissolution through the creation of wake 

regions and affects the balance between diffusion, density gradients and laminar flow.  

The complexity of the hydrodynamics within the CFC would benefit greatly from 

further modelling to distinguish between that which is a result of the dissolution 

process and that which alters it.  Placing the single crystal in the centre of the flow cell 

very clearly influences the hydrodynamics surrounding it, which will in turn influence 

the dissolution observed at each face.  The use of stop flow may therefore prove to be 

useful in exploring single crystal dissolution further still, where stop flow refers to 

filling the CFC with solvent before stopping flow completely and monitoring the 

changes within the cell.  
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5. Software based analysis of dissolution imaging to determine the 

relative stability of an unusual series of solvate polymorphs 

5.1 Introduction 

The previous chapter described the development of a method to monitor single crystal 

dissolution using the SDi2 with its novel dual wavelength technology, enabling the 

imaging of both UV and visible absorbance through one of two flow cells.  The work 

aimed to determine if the technology could establish a link between the functional 

groups present at crystal surfaces and their dissolution properties.  The technique was 

used to visualise the surface of a dissolving solid in addition to the boundary layer 

(between solid and liquid) throughout dissolution.  The SDi2 software was also 

examined to determine the level of detail it could provide. 

The SDi2 is able to provide images showing the absorbance for both a UV and a visible 

wavelength, which allows for a more detailed interpretation of dissolution than single 

wavelength imaging.  This monitoring of visible absorbance enables the reporting of 

size changes for single crystals throughout dissolution, although the absolute or exact 

crystal measurements are more challenging to define due to a combination of image 

magnification, 2-dimensional imaging of a 3-dimensional object, and the definition of 

threshold values to distinguish between solid surface and boundary layers.  As stated 

previously, the resolution of absorbance data is limited by the SDi2 analysis software, 

which reports data for a minimum height or width of 0.02 mm, however, the 

absorbance data stored by the instrument allows for a resolution as small as 0.01375 

mm2. 

The application of image analysis software was therefore explored to determine 

whether this could improve resolution and allow the extraction of absorbance values 

per pixel (0.01375 mm2).  It was anticipated that such analysis might aid in correlating 

the UV and visible images from the SDi2, in order to clarify a threshold between the 

solid surfaces and the dissolving solid.  The single crystal methodology and image 

analysis technique was applied to a novel series of I-TPI polymorphs to determine 

whether the SDi2 in combination with imaging techniques may provide the means 



164 
 

through which to determine the relative stability of each polymorph, thereby reporting 

a stability series. 

5.2 I-TPI background 

The SDi2 method for monitoring dissolution of single crystals was applied to a 

supramolecular system involving a series of methanol solvates of a mono-iodinated 

2,4,5-triphenyl imidazole derivative referred to simply as I-TPI.  The compound was 

found to behave as an unusual example of Ostwald’s rule of stages, which describes 

how crystallisation may occur in steps through a series of metastable forms before 

producing the most thermodynamically stable form.36,271  This system was selected due 

to its unusual behaviour; I-TPI initially crystallises from methanol as a gel, which 

subsequently transforms to two solvate forms termed SI and SII, thus providing an 

opportunity to explore three distinct forms with differing relative stabilities.  

Three forms of I-TPI were explored: a gel, Form SI and Form SII, see Figure 5.101.  The 

transparent gel is formed by cooling a supersaturated solution of I-TPI in methanol and 

spontaneously crystallises as a kinetically-controlled cascade of polymorphic solvates.  

The metastable Form SII appears within the intact gel phase and with time transforms 

into the thermodynamically stable Form SI, concomitant with collapse of the gel.  Form 

SI may also crystallise directly, but always with collapse of the gel.  Work by Andrews 

et al. in determining the structure of the gel suggested that it can be considered “the 

first step in the crystallisation regime of I-TPI”.272 

 

Figure 5.101 – The I-TPI system: I-TPI molecule, and photographs of the I-TPI gel, Form SII 
crystals within the gel and a number of Form SI crystals. 
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The differing thermodynamic stability between the three forms of I-TPI will therefore 

result in different dissolution rates for each; the most thermodynamically stable, Form 

SI, would be expected to dissolve the slowest and the least thermodynamically stable, 

I-TPI gel, would be expected to dissolve the quickest.273  The ability to monitor single 

crystal dissolution with the SDi2 provides an opportunity to explore this I-TPI series 

further and determine: i) whether dissolution might be used to distinguish between 

each form and ii) whether it might offer sufficient information that the forms can be 

ranked according to their stability. 

5.3 Methods 

I-TPI was found to be insufficiently soluble in aqueous media, instead methanol was 

selected for dissolution as it is the solvent from which each of the solvates forms.272  A 

range of experiments were undertaken to explore compatibility and confirm the 

settings to be used with the SDi2 methodology for single crystal dissolution: 

a) a full UV absorption scan of I-TPI dissolved in methanol determined the most 

appropriate wavelength for calculating concentration,   

b) a calibration plot of I-TPI dissolved in methanol for a range of concentrations 

was obtained, using the standard SDi2 procedure, to calculate the molar 

absorption coefficient (ε) for calculating concentration from absorbance,168   

c) the IDR of I-TPI powder in methanol was calculated, for completeness and 

comparison.  I-TPI powder contains a mixture of crystalline and amorphous 

material, hence powder X-ray diffractometry (PXRD) was also used to ensure 

that compaction of I-TPI into a disc for IDR measurements would not impact 

upon this. 

The SDi2 was used to observe the dissolution of I-TPI powder from a compacted disc 

(IDR), a crystal of Form SI and a crystal of Form SII, in addition to the gel.  The samples 

were measured using both the compact flow cell (CFC) and the whole dose cell (WDC).  

The temperature was set at the default of 37°C, which was not important in terms of 

biorelevance but necessary for consistency.  The single crystal samples were secured in 

place with varnish and the gel samples were placed directly onto the wire without 

varnish.  Gel samples were also grown in situ in the sample holder of the CFC to obtain 
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an IDR-type reading.  A summary of analyses is provided in Table 5.15, with “single 

crystal method” referring to the use of wire to hold the sample (either a crystal or 

section of gel) in place.  

Table 5.15 – Summary of I-TPI experiments using the SDi2. 

 Compact flow cell  Whole dose cell 

I-TPI powder IDR n/a 

Gel (1.8% & 2.0% 

w/v) 

In situ IDR n/a 

Gel (2.0% w/v) Single crystal method Single crystal method 

Form SII Single crystal method Single crystal method 

Form SI Single crystal method Single crystal method 

I-TPI was synthesized by Dr. Jessica Andrews (Durham University) according to the 

published method and characterised using 1H and 13C NMR spectroscopy, mass 

spectrometry and elemental analysis to ensure purity.272,274  The white powder was 

used for both gel and solvate preparation, in addition to IDR determination.  For IDR 

determination approximately 5 mg of I-TPI powder was compacted to a disc with a 100 

kg load for one minute.   

The gel is produced using I-TPI powder dissolved in methanol at varying 

concentrations; the minimum gelation concentration (MGC) of I-TPI at ambient 

conditions is 1.9% w/v and when sonication and / or ice is used is 1.25% w/v.  I-TPI gels 

for dissolution were formed using either 18 or 20 mg of I-TPI in 1 mL methanol.  The 

powder was dispersed in methanol using sonication prior to dissolving it with gentle 

heat from a heat gun, and then rapidly cooling the sample with ice to produce the gel.  

Both concentrations of I-TPI were used for the in situ IDR measurements, but the 

higher concentration of I-TPI (20 mg) was used for the single crystal method 

measurements as this produced a more robust gel that could withstand handling and 

be placed upon the wire.   

Gels used to grow crystals of Form SI and Form SII were produced using 18 mg of I-TPI 

in 1 mL methanol, these samples were subjected to three cycles of heating, sonication, 
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crash cooling with ice to produce a gel, and dissolution by heating, before they were 

left undisturbed at room temperature to crystallize.  Crystals of Form SII were taken 

from the intact gel and used immediately for dissolution monitoring, whereas crystals 

of Form SI were taken after the gel had broken down. 

Dissolution of each sample was undertaken using the SDi2 as described in Table 5.15, 

with either the whole dose cell or the compact flow cell in place.  The 255 nm 

wavelength was applied to monitor concentration changes and the 520 nm 

wavelength was used to monitor size changes for each sample using both the SDi2 

software and image analysis software.  Image analysis was carried out using MATLAB 

and was used for three distinct purposes: a) image resolution clarification, b) 

correlating UV and visible absorbance, and c) size and concentration change 

monitoring for the I-TPI samples.  Clarification of the image resolution utilised MATLAB 

to further resolve images of the grids originally used in Chapter 3. Surface dissolution 

imaging intrinsic dissolution rate calculations.  The absorbance correlations utilised 

MATLAB to overlay images and determine the impact of the parallax effect described 

in this earlier chapter.  Finally, the MATLAB code provided in Appendix 1 – MATLAB 

original script with comments, was modified to provide details of size and 

concentration changes throughout dissolution for a range of I-TPI samples. 

5.4 Results and discussion 

The results will be discussed in sections for clarity.  The experimental pre-work 

determining SDi2 settings and compatibility will be discussed first, then the IDR results 

for I-TPI powder and the in situ gel, before the whole dose cell analyses and the 

compact flow cell analyses, both of which include a combination of UV and visible data 

in order to build a full picture of the dissolution process.  The results of the image 

analysis work will then follow with reporting of the data obtained and a brief 

discussion of the script. 
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5.4.1 Experimental pre-work  

a) UV absorption: 

The UV-Vis spectrum of I-TPI in methanol was recorded to determine the most 

appropriate wavelengths to follow for dissolution monitoring with the SDi2, see Figure 

5.102. 

 

Figure 5.102 – UV-Vis spectroscopy full scan of I-TPI dissolved in methanol.  Baseline 
corrected using blank methanol and repeated three times. 

The UV options for monitoring with the SDi2 are 255, 280, 300 and 320 nm, therefore 

255 nm was selected to allow higher concentrations to be monitored with a reduced 

risk of exceeding 1.5 AU on the SDi2. 

b) UV calibration for the SDi2: 

A series of samples of I-TPI dissolved in methanol across an appropriate range of 

concentrations (0.001 to 0.100 mg/mL) were analysed using the calibration method for 

the SDi2 with the 255 nm wavelength.  A calibration plot was produced to calculate the 

molar absorption coefficient (ε) and enable I-TPI concentration to be calculated from 

absorption values throughout dissolution of the IDR compact, each single crystal 

(regardless of form) and the gel samples. 
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Figure 5.103 – Calibration plot for the SDi2 for I-TPI dissolved in methanol at a range of 
concentrations.  Line of best fit applied to the first five data points with details inset. 

The calibration plot in Figure 5.103 confirms a linear relationship between 

concentration and average absorbance between 0.001 and 0.045 mg/mL, with an R-

squared value of 0.99883.  Further calculation (adjusting mg/mL to mol / dm3) 

produced a value of ε equal to 10270 M-1cm-1, which was used to calculate 

concentration from 255 nm absorbance using the SDi2.  A guide for the lower and 

upper concentration limits is therefore 0.001 mg/mL and 0.045 mg/mL, respectively, 

although the upper concentration may be extrapolated beyond this point to a 

maximum absorbance of 1.5 AU. 

c) Solid state characterisation: 

The solid state behaviour of I-TPI is well characterised so the only additional work 

required was to ensure that compaction of the I-TPI powder for calculating IDR does 

not significantly alter its solid state properties.271,272  Figure 5.104 shows the PXRD 

patterns for I-TPI powder versus I-TPI powder after compaction to produce IDR discs 

(the disc was subsequently ground gently back to a powder to enable analysis). 
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Figure 5.104 – Experimental PXRD patterns of I-TPI powder confirming no significant impact 
of compaction upon crystallinity or solid form. 

The patterns shown in Figure 5.104 show that while there is some strain induced 

broadening, there is no clear difference to the overall pattern, with consistent peaks at 

2θ angles of 12.3°, 18.4°, 20.0° and 22.7°.  This confirms that compaction has had little 

effect on crystallinity or solid form for the material in this instance.  The patterns 

confirm that both samples likely contain a mixture of both crystalline and amorphous 

material, which would fit with the way in which I-TPI powder is prepared (ending with 

precipitation from solution rather than crystallisation).  

5.4.2 IDR determinations 

a) I-TPI powder: 

Four I-TPI compacted discs, each consisting of approximately 5 mg powder, were 

subjected to a standard IDR dissolution procedure using the CFC with methanol at 37°C 

flowing at 2.16 mL/min.  Methanol was sonicated and heated prior to use to removed 

dissolved gases, however, it presented a significant challenge when used with the 

relatively small volume CFC and bubbles frequently appeared.  This prevented clear 
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IDR values from being obtained, despite repeating the experiment multiple times; the 

results are reported in Figure 5.105. 

 

Figure 5.105 – IDR plots versus time for four compacted discs of I-TPI powder dissolving in 
methanol. 

The values are highly variable and the data inconsistent, hence it is not possible to 

report an IDR for I-TPI from this work.  The solubility of I-TPI powder in methanol is 

sufficiently high that an IDR value would provide little information in this instance, and 

this is as expected due to its part crystalline and part amorphous nature.  Additionally, 

this work highlighted a number of challenges as a result of using methanol for 

dissolution; these include the presence of bubbles in addition to the degradation of 

seals between sections of the fluidics, which resulted in leakages and the replacement 

of the CFC lid. 

b) Gel grown in situ: 

A method for creating the gel within the CFC sample holder was developed, involving 

crash cooling a solution of I-TPI dissolved in methanol, and worked for both the 1.8 % 
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w/v and the 2% w/v solution.  Pictures illustrating the technique are shown in Figure 

5.106; note the importance of ensuring the top surface is flush by smoothing with a 

flat object immediately prior to inserting into the CFC for dissolution. 

 

Figure 5.106 - I-TPI gel produced inside the compact flow cell sample holder using ice to 
crash cool a solution of I-TPI in methanol at both 1.8% w/v and 2.0% w/v.  Picture (i) shows 
the cold sample holder with gel forming inside, (ii) shows the sample holder surrounded by 
ice and (iii) shows the top of the sample holder immediately before inserting into the 
compact flow cell having ensured the gel is flush with the top and any excess gel is removed. 

The gel did not remain within the sample holder for long after being placed in the CFC, 

hence true IDR values could not be obtained, see Figure 5.107.  The initial IDR value 

appears very high at 500 µg/min/cm2 but this increases rapidly once the gel is no 

longer confined to the sample holder and dissolution can occur from all surfaces of the 

gel.  The reported IDR value then drops rapidly to zero, confirming that the gel has fully 

dissolved.  The movement of the gel can be clearly viewed in the visible images, see 

Figure 5.108, although the physical presence of the gel is fainter than the air bubble 

released from the holder.  The 255 nm image shows dissolving I-TPI from the escaped 

gel sinking to the bottom of the cell, thereby confirming once again the influence of 

density gradients upon flow through the CFC. 
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Figure 5.107 – IDR plot as calculated by the SDi2 for an I-TPI gel made in situ within the 
sample holder.  The blue arrow shows the point at which the gel moved out of the sample 
holder and into the main section of the flow cell.  

 

Figure 5.108 – Compact flow cell 255 nm (top) and 520 nm (bottom) images of I-TPI in situ gel 
having moved out of the sample holder and into the cell (highlighted with orange box), with 
additional air bubble. 
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The work was repeated multiple times, and the gel escaped the sample holder in all 

instances.  The IDR plots are all presented in Figure 5.109 for information, including 

those attempted with a 1.8% w/v I-TPI gel, however these also escaped the sample 

holder preventing a true IDR value from being obtained for any gel sample using this 

method. 

 

Figure 5.109 - IDR plots for the I-TPI gels made in situ within the compact flow cell sample 
holder. 
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The ability to produce a gel in situ, however, is a technique that could be utilised to 

hold a crystal in place, and it may be possible to modify successfully so that the gel is 

retained within the sample holder without influencing any surface activity using mesh.  

This requires further development to refine, but provides another opportunity for 

exploring supramolecular chemistry with the SDi2. 

5.4.3 Using the SDi2 software to recreate a solvate stability series 

The data obtained for each sample from each SDi2 flow cell is reported separately for 

the UV wavelength absorbance (255 nm) and for the visible wavelength absorbance 

(520 nm) for clarity. 

a) Whole dose cell – UV absorbance: 

The whole dose cell was used to monitor I-TPI concentration and sample size changes 

with the 255 nm and 520 nm wavelengths, respectively.  The flow of dissolving I-TPI 

through the WDC appeared turbulent (as expected), so multiple manual zones were 

used to extract UV absorbance data throughout dissolution.  The sample holder wire 

was bent appropriately to allow a horizontal and a vertical zone to be placed over the 

sample and monitor size changes using visible absorbance data as developed in 

Chapter 4. Single crystal surface dissolution imaging, see Figure 5.110.  Figure 5.111 

shows each of the samples mounted at the start of the dissolution process, note that 

the gel image had to be taken prior to the cell filling because it dissolved so rapidly, 

and Figure 5.112 shows the same samples mounted in the WDC after thirty minutes of 

dissolution. 
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Figure 5.110 – Images of whole dose cell containing a single I-TPI Form SI crystal held on a 
wire, with manual zones highlighted in orange.  The flow of 37°C methanol at 2.16 mL/min is 
marked with the orange arrow.  The left 255 nm image monitors concentration changes 
through three zones: (i) top, (ii) middle and (iii) bottom.  The right 520 nm image monitors 
size changes through two zones: (iv) vertical and (v) horizontal.  
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Figure 5.111 - Visible wavelength images of each I-TPI sample in the whole dose cell.  The samples are attached to the wire with varnish.  The image of 
the gel is from the start of the run, before dissolution can begin, with the empty cell.  The images of Form SII and Form SI are from just after the cell has 
filled with methanol at the start of dissolution. 
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Figure 5.112 – Visible wavelength images of each I-TPI sample in the whole dose cell at the end of thirty minutes of dissolution.  The samples are 
attached to the wire with varnish.   
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Each sample was observed to dissolve at different rates, as expected, with remains of 

Form SI and Form SII still present after 1800 secs of dissolution, whereas the gel 

dissolved rapidly and was no longer visible after only 660 secs had passed.  The UV 

absorbance data was extracted per 10 second time segment for each zone and the 

average concentration was calculated throughout dissolution for the gel, Form SII and 

Form SI.  The results are provided in Figure 5.113, Figure 5.114 and Figure 5.115, 

noting that the start of monitoring is reported just before 300 secs once the cell is 

filled with solvent, not at time zero.  This results in a loss of initial data, which is 

particularly noticeable for the gel due to its rapid dissolution, but reduces the 

interference from the solvent moving through the cell. 

 

Figure 5.113 - Whole dose cell concentration monitoring for each UV zone throughout 
dissolution of I-TPI gel in methanol. 
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Figure 5.114 - Whole dose cell concentration monitoring for each UV zone throughout 
dissolution of a Form SII crystal in methanol. 

 

Figure 5.115 - Whole dose cell concentration monitoring for each UV zone throughout 
dissolution of a Form SI crystal in methanol. 

Each sample (gel, Form SII or Form SI) results in a different concentration profile 

throughout dissolution.  However, each figure shows little difference between the 

average concentrations reported for each zone (for each sample), with the bottom 

zone reporting the highest overall concentrations.  This confirms that dissolving I-TPI is 

initially influenced by concentration gradients before being subjected to turbulence 

and does not solely flow in the direction of the solvent.  This data suggests once again 



181 
 

that flow through the WDC is not laminar, which makes monitoring dissolution in this 

cell a significant challenge.   

Figure 5.113 shows that the gel dissolves rapidly, with the concentration increasing 

rapidly to a peak within the first 450 secs.  The decline is then linear, with each zone 

reducing at a similar rate between 450 and 670 secs.  Form SII concentration can be 

seen in Figure 5.114 and initially increases very gradually to a peak concentration at 

700 secs, before reducing linearly at a slower rate than the gel.  There is an image 

glitch with in this data set observed just after 1400 secs, which impacts upon all three 

zones and is best observed visually in the SDi2 software.  Finally, Form SI concentration 

is shown in Figure 5.115 and increases very gradually to a plateau around 1000 secs 

before remaining fairly consistent.  The data shown for Form SI (Figure 5.115) appears 

more variable or “noisy” than the gel or Form SII, which may suggest that there is more 

variation around the cell, consistent with a slower release rate resulting in a more 

gradual increase in concentration and therefore density, in addition to slower 

diffusion. 

The concentration values achieved are subject to additional scrutiny because there 

was no standardisation of size or shape with regard to the crystals or the gel sample 

used for dissolution.  However, the maximum concentration observed for each sample 

can be seen on each plot (Figure 5.113, Figure 5.114 and Figure 5.115) and can be 

correlated with the dissolution and relative stability of each sample.  The faster a 

sample dissolves, the higher the concentration expected, thus inferring a lower 

stability relative to a sample that dissolves more slowly and results in a lower 

concentration.  The gel achieves the highest concentration and the largest variability, 

the metastable Form SII achieves a quarter of the gel concentration  with a smaller 

amount of variability and the most stable Form SI reaches the lowest concentration 

(just over half that of Form SII). 

b) Whole dose cell – visible absorbance: 

The visible absorbance data was extracted from the horizontal and vertical zones 

outlined in Figure 5.110 and was reported as absorbance per x position, in addition to 

absorbance per z position, respectively, see Figure 5.116.  Artefacts from the edges of 
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the cell and / or the wire can be seen at the extremities of each plot (x < 5 and x > 15, 

and z < 10 and z > 17).  The absolute area was therefore extracted using Origin, as 

described previously, for only the central section, which corresponds with the position 

of the sample.  The full data set of absorbance per position per time segment has been 

plotted for completeness, with arrows highlighting the change with time.  However, 

the absolute area versus time segment provides a better indication of how size 

changes throughout dissolution.   

 

Figure 5.116 - Visible absorbance reported every ten seconds throughout dissolution in the x 
dimension (horizontal) and in the z dimension (vertical) for the full width and length of the 
whole dose cell, respectively. 

Each sample will be looked at in turn starting with the gel, see Figure 5.117 and Figure 

5.118, then Form SII, see Figure 5.119 and Figure 5.120, and finally Form SI, see Figure 

5.121 and Figure 5.122.  Some of the data has been reported from 200 secs as this is 

when the solvent front has moved past the sample, although the cell is not full of 

solvent until 300 secs, hence the importance of only extracting absolute area for the 

central section of the absorbance plot. 
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Figure 5.117 – Visible absorbance for I-TPI gel from across the horizontal zone.  The left plot 
provides the absorbance per x position per 10 secs time segments with a black arrow 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution. 

 

Figure 5.118 – Visible absorbance for I-TPI gel from through the vertical zone.  The left plot 
provides the absorbance per z position per 10 secs time segments with a black arrow 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution. 

The gel height and width, as represented by absolute area, both decrease overall from 

the start to the end of the reported dissolution period, as shown in Figure 5.117 and 

Figure 5.118.  The horizontal data (Figure 5.117) shows an initial reduction then a rapid 

increase, before the height then reduces again, whereas the vertical data (Figure 

5.118) shows a more consistent reduction with time.  When interpreted together, and 

viewed with the dissolution images, the gel can be seen to change in shape over this 
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time.  The transparency of the gel may also influence the ability to monitor size 

changes from this data, as there continues to be I-TPI dissolving (as seen in the 255 nm 

images) long after the gel appears to be fully dissolved, which can be calculated at 

approximately 400 secs (through viewing the 520 nm image).  Nevertheless, the gel 

shows a rapid reduction in size, which can be visualised using the 520 nm data. 

 

Figure 5.119 – Visible absorbance for I-TPI Form SII from across the horizontal zone.  The left 
plot provides the absorbance per x position per 10 secs time segments with black arrows 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution. 

 

Figure 5.120 – Visible absorbance for I-TPI Form SII from through the vertical zone.  The left 
plot provides the absorbance per z position per 10 secs time segments with black arrows 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution.  
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The width and height change for I-TPI Form SII can be seen in Figure 5.119 and Figure 

5.120, with height shown to decrease throughout dissolution.  The width change is 

more variable, with some increases observed, which correlate with shape changes 

when the series of images are viewed.  The change overall is a reduction in width, but 

this is not as clear as for the gel data, and shows a significant difference between the 

two forms of I-TPI, in spite of the gel sample being larger in volume than the Form SII 

sample.   

 

Figure 5.121 – Visible absorbance for I-TPI Form SI from across the horizontal zone.  The left 
plot provides the absorbance per x position per 10 secs time segments with black arrows 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution. 
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Figure 5.122 – Visible absorbance for I-TPI Form SI from through the vertical zone.  The left 
plot provides the absorbance per z position per 10 secs time segments with a black arrow 
showing how this changes with time.  The yellow box highlights the section from which the 
absolute area is reported.  The right plot shows the area of the crystal, as measured by 
visible absorbance, changing throughout dissolution. 

The width and height change for I-TPI Form SI can be seen in Figure 5.121 and Figure 

5.122, with both dimensions reducing throughout dissolution.  Both show variability as 

seen with the other reports of size change for Form SII and the gel, however, the 

reduction in size appears to proceed via a constant rate, allowing a line of best fit to be 

reported for the vertical plot, see Figure 5.123. 
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Figure 5.123 – I-TPI Form SI reduction in absolute area, as measured through visible 
absorbance (520 nm) through the vertical zone.  The red line of best fit is included with 
details reported inset.  

The change in size, as measured by absolute area under the absorbance versus x or z 

position, for each sample can be summarised for height and width, see Table 5.16. 

Table 5.16 – Summary of size change data obtained using the whole dose cell and measured 
by the change in absolute area from absorbance versus dimension. 

 Height decrease Width decrease Approx. time (secs) 

Gel 1.00164 0.41077 200 (fully dissolved) 

Form SII 0.46902 0.21089 1500 (solid remains) 

Form SI 0.18974 0.16156 1500 (solid remains) 

Direct comparisons of height and width, and even percentage size changes do not 

accurately exclude the influence of the wire holders, or account for the differences in 

starting size of each form.  The size change data, however, can be used to rank the 

forms according to stability, with the gel showing the greatest absolute size changes in 

both dimensions, and Form SI showing the smallest absolute size changes, again, in 

both dimensions.  In summary, the WDC successfully provided a means by which to 
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interpret absorbance data for both wavelengths and rank the forms according to their 

relative stability. 

c) Compact flow cell – UV absorbance: 

The CFC has previously shown less turbulence than the WDC and a method was 

defined in Chapter 4. Single crystal surface dissolution imaging, to allow single crystal 

dissolution to be monitored.  The 255 nm UV wavelength was utilised again, with the 

software reporting IDRs that could be manipulated to calculate dissolution flux 

(µg/min), which shows the change in dissolution per time period.  Additionally 

concentration changes could be monitored throughout dissolution for each sample 

being analysed.   

Dissolution of I-TPI gel attached to a wire was carried out four times in total for the 

CFC, see Figure 5.124 for an example and outline of the zones used for measurements.  

In all instances the gel fell from the wire to the bottom of the cell within the first three 

minutes, and had completely dissolved by 5 minutes, as defined by a lack of visibility 

using the 520 nm absorbance.  While the gel became transparent very rapidly in all 

examples, resulting in it being hard to visualise using the 520 nm images, 

concentration changes were still occurring for some time after this.  The prolonged 

concentration changes appear to be a result of the flow through the cell, however, 

with the highest concentration sample and therefore most dense solution remaining at 

the bottom of the cell and moving through gradually.  Interpreting the results with the 

images shows that this is the most likely explanation, rather than it being a result of 

remaining gel continuing to dissolve, see Figure 5.125. 
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Figure 5.124 - Example of I-TPI gel attached to wire with default zones for background, 
surface and IDR measurements, in addition to multiple manual zones for measuring 
concentration changes and size changes throughout dissolution in methanol. 

 

Figure 5.125 - Example of I-TPI gel dissolution showing only the wire left in the visible image 
(bottom).  The UV absorbance image (top) shows dissolved I-TPI moving along the bottom of 
the cell. 
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Dissolution flux versus time can be plotted for all four gel runs in Figure 5.126 with 

runs 1 and 3 showing similar profiles.  Runs 1, 2 and 3 show a rapid initial increase in 

dissolution flux, followed by a gradual decrease, which correlates with the increased 

density solution moving slowly through the cell (and therefore passing through the IDR 

zone).  Run 4 shows a much more variable dissolution flux, which upon viewing the 

dissolution can be accounted for as the gel falls off the wire soon after dissolution 

begins followed by a large bubble moving into the flow cell, see Figure 5.127.   The 

absolute dissolution flux values range from very negative values up to 80 µg/min, and 

are variable due to the different size gel samples. 

 

Figure 5.126 – Dissolution flux for I-TPI gel runs 1, 2, 3 and 4.  Note the different scales on the 
y-axis for each plot. 
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Figure 5.127 - I-TPI gel dissolution run 4 with a large bubble entering the compact flow cell 
and smaller bubbles appearing at the top of the cell. 

Two sets of data for I-TPI Form SII were obtained despite its metastable nature, 

although one is limited in usefulness due to interference from bubbles; both 

dissolution flux plots are provided in Figure 5.128.  Run 1 shows extensive interference 

from a bubble throughout, impacting upon the reported values, but is suggestive of a 

flux around 0 to 5 µg/min.  Run 2 was interrupted at the start by a bubble, which was 

removed and dissolution allowed to continue, thus dissolution flux from 400 secs 

onwards shows a very gradual decline.  Figure 5.130 shows that there is crystal 

remaining at the end of the dissolution, which is shown in the data by the flux tending 

towards but not actually reaching zero.  The dissolved I-TPI again sinks to the bottom 

of the cell and moves slowly through the cell. 
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Figure 5.128 - Dissolution flux for I-TPI Form SII runs 1 and 2.  Note the different scales on the 
y-axis for each plot. 

 

Figure 5.129 – I-TPI Form SII mounted on a wire and observed in the compact flow cell at 255 
nm (top) and 520 nm (bottom).  This image is from the start of dissolution. 
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Figure 5.130 – I-TPI Form SII mounted on a wire and observed in the compact flow cell at 255 
nm (top) and 520 nm (bottom).  This image is from the end of the dissolution run (after thirty 
minutes).  

The dissolution flux versus time data for I-TPI Form SI is shown in Figure 5.131 and 

shows an overall reduction in flux for all four runs, but significant variation between 

them, both in terms of profile and values for dissolution flux.  Run 1 uses a relatively 

small crystal of Form SI, which fully dissolves by 28 minutes and shows a consistent 

decline in flux, see Figure 5.132.  Run 3 uses a crystal approximately twice the size of 

run 1, which can be seen to dissolve rapidly initially and then more slowly until it is 

fully dissolved by 30 minutes.  Run 4 uses a crystal similar in size to run 3, although it is 

positioned differently relative to the camera; it dissolves rapidly but is impacted upon 

by multiple bubbles (removed by tipping the cell) and the image shows crystal 

remaining after 31 minutes in addition to a leak at the top of the CFC.  Run 5 shows a 

larger crystal again; it appears to dissolve more rapidly at first due to the removal of a 

bubble, resulting in dissolving I-TPI moving to the left (due to the tipping of the cell) 

thus increasing the flux at the start.  The continual decline in flux from 900 secs is 

representative of the crystal dissolving gradually and allows a line of best fit to be 

plotted, Figure 5.133. 
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Figure 5.131 – Dissolution flux for I-TPI Form SI runs 1, 3, 4 and 5.  Note the different scales 
on the y-axis for all four plots. 

Figure 5.132 and Figure 5.133 show very different profiles, each with a linear section 

although the properties of the lines differ.  The plots for each different form also differ, 

with variation between, but a general observation that the gels show very high initial 

flux, followed by a decrease and then a plateau, Form SII shows an almost linear flux 

throughout and Form SI showing periods suggestive of a linear decline in flux.  One 

interpretation is that the gels release I-TPI (dissolve) rapidly, Form SII releases I-TPI at a 

fairly consistent rate and Form SI releases I-TPI more slowly as dissolution progresses.  

The data is highly variable, such is the nature of dissolving crystals of varying shapes 

and sizes which cannot be easily replicated, and so these observations should be 

considered in conjunction with additional data to further define the dissolution 

characteristics of the different forms of I-TPI. 



195 
 

 

Figure 5.132 - Dissolution flux of I-TPI Form SI (run 1) with line of best fit along linear section, 
details inset. 

 

Figure 5.133 - Dissolution flux of I-TPI Form SI (run 5) with line of best fit along linear section, 
details inset. 
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Exploring the absorbance data extracted from the IDR zone expands this 

understanding, see Figure 5.134, Figure 5.135 and Figure 5.136.  These plots show 

absorbance per z position for three time segments throughout dissolution, one from 

the start, one towards the middle and one at the end.  Figure 5.134 plots absorbance 

for the I-TPI gel (run 1) and shows that the lowest point in the cell (z = 1.64 mm in this 

instance) reduces in absorbance throughout dissolution from 0.8 to 0.46.  The height 

of the plume of dissolving I-TPI can be seen to reduce throughout dissolution too, from 

3.50 mm to 2.75 mm, to 2.25 mm.  This correlates with the gel dissolving rapidly but 

the dissolved and dense I-TPI solution moving more slowly through the cell. 

 

Figure 5.134 - Absorbance per z position through the IDR zone at the start (81 secs), middle 
(601 secs) and end (1021 secs) of dissolution for the I-TPI gel (run 1). 

The I-TPI Form SII (run 2) is shown in Figure 5.135, with absorbance at the bottom of 

the cell showing a reduction throughout dissolution, but to a much smaller extent than 

for the gel run described previously.  This indicates that there is only a small change in 

the amount of I-TPI dissolving throughout dissolution, even after 30 minutes.  The plot 

suggests that the plume of dissolving I-TPI reduces in intensity from start to finish, and 

also slightly reduces in height from start to fifteen minutes in.  From halfway through 
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dissolution to the end of dissolution, the plot shows the same profile, but shifts left, 

highlighting a small reduction in overall absorbance at this point in the cell, consistent 

with a fairly steady release of I-TPI with time.  

 

Figure 5.135 – Absorbance per z position through the IDR zone at the start (142 secs), middle 
(1012 secs) and end (1922 secs) of dissolution for the I-TPI Form SII (run 2). 

The I-TPI Form SI (run 3) is shown in Figure 5.136, with absorbance at the bottom of 

the cell showing an increase throughout the first half of dissolution, before reducing by 

approximately half at the end of dissolution.  This suggests that I-TPI release occurs 

more gradually, because the highest density and therefore highest I-TPI concentration 

sinks to the bottom of the cell.  Although the crystal has fully dissolved by the end of 

the run, there is still a small plume of I-TPI passing through the IDR zone. 
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Figure 5.136 - Absorbance per z position through the IDR zone at the start (106 secs), middle 
(896 secs) and end (1886 secs) of dissolution for the I-TPI Form SI (run 3). 

This additional absorbance information is best used in combination with the 

dissolution flux data, and provides more detail about the dissolution mechanisms 

occurring.  The size of the sample being analysed impacts upon the absolute 

absorbance, but the rate at which absorbance changes and whether it increases or 

decreases throughout dissolution allows for an interpretations of whether diffusion 

might be limiting dissolution or whether erosion is. 

d) Compact flow cell – visible absorbance: 

Size changes were monitored in the CFC using the visible (520 nm) wavelength and a 

series of manual zones.  The novel size monitoring zones described previously were 

used, two encompassing the whole size of the crystal or gel sample (vertical and 

horizontal), one spanning the width of it (section width), and one spanning its height 

(section height), see Figure 5.137.  The position and size of these zones was tailored to 

each sample being analysed.  The absolute area data was extracted for each zone and 

plotted against time to represent size changes throughout dissolution.  The change in 

absolute area versus time segment will be presented for a sample of each I-TPI form.  
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Figure 5.137 - Example of an I-TPI crystal in the compact flow cell, with the manual zones 
used to measure size change highlighted in orange.  The top image shows the whole size 
zone for both vertical and horizontal measurements, and the bottom image shows the 
section zones for the height and the width of the sample. 

The plots shown in Figure 5.138 are for an I-TPI gel, and include size change as 

measured using each of the four zones described.  The top plots show height and 

width change, and the bottom plots show size change for the vertical dimension and 

for the horizontal dimension.  The width of the gel appears to decrease instantly, but 

this can be explained by the gel falling from the wire straight away, preventing the gel 

from being measured by the section width zone.  This zone was also placed above the 

wire, hence its minimum absorbance is zero.  Each of the other measurements shows a 

reduction, however, there is significant interference from the presence of the wire, so 

they do not achieve zero absorbance even after the gel has fully dissolved.   
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Figure 5.138 - I-TPI gel (run 1) size change measured through four zones in the compact flow 
cell. 

I-TPI Form SII size change measurements for each zone are shown in Figure 5.139 and 

confirm an overall reduction for each.  Two image glitches can be seen at 

approximately 300 and 800 secs, for all size measurements except the width; glitches 

are explained in Chapter 3. Surface dissolution imaging intrinsic dissolution rate 

calculations, and result in spurious data when extracting absorbance values and when 

viewing the images.  It is not clear why these happen but they are reported as errors 

within the advanced monitoring section of the SDi2 software.  The reduction in height 

and size (both vertical and horizontal) are all more gradual than for the gel, suggesting 

a less rapid dissolution and thereby confirming it as a relatively more stable form of I-

TPI.  The section width reading initially increases, which is caused by the rubber bung 

gradually moving up and slightly out of the sample holder between 400 and 800 secs.  

The movement physically shifts the wire and crystal upwards, resulting in the width 
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reading measuring a different section, although there is little impact upon the other 

measurements, see Figure 5.140.   

 

Figure 5.139 – I-TPI Form SII (run 2) size change measured through four zones in the compact 
flow cell. 
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Figure 5.140 – I-TPI Form SII visible absorbance images with orange oval highlighting the 
appearance of the top of the rubber bung. 

The measurements for I-TPI Form SI (run 3) confirm a gradual but linear reduction in 

absolute area (absorbance) for each zone.  A line of best fit can be calculated for each 

plot, see Figure 5.141, Figure 5.142, Figure 5.143 and Figure 5.144.  There is a linear 

reduction in size for all reported methods, with the width of the crystal appearing to 

reduce in size more rapidly than the height.  The rapid decrease at the very end of the 

height and width plots (Figure 5.141 and Figure 5.142) correspond to the remnants of 

the crystal falling from the wire. 
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Figure 5.141 – I-TPI Form SI (run 3) height change as measured through visible absorbance, 
with line of best fit (details inset). 

 

Figure 5.142 – I-TPI Form SI (run 3) width change as measured through visible absorbance, 
with line of best fit (details inset). 
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Figure 5.143 – I-TPI Form SI (run 3) vertical size change as measured through visible 
absorbance, with line of best fit (details inset). 

 

Figure 5.144 – I-TPI Form SI (run 3) horizontal size change as measured through visible 
absorbance, with line of best fit (details inset). 



205 
 

These four manual zones provide a relatively simple method for assessing and 

reporting size changes throughout dissolution for single crystals and some gel samples.  

The relative stability of each form of I-TPI can be explained using these size changes, 

with the gel reporting the fastest size change, Form SII reporting a more gradual size 

change and the Form SI profile suggesting an erosion mechanism, thereby highlighting 

a slower rate of dissolution due to a relatively lower solubility (greater stability).  There 

are significant limitations, however, as the zones are influenced by the presence of the 

wire, and also any movement of the sample relative to the cell.  To address the 

challenge of the wire, and also to enable the UV absorbance to be correlated with the 

visible absorbance, image analysis software was explored.  

5.4.4 Utilising image analysis software 

a) Image resolution: 

Resolution in the previous work was defined as the maximum number of line pairs per 

mm (lp/mm) that could be resolved by eye.  Visual observations of each grid confirmed 

that individual lines can be seen and differentiated down to the 30 grid in the 

horizontal direction, see Figure 5.145.  The 40 grid enables horizontal, vertical and 

diagonal lines to be differentiated easily, whereas the 20 grid shows a lack of 

differentiation between lines in all three boxes and suggests that resolution at this 

level of detail is not possible to carry out by eye. 
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Figure 5.145 – Absorbance maps using visible wavelength (520 nm) and shown in jet colour 
map for (a) grid 20, (b) grid 30 and (c) grid 40. 

This agrees with Professor Østergaard’s findings for the previous version of this 

technology (the SDI), which confirmed resolution was between 12.5 (horizontal) and 

16.7 (vertical) lp/mm and relates to grids of 40 and 30 µm respectively.169  There is 

scope, however, to applying image analysis software and further improve resolution 

capabilities by relying upon the pixel resolution.  Furthermore, the novel ability of the 

SDi2 to monitor two wavelengths simultaneously offers the advantage that the UV and 

visible images can be combined to infer a more detailed understanding of each.  

The SDi2 manual reports a resolution of 13.75 µm2 for the SDi2, based upon the 

theoretical effective pixel size of 2048 x 2048 (for the full imaging area of 28 cm x 28 

cm).  Image analysis software has been utilised to determine whether absorbance 

values can be obtained per 13.75 µm2 area, or if resolution remains limited by the SDi2 

Analysis software (13.75 µm x 20 µm) due to its data extraction methods.  This will 

provide confidence in the reporting of size changes using image analysis techniques. 

The CFC was used and each grid placed flat against the CMOS camera chip.  The 

monitoring zones were excluded and the data for each wavelength was extracted to a 
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movie in the “.wmv” format using the jet colour map and at x 1 speed resulting in two 

videos (one for each wavelength monitored), each at 0.5 frames per second and with a 

total of 591 frames.  The two videos were able to be analysed with MATLAB and a 

series of images extracted: one image for each grid for each wavelength, see Table 

5.17. 

Table 5.17 - Relation of video frame number (both UV and Vis) to grid size. 

Grid size Frame number 

400 24 

300 56 

200 92 

100 120 

90 148 

80 180 

70 232 

60 284 

50 332 

40 360 

30 416 

20 464 

10 504 

The SDi2 software allows the videos and therefore images to be extracted using a 

range of colour maps – the jet colour map was the default recommended by Pion at 

the time of training, and also appears the most frequently in discussions of SDI 

research, hence it was also used in this work.  The CFC images theoretically map 

absorbance units per 13.75 µm2 pixel within the cell, and include a default summary in 

the top left corner in addition to an absorbance key on the right hand side of the 

image, but do not include the x or z axes to provide relative dimensions.   

Each image is in the format of 372 (height) x 1636 (width) x 3 uint8 (data type).  The 

height and width refer to the number of pixels in each dimension, which is not 

comparable with the CFC width of 28 mm relating to 2048 pixels as described in the 
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manual.168  The data type “3 uint8” means an unsigned (u) integer (int) with 8-bits of 

information (8).  This refers to the three channels (R, G and B), where the value of each 

is a positive integer between 0 and 255, as represented by an 8-bit array.  It can also be 

described as a “true colour” image referring to the fact that each pixel intensity is 

represented as a triplet of RGB values, or it can be considered an m-by-n-by-3 numeric 

array.  The jet colour map encompasses 256 different “colours” using the three 

channels (RGB) to represent an absorbance range from 0 to 2,000 mAU.   

Analysis of the visible absorbance maps will be discussed, with the aim of finding a 

method to analyse the original jet colour map image so that the grids can be routinely 

detected by the imaging software thus enabling resolution to be defined.  The 

absorbance map for the visible wavelength and 400 grid is shown again in Figure 5.146 

to provide context for the next steps.   

 

Figure 5.146 – Absorbance map using visible wavelength (520 nm) and the 400 grid.  Shown 
in jet colour map and extracted from frame 24 of 591.  Three distinct parts can be seen in the 
image: 1) 400 to show grid number, 2) vertical lines to test horizontal resolution, 3) 
horizontal lines to test vertical resolution and 4) diagonal lines for completeness. 

MATLAB enables the colour image to be converted either to a grey scale image using 

the functionality [rgb2gray], see Figure 5.147, or to a black and white image using 

either its red, green or blue component.  The grey scale function produces an m-by-n 

numeric array with the elements specifying intensity values ranging from 0 to 255, and 

the black and white or binary function produces an m-by-n logical array, with values of 

either 0 or 1.  The green component was found to produce an image with clearer 

definition than the blue or red channels, see Figure 5.148. 
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Figure 5.147 – Absorbance map using visible wavelength (520 nm) and the 400 grid.  
Converted from jet to grey colour map and extracted from frame 24 of 591. 

 

Figure 5.148 – Absorbance map using visible wavelength (520 nm) and 400 grid.  Converted 
from Jet colour map to grey scale using the green component of the colour image only.  
Extracted from frame 24 of 591. 

The grey scale image in Figure 5.148 can subsequently be converted to a black and 

white image using the threshold function, which provides a greater degree of control 

than converting directly via a single channel, however it can only be applied to a grey 

scale image and not to a full colour image.  A threshold of 10/255 gives a poorly 

defined representation of the image, see Figure 5.149, and a threshold of 245/255 

provides a clearer image but removes some of the detail at the edges, see Figure 

5.150. 

 

Figure 5.149 - Absorbance map using visible wavelength (520 nm) and 400 grid.  Converted 
from Jet colour map to grey scale and then to black and white with a threshold of 10/255.  
Extracted from frame 24 of 591. 
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Figure 5.150 - Absorbance map using visible wavelength (520 nm) and 400 grid.  Converted 
from Jet colour map to grey scale and then to black and white with a threshold of 245/255.  
Extracted from frame 24 of 591 using MATLAB. 

Manual visual examination of the figure “4” on the grid, using both the original colour 

image and the grey scale image, suggests that a threshold of 100/255 is most 

appropriate for converting from grey scale to black and white whilst retaining detail, 

see Figure 5.151. 

 

Figure 5.151 – Absorbance map using visible wavelength (520 nm) and 400 grid.  Converted 
from Jet colour map to grey scale and then to black and white with a threshold of 100/255.  
Extracted from frame 24 of 591. 

The same procedure was applied to the absorbance map or image of the 40 grid, see 

Figure 5.152.  This image was then fused with the original image to confirm that this 

black and white version is representative of the original, see Figure 5.153.  The images 

overlap well and there is little discrepancy between edges suggesting the 100/255 

threshold is a good option for the next step, which is to apply a function to detect the 

edges of the image. 
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Figure 5.152 – Absorbance map using visible wavelength (520 nm) and 40 grid.  Converted 
from Jet colour map to grey scale and then to black and white with a threshold of 100/255.  
Extracted from frame 360 of 591. 

 

Figure 5.153 - Absorbance map using visible wavelength (520 nm) and 40 grid.  Converted 
from Jet colour map to grey scale and then to black and white with a threshold of 100/255 
fused with original Jet colour map image.  Extracted from frame 360 of 591. 

The edge functionality can only be applied to grey images, black and white images or 

images using a single component of RGB.  There are three main options currently on 

MATLAB for this: 1) edge, 2) canny, and 3) prewitt.  The black and white images with a 

threshold of 100/255 produce the clearest edges for all three options, see Figure 

5.154, Figure 5.155 and Figure 5.156, although the canny function maintains the best 

image overall for the 40 grid, see Figure 5.155. 

 

Figure 5.154 – Absorbance map using visible wavelength (520 nm) and 40 grid.  Converted 
from Jet colour map to grey scale to black and white with a threshold of 100/255 and the 
edge function applied.  Extracted from frame 360 of 591. 
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Figure 5.155 – Absorbance map using visible wavelength (520 nm) and 40 grid.  Converted 
from Jet colour map to grey scale to black and white with a threshold of 100/255 and the 
canny edge function applied.  Extracted from frame 360 of 591. 

 

Figure 5.156 – Absorbance map using visible wavelength (520 nm) and 40 grid.  Converted 
from Jet colour map to grey scale to black and white with a threshold of 100/255 and the 
prewitt edge function applied.  Extracted from frame 360 of 591. 

Alternatively, as mentioned previously, the video can be extracted directly from the 

SDi2 using a grey colour map instead of the jet colour map, see Figure 5.157.  

Unfortunately the reported images are still in the “372 x 1636 x 3 uint8” format, which 

means the data is represented by an m-by-n-by-3 numeric array.  The image first has to 

be converted to an m-by-n array before the canny edge function can be applied.  

 

Figure 5.157 – Image extracted from SDi2 as a grey colour map video using visible 
wavelength and 40 grid.  Extracted from frame 360 of 591.   
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Figure 5.158 – Image extracted from SDi2 as a grey colour map video showing visible 
wavelength and 40 grid.  The true colour image has been converted to grey scale image with 
the canny edge function applied using MATLAB.  Extracted from frame 360 of 591. 

Alternatively the original image can be converted to a black and white image using the 

threshold value.  A manual examination of a range of threshold values results in 

75/255 being selected, which then allows the canny edge function to be applied, see 

Figure 5.159. 

 

Figure 5.159 – Image extracted from SDi2 as a grey colour map video showing visible 
wavelength and 40 grid.  The true colour image has been converted to a black and white 
image using a threshold of 75/255 before the canny edge function has been applied.  
Extracted from frame 360 of 591. 

A comparison of Figure 5.155 and Figure 5.159 highlight a greater loss of detail with 

the latter image than the former, suggesting that resolution may be lost using this 

method, and confirming that extracting the SDi2 videos using the jet colour map is 

appropriate.  Extracting using the grey colour map saves a small amount of memory, 

but does not enable a step to be skipped, and in both cases conversion to an m-by-n 

array is necessary (either through grey scale function or black and white threshold 

function in MATLAB) prior to being able to apply any of the edge functionalities.  The 

recommendation would be to continue to use the jet colour map. 
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Figure 5.160 – Original images extracted from SDi2 as a jet colour map video showing visible 
wavelength and 10, 20 or 30 grids.  The true colour images have been converted to a black 
and white image using a threshold of 75/255 before the canny edge function has been 
applied. 

A suggested method for first extracting an image involves using the jet colour map, 

converting to grey scale, applying a threshold function (70/255 and 100/255 work for 

the grids) and then a canny edge function – this appears to be sufficiently robust to 

capture the majority of detail.  However, there does not appear to be any 

improvement in resolution as a result and the previously reported resolution of 12.5 

horizontal and 16.7 (vertical) lp/mm (relating to grids 40 and 30 µm respectively) 

remains most appropriate, see Figure 5.160.  The aim to define a method of MATLAB 

image analysis for consistently identifying the grids has therefore been achieved, 

although it appears that a degree of subjectivity is required to define thresholds, and 

that these are likely to vary between images. 

b) Correlating UV and visible absorbance data: 

A significant limitation of historical work216 was image interpretation due to the single 

wavelength imaging capability of the previous instruments (D100, SDI 300 and SDI) 

resulting in challenges when understanding whether a high absorbance (of UV 
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wavelength) was due to a high concentration of sample dissolved or something 

physically blocking the light path.13  The SDi2 capability of visualising dissolution with 

both a UV and a visible wavelength should provide the opportunity to unravel this 

mystery.  The image shown in Figure 5.161 shows a single crystal of paracetamol held 

on a steel wire loop with deionised water flowing from left to right through the cell.  

The image on the left shows UV absorbance (280 nm) and image on the right shows 

visible absorbance (520 nm), with manual zones positioned in exactly the same defined 

x and z positions for both. 

 

Figure 5.161 – SDi2 compact flow cell image at 280 nm (left) and 520 nm (right) showing a 
paracetamol crystal held on a steel wire loop and deionised water flowing from left to right 
through the cell.  The absorbance key using the jet colour map is shown to the far right.  
Both images are from the start of dissolution (image number 53).  The three additional zones 
to measure concentration can be seen horizontally (i) and vertically (ii) and (iii) across the 
crystal for both wavelengths.  The images have been cropped in the x dimension to focus on 
the crystal and zones. 

The 280 nm image clearly shows a trail of increased absorbance to the right of the 

crystal which is missing from the 520 nm image, confirming that it is indeed dissolved 

paracetamol rather than anything physically present in the light path.  The crystal can 

be seen clearly in the 520 nm image due to the increased absorbance, although there 

are sections along the top where the edges are less well defined and may represent 

the transition between solid and solution, which is referred to as the boundary layer.  

Determining the edge of the crystal and the boundary layer for the 280 nm image 

would enable surface concentrations and gradients to be calculated, which could 

provide insight into the differences between crystal faces.  The ability to correlate the 

UV image with the Vis image would make this possible.   
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The wire crystal holder can be seen in both images and was left in place for the initial 

run to obtain background absorbance so the baseline absorbance for that section of 

the image already accounts for it - it is therefore subtracted from further absorbance 

values.  Looking closely at the images and using PowerPoint gridlines to compare 

positions, the position of the wire relative to the zones is not the same for the 280 and 

520 images, see Figure 5.162.   

 

Figure 5.162 – SDi2 compact flow cell image at 280 nm (top) and 520 nm (bottom) showing a 
paracetamol crystal held on a steel wire loop and deionised water flowing from left to right 
through the cell.  Both images have been cropped and are from the start of dissolution 
(image number 53).  Three additional zones to measure concentration can be seen across the 
crystal for both wavelengths and an additional orange reference point has been placed in the 
same position across both images using gridlines to highlight the misalignment. 

This is a crude way of visualising the misalignment, which could be more accurately 

observed with image analysis software.  The misalignment is likely a parallax effect due 
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to the position of the LEDs side-by-side highlights that correlating UV and Vis 

absorbance remains a challenge, even with the dual wavelength capability of the new 

instrumentation.  It is most easily observed using image analysis software, MATLAB, 

see Figure 5.163.  In this figure a UV image and a visible image (taken from the same 

time point during dissolution) are presented; the two images have also been fused 

together using MATLAB with false colouring applied to highlight in green and purple 

the areas where the two images differ.  The plume of dissolving crystal is highlighted in 

green, as expected because it is not present on the visible image.  However, the 

position of the wire in the horizontal can also be seen to differ between the two 

images, suggesting the images cannot simply be overlaid to distinguish between solid 

and dissolving material. 

It was found that applying a horizontal displacement of [7, 0] to one of the images 

enabled the UV and visible images to then be fused together successfully, see Figure 

5.164.  This suggests that a parallax effect (as discussed previously) is likely to be taking 

place and should be accounted for when comparing absorbance values, per x 

dimension, for different wavelengths.  As an interesting aside, during the grid analysis 

work, a UV image was obtained and fused with a visible image, see Figure 5.165, and in 

this instance there was no misalignment.  The difference between images is the 

absence of the full CFC and the start-up procedure.  The start-up procedure for the 

SDi2 usually involves placing the CFC in front of the detector (in its usual position) and 

filling it with blank solvent to provide a background absorbance reading per pixel.  This 

initial background reference cannot be removed, but it can be manipulated to take 

place without the cell in position, so that the background does not include the CFC or 

blank solvent, as was the case for the grid experiments.   
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Figure 5.163 - Image of single crystal on wire in compact flow cell filled with solvent.  The top image shows the UV absorbance, the middle image shows 
the visible absorbance and the bottom image utilises MATLAB to fuse them together. 
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Figure 5.164 – Fused (UV and visible) and horizontally translated (displacement of [7, 0]) image of a single crystal on wire in the compact flow cell filled 
with solvent.  
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Figure 5.165 - Fused UV and visible images from resolution work using the grids. 

 

Figure 5.166 – Two visible images fused: one with cell full of deionised water and positioned 
in front of grid, and the other with the cell removed.  Both images involved a start-up 
procedure with the cell in place and full of deionised water. 

Figure 5.166 shows two visible images fused, both of which included a start-up 

procedure with a cell full of deionised water, one image includes the cell in position (in 

front of the grid) and the other did not.  The fused image uses false colour again to 

highlight differences between the original images, and confirms both a horizontal and 

vertical shift, despite both being images using the visible wavelength, confirming that 

the presence of the full flow cell has a significant effect.  This work highlights the 

importance of continuity during analysis, for example, ensuring the blank solvent and 

flow cell is in place during the start-up procedure if they are to be used during the 

analysis, and vice versa. 

c) Monitoring size and concentration changes: 

The work exploring MATLAB as a means to measure size changes during dissolution 

was carried out in collaboration with Dr Daniel Markl at the University of Strathclyde.  

Dr Markl has extensive experience with MATLAB and was able to write a series of 

algorithms to guide the software to report size changes and also concentration 

changes from the SDi2 visible absorbance and UV absorbance videos, respectively.  The 

original code is provided in Appendix 1 – MATLAB original script with comments, with 

additional comments to explain each section’s purpose.  The code required manual 
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adjustments and modifications for each data set to accommodate the type of sample 

being analysed.  Support in adjusting the algorithms came initially from Dr Markl and 

later also from Dr Weinzierl.  The results are presented here with some detail of the 

challenges that were involved and a brief explanation of the method.   

The MATLAB script uses both the UV and visible SDi2 videos, which are essentially a 

series of images taken throughout dissolution at a frame rate of one per second per 

wavelength.  For example, a dissolution run of sixty seconds would result in thirty UV 

absorbance images, or frames, and thirty visible wavelength images.  The reporting of 

data for each wavelength using this MATLAB script has not accounted for this, so the 

time scale is half the length it should be.  It is easily adjusted, but running a MATLAB 

script requires hours and an extensive memory, hence the runs were not repeated but 

this should be considered for future work. 

The MATLAB script was designed to report four outputs for each sample analysed: 

crystal perimeter, length of crystal, crystal area and UV absorbance at crystal edge.  

The I-TPI Form SI data is presented here first, as this is the simplest to explain and will 

subsequently aid understanding of the Form SII and the gel data.  Each plot is 

produced in MATLAB, but the data has been extracted from only the SDi2 images 

(videos) and four manually-determined parameters.  The first is the starting frame for 

dissolution to be calculated from (startID), and the second is the image region of 

interest (img_ROI), which incorporates the whole sample with as little wire as possible; 

this is the section that the image analysis software then uses.  The threshold function 

described previously is also used to define the crystal edge (bw_threshold) and a 

displacement value is used to accommodate the shift between UV and visible images 

(x_displ) using the wire to line up the images.  Resolution of the images is defined as 

13.75 µm2 in line with Pion’s suggestion and the jet colour map is used with a 

maximum absorbance of 2 AU. 

I-TPI Form SI: 

The crystal perimeter plot in Figure 5.168 utilises a threshold value of 70/255 to find 

the edge of the crystal and was found by manually assessing the images using MATLAB, 

see Figure 5.167.   
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Figure 5.167 - Example of the impact of threshold function values upon a single crystal 
mounted on wire. 

The script then applies this threshold throughout dissolution to measure the length 

around the crystal.  The perimeter for Form SI run 1 decreases throughout dissolution, 

and reduces more rapidly as dissolution progresses.  This plot implies that the crystal is 

fully dissolved by approximately 25 minutes (12.5 x 2, to accommodate the time 

adjustment), which fits with viewing the videos. 

 

Figure 5.168 - I-TPI Form SI (run 1) crystal perimeter plot. 

The crystal length plot in Figure 5.169 and the crystal area plot in Figure 5.170, utilise 

the same defined threshold value.  The length of the crystal is reported in terms of its 

major axis and minor axis, dependent upon size, but both of which can be seen to 

reduce throughout dissolution although at different rates.  The crystal area can also be 

seen to reduce, as would be expected, and declines linearly; this would lend itself to a 
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line of best fit, but the data is reported as a .pdf file, although raw data may be 

extracted using some extra coding within the script.   

 

Figure 5.169 - I-TPI Form SI (run 1) length of crystal plot. 

 

Figure 5.170 - I-TPI Form SI (run 1) crystal area plot. 

Finally, the plot of UV absorbance at the crystal edge in Figure 5.171 also shows a 

reduction throughout dissolution.  This plot is produced by selecting the region of 
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interest for both the UV and visible images, then manually ensuring that they can be 

lined up correctly using the image translate function – the position of the wire can be 

used to aid this.  An absorbance is then assigned per pixel of the UV image using the 

defined colour map around the perimeter of the crystal.  There is error involved in the 

assignment of absorbance based upon the colour map, hence standard deviation is 

calculated and plotted to accommodate this. 

 

Figure 5.171 - I-TPI Form SI (run 1) UV absorbance (AU) at crystal edge plot. 

The same procedure was followed for the I-TPI Form SI run 3 videos, with initial work 

carried out as described to define the manual parameters such as StartID and x_displ.  

All four plots show a reduction in either perimeter, length, area or UV absorbance 

throughout dissolution, see Figure 5.172, Figure 5.173, Figure 5.174 and Figure 5.175, 

respectively.  This is the same data that was previously analysed using the SDi2 

software, hence they can be compared directly.  The crystal perimeter, length and area 

show linear plots in line with the previous data (see Figure 5.141, Figure 5.142, Figure 

5.143 and Figure 5.144) and all sets of data confirm the crystal was fully dissolved by 

30 minutes.  The MATLAB data allows discussion about the size and dimensions of the 

crystal throughout dissolution, rather than how the size changes from start to finish, 
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which is all that the compact flow cell data allows to be reported confidently.  Finally, 

the UV absorbance at the crystal edge shown in Figure 5.175 fits nicely with the 

maximum absorbance reported at the bottom of the IDR zone (see Figure 5.136), 

which ranged from 0.9 to 0.5 AU.  The three different methods for analysis 

complement each other thus offering assurances that the data is representative of the 

dissolution process in addition to enhancing understanding. 

 

Figure 5.172 - I-TPI Form SI (run 3) crystal perimeter plot. 
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Figure 5.173 - I-TPI Form SI (run 3) length of crystal plot. 

 

Figure 5.174 - I-TPI Form SI (run 3) crystal area plot. 
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Figure 5.175 - I-TPI Form SI (run 3) UV absorbance (AU) at crystal edge plot. 

I-TPI Form SII: 

The process was repeated for I-TPI Form SII run 2, see Figure 5.176, Figure 5.177, 

Figure 5.178 and Figure 5.179 for crystal perimeter, length, area and UV absorbance at 

the edge, respectively.  Each shows an overall reduction from start to finish of 

dissolution, however, the data is not as clear as with the previous plots.  Analysis of 

this data using the SDi2 software, see Figure 5.139, suggested that there was an initial 

increase in crystal width in the first 6 minutes, prior to a decrease.  This correlates with 

both the crystal perimeter and crystal length plots, see Figure 5.176 and Figure 5.177, 

whereby there is an initial increase, followed by a decrease with huge variation that 

results in the plot after six minutes appearing shaded.  However, the extent of the size 

decrease from 6 to 30 minutes in each of the MATLAB reports does not fit with the 

knowledge that there is crystal remaining at the end of 30 minutes of dissolution.  This 

can be attributed to the sample moving upwards through the cell as a result of the 

rubber bung shifting out of the sample holder, see Figure 5.140. 
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Figure 5.176 - I-TPI Form SII (run 2) crystal perimeter plot. 

 

Figure 5.177 - I-TPI Form SII (run 2) length of crystal plot. 
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Figure 5.178 - I-TPI Form SII (run 2) crystal area plot. 

 

Figure 5.179 - I-TPI Form SII (run 2) UV absorbance (AU) at crystal edge plot. 

Finally, the plot of UV absorbance at the crystal edge, see Figure 5.179, suggests an 

increase in absorbance at the start, followed by a gradual decrease.  This only partly 
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fits with the previously reported absorbance through the bottom of the IDR zone 

(Figure 5.135), which reduced slightly from 1.1 to 0.95 throughout dissolution.  

However, the image analysis plot encounters an error at 12 mins (corresponding with 

24 minutes of actual dissolution).  The exact reason for this is unclear, but the 

absorbance values reported after 6 minutes will be altered by the movement of the 

bung, which will alter the position of the crystal relative to the start of dissolution, thus 

impacting upon the region of interest and subsequent alignment between the UV and 

visible images. 

The I-TPI Form SII run 1 data was interrupted significantly by bubbles hence it is 

presented after run 2, but it provides some assurance that the first six minutes of the 

run 2 data is representative in its consistency, see Figure 5.180, Figure 5.181, Figure 

5.182 and Figure 5.183.  Crystal perimeter, length and area decline very gradually (if 

the noise of the bubbles is ignored) and UV absorbance also remains high between 0.8 

and 1.0 AU. 

 

Figure 5.180 - I-TPI Form SII (run 1) crystal perimeter plot. 
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Figure 5.181 - I-TPI Form SII (run 1) length of crystal plot. 

 

Figure 5.182 - I-TPI Form SII (run 1) crystal area plot. 
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Figure 5.183 - I-TPI Form SII (run 1) UV absorbance (AU) at crystal edge plot. 

I-TPI gel:    

The MATLAB analysis of the I-TPI gel (run 1) can be found in Figure 5.184, Figure 5.185, 

Figure 5.186 and Figure 5.187.  The sample is referred to as a crystal in the plot titles, 

but this is the result of a typographical error in the code, thus perimeter, length, area 

and edge actually refer to the gel.  Defining the threshold for the gel was more 

challenging than for the previous crystals, particularly due to it falling from the wire 

and therefore moving out of the region of interest in the first three minutes.  The 

region of interest could be expanded to include its new position, but this resulted in 

the wire being included in the size change calculations.  The 50/255 threshold was the 

most effective at defining the gel edge, however, the plots show a rapid reduction in 

size in addition to some variation.  This is likely due to a combination of factors 

including the transparency of the gel, its inability to remain in the same position on top 

of the wire, and its more malleable shape relative to the crystals.  The uncertainty with 

the gel size ultimately impacts upon the reported UV absorbance, due to the edge 

being defined by the threshold and the algorithm, hence it is hard to draw any 

comparisons between this and the IDR zone absorbance reported previously in Figure 
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5.134.  The reported UV absorbance does decrease slightly overall, but remains high 

between 0.8 and 1.0.  It can also be correlated with reported changes in length – the 

increase in UV absorbance between 2 and 3 minutes (4 and 6 minutes using real 

dissolution time) corresponds to a decrease in length in both the major axis and minor 

axis.  

 

Figure 5.184 - I-TPI gel (run 1) gel (“crystal”) perimeter plot. 
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Figure 5.185 - I-TPI gel (run 1) length of gel (“crystal”) plot. 

 

 

Figure 5.186 - I-TPI gel (run 1) gel (“crystal”) area plot. 
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Figure 5.187 - I-TPI gel (run 1) UV absorbance (AU) at gel (“crystal”) edge plot. 

An additional I-TPI gel (run 4) was explored using the MATLAB script, to understand 

whether the challenges were specific to run 1 or if the algorithm required altering to 

accommodate gels.  The four reports for perimeter, size, area and UV absorbance are 

presented in Figure 5.188, Figure 5.189, Figure 5.190 and Figure 5.191, respectively.  

There is variation again for all size changes, however, they correlate well with each 

other and with the knowledge that the gel dissolved fully within five minutes.  The plot 

shown in Figure 5.191 is missing its time axis label, which should show that absorbance 

data was only calculated for 30 seconds in total (corresponding to one minute of actual 

dissolution time).  The UV absorbance recorded suggests it remains high and fairly 

consistent between 0.9 and just over 1 AU throughout dissolution.    
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Figure 5.188 - I-TPI gel (run 4) crystal aka gel perimeter plot. 

 

Figure 5.189 - I-TPI gel (run 4) length of crystal aka gel plot. 



237 
 

 

Figure 5.190 - I-TPI gel (run 4) crystal aka gel area plot. 

 

Figure 5.191 - I-TPI gel (run 4) UV absorbance (AU) at crystal aka gel edge plot.  The time axis 
should show that UV absorbance has only been reported for the first thirty seconds 
(corresponding to the first minute of dissolution). 
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Summary: 

Overall the data obtained through image analysis correlates with visual observations of 

the dissolution of each sample.  In the examples where full dissolution occurred, for 

example SI run 1, gel run 1 and gel run 4, each of the three size measurements 

(perimeter, length and area) confirmed this observation and correlated well with the 

timings.  The UV absorbance at the edge was only able to be reported for the period of 

time in which a sample was present, hence the plot for gel run 4 reports data for less 

than a minute, see Figure 5.191.  Nevertheless, the absorbance values reported for 

Form SI are consistently lower than those reported for both Form SII and the gel, 

suggestive of SI dissolving more slowly and therefore being the most stable sample.  

The absorbance values reported for Form SII remain fairly consistent relative to the 

variation observed with the gel samples, although the gel data is very limited and 

therefore inconclusive.  It would be beneficial to include measurements of UV 

absorbance at additional points throughout the cell to confirm changes in 

concentration during dissolution. 

The application of image analysis to the dissolution of single crystals and gels has 

provided significant learning points to improve future analyses.  The first point is that 

the crystal or gel or other sample must be positioned on top of the wire, enabling a 

region of interest to be defined which does not include anything other than sample.  

This makes defining the edges and calculating size much more simple.  A second 

learning point is that the wire must be in the same position at the start and finish of 

dissolution, the example where the rubber bung shifted out of the sample holder 

resulted in significant uncertainties in the data due to the relative positions of the 

crystal being incorrect.  Finally, it is ideal if the sample fully dissolves by the end of the 

dissolution process, as this enables the end image (of just the wire) to be subtracted 

from the initial image, thus removing interference from the absorbance of the wire.   

This method clearly provides extensive information about the dissolution process and 

has the potential to be applied to all data sets, including those using the WDC.  It 

enables the sample size to be measured in µm, and area to be reported in mm2, which 

allows comparisons to be drawn between samples, although further scrutiny is 

required to determine the impact of the taper magnification upon this.  It can also 
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convert a full image, or frame, from the jet colour map to a calculated intensity per 

pixel (13.75 µm2), thus providing the opportunity to report absorbance (or calculate 

concentration) for any pixel in the cell; although the SDi2 software is thought to 

contain this information, it is currently limited in its ability to report this data to the 

user. 

5.5 Conclusions and further work 

In summary, the WDC provided sufficient information using the SDi2 software to 

reproduce the stability series for the solvates, and was not significantly limited in this 

instance by the turbulent hydrodynamics.  There was, however, a loss of initial 

dissolution data due to the slow filling of the large cell, although this may be reduced 

slightly by increasing the initial flow rate.  The CFC was subject to less turbulence than 

the WDC, but was still impacted by density gradients altering the flow of dissolving I-

TPI through the cell.  These likely aided the IDR / dissolution flux calculations however, 

by ensuring that dissolving I-TPI remained in the lower half of the cell but highlights 

once again that different hydrodynamic environments were present throughout even 

the smallest cell.  Interpretation of the data from each cell required consideration of 

both the UV and visible absorbance values, as well as viewing of the videos, confirming 

the importance of utilising the many resources that the SDi2 has to offer.  

The application of image analysis software enhanced these SDi2 offerings further still, 

providing the ability to report crystal size measurements.  MATLAB analysis provides a 

method for correlating UV and visible absorbance within each cell, enabling an edge to 

be defined relatively easily, which results in being better able to explore the interface 

between solid, boundary layer and the bulk.  It also has the potential to report 

absorbance values per pixel for both the UV and visible wavelength throughout 

dissolution.  Finally, it does not currently offer an improved resolution when measuring 

with grids, but does provide an objective method through which to verify it.   

Practical challenges presented themselves during the work in the form of samples 

falling from the wire holder, although this was less of an issue for the WDC, potentially 

due to the impact and orientation of the flowing solvent.  The use of methanol as a 

solvent also presented multiple challenges, from the appearance of bubbles to the 
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degradation of seals within the SDi2 fluidics.  The relatively new and expensive design 

of the SDi2 therefore required some modifications and quick-fixes to ensure continued 

usage, including a new silicone-sealed lid, machined using the department workshop 

and a free sample of platinum-cured silicone (Trans GP60, from Silicone Engineering, 

Blackburn). 

In addition to the relative stability of the samples being analysed, their size also has an 

influence on reported dissolution characteristics.  However, crystals of similar size and 

shape cannot easily be reproduced to enable replication of dissolution data.  The data 

for each individual crystal is therefore specific to that sample, which is a significant 

challenge, not unique for this method, that is somewhat accounted for by reporting 

size changes instead of simply size.  It is also aided by the use of MATLAB, although 

further work is required to understand the impact of the detector magnification upon 

these values.   

In Chapter 4. Single crystal surface dissolution imaging, a method was developed for 

physically monitoring single crystals with SDi2 technology, and explored the ability to 

monitor changes in size and concentration using the SDi2 software.  This chapter has 

extended that work further, reporting the ability to monitor dissolution of a gel, in 

addition to the application of image analysis software to better calculate size changes 

and monitor concentration around a defined solid edge.  Finally, it has applied these 

additional techniques to I-TPI, distinguishing between forms, reproducing the solvate 

stability series and ultimately expanding understanding of each form’s dissolution. 

Many opportunities exist to further explore the application of image analysis with the 

SDi2, although the most pressing topic is arguably that of resolution.  The SDi2 states a 

theoretical pixel size of 13.75 µm2, however, this has yet to be confirmed 

experimentally and it is not clear how the x2.5 magnification impacts upon this.  One 

can imagine a scheme of work comparing absorbance values extracted from the SDi2 

software with those calculated using MATLAB in order to confidently conclude the 

resolution capabilities of the instrument and the software’s ability to reproduce that 

data. 
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Figure 5.192 – Photographs of a) the novel single crystal sample holder with a single crystal 
attached highlighting its compatibility with b) the SDi2 compact flow cell, c) the SDi2 
detector and d) the single crystal X-ray diffractometer equipment. 

Finally, although this work has not succeeded in matching functional groups at the 

surface of crystals with dissolution properties, it has taken steps towards this by 

enabling four size measurements to be calculated for a sample: perimeter, major axis 

length, minor axis length and area, in addition to the measurement of UV absorbance 

at the sample edge.  An exploration of face-specific dissolution would require 

successful transfer of samples between the SDi2 and the single crystal X-ray 

diffractometer (SCXRD), as such, work to produce a sample holder compatible with 

both instruments was started but significantly interrupted by the global pandemic 

(Covid-19).  Figure 5.192 shows the first known version of a novel single crystal holder 

to enable SCXRD face-indexing of a crystal before its transfer to the SDi2 compact flow 

cell.  This holder is hoped to provide an opportunity to develop single crystal 

dissolution with the SDi2 yet further still.   
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6. ESI-MS Equipment Set Up 

6.1 Introduction 

Electrospray ionisation mass spectrometry (ESI-MS) is routinely used with 

chromatographic techniques as the end “detector” for identification of the molecules 

present in a sample.233,236  The development of an MS technique to monitor tablet 

dissolution and quantify multiple components on-line in real-time is a novel challenge 

which has been deemed possible, but not yet explored in sufficient detail to use 

routinely within pharmaceutical research and development.15,220,228 

This chapter discusses the development of a combined tablet dissolution and 

electrospray ionisation mass spectrometry (ESI-MS) system to enable the monitoring 

of both active pharmaceutical ingredient(s) and excipient(s) release from oral dosage 

forms into biorelevant dissolution media.   

The entire process can be broken down into stages:   

i) dissolution 

ii) filtration 

iii) sample flow 

iv) sample dilution 

v) MS analysis, 

vi) data processing and quantification. 

The significant challenges from an equipment perspective are: a) the ability to 

continually sample from the dissolution bath without affecting sink conditions and 

dissolution rate, b) the filtration of large volume aqueous samples, including removal 

of undissolved particles to prevent delayed dissolution, tubing blockages and damage 

to MS equipment, and c) the ionisation of non-volatile dissolution media.   

Minimal sample preparation will be undertaken to enable flow directly from 

dissolution bath to MS detector, primarily to obtain real-time information whilst also 

reducing cost of analysis.  The release of each API and excipient should be visible in 

real-time, however method robustness and matrix interference constitute significant 

challenge when attempting to use mass spectrometry for quantification; additional 
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processing and data analysis may therefore be necessary to account for ion 

suppression or enhancement.275 

Each step of the process will be described in detail including validation of the 

instrumentation setup and data analysis.  This provides the basis for the subsequent 

two chapters exploring experimentally the impact of ion suppression and ion 

enhancement on dissolution monitoring by mass spectrometry. 

6.2 Dissolution 

The process of tablet or compact dissolution is highly complex4 and can vary 

significantly between tablets made from a consistent formulation135 and as a result of 

dissolution apparatus set up130,131, hence much of the initial work to develop 

instrumentation utilised solutions of a known concentration instead of potentially 

variable samples from a dissolution bath.  These are referred to as (known 

concentration) standards and are used routinely in many analytical techniques to 

produce calibration plots and enable quantification.276  All standards were thoroughly 

dissolved using sonication and heat where required, with sufficient time and mixing 

allowed to ensure homogeneity prior to their analysis. 

The dissolution apparatus was discussed in Chapter 2. Materials and Methods, and can 

be summarised as either Sotax or Durham dissolution kit.  The intention was to 

replicate the USP II apparatus in terms of its practical aspects so as to challenge the 

equipment set up.  The repeatability and significance of any dissolution profiles 

obtained using the Durham kit is limited but this will be highlighted when interpreting 

results.  Samples were either taken manually at a series of time points or analyte was 

pumped continuously from the bath throughout dissolution of the compact. 

6.3 Filtration 

Samples taken from vessels containing a dissolving compact were subject to in-line 

filtration to remove any insoluble or undissolved particles prior to storage or analysis.  

Particles of soluble components not yet dissolved could continue dissolving during 

transportation thus inflating the concentration recorded for that time point.  

Additionally particles of any type could cause light scattering during UV analysis, as 

well as tubing blockages and damage to MS instrumentation.   
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To comply with regulatory dissolution testing requirements the size and composition 

of filter used should undergo extensive validation for each API in each dissolution 

media to ensure it is sufficiently inert and efficiently removes undissolved API for a 

defined period of time.277,278  Filter validation is a critical, costly and time-consuming 

step in developing an analytical method, therefore it was deemed sufficient for this 

work to focus only on removing large particles to prevent further dissolution and 

blockages.  Flow rates were regularly checked to exclude the likelihood of blockages 

and filters were replaced where necessary.  The risk of contamination by extracting or 

leaching of chemicals from filters (or other equipment) was considered to be outside 

the scope of this research however it will be discussed when considering ion 

enhancement and suppression.279–281 

A 10 µm stainless-steel solvent frit was selected to prevent large particles exiting the 

dissolution vessel and an additional in-line depth filter (of stainless steel housed inside 

PEEK) was placed prior to the MRA and QDa to further protect the equipment.  The in-

line filter excluded particles more than 0.5 µm in size with minimal dead volume (2 µL), 

which is comparable with routine dissolution testing and agrees with the 

Encyclopaedia of Analytical Chemistry definition of 0.45 μm as the boundary between 

undissolved particle and dissolved phase.40,282  The particle size of insoluble excipients 

should also be considered throughout experimental studies to ensure that they will be 

excluded by the filters.  The extent of delayed dissolution will be minimised by 

filtration but cannot be discounted entirely without extensive validation and so this 

will be taken into consideration when calculating error in dissolution profiles.   

6.4 Sample flow 

Sample flow into the MS can be divided into two experimental set-ups; aliquot MS and 

continuous flow MS.  An aliquot can be defined as a known volume of sample and in 

the case of this work may range from 0.1 μL to 1 mL.  Aliquot MS involves injection of a 

small volume of sample into a continuous flow of solvent which is directed for analysis.  

Continuous flow MS is more complex and involves the pumping of sample with or 

without dilution prior to analysis.  The amount of sample extracted throughout 

dissolution requires consideration to ensure the volume of media remaining in the 

bath does not impact on concentration gradients (i.e. sink conditions are 
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maintained).124,125,283  The equipment set up allows for excess sample to be returned to 

the dissolution bath if necessary, however the MRA switching mechanism results in 

aliquots of MS solvent entering the excess sample flow hence this was not carried out 

routinely to prevent contamination of the dissolution medium. 

6.4.1 Aliquot MS 

A known volume of sample is injected into a stream of solvent and directed into the 

MS either via an HPLC column (LCMS) or directly with no separation (loop injection, LI).  

Figure 6.193 provides a schematic of this process. 

 

Figure 6.193 - Schematic of aliquot MS analysis. 

This constitutes off-line analysis as the sample is not coming directly from the 

dissolution bath.  It was utilised to determine limits of detection and working 

concentration ranges for the samples being studied.  It was also used for some ion 

suppression and enhancement work due to instrumentation limitations.  MS analysis 

could be carried out by the QDa, Synapt or QToF.  

6.4.2 Continuous flow MS 

Continuous infusion directed the sample straight into the MS or via a splitting device to 

provide dilution.  Figure 6.194 shows a schematic of this arrangement. 

 

Figure 6.194 - Schematic of continuous flow MS analysis with MRA (mass rate attenuator) 
splitting device. 



246 
 

This constitutes on-line analysis as the sample is coming directly from the dissolution 

bath without sample preparation, although it may be subject to dilution.  Known 

concentration standards were analysed with this set up to eliminate the inherent 

variability of dissolution and enable the role of the mass spectrometer to be explored.  

Note that only the QDa was used for MS analysis of continually flowing samples. 

6.5 Sample Dilution 

The mass rate attenuator (MRA) is described in Chapter 2. Materials and Methods, and 

was additionally used in the proof of concept work.15  It is used to dilute flowing 

samples, and can accommodate a high concentration of API or excipient, as well as 

complex dissolution media which may contain components that are not compatible 

with ESI-MS.  The degree of dilution provided by the MRA can be amended during 

operation by changing the split factor setting and frequency in addition to varying the 

flow rates of the sample and the solvent.  The calculations used to determine these 

settings will be stated for each experiment where appropriate. 

 
Figure 6.195 – Representation of the tubing used with bridge to equalize pressure from 
solvent make-up flow to QDa.  Each T represents a zero volume T-piece used to connect the 
lines.  ID is the abbreviation for inner diameter and is stated in inches consistent with 
manufacturer details. 

The tubing either side of the MRA and across the PEEK bridge impacts upon pressure 

so the inner diameters for each section should be kept constant according to Figure 

6.195.  Experimental validation of pressure equalization could be confirmed by 

injection of a constant flow of water and acetonitrile 50:50 v/v both without and with 

the bridge in place; see Figure 6.196 and Figure 6.197, respectively.  The figures show 

the total ion current (TIC) as a percentage of the maximum on the y-axis (representing 
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signal) with time measured in minutes on the x-axis.  This work was carried out in 

collaboration with Dr Christopher Whitmore, also of Durham University.284 

 

Figure 6.196 – QDa chromatogram for water and acetonitrile 50:50 v/v with MRA attached 
showing the difference in signal when MRA is switched on and cycling versus switched off 
when no bridge is in place. 

Without the bridge in place, the switching on of the MRA causes signal instability, with 

the minimum ion intensity reducing to zero, see Figure 6.196.  With the bridge in place, 

signal stability is maintained, irrespective of the MRA’s status, see Figure 6.197. 
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Figure 6.197 – QDa chromatogram for water and acetonitrile 50:50 v/v with MRA attached 
showing the difference in signal when the MRA is switched on and cycling versus switched 
off when a pressure stabilizing bridge is in place. 

The validated bridge forms an integral part of the MRA set up; it can be assumed that 

whenever the MRA is mentioned and used, the bridge will be in place.  It is important 

to note that some signal variation is inherent to the analysis of samples by MS and is 

not eradicated by the presence of the MRA or the bridge.  This is shown clearly in 

Figure 6.198, which displays two chromatograms for paracetamol dissolved in a water 

and acetonitrile mixture flowing at 0.5 mL/min into the QDa both with (a) and without 

(b) the MRA.  
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Figure 6.198 – QDa chromatograms comparing the total ion current signals (%) from continuous runs of paracetamol in water and acetonitrile 50:50 v/v 
per time (mins).  Chromatogram (a) is 0.0293 mg/mL with the MRA connected and a dilution of 1:125 and (b) is 0.00266 mg/mL with the MRA bypassed. 
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Both chromatograms show the variation in total ion current (or signal) as a percentage 

of the maximum ion count over a period of two minutes.  Each chromatogram is from 

the continuous analysis of a constant concentration sample, however, a reduced 

concentration of sample must be used when the MRA is bypassed to avoid saturation 

of the MS detector.  As a result, the extent of signal variation cannot be compared 

quantitatively but a general observation can conclude that signal variation is seen both 

with the MRA in place and when it is bypassed. 

The MRA switches an aliquot of sample into the solvent stream and passes it to the 

QDa.  Despite the narrow volume inside the tubing from MRA to QDa there is likely to 

be some spreading and dilution of the aliquot within the solvent stream leading to 

differing concentrations reaching the QDa ready for ionisation as demonstrated in 

Figure 6.199.   

 

Figure 6.199 – Representation of the spreading of sample from defined volume aliquots into 
the solvent stream within the tubing between the MRA and QDa. 

The tubing diameter and length were kept constant, and the flow, frequency and 

volume of solvent and MRA switching are defined, so the concentration variation will 

be dependent only upon the amount of sample present in the aliquot.  The diffusion of 

sample from the aliquot into the solvent stream will vary with the starting 

concentration of sample and its diffusivity in the solvent.  The impact of non-volatile 

dissolution media upon ionisation will also contribute to signal variation and instability.  

These will be discussed in further detail during the interpretation of results. 
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6.6 MS analysis 

A total of three mass spectrometers were used for all sample analyses in this work.  

The Synapt and QToF are high resolution instruments capable of reporting m/z to four 

decimal places, whereas the QDa is a prototype designed for ease of use and as such is 

not capable of accurate mass.  The Synapt and QToF were therefore used to confirm or 

explore findings from the QDa where further detail or confirmation of an ion’s identity 

was required.  They were used off-line to analyse aliquots of sample and as mentioned 

previously no attempt was made to use these for continuous monitoring of a flowing 

sample.  The QDa however was explored for continuous flow monitoring of dissolution 

and the equipment set-up for this is shown in Figure 6.200. 

 
Figure 6.200 - Instrumentation set-up for continuous flow monitoring of dissolution by mass 
spectrometry. 

As previously discussed, the QDa was chosen for its small footprint and relative ease of 

use.  Its methods can be designed to monitor selected ions and / or full scans from 100 

to 900 Da in either polarity (positive or negative electrospray).  A password-controlled 

tuning page maintains its simplicity but enables the adjustment of additional settings 

where required.  These experimental details are stored alongside the raw data for each 

run and can be accessed via the MassLynx software.  Ionisation efficiency and ion 

stability can vary with capillary voltage, cone voltage, source temperature and probe 

temperature so the QDa default settings have been used to provide optimal analysis of 
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a variety of samples concomitantly.  These defaults will be explored only where 

necessary to improve ion signal to noise ratios. 

The QDa selected ion monitoring (SIM) function allows multiple ions to be followed in 

addition to or instead of a full scan.  The combination of SIM with a full scan enables 

known ions to be visualised in real time alongside a full scan for supporting 

information.  As an example, a method with five functions following phenylephrine, 

paracetamol, guaifenesin and lactose in addition to a full scan is shown in Table 6.18. 

Table 6.18 - QDa method with multiple selected ions (functions 2 to 5) and a full scan of the 
entire mass range (function 1), method time of 10 minutes with sampling frequency of 5 Hz 
and a cone voltage of 20. 

Function 

(channel) 

Mass range / selected ion 

monitored (m/z) 

Number 

of scans 

Scan duration / 

dwell time 

(secs) 

1 100 to 900               3032 0.117 

2 150 3030 0.014 

3 152 3030 0.014 

4 221 3030 0.014 

5 365 3030 0.014 

The resultant chromatograms from the method in Table 6.18 are displayed in Figure 

6.201.  Chromatograms (a) to (d) show the selected single ions and (e) provides the 

total ion count from a scan of the full mass range possible.  The number of scans within 

the analysis time is important for comparative quantification, hence the method used 

(the number of channels or ions followed), the time over which it is studied and the 

setting of the sampling frequency are important to note, and where quantification 

attempts are made, these should be consistent.   
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Figure 6.201 – QDa chromatogram using a method with five channels, (a) lactose at m/z 365, (b) guaifenesin at m/z 221, (c) paracetamol at m/z 152, (d) 
phenylephrine at m/z 150 and (e) total ion count of the full mass range (100 to 900 Da). 
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Figure 6.202 – QDa chromatograms for a consistent flow of sample with differing sampling frequencies (a) 5 Hz, (b) 20 Hz and (c) 1 Hz. 
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Figure 6.202 compares QDa chromatograms for analysis of the same sample using 

three different sampling frequencies.  The sampling frequency on the QDa ranges from 

1 to 20 Hz; a setting of 20 Hz provides twenty times more data points in the same time 

frame as a sampling frequency of 1 Hz.  A rapid scanning process can influence ion 

statistics leaving shorter dwell times (see Table 6.19), which can result in anomalies.   

The dwell time or scan duration can be defined as the time available for a selection of 

ions or a single ion to be guided through the quadrupole and must enable sufficient 

ions to reach the detector; the sampling frequency must therefore allow an 

appropriate dwell time for each function within the method.   

Table 6.19 - Summary of QDa five minute methods for comparison of sampling frequency 

Scanning frequency: 1 Hz 5 Hz 20 Hz 

Scan duration / dwell time (secs) 0.458 0.058 0.005 

Number of scans in function 2 –> SIM of m/z 152 only 298 596 3156 

Scan duration of function 1 (secs) –> full scan (100 to 900 

Da) 

0.533 0.133 0.080 

The method specified in Table 6.19 includes a function 1 and function 2;  function 1 is 

referred to as a full scan and requires the quadrupole to guide each ion between 100 

and 900 Da, in turn, through the quadrupole, each with a stable trajectory so that they 

may reach the detector.  Function 2 monitors only a single ion of m/z 152 rather than a 

range so only one stable trajectory must be maintained to guide the specified ion 

through the quadrupole.  Function 1 therefore requires more time to complete than 

function 2, but both must take place within the time frame specified by the sampling 

frequency.  A sampling frequency of 20 Hz, with two methods, therefore requires that 

less time is spent scanning each function to enable twenty samples to be run within a 

minute.  As a result, fewer ions are guided through the quadrupole and this can lead to 

insufficient ions reaching the detector which manifests as a reduction in the total ion 

count.  Alternatively, too long spent on each function can result in saturation of the 

detector as too many ions are guided through at once.  There is also an inter scan 

delay between each function as the quadrupole settings change to alter the stable 

trajectory of the ions. The full duration of each scan therefore depends upon the 



256 
 

sampling frequency set in addition to the number of single ions being monitored and 

full scans.   

In addition to the limitations of sampling frequency upon ion statistics, a very slow 

sampling frequency can result in so few data points within the same period that 

aliasing can be a risk.  Aliasing can be defined as a phenomenon, which gives rise to an 

incomplete representation of data and can be explained by considering Figure 6.203. 

 
Figure 6.203 - Example of aliasing due to insufficient sampling frequency.  The blue line is 
real data and the green stars are sampling time points, which give rise to incomplete 
representation of data by the red line. 

Figure 6.203 shows the true data (blue line) and the slow sampling (green stars) which 

can give rise to an incomplete representation of that data (red line).  The sampling 

frequencies of concern in this work are the MRA frequency by which a volume of 

sample is injected into the solvent stream, and the QDa sampling frequency setting 

previously described.  The QDa frequency must be more than double the MRA 

frequency to ensure that aliasing does not occur.  This is comparable with the NMR 

phenomenon leading to the ‘Nyquist Criterion’ which states that you have to “sample 

[] at least twice per cycle to know the true frequency”.285 

A QDa sampling frequency of 5 Hz will avoid aliasing for all MRA settings (the highest 

MRA frequency possible is 2.222 Hz), additionally it provides more than sufficient data 

points for understanding the dissolution process (which takes minutes rather than 
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seconds to understand from a bulk solution perspective) and leaves time for ion 

statistics to be sufficiently large. 

6.7 Data processing and quantification 

The Synapt and QToF were used to confirm which ion to analyse for a specific API or 

excipient either by accurate mass elemental analysis or by MS/MS, both with HPLC 

separation prior to ionisation.  The resultant chromatograms show peaks at elution 

times dependent on the molecule and solvent(s) used.  Further analysis of the spectra 

that make up each peak provides the resultant ions is shown in Figure 6.204. 
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Figure 6.204 – QToF LCMS chromatogram with inset showing average spectrum of resultant ions.  The inset spectrum is an average of the peak seen 
between retention times of 2.2 to 2.4 minutes (highlighted by the black double arrow). 
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Both the Synapt and the QToF were used to fragment ions by MS/MS to further 

confirm their identity.  In this case, the method is set to gather and hold a specified 

ion, a voltage is applied to encourage fragmentation of this ion and any resultant ions 

are then analysed to confirm the likely identity of the original ion.  The averaged 

spectrum from the relevant peak on the chromatogram can be extracted and the 

identity of any ion(s) confirmed by accurate mass elemental analysis. 

The Synapt was additionally used to obtain a full mass spectrum (usually 50 to 2000 

Da) for samples introduced by loop injection.  Analysis of this data for quantification 

purposes involved extracting the mass of the ion of interest from the raw sample 

chromatogram and integrating the resultant peak; both peak height and peak area 

could be calculated.  Figure 6.205 shows an example process for calculating peak 

height and area; the resultant data can be used to prepare calibration plots and 

calculate the concentration of unknown samples.  In addition to peak height and area, 

a maximum recorded ion intensity is reported on the top right hand side of each 

chromatogram and can be extracted for sections of the data or for the entirety of it.  

There is signal variation throughout a run hence the maximum alone cannot be used 

for quantification but the range of variation in the TIC indicates ionisation consistency 

and efficiency, and may help to highlight suppression and enhancement phenomena.
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Figure 6.205 – Synapt quantification process showing (a) a raw chromatogram showing a TIC maximum intensity of 3.82e6 for paracetamol solution, (b) 
an extracted mass of 152.07 +/- 0.1 Da relating to paracetamol with a maximum intensity of 1.07e5 and (c) the integrated extracted mass peak with 
both height and area data (103474 and 5158, respectively). 

(a) – raw chromatogram 

(b) – extracted mass chromatogram 

(c) – integrated peak chromatogram 
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Ion intensity is considered alongside peak shape to highlight the potential for detector 

overload.  For example, a TIC of more than 9.00x108 on the QDa would likely produce a 

flattened peak and a shift in reported mass, which would indicate detector saturation 

due to an overly strong signal.  It is important to note that this will vary between 

methods and mass spectrometers, not just as a result of differing equipment but also 

as a result of detector age and usage.   

The Synapt is capable of high resolution accurate mass analysis providing peak 

separation and identification accuracy even at low levels of sample.  This enables the 

chemistry of sample solutions to be confirmed prior to QDa analyses, which cannot 

achieve accurate mass reporting.  However, to prevent detector saturation, a lower 

concentration must be used for the Synapt when compared with the QDa due to their 

relative detector sensitivities.  This can be explained by imagining packets of ions 

passing to the detector – in full scan mode a packet contains a number of ions of 

varying m/z values so the number of any one m/z will be lower than in SIM mode when 

a packet of ions will contain only those of a specified m/z value all “hitting” the 

detector at the same time.  The high resolution of the Synapt means that the detector 

is more sensitive so fewer ions of each m/z value are required to cause an overload 

compared with the QDa.  In summary, the range of concentrations able to be analysed 

and accurately quantified will vary between instrumentation and method used, so 

initial analyses include a close look at peak shape to rule out detector overload. 

6.7.1 Calibration plots for quantification 

The terms quantification and quantitation are considered interchangeable, however, 

quantification will be used for consistency.286  The use of a calibration plot for 

quantification is commonplace in a variety of analytical techniques, including 

LCMS.231,276,287  Analysing a series of known concentration samples using the same 

method employed for unknown samples allows the relationship between 

concentration and signal to be determined.  It assumes that signal and concentration 

are proportional within lower and upper boundaries defined as the limits of 

quantification.288  The upper boundary will be limited by detector saturation; as the 

detector becomes saturated with ions, the response will no longer be in proportion 

and it may not be possible to calculate concentration from signal.289  The lower 
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boundary will be the limit of detection, which is defined as the lowest concentration of 

sample which can be distinguished consistently from a blank signal.288   

The relationship between concentration and signal may also vary as a result of 

numerous instrument-related and sample-related factors.290  This provides a valid 

rationale for using consistent equipment and methods to explore robustness and 

inherent variation.  Additionally, the use of a range of samples to explore the 

concentration-signal relationship within a defined set of conditions can be considered 

a fundamental step towards assessing the use of mass spectrometry for monitoring 

dissolution.   

It should be noted that LCMS quantification good practice states that standards should 

be analysed on the same instrument on the same day as unknown samples to 

determine calibration plots and allow quantification.  Where possible and where 

applicable this was followed, however the limitations of mass spectrometry to monitor 

dissolution were important to explore in order to test robustness of the equipment set 

up and validate the technique.  

6.7.2 Peak height versus peak area quantification 

A comparison of the peak height and peak area methods for quantification was 

undertaken for both the Synapt and the QDa.  A series of known concentrations of 

sample were analysed by loop injection (no dilution) on each instrument with all runs 

completed on the same day for each instrument.  Each sample was run in triplicate and 

the peak height and peak area data was obtained using the quantification process 

described in Figure 6.205.  Peak detection, smoothing and integration of the 

chromatograms using MassLynx was kept consistent.  The calibration plots for the QDa 

and Synapt, for each method of calculation, are shown in Figure 6.206 and Figure 

6.207, respectively. 
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Figure 6.206 – Calibration plots showing a comparison between using area under peak (red) 
and peak height (black) for quantification of a series of standards using the QDa.  Each point 
is the average of three runs with the standard deviation plotted as error bars. 

 

Figure 6.207 – Calibration plots showing a comparison between using area under peak (red) 
and peak height (black) for quantification of a series of standards using the Synapt.  Each 
point is the average of three runs with the standard deviation plotted as error bars. 
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A quick comparison of the two methods for each instrument concludes that the 

relationship between signal and concentration is more linear at lower concentrations 

but may still be proportional using additional equations at higher concentrations.  The 

plots show that both peak height and peak area produce similar shape calibration plots 

for each instrument.  The data therefore suggests that either method will enable 

quantification within similar limits of detection and saturation, although the plots 

themselves are different with the QDa data almost appearing as two sets with a step 

between them.  The analysis of each set of data should be carried out in a consistent 

manner with the same method used for both calibrations and concentration 

calculations.  The calibration plots are not consistent between instruments as a result 

of their differing sensitivity; the Synapt curve has a much higher ion count and appears 

to start to plateau prior to the QDa curve which is consistent with the relative 

sensitivity and resolution of each instrument. 

 

Figure 6.208 – Synapt calibration plots showing exponential curves fitted to the data, both in 
full for the peak area, and in part for the peak height. 

Further analysis of each calibration plot allows equations to be fitted to the data, see 

Figure 6.208.  Origin 2019 software has been used to model the data and fit an 

equation to each set.  Details for each model fitted and the correlation are inset within 
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the figures; the details are not relevant to this chapter but will be discussed in detail as 

each calibration plot is studied.  

6.7.3 Continuous flow quantification 

In the case of continuous flow runs, the ion signal is subject to variation as the sample 

introduced for ionisation varies between dilute regions and concentrated ones.  The 

series of peaks and troughs shown in Figure 6.209 suggest that there is insufficient 

length of tubing after the MRA to enable full mixing of sample throughout the solvent; 

Figure 6.199 provides a pictorial representation of the dilution or spreading.  The 

length or inner diameter of tubing could be increased to encourage dilution but this 

would increase the delay between dissolution bath and MS analysis as well as 

impacting upon pressure.  Additionally the pump manufacturers provide guidance for 

tubing lengths and inner diameters to ensure consistent solvent flow; the set up 

described reaches the maximum recommended length and ensures the correct 

pressure differentials for maintaining flow rates.   

 

Figure 6.209 – Chromatogram showing consistent flow of a constant concentration sample.  
Total ion current shown in black and monitoring of a single ion shown in red, note the use of 
different scales for the Y-axis. 

A chromatogram list can also be extracted using MassLynx; this list can be manipulated 

to provide mean, maximum and minimum recorded ion intensities in addition to 

calculating a moving average, see Figure 3.210.  A plot of moving average against time 
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allows quantification of signal variation for the continuous monitoring of a single 

concentration samples.   

 

Figure 3.210 - Chromatogram for the monitoring of a single ion with the maximum intensity 
plotted in blue, minimum intensity plotted in red, mean intensity plotted in orange and a 
moving average plotted in green. 

This signal variation can be used to generate an understanding of the uncertainty 

involved in simple quantification prior to more complex quantification calculations 

where multiple components are involved. 
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enable robustness and reproducibility to be understood.  For the continuously flowing 

samples, a variation in both SIM and TIC signal is apparent.  This is present even 

throughout analysis of a consistent flow of constant concentration sample; hence, a 

moving average should be calculated using the minimum and maximum ion intensities 

observed over time.  A detailed investigation into the levels of uncertainty associated 

with quantification by each of the methods will be necessary and for each component 

of sample being analysed.  

Off-line analysis with the QDa, Synapt and QToF will be utilised for much of the initial 

work to determine limits of detection, signal variation and working concentration 

ranges.  It will then provide the basis from which to explore ion suppression and 

enhancement when multiple APIs and excipients are present in a solution, with on-line 

analysis and limited sample preparation the ultimate aim for monitoring dissolution by 

MS. 
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7. Exploring single components in simple solvent systems with ESI-MS 

7.1 Introduction  

The overall aim of this work is to explore the use of ESI-MS to monitor dissolution in 

the bulk of a solution.  Routine dissolution techniques currently employ UV or 

HPLC/UV analysis, which most commonly monitor only the API component(s) of a 

formulation.  The use of MS technology would allow non-UV-absorbing compounds to 

be observed, thereby including excipients such as sugars, in addition to following 

dissolution of multiple chemical species without requiring a separation step.  In order 

to build upon the current understanding gained by Lewis et al., this chapter will 

explore the ease by which individual formulation components can be analysed and 

quantified using ESI-MS.15  This will include monitoring components of the tablet both 

with and without chromophores, exploring MS signal variability of APIs and excipients, 

particularly with different solvents, and attempting to detect and accurately quantify 

components without the need for separation before ionisation.  This work will provide 

the basis for understanding the ionisation relationships between components and 

determining the impact of ionisation phenomena (suppression and enhancement) 

upon the monitoring of dissolution. 

The APIs, excipients and dissolution media were chosen to encompass a range of 

characteristics representative of those found within pharmaceutical development.93  A 

key consideration for determining the extent of formulation development and 

dissolution testing required by regulatory authorities for an API is the 

biopharmaceutics classification system (BCS).89,93  This information, with an emphasis 

on solubility, was therefore used to guide selection of the seven APIs listed in Table 

7.20.92  Each API is well established and thus well characterised compared with 

compounds still in development, which ensures better access to background 

information, lower cost and ease of supply, known impurity profiles and more 

complete safety information.   
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Table 7.20 - Active pharmaceutical ingredient (API) selection including biopharmaceutics 
classification system (BCS), solubility, molar mass and monoisotopic mass. 

API BCS93,291,292 BCS 
solubility89 

Molar mass 
(g / mol) 

Monoisotopic mass 
(Da) 

Chloramphenicol 
 

III Good 323.132 322.012329 

Furosemide 
 

IV Poor 330.745 330.007721 

Guaifenesin 
 

I Good 198.216 198.089203 

Haloperidol 
 

II / IV Poor 375.864 375.140137 

Ibuprofen 
 

II Poor 206.281 206.130676 

Paracetamol 
 

I / III Good 151.163 151.063324 

Phenylephrine 
 

II Poor 167.205 167.094635 

Table 7.20 lists the APIs, which include an antibiotic, diuretic, expectorant, 

antipsychotic, anti-inflammatory, analgesic and decongestant, respectively; their 

indications are not relevant to this work but all are available as orally-administered 

immediate release formulations.293  The APIs include an example from each BCS (I to 

IV) and all are considered small molecules by MS standards (below 2000 Da).294  The 

molar mass of each API is noted for concentration calculations and the monoisotopic 

mass for ESI-MS identification. 

A range of excipients commonly used for immediate release formulations were 

additionally selected for MS analysis, see Table 7.21.  The list includes a variety of 

molecular sizes and types, hence molar mass and monoisotopic mass have not been 

included and will be discussed on an individual basis.  Excipients are manufactured to a 

variety of grades, which can influence the role they play within a formulation; these 

specifications include a variety of attributes ranging from particle size distribution to 

impurity profile.110  In addition to the physicochemical properties of each excipient, the 

range and extent of impurities also have potential to impact upon ESI-MS through 

ionisation phenomena or adduct formation.243,295  To simplify analyses, one supplier 

was chosen for each excipient in order to maintain continuity and where multiple 

grades or varieties have been included, the details are stated.   
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Table 7.21 – Excipient selection including abbreviations and usual roles in immediate release 
formulations. 

Excipient 
 

Role in formulation110 

Croscarmellose sodium (CCS) 
 

Disintegrant 

Lactose 
 

Diluent / Filler 

Magnesium stearate 
 

Lubricant 

Mannitol 
 

Diluent / Filler 

Microcrystalline cellulose (MCC) 
 

Binder / Diluent / Disintegrant / Filler 

Povidone 30 
 

Binder 

Povidone CL (crospovidone) 
 

Disintegrant / Dissolution enhancer 

Sodium stearyl fumarate (SSF) 
 

Lubricant 

Sodium starch glycollate (SSG) 
 

Disintegrant 

Starch 
 

Binder / Diluent / Disintegrant / Filler  

The use of biorelevant dissolution media for dissolution testing is the subject of much 

discussion and debate; however, the purpose of this work is not to replicate in vivo 

conditions but to explore the feasibility of a new technique to monitor dissolution.123  

Dissolution media can range from simple pH buffers to complex physiologically 

relevant mixtures where pH, osmolality, buffer capacity and surface tension are tightly 

controlled.296  Simple solvents will be used initially with a plan to add more complex 

additives gradually so that their impact on ESI-MS can be determined. 

Water and acetonitrile are commonly used ESI-MS solvents, often used in combination 

at varying concentrations of each ranging from 0 to 100 percent volume per volume (% 

v/v).  This mixture has been chosen for a number of reasons including cost and 

availability, their ability to dissolve a wide range of substances and the fact that they 

are both polar solvents.  Additionally, acetonitrile is volatile which aids the 

electrospray process compared with a purely aqueous media requiring higher 
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temperatures and gas flow to obtain a stable spray.297  The solvents can be used both 

with and without an ionisation modifier of 0.1% v/v formic acid.   

The mechanism of electrospray ionisation is such that all components present in the 

solution reaching the ion source may become charged, including solvents and additives 

in addition to the analyte(s) of interest.  These protonated or deprotonated molecules 

may then act as reagents, with the potential for gas-phase reactions to occur between 

the ions and molecules present.297  In the positive mode of ESI, formic acid is therefore 

considered to encourage the production of [M + H]+, the protonated ion, through 

influencing basicity, and it would follow that adding a base should encourage 

deprotonation to  produce [M – H]- in the negative mode of ESI, however, research has 

shown that this is not the case, and weak acids again prove to be beneficial in both 

modes.247,298,299  Researchers continue to explore the various drivers for these 

observations in ESI and currently conclude that they vary with differing instrument 

conditions, pH, polarity, relative gas-phase proton affinities, molecular volumes and 

volatility amongst many other factors.300–302   

While the use of modifiers in MS, is frequently necessary and therefore routine, 

excluding all modifiers from this initial investigation would provide a clearer 

understanding of the true relationship between the concentration of components and 

the MS signal.  Their exclusion may also prove to be beneficial if samples of dissolution 

media are returned to the dissolution bath in future on-line experiments, hence, 

wherever possible, modifiers have been excluded. 

7.2 Method 

A solution of each component (API or excipient) dissolved in water and acetonitrile 

50:50 v/v was analysed using the Synapt, and in some cases the QToF, to determine 

the primary ion(s) of interest to follow, with elemental composition used for 

confirmation where necessary.  In the case of very poorly soluble APIs, small volumes 

of additional solvents have been included to aid dissolution and are stated in the 

relevant sections.  The solutions were then analysed using the QDa to confirm any 

ion(s) of interest were consistent with the Synapt analysis.  The extent of ionisation 
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was explored in varying water and acetonitrile concentrations, with and without an 

ionisation modifier, and in both positive and negative modes of ESI-MS, where 

necessary. 

The QDa and Synapt were used to analyse standards across a range of concentrations 

(0.005 and 100 µg/mL) to determine the limits of detection and produce a calibration 

plot for quantification of each component using each instrument.  Each standard was 

run on each instrument three times and the instrument settings were kept consistent 

where possible with the ultimate aim of enabling concurrent analysis of multiple 

components with minor changes only.  Regression analysis was then applied to each 

data set to determine the relationship between instrument signal and sample 

concentration, as described in the best practice guidance from LGC.303,304   

A summary of analysis, which includes the model applied, an equation, the data used, 

constants to be applied and the error involved, can be found within each plot.  The 

error includes either an R-squared value or an adjusted R-squared value.  An R-squared 

value (R2) measures how well the line fits the data using least-squares (with a value of 

one representing the best fit) and an adjusted R-squared value (R’2) uses mean squares 

instead of sum of squares to take into account the number of residual degrees of 

freedom when a polynomial regression has been applied.276  The R’2 is relevant for 

plots where the relationship is not linear but rather polynomial, quadratic or cubic.  

Non-linear calibration curves require more measurements to solve and uncertainty 

estimation is more of a challenge but they are equally valid for understanding the 

relationship between concentration and instrument response.304,305  Guidelines on 

analytical validation in relation to spectrometry data are provided by the International 

Conference on Harmonisation (ICH), and at the time of writing, Q2 (Validation of 

Analytical Procedures: Text and Methodology) and Q14 (Analytical Procedure 

Development) are being revised and combined.306   

The equipment set ups are described in Chapter 6. ESI-MS Equipment Set Up, and in 

this initial work exploring the relationship between single components and signal, 

aliquots of sample have been injected into the MS instruments.  In some cases LC has 
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also been used prior to ESI-MS, but these details will be provided for each section of 

work in order that appropriate conclusions may be drawn and the limitations of each 

individual set up understood. 

7.3 Results and Discussions 

All APIs listed in Table 7.20 were compatible with ESI-MS with the exception of 

ibuprofen, which will be discussed in detail.  The chloramphenicol data, results and 

analyses are typical and provide a worked example of the steps involved in producing 

calibration plots and enabling quantification with ESI-MS.  Detailed discussion of this 

data set has therefore been provided with additional examples of differing approaches 

to analysing the data included for completeness.  The results and discussions for 

further APIs have been described more succinctly to avoid repetition.    

The list of excipients in Table 7.21 are commonly used in oral formulations, but include 

molecules with poor aqueous solubility and / or high molecular weights, hence it was 

not possible to obtain good ESI-MS results for them all.  Lactose, mannitol and 

povidone 30 were the only excipients sufficiently soluble in water and acetonitrile to 

enable ESI-MS analysis.  The data obtained for each API is provided in alphabetical 

order, then each of the soluble excipients, before finally, the more challenging 

excipients are discussed. 

The results for each component include a brief discussion about its medicinal uses, its 

chemical properties and structure, the primary ion(s) found using ESI-MS and then 

concentration response plots for both the Synapt and the QDa where appropriate.  

Note that in some examples the relationship is linear but in the majority of cases 

alternative regression analyses have been applied so as to describe the shape and 

enable concentration to be calculated from signal. 

7.3.1 Chloramphenicol  

Chloramphenicol is defined by the BCS as having good solubility and poor 

permeability.292  In the British National Formulary (BNF) it is available in just one oral 

immediate release form: a 250 mg capsule formulated with the free base.293  It is a 



274 
 

broad spectrum antibiotic reserved for use in life-threatening infections due to its 

association with serious haematological side effects.293   

 

Figure 7.211 - Chloramphenicol chemical structure. 

Chloramphenicol dissolved in a water and acetonitrile mix at 50:50 v/v was found to 

ionise effectively in negative mode ESI-MS with [M-H]- observed at m/z 321, which is in 

line with its monoisotopic mass, see Figure 7.211.  Further confirmation that this signal 

was due to chloramphenicol came from the characteristic isotope pattern, which 

presents as a result of the two chlorine atoms within the molecule.  An example is 

shown in Figure 7.212. 

  

Figure 7.212 - Synapt negative ESI-MS spectrum highlighting the characteristic isotope 
pattern for chloramphenicol as a result of the two chlorine atoms.  Peaks are annotated with 
m/z (top) and intensity of signal (bottom). 

Chlorine exists as two isotopes 35Cl and 37Cl, with natural abundances of 75.28% and 

24.22%, respectively.307  In a molecule with two chlorine atoms present, there will be 
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three combinations of isotopes possible: 1) 35Cl + 35Cl, 2) 35Cl + 37Cl, and 3) 37Cl + 37Cl.  

The remainder of the molecule (minus a hydrogen) adds up to 251, so the m/z values 

obtained through negative ESI-MS would be 1) 251 + 35 + 35 = 321, 2) 251 + 35 + 37 = 

323 and 3) 251 + 37 + 37 = 325.  The relative abundance of each would be in the ratio 

of 9:6:1, which should match the peak heights, although in this case we must also take 

into account carbon and nitrogen which have two isotopes each.  Carbon exists as 12C 

and 13C at 98.99% and 1.11%, respectively, and nitrogen exists as 14N and 15N at 

99.63% and 0.37%, respectively.307  This accounts for the slight variation in relative 

intensities, and for the additional signals at 322 and 324, but provides additional 

confirmation that chloramphenicol could be monitored using a SIM method at m/z 

321.   

A series of chloramphenicol standards were produced using a water and acetonitrile 

mix at 50:50 v/v without the use of a modifier.  The standards were analysed on both 

the Synapt and the QDa without HPLC.  Quantification for each instrument was carried 

out using both peak area and peak height data for completeness, in addition to both 

with and without peak smoothing.    

Synapt with peak smoothing: 

The Synapt peak height and peak area data have been included on one plot for 

comparison, see Figure 7.213.  The precision of individual data points is good, with 

each point representing the average of three runs and the standard deviation shown 

using error bars.  The lower limit of quantification for the Synapt is 0.05 µg/mL and the 

relationship between signal and concentration appears to change around 50 µg/mL as 

both peak height and peak area begin to plateau.  The relationship between response 

and concentration for each plot was explored using the Origin software, however, no 

fit could be found.  Note that m/z 321 has been extracted from the full scan data (with 

an absorbance window of 0.1 Da) and the resulting peak integrated using the 

MassLynx software for the Synapt.   
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Figure 7.213 – Synapt calibration plots showing the relationship between signal and 
concentration for chloramphenicol.  The average peak height data is shown by the black 
boxes and uses the y-axis to the left.  The average peak area data is shown by the red boxes 
and uses the red y-axis on the right hand side.  Each point is the average of three runs with 
the standard deviation shown by error bars. 

QDa with peak smoothing: 

The QDa calibration has utilised a full scan and a SIM method following m/z 321.  The 

full scan provides confirmation that there are no other ions of interest being produced 

at different concentrations for this investigatory work, and the SIM enables simpler 

quantification.  The calibration plots for the QDa are shown in Figure 7.214 with peak 

height and area included in one.  The data points again show good precision with each 

point the average of three runs and the error bars showing the standard deviation.  

The chloramphenicol signal for standards below a concentration of 1 µg/mL was 

detectable but too small to be quantified using either peak height or peak area 

methods.  The lower limit of quantification for the QDa can therefore be set at 1 

µg/mL for this method of sample injection (1 µL) and analysis, which is double that 

found using the Synapt (0.05 µg/mL).  Multiple regression analyses were again applied 

to determine the relationship between signal and concentration, and again, none 

fitted sufficiently well.   The first three data points (1 µg/mL up to and including 10 
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µg/mL), appear to be distinct from the last eight data points (30 to 100 µg/mL) and 

there is a clear outlier at 20 µg/mL, for both the area plot and the height plot.  

 

Figure 7.214 – QDa calibration plot showing the relationship between signal and 
chloramphenicol concentration.  The average peak height data is represented by black 
squares and uses the y-axis to the left.  The average peak area data is represented by red 
squares and uses the x-axis to the right.  Each point is the average of three runs with the 
standard deviation shown using error bars. 

The outlier at 20 µg/mL is most distinct for the QDa peak height data and is also 

present for the QDa peak area data, however it is not present in the Synapt analysis.  

The data points all show good precision and yet the same calibration standards were 

used in both which excludes the likelihood of there being an error in the sample itself.  

A quick glance at the QDa SIM signal for m/z 321 shows that as the sample 

concentration increases, the signal peak shape changes in addition to increasing in 

both height and width, see Figure 7.215.   
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Figure 7.215 - QDa chloramphenicol selected ion monitoring (SIM) chromatogram for m/z 
321 showing peak shape for a range of concentrations. 

A closer look into the QDa SIM signal obtained for chloramphenicol standards between 

10 and 30 µg/mL, Figure 7.216, again highlights that the data shows good overall 

precision.  However, it also shows a change in peak shape that would impact upon the 

average peak height measurements for these concentrations and could also explain 

why the outlying point in the average peak area calibration plot is present but less 

distinct.       
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Figure 7.216 – QDa chloramphenicol selected ion monitoring (SIM) chromatograms for m/z 
321 showing peak shape differences for each of the three runs at 10, 20 and 30 µg/mL. 

The peak height looks to be flattened, which can signify saturation of the detector, 

however, the higher concentration peaks (50 and 100 µg/mL) do not show the same 

effect suggesting this is not the cause.  This highlights the need to consider each 

individual peak shape when extracting peak area and height, and makes clear the 

limitation of using the automated peak detection and smoothing within the MassLynx 

software, see Figure 7.217.     
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Figure 7.217 – QDa chloramphenicol calibration standard 20 µg/mL (run 1 and run 2) SIM 
channel 321 comparison showing the original flattened peak and the MassLynx smoothed 
peak.  Inset is the difference in extracted height and area for the smoothed vs original peaks 
highlighting the importance of looking at individual peak shapes when collecting data. 

QDa without peak smoothing: 

A more detailed extraction of the peak height and area was repeated using the Origin 

software, focusing on absolute area with no smoothing, see Figure 7.218.  This shows a 

more consistent relationship between concentration and response between the peak 

height and area, with reduced standard deviation error bars suggesting this is a more 

consistent method for extracting data. 
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Figure 7.218 – QDa calibration plots using Origin to determine absolute area and peak height 
from the SIM channel data.  The double y-axis plot shows the relationship between 
chloramphenicol concentration and average peak height (left y-axis with black markers) as 
well as average peak area (right y-axis with red markers).  Each point is the average of three 
runs with the standard deviation shown using error bars. 

Regression analysis was performed using the peak area average and the peak height 

average; the resulting data is shown in Figure 7.219 and Figure 7.220, respectively.  

The confidence bands increase after a concentration of 70 µg/mL for peak area, and 

after 80 µg/mL for peak height for the QDa.  The adjusted R-squared value is improved 

for the equation fitted to the peak height data than the peak area data (0.99977 

compared with 0.99943). 
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Figure 7.219 – QDa calibration data using Origin to determine absolute area from the SIM 
channel data with regression analysis applied to the average and additional data inset. 

 

Figure 7.220 – QDa calibration data using Origin to determine peak height from the SIM 
channel data with regression analysis applied to the average and additional data inset. 
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Synapt without peak smoothing: 

The peak shapes for the Synapt calibration data are shown in Figure 7.221 for 

comparison.  These are more consistent and the signal is spread over a larger time 

period, hence the area and height would be expected to be less open to 

misinterpretation by the software.  The tips of each peak, however, have been missed.  

Upon further investigation this is due to the Synapt scan time rather than saturation of 

the detector, as the characteristic isotope pattern remains consistent for each.  This 

could be amended to scan more frequently and therefore include more data points, 

however, it would increase the data burden and the ion statistics (as previously 

discussed).  The ability to capture the extent of the peak will also be dependent upon 

the time taken for maximum ionisation of the sample, which will vary with each 

concentration injected and therefore cannot easily be optimised for every run.  It will 

be kept consistent for all runs and explored further only if necessary. 

 

Figure 7.221 – Synapt chloramphenicol extracted chromatograms for m/z 321 showing peak 
shape differences for each of the three runs at 10, 20 and 30 µg/mL. 

For completeness the Synapt data was re-extracted using Origin software (without 

peak smoothing) and the result can be found in Figure 7.222.  The data differs between 
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methods of extraction, but the relationship between signal and concentration remains 

the same for both peak height and area for the Synapt, suggesting that it changes at a 

concentration of 50 µg/mL. 

 

Figure 7.222 – Synapt calibration plots showing the relationship between signal and 
concentration for chloramphenicol using Origin to determine absolute area and peak height 
using extracted mass.  The average peak height data is shown by the black boxes and uses 
the y-axis to the left.  The average peak area data is shown by the red boxes and uses the red 
y-axis on the right hand side.  Each point is the average of three runs with the standard 
deviation shown by error bars. 

Regression analysis was performed using the peak area average and the peak height 

average; the resulting data is shown in Figure 7.223 and Figure 7.224, respectively.  

The confidence bands increase after a concentration of 10 µg/mL for peak area, and 

after 20 µg/mL for peak height for the Synapt.  The adjusted R-squared value is slightly 

better for the equation fitted to the peak height data than the peak area data (0.99948 

compared with 0.99878), which is consistent with the QDa findings.   
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Figure 7.223 – Synapt calibration data using Origin to determine absolute area under the 
peak from extracted mass data with regression analysis applied to the average and 
additional data inset. 

 

Figure 7.224 – Synapt calibration data using Origin to determine peak height from extracted 
mass data with regression analysis applied to the average and additional data inset. 
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Summary: 

In summary, the QDa signal is more consistent across a larger concentration range for 

both peak height and peak area calculations, from 1 to 70 µg/mL, while the Synapt has 

a lower limit of detection, 0.05 µg/mL, but increased error at concentrations above 20 

µg/mL when using peak height and above 10 µg/mL when using peak area.  These 

findings are consistent with the different types of instrumentation used; the Synapt 

uses TOF mass analysis, which has a greater sensitivity and therefore lower limit of 

detection than the QDa’s quadrupole, which in turn possesses a greater dynamic range 

and an extended limit for quantification. 

Three additional concentrations of sample were analysed in triplicate on both the QDa 

and the Synapt, at the same time as the samples for each calibration to maintain 

consistency.  The signal from these samples was analysed using the same methods 

used to extract each data set and produce the calibration plots.  Both peak height and 

peak area data were used with the regression analyses for each calibration plot, and 

from these, concentrations were calculated, see Table 7.22. 
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Table 7.22 – Comparison of using initial calibration plots to determine concentration from 
signal for both peak height and peak area, for each instrument.  The 95% lower and upper 
confidence limits are provided in brackets for each value. 

Prepared 
concentration 
(µg/mL) 

Peak height - experimentally 
determined concentration 

QDa                    Synapt 

Peak area – experimentally 
determined concentration 

QDa                    Synapt 

2.2 5.6 

(4.7 - 6.5) 

2.7 

(2.5 - 3.0) 

6.9 

(6.5 - 7.2) 

3.0 

(2.9 – 3.3) 

9.3 13.6 

(12.3 - 15.1) 

10.9 

(8.7 - 13.7) 

15.6 

(14.9 - 16.4) 

10.9 

(10.5 – 11.4) 

13.5 17.1 

(15.6 - 18.8) 

15.0 

(12.1 - 18.5) 

18.4 

(17.6 - 19.3) 

14.4 

(13.9 – 15.0) 

The prepared concentration values are within the 95% confidence limits for two of the 

three Synapt peak height determined concentrations. However, the majority of these 

experimentally-determined concentrations, including their 95% confidence limits, are 

consistently higher than the prepared concentrations, suggesting there is extensive 

and systematic error involved in calculating the line of best fit for both the peak area 

and the peak height data.  The Synapt values are more closely aligned with the 

prepared concentrations than the QDa values, however, neither method resulted in 

the correct concentrations being calculated.  Concentrations calculated from peak 

height values for the QDa are consistently closer to the prepared concentrations than 

those calculated using peak area, however, the difference between methods for the 

Synapt is less easily defined, with peak height values subject to larger confidence limits 

than peak area. 

Consistency of QDa data: 

A series of calibration standards covering the same concentration range was produced 

a year later and re-run on the QDa to give an indication of data repeatability and to 
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assess a necessary change in equipment set-up, as the LC injecting the sample had 

been replaced.  The time-frame was sufficiently long that the instrument would be 

expected to produce different responses (good practice suggests running samples on 

the same instruments on the same day).303  For further exploration of the relationship 

between signal and concentration and as a result of a change in instrumentation set-

up, the volume of standard injected into the solvent flow increased from 1 µL for the 

initial run to 3 µL for the repeated run. 

 

Figure 7.225 – QDa calibration plot showing the relationship between peak area of signal 
and chloramphenicol concentration for two separate calibrations run on the same 
instrument one year apart.  The initial run (black points) injected 1 µL of sample and the 
repeated run (red points) injected 3 µL.  Each point is the average of three runs with the 
standard deviation shown using error bars. 

The relationship between concentration and signal as measured by peak area is shown 

in Figure 7.225 and confirms that the overall quantity of API reaching the instrument 

has an impact, although the signal increase from injection of 1 µL to 3 µL is not simply 

tripled.  This increase in injected quantity appears to have little effect upon peak 

height, as shown in Figure 7.226, although both the repeated calibration plots show 

increased standard deviation error bars compared with the initial runs.  Peak height is 
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limited in the extent to which it can change relative to peak area – the detector will 

saturate if too many ions present at once reaching a maximum peak height, but if they 

continue to present over a larger time period they will be measured as a larger peak 

area. 

 

Figure 7.226 – QDa calibration plot showing the relationship between peak height of signal 
and chloramphenicol concentration for two calibrations run on the same instrument with 
the same method settings one year apart.  The initial run injected 1 µL of sample and the 
repeated run injected 3 µL.  Each point is the average of three runs with the standard 
deviation shown using error bars. 

Caution should be exercised in comparing the results due to the time scale of 

experiments and the differing injection volumes.  Upon first glance the repeated run 

appears to enable a concentration of 0.5 µg/mL to be distinguished from the blank, 

effectively extending the lower limit of quantification for the QDa from 1 to 0.5 µg/mL.  

However, this is arguably a result of the increase in total quantity of chloramphenicol 

injected into the MS not solely the concentration of standard.   

One interpretation would be to discuss the lower limit of quantification as the 

concentration multiplied by the amount injected (total mass), which would be 0.0015 

µg.  In the previous run the lower limit of quantification, using the same method for 
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data analysis, was 1 µg/mL with 1 µL injected hence the limit would be stated as 0.001 

µg.  This suggests that the lower limit of quantification is consistent between both runs 

as the next concentration of standard to be analysed was 0.1 µg/mL, to make the 

amount injected 0.0003 µg, which cannot be distinguished from the blank.  

Additionally, it may be explained by considering dilution of the sample aliquot injected.  

This was introduced in Figure 6.199 and highlighted that an injected aliquot of sample 

will spread within a flowing stream of solvent, dependent upon diffusivity and tubing 

dimensions, so that the sample reaching the MS may vary in concentration from that 

injected.  A change in size of aliquot from 1 to 3 µL may also impact upon the extent of 

diffusion that can occur, hence the larger plug may reach the MS less spread out and 

therefore less dilute than a smaller plug if all other conditions remained constant.  This 

could explain the extended lower limit of quantification but does not enable a 

conclusion to be drawn as to whether the ESI-MS response is more sensitive to mass or 

concentration changes. 

Table 7.23 – Comparison of using repeated calibration plots to determine concentration 
from signal for both peak height and peak area for the QDa. 

Prepared 
concentration 
(µg/mL) 

Peak height - 
experimentally 
determined 
concentration                

Peak area – 
experimentally 
determined 
concentration                  

2.0 1.7 (1.0 to 2.4) 2.1 (2.0 to 2.3) 

9.0 10.7 (9.9 to 11.7) 11.4 (10.9 to 12.0) 

25.0 27.1 (25.0 to 29.6) 30.2 (28.5 to 32.3) 

Three additional standards were run at the same time as the repeated calibration 

standards to again assess the ability to calculate concentration from signal and also 

provide a comparison with those previously calculated, see Table 7.23.  The prepared 

concentrations covered a larger range than previously, 25.0 rather than 13.5 µg/mL, in 

line with the finding that the QDa dynamic range extends beyond 20 µg/mL.  The 
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experimentally-determined concentrations were closer to the prepared concentrations 

for the peak height analysis than peak area, consistent with the previous findings.   

 

Figure 7.227 - Comparison of using initial and repeated calibration plots to calculate the 
concentration of known samples using both peak height and peak area.  The known 
concentration of the samples is plotted as the target for each set of data. 

A comparison of the initial calculated concentrations and the repeats can be viewed 

more easily when plotted together with error bars, see Figure 7.227.  The repeated 

calibration plot shows improved accuracy and precision for the lowest determined 

concentration (2.0 µg/mL), and is slightly improved for the other two concentrations, 

however, both the initial and repeated sets of calibration plots consistently determine 

a higher concentration than that which was analysed.  This over-estimation confirms 

that there is consistent and significant error in determining the concentration of 

chloramphenicol using the QDa calibration plots calculated using both peak height and 

peak area.  Further work is required to determine the cause of this error. 
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7.3.2 Furosemide 

Furosemide is classed as BCS IV, with poor solubility in water, reported as 0.01825 

mg/mL at room temperature.292,308,309  It is a commonly prescribed loop diuretic 

available as an oral immediate release tablets with strengths of 20 mg, 40 mg and 500 

mg in the UK, in addition to various strengths of oral solution and also as a solution for 

injection.293  It is an acidic carboxylic acid derivative, which is unstable in light and 

acidic media, but very stable in basic media and exhibits pH dependent solubility, 

which has resulted in frequent studies on its dissolution properties.309–313  Furosemide 

was found to ionise effectively from solutions of water and acetonitrile at 50:50 v/v 

with formic acid present at 0.1% v/v using negative ESI-MS.  This analysis produced 

ions of [M-COOH]- and [M-H]- which were observed at m/z 285 and 329 respectively, 

see Figure 7.228.   

 

Figure 7.228 – Furosemide chemical structure and suggested formation of ions observed by 
ESI-MS. 

The two ions of interest were present on both instruments (Synapt and QDa), with 

knowledge of the isotope abundance of sulphur and elemental composition by the 

Synapt providing confirmation of their identity.  Both ions were observed across the 

range of concentrations analysed on the Synapt and the QDa (without HPLC), 

suggesting that they should both be assessed for quantification purposes.   
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QDa: 

In the case of QDa quantification, the SIM function allowed both ions to be combined 

into one method, with the peak area used to produce the calibration plot found in 

Figure 7.229. 

 

Figure 7.229 – QDa negative ESI-MS calibration plot showing the relationship between signal 
and furosemide concentration using average peak area data obtained through following 
both ions of interest concurrently (m/z 285 and 329).  Furosemide standards are in water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of three 
runs with the standard deviation shown using error bars.  A red line of best fit has been 
plotted with regression data inset into the graph. 

The relationship between furosemide signal and concentration, as measured using 

both ions of interest combined, is linear across this range for the QDa.  The lower limit 

for quantification is 0.5 µg/mL and the R-squared value is greater than 0.99 signalling 

that the line of best fit has a low level of error; the outlier at 90 µg/mL suggests that 

the error may be greater at concentrations above 80 µg/mL.  Three additional samples 

were analysed to determine whether each concentration could be calculated from 

signal using the line of best fit in Figure 7.229. 
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Table 7.24 - QDa experimentally determined concentrations for the three additional 
samples. 

Prepared 
concentration 
(µg/mL) 

Peak area - experimentally 
determined concentration                

Lower and upper 95% 
confidence limits 

2.2 2.5 -1.4 to 6.5 

9.3 9.0 5.1 to 12.9 

13.5 12.8 8.9 to 16.7 

Table 7.24 shows the experimentally-determined values are close to the prepared 

concentration values, with the 95% confidence limits highlighting a comparable level of 

uncertainty for each sample.  In summary, this linear relationship between 

concentration and signal builds confidence in utilising furosemide as a model 

compound to further understand the impact of the dissolution media and additional 

components upon QDa analysis. 



295 
 

Synapt: 

 

Figure 7.230 - Synapt negative ESI-MS calibration plot showing the relationship between 
signal and furosemide concentration using a combined peak area average obtained through 
extracting both ions of interest concurrently (m/z 285 and 329).  Furosemide standards are in 
water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of 
three runs with the standard deviation shown using error bars.  The regression analysis is 
shown by the red line with the model data inset. 

The range of samples were also run on the Synapt, and calibration data was extracted 

for the two ions combined, with regression analysis applied, see Figure 7.230.  The 

Synapt calibration plot shows an adjusted R-squared value of 0.99 for the model 

applied but is significantly different from the linear QDa calibration plot.  The 

relationship between signal and concentration was analysed further to determine 

whether the individual m/z values or the peak height data may be used more easily for 

quantification using the Synapt, see Figure 7.231 and Figure 7.232. 
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Figure 7.231 – Synapt calibration plot for m/z 329 for both peak height averages (black) and 
peak area averages (red).  Each point is the average of three runs with the standard 
deviation shown using error bars. 
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Figure 7.232 – Synapt calibration plot for m/z 285 for both peak height average (black) and 
peak area averages (red).  Each point is the average of three runs with the standard 
deviation shown using error bars. 

Neither the single m/z values nor the peak height data suggests a simple relationship 

between signal and concentration for the Synapt for furosemide and instead suggest 

that there may be step changes occurring between concentrations.  In an attempt to 

further elucidate the relationship, the ratio of m/z 285 to m/z 329 across the 

concentration range has been represented using stacked columns, Figure 7.233.  The 

ratio starts around 1:1 at the very low concentrations, then the predominant ion 

becomes m/z 329, with a ratio of 7:3 at a concentration of 1 µg/mL, before the ratio 

gradually returns to almost 1:1 at 90 µg/mL.  A greater extent of furosemide 

fragmentation (on the Synapt) therefore occurs at these extremes of concentration, 

although the reasons for this are currently unclear. 
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Figure 7.233 - Synapt calibration data for peak area averages highlighting the changing ratio 
of m/z 285 to m/z 329 across the concentration range. 

Further analysis of the mass spectra revealed that an additional ion of m/z 681, which 

corresponds to [2M + Na – 2H]- appears at concentrations of 10 µg/mL and above on 

the Synapt.  This may also account for some of the loss of linearity as dimers appear 

more frequently at higher concentrations due to the increased probably that two 

molecules of furosemide may find themselves together in one droplet towards the end 

of the electrospray process.235  A detailed revisit of the QDa spectra found the dimer to 

be present only at concentrations of 30 and above on this instrument, highlighting the 

differences between the two instruments despite both ionisation mechanisms being 

classified as electrospray, see Figure 7.234.256,314  
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Figure 7.234 – Synapt mass spectra showing the presence and absence of the dimer (m/z 
681) at three different concentrations: bottom plot is 1 µg/mL, middle plot is 10 µg/mL and 
top plot is 100 µg/mL.  

Table 7.25 – Synapt experimentally determined concentrations using peak area for the three 
additional samples. 

Prepared 
concentration (µg/mL) 

Peak area - experimentally 
determined concentration                

Lower and upper 95% 
confidence limits 

2.2 2.3 2.1 to 2.6 

9.3 8.8 8.1 to 9.7 

13.5 11.8 10.8 to 13.0 

For completion the three additional samples were run, analysed and concentration 

calculated using the initial average peak area calibration plot, Figure 7.230, which 

utilises the combination of ions used by the QDa (m/z 285 and 329).  Table 7.25 shows 
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that the values are close to the prepared concentrations with confidence limits 

showing a reduction in error compared with the QDa determined values.  

Summary: 

This work highlights again the difference between the two instruments and confirms 

that the relationship between concentration and signal can vary greatly, even for two 

instruments utilising ESI, hence the importance of running the calibration standards on 

both and being consistent in the methods for data analysis.  It also reveals that small 

changes in concentration may alter the electrospray process and change the 

predominant ions detected, thereby requiring multiple ions to be monitored 

concurrently to enable quantification.   

7.3.3 Guaifenesin 

Guaifenesin is an expectorant for treating coughs (often in combination with other 

APIs) through a variety of over-the-counter (OTC) preparations, which include cough 

syrups and oral immediate release capsules and tablets.  It is in BCS I and has good 

solubility in water, reported as 50000 mg/L at 25°C.315  It was found to ionise 

effectively in positive mode ESI-MS from solutions of water and acetonitrile at 50:50 

v/v, both with and without formic acid at 0.1% v/v, producing [M+Na]+ observed at 

m/z 221 and shown in Figure 7.235. 

 

Figure 7.235 – Guaifenesin chemical structure and suggested formation of ion observed by 
positive ESI-MS. 

A range of guaifenesin samples were run on both the Synapt and the QDa without 

HPLC to determine the relationship between signal and concentration using water and 

acetonitrile at 1:1 with 0.1% v/v formic acid.   

Synapt: 

Figure 7.236 suggests the Synapt calibration data follows a simple model with an R-

squared value of greater than 0.99, which would enable experimental determinations 
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of concentration from peak area, with a greater precision at concentrations below 5 

µg/mL. 

 

Figure 7.236 – Synapt calibration plot for guaifenesin in water and acetonitrile (50:50 v/v) 
with formic acid (0.1% v/v) by loop injection (no HPLC).  Each point is the average of three 
samples, each run three times, with standard deviation shown using the error bars.  
Regression analysis has been applied to the average with the additional data inset. 

QDa: 

Figure 7.237 shows the relationship between signal and response for the QDa, again 

without HPLC.  The concentration response curve follows a simple cubic model with an 

R-squared value of greater than 0.99, enabling the experimental determination of 

concentration from peak area for the QDa.  Precision is greater for the lower 

concentrations, with error increasing after 5 µg/mL.   
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Figure 7.237 - QDa calibration plot for guaifenesin in water and acetonitrile (50:50 v/v) with 
formic acid (0.1% v/v).  Each point is an average of three runs with the standard deviation 
shown using error bars.  Regression analysis has been applied to produce the red line, with 
additional data inset. 

Summary: 

A smaller range of concentrations have been analysed for guaifenesin compared with 

other APIs, from 0.2 to 10 µg/mL, due to the earlier work by Lewis et al highlighting it 

as sensitive to ion suppression by other components, either in the formulation, 

dissolution media or both.15  This is confirmed by an additional experiment using HPLC 

prior to Synapt MS analysis, see Figure 7.238.   
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Figure 7.238 – Synapt calibration plot using HPLC prior to ionisation for guaifenesin in water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of three 
samples, each run three times, with standard deviation shown using the error bars.   

Figure 7.238 shows a linear relationship between signal and the lower concentrations, 

but between 5 and 10 µg/mL there is a larger increase in signal than expected.  The 

concentration range is comparable with Figure 7.236 but the change in signal (as 

measured by peak area) from 5 to 10 µg/mL is significantly larger (an average peak 

area of 150,000 for HPLC analysis compared with 65,000 for loop injection analysis).  

This suggests that the guaifenesin signal in Figure 7.236 is subject to ion suppression; 

each sample contained only water, acetonitrile and formic acid, hence the suppression 

may be a result of any of these, a combination, or an impurity present within them.  

Further analysis of the full spectra for each run does not show any clear difference in 

ions present between them making it impossible to draw a conclusion as to the cause.  

This highlights the extent of suppression that can be seen as a result of solvent(s) 

and/or modifiers and makes guaifenesin an interesting choice for further work 

analysing multiple components concurrently. 

0 2 4 6 8 10

0

20000

40000

60000

80000

100000

120000

140000

160000

P
e
a
k
 A

re
a
 A

v
e
ra

g
e

Concentration (µg/mL)



304 
 

7.3.4 Haloperidol 

Haloperidol is classed as a poorly soluble API (BCS II / IV) with water solubility reported 

as 1.4 mg/L at 25°C.315  It is available as immediate release oral tablets ranging from 

500 µg to 10 mg, in addition to a range of oral solutions.  It is weakly basic so can also 

be formulated as a salt and delivered as a depot injection to sustain absorption and 

improve the therapeutic profile.316,317  It was found to ionise efficiently by ESI-MS in 

the positive mode from water and acetonitrile 50:50 v/v, both with and without formic 

acid at 0.1% v/v, to produce [M+H]+ which was observed at m/z 376.  The chemical 

structure of haloperidol, shown in Figure 7.239, contains one chlorine atom, which 

produces a characteristic isotope pattern that was used to aid identification.   

 

Figure 7.239 – Haloperidol chemical structure. 

A series of concentrations of haloperidol dissolved in water and acetonitrile at 50:50 

with 0.1% v/v formic acid, were analysed with the Synapt and QDa to explore the 

relationship between signal and concentration, see Figure 7.240 and Figure 7.241.  The 

lower limit of quantification for the Synapt is 0.05 µg/mL, compared with 0.1 µg/mL for 

the QDa, and the signal on both instruments shows a plateau after 40 µg/mL.  

Regression analysis has been applied to the average peak area for each plot, with 

polynomial fits producing adjusted R-squared values of greater than 0.99 in both cases.  

The error also increases at concentrations greater than 10 µg/mL for both instruments, 

although the signal variation (as shown by the error bars) remains consistently small. 
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Figure 7.240 – Synapt positive ESI-MS calibration plot showing the relationship between 
signal and haloperidol concentration using peak area average.  Haloperidol standards are in 
water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of 
three runs with the standard deviation shown using error bars.  Regression analysis has been 
applied with additional data inset. 
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Figure 7.241 – QDa positive ESI-MS calibration plot showing the relationship between signal 
and haloperidol concentration using peak area average.  Haloperidol standards are in water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of three 
runs with the standard deviation shown using error bars.  Regression analysis has been 
applied with additional data inset. 

Three additional samples were run, analysed and their concentration calculated using 

the calibration plots for each instrument.  Table 7.26 provides the calculated 

concentrations alongside the prepared concentration values; the QDa predictions are 

closest, with its confidence limits encompassing two of the three values.  
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Table 7.26 – Experimentally determined concentrations using peak area average for the 
Synapt and the QDa for three additional samples.  These values are calculated using the full 
concentration range studied.  The 95% lower and upper confidence limits are provided in 
brackets for each value.  

Prepared 
concentration 
(µg/mL) 

Synapt – peak area 
experimentally determined 
concentration 

QDa – peak area 
experimentally determined 
concentration 

2.2 3.0 (2.6 to 3.6) 3.4 (3.1 to 3.8) 

9.3 7.6 (6.7 to 8.7) 9.3 (8.7 to 10.1) 

13.5 12.3 (10.8 to 14.3) 13.7 (12.5 to 15.7) 

The error for both calibration plots increases after a concentration of 10 µg/mL, which 

would suggest that calculating concentrations above this would be prone to more 

error, however, Table 7.26 states better predictions for the higher concentrations.  

Further exploration of the data shows that alternative polynomial fits can be applied to 

the data up to 10 µg/mL, see Figure 7.242.  This would calculate 2.3 and 9.1 µg/mL for 

the Synapt, and 2.3 and 9.9 µg/mL for the QDa.  The R-squared values are close to 1 in 

both cases, but a glance at the shape of the polynomial plot versus the number of data 

points highlights a significant amount of extrapolation and therefore a clear limitation 

in this analysis.  Reducing the concentration range further results in more 

appropriately fitted regression analyses, see Figure 7.243. 
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Figure 7.242 – Synapt and QDa calibration plots on left and right y-axes, respectively, 
showing only concentrations between 0.05 and 10 µg/mL.  Each point is the average of three 
runs, with standard deviation shown using error bars. 
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Figure 7.243 – Synapt and QDa calibration plots on left and right y-axes, respectively, 
showing only concentrations between 0.05 and 1 µg/mL.  Each point is the average of three 
runs, with standard deviation shown using error bars.  Linear regression has been applied to 
each, with the additional data inset (top – Synapt, bottom – QDa). 

As expected from prior knowledge of each instrument, the QDa loses linearity prior to 

the Synapt but the linear regression analyses have R squared values above 0.99.  The 

multiple regression analyses suggest that the relationship between signal and 

concentration might not be consistent across the range studied for haloperidol and it 

may be beneficial to understand in advance the section of plot that is most 

appropriate for calculating concentration. 

7.3.5 Ibuprofen 

Ibuprofen is a BCS II poorly soluble weak acid with reported solubility in water of 21 

mg/L at 25°C.318  It is a commonly used non-steroidal anti-inflammatory drug available 

in a number of formulations ranging from oral immediate release tablets to topical 

gels, and is utilised both as the free acid and a variety of salts to improve absorption.319  

The sodium salt was used in these initial investigations as it was readily soluble in the 

MS solvents.  The chemical structure of each is displayed in Figure 7.244.  
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Figure 7.244 - Ibuprofen and ibuprofen sodium chemical structures. 

Ibuprofen sodium was explored with positive and negative ESI-MS both with and 

without formic acid, and with the Synapt and QDa.   An ion of interest was determined 

at m/z 251 in positive mode on the Synapt, which corresponds to [M+Na]+ (where M 

refers to ibuprofen sodium).  A series of concentrations of ibuprofen sodium were then 

analysed and a calibration plot produced for this instrument, see Figure 7.245.  

Regression analysis resulted in a line of best fit with an R-squared value of greater than 

0.99 suggesting a good fit with minimal error at concentrations below 80 µg/mL down 

to a lower limit of detection of 0.05 µg/mL.  The data point at 90 µg/mL does not fit 

within the confidence limits and appears to suggest a plateau between 80 and 100 

µg/mL. 
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Figure 7.245 - Synapt ibuprofen sodium calibration plot for m/z 251 for peak area averages 
using positive ESI-MS.  Ibuprofen sodium standards are in water and acetonitrile (50:50 v/v) 
with formic acid (0.1% v/v).  Each point is the average of three runs with the standard 
deviation shown using error bars.  Regression analysis has been applied with the additional 
data inset. 

It was found that as the ibuprofen concentration being analysed was increased, an 

increasing number of clusters formed and could be observed within the spectra.  Peaks 

with a regular mass difference of 228 Dalton, which corresponds to the addition of 

sodium salts of ibuprofen (m/z 251, 479, 707, 935 etc.) are present.  The clusters are 

more prevalent at ibuprofen concentrations above 20 µg/mL.  The capillary voltage 

and cone voltage were adjusted to understand if the clusters could be disrupted, and 

formic acid was excluded to understand if this too played a role in the negative mode.  

The changes proved unsuccessful but it was found that loop injected base peak 

intensity (BPI) chromatograms could be used to encompass both the single ion and the 

clusters, and produce an alternative calibration plot, see Figure 7.246 and Figure 7.247. 
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Figure 7.246 - Synapt positive ESI-MS loop injection base peak intensity chromatograms for three concentrations of ibuprofen sodium in MS solvent.  
Showing 1 µg/mL at the top, 50 µg/mL in the middle and 100 µg/mL at the bottom.  The right side shows the ions present in each chromatogram 
between 8 and 12 seconds. 
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Figure 7.247 – Synapt positive ESI-MS calibration plot for ibuprofen sodium in water and 
acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The data has been obtained using the 
BPI function in MassLynx with the full chromatogram peak integrated using Origin instead of 
extracting data for a single ion.  Each point is the average of three runs with the standard 
deviation shown using error bars.  Regression analysis has been applied to produce the red 
line, with additional data inset. 

As an alternative to extracting signal only from an ion (or ions) of interest at each 

concentration, the BPI function in MassLynx was used to extract the base peak 

chromatogram, which could then be integrated in Origin and the peak area average 

calculated.  The calibration plot in Figure 7.247 has been subjected to regression 

analysis and a polynomial equation fitted to calculate the red line.  The adjusted R-

squared is greater than 0.98, suggesting the fit is good and this alternative method has 

provided sufficient information to be able to predict concentration from signal.  The 

lower limit of detection is 0.005 and there is a plateau after 80 µg/mL, although this 

has not been accounted for with the fitted line.   

  

0 20 40 60 80 100

0

20000

40000

60000

80000

100000

 Peak Area Average

 Poly4 Fit of Summary B"Peak Area Average"

 95% Confidence Band of B"Peak Area Average"

P
e
a
k
 A

re
a
 A

v
e
ra

g
e

Concentration (µg/mL)

Model Poly4

Equation
y = A0 + A1*x + A2*x^2 + A3*x^3 + A

4*x^4

Plot Peak Area Average

A0 3367.85061 ± 137.09617

A1 1739.36024 ± 183.93389

A2 -33.70538 ± 13.91813

A3 0.40605 ± 0.27825

A4 -0.00161 ± 0.00164

Reduced Chi-Sqr 5.71383

R-Square (COD) 0.99062

Adj. R-Square 0.9875



314 
 

Table 7.27 – Synapt positive ESI-MS determined concentrations using peak area from 
extracted m/z 251 and using peak area of BPI chromatograms for three additional samples.  
The lower and upper 95% confidence limits are given in brackets. 

Prepared 
concentration 
(µg/mL) 

Peak area – m/z 251 
experimentally determined 
concentration (µg/mL) 

Peak area – BPI 
experimentally determined 
concentration (µg/mL) 

2.2 2.4 (2.3 to 2.6) 2.5 (2.1 to 3.0) 

9.3 8.9 (6.7 to 9.3) 8.4 (7.2 to 10.0) 

13.5 13.2 (12.9 to 13.7) 11.8 (10.1 to 14.0) 

The known standards (all below the plateau) were analysed to observe whether we 

might be able to predict concentration both with and without SIM.  The results can be 

found in Table 7.27 and confirm that a relationship between signal and concentration 

has been identified in both cases.  The predicted concentration lower and upper 95% 

confidence limits encompass all three prepared concentrations for both methods, 

concluding that both calibration plots can be used successfully, although as expected, 

the plot using data extracted only for m/z shows reduced error across all three 

concentrations.     

The BPI method works well for a sample with only one molecule of interest, but would 

not provide suitable means for quantification if additional analytes were present, 

unless separation methods were employed prior to ESI-MS.  Additionally, it could not 

be applied to the concentration series analysed by negative ESI-MS as there were no 

dominant ions produced, either with or without formic acid, and applying BPI resulted 

in a spread of intensity rather than a clear peak for integration.  Analysis with the QDa 

in positive and negative ESI-MS, with and without formic acid, was unable to produce 

any ions of interest, although the reason for this is unclear.  The literature findings for 

ibuprofen analysed by negative mode ESI-MS suggest that in the absence of formic 

acid, the [M-H]- should appear and a dimer adduct with sodium [2M–2H+Na]- may be 

found.298,320  Neither of these was found in sufficient quantity throughout this work.  
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This may be explained by comparing the properties of ibuprofen sodium (used in this 

work) with ibuprofen (studied in the literature).   

Ibuprofen is described as a molecule lacking a high degree of polarity; in a solution of 

water and acetonitrile, it will be sufficiently hydrophobic that it can move to the 

surface of the droplet and ionise efficiently relative to other more polar molecules 

according to Schug and McNair.320  The conversion of ibuprofen to a salt with the 

addition of a sodium ion will clearly alter the polarity of the molecule (salts of drug 

molecules are designed to improve solubility for this reason), resulting in a more 

soluble but potentially less ionisable molecule by the negative method of ESI-MS.  This 

may explain how the presence of formic acid in the positive ESI-MS enabled a 

calibration plot to be produced, but how, even without formic acid, ionisation was 

insufficient for quantification in the negative mode.  It does not, however, explain the 

absence of ions on the QDa in the initial investigations in either mode.  Time 

constraints prevented this from being explored further for this instrument. 

7.3.6 Paracetamol 

Paracetamol, also known as acetaminophen, is a commonly used analgesic on the 

World Health Organisation’s Essential Medicine List.291  It is commonly formulated as 

an immediate release 500 mg tablet for oral administration.  Its BCS is defined as 

borderline I / III with an aqueous solubility of 23.7 mg/mL at 37 °C, and an historical 

classification of BCS IV.291,321  It ionises readily in positive ESI-MS to produce [M+H]+, 

which is observed at m/z 152.  It is more readily ionised in the presence of formic acid, 

as expected, but can also be analysed from a water only solution.  In addition to m/z 

152, a decomposition product at m/z 110, can be observed, see Figure 7.248.  This 

fragmentation is a result of the thermal decomposition of paracetamol during ESI and 

was studied by Gilpin and Zhou in 2004.322  Decomposition increases with higher 

temperatures for source and probe, as well as with increased capillary and cone 

voltage, however, a balance must be struck between preventing decomposition and 

obtaining good signal to noise ratios for the ion of interest.     
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Figure 7.248 – Paracetamol chemical structure and suggested formation of ions observed by 
positive ESI-MS. 

A solution paracetamol in water and acetonitrile 50:50 v/v was initially analysed to 

understand signal variation in response to the adjustment of QDa probe temperature, 

cone voltage and capillary voltage settings.  Formic acid was excluded from the 

solution to provide the worst case scenario for signal to noise ratios.  The default 

settings, which included a source temperature of 150 °C, probe temperature of 600 °C, 

cone voltage of 20 V and a capillary voltage between 1.0 and 1.5 kV were used 

successfully, and a sample of paracetamol dissolved in only water was also found to 

have a comparable signal. 

A series of concentrations of paracetamol dissolved in water and acetonitrile 50:50 v/v 

with formic acid 0.1% v/v were analysed on the QDa and on the Synapt by loop 

injection to explore the relationship between concentration and signal for each 

instrument.  Figure 7.249 shows the calibration plot for the Synapt with the 

paracetamol signal extracted using m/z 152.07 (+/- 0.1 Da).  The lower limit of 

quantification for the Synapt is 0.05 µg/mL and there is a linear relationship up to 60 

µg/mL with an R squared value of greater than 0.999.  It is unclear whether the signal 

at 70 µg/mL is the start of the plateau or simply an outlier, but the linearity does not 

extend to 80 or 90 µg/mL, and by 100 µg/mL there is an increase in variability 

suggesting that the relationship is no longer suitable for quantification through these 

methods.  
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Figure 7.249 – Synapt positive ESI-MS calibration plot for paracetamol in water and acetonitrile (50:50 
v/v) with formic acid (0.1% v/v).  Each point is the average of three runs with the standard deviation 
shown using error bars.  Linear regression has been applied to the data between 0.05 and 60 µg/mL 
with data inset. 

The relationship between paracetamol concentration and signal using the QDa differs 

from the Synapt, see Figure 7.250.  In this case paracetamol is extracted using a SIM 

channel of m/z 152.  The lower limit for quantification is 0.1 µg/mL but regression 

analysis suggests a polynomial relationship with an adjusted R squared of greater than 

0.9999.  This enables quantification up to 100 µg/mL, although the confidence band 

widens at 90 µg/mL.   
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Figure 7.250 – QDa positive ESI-MS calibration plot for paracetamol in water and acetonitrile 
(50:50 v/v) with formic acid (0.1% v/v).  Each point is the average of three runs with the 
standard deviation shown using error bars.  Regression analysis has been applied with 
details inset. 

Three additional concentrations of sample were run in triplicate on each instrument 

and the data analysed to calculate concentration from signal using each of the 

calibration plots.  The results can be found in Table 7.28 and confirm that the Synapt 

calibration plot is appropriate for quantification purposes as the experimentally 

determined concentrations are accurate for two of the three samples, and within the 

confidence limits of the third.  The QDa concentrations are all outside the confidence 

limits and higher than the prepared concentrations.   
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Table 7.28 – Experimentally determined concentrations using peak area average for the 
Synapt and the QDa for three additional samples.  The 95% lower and upper confidence 
limits are provided in brackets for each value. 

Prepared 
concentration 
(µg/mL) 

Synapt – peak area 
experimentally determined 
concentration 

QDa – peak area 
experimentally determined 
concentration 

0.6 0.6 (-0.8 to 2.0)  1.6 (1.5 to 1.6) 

3.8 3.5 (2.1 to 4.9) 5.4 (5.3 to 5.6) 

9.3 9.3 (7.9 to 10.6) 11.2 (10.9 to 11.5) 

A smaller section of the QDa calibration plot was extracted and regression analysis 

applied only to the section between 0.1 and 10 µg/mL to see if this improved accuracy 

by narrowing down the section being examined, see Figure 7.251.  This alternative 

calibration plot was then used to calculate concentration from signal for the additional 

concentrations, however, the accuracy of the calculated concentrations remained poor 

with the prepared concentration still not within the confidence limits.   
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Figure 7.251 – QDa positive ESI-MS calibration plot for paracetamol in water and acetonitrile 
(50:50 v/v) with formic acid (0.1% v/v) for 0.1 to 10 µg/mL.  Each point is the average of 
three runs with the standard deviation shown using error bars.  New regression analysis has 
been applied with details inset. 

The relationship between signal and concentration is significantly different between 

the two instruments, with the Synapt having a significantly higher response to the 

same concentration of paracetamol.  It can be concluded to be more variable and 

therefore less accurate for quantification purposes with the QDa than with the Synapt.  

The variability of the signal on both instruments, however, appears to be good with 

narrow error bars below 90 µg/mL.   

0 2 4 6 8 10

0

1000

2000

3000

4000

5000

6000

 Run 1

 Run 2

 Run 3

 QDa Peak Area Average

 Polynomial Fit of QDa E"QDa Peak Area Average"

 95% Confidence Band of E"QDa Peak Area Average"

P
e

a
k
 A

re
a

Concentration (µg/mL)

Equation y = Intercept + B1*x 1̂ + B2*x 2̂

Plot QDa Peak Area Average

Weight No Weighting

Intercept 94.61498 ± 81.9243

B1 724.67319 ± 58.27918

B2 -20.76918 ± 5.69999

Residual Sum of Squares 26862.62934

R-Square (COD) 0.99861

Adj. R-Square 0.99722



321 
 

 

Figure 7.252 – QDa positive ESI-MS reduced calibration plot to compare two solvent mixes: i) 
paracetamol in water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v) (labelled MS 
solvent) ii) paracetamol in water only.  Each point is the average of three runs with the 
standard deviation shown using error bars.  

Finally, a reduced number of paracetamol standards were made using water only, 

instead of water and acetonitrile 50:50 v/v with formic acid 0.1% v/v, and were 

analysed in positive ESI-MS on the QDa to compare ionisation efficiencies with the 

differing solvent mixes.  Figure 7.252 shows the two calibration plots and confirms that 

the standards containing only water have a lower ionisation efficiency, which can be 

seen by comparing the peak area values.  This is most likely due to a combination of 

reduced solvent volatility (due to the absence of acetonitrile) and the absence of the 

modifier formic acid.  A result of this reduced ionisation efficiency is that lower 

concentrations may not be quantifiable, but higher concentrations can be analysed 

without saturating the detector, hence altering ionisation efficiency can prove to be an 

advantage in certain circumstances. 
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7.3.7 Phenylephrine 

Phenylephrine is primarily a vasoconstrictor and available in multiple forms for a 

variety of uses ranging from treating hypotension to dilation of pupils.293  It is often 

formulated as the hydrochloride salt, although a literature search also revealed 

historical use of a tannate salt to delay absorption and a bitartrate salt.323  

Phenylephrine was dissolved in water and acetonitrile 50:50 with formic acid 0.1% v/v.  

It was ionised in positive mode ESI-MS using the Synapt to confirm that the primary ion 

for quantification was [M+H-H20]+ and could be observed at m/z 150.  This was 

consistent with early dissolution work by Lewis et al and the literature available, Figure 

7.253 provides a brief outline.15,324   

 

Figure 7.253 – Phenylephrine chemical structure and suggested formation of ions observed 
by positive ESI-MS. 

Synapt: 

LCMS analysis was used initially with a five minute reverse phase gradient method and 

phenylephrine was observed to elute between 0.8 and 1.2 minutes.  Two peaks 

appeared to be present between these retention times, which upon closer inspection 

were joined together suggesting that it was either one continuous peak or two 

unresolved peaks.  Analysis of the MS data pertaining to the sample eluting between 
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0.8 and 1.2 minutes confirmed that m/z 150 was dominant throughout.  It is not clear 

why phenylephrine eluted over such a large time period resulting in such a broad band 

in this instance but a small range of concentrations were analysed to determine how 

best to quantify and produce a calibration plot with this information, see Figure 7.254.  

Calculation of the total area was made possible by splitting the data into two peaks, 

integrating each of them and adding them together.  The range of concentrations 

tested was small and it appears to lose linearity after 1.2 µg/mL; regression analysis 

enables a polynomial equation to be fitted with a high degree of confidence prior to 

this loss of linearity.  The lower concentration tested was 0.1438 µg/mL, which was 

easily distinguishable from blank solvent. 

 

Figure 7.254 – Synapt positive mode LCMS calibration plot for phenylephrine using an 
extracted mass of m/z 150.14 (+/- 0.2 Da) from two retention times.  The area between 0.8 
and 1.2 minutes retention time was integrated assuming they were two peaks (peak 1 and 
peak 2) and these were added together to produce the total.  Phenylephrine standards are in 
water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each plotted point is the 
average of three runs, with each concentration being run in triplicate, and the standard 
deviation is shown with error bars. 

A slightly larger range of concentrations were analysed by loop injection (LI) on the 

Synapt, and the results plotted in Figure 7.255.  The LI calibration plot is comparable 

0.0 0.5 1.0 1.5 2.0 2.5

0

5000

10000

15000

20000

 Total

 Peak 1

 Peak 2

 Fitted Y of Total

 95% Confidence Band of Total

P
e
a
k
 A

re
a
 A

v
e
ra

g
e

Concentration (µg/mL)

y = Intercept + ∑Bi*x^i (i = 1, 2,...)

Total

Adj. R-Square 0.99761

Intercept 63.80375 ± 174.5971

B1 5683.24955 ± 960.88694

B2 483.66167 ± 787.30706



324 
 

with the LC data in Figure 7.254, suggesting that the process used previously (i.e. 

adding together the area under each retention time peak) is appropriate.  Figure 7.255 

shows a linear relationship between signal and concentration, with an increase in error 

after 2 µg/mL.  An additional concentration of 0.007 µg/mL was analysed and unable 

to be detected with these conditions, so the lower limit of detection lies between 

0.007 and 0.098 µg/mL. 

 

Figure 7.255 – Synapt positive mode loop injection calibration plot for phenylephrine using 
an extracted mass of m/z 150.14 (+/- 0.2 Da).  Phenylephrine standards are in water and 
acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each plotted point is the average of 
three runs and the standard deviation is shown with error bars.  The line of best fit has been 
plotted in red, with the shaded area representing the 95% confidence band. 

QDa: 

A range of concentrations were analysed by the QDa using a SIM method of m/z 150.  

The observed relationship between signal and concentration for this instrument is 

plotted in Figure 7.256 and a line of best fit has been plotted.  The correlation is very 

good (greater than 0.99) and the error is consistent across the range of concentrations 

analysed.  Only the lowest point does not fit the linear relationship suggesting that the 
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lowest limit of quantification for the QDa is 0.2 µg/mL, although phenylephrine could 

be detected at the lower concentration of 0.098 µg/mL. 

 

Figure 7.256 – QDa positive ESI-MS calibration plot for phenylephrine using the SIM channel 
of m/z 150.  Each plotted point is the average of three runs and the standard deviation is 
shown with error bars.  The line of best fit has been plotted in red, with the shaded area 
representing the 95% confidence band. 

Finally, it should be noted that the phenylephrine ion (m/z 150) is detected at a mass 

close to the primary paracetamol ion (m/z 152) so care must be taken in subsequent 

work to distinguish between them if both APIs are being analysed concurrently. 

7.3.8 Lactose 

Lactose is a commonly used excipient with several pharmaceutical functions and is 

available in a variety of forms or grades.110  It is a disaccharide sugar with a 

monoisotopic mass of 342.116212 Da, see Figure 7.257.  It exists as two 

interchangeable stereoisomers, which differ in the configuration of one hydroxyl group 

and are described as alpha (axial) or beta (equatorial).110  In its crystalline form, each 

alpha lactose molecule also has one water molecule integrated into the crystal lattice, 

which, in addition to the hydroxyl configuration gives rise to different solid state 
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properties, with α-lactose monohydrate exhibiting better flow, and β-lactose superior 

at binding formulations.325  The Flowlac brand of alpha lactose monohydrate, 

produced for direct compression by Meggle Pharma, was used for this work.   

 

Figure 7.257 – Lactose chemical structures highlighting the hydroxyl group that defines it is 
as alpha or beta on the left, and the alpha-lactose monohydrate structure complete with 
water molecule outlined on the right. 

Lactose was confirmed to ionise by positive ESI-MS and produce [M+Na]+ at m/z 365, 

in keeping with the earlier work by Lewis et al.15  A series of concentrations of lactose 

in water and acetonitrile 50:50 v/v with formic acid 0.1% v/v were analysed to explore 

the relationship between concentration and signal for the Synapt and QDa, see Figure 

7.258 and Figure 7.259, respectively.  The Synapt data suggests a linear relationship 

starting from the lower limit of detection, which in this case is 0.005 µg/mL, and up to 

a suggested upper limit for quantification of 80 µg/mL.  The R-squared value for this 

linear regression is greater than 0.98, confirming that the correlation is good, although 

there are clear outliers and an increase in error above 20 µg/mL as highlighted by the 

widened confidence band.  The signal also starts to plateau at 80 µg/mL suggesting 

detector saturation occurs at and above this concentration. 
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Figure 7.258 – Synapt calibration plot for lactose in water and acetonitrile (50:50 v/v) with 
formic acid (0.1% v/v) using m/z 365 peak area data.  Each plotted point is the average of 
three runs with the standard deviation shown using error bars.  Regression analysis has been 
applied to the first fifteen points (0.005 to 80 µg/mL inclusive), with additional data inset. 

 

Figure 7.259 - QDa calibration plot for lactose in water and acetonitrile (50:50 v/v) with 
formic acid (0.1% v/v) using m/z 365 peak area data.  Each plotted point is the average of 
three runs with the standard deviation shown using error bars.  Regression analysis has been 
applied with additional data inset. 
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The regression analysis in Figure 7.259, suggests a cubic relationship between 

concentration and signal for the samples analysed on the QDa.  The adjusted R-

squared value for the fit is greater than 0.99 suggesting very good correlation, 

although there is an increase in the width of the confidence band above 50 µg/mL and 

it is unclear whether a plateau begins here or it is simply a result of outlying data 

points.  In general however, the error bars on the QDa data are much narrower than 

on the Synapt data, confirming less variation in signal with the QDa.   

The sodium adduct [M+Na]+ can be observed across the full concentration range, from 

0.005 to 100 µg/mL for both instruments and enables its relationship with signal to be 

quantified, however, an additional ion was also noted corresponding to [2M+Na]+, the 

lactose dimer, at m/z 707.  For the QDa this appears at concentrations above 10 µg/mL 

and increases with the concentration of lactose undergoing analysis but not 

consistently and is not present in sufficient quantities to alter overall analysis of the 

calibration plot, see Figure 7.260 - note the small peak area as compared with Figure 

7.259.   

 

Figure 7.260 – QDa calibration plot for lactose in water and acetonitrile (50:50 v/v) with 
formic acid (0.1% v/v) using m/z 707 peak area data.  Each plotted point is the average of 
three runs with the standard deviation shown using error bars. 
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However, on the Synapt, the presence of the additional ion (m/z 707) appears at 

concentrations of lactose as low as 0.005 µg/mL and in greater quantities relative to 

the QDa.  An additional calibration plot has been produced using solely the lactose 

dimer for interest, see Figure 7.261.  The outlier at 30 µg/mL is consistent with the 

earlier Synapt plot in Figure 7.258, but is not present in either of the QDa data sets, 

despite the same samples being used for both.  Regression analysis has been applied 

with an adjusted R-squared of greater than 0.97, although the confidence band 

increases rapidly in width above 40 µg/mL suggesting uncertainty increases.  The error 

bars are more variable above this concentration too and a plateau looks to be 

appearing after 80 µg/mL, in line with analysis of the sodium adduct.  

 

Figure 7.261 – Synapt calibration plot using lactose in water and acetonitrile (50:50 v/v) with 
formic acid (0.1% v/v) using m/z 707 peak area data.  Each plotted point is the average of 
three runs with the standard deviation shown using error bars.  Regression analysis has been 
applied with additional data inset. 

Three additional concentrations of sample were run in triplicate on both instruments 

and the data analysed to determine whether concentration could be calculated using 

the previously described m/z 365 calibration plots (Figure 7.258 and Figure 7.259).  In 

0 20 40 60 80 100

0

20000

40000

60000

80000

100000

 Synapt Peak Area Average (m/z 707)

 Logistic Fit of AUC707 B"Peak Area Average (m/z 707)"

 95% Confidence Band of B"Peak Area Average (m/z 707)"

S
y
n

a
p
t 

P
e

a
k
 A

re
a

 A
v
e
ra

g
e
 (

m
/z

 7
0

7
)

Concentration (µg/mL)

Model Logistic

Equation y = A2 + (A1-A2)/(1 + (x/x0)^p)

Plot Synapt Peak Area Average (m/

A1 40.73022 ± 7.53384

A2 104777.36773 ± 24155.43545

x0 68.731 ± 10.92976

p 2.51995 ± 0.23303

Reduced Chi-Sqr 15.84105

R-Square (COD) 0.98183

Adj. R-Square 0.97764



330 
 

addition the dimer calibration plot from the Synapt data (Figure 7.261) has also been 

included in the calculations with all results presented in Table 7.29.   

Table 7.29 – Synapt and QDa determined concentrations using peak area for three additional 
samples.  The extracted mass used to calculate the concentrations is stated for each 
instrument.  The lower and upper 95% confidence limits are given in brackets. 

Prepared 
concentration  

(µg/mL) 

Synapt – peak area experimentally 
determined concentration                       

m/z 365                        m/z 707 

QDa – peak area 
experimentally 
determined 
concentration (m/z 365) 

2.2 3.8 (-5.8 to 13.3) 6.5 (5.0 to 9.6) 2.6 (2.2 to 3.3) 

9.3 15.5 (6.1 to 24.9) 17.1 (14.9 to 19.7) 13.2 (11.4 to 15.3) 

13.5 27.8 (18.5 to 37.2) 22.7 (20.5 to 24.9) 17.9 (15.8 to 20.1) 

The experimentally determined concentrations are consistently higher than expected 

for all three columns, although the QDa data is more closely aligned than the Synapt.  

The dimer data confirms that quantification using the primary ion at m/z 365 is more 

appropriate for this range of concentrations, and insufficient dimer ions in the QDa 

signal thwarted any attempts to utilise this data for further exploration.  The dimer will 

however be monitored in future work to determine whether its appearance is 

influenced by the presence of additional components during ionisation and to ensure it 

does not affect quantification.   

7.3.9 Mannitol 

Mannitol is a hexahydric alcohol with a monoisotopic mass of 182.079041 Da, see 

Figure 7.262.  It is a versatile and commonly used excipient present in varying 

formulations and is also used as a bulking agent within the food industry.110  The grade 

used in this work is Roquette’s Pearlitol 160 C, which refers to its large mean particle 

diameter of 160 µm and its crystalline state.  It is inert and non-hygroscopic so often 

used to combat moisture sensitive APIs within oral formulations.326 
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Figure 7.262 – Mannitol chemical structure and stereochemistry. 

It was analysed by both positive and negative ESI-MS and a number of ions found in 

each.  Additional QToF analysis confirmed that in positive mode an ion at m/z 205 

corresponds to [M+Na]+ and in negative mode, [M-H]- can be found at m/z 181.  The 

conclusion that mannitol can be ionised in both modes with distinguishable ions in 

each highlights it as an interesting excipient for further work exploring ion suppression 

and enhancement.  A series of concentrations of mannitol in water and acetonitrile 

50:50 v/v with formic acid 0.1% v/v were therefore analysed to understand the 

relationship between signal and concentration.   

Synapt negative mode: 

Figure 7.263 shows the linear section of the calibration plot for mannitol analysed by 

negative ESI-MS using the Synapt.  The line of best fit has been calculated with an R-

squared greater than 0.99; the lowest concentration analysed was 0.005 µg/mL but 

the lower limit for detection is higher at 0.5 µg/mL.  The upper limit for quantification 

with a line of best fit is 40 µg/mL, however, the plot can be extended further and 

shows an unusual pattern at the higher concentrations, see Figure 7.264.  This shows 

two linear sections and two plateaus, the first plateau is between 40 and 60 µg/mL and 

the second after 90 µg/mL.  It is unclear why this might occur; the first plateau cannot 

be explained by detector saturation, nor are there clear differences between the 

chromatograms to explain the changes although additional ions were present.   
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Figure 7.263 – Synapt negative ESI-MS calibration plot for mannitol in water and acetonitrile 
(50:50 v/v) with formic acid (0.1% v/v) using m/z 181.1 (± 0.1 Da) peak area data.  Each 
plotted point is the average of three runs with the standard deviation shown using error 
bars.  Linear regression has been applied with additional data inset.  

 

Figure 7.264 – Extended Synapt negative ESI-MS calibration plot for mannitol in water and 
acetonitrile (50:50 v/v) with formic acid (0.1% v/v) using m/z 181.1 (± 0.1 Da) peak area data.  
Each plotted point is the average of three runs with the standard deviation shown using 
error bars. 
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Synapt positive mode: 

The samples run in negative mode ESI-MS on the Synapt were also run using its 

positive mode and the calibration plot can be found in Figure 7.265.  The overall shape 

is comparable with the negative ESI-MS plot, with two linear sections interrupted by a 

plateau, see also Figure 7.264.  However, the lower limit for detection now extends to 

0.05 µg/mL (from 0.5 µg/mL) and the signal appears to continue increasing at 100 

µg/mL instead of showing signs of another plateau.  The variability of data also 

increases after 30 µg/mL, as shown by the error bars widening, which is not consistent 

with the previous plot using negative ESI-MS, although the peak areas obtained are ten 

times greater than in the positive mode (the runs were carried out on the same 

instrument on the same day).  Exploration of the chromatograms confirm again that 

there are no clear differences between the chromatograms to explain the changes, 

although again, additional ions were present. 

 

Figure 7.265 – Synapt positive ESI-MS calibration plot for mannitol in water and acetonitrile 
(50:50 v/v) with formic acid (0.1% v/v) using m/z 205.1 (± 0.1 Da) peak area data.  Each 
plotted point is the average of three runs with the standard deviation shown using error 
bars.  Linear regression has been applied to the initial section of the plot (from 0.05 to 40 
µg/mL) with additional data inset. 
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The linear sections of data from Figure 7.263 (negative ESI-MS) and Figure 7.265 

(positive ESI-MS) were used to calculate concentration from signal for three additional 

samples run at the same time, and the results can be found in Table 7.30.  The 

experimentally-determined concentrations are comparably close to the prepared 

concentrations for both positive and negative data, although the confidence limits of 

the positive data are wider suggesting more variability.   

Table 7.30 – Synapt determined concentrations using peak area for three additional samples.  
The negative mode ESI-MS used an extracted mass of m/z 181.1 (± 0.1 Da) and the positive 
mode ESI-MS used an extracted mass of m/z 205.1 (± 0.1 Da).  The lower and upper 95% 
confidence limits are provided in brackets. 

Prepared 
concentration 
(µg/mL) 

Negative - experimentally 
determined 
concentration (µg/mL) 

Positive - experimentally 
determined 
concentration (µg/mL) 

2.2 4.0 (1.6 to 6.5) 3.0 (-0.3 to 6.2) 

9.3 11.9 (9.5 to 14.3) 8.1 (4.8 to 11.3) 

13.5 14.9 (12.5 to 17.3) 9.5 (6.2 to 12.7) 

QDa: 

A reduced number of samples of mannitol dissolved in water and acetonitrile 50:50 v/v 

with formic acid 0.1% v/v were run in negative mode ESI-MS on the QDa with the SIM 

method again following m/z 181 to determine whether the same unusual relationship 

between signal and concentration occurred.  Figure 7.266 shows a linear calibration 

plot between 10 and 80 µg/mL for the QDa, with signs of a plateau between 80 and 

100 µg/mL, but no loss of linearity between 40 and 80 µg/mL as seen with the Synapt 

data.  The precision of data points is good, but the signal is quite low relative to that 

observed with other components. 
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Figure 7.266 – QDa calibration plot for mannitol dissolved in water and acetonitrile (50:50 
v/v) with formic acid (0.1% v/v) analysed in negative mode using the SIM channel of m/z 
181.  Each point is the average of three runs and the standard deviation is shown with error 
bars.  The line of best fit has been plotted in red, with the shaded area representing the 95% 
confidence band. 

The samples were also run in the positive mode on the QDa, however, mannitol could 

only be detected at m/z 205 at a concentration of 1 mg/mL using this method.  Further 

exploration of the samples was therefore carried out to determine whether any 

additional ions might be able to explain the unusual calibration plots for the Synapt or 

the lack of ionisation for the QDa.  An MS/MS method on the QToF was used to 

explore both m/z 389 and 387 ions in the positive and negative modes, respectively; 

this confirmed the likely presence of a contaminant rather than a mannitol-related ion.  

Each appeared in greater quantities at higher concentrations of mannitol.  Exploration 

of other grades of mannitol were not feasible within the timescale of this work but 

would help clarify whether these challenges are specific to the brand selected. 

7.3.10 Povidone 

Povidone is also referred to as PVP, polyvinylpyrrolidone or polyvidone, and is a 

versatile excipient that is manufactured in multiple grades for a variety of formulations 
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ranging from tablets to transdermal patches.110  It is a polymer and therefore behaves 

differently from the excipients and APIs previously described.  The repeating unit, N-

vinylpyrrolidone, is shown in Figure 7.267. 

 

Figure 7.267 – Povidone chemical structure of repeating unit, N-vinylpyrrolidone. 

Two versions of povidone were explored in this work, povidone 30 and povidone CL.  

Povidone “30” refers to the K-value, which is characterised by viscosity in aqueous 

solutions and relates to molecular weight.  Povidone 30 has an approximate molecular 

weight of 50, 000 Da and is soluble allowing it to be utilised as a wet binder.  Povidone 

CL, however, is a crosslinked homopolymer of N-polyvinylpyrollidone with a molecular 

weight greater than 1,000,000 Da.  It is water-insoluble, instead swelling and wicking, 

which results in it working as a disintegrant.  This insoluble nature of povidone CL 

inhibits easy analysis by ESI-MS, but an attempt was made to dissolve it in a water and 

acetonitrile mixture (50:50 v/v), and the resultant product filtered and analysed by ESI-

MS on the Synapt.  The initial scoping runs for both versions of povidone at a potential 

maximum concentration of 1 mg/mL are shown in Figure 7.268. 
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Figure 7.268 - Povidone in water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v) 
analysed by Synapt: (a) positive mode povidone 30 (b) positive mode povidone CL (c) 
negative mode povidone 30 and (d) negative mode povidone CL. 

There are a number of consistent ions between both the povidone 30 and CL in both 

the positive and negative modes, but no identifiable ions can be observed for either 

polymer suggesting that they are not easily ionised by ESI-MS on the Synapt using the 

standard settings.  This is to be expected of a polymer with an average molecular 

weight of 44,000 to 54,000 and a repeating monomer unit of 110.14, and provides 

evidence that povidone is not appropriate for simple analysis using the QDa. 

7.3.11 Additional insoluble excipients 

The following excipients were found to be insufficiently soluble to analyse simply using 

ESI-MS: croscarmellose sodium (CCS), magnesium stearate, microcrystalline cellulose 

(MCC), sodium stearyl fumarate (SSF), sodium starch glycollate (SSG) and starch.  An 

excess of each was placed in a solution of water and acetonitrile (50:50), the resulting 

samples were sonicated and a vortex mixer used to dissolve as much as possible 

before they were placed in a centrifuge and a filtered sample taken for analysis with 

the Synapt in both positive and negative mode.  The plan was to observe whether any 

(a) 

(b) 

(c) 

(d) 
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identifiable ions could be found, even if they do not lend themselves to quantification, 

their presence may be possible to detect. 

CCS and SSG are cross-linked polymers that swell and wick rapidly when in contact 

with water.  The brand of CCS used was Primellose® and the brand of SSG was 

Primojel®, both made by DFE Pharma and marketed as superdisintegrants.  As 

expected no obvious ions of interest were observed in either mode for either 

excipient, see Figure 7.269. 

 

Figure 7.269 – Synapt analysis of CCS in positive and negative mode, and SSG in positive and 
negative mode (from top to bottom). 

MCC and starch are versatile excipients, used as binders, diluents, disintegrants and 

fillers.110  Both are composed of the same glucose unit structure, with differing degrees 

of polymerisation and glycosidic links; MCC is termed a partially depolymerized 

cellulose, whereas starch is composed of a linear chain amylose and a highly branched 

amylopectin.327  The Starch 1500® used in this work is a partially pregelatinised version 

whereby a bond between sections of the amylose and amylopectin is broken, which 

results in partial solubility.  Nevertheless, neither excipient produced obvious ions of 

interest in either positive or negative mode, see Figure 7.270. 
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Figure 7.270 – Synapt analysis of MCC in positive and negative mode, and starch in positive 
and negative mode (from top to bottom). 

 

Figure 7.271 – Chemical structures of (a) magnesium stearate and (b) sodium stearyl 
fumarate (SSF). 

Magnesium stearate and SSF are lubricants designed to reduce friction for example 

during ejection of tablets.  Lubripharm (SSF manufactured by Forum SPI Pharma) is 

marketed as a less hydrophobic alternative to magnesium stearate, and both are small 

molecules by MS standards at 390.5 g/mol and 591.2 g/mol, respectively, see Figure 

7.271.  The sample containing magnesium stearate was unable to be analysed due to 

the suspension of particles throughout.  The sample containing SSF produced the 

spectra in Figure 7.272, with distinct polymeric repeating patterns of + 68 in both the 

positive and negative modes. 
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Figure 7.272 – Synapt analysis of SSF in positive and negative mode (from top to bottom). 

The poor solubility of all these excipients could potentially be improved by altering the 

dissolving solvents or utilising additional MS analysis, however, the purpose of this 

initial work was to explore the ease by which individual formulation components could 

be analysed and quantified using ESI-MS so that they may be explored further in the 

next chapter.  Hence these insoluble excipients have been excluded from further 

analysis, and a conclusion drawn that insoluble excipients present in formulations are 

likely to be filtered out prior to MS analysis preventing them from impacting upon 

ionisation, although this may require further confirmation including consideration of 

each excipient’s particle size distribution. 

7.4 Conclusions  

The choice of solvent(s) and the addition of ionisation modifiers are important 

decisions when first embarking upon quantification studies as highlighted by the APIs 

and excipients studied in this chapter.  First and foremost sufficient solubility is 

required in the solvent(s) being used in order that they may be introduced in solution 

to the ESI-MS.  Understanding the component in solution is important in assessing 

their ability to ionise efficiently, for example, paracetamol was found to ionise most 

efficiently from a solution containing water, acetonitrile and formic acid, compared 

with only water.  Additionally, research suggests that in addition to analyte 

concentration, properties such as the polarity of molecules, which will vary with the 
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solvent(s) and any ionisation modifier(s) used, may be a risk factor for susceptibility to 

ionisation suppression and enhancement.236,243,328–330   

Ionisation modifiers, such as formic acid, are commonly used in positive ESI-MS to alter 

the pH of a solution thereby improving formation of [M+H]+ during ionisation.  

However, their use in negative ion electrospray to encourage [M-H]- formation is 

clearly more complex than simple pH adjustment.298  Furosemide is shown in this work 

to be ionised from a solution containing formic acid in negative mode ESI-MS enabling 

its quantification.  Ionisation of ibuprofen sodium proved to be problematic and could 

not be analysed using the QDa in either mode, either with or without formic acid.  

Literature suggested the use of trimethylamine (TEA) as a more appropriate modifier 

for obtaining the deprotonated molecular ion for standard ibuprofen (in negative 

mode).320  However, it was not possible to explore within the time constraints of this 

research, hence ibuprofen sodium quantification utilised a BPI method for the Synapt 

that would not be appropriate for studies involving multiple components ionised 

concurrently. 

The next and arguably most important step in exploring concentration and signal is 

defining the most appropriate ion to follow for each component in the solvent(s) and 

modifier(s) of choice.  The use of a high resolution mass spectrometer (Synapt and 

QToF) aided this understanding, and was supported by the use of MS-MS in cases 

where it was unclear whether ions were related to the component being analysed.  A 

disadvantage of using a detailed analytical technique such as mass spectrometry for 

monitoring dissolution is that a wide variety of ions can be observed, hence this 

clarification is extremely important as highlighted by the majority of the APIs studied 

(furosemide, paracetamol and phenylephrine) and particularly the excipients, lactose 

and mannitol.  Additionally, the precision of the m/z value for extracting and 

quantifying components should be borne in mind.  The high resolution ESI-MS will 

easily differentiate between ions close in mass, such as phenylephrine and 

paracetamol, but the QDa will require close monitoring to ensure that ions from each 

API are being selected appropriately by the SIM method.  

The next step involves consistency with equipment set up and aliquot injection 

volumes, to ensure that analysis is undertaken in the same way for a set of analyses.  
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Ion signal is considered to be largely independent of flow rate and injection volume, 

however, injection volume was shown to impact upon chloramphenicol signal, so 

consistency is recommended.236  The same MS should be used and samples should be 

analysed at the same time as the calibration plot run.303  Scan time should be 

considered to ensure that the full extent of the peak can be seen and aliasing is 

avoided, whilst also balancing this with the ion statistics and data burden.  Scan time 

can additionally be affected by the ionisation efficiency of the component being 

analysed, hence it should be considered early on when working through the 

quantification method.   

Quantification can, as shown explicitly with chloramphenicol, be carried out using 

either peak area or peak height of injected aliquots, however, this should be consistent 

for each set of analyses.  Peak area was selected for the majority of initial work as a 

result of the consistent rather than optimised scan times, which were observed to alter 

the peak height more than peak area (see Figure 7.217).  Peak shape should also be 

paid attention to, with smoothing avoided and instead data extracted to a software 

such as Origin to enable detailed integration of peak area or measurement of peak 

height.  Once peak shape is confirmed to be appropriate then the MassLynx software 

(and QuanLynx) may be useful for this step, but in the initial stages of developing a 

method they can result in important details being overlooked.   

The calibration plots obtained for each of the components explored highlight that the 

relationship between concentration and signal is infrequently linear across the 

concentration ranges studied, even prior to detector saturation and response plateaus.  

Research into ionisation mechanisms has offered an explanation that distinct 

ionisation mechanisms may be occurring at each concentration.331,332  Differing 

regression analyses may therefore be applied to distinct sections of the concentration 

range, with some research defining a low concentration mechanism and a high 

concentration mechanism for ion release from droplets based upon surface 

activities.333  The mechanism by which ionisation is occurring is outside the scope of 

this research, but understanding that this may vary with concentration highlights the 

importance of designing calibration plots appropriately. 

Regression analysis was used successfully to describe and quantify the relationships 
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between signal and concentration for each of the components, with the exception of 

ibuprofen and the insoluble excipients.  This information was also successfully utilised 

to calculate concentration from signal for a number of additional samples.  The 

concentrations used were selected to include small and precise concentrations to 

explore the level of detail that one might expect to obtain.  The results confirm that 

mass spectrometry can be used to calculate concentration from signal for almost all of 

the APIs and soluble excipients analysed in this chapter.  The level of precision is good, 

and the level of accuracy may be improved if needed by narrowing the range of 

concentrations included in the calibration plot.  Finally, a summary of the limits for 

quantification using the peak area method for each API and excipient has been 

summarised in Table 7.31. 
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Table 7.31 – QDa summary table for the current limits of detection found so far using simple 
solvents only (water and acetonitrile 50:50 with 0.1% formic acid v/v).  Those highlighted 
with (*) did not contain formic acid.   

 m/z (s) of interest Lower limit for 
quantification 
(µg/mL) 

Upper limit for 
quantification 
(µg/mL) 

Chloramphenicol* [M-H]- 1 70 

Furosemide [M-H]- & [M-COOH]- 0.5 80 

Guaifenesin [M+Na]+ 0.2 10 

Haloperidol [M+H]+ 0.05 20 

Paracetamol [M+H]+ 0.1 100 

Phenylephrine [M+H-H2O]+ 0.2 5 

Lactose [M+Na]+  

[2M+Na]+ 

0.05 

10 

50 

60 

Mannitol [M-H]- 

[M+Na]+ 

10 

1000 

80 

1000 

This chapter provides the basis for expanding our current understanding of dissolution 

monitoring by ESI-MS.  Exploring the relationship between concentration and signal for 

a range of different APIs and excipients provides detailed insights into the ability to 

detect and quantify components accurately, as well as the extent of variation 

observed, which will support studies of ion enhancement and suppression when 
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monitoring multiple components.  The work has included a range of APIs and 

excipients with differing solubility, some of which can be monitored routinely through 

the presence of chromophores via UV-Vis and some of which cannot.  Routine MS 

solvents have been used, both with and without the addition of ionisation modifiers, 

and confirm the impact of solvents upon signal.  Finally, although single components 

were used in this chapter, attention to the impact of separation prior to ionisation 

highlighted that the presence of impurities, particularly in excipients, can still impact 

upon the chromatogram produced and has the potential to affect quantification.  In 

summary, this section of work provides a good grounding for the next chapter 

determining the variation in signal for continuous flow analysis and exploring the 

relationship between multiple APIs and excipients.    
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8. Exploring multiple components in simple solvent systems with ESI-MS 

8.1 Introduction 

Routine dissolution techniques allow for quantification of the API(s) present in a 

formulation, most commonly through UV techniques.  The primary reason for using 

mass spectrometry in place of UV analysis is the additional ability to monitor 

components without a chromophore.15  This has the potential to elucidate dissolution 

mechanisms further than simply following the API release and therefore aid research 

and development for formulations.  Chapter 7. Exploring single components in simple 

solvent systems with ESI-MS, explored the ease by which individual components could 

be detected, analysed and quantified using ESI-MS; the work confirmed that it was 

possible for a number of APIs and excipients, both with and without chromophores.  It 

discovered that the relationship between signal and concentration was not 

consistently linear, but that differing regression analyses could be utilised to calculate 

concentration from signal for multiple APIs and excipients when analysed individually. 

This chapter aims to develop the technique further and explore whether multiple 

API(s) and excipients may be monitored concurrently using ESI-MS without prior 

separation or extensive sample preparation.  The impact of ion suppression and ion 

enhancement as a result of co-analysing API(s) and excipient(s) will be explored, and 

the impact of solvent(s) will be observed and considered for each step, as with the 

previous chapter.  Additionally the use of alternative dissolution media will be trialled.  

While ionisation phenomena are frequently encountered in MS, the effects of ion 

suppression and enhancement are poorly understood and cannot currently be 

predicted.334  This chapter therefore seeks to explore whether such phenomena are 

sufficiently reproducible that signal may be adjusted to enable quantification even 

when analysing multiple components.   

Furthermore, the ability to detect and quantify components on-line and in real-time 

will be tested.  The previous chapter introduced sample to the ESI-MS equipment 

through aliquot injections.  This is similar to conventional dissolution techniques, 

which take samples at set time points throughout and analyse them.  An alternative, 

however, would be to sample continuously thereby extracting more extensive 
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information about the dissolution process, enabling very rapid dissolution to be 

monitored and allowing a more complete dissolution profile to be obtained for better 

modelling.  In conjunction with continuous flow MS analysis, this alternative method of 

sampling has the potential to visualise changes in concentration of both API(s) and 

excipients(s) more easily through monitoring each SIM signal.  It also has the 

advantage of both on-line and real-time monitoring, although the challenge lies in 

understanding the stability of the signal and any ion enhancement or suppression that 

may be occurring.  An additional advantage comes from the presence of the mass rate 

attenuator (MRA), which will enable the dilution of the dissolution bath sample to be 

adjusted manually according to the signal strength throughout the process.  This 

means that samples at the start and end of the process can be analysed by diluting 

them a little or a lot, respectively, without reaching limits of quantification or 

saturation of the detector.  The challenge will be to understand how changes in 

concentration and dilution translate to signal strength, and how this is changed when 

multiple components are ionised concurrently. 

8.2 Method 

The APIs and excipients successfully analysed in the previous chapter have been 

utilised again and include: chloramphenicol, furosemide, guaifenesin, haloperidol, 

paracetamol, phenylephrine, lactose and mannitol.  The simple solvents used 

previously have also been used again: water and acetonitrile, both with and without 

formic acid, with the addition of simple dissolution media such as deionised water, 

blank FaSSIF and blank SGF.  The earlier work determined the ions that were most 

appropriate to follow for quantifying the components.  However, care has been taken 

in this chapter to explore whether additional or alternative ions form when multiple 

components are ionised concurrently or when different solvents (including dissolution 

media) are present.   

Multiple methods and experimental designs are utilised for this chapter so a short 

description will be included with each set of results for clarity.  Detailed explanations 

of each equipment set up are provided in Chapter 6. ESI-MS Equipment Set Up.  In 

summary, aliquot analyses have been specified as either LC (includes chromatography) 

or LI (loop injection – no chromatography) and samples were analysed using the 
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Synapt and / or the QDa.  Continuous flow analyses were undertaken using only the 

QDa due to the logistics of setting up continuous flow analysis with ESI-MS and 

therefore did not include LC prior to ionisation. 

8.3 Results and Discussion 

The results and discussion have been collated into two sections for clarity: i) aliquot 

injections of sample containing multiple components, and ii) continuous flow injection 

of sample from a single solution, which may contain multiple components, to mimic 

on-line analysis from a dissolution bath.   

8.3.1 Aliquot MS analysis 

Aliquot MS is useful for exploring the relationships between components ionised 

concurrently and sets the scene for on-line analyses.  It involves extensive and time-

consuming pre-work to enable quantification of the samples, however, and does not 

enable continuous or on-line monitoring.  The following aliquot work has been broken 

down into subsections describing what was carried out, what can be understood from 

it and how it informs the next steps. 

8.3.1.1 Confirmation of ionisation complexity 

A Beechams® All-In-One cold and flu tablet was analysed using positive ESI-MS (ES+) on 

the Synapt to provide an overview of the extent of ion suppression and enhancement 

that can occur.  The tablet was weighed, crushed and a sample of known mass 

dissolved in a known volume of solvents.  The filtered samples were analysed both 

with and without chromatography (LC and LI, respectively) for comparison purposes.  

The tablet contains three APIs (paracetamol, guaifenesin and phenylephrine) as well as 

twelve excipients, which include lactose, see Table 2.5.  The five minute reverse phase 

LCMS method was used and the following retention times were found, see Table 8.32.  

This provided confirmation that all four major components were present in the sample 

and able to be identified using ESI-MS.  The additional peaks at retention times of 2.85 

and 3.44 minutes contained multiple ions, likely a combination of the additional 

excipients present in the formulation. 
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Table 8.32 – Synapt five minute reverse phase LCMS method details for Beechams® All-In-
One tablet dissolved in water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v). 

Retention Time (min) Component and ion present 

0.64 Lactose [M+Na]+ 

0.78 Phenylephrine [M+H-H2O]+ 

1.76 Paracetamol [M+H]+ 

2.35 Guaifenesin [M+Na]+ 

2.85 Unidentifiable 

3.44 Unidentifiable 

The samples were also analysed using the loop injection (LI) method to force all 

components to be ionised concurrently using the Synapt and each of the four major 

components were identified, see Figure 8.273.  The extracted ion chromatograms 

highlight that each component produces signals which differ in strength, as would be 

expected due to their differing ionisation efficiencies and also their concurrent 

ionisation giving rise to the possibility that there is both suppression and enhancement 

occurring.  The total ion current includes all soluble ionised components, with lactose 

and paracetamol showing greater relative signal strengths (observed simply as peak 

area or height) compared with guaifenesin and phenylephrine, which loosely follows 

their relative amounts within the tablet.  A single tablet weighing 714 mg contains 35.0 

% paracetamol, 14.0 % guaifenesin, 0.7% phenylephrine and the remaining mass 

contains each of the excipients listed, twelve in total, hence lactose could comprise an 

absolute maximum of 50.3 % of the tablet.   
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Figure 8.273 – Synapt positive ESI-MS loop injection chromatogram for Beechams® All-In-
One tablet dissolved in water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The 
total ion chromatogram (TIC) is shown along with four extracted chromatograms for each of 
the main components. 

In line with the previous work, three standards for each API bracketing the expected 

concentration present in the tablet solution were also analysed using LI to produce 

calibration plots for each of the APIs and attempt to calculate concentration from 

signal.  The concurrent ionisation of each tablet component and the presence of 

additional excipients aside from lactose contribute to the inaccuracy of these 

calculations, see Table 8.33.   
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Table 8.33 – Synapt LI MS estimation of concentration from signal for Beechams® All-In-One 
tablet.  Note that the quantity of lactose in the tablet is not subject to the same controls as 
the APIs, hence it is not known and instead the maximum possible concentration that could 
be present is stated instead (*). 

 Estimated concentration 

(µg/mL) 

Actual concentration 

(µg/mL) 

Paracetamol 3.8 3.6 

Guaifenesin 2.7 1.5 

Phenylephrine 0.1 0.073 

Lactose 4.0 5.2 (max possible*) 

The estimated and actual concentrations are different for each component, although 

we cannot be certain of the lactose content of the tablet.  This highlights the impact 

that ionisation phenomena can have upon signal and therefore upon quantification 

using simple calibration plots.  It confirms the importance of working through 

ionisation of multiple components in a step-wise manner so that these phenomena 

can be disentangled and potentially accounted for. 

8.3.1.2 Dissolution media impact upon paracetamol compact dissolution 

An experiment was designed to compare dissolution profiles obtained through off-line 

analysis methods.  Simple paracetamol compacts consisting of paracetamol and 

lactose were made using the Gamlen benchtop press.  This enables dissolution to be 

monitored for binary compacts containing only one API and one excipient (unlike 

commercial tablets).  Three grades of lactose were available for compaction and were 

compared to determine the most appropriate, these included GranuLac®, PrismaLac® 

and SorboLac®.  PrismaLac® proved to be the most successful of the three allowing 

compacts to be produced without lubricant, although there were ejection challenges 

with the press, which resulted in very few compacts being made.   

Dissolution of the paracetamol compact was carried out in deionised water using the 

Sotax apparatus and samples taken regularly over 30 minutes.  The samples were 

filtered and analysed by three methods: i) conventional UV analysis, ii) LI-MS by QDa 

and Synapt, and iii) LCMS by Synapt.  The samples analysed by the Synapt were 

injected into a solvent mixture of water and acetonitrile 50:50 v/v with 0.1% v/v formic 
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acid by a method described earlier as loop injection (LI) because it bypasses the LC and 

directs the sample straight into the source so that all components are ionised 

concurrently.  The full chromatogram was obtained and the paracetamol ions (m/z 

152) extracted so that peak area could be quantified accordingly for each sample.  

Calibration plots were produced for each method using known concentrations of 

paracetamol dissolved in water.  The resulting dissolution profile showing the 

cumulative amount of paracetamol dissolved in water can be found in Figure 8.274. 

 

Figure 8.274 – Comparison of dissolution profiles obtained through three methods: i) loop 
injection MS, ii) UV analysis (243 nm) and iii) LCMS using the Synapt.  Each point is the 
average of three runs with the standard deviation shown using error bars. 

The profiles suggest that analysis by LI-MS is closer in value to conventional UV 

dissolution analysis, than the LCMS method, however, both MS methods show a 

greater level of variability than UV analysis.  The mass of paracetamol within each 

tablet was 20 mg, hence both the LI and LC methods are subject to an unknown error 

which leads them to calculate the amount of paracetamol incorrectly high.  In the case 

of the LI method, this could be a result of ionisation enhancement of the paracetamol 

signal by the lactose, which is additionally present in the sample.  However, it is not 
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clear why this would occur with the LCMS analysis - paracetamol and lactose have 

different retention times (see Table 8.32) and therefore undergo ionisation separately.  

These findings suggest that there are significant limitations associated with using 

aliquot injections for monitoring dissolution.  Logistical challenges meant that the UV 

samples were analysed on the same day as the dissolution was carried out, however, 

both the LI and LC analyses were run the following day at a different site.  This may 

have contributed to the errors observed, hence on-line analysis development will 

reduce this delay between sampling and analysing.  It also confirms that during 

development of this dissolution monitoring method, starting with defined 

concentrations of sample rather than analysing unknown samples, will enable a 

greater confidence in the interpretation of complex results. 

Paracetamol compacts dissolved in blank FaSSIF and blank SGF were subjected to the 

same procedures and samples obtained in the same way.  Synapt loop injection 

analysis of the FaSSIF and SGF samples for the calibration plots produced insufficient 

paracetamol ions for quantification, hence the dissolution samples were not run on 

this instrument.  The blank dissolution media appears to cause ion suppression of 

paracetamol on this instrument, which will be explored further using the more robust 

QDa; dissolution media contains components which may result in equipment 

challenges, hence it is a safer place to begin than with the Synapt. 

All the QDa analyses were run by injecting 1 µL aliquots of each sample into a 

continuous stream of water and acetonitrile 50:50 v/v with 0.1% v/v formic acid, which 

was continuously analysed by the QDa.  Directly after each injection of sample, an 

aliquot of methanol was directed into the stream to clean the lines and the ionisation 

source; this was a precautionary measure taken to avoid build-up of the dissolution 

media, and methanol was selected due to its superior ability to efficiently ionise 

compounds.335  A method including a full scan and two SIM channels, paracetamol 

(m/z 152) and lactose (m/z 365), was used to observe the influence that the 

dissolution media exerted upon the ion signal.  The chromatograms showing lactose 

and paracetamol signal as a result of the injection of sample (and methanol), for each 

dissolution media are provided in Figure 8.275, Figure 8.276 and Figure 8.277.  The 

samples are (a) methanol for cleaning, (b) to (g) time points relating to 0.5, 1, 2, 3, 5 
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and 30 minutes, and (h) relating to blank dissolution media for FaSSIF and SGF only.  

Visual observations confirmed that the compact was fully dissolved by 4.5 mins in 

water, by 5 mins in FaSSIF and by 10 mins in SGF. 

 

Figure 8.275 – QDa injection of paracetamol compact water dissolution samples into a 
continuous stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top 
red chromatogram shows the lactose channel and the bottom black chromatogram shows 
the paracetamol channel.  The points highlighted by the blue arrows labelled with (a) are 
features resulting from the injection of methanol for cleaning, and the peaks highlighted (b) 
to (g) are the result of the injection of samples taken from varying stages of the dissolution 
process (0.5, 1, 2, 3, 5 and 30 minutes). 
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Figure 8.276 – QDa injection of paracetamol compact FaSSIF dissolution samples into a 
continuous stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top 
red chromatogram shows the lactose channel and the bottom black chromatogram shows 
the paracetamol channel.  The peaks highlighted by the blue arrows labelled with (a) are a 
result of the injection of methanol for cleaning, and peaks highlighted (b) to (g) are the result 
of the injection of samples taken from varying stages of the dissolution process (0.5, 1, 2, 3, 5 
and 30 minutes) and (h) is blank FaSSIF. 
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Figure 8.277 – QDa injection of paracetamol compact SGF dissolution samples into a 
continuous stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top 
red chromatogram shows the lactose channel and the bottom black chromatogram shows 
the paracetamol channel.  The peaks highlighted by the blue arrows labelled with (a) are a 
result of the injection of methanol for cleaning, and peaks highlighted (b) to (g) are the result 
of the injection of samples taken from varying stages of the dissolution process (0.5, 1, 2, 3, 5 
and 30 minutes) and (h) is blank SGF. 

Figure 8.275, for a compact dissolving in water, shows clear peaks in signal for both the 

paracetamol and lactose channels at each injection point, with no significant signal in-

between samples when methanol is injected into the continuous solvent stream.  The 

trend in each signal is in line with what would be expected, with the concentrations of 

both paracetamol and lactose increasing throughout their dissolution in water.   

Figure 8.276, for a compact dissolving in FaSSIF, shows a peak in signal for the lactose 

channel at each injection of sample, in addition to peaks when methanol is injected.  
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The paracetamol channel shows no peaks relating to the injection of sample and 

instead appears to decrease in signal suggesting that the presence of FaSSIF dissolution 

media and / or the lactose, suppresses the ionisation of ions detected at m/z 152.  A 

check of the full scan data confirms that alternative ions relating to paracetamol are 

not present either.   

Figure 8.277, for a compact dissolving in SGF, shows a peak in signal for both the 

paracetamol and lactose channels for each sample injection, including methanol.  The 

signal seen in response to methanol injection for both the FaSSIF and SGF runs 

confirms that dissolution sample containing lactose and paracetamol remains either in 

the tubing or more likely within the ionisation source.   

The dissolution media differ in terms of pH and ingredients, with blank FaSSIF at pH 6.8 

containing sodium dihydrogen phosphate (NaH2PO3) and sodium hydroxide (NaOH), 

and blank SGF at pH 4.5 containing sodium acetate trihydrate (C2H9NaO5) and glacial 

acetic acid (C2H4O2).  The presence of FaSSIF may therefore be expected to result in 

sodium adducts and phosphate ions, however, the latter appear more commonly as 

negative mode (ES-) background ions, which may explain its ability to suppress m/z 152 

ions.234,336  The presence of acetic acid in SGF may also be expected to encourage 

sodium adducts, and being a weak acid, may act as a modifier thus supporting 

protonation of the analytes.247,298  Chromatograms showing a comparison of the full 

scan total ion current (TIC) for each dissolution media are provided in Figure 8.278.   
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Figure 8.278 – QDa injection of paracetamol compact dissolution samples into a continuous 
stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Each 
chromatogram shows the total ion current from a scan of the full m/z range for the different 
dissolution media with SGF at the top, FaSSIF in the middle and water at the bottom.  The 
blue arrows labelled (a) show signal resulting from the injection of methanol for cleaning, 
and those labelled (b) to (g) are the signal resulting from the injection of samples taken from 
varying stages of the dissolution process (0.5, 1, 2, 3, 5 and 30 minutes) and (h) shows 
injection of blank FaSSIF and blank SGF. 

Figure 8.278 highlights that the injection of both FaSSIF and SGF reduces the full scan 

TIC, thereby confirming that their presence within the sample reduces ionisation 

efficiency and causes suppression in positive mode (ES+).  The presence of water in the 

ionising sample, however, does not result in suppression of the overall signal, nor is 

there sample remaining in the tubing or ionisation source (shown by the stability of the 

lactose and paracetamol signal when methanol is injected between dissolution 

samples).  It does, however, show that an injection of methanol results in an increase 
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in TIC for all three dissolution media, including water, in line with its superior ionisation 

efficiency, which is likely a result of its reduced surface tension.337   

This work highlights a significant difference between the dissolution media, specifically 

between water and each simulated media (blank FaSSIF and blank SGF) and confirms 

that the matrix from which the samples are ionised can have a large impact on 

ionisation and quantification.338  The benefit of using samples where the concentration 

of each component is known is once again shown to be relevant to reaping maximal 

understanding from the data; signal for each component in the different dissolution 

media cannot be compared due to the differing amount of paracetamol dissolved in 

each sample - logistical challenges meant that UV analysis was unable to be carried out 

on the FaSSIF and SGF samples. 

8.3.1.3 Dissolution media impact upon furosemide compact dissolution 

Furosemide compacts comprising of API and lactose were produced using the Gamlen 

benchtop press.  A direct compression grade of lactose (FlowLac®) was selected to aid 

the compaction process as furosemide proved to be more challenging to formulate 

than paracetamol due to its cohesive nature.  Simple 100 mg compacts containing 20 

mg furosemide were produced for dissolution monitoring using off-line UV and MS 

analysis.  Dissolution in deionised water, blank FaSSIF and blank SGF was carried out 

using the Sotax apparatus and samples were taken manually throughout.  When 

compared with paracetamol, the furosemide compacts took longer to dissolve and 

there were still remains at the bottom of the vessel after 24 hours for both the water 

and the SGF runs, which can be explained by the pH-dependent solubility of 

furosemide.311,312 

The samples were filtered and analysed by three methods: i) conventional UV analysis, 

ii) LI-MS on both the Synapt and the QDa and iii) LCMS using the Synapt.  The MS 

samples were analysed using a solvent mixture of water and acetonitrile 50:50 v/v with 

0.1% v/v formic acid.  The samples run on the Synapt were analysed in positive mode 

and then in negative mode to enable both lactose (ES+ m/z 365) and furosemide (ES- 

m/z 285 and m/z 329) to be monitored, respectively, whereas the QDa SIM method 

was designed to include both ES+ and ES- at once, as well as both furosemide ions in 
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one channel.  Calibration plots were attempted for each method, mode and 

dissolution media using known concentrations of furosemide dissolved in each media.  

At this stage it was deemed sufficient to quantify only furosemide using the MS 

techniques, particularly as UV analysis would allow a comparison of concentrations to 

be drawn.  Lactose signal would not be quantified but would be observed to ensure 

that it ionised as expected and its signal could be extracted. 

Figure 8.279 shows the dissolution profiles of a furosemide compact dissolving in 

water obtained through the LC and LI methods with the Synapt.  Each is compared 

with the UV technique and the data has been extracted separately for each ion, m/z 

285 and 329.  A calibration plot was produced for each and the lines of best fit used to 

calculate concentration from signal.  The profiles are shown between the start of 

dissolution and 90 mins in, and show a greater degree of variation within the LC data 

than the LI or UV.  The final two time points are shown in Figure 8.280 to highlight the 

differences between methods.  The UV data states a final amount of furosemide in 

solution of 20.0 mg after more than 24 hours, compared with calculated values of 17.9 

mg for LI (both ions), 18.7 mg for LC using m/z 285 and 18.6 mg using m/z 329.  The LC 

values remain lower than the UV data, and the LI values are lower still.  The difference 

between LC and LI values suggests that the presence of lactose is suppressing 

ionisation of furosemide.  The UV data suggests that the visual observation of white 

solid remaining after 24 hours dissolution in the water bath is likely a result of the 

lactose and not the furosemide. 



361 
 

 

Figure 8.279 – Comparison of dissolution profiles for a furosemide compact dissolving in 
water.  The profiles were obtained using three methods: UV, LCMS (Synapt) and LI-MS 
(Synapt).  The top plot shows UV and LC-MS, and the bottom plot shows UV and LI MS.  Each 
point is the average of three runs with the standard deviation shown using error bars.  The 
data has been split across two graphs to show the difference between methods.  Note also 
that each MS method is further split into each of the two ions found for furosemide, m/z 285 
and m/z 329. 
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Figure 8.280 – Furosemide compact in water dissolution comparing the three methods for 
calculating the quantity of furosemide dissolved at the final time points.  The time points are 
1300 minutes and 2740 minutes.  The methods are UV, LI-MS and LCMS, noting again that 
both MS methods calculate furosemide concentration using two ions, m/z 285 and m/z 329.  

Further exploration of the Synapt data to observe the lactose ionisation, determined 

that both LC and LI analysis of the dissolution data failed to find these ions in ES+ at 

the previously determined m/z 365.  The analyses were carried out in both positive 

and negative modes, however, only the LCMS chromatogram obtained in the negative 

mode showed any clear analytes aside from furosemide.  An analyte of m/z 377 was 

found at a retention time (RT) of 0.64 mins, which correlates with the elution time for 

lactose when analysing the Beechams® tablet (see Table 8.32).  It can be found at this 

RT throughout the negative LCMS analyses and is also detectable in the negative LI-MS 

data.  This may relate to the lactose brand (FlowLac®) that was used as it can also be 

found in the LC data, suggestive of it not being a result of the concurrent ionisation of 

lactose and furosemide. 

Analysis of the samples using the QDa proved to be more of a challenge due to the 

reduced sensitivity of this instrument.  The early time points contained concentrations 

of furosemide that were too low for quantification purposes, so the calculation of 

concentration begins five minutes into the compact’s dissolution.  In contrast, the later 
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time points also contained concentrations that coincided with a calibration plot 

plateau.  These should be diluted and re-analysed but due to the delay between 

running samples and analysing the data, this was not possible, instead it highlights the 

potential benefit of being able to adjust dilution through use of an MRA, which will be 

explored in the 8.3.2 Continuous flow MS analysis section.   

The calibration plot has been provided first, see Figure 8.281, with the line of best fit 

included, although it can be seen to extend above the second to last point despite 

masking the final point due to the plateau of the signal.  There is potential for a 

polynomial equation to be fitted to incorporate the plateau but this makes little 

difference to the calculated concentrations.  It should also be noted that the 

calibration plot for furosemide in the previous chapter (Figure 7.229) was linear to 100 

µg/mL when dissolved in water and acetonitrile 50:50 v/v with formic acid 0.1% v/v.  

This highlights again the impact of changing solvents from those that are easily ionised 

to those that are less so.  In this plot furosemide is dissolved in water and injected into 

a stream of the same solvents so while there may be some mixing, the solution being 

ionised clearly has a different ionisation efficiency. 
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Figure 8.281 - QDa calibration plot for furosemide dissolved in water, with a red line of best 
fit.  Each point is the average of three runs and standard deviation has been plotted using 
error bars. 

Figure 8.282 provides the dissolution profiles of a furosemide compact dissolving in 

water using the UV technique, and using LI MS (with the QDa); the MS data has been 

extracted for each ion, m/z 285 and 329, using one SIM channel.  The dissolution 

profile obtained using the QDa data suggests a higher dissolved concentration than the 

UV data, which may suggest ionisation enhancement.  The same samples were 

analysed first using the Synapt (Figure 8.280) and then the QDa, hence there was an 

additional time delay from obtaining the UV data, which may explain why the QDa 

data suggests a greater amount of dissolved furosemide than the Synapt data.  These 

findings confirm once more that development of on-line analysis will reduce this delay 

between sampling and analysing, and that starting with defined concentrations of 

sample rather than analysing unknown samples, will enable a greater confidence in the 

interpretation of complex results. 
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Figure 8.282 – Comparison of dissolution profiles for a furosemide compact dissolving in 
water.  The profiles were obtained using UV analysis and LI-MS (QDa).  Each point is the 
average of three runs with the standard deviation shown using error bars. 

Analysis of the QDa dissolution samples also found lactose to be present at m/z 365 as 

expected throughout dissolution, with the signal increasing as dissolution progressed 

up to 90 minutes, when it starts to slowly reduce, see Figure 8.283.  The additional ion 

at m/z 377 was also found but only after 1300 mins of dissolution.  The reduction in 

signal at m/z 365 correlates with the appearance of the additional ion at m/z 377, 

which could suggest they are related.  It was not explored further at this stage but will 

be considered for future experiments including lactose to determine whether it could 

be due to lactose brand used and whether it suggests degradation of the lactose is 

occurring with the degraded product forming an alternative adduct.   
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Figure 8.283 - QDa lactose signal throughout dissolution of a furosemide compact in water.  
The lactose signal was obtained through SIM channel m/z 365.  Each point is the average of 
three runs with the standard deviation shown as error bars. 

The samples of furosemide at known concentrations in blank FaSSIF and blank SGF 

were assessed using the Synapt in both ES+ and ES- LI-MS.  The expected furosemide 

ions of m/z 285 and m/z 329 were not found and no clear alternative ions were found 

in place of them, for either mode.  To confirm the presence of furosemide in solution 

for each of these dissolution media, UV and LCMS analysis was carried out.  The UV 

data can be found in Figure 8.284 and confirms the presence of furosemide in solution 

for both media.  It also correlates with the pH-dependent solubility of furosemide.  

Rapid and complete dissolution of furosemide can be seen to occur in FaSSIF media 

(pH 6.8) but it shows poor solubility in the SGF media (pH 1.2), which confirms the 

visual observations of compact remaining after more than 24 hours in the SGF 

dissolution bath.  The LCMS data also confirmed that separating furosemide from the 

dissolution media prior to ionisation (with retention times of 4.32 and 0.64 mins for 

furosemide and the dissolution media, respectively) was successful in enabling 

ionisation of furosemide.  This confirms that for the Synapt, furosemide ionisation is 

suppressed by blank FaSSIF and blank SGF. 
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Figure 8.284 – Dissolution profiles of a furosemide compact dissolving in blank FaSSIF (black 
line) and blank SGF (blue line), obtained through UV analysis at wavelengths of 277 and 274 
nm respectively. 

The samples were additionally analysed with the QDa to understand whether different 

instruments resulted in different ionisation phenomena.  A 1 µL aliquot of each was 

injected into a continuous stream of water and acetonitrile 50:50 v/v with 0.1% v/v 

formic acid, which was continuously analysed by the QDa at 0.5 mL/min.  After each 

sample, an aliquot of methanol was injected into the stream to clean the lines and the 

ionisation source; as previously described this was a precautionary measure taken to 

avoid build-up of the dissolution media.  The initial method followed a full scan TIC 

(ES+), furosemide (m/z 285 and 329 in ES-) and lactose (m/z 365 in ES+).  The 

chromatograms showing furosemide and TIC (ES+) signal as a result of the injection of 

(a) methanol and (b) each known concentration sample, are provided in Figure 8.285 

and Figure 8.286.  The QDa SIM signal for each sample in each media is very poor and 

insufficient for quantitative purposes.  In the case of the SGF samples there is a peak at 

4.5 mins, which correlates with the injection of methanol and suggests that 

furosemide present either in the source or the fluidics was able to be ionised in this 

instance.  There were no additional ions present in the TIC for either media that could 
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correlate to the presence of furosemide, although previous work had shown that 

furosemide in MS solvents ionised most effectively in the negative mode of ESI-MS. 

 

Figure 8.285 – QDa injection of furosemide FaSSIF samples into a continuous stream of water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top chromatogram shows 
negative (ES-) SIM for furosemide (channel includes both m/z 285 and 329) and the bottom 
chromatogram shows the positive (ES+) TIC.  The peaks and troughs highlighted by the blue 
arrows labelled (a) are a result of the injection of methanol for cleaning, and those labelled 
(b) are the result of the injection of sample containing known concentrations of furosemide 
ranging from (0.026 mg/mL at the earliest time point to 0.0026 mg/mL at the latest). 
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Figure 8.286 – QDa injection of furosemide SGF samples into a continuous stream of water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top chromatogram shows 
negative (ES-) SIM for furosemide (channel includes both m/z 285 and 329) and the bottom 
chromatogram shows the positive (ES+) TIC.  The peaks and troughs highlighted by the blue 
arrows labelled with (a) are a result of the injection of methanol for cleaning, and those 
highlighted (b) are the result of the injection of sample containing known concentrations of 
furosemide ranging from (0.026 mg/mL at the earliest time point to 0.0026 mg/mL at the 
latest). 

Analysis of the same samples was carried out using an altered SIM method following 

TIC ES- instead of ES+, in addition to the furosemide and lactose ions to allow further 

exploration of the signal.  Figure 8.287 and Figure 8.288 show analysis of the same 

samples, though they were injected from low to high concentration in this experiment.  

The furosemide signal is still poor in both cases but they are comparable with Figure 

8.285 and Figure 8.286, suggesting it is not linked to the method and confirms it is 

likely due to ion suppression.  The additional TIC (ES-) chromatogram was explored for 
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each media in case a new dominant ion was presenting as a result of the FaSSIF or SGF 

instead of either m/z 285 or 329; this was not the case, confirming that the ionisation 

of furosemide has been suppressed in both instances, consistent with the Synapt 

findings. 

The calibration plots could not be produced to enable quantification of furosemide, 

however, the dissolution samples were run on the QDa for completeness.  Figure 8.289 

and Figure 8.290 show each chromatogram highlighting with arrows the ionisation of 

methanol (a) and samples (b), running from the start of dissolution to the end.  The 

furosemide signal in both cases is consistent with the previous analyses, although it 

does appear to increase slightly as dissolution progresses in the case of SGF, but not as 

clearly or significantly as the lactose signal. 
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Figure 8.287 – QDa injection of furosemide FaSSIF samples into a continuous stream of water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top chromatogram shows 
negative (ES-) SIM for furosemide (channel includes both m/z 285 and 329) and the bottom 
chromatogram shows the negative (ES-) TIC.  The peaks highlighted by the blue arrows 
labelled (a) are a result of the injection of methanol for cleaning, and those labelled (b) are 
the result of the injection of sample containing known concentrations of furosemide ranging 
from (0.0026 mg/mL at the earliest time point to 0.026 mg/mL at the latest). 
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Figure 8.288 – QDa injection of furosemide SGF samples into a continuous stream of water 
and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top chromatogram shows 
negative (ES-) SIM for furosemide (channel includes both m/z 285 and 329) and the bottom 
chromatogram shows the negative (ES-) TIC.  The peaks highlighted by the blue arrows 
labelled with (a) are a result of the injection of methanol for cleaning, and those highlighted 
(b) are the result of the injection of sample containing known concentrations of furosemide 
ranging from (0.0026 mg/mL at the earliest time point to 0.026 mg/mL at the latest). 
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Figure 8.289 – QDa injection of furosemide compact FaSSIF dissolution samples into a 
continuous stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top 
blue chromatogram shows the lactose channel (m/z 365 in ES+), the middle red 
chromatogram shows the furosemide channel (m/z of 285 and 329 in ES-) and the bottom 
black chromatogram shows the total ion current (ES+).  The peaks and troughs highlighted by 
the blue arrows labelled with (a) are a result of the injection of methanol for cleaning, and 
peaks highlighted (b) are the result of the injection of samples taken from varying stages of 
the dissolution process. 
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Figure 8.290 – QDa injection of furosemide compact SGF dissolution samples into a 
continuous stream of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  The top 
blue chromatogram shows the lactose channel (m/z 365 in ES+), the middle red 
chromatogram shows the furosemide channel (m/z of 285 and 329 in ES-) and the bottom 
black chromatogram shows the total ion current (ES+).  The peaks and troughs highlighted by 
the blue arrows labelled with (a) are a result of the injection of methanol for cleaning, and 
peaks highlighted (b) are the result of the injection of samples taken from varying stages of 
the dissolution process. 

In addition to furosemide ionisation being suppressed by both FaSSIF and SGF, it may 

be affected by the presence of lactose, but further experimental work is required to 

confirm this.  This section of work confirms the need to simplify experiments yet 

further and look at ionisation relationships for each component of a formulation prior 

to using more complex dissolution media.  It highlights that dissolution media may 

affect different components to differing extents, ionisation relationships are different 
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on differing instruments, and it confirms that analysis using both ES+ and ES- may be 

necessary to gain full understanding. 

8.3.1.4 API plus excipient ionisation relationships 

This section looks at the impact upon ionisation phenomena of a changing but known 

amount of lactose or mannitol (excipient) upon a consistent concentration of either 

paracetamol, furosemide or haloperidol (API).  Each component was dissolved in a 

solution of water and acetonitrile (50:50 v/v) with formic acid (0.1% v/v).  Solutions 

containing either one API, one excipient, or one API plus one excipient, were then 

analysed by LI using the QDa and Synapt, and also by LC using the Synapt.  Loop 

injection analyses will show the impact of ionisation phenomena upon both the API 

and the excipient, and the LC analyses have been carried out as confirmation that both 

components are present in solution and can be ionised individually after separation.   

A 1 µL aliquot of each sample was injected into flowing solvent prior to analysis by 

each instrument and then injected directly into the instrument (loop injection) or 

through the HPLC column with a five minute reverse phase gradient method applied.  

Paracetamol, haloperidol and lactose are both monitored via ions present in positive 

mode ESI-MS (ES+), furosemide is monitored in negative mode ESI-MS (ES-), and 

mannitol was previously monitored in both modes.  Mannitol was found to ionise in 

both modes on the Synapt but only at higher concentrations through ES+ on the QDa, 

hence it will be monitored primarily in ES- on the QDa, but the ES+ data will be 

explored for evidence of [M+Na]+ at m/z 205.  The QDa SIM methods are listed in Table 

8.34 and highlight that in some circumstances both modes were used to enable both 

components to be monitored.   
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Table 8.34 – QDa SIM methods for each combination of components. 

 API SIM Excipient SIM 

Components Mode m/z Mode m/z 

Paracetamol + lactose ES+ 152 ES+ 365 

Paracetamol + 

mannitol 

ES+ 152 ES- 181 

Furosemide + lactose ES- 285 & 329 ES+ 365 

Furosemide + mannitol ES- 285 & 329 ES- 181 

Haloperidol + lactose ES+ 376 ES+ 365 

Haloperidol + mannitol ES+ 376 ES- 181 

The QDa data will be presented for each combination first, before the Synapt LI data is 

then discussed, and finally the LC data is outlined.  It should be noted that only data 

plotted on the same graph will have been obtained during the same runs on the same 

day and may therefore be discussed quantitatively (peak areas are comparable).  The 

peak area values between graphs are not comparable because they were obtained 

over a longer period of time and this delay can result in differences in the sensitivity of 

each instrument, in particular the Synapt due to the range of samples tested on this 

instrument for other projects. 

QDa (Loop Injection) 

The QDa peak area obtained for a paracetamol concentration of 20 µg/mL is plotted as 

the red circles in Figure 8.291 with a changing concentration of lactose present in the 

solution (and therefore ionised concurrently) which varied from 0 to 100 µg/mL.  The 

expected paracetamol signal based upon the concentration present is shown by the 

dashed red line.  Two additional black dashed lines have been plotted for comparison 

and highlight the signal observed when a paracetamol sample at half (10 µg/mL) and 

double (40 µg/mL) the concentration are ionised without lactose present in solution.  

These additional samples were run at the same time to provide consistent 

comparisons for the signal.   
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Figure 8.291 – QDa data showing the effect of increasing the concentration of lactose upon 
the peak area value (signal) obtained for paracetamol following a SIM channel of m/z 152.  
The concentration of paracetamol was kept constant at 20 µg/mL.  Comparative signals 
obtained for paracetamol concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison. 

The presence of lactose in the solution can be seen to reduce the peak area observed 

for paracetamol, providing clear indication that it suppresses paracetamol ionisation, 

with an increasing amount of suppression at increased concentrations of lactose.  The 

paracetamol signal is reduced to almost that of half the concentration when co-ionised 

with 100 µg/mL of lactose.   

Figure 8.292 shows the data repeated but for a changing mannitol concentration.  The 

presence of mannitol can be seen to reduce peak area, therefore suppressing 

ionisation of paracetamol, although the impact of 100 µg/mL of mannitol is less than 

100 µg/mL of lactose; the suppressed peak area is still consistent with the peak area 

obtained for a concentration of 20 µg/mL of paracetamol. 
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Figure 8.292 – QDa data showing the effect of increasing the concentration of mannitol upon 
the peak area value (signal) obtained for paracetamol following an ESI+ SIM channel of m/z 
152.  The concentration of paracetamol was kept constant at 20 µg/mL.  Comparative signals 
obtained for paracetamol concentrations without mannitol present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL 
for comparison. 

The impact of each excipient upon furosemide signal observed through the QDa peak 

areas can be seen in Figure 8.293 and Figure 8.294.  The presence of lactose can be 

seen to increase the furosemide peak area, with an increasing amount of 

enhancement at increased concentrations of lactose.  The furosemide peak area is 

more than doubled to more than the signal expected from double the concentration 

when co-ionised with 100 µg/mL of lactose.  The furosemide signal also doubles in the 

presence of 100 µg/mL mannitol resulting in a signal consistent with that of a 

furosemide concentration containing double the amount actually present in the 

solution.  Figure 8.294 suggests a linear relationship between mannitol concentration 

and furosemide enhancement.  Both lactose and mannitol therefore enhance 

ionisation of furosemide.  A quick comparison of these data sets confirms the prior 

warning that data obtained on different days should not be quantitatively compared, 

even for the same concentration of API ionised in isolation; the peak area observed for 
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20 µg/mL of furosemide is 165 in Figure 8.293 and 100 in Figure 8.294, and the peak 

area observed for 40 µg/mL of furosemide is 260 in Figure 8.293 and 200 in Figure 

8.294.  This highlights the importance of the red and black dashed lines obtained 

through analysing additional samples at the same time and therefore providing 

comparative values for peak area. 

Figure 8.293 – QDa data showing the effect of increasing the concentration of lactose upon 
the peak area value (signal) obtained for furosemide following a SIM channel of m/z 285 and 
m/z 329.  The concentration of furosemide was kept constant at 20 µg/mL.  Comparative 
signals obtained for furosemide concentrations without lactose present are shown by the 
dashed lines, with a red line showing the concentration of 20 µg/mL, which is the same as 
that found in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 
µg/mL for comparison. 
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Figure 8.294 – QDa data showing the effect of increasing the concentration of mannitol upon 
the peak area value (signal) obtained for furosemide following an ES- SIM channel of m/z 
285 and m/z 329.  The concentration of furosemide was kept constant at 20 µg/mL.  
Comparative signals obtained for furosemide concentrations without mannitol present are 
shown by the dashed lines, with a red line showing the concentration of 20 µg/mL, which is 
the same as that found in the solutions mixed with mannitol, and two black lines showing 10 
µg/mL and 40 µg/mL for comparison. 

Haloperidol in combination with each excipient was analysed in triplicate to introduce 

an understanding of signal variation for samples run on the same day at the same 

time.  Figure 8.295 shows haloperidol and lactose ionised concurrently using the QDa.  

The concentration of haloperidol has been maintained at 20 µg/mL as with the 

previous analyses of paracetamol and furosemide.  Initial observations of the data 

suggest that lactose may enhance ionisation of haloperidol, however, the standard 

deviation error bar associated with the red dashed line shows that the difference in 

signal obtained for the samples containing both lactose and haloperidol is less than the 

variation observed when haloperidol was ionised in isolation.  The error bars obtained 

for haloperidol ionised in isolation are far wider than those for haloperidol co-ionised 

with lactose, suggesting a possibility that there is a reduction in variability of 

haloperidol ionisation when ionised in combination with lactose. 
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Figure 8.295 – QDa data showing the effect of increasing the concentration of lactose upon 
the peak area value (signal) obtained for haloperidol following an ES+ SIM channel of m/z 
376.  The concentration of haloperidol was kept constant at 20 µg/mL.  Comparative signals 
obtained for haloperidol concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison.  Error bars showing standard deviation are included for each point, which are a 
result of each sample being run and analysed in triplicate. 

Figure 8.296 shows haloperidol ionised in combination with differing amounts of 

mannitol.  The variability of the isolated haloperidol signal is again greater than the 

variability observed when it is ionised in combination with mannitol.  The presence of 

mannitol enhances the ionisation of haloperidol, with the greatest impact observed at 

a concentration of 40 µg/mL of mannitol.  Concentrations greater than 40 µg/mL are 

also suggestive of ionisation enhancement, although the effect does not continue to 

increase with concentration as has been observed with the other molecules. 
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Figure 8.296 – QDa data showing the effect of increasing the concentration of mannitol upon 
the peak area value (signal) obtained for haloperidol following an ES+ SIM channel of m/z 
376.  The concentration of haloperidol was kept constant at 20 µg/mL.  Comparative signals 
obtained for haloperidol concentrations without mannitol present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL 
for comparison.  Error bars showing standard deviation are included for each point, which 
are a result of each sample being run and analysed in triplicate. 

Conversely, the impact of paracetamol and furosemide upon the lactose signal is 

shown in Figure 8.297 and shows that furosemide may enhance the ionisation of 

lactose while paracetamol may suppress lactose ionisation.  This suggests that as 

lactose may be enhancing furosemide ionisation, furosemide may be enhancing 

ionisation of the lactose, and a combination of lactose with paracetamol may result in 

the suppression of ionisation of both components.  Lactose ionised alone (black 

squares) shows a reduction in signal between 80 and 100 µg/mL, which is consistent 

with the plateau observed during the single components work in the previous chapter, 

see Figure 7.259.   
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Figure 8.297 – QDa data showing the peak area of increasing concentrations of lactose in 
solution either alone (black squares), or with a concentration of 20 µg/mL of paracetamol 
(red circles) or furosemide (blue triangles).  The SIM channel from which the signal was 
obtained followed m/z 365. 

The impact of haloperidol upon lactose ionisation has been plotted separately because 

the samples were run at a different time and cannot be compared quantitatively.  The 

samples were run in triplicate to allow error bars based upon standard deviation to be 

included, which give an idea of signal variability.  The data in Figure 8.298 suggests that 

haloperidol suppresses lactose signal, and that lactose ionised in combination with 

haloperidol appears less variable.  The suppression observed is more easily 

distinguishable from variation at higher concentrations of lactose, although there is 

consistently an overlap between error bars from lactose in isolation and in 

combination.  Lactose has been monitored through the sodium ion adduct for both 

data sets, and although the presence of the dimer was observed it was found to be too 

small to quantify. 
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Figure 8.298 – QDa data showing the peak area of increasing concentrations of lactose in 
solution either alone (black squares), or with a concentration of 20 µg/mL of haloperidol (red 
circles).  The SIM channel from which the signal was obtained followed m/z 365.  Error bars 
showing standard deviation are included for each point, which are a result of each sample 
being run and analysed in triplicate. 

Finally the impact of paracetamol and furosemide upon the peak area observed for 

mannitol is shown in Figure 8.299 and suggests that while the presence of paracetamol 

appears to have little impact upon mannitol ionisation, furosemide suppresses it.  The 

relationship between peak area and concentration observed from mannitol alone is 

again consistent with the relationship observed previously, see Figure 7.266.  The ES+ 

data was monitored closely for the presence of [M+Na]+ at m/z 205 for all sets of data, 

but as with the original work observing mannitol using the QDa, it was not found. 
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Figure 8.299 – QDa data showing the peak area value (signal) of increasing concentrations of 
mannitol in solution either alone (black squares), or with a concentration of 20 µg/mL of 
paracetamol (red circles) or furosemide (blue triangles).  The ES- SIM channel from which the 
signal was obtained followed m/z 181. 

The impact of haloperidol upon mannitol ionisation has again been plotted separately 

because these samples were run in triplicate to give an idea of signal variability, see 

Figure 8.300.  The signal for mannitol obtained in the presence of haloperidol is 

consistently within the variation observed when mannitol is ionised alone, which 

suggests that haloperidol does not significantly enhance or suppress the ionisation of 

mannitol when analysed using the QDa. 
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Figure 8.300 – QDa data showing the peak area value (signal) of increasing concentrations of 
mannitol in solution either alone (black squares), or with a concentration of 20 µg/mL of 
haloperidol (red circles).  The ES- SIM channel from which the signal was obtained followed 
m/z 181.  Error bars showing standard deviation are included for each point, which are a 
result of each sample being run and analysed in triplicate. 

This work confirms that the data obtained for paracetamol and furosemide must be 

interpreted carefully because without replication to indicate variability, it may not 

provide a robust indication of suppression or enhancement, and may simply show the 

variability of the ESI-MS signal.  Although it is important to note the limitations of the 

methods used, time and equipment constraints prevented repetition of the initial data 

(for paracetamol and furosemide), hence a summary of the conclusions that may still 

be drawn is provided.  Table 8.35 provides a summary for the impact upon API 

ionisation of each excipient and Table 8.36 summarises the data showing the impact of 

each API upon ionisation of each of the excipients. 

  

0 20 40 60 80 100

0

100

200

300

400

500

600

700

800

 only mannitol

 + haloperidol

P
e
a
k
 a

re
a
 -

 m
/z

 1
8
1

Concentration of mannitol (µg/mL)

QDa



387 
 

Table 8.35 – QDa ionisation phenomena summary: impact of each excipient upon 
paracetamol, furosemide or haloperidol. 

 + Lactose (ES+) + Mannitol (ES-) 

Furosemide ionisation (ES-) Enhanced Enhanced 

Haloperidol ionisation (ES+) No impact Enhanced when ≥ 40 µg/mL 

Paracetamol ionisation (ES+) Suppressed Little impact 

 

Table 8.36 – QDa ionisation phenomena summary: impact of each API upon lactose or 
mannitol. 

 + Furosemide  

(ES-) 

+ Haloperidol 

(ES+) 

+ Paracetamol 

(ES+) 

Lactose ionisation (ES+) No impact Suppressed Suppressed 

Mannitol ionisation (ES-) Suppressed No impact No impact 

The theories underlying electrospray ionisation mechanisms are complex but there is 

discussion of competition between components in a solution for a finite charge 

dependent upon flow rates and applied voltages.328,329,247,237,339  Additionally, 

ionisation efficiency (IE) scales have been discussed as a means to understand why 

some components convert to gas-phase ions easily and others are not detectable.259,335  

Such work highlights numerous properties as impacting upon IE, from ESI source and 

mobile phase, to pKa values, hydrophobicity and surface activity.247,255,259  The mode of 

ionisation used and whether the charge is positive or negative, as well as the gas-

phase ion formed, will therefore play an important role in ionisation phenomena, thus 

it may be used to help explain the relationships between API and excipients.   

Paracetamol and lactose are analysed using ES+ methods, and their co-ionisation 

appears to result in mutual suppression suggesting that the competition for positive 

charge may be similar from both components.  Paracetamol has been monitored 

through the protonated ion [M+H]+ and lactose through its 1:1 sodium adduct [M+Na]+ 

with the dimer [2M+Na]+ not found in sufficient amounts to allow its quantification in 

this section of work.  Haloperidol and lactose are also analysed using ES+ methods, but 

co-ionisation appears to result in suppression only of the lactose, suggestive of 

haloperidol competing more favourably although not sufficiently enough to result in 
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an enhanced haloperidol signal.  Furosemide and mannitol, however, are both 

analysed using ES- methods, and their co-ionisation appears to result in both 

enhancement of furosemide and suppression of mannitol, suggestive of furosemide 

competing significantly more favourably.  Furosemide is monitored through both its 

deprotonated ion [M-H]- and a fragmented ion [M-COOH]-, but mannitol has again only 

been able to be monitored through [M-H]- in this instance.     

The observation that mannitol enhances the ionisation of haloperidol, may be 

explained by a competition for charge, with mannitol preferring to gain negative 

charge, thus it may be acting similarly to an ionisation modifier (e.g. formic acid) in ES+ 

mode, although present at a much higher relative concentration.  However, one would 

therefore expect mannitol to result in ionisation enhancement of the paracetamol 

signal too, but this was not the case.  A possible explanation may be that mannitol 

ionisation can also produce the sodium adduct [M+Na]+ in certain environments, 

although the exact requirements for this are not clear.  The observation that lactose 

may also enhance the ionisation of furosemide in ES- could be explained by a similar 

argument comparing it with an ionisation modifier, although again at different relative 

concentrations, but lactose ionisation appears unaffected by the presence of 

furosemide, hence the relationships cannot be explained solely by ionisation method 

or charge competition.  There is also evidence to suggest that the co-ionisation of 

either lactose or mannitol with haloperidol may reduce haloperidol signal variability, 

and haloperidol may in turn reduce variability of the lactose signal.   

In summary, the complexities of ionisation suppression and enhancement 

relationships exceed our current mechanistic understanding of ESI-MS, although a 

summary of suggested enhancement or suppression can be stated for each pair of 

components analysed and an ionisation efficiency scale may be postulated for each 

mode.  For ES+ an ionisation efficiency scale may look like: haloperidol > paracetamol = 

lactose, and for ES- the ionisation efficiency scale may look like: furosemide > 

mannitol.   
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Synapt (Loop Injection) 

The Synapt LI data is presented first, noting that furosemide is monitored through two 

separate ions as a condition of the data analysis methods on this instrument.  The 

Synapt LI analyses show little impact of lactose upon the ionisation of paracetamol, see 

Figure 8.301, and a slight impact of mannitol upon the ionisation of paracetamol 

suggestive of enhancement, see Figure 8.302.  The enhancement by mannitol appears 

to be consistent regardless of the concentration of mannitol present, which again 

differs from the pattern observed in other examples.  The paracetamol data 

strengthens the suggestion that differences exist between ESI-MS equipment when it 

comes to considering the impact of ionisation phenomena upon quantification.   

 

Figure 8.301 – Synapt LI data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for paracetamol following a SIM channel of m/z 
152.  The concentration of paracetamol was kept constant at 20 µg/mL.  Comparative signals 
obtained for paracetamol concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison. 
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Figure 8.302 – Synapt LI data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for paracetamol following an ES+ SIM channel of 
m/z 152.  The concentration of paracetamol was kept constant at 20 µg/mL.  Comparative 
signals obtained for paracetamol concentrations without mannitol present are shown by the 
dashed lines, with a red line showing the concentration of 20 µg/mL, which is the same as 
that found in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 
40 µg/mL for comparison. 

Lactose may slightly enhance ionisation of furosemide through LI on the Synapt, as 

shown in Figure 8.303 and Figure 8.304.  These results are consistent with the QDa 

findings, which suggested that furosemide may be enhanced by the co-ionisation of 

lactose, and were observed for both m/z 285 and m/z 329.  Figure 8.305 and Figure 

8.306 show the co-ionisation of furosemide with mannitol through LI on the Synapt.  

The furosemide signal shows greater overall variability in the presence of mannitol, 

with no consistent effect upon m/z 285 but a slight enhancement of m/z 329 when 80 

µg/mL and more of mannitol is present.  The QDa findings showed significant 

enhancement of furosemide by mannitol (suggestive of a signal from double the 

concentration), which again differs from the Synapt findings. 
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Figure 8.303 – Synapt LI data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for furosemide following a SIM channel of m/z 
285.  The concentration of furosemide was kept constant at 20 µg/mL.  Comparative signals 
obtained for furosemide concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison. 
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Figure 8.304 – Synapt LI data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for furosemide following a SIM channel of m/z 
329.  The concentration of furosemide was kept constant at 20 µg/mL.  Comparative signals 
obtained for furosemide concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison. 
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Figure 8.305 – Synapt LI data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for furosemide following an ES- SIM channel of 
m/z 285.  The concentration of furosemide was kept constant at 20 µg/mL.  Comparative 
signals obtained for furosemide concentrations without mannitol present are shown by the 
dashed lines, with a red line showing the concentration of 20 µg/mL, which is the same as 
that found in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 
40 µg/mL for comparison. 
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Figure 8.306 – Synapt LI data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for furosemide following an ES- SIM channel of 
m/z 329.  The concentration of furosemide was kept constant at 20 µg/mL.  Comparative 
signals obtained for furosemide concentrations without mannitol present are shown by the 
dashed lines, with a red line showing the concentration of 20 µg/mL, which is the same as 
that found in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 
40 µg/mL for comparison. 

The Synapt LI haloperidol data has been analysed in triplicate, as previously explained, 

which provides confidence in the assertion from Figure 8.307 that lactose enhances 

haloperidol ionisation, and that the enhancement is unaffected by lactose 

concentration between 20 and 80 µg/mL.  This QDa data found no significant impact of 

lactose upon haloperidol ionisation regardless of concentration due to the inherent 

haloperidol signal variability, although it did appear to be slightly enhanced.  An 

enhancement of haloperidol ionisation can be seen with all concentrations of mannitol 

in Figure 8.308, although the extent appears consistent between 40 and 100 µg/mL.  

The Synapt LI data again shows reduced variability when compared with the QDa 

although both instruments show that ionisation enhancement is occurring. 
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Figure 8.307 – Synapt LI data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for haloperidol following a SIM channel of m/z 
376.  The concentration of haloperidol was kept constant at 20 µg/mL.  Comparative signals 
obtained for haloperidol concentrations without lactose present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for 
comparison.  Error bars showing standard deviation are included for each point, which are a 
result of each sample being run and analysed in triplicate. 
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Figure 8.308 – Synapt LI data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for haloperidol following a SIM channel of m/z 
376.  The concentration of haloperidol was kept constant at 20 µg/mL.  Comparative signals 
obtained for haloperidol concentrations without mannitol present are shown by the dashed 
lines, with a red line showing the concentration of 20 µg/mL, which is the same as that found 
in the solutions mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL 
for comparison.  Error bars showing standard deviation are included for each point, which 
are a result of each sample being run and analysed in triplicate. 

Figure 8.309 suggests a less consistent impact of paracetamol and furosemide upon 

lactose, when compared with the QDa data described previously.  There appears to be 

a significant cross-over between the signals observed when only lactose is ionised 

versus ionisation in the presence of either API, with the exception of haloperidol, 

shown in Figure 8.310.  Lactose signal is clearly suppressed by the presence of 

haloperidol, which is consistent with the QDa data for this combination of 

components. 
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Figure 8.309 – Synapt data showing the peak area value (signal) of increasing concentrations 
of lactose in solution either alone (black squares), or with a concentration of 20 µg/mL of 
paracetamol (red circles) or furosemide (blue triangles).  The SIM channel from which the 
signal was obtained followed m/z 365. 
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Figure 8.310 – Synapt LI data showing the peak area value (signal) of increasing 
concentrations of lactose in solution either alone (black squares), or with a concentration of 
20 µg/mL of haloperidol (red circles).  The ES+ SIM channel from which the signal was 
obtained followed m/z 365.  Error bars showing standard deviation are included for each 
point, which are a result of each sample being run and analysed in triplicate. 

The mannitol findings, shown in Figure 8.311, are consistent with the QDa work and 

suggest its ionisation is slightly suppressed by furosemide, but the presence of 

paracetamol has little impact.  Figure 8.312, however, shows enhancement of the 

mannitol signal by haloperidol, which is not consistent with the QDa work.  The 

mannitol signal was quantified in ES- for all analyses, and could only be observed in 

ES+ when in combination with paracetamol. 
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Figure 8.311 – Synapt data showing the peak area value (signal) of increasing concentrations 
of mannitol in solution either alone (black squares), or with a concentration of 20 µg/mL of 
paracetamol (red circles) or furosemide (blue triangles).  The ES- SIM channel from which the 
signal was obtained followed m/z 181. 
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Figure 8.312 – Synapt LI data showing the peak area value (signal) of increasing 
concentrations of mannitol in solution either alone (black squares), or with a concentration 
of 20 µg/mL of haloperidol (red circles).  The ES- SIM channel from which the signal was 
obtained followed m/z 181.  Error bars showing standard deviation are included for each 
point, which are a result of each sample being run and analysed in triplicate. 

Table 8.37 provides a summary of the impact of each excipient upon API ionisation and 

Table 8.38 summarises the impact of each API upon excipient ionisation.  Consistent 

with the QDa (Loop Injection) work, the paracetamol and furosemide findings require 

careful interpretation, however, the haloperidol data allows more confident 

conclusions to be drawn as a result of the repetition, which provides an insight into 

signal variability. 

Table 8.37 – Synapt LI ionisation phenomena summary: impact of each excipient upon 
paracetamol, furosemide or haloperidol. 

 + Lactose (ES+) + Mannitol (ES-) 

Furosemide ionisation (ES-) Some enhancement 

(both) 

Variable m/z 285 signal but 

enhanced m/z 329 signal 

Haloperidol ionisation (ES+) Enhanced Enhanced 

Paracetamol ionisation (ES+) No impact Some enhancement 
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Table 8.38 – Synapt LI ionisation phenomena summary: impact of each API upon lactose or 
mannitol. 

 + Furosemide  

(ES-) 

+ Haloperidol 

(ES+) 

+ Paracetamol 

(ES+) 

Lactose ionisation (ES+) Little impact Suppressed Little impact 

Mannitol ionisation (ES-) Suppressed Enhanced Little impact 

The furosemide findings are fairly consistent between the two instruments, suggesting 

that its ionisation may be enhanced by both lactose and mannitol.  Haloperidol also 

appears to be enhanced by both excipients, although there is increased signal 

variability with the QDa that throws doubt upon this conclusion for the lactose 

experiments.  This variability is likely influenced by the SIM channel method on the 

QDa versus the high resolution capacity of the Synapt allowing discrimination between 

ions with similar m/z values.  Paracetamol findings from the QDa suggest suppression 

is possible with lactose although this is not seen clearly with the Synapt, and with 

mannitol there is likely some enhancement with the Synapt.  The excipient findings are 

also consistent between the two instruments, with the exception of haloperidol and 

mannitol; the Synapt data shows the mannitol signal to be suppressed instead of 

showing no impact.  Finally, the Synapt data is again much less variable than the QDa 

data, consistent with the instrument types.   

In summary, although the findings are not conclusive for each instrument, there is no 

occurrence of one suggesting enhancement where the other suggests suppression, or 

vice versa, which is consistent with work that suggests that ionisation efficiency scales 

may be transferred between instruments.340  Repetition of the paracetamol and 

furosemide data would have again proven useful in determining whether differences 

were a result of inherent signal variability or whether they were consistent with 

ionisation phenomena occurring.  This requirement to run samples multiple times, and 

the need to set up runs for each mode on the Synapt (instead of being able to 

incorporate ES+ and ES- into one QDa method) adds significant time and complexity to 

the preparation of aliquot analyses and thereby limits its usefulness long-term.  An 

advantage of observing relationships between APIs and excipients in this way, 

however, is that it highlights that enhancement and suppression of ionisation may 
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occur to different extents for different ratios of components, hence, an understanding 

of the relationship across the concentration range for each component will be 

required. 

Synapt with LC 

Finally, the Synapt analyses with LC prior to ionisation confirm that each component 

can be found in the mixtures.  The peak area values from LC and LI methods cannot be 

directly compared due to the differences in methods, but the relationship between 

signal and concentration aids observations about the impact of ionisation phenomena.  

These plots would be expected to show consistent signal from each API regardless of 

the concentration of lactose because the LC method prevents co-ionisation and 

therefore avoids ion suppression or enhancement from occurring, see Table 8.39.   

Table 8.39 – Retention times for lactose, paracetamol and furosemide using a five minute 
reverse phase gradient LC method coupled with the Synapt. 

Component Retention Time (mins) 

Lactose 0.62 

Paracetamol 1.80 

Furosemide 3.00 

Haloperidol 2.77 

Mannitol 0.61 

The paracetamol signal obtained through LCMS can be seen to vary slightly as shown in 

Figure 8.313 and Figure 8.314 but as expected there is no consistent increase or 

decrease in signal consistent with enhancement or suppression occurring.  Both 

furosemide ions show signal variation with lactose, see Figure 8.315 and Figure 8.316, 

and also with mannitol, see Figure 8.317 and Figure 8.318.  However, there may be a 

difference in the extent of fragmentation that is seen for each excipient.  The 

haloperidol data shown in Figure 8.319 and Figure 8.320 again shows no consistent 

change with either excipient.   
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Figure 8.313 – Synapt LC data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for paracetamol following a SIM channel of m/z 
152 with LC applied to separate the ions prior to ionisation.  The concentration of 
paracetamol was kept constant at 20 µg/mL.  Comparative signals obtained for paracetamol 
concentrations without lactose present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.314 – Synapt LC data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for paracetamol following an ES+ SIM channel of 
m/z 152 with LC applied to separate the ions prior to ionisation.  The concentration of 
paracetamol was kept constant at 20 µg/mL.  Comparative signals obtained for paracetamol 
concentrations without mannitol present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.315 – Synapt LC data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for furosemide following a SIM channel of m/z 
285 with LC applied to separate the ions prior to ionisation.  The concentration of 
furosemide was kept constant at 20 µg/mL.  Comparative signals obtained for furosemide 
concentrations without lactose present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.316 – Synapt LC data showing the effect of increasing the concentration of lactose 
upon the peak area value (signal) obtained for furosemide following a SIM channel of m/z 
329 with LC applied to separate the ions prior to ionisation.  The concentration of 
furosemide was kept constant at 20 µg/mL.  Comparative signals obtained for furosemide 
concentrations without lactose present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.317 – Synapt LC data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for furosemide following an ES- SIM channel of 
m/z 285 with LC applied to separate the ions prior to ionisation.  The concentration of 
furosemide was kept constant at 20 µg/mL.  Comparative signals obtained for furosemide 
concentrations without mannitol present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.318 – Synapt LC data showing the effect of increasing the concentration of mannitol 
upon the peak area value (signal) obtained for furosemide following an ES- SIM channel of 
m/z 329 with LC applied to separate the ions prior to ionisation.  The concentration of 
furosemide was kept constant at 20 µg/mL.  Comparative signals obtained for furosemide 
concentrations without mannitol present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.319 – Synapt LC data showing the effect of increasing the concentration of lactose 
upon the peak area (signal) obtained for haloperidol following an ES+ SIM channel of m/z 
379 with LC applied to separate the components prior to ionisation.  The concentration of 
haloperidol was kept constant at 20 µg/mL.  Comparative signals obtained for haloperidol 
concentrations without lactose present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with lactose, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 
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Figure 8.320 - Synapt LC data showing the effect of increasing the concentration of mannitol 
upon the peak area (signal) obtained for haloperidol following an ES+ SIM channel of m/z 
379 with LC applied to separate the components prior to ionisation.  The concentration of 
haloperidol was kept constant at 20 µg/mL.  Comparative signals obtained for haloperidol 
concentrations without mannitol present are shown by the dashed lines, with a red line 
showing the concentration of 20 µg/mL, which is the same as that found in the solutions 
mixed with mannitol, and two black lines showing 10 µg/mL and 40 µg/mL for comparison. 

The data has also been analysed for each excipient in combination with each API, with 

the haloperidol data obtained at a different time, hence it is plotted separately.  Figure 

8.321 and Figure 8.322 show the impact of each API upon lactose, and Figure 8.323 

and Figure 8.324 show the impact of each API upon mannitol.  There is clear variability 

in both the lactose and the mannitol data in combination with paracetamol and 

furosemide, with no consistent difference, as would be expected.   The haloperidol 

data is less conclusive, with the data spreading above 40 µg/mL of excipient in both 

plots, although this is unlikely to be ionisation phenomena due to the very different 

retention times, see Table 8.39. 
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Figure 8.321 – Synapt data showing the peak area (signal) of increasing concentrations of 
lactose in solution with LC applied prior to ionisation, either alone (black squares), or with a 
concentration of 20 µg/mL of paracetamol (red circles) or furosemide (blue triangles).  The 
SIM channel from which the signal was obtained followed m/z 365. 
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Figure 8.322 – Synapt LC data showing the peak area value (signal) of increasing 
concentrations of lactose in solution with LC applied prior to ionisation, either alone (black 
squares), or with a concentration of 20 µg/mL of haloperidol (red circles).  The ES+ SIM 
channel from which the signal was obtained followed m/z 365. 
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Figure 8.323 – Synapt data showing the peak area value (signal) of increasing concentrations 
of mannitol in solution with LC applied prior to ionisation, either alone (black squares), or 
with a concentration of 20 µg/mL of paracetamol (red circles) or furosemide (blue triangles).  
The ES- SIM channel from which the signal was obtained followed m/z 181. 

 

0 20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

 only mannitol

 + paracetamol

 + furosemide

P
e

a
k
 a

re
a
 -

 m
/z

 1
8
1

Concentration of mannitol (µg/mL)

Synapt - LC



414 
 

 

Figure 8.324 – Synapt data showing the peak area (signal) of increasing concentrations of 
mannitol in solution with LC applied prior to ionisation, either alone (black squares), or with 
a concentration of 20 µg/mL of paracetamol (red circles) or furosemide (blue triangles).  The 
ES- SIM channel from which the signal was obtained followed m/z 181. 

In summary, the LC data shows that each component is present in the mixtures of the 

solutions that have been made and can be isolated, ionised and monitored using LCMS 

analysis.  It also confirms that there is inherent variation in signal, even in the absence 

of ionisation phenomena occurring, although the extent of this is not comparable 

between LC and LI analyses due to the differences in equipment set-up for each 

method. 

8.3.1.5 Summary of aliquot MS analysis  

This section of work uses a method that allows simple ionisation relationships to be 

observed and explored.  The knowledge of each component’s concentration in the 

solution allows for a greater understanding of the impact of co-ionisation.  Maintaining 

a consistent concentration of API and varying the excipient concentration was useful 

for considering dissolution monitoring in terms of current dissolution requirements 

(API measurements), however, this work could be repeated varying the API 

concentrations with a consistent amount of excipient to expand understanding further 
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still, and ultimately the monitoring of true dissolution may result in varying 

concentrations of both API and excipient at the same time.  There are significant 

differences in the quantity of signal obtained through LC and LI analyses, which 

confirm that these cannot be compared or used in combination for quantification 

purposes.  There are also differences in the sensitivity of each instrument that likely 

result in different signal variation and therefore different conclusions as to whether 

they are sufficient to indicate ion suppression or enhancement.  The aliquot MS data 

highlights the importance of understanding each relationship in isolation, as well as 

each relationship and how it changes across a range of concentrations for each 

component.   

If unlimited resources, including time and access to equipment were available, running 

all the experiments in triplicate on the same day would offer a more detailed and 

conclusive insight into the variation differences between components as well as 

between LI and LC runs.  However, the data obtained is sufficient to conclude that 

each component is present in solution (LC data) and that ionisation phenomena are 

occurring when multiple components are ionised together (both sets of LI data).  

Overall, repetition of the data is required to improve confidence in the details of the 

conclusions drawn from this data.  However, one can conclude that ionisation 

phenomena will certainly occur during dissolution monitoring if multiple APIs and 

excipients are ionised at the same time, and that the relationship between each set of 

components is likely to be different.  Additionally, the data suggests that ionisation 

phenomena can impact upon more than one ion at the same time; these conclusions 

will be explored further using continuous flow analysis. 

8.3.2 Continuous flow MS analysis 

Aliquot analyses have proven useful in extracting understanding from simple 

relationships, however, they require extensive sample analysis and repetition to fully 

understand signal variability.  This limits the ability to conclude that changes in signal 

are a result of ionisation phenomena rather than inherent to the ESI-MS process.  This 

has been observed repeatedly in each section of work, with changing MS solvents, 

using different dissolution media and the addition of new formulation components.  
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Altering the equipment set-up to enable continuous flow monitoring may provide a 

better opportunity to visualise and quantify this variation in signal. 

The equipment challenges associated with continuous flow MS analysis were outlined 

in Chapter 1. Introduction, and described in detail in Chapter 6. ESI-MS Equipment Set 

Up.  The use of an MRA allows adjustment of the amount of sample reaching the QDa 

and thereby enables the upper limit of quantification and detector saturation to be 

avoided.  The MRA settings are complex hence the dilution will be provided as a ratio, 

although the method works by repeatedly injecting an aliquot of sample (either 0.022, 

0.100 or 0.300 µL) into a flow of make-up solvent.  The Synapt is a high resolution and 

highly sensitive instrument, hence this exploratory work will be carried out using the 

QDa, which is more robust and less likely to sustain significant damage if high 

concentrations of sample were to accidentally reach the detector.   

The work has been divided into sub-headings according to the components analysed, 

with a brief description of each method used as well as a summary of what can be 

concluded in relation to both equipment set ups and ionisation phenomena.  The APIs 

associated with the Beechams® tablet dissolution have been discussed first, both alone 

and in combination, before the two excipients and two additional APIs 

(chloramphenicol and haloperidol) are discussed. 

8.3.2.1 API: paracetamol 

A solution of 0.03 mg/mL paracetamol in MS solvent (water and acetonitrile 50:50 v/v 

without modifier) was run continuously into the QDa while altering a range of settings 

to further explore signal stability.  The flow into the QDa was set to an optimal 0.5 

mL/min with the MRA dilution at 1:31 (sample injection of 0.300 µL at 0.833 Hz) using 

MS solvent (without modifier).  Figure 8.325 shows only the first four minutes, which 

highlight a fluctuating paracetamol signal.  The start of QDa recording was staggered to 

coincide with flow through the MRA and tubing, so that there was no time lag, 

however, the signal looks to be increasing gradually and does not appear to have 

reached maximum ionisation efficiency by the end of the four minutes of recording.   
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Figure 8.325 - QDa SIM at m/z 152 following paracetamol dissolved in water and acetonitrile 
by continuous flow analysis with a 100 point moving average represented by the red line. 

The method was continued so that the signal might stabilise, and this appeared to 

occur after ten minutes of continuous flow.  A five minute snapshot of the stabilised 

signal can be found in Figure 8.326 and in addition to the moving average, this time 

plotted as a green line, the mean signal has been plotted in orange, the maximum in 

blue and minimum in red.  This confirms that the paracetamol signal continues to 

fluctuate and that the initial Figure 8.325 shows a much reduced signal, highlighting 

the importance of monitoring the signal for a period of time to avoid 

misinterpretation. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

S
IM

 (
P

a
ra

c
e

ta
m

o
l,
 m

/z
 1

5
2

)

Time (mins)



418 
 

 

Figure 8.326 – QDa SIM at m/z 152 following paracetamol dissolved in water and acetonitrile 
by continuous flow analysis with a 100 point moving average represented by the green line. 

The impact of changing capillary voltage, cone voltage and probe temperature upon 

paracetamol signal, inclduing their effect on fragmentation, was assessed as a means 

to expore how easily changes could be visualised using continuous flow monitoring.  

The following are snapshots from changing each variable and allowing the signal to 

stabilise for the new settings.  Figure 8.327 highlights the impact of changing capillary 

voltage upon paracetamol signal.  Detailed analysis of the spectra showed that 

paracetamol fragmentation (producing the known product found at m/z 110) was 

absent using a capillary voltage of 0.5 kV, however, ionisation efficiency was poor as 

seen by the scale of the signal observed.  An increase in capillary voltage clearly 

increases ionisation efficiency as seen by the signal observed for both 1.0 kV and 1.5 

kV, and the difference in fragmentation was consistent between these two, suggesting 

that 1.5 kV is an appropriate capillary voltage to maximise efficiency of the 

paracetamol signal without compromising fragmentation. 
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Figure 8.327 – QDa SIM at m/z 152 following paracetamol dissolved in water and acetonitrile 
by continuous flow analysis with a 100 point moving average represented by the red line.  
The top plot shows a capillary voltage of 1.0 and 1.5 kV, with the bottom plot set to a 
different scale y-axis in order to show a capillary voltage of 0.5 kV. 

Figure 8.328 shows how altering cone voltage can impact upon paracetamol ionisation 

and confirms that such a change can be observed through the continuous monitoring 

of signal.  A cone voltage of 20 V was selected as a compromise, providing a less 

variable signal in comparison with 10 V and an improved signal to noise ratio when 

compared with 50 V as a result of reducing fragmentation of paracetamol.  Note that a 

cone voltage of 75 was also explored and paracetamol signal at m/z 152 found to be 

completely absent suggesting that it had all undergone fragmentation at such a high 

setting. 
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Figure 8.328 – QDa SIM at m/z 152 for continuous flow analysis of paracetamol dissolved in 
water and acetonitrile comparing the ion current intensity observed for three cone voltage 
values.  Cone voltages of 10 and 20 are shown using the left black axis, with 50 V shown 
using the right red axis.  Each set of data includes its own 100 point moving average 
represented by the top red line for 10 V, green line for 20 V and bottom red line for 50 V. 

The probe temperature was also observed to impact upon signal and could be 

monitored easily through continuous flow analysis; Figure 8.329 shows the range of 

temperatures that were explored and the subsequent effect on signal as measured by 

SIM (m/z 152).  The challenge associated with applying a high temperature are that 

desolvation may occur too quickly, which can result in a pulsing signal.235  This risk 

would theoretically be reduced with less volatile solvents such as water and so a 

higher probe temperature may in that case prove to be useful.  At lower temperatures, 

reduced (and less rapid) desolvation occurs, which leads to clusters of solvent 

molecules increasing the background noise and therefore lowering sensitivity, 

particularly for low molecular weight compounds.  The lower temperatures therefore 

show a reduction in signal and when the mass spectra are explored in further detail, a 

significant improvement in signal to noise can be seen above 400°C confirming that a 

temperature above this is preferable. 
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Figure 8.329 – QDa SIM at m/z 152 for continuous flow analysis of paracetamol dissolved in 
water and acetonitrile comparing the ion current intensity observed for four probe 
temperature settings: 20, 200, 400 and 600°C.  Each set of data includes its own 100 point 
moving average, which can be seen running through the centres. 

The QDa method used to monitor paracetamol signal was also explored to highlight 

the obvious impact it may have upon ion current.  Paracetamol dissolved in water was 

analysed by the QDa through one of three methods: a) one SIM method only following 

m/z 152, b) full scan (ES+) only with paracetamol extracted using m/z 152, and c) one 

SIM method (m/z 152) alternating with a full scan (ES+).  The data has been plotted in 

Figure 8.330 and shows that the ion intensity changes dependent upon the method as 

would be expected.  This has implications for monitoring ions and requires the number 

of SIM methods used to be consistent between initial runs to monitor only one ion and 

subsequent methods following multiple ions if comparisons are to be drawn and these 

are to be used for quantification. 
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Figure 8.330 – QDa SIM and full scan data comparing ion current intensity with varying 
methods of following paracetamol signal: (a) SIM only, (b) extracted mass from a full ES+ 
scan and (c) SIM with full ES+ scan run in addition.  Each set of data includes its own 100 
point moving average, which can be seen running through the centres. 

Finally, Figure 8.331 shows clearly the impact of changing solvents upon paracetamol 

signal monitored by continuous analysis.  A sample of 0.03 mg/mL paracetamol 

dissolved in water only was pumped into the QDa through the MRA to dilute it 1:31 

(0.300 µL at 0.833 Hz) with MS solvent (water and acetonitrile 50:50 v/v without 

modifier).  This time the QDa was started at the same time to show once again the 

delay in efficient ionisation when sample first arrives at the instrument.  The signal 

then fluctuates for the next twenty minutes.  At twenty minutes, the sample solution 

was stopped from flowing and blank MS solvent was run through the lines to clean 

them.  This provided an opportunity to observe how long the paracetamol signal would 

take to reduce and eventually disappear.  An initial increase in paracetamol signal was 

first seen after the twenty minute mark – this is most likely the result of increasing the 

amount of acetonitrile reaching the ionisation source, thereby increasing volatility and 

ionisation efficiency of any remaining paracetamol either in the source or in the 

tubing.  The signal then rapidly reduces as any remaining paracetamol is cleaned 
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through, although it remains present even after almost ten minutes of blank solvent 

flowing.  The solvent and method was allowed to continue for a further thirty minutes 

to fully clean the lines and source and prevent any cross-contamination for future 

experiments.   

 

Figure 8.331 - QDa SIM at m/z 152 for continuous flow analysis of paracetamol dissolved in 
water diluted with MS solvent (water and acetonitrile 50:50 v/v).  Flow of the sample was 
stopped at 20 minutes and a mixture of only MS solvent allowed to continue to pass through 
to the QDa for the remaining period of time. 

The importance of consistency in equipment settings and methods, in addition to the 

solvents used is highlighted with this section of work.  It also suggests that the solvent 

in which the sample is dissolved can impact upon the ability to remove it from the 

fluidics and / or the source.  A thirty minute run of solvent mix, containing both water 

and acetonitrile, to improve volatility and ensure removal of sufficiently soluble 

components, was used to clean the lines and ensure there was no cross-contamination 

between runs for paracetamol, but this will require consideration for less soluble and 

less easily ionisable components.  
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8.3.2.2 API: guaifenesin 

Guaifenesin was studied using continuous flow MS to determine the stability of the 

signal on the QDa.  Guaifenesin at a concentration of 12 µg/mL dissolved in water only 

was diluted 125:1 by the MRA (0.100 µL at 0.667 Hz) using MS solvent with modifier 

(water and acetonitrile 50:50 v/v with formic acid 0.1% v/v) and injected continuously 

at a flow rate of 0.5 mL/min for 30 minutes.  Figure 8.332 shows the SIM 

chromatogram for guaifenesin with a 100 point moving average plotted in green.  

Guaifenesin injection was started at the same time that the QDa started scanning (at t 

= 0).  The plot shows a gradual increase between zero and seven minutes; this is a 

result of the lag time from injection to reaching the QDa, which was experimentally-

determined as approximately four minutes for this flow rate, and also highlights that 

time is taken for guaifenesin to be ionised efficiently once it reaches the MS.  The 

signal overall is variable and shows an initial increase between five and ten minutes, 

and then an overall decrease between ten and thirty minutes.  One explanation for this 

variability in signal could be a solvent mixing effect within the fluidics; the guaifenesin 

dissolved in only water will show reduced volatility compared with the diluting MS 

solvent containing acetonitrile and formic acid (in addition to water).  The sample 

aliquot (0.100 µL) is injected roughly every 1.5 secs (0.667 Hz) into the flowing MS 

solvent, providing an opportunity for some mixing or spreading of the injected plug of 

sample to occur, but it is unlikely to mix completely prior to ionisation.  This may result 

in guaifenesin ionisation efficiency varying within the run dependent upon the 

concentration and solvent mixture it reaches the source in.  Subsequently there may 

be an accumulation of guaifenesin that is not able to be ionised remaining in the 

source, which will present as an additional reduction in signal. 
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Figure 8.332 – QDa SIM at m/z 221 following guaifenesin dissolved in water by continuous 
flow analysis with a 100 point moving average represented by the green line. 

The work was repeated with guaifenesin dissolved in water and acetonitrile 50:50 v/v 

and subjected to the same dilution with MS solvent as previously.  Figure 8.333 shows 

the SIM chromatogram for guaifenesin with a 100 point moving average plotted in 

green.  Injection of the sample started at the same time as the QDa began scanning, as 

before, at t = 0.  A delay can be seen initially and the signal clearly fluctuates as shown 

by the moving average.  In comparison with the previous signal, the initial increase 

takes only seven minutes instead of ten, the intensity of the signal is more than 

doubled and the moving average follows a repeating pattern of increasing and 

decreasing over approximately ten minute periods.  The additional presence of 

acetonitrile in the original guaifenesin solution can therefore be concluded to improve 

overall ionisation efficiency likely through its increased volatility relative to water.243  

There is still signal variation suggesting that formic acid additionally improves upon the 

ionisation efficiency of guaifenesin, as this is unlikely to have the opportunity to spread 

evenly from the diluting MS solvent throughout the injection of sample prior to 

reaching the QDa.   
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Figure 8.333 – QDa SIM at m/z 221 following guaifenesin dissolved in water and acetonitrile 
by continuous flow analysis with a 100 point moving average represented by the green line. 

The flow of guaifenesin was stopped at t = 26.5 mins but the diluting MS solvent was 

allowed to continue flowing into the QDa at the same rate (0.5 mL/min).  The signal 

can be seen to decrease almost instantly, but it does not return to the baseline seen 

between zero and four minutes.  MS solvent was continuously flowed through the 

MRA into the QDa, and further analysis showed that it took an additional ten minutes 

of MS solvent running continuously to return to the baseline suggesting that 

guaifenesin must accumulate in the ionisation source and / or in the tubing between 

the MRA and QDa.  This accumulation could also account for the variation in signal and 

the overall reduction seen in Figure 8.332.  An additional consideration is that 

insufficient desolvation conditions (low temperature and / or insufficiently volatile 

solvents) may result in guaifenesin accumulation within the ionisation source that may 

then undergo degradation; the degraded sample may additionally compete for charge 

or alter surface activity of the droplets and therefore inhibit its own ionisation 

resulting in suppression of the signal.329  This is one explanation for the variation in 

signal, however, the most likely is the variation in solvent volatility due to insufficient 

mixing time prior to ionisation; this results in varied solvent compositions and 
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therefore varied ionisation efficiencies of guaifenesin, which was shown in the 

previous chapter to be sensitive to ion suppression. 

8.3.2.3 API: phenylephrine 

A solution of phenylephrine in only water was analysed continuously by the QDa to 

understand its variability over time, see Figure 8.334.  The MRA was again used to 

dilute the phenylephrine sample by 125:1 (0.100 µL at 0.667 Hz), this time with MS 

solvent without a modifier (water and acetonitrile 50:50 v/v).  Flow of the sample 

started as the QDa began scanning, hence the characteristic delay can be observed 

between zero and five minutes.  The delay is comparable with that seen for 

guaifenesin and suggests that time is again taken for efficient ionisation.   

 

Figure 8.334 – QDa SIM at m/z 150 following phenylephrine dissolved in water by continuous 
flow analysis with a 100 point moving average represented by the green line. 

The signal increases gradually and continuously fluctuates until the flow of the solution 

is stopped at 12 minutes.  The diluting MS solvent continues to flow and the signal can 

be seen to reduce suddenly but it takes an additional 15 minutes for the signal to 

return to the baseline of zero, suggesting that phenylephrine may also accumulate in 

the tubing and / or in the ionisation source.  The moving average shown in green also 

suggests that the signal may still have been increasing when flow of the sample was 
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stopped at 12 minutes.  The phenylephrine sample was dissolved only in water, which 

was seen with the guaifenesin examples (Figure 8.332 and Figure 8.333) to impact 

upon ionisation efficiency and may result in greater signal variability overall.  It is 

therefore important to allow sufficient time for the signal to stabilise, although this 

may vary depending upon the component being monitored, the solvents used and the 

presence of any modifier (e.g. formic acid). 

8.3.2.4 API plus API: paracetamol and guaifenesin 

A sample of water was run continuously into the QDa at 0.5 mL/min using the MRA to 

dilute it 1:125 (0.100 µL at 0.667 Hz) with MS solvent (water and acetonitrile 50:50 v/v 

without modifier).  The QDa was set to a full scan ES+ method with two SIM channels, 

and after ten minutes a small volume sample of guaifenesin dissolved in water was 

mixed into the original water sample to make a solution 0.122 mg/mL.  Ten minutes 

later a small volume sample of paracetamol (dissolved in water) was also added to the 

sample and mixed thoroughly to make a solution of 0.5 mg/mL.  The concentrations 

were intended to mimic those that might be found at completion of the dissolution of 

a Beechams® tablet.  Figure 8.335 shows the TIC, a SIM for guaifenesin (m/z 221) and a 

SIM for paracetamol (m/z 152). 
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Figure 8.335 – QDa continuous flow monitoring following the TIC (ES+) and two SIM 
channels: guaifenesin (m/z 221) and paracetamol (m/z 152).  The arrows highlight each 
component being added to the flowing water (a) guaifenesin and (b) paracetamol.  Each set 
of data includes its own 100 point moving average, which is represented by the red line 
running through the centre of each plot. 

Figure 8.335 shows the signal from ionisation of only water remains fairly stable with 

very little change upon the addition of guaifenesin, although the signal observed 

through the SIM channel for guaifenesin clearly increases as the sample moves 

through the fluidics, is ionised and reaches the detector.  The addition of paracetamol, 

however, more than doubles the TIC signal observed and reduces the guaifenesin 

signal by two thirds.  The delay between adding each component to solution and being 

detectable is in line with the previous work (approximately seven minutes).  This 

experiment clearly shows that guaifenesin ionisation is suppressed by the co-ionisation 

of paracetamol.   



430 
 

 

Figure 8.336 – QDa continuous flow monitoring following the TIC (ES+) and two SIM 
channels: guaifenesin (m/z 221) and paracetamol (m/z 152).  Each set of data includes its 
own 100 point moving average, which is represented by the red line running through the 
centre of each plot. 

The sample flow was maintained and another QDa method run straight after the first.  

After ten minutes the sample flow was stopped and only make-up solvent allowed to 

pass through the lines, see Figure 8.336.  The SIM signals and TIC remain consistent 

until fourteen minutes in the case of paracetamol and TIC, and just over fifteen 

minutes in the case of guaifenesin.  The paracetamol SIM signal, and therefore the TIC 

signal, reduce more quickly than the guaifenesin SIM signal suggesting that there is 

less accumulation in the lines and / or ionisation source.  Twenty minutes after the 

flow of sample is stopped, however, all three signals appear to have levelled out 

suggesting that there is negligible sample left either in the fluidics or the source and 

confirming that continuing the flow of make-up solvent for at least twenty minutes in 

the case of guaifenesin and paracetamol is effective in ensuring that there is little to no 

cross-contamination or carry-over between runs.   
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There is a subtle difference in the reduction of the paracetamol signal between the 

earlier work observed in Figure 8.331 and this work in Figure 8.336.  In the case of the 

former, the paracetamol signal can be seen to increase initially as the QDa receives 

only the make-up solvent (water and acetonitrile 50:50 v/v) instead of paracetamol 

dissolved in water.  This change from paracetamol dissolved in water to blank make-up 

solvent happens in both cases, however, there is no initial peak in the latter figure.  

The peak and the difference can explained by the relative increase in volatile 

acetonitrile reaching the QDa source, which is different in each example.  In the former 

experiment with the initial spike the dilution was 1:31 with an aliquot of 0.300 µL 

injecting into the solvent flow at 0.833 Hz, however, in the later experiment without 

the spike the dilution was 1:125 with an aliquot of 0.100 µL injecting into the solvent 

flow at 0.667 Hz; the relative change to a make-up solvent containing 50% v/v 

acetonitrile will therefore be different in each case. 

8.3.2.5 Multiple APIs: paracetamol, guaifenesin and phenylephrine 

A sample of guaifenesin dissolved in water was run continuously into the QDa and 

monitored with a SIM method consisting of four channels: guaifenesin (m/z 221), 

lactose (m/z 365), paracetamol (m/z 152) and phenylephrine (m/z 150).  Additional 

components were added at specific time points with Figure 8.337 showing the QDa 

continuous monitoring of three of these four SIM channels.   
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Figure 8.337 – QDa continuous flow monitoring following the SIM channels: guaifenesin (m/z 
221), phenylephrine (m/z 150) and paracetamol (m/z 152).  The arrows highlight each 
component being added to the flowing solution (a) guaifenesin, (b) phenylephrine, and (c) 
paracetamol.  The blue stars highlight areas where air bubbles were visible in the flow of 
solution entering the QDa. 

Twenty minutes after the guaifenesin solution was first injected a small volume sample 

of phenylephrine dissolved in water was added to the guaifenesin solution and mixed 

thoroughly.  Twenty two more minutes later (forty two minutes after the start) a small 

volume sample of paracetamol dissolved in water was added to the same solution, and 

again mixed thoroughly.  Each SIM channel clearly shows the point at which the 

relevant component is first detected - approximately five minutes after first being 

added to the solution.  Guaifenesin signal appears to reduce as phenylephrine appears 

and reduces again when paracetamol appears, but there is a spike at the very end of 

the run, after 55 minutes.  Phenylephrine signal also appears to reduce slightly as 

paracetamol appears but there are dips and spikes after 50 minutes.  Unfortunately, 
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multiple air bubbles presented within the flow of solution entering the QDa, which led 

to very unstable signals at points (highlighted by the blue stars in Figure 8.337).  The 

initial solution of guaifenesin in water was sonicated prior to using to remove as many 

air bubbles as possible, but the later mixing in of the additional components re-

introduced air bubbles into the system.  These could be seen passing through the 

fluidics but once present could not easily be removed and simply took time to pass, 

clearly disrupting the signal for each component and causing both spikes and dips.  

This limits the conclusions about ionisation phenomena, which can be drawn from this 

experiment, hence lactose was not added too, but highlights yet another important 

aspect of the experimental set up - careful exclusion of air bubbles. 

8.3.2.6 API plus excipient: lactose and paracetamol  

A sample of lactose dissolved in water was run continuously into the QDa via the MRA 

and set to a dilution factor of 1:1000 (0.022 µL at 0.385 Hz) with MS solvent (without 

modifier).  A large dilution factor was used initially to explore the risk of lactose 

accumulation within the ionisation source.  Three concentrations were studied initially: 

0.01 mg/mL, 0.05 mg/mL and 0.1 mg/mL and each sample was run for twenty minutes 

in total.  The lactose SIM channel included m/z 365 in addition to m/z 707, although at 

these concentrations and dilutions, no dimer was found, and only the sample at 0.1 

mg/mL showed sufficient lactose signal for ease of monitoring (0.05 mg/mL was 

detectable but not consistent).  The delay at the start of monitoring was removed by 

starting flow prior to acquiring the QDa data, see Figure 8.338.  A moving average has 

been plotted, which shows the signal increase rapidly over a minute to then produce a 

more consistent signal, which can be seen to fluctuate slightly over the next two 

minutes of continuous data acquisition.  It should be noted that the consistent peaks 

observed are due to the fluctuation from the MRA switching, hence the moving 

average has been included. 
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Figure 8.338 - QDa SIM at m/z 365 following lactose dissolved in water by continuous flow 
analysis with a 100 point moving average represented by the red line. 

The moving average allows the signal to be monitored more easily, but the SIM signal 

can be seen to fluctuate significantly between counts of approximately 250 and more 

than 6000.  A close up of the data points show that this is likely a combination of 

aliasing, the MRA switching and the differing ionisation efficiencies of lactose in the 

presence of either water or water with acetonitrile, see Figure 8.339. 
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Figure 8.339 – QDa SIM at m/z 365 following lactose dissolved in water by continuous flow 
analysis with a 100 point moving average represented by the red line.  This is a small section 
of the data from the previous plot, Figure 8.338. 

There was found to be little to no accumulation of lactose within the source and the 

signal cleared quickly within five minutes of flowing only make-up solvent into the 

QDa.  This provided reassurance for work at higher concentrations and lower dilution 

factors.  A range of concentrations of lactose dissolved in water were again studied 

using continuous flow monitoring with the MRA set to a dilution factor of 1:31 (0.300 

µL at 0.833 Hz) with MS solvent (without modifier).  Figure 8.340 shows the SIM signal 

for lactose monitored over a period of two minutes with the moving average plotted 

for each data set. 
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Figure 8.340 – QDa SIM at m/z 365 following lactose dissolved in water at four different 
concentrations monitored by continuous flow analysis with a 100 point moving average 
represented by each red line.  The lactose concentrations are (a) 2.9 µg/mL, (b) 5.7 µg/mL, 
(c) 11.5 µg/mL and (d) 17.2 µg/mL and each is diluted 1:31 with make-up solvent. 

The moving average is consistent for each concentration despite the fluctuation of the 

SIM signal.  The extent of the fluctuation can be seen to increase as the concentration 

of lactose increases, however, and the minimum, maximum and mean values can be 

plotted as if to produce a calibration graph, see Figure 8.341.  In summary therefore, 

although this set of data appears markedly different from the previous continuous 

flow monitoring analyses, sufficient information can be extracted to allow it to be 

utilised for quantification purposes. 
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Figure 8.341 – QDa SIM at m/z 365 following lactose dissolved in water at four different 
concentrations monitored by continuous flow analysis.  Each value has been calculated from 
the previous plot, Figure 8.340.  The error bars associated with each mean point are the 
standard deviation from two minutes of continuous flow data. 

It should be noted that this data cannot be directly compared with previous lactose 

calibration plots as the values have been extracted differently due to the continuous 

flow analysis.  Additionally, the concentration of lactose plotted on the graph is the 

concentration present in the sample solution and does not account for the dilution 

factor of the MRA prior to QDa analysis.  Nevertheless, this data was obtained at the 

same time as a series of samples of paracetamol mixed with lactose were analysed so 

as to observe whether the concentration of paracetamol and lactose could be 

calculated from the mixture using continuous flow analysis methods.  The MRA 

settings were kept constant at a dilution factor of 1:31 (0.300 µL at 0.833 Hz) with a 

make-up solvent of water and acetonitrile (50:50 v/v) and flow into the QDa of 0.5 

mL/min.  A constant concentration of paracetamol dissolved in water (0.0292 mg/mL) 

was analysed in combination with a range of concentrations of lactose, and a summary 

of the results is presented in Figure 8.342.   
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Figure 8.342 - QDa continuous flow monitoring of paracetamol (m/z 152) in combination 
with lactose (m/z 365) at a variety of concentrations (0, 0.013, 0.030, 0.060 and 0.092 
mg/mL).  Paracetamol was dissolved in water at a fixed concentration of 0.0292 mg/mL.  
Each data set was obtained from more than two minutes of continuous data acquisition.  
The top plot shows the paracetamol signal from each combination including an absence of 
lactose, and the bottom plot shows the lactose signal from the same combinations. 

The paracetamol signal can clearly be seen to reduce in the presence of lactose – the 

paracetamol concentration in the sample did not change.  This confirms that co-

ionisation of lactose with paracetamol from a solution of water suppresses 

paracetamol ionisation.  The extent of paracetamol suppression increases as lactose 

concentration increases, with signal reducing by more than half in combination with 

0.092 mg/mL of lactose.  The variability of the paracetamol signal also increases with 

increasing lactose, with the difference between the minimum and maximum observed 

signal widening and standard deviation for the mean increasing at increased 

concentrations of lactose. The signal observed for lactose, however, remains 

consistently low in the presence of paracetamol despite the concentration of lactose in 

the solution increasing and no dimer could be found at m/z 707.  In comparison with 

the SIM m/z 365 values obtained for lactose ionised in isolation, see Figure 8.341, the 

values are significantly lower suggesting that it is not ionising effectively and may be 
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subject to ion suppression by paracetamol.  The suggestion that co-ionisation of 

lactose and paracetamol results in suppression of both components is consistent with 

findings from the aliquot work with the QDa providing confirmation that both methods 

are able to provide useful data. 

8.3.2.7 Excipient: mannitol 

Blank water and acetonitrile 50:50 v/v was set to flow directly into the QDa at 0.5 

mL/min and mannitol was added.  The mannitol had previously been dissolved at a 

concentration of 1 mg/mL in water and acetonitrile 50:50 v/v so that aliquots of this 

“stock” solution could be added to the blank solvent mix to produce a sample of 

known concentration.  The sample was mixed thoroughly after each addition so the 

process was felt to mimic dissolution but with known quantities and without the risk of 

undissolved solid entering the fluidics.  Figure 8.343 shows the SIM method following 

m/z 205 in ES+ and highlights the time points at which two 5 µL aliquots of stock 

mannitol solution were added to the solvent mix.  The plot confirms that it takes 

mannitol seven minutes from addition and mixing, to be ionised and detected by the 

QDa, but ten minutes for the signal to plateau suggesting it has reached maximum 

ionisation efficiency.   



440 
 

 

Figure 8.343 – QDa continuous flow monitoring of mannitol dissolved in water and 
acetonitrile 50:50 v/v using an ES+ SIM method following m/z 205.  A 100 point moving 
average is represented by the red line and the blue arrows show the time of addition of the 
mannitol aliquots. 

The concentration after 25 minutes was 0.25 µg/mL, but after a period of adding 

aliquots of mannitol and continuously monitoring the effect on mannitol signal, the 

concentration reached 20 µg/mL (0.02 mg/mL).  The SIM signal increased gradually 

with each addition and reached a plateau at more than seventy times the signal seen 

for 0.25 µg/mL, for a  concentration of eighty times this at 20 µg/mL, see Figure 8.344.   
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Figure 8.344 - QDa continuous flow monitoring of mannitol dissolved in water and 
acetonitrile 50:50 v/v using an ES+ SIM method following m/z 205.  A 100 point moving 
average is represented by the red line.  The concentration is increasing and therefore signal 
increasing; after twelve minutes the concentration is 0.02 mg/mL. 

This confirmed that an increase in the concentration of mannitol in the sample, 

resulted in an increase in the SIM signal, which could be viewed on-line and in real-

time without sample preparation.  The delay between concentration changing in the 

sample and the SIM signal increasing on the QDa with this particular set up and for 

mannitol in these solvents, was seven minutes.  An additional delay between first 

detection and reaching a maximum observable signal for each concentration also 

occurred and can be attributed to ionisation efficiency within the source.  This meant 

that increasing the concentration resulted in an increasing signal but instead of this 

occurring in a step-wise fashion allowing signal to be easily correlated with 

concentration, it was visualised as a gradient increase.  This more closely mimics what 

would likely be seen with true dissolution mointoring and highlights an important 

challenge associated with the technique: correlating signal with concentration at 

specific time points throughout the process. 
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Figure 8.345 – QDa continuous flow monitoring of mannitol dissolved in water and 
acetonitrile 50:50 v/v using an ES- SIM method following m/z 181 comparing two 
concentrations: 0.25 µg/mL and 10 µg/mL.  Each plot includes a 100 point moving average 
represented by the red lines. 

A key point of interest from the initial work with mannitol was that it could be ionised 

and monitored in both positive and negative modes of ESI-MS, hence the work was 

repeated using an ES- method following m/z 181.  The attempt to monitor the same 

initial concentration of mannitol through an ES- method proved to be more 

challenging, with much poorer ionisation efficiency in this mode.  An increase in 

concentration to 10 µg/mL increased the signal very slightly, but it still remained 

unexpectedly low, see Figure 8.345.  Increasing the concentration significantly higher 

risked overloading the source with a component that was not ionising efficiently and 

may be accumulating either in the source or in the fluidics under these conditions.   

Instead, an alternative component that could be monitored with ES- was analysed to 

explore whether the limitation may be a cause of experimental set up, method, a 

peculiarity of this component, the concentration or a combination of multiple factors. 
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8.3.2.8 API plus API: chloramphenicol and paracetamol  

Chloramphenicol was found to be quantifiable using aliquot analyses in the ES- mode 

following m/z 321.  A solution of 1 µg/mL in water and acetonitrile 50:50 v/v was 

continuously analysed by ES- using the QDa without the MRA in place, see Figure 

8.346.  The signal increases gradually after six minutes, suggesting that signifies the 

length of time taken to move from the dissolution bath to the QDa in this set up.  The 

signal continues to increase over a period of four minutes, before reaching a plateau 

just ten minutes after the start of the experiment.  The signal continues to fluctuate 

but remains stable for a period of at least ten further minutes.  The experiment was 

allowed to continue and the signal remained steady for an additional ten minutes 

(thirty in total).   

 

Figure 8.346 – QDa continuous flow monitoring of chloramphenicol dissolved in water and 
acetonitrile 50:50 v/v using an ES- SIM method following m/z 321.  A 100 point moving 
average is represented by the red line. 

An aliquot of paracetamol dissolved in water and acetonitrile 50:50 v/v was added to 

the chloramphenicol solution to produce a solution containing 1 µg/mL of both 

components.  The signal relating to each API was then followed noting that 
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paracetamol is monitored in ES+ with m/z 152 and chloramphenicol was again 

monitored in ES- with m/z 321; the results can be found in Figure 8.347.   

 

Figure 8.347 – QDa continuous flow monitoring of chloramphenicol and paracetamol 
dissolved in water and acetonitrile 50:50 v/v using an ES- SIM method following m/z 321 and 
an ES+ SIM method following m/z 152.  A 100 point moving average has been calculated for 
each set of data and is highlighted by the red line on each plot. 

The paracetamol solution was added at the start of the experiment and its signal starts 

to increase approximately seven minutes later, with a plateau being reached a little 

over ten minutes after its addition to the solution.  This is consistent with the previous 

plot for chloramphenicol being monitored alone, see Figure 8.346.  The 

chloramphenicol signal appears unaffected by the addition of paracetamol confirming 

that it is not subjected to ion suppression or ion enhancement by paracetamol in these 

solvents.  An additional observation is that chloramphenicol reduced in signal quickly 

when blank water and acetonitrile was passed through thereby concluding that it does 

not accumulate in the lines or source.  The signal observed with chloramphenicol 

provides reassurance that ES- can also be used to monitor components by continuous 

flow analysis with the QDa. 
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8.3.2.9 API plus API: haloperidol and paracetamol 

A 1 µg/mL solution of haloperidol dissolved in water and acetonitrile 50:50 v/v was 

produced and analysed directly using an ES+ SIM method on the QDa following m/z 

376.  Figure 8.348 shows that it takes approximately seven minutes for haloperidol to 

be ionised and detected, consistent with previous analyses.  However, the haloperidol 

signal then continues to fluctuate across a large range of signal values, with a mean 

signal between 10 and 30 minutes of 19681 (standard deviation of 8527); the 

minimum over this time is 1998 and the maximum is more than thirty times this at 

72849.   

 

Figure 8.348 – QDa continuous flow monitoring of haloperidol dissolved in water and 
acetonitrile 50:50 v/v using an ES+ SIM method following m/z 376.  A 100 point moving 
average is represented by the red line. 

The variability observed in Figure 8.348 is unlikely to be explained by its poor solubility, 

as minimal signal variation was observed in Figure 7.241.  The previous calibration 

plots did however include formic acid, which may have ensured a more consistent 

ionisation efficiency.  Paracetamol solution (water and acetonitrile only) was added to 

the haloperidol solution five minutes after the start of the experiment and both 
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components were monitored, see Figure 8.349.  The characteristic delay between 

paracetamol being added and being detected is seen yet again, and the paracetamol 

signal appears to fluctuate more widely than previously.  The haloperidol signal 

reduces initially when paracetamol is first detected at around 12.5 minutes, but then 

appears to fluctuate less than it did previously when analysed in isolation, see Figure 

8.348.  The earlier findings for haloperidol in combination with lactose and mannitol, 

using aliquot analyses on the QDa, found that the variability of haloperidol signal was 

reduced in the presence of co-ionising components and this work with paracetamol 

and haloperidol suggests a consistent theme. 

 

Figure 8.349 – QDa continuous flow monitoring of haloperidol and paracetamol dissolved in 
water and acetonitrile 50:50 v/v using an ES+ SIM method following m/z 376 and m/z 152.  A 
100 point moving average has been calculated for each set of data and is highlighted by the 
red line on each plot.  Paracetamol solution was added to the haloperidol solution at the five 
minute mark. 

The work was repeated for the same concentrations of each component but the 

paracetamol solution was analysed first, and haloperidol added to it, see Figure 8.350.  

The paracetamol signal had been given time to stabilise prior to adding the 
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representative of that observed when this concentration of paracetamol dissolved in 

water and acetonitrile 50:50 v/v is analysed using continuous flow analysis with the 

QDa.  There is a sudden reduction in paracetamol signal prior to the haloperidol signal 

appearing, which is related to the presence of an air bubble in the fluidics.  The 

paracetamol appears to start to recover from the air bubble but then reduces again 

more gradually this time as the haloperidol signal becomes detectable and starts to 

increase between five and ten minutes.  The signal values are consistent with those 

found previously, see Figure 8.349, and suggest that paracetamol ionisation is 

suppressed by the co-ionisation of haloperidol under these conditions.  This time 

however the haloperidol signal becomes more variable after twenty minutes of co-

ionisation with paracetamol, and the paracetamol signal also appears slightly more 

variable at this time point, although no changes have occurred within the experimental 

set-up.   

 

Figure 8.350 – QDa continuous flow monitoring of haloperidol and paracetamol dissolved in 
water and acetonitrile 50:50 v/v using an ES+ SIM method following m/z 376 and m/z 152.  A 
100 point moving average has been calculated for each set of data and is highlighted by the 
red line on each plot.  Haloperidol was added to the paracetamol solution at the start of the 
experiment. 
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A significant learning point is that these experiments should ideally be run in 

combination so the effect on each component can be observed, as it was not clear 

from the initial experiment that paracetamol ionisation was suppressed by the co-

ionisation of haloperidol.  In both experiments, haloperidol reduced in signal as blank 

water and acetonitrile 50:50 v/v were passed through the lines and source, although 

not as quickly as chloramphenicol, suggesting that haloperidol may accumulate under 

these experimental conditions.  Paracetamol reduced more slowly again but both were 

removed after thirty minutes of flushing the lines and source with the blank solvent 

mix.  This highlights the importance of exploring how quickly a reduction in signal can 

be observed with line flushing, for each component being analysed.   

8.3.2.10 Summary of continuous flow MS analysis 

The QDa source was physically examined at various points throughout this work, 

particularly after using the less volatile solvents and the excipients.  Residue was 

present on the source in most cases, which was cleaned easily but highlighted that 

accumulation and degradation were occurring and may therefore impact upon 

ionisation, particularly over longer periods of time.  The set-up of the equipment for 

continuous monitoring can also result in air bubbles being introduced into the fluidics, 

which can impact significantly upon the chromatograms and mass spectra observed.  

This is less of a challenge with off-line analysis due to the logistics of introducing the 

sample into the MS.  The presence of air bubbles in dissolution baths can prove to be a 

challenge for different reasons in traditional techniques, hence it cannot easily be 

excluded and simply needs to be monitored.9 

The continuous flow analysis of components using the QDa is feasible for components 

requiring monitoring in either mode of ES and allows for a more timely understanding 

of the relationship between two components in solution than aliquot analyses.  The 

use of QDa SIM methods to follow specific ions allows the signal relating to each 

component to be followed on-line and in real-time using the QDa MassLynx software, 

although this cannot yet be translated to concentrations.  Off-line analysis to calculate 

and plot a moving average in addition to the SIM signal proved to be useful in 

observing how the signal changes and varies over time.  The signal associated with 

each component was observed to fluctuate significantly over time and this could be 
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affected by many aspects of the work including dilution ratios, solvents, additional 

ionising components, equipment settings and also the SIM method being used.  This 

therefore requires monitoring for sufficient time periods during preparation work to 

aid an understanding of when a change in signal is inherent and when it is a result of 

ionisation phenomena.  Ionisation phenomena impacting upon ionisation efficiency 

appear to occur as a result of all combinations of components, including APIs, 

excipients, dissolution media and MS solvents (including the presence of modifiers). 

This work highlights that some key considerations for continuous flow monitoring are 

i) to understand how quickly maximum ionisation efficiency occurs for each 

component, ii) to select the solvents used for MRA dilution as well as those present 

within the sample carefully after extensive preliminary work, and iii) to determine 

whether there is likely to be accumulation within the fluidics or ion source that could 

impact both upon ionisation over time and the time required to clean the instrument 

between experiments. 

8.4 Conclusions and future work 

This chapter has succeeded in building upon the work of the previous chapter in 

confirming that multiple API(s) and excipients may be monitored concurrently using 

ESI-MS without prior separation or extensive sample preparation.  The variability of 

signal for each component has also been explored further and found to be dependent 

upon a number of factors: equipment settings such as probe temperature, the solvents 

from which they are being ionised (including the sample and the make-up solvent), the 

SIM method through which they are being monitored and the presence of any co-

ionising components.  The technique has been developed further still and enables 

quantification through both aliquot and continuous flow methods and analyses.   

The on-line and real-time quantification of components, in addition to the ability to 

predict and adjust for the occurrence of ionisation phenomena has proven to be far 

more challenging than expected.  The aliquot and continuous flow methods have 

clearly shown the requirement for extensive and repetitive sample analyses to be 

undertaken in order that quantification may even be attempted.  An understanding of 

the extent of ion suppression and enhancement was able to be explored using both 
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methods and highlights the complexity of monitoring changing concentrations of each 

component when ionised concurrently.  Each combination of API(s), excipients(s) and 

solvent(s) results in differing extents of ion enhancement, suppression and variation, 

which leads to a highly complex relationship.  It can therefore be concluded that while 

dissolution monitoring with mass spectrometry may prove useful to simple binary or 

even tertiary mixtures of components, formulations containing multiple components 

will require such extensive work to enable quantitative conclusions as a result of the 

varying ionisation phenomena that may be occurring, that this may not prove to be a 

worthwhile endeavour.  Monitoring without quantification could, however, prove to 

be beneficial simply by determining the likely presence or absence of a component 

from solution at points throughout dissolution, thereby elucidating some 

understanding of how formulations may deliver API. 

Conclusions as to the relationships between components have been outlined in the 

summary of each section, however, these are not simply transferable to further work 

monitoring their dissolution due to the relationship between components, solvents 

and equipment set up.  Therefore, instead of providing specific points of 

understanding for the components studied, a more useful conclusion from this work 

might be to provide an outline of considerations and methodology for exploring the 

monitoring of a formulation by mass spectrometry methods.  The following is 

therefore a suggestion for developing such a method:  

 Explore each formulation component for their ability to be ionised in ES+ and 

ES- using a range of concentrations in MS solvents (preferably water and 

acetonitrile without modifier) – check for multiple ions, dimers etc. 

 Repeat the first step for each dissolution media to be used and check for 

additional ions. 

 Set up a SIM method which incorporates each component to be monitored. 

 Utilise design of experiment (DoE) software to find the most appropriate MS 

settings for each component and determine a compromise for each that will 

enable all components to be analysed successfully using consistent settings. 

 Continuously monitor, using the aforementioned SIM method, each component 

at the maximum concentration possible according to the formulation and 
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volume of dissolution media to be used – this provides the maximum ion signal 

observable when each is ionised in isolation. 

 Note whether any components require dilution to prevent detector saturation. 

 Perform a series of experiments on each combination of components at these 

maximum concentrations to determine whether ion suppression or 

enhancement occurs (in either direction), thereby providing information about 

the maximum ion signal likely to be observed in combination (unless a 

component appears to be enhanced by more than one additional component). 

 Note again whether any components may require dilution when in combination 

due to ion enhancement and note also whether any components may be 

undetectable due to ion suppression. 

 Determine the time taken for the maximum concentration of each component 

to be cleared from the fluidics and ionisation source to prevent contamination 

between experiments. 

The development of compact and user-friendly mass spectrometry equipment has led 

to the technique being applied to novel challenges, particularly on-line monitoring of 

reactions.15,228,230  This has the potential to advance understanding in many areas but 

requires fundamental and detailed understanding of the ESI-MS technique being used 

to accurately distinguish between data that may allow conclusions to be drawn versus 

data which necessitates considerable further work.  The monitoring of dissolution by 

mass spectrometry can be concluded to fall into both categories dependent upon the 

level of detail that is required of the data. 
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9. Concluding remarks 

9.1 Surface dissolution imaging using UV-Vis technology 

The novel dual wavelength SDi2 has been used to highlight the importance of visually 

monitoring dissolution using both UV and visible absorbance data.  Unexpected 

physical processes, such as the movement of IDR samples from the holder seen with 

the I-TPI gels, as well as the more expected physical processes, such as sample erosion 

during dissolution, have been used to explain changes in reported concentration data.  

This work therefore offers evidence that the previously reported limitations of single 

wavelength imaging have been improved upon with the development of the SDi2.13   

The development of a method to observe single crystal dissolution with the SDi2 has 

highlighted the instrument’s versatility, particularly the opportunity to use both the 

1.54 mL compact flow cell and the 60.3 mL whole dose cell for monitoring.  The use of 

the two flow cells has clearly shown that each offers different hydrodynamic 

conditions for dissolution, including both laminar flow and turbulence, as well as 

altering diffusion, density gradients, advection and stagnation zones.  The ability to 

probe this environment throughout dissolution and to explore the impact of this 

environment upon dissolution, provides further opportunities to enhance 

understanding of the many processes taking place. 

The SDi2 is limited in its resolution when reporting absorbance data using the Pion 

software, however, this work confirms that the application of image analysis software 

allows absorbance values per pixel to be obtained from the SDi2 images.  This also 

enables concentration and size changes to be quantified and correlated, providing the 

ability to report concentration values surrounding a changing sample throughout its 

dissolution.  The ability to report both size changes and concentration changes allowed 

a series of solvates to be ranked according to their relative stabilities, thus confirming 

that the SDi2 may additionally be applied to solve non-pharmaceutical challenges. 

A significant limitation of these methods, however, is that the image on screen and 

therefore UV-Vis absorbance data reported is a two-dimensional representation of a 

three-dimensional shape.  This is a limitation of the equipment itself and cannot be 

overcome simply by changing analysis methods or even by using image analysis 
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software.  The comparison of single crystals is also limited by the uniformity of crystals 

available, preventing experiments from being repeatable and thereby restricting data 

interpretation.  The ability to fully index the single crystal by SCXRD using the newly 

developed sample holder will provide full crystal morphology and size data prior to 

dissolution, and will offer yet more information with which to explain both size and 

concentration changes during dissolution monitoring.  Another idea for further 

development of the instrument may be to position a camera at the top of the compact 

flow cell using the hole originally created for a Raman probe – this may enable 

enhanced images of the sample to be obtained, although it will introduce yet more 

challenges with respect to light interference. Alternatively, recent research by 

Pallipurath et al. offers alternative technologies and modelling that may be used 

alongside the SDi2 to further explore face-specific dissolution for single crystals.215,341 

Finally, the fundamentals of the intrinsic dissolution rate calculations using the SDi2 

software also requires significant consideration.  Approval from regulatory bodies to 

report dissolution data requires a fundamental understanding of the analytical 

technique used, hence the ability to replicate the SDi2-calculated IDR values is a critical 

step towards enabling the instrument to be used more frequently within the 

pharmaceutical industry. 

9.2 Bulk dissolution monitoring using mass spectrometry 

The primary advantage of using mass spectrometry for dissolution monitoring, when 

compared with UV-Vis techniques, is the ability to analyse molecules that do not 

contain UV-absorbing chromophores.15  This research confirms the ability of ESI-MS to 

successfully detect and monitor a range of APIs and soluble excipients, with and 

without chromophores, respectively.  The sensitivity of ESI-MS has also allowed the 

detection of small quantities of soluble formulation components, however, this was 

subject to significant limitations when multiple components were ionised concurrently.   

The practical challenges associated with combining dissolution and mass spectrometry 

equipment have been largely overcome through the use of a mass rate attenuator in 

this and the previous work.15  This technology enables high concentrations of sample 

to be injected into flowing MS solvents and directed at appropriate flow rates into the 
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MS instrument avoiding detector saturation in most circumstances.  This is aided by 

understanding the fundamental relationship between concentration and response for 

each sample being analysed and the solvent from which it is being ionised.  The 

acquisition time and duty cycle of ESI-MS also allowed multiple data points to be 

obtained rapidly with real-time monitoring achievable for a number of components 

when ionised in isolation. 

The significant challenges presented themselves when multiple components were 

ionised concurrently.  Solvents, ionisation modifiers, simple dissolution media and co-

ionising components were each found to impact significantly upon the MS signal 

observed for both APIs and excipients, altering both the relationship between signal 

and response as well as resulting in the formation of alternative and additional ions in 

some instances.  The relationship between components was unable to be accounted 

for, or predicted sufficiently to enable quantification without chromatographic 

separation prior to ionisation.  Research into ionisation efficiency scales, pH effects 

and the mechanism of modifiers will further explain these relationships improving our 

ability to predict and counter the effects of ionisation phenomena such as ion 

suppression and ion enhancement.335,340,342 

In summary, although the monitoring of dissolution using mass spectrometry allows 

non-chromophore containing compounds to be detected, the complexity of the 

relationship between each formulation component and the dissolution media being 

used, in addition to the solvents required for ionisation, result in the technique 

requiring such extensive pre-work that monitoring online and in real-time is currently 

an unrealistic expectation.  It remains, however, a useful method for analysing samples 

off-line, particularly when multiple APIs are present or when they are unable to be 

monitored through conventional techniques.  Future work exploring the ionisation 

phenomena of suppression and enhancement may, however, offer the opportunity to 

combine the techniques more successfully. 

9.3 Summary 

Monitoring dissolution, both on the surface and in the bulk, is a topic of particular 

relevance to the pharmaceutical industry, but its fundamentals extend into 
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engineering, chemistry and physics amongst many others.  The two approaches 

explored in this work have focussed on different aspects of the dissolution process.  

Surface dissolution imaging has primarily enabled solid wetting and boundary layers to 

be monitored, in addition to diffusion and advection within the bulk dissolution media.  

Mass spectrometry, however, has monitored changes only within the bulk dissolution 

media, allowing soluble formulation components to be detected and in some 

circumstances, quantified.  Each technique therefore provides complementary 

information about dissolution to be used in addition to, rather than instead of, 

conventional dissolution monitoring methods. 
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