
Durham E-Theses

Colliding Worlds: Modern Computational Methods

for Scattering Amplitude Calculations and Responding

to Crisis Situations

AYLETT-BULLOCK, JOSEPH,PETER

How to cite:

AYLETT-BULLOCK, JOSEPH,PETER (2021) Colliding Worlds: Modern Computational Methods for

Scattering Amplitude Calculations and Responding to Crisis Situations, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/14166/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14166/
 http://etheses.dur.ac.uk/14166/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Colliding Worlds

Modern Computational Methods for Scattering

Amplitude Calculations and Responding to

Crisis Situations

Joseph Peter Aylett-Bullock

A Thesis presented for the degree of
Doctor of Philosophy

Institute for Particle Physics Phenomenology
Department of Physics
Durham University
United Kingdom

October 2021

Colliding Worlds

Modern Computational Methods for

Scattering Amplitude Calculations and

Responding to Crisis Situations

Joseph Peter Aylett-Bullock

Submitted for the degree of Doctor of Philosophy

October 2021

Abstract: Precision theoretical predictions for high multiplicity scattering rely on

the evaluation of increasingly complicated scattering amplitudes which come with

an extremely high CPU cost. For state-of-the-art processes this can cause technical

bottlenecks in the production of fully differential distributions. In this thesis we

explore the possibility of using neural networks to approximate multi-jet scattering

amplitudes and provide efficient inputs for Monte Carlo integration. We begin by

focussing on QCD corrections to e+e− →≤ 5 jets up to one-loop. We demonstrate

reliable interpolation when a series of networks are trained on amplitudes that have

been divided into sectors defined by their infrared singularity structure. Complete

simulations for one-loop distributions show speed improvements of at least an order

of magnitude over standard approaches.

We extend our analysis to the case of loop-induced diphoton production through

gluon fusion and develop a realistic simulation method that can be applied to

hadron collider observables. Specifically, we present a detailed study for 2→ 3 and

2→ 4 scattering problems which are extremely relevant for future phenomenological

studies and find excellent agreement with amplitudes generated using traditional

methods. In order to provide a useable technology, we present an interface with the

Sherpa Monte Carlo event generator.

The techniques underlying our machine learning methodology and Monte Carlo event

generator simulations are widely applicable in other domains as well. In this thesis

we will also discuss the use of machine learning to aid in rapid response to crises

situations, and the parallels between multi-particle event generators and multi-agent

simulations for modelling the spread of epidemics. In this latter case, we develop a

new agent-based model with highly granular resolution and discuss its applications

to modelling the spread of COVID-19 in England, and in refugee and internally

displaced person settlements to aid data driven decision making.

Contents

Abstract 3

List of Figures 9

List of Tables 17

1 Introduction 25

2 Introduction to QCD 31

2.1 The Theory of QCD 31

2.2 Matrix Elements 33

2.3 Divergent Structures 35

2.3.1 Ultraviolet Divergences 35

2.3.2 Infrared Divergences 36

2.4 Running Coupling 38

3 Monte Carlo Event Generators 43

3.1 Measurements and Observables 43

3.2 Brief Overview of Event Generators 45

3.3 Monte Carlo Integration 48

3.3.1 Basics . 49

6 Contents

3.3.2 Reducing the variance 50

3.4 Integration in Practice 52

4 Machine Learning for Event Generation 55

4.1 Decision Trees . 56

4.1.1 Bagging and Random Forests 58

4.1.2 Boosting 59

4.2 Neural Networks 60

4.2.1 The Perceptron 60

4.2.2 Fully Connected Networks 62

4.3 Generative Networks 65

5 Machine learning for matrix element approximation: e+e− → qq̄+

jets 69

5.1 Motivation . 69

5.2 Computational setup 71

5.2.1 Phase-space partitioning for final state singularities . . . 72

5.2.2 Neural network setup 75

5.2.3 Uncertainty Analysis 79

5.3 Results . 82

5.3.1 Approximations at LO 82

5.3.2 Virtual Approximations at NLO 90

5.4 Summary . 96

Contents 7

6 Machine learning for matrix element approximation: diphoton +

jets 99

6.1 Motivation . 99

6.2 Gluon-initiated diphoton amplitudes 100

6.3 Computational setup 102

6.3.1 Phase-space partitioning for hadron-hadron collisions . . . 104

6.3.2 Neural network setup 105

6.3.3 Interfacing with event generators 106

6.3.4 Reweighting 108

6.4 Results . 110

6.4.1 gg → γγg 111

6.4.2 gg → γγgg 117

6.4.3 Timing . 120

6.5 Summary . 122

7 Computational Methods for Crisis Response and Epidemic Model-

ling 125

7.1 Machine Learning for Crisis Response 125

7.1.1 Satellite Image Analysis 126

7.1.2 Mapping the Response to COVID-19 131

7.2 Epidemic Modelling 133

7.2.1 The June Framework 134

7.2.2 Modelling COVID-19 in England 136

7.2.3 Modelling COVID-19 in Refugee and IDP Settlements . . . 139

7.3 Summary . 143

8 Contents

8 Conclusions 145

A QCD Feynman Rules 149

B Monte Carlo Integration Algorithms 151

B.1 RAMBO . 151

B.2 VEGAS . 153

C FKS pairs and partition functions 155

D Hyperparameter tuning 157

E yp tuning 161

F Comparison with the naive setup 163

Bibliography 165

List of Figures

1.1 Simple workflow describing the process of obtaining the cross-section

of an event: the Lagrangian defines the theory; Feynman rules de-

scribing the propagator and interaction terms of the theory can be

obtained from the Lagrangian; these are combined to calculate the

matrix element; the matrix elements are integrated over all allowed

final state momenta configurations to obtain the cross-section. . . 27

2.1 A Feynman diagram for the process e+e− → qq̄g where a gluon is

emitted from the outgoing antiquark. There is an additional diagram

for this process which depicts the gluon emission from the outgoing

quark. 34

2.2 The running of αs as measured by experiments compared with theory.

The degree of QCD perturbation theory used to extract αs is given

in brackets. Figure from [1]. 40

3.1 Representation of the stages of event generation for hadronic colli-

sions. The incoming hadrons, h1 and h2 have momenta P1 and P2

respectively. One of each of the hadron’s constituents is taken with

momentum fraction x. Figure inspired by that from [2]. 46

10 List of Figures

4.1 Right: a decision tree construction with decision nodes represented

by circles, and leaf nodes represented by squares. Right: the decision

nodes split the input space into sub-regions in which the leaf nodes

make the final decision. Inspired by Figure 5.7 in [3]. 57

4.2 Construction of the perceptron. Input variables, along with a bias

term, x0 = 1, are weighted, combined together, and pass through an

activation function, a, which results in the output, f(x). 60

4.3 Construction of a typical Fully Connected Network for regression

with a single number output. Input variables, along with a bias

term, are weighted and combined together at each node in the next

layer. All nodes in each layer are connected to all other nodes in

subsequent layers. This continues for all hidden layers, {f (1), ..., f (h)}

and terminates once we reach the output layer f (o). Each node in

each layer can have a different activation function associated with it.

It is common practice to assign the same activation function to all

nodes in the hidden layers, with the final activation function usually

chosen to be linear for regression problems. 62

5.1 A ratio of the CPU cost to calculate tree-level and one-loop amplitudes

in Njet to inferring on a neural network (built in Keras/TensorFlow)

as a function of the number of legs (equivalently number of variables).

The black line denotes 1. This demonstrates the fairly trivial fact that

the neural network is fast to call compared to numerical equivalents. 70

5.2 Behaviour of the Sq,g FKS partition function relative to yij = sij/scom. 75

5.3 Born matrix element output of the naive approach (red) and parti-

tioned approach (green) compared to the Njet calculation at different

jet multiplicities and/or ycut values across 1M points. Outputs are

taken as the average over 20 trained models. 83

List of Figures 11

5.4 Comparison of the naive approach (left) vs. the partitioned ap-

proach (right) in estimating the Born normalised cross-section. Un-

certainty bands denote the standard error on the mean calculated

over 20 trained models (red and green) and Monte Carlo error on the

Njet result (blue). We refer the reader to Section 5.2.3 for details of

the error analysis. 86

5.5 Comparison of the naive approach (left) vs. the partitioned approach

(right) in estimating the differential cross-section against y, where

y is the minimum yij as ordered by pT . Data is normalised to the

maximum Njet bin value. Uncertainty bands as described in Figure

5.4. 87

5.6 k-factor output of the naive approach (red) and the partitioned ap-

proach (green) compared to the Njet calculation at different multi-

plicities. Outputs are taken as the average over 20 trained models. . 91

5.7 Comparison of the naive approach (left) vs. the partitioned approach

(right) in estimating the normalised NLO/LO k-factors. Uncertainty

bands as described in Figure 5.4. 91

5.8 Comparison of the naive approach (left) vs. the partitioned approach

(right) in estimating the differential NLO/LO k-factors against y,

where y is the minimum yij as ordered by pT . Data is normalised

to the maximum Njet bin value. Uncertainty bands as described in

Figure 5.4. 93

12 List of Figures

5.9 Normalised NLO/LO k-factor and differential k-factor against y,

where y is the minimum yij as ordered by pT , at 5 jets using just

the partitioned approach. Data in the differential plot is normalised

to the maximum network output value. Uncertainty bands denote

the following errors added in quadrature: one standard error from

model uncertainties and one Monte Carlo error on the result itself.

Uncertainty bands are given as a percentage of the mean calculated

over 20 trained models. 95

6.1 Matrix element typical CPU evaluation times for available methods —

including Njet numerical evaluations, Njet analytical evaluations,

and inference on a NN ensemble as described in Section 5.2 — against

the number of legs. These calls are single-threaded as parallelisation

is applied at the level of events in simulations. An analytic expression

for 2 → 4 is not available. The NN is comparable to the analytic

call at 2 → 2, 50 times faster at 2 → 3, then 105 times faster than

the 2 → 4 numeric call. All NN evaluations were performed using

the same yp parameter value. The differences in evaluation time with

increasing multiplicity is therefore a result of points falling into Rdiv. 103

6.2 NN/Njet errors for the 2→ 3 scattering process using a unit integ-

ration grid. 111

6.3 Differential distributions normalised to the cross-section for the 2→ 3

process comparing Njet (red) with the NN ensemble (blue). The

Njet results are quoted with Monte Carlo errors and the NN res-

ults with precision/optimality uncertainties calculated as described

in Section 5.2.3 but which are negligible in comparison. Pseudojets

ji and photons γi are ordered by energy, ∆φ is azimuthal separation,

R-separation is defined in Section 6.3.2, and mγ1,γ2 and ∆ηγ1,γ2 are

the mass and pseudorapidity separation of the diphoton system. . 113

List of Figures 13

6.4 Effect of reweighting points in the divergent region of phase-space,

Rdiv, on the ratio between the reweighted cross-section, σ(RW), and

the cross-section calculated using Njet σ(Njet) for the 2→ 3 process.

In this case, the divergent region comprises approximately 7–9% of

the total phase-space (see Appendix E for details). The red band

shows the Monte Carlo error on the Njet result. 114

6.5 Root mean squared error (RMSE) of the NN ensemble approach in

comparison to Njet as a function of x1 and x2, and the frequency of

points with these values in the training dataset. Frequency differences

in x1 and x2 are due to Sherpa sampling differences. 116

6.6 NN/Njet errors for the 2 → 3 scattering process using a VEGAS

optimised integration grid. 117

6.7 NN/Njet errors for the 2→ 4 scattering process using a unit integ-

ration grid. 118

6.8 Differential distributions normalised to the cross-section for the 2→ 4

process comparing Njet (red) with the NN ensemble (blue). The

Njet results are quoted with Monte Carlo errors and the NN res-

ults with precision/optimality uncertainties calculated as described in

Section 5.2.3 but which are negligible in comparison. 119

6.9 Effect of reweighting points in the divergent region of phase-space,

Rdiv, on the ratio between the reweighted cross-section, σ(RW), and

the cross-section calculated using Njet σ(Njet) for the 2→ 4 process.

In this case, the divergent region comprises approximately 2–3% of

the total phase-space (see Appendix E for details). The red band

shows the Monte Carlo error on the Njet result. 120

14 List of Figures

6.10 Typical per-point call times, for the set of NN ensembles and scaling

tests with numerical and analytical techniques, against the number

of legs. Compared to Figure 6.1, this incurs a twofold cost on the

conventional methods and multiplies the single NN ensemble time

by 20. Analytical methods are fastest at 2 → 2 and NNs do not

offer a dramatic improvement at 2 → 3 either, but their fast call

time and weak dependence on the number of variables (which scales

with multiplicity) win out at high multiplicity. At 2 → 4, where no

analytical expression is available and extrapolation suggests it would

be comparable in call time to numerics, our ML approach is four

orders of magnitude faster than the numeric call. 121

7.1 Analysis of Saigang Region in July 2019 with permanent water and

labels. The images show the area of interest in black outline and

the permanent water body derived from the Global Surface Water

Dataset [4] in blue. Left: analyst mapped flooded region in yellow.

Right: the ML prediction in yellow. 128

7.2 Workflow for rapid flood mapping: images can be automatically down-

loaded from providers based on requests or other activation criteria;

the image is fed into a machine learning model for flood detection;

human validation and quality control takes place which can also be

used to update the model for future floods in that region (resulting

in a library of region-specific models); maps are then released. . . 129

7.3 PulseSatellite mapping a refugee settlement in Jordan. Buildings

detected by the model are highlighted in blue, with analyst-drawn

structures in green. 130

7.4 AI applications for the COVID-19 response organised at three levels:

the molecular scale, the clinical scale, and the societal scale. . . . 131

List of Figures 15

7.5 Overview of the structure of June. Free parameters to be fitted or

estimated are shown in bold. 135

7.6 Daily hospital deaths for each region in England, and England overall,

for 14 realisations of June as described in this section. Each realisa-

tion is illustrated as a separate colour for visibility. Observed data in

black with 3 standard deviation error bands. Data from CPNS [5]. . 139

7.7 Left: modelled distribution centres. Right: Detailed view of Camp 4

showing six types of modelled locations. 140

7.8 Simulated daily (7-day rolling average) and cumulative infections

measured in days since the beginning of the simulation. Black solid

lines represent the baseline policy in which learning centres (schools)

are closed. Black dashed lines represent the policy in which learning

centres are open with no additional mitigation strategies. 142

E.1 Proportion of the training dataset in the divergent region, Rdiv, as a

function of yp for the 2→ 3 and 2→ 4 process. 161

F.1 Comparison of NN/Njet errors between the single NN and NN en-

semble approaches for the 2 → 3 scattering process using different

integration grids. 163

List of Tables

1.1 The number of gauge fields in each group appearing in the Standard

Model. 26

5.1 Time required for k-factor calculation at different multiplicities requir-

ing 1M points, while training on 10k and 100k points. Performance

of the partitioned approach is assessed by calculating the percent-

age difference in the cross-section approximation normalised to the

Njet result. Errors are calculated by adding the model uncertainty

and Monte Carlo error from the Njet result in quadrature. These

results assume all calculations take place on a single CPU core and

that the training points form part of the inference set. Training on

10k points is fast but not necessarily reliable, whereas using 100k

points gives more reliable results and so may be a more reasonable

estimate of the speed-up. Results are not given for 5-jets since we did

not generate testing data at this multiplicity. 94

6.1 Cross-sectional comparison between Njet and the NN ensemble ap-

proach using different cuts. Baseline cuts are those specified at the

beginning of Section 6.4. The Njet results are quoted with Monte

Carlo errors and the NN ensemble results with precision/optimality

uncertainties calculated as described in Section 5.2.3. 112

18 List of Tables

D.1 Hyperparameter tuning results. Tuning was performed on a fixed

training dataset size of 100k points sampled using the RAMBO in-

tegrator [6] on a unit integration grid. Performance was measured

with respect to both the Root Mean Squared Error (RMSE) and Root

Mean Squared Logarithmic Error (RMSLE) so as to avoid biasing the

error measure to the optimisation criterion (loss function) chosen. . 160

Declaration

The work in this thesis is based on research carried out in the Department of Physics

at Durham University. No part of this thesis has been submitted elsewhere for any

degree or qualification. This thesis is partly based on joint research as noted below.

• Chapter 5 is based on [7]: S. Badger and J. Bullock, Using neural networks

for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06

(2020) 114

• Chapter 6 is based on [8]: J. Aylett-Bullock, S. Badger and R. Moodie,

Optimising simulations for diphoton production at hadron colliders using amp-

litude neural networks, JHEP (under review)

• Chapter 7 discusses research presented in the following works:

– [9]: E. Nemni, J. Bullock, S. Belabbes and L. Bromley, Fully convolu-

tional neural network for rapid flood segmentation in synthetic aperture

radar imagery, Remote Sensing 12 (2020)

– [10]: T. Logar, J. Bullock, E. Nemni, L. Bromley, J. A. Quinn and M.

Luengo-Oroz, PulseSatellite: A tool using human-AI feedback loops for

satellite image analysis in humanitarian contexts, in 34th AAAI Confer-

ence on Artificial Intelligence, AAAI, 2020

– [11]: J. Bullock, A. Luccioni, K. Hoffman Pham, C. Sin Nga Lam and M.

Luengo-Oroz, Mapping the landscape of artificial intelligence applications

20 Declaration

against COVID-19, Journal of Artificial Intelligence Research 69 (2020)

807–845

– [12]: M. Luengo-Oroz, K. Hoffmann Pham, J. Bullock, R. Kirkpatrick,

A. Luccioni, S. Rubel et al., Artificial intelligence cooperation to support

the global response to COVID-19, Nature Machine Intelligence 2 (2020)

295–297

– [13]: A. Luccioni, J. Bullock, K. Hoffman Pham, C. Sin Nga Lam and

M. Luengo-Oroz, Considerations, Good Practices, Risks and Pitfalls in

Developing AI Solutions Against COVID-19, in Harvard CRCS Workshop

on AI for Social Good, 2020

– [14]: M. Luengo-Oroz, J. Bullock, K. Hoffman Pham, C. Sin Nga Lam

and A. Luccioni, From artificial intelligence bias to inequality in the time

of covid-19, IEEE Technology and Society Magazine 40 (2021) 71–79

– [15]: J. Aylett-Bullock, C. Cuesta-Lázaro, A. Quera-Bofarull, M. Icaza-

Lizaola, A. Sedgewick, H. Truong et al., June: open-source individual-

based epidemiology simulation, Royal Society Open Science 8 (2021) 210506

– [16]: J. Aylett-Bullock, C. Cuesta-Lázaro, A. Quera-Bofarull, A. Katta,

K. Hoffman Pham, B. Hoover et al., Operational response simulation tool

for epidemics within refugee and IDP settlements, medRxiv (2021)

The relevant software developed during this thesis has been made available in the

following locations:

• The n3jet package used in Chapters 5 and 6: https://github.com/JosephPB/

n3jet

• Specific code accompanying Chapter 6: https://github.com/JosephPB/n3jet_

diphoton

• Specific code for flood mapping discussed in Chapter 7: https://github.com/

UNITAR-UNOSAT/UNOSAT-AI-Based-Rapid-Mapping-Service

https://github.com/JosephPB/n3jet
https://github.com/JosephPB/n3jet
https://github.com/JosephPB/n3jet_diphoton
https://github.com/JosephPB/n3jet_diphoton
https://github.com/UNITAR-UNOSAT/UNOSAT-AI-Based-Rapid-Mapping-Service
https://github.com/UNITAR-UNOSAT/UNOSAT-AI-Based-Rapid-Mapping-Service

Declaration 21

• The June package discussed in Chapter 7: https://github.com/IDAS-Durham/

JUNE

• Specific code for adapting June to the refugee and IDP settlements discussed in

Chapter 7: https://github.com/UNGlobalPulse/UNGP-settlement-modelling

The following pieces of work have been conducted during my doctoral studies but

are not included directly in this thesis:

• [17]: J. Bullock, C. Cuesta-Lázaro and A. Quera-Bofarull, XNet: a convo-

lutional neural network (CNN) implementation for medical x-ray image seg-

mentation suitable for small datasets, in Medical Imaging 2019: Biomedical

Applications in Molecular, Structural, and Functional Imaging (B. Gimi and

A. Krol, eds.), vol. 10953, pp. 453 – 463, International Society for Optics and

Photonics, SPIE, 2019

• [18]: J. Bullock and M. Luengo-Oroz, Automated Speech Generation from

UN General Assembly Statements: Mapping Risks in AI Generated Texts, in

International Conference on Machine Learning AI for Social Good Workshop,

ICML, 2019

Copyright © 2021 Joseph Peter Aylett-Bullock.

The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.

https://github.com/IDAS-Durham/JUNE
https://github.com/IDAS-Durham/JUNE
https://github.com/UNGlobalPulse/UNGP-settlement-modelling

Acknowledgements

I would like to firstly thank my supervisor, Simon Badger, for his support and

encouragement throughout my doctoral studies and from whom I have learnt an

enormous amount. Thanks also to Frank Krauss who has always encouraged me

in my various endeavours and who has made possible many of the opportunities

afforded to me throughout my studies.

My sincere thanks goes to everyone at the IPPP — the Institute is a special place

with brilliant people and a wonderful community. Thank you in particular to those

who I have shared an office with over the years — Andrew, Parisa, Christos, Kevin,

Maria Laura, Alan, Marian, and Henry — and to all those who have kindly helped

with proof reading this thesis — Andrew, Elliott, Francesco, Henry, Hitham, Kevin,

Oscar, Parisa and Ryan. Special thanks goes to Trudy Forster and Joanne Bentham

who have ensured everything in the IPPP has run smoothly and always been a

source of calm and helpfulness, and to Adam Boutcher and Paul Clark for keep the

computing infrastructure up and running, even during a pandemic.

Throughout my time at Durham, I have been fortunate enough to be part of another

amazing community — St. John’s College. The College has been a home to me for

many years and I’m indebted to the many brilliant staff who work there and make

it possible — David Wilkinson, Mark Ogden, Rebecca Bouveng, Angela Cook, Alan

Usher, Sue Hobson, Lynne Ramage, Alison Bradshaw and many others.

Thank you to United Nations Global Pulse (UNGP) for the opportunity of a research

Fellowship. The team at UNGP is truly inspiring and it has been a pleasure to work

24 Acknowledgements

alongside such talented and passionate people. A special thanks to Miguel Luengo-

Oroz for his support, guidance, and mentorship over the past few years.

I have also had the pleasure of being a Research Associate at the RiskEcon Lab for

Decision Metrics, part of the Courant Institute of Mathematical Sciences at New

York University. Thank you to David Mordecai and Samantha Kappagoda for their

leadership and mentorship, and for making this position possible.

Much of the work presented in this thesis has been done alongside many other

brilliant people. Thank you to all of my collaborators for your wisdom, guidance,

expertise, and for making the research we’ve done together a truly enjoyable and

exciting experience. I look forward to collaborating with many of you in the future.

I would like to thank my parents, for their constant love, always being there to

support me, and for inspiring me from a young age in science. Finally, thank you

to my wife, Caragh, who has always been there for me and who has supported me

unendingly throughout my doctoral studies. Thank you also for doing me the honour

of agreeing to marry me part way through my doctorate, and then marrying me

during a pandemic.

The work presented in this thesis has been funded by UKRI-STFC grant number

ST/P006744/1, as well as a Fellowship from United Nations Global Pulse. United

Nations Global Pulse work is supported by the Government of Sweden, and the

William and Flora Hewlett Foundation.

Chapter 1

Introduction

The current best working theory to describe fundamental interactions in particle

physics is the Standard Model (SM). The theory consists of fermions, the building

blocks of matter, and bosons, which mediate interactions. The strength of the

SM has been demonstrated on numerous occasions, with one of the most historic

being the discovery of the Higgs Boson in 2012 at the ATLAS [19] and CMS [20]

experiments at the Large Hadron Collider (LHC). Despite this, there are several long-

standing issues which have not been addressed by the SM. These include cosmological

measurements suggesting the presence of Dark Matter and Dark Energy, the CP

violating asymmetry of the apparent existence of matter over antimatter, and the

lack of inclusion of gravity in the theory. Many Beyond the Standard Model (BSM)

theories and studies are being explored and proposed to tackle these, although no

discovery of physics beyond the SM has been made at the LHC.

The SM is a quantum field theory in which particles are considered to be excitations

of their respective fields. The fields in the SM interact under a gauge group which

defines the symmetries of the theory

SU(3)× SU(2)× U(1). (1.0.1)

The first term in the expression above encapsulates the interactions of the strong force,

mediated by gluons, which is described by the theory of Quantum Chromodynamics

26 Chapter 1. Introduction

Gauge Field SU(3) SU(2) U(1)
A 8 0 0
W 0 3 0
B 0 0 1

Table 1.1: The number of gauge fields in each group appearing in
the Standard Model.

(QCD). The final two terms contain the electroweak sector which is broken by the

Higgs mechanism [21–23].

The Lagrangian of a theory, L, describes the interactions of the fields. The mixing

of the fields in the expanded Lagrangian determines the rules for the propagators

and allowed interactions in the theory — the Feynman rules. In the case of the SM,

the gauge group in Equation 1.0.1 determines the number of gauge fields, which

are given in Table 1.1. The gluons correspond to the eight gluon fields, A, while

the photon and W and Z-bosons appear as mixtures of the B and W fields after

electroweak symmetry breaking has occurred. In this thesis we will primarily focus

on the QCD components of the SM Lagrangian. Strong corrections are a crucial

part of SM calculations and probing the theory will allow us to better uncover any

potential small deviations which may relate to new physics. We will introduce the

theory of QCD in more detail in Chapter 2.

To test the SM in practice, colliders such as the LHC accelerate particles to near

the speed of light before inducing collisions and measuring the final results. When

particles collide, there are many possible outcomes, and the probability that a

particular outcome occurs is given by the cross-section 1

σ ∼
∫

dΦn−2|M(p1p2 → p3...pn)|2. (1.0.2)

The probability that a collision process occurs for a specific set of initial and final

state particle momenta is given by it’s squared matrix element, |M|2, (see Section

2.2) which is calculated by following the Feynman rules of the theory defined by

1Note that Equation 1.0.2 does not explicitly include Parton Distribution Function contributions
and is designed to illustrate the structure of the partonic cross-section.

27

the Lagrangian (see Appendix A). For two incoming particles of a given momentum

configuration, the (partonic) cross-section is then determined by integrating over

all possible outgoing momentum configurations, dΦn−2 (see Section 3.1 for a more

complete mathematical discussion). A schematic of this approach is given in Figure

1.1.

Figure 1.1: Simple workflow describing the process of obtaining the
cross-section of an event: the Lagrangian defines the
theory; Feynman rules describing the propagator and
interaction terms of the theory can be obtained from
the Lagrangian; these are combined to calculate the
matrix element; the matrix elements are integrated over
all allowed final state momenta configurations to obtain
the cross-section.

In SM calculations at hadron colliders, strongly interacting radiation modelled by

QCD dominates — gluons can be radiated and interact with any coloured particle,

including themselves, and the QCD coupling is significantly larger than the QED

equivalent. QCD is an asymptotically free theory, meaning that the coupling de-

creases as the energy increases. Around the mass of the Z-boson the coupling takes

a value of approximately αs(MZ) = 0.118, and so we can treat QCD perturbatively,

with this approximation becoming increasingly precise as the energy grows. We will

discuss these properties in more detail in Section 2.4.

Experimental methods in particle physics are now able to probe interactions at high

energies — at the time of writing the LHC is running at √scom = 13 TeV with plans

to increase this, and more importantly the luminosity, through the High Luminosity

LHC (HL-LHC) programme. Measurements of many observables at the LHC are

already being made at the percent level, and with these upgrades experimental find-

ings will become increasingly precise. To obtain this level of precision in calculations,

one would expect to require at least three orders in the perturbative expansion:

28 Chapter 1. Introduction

leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order

(NNLO). However, calculating these higher order terms can require increasingly

sophisticated techniques to keep the computational time for cross-section calculation

from being prohibitively expensive.

To simulate collider results, we use Monte Carlo event generators to model different

stages of the physical collision process and the subsequent multi-particle interactions.

Event generators allow for the simulation of many possible particle interactions, and

combinations of interactions, to calculate physical observables. However, the high

luminosity, and therefore increased precision, now being reached by collider experi-

ments has put a strain on the theoretical calculations. There are many bottlenecks

to event generation simulations at the cutting edge of the precision frontier, such

as efficient phase-space sampling for cross-section calculation, and parton shower

matching algorithms for higher order corrections (see Chapter 3). One of the most

significant is the computation of matrix elements for higher order terms in perturbat-

ive QCD which require repeated evaluation for the calculation of observables. While

numerical implementations for these matrix elements exist, full cross-section calcu-

lations can be computationally demanding. New techniques to reach high precision

theoretical QCD calculations are needed to ensure theoretical calculations can keep

up with experimental development.

Machine learning (ML) techniques have been shown to have many applications in

particle physics, including regression, classification and generative tasks. ML meth-

ods have the potential to be used for complex analysis procedures, incorporating a

greater amount of data, as well as speeding up existing time-consuming calculations.

Care must be taken since, due to their complex structures, machine learning models

can be comparatively opaque in contrast to more classical techniques, and uncer-

tainties can be introduced at multiple stages of their development. In this thesis we

will be concerned with ways in which ML techniques can be used to address some of

the event generation bottlenecks, and specifically focus on methods to approximate

high dimensional functions for use in matrix element calculations at high precision

29

and their interfacing with event generators.

In this thesis we will also briefly introduce some of the additional work conducted

alongside the particle physics research mentioned above. Many of the techniques

discussed and developed in this thesis originated from cross-disciplinary efforts and

are widely applicable to multiple fields. As an example, machine learning has the

potential to alleviate much of the manual analysis required to generate data and

insights vital for informing relief efforts in humanitarian crises. We will discuss

ML computer vision techniques for mapping refugee and internally displaced person

(IDP) settlements and flood response, as well as various ways ML has been used to

address the COVID-19 pandemic. We will also discuss alternative ways to use some

of the techniques employed in Monte Carlo event generators. Event generators can

be thought of as multi-agent simulations using probabilistic modelling to emulate

particle interactions. The fundamental techniques underpinning event generators

can therefore be applied to epidemic models which simulate the movement and

interactions of individuals in a population. We discuss this in the context of modelling

the spread of COVID-19 through the population of England, as well as in the context

of refugee and IDP settlements where populations are particularly at risk of rapid

disease spread given their dense living conditions and limited access to healthcare.

This thesis is divided into the following Chapters. In Chapter 2 we introduce the

theory of QCD, and discuss the origins and implications of perturbative QCD as well

as some of the theoretical challenges. Chapter 3 will focus on introducing the relev-

ant components of physical observable calculations in the context of Monte Carlo

integration and event generators, and how these tools are used to make theoretical

predictions. A brief introduction to ML techniques in the context of phenomeno-

logical studies of particle physics will be given in Chapter 4. In Chapters 5 and 6

we will describe how ML techniques can be used for matrix element calculations

in the case of e+e− collisions and hadronic collisions, respectively. The latter of

these will focus specifically on the gluon-induced diphoton amplitudes which can

be particularly challenging to compute at high multiplicity, and the interfacing of

30 Chapter 1. Introduction

these methods with existing event generator technology. Chapter 7 will give a broad

overview of some additional work looking at ways to use ML approaches, and tech-

niques employed in Monte Carlo event generators, in the context of crisis response

and epidemic modelling. Finally, Chapter 8 will close with a discussion of how

these various methods and new approaches can be combined to enable high precision

theoretical predictions for collider experiments and how interdisciplinary research

can help further the all participating disciplines.

Chapter 2

Introduction to QCD

In this chapter we will provide a brief introduction to the theory of QCD, with

the objective of providing sufficient detail regarding the various mathematical tools

employed throughout this thesis, as well as some introductory background on their

origins. The focus here will be partonic level calculations in QCD, which will later

be extended to the broader context of hadronic calculations in Chapter 3. This

Chapter is based on and inspired by multiple sources [24–29].

2.1 The Theory of QCD

The theory of QCD governs the interactions of the strong force, mediated by gluons.

In full generality, QCD can be considered as an SU(Nc) gauge field theory, where we

refer to Nc as the number of colours in the theory (in the Standard Model Nc = 3).

QCD is governed by the Lagrangian

L = −1
4F

a,µνF a
µν + ψ̄i(i /D −m)ψj + Lgauge + LCP violating. (2.1.1)

The first term in Equation 2.1.1 describes the Yang-Mills theory [30] and the second,

the interactions between the quark fields, ψ, with corresponding mass m (where

the flavour indices on the quark fields and masses have been suppressed). The

additional terms not detailed here still play important roles — the gauge fixing

32 Chapter 2. Introduction to QCD

terms are necessary due to an overcounting in the number of degrees of freedom

when quantising the theory, which requires a gauge choice to resolve, and the CP

violating term is permitted since it is gauge invariant and renormalisable. The

Dirac-slashed notation is defined as: /p = γµp
µ.

The quarks transform in the fundamental representation and the gluons in the

adjoint, where the gluon fields, Aaµ, are apparent in the covariant derivative

Dµ = ∂µ − igsAa,µta, (2.1.2)

and the gluon field strength tensor, F a,µν , is defined as

F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (2.1.3)

In the above equations, i, j ∈ [1, Nc] are the fundamental colour indices, Greek

indices are Lorentz indices, and a, b, c ∈ [1, N2
c − 1] denote the adjoint indices. 1

Substituting Equations 2.1.2 and 2.1.3 back into the QCD Lagrangian, it is clear

that after expansion there will be non-trivial mixing terms including the gluon and

quark fields, as well as triple and quadruple gluon fields terms. This will become

relevant when we discuss the construction of matrix elements in Section 2.2 and

is fundamental to why higher order QCD corrections can quickly become complex,

with a rapidly growing number of Feynman diagrams at each subsequent order.

The gauge group generators appearing in Equation 2.1.2 are related to the structure

constant, fabc, which defines the group algebra

[ta, tb] = ifabctc. (2.1.4)

Throughout this thesis we will be concerned with perturbative QCD. Specifically,

we will focus on the calculation of matrix elements (see Section 2.2), which we will

calculate by expanding around the all important coupling

αs = g2
s

4π , (2.1.5)

1In the case of Nc = 3, the adjoint representation of the gluons gives rise to the eight gluon
fields in Table 1.1.

2.2. Matrix Elements 33

where gs is the strong coupling. The ability to expand perturbatively relies on the

assumption that αs � 1, which turns out to be a valid assumption, particularly at

the increasingly high energies achieved at particle colliders. We will discuss this in

more detail in Section 2.4.

2.2 Matrix Elements

In scattering processes the evolution of incoming initial states to outgoing final states

is defined through the S-matrix, which encodes a sequence of unitary operations

|out〉 = S |in〉 , (2.2.1)

where the ‘in’ and ‘out’ Fock spaces are isomorphic. In the case where the particles

do not interact, the matrix is simply the identity, meaning we can separate out the

interacting parts

S = 1 + iT . (2.2.2)

In a scattering process involving n particles, we can now write

〈out| iT |in〉 = (2π)4δ(4)(Pin − Pout) iM(p1, ..., pm; pm+1, ..., pn), (2.2.3)

where the δ-function ensures momentum conservation between the initial and final

states (which include initial state momenta, Pin = p1 + ... + pm, and final state,

Pout = pm+1 + ... + pn, respectively), and the process is defined in terms of matrix

elements, M, otherwise known as scattering amplitudes. These matrix elements

are fundamental to calculating observables in particle collision processes and their

calculation forms the majority of this thesis.

Now that we have defined the matrix elements, we can use Feynman rules to calculate

them for each process. The matrix element for a given process is the sum over all

Feynman diagrams. The rules for QCD can be derived by expanding the Lagrangian

(Equations 2.1.1-2.1.3), computing the propagators, and reading off the coefficients

of the interacting field terms. These are given in Appendix A.

34 Chapter 2. Introduction to QCD

e+

e−

q̄

q

p2

p1

Z∗/γ∗

q2

q1

k

Figure 2.1: A Feynman diagram for the process e+e− → qq̄g where
a gluon is emitted from the outgoing antiquark. There
is an additional diagram for this process which depicts
the gluon emission from the outgoing quark.

As an example, we apply these rules to the calculation of the matrix element for

the simple process e+e− → qq̄g. Figure 2.1 depicts one of the diagrams contributing

to this process, where the gluon is emitted from the outgoing antiquark. The other

diagram is the same, but with the gluon emitted from the outgoing quark. The first

of these diagrams has a partial matrix element

iM1 =
[
ū(q1)(−igeQfγ

µ)
i(/q2 + /k)
(q2 + k)2 (igstaij/ε∗(k))v(q2)

]
×

−i
(p1 + p2)2 [v̄(p2)(igeγµ)u(p1)], (2.2.4)

where ge is the QED coupling constant, Qf is the charge of the quark of flavour

f ∈ {b, s, ...}, and u (ū) and v̄ (v) are spinors associated with incoming (outgoing)

external spin-1/2 particles and antiparticles respectively, and we have have dropped

the Feynman parameter for simplicity. The expression for iM2, where the gluon

is emitted from the quark, follows similarly, and the squared amplitude can be

calculated by summing these contributions together and squaring the sum.

Equation 2.2.4 shows how the radiated gluon introduces a term in αs through the

quark-gluon vertex. By adding more gluons we can draw diagrams in increasing

powers of αs, and these contribute at higher orders in perturbative QCD (this will

be discussed further in Section 2.3.2). For a given set of initial and final state

momenta, the squared matrix elements entering into the cross-section calculations

2.3. Divergent Structures 35

(see Equation 1.0.2) are then just real numbers.

2.3 Divergent Structures

Feynman rules allow for the construction of analytic formulae for describing scattering

processes from simple diagrammatic representations. It is clear, however, that certain

divergences will arise from the integral expressions when we sum over all possible

momentum states. These divergences are divided into two categories: ultraviolet

(UV) divergences, which occur in the large limits of the propagator integrals, and

infrared (IR) divergences, which arise from the low energy limits. The former can

be resolved through the renormalisation techniques, which appear as corrections in

the QCD Lagrangian, while the latter require a more involved procedure.

2.3.1 Ultraviolet Divergences

UV divergences arise from the high energy limits of integrals such as

∫ Λ

0

d4l

(l2)(l + k)2 ∼ log(Λ) −−−→
Λ→∞

∞, (2.3.1)

which appear in loop integral expressions.

Renormalisation allows us to resolve these divergences at each loop order by intro-

ducing counter-terms designed to explicitly cancel such divergent structures. These

counter-terms are only allowed after careful construction to ensure that gauge in-

variance and unitarity are preserved. The counter-terms appear as rescalings of the

fields and constants in the Lagrangian (Equation 2.1.1) such that the renormalised

Lagrangian can be written as

L =− 1
4F

µνFµν + ψ̄(i /D −m)ψ

+ ψ̄(iδ2/∂ − δm)ψ − 1
4δ3(∂µAaν − ∂νAaµ)

+ gsδ1ψ̄t
a /A

a
ψ − gsδ3g

1 f
abc∂µA

a
νA

b,µAc,ν − gsδ4g
1 f

abcf cdeAbµA
b
νA

d,µAe,ν .

(2.3.2)

36 Chapter 2. Introduction to QCD

In Equation 2.3.2, the fields have all been renormalised relative to the ‘bare’ form

appearing in Equation 2.1.1, and the counter-terms are represented by δi. The

counter-terms are evaluated at each order in perturbation theory. These new terms

will give rise to additional Feynman rules to cancel the divergences. Given this,

and that the counter-terms enter the renormalised Lagrangian through parameter

rescalings, renormalisation is only possible when the number of divergent processes

is less than or equal to the number of parameters in the Lagrangian which can be

rescaled. A more complete introduction to renormalisation in general is given in

Part II of [24], and in Section 3 of [28] in the context of QCD.

When performing calculations which require the evaluation of divergent loop integrals,

such as in Equation 2.3.1, and the subtraction of counter-terms, we need a regulator

to control the divergence of the individual terms. A naive implementation is to use

the Λ in Equation 2.3.1 as a UV cut-off scale, however, the most common method

is dimensional regularisation in which the integrals are calculated in d = 4 − 2ε

dimensions resulting in terms of the form 1/ε. The integrals are finite in d dimensions

and will remain so as ε → 0 once all divergent integrals have been calculated and

counter-terms subtracted. We will assume the use of dimensional regularisation

throughout this thesis and more information can be found in Chapter 7 [24].

The counter-terms introduce a renormalisation scale, µR, which is a free parameter

in the case of massless QCD. In particular, under renormalisation procedure, the

QCD coupling becomes a function of this scale choice αs(µ2
R), the consequences of

which will be discussed in more detail in Section 2.4.

2.3.2 Infrared Divergences

IR divergences occur in the low energy limits, p → 0, which can occur in two

settings: loop integrals (virtual IR divergences) and divergences resulting from soft

and collinear emissions (real IR divergences).

Virtual IR divergences are apparent in the low energy limits of expressions similar

2.3. Divergent Structures 37

to Equation 2.3.1 ∫ ΛUV

ΛIR

ddk
k2 −−−−→ΛIR→0

∞. (2.3.3)

Real IR divergences occur when invariant mass terms approach zero while appearing

in the denominators of matrix elements (see the Parke-Taylor formula for a partic-

ularly apparent example of this [31]). To achieve this, two outgoing particles can

either go collinear (θ12 → 0, where p1 and p2 are the 4-momenta of the two collinear

particles), or an outgoing gluon can go soft (Eg → 0). These can be observed by

expanding out the denominator in the gluon propagator term in Equation 2.2.4,

when the antiquark and gluon can go collinear, or the outgoing gluon can go soft.

We expand on this in Chapter 5.

As in the case of UV divergences, physical observables do not contain divergences

and so we must also find a way to cancel the IR divergent structures. The UV

divergences were cancelled through the introduction of counter-terms in the renor-

malisation procedure; however, the IR divergences are more challenging. This is

because the Kinoshita-Lee-Nauenberg (KLN) [32,33] and Bloch-Nordsieck (BN) [34]

theorems ensure that the Standard Model is perturbatively infrared finite through

the cancellation of virtual IR divergences with those from the real radiation contri-

butions. This exact cancellation can be observed upon integration over the whole

phase-space of the final state particles.

To achieve this cancellation, at any given order in perturbation theory, we must

include both the virtual corrections and the equivalent unresolved real emissions to

calculate the inclusive cross-section. A schematic of this based on the e+e− → qq̄

process is as follows:

σi


e+

e−

q̄

q

+X

 =
∫

Φ2


e+

e−

q̄

q


2

+

2
∫

Φ2<


e+

e−

q̄

q

×


e+

e−

q̄

q


∗+

38 Chapter 2. Introduction to QCD

∫
Φ3


e+

e−

q̄

q

+ q ↔ q̄


2

+O(α2
s), (2.3.4)

which produces an infrared finite cross-section upon cancellation of these singular

structures. The first integral of Equation 2.3.4 contains the Born approximation

tree-level (i.e. no loops) term, the second and third integrals contain the order αs

corrections. In practice, this cancellation is made possible through the factorisation

of scattering amplitudes in which both the virtual and real emission divergences are

proportional to the tree-level amplitude.

In reality, integrating over the entire phase-space of the final state particles becomes

extremely challenging to solve analytically at higher multiplicity, requiring the use

of Monte Carlo integration techniques (as will be discussed in Chapter 3). The use

of such numerical techniques means that another approach to the cancelation of

infrared terms must be used — infrared subtraction. Commonly employed methods

include Catani-Seymour (CS) subtraction [35,36], and Frixione, Kunszt and Signer

(FKS) subtraction [37,38] (the concept of which will be briefly discussed in Chapter

5 and Appendix C, but will not be the focus of this thesis). In this thesis, we will

not perform full real subtraction when integrating over phase-space, but rather focus

on the integration of leading order and one-loop virtual corrections. To ensure the

real IR divergences do not grow too large, we will introduce commonly used global

phase-space cuts (see Chapters 5 and 6).

2.4 Running Coupling

So far we have discussed the theory of QCD in generality, how to compute matrix

elements from Feynman rules, as well as some of the subtleties of the theory such

as how to manage complex divergent structures which appear because of these very

same Feynman rules. In Chapter 1 and Section 2.1, we introduced the notion of

perturbative QCD and have made multiple references to this throughout the Chapter.

2.4. Running Coupling 39

We will now turn our attention to understanding what enables this perturbative

approach — the running of the coupling, αs.

In Section 2.3, we introduced the renormalisation scale, µR, which can be arbitrarily

chosen, meaning the theory should remain independent of the choice of scale. The

dependence of the coupling on this scale is governed by the so-called β-function. By

solving the Callan-Symanzik equation [39,40], we find

β(αs) = dαs
dlog(µ2

R)
. (2.4.1)

which demonstrates that the running of the rescaled coupling constant, αs(µ2
R),

is logarithmic with the renormalisation scale (see Section 3 in [41] for details).

Expanding the β-function in αs gives

β(αs) = −α2
s(b0 + b1αs + b2α

2
s + ...). (2.4.2)

In QCD, these coupling constants appear at each loop order (see Equation 2.3.4) and

so we can calculate coefficients of the β-function perturbatively in αs by evaluating

the coefficients at each order. At leading order — i.e. one-loop — we obtain

b0 = 1
3(11Nc − 2Nf), (2.4.3)

whereNf is the number of quark flavours. In the Standard Model, Nc = 3 andNf = 6

and so b0 is positive. This has important ramifications as it means that the theory

is asymptotically free [42,43] — i.e. that the coupling becomes increasingly small as

the renormalisation energy scale grows. This has also been confirmed experimentally

with close agreement between theoretical and experimental results (see Figure 2.2).

The asymptotic freedom of QCD is in contrast to QED and means that as we probe

higher and higher energies in particle physics experiments, the perturbative nature

of QCD becomes more exact. However, as we begin to probe these higher energy

scales with higher luminosity, there is an increased requirement for higher order QCD

calculations which can become increasingly complex and computationally intensive

and is the source of one of the crucial bottlenecks in theoretical calculations.

40 Chapter 2. Introduction to QCD

Figure 2.2: The running of αs as measured by experiments com-
pared with theory. The degree of QCD perturbation
theory used to extract αs is given in brackets. Figure
from [1].

In general, the renormalisation scale is chosen to be close to the energy scale of the

hard scattering process (see Chapter 3 for more details) as this cancels terms in the

calculations which contain ratios of the energy scale to the renormalisation scale.

Due to good statistics in its measurement, µ2
R = M2

Z (whereMZ is the mass of the Z-

boson) is one of the most common choices. In addition, when performing theoretical

calculations, the theoretical uncertainty on the scale choice is given. This uncertainty

is calculated by varying the free scales — renormalisation and factorisation scales

(see Chapter 3) — by a factor of two in both directions. In perturbative QCD

calculations this uncertainty, and therefore the scale dependence, will decrease at

higher orders.

It is worth noting that this perturbative approach only works if we can expand around

the coupling constant, and therefore that αs � 1. This requirement imposes a lower

cut-off value, ΛQCD, at which the perturbative approach is no longer applicable. This

occurs at ΛQCD ≈ 250MeV and results in the property of colour confinement. As

2.4. Running Coupling 41

current particle experiments operate on the energy scales of TeV, αs is sufficiently

small to be able to use perturbative techniques and treat quarks as asymptotically

free during hard scattering calculations.

Chapter 3

Monte Carlo Event Generators

Now that we have reviewed the underlying theory of QCD, we are able to broaden

our discussion to consider how these calculations are used in practice to link theory

and experiment. The purpose of this Chapter is to provide a brief introduction to

some of the computational techniques for calculating experimental observables. We

will begin with a discussion of these observables and then proceed to the automation

of their calculation in the context of Monte Carlo event generators. This Chapter is

based on and inspired by multiple sources [24,25,27,44].

3.1 Measurements and Observables

Experiments such as the LHC have now made the colliding of massive nuclear

particles at high energies possible, resulting in many complex interactions. Detectors

at these experiments are designed to measure both the energy and direction of the

products of collision events. Computational simulations such as event generators

are used to reconstruct different stages of the collision processes to match theory to

experiment, and vice versa.

One of the most important quantities calculated in quantum field theory is the

scattering cross-section. The notion of cross-section was introduced in Chapter 1

44 Chapter 3. Monte Carlo Event Generators

with matrix element calculations discussed in Chapter 2. Here we will give a more

complete mathematical description.

The cross-section is formally linked to the matrix element of a given process through

a factorisation scale, µF , which defines the cut-off between long-range hadronic

effects and short-range effects which can be calculated using perturbative QCD. 1

The full hadronic cross-section for a collision process of two hadrons, h1 and h2, in

the initial state, and some final state composition, X, can be calculated using

σh(h1, h2 → X) =
∑

p1={g,u,d,...}

∑
p2={g,u,d,...}

∫ 1

0
dx1

∫ 1

0
dx2

f
(p1)
h1

(x1, µ
2
F)f (p2)

h2
(x2, µ

2
F)σ (p1p2 → X;µF , µR) , (3.1.1)

where f (p)
h are the parton distribution functions (PDFs) which depend on the factor-

isation scale, and on the momenta fractions, x, of the partons, p, which make up

the hadrons, h, (the flavours which are summed over depend on the hadron compos-

itions). At leading order, the PDFs can be interpreted as encoding the probabilities

of finding a parton with a given momentum fraction at a certain scale, µF , in a

hadron. 2 For more details on the PDFs, see Chapter 2 of [25] and Chapter 17

of [24].

The final component of Equation 3.1.1 is the partonic cross-section, σ, which de-

scribes the cross-section at the level of individual partonic constituents of the initial

state hadrons

σ(p1p2 → p3...pn) = S
2scom

∫ n∏
i=3

d3pi
2(2π)3Ei

(2π)4δ(4)
(
p1 + p2 −

n∑
i=3

pi

)
|M(p1p2 → p3...pn)|2 , (3.1.2)

where S is a symmetry factor to account for symmetries associated with identical
1It is common to choose µF = µR and calculate the theoretical scale uncertainty by varying

these scales by a factor of two.
2It is worth noting, that Equation 3.1.1 does not quite describe the full picture as we have

suppressed higher twist terms which encode contributions from interactions e.g. two partons from
each hadron interacting. However, considering only the leading twist contributions will be sufficient
for the purposes of this thesis.

3.2. Brief Overview of Event Generators 45

particles in the final state, and scom is related to the the partonic centre of mass

(c.o.m.) energy through Ecom = √scom and scom = (p1 + p2)2. The matrix elements,

M, are calculated as in Section 2.2.

Alongside the cross-section calculation itself, differential distributions, dσ/dO (where

O is some variable such as transverse momentum pT), can provide more context

since they demonstrate how the cross-section changes over different slices of phase-

space. Both cross-section and differential cross-section calculations will be used

throughout this thesis when assessing the performance of various machine learning

approximations to computationally intensive matrix element calculations in the

context of event generation simulations.

3.2 Brief Overview of Event Generators

The high level of complexity in calculating observables is due, in part, to the many

possible outcomes of particle collisions, and the numerous sub-calculations which

need to be completed to arrive at an understanding of one possible outcome. Each

of these sub-processes is governed by, often non-trivial, probability distributions

which require the evaluation of multiple integral expressions such that all possible

outcomes are accounted for.

Many different techniques and computational packages exist to calculate the various

stages of a collision event and are brought together in Monte Carlo event generators.

There are various flavours of general purpose event generators, such as Pythia

[45, 46], Herwig [47–49], Sherpa [2, 50], and MadGraph [51]. In this thesis, we

will mainly make use of Sherpa. However, the details covered in this Chapter are

broadly applicable to all general purpose methods which we will refer to as simply

‘event generators’.

In order to perform the theoretical calculations which can be used to match against

experimental observables, and vice versa, event generators break down the collision

46 Chapter 3. Monte Carlo Event Generators

Figure 3.1: Representation of the stages of event generation for
hadronic collisions. The incoming hadrons, h1 and h2
have momenta P1 and P2 respectively. One of each
of the hadron’s constituents is taken with momentum
fraction x. Figure inspired by that from [2].

3.2. Brief Overview of Event Generators 47

process into several stages and attempt to efficiently calculate the possible outcomes

at each stage. We will briefly detail these below and a graphical representation of

these processes is given in Figure 3.1.

Hard process: Event generators generally begin with the hard scattering processes,

including corrections in perturbation theory, which define the main collision process

and immediate outcomes. At hadronic collisions, two incoming particles are selected

with a given momentum fraction of the hardon and the matrix element for a given

collision process is calculated. The calculation of matrix elements was covered in

Section 2.2. At tree-level, event generators will often have in-built matrix element

generators (such as AMEGIC [52] and COMIX [53] in Sherpa). For the more

specialised calculation of loop-level terms, they will usually interface with external

tools, and make calls to these tools when calculating observables — the number of

calls is determined by the complexity of the functions, the desired uncertainty on

the integration, and the method of sampling the initial and final state particle phase-

space (see Section 3.3). Tools for calculating virtual corrections include those which

perform integral evaluations [54–56], integrand reduction [54,57–60], those which act

as a library of amplitudes [61–65], or generate the amplitudes automatically [66–70].
1 We discuss matrix element calculation in more detail in Chapters 5 and 6.

Phase-space integration: To calculate the cross-sections of a given process, the

hard scattering process and it’s constituent matrix elements must be recalculated

at different phase-space points. This is the fundamental idea behind Monte Carlo

integration — the integrand is evaluated multiple times and the results summed to

approximate the integral. Event generators generally have built-in tools for efficiently

generating new phase-space points to optimise convergence. Monte Carlo integration

techniques will be discussed in more detail in Section 3.3.

Parton shower: After the hard scattering process, generators seek to include

further corrections through parton showering which describes the evolution of the

hard scale down to the hadronisation scale. Here, parton showering algorithms are
1This categorisation was taken from Chapter 3 in [25].

48 Chapter 3. Monte Carlo Event Generators

employed to iteratively emit QCD and QED particles from the initial and final

coloured states in the hard scattering process. The particles which remain after

showering are then at relatively low scales. The combination of the hard process

with the parton shower is performed through matching algorithms [71, 72], which

ensure there is no double counting matrix elements.

Hadronisation: Finally, at low scales, event generators carry out the non-perturbative

procedure of hadronisation. This stage is particularly important since the confine-

ment property of the strong interactions guarantees that the final state particles in

hadron collisions must also be hadrons, and so various methods are used to ‘cluster’

the products of the hard scattering and parton showering processes into colourless

hadrons.

In this thesis we will be most concerned with the hard scattering processes — spe-

cifically, designing and testing methods to replace current matrix element libraries

for complex processes for which call times are significant. As part of this, we will

introduce some of the commonly used Monte Carlo integration techniques and how

event generators arrive at observable values. However, we will address these tech-

niques in the context of the hard scattering processes and so will not discuss the

mechanics of the parton showering and hadronisation processes.

3.3 Monte Carlo Integration

In order to evaluate the various quantities relevant to theoretical particle physics,

such as the observables specified in Equations 3.1.1 and 3.1.2, multiple integrals must

be calculated. The complexity of the integrands, along with their multidimensionality,

can make these expressions extremely challenging to integrate analytically. While

there is much ongoing work to find analytic expressions for higher order processes,

even if these are found, implementing them in existing matrix element libraries

becomes increasingly challenging, and the speed-up gained from the analytic result

may be negligible in comparison to the numerical equivalent.

3.3. Monte Carlo Integration 49

To address the challenge of evaluating complex multidimensional integrals with no

known analytic solution, we use Monte Carlo integration. This technique will not

yield the exact result; however, methods have been developed that can quantify the

uncertainty in the numerical integral evaluation: simply, in order to improve the

precision of a calculation, more compute time is needed to evaluate the integrand at

more points. In this section we will briefly introduce the high level concepts of Monte

Carlo integration, and discuss some of the more nuanced techniques to improve it.

3.3.1 Basics

The fundamental principle of Monte Carlo integration is that for a given function,

f(x), of arbitrary number of dimensions, x ∈ Rd, the integral, I, over the unit

hypercube, [0, 1]d, can be approximated by evaluating the function repeatedly at

randomly selected points, ri ∈ [0, 1]d

I =
∫

dxf(x)→ 1
N

N∑
i=1

f(ri) = 〈I〉 , (3.3.1)

where N is the number of times the function is evaluated, and 〈I〉 is the numerical

approximation of the analytic integral I. The law of large numbers therefore ensures

that this integral approximation approaches the true value as N →∞.

This approach is not just limited to the unit hypercube. Any function g, integrated

over the space [a, b]d, can be mapped to f(x) integrated over the unit hypercube by

transforming the integral and incorporating the corresponding Jacobian expression.

While it may not always be trivial to actually perform this mapping, the theoretical

ability to do so is powerful as it limits the sampling space of input points to the unit

hypercube.

As a measure of the quality of convergence to the analytic result, we define the

50 Chapter 3. Monte Carlo Event Generators

Monte Carlo estimate of the variance of the function, σ2(f) 1 2

σ2 = 1
N

 1
N

N∑
i=1

f(ri)2 − 1
N

(
N∑
i=1

f(ri)
)2 (3.3.2)

=

〈
I2
〉
− 〈I〉2

N
. (3.3.3)

The Monte Carlo error is then defined as the standard deviation, σ, and is often

quoted in particle physics calculations. 3 From Equation 3.3.2, we can clearly see

that the Monte Carlo error scales as 1/
√
N under this construction, which provides

a good estimate for the number of function evaluations required to reduce the Monte

Carlo error to a negligible value in comparison to other uncertainties coming into

the calculations (e.g. the theoretical uncertainty from scale choices).

3.3.2 Reducing the variance

Now that we have defined a measure by which to assess the performance of our

integration technique, we can develop methods to optimise for it. Since the function,

f , may be costly to evaluate (as in the case for higher order and/or high multiplicity

matrix elements) we want to minimise the Monte Carlo error while requiring as few

evaluations of the integrand as possible. There are many available techniques for

doing this, of which we will only discuss two of the most relevant here.

Stratified sampling is a simple, yet potentially powerful, method for reducing the

Monte Carlo error and gaining faster convergence to the exact integral value. The

idea is to divide the integral phase-space into sub-regions, perform integration in

each region, and then sum together the results at the end. If a careful choice in
1It is worth noting here that that for a reliable estimate for the error, we require the function,

f , to be square-integrable.
2There is discrepancy in the literature as to whether the factorised denominator in the variance

is N or N − 1. Since we are technically sampling from a population, N − 1 is the correct choice.
However, for simplicity we have chosen N throughout this thesis since they are equivalent in the
large N limit.

3Note here that we will use σ to denote something other than the cross-section. While this
is still not ideal, it is standard to use this notation for both the variance (where σ itself is the
standard deviation), and the cross-section. We hope that the context will make clear which of the
two the σ refers to.

3.3. Monte Carlo Integration 51

the way the region is sub-divided is made, substantial speed-ups in convergence can

be gained. For example, in particle physics processes, the integrand may contain

functions with peak and/or divergent structures such as

1
sn

or 1
(s2 −m2) + Γ2m2 , (3.3.4)

which correspond to propagators and Breit-Wigner-type resonances, where s is the

invariant mass which is integrated over, m is the mass, and Γ the decay width.

In these examples, a naive sampling of the phase-space which sparsely samples in

regions around the peak will have a high variance. However, careful sub-division

of the phase-space into, e.g. a smaller localised region around the peak which is

more heavily sampled, and then a non-divergent region which can be more sparsely

sampled while still producing a small Monte Carlo error, could mean fewer phase-

space points are required.

Importance sampling is another commonly used technique to achieve a faster rate of

convergence during Monte Carlo integration. This method relies on introducing an-

other function, g(x), which can approximate the complex structures in the integrand.

The integral to be evaluated then becomes

I =
∫

dxf(x) (3.3.5)

=
∫

dxf(x)
g(x) g(x) (3.3.6)

=
∫

dG(x)f(x)
g(x) , (3.3.7)

where

g(x) = ∂d

∂x1...∂xd
G(x). (3.3.8)

If g(x) is normalised, and we ensure it is positive everywhere, then we can interpret it

as a probability distribution. A phase-space sampler can then be built to distribute

points according to this distribution which will produce an estimate of the integral

〈I〉 = 1
N

N∑
i=1

f(ri)
g(ri)

, (3.3.9)

52 Chapter 3. Monte Carlo Event Generators

where now the points ri are distributed according to the probability distribution

g(x). The Monte Carlo estimate of the variance now becomes

σ2
(
f

g

)
= 1
N

N∑
i=1

(
f(ri)
g(ri)

)2

− 〈I〉2 . (3.3.10)

From Equation 3.3.10 we can see that the best way to reduce this error is to choose

a function, g(x), such that it best approximates f(x). In practice, we leverage

our knowledge of particle physics processes, and known analytic expressions (such

as those in Equation 3.3.4), to construct functions which approximate the broad

characteristics of f(x), and use these in conjunction with more complex processes

such as adaptive sampling methods and multi-channeling (see Section 3.4).

3.4 Integration in Practice

So far we have discussed some of the fundamentals of Monte Carlo integration and

the basic underlying techniques. These have been introduced at a theoretical level,

but not deeply discussed as practical implementations. In the context of particle

physics, we generally want to integrate over some phase-space of initial and final

state 4-momenta to calculate observables such as those in Equations 3.1.1 and 3.1.2.

This phase-space is constrained by known physics, such as momentum conservation,

which limits the allowed free parameters over which to integrate. As mentioned

above, we have so far discussed techniques to improve Monte Carlo integration,

including stratified and importance sampling. However, in practice we may not have

the required advanced knowledge of the integrand behaviour to make use of these

techniques out-of-the-box.

One of the simplest implementations of a phase-space integrator often used in particle

physics is the RAMBO algorithm [6], which distributes points uniformly and iso-

tropically. Another common technique is the VEGAS algorithm [73, 74], which is

used to optimise integration processes and brings together many of the approaches

from importance and stratified sampling discussed above. These two approaches will

3.4. Integration in Practice 53

be used later in this thesis and are discussed in more detail in Appendix B.

In reality, these techniques are used alongside other, more advanced, practices to

ensure rapid and stable integration convergence. For example, VEGAS can be

used with other techniques such as multi-channeling [75], which uses known physics

knowledge of the integrand peak structure to help guide adaptive integration methods.

In addition, integrators have been designed for specific processes, such as the HAAG

[76] and SARGE [77] algorithms, which utilise knowledge of pure QCD processes

to achieve faster integration. These more advanced and specific techniques will not

be the focus of this thesis.

Chapter 4

Machine Learning for Event

Generation

The field of machine learning is vast, with many diverse theoretical constructions

and applications. ML techniques have found many applications in particle physics,

with one of the first uses being fitting PDFs by the NNPDF collaboration [78]. In

this Chapter, we will introduce the key concepts of machine learning in the field

of particle physics, with a particular focus on applications to two of the largest

bottlenecks in theoretical particle physics calculations: phase-space sampling, and

matrix element calculations. Gaining efficiency in these two areas could significantly

assist in calculations involving higher order terms in QCD, and their inclusion in

full event generation. Indeed, ML techniques to address end-to-end event generation

itself will also be briefly covered in this Chapter. Restricting the discussion to

these applications in particle physics will self-select which ML methods will be

introduced. Specifically, we will focus on decision trees, including random forests

and boosting/bagging methods, and neural networks and their uses within generative

techniques. For a living review of the uses of ML in particle physics more broadly

see [79].

In this thesis, we shall concentrate on uses of machine learning for regression problems.

Specifically, let f be some machine learning model for regression tasks which takes

56 Chapter 4. Machine Learning for Event Generation

input data, x, in the form of a d−dimensional vector and returns a single real number,

y∗, then

f(x) : Rd → R, x ∈ Rd 7→ y∗ ∈ R. (4.0.1)

We will also only discuss these algorithms in the context of supervised learning, i.e.

where models learn how to provide a good output for a given input by being trained

on pairs of inputs and ‘correct’ outputs — training data. Throughout this Section,

we will assume the training dataset, D, is comprised of n pairs of input vectors, x,

and outputs, y, such that

D = {(xi, yi) |x ∈ Rd, y ∈ R}, N = |D|. (4.0.2)

In its simplest form, ML is an optimisation problem in which the learning procedure

is defined through the minimisation of a loss function, L, by modifying tunable

parameters of the model. The construction of the loss function and the optimisa-

tion procedure can be model and application specific, examples of which will be

described briefly in this Chapter. Machine learning models can also have many

hyperparameters which can be tuned to further optimise performance. The training

data is generally used to optimise the model for a specific set of hyperparameters,

and validation data is used to optimise the hyperparameters. Finally, testing data is

used to assess model performance. This is generated independently of the training

and validation datasets and is not used for any optimisation. This Chapter is based

on and has been inspired by multiple sources [3, 80].

4.1 Decision Trees

Decision tree algorithms [81] take a vector input of categorical or continuous variables

and return a ‘decision’. The decision tree algorithm breaks down the input space

into subsets while iteratively constructing the tree. The tree is made up of decision

nodes and leaf nodes. Each node is associated with a region of input space, with

decision nodes controlling the splitting of the input space into sub-regions, while

4.1. Decision Trees 57

Figure 4.1: Right: a decision tree construction with decision nodes
represented by circles, and leaf nodes represented by
squares. Right: the decision nodes split the input space
into sub-regions in which the leaf nodes make the final
decision. Inspired by Figure 5.7 in [3].

the leaf nodes are where the final decisions are made. In the case of regression,

each leaf node has a linear function of some subset of the input variables, and the

learning algorithm must decide how many times to split the input space and apply

linear regression. Figure 4.1 gives a graphical representation of such a decision tree

construction. In the example of approximating the matrix element for a specific

process, given an input vector of phase-space 4-momenta, the decision tree could be

thought of as dividing the phase-space and approximating sub-regions with linear

functions of the input variables.

As with all functional approximations, there are various ways in which decision trees

can be optimised. A common way to do this is to maximise the information gain at

each decision node to define the split. How much information is gained about Y (for

example, the value of the target variable) by knowing something about X (a value

of a certain input feature for a given data point) is defined as

IG(Y,X) = H(Y)−H(Y |X), (4.1.1)

H(X) = −
∑
x∈X

p(x)log2(p(x)), (4.1.2)

58 Chapter 4. Machine Learning for Event Generation

(4.1.3)

where H is the entropy, and p(x) is the probability of finding an element of the

training dataset in one of the sub-regions, x, after splitting. By calculating the in-

formation gain over all possible splittings at a decision node, the spitting maximising

the information gain is chosen for that node.

Such procedures provide a possible decision tree which can be used for inference.

However, an individual tree is considered a weak learner — it is relatively naive in its

setup, has the propensity to overfit to the training data, and may not perform much

better than random guessing. To address this, various methods have been developed,

many of which leverage the idea of model ensembling. A survey of decision tree

learning methods can be found in [82].

4.1.1 Bagging and Random Forests

The simplest ensembling technique is to train multiple models and average their

results — this is the fundamental idea of bagging (otherwise known as Bootstrap

Aggregation). When performing bagging, subsets of the training data are randomly

sampled and a different decision tree trained on each subset. During inference, the

results from each tree are averaged to give a final numerical approximation. Training

each tree on a subset of the data and averaging the results reduces the chance of

overfitting to the training data since no one tree ‘sees’ the whole dataset.

Random forests use bagging with a modification [83]. Instead of just having trees

trained on different subsets of the training data, each tree also only uses a subset of

the input features. This technique allows for better handling of high dimensional data

as well as missing values (which can be common in large datasets). The downside

of both random forests, and bagging in general, is that the process of averaging the

results means loosing precision in the output of the model, and the training phase

takes longer than training a single model.

4.1. Decision Trees 59

4.1.2 Boosting

Bagging trains trees in parallel and averages their results. However, boosting trains

trees sequentially with the result of one strong learner — a model of arbitrarily good

performance depending on the training regime. Each tree in the sequence learns

using the input data weighted by the error of the previous tree (or sequence of trees)

— i.e. if the previous tree (or sequence of trees) is a good approximation of one

subset of the training data, but is a poor approximation of another, the next tree

in the sequence will be trained on data more heavily weighted towards the poorly

approximating data.

The training of subsequent trees in the sequence can be improved through various

optimisation algorithms, the most common of which is gradient boosting [84,85] where

a gradient descent algorithm can optimise for a given differentiable loss function

(see Section 4.2) to guide the construction of future trees. As an example of the

use of boosted decision trees in the context of event generation, methods have been

developed for gradient boosted regression integration where a series of decision

trees is used to approximate the probability distribution, g(x), defined in Equation

3.3.6 [86]. This method was shown to allow for the integration of functions for which

traditional algorithms have previous failed. Similar methods for matrix element

approximation have been developed using the parallelised boosted decision tree

approach, XGBoost [87]. This methodology was tested on the loop-induced gg →

ZZ process at leading order, demonstrating the potential for large speed-ups in

matrix element calculations [88]. Given that decision trees have the potential to

output ‘human-readable’ explanations for their decisions at each node, it would be

interesting to explore these to analyse how the phase-space is divided by a decision

tree in comparison with similar methods such as VEGAS (see Appendix B.2).

60 Chapter 4. Machine Learning for Event Generation

Figure 4.2: Construction of the perceptron. Input variables, along
with a bias term, x0 = 1, are weighted, combined
together, and pass through an activation function, a,
which results in the output, f(x).

4.2 Neural Networks

Neural networks (NNs) are a commonly used methodology due to their ability to

approximate highly non-linear functions. There are many applications and construc-

tions for NNs — in this introduction we shall focus on Fully Connected Networks

(FCNs) which comprise a series of layers containing perceptrons. In this Section we

shall introduce these concepts and discuss their optimisation.

4.2.1 The Perceptron

The perceptron [89] is the simplest building block for neural networks. Given an

input data point, x = (x1, ..., xd), the output of the perceptron is given by

f(x) = a

(
d∑

k=0
xk · wk

)
, (4.2.1)

where wk are the weights which control the relative importance of the input variables,

and a is the activation function. Activation functions can take on a range of values

and the choice of function is usually based on the data types and problem to be

addressed. For now, we will assume that a takes the form of a linear function, which

4.2. Neural Networks 61

is the most common choice for activation functions just before the output is given in

regression problems. The sum in Equation 4.2.1 runs from zero because we introduce

a fixed variable to each input’s data points, x0 = 1. This zeroth element means the

term x0 · w0 = w0 serves as a bias constant. Figure 4.2 shows a schematic of this

representation.

In practice, we optimise the weights such that the function is a good approximation of

the training data. As a result of the increased efficiency in automated differentiation

libraries, gradient descent algorithms have become the norm in machine learning for

optimisation problems. 1 We therefore define a loss function, L, which provides a

metric to be optimised. In regression tasks, a common choice is the mean squared

error (MSE)

L = 1
N

N∑
i=1

(yi − f(xi))2, (4.2.2)

The gradient of the loss function is then calculated to update the weights

w(t+ 1) = w(t)− η∇wL, (4.2.3)

where the weights, w = (w0, ..., wd), at time t + 1 are updated from their values

at time t by taking the gradient of the loss function with respect to the individual

weights and multiplying this by the learning rate, η. The learning rate plays an

important role in gradient descent algorithms and controls the importance of the

gradient. In this implementation, the learning rate is considered a hyperparameter

which can be separately tuned. However, as the network approaches the global

minimum of the loss landscape during optimisation, setting this parameter too large

may cause the network to overshoot this value. Algorithms for adapting the learning

rate dynamically during training can be used to address this problem. Common

choices include: AdaGrad [91], which scales the model parameters in proportion to

the historical values of the gradient squared, thereby giving parameters with larger

gradients large learning rates and vice versa; RMSProp [92] adapts the AdaGrad

algorithm to put less weight on historical gradients in the distant past; and Adam

1For an overview of gradient descent algorithms commonly used in the context of ML, see [90].

62 Chapter 4. Machine Learning for Event Generation

Figure 4.3: Construction of a typical Fully Connected Network for
regression with a single number output. Input variables,
along with a bias term, are weighted and combined to-
gether at each node in the next layer. All nodes in each
layer are connected to all other nodes in subsequent lay-
ers. This continues for all hidden layers, {f (1), ..., f (h)}
and terminates once we reach the output layer f (o).
Each node in each layer can have a different activation
function associated with it. It is common practice to
assign the same activation function to all nodes in the
hidden layers, with the final activation function usually
chosen to be linear for regression problems.

optimisation [93], which is similar to RMSProp with the addition of momentum [94]

that adds an additional correction to the gradients based on previous values.

From this description it is clear that the perceptron is a simple object which can only

fit functions comparable to the chosen activation function. However, by combining

multiple perceptrons together in parallel and in series, with interlinking weight layers,

we can access much higher dimensional functions with complex non-linearities.

4.2.2 Fully Connected Networks

FCNs are composed of multiple perceptron-like objects arranged in layers — layers

in between the input and output layers are referred to as hidden layers. Activation

functions introduce non-linearity into the network and common choices in regression

4.2. Neural Networks 63

problems are hyperbolic-tangent, sigmoid and rectified linear unit (ReLU) functions

a(x) = tanh(x), a(x) = 1
1 + e−x

, a(x) = max(0, x).

Different functions have been found to have different advantages and use cases. For

example, the sigmoid function may be useful if the desired output is bounded between

(0, 1), whereas the ReLU function has been found to ensure rapid convergence in

classification tasks [95]. The output of a network with h hidden layers is then given

by

f(x) = f (o)f (h)(f (h−1)(...(f (1)(x)))), (4.2.4)

where fk are the outputs of layer k, and f o is the output layer which is usually given

a linear activation function in the case of regression. A schematic of this is given in

Figure 4.3. The choice of activation function is dependent on the problem at hand

and can be optimised during the hyperparameter optimisation phase of architecture

development (along with other hyperparameters such as the number of hidden layers

and the number of nodes in each layer). Since the activation functions interact in

a non-trivial way, simplifying their choice by assigning them to be the same for all

nodes in the hidden layers helps minimise undue complexity, and drastically reduces

the number of possible hyperparameter combinations.

Optimising for a given loss function uses the same logic as applied in Section 4.2.1

— by using back-propagation, which is a simple application of the chain-rule to

calculate the Jacobian with respect to each weight in the network. Indeed, by

leveraging matrix linear algebra, we can simply write the weight update as

W (t+ 1) = W (t)− η∇WL, (4.2.5)

where the weights are now represented as a matrix W [96].

From Equation 4.2.4 it is clear that the layering of multiple hidden layers containing

a number of nodes with different non-linear activation functions allows such models

to approximate highly complex functions. Furthermore, advances in computational

matrix algebra and automated differentiation, along with hardware advances such

64 Chapter 4. Machine Learning for Event Generation

as in graphical processing unit (GPU) technology, mean neural network training

times are continuing to be drastically reduced. 1 2 This is partly due to the large

parallelised arithmetic which can be naturally performed on GPUs, as well as the

building of specialised ML software optimised for GPUs and the production of GPUs

specifically designed for the high dimensional matrix algebra performed frequently

in ML tasks. It is worth noting, however, that much attention has recently been

on speeding up highly time and memory consuming computer vision tasks, whereas

the comparable order(s) of magnitude speed gain from using many GPUs is not yet

widely observed when training models for numerical regression.

Given this ability to approximate complex functions, neural networks have been

applied to phase-space sampling and integration [98,99], where they have been shown

to increase the speed at which functions can be integrated. Similar to applications of

boosted decision trees to this problem, in these examples neural networks are trained

to map a random number to the probability distribution, g(x) ∈ [0, 1]d, for use in

importance sampling. However, since the network acts as a variable transformation,

at each point we must calculate its gradient to determine the Jacobian, which can

become computationally expensive. To address this, recent work [100–102] has

attempted to use normalising flows [103,104]. These have been shown to avoid the

computational cost of calculating the gradient of the network, when determining the

Jacobian through the use of coupling layers [104, 105]. However, the performance

of these approaches has been shown to decrease as the multiplicity of the process

increases. Recent work using auto regressive flows [106–108] (which are related to

their normalising counterparts in approach but are expected to perform better on

larger feature spaces) applied to phase-space sampling [109]. Here, the authors

test their approach on e+e− → tt̄ at LO and pp → tt̄ with parton showering at

NLO. Promising results were found when trained on weighted events, with too
1For a survey of automatic differentiation approaches in the context of machine learning see [97].
2We will show assessment of the speed of classical analytic and numerical function evaluations

compared with neural network inference in the context of matrix element calculations in Chapters
5 and 6.

4.3. Generative Networks 65

many point being rejected during unweighting for good performance on these events.

The incorporation of negative weights was also tested, with the model found to

incorporate these and produce results largely within the Monte Carlo error of the

‘true’ distribution.

NN based approaches have also been developed to address other components of Monte

Carlo event generators including parton showering [110–112] and event reweighting

[113]. Similarly, several works have focused on developing NN techniques for explicitly

learning the cross-section of specific processes [114,115].

4.3 Generative Networks

Generative Adversarial Networks (GANs) [116] consist of two NNs — a generator

and a discriminator — and are based on a game theoretic scenario in which these two

networks compete. The exact details of this methodology are beyond the scope of

this thesis. However, we give a brief overview of how GANs can be constructed and

their applications to event generator simulations. For more details see the original

paper [116] and Chapter 20 of [3].

The aim of the generator, g, is to produce samples x∗ = g(z), given some input

‘noise’, z, which is usually drawn from a Gaussian distribution. The discriminator,

d, is either fed the output of the generator, or a sample from the training dataset,

x, and attempts to determine from which source the input sample originated. 1

By training these two networks to compete against each other, a generator can be

obtained which is able to produce samples that are hard to distinguish from reality

(the training data).

The simplest way to train these networks is as a zero-sum game. Let’s assume the

function v(g, d) determines the payoff of the discriminator and −v(g, d) the payoff

1In applications of GANs relevant to this thesis, the generators perform a regression task,
whereas the discriminator is a classifier. As mentioned at the beginning of the Chapter, we will
not discuss the details of ML classification. However, in the case of GANs, it is sufficient to think
of the output of the discriminator as being a single probability score which estimates the network’s
belief that the sample is synthetic or from the training dataset.

66 Chapter 4. Machine Learning for Event Generation

of the generator. Each network then seeks to maximise its payoff such that at

convergence

g∗ = argmingmaxd v(g, d), (4.3.1)

where a common choice is

v(g, d) = Ex∼px [log(d(x))] + Ez∼pz
[log(1− d(g(z)))], (4.3.2)

where px is the training data distribution and pz is the generator input noise distri-

bution [116]. Writing this in the same format as Equation 4.2.2, the loss functions

to be minimised are

Ld = − 1
N

N∑
i=1

[log(d(xi)) + log(1− d(g(zi)))] , (4.3.3)

Lg = 1
N

N∑
i=1

[log(d(xi)) + log(1− d(g(zi)))] , (4.3.4)

= 1
N

N∑
i=1

[log(1− d(g(zi)))] , (4.3.5)

where Ld and Lg are the discriminator and generator loss functions respectively and

the final lines comes from the fact that the generator can not directly affect the

log(d(xi)) term.

In practice, GANs which use NNs suffer from the non-convexity of maxd v(g, d),

which can make training noisy and convergence challenging. Other formulations of

the training procedure continue to be developed in an attempt to address the problem

(see [117, 118] for examples); however, these are beyond the scope of this thesis to

discuss in detail. Despite these challenges, GANs have important applications in

multiple fields, including various components of event generator simulations.

Full event generation can be highly time consuming, and so GANs have been de-

veloped to replace the full pipeline described in Chapter 3. Many works have taken

off-the-shelf GANs with FCN architectures to emulate full event generation, includ-

ing detector simulation, for a variety of processes [119–123]. However, in [124] the

authors use a convolutional neural network (CNN) [125, 126] architecture in place

4.3. Generative Networks 67

of the FCN setup. 1 Physics inspired modifications of traditional loss functions

have also been developed to help GANs learn relevant features. In [127] the authors

directly include the masses of the Z-boson to aid peak reconstruction which results in

an analysis-specific loss function, while others use knowledge of the peak structure of

integrand for a more generalisable approach [128]. In the latter example, the authors

do not include detector simulations in order to more fully probe the ability of the

networks to learn complex intermediate resonances present in pp→ tt̄→ (bqq̄′)(b̄q̄q′).

The same loss function was used to study electron-proton collisions without detector

simulations in [129]. In this work the authors also developed feature transformations,

while also augmenting the input to the discriminator with additional features, to

improve their performance. It would be beneficial to rigorously test the generalisab-

ility of these physics informed additions and alterations which have been found to

boost performance.

In many of the above examples of ML applications to particle physics processes,

it is reasonable to ask to what extent the models can encode physics beyond that

contained in the training data. In the case of GANs this questions was addressed

in [130], where the authors applied GANs to a range of toy models representative

of physics processes. The authors trained the models on a small training dataset

drawn from a known probability distribution and then generated data points using

the trained GAN until the information added by the network saturated. The authors

found that the GANs were indeed able to “amplify” the training data to a certain

extent before the addition of more generated data points no longer helped the

generated distribution approximate the known distribution. This has important

ramifications for the use of ML models in particle physics processes, although more

testing must be done to assess this on realistic distributions, as well as the effects of

training dataset size on the amplification achievable.

In addition to full event generation, GANs have been applied to event unweighting
1CNNs can be thought of as a natural extension of the neural networks discussed in Section 4.2,

where each input is a portion of an image which is then convolved with a weight matrix (or kernel).
For an introduction to CNNs see Chapter 9 of [3]

68 Chapter 4. Machine Learning for Event Generation

[131] and subtraction [132], with early work assessing its performance for phase-space

integration of toy examples where traditional methods have struggled [86]. Recent

works have discussed incorporating Bayesian methods for uncertainty estimation —

a key ingredient for physics use cases of these methods which will also be discussed

in more detail (albeit from a frequentist perspective) in Chapter 5 — into these

generative methods [133] building on previous work which used similar techniques

for the extraction of energy of a tagged top quark inside a fat jet [134]. For a more

in depth review of some of the works discussed in this Chapter see [135, 136], and

see [137] for a discussion on how GANs can be used more broadly for event generation

and fast simulations in High Energy Physics (HEP).

It is worth noting that Variational Auto-Encoders (VAEs) [138] can also be used

in a similar way to GANs and many of the works discussed above have testing

VAE methods in parallel. More information on VAEs more broadly can be found

in [138,139].

Chapter 5

Machine learning for matrix

element approximation:

e+e−→ qq̄ + jets

5.1 Motivation

Phenomenological studies of high multiplicity final states at collider experiments

present a substantial theoretical challenge and are increasingly important ingredients

in experimental measurements. During the last 15 years, a dramatic improvement

in computational algorithms for one-loop amplitudes has led to a number of highly

automated codes capable of predictions at NLO accuracy in the SM [51,61,70,140,

141].

These codes are based around numerical algorithms that bypass the growth in

algebraic complexity that analytic approaches suffer from. As discussed in Chapter

1, the computational cost of these algorithms is still relatively high, resulting in huge

commitment of CPU and personnel resources to obtain the necessary theoretical

predictions for current experiments.

In this Chapter, we begin to explore one way in which we can use ML technology,

70
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

Figure 5.1: A ratio of the CPU cost to calculate tree-level and one-
loop amplitudes in Njet to inferring on a neural net-
work (built in Keras/TensorFlow) as a function of the
number of legs (equivalently number of variables). The
black line denotes 1. This demonstrates the fairly trivial
fact that the neural network is fast to call compared to
numerical equivalents.

in the form of neural networks (see Section 4.2), to decrease the computational

cost of precision simulations. In particular, we consider high multiplicity scattering

processes, with high mathematical complexity, where it is less clear how to make

use of conventional interpolation methods such as polynomial fits and interpolation

grids [142–146].

Neural networks have the potential to provide extremely fast and lightweight ap-

proximations of complicated amplitudes. In Figure 5.1 we demonstrate this for the

particular test cases which are the subject of this Chapter — the tree-level and

one-loop amplitudes inside the Njet amplitude generator [65] for e+e− →≤ 5 jets. 1

Here, we see that the neural network is fast to call and has a very mild dependence

on the number of variables. The challenge is to train the network well enough that

it can be interpolated and extrapolated reliably over a complete range of differential

observables. While the potential speed up in the function call is quite striking,
1An example of a matrix element calculation for this process is given in Section 2.2.

5.2. Computational setup 71

the real challenge is not clear from this analysis. The actual improvement in CPU

cost must include the time takes to train the network such that interpolation and

extrapolation are sufficiently accurate and reliable.

In this Chapter we design a deep learning pipeline to approximate e+e− →≤ 5 jet

matrix elements at both LO and NLO, thus exploring processes with significantly

higher multiplicity than those considered previously (see Chapter 4 for a discussion of

prior work). While [114] uses a more automated approach for phase-space sampling

to aid in training a neural network, we employ physics-based knowledge of the

processes in designing our pipeline. We analyse the effectiveness of this approach

and what this might tell us about the phenomenological set up. We pay careful

attention to the errors and uncertainties in our neural network approximation, and

offer a comprehensive implementation of neural network regression analysis.

The techniques developed in the Chapter will be applied to the e+e− →≤ 5 jet

processes, and will be further developed for more complex loop-induced processes in

Chapter 6.

5.2 Computational setup

We use Njet [65] (an on-shell based C++ code) to evaluate colour and helicity

summed Born and virtual matrix elements for e+e− →≤ 5 jets, denoted M(n,0)

and M(n,1) respectively. Going beyond the simple analytic approaches presented

in Chapter 2, Njet uses integrand level reduction [147] and generalised unitar-

ity [61, 148–153] to construct loop amplitudes from tree-level input, which is com-

puted efficiently with Berends-Giele recursion [154]. For a given phase-space point,

Njet calculates the virtual and Born matrix elements, along with the 1/ε and 1/ε2

correction coefficients (arising from dimensional regularisation discussed in Chapter

2). In this thesis we do not use the correction coefficients and instead only focus on

72
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

the matrix elements from which we can calculate the k-factors:

k-factor = |M
(n,1)|2

|M(n,0)|2
. (5.2.1)

It should be noted that the definition of the k-factor in Equation 5.2.1 is not the

conventional ratio of the full NLO to LO calculation, but rather the ratio of the

matrix elements. In addition, our discussion of NLO matrix elements will be limited

to the virtual corrections only, and not the real radiation part.

For ease of use, Njet is interfaced via the Binoth Les Houches Accord (BLHA)

[155,156]. The BLHA is designed to provide a standardised interface between Monte

Carlo tools and matrix element programs. We leave the implementation of interfacing

with event generators to Chapter 6.

We explore the performance of various neural network generated amplitudes for

total and differential cross-section computations at LO, as well as their respective

k-factors at NLO. We find that as the multiplicity increases, IR singularities on

the edge of the phase-space increasingly cause problems for a single neural network,

which struggles to find a good fit across the whole phase-space. To improve the

approximation, we divide up the phase-space into sectors according to the FKS

subtraction method [37,38]. Although we do not actually perform subtraction, this

phase-space decomposition isolates the IR singularities and allows the training of

networks to focus on improving performance on each partition individually.

5.2.1 Phase-space partitioning for final state singularities

We explore two pipeline configurations: i) we naively train a single network over

all sampled points in phase-space; ii) we divide the phase-space into divergent

and non-divergent regions in an attempt to partially isolate the IR singularities

and then further sub-divide the divergent region according to the FKS subtraction

method, training one network on the non-divergent region, and a different network

on each partition. For clarity, we will generally refer to the naive single network and

5.2. Computational setup 73

partitioned ensemble of networks as ‘models’, and the individual networks comprising

these models as ‘networks’.

We parameterise our phase-space according to the Lorentz invariant yij = sij/scom,

where sij = (pi+pj)2, and define all cuts with respect to this quantity. The partition

dividing divergent and non-divergent regions is defined to be at yp. To introduce the

concepts of the phase-space partitioning method, we will use a global kinematic cut

parameterised by ycut, and then progress to more complex cut configurations which

are more relevant for the phenomenological analyses in Chapter 6.

Using these two scales, the divergent region, Rdiv, and the non-divergent region,

Rnon-div, are defined as follows:

Rdiv = {p | ycut ≤ min(yij) ≤ ycut + yp, p = (pa, pb, p1, ..., pn), i, j ∈ {1, ..., n}},

(5.2.2)

Rnon-div = {p | ycut + yp ≤ min(yij), p = (pa, pb, p1, ..., pn), i, j ∈ {1, ..., n}}, (5.2.3)

where p is a phase-space point consisting of the initial state 4-momenta, pa and pb,

and the outgoing momenta, {p1, p2, ..., pn}, where n is the number of jets. Given

the lack of initial state singularities in e+e− collisions, this is an appropriate choice.

However, we will generalise this definition to hadronic collisions in Section 6.3.1.

In the FKS subtraction formalism, the phase-space is divided such that the kinematic

regions resulting from each partition contain only a specific subset of singularities.

In order to achieve this, a set of ordered pairs, known as FKS pairs, are introduced.

In our case of e+e− →≤ 5 jets we define these as:

PFKS = {(i, j) | 1 ≤ i ≤ ng + 2, 3 ≤ j ≤ ng + 2, i 6= j,

M(n,0) orM(n,1) →∞ if p0
i → 0 or p0

j → 0 or ~pi||~pj}, (5.2.4)

where ng is the number of gluons in the process.

We then construct a partition function similar to that of [157, 158] (for a brief

introduction to different FKS pair definitions and partition choices see Appendix C):

74
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

Si,j = 1
D1sij

, D1 =
∑

i,j∈PFKS

1
sij
, (5.2.5)

such that:

dσ(X) =
∑
i,j

Si,j dσ(X), (5.2.6)

where, in this example, σ(X) represents either the Born cross-section, σ(B), the virtual

correction, σ(V), or the k-factor, σ(K).

To demonstrate this partitioning effect, we analyse the process e+e− → qq̄g. Here,

we can isolate each of the two FKS pairs {qg, q̄g} and weight all the phase-space

points in the divergent regions according to the behaviour of Si,j for each pair. The

first pair, in principle, corresponds to either the quark and gluon going collinear or

the quark or gluon going soft. Since we cannot have soft quarks, this FKS partition

only contains the singularities for the soft gluon and collinear quark and gluon. The

behaviour of the FKS partition function, Sq,g can be clearly seen in Figure 5.2, where

we observe increasingly highly weighted points as sqg approaches 0.

An advantage of this method is that the interpolation between singular regions is

smooth since they add together to produce the overall cross-section (see Equation

5.2.6). 1 By weighting the matrix elements in this way, phase-space points closer

to the q||g singularity contribute with increasing significance to the corresponding

neural network’s loss during training. A similar analysis can be performed for the

second FKS pair in this process.

Since the FKS pairs are ordered, the upper bound on the number of pairs for our

processes is

Nmax = n(n− 1)
2 − 1, (5.2.7)

where n is the number of jets and the −1 comes from the fact that {qq̄} is not an

FKS pair by definition. It should be noted that the number of pairs can be reduced
1An alternative implementation would be to partition the phase-space in a piecewise manner

according to Heaviside step functions (as in [37]); however, this introduces an additional set of
scale choices and significantly reduces the number of phase-space points left for each network to
learn the complicated divergent structure. Indeed, we found that when partitioning piecewise the
network performs significantly worse in comparison to this smooth implementation.

5.2. Computational setup 75

Figure 5.2: Behaviour of the Sq,g FKS partition function relative to
yij = sij/scom.

in reality due to the symmetric behaviour of all gluon-gluon, or quark-gluon pairs;

however, for simplicity we partition into Nmax regions. For example, in the case of

e+e− → qq̄g, Nmax = 2, but since the behaviours of the two pairs in this process are

identical, we could reduce this to one.

After using the FKS partition function to divide the region Rdiv, we are left with

Nmax +1 regions in total across which we train the same number of networks. We find

that setting the scale to yp = 0.01 is generally applicable to all processes analysed

in this Chapter.

5.2.2 Neural network setup

We compare the performance of two neural network setups: firstly, a singular network

is trained over the entire uniformly sampled phase-space; secondly, an ensemble of

Nmax + 1 networks is trained over the partitioned phase-space.

76
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

Data

The phase-space is uniformly sampled using the RAMBO algorithm [6], with each

point initially having a weighting of unity (see Section B.1). At LO, we train the

naive model on data generated from sampling over the entire phase-space uniformly,

whereas we train the partitioned model on samples drawn equally from the divergent

and non-divergent regions. 1 At NLO, due to the computational expense of virtual

matrix element calculation, the phase-space is uniformly sampled as a whole and

then divided into Rdiv and Rnon-div regions after sampling. RAMBO was chosen

for its simplicity, for the ease with which it can be altered to our specifications, and

because it highlights interesting pitfalls and difficulties in high-dimensional functional

approximations (see more on this below). In total we generate 500k phase-space

points for training at LO, but only 100k at NLO due to the complexity of the

problem.

The IR poles in the matrix element result in singularities. Neural networks for

classification tasks have been repeatedly shown to perform better when datasets

are balanced, thus helping to avoid bias in the classification. Balancing can be

done through a variety of methods such as over and under sampling, as well as

loss function weightings. In regression tasks, the equivalent to class imbalances are

under sampled regions that behave significantly differently to the rest of the sampled

space. When doing explicit numerical calculations of the matrix elements, these

imbalances are not such an issue and their effect when calculating observables can be

estimated by the Monte Carlo error and by phase-space resampling; yet they become

significant when training a network. Through balancing the training datasets in

the divergent and non-divergent regions, and using the FKS partitioning method as

outlined above, we hope to address the issue of underrepresented regions. However,

this is not as practical to do at one-loop, or during phase-space generation in existing
1Testing was done to assess the significance of equally sampling from the divergent and non-

divergent regions of phase-space when training the naive model as well, although we found little
significant performance increase relative to that of using the partitioned model.

5.2. Computational setup 77

event generators, so this is only performed at LO.

As discussed in Chapter 3, there exist increasingly sophisticated non-machine learn-

ing based methods for phase-space sampling which seek to more optimally sample

the space for faster convergence. RAMBO, however, is indifferent to these vari-

ational differences in phase-space, giving a more naive sampling, yet the ability to

construct an interpolation function from a uniformly sampled phase-space means

we save computational time during the sampling stage. Although performance of

our approximation may be increased using these more sophisticated methods, we

demonstrate sufficiently good results while requiring only the use of simple sampling

techniques like RAMBO. This further shows the power of our method and the

additional time savings it can offer.

Once the phase-space points are generated, we use Njet [65] to calculate the corres-

ponding squared matrix elements at LO, and the virtual correction terms at NLO,

for e+e− → Z∗/γ → qq̄ + ng. We calculate all quantities in the four-dimensional

helicity (FDH) scheme, assuming all external legs to be massless, with the number of

light quark flavours set to nf = 5, and use the same renormalisation scale as in [159].

When training the network, the dataset is split in an 80:20 ratio for training and

validation. Furthermore, independently generated, unseen datasets are used for

testing the performance of our models. Model testing consists of inferring on these

unseen test points to create cross-section and differential plots as shown in Section 5.3.

Through generating many more points for testing than training we demonstrate the

performance of our methodology as an interpolation function by further extrapolating

into the divergent region.

To avoid the problem of vanishing/exploding gradients, we standardise our data

to zero mean and unit variance at each input node and across the targets. For

additional details on methods for preprocessing data, see Appendix D.

78
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

Architecture

Choosing an optimal network architecture is non-trivial due to the large number

of parameters that can be tuned to an array of criteria. It is common to approach

a singular problem using a neural network and optimise the architecture for that

process. However, because we want to demonstrate the ability of networks to become

sophisticated multi-parameter interpolation functions, we require these models to

generalise to a variety of processes.

For this reason, we do not fine-tune a network to any particular process, but rather

attempt to employ the same architecture for each process (in Appendix D we show

the results of a hyperparameter scan to verify the choices made here for the case of the

diphoton processes discussed in Chapter 6). The neural networks are parameterised

using Keras [160] with a Tensorflow [161] backend. They comprise of fully-connected

layers with an input layer of (n− 1)× 4 nodes and output of 1, with three hidden

layers made up of of 20-40-20 nodes. The hidden layers all use hyperbolic-tangent

activation functions and the output node has a linear activation function.

The loss function is taken to be the mean squared error,

L = 1
N

N∑
i=1

(f(xi)− yi)2, (5.2.8)

where N is the number of training points, f : Rd → R is the function describing the

neural network, xi is the ith d-dimensional set of input data, and yi the corresponding

target variable. The network is optimised using Adam optimisation [93], while

the number of training epochs is determined through Early Stopping applied to

the validation dataset (see Section 8.1.2 in [3]), tracking the validation loss with

no minimum change requirements. We recognise that by using a validation set

containing only 20% of the original training set, we may be severely limiting the

number of points in the increasingly divergent regions, thus skewing our Early

Stopping criteria to the less divergent regions. In an attempt to mitigate this, we

train with a patience of 100 epochs to measure effects in the loss function significantly

5.2. Computational setup 79

later in the training regime; however, at NLO we found that this makes minimal

difference to the total loss and so can be reduced to speed up network training.

The inputs to the network are the 4-momenta of n− 1 jets. Since we fix the centre-

of-mass energy for training, we sought to reduce the number of input nodes for more

efficient learning. We note that further reductions in the number of input parameters

could be made, yet in testing this had no significant effect on performance.

5.2.3 Uncertainty Analysis

The subject of error and uncertainty analysis in ML processes is receiving increasing

attention (see [162,163] and the references therein), especially in the particle physics

community [164–167], yet too frequently a demonstration of rigorous error analysis

in ML regression processes is lacking.

As stated in [162], the main sources of error arise from approximation, aleatoric

and epistemic uncertainties. Approximation uncertainty arises due to the model

being too simplistic to allow for complex functional fitting, e.g. too few nodes or

hidden layers in a neural network meaning the model is not able to fit sufficiently

non-linear functions. Aleatoric uncertainty accounts for fluctuations in the data

distribution e.g. from measurement errors, and cannot be decreased by collecting

more data from the same experimental setup. Epistemic uncertainties, on the other

hand, account for uncertainties in the model, including lack of sufficient coverage of

the data. Since we are using deep neural networks, we assume the approximation

error to be negligible. Additionally, we do not consider aleatoric uncertainties here

since our data has been generated through high-precision numerical methods, and

Njet accuracy tests have been performed to measure the stochasticity in matrix

element generation and found this fluctuation to be negligible. 1 Following [164] we

apply similar methods highlighted for use in classification networks to this regression
1Njet accuracy tests are performed by inferring on each phase-space point twice and checking

the difference in the results. The threshold is set to the default value of 10−5 and errors arise due
to lack of floating point precision and rounding errors.

80
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

task. Specifically, we focus on the measurement of precision/optimality errors, which

include those arising due to epistemic uncertainties.

We measure model parameter initialisation dependence by training an ensemble of

models on fixed training datasets while randomly reinitialising the weights of each

model. Depending on the observable, the standard deviation in the bins can be

measured. Additionally, when sampling the phase-space, the Monte Carlo error is

calculated; however, this does not fully account for the uncertainty in phase-space

completeness. For this, we bootstrap the training data, thereby resampling the

phase-space multiple times and training an ensemble of models, with each model

trained on a different dataset, while keeping the weight initialisations fixed. Since in

this Chapter we are comparing neural network output against Njet results, we only

include Monte Carlo errors on the Njet results, which avoids the double counting of

errors. When using models ‘in production’, Monte Carlo error can be added to the

model uncertainty, as specified above, for a full uncertainty estimate. We note that

the best possible achievable accuracy would correspond to the Monte Carlo error on

the Njet result.

The performance of our methodologies is also dependent on the test set chosen. For

this we quote the Monte Carlo error, although it should be noted that the same issue

with determining sampling completeness occurs here. Due to the computational

expense of repeated generation of test sets, we do not perform this. However, the

uncertainty bands on the neural network approximations should be sufficient to

provide evidence of our methodology. This is because these additional dataset

dependencies are negligible due to the large number of test points used and the

relative size of the computed Monte Carlo error compared to the model uncertainties

(see Section 5.3).

The errors on the models that we calculate are therefore the error due to model

initialisation dependence and error due to the size of the training dataset, which

are added in quadrature. As noted in [164], additional sources of uncertainty are

inherent in the network approximation which are hard to calculate explicitly, such

5.2. Computational setup 81

as dependence on the model architecture (e.g. the number of hidden layers, nodes

in each layer and the types activation functions used). Due to the size of the other

errors mentioned, and the lack of currently available tools for their calculation, we do

not attempt to incorporate errors arising from these uncertainties into our analysis.

We quote Monte Carlo error only for the testing dataset, with the exception for

the NLO 5-jet case in which we quote both the Monte Carlo and model errors (see

Figure 5.9).

When presenting our results, we calculate the mean of the ensemble of models trained

and quote the standard error on the mean. Throughout this Chapter, we choose

to train 20 models for each ensemble. This number was chosen in a slightly ad

hoc manner, since it gave a reasonable distribution of models, and should not be

interpreted as a requirement.

Theoretical uncertainties are also prevalent in all of these calculations due to variab-

ility in setting the renormalisation scale, µR. Such uncertainties propagate through

the networks since a model will learn to fit data at a certain scale. In this Chapter

we train on data generated at a fixed scale, as used in [159], and we are not trying

to teach the model anything about the scale uncertainties. However, to test that we

are robust to different scale choices, we perform the normal ad hoc scale variation

of µR/2 and 2µR purely to determine the dependence of our methodology on such

a scale choice. In doing so we found that the models are able to approximate the

matrix elements at each scale equally well to within Monte Carlo error, and we

therefore assert that model performance is not highly dependent on the value of µR

in the range we analysed. Moreover, since the goal of this work is not to calculate

the cross-section or k-factors of a new processes, but to provide tools for estimating

such values for already known process, we do not quote these as uncertainties in our

methodology.

82
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

5.3 Results

We test our methodology on estimating both LO cross-sections and k-factors for

processes up to e+e− → 5 jets. In addition, various differential distributions are

plotted to demonstrate the applicability of our methodology to real phenomenological

calculations. In general, we see that neural network approximations demonstrate

wide applicability to the cases investigated, with the FKS partitioning method

giving more accurate and stable results through better approximations of the IR

singularities. It should be noted that the cross-sections discussed here are calculated

my summing the squared matrix elements and normalising by the number of phase-

space points. This is a simplification of the partonic cross-section given in Equation

3.1.2.

5.3.1 Approximations at LO

Although leading order calculations are not significantly computationally expensive,

they pose interesting test cases for neural network approximations of high multiplicity

processes with many scales and complex IR singularity structures. Moreover, we

find that much of what can be learnt from the performance of the models here can

be applied to the NLO case.

As detailed above, we compare the naive approach where a single network is trained

over the entire phase-space with the partitioned approach where an ensemble of net-

works trained on Nmax + 1 partitions of phase-space. In determining the appropriate

value of the global phase-space cut parameters, ycut, we evaluate the performance of

our models by calculating the ratio of the output to the Njet calculation as well as

the model’s ability to approximate the cross-section and differential distributions.

Figure 5.3 shows the distribution of the neural network errors by calculating the

ratio of the model output to the Njet result at each phase-space point in the test set.

Symmetric error distributions are desirable given that phenomenologically relevant

5.3. Results 83

Figure 5.3: Born matrix element output of the naive approach
(red) and partitioned approach (green) compared to the
Njet calculation at different jet multiplicities and/or
ycut values across 1M points. Outputs are taken as the
average over 20 trained models.

84
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

tests for our method include approximating cross-sections and differential cross-

sections. Since the partitioned approach gives much narrower and more Gaussian

shaped distributions than the naive approach, we can clearly see that this method is

preferable at the level of per-point accuracy. Additionally, the error distributions of

the partitioned approach are more closely centred on zero in comparison to the naive

approximation, thus suggesting that the partitioned model will produce a better

overall average performance as well. The 5-jet error distribution from the partitioned

approach appears to be narrower than the 4-jet, however, this is likely due to more

points falling into the divergent region and providing the networks there with a

greater amount of training data. Since the yp value has not been carefully tuned,

this is not necessarily surprising. For more details on changing yp with multiplicity,

see Appendix E. Note that these plots to not contain any information about the

relative uncertainties attached to these model outputs, which we will discuss below.

While the error plots demonstrate the per-point performance of the models, we

also wish to compare their performance in calculating physics observables while also

taking into account uncertainty in the data and the model setup. Figure 5.4 shows

the approximated cross-sections of the naive and partitioned approaches as compared

to those computed from the Njet matrix elements. As expected, we see a harsher

ycut value at 5-jets better regulates the divergent regions, thus improving both the

naive and partitioned approaches; however, this harsher cut is not fully necessary as

the Njet result sits on the edge of the neural network uncertainty bands.

When approximating the cross-section, we find the uncertainty bands have very little

noise and follow the shape of the average result closely. Since each trained network

will aim to minimise the value of the loss function, and no network will perfectly

learn the target distribution, for each model there will be an offset between the

final trained model result and the true distribution result. Since the cross-section is

proportional to the average over the phase-space, for any value of N , these differences

will average out such that the offsets manifest themselves as a distance away from

5.3. Results 85

the cross-section as calculated by Njet

1
N

N∑
i=1

(f(xi)− yi) = σP − σNjet (5.3.1)

= ε+O(θ), (5.3.2)

where σP and σNjet are the inferred and Njet calculated cross-section values respect-

ively, ε is a fixed offset from the true cross-section and θ a small noise parameter.

This therefore explains the relatively fixed distance between the model uncertainty

upper and lower bounds and the Njet result.

Another result of Equation 5.3.2 is that, unlike Monte Carlo error, inferring on more

test points will not reduce the model uncertainties since such a model cannot contain

more information than the training dataset has provided. These uncertainties are

intrinsically tied to the training set and the model initialisation and so any efforts

to reduce errors arising at test time should therefore be focussed on addressing such

uncertainties. We demonstrate an example of this by developing our partitioned

method rather than focussing on changes to the test dataset.

In general, the global cuts required for the partitioned approach to be within the

Monte Carlo error of the Njet cross-section are ∼ ycut = 0.01. These cut values are

reasonable for our definition of yij and are equivalent to the cuts made in [98].

After cuts have been made, we see that the partitioned approach has a significantly

reduced standard error when compared with the naive approach, with an inferred

mean closer to the final stable cross-section. This difference in uncertainty can

be understood by comparing the relative standard deviations of the naive model’s

single network, and the deviations in the different networks making up the partitioned

model, as we shall now show.

Let us first assume that the values of the cross-section calculated using the naive

approach, σs, are normally distributed,1 i.e. σs ∼ N (µs, ζ2
s), where µs is the mean of

1This is a reasonable assumption given that we would expect the uncertainty due to initialisation
and dataset size to focus around a central mean value, with greater degrees of fluctuation becom-
ing increasingly less likely. Additionally, any difference between the mean and the Njet result

86
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

Figure 5.4: Comparison of the naive approach (left) vs. the par-
titioned approach (right) in estimating the Born nor-
malised cross-section. Uncertainty bands denote the
standard error on the mean calculated over 20 trained
models (red and green) and Monte Carlo error on the
Njet result (blue). We refer the reader to Section 5.2.3
for details of the error analysis.

5.3. Results 87

Figure 5.5: Comparison of the naive approach (left) vs. the par-
titioned approach (right) in estimating the differential
cross-section against y, where y is the minimum yij as
ordered by pT . Data is normalised to the maximum
Njet bin value. Uncertainty bands as described in
Figure 5.4.

88
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

the normal distribution and ζs is the standard deviation. Secondly, we note that in

the case of the partitioned method, the outputs of the networks trained over different

partitions are first summed (c.f. Equation (5.2.6)) giving

σFKS = α
Nmax∑
p=1

dσp + βσnon-div, (5.3.3)

where Nmax is defined in Equation 5.2.7, 1, dσp is the sum over all weighted matrix

elements for a given FKS pair, and α and β reweight the contributions of the local

cross-sections in proportion to the number of total points in each region. Since we

only partition the divergent region, Rdiv, according to the FKS partition function,

we add the differential cross-section over the non-divergent region, σnon-div.

Given that the uncertainties in the individual networks making up the partitioned

model are expected to manifest themselves in a similar way to the naive approach,

we may also assume that these are drawn from a normal distribution such that

∀p ∈ {1, ..., Nmax} : dσp ∼ N (µp, ζ2
p), dσnon-div ∼ N (µnon-div, ζ

2
non-div), (5.3.4)

=⇒ σFKS ∼ α
Nmax∑
p=1
N (µp, ζ2

p) + βN (µnon-div, ζ
2
non-div) (5.3.5)

∼ N

Nmax∑
p=1

αµp,
Nmax∑
p=1

α2ζ2
p

+N (βµnon-div, β
2ζ2

non-div) (5.3.6)

∼ N

Nmax∑
p=1

αµp + βµnon-div,
Nmax∑
p=1

α2ζ2
p + β2ζ2

non-div

 (5.3.7)

:= N (µFKS, ζ
2
FKS). (5.3.8)

Since the uncertainties in the partitioned method are smaller than those found when

using the naive approach

ζ2
FKS < ζ2

s (5.3.9)

would likely be systematic of the model architecture choice, sampling algorithm and other factors
external to the uncertainty measured here, thus resulting in a symmetric distribution, up to an
approximation.

1In our implementation, for future process independence and coding simplicity we actually have
Nmax + 1 pairs since we do not discard the qq̄ pair. In the processes examined in this Chapter, this
has the effect of splitting the non-divergent region into two parts although, given the ease with
which the networks are able to learn this region, we do not find this causing an issue.

5.3. Results 89

=⇒ α2ζ2
p < ζ2

s ,∀p ∈ {1, ..., Nmax} and β2ζ2
non-div < ζ2

s . (5.3.10)

From Equation 5.3.10 we see that not only does the partitioned method have a

reduced uncertainty in comparison to the naive method, but that each individual

network making up the partitioned model also has a reduced uncertainty contribution,

thus supporting the claim that by using the partitioned method, the networks

learning the divergent structure are more certain, relative to their contributions,

about what they are learning and less sensitive to both model initialisation and

dataset size.

The overall accuracy of the partitioned approach, combined with the implications

of Equation 5.3.10, demonstrates that we are learning the divergent structure of the

amplitude sufficiently well. As discussed in Section 5.2.3, it should be noted that

Figure 5.4 and Figure 5.5 do not show the performance of a single model, but rather

the average of 20 trained models with their equivalent standard error. Although one

does not have to train this many models to get a good approximation, in Section

5.3.2 we will see that training additional models is computationally cheap and thus

not a large hinderance.

Figure 5.5 shows the differential cross-section of the yij distribution of the two softest

jets as ordered by pT . Again, we plot the mean of the 20 trained models and the

standard error on the mean. These differential distributions were chosen as they

highlight the performance of the models in hard-to-sample regions of phase-space, in

particular some of the regions we would expect the FKS partition function to assist

with learning. Indeed, we see a significant improvement when using our partitioned

method both in comparison to the performance of the naive approach, in overall

per-bin, accuracy and in stability. In addition, the partitioned method also produces

narrower uncertainty bands than the naive approach, thus demonstrating its higher

confidence in these regions. While this confidence is seen to be slightly misplaced

in the case of the 5-jet plot at ycut = 0.01, we see the harsher cut mostly correcting

90
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

for this and producing good agreement between the Njet and partitioned results.

Similar reasoning to that given in Equations 5.3.4 - 5.3.10 can be applied to the

per-bin uncertainty differences between the naive and partitioned approaches.

Overall, the partitioned model is shown to produce more accurate and reliable results

in LO approximations than the naive approach. While it can be argued that there

is greater computational expense in training multiple networks, given the very low

cost of network training in comparison to the data generation time this is considered

to be negligible, particularly at higher orders (see Section 5.3.2 for more details).

5.3.2 Virtual Approximations at NLO

When approximating the k-factor, the IR singularities present in the previous ex-

amples have been normalised by dividing out the LO matrix element. This normalisa-

tion regulates the number of large divergences in phase-space, allowing the network

to focus more on learning the loop-induced divergences. Additionally, although the

FKS method is especially useful for isolating soft and collinear divergences at LO,

given the presence of logarithmic terms in sij in the virtual corrections, we still

expect to see improvements by using the partitioned method when approximating

the k-factor.

As in the LO case, in Figure 5.6 we plot the error distributions for the naive and

partitioned cases by comparing the network outputs to the Njet calculations at the

per-point level. In the 3 and 4-jet cases we see that both methods perform relatively

similarly, with the naive approach appearing to be slightly better in the case of 4-jets.

However, it should again be noted that these plots do not contain information about

the network uncertainty and so should not be interpreted as the sole measure of

performance.

In Figure 5.7 we see that both the naive and the partitioned approaches approximate

the k-factor to within Monte Carlo error at 3-jets, and are within the percent level

at 4-jets. Although either methodology would be suitable for use, the partitioned

5.3. Results 91

Figure 5.6: k-factor output of the naive approach (red) and the par-
titioned approach (green) compared to the Njet calcu-
lation at different multiplicities. Outputs are taken as
the average over 20 trained models.

Figure 5.7: Comparison of the naive approach (left) vs. the par-
titioned approach (right) in estimating the normalised
NLO/LO k-factors. Uncertainty bands as described in
Figure 5.4.

92
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

approach requires little more computational time in comparison to the naive model,

while producing narrower uncertainty bands. For robustness at higher multiplicity,

the partitioned method remains the more optimal method.

A comparison between the computational speed of different methods of k-factor

computation and calculation can be found in Table 5.1. Here we see a dramatic

speed-up when using the network approximation as opposed to current numerical

methods, with the dominant time saving coming from the reduction of the number

of matrix elements having to be explicitly calculated using Njet (i.e. in the case

of training on 100k points and inferring on 1M at high multiplicity the speed-up

is O(10)). Moreover, the assertion that the partitioned method is not significantly

more expensive than the naive approach can be verified. It should be noted, by only

training on 10k points we may achieve unacceptable performance when compared

to the 100k results. The results presented in the table are therefore designed to

demonstrate the computational time required for network training in comparison

to the Njet calculation, as opposed to providing guidelines on how many training

points to use.

As in Section 5.3.1, we plot the differential k-factors of the y distribution of the two

softest jets as ordered by pT . In Figure 5.8 we see that both the naive and partitioned

approaches model the data well. As before, the partitioned method provides us with

slightly narrower uncertainty bands in both the 3 jet and 4 jet cases. Additionally,

although neither the naive model, nor partitioned model, approximate the peak in

the 4 jet distribution exactly, the peak location is more accurately approximated

by the partitioned approach with only a single bin at the peak being significantly

ill-approximated. While we do not necessarily see much improvement in using the

partitioned approach, given that the additional training time required is negligible in

comparison to the data generation, as well as its performance in approximating the

overall cross-section, we still see the partitioned approach as a viable and beneficial

method to use for k-factor approximation. It should be noted that similar reasoning

as given in Equations 5.3.4 - 5.3.10 can again be applied to the k-factor and per-bin

5.3. Results 93

Figure 5.8: Comparison of the naive approach (left) vs. the par-
titioned approach (right) in estimating the differential
NLO/LO k-factors against y, where y is the minimum
yij as ordered by pT . Data is normalised to the max-
imum Njet bin value. Uncertainty bands as described
in Figure 5.4.

94
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

10k training, 1M inference 100k training, 1M inference
Njet Partitioned approach Njet Partitioned approach

Jets Time (hrs) Time (hrs) % diff Time (hrs) Time (hrs) % diff
3 13.2 0.15 −0.5± 0.3 13.2 1.32 0.1± 0.2
4 194 1.97 0.5± 0.5 194 19.4 0.1± 0.4
5 6.39× 103 63.9 - 6.39× 103 639 -

Table 5.1: Time required for k-factor calculation at different multi-
plicities requiring 1M points, while training on 10k and
100k points. Performance of the partitioned approach is
assessed by calculating the percentage difference in the
cross-section approximation normalised to the Njet res-
ult. Errors are calculated by adding the model uncer-
tainty and Monte Carlo error from the Njet result in
quadrature. These results assume all calculations take
place on a single CPU core and that the training points
form part of the inference set. Training on 10k points
is fast but not necessarily reliable, whereas using 100k
points gives more reliable results and so may be a more
reasonable estimate of the speed-up. Results are not
given for 5-jets since we did not generate testing data at
this multiplicity.

uncertainty differences between the naive and partitioned model approaches at NLO.

Finally, in the case of 5-jets we demonstrate our methodology as it may be used in

practice. In Figure 5.9 we show how one may infer on a set of points with no known

Njet results for testing, while understanding the associated neural network errors.

From these plots we clearly see that the partitioned method has associated errors

only at the level of 0.5% in the cross-section, with larger uncertainties in the regions

of the differential plot where one would expect Monte Carlo error to dominate.

As highlighted above, when you do not have a test set for comparison, it may be hard

to validate the optimal number of training points required for a good approximation.

While at NLO we present the results of networks trained on 100k points, and found

this number to be relatively optimal with regards to accuracy, stability, and training

time, we do not claim that this will always be the case for other processes. Although

generating more Njet matrix elements for testing is the best way to assess network

accuracy, a possible substitute would be to test on the training data. While this

5.3. Results 95

Figure 5.9: Normalised NLO/LO k-factor and differential k-factor
against y, where y is the minimum yij as ordered by
pT , at 5 jets using just the partitioned approach. Data
in the differential plot is normalised to the maximum
network output value. Uncertainty bands denote the
following errors added in quadrature: one standard error
from model uncertainties and one Monte Carlo error
on the result itself. Uncertainty bands are given as
a percentage of the mean calculated over 20 trained
models.

is not generally regarded as good practice, given the problem at hand it may not

be as bad as in other cases. For instance, unless there is a large degree of noise

in the cross-section given the size of the training dataset, as an initial measure of

model performance we can quantify the uncertainty in our training set and assess the

proximity of our network uncertainties and this Monte Carlo error. Additionally, our

network uncertainty calculation depends only on the network’s behaviour relative to

the training set and is independent of the test set. Therefore, although testing on

the training set is still not ideal, given how we calculate our network uncertainties

and by using our physics knowledge of the Monte Carlo error, we are able to use this

as a first test of network performance without having to generate additional testing

data.

96
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

5.4 Summary

In this Chapter we have explored the possibility of optimising simulations for many-

scale processes needed for LHC analyses. Machine learning technology is finding

an increasing number of applications in particle physics and offers the potential to

dramatically reduce the CPU cost of expensive simulations.

The application to scattering amplitudes is a little different to classic examples of

neural networks in that the dataset is exact. 1 We can also have complete control

over the range of the dataset, although the CPU cost of obtaining the data can be

very high. The challenge is to make a sufficiently good fit to the data that a reliable

interpolation and extrapolation of differential cross-sections can be made. The CPU

cost of the extrapolation/interpolation is negligible in this procedure so the further

the network can be extrapolated, the better the computational speed-up.

In this Chapter, we have looked at multi-scale amplitudes which are not well suited

to more traditional approximations with polynomial grids. At one-loop, scattering

for 2 → 4 or higher multiplicity becomes extremely expensive, even with modern

automated tools. We find that a reliable amplitude approximation can be difficult

to achieve when using a naive single neural network due to the large changes in the

amplitude related to its singularity structure. We compare this naive approach to a

technique in which an ensemble of networks are used to approximate the amplitude

by separating the singularities, using an FKS partitioning. This partitioned approach

has shown promising results at both the per-point level as well as in estimating the

cross-section and differential distributions.

Understanding the reliability of this approach is one of the biggest challenges. By

varying the initial data and parameter initialisations used in the network, we find

a way to estimate the error on the networks. For all but the highest multiplicity,

e+e− → 5 jets, we also provide comparisons to direct integration of the amplitude.
1Technically we restrict to double precision, although higher precision arithmetic could be used

in principle.

5.4. Summary 97

At LO we observe that the FKS partitioning provides significantly more reliable

and accurate estimates than the naive approach, while in the case of NLO k-factors,

where the leading order singularity structure is divided out, the partitioning still

helps in these regards, with results accurate to within a few percent. Moreover,

Equations 5.3.4 - 5.3.10 show that each network in the partitioned model has a

smaller associated uncertainty than that of the naive model, thus suggesting that

the partitioned model is learning the divergent structure with a higher confidence

than the naive model. Indeed, this is the case at both LO and NLO. The networks

not only provide good scattering amplitude approximations, but also lead to reliable

predictions with a speed up comparable to the ratio of the number testing to training

points.

In this initial study we have made a number of simplifications whose effect could be

important when using the technique for a realistic analysis. Firstly, we employed

a simple flat phase-space generation using the RAMBO algorithm. This makes it

hard to compare with the more efficient generators used in state-of-the-art Monte

Carlo simulations. The JADE jet algorithm may exacerbate the soft singularities

and so the effect of alternative jet algorithms, as well as the effect of introducing

initial state singularities in pp collisions. We also see in the higher multiplicity cases

that the error from the neural network approximation does start to increase. It

may be in these cases that the NLO FKS separation requires modification. In this

study we used a simple version of the partition function based only on the kinematic

invariants. In general, we can alter the scaling power of the invariants in the various

limits which will affect the behaviour of the FKS regions away from the singularities.

To address some of these concerns, in the next Chapter we explore the applicability of

the methodology developed above, to increasingly complex gluon-induced diphoton

scattering processes. Such processes introduce the challenges of initial-initial and

initial-final state singularities, which were not present in e+e− collisions, as well as

the absence of tree-level diagrams, since these processes are loop-induced at LO. We

will also assess how to integrate these ML techniques with existing Monte Carlo

98
Chapter 5. Machine learning for matrix element approximation:

e+e− → qq̄ + jets

event generator technologies, such as Sherpa, and test the robustness of our ML

approach to more phenomenologically relevant cuts.

Chapter 6

Machine learning for matrix

element approximation: diphoton

+ jets

6.1 Motivation

In Chapter 5 we developed an ML pipeline for learning matrix elements for e+e−

collision processes at both tree and one-loop level and at high multiplicity. This

provided a good test bed in which to develop our methodology, without having to

be concerned about initial-state singularities, and additional factors such as PDFs

which alter the centre of mass of the system. In this Chapter, we will extend this

work to consider a class of scattering processes that contribute to diphoton signals

at hadron colliders. We will also introduce a systematised pipeline for using the ML

approach described previously for phenomenological studies in practice.

The process gg → γγ + n(g) is a good test case for ML technology, since it is

loop-induced and has relevant contribution from high multiplicity matrix elements.

Using automated tools at NLO, full QCD corrections are known for pp→ γγ + ≤ 3

jets [168–170]. There has been a flurry of recent activity around next-to-next-to-

leading-order (NNLO) corrections to pp → γγ + j in which the complete leading

100
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

colour corrections have been presented [171–175]. As such, 2 → 3 and 2 → 4

scattering for the gluon-initiated diphoton channel are now extremely relevant for

future phenomenological studies.

The interface of general one-loop amplitude codes into multi-purpose Monte Carlo

event generators has resulted in a wide variety of simulation options which can

offer the best possible theoretical accuracy. Methods that go beyond fixed-order

perturbation theory — such as parton shower matching, merging, and jet multipli-

cities — improve accuracy across important regions of phase-space. However, these

simulations add additional strain on the underlying amplitudes.

State-of-the-art tools make use of advanced phase-space mapping algorithms to im-

prove the convergence of the multi-dimensional integration (see Chapter 3). General

purpose Monte Carlo event generators such as Sherpa [2,50], Pythia [45,46], Her-

wig [47–49], and MadGraph [51] often make use of the diagram structure of the

underlying tree-level process to ensure an optimal distribution of points during the

integration grid optimisation phase. Reusing tree-level distributions when generating

virtual events is particularly effective at reducing the computational cost of using

complicated one-loop amplitudes. However, this is not possible in the loop-induced

processes discussed here.

Given these problems the gg → γγ + n(g) processes present a relevant and present

challenge to event generation. In this Chapter we will not only apply our pipeline

to this process and explore its performance, but also interface our approach with

Sherpa, and assess its robustness to the additional complexities which arise.

6.2 Gluon-initiated diphoton amplitudes

We study amplitudes with two photons and many gluons which first appear at

one-loop level in the SM. With conventional simulations relying on cheaper LO

tree evaluations to optimise event generation for NLO one-loop contributions, these

6.2. Gluon-initiated diphoton amplitudes 101

loop-induced processes present an interesting sector to test new approaches for phase-

space integration. Compact analytic computations for gg → γγ and gg → γγg have

been available for some time and offer extremely fast and stable evaluation. As a

result, it is feasible to optimise event generation with the one-loop evaluation. For

2→ 4 scattering problems, only numerical codes are available and simulations can

be extremely slow. It is also not clear that analytic formulae would be sufficiently

compact to alleviate this situation, even if they were available.

The loop-level amplitudes proceed through a fermion loop and have a colour decom-

position in the trace basis as

M(n−2,1)(1, . . . , n− 2, (n− 1)γ, nγ) =

gs
n−2gγγ

∑
σ∈Sn−3

λ(σ (a1, . . . , an−2))A(1)(σ(1, . . . , n− 2), (n− 1)γ, nγ), (6.2.1)

where gs is the strong coupling, gγγ = g2
e

∑
qQ

2
f is the combined coupling of the

diphoton system to the fermion loop, Sn−3 is the set of even non-cyclic permutations

of {1, . . . , n− 2}, f runs over active quark flavours with fractional quark charge Qf ,

and the colour trace function λ is defined as

λ (a1, . . . , an−2) = tr (ta1ta2 . . . tan−2) + (−1)ntr (ta1tan−2 . . . ta2) . (6.2.2)

For example, for n = 4 there is a single primitive amplitude. 1 It is given by the

diagrams

A(1, 2, 3γ, 4γ) =

1g

2g 3γ

4γ

+

1g

3γ 4γ

2g

+

1g

4γ 2g

3γ

,

(6.2.3)

where a plain line indicates a sum over quark loop arrow directions. At one-loop,

these amplitudes are also related to the fermion loop corrections to pure gluon
1Primitive amplitudes are gauge invariant and have fixed cyclic order of external legs. The

permutations, σ, introduce the sum over the different permutations of the QCD generators.

102
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

scattering through permutations [176]. The ingredients for differential cross-sections

are the squared amplitudes summed over helicities, h, and colour,

|M(n−2,1)|
2 =

(
αs
4π

)n−2
g2
γγ

∑
h,i,j

A
(1)
i

∗
(h) Cij A(1)

j (h) +O(αn−1
s) (6.2.4)

where the matrix C is a function of the number of colours, Nc, obtained by squaring

the colour basis elements, and the index on the partial amplitudes, A, refers to the

different permutations in the colour decomposition.

As in Chapter 5, the amplitudes are taken from the Njet C++ library [65]. Here,

there are different options: a general numerical setup using generalised unitarity

and integrand reduction; and hard-coded analytic expressions for n = 4, 5. The

n = 4 analytic expressions were taken from [177], while for n = 5 they were obtained

directly from a finite field reconstruction [178] and are in agreement with known

analytic formula [176,179].

The numerical evaluation requires the sum of permutations of ordered primitive

amplitudes. This is completely automated for arbitrary multiplicity, but evaluation

times and numerical stability are increasingly difficult to control.

To study the growth of evaluation time with multiplicity, we evaluate the matrix

element at 100 random phase-space points with each available technique and plot the

mean times in Figure 6.1. We generate the phase-space points isotropically with the

algorithm from [180]. While analytic methods are competitive at low multiplicity,

we see they scale poorly and are unlikely to beat numerics at n ≥ 6. Numeric scaling

is better, but these algorithms come with a high cost. Our NN approach provides

a performant alternative, with significantly better scaling than either numerics or

analytics.

6.3 Computational setup

In this Chapter, we build on the work presented in Chapter 5, where a NN ensemble

approach was presented in which a different NN is trained on each soft and collin-

6.3. Computational setup 103

4 5 6

Multiplicity

10−2

10−1

100

101

102

103

104

E
va

lu
at

io
n

ti
m

e
(m

s)

Numerical

Analytical

NN ensemble

Figure 6.1: Matrix element typical CPU evaluation times for avail-
able methods — including Njet numerical evaluations,
Njet analytical evaluations, and inference on a NN en-
semble as described in Section 5.2 — against the number
of legs. These calls are single-threaded as parallelisa-
tion is applied at the level of events in simulations. An
analytic expression for 2→ 4 is not available. The NN
is comparable to the analytic call at 2 → 2, 50 times
faster at 2 → 3, then 105 times faster than the 2 → 4
numeric call. All NN evaluations were performed using
the same yp parameter value. The differences in eval-
uation time with increasing multiplicity is therefore a
result of points falling into Rdiv.

104
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

ear region of phase-space, and was shown to be effective in handling IR divergent

structures at both the Born and one-loop level at high multiplicity in e+e− collisions.

In the case of the 2 → 3 and 2 → 4 gluon-initiated diphoton amplitudes, we have

initial-initial, initial-final and final-final state IR singularities. Therefore, in this Sec-

tion, we will present a generalisation of the phase-space partitioning introduced in

Section 5.2.1 to hadron-hadron collisions as specified in [38]. We will also discuss the

interfacing of our methodology with existing event generators such as Sherpa [2,50].

This is important to demonstrate since it is not immediately obvious that NN ap-

proximations trained in isolation will be robust to the added intricacies of event

generators important for extracting physical results, such as PDF weightings and

choices of integrators.

6.3.1 Phase-space partitioning for hadron-hadron collisions

In Section 5.2.1 we introduced our method for phase-space partitioning based on FKS

subtraction [37,38] techniques. We now generalise the divergent and non-divergent

regions of phase-space presented in Equations 5.2.2 and 5.2.3 to include the relevant

additional FKS pairs

Rdiv =
{
p |min(yij) ≤ yp, p = (p1, p2, . . . , pn), i, j ∈ {1, . . . , n}

}
, (6.3.1)

Rnon-div =
{
p | yp ≤ min(yij), p = (p1, p2, . . . , pn), i, j ∈ {1, . . . , n}

}
, . (6.3.2)

In Equations 6.3.1 and 6.3.2, we have removed the ycut parameter introduced in

Section 5.2 since we will be using more phenomenologically relevant global cuts in

this Chapter (see Section 6.3.2). The FKS pairs are then defined as

PFKS = {(i, j) | 1 ≤ i ≤ n, 2 ≤ j ≤ n, i 6= j,

M(n,0) orM(n,1) →∞ if p0
i → 0 or p0

j → 0 or ~pi ‖ ~pj}. (6.3.3)

The partition functions are then the same as in Equation 5.2.5, with the newly

defined FKS pairs from Equation 6.3.3.

6.3. Computational setup 105

The above definitions are appropriate for the processes studied in this Chapter as

they account for the different singularity structure to that found in the case of

e+e− (i.e. they explicitly include the initial-state singularities). To allow for easier

generalisability to other processes, we include all pairs of initial- and final-state

particles in our implementation, including the {γγ} pair which is redundant as it

does not exhibit the relevant singularity structure. This redundancy does increase

the computational time required; however, we find the performance of the NN

ensemble is not adversely affected. The above implementation could therefore be

simply generalised to the e+e− case, although again with some redundancy.

6.3.2 Neural network setup

While the focus of this Chapter is the use of the NN ensemble method presented

in Chapter 5, for completeness we present a comparison of this method against a

naive (single network) approach in Appendix F. The same network architecture

as presented in Section 5.2.2 is used. Hyperparameter tuning also comfirmed the

appropriateness of this choice (see Appendix D for more details).

Data

The sampling of phase-space is dependent on the integrator. In this Chapter we

use integrators already available in Sherpa. Unless otherwise specified, the same

integrator is used for training, validation and testing. We generate the datasets

from two runs of the integrator: the first is divided into training and validation

datasets according to an 80:20 split; the second uses a different random seed from

the first, and is used for the test dataset (with the exception of error plots showing

the per-point accuracy of the models). Otherwise, data is generated as in Section

5.2.2 for the NLO case, and we train our networks on 100k points and test on 3M. 1

1Varying types of data processing were used for hyperparameter tuning (see Appendix D for
more details). However, standardisation was still the chosen method.

106
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

All our simulations use √scom = 1TeV; the methodology is theoretically agnostic to

this choice. In Chapter 5, a simple JADE algorithm was used for the global phase-

space cuts. To test the robustness of our approach to more realistic phenomenological

cuts, unless otherwise specified all models are trained, and analyses performed, using

the following kinematic cuts adapted from those in [169]

pT,j > 20 GeV Rγ,j > 0.4
∣∣∣ηj∣∣∣ < 5

pT,γ1 > 40 GeV Rγ,γ > 0.4
∣∣∣ηγ∣∣∣ < 2.37

pT,γ2 > 30 GeV

where pT =
√
px

2 + py
2 (beam along z-axis) is transverse momentum magnitude,

R =
√

(∆η)2 + (∆φ)2 is isolation cut cone radius, η is pseudorapidity, φ is azimuthal

angle, γ denotes a photon, photons are ordered by pT , and jets, j, are identified

through the anti-kT algorithm [181] implemented in FastJet [182] with R = 0.4.

These cuts are typical for LHC analyses. Photons are selected by smooth cone

isolation [183] such that all cones of radius rγ < R satisfy

Ehadronic(rγ) ≤ ε pT,γ
1− cos rγ
1− cosR

with R = 0.4 and ε = 0.05.

Matrix elements are evaluated with renormalisation scale µR = MZ , where MZ is

taken from the PDG [1]. Since the one-loop process is LO, the full amplitude is

finite and has µR dependence in the couplings only.

6.3.3 Interfacing with event generators

Assessing performance after interfacing with existing event generator technology is

important for demonstrating ‘real-world deployment’ of ML algorithms in particle

physics simulations, as it exposes the model to a range of post-inference effects which

may alter the final reliability of the model. For example, generators allow for the

6.3. Computational setup 107

easy implementation of complex phase-space cuts, jet clustering algorithms, phase-

space and PDF weights, as well as different integrators and integration optimisation

routines.

The interface

Event generators are largely written in C++ for computational efficiency. Therefore,

after the model has been trained, the weights of each NN are extracted and written

to file. A C++ program reads these models’ files and performs the linear algebra

operations required during the inference step, using Eigen [184]. This means the

Python libraries used for model training and inference are circumvented, and the

call time for model inference is reduced, while keeping everything in C++ simplifies

the interfacing of the model with standard event generators.

Given a set of 4-momenta, a custom C++ interface provides the helicity- and colour-

summed matrix element to Sherpa. This can be used to call Njet evaluations

through a BLHA interface [155,156] or to call the model inference result. Rivet [185,

186] is then employed for analysis, with a script adapted from the reference analysis

of [187].

Phase-space integration

Phase-space integrators seek to achieve increasingly optimal rates of integration

convergence through the careful sampling of points. While the choice of integrator

can affect the overall rate of convergence, it also determines the placement of phase-

space points which directly feeds into the distribution of points in the training

dataset.

Since these processes are loop-induced, for simplicity we use the RAMBO integrator

[6] throughout for event generation (see Appendix B.1). However, we test different

approaches to generating the integration grid. The first we term the ‘unit grid’,

which is constructed by running the grid optimisation step while returning a unit

108
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

value in place of the matrix elements. This effectively removes the dependence on

the optimisation procedure and, since RAMBO is used, ensures a uniformly and

isotropically sampled phase-space. The second uses VEGAS [73, 74] optimisation

when generating the integration grid, thereby putting a preference on sampling

regions of particular importance to the cross-section (see Appendix B.2). We share

the integration grid between training and testing phases, meaning this importance

sampling is reflected in both. Given the expense of matrix element calculation for

the 2 → 4 scattering process, we reserve the use of VEGAS optimisation only for

the 2→ 3 case.

Weights

When training the models, we do not include explicitly any event generator effects.

All additional weightings, i.e. phase-space weights and PDF weights, are introduced

after the model has been used for inference, as is done for other matrix element

generators. The addition of these weightings has the potential to be problematic for

model performance: when the model is trained it is unlikely to learn all regions of

phase-space equally well and there is a chance that those regions in which the model

has poor performance could be amplified by these additional weighing factors.

In order to test for this we include PDF weights using the LHAPDF library [188]

and the NNPDF3.1 set NNPDF31_nlo_as_0118 [189] as well as phase-space weights

which depend on the integration grid optimisation method.

6.3.4 Reweighting

The approach used in this Chapter to train the NN ensemble provides good agreement

between the network output and that of Njet. However, the ensemble approach

will always be an approximation and is subject to perform poorly in certain regions

of phase-space, especially those in which it has not been trained or in which training

data are sparse. As a partial remedy to this, we propose the idea of reweighting the

6.3. Computational setup 109

event weights with known matrix element values derived from Njet. When using

weighted event generation, this can either be performed after event generation or

can be done ‘on the fly’ at the interface level. The former approach is possible since

the original event weight can be recovered through

w
(Njet)
E,i = w

(NN)
E,i ×

M(Njet)
i

M(NN)
i

, (6.3.4)

where wNjet
E,i and wNN

E,i are the event weights using Njet and the NN ensemble

respectively for a given phase-space point i, andMNjet
i andMNN

i are the associated

matrix elements.

As the ratio Njet/NN is not known a priori, we must construct criteria on which

to reweight. Specifically, we explore the following:

1. A random sample of points (e.g. 10%) regardless of where they are in phase-

space;

2. A priori stating which regions of phase-space in which to reweight and then

doing so either randomly or over the entire region;

3. Using the NN uncertainties to inform reweighting, e.g. points with large un-

certainties are reweighted.

There are several factors informing which approach is the most appropriate. The

first of these is the added compute time required: all of these techniques necessitate

calculation of the matrix element by an analytic or numerical evaluator and therefore

limit the desirable number of points to reweight. The second is the performance gain

and confidence in the output in certain regions of phase-space. If the analysis being

performed is specific to an under-sampled region of phase-space, such as distribution

tails where the network may under-perform due to divergent structures in the matrix

element, this could be an especially important region in which to reweight. However,

if general process explorations are being performed, meaning all distributions and

110
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

cross-sections are of relative equal importance, then a less restrictive reweighting on

regions of phase-space may be optimal.

In this Chapter, we explore the application of reweighting to the processes described

in Section 6.4. While reweighting is not always found to be necessary given the

performance of our methodology, we demonstrate how it can be applied and discuss

which reweighting criteria show the greatest performance gain.

6.4 Results

In this Section, we present the results of our experiments for the 2→ 3 and 2→ 4

gluon-initiated diphoton amplitudes. As the former is significantly less computa-

tionally expensive, we use this for a deep analysis and exploration. The proposed

pipeline for using our ML set up and interface with event generators is as follows:

1. Generate an integration grid;

2. Use this with a matrix element provider to generate training and validation

datasets;

3. Train the model;

4. Use the model to estimate the values of the remaining phase-space points for

event generation while using the same integration grid;

5. Reweight (if necessary);

6. Obtain final results.

To assess performance, we also evaluated matrix elements with Njet in parallel with

the models, with different random seeds.

6.4. Results 111

−2 −1 0 1 2

ln(∆)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

qu
en

cy
[%

] Unit grid

gg → γγg

∆ = NN
NJet

Figure 6.2: NN/Njet errors for the 2→ 3 scattering process using
a unit integration grid.

6.4.1 gg → γγg

First we investigate the performance of our methodology on the loop-induced gg →

γγg process. Following the procedure outlined above, we use a unit integration grid,

choose a random seed with which to generate the training and validation datasets,

and use another to seed infer on the trained model.

Figure 6.2 shows the performance of our trained NN ensemble at the matrix element

level, here represented as the ratio of the model inferred values to the Njet eval-

uations. The errors form a narrow and approximately symmetric unit-centered

distribution, thus demonstrating that the ensemble method has a reasonable per-

point accuracy. The slightly elongated right tale of the distribution is due to large

matrix element values in highly divergent regions of phase-space, yet these points

are in the minority.

Once the ensemble is trained, it is converted to be called by the event generator

interface which allows for the calculation of the cross-section and differential distribu-

tions. While in Chapter 5 we used a simplified version of the partonic cross-section,

here we compute the full hadronic cross-section (see Equation 3.1.1). The first line

of Table 6.1 shows the results of the cross-section derived using Njet and the NN

ensemble. We see that these two approaches are in excellent agreement, with the

ensemble result overlapping within one standard deviation of that calculated by

Njet. The errors on the Njet values are the Monte Carlo errors, and the errors

112
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

Cuts Njet [pb] NN ensemble [pb]
Baseline 4.149× 10−6 ± 6× 10−9 4.19× 10−6 ± 7× 10−8

Baseline + pT,γ > 50GeV 5.283× 10−7 ± 8× 10−10 5.4× 10−7 ± 2× 10−8

Baseline + mγ,γ > 50GeV 3.300× 10−6 ± 5× 10−9 3.34× 10−6 ± 5× 10−8

Table 6.1: Cross-sectional comparison between Njet and the NN
ensemble approach using different cuts. Baseline cuts
are those specified at the beginning of Section 6.4. The
Njet results are quoted with Monte Carlo errors and
the NN ensemble results with precision/optimality un-
certainties calculated as described in Section 5.2.3.

on the ensemble are precision/optimality uncertainties. The latter are calculated by

training multiple ensembles with different random seeds in the weight initialisation,

and in the shuffling of the training and validation datasets. Monte Carlo errors are

quoted to one standard deviation and the precision/optimality uncertainties to one

standard error on the mean. A more in depth description of this uncertainty analysis

can be found in Section 5.2.3.

The error plot and cross-section calculation provide good evidence for the perform-

ance of the NN ensemble method both in its ability to learn the distribution of

phase-space points on average, as well as its robustness to being integrated into a

wider event generation framework with additional phase-space and PDF weights.

Figure 6.3 demonstrates the performance of the NN ensemble in comparison to

Njet in six differential slices of phase-space. These include pT , angular, and diphoton

system distributions which have been chosen to give a range of realistic constructions

exploring different regions of phase-space. In general, the NN ensemble is found to be

in good agreement, particularly around the peaks, with the majority of the NN bin

values being within the Njet Monte Carlo error. The normalised NN uncertainty on

the differential bins is negligible in comparison to the MC error. Strong performance

is pronounced in the pseudorapidity distribution, which shows variation at the

percent level. The pT and angular distributions show more fluctuations in the tail

events, with the diphoton mass demonstrating the greatest deviations in these regions.

However, despite these differences, fluctuations are clearly statistical rather than

6.4. Results 113

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
p T

,j
1

[G
eV
−

1
]

NJet

NN

0 100 200 300 400 500

pT,j1 [GeV]

0.5

1.0

1.5

R
at

io

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
p T

,j
2

[G
eV
−

1
]

NJet

NN

0 100 200 300 400 500

pT,j2 [GeV]

0.5

1.0

1.5

R
at

io
10−4

10−3

10−2

1/
σ

d
σ
/d

∆
φ
j 1
j 2

[r
ad
−

1
]

NJet

NN

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∆φj1j2 [rad]

0.5

1.0

1.5

R
at

io

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
R
j 1
γ

1

NJet

NN

1 2 3 4 5

Rj1γ1

0.5

1.0

1.5

R
at

io

10−5

10−4

10−3

10−2

10−1

100

1/
σ

d
σ
/d
m
γ

1
γ

2

NJet

NN

0 200 400 600 800 1000

mγ1γ2

0.5

1.0

1.5

R
at

io

10−3

10−2

1/
σ

d
σ
/d

∆
η γ

1
γ

2

NJet

NN

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∆ηγ1γ2

0.5

1.0

1.5

R
at

io

Figure 6.3: Differential distributions normalised to the cross-section
for the 2 → 3 process comparing Njet (red) with the
NN ensemble (blue). The Njet results are quoted
with Monte Carlo errors and the NN results with pre-
cision/optimality uncertainties calculated as described
in Section 5.2.3 but which are negligible in comparison.
Pseudojets ji and photons γi are ordered by energy,
∆φ is azimuthal separation, R-separation is defined in
Section 6.3.2, and mγ1,γ2 and ∆ηγ1,γ2 are the mass and
pseudorapidity separation of the diphoton system.

114
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

0 10 20 30 40 50

Rdiv reweighted [%]

0.996

0.998

1.000

1.002

1.004

1.006

1.008

σ
(R

W
) /
σ

(N
J
et

)

Figure 6.4: Effect of reweighting points in the divergent region of
phase-space, Rdiv, on the ratio between the reweighted
cross-section, σ(RW), and the cross-section calculated us-
ing Njet σ(Njet) for the 2→ 3 process. In this case, the
divergent region comprises approximately 7–9% of the
total phase-space (see Appendix E for details). The red
band shows the Monte Carlo error on the Njet result.

systematic meaning agreement will increase as the bins are aggregated. This is to

be expected given the strong cross-section performance.

The results presented so far have been derived from a NN ensemble trained and

tested on the same integration grid and on the same cut parameters. However, in

phenomenological explorations it is common to study a range of cut parameters,

especially when measuring the effects of new phenomena. Since the NN ensemble

performs well at the per-point level (as shown in Figure 6.2), it should also be able

to generalise to different cut parameter configurations. Specifically, the ensemble

should still be applicable to harsher cuts than those used in training because the

it expects the training and testing datasets to be drawn from the same statistical

distributions. However, in the event that cuts are relaxed in comparison to those

the model was trained on, reweighting could be employed for the relevant additional

subset of points, thereby guaranteeing the expected values in these ‘unseen’ regions

of phase-space.

The second and third lines of Table 6.1 present a comparison of cross-section values

calculated using Njet and the NN ensemble with harsher cut values than the baseline.

6.4. Results 115

The agreement between the two approaches is comparable to the agreement found

before the additional cuts were added, thereby suggesting good generalisability to

looser cuts. Indeed, this is not surprising since the points with the largest errors

between the NN and Njet were the most divergent points and therefore the ones

more likely to be cut, given the IR singularities present in these processes.

The generalisation to additional cut parameters demonstrates both the robustness of

this training regime, as well as the practical gain in not having to retrain a network

for each specified set of cuts. This allows us to generalise the training and testing

procedure outlined at the beginning of this section to suggest that the NN ensemble

be first trained on more relaxed cuts and then, as iterations of harsher cut parameters

are explored during analysis, these can be applied without the ensemble significantly

decreasing in performance. If cuts are to be relaxed then reweighting could be used

to ensure good performance at the expense of compute time.

While the network performance has been shown to be strong overall, other reweighing

methods can still be explored. Reweighting randomly across all phase-space, even

at the 20–40% level, was not found to significantly reduce the difference in the

computed cross-sections. Similarly, the NN ensemble uncertainties were not found

to be correlated with the uncertainties, and so were discarded as a good reweighting

criterion. As mentioned above, the points in which targeted reweighting can be most

beneficial are those which fall within the divergent regions of phase-space. Figure 6.4

presents the results of reweighting points randomly in Rdiv (as defined in Equation

6.3.1), and shows an improvement in the cross-section when reweighting a greater

number of points. This enables the reweighted cross-section, σ(RW), to converge to

the value calculated by Njet, σ(Njet). Indeed, to achieve almost equal values in

the cross-sections, the total proportion of phase-space requiring reweighting is at

the percent level. Therefore, we find reweighting in the Rdiv region of phase-space,

and/or when relaxing cuts in relation to those used during training, can improve

model performance.

Finally, although the cross-section and differential distributions provide a means to

116
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

0.0 0.2 0.4 0.6 0.8 1.0

x1

0

1

2

3

4

5

R
M

S
E

×10−5

RMSE

0

1

2

3

4

5

F
requ

en
cy

[%
]

Frequency

0.0 0.2 0.4 0.6 0.8 1.0

x2

0

1

2

3

4

5

R
M

S
E

×10−5

RMSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

F
requ

en
cy

[%
]

Frequency

Figure 6.5: Root mean squared error (RMSE) of the NN ensemble
approach in comparison to Njet as a function of x1 and
x2, and the frequency of points with these values in the
training dataset. Frequency differences in x1 and x2 are
due to Sherpa sampling differences.

test the robustness of our approach against the additional weights introduced during

event generation, we can more explicitly single out the effects of the PDF weights

by calculating the NN ensemble error as a function of the momentum fractions, x1

and x2, of the initial state partons. Figure 6.5 shows the root mean squared error

(RMSE) of the ensemble as a function of these variables, along with the frequency of

points as they appear in the training dataset. As expected, the ensemble performs

better in locations with more points, and we see the RMSE grow more significantly

in the regions of low-statistics. These regions of strong performance also correlate

with large contributions from the gluon PDF, which falls off as x approaches one, and

peaks in the low x region. This means that the points most enhanced by the PDFs

are those well approximated by the model, whereas those points on which the model

performs less well are suppressed. This helps explain why the error distribution in

Section 6.4.2 does not look as promising as other examples, yet the cross-section and

differential distributions are still well approximated.

Aside: VEGAS grid optimisation

The results presented so far have used a unit integration grid and RAMBO integrator

in order to be process agnostic in the phase-space sampling. As mentioned in Section

6.3.3, however, it is common to use importance sampling and other optimisation

6.4. Results 117

−2 −1 0 1 2

ln(∆)

0.0

0.5

1.0

1.5

2.0

F
re

qu
en

cy
[%

]

VEGAS grid

gg → γγg

∆ = NN
NJet

Figure 6.6: NN/Njet errors for the 2→ 3 scattering process using
a VEGAS optimised integration grid.

techniques to speed up integration convergence. To test the robustness of our

approach to these alternative integrators, we use VEGAS during the optimisation

grid generation stage. Figure 6.6 shows the error plots for the 2 → 3 scattering

process using this optimisation setup, while keeping all other setup parameters fixed.

Here, we see that the shape exhibited in the error plots is similar to that of the

unit grid shown in Figure 6.2, although slightly broader around the peak. This

is likely due to the the larger number of points placed in the divergent regions

by the VEGAS integrator. The cross-section was also found to be in excellent

agreement, with Njet giving 4.151× 10−6± 1.1× 10−8 pb, and the ensemble giving

4.22× 10−6 ± 8× 10−8 pb.

6.4.2 gg → γγgg

We now turn to investigate the gg → γγgg process. Analytic expressions for this

process are not available and the numerical implementation is significantly more

computationally expensive than for the equivalent 2→ 3 process (see Section 6.4.3).

Integration grid optimisation is therefore highly inefficient, and so for the remainder

of this section a unit grid will be used. To test generalisability, the NN setup is as in

Section 6.4.1, with the only change being in the chosen value of yp = 0.001. At higher

multiplicity, a greater proportion of points fall within the divergent region, Rdiv;

however, this can hinder model performance by unbalancing the training regime.

118
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

Figure 6.7: NN/Njet errors for the 2→ 4 scattering process using
a unit integration grid.

It is therefore reasonable to aim to keep the proportion of points in this region

approximately constant throughout our experiments, which is achieved by lowering

the value of yp (see Appendix E for more details).

Figure 6.7 shows the performance of our trained NN ensemble at the matrix element

level. As expected, the performance has decreased relative to the 2 → 3 process

shown in Figure 6.2, yet the error distribution is still found to be approximately

Gaussian, although with a shifted mean. Despite this, the cross-section calculated

using the NN ensemble — 4.5 × 10−6 ± 6 × 10−7 pb — is found to be in excellent

agreement with that derived from Njet — 4.9× 10−6 ± 5× 10−7 pb. This suggests

that although there are several points where the ensemble approach performs poorly,

particularly in comparison to the 2 → 3 process, these are largely in the PDF

suppressed regions of phase-space and found not to affect the cross-section calculation

too greatly.

Figure 6.8 shows the performance of the ensemble approach in six differential slices

of phase-space. As in the previous example, the ensemble is found to perform well

relative to Njet: while noise in the tails of the distributions is still observed, these

appear to be reduced in comparison to the 2→ 3 process. This further supports the

assertion that the points where the ensemble performs poorly are suppressed.

Given the difference in cross-section values calculated using Njet and the ensemble

approach, we perform reweighting in the divergent region as discussed in Section

6.4. Results 119

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
p T

,j
1

[G
eV
−

1
]

NJet

NN

0 100 200 300 400 500

pT,j1 [GeV]

0.5

1.0

1.5

R
at

io

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
p T

,j
2

[G
eV
−

1
]

NJet

NN

0 100 200 300 400 500

pT,j2 [GeV]

0.5

1.0

1.5

R
at

io

10−3

10−2

1/
σ

d
σ
/d

∆
φ
j 1
j 2

[r
ad
−

1
]

NJet

NN

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∆φj1j2 [rad]

0.5

1.0

1.5

R
at

io

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
R
j 1
γ

1

NJet

NN

1 2 3 4 5

Rj1γ1

0.5

1.0

1.5

R
at

io

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ
/d
m
γ

1
γ

2

NJet

NN

0 200 400 600 800 1000

mγ1γ2

0.5

1.0

1.5

R
at

io

10−3

10−2

1/
σ

d
σ
/d

∆
η γ

1
γ

2

NJet

NN

0.0 0.5 1.0 1.5 2.0 2.5 3.0

∆ηγ1γ2

0.5

1.0

1.5

R
at

io

Figure 6.8: Differential distributions normalised to the cross-section
for the 2 → 4 process comparing Njet (red) with the
NN ensemble (blue). The Njet results are quoted
with Monte Carlo errors and the NN results with preci-
sion/optimality uncertainties calculated as described in
Section 5.2.3 but which are negligible in comparison.

120
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

0 20 40 60 80 100

Rdiv reweighted [%]

0.950

0.975

1.000

1.025

1.050

1.075

σ
(R

W
) /
σ

(N
J
et

)

Figure 6.9: Effect of reweighting points in the divergent region of
phase-space, Rdiv, on the ratio between the reweighted
cross-section, σ(RW), and the cross-section calculated us-
ing Njet σ(Njet) for the 2→ 4 process. In this case, the
divergent region comprises approximately 2–3% of the
total phase-space (see Appendix E for details). The red
band shows the Monte Carlo error on the Njet result.

6.3.4 and Section 6.4.1. As shown in Figure 6.9, reweighting in this region can bring

the NN ensemble derived cross-section closer to the value calculated using Njet.

In the case of the 2 → 4 process, the Monte Carlo error on the Njet result is

significantly larger for the same number of points compared to the 2 → 3 process.

Given these larger errors, and that the ratio σ(RW)/σ(Njet) resides within these errors,

the result is predictably noisy yet still converges, showing that this approach to

reweighting can be generalised across multiple processes.

6.4.3 Timing

We repeat the performance evaluation of Figure 6.1 with methods involving error

estimation as these are likely to be employed in real-world usage. This is comparable

with the approach presented in Figure 5.1. For conventional techniques, the dimen-

sion scaling test is a standard way to estimate error on the result, and introduces a

second matrix element call for each phase-space point evaluation. As discussed in

Section 6.4.1, we propose running 20 NN ensembles for each point to obtain a mean

with standard error.

6.4. Results 121

4 5 6

Multiplicity

10−2

10−1

100

101

102

103

104

E
va

lu
at

io
n

ti
m

e
(m

s)

Numerical

Analytical

Averaged models

Figure 6.10: Typical per-point call times, for the set of NN en-
sembles and scaling tests with numerical and analyt-
ical techniques, against the number of legs. Compared
to Figure 6.1, this incurs a twofold cost on the conven-
tional methods and multiplies the single NN ensemble
time by 20. Analytical methods are fastest at 2 → 2
and NNs do not offer a dramatic improvement at 2→ 3
either, but their fast call time and weak dependence
on the number of variables (which scales with multi-
plicity) win out at high multiplicity. At 2→ 4, where
no analytical expression is available and extrapolation
suggests it would be comparable in call time to nu-
merics, our ML approach is four orders of magnitude
faster than the numeric call.

122
Chapter 6. Machine learning for matrix element approximation:

diphoton + jets

The results, shown in Figure 6.10, demonstrate the per-point speedup in using

amplitude NNs in practice. For the 2→ 4 process, where amplitude calls dominate

conventional simulation time, a O(104) times speedup in amplitude calls is observed

which renders the inference stage as negligible in the total time of our NN-based

simulation pipeline. Indeed, in comparison to the numerical calculation of the matrix

element, the training time of the NN ensemble can also be considered negligible,

meaning the total speed up in the overall simulation time is of the order Ninfer/Ntrain

— the ratio of the number of inference points to the number of points in the training

dataset. This is in agreement with the findings discussed in Chapter 5.

6.5 Summary

In this Chapter we provided further evidence that NNs can provide a general frame-

work for the optimisation of high multiplicity observables at hadron colliders. We

extended the preliminary studies shown in Chapter 5, for e+e− scattering, to hadron-

hadron collisions and provided a general interface to the Sherpa Monte Carlo

event generator for NNs trained with the Njet amplitude library. In addition, we

presented a systematised pipeline for carrying out data generation and training of

these NNs. Here, we focussed on the loop-induced processes gg → γγ + n(g) which

cause problems for conventional phase-space generation methods and require the

computation of expensive scattering amplitudes.

We saw, especially for the 2→ 4 process, a good improvement in the total simulation

time. Since the calls to the scattering amplitudes dominated the total time, the

speed-up was given by the ratio of the number of points used in training to the total

number of calls used in the full simulation (during event generation). While this

improvement was good to see, it is not the limit of the optimisation. If the trained

networks can be used for many subsequent simulations, with different kinematic cuts,

the overall improvement would be much greater. Furthermore, we showed that the

time-consuming integration grid optimisation stage could be removed meaning the

6.5. Summary 123

speed-up gained could be considerably more in reality. We showed that our networks

reproduce distributions with different cuts in the transverse momentum and diphoton

mass without the requirement for retraining, which was very encouraging.

In general, the findings presented in this Chapter are in good agreement with those

presented in Chapter 5. Our NN ensemble methodology performed well, producing

excellent agreement between the cross-sections calculated by Njet and those derived

from the ML model. We also observed a similar growth in NN uncertainties at higher

multiplicities, as expected. Overall, the additional validation of our methodology

in hadronic collision processes serves as a promising sign for use of this method in

future analysis.

Chapter 7

Computational Methods for Crisis

Response and Epidemic Modelling

Particle physics is a naturally interdisciplinary field, collaborating across the bound-

aries of many fields including physics, mathematics, and computer science. So far,

we have focussed on ML and Monte Carlo-type simulations in the context of particle

physics, and more specifically their applications to event generation. These tech-

niques were originally developed in the fields of psychology and nuclear physics

respectively, and have since permeated through many other disciplines. In this

Chapter we will discuss some of the additional work undertaken alongside that

presented in this thesis so far. This work will leverage the techniques and devel-

opments in ML and large scale probabilistic computational simulations, and apply

them to crisis response and epidemic modelling. This Chapter is not designed to

give an in depth view of these projects, but present a high level perspective of the

work.

7.1 Machine Learning for Crisis Response

During emerging humanitarian crises, such as natural disasters, conflict, or disease

spread, data collection to inform planning and relief efforts can be challenging. For

126
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

example, earthquakes and flooding may make roads inaccessible, meaning response

teams have to rely on alternative data sources to inform operations. In these scen-

arios, machine learning methods can be used to provide timely and large scale data

analysis. This Section will focus on applications of ML to satellite image analysis, and

the development of ML techniques for tackling the COVID-19 pandemic a various

scales.

7.1.1 Satellite Image Analysis

When disaster strikes, satellites can be tasked to capture imagery of the affected

area, and image analysis can provide a rapid and detailed understanding of the situ-

ation. Use cases include: monitoring population displacement, settlement mapping,

damage assessment, fire detection associated with human rights violations, damage

to transportation networks, floods assessment or identifying direct impact of earth-

quakes, volcanoes, cyclones and landslides [190]. Furthermore, as crises progress,

imagery can be continually analysed for ongoing monitoring, and provide an early

warning system for potential changes.

Satellite image analysis tasks performed in humanitarian settings are highly special-

ised and time-consuming, and expert analysts are required to ensure a high quality

of information is returned to teams on the ground. However, in recent years there

has been an increase in the number of humanitarian challenges around the world,

putting increased strain on analysis work. To aid these efforts, ML techniques have

the potential to speed-up many of the time-consuming elements of the analysis,

leaving analysts with more time to focus on more nuanced and in-depth studies.

A common task carried out by image analysts is mapping refugee and internally

displaced person (IDP) settlements to assess growth, and estimate the number of

shelters for resource planning. In the aftermath of conflict and disasters, such

settlements are rapidly formed and continuous monitoring of their development,

particularly in its early stages, is vital to ensure enough basic aid, tents, blankets,

7.1. Machine Learning for Crisis Response 127

and food are provided. Despite the need for immediate support, mapping these

settlements entails the manual counting of shelters visible in a satellite image, a

labour-intensive task for which current computer vision techniques may excel.

An early example of the use of ML for humanitarian operations using satellite

imagery is presented in [191]. This work develops an ML model for counting the

tents, administrative buildings, and other structures, in images of refugee and IDP

settlements. The authors use a Mask R-CNN [192] — a type of CNN — trained

on images of existing settlements with hand-drawn labels outlining the structures.

The model was found to perform well, with an average precision of 0.75 over all

settlements in the test dataset. As expected, performance varied between settlements,

likely due to the imbalances in the training dataset relative to various settlement

features, such as soil colour, settlement layout and structure appearances.

In these sensitive contexts, automated processes providing vital information in de-

cision making must be carefully validated and tuned to maximal performance since

e.g. a false positive may be detrimental to human life. To address this, a human-

in-the-loop (HITL) system was developed in which analysts validate the results of

the model and make corrections as needed. These corrections are fed back into the

model to fine tune the model to the specific settlement in question. This results

in an augmented model. As expected, model augmentation was found to further

improve results on the settlements used for fine tuning.

We proposed a similar approach to automating the mapping of floods [9]. Floods

are the most frequent natural disaster and can cause major societal and economic

disruption alongside significant loss of human life [193]. Flooding is usually caused by

rivers or streams overflowing, excessive rain, or ice melting rapidly in mountainous

areas. Alternatively, coastal floods can be due to heavy sustained storms or tsunamis

causing the sea to surge inland. Once an event occurs, a timely and accurate

assessment, followed by a rapid response, is crucial.

Traditional methods of satellite image analysis use Synthetic Aperture Radar (SAR)

imagery [194]. SAR images can be taken regardless of cloud cover and time of day,

128
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

Figure 7.1: Analysis of Saigang Region in July 2019 with permanent
water and labels. The images show the area of interest
in black outline and the permanent water body derived
from the Global Surface Water Dataset [4] in blue. Left:
analyst mapped flooded region in yellow. Right: the
ML prediction in yellow.

since they use active sensors and specific frequency ranges. Although SAR images

generally have a lower resolution in comparison to their high-resolution optical

counterparts, high-resolution imagery (at the level of 0.3 - 0.5 m) is not generally

required for flood disaster mapping. Due to their popularity, many SAR satellite

collaborations, such as COSMO-SkyMed (CSK) [195], TerraSAR-X (TSX) [196], and

Sentinel-1 operated by the European Space Agency (ESA), are making for regular

and timely image capture.

Using a training dataset of historically mapped floods from different parts of the

world, we trained various CNN-type models for semantic (i.e. pixel-wise) segment-

ation. Given the occurrence of flooding near existing bodies of water, we added

existing water bodies back into the historical flood maps (derived from the Global

Surface Water Dataset [4]) and the models were trained to detect water in general.

We compared the performance of U-Net [197] and XNet [17], with that of a trans-

fer learning approach — this consisted of a ResNet [198] backbone architecture

7.1. Machine Learning for Crisis Response 129

Figure 7.2: Workflow for rapid flood mapping: images can be auto-
matically downloaded from providers based on requests
or other activation criteria; the image is fed into a ma-
chine learning model for flood detection; human valida-
tion and quality control takes place which can also be
used to update the model for future floods in that region
(resulting in a library of region-specific models); maps
are then released.

pre-trained on the ImageNet [199] dataset which replaced the downsampling stage

of a U-Net model. The latter approach was found to give the highest accuracy and

F1/Dice scores across multiple tests, including testing the ability of the models to

detect water and flooded areas in geographical regions with different topographies

never appearing in the training dataset. This suggested good generalisation of the

approach.

Figure 7.1 shows a comparison between a flood map created by an analyst using

classical methods and the output of the chosen ML setup. This image is of a region

of Myanmar and no part of this image, or any other images of this region, were

contained in the training or validation datasets. This therefore represents an out-

of-sample test of the model’s performance. Here we see that the model shows good

agreement at the high level shown in the Figure. Indeed, the model was found to

130
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

Figure 7.3: PulseSatellite mapping a refugee settlement in
Jordan. Buildings detected by the model are highlighted
in blue, with analyst-drawn structures in green.

achieve a 99% accuracy and a 0.95 and 0.89 F1/Dice on the water and flooded pixels

in the image, respectively.

As in the case of settlement mapping, accurate results are of particular importance

in flood response scenarios and so we developed a similar HITL system. A schematic

of this approach is given in Figure 7.2, which also shows the additional capability

for automatic downloading and processing based on e.g. field requests, or social

media monitoring, without the need for manual intervention from mapping analysts.

Automating time-consuming stages of the flood analysis pipeline allows analysts to

produce maps more rapidly, and therefore generate more timely data. In addition,

more regions can be monitored simultaneously and updates can be produced as

quickly as images are taken. In total, we found our automated approach to provide

∼ O(10) speed-up over the otherwise manual analysis stages of the pipeline.

Finally, to bring these ideas together, we developed an interactive web-based tool for

analysts to interact with the various ML models and enable HITL feedback loops in

an automated way — PulseSatellite [10]. Specifically, this platform is designed

to host a variety of specialised ML models, fine tuned for different functionalities.

Given that each scenario may require different outputs, the tool is dynamic such

that new models can be trained in real-time (as users provide feedback on detection

7.1. Machine Learning for Crisis Response 131

Figure 7.4: AI applications for the COVID-19 response organised
at three levels: the molecular scale, the clinical scale,
and the societal scale.

results), and is adaptable to new situations. Figure 7.3 shows a screenshot of the tool

for the case of refugee settlement mapping described above. The tool was designed

alongside humanitarian and satellite image experts to ensure usability by those who

are not necessarily familiar with ML software, but who are the experts in rapid crisis

response.

7.1.2 Mapping the Response to COVID-19

The COVID-19 disease has caused wide-spread fatalities across the world, and

researchers have been desperately working to better understand and suppress its

spread. Key areas of research include: studying COVID-19 transmission, facilitating

its detection, developing possible vaccines and treatments, and understanding the

socio-economic impacts of the pandemic. Given the number of unknowns surrounding

COVID-19, and the need for a rapid response, numerous approaches utilised ML

technology to help discover and tackle the pandemic. Indeed, between January 2020

and August 2020 as many as 50 Artificial Intelligence (AI)/ML papers relating to

COVID-19 were being posted on preprint servers such as arXiv, MedRxiv and

BioRxiv per week.

In an attempt to provide a resource to the research community, we conducted an

exercise to map the landscape of AI applications being used to fight the pandemic

[11]. We categorised applications at three levels: molecular, where AI was being

132
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

used to identify new or existing drugs for treatment; clinical, in which AI was

supporting diagnosis and evaluating prognosis based on medical imaging and non-

invasive measures; and societal, where AI was tracking both the epidemic and the

accompanying infodemic using multiple data sources. We also reviewed datasets,

tools, and resources needed to facilitate AI research.

In a review of works up to August 2020, we found that very few systems had achieved

operational maturity. However, there were several promising results including the

use of ML for analysing CT and X-Ray scans for early COVID-19 detection, as

well as several efforts to monitor and fight the infodemic of online misinformation

in online social media. We discussed these promising directions, as well as some of

the associated risks and pitfalls in more detail in follow up work [13]. Despite these

efforts, for AI applications addressing COVID-19 to have a global impact large-scale

data and model sharing, operational validation, and adaptation to local contexts

are needed. This requires cooperation and solidarity across borders as well as the

involvement of many relevant parties, including healthcare workers.

Through our review, we identified three key calls to action. Firstly, we believe that

scalable approaches to data and model sharing using open repositories will drastically

accelerate the development of new models and unlock data for the public interest.

Global repositories with anonymised clinical data, including medical imaging and

patient histories, can be of particular interest in order to generate and transfer

knowledge between medical institutions. To facilitate the sharing of such data,

clinical protocols and data sharing architectures will need to be designed and data

governance frameworks will need to be put in place. However, we must ensure that

biases are addressed — currently much of the data collected and released in existing

datasets is from Global North countries, leaving others underrepresented. This can

have serious implications if such data is used for training models which are then

deployed in other regions [14].

Second, the multidisciplinary nature of the research required to deploy AI systems

in this context calls for the creation of extremely diverse, complementary teams

7.2. Epidemic Modelling 133

and long-term partnerships. Funding opportunities which encourage such collabor-

ations and define key research directions may help accelerate the success of such

partnerships.

Finally, we believe that open science and international cooperation can play an

important role in this pandemic that knows no borders [12]. Proven solutions can

be shared globally and adapted to other contexts and situations, prioritising those

solutions that target local unmet needs. In particular, given that many international

organisations, private sector companies, and AI partnerships operate across interna-

tional borders, they may be in a position to facilitate the knowledge dissemination

and capacity building of national health systems. Regions with less capacity can

benefit from global cooperation, as well as concentrating their efforts on the most

important local challenges. AI systems, methods, and models can act as a compact

form of knowledge sharing which can be used in, and adapted to, other contexts if

they are designed to be widely deployable, requiring low energy and little computing

resources.

7.2 Epidemic Modelling

In Section 7.1.2 we discussed the applications of AI to help stop the spread of

COVID-19. Over the course of the pandemic, national and local governments have

implemented numerous interventions, such as reductions in movement, closure of

certain locations, as well as complete ‘lockdowns’. The assessment of such policy

options to mitigate the impact of this and other epidemics on the health of individuals

and the efficiency of healthcare systems, relies on a detailed understanding of the

spread of the disease, and requires both short-term operational forecasts and longer-

term strategic resource planning. Epidemic modelling can provide an important set

of data to inform such assessment and decision making.

There are various modelling approaches which aim to provide insights into the spread

of an epidemic. They range from analytic models, formulated through differential

134
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

or difference equations, which reduce numerous aspects of the society–virus–disease

interaction onto a small set of parameters, to purely data-driven parameterisations,

often based on ML, which inherently rely on a probability density that has been

fitted to the current and past state of the system in an often untraceable way. Indeed

several such approaches were included in the review discussed in Section 7.1.2.

Another class of approaches, agent-based models (ABMs), are “particularly useful

when it is necessary to model the disease system in a spatially-explicit fashion or

when host behaviour is complex[.]” [200]. 1 Being the traditional tool of choice to

analyse behavioural patterns in society, they find ample use in understanding and

modelling the observed spread of infections and in leveraging this for intermediate

and long-term forecasting [202–204]. Such models also provide the flexibility to

experiment with different policies and practices, founded in realistic changes to the

model structure, such as the inclusion of new treatments, changes in social behaviour,

and restrictions on movement.

7.2.1 The June Framework

To simulate epidemic outbreaks, specific realisations of ABMs, individual-based mod-

els (IBMs), have been developed in the past two decades, for example [205,206]. In

these models, the agents represent individuals constituting a population, usually

distributed spatially according to the population density and with the demograph-

ics — age and sex — taken from census data. Evidence from disease data such

as COVID–19 fatality statistics suggests that case and infection fatality rates are

correlated, amongst other factors, to the age and socio-economics status of the pop-

ulation exposed to the etiological agent [207]. This necessitates the construction of

a model with exceptional social and geographic granularity to exploit highly local

heterogeneities in the demographic structure.

To address this challenge, we developed the June framework [15] — a generalisable

1Indeed, many models also feature some optimising behaviour of individuals as artificial
intelligence-type actors against randomly drawn welfare functions, see for example [201].

7.2. Epidemic Modelling 135

Policy

Disease

Population
People

Where people live

Household size and
composition

Demographics

Deprivation

Age-dependent, constructed from data

Businesses
Schools
Universities
Care homes

Locations

Characteristics
Susceptibility

Infectiousness over time

Asymptomatic carriage

Severity of symptoms

Hospitalisation ratios and timings

Probability of death

Disease Progression

Social distancing

Mask wearing

Effectiveness of these policies

Reducing transmissionRestrictions on movement
Work from home

Leisure venue closure

School / business closure

Bans on household mixing

Policy alters the way
the population behaves

The combination of the population
structure and demographics, population
behaviour and the disease
characteristics determines the course
of the epidemic and ultimately the
number of infections, hospitalisations,
and deaths.

Interaction

How they commute

Where they go for
leisure, and how
frequently

Where they visit

MovementActivities
Work/school

Leisure

Household visits

Offices/workplaces
School/University

Leisure venues:
pubs, restaurants,
cinemas, etc.

Other households
Care homes

Locations
How many contacts
between people in
various locations

Intensity of
contact in each
type of location

Mixing

Figure 7.5: Overview of the structure of June. Free parameters to
be fitted or estimated are shown in bold.

136
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

modular framework for simulating the spread of infectious diseases with a fine-grained

geographic and demographic resolution and a strong focus on the detailed simulation

of policy interventions. The framework is built on four interconnected layers: the

population layer encodes the individuals in the model and constructs static social

environments such as the households they live in, the schools they study in, and

the workplaces where they work; the interaction layer models the social interactions

of individuals, based on data about the frequency and intensity of contacts with

other people in social settings; the disease layer models the characteristics of disease

transmission and the effects it has on those infected — whether they are asympto-

matic or symptomatic and their trajectory through the healthcare system; and the

policy layer allows policies such as physical distancing, changes in behaviour, and the

closure of certain venues to be modelled at a corresponding granularity. A schematic

of the framework is given in Figure 7.5.

June is designed to be highly modular, allowing for adaptation to different geograph-

ical regions, daily routines, as well as multiple circulating diseases. Interactions and

disease transmission are modelled probabilistically at each time step in the model.

Similarly, agents can be given free choices of where to go during certain parts of the

day. These choices are made based on a series of Poisson processes which make a

randomised decision. Clear parallels can therefore be drawn between a multi-agent

simulation of people and a multi-agent simulation of particle interactions — both

leverage probabilistic modelling, randomised Monte Carlo-type processes, and require

large compute times to rerun simulations to ensure multiple possible interactions

and permutations are explored.

7.2.2 Modelling COVID-19 in England

To model the spread of COVID-19 in England, we used multiple datasets collected

by the Office of National Statistics (ONS), such as census records and household

surveys, to initialise the population. Each agent in the population was assigned a set

7.2. Epidemic Modelling 137

of demographic attributes: age, sex, ethnicity and socio-economic index. ONS data

was then used to cluster the population into representative household structures

which determined the families of the agents — since household transmission is a

key route for disease spread, matching the data at a detailed level is particularly

important. Agents who were old enough to work, were assigned work places which

they would visit each weekday, and the children were assigned to schools in the

model. School classes were broken down by year groups with a higher probability

for intra-year mixing than inter-year, to represent realistic interactions.

At certain times of day the agents are given free choices about where to go — e.g.

going to a pub or restaurant after work. To assign such activities to agents, we first

check if the individual does any activity at the given time step

p (any activity | age, sex) = 1− p (no activity | age, sex)

= 1− exp
(
−

N∑
a=1

λa(age, sex) ∆t
)
,

(7.2.1)

where λa(age,sex) is the Poisson parameter associated with activity a for a person

with a given age and sex (determined from ONS surveys, and similar literature), N

is the number of possible activities and ∆t is the amount of time allowed to do a

given activity. If no activity is performed then the individual returns to their home.

If a person carries out an activity, the next step is to determine which specific activity

is chosen. The probability that activity a is chosen, given that the person does any

activity is given by

pa = λa(age, sex)∑N
j=1 λj(age, sex)

. (7.2.2)

When any group of agents in the model are in the same location at the same

time, they have a chance to interact. If one of them is infected, we compute the

probability that they infect another agent based on numerous factors including:

contact patterns derived from surveys [208, 209], the infectiousness of the infected

agent, the susceptibilities of the uninfected agents, and the intensity of contacts

in that given location — these parameters are fitted and account for differences in

138
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

contact intensity between e.g. family members and people in a restaurant.

Finally, we implemented the majority of policy interventions enacted by the UK

Government. Since we model at the individual level, and we know the locations

where agents live, work and socialise, we were able to control their movement at

a highly granular level. However, since compliance levels with government policy

spatio-temporally vary, agents probabilistically decide whether to comply with the

policies or not.

The complexity of the model, and the diversity of locations where agents can inter-

act, leaves us with 18 free parameters for fitting. These largely correspond to the

interaction intensity parameters, as well as several policy compliance rates. Due to

the high dimensionality of the parameter space, fitting the model is challenging. We

employ the Bayes linear emulation and History Matching methodology [210–212], a

widely applied uncertainty quantification approach designed to facilitate the explor-

ation of large parameter spaces for expensive to evaluate models of deterministic

or stochastic form. We then identify a set of particular model outputs to match to

corresponding observed data. Here we focus on hospital deaths (CPNS [5]) and total

deaths (ONS) at well-spaced time points throughout the period of the first wave of

the epidemic. 1 Bayes linear emulators are then constructed for each of the model

outputs at each of the chosen time points and iterative History Matching [211,212]

is used find an optimal set of parameters at which the model fits the data well.

Results of this procedure are found in Figure 7.6. Here, we show how the model is

able to simultaneously produce fits to recorded hospital deaths, disaggregated by

regions of England. It is important to note that we do not fit a different model

to each region. Each model is fitted for the whole of England while managing to

simultaneously capture regional differences in death rates. Similar results are found

at the age stratified level. Given the level of granularity of the June framework,
1These datasets were used for fitting since they are likely to be more accurate in comparison to

other sources such as case numbers. To account for various known discrepancies, such as inconsistent
weekend reporting, corrections and smoothings were applied. Seroprevalence studies conducted at
single time points were used to validate the fits.

7.2. Epidemic Modelling 139

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

25

50

75

100
Da

ily
 h

os
pi

ta
l d

ea
th

s

East of England

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

50

100

150

200

250

Da
ily

 h
os

pi
ta

l d
ea

th
s

London

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

50

100

150

200

Da
ily

 h
os

pi
ta

l d
ea

th
s

Midlands

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

25

50

75

100

125

Da
ily

 h
os

pi
ta

l d
ea

th
s

North East and Yorkshire

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

50

100

150

Da
ily

 h
os

pi
ta

l d
ea

th
s

North West

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

50

100

150

Da
ily

 h
os

pi
ta

l d
ea

th
s

South East

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

10

20

30

40

50

Da
ily

 h
os

pi
ta

l d
ea

th
s

South West

20
20

-03

20
20

-04

20
20

-05

20
20

-06

20
20

-07

20
20

-08

20
20

-09
0

200

400

600

800

1000

Da
ily

 h
os

pi
ta

l d
ea

th
s

England

JUNE Data

Figure 7.6: Daily hospital deaths for each region in England, and
England overall, for 14 realisations of June as described
in this section. Each realisation is illustrated as a sep-
arate colour for visibility. Observed data in black with
3 standard deviation error bands. Data from CPNS [5].

and the ability to fit such a complex model, results were used to inform planning

by the National Health Service (NHS) and Public Health England — examples

include predicting the onset of the second wave experienced in September which

allowed decision makers to plan for an earlier wave onset than previously thought,

as well as the ability to probe the model to help understand why certain regions

were experiencing case surges, while others were not. As COVID-19 continued to

spread throughout the population, adjustments and additions were made to the

model to account for new policies, variants of concern, and vaccination strategies.

Recent analysis has found that our model is able to reproduce social and ethnic

inequalities observed in seroprevalence studies conduced in July 2020. Work is

ongoing to understand how and why June reproduces these without directly using

these characteristics in any probabilistic modelling.

7.2.3 Modelling COVID-19 in Refugee and IDP

Settlements

The spread of infectious diseases such as COVID-19 presents many challenges to

healthcare systems and infrastructures across the world, exacerbating inequalities

140
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

Figure 7.7: Left: modelled distribution centres. Right: Detailed
view of Camp 4 showing six types of modelled locations.

and leaving the world’s most vulnerable populations most affected. Given their

density and available infrastructure, refugee and internally displaced person (IDP)

settlements can be particularly susceptible to disease spread. We presented an

adaptation of the June framework to model disease spread in these settlements

in [16]. Specifically, we focus on the Cox’s Bazar settlement in Banglandesh — the

largest settlement in the world, containing approximately 900,000 people.

A similar procedure to that described above was taken to initialise the population in

the model. Census data was available from the United Nations Refugee agency (UN-

HCR), which gave a highly granular breakdown of the age and sex of the population,

as well as family structures. Since space is limited in the settlement, many families

share a shelter with another family. This was mirrored in the model through the

random clustering of families, while ensuring we matched statistics on the average

shelter size.

Unlike the majority of the England population, most of the population of the Cox’s

Bazar settlement do not have a fixed daily routine structure (with the exception

of children going to school for 2 hours per day). There are many locations which

they might visit in the settlement — see e.g. Figure 7.7 — and the majority of

these are open every day. We therefore assign each agent five time steps in each

7.2. Epidemic Modelling 141

simulated day, during which they choose randomly which activity too attend in

accordance with the method outlined in Equation 7.2.1. The Poisson parameters

were derived from available literature and surveys of the population in the settlement.

The implementation of the disease layer was the same as in the case of England,

while adjusting for the different comorbidity prevalences between England and the

population in the settlement, which may affect the likelihood of severe symptoms

and hospitalisation.

COVID-19 testing and case reporting data in the Cox’s Bazar settlement was incom-

plete, and so interaction intensity parameters could not be fitted as we did in the

case of England. We therefore estimated a baseline (no intervention) based on the

limited data available and focussed primarily on analysing the efficacy of possible

interventions through comparing the relative magnitudes of infection curves between

various implementation conditions — a scenario-based modelling approach. Different

models and approaches can account for different degrees and types of uncertainty,

making consensus on statistical predictions challenging even in more data-rich envir-

onments. However, despite often highly variable predictions, consensus can often be

reached on ranking intervention efficacy [213] which can be of interest for decision

making.

To support decision making in the settlement, we simulated numerous intervention

strategies based on those deemed most important by public health officials. This

consisted of an assessment of short and medium-term needs, as well as feasibility

and timeliness of possible interventions. These included: the offering of different

home-case treatment mechanisms, the effects of mask wearing based on compliance

and mask efficacy, and reopening schools (learning centres). In the latter case,

we found that reopening schools could increase the rate of transmission, and that

cases would not be confined to the younger ages groups, but quickly broke out

into all age strata. As this posed an increased risk to those most vulnerable, we

assessed possible strategies to safely reopen the schools. We simulated the effects of

children attending their school only every other day, allowing for increased physical

142
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

Figure 7.8: Simulated daily (7-day rolling average) and cumulat-
ive infections measured in days since the beginning of
the simulation. Black solid lines represent the baseline
policy in which learning centres (schools) are closed.
Black dashed lines represent the policy in which learn-
ing centres are open with no additional mitigation
strategies.

distancing, the opening of additional schools, and the effects of reducing the intensity

of interactions in the schools. Figure 7.8 shows the results of these simulations

in which the alternating attendance is found to have an important effect, while

reducing the intensity of interactions to 20-35% of their previous value can have

a significant impact on daily infection statistics. We found that the upper end of

this relative intensity range could correspond to enforcing mask wearing alone if

compliance and the efficacy of the masks worn are high, or a combination of mask

wearing and physical distancing is implemented. The lower end may correspond

to the combination of physical distancing in classes (enabled through alternating

attendance), mask wearing and improved ventilation [214–218].

7.3. Summary 143

By simulating multiple scenarios we were able to deliver results to decision makers

which explored a range of options of varying degrees of feasibility. Our findings

from simulating the effects of case isolation in treatment centres, based on how

rapidly someone could be quarantined after testing positive for COVID-19, allowed

public health officials to draw up contingency plans for the case in which treatment

centres were overrun. Similarly, our work on mask wearing simulations informed

decision makers that home-made masks using materials available to the population

of the settlement could significantly slow disease spread if high enough compliance

levels were reached. This meant that resources could be allocated to mask-making

training programmes, which gave those in the settlement greater ownership over

their protection, as well as communication strategies to promote mask wearing.

These modelling efforts provided detailed insights, and the development of a flexible

framework for rapid testing of future scenarios.

7.3 Summary

In this Chapter we have discussed some of the additional work conducted alongside

the research previously discussed in this thesis. This work has utilised many of the

techniques used and developed in particle physics, and applied them to the domains

of crisis response and epidemic modelling. They have also all been interdisciplinary

efforts in themselves, involving collaborators from across the United Nations (UN),

non-governmental organisations (NGOs), and other university research institutions.

These collaborations were not just important and necessary to bring domain know-

ledge, but by working with experts who could benefit from these techniques and

methodologies, we could ensure the results were useful and actionable.

Much of this research has been focussed on the inclusion of often underrepresented

groups and geographical regions. Training models for flood detection on highly

disaster-prone regions, such as Bangladesh and Mozambique, means that response

in these areas can be better informed and increasingly rapid. The development of

144
Chapter 7. Computational Methods for Crisis Response and Epidemic

Modelling

a web-based tool for performing such analysis also means that field operatives and

emergency responders can have access to the information and analysis themselves,

thus better equipping them when disaster strikes. Similarly, the development of a

highly granular model for simulating epidemic spreads has allowed us to begin to

better understand the origins of ethnic and socio-economic disparities in COVID-19

infection and mortality rates. The extension of this work to understanding epidemic

spread in refugee and IDP settlements containing vulnerable communities, generally

underserved by the modelling community, has provided experts with more relevant

tools for making decisions on public health interventions, and we hope this work

inspires similar efforts now and in the future.

Additional work is also ongoing to develop ML approaches, and other statistical

methods, for scenario-based modelling to aid in cross-border migration prediction and

contingency planning in Latin America. These tools enable powerful multi-variate

analysis and, since the pull/push factors for migration flows are highly complex and

situation dependent, they present an interest candidate for modelling current and

future patterns. Similarly, ML applications to social media analysis are widespread.

However, radio is one of the most widely used channels for communication and

information dissemination globally, yet analysis methods are minimal. In future

work we will present ML methods for analysing transcribed radio stations in multiple

countries in sub-Saharan Africa, with the objective of better understanding the

discussions and discourse. Such approaches can help inform response efforts to crisis

situations, such as monitoring and understanding aspects of infodemics in ‘offline’

communities.

Through diverse and interdisciplinary research across multiple geographic regions,

we hope to better work towards one of the fundamental pillars of sustainable devel-

opment — leaving no one behind.

Chapter 8

Conclusions

This thesis has discussed the potential for using machine learning techniques at

multiple parts in the event generation pipeline for fundamental particle interactions.

Numerous works have focussed on optimising phase-space sampling for more efficient

integration, parton showering, as well as applying machine learning to simulate the

full event generation pipeline. However, few works have addressed the computation-

ally expensive task of high multiplicity matrix element calculation.

We have also briefly discussed applications of these methods, which we introduced in

the context of particle physics, to other domains. In particular, we demonstrated how

ML techniques can be used in response to crises — focussing on understanding mass

migration and mapping floods to inform response teams, as well as the emergence

of a vast number of approaches directed at challenges presented by the COVID-19

pandemic. Event generation technology is founded on the probabilistic simulation

of multi-particle interactions, and we also discussed how similar methods could be

applied to epidemic modelling, both at the national level, and to help some of the

most vulnerable communities living in refugee and IDP settlements around the world.

Interdisciplinary work such as these simultaneously leverages expertise in multiple

domains, and the complexity of modern challenges necessitates more interdisciplinary

work to overcome them.

Indeed, there is much to be gained by the particle physics community from those in

146 Chapter 8. Conclusions

other domains. ML is a rapidly growing fields with new methods constantly being

developed. With the challenges to physics calculations discussed in this thesis only

growing in the future, as experiments become increasingly precise in their measure-

ments, it is important to remain up-to-date with this research and keep trying new

techniques. Similarly, a growing number of researchers are focussing on probabilistic

processes and leveraging technological advances in automatic differentiation libraries,

and hardware specifically designed for matrix algebra, to make previously highly

demanding inference problems tractable. These research directions could have applic-

ations, for example, in improving importance sampling methods for efficient integral

convergence. Along with those already discussed above, techniques developed in the

field of particle physics can also be applied back to these domains — for example, in

striving for a better understanding of uncertainty in ML and probabilistic processes,

as well as providing a test bed for complex learning tasks. To ensure more shared

learning and collaborations, we should be looking to continue to open up our re-

search and conferences, and encourage the creation of spaces where cross-disciplinary

discussions can take place and funding is available to allow for such flexibility and

potentially unorthodox high risk/high reward research.

The main focus of this thesis has been developing machine learning approaches for

matrix element approximation up to and including one-loop calculations at high

multiplicity. Our proposed pipeline includes training an ensemble of NNs which

divide the scattering amplitudes into IR divergent sectors according to the FKS

mapping, and finds excellent agreement between distributions generated with the

networks and those generated with conventional analytic and numerical approaches.

Errors from the NN were included through variations of training parameters and

were found to grow with the complexity of the problem, as anticipated (although

they remained largely within the percent level). We also showed that by reweighting

the generated events according to their divergence structure, the accuracy of the

simulation could be improved at a rather low additional computational cost. This

step also provided additional confidence in the inference of the network.

147

We validated our methodology on both leptonic collision processes at high multiplicity

and one-loop level, as well as hadronic collisions focussing on complex loop-induced

processes. These are particularly phenomenologically relevant processes given the

increasing precision of particle collision experiments, which are reaching percent level

measurements, requiring increasingly higher precision calculations in perturbative

QCD. High multiplicity matrix elements are time-consuming to calculate using

existing technology, and are one of the bottlenecks in event generation simulations.

The development of new techniques for calculating these quantities, such as those

presented in this thesis, are therefore required. Indeed, this will only become more

relevant after LHC upgrades such as HL-LHC.

Overall, our methodology has shown to provide large speed-ups in the computational

time required to perform these calculations, meaning time-consuming processes now

have the potential to be included in large event generation simulations without

incurring dramatic CPU costs. Improvements to the training and inference stages of

the NNs could also be provided through GPUs, which may be important if a large

number of variations in the cut analysis are required. Indeed, with more research

on the use of such hardware for other components of event generation [219–224],

integration of GPUs into modern event generation pipelines may become increasingly

easier. Futher, the distribution of the trained networks is also simpler than the large

quantity of data generated with Root Ntuples [225, 226], another technique for

optimising the information that can be extracted from expensive simulations, thereby

multiplying the potential computational gains.

There remain open questions of course. It would also be very interesting to apply

this technique to the more intricate problem of real radiation event generation,

since NLO and NNLO simulations are often dominated by these contributions. We

may also find that effects of higher order, double unresolved singularities begin to

play a role. Since NNLO sector decomposition strategies are available, it would be

good to explore this direction in the future. A robust framework for estimating

ML uncertainties is still not available and several sources of uncertainty are still

148 Chapter 8. Conclusions

unaccounted for or hard to quantify, as discussed in Section 5.2.3. Finally, future

work to make connections between the amplitude-level approach presented here and

those ML approaches focusing on other parts of event generation, and to assess the

compounding of the ML-induced uncertainties, would be beneficial. For example,

linking together some of the advances in phase-space sampling and integration with

our approach, and propagating the uncertainties, could start the development of an

integrated ML pipeline for event generation. We hope that these studies will help

to develop a benchmark for future work and lead towards a general framework that

can be used in future experimental analysis.

Appendix A

QCD Feynman Rules

Feynman rules can be derived from the Lagrangian of a theory and define the

permitted interactions in the theory, and how to compute the matrix elements of

certain allowed processes. In this Appendix we present the Feynman rules for QCD,

derived from the Lagrangian in Equation 2.1.1. These rules match the form of those

given in [28]. 2

In massless QCD (which is the focus of this thesis), the propagators of gluons and

quarks with momentum p are given respectively in the Feynman gauge by

a, α b, β
p = δab

−igαβ

p2 + iε
, (A.0.1)

i,m j, n
p = δij

i

/p+ iε

∣∣∣∣∣
nm

= δij
i/p

p2 + iε

∣∣∣∣∣
nm

, (A.0.2)

where the ε term (also known as the Feynman parameter) in the denominator

preserves causality, gαβ = diag(1,−1,−1,−1) is the Minkowski matrix and the

indices m,n are those of the Dirac γ-matrices.

The 3 and 4-point gluon vertices are given by

a, α

b, β

c, γ
p

q

r
= gsf

abc[gαβ(p− q)γ + gβγ(q − r)α + gγα(r − p)β] (A.0.3)

2All diagrams are drawn using TikZ-FeynHand [227] based on TikZ-Feynman [228].

150 Appendix A. QCD Feynman Rules

a, α

b, β c, γ

d, δ

= −ig2
sf

xacfxbd(gαβgγδ − gαδgβγ)

− ig2
sf

xadfxbc(gαβgγδ − gαγgβδ)

− ig2
sf

xabfxcd(gαγgβδ − gαδgβγ),

(A.0.4)

and the qqg vertex can be written as

i,m

a, α

j, n

= igst
a
jiγ

α
nm. (A.0.5)

Finally, for diagrams containing loops, the momenta in the loop can take on any

value without breaking momentum conservation between the initial and final states.

We therefore include an integral for any loop present in the diagram. For example,

for a loop with momentum k, the integral appearing in the matrix element would

have the form ∫ ddk
(2π)d

, (A.0.6)

where we have not specified the the dimensionality of the integral at this stage to

preserve generality. In addition, each fermion loop picks up a multiplier of (−1).

The on-shell Ward identity governs the behaviour of the gluon polarisation vectors

[229,230]. Unlike in QED, where this identity holds naturally because of the theory’s

Feynman rules, in QCD we must introduce the so-called ghost fields which are

contained in the gauge fixing terms in Equation 2.1.1. As mentioned in Section 2.1,

these additional fields are not considered in this thesis and so we omit the additional

required Feynman Rules here. More details on this can be found in [28] and Chapter

16 in [24].

Appendix B

Monte Carlo Integration

Algorithms

B.1 RAMBO

The RAMBO algorithm [6] is the simplest implementation of a phase-space integ-

rator and distributes points uniformly and isotropically. In the massless case, which

we shall detail here, the algorithm generates 4-momenta with uniform weight by

mapping the [0, 1]4n hypercube of random numbers onto n physical 4-momenta with

c.o.m. energy
√
P 2.

To provide an implementation, we start by defining the phase-space volume for such

a massless n particle system

Vn =
∫ n∏

i=1

d4pi
(2π)3 θ(p

0
i)δ(p2

i)(2π)4δ(4)
(
P −

n∑
i=1

pi

)
, (B.1.1)

where P = (P, 0, 0, 0), θ is the Heaviside step function, the first Kronecker-δ ensures

massless partons, and the latter momentum conservation. The RAMBO algorithm

actually starts from a set of massless 4-momenta, qµi , which are not initially con-

strained by momentum conservation, but then become constrained through a series

152 Appendix B. Monte Carlo Integration Algorithms

of operations. Specifically, we define the quantity

Rn =
∫ n∏

i=1

dqi
(2π)3 θ(q

0
i)δ(q2

i)(2π)4f(q0
i) (B.1.2)

= (2π)4−2n
(∫ ∞

0
xf(x)dx

)n
, (B.1.3)

where the function, f , ensures a finite volume phase-space. The qµi are related to

the physical pµi through a Lorentz boost and scaling transformations

p0
i = x(γq0

i +~b · ~qi) (B.1.4)

~pi = x(~qi +~biq
0
i + a(~b · ~qi)~b), (B.1.5)

where

~b = −
~Q

M
, Qµ =

n∑
i=1

qµi , M =
√
Q2, (B.1.6)

x =
√
P 2

M
, γ = Q0

M
=
√

1 +~b, a = 1
1 + γ

. (B.1.7)

In the above equations, and throughout this thesis, we only use the vector markings,

~x, to denote the final three (spatial) components of the 4-momenta.

By choosing f(x) = e−x, and using these transformations, we can arrive at the

expression

Rn = Vn · Sn, (B.1.8)

with

Sn = 2π(P 2)2−nΓ
(

3
2

)
Γ(n− 1)Γ(2n)
Γ
(
n+ 1

2

) , (B.1.9)

where the Γ-function has the usual definition

Γ(n) = (n− 1)!, ∀n ∈ Z+, (B.1.10)

Γ(z) =
∫ ∞

0
xz−1e−xdx, <(z) > 0. (B.1.11)

This naturally provides a Monte Carlo implementation for uniform phase-space point

generation which consists of the following:

1. For a system of n massless partons, generate 4n random numbers, ui, which

B.2. VEGAS 153

are uniformly distributed in [0,1];

2. From these, generate n massless 4-momenta, qµi , which are distributed isotrop-

ically and with energies, q0
i , following the distribution q0

i e
−q0

i dq0
i by applying

ci = 2ui1 − 1, ψi = 2πui2 , q
0
i = −ln(ui3ui4), (B.1.12)

qxi = q0
i

√
1− c2

i cosψi, qyi = q0
i

√
1− c2

i sinψi, qzi = q0
i ci; (B.1.13)

3. Transform the qµi using the transformations given in Equations B.1.4 and B.1.5

to arrive at a set of physical 4-momenta pµi .

Since there is no dependence on the weight in Equation B.1.8, the event weights

are constant. Therefore, this procedure provide a simple, flat phase-space sampling

algorithm. This procedure can also be generalised to the massive case.

B.2 VEGAS

The RAMBO algorithm described above gives a simple way to uniformly and iso-

tropically distribute points in the 4-momentum phase-space of n massless particles.

While this algorithm is easily implemented, and is computationally inexpensive, this

naive sampling of the phase-space may still lead to a large number of integrand

evaluations having to be made to ensure convergence during integration. The VE-

GAS algorithm [73,74] is commonly used in particle physics to optimise integration

processes since it brings together many of the approaches from importance and

stratified sampling (discussed in Section 3.3.2), while not requiring any knowledge

of the integrand’s behaviour a priori. It does this by sub-dividing the phase-space

into smaller segments, sampling in each region, and then adjusts the sub-divisions

accordingly to guide the sampler to place more points where the integrand is largest.

VEGAS normally begins by dividing the hypercube, [0, 1]n, into a regular grid which

is then adapted to approximate the optimal probability distribution function (p.d.f.)

154 Appendix B. Monte Carlo Integration Algorithms

poptimal(x) = |f(x)|∫ 1
0 dx|f(x)|

(B.2.1)

by a step function in each segment. For computational memory reasons, VEGAS

leverages the factorising structure of the p.d.f. 1

p(x) =
n∏
i=1

pi(xi). (B.2.2)

At each iteration, the estimator and variance can be calculated

〈
Ij
〉

= 1
Nj

Nj∑
n=1

f(ri)
p(ri)

, σ2
j = 1

Nj

Nj∑
n=1

(
f(ri)
p(r)

)2

−
〈
Ij
〉2
, (B.2.3)

where Nj is the number of sampling points in iteration j. Each subsequent iteration

on a new grid layout is combined with the last so as to make efficient use of the

integrand evaluations. This gives a global estimate of the integral

〈I〉 =
 m∑
j=1

Nj

σ2
j

−1 m∑
j=1

Nj

〈
Ij
〉

σ2
j

 , (B.2.4)

where m is the total number of iterations and each estimate is weighted by the

number of sampling points in that iteration, as well as the iteration’s variance. A

stopping criteria, such as the differences in inter-segment variance, is set to determine

when an ‘optimal grid’ is found. This usually takes several iterations, but depends

on the criteria and the complexity of the integrand.

During the optimisation steps, the variance can be unstable and so a damping term

is introduced to help avoid this. In addition, the optimisation stage is computa-

tionally expensive as the adaptive stages require continuous variance calculations

and grid adjustments, as well as phase-space evaluations. In practice, we use only a

comparatively few points during the optimisation stage, “freeze” the optimised grid,

and then use this for event generation with many points.

1While this limits the applicability of VEGAS to integrands which can factorise, this condition
is commonly met in particle physics applications.

Appendix C

FKS pairs and partition functions

The FKS subtraction formalism was designed to provide a framework by which

the divergent structure arising from the real radiation corrections at NLO can be

constructed and subtracted in (n+1) phase-space, where n is the number of jets at the

Born level, and added back in and solved analytically via dimensional regularisation

[37]

σNLO =
∫

dΦndσ(B) +
∫

dΦn

[
dσ(V) +

∫
dΦ1dσ(S)

]
+
∫

dΦn+1[dσ(R) − dσ(S)],

(C.0.1)

where σ(B) is the Born cross-section, σ(R) and σ(V) are the real and virtual corrections

at NLO and σ(S) is the real singular structure. By performing subtraction we are

able to ensure that the singular structures of the virtual and real corrections cancel,

thus leaving us with a non-divergent NLO cross-section.

For the processes considered here, the most general way of defining FKS pairs is

given by

PFKS = {(i, j) | 1 ≤ i ≤ ng + 2, 3 ≤ j ≤ ng + 2, i 6= j,

M(n+1,0) →∞ if p0
i → 0 or p0

j → 0 or ~pi||~pj}, (C.0.2)

which is the equivalent definition as that used in Equation (5.2.4), but where in

Chapter 5, we used the pairs defined by the Born and virtual correction divergent

156 Appendix C. FKS pairs and partition functions

structures, since we do not calculate real corrections and we are not trying to perform

subtraction.

Given that FKS pairs are ordered, there is redundancy in Equation (C.0.2) since we

will double count the soft singularities. An alternative definition is just to drop the

p0
j → 0 criteria to get

PFKS = {(i, j) | 1 ≤ i ≤ ng + 2, 3 ≤ j ≤ ng + 2, i 6= j,

M(n+1,0) →∞ if p0
i → 0 or ~pi||~pj}, (C.0.3)

as shown in [38]. By using the definition given in Equation (C.0.3), we end up

with the general FKS criteria that each FKS partition contain at most one collinear

and one soft singularity. Formalising this mathematically allows us to require the

following criteria be met by any such FKS partition function, Si,j (adapted from [38])

∑
(i,j)∈PFKS

Si,j = 1, (C.0.4)

lim
~pk||~pl

Si,j = 0, ∀(k, l) ∈ PFKS with (k, l) 6= (i, j), (C.0.5)

lim
p

0
k→0
Si,j = 0, ∀(k, l) ∈ PFKS with k 6= i. (C.0.6)

Examples of partition functions satisfying these conditions are given in [38] in terms

of energies and angles, and in [231] in terms of sij variables among others.

While defining a function in terms of energies and angles can be beneficial when

performing full FKS subtraction, for ease of computation we use the Lorentz invariant

sij variables defined in Equation (5.2.5). However, we note that the definition used

in Equation (5.2.5) does not satisfy Equation (C.0.6) and therefore some of our

partitions will contain multiple soft singularities and thus result in redundancies.

Appendix D

Hyperparameter tuning

This Appendix relates to hyperparameter tuning in the context of the gluon-induced

diphoton amplitudes discussed in Chapter 6. Hyperparameter tuning was performed

on a dataset of 1M points (derived independently from the datasets used for validation

and testing in Section 6.4) to explore optimal data processing and model parameter

choices. Given the computational expense of generating data, this was only done for

the 2→ 3 process.

We tested different model architecture constructions (changing the number of hidden

layers and/or the number of nodes in each hidden layer), data preprocessing methods,

and model loss functions. All other training parameters are as described in Section

6.3.2. For data preprocessing methods, we tested input variable standardisation,

i.e. the training and validation data input variables are each standardised to have

zero mean and unit variance, and normalisation, i.e. the training and validation data

input variables are each normalised according to min/max normalisation

x∗ = x−min(Xtrain)
max(Xtrain)−min(Xtrain) (D.0.1)

where x ∈ Xtrain, Xtrain ⊂ R is the set of training data for a given input variable,

and x∗ is the input variable normalised from x. This procedure means the dataset

is normalised such that x∗ ∈ [0, 1] and therefore encourages a positive-definite

output. When using the standardisation preprocessing step, we use hyperbolic-

158 Appendix D. Hyperparameter tuning

tangent activation functions in the hidden layers, but for normalisation we use

rectified linear units (ReLU) [232]. This latter choice is to further encourage a

positive-definite output and also aims to increase the rate of convergence.

It should be noted that a clear limitation of the positive-definite conditioning of the

normalisation procedure is a reliance on the following conditions:

min(Xtrain) = min(Xtrain ∪Xtest), (D.0.2)

max(Xtrain) = max(Xtrain ∪Xtest), (D.0.3)

where Xtest ⊂ R is the set variable inputs derived from the testing data, and therefore

Xtrain ∪Xtest represents the combination of the training, validation and testing sets.

Since the performance gain from using the ML approach is that the training and

validation sets combined are much smaller than the testing set, the above conditions

are likely to break down as n(Xtrain)� n(Xtest).

Two model loss functions were tested during hyperparameter tuning. The first was

the mean squared error (MSE)

L = 1
n

n∑
i=1

(f(xi)− yi)2 (D.0.4)

where n is the number of training points, f : Rd → R is the function describing

the neural network, xi is the ith d-dimensional input data (here d = 4n), and yi the

corresponding target variable. The second is the mean squared logarithmic error

(MSLE)

L = 1
n

n∑
i=1

(log(f(xi) + 1)− log(yi + 1))2. (D.0.5)

Given the problem of approximating matrix element values for complex scattering

processes, the target variable can take on a wide range of values spanning several

orders of magnitude. After performing standardisation, there will still be important

outliers in the tails of the standardised distribution of target variables. These large

values can sometimes be especially important to the cross-section and so the MSE’s

penalisation of large outlier values can be beneficial; however, this might also make

159

the training unstable. We included the MSLE during training to test if reducing the

sensitivity to large scale variations in the target value is beneficial.

The results of the hyperparameter tuning can be found in Table D.1. Here we

see that using data standardisation with an MSE loss function generally produces

better results, although there does not seem to be a clear dependence on the model

architecture or data processing method. Given these findings, we choose to train

our models using data standardisation with hyperbolic-tangent activation functions,

an MSE loss function, and an architecture of 20-40-20. This is consistent with the

set up presented in Section 5.2.2.

160 Appendix D. Hyperparameter tuning

Pr
oc
es
sin

g
La

ye
rs

Lo
ss

Er
ro
r

St
d

N
or
m

20
-4
0-

20
30
-6
0-

30

20
-3
0-

40
-3
0-

20

30
-4
0-

50
-4
0-

30
M
SE

M
SL

E
R
M
SE

R
M
SL

E

1
x

x
x

2.
82

8
×

10
−

5
2.

79
0
×

10
−

5

2
x

x
x

3.
32

0
×

10
−

5
3.

28
8
×

10
−

5

3
x

x
x

2.
82

9
×

10
−

5
2.

79
0
×

10
−

5

4
x

x
x

3.
82

0
×

10
−

5
3.

79
1
×

10
−

5

5
x

x
x

2.
82

9
×

10
−

5
2.

79
1
×

10
−

5

6
x

x
x

3.
14

7
×

10
−

5
3.

11
3
×

10
−

5

7
x

x
x

2.
83

0
×

10
−

5
2.

79
2
×

10
−

5

8
x

x
x

3.
45

4
×

10
−

5
3.

42
2
×

10
−

5

9
x

x
x

2.
83

5
×

10
−

5
2.

79
7
×

10
−

5

10
x

x
x

4.
79

9
×

10
−

4
4.

80
2
×

10
−

4

11
x

x
x

2.
83

5
×

10
−

5
2.

79
7
×

10
−

5

12
x

x
x

7.
39

6
×

10
−

4
7.

40
5
×

10
−

4

13
x

x
x

2.
83

6
×

10
−

5
2.

79
7
×

10
−

5

14
x

x
x

3.
41

4
×

10
−

4
3.

41
6
×

10
−

4

15
x

x
x

2.
83

6
×

10
−

5
2.

79
7
×

10
−

5

16
x

x
x

5.
59

9
×

10
−

4
5.

60
4
×

10
−

4

Ta
bl
e
D
.1
:
H
yp

er
pa

ra
m
et
er

tu
ni
ng

re
su
lts

.T
un

in
g
wa

sp
er
fo
rm

ed
on

a
fix

ed
tr
ai
ni
ng

da
ta
se
ts

ize
of

10
0k

po
in
ts

sa
m
pl
ed

us
in
g
th
e
R
A
M
BO

in
te
gr
at
or

[6
]o

n
a
un

it
in
te
gr
at
io
n
gr
id
.P

er
fo
rm

an
ce

wa
sm

ea
su
re
d
wi

th
re
sp
ec
tt

o
bo

th
th
e
R
oo

tM
ea
n
Sq

ua
re
d
Er

ro
r(

R
M
SE

)a
nd

R
oo

tM
ea
n
Sq

ua
re
d
Lo

ga
rit

hm
ic

Er
ro
r(

R
M
SL

E)
so

as
to

av
oi
d

bi
as
in
g
th
e
er
ro
r
m
ea
su
re

to
th
e
op

tim
isa

tio
n
cr
ite

rio
n
(lo

ss
fu
nc
tio

n)
ch
os
en
.

Appendix E

yp tuning

0.001 0.0025 0.005 0.01 0.02 0.03 0.04

yp

10−3

10−2

10−1

100

101

102

F
ra

ct
io

n
of

tr
ai

n
in

g
se

t
(%

) gg → γγg

gg → γγgg

Figure E.1: Proportion of the training dataset in the divergent re-
gion, Rdiv, as a function of yp for the 2→ 3 and 2→ 4
process.

This Appendix relates to yp tuning in the context of the gluon-induced diphoton

amplitudes discussed in Chapter 6. The choice of yp defines the partition between

the divergent region of phase-space, Rdiv, and the non-divergent region, Rnon-div (see

Equations 6.3.1 - 6.3.2). While it may be assumed that having more points in each

region is helpful since it provides more data for the networks trained in each region,

this is not always the case. Including a mixture of points in the training dataset,

with large imbalances in the distribution of different scales, can make the network

optimisation procedure increasingly noisy. For this reason, we seek to choose a value

of yp which provides a balance between having enough divergent points to learn

those regions well, whilst not providing too many points that are not in the limit

162 Appendix E. yp tuning

and which share similar scales to points in the non-divergent regions of phase-space.

We initially chose yp = 0.02, although the number of points falling into Rdiv depends

on the multiplicity of the process. As presented in Section 6.4.1, this value was shown

to perform well, 1 yet the same value would place a significantly greater proportion

of points into the divergent region when another external leg is added (see Figure

E.1). Instead of choosing the same value of yp for all processes, we aim to select a

value which keeps the proportion of points in the divergent region at the level of 2 -

8% of the whole phase-space sampled. We choose a value of yp = 0.02 for the 2→ 3

process, and yp = 0.001 for the 2→ 4 process. 2

1The value of yp = 0.01 was also tested and found to be in similarly good agreement.
2A value of yp = 0.0025 for the 2 → 4 process would also allow for this; however, at high

multiplicity, the lower value of this cut provided more optimal performance.

Appendix F

Comparison with the naive setup

−4 −2 0 2 4

ln(∆)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

qu
en

cy
[%

]

Unit grid

gg → γγg

∆ = NN
NJet

Single neural
network

Neural network
ensemble

(a) Unit integration grid.

−4 −2 0 2 4

ln(∆)

0.0

0.5

1.0

1.5

2.0

F
re

qu
en

cy
[%

]

VEGAS grid

gg → γγg

∆ = NN
NJet

Single neural
network

Neural network
ensemble

(b) VEGAS integration grid.

Figure F.1: Comparison of NN/Njet errors between the single NN
and NN ensemble approaches for the 2→ 3 scattering
process using different integration grids.

Throughout Chapter 6, all results that were presented using an ML approach have

used the NN ensemble methodology. In Chapter 5, this approach was shown to

outperform a naive single NN trained over the whole of phase-space for e+e− colli-

sions. In particular, the motivation for this approach was enhanced performance in

handling real emission, IR singular regions of phase-space, which similarly occur in

the processes studied in this work, especially at high multiplicity. For completeness,

we perform a similar comparison on the 2 → 3 gluon-initiated diphoton processes;

we do not compare on the 2→ 4 process as it is computationally expensive to do so

and it is a natural higher multiplicity extension of the 2→ 3 process.

164 Appendix F. Comparison with the naive setup

Figure F.1 shows the matrix level error analysis of the 2 → 3 scattering process,

using both a unit and VEGAS optimisation grid. In both cases, the error distribution

for the single NN approach has a significantly broader character than the ensemble

method. This demonstrates that the findings described in Chapter 5 are consistent

with those presented in this study.

Bibliography

[1] P. D. Group, P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer

et al., Review of Particle Physics, Progress of Theoretical and Experimental

Physics 2020 (08, 2020) .

[2] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert

et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007, [0811.4622].

[3] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. Prentice Hall,

2016.

[4] J.-F. Pekel, A. Cottam, N. Gorelick and A. S. Belward, High-resolution

mapping of global surface water and its long-term changes, Nature 540 (2016)

418–422.

[5] “Covid-19 patient notification system (cpns) user guide.”

https://www.england.nhs.uk/statistics/wp-content/uploads/sites/

2/2020/09/CPNS-User-Guide-20200831.pdf.

[6] R. Kleiss, W. J. Stirling and S. D. Ellis, A New Monte Carlo Treatment of

Multiparticle Phase Space at High-energies, Comput. Phys. Commun. 40

(1986) 359.

[7] S. Badger and J. Bullock, Using neural networks for efficient evaluation of

high multiplicity scattering amplitudes, JHEP 06 (2020) 114, [2002.07516].

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/09/CPNS-User-Guide-20200831.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/09/CPNS-User-Guide-20200831.pdf
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1007/JHEP06(2020)114
https://arxiv.org/abs/2002.07516

166 Bibliography

[8] J. Aylett-Bullock, S. Badger and R. Moodie, Optimising simulations for

diphoton production at hadron colliders using amplitude neural networks,

JHEP 08 (2021) 66, [2106.09474].

[9] E. Nemni, J. Bullock, S. Belabbes and L. Bromley, Fully convolutional neural

network for rapid flood segmentation in synthetic aperture radar imagery,

Remote Sensing 12 (2020) .

[10] T. Logar, J. Bullock, E. Nemni, L. Bromley, J. A. Quinn and

M. Luengo-Oroz, Pulsesatellite: A tool using human-ai feedback loops for

satellite image analysis in humanitarian contexts, Proceedings of the AAAI

Conference on Artificial Intelligence 34 (2020) 13628–13629.

[11] J. Bullock, A. Luccioni, K. Hoffman Pham, C. Sin Nga Lam and

M. Luengo-Oroz, Mapping the landscape of artificial intelligence applications

against COVID-19, Journal of Artificial Intelligence Research 69 (2020)

807–845, [2003.11336].

[12] M. Luengo-Oroz, K. Hoffmann Pham, J. Bullock, R. Kirkpatrick, A. Luccioni,

S. Rubel et al., Artificial intelligence cooperation to support the global

response to COVID-19, Nature Machine Intelligence 2 (2020) 295–297.

[13] A. Luccioni, J. Bullock, K. Hoffmann Pham, C. Sin Nga Lam and

M. Luengo-Oroz, Considerations, Good Practices, Risks and Pitfalls in

Developing AI Solutions Against COVID-19, in Harvard CRCS Workshop on

AI for Social Good, 2020, 2008.09043.

[14] M. Luengo-Oroz, J. Bullock, K. Hoffmann Pham, C. Sin Nga Lam and

A. Luccioni, From artificial intelligence bias to inequality in the time of

covid-19, IEEE Technology and Society Magazine 40 (2021) 71–79.

[15] J. Aylett-Bullock, C. Cuesta-Lázaro, A. Quera-Bofarull, M. Icaza-Lizaola,

A. Sedgewick, H. Truong et al., June: open-source individual-based

https://doi.org/10.1007/JHEP08(2021)066
https://arxiv.org/abs/2106.09474
https://doi.org/10.3390/rs12162532
https://doi.org/10.1609/aaai.v34i09.7101
https://doi.org/10.1609/aaai.v34i09.7101
https://doi.org/10.1613/jair.1.12.162
https://doi.org/10.1613/jair.1.12.162
https://arxiv.org/abs/2003.11336
https://doi.org/10.1038/s42256-020-0184-3
https://arxiv.org/abs/2008.09043
https://doi.org/10.1109/MTS.2021.3056282

Bibliography 167

epidemiology simulation, Royal Society Open Science 8 (2021) 210506,

[https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.210506].

[16] J. Aylett-Bullock, C. Cuesta-Lázaro, A. Quera-Bofarull, A. Katta,

K. Hoffmann Pham, B. Hoover et al., Operational response simulation tool for

epidemics within refugee and idp settlements, medRxiv (2021) ,

[https://www.medrxiv.org/content/early/2021/01/29/2021.01.27.21250611.full.pdf].

[17] J. Bullock, C. Cuesta-Lázaro and A. Quera-Bofarull, XNet: a convolutional

neural network (CNN) implementation for medical x-ray image segmentation

suitable for small datasets, in Medical Imaging 2019: Biomedical Applications

in Molecular, Structural, and Functional Imaging (B. Gimi and A. Krol, eds.),

vol. 10953, pp. 453 – 463, International Society for Optics and Photonics,

SPIE, 2019, DOI.

[18] J. Bullock and M. Luengo-Oroz, Automated Speech Generation from UN

General Assembly Statements: Mapping Risks in AI Generated Texts, in

International Conference on Machine Learning AI for Social Good Workshop,

ICML, 2019, 1906.01946.

[19] ATLAS collaboration, G. Aad et al., Observation of a new particle in the

search for the Standard Model Higgs boson with the ATLAS detector at the

LHC, Phys. Lett. B 716 (2012) 1–29, [1207.7214].

[20] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a

Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716

(2012) 30–61, [1207.7235].

[21] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector

Mesons, Phys. Rev. Lett. 13 (1964) 321–323.

[22] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev.

Lett. 13 (1964) 508–509.

https://doi.org/10.1098/rsos.210506
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.210506
https://doi.org/10.1101/2021.01.27.21250611
https://arxiv.org/abs/https://www.medrxiv.org/content/early/2021/01/29/2021.01.27.21250611.full.pdf
https://doi.org/10.1117/12.2512451
https://arxiv.org/abs/1906.01946
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508

168 Bibliography

[23] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws

and Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587.

[24] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.

Addison-Wesley, Reading, USA, 1995.

[25] J. Campbell, J. Huston and F. Krauss, The Black Book of Quantum

Chromodynamics: A Primer for the LHC Era. Oxford University Press, 12,

2017.

[26] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and collider physics,

vol. 8. Cambridge University Press, 2, 2011.

[27] P. Skands, Introduction to QCD, in Theoretical Advanced Study Institute in

Elementary Particle Physics: Searching for New Physics at Small and Large

Scales, 7, 2012, 1207.2389, DOI.

[28] M. L. Mangano, Introduction to QCD, in 1998 European School of

High-Energy Physics, 1998.

[29] T. Ohl, Feynman Diagrams For Pedestrians, in 46th Maria Laach School for

High Energy Physics, 2014, https://www.maria-laach.tp.nt.uni-

siegen.de/downloads/files/2014/Ohl-2014.pdf.

[30] C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge

invariance, Phys. Rev. 96 (Oct, 1954) 191–195.

[31] S. J. Parke and T. R. Taylor, An Amplitude for n Gluon Scattering, Phys.

Rev. Lett. 56 (1986) 2459.

[32] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3

(1962) 650–677.

[33] T. D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities,

Phys. Rev. 133 (1964) B1549–B1562.

https://doi.org/10.1103/PhysRevLett.13.585
https://arxiv.org/abs/1207.2389
https://doi.org/10.1142/9789814525220_0008
https://www.maria-laach.tp.nt.uni-siegen.de/downloads/files/2014/Ohl-2014.pdf
https://www.maria-laach.tp.nt.uni-siegen.de/downloads/files/2014/Ohl-2014.pdf
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRevLett.56.2459
https://doi.org/10.1103/PhysRevLett.56.2459
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549

Bibliography 169

[34] F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys.

Rev. 52 (Jul, 1937) 54–59.

[35] S. Catani and M. H. Seymour, A General algorithm for calculating jet

cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291–419,

[hep-ph/9605323].

[36] S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, The Dipole

formalism for next-to-leading order QCD calculations with massive partons,

Nucl. Phys. B 627 (2002) 189–265, [hep-ph/0201036].

[37] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to

next-to-leading order, Nucl. Phys. B 467 (1996) 399–442, [hep-ph/9512328].

[38] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of

next-to-leading order computations in QCD: The FKS subtraction, JHEP 10

(2009) 003, [0908.4272].

[39] C. G. Callan, Broken scale invariance in scalar field theory, Phys. Rev. D 2

(Oct, 1970) 1541–1547.

[40] K. Symanzik, Small distance behaviour in field theory and power counting,

Communications in Mathematical Physics 18 (1970) 227–246.

[41] A. Deur, S. J. Brodsky and G. F. de Teramond, The QCD Running Coupling,

Nucl. Phys. 90 (2016) 1, [1604.08082].

[42] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge

Theories, Phys. Rev. Lett. 30 (1973) 1343–1346.

[43] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys.

Rev. Lett. 30 (1973) 1346–1349.

[44] S. Weinzierl, Introduction to Monte Carlo methods, hep-ph/0006269.

https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://doi.org/10.1016/S0550-3213(02)00098-6
https://arxiv.org/abs/hep-ph/0201036
https://doi.org/10.1016/0550-3213(96)00110-1
https://arxiv.org/abs/hep-ph/9512328
https://doi.org/10.1088/1126-6708/2009/10/003
https://doi.org/10.1088/1126-6708/2009/10/003
https://arxiv.org/abs/0908.4272
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1007/BF01649434
https://doi.org/10.1016/j.ppnp.2016.04.003
https://arxiv.org/abs/1604.08082
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://arxiv.org/abs/hep-ph/0006269

170 Bibliography

[45] T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual,

JHEP 05 (2006) 026, [hep-ph/0603175].

[46] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al.,

An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)

159–177, [1410.3012].

[47] M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008)

639–707, [0803.0883].

[48] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri,

P. Richardson et al., HERWIG 6: An Event generator for hadron emission

reactions with interfering gluons (including supersymmetric processes), JHEP

01 (2001) 010, [hep-ph/0011363].

[49] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76

(2016) 196, [1512.01178].

[50] Sherpa collaboration, E. Bothmann et al., Event Generation with Sherpa 2.2,

SciPost Phys. 7 (2019) 034, [1905.09127].

[51] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al.,

The automated computation of tree-level and next-to-leading order differential

cross sections, and their matching to parton shower simulations, JHEP 07

(2014) 079, [1405.0301].

[52] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element

generator in C++, JHEP 02 (2002) 044, [hep-ph/0109036].

[53] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP

12 (2008) 039, [0808.3674].

[54] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in

four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999)

153–165, [hep-ph/9807565].

https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://arxiv.org/abs/0803.0883
https://doi.org/10.1088/1126-6708/2001/01/010
https://doi.org/10.1088/1126-6708/2001/01/010
https://arxiv.org/abs/hep-ph/0011363
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1088/1126-6708/2002/02/044
https://arxiv.org/abs/hep-ph/0109036
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
https://arxiv.org/abs/0808.3674
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565

Bibliography 171

[55] A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions,

Comput. Phys. Commun. 182 (2011) 2427–2438, [1007.4716].

[56] R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02

(2008) 002, [0712.1851].

[57] A. Denner, S. Dittmaier and L. Hofer, COLLIER - A fortran-library for

one-loop integrals, PoS LL2014 (2014) 071, [1407.0087].

[58] G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: A Program

implementing the OPP reduction method to compute one-loop amplitudes,

JHEP 03 (2008) 042, [0711.3596].

[59] T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for

One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771–2797,

[1403.1229].

[60] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes

from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08

(2010) 080, [1006.0710].

[61] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita et al.,

An Automated Implementation of On-Shell Methods for One-Loop Amplitudes,

Phys. Rev. D 78 (2008) 036003, [0803.4180].

[62] J. M. Campbell and R. K. Ellis, An Update on vector boson pair production at

hadron colliders, Phys. Rev. D 60 (1999) 113006, [hep-ph/9905386].

[63] J. M. Campbell, R. K. Ellis and C. Williams, Vector boson pair production at

the LHC, JHEP 07 (2011) 018, [1105.0020].

[64] J. M. Campbell, R. K. Ellis and W. T. Giele, A Multi-Threaded Version of

MCFM, Eur. Phys. J. C 75 (2015) 246, [1503.06182].

https://doi.org/10.1016/j.cpc.2011.06.011
https://arxiv.org/abs/1007.4716
https://doi.org/10.1088/1126-6708/2008/02/002
https://doi.org/10.1088/1126-6708/2008/02/002
https://arxiv.org/abs/0712.1851
https://doi.org/10.22323/1.211.0071
https://arxiv.org/abs/1407.0087
https://doi.org/10.1088/1126-6708/2008/03/042
https://arxiv.org/abs/0711.3596
https://doi.org/10.1016/j.cpc.2014.06.017
https://arxiv.org/abs/1403.1229
https://doi.org/10.1007/JHEP08(2010)080
https://doi.org/10.1007/JHEP08(2010)080
https://arxiv.org/abs/1006.0710
https://doi.org/10.1103/PhysRevD.78.036003
https://arxiv.org/abs/0803.4180
https://doi.org/10.1103/PhysRevD.60.113006
https://arxiv.org/abs/hep-ph/9905386
https://doi.org/10.1007/JHEP07(2011)018
https://arxiv.org/abs/1105.0020
https://doi.org/10.1140/epjc/s10052-015-3461-2
https://arxiv.org/abs/1503.06182

172 Bibliography

[65] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of

virtual corrections to multi-jet production in massless QCD, Comput. Phys.

Commun. 184 (2013) 1981–1998, [1209.0100].

[66] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola et al.,

GoSam: A Program for Automated One-Loop Calculations, J. Phys. Conf.

Ser. 368 (2012) 012056, [1111.6534].

[67] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola et al.,

Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012)

1889, [1111.2034].

[68] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni and R. Pittau,

Automation of one-loop QCD corrections, JHEP 05 (2011) 044, [1103.0621].

[69] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open

Loops, Phys. Rev. Lett. 108 (2012) 111601, [1111.5206].

[70] G. Bevilacqua, M. Czakon, M. V. Garzelli, A. van Hameren, A. Kardos, C. G.

Papadopoulos et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013)

986–997, [1110.1499].

[71] Z. Nagy and D. E. Soper, Matching parton showers to NLO computations,

JHEP 10 (2005) 024, [hep-ph/0503053].

[72] S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, M. Mangano, A. Schalicke

et al., Matching parton showers and matrix elements, in HERA and the LHC:

A Workshop on the Implications of HERA for LHC Physics: CERN - DESY

Workshop 2004/2005 (Midterm Meeting, CERN, 11-13 October 2004; Final

Meeting, DESY, 17-21 January 2005), 2005, hep-ph/0602031, DOI.

[73] G. P. Lepage, VEGAS: An Adaptive Multidimensional Integration Program,

1980.

https://doi.org/10.1016/j.cpc.2013.03.018
https://doi.org/10.1016/j.cpc.2013.03.018
https://arxiv.org/abs/1209.0100
https://doi.org/10.1088/1742-6596/368/1/012056
https://doi.org/10.1088/1742-6596/368/1/012056
https://arxiv.org/abs/1111.6534
https://doi.org/10.1140/epjc/s10052-012-1889-1
https://doi.org/10.1140/epjc/s10052-012-1889-1
https://arxiv.org/abs/1111.2034
https://doi.org/10.1007/JHEP05(2011)044
https://arxiv.org/abs/1103.0621
https://doi.org/10.1103/PhysRevLett.108.111601
https://arxiv.org/abs/1111.5206
https://doi.org/10.1016/j.cpc.2012.10.033
https://doi.org/10.1016/j.cpc.2012.10.033
https://arxiv.org/abs/1110.1499
https://doi.org/10.1088/1126-6708/2005/10/024
https://arxiv.org/abs/hep-ph/0503053
https://arxiv.org/abs/hep-ph/0602031
https://doi.org/10.5170/CERN-2005-014.288

Bibliography 173

[74] T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond

factorization, Comput. Phys. Commun. 120 (1999) 13–19, [hep-ph/9806432].

[75] R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo,

Comput. Phys. Commun. 83 (1994) 141–146, [hep-ph/9405257].

[76] A. van Hameren and C. G. Papadopoulos, A Hierarchical phase space

generator for QCD antenna structures, Eur. Phys. J. C25 (2002) 563–574,

[hep-ph/0204055].

[77] P. D. Draggiotis, A. van Hameren and R. Kleiss, SARGE: An Algorithm for

generating QCD antennas, Phys. Lett. B483 (2000) 124–130,

[hep-ph/0004047].

[78] S. Forte, L. Garrido, J. I. Latorre and A. Piccione, Neural network

parametrization of deep inelastic structure functions, JHEP 05 (2002) 062,

[hep-ph/0204232].

[79] M. Feickert and B. Nachman, A Living Review of Machine Learning for

Particle Physics, 2102.02770.

[80] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. MIT

Press, 2010.

[81] L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification And

Regression Trees. Routledge, 1984.

[82] S. K. Murthy, Automatic construction of decision trees from data: A

multi-disciplinary survey, Data Mining and Knowledge Discovery 2 (1998)

345–389.

[83] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

[84] J. H. Friedman, Greedy function approximation: A gradient boosting machine,

The Annals of Statistics 29 (2001) 1189–1232.

https://doi.org/10.1016/S0010-4655(99)00209-X
https://arxiv.org/abs/hep-ph/9806432
https://doi.org/10.1016/0010-4655(94)90043-4
https://arxiv.org/abs/hep-ph/9405257
https://doi.org/10.1007/s10052-002-1000-4
https://arxiv.org/abs/hep-ph/0204055
https://doi.org/10.1016/S0370-2693(00)00532-3
https://arxiv.org/abs/hep-ph/0004047
https://doi.org/10.1088/1126-6708/2002/05/062
https://arxiv.org/abs/hep-ph/0204232
https://arxiv.org/abs/2102.02770

174 Bibliography

[85] J. H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38

(2002) 367–378.

[86] J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees

and Generative Deep Neural Networks, 1707.00028.

[87] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA),

pp. 785–794, ACM, 2016, DOI.

[88] F. Bishara and M. Montull, (Machine) Learning amplitudes for faster event

generation, 1912.11055.

[89] M. Minsky and S. Papert, Perceptrons. M.I.T. Press, 1969.

[90] S. Ruder, An overview of gradient descent optimization algorithms, CoRR

abs/1609.04747 (2016) , [1609.04747].

[91] J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online

learning and stochastic optimization, Journal of Machine Learning Research

12 (2011) 2121–2159.

[92] N. N. for Machine Learning, Lecture 6e RMSProp: Divide the gradient by a

running average of its recent magnitude, Coursera: Neural networks for

machine learning (2012) .

[93] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 3rd

International Conference for Learning Representations (2015) , [1412.6980].

[94] B. Polyak, Some methods of speeding up the convergence of iteration methods,

USSR Computational Mathematics and Mathematical Physics 4 (1964) 1–17.

[95] C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, Activation functions:

Comparison of trends in practice and research for deep learning, CoRR

abs/1811.03378 (2018) , [1811.03378].

https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://arxiv.org/abs/1707.00028
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1912.11055
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
https://arxiv.org/abs/1811.03378

Bibliography 175

[96] Y. A. LeCun, L. Bottou, G. B. Orr and K.-R. Müller, Efficient BackProp,

pp. 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[97] A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind, Automatic

differentiation in machine learning: A survey, J. Mach. Learn. Res. 18 (2017)

5595–5637.

[98] M. D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase

Space Integration, SciPost Phys. 9 (2020) 053, [1810.11509].

[99] I.-K. Chen, M. D. Klimek and M. Perelstein, Improved Neural Network Monte

Carlo Simulation, SciPost Phys. 10 (2021) 023, [2009.07819].

[100] C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional Integration and

Sampling with Normalizing Flows, Mach. Learn. Sci. Tech. 1 (2020) 045023,

[2001.05486].

[101] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann,

Exploring phase space with Neural Importance Sampling, SciPost Phys. 8

(2020) 069, [2001.05478].

[102] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation

with Normalizing Flows, Phys. Rev. D 101 (2020) 076002, [2001.10028].

[103] D. J. Rezende and S. Mohamed, Variational inference with normalizing flows,

in Proceedings of the 32nd International Conference on International

Conference on Machine Learning - Volume 37, ICML’15, p. 1530–1538,

JMLR.org, 2015.

[104] L. Dinh, D. Krueger and Y. Bengio, NICE: Non-linear independent

components estimation, in 3rd International Conference on Learning

Representations, ICLR, 2015.

[105] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using real nvp,

in 5th International Conference on Learning Representations, ICLR, 2017.

https://doi.org/10.21468/SciPostPhys.9.4.053
https://arxiv.org/abs/1810.11509
https://doi.org/10.21468/SciPostPhys.10.1.023
https://arxiv.org/abs/2009.07819
https://doi.org/10.1088/2632-2153/abab62
https://arxiv.org/abs/2001.05486
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.21468/SciPostPhys.8.4.069
https://arxiv.org/abs/2001.05478
https://doi.org/10.1103/PhysRevD.101.076002
https://arxiv.org/abs/2001.10028

176 Bibliography

[106] B. Uria, M.-A. Côté, K. Gregor, I. Murray and H. Larochelle, Neural

autoregressive distribution estimation, Journal of Machine Learning Research

17 (2016) 1–37.

[107] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever and

M. Welling, Improved variational inference with inverse autoregressive flow, in

Proceedings of the 30th International Conference on Neural Information

Processing Systems, NIPS’16, (Red Hook, NY, USA), p. 4743–4751, Curran

Associates Inc., 2016.

[108] G. Papamakarios, T. Pavlakou and I. Murray, Masked autoregressive flow for

density estimation, in Proceedings of the 31st International Conference on

Neural Information Processing Systems, NIPS’17, (Red Hook, NY, USA),

p. 2335–2344, Curran Associates Inc., 2017.

[109] B. Stienen and R. Verheyen, Phase Space Sampling and Inference from

Weighted Events with Autoregressive Flows, SciPost Phys. 10 (2021) 038,

[2011.13445].

[110] E. Bothmann and L. Debbio, Reweighting a parton shower using a neural

network: the final-state case, JHEP 01 (2019) 033, [1808.07802].

[111] J. W. Monk, Deep Learning as a Parton Shower, JHEP 12 (2018) 021,

[1807.03685].

[112] K. Dohi, Variational Autoencoders for Jet Simulation, 2009.04842.

[113] B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting

with preserved uncertainties, Phys. Rev. D 102 (2020) 076004, [2007.11586].

[114] S. Otten, K. Rolbiecki, S. Caron, J.-S. Kim, R. Ruiz De Austri and

J. Tattersall, DeepXS: Fast approximation of MSSM electroweak cross

sections at NLO, Eur. Phys. J. C80 (2020) 12, [1810.08312].

https://doi.org/10.21468/SciPostPhys.10.2.038
https://arxiv.org/abs/2011.13445
https://doi.org/10.1007/JHEP01(2019)033
https://arxiv.org/abs/1808.07802
https://doi.org/10.1007/JHEP12(2018)021
https://arxiv.org/abs/1807.03685
https://arxiv.org/abs/2009.04842
https://doi.org/10.1103/PhysRevD.102.076004
https://arxiv.org/abs/2007.11586
https://doi.org/10.1140/epjc/s10052-019-7562-1
https://arxiv.org/abs/1810.08312

Bibliography 177

[115] A. Buckley, A. Kvellestad, A. Raklev, P. Scott, J. V. Sparre, J. Van

Den Abeele et al., Xsec: the cross-section evaluation code, Eur. Phys. J. C

80 (2020) 1106, [2006.16273].

[116] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair

et al., Generative adversarial nets, in Advances in Neural Information

Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence and K. Q. Weinberger, eds.), pp. 2672–2680. Curran Associates,

Inc., 2014.

[117] I. J. Goodfellow, On distinguishability criteria for estimating generative

models, in 3rd International Conference on Learning Representations, ICLR,

2015.

[118] L. Mescheder, A. Geiger and S. Nowozin, Which training methods for GANs

do actually converge?, in Proceedings of the 35th International Conference on

Machine Learning (J. Dy and A. Krause, eds.), vol. 80 of Proceedings of

Machine Learning Research, pp. 3481–3490, PMLR, 10–15 Jul, 2018,

http://proceedings.mlr.press/v80/mescheder18a.html.

[119] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van

Leeuwen et al., Event Generation and Statistical Sampling for Physics with

Deep Generative Models and a Density Information Buffer, 1901.00875.

[120] SHiP collaboration, C. Ahdida et al., Fast simulation of muons produced at

the SHiP experiment using Generative Adversarial Networks, JINST 14

(2019) P11028, [1909.04451].

[121] J. Lin, W. Bhimji and B. Nachman, Machine Learning Templates for QCD

Factorization in the Search for Physics Beyond the Standard Model, JHEP 05

(2019) 181, [1903.02556].

[122] J. Arjona Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R.

Vlimant, Particle Generative Adversarial Networks for full-event simulation

https://doi.org/10.1140/epjc/s10052-020-08635-y
https://doi.org/10.1140/epjc/s10052-020-08635-y
https://arxiv.org/abs/2006.16273
http://proceedings.mlr.press/v80/mescheder18a.html
https://arxiv.org/abs/1901.00875
https://doi.org/10.1088/1748-0221/14/11/P11028
https://doi.org/10.1088/1748-0221/14/11/P11028
https://arxiv.org/abs/1909.04451
https://doi.org/10.1007/JHEP05(2019)181
https://doi.org/10.1007/JHEP05(2019)181
https://arxiv.org/abs/1903.02556

178 Bibliography

at the LHC and their application to pileup description, J. Phys. Conf. Ser.

1525 (2020) 012081, [1912.02748].

[123] T. Lebese, B. Mellado and X. Ruan, The use of Generative Adversarial

Networks to characterise new physics in multi-lepton final states at the LHC,

2105.14933.

[124] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo,

DijetGAN: A Generative-Adversarial Network Approach for the Simulation of

QCD Dijet Events at the LHC, JHEP 08 (2020) 110, [1903.02433].

[125] Y. LeCun, Generalization and network design strategies, Connectionism in

Perspective (1989) .

[126] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard

et al., Backpropagation applied to handwritten zip code recognition, Neural

Computation 1 (1989) .

[127] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC

analysis-specific datasets with Generative Adversarial Networks, 1901.05282.

[128] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost

Phys. 7 (2019) 075, [1907.03764].

[129] Y. Alanazi et al., Simulation of electron-proton scattering events by a

Feature-Augmented and Transformed Generative Adversarial Network

(FAT-GAN), 2001.11103.

[130] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn,

GANplifying Event Samples, 2008.06545.

[131] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event

Unweighting, SciPost Phys. 10 (2021) 089, [2012.07873].

[132] A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Subtraction,

1912.08824.

https://doi.org/10.1088/1742-6596/1525/1/012081
https://doi.org/10.1088/1742-6596/1525/1/012081
https://arxiv.org/abs/1912.02748
https://arxiv.org/abs/2105.14933
https://doi.org/10.1007/JHEP08(2019)110
https://arxiv.org/abs/1903.02433
https://arxiv.org/abs/1901.05282
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
https://arxiv.org/abs/1907.03764
https://arxiv.org/abs/2001.11103
https://arxiv.org/abs/2008.06545
https://doi.org/10.21468/SciPostPhys.10.4.089
https://arxiv.org/abs/2012.07873
https://arxiv.org/abs/1912.08824

Bibliography 179

[133] M. Bellagente, M. Haußmann, M. Luchmann and T. Plehn, Understanding

Event-Generation Networks via Uncertainties, 2104.04543.

[134] G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object

Systematics using Deep-Learned Calibration, SciPost Phys. 9 (2020) 089,

[2003.11099].

[135] A. Butter and T. Plehn, Generative Networks for LHC events, 2008.08558.

[136] A. Butter and T. Plehn, Generative Models in Event Simulation, PoS

LHCP2020 (2021) 055.

[137] HEP Software Foundation collaboration, J. Apostolakis et al., HEP

Software Foundation Community White Paper Working Group - Detector

Simulation, 1803.04165.

[138] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2014.

[139] D. P. Kingma and M. Welling, An introduction to variational autoencoders,

Foundations and Trends® in Machine Learning 12 (2019) 307–392.

[140] G. Cullen et al., GOSAM-2.0: a tool for automated one-loop calculations

within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001,

[1404.7096].

[141] A. Denner, J.-N. Lang and S. Uccirati, Recola2: REcursive Computation of

One-Loop Amplitudes 2, Comput. Phys. Commun. 224 (2018) 346–361,

[1711.07388].

[142] M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in

QCD, Phys. Lett. B664 (2008) 307–314, [0803.1400].

[143] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk et al.,

Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with

Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001,

[1604.06447].

https://arxiv.org/abs/2104.04543
https://doi.org/10.21468/SciPostPhys.9.6.089
https://arxiv.org/abs/2003.11099
https://arxiv.org/abs/2008.08558
https://doi.org/10.22323/1.382.0055
https://doi.org/10.22323/1.382.0055
https://arxiv.org/abs/1803.04165
https://doi.org/10.1561/2200000056
https://doi.org/10.1140/epjc/s10052-014-3001-5
https://arxiv.org/abs/1404.7096
https://doi.org/10.1016/j.cpc.2017.11.013
https://arxiv.org/abs/1711.07388
https://doi.org/10.1016/j.physletb.2008.05.028
https://arxiv.org/abs/0803.1400
https://doi.org/10.1103/PhysRevLett.117.079901, 10.1103/PhysRevLett.117.012001
https://arxiv.org/abs/1604.06447

180 Bibliography

[144] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO

predictions for Higgs boson pair production with full top quark mass

dependence matched to parton showers, JHEP 08 (2017) 088, [1703.09252].

[145] S. P. Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD

Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass

Dependence, Phys. Rev. Lett. 120 (2018) 162001, [1802.00349].

[146] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and L. Scyboz, Probing the

trilinear Higgs boson coupling in di-Higgs production at NLO QCD including

parton shower effects, JHEP 06 (2019) 066, [1903.08137].

[147] G. Ossola, C. G. Papadopoulos and R. Pittau, Reducing full one-loop

amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007)

147–169, [hep-ph/0609007].

[148] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Fusing gauge theory

tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59–101,

[hep-ph/9409265].

[149] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop

amplitudes in N=4 super-Yang-Mills, Nucl. Phys. B725 (2005) 275–305,

[hep-th/0412103].

[150] R. K. Ellis, W. T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for

Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003, [0708.2398].

[151] W. T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree

amplitudes, JHEP 04 (2008) 049, [0801.2237].

[152] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D75

(2007) 125019, [0704.1835].

[153] S. D. Badger, Direct Extraction Of One Loop Rational Terms, JHEP 01

(2009) 049, [0806.4600].

https://doi.org/10.1007/JHEP08(2017)088
https://arxiv.org/abs/1703.09252
https://doi.org/10.1103/PhysRevLett.120.162001
https://arxiv.org/abs/1802.00349
https://doi.org/10.1007/JHEP06(2019)066
https://arxiv.org/abs/1903.08137
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://arxiv.org/abs/hep-ph/0609007
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://doi.org/10.1088/1126-6708/2008/03/003
https://arxiv.org/abs/0708.2398
https://doi.org/10.1088/1126-6708/2008/04/049
https://arxiv.org/abs/0801.2237
https://doi.org/10.1103/PhysRevD.75.125019
https://doi.org/10.1103/PhysRevD.75.125019
https://arxiv.org/abs/0704.1835
https://doi.org/10.1088/1126-6708/2009/01/049
https://doi.org/10.1088/1126-6708/2009/01/049
https://arxiv.org/abs/0806.4600

Bibliography 181

[154] F. A. Berends and W. T. Giele, Recursive Calculations for Processes with n

Gluons, Nucl. Phys. B306 (1988) 759–808.

[155] T. Binoth et al., A Proposal for a Standard Interface between Monte Carlo

Tools and One-Loop Programs, Comput. Phys. Commun. 181 (2010)

1612–1622, [1001.1307].

[156] S. Alioli et al., Update of the Binoth Les Houches Accord for a standard

interface between Monte Carlo tools and one-loop programs, Comput. Phys.

Commun. 185 (2014) 560–571, [1308.3462].

[157] M. Czakon and D. Heymes, Four-dimensional formulation of the

sector-improved residue subtraction scheme, Nucl. Phys. B890 (2014)

152–227, [1408.2500].

[158] JADE collaboration, W. Bartel et al., Experimental Studies on Multi-Jet

Production in e+ e- Annihilation at PETRA Energies, Z. Phys. C33 (1986)

23.

[159] R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD

corrections to five-jet production at LEP and the extraction of αs(MZ), JHEP

11 (2010) 050, [1008.5313].

[160] F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.

[161] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro et al.,

“TensorFlow: Large-scale machine learning on heterogeneous systems.”

https://www.tensorflow.org/, 2015.

[162] N. Tagasovska and D. Lopez-Paz, Single-model uncertainties for deep

learning, NeurlPS (2019) , [1811.00908].

[163] Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis, University of Cambridge,

2016.

https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/j.cpc.2010.05.016
https://doi.org/10.1016/j.cpc.2010.05.016
https://arxiv.org/abs/1001.1307
https://doi.org/10.1016/j.cpc.2013.10.020
https://doi.org/10.1016/j.cpc.2013.10.020
https://arxiv.org/abs/1308.3462
https://doi.org/10.1016/j.nuclphysb.2014.11.006
https://doi.org/10.1016/j.nuclphysb.2014.11.006
https://arxiv.org/abs/1408.2500
https://doi.org/10.1007/BF01410449
https://doi.org/10.1007/BF01410449
https://doi.org/10.1007/JHEP11(2010)050
https://doi.org/10.1007/JHEP11(2010)050
https://arxiv.org/abs/1008.5313
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://arxiv.org/abs/1811.00908

182 Bibliography

[164] B. Nachman, A guide for deploying Deep Learning in LHC searches: How to

achieve optimality and account for uncertainty, 1909.03081.

[165] B. Nachman and C. Shimmin, AI Safety for High Energy Physics,

1910.08606.

[166] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and

J. Thompson, Deep-Learning Jets with Uncertainties and More, 1904.10004.

[167] C. Englert, P. Galler, P. Harris and M. Spannowsky, Machine Learning

Uncertainties with Adversarial Neural Networks, Eur. Phys. J. C79 (2019) 4,

[1807.08763].

[168] T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the

production of a photon pair in association with two jets, Phys. Rev. Lett. 111

(2013) 222002, [1308.3660].

[169] S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections

to di-photon production in association with up to three jets at the Large

Hadron Collider, JHEP 03 (2014) 122, [1312.5927].

[170] Z. Bern, L. J. Dixon, F. Febres Cordero, S. Hoeche, H. Ita, D. A. Kosower

et al., Next-to-leading order γγ + 2-jet production at the LHC, Phys. Rev. D

90 (2014) 054004, [1402.4127].

[171] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop

leading colour QCD corrections to qq̄ → γγg and qg → γγq, JHEP 04 (2021)

201, [2102.01820].

[172] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop

leading-colour QCD helicity amplitudes for two-photon plus jet production at

the LHC, 2103.04319.

[173] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop

helicity amplitudes for diphoton plus jet production in full color, 2105.04585.

https://arxiv.org/abs/1909.03081
https://arxiv.org/abs/1910.08606
https://arxiv.org/abs/1904.10004
https://doi.org/10.1140/epjc/s10052-018-6511-8
https://arxiv.org/abs/1807.08763
https://doi.org/10.1103/PhysRevLett.111.222002
https://doi.org/10.1103/PhysRevLett.111.222002
https://arxiv.org/abs/1308.3660
https://doi.org/10.1007/JHEP03(2014)122
https://arxiv.org/abs/1312.5927
https://doi.org/10.1103/PhysRevD.90.054004
https://doi.org/10.1103/PhysRevD.90.054004
https://arxiv.org/abs/1402.4127
https://doi.org/10.1007/JHEP04(2021)201
https://doi.org/10.1007/JHEP04(2021)201
https://arxiv.org/abs/2102.01820
https://arxiv.org/abs/2103.04319
https://arxiv.org/abs/2105.04585

Bibliography 183

[174] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD

corrections to diphoton production with an additional jet at the LHC,

2105.06940.

[175] S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H. B. Hartanto,

J. Henn et al., Virtual QCD corrections to gluon-initiated diphoton plus jet

production at hadron colliders, 2106.08664.

[176] D. de Florian and Z. Kunszt, Two photons plus jet at LHC: The NNLO

contribution from the g g initiated process, Phys. Lett. B 460 (1999) 184–188,

[hep-ph/9905283].

[177] Z. Bern, A. De Freitas and L. J. Dixon, Two loop amplitudes for gluon fusion

into two photons, JHEP 09 (2001) 037, [hep-ph/0109078].

[178] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite

fields and dataflow graphs, JHEP 07 (2019) 031, [1905.08019].

[179] Z. Bern, L. J. Dixon and D. A. Kosower, One loop corrections to five gluon

amplitudes, Phys. Rev. Lett. 70 (1993) 2677–2680, [hep-ph/9302280].

[180] E. Byckling and K. Kajantie, Particle Kinematics: (Chapters I-VI, X).

University of Jyvaskyla, Jyvaskyla, Finland, 1971.

[181] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm,

JHEP 04 (2008) 063, [0802.1189].

[182] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.

C 72 (2012) 1896, [1111.6097].

[183] S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998)

369–374, [hep-ph/9801442].

[184] G. Guennebaud, B. Jacob et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

https://arxiv.org/abs/2105.06940
https://arxiv.org/abs/2106.08664
https://doi.org/10.1016/S0370-2693(99)00734-0
https://arxiv.org/abs/hep-ph/9905283
https://doi.org/10.1088/1126-6708/2001/09/037
https://arxiv.org/abs/hep-ph/0109078
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://doi.org/10.1103/PhysRevLett.70.2677
https://arxiv.org/abs/hep-ph/9302280
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1016/S0370-2693(98)00454-7
https://doi.org/10.1016/S0370-2693(98)00454-7
https://arxiv.org/abs/hep-ph/9801442

184 Bibliography

[185] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lonnblad, J. Monk

et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803–2819,

[1003.0694].

[186] C. Bierlich et al., Robust Independent Validation of Experiment and Theory:

Rivet version 3, SciPost Phys. 8 (2020) 026, [1912.05451].

[187] ATLAS collaboration, M. Aaboud et al., Measurements of integrated and

differential cross sections for isolated photon pair production in pp collisions

at
√
s = 8 TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005,

[1704.03839].

[188] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht

et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys.

J. C 75 (2015) 132, [1412.7420].

[189] NNPDF collaboration, R. D. Ball et al., Parton distributions from

high-precision collider data, Eur. Phys. J. C 77 (2017) 663, [1706.00428].

[190] S. Lang, P. Füreder, O. Kranz, B. Card, S. Roberts and A. Papp,

Humanitarian emergencies: causes, traits and impacts as observed by remote

sensing, in Remote Sensing of Water Resources, Disasters, and Urban Studies,

pp. 483–512. CRC Press, 2015.

[191] J. A. Quinn, M. M. Nyhan, C. Navarro, D. Coluccia, L. Bromley and

M. Luengo-Oroz, Humanitarian applications of machine learning with

remote-sensing data: review and case study in refugee settlement mapping,

Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences 376 (2018) 20170363,

[https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0363].

[192] K. He, G. Gkioxari, P. Dollár and R. B. Girshick, Mask r-cnn, 2017 IEEE

International Conference on Computer Vision (ICCV) (2017) 2980–2988.

https://doi.org/10.1016/j.cpc.2013.05.021
https://arxiv.org/abs/1003.0694
https://doi.org/10.21468/SciPostPhys.8.2.026
https://arxiv.org/abs/1912.05451
https://doi.org/10.1103/PhysRevD.95.112005
https://arxiv.org/abs/1704.03839
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://doi.org/10.1098/rsta.2017.0363
https://doi.org/10.1098/rsta.2017.0363
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0363

Bibliography 185

[193] “Centre for research on the epidemiology of disasters. the human cost of

weather-related disasters 1995-2015.” United Nations Office for Disaster Risk

Reduction, 2015.

[194] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek and K. P.

Papathanassiou, A tutorial on synthetic aperture radar, IEEE Geoscience and

Remote Sensing Magazine 1 (2013) 6–43.

[195] F.Covello, F. Battazza, A. Coletta, E. Lopinto, C. Fiorentino, L. Pietranera

et al., Cosmo-skymed an existing opportunity for observing the earth, Journal

of Geodynamics 49 (2010) 171 – 180.

[196] R. Werninghaus, TerraSAR-X mission, in SAR Image Analysis, Modeling,

and Techniques VI (F. Posa, ed.), vol. 5236, pp. 9 – 16, International Society

for Optics and Photonics, SPIE, 2004, DOI.

[197] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for

biomedical image segmentation, CoRR abs/1505.04597 (2015) .

[198] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image

recognition, in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.

[199] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, Imagenet: A

large-scale hierarchical image database, in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[200] R. E. Russell, R. A. Katz, K. Richgels, D. P. Walsh and E. Grant, A

framework for modeling emerging diseases to inform management, Emerging

Infectious Diseases 23 (2017) 1–6.

[201] N. Brandon, K. L. Dionisio, K. Isaacs, R. Tornero-Velez, D. Kapraun, R. W.

Setzer et al., Simulating exposure-related behaviors using agent-based models

https://doi.org/10.1016/j.jog.2010.01.001
https://doi.org/10.1016/j.jog.2010.01.001
https://doi.org/10.1117/12.511500

186 Bibliography

embedded with needs-based artificial intelligence, Journal of exposure science

& environmental epidemiology (2018) 1–10.

[202] A. H. Auchincloss, S. Y. Gebreab, C. Mair and A. V. Diez Roux, A review of

spatial methods in epidemiology, 2000–2010, Annual review of public health 33

(2012) 107–122.

[203] A. M. El-Sayed, P. Scarborough, L. Seemann and S. Galea, Social network

analysis and agent-based modeling in social epidemiology, Epidemiologic

Perspectives & Innovations 9 (2012) 1.

[204] R. J. Rockett, A. Arnott, C. Lam, R. Sadsad, V. Timms, K.-A. Gray et al.,

Revealing covid-19 transmission in australia by sars-cov-2 genome sequencing

and agent-based modeling, Nature medicine 26 (2020) 1398–1404.

[205] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and

D. S. Burke, Strategies for mitigating an influenza pandemic, Nature 442

(2006) 448–452.

[206] D. L. Chao, M. E. Halloran, V. J. Obenchain and I. M. Longini Jr, Flute, a

publicly available stochastic influenza epidemic simulation model, PLoS

Comput Biol 6 (2010) e1000656.

[207] E. J. Williamson, A. J. Walker, K. Bhaskaran, S. Bacon, C. Bates, C. E.

Morton et al., Factors associated with covid-19-related death using opensafely,

Nature 584 (2020) 430–436.

[208] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk et al.,

Social contacts and mixing patterns relevant to the spread of infectious

diseases, PLoS Med 5 (2008) e74.

[209] P. Klepac, S. Kissler and J. Gog, Contagion! the bbc four pandemic – the

model behind the documentary, Epidemics 24 (2018) 49 – 59.

https://doi.org/https://doi.org/10.1016/j.epidem.2018.03.003

Bibliography 187

[210] P. S. Craig, M. Goldstein, A. H. Seheult and J. A. Smith, Pressure matching

for hydrocarbon reservoirs: a case study in the use of bayes linear strategies

for large computer experiments (with discussion), in Case Studies in Bayesian

Statistics (C. Gatsonis, J. S. Hodges, R. E. Kass, R. McCulloch, P. Rossi and

N. D. Singpurwalla, eds.), vol. 3, pp. 36–93. SV, New York, 1997.

[211] I. Vernon, M. Goldstein and R. G. Bower, Galaxy formation: a bayesian

uncertainty analysis, Bayesian Analysis 5 (2010) 619–670.

[212] I. Andrianakis, I. Vernon, N. McCreesh, T. McKinley, J. Oakley, R. Nsubuga

et al., Bayesian history matching of complex infectious disease models using

emulation: A tutorial and a case study on HIV in uganda., PLoS Comput

Biol. 11 (2015) e1003968.

[213] K. Shea, R. K. Borchering, W. J. M. Probert, E. Howerton, T. L. Bogich,

S. Li et al., COVID-19 reopening strategies at the county level in the face of

uncertainty: Multiple models for outbreak decision support, medRxiv (2020) ,

[https://www.medrxiv.org/content/early/2020/11/05/2020.11.03.20225409.full.pdf].

[214] D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub and H. J. Schünemann,

Physical distancing, face masks, and eye protection to prevent

person-to-person transmission of sars-cov-2 and covid-19: a systematic review

and meta-analysis, Lancet (2020) 1973–1987.

[215] J. Howard, A. Huang, Z. Li, Z. Tufekci, V. Zdimal, H.-M. van der Westhuizen

et al., Face masks against COVID-19: an evidence review, .

[216] E. P. Fischer, M. C. Fischer, D. Grass, I. Henrion, W. S. Warren and

E. Westman, Low-cost measurement of face mask efficacy for filtering expelled

droplets during speech, Science Advances 6 (2020) eabd3083.

[217] Y. Wang, H. Tian, L. Zhang, M. Zhang, D. Guo, W. Wu et al., Reduction of

secondary transmission of SARS-CoV-2 in households by face mask use,

https://doi.org/10.1101/2020.11.03.20225409
https://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/11/05/2020.11.03.20225409.full.pdf

188 Bibliography

disinfection and social distancing: a cohort study in Beijing, China, BMJ

Global Health 5 (2020) e002794.

[218] J. Atkinson, Y. Chartier, C. L. Pessoa-Silva, P. Jensen, Y. Li and W.-H. Seto,

Natural ventilation for infection control in health-care settings. World Health

Organization, 2009.

[219] S. Carrazza, J. Cruz-Martinez, M. Rossi and M. Zaro, MadFlow: automating

Monte Carlo simulation on GPU for particle physics processes, 2106.10279.

[220] S. Carrazza and J. M. Cruz-Martinez, VegasFlow: accelerating Monte Carlo

simulation across multiple hardware platforms, Comput. Phys. Commun. 254

(2020) 107376, [2002.12921].

[221] J. M. Cruz-Martinez and S. Carrazza, VegasFlow: accelerating Monte Carlo

simulation across platforms, PoS ICHEP2020 (2021) 906, [2010.09341].

[222] S. Carrazza, J. M. Cruz-Martinez and M. Rossi, PDFFlow: Parton

distribution functions on GPU, Comput. Phys. Commun. 264 (2021) 107995,

[2009.06635].

[223] M. Rossi, S. Carrazza and J. M. Cruz-Martinez, PDFFlow: hardware

accelerating parton density access, PoS ICHEP2020 (2021) 921,

[2012.08221].

[224] S. Carrazza, J. Cruz-Martinez, M. Rossi and M. Zaro, Towards the

automation of Monte Carlo simulation on GPU for particle physics processes,

in 25th International Conference on Computing in High-Energy and Nuclear

Physics, 5, 2021, 2105.10529.

[225] Z. Bern, L. J. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. A. Kosower

et al., Ntuples for NLO Events at Hadron Colliders, Comput. Phys. Commun.

185 (2014) 1443–1460, [1310.7439].

https://arxiv.org/abs/2106.10279
https://doi.org/10.1016/j.cpc.2020.107376
https://doi.org/10.1016/j.cpc.2020.107376
https://arxiv.org/abs/2002.12921
https://doi.org/10.22323/1.390.0906
https://arxiv.org/abs/2010.09341
https://doi.org/10.1016/j.cpc.2021.107995
https://arxiv.org/abs/2009.06635
https://doi.org/10.5821/zenodo.4286175
https://arxiv.org/abs/2012.08221
https://arxiv.org/abs/2105.10529
https://doi.org/10.1016/j.cpc.2014.01.011
https://doi.org/10.1016/j.cpc.2014.01.011
https://arxiv.org/abs/1310.7439

Bibliography 189

[226] D. Maitre, G. Heinrich and M. Johnson, N(N)LO event files: applications and

prospects, PoS LL2016 (2016) 016, [1607.06259].

[227] M. Dohse, TikZ-FeynHand: Basic User Guide, 1802.00689.

[228] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys.

Commun. 210 (2017) 103–123, [1601.05437].

[229] J. C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev. 78 (1950)

182.

[230] Y. Takahashi, On the generalized Ward identity, Nuovo Cim. 6 (1957) 371.

[231] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, Single-top

production in MC@NLO, JHEP 03 (2006) 092, [hep-ph/0512250].

[232] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann

machines, in Proceedings of the 27th International Conference on

International Conference on Machine Learning, ICML’10, (Madison, WI,

USA), p. 807–814, Omnipress, 2010.

https://doi.org/10.22323/1.260.0016
https://arxiv.org/abs/1607.06259
https://arxiv.org/abs/1802.00689
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://arxiv.org/abs/1601.05437
https://doi.org/10.1103/PhysRev.78.182
https://doi.org/10.1103/PhysRev.78.182
https://doi.org/10.1007/BF02832514
https://doi.org/10.1088/1126-6708/2006/03/092
https://arxiv.org/abs/hep-ph/0512250

	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction to QCD
	The Theory of QCD
	Matrix Elements
	Divergent Structures
	Ultraviolet Divergences
	Infrared Divergences

	Running Coupling

	Monte Carlo Event Generators
	Measurements and Observables
	Brief Overview of Event Generators
	Monte Carlo Integration
	Basics
	Reducing the variance

	Integration in Practice

	Machine Learning for Event Generation
	Decision Trees
	Bagging and Random Forests
	Boosting

	Neural Networks
	The Perceptron
	Fully Connected Networks

	Generative Networks

	Machine learning for matrix element approximation: e+e- qbarq + jets
	Motivation
	Computational setup
	Phase-space partitioning for final state singularities
	Neural network setup
	Uncertainty Analysis

	Results
	Approximations at LO
	Virtual Approximations at NLO

	Summary

	Machine learning for matrix element approximation: diphoton + jets
	Motivation
	Gluon-initiated diphoton amplitudes
	Computational setup
	Phase-space partitioning for hadron-hadron collisions
	Neural network setup
	Interfacing with event generators
	Reweighting

	Results
	3g2A
	4g2A
	Timing

	Summary

	Computational Methods for Crisis Response and Epidemic Modelling
	Machine Learning for Crisis Response
	Satellite Image Analysis
	Mapping the Response to COVID-19

	Epidemic Modelling
	The June Framework
	Modelling COVID-19 in England
	Modelling COVID-19 in Refugee and IDP Settlements

	Summary

	Conclusions
	QCD Feynman Rules
	Monte Carlo Integration Algorithms
	RAMBO
	VEGAS

	FKS pairs and partition functions
	Hyperparameter tuning
	y p tuning
	Comparison with the naive setup
	Bibliography

