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Abstract

The effectiveness of online geographically-based advertising campaigns is estimated

experimentally using a randomised experimental approach called a geo-experiment.

In these experiments, a region of interest is partitioned into geographical-targeting

areas called geos. The experiments are conducted in two distinct time periods where

in the first time period there is no difference in advertising campaigns between geos,

whereas during the second time period the campaigns for some selected geos are

modified. The main concern is, which geos should be assigned to the treatment con-

dition to serve the modified advertising campaigns during the second time period?

It is a simple question with a not so simple answer in reality, especially in the

presence of unobserved heterogeneity structure within geos. The issue therefore

is to design a robust advertising campaigns which permits estimation of the ef-

fectiveness of the campaigns using geo-experiments. In this thesis, a conceptual

model of geo-experiments is presented to improve our understanding of the poten-

tial impact of hidden heterogeneity on estimating the effectiveness of advertising

campaigns. A theoretical framework based on theory of maximum likelihood estim-

ation of misspecified model and Kullback-Leibler divergence is developed to study

the implications of unobserved heterogeneity for inferences about estimated effects

for geo-experiments. An important part of the framework is a proxy model linking

the fitted model, with homogeneity structure within geos, and the assumed truth

which includes unobserved heterogeneity. The theoretical framework plays a key

role in approximating the behaviour of the estimated fitted model parameters. This

saves having to do expensive Monte Carlo simulation all the time. The accuracy of

the theoretical approximation is investigated for different campaign design strategies

across different truth instances. The results reveal the advantage of design strategies

based on unobserved covariates, such as social-grades, in reducing the variability of

the approximation error and that designs based on spatial proximity may achieve

some of the same benefit. Nonetheless, for the more complex truth instances in-

vestigated, none of the design strategies considered succeeds in avoiding bias due to

unobserved heterogeneity.
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Introduction

Geographically-based online advertising campaigns are digital customised and tar-

geted marketing campaigns delivering advertisements to consumers based on their

geographic locations. The alternative name for such advertising campaigns is geo-

targeting campaigns as they are called in Google Adwords, which is one of the

most well-known search engine marketing platforms. The name is derived from the

geo-targeting feature in Google Adwords which allows advertisers to show their ad-

vertisements to people in certain geographic locations. Geo-targeting campaigns

have been considered effective digital geo-marketing practice for reaching the right

consumers and help to improve the conversion rate in sales.

The effectiveness of geo-targeting campaigns is estimated experimentally using a

randomised experimental approach called geo-experiments. The approach is a patent

published in Google Patents by Vaver and J. R. Koehler 2011. The basic concept

of geo-experiments is as simple as it is intriguing: that is, a geographic region of

interest is partitioned into a set of smaller non-overlapping areas, called “geos”.

These geos are randomly assigned to either a control or treatment group and geo

targeting are then used to serve advertisements accordingly. The experiments are

conducted into two-time periods. During the first period, there is no difference in

the advertising campaigns between control and treatment geos, while during the

second time period the advertising campaign is changed for the treatment group.

The outcomes of the experiments measure the differences in user behaviours in the

treatment geos relative to the control geos across the-two time periods with respect

to the corresponding differential in ad-spend, which is the amount of money spent

on advertising campaigns. In other words, the results of the experiments come in

1



2

the form of return on ad-spend (ROAS), which explains the incremental impact that

the ad spend has on the consumer behaviour, (Vaver and J. Koehler 2011). ROAS

is now the most widely used and informative measure of advertising performance at

Google AdWords.

The outcomes of geo-experiments are observed at the geo level. Therefore, the geos

are required to be selected in a manner that satisfies two essential points. First, it

must be possible to serve advertisements to a geo according to its condition: treat-

ment and control. Second, it must be possible to track ad-spend and behaviours of

interest at the geo level. Many advertisers, however, fail to satisfy these require-

ment due to geographic design’s problems and behavioural tracking challenges. For

example,

• The generation of geos for geo-experiments is not straightforward. AdWords

provides advertisers various set of geos in different locations around the world

to choose where they desire their advertisements to appear. Geos include

countries, cities, regions, provinces, counties, postal codes, TV regions and

Nielsen designated market areas (DMAs). It is not obvious how geos are

determined by Google but they are available on Google AdWords website and

can be obtained easily. Google, however, updates these locations continuously,

based on unknown criteria. Geos are not associated with demographics or

socio-economics except average household income which has been added for

DMAs. However DMAs are only available in the US. Therefore, the frame of

the available geos are not well-defined for designing the sampling process for

geo-experiments.

• Designing geo-experiments with a balanced treatment assignment of geos would

be a challenge. Geos do not have the same possibility of receiving advert-

isements due to considerable heterogeneity among them. For instance, geos

vary in their location, size, population and demographic and socio-economic

characteristics. The design of the experiment, i.e. how to decide which geos

receive the modified campaign during the second time period, is a concern

to many marketers. A primary challenge is that the available geographical
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areas on AdWords platform are not associated with sufficient demographic

or socio-economic covariates although these covariates are likely to affect the

probability of making conversion. The population distribution of some cov-

ariates such as age, gender and income for some areas might be known but it

is likely that there are other important unknown and unobserved covariates.

The challenge therefore is to design the advertising campaign in a robust way

which permits estimation of the effectiveness of the modified campaign.

• Google AdWords manipulates sophisticated tools for tracking ad-spend and

user behaviours. User behaviours might be, for example, online search, clicks,

online or offline conversion, website visits, clicks, or any behaviour that is

directly attributable to the advertisements. However, it has been considered

hard to track these metrics because they represent micro-data. For instance,

users might be recorded that they are seeing ads in one geo but are actually

staying in another. They could be anonymous and having options to hide or

change their IP address or turn off their location. In this case the ad-spend or

user behaviours is associated to a wrong or unknown geo. Similarly, they might

be seeing advertisements in one geo but do conversion in another unit. Here the

ad spend for the same users is determined at different locations. In addition

users might use multiple devices and hence many cookies are associated to

a single user at either one geo or multiple geos. Cookies might be applied

to track users but users might switch off cookies to avoid tracking and evade

annoying irrelevant advertisements. Thus, AdWords might be able to collect

detailed information about unique search queries, but for most of the queries

there are insufficient or dirty data. AdWords, thus, tends to provide advertisers

grouped or aggregated data by some contexts such as targeted-locations, (Fain

and Pedersen 2006; Rutz and Bucklin 2011).

• AdWords aggregated data are used to compute performance metrics of advert-

ising campaigns, which are used to infer user behaviours. The aggregated data,

however, have some statistical issues; for instance, there might be a correlation

between aggregated groups, that may lead to incorrect inferences about the
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correlation between individual level. Also, the estimated performance metrics

that are derived from aggregated data might be biased towards aggregated

groups. The impact of aggregated data on individual level has been widely

investigated by several authors from different fields such as social, physical and

health sciences because they have to rely on published aggregate level data to

infer at the individual level, (Clark and Avery 1976; Moulton 1990; Rutz and

Bucklin 2011).

Despite the above mentioned challenges, geo-experiments are now a conventional

approach for measuring the effectiveness of online advertising campaign at Google.

Studies relating to geo-experiments have been relatively few (Blake et al. 2015; Valli

et al. 2017; Vaver and J. Koehler 2012; Ye et al. 2016), and as far as we know there

is no study addressing either generation of geos or treating messiness in tracking

ad-spend. The geo-experiments in these papers were conducted over the 210 DMAs

in US. In these geos, however, users are not restricted to administrative boundaries

and share the same programme offered by television and radio and might receive the

same internet content. DMAs are well-defined geos and broadly used in targeting by

many marketing platforms. Vaver and J. Koehler reported that ad-tracking accuracy

is a concern and they suggested that location and size of the geos can be used to

alleviate this issue. However, they did not discuss the generation of geos, what

practical size the geos should be and what are their general feasible features.

Designing involved in implementing experimental treatments were addressed very

briefly in (Blake et al. 2015; Vaver and J. Koehler 2011, 2012), where Vaver and

J. Koehler emphasised that random assignment of geos to control and treatment

condition is an important component of a successful experiment and suggested to

constrain this random assignment across one or more characteristics such as size

or demographic variable. However, as mentioned earlier the availability of such

variables is limited. Ye et al. (2016) employed a two-step approach in selecting

experimental treatments: first matched geos in pairs on trend key metrics to reduce

variability between control and treatment geos, then stratified users in control and

treatment geos based on the national buyer segment distribution in geos to reduce



5

variability in user level behaviours. However, this design strategy is based on pre-

observational data which are related to specific geos, users and time and hence their

results may be questionable.

In this thesis , we focus on the design of geo-experiments, i.e. deciding which

geos receive the change in the advertising campaigns during the second time period.

This includes processing the generation of geos for geo-experiments and handling

unobserved heterogeneity within geos in estimating treatment effects with the aim

of designing advertising campaigns in a robust way which permits estimation of the

effectiveness of the modified campaign. In particular, this thesis provides extended

statistical methodology for the geo-experiments in six respects:

1. It proposes geos allocation algorithm for linking AdWords geos information to

background information such as population and social-grades, which might be

available from Government sources. The research focuses on AdWords geos

in UK and links them to local authority areas, which can be considered well-

defined areas because their detailed characteristics such as census data are

expected to be available at the office for national statistics.

2. It applies different advertising campaign design strategies to allocate part of

geos to serve the modified advertising campaign during the second time period.

Complete randomisation and matched-pair designs, which is a special case

of randomised block design are applied. The pairs are matched using pop-

ulation, social grades, realistic expected search rates and nearest neighbour

algorithm, using dissimilarity measures between social-grades, dissimilarity

measures between population and social grades and distances between geo-

graphical coordinates.

3. It proposes a conceptual model of geo-experiments for measuring the effect-

iveness of geographically-based online advertising campaigns, where the be-

haviours of interest are a two-stage behavioural process: online search and

online purchase. The effectiveness of the advertising campaign comes in the

form of the differential in the purchasing behaviour in the treatment spatial

units relative to the control.
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4. It develops a theoretical framework for correcting the potential wrong in-

ferences in estimated effects of advertising due to unobserved heterogeneity

structure within geos. Logit-linear regression models are used to fit purchase

behavioural data. The maximum likelihood estimation technique is used to

estimate the effectiveness of advertising campaigns. The applied statistical

models used for estimation, however, is known to be misspecified when the

presence of unobserved covariates is taken into account. Multiple truth models

are thus proposed to measure misspecification of applied models. Kullback-

Leibler divergence is used to measure the distance between the applied models

and truth via a proxy model. An important part of the framework is a proxy

model linking applied model and the truth. The proxy model makes possible

the application of standard results in the literature on the maximum likelihood

estimation for misspecified models (Chow 1984; White 1982) .

5. It proposes a conceptual approach to quantifying the error associated with

estimated applied model parameters in relation to specific truth parameters.

As a measure of effectiveness of the modified advertising campaign, the ap-

proach uses the hypothetical differential measure that measures the difference

between the expected total number of sales if the modified campaign is served

in all geos and the expected total number of sales if it is served in none. The

error between estimated applied model parameters and the truth is then the

difference between the sales differential measure computed using the estimated

applied model parameters and the sales differential measure computed using

the truth parameters.

6. It sets an evaluation method for measuring the performance of different cam-

paign design strategies. The suggested design strategies in item 2 above are

meta-designs and hence performance measures are needed to compare compet-

encies of different campaign design strategies in estimating campaign effects

in relation to a specific truth.

The proposed conceptual model of geo-experiments improves our understanding

of the potential impact of hidden heterogeneity on estimating the effectiveness of
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advertising campaign. The findings shows some evidence of the benefit of using

social-grades based campaign design in reducing the error between estimated applied

model parameters and the truth. The conceptual model, however, is not adequate

enough to prevent a large bias or random error when estimating the hypothetical

sales differential measure.

The theoretical behaviour of estimated applied model based on the theory of the

maximum likelihood estimation for misspecified models is investigated through Monte

Carlo experiments, by assessing whether the theoretical distribution of estimates are

suitable to describe their empirical sampling distribution. The results indicate the

key role of the theoretical approximation to the sampling distribution of applied

model parameters. This saves having to do expensive Monte Carlo simulation all

the time.

The conceptual model counts only two behavioural process search and conversion

although the real world behaviour structure is a multi-level. The model ignores ad-

spend variable because our knowledge of ad-spend or its distribution is very narrow.

The model also ignores the statistical issue of aggregated data and does not take

into account seasonality factors, which is important in measuring campaign effects.

Notwithstanding these limitation, the proposed conceptual model is a good start

point for understanding the estimation of advertising campaign under misspecifica-

tion when geo-experiment is applied. It is also important for showing the potential

effect of including covariates related to unobserved heterogeneity in designing the

sampling process of the experiments on campaign effects. We expect that thr reader

of this thesis will share in our opinion that the proposed conceptual model of geo-

experiments provides insights into the estimation of advertising campaign effect.

Therefore, we close the introduction with a preview of the coming chapters in this

thesis.

Chapter 1 provides a brief primer on Google AdWords campaigns, including the

history, concept of AdWords, structure of AdWords campaigns and AdWords per-

formance metrics. It also presents briefly some estimation approaches that have been

proposed in marketing literature for measuring the effectiveness of online advertising
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campaigns as well as geo-experiment approach.

Chapter 2 presents an example of a real world application of the geo-experiments.

The application was conducted for a retail company in UK which aims to determine

whether bidding on their brand terms drives incremental sales. It shows the chal-

lenge in designing the advertising campaign and how data from tracking users can

be messy and incorrectly tracked.

Chapter 3 links UK AdWords target geos to UK local authority areas to create a

well-defined sampling frame for treatment geos. The linking algorithms is based on

the the shortest great-circle distances between target geos and local authority areas

which depend mainly on the longitude and latitude measures. The sources of local

authority areas include Office of National Statistics and UK Data Service, which

provide access to census micro-data. The linking process returns subset of local au-

thority areas associated with some micro-data such as population and social-grades

characteristics. The term spatial units is used to refer to this subset of geographic

locations. The research focused on spatial units in England and Wales.

Chapter 4 introduces a conceptual model of geo-experiments to understand the key

tenets of user behaviours. It sets out the potential user behaviours that may result

from geo-experiments and outlines two behaviours: online search and purchase as

two major entities of the conceptual model. It lays out list of assumptions to enable

the two-stage conceptual model measuring the impact of advertising campaign. It

assumes that the effectiveness of the campaign is attributable to the act of convert-

ing online searches to purchases. It proposes logit-linear regression models that are

required to fit search and purchase metrics under two conditions: homogeneity and

unobserved heterogeneity with spatial units. The models with the first condition

are what we called applied models and the second condition are the truth models.

It also proposes the hypothetical measure of campaigns effects that are required to

quantify the error between estimated applied model parameters and truth paramet-

ers. At the end of this chapter, five primitive elements are discussed: investigation

of realistic searches and purchases, identification of spatial units, specification of

truth parameters, identification of population-strata and specification of campaign
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design strategies. The primitives are basic components of theoretical and simula-

tions approaches that are developed in chapter 5 and chapter 6 for estimating the

effectiveness of advertising campaigns.

Chapter 5 develops a theoretical framework for studying the consequences of applied

model misspecification and how the applied model parameter estimates are affected.

It studies the asymptotic behaviour of the estimated applied model parameters. It

reviews briefly the Kullback-Leibler divergence criteria and the results obtained by

White 1982 about consistency property and asymptotic normality under misspe-

cification. It proposes a proxy structure of the applied model to make possible the

application of standard results in the literature on maximum likelihood estimation

for misspecified models. It gives the theoretical approximation of the asymptotic

distribution of estimates for purchase model by considering a single stage stochastic

process, which is the case where there is no search process. It extends the asymptotic

theory for a two-stage model.

Chapter 6 tests the applicability of the theory by assessing its performance in a

variety of contexts in comparison to Monte Carlo simulations. It suggests a set of in-

teresting truth instances to explore the merits of different campaign design strategy

and investigate under which circumstances the theoretical framework provide ad-

verse inferences. The investigation followed the assumption that the search process

is known. It reports that most used truth instances corroborates the ability of theory

to describe the sampling distribution of the estimates of the applied model paramet-

ers. The violation of the theoretical distributions are only found in few cases that

relate to using large level of heterogeneity within spatial units or large number of

search.

Chapter 7 assesses the performance of a specified advertising campaign design strategy

for a specified truth instance. The assessments takes into consideration contribu-

tions of two sources of variability: the approximation error and the sampling error.

The approximation error refers to the difference between the proxy model hypo-

thetical measure of campaign effect and the true hypothetical measure of campaign

effect, and the sampling error refers the difference between estimated applied model
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hypothetical measure of campaign effect and the proxy model hypothetical measure

of campaign effect. It shows that hidden covariates have the potential to inference

incorrect estimation about the campaign effect.

Finally the thesis is closed with some appropriate recommendation related to real-

istic behavioural structure improving the conceptual model and future studies needed

on measuring online advertising campaigns using geo-experiments.



Chapter 1

Online Advertising Campaigns

The purpose of this chapter is to provide a brief overview of Online advertising

campaigns. It begins with a section on background information regarding Google

AdWords, including the history, concept of AdWords, structure of AdWords cam-

paigns, AdWords performance metrics. The following section gives examples of

inadequacy in AdWords performance metrics. The end of the chapter presents some

estimation approaches that have been proposed in marketing literature.

1.1 A Brief Primer on AdWords

Advertising is a ‘prominent feature of economic life’, as noted by Bagwell in 2007

(Goldfarb 2014). The arrival of the internet has boosted what Bagwell stated in

2007 and has led economists to employ online advertising to carry out digital com-

merce transactions. The first online advertisement appeared in October 1994, by

HotWired, now called Wired.com, as a banner advertisement (Weller and Calcott

2012). People interact hugely with online search engines in diverse ways, starting

from browsing and ending with payment transactions. Web search engines function

as navigational tools that transfer people in their searching journey from one web-

page to another. Consequently, technology search engine companies such as Google

and its partner websites like AOL, Amazon and Yahoo! are constantly trying to im-

prove the retrieval aspects of their services. Through technology and innovation, the

11
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search companies were able to find a technique to improve web retrieval, which they

called sponsored search advertising (Jansen and Mullen 2008). Sponsored search

advertising, or paid search advertising is an online service, where advertisers pay

web search engines for traffic to their websites deriving from the search engine res-

ults. This service has significantly turned some of the prominent web search engines

into digital commerce companies, whose revenues depend heavily on advertisements

(Weller and Calcott 2012).

Based on the history of sponsored search auctions described by Jansen and Mullen

2008, sponsored advertisements (referred to as ‘ads’ from now on) were presented in

1998 by GoTo.com, known as the Overture Service, which was then acquired by its

major client Yahoo! in 2003. In 2005, the Overture Service was changed to Yahoo!

Search Marketing. In 1998 Google was founded by Larry Page and Sergey Brin

and it adopted the sponsored ads model in 2002, (Fain and Pedersen 2006). At the

same time, it modulated to an online advertising service that allows advertisers to

position their ads in Google search result pages, called Google AdWord (Weller and

Calcott 2012). On 24 July 2018, it changed into a new branded platform service

called Google Ads. Google Ads is a cross-platform that connects all features of the

Google AdWords and its display network, from search ads to display ads to video

ads, in a more seamless way. In this thesis we focus on Adwords search ads that

appear on Google search results pages.

1.1.1 What is AdWords Ads

Nowadays, it is extremely difficult to place a search query term within the Google

search box and get outcomes without ads or sponsored results. For example, a

Google search results page for the query of a “laptop”, shown in Figure 1.1 displays

sponsored ads in different formats such as images and texts. The displayed images

in the upper area, and the links that appear under an “Ads” label and “sponsored”

label, are called sponsored search ads or paid search ads. On Google AdWords, these

results are also known as AdWords ads. The remaining results on the search result

page do not belong to Google AdWords and are called unpaid, natural or organic

search results .
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Figure 1.1: AdWords Ads appearance on Google search results page as shown by red circles.

Google AdWords provides advertisers with a mechanism to get their ads to ap-

pear on Google search results pages and to get searchers to visit their websites.

The mechanism of online advertising and AdWords described here was reported in

AdWords Fundamentals: Exam Study Guide 2015. The most common model is

pay-per-click (PPC) where advertisers pay Google when a searcher clicks their ad’s

link. There are other models that exist, such as pay-for-impression, pay-per-action

and pay-per-call. The cost per click (CPC) is determined by Google through an

algorithm called a ‘quality score’, which depends on multiple factors including the

relevance of keywords to ads, relevance of ad text, quality of advertisers’ websites

and the relevance of historical performance. The click through rate (CTR) for the

relevant historical performance is a metric that measures the number of clicks ad-

vertisers receive on their ads per the number of times ads appear. At the same time,

keywords, which are defined as selected words or phrases that are used to match

ads with search terms entered by consumers are also one of the most appropriate

metrics when regarding historical performance. In principle, strong quality scores

are an indication to Google that ads are relevant and helpful to consumers. Hence,

ads with strong quality scores are rewarded with higher ranking on the search result

pages and lower CPC. There are other important factors besides quality scores that
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are used to determine the ads position, including the maximum bid amount and the

context of a user’s searches, such as the user’s location, devices and time of search.

The maximum bids- also called a bid cost - is the amount that advertisers are willing

to pay for their ads to appear. An ad’s position and how it is displayed, differ by

device type, depending on a chosen device targeting. For example, ads appearing

on a computer desktop or laptop are displayed differently than those appearing on

mobiles or tablets. AdWords obtains the device category from information con-

tained in the browser’s user agent string. The user’s search location is determined

by different mechanisms 1 such as country-specific versions of Google search, user’s

location preferences in search settings, geographic-location of IP addresses and world

wide web consortium geographic-location application programming interface (W3C

Geolocation API), which allows users’ browsers to use various signals, like visible

wifi networks or a GPS, to determine location. It is thus essential to the advertisers

to know where to show their ads and when. In other words they need to know who

their users are to reach the goal of their advertising campaigns.

AdWords offers various ways of targeting, including audience and content targeting.

In audience targeting, advertisers focus on audience features such as their phys-

ical locations or geographical location, demographic characteristics such as age and

gender, their own devices, search history, conversion history and affinity for TV ad-

vertising campaigns. In content targeting, advertisers focus on matching the actual

content of their advertisements including topics and keywords with the content of

the search query. Advertisers are thus required to propose an advertising model, a

maximum bid, a list of keywords, a targeting criteria and ads layout to create their

advertising campaign on AdWords.

1.1.2 AdWords Advertising Campaign

AdWords campaigns are advertising campaigns in an Adwords account in which the

account can be thought of as a control and management room. Advertisers can

1Robert Love, who works at Google, wrote an answer in Quora in Dec 2013 to the question: how

does Google Search determine my location? https://www.quora.com/How-does-Google-Search-

determine-my-location.
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organize their campaigns and arrange a delivery plan of products or services that

they offer to users. In an Adwords account, advertisers can create more than one

campaign and plan each campaign separately. Each campaign is usually composed

of one or more ad groups, depending on the goal of the campaign, device segment-

ation and product type. The setting at each campaign level includes determining a

bid cost, choosing lists of keywords and deciding targeting strategies. Here we de-

scribe briefly how to set up and manage an AdWords campaign in terms of bidding

mechanisms, keywords selection and targeting criterion. The description of these

three components is an overview of their main specifics presented in the AdWords

Fundamentals: Exam Study Guide 2015.

Bidding

The placement of the advertisement is crucial to achieving the advertising goal.

Advertisers have to display their ad prominently on the search results page, for

example, within the top four of the the ads results page. The ad position is based

on the amount of money that advertisers are willing to spend to display their ad,

and on their quality score, i.e. the ad’s relevance in terms of keywords, quality of

their website and advertising performance (Blake et al. 2015). Advertisers, therefore,

should offer higher bids to receive a higher position. This helps advertisers to gain

more clicks on their advertisements, which are more likely to be converted to a

purchase.

AdWords offers a variety of bidding options, such as CPC and cost per thousand im-

pressions (CPM). CPC is mainly manual bidding, where the advertisers tell Google

the maximum amount of money that they are willing to spend per click. This is

the default bidding method where advertisers control the bidding amount. There

are other CPC types where Google fixes or adjusts the bid, which are known as

automated bidding or enhanced CPC. With CPM bidding, advertisers pay Google

for each set of a thousand views for their ads.

The choice bidding method varies, based on the goal of the advertising campaigns.

CPC bidding is best suited for advertisers whose aim is to increase traffic to their

website or increase sales, whereas for advertisers who want to raise brand awareness,
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CPM would be better, as has been recommended in AdWords Fundamental Guides.

The other type of bidding is cost per action (CPA), also known as cost per conversion,

which is available to advertisers who are interested in optimising the conversion rate

of their advertising campaigns. The action can be, for example, a sale or click.

Keywords

AdWords allows advertisers to place ads that directly match search queries entered

by consumers. AdWords ads a link to a landing page, which is a page on the

advertiser’s website that showcases a product that is directly attributable to the

search terms. The search terms that lead to displaying relevant ads are called

keywords.

Keywords are phrases or words chosen by advertisers to bid on during the advert-

ising campaigns. There are six different characteristics assigned to the keywords:

brand, generic, brand generic, manufacturer, manufacturer generic and manufac-

turer product. The brand keyword includes only a retailer company name, such as

Argos or Amazon. The generic keyword is a general search term of a product without

a company or a manufacturer name, such as buy laptop. The brand generic keyword

includes a company name and a generic phrase, such as Amazon laptop. The man-

ufacturer keyword includes only a manufacturer name, such as Toshiba. The manu-

facturer generic keyword includes the name of a manufacturer and a product, such

as Toshiba laptop. The manufacturer product includes the manufacturer’s names

with a detailed description of a product, such as Toshiba laptop windows 7.

AdWords matches the selected keywords with the search terms entered by users,

using five primary matching processes: exact match, phrase match, broad match,

broad match modifier and negative keywords. In exact match, the keyword matches

the search query exactly, which is defined in AdWords settings as a phrase within

brackets. For example, office chair specifies bids on exact match keywords and so

the ads appear if the entered search term matches exactly with the allocated phrase.

In phrase match, the search query is not required to agree exactly with the allocated

keyword phrase but must contain the keyword terms in order. This means that the

search query could have words before or after the selected keywords. The bidding on
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phrase match is identified by entering the keywords within quotations, like “office

chair”. The search term “luxury office chair”, would correspond to this type. Both

the exact match and the phrase match do not consider misspelling and plurals as

matches. The broad match presents all possible combinations of the keyword phrase.

It is specified in the bidding criteria that there should be no character around the

phrase, for example office chair. This type is recommended to be employed with

negative keywords, to exclude consumers who do not exactly match the aim of the

ad campaigns. For instance, the broad match criteria for the phrase office chair will

consider a search term such as garden chair as a match and so advertisers could

select garden, for example, as a negative keyword to ensure the ad appears only to

those who are looking for an office chair. In broad match modifier a “+” sign may

be added in front of a word that is required to appear in the search, for example,

+office chair. There should be no space between the word and the + sign.

Targeting

An AdWords advertising campaign would not be efficient if it did not appear to

the right customers or in appropriate locations. AdWords offers different ways of

targeting: audience targeting and content targeting, as discussed above. We would

like to focus here on a location targeting service, which is an example of audience

targeting.

AdWords applies sophisticated tools to determine internet users’ locations, based on

the identification features that are attributable to their computer desktop, mobile

phone or tablet, including device location. Advertisers can thence target users by

either their physical locations or locations they are interested in. The physical

location is determined by IP address, GPS, WiFi router or Google’s mobile ID

location database. The location of interest can be detected using country domain,

such as (.uk) or (.fr ), including the name of the location in the search query, or by

using the search within an area on the online map.

AdWords location targeting could be estimated by past data from users’ online

search history or physical locations if users enable location settings in their devices.

Targeting users’ locations by tracking both the personal locations and the historical
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information is known as behavioural targeting (Lavrakas 2010). The identification

of physical locations does not always reflect users’ locations accurately. Incorrect

identifications might occur due to some technical issues related to the server or

privacy option chosen by users to disable detection of their locations. The details

of the technical issues are beyond the scope of this research study. Due to the

challenges mentioned, it is recommended to use the physical locations along with

the targeting of geographic locations.

AdWords designates various types of geographic location to assist advertisers in

choosing where they desire their ads to appear. The service includes countries,

cities or areas within a country, a radius around a location, or location groups. The

selection of the ads targeting locations depends mainly on the business type and

its aim. For example, a business that serves an entire country, selling to several

countries or delivering worldwide, will target ads towards a country or multiple

countries. Whereas, if a business serves certain areas within a country then there is

no need to target the entire region and so instead, it assigns ads to selected areas or

cities. A local business that serves people located within a certain distance from its

location will assign ads to a radius around a location. The areas within the target

location are selective, where advertisers can choose interesting spots and exclude

unwanted ones. This technique can also be used in a business with multiple locations,

typically known as location extensions, to set up location groups, where each group

is a list of target areas or cities within the business locations. The location groups

can also by target people who are in places such as airports, universities or central

commercial areas. Recently, demographic information such as average household

income has been added to Google AdWords, but this information is available as

interval data and for the United States only. Demographics are used to compose

groups of locations that are categorised by average household income. The Google

AdWords Help page presents a detailed description on how to set ads target locations

for each available technique.

Location targeting types vary by country world-wide and include countries, cities,

regions, provinces, counties, postal codes, TV regions and Nielsen DMAs. Nielsen
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DMAs refers to designated market areas (DMAs) which are televison market areas or

market areas where local television viewing is measured by The Nielsen Company.

People in these areas share the same programme offered by television and radio

and might receive the same internet content. There are 210 Nielson DMAs and

they are only available in the United States. These areas are not restricted to

administrative boundaries, so that areas with low population density can be grouped

to form one market area. Conversely, very large areas can be divided into sub-areas

which allow people who live on the edge of an area to receive media content from

their adjacent area rather than their actual areal affiliation. This feature affords

standardized behaviours and attitudes of individuals in each DMA, which appeals

to advertising platforms to utilize them as geographic targeting areas (Vaver and

J. Koehler 2011).

1.1.3 Performance Metrics of AdWords Campaigns

The success of AdWords campaigns depends on the goals and objectives of the

campaigns. For example, the campaign goals can be brand awareness, return on

investment, sales and conversions. AdWords provides a conversion tracking tool to

track consumer behaviour. Google and its partners’ platforms and the advertisers’

websites use cookies to track consumer activities on their webpages. A cookie is

a small text file placed on a hard drive of a user’s device to store and transmit

information to the server about the websites visited from the user’s browser. With

tracking behaviour data, AdWords Analytics generates different performance reports

including certain statistics or metrics that are relevant to the campaigns’ goals. The

advertisers, for example, can receive metrics about the number of visits to their sites,

known as websites’ visits, the number of visitors whose clicks end up as purchase or

not, as well as sales and revenue.

An AdWords performance report includes metrics, that estimate outcomes as a

result of users clicks on ads. The metrics are aggregated estimates on ad group

level, keywords or location, where each aggregated metric determines the value of the

campaign in general or a certain component of the campaign. For example, quality

score, which is provided usually in term of CTR, ad relevance to keywords and
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landing page experience, measures the performance of ads, keywords and landing

pages. There are also cost per view (CPV) and ad rank that measures the ad

positions. The performance of sales or conversion can be measured by several metrics

such as CTR, CPC, CPA, conversion rate (CR) and return on investment (ROI).

The ratio between CPC and CPA calculates the CR, where the total conversion is

the revenue, also known as total sales. ROI is the ratio between the net profit and

cost of investment, given that the net profit is the difference between revenue and

cost. According to Google AdWords, the cost of investment is defined as “the cost of

goods sold, which is for physical products; the cost is equal to the manufacturing cost

of all the items advertisers sold, plus their advertising costs”. Another important

metric is the average cost charged for a click, also known as the average cost per

click (avg.CPC). It is the ratio of the total cost of ads clicks to the total number of

clicks. In Google analytics, these performance metrics are not only for ads conversion

but can also be customised based on other interesting aggregated features such as

locations target and impressions.

1.2 Inadequacy of AdWords Metrics

From a business perspective, these metrics help to measure the effectiveness of ad-

vertising campaigns but they do not provide advertisers with an integral picture

of their campaigns impact. One example is CTR which measures the number of

clicks on a given ad with how often it is displayed. Given that ads are displayed

at different positions on the search result page, how would the list of ranked results

influences users’ clicking decision process. Joachims et al. 2017 studied how users

scan the results page using eyetracking - an experimental study of eye movement

on search results page - and how their scanning behaviour relates to the clicking

decisions. They found that users’ clicking decisions are biased to the highly ranked

results even if these results are not relevant, and biased to the overall quality of the

ranking results. Therefore, clicks are not easy to measure and need to be attribut-

able to the order of the results in terms of their relevance and quality. Additionally,

a primary concern to advertisers, as pointed out by Vaver and J. Koehler 2011, is

the potential of more clicks on an organic link, when the occurrence of AdWords ads
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coincides with the occurrence of an organic link. In this case, an organic link has a

competitive effect on the paid or PPC link, and hence CPC flatten the picture of

the AdWords impact. Thus, it is necessary to observe the clicks in the absence of a

PPC link to estimate the incremental impact of PPC clicks on the total clicks, and

so the CPC could then be replaced by cost per incremental click CPIC, as suggested

by Vaver and J. Koehler. The incremental clicks express the change in the paid

clicks at different ad-spend over the same time period, (D. X. Chan et al. 2011).

Presuming that for a certain time period, an AdWords campaign is conducted, the

differential of ad-spend is then resulted from making an intervention on the existing

campaign at the same time period, which is equivalent to running a new campaign.

The intervention could be turning off the existing campaign or eliminating brand

keywords. Given that there is a change in the ad-spend, the outcomes of the total

clicks and paid clicks from the two campaigns are compared. Measurement of the

causal impact of the intervention over a time period is usually carried out by a com-

parison experimental study. However, many advertisers have a concern about the

cost of conducting distinct campaigns and the adverse impact the intervention might

cause to the revenue. Therefore, they conduct campaigns with a one level of ad-

spend and predict the clicks for any given level of spend through a statistical model.

For example, a Bayesian statistical model for paid and organic clicks as a function

of the search ad-spend and organic impressions was used by D. X. Chan et al. to

estimate the incremental ad clicks (IAC). Vaver and J. Koehler estimated IAC as

well, but through an experimental approach, called geo-experiments. The approach

is a geography-based advertising experiment and registered as a patent in Google

Inc. The result of geo-experiment is in the form of return on ad-spend (ROAS),

which is the incremental impact that the ad-spend had on a response metric. In

their paper, they considered clicks as a response metric and so ROAS for clicks was

found. They then estimated IAC by computing the ratio of CPC to CPIC. Since

September 2014, ROAS2 has appeared as an AdWords metric in Google Analytics.

It is computed as a ratio of the revenue to the amount spent on AdWords ads.

2https://plus.google.com/+GoogleAnalytics/posts/jGarHQe3MLx
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On the other hand, Vaver and J. Koehler estimated ROAS using a two-stage linear

regression model. Furthermore, since July 2018, AdWords has provided a target

ROAS bidding where a maximum cost-per-click (max.CPC) bids is automatically

set, to maximise conversion value to achieve a target ROAS. It is a special auto-

mated bidding strategy, called smart bidding, that uses a machine learning process

to optimize conversions.

AdWords metrics are evaluated to get some perspectives on the advertising cam-

paigns to see if they met the intended aim or not. However, one additional problem

in AdWords metrics is the result from aggregated data, despite the fact that Google

search engine manipulates sophisticated tools for individual-level tracking. In prin-

ciple there is sufficient data of individual behaviour to estimate AdWords metrics.

Consider, for example, CR and CTR, both represent conditional probabilities, where

CR is a probability of an action given a click and CTR is a probability of a click

given an impression. Fain and Pedersen 2006 pointed out that with sufficient Ad-

Words data these probabilities can be estimated. However, AdWords Reporting and

Google Analytics Data have detailed information about unique search queries, and

for most of the queries there are insufficient data. Adwords, thus, tends to provide

advertisers grouped or aggregated data by contexts such as ad level, keywords or

targeted-locations, (Fain and Pedersen 2006; Rutz and Bucklin 2011). AdWords

aggregated data are used to compute AdWords metrics, which are used to infer in-

dividual behaviour. The aggregated data has some statistical issues; for instance,

there may be a correlation between aggregated groups, that may lead to incorrect

inferences about the correlation between individual level. Also, the estimated met-

rics that are derived from aggregated data might be biased to aggregated groups.

The impact of aggregated data on individual level has been widely investigated by

several authors from different fields such as social, physical and health sciences be-

cause they have to rely on published aggregate level data to infer at the individual

level, (Clark and Avery 1976; Moulton 1990; Rutz and Bucklin 2011). According to

Rutz and Bucklin, the nature of the available paid search data are aggregated but

the questions asked are: do advertisers rely only on aggregated data to measure the

performance of their AdWords campaigns? and How does Google process individual
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level data and Which data does Google share with advertisers?

It is difficult to understand how Google collects and processes individual personal

and behaviour data because this represents its business model. It is also not clear

which data Google shares with advertisers. Google knows a lot about individuals

that use its services, despite the fact that it provides users with tools to manage their

privacy and security of their Google account. According to Google Play Services,

the personal identifier in the Google personal collected data is reset with a unique

advertising ID. This indicates that the tracked personal data are collected and then

anonymised with the advertising IDs. With these IDs, users could opt out of person-

alised ads or what is called interest-based ads within Google Play apps. According

to Google privacy, opting out of interest-based ads does not prevent Google from

collecting users’ data, but it stops Google associating their collected data with their

advertising IDs. Recently, with the General Data Protection Regulation (GDPR)3,

that was implemented in May 2018, Google is the handler of personal data. With

GDPR, advertisers are required to obtain consent for tracking individuals on their

website and for the use of cookies and of personal data for personalised ads for users

in the EEA. Therefore, under GDPR, the advertisers and Google act as independent

controllers. However, there is an exception for customer match advertising tactics,

where Google acts as a processor for advertisers provided with personal data. For

the interested reader, further details about AdWords ads data under GDPR can

be found on Google Ads Help page4. According to Google advertising policies, ad-

vertisers are allowed to use the first-party data, i.e. individual data collected by

advertisers, to create audiences for ads targeting, mainly for personalised ads. In

addition, they are allowed to use the third-party data, i.e. individual data that ad-

vertisers obtained from other sources to segment their first-party audiences to create

a re-targeting lists. Thus, we might say that individuals’ behaviour data are effect-

ive in improving the tactics used for targeting likely customers, whereas aggregated

data may add valuable insight to the performance AdWords campaigns.

3(GDPR) is a regulation in EU law on data protection and privacy for all individuals within

the European Union (EU) and the European Economic Area (EEA).
4https://support.google.com/google-ads/answer/9028179?hl=en-GB



1.3. Estimation Approaches for Measuring the Effectiveness of AdWords
Campaigns 24

A further issue with AdWords metrics is that tracking mechanisms of data that are

required in the metrics’ computation are not transparent . For example, mechanisms

employed in tracking ad-spend that are required to measure the ROAS metric are

not demonstrated. The ad-spend could include costs incurred in setting up the

campaign, of designing layout of ads, cost per impression or bidding cost and cost

per click. The amount spent in setting up the campaign and ads layout might

be deterministic but once the campaign is ready for bidding to appear, the ad-

spend tracking is likely to be dirty. Little is known about the technologies that are

employed by Google in tracking ad-spend or individuals behaviour, but we do know

there is contamination due to limitation in tracking individuals’ behaviour and in

accounting changes in their behaviour.

In reality, the actual effectiveness of the advertising campaigns has been considered

difficult to quantify. One of the key challenges is to design campaigns that comprise

multiple interrelated variables including choice of keywords, setting of targeting,

amount of bid, layout of the ad and design of advertiser’s website. AdWords prac-

titioners endeavour to fix these variables to optimise the performance of their ads.

However, there are other uncontrolled external variables that affect the efficiency

of the campaigns. Recall, for example, the fact that the higher the bids that the

advertisers submit, the more traffic is driven to their website. However, the website

traffic depends on consumer behaviour, which is affected by the changes that occur

on the supply and demand process during the advertising campaign. These changes

are the result of uncontrolled effects, such as advertiser or consumer behaviour, and

time and calendar effects due to different browsing behaviour on different days, for

example. These factors, consequently, affect the measurement of the actual return

of the advertising.

1.3 Estimation Approaches for Measuring the

Effectiveness of AdWords Campaigns

Estimating the effectiveness of online advertising campaigns has received a notable

amount of attention, however there has been limited academic examination of both
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AdWords campaigns and their effectiveness in a comprehensive manner. Despite

this fact, by researching paid search advertising literature, several attempts have

been made to develop online advertising effect models to estimate the effectiveness

of online advertising campaigns using specific ads performance metrics. In the liter-

ature, models are often estimated by using observational data and are rarely based

on experimental randomised designs data . For illustration, we consider the follow-

ing examples, where models are estimated by using observational data: first, Kim

et al. 2011 developed an analytical Bayesian approach that can incorporate CTR

data to give inference about advertising effects by employing the Poisson-Gamma

distribution. Second, Rutz and Bucklin 2011 developed an empirical two-stage con-

sumer level model of CTR and conversion model to evaluate the effects of specific

properties on ad performance, using behavioural primitives in accord with utility

maximisation. Third, D. X. Chan et al. 2011 developed a Bayesian model to es-

timate an incremental click impact from advertising campaigns, by quantifying the

impact pausing search ad-spend has on total clicks.

In observational studies, the effect of advertising campaigns is measured by observing

consumer behaviour over a certain period of time while ads are displayed. The

behaviour of users who are not exposed to ads, on the other hand, is estimated

through a statistical model (D. Chan et al. 2010; Lewis et al. 2011; Rutz and Bucklin

2011; Vaver and J. Koehler 2011). The lack of direct observation of an unexposed

group (control group) makes such studies questionable and their inferences and

conclusions are unreliable - statistically- compared to randomised experiment.

In experimental studies, consumer behaviour is estimated by comparing the beha-

viour of two different groups called treatment/test and control groups. Consider,

for example, studying an impact of offering higher bids and ask the question: is the

advertising effective due to the bids increase or to other endogenous factors? The

simultaneous comparison of two groups where one is before the bid’s increase and

the other is after the change, can suggest a reliable answer to the above question.

That is because each incoming search is randomly allocated across the treatment

or control condition and then the impact of change in advertising is measured by
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comparing consumer attitudes towards the change only (Vaver and J. Koehler 2011).

The randomised experiment, therefore, is implemented by Google AdWords in an

application called AdWords Campaign Experiment (ACE). This application is a

tool to help advertisers test the impact of modifications on their advertising cam-

paigns.

The ACE application is deemed to be effective in identifying users’ behaviour but

as highlighted by (Vaver and J. Koehler 2011), ACE is limited to baseline searching

level on the search platforms. The ACE for example, fails to detect the initial user

condition (treatment or control) when purchasing is made. This is because purchase

decision might involve several searches and multiple visits to the advertisers’ web-

site. A cookie experiment is another experimental approach, where each cookie is

assigned to similar control or treatment group (Vaver and J. Koehler 2011). It is

demonstrated as an alternative experimental method to overcome ACE drawback.

In practice, however, the user may own multiple devices like office computer desktop,

personal laptop and smartphone, where the desktop might be used for searching and

the laptop is then used to make the purchase. This tends to resulting inconsistent

ad serving, which affects the results produced by cookie experiment. Despite this,

cookie experiments have been applied on Google to measure the effectiveness of

display advertising (Vaver and J. Koehler 2011). ACE was also used at Google

until February 2017 and after that it has been replaced by what are called cam-

paign drafts and experiments 5. In a campaign drafts and experiments approach,

advertisers could propose multiple changes to the search and display campaigns and

investigate the impact of the changes that were made on the campaigns. Based on

the AdWords Help page, Advertisers could do this by creating a draft campaign

in the exiting running campaign and make intended changes. In other words, they

split the existing campaign into two versions: an original unchanged version and a

changed version. Then they either apply draft changes back to the original campaign

or use the draft to create an experiment. The experiment helps advertisers to under-

stand the impact of changes before they apply them to the original campaign. The

5https://support.google.com/google-ads/answer/6318732?hl=en-GB
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experiment could end earlier than the original campaign, if its performance is prefer-

able, it could then be applied to the original campaign. The experiment could also

be converted to a new campaign and the original one paused. The results obtained

from campaign draft and experiment, however, can be biased, due to a biased sample

assigned to the changed version of the campaign. Random sampling is essential for

such experiments but due to presence of uncontrolled factors such as promotion and

seasonality, applying a randomisation strategy could be a challenge.

Another randomised experimental approach that Google has successfully employed

is the geo-experiments. The experiments were carried out by Vaver and J. Koehler

2011 to measure the incremental impact of advertising campaigns. In these exper-

iments, advertisers estimates ROAS through the geographic bid feature. Geos are

randomly assigned to either a treatment or control groups. Pre-ad-spend data for

each geo are received into two time periods. The change in ad-spend data for each

geo is determined. A linear model was used to estimate ROAS of the behaviour

measure.

Vaver and J. Koehler 2011 stated that the geo-experiments are worthy of consider-

ation because they are conceptually simple, have a systematic and effective design

process, and their results are easy to interpret. At the same time, while this may be

true, the implementation of the geo-experiments is not straightforward, where geos

are required to be selected in a manner that satisfies two essential points. First,

geos must be able to serve ads according to their condition, treatment and control.

Second, geos must be able to track ad-spend and behaviours of interest at the geo

level. Many advertisers, however, fail to satisfy these requirement due to geographic

design problems and behavioural tracking challenges.

Geo-experiments have been mentioned in few recent studies. For instance, Blake

et al. 2015 conducted a series of controlled experiments for a well-known brand

eBay, by having no ads in some geos while the campaign continuing on in other

geos. However they found no considerable difference in sales between treatment and

control. Ye et al. 2016 reported two serious limitations to geo-experiments: high cost

due to potential revenue impact from having turning ads off in some geos, and low
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statistical power in detecting the difference between control and treatment groups

due to small sample size of geos in each group and large noise in data. In addition,

Brodersen et al. 2015 and Ye et al. 2016 pointed out that rigorous causal inferences

can be obtained through implementing geo-experiments. At the same time, however,

they criticised such experiment due to their requirements. For example, the target

region of interest can be an entire country, particularly for a national advertising

campaigns. Therefore they indicated that using the entire country prohibits the

use of control geos within that country. Also, the experiments can be carried out

in several countries but not necessarily at the same time. In this case, they have

indicated there can be a large number of control group but the treatment group can

be consists of one country or a few countries with considerable heterogeneity among

them.

It appears from the aforementioned approaches that it is difficult to quantify the

actual performance of advertising campaigns. It may also be noted that most of the

studies have focused on modelling certain metrics, not on the processes involved in

implementing campaigns. Nevertheless, there have been relatively few experimental

studies focused on campaign implementation processes and geo-experiment is one

of them. In this research we are interested in providing extended statistical meth-

odology for geo-experiments, in particular, statistical methodology of randomised

evaluation.



Chapter 2

Application of Geo-Experiment

This chapter presents a real world application of the geo-experiment. The experi-

ment has been used by “Consultancy F”1, an online marketing consulting company

in UK. The company has executed the geo-experiment for several retail companies.

Their experience in performing the advertising campaigns using geo-experiments

were shared with us through discussions in meetings and emails.

The original goal of this research was to analyse data driven by different online ad-

vertising geographically-based campaigns for clients of Consultancy F, to measure

the campaign’s incremental impact. Thus company provided us data sets of different

applications along with the description of the geographic designs of the campaigns.

Looking at the materials provided, we found that the advertising campaigns, how-

ever, were designed by the company with some but not full attention to statistical

principles. We observed also failures in tracking users’ behaviours, which was not a

surprise. The focus of the research then turned to reviewing the applied campaign

designs and making suggestions for other design strategies that would permit estim-

ation of the effectiveness of online advertising campaigns when geo-experiments are

applied.

The chapter begins by looking at how the company applied the geo-experiment to

1The company name has been obscured to maintain confidentiality.

29
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a retail company “B” 2 to investigate the importance of brand keywords - keywords

include only a retailer company name - in the online advertising campaign. Then it

gives a brief overview of the data gathered by them from AdWords. We move then to

summarise the PPC revenue at the level of geo-locations during two time periods.

This summary will be used in later chapters as a realistic input in a computer

experiment. At the end some remarks and conclusions are drawn.

2.1 Advertising Campaign of Retail Company

“B”

The experiment was conducted for a retail company “B” which aims to determine

whether bidding on their brand terms “B” drives incremental sales or revenue. A

geo-experiment advertising campaign was run for “B” in the two month period

July-August 2012, where July represents the first time period in the experiment

and August is the the second time period. For some targeting geo-locations in the

second time period, brand keywords in the campaign were turned off.

2.1.1 Campaign Design

The experiments began with the identification of a set of targeting geo-locations.

Google AdWords provided “Consultancy F” with 1009 geo-locations with no geo-

graphical information. The company added geographical coordination data to each

geo-location: longitude and latitude using a free geo-coder service called GPS Visu-

alizer 3. he company then used the point locations to visualise the geos as shown in

the map in Figure 2.1.

To apply the geo-experiment, the company needed to partition the geo-locations

into two groups: control and treatment. However, before assigning geo-locations

to treatment, the company grouped geo-locations into 30 circular zones, such that

15 were in England, 10 in Scotland, 3 in Wales and 2 in northern Ireland. We

understand that the company took into account the notion stated by Vaver and

2The retail company name has been obscured to maintain confidentiality.
3https://www.gpsvisualizer.com
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J. Koehler that grouping geos by size prior to assignment can reduce the width of

the confidence interval of the return on ad spend by at least 10%. Equivalently,

grouping geos will assume that geos in each group share some similarities which

help to reduce the variation between the geos.

Figure 2.1: 1009 Google tar-

geting geos used for client “B” in

geo-experiment. “Consultancy

F” split the set of geos into 30

circular zones, such that 15 were

in England, 10 in Scotland, 3 in

Wales and 2 in northern Ireland.

Zones in each country are all of

the same radius. The areas of

the zones in England are smaller

compared to others, to allow for

the density of the population.

Copyright 2012 by

‘‘Consultancy F’’.

The zones were then split into two groups: control and treatment groups, called

Geo1 and Geo2, respectively, where in Geo 2 the campaign was turned off. Zones

are allocated to Geo1 and Geo2 by using an algorithm employing spatial systematic

sampling technique. For each country, a distance of each zone from Greenwich point

were computed, see Figure 2.2. Based on the distance values, zones were ordered

from nearest to farthest from Greenwich point. The first zone was randomly assigned

to either Geo1 or Geo2 and then zones were iteratively assigned to different Geo-

s. All geo-locations included in zones labelled by Geo1 are control geos and all

geo-locations included in zones labelled by Geo2 are treatment geos.

During the first time period, in both groups Geo1 and Geo2, brand keywords were
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left on, whereas during the second time period, brand keywords were turned off

in Geo2. Individuals in Geo1 were supposed to see“B” PPC Ad link when they

searched on Google’s search engine, using “B” keyword as a search term. On the

other hand individuals in Geo2 were supposed to see “B”’s natural result link when

they searched on Google using “B” keyword as a search term.

Figure 2.2: Zones ordered in

ascending order, from nearest to

farthest from the origin point.

Zone number 1 assigned to Geo2

randomly and then iterative

allocation were applied to assign

zones into Geo1 or Geo 2.

Copyright 2012 by

‘‘Consultancy F’’.

The advantage of this design methodology includes eliminating the clustered se-

lection of treatment or control grouped geos. However, this methodology did not

explain to us how the distance from Greenwich point affects users behaviour. A

possible explanation for this might be that the company was attempting to capture

the presence of the spatial variation systematically and using Greenwich point as

the origin point can support the design spatially. However, we find it difficult to

see how the distance from the origin can affect the users’ responses to the advert-

ising campaign. This discussion, though, is farther away from the scope of this

research.

2.1.2 Data Description

“Consultancy F” collected data for “B”’s advertising campaign to test incremental-

ity on Brand keywords. The observed data were provided to us in .RData file. The
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data set consists of 94893 observations sorted in 28 variables. Here are the first six

rows of the data frame

userid saleid orderid Equity.Device esc ldate

1 8000307853257 8001446887265 95395026 NA 4 03/07/12

2 8000307853257 8001446887265 95395026 NA 4 06/07/12

3 8000375716656 8001449250050 95872291 NA 1 08/08/12

4 8000339995880 8001455570900 100475383 NA 3 19/08/12

etst ets esec Equity.Referrer.Domain ead

1 Natural Search Natural Search google.co.uk

2 Natural Search Natural Search google.co.uk

3 Natural Search Natural Search google.co.uk

4 Natural Search Natural Search google.co.uk

eppckw mt Revenue ekwg Equity.Is.Brand saledate

1 566.1 Non Brand No 02/08/12

2 566.1 Non Brand No 02/08/12

3 573.0 Brand Yes 08/08/12

4 749.0 Brand Yes 19/08/12

tst geo City Area LCW1 LCW2 LCW3

1 Natural Search Non Brand 2 Poplar 1 1 1 1

2 Natural Search Non Brand 2 Poplar 1 0 0 0

3 SEO Brand 1 Gloucester 6 1 1 1

4 SEO Brand 2 Bishop's Stortford 1 0 1 1

EW1 EW2 EW3 Test

1 1.0 1.0 1.0 Before

2 0.5 0.5 0.5 Before

3 0.5 0.5 0.5 During

4 0.0 0.5 1.0 During

The variables in this data set are arranged by “Consultancy F” based on their own

categorisation criteria in defining variables. Some variables here are simple titles

from which their contents can be expected such as

userid : unique identifying number for a user

saleid : unique identifying number for a item
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orderid: unique identifying number for a order

ldate : date when a user lands on a retailer's web-page

saledate:date when a user make purchase decision

Revenue : total basket revenue

City: name of a targeting geo-location defined by postcode

Area: Zone code of a targeting geo-location

geo: status of a targeting geo-location (1: Geo1) and (2: Geo2)

Test: time period, (Before: first period) and (During: second period)

Other variables such as ( etst, ets, tst ) describe traffic sources including direct

and indirect channels. The channel could be URL, email, social media, banner,

natural search or PPC. There are further details of interest in this investigation such

as ad groups, keywords, matching type and referrer domain as exhibited below,

etst, ets, tst: different categorisations of traffic sources

ead : equity ad group

eppckw : equity PPC keyword

ekwg : equity keyword group, classification of keyword by type

Equity.Is.Brand : keyword type is brand or not

mt : keywords matching type type

Equity.Referrer.Domain: URLs that bring traffic to a retailer's web-page

LCW1, LCW2, LCW3, EW1, EW2, EW3: These columns define which row is

awarded a sale or a proportion of a sale

The experiment was conducted into two time periods, where according to the provided

data, the number of observations during the first time period “Before” is 38525 and

during the second time period “During” is 26705. There are also 29663 observations

assigned to a term “Ignore” in the test variable. This term indicates there is a

problem in the experiment, and thus it is recommended to remove this value from

the data set although it represents about 31% of the data. This change reduces the

number of the observations to 65230 where about 59% of the observations belong to

the first time period and 41% to the second time period.
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In the experiment, the targeting geo-locations were assigned into two groups Geo1

and Geo2. The number of zones were 30 in both time periods. The data gives

14 zones assigned to control group and 16 zones assigned to treatment group. In

the first time period, there were 920 geo-locations, where 491 of them allocated to

Geo1 and 429 allocated to Geo2. In the second time period, however, the number

of geo-locations was 446, where 423 were allocated to Geo1 and 423 belong to Geo2.

The number of geo-locations utilised in the experiment are supposed to be the same

over the two time periods, and the allocation to Geo1 and Geo2 are supposed to be

the same across the time periods. Given that the campaign design is based on zones

and there is no change in the total of treatment zones or control zones across the two

time periods, we will not pay attention to the difference found in the total treatment

and control geos between the two time periods. This difference can be related to

the targeting criteria that are applied by Google AdWords, such as advertisers have

an option to add or drop geos while the campaign is running.

In this experiment, the aim was to investigate the effectiveness of the PPC brand

keywords. Therefore we need to measure the incremental revenue gained through

PPC channel without bidding on brand keyword. The data contain records attrib-

utable to different traffic source, but we focus on PPC traffic channel. Thus, we

filter the data by one of equity traffic source variables, say ets, tst or etst. Start

with ets variable, the tracked traffic sources are summarised in Table 2.1. The table

shows 11894 data values that were received from PPC source when10985 came from

PPC Google UK and 909 from PPC MSN UK, where both are search engines.

If etst is used to summarise tracked traffic sources, there are also 11894 PPC

Affiliates Banner Email Natural Search

7561 6 5219 31585

PPC Social Media Unlisted Referrer

11894 1029 7936

If tst is used to summarise tracked traffic sources, there are also 11894 PPC such

that 10856 values were received from “PPC Brand” and 1038 were from other “PPC”

as shown below,
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Affiliates Banner Email PPC PPC Brand

7561 6 5219 1038 10856

SEO Brand Social Media Unlisted Referrer Natural Search

20102 1029 7936 166

Natural Search Brand Generic Natural Search Non Brand

1721 9596

Traffic Source Frequency

Affiliate Window 7211

Delicious 2

Email 5219

Facebook.com 1011

Linkshare 350

Natural Search 31585

PPC Google UK(“B” Google UK (Google UK)) 10985

PPC MSN UK(“B”) 909

Struq 6

Twitter.com 13

Unlisted Referrer 7936

Wikipedia 1

Yahoo! Answers 2

Table 2.1: Frequency Distribution of Equity Traffic Source

Considering the observations of “PPC Brand”, we found 553 observations were de-

rived from treatment geo-locations during the second time period. Having traffic

through “PPC Brand” source during the second time period in Geo2 while pausing

brand keyword in those geos during that time is questionable. The explanation of

this might be related to technical issues in recording those observations. Another

possible explanation is that “PPC Brand” classification was categorised by the com-

pany to make some keywords easily recognisable but not necessary include Brand

keyword “B”. The keyword might be confused with brand generic keywords. How-

ever, by filtering “PPC Brand” data subset using keyword type variable, i.e.“ekwg”,

we found 8 terms of “Non Brand” category and 7 of them are in Geo1 during the



2.1. Advertising Campaign of Retail Company “B” 37

first time period, which might indicate an anomaly in the data collection opera-

tion because these terms are not expected to be in such data subset. Once again,

however, this can be related to the company classification.

Brand Brand Generic Non Brand

PPC Brand 10707 141 8

It is apparent that the data provided require deep understanding. However, we

should bear in mind that the goal of this chapter is to show an application of geo-

experiment to show the challenge in designing the advertising campaign and how

data from tracking users can be messy and incorrectly tracked. Thus we leave the

details of this data aside and focus on the PPC conversion channel during both time

periods to examine the change in the revenue through it when the brand keyword

is paused in some geo-locations during the second time period.

Consider the 11894 data values that were received from PPC channel; i.e. “PPC

Brand” and “PPC ”. This subset data gives 29 zones and 849 geo-locations in the

first time period, where 14 zones and 452 geo-locations were allocated to Geo1 and

15 zones and 397 allocated to Geo2. For the second time period, it gives 634 geo-

locations in 29 zones, where 390 in 13 zones belong to Geo1 and 244 in 16 zones

belong to Geo2. The distributions of neither treatment and control zones nor geos

are equal across the two time periods. This can be expected because conversion

behaviour through PPC in treatment or control geos or zones is not necessary to

occur during both time periods. However, we are interested to see the distribution of

the revenue gained from PPC channel in treatment zones or geos during the second

time period in comparison with the revenue obtained from the same geos during the

first time period. Thus we need to correct the distribution of the treatment and

control zones and geos across the time.

To correct the distribution of the geo-locations we took the common location between

the two time periods. We found 606 geos such that 373 were Geo1 distributed over

13 zones and 233 were Geo2 distributed over 15 zones. This change diminished the

number of the observations to 10611, where 7987 were observed in the first time

period and 2624 were observed in the second time period.
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It should be noted that while correcting the distributions of geo-locations across

the two time periods, we found that some geo-locations have the same city name

in City although they are located at different zones given in variable Area. For

example

geo City Area geo City Area geo City Area

2 Bangor 16 1 Hamilton 19 2 Newport 28

1 Bangor 29 2 Hamilton 5 1 Newport 12

In addition, we found that the data include duplicate user IDs with identical sale

IDs and order IDs, for example

userid saleid orderid Equity.Device esc ldate etst

8000113085138 8001447952472 95651158 NA 5 11/07/12 PPC

8000113085138 8001447952472 95651158 NA 5 11/07/12 PPC

8000113085138 8001447952472 95651158 NA 5 18/07/12 PPC

8000113085138 8001447952472 95651158 NA 5 21/07/12 PPC

ets esec Equity.Referrer.Domain

PPC Google UK(B Google UK (Google UK)) Brand blockedreferrer

PPC Google UK(B Google UK (Google UK)) Brand google.co.uk

PPC Google UK(B Google UK (Google UK)) Brand google.co.uk

PPC Google UK(B Google UK (Google UK)) Brand google.co.uk

ead eppckw mt Revenue ekwg Equity.Is.Brand saledate tst

Brand||Core B exact 25 Brand Yes 05/08/12 PPC Brand

Brand||Core B exact 25 Brand Yes 05/08/12 PPC Brand

Brand||Core B exact 25 Brand Yes 05/08/12 PPC Brand

Brand||Core B exact 25 Brand Yes 05/08/12 PPC Brand

geo City Area LCW1 LCW2 LCW3 EW1 EW2 EW3 Test

1 Compton 12 1 1 1 0.5 0.5000000 0.5 Before

1 Compton 12 0 0 0 0.5 0.3333333 0.0 Before

1 Compton 12 0 0 1 0.0 0.3333333 1.0 Before

1 Compton 12 1 1 0 0.5 0.3333333 0.0 Before
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The cases presented above belong to the same user ID who landed on the “B”

website on different dates. In this case, we should not count the revenue more than

once. Thus any duplicate User IDs with duplicate sale IDs and order IDs should

be eliminated. This reduces the data to 7104 observations in 606 geo-locations such

that 373 in Geo1 and 233 in Geo2. 5231 were observed in the first time period and

1873 were observed in the second time period. From the marketing point of view,

one might expected a decline in the traffic to the retailer’s website during the second

time period and particularly in Geo2. This, however does not necessarily imply a

decrease in the total PPC revenue as mentioned by Blake et al. 2015.

2.1.3 Measuring Incremental Revenue

Given the cleaned data, the revenue made by each case is the response variable

of interest in this application. To measure the impact of pausing the PPC brand

keyword in Geo2 locations during the second time period, the revenue gained by

all individual cases in each geo-location and during each time period needs to be

summed up. The distribution of aggregate revenue in each geo-location in both time

periods, are illustrated in Figure 2.3.

Figure 2.3: PPC Revenue Distribution in treatment geo-locations (Geo2) and control geo-

locations (Geo1) during the first time period (time0) and the second time period

(time1).

The figure shows that there is a slight difference in the revenue distributions between

Geo1 and Geo2 in the first time period, where the revenue is slightly higher in Geo1

compared to Geo2, although all geo-locations during this time period were serving

the same advertising campaign. The revenue in both Geo1 and Geo2 spread out

more in the second time period compared to what observed in the first time period.

Note also that the central revenue value in Geo2 during the second time period
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is slightly below the central values of the other distributions. It appears there is

a small impact in pausing the PPC brand keyword in Geo2 locations during the

second time period. Additionally, the change in the distribution for Geo1 locations

during the second time period need to be explained as well.

To measure the incremental revenue, ad spend differential values needs to be calcu-

lated to estimates the return on ad spend ROAS for PPC brand keyword. Unfortu-

nately, the ad spend are not available in this data from B, although ad spend should

be available at geo level in AdWords. Vaver and J. Koehler 2011 mentioned that

the ad spend differential is zero in the control geos if the geos continue to operate

at the same baseline level during the second time period. Given this is the case in

this “B” ’s advertising campaign where brand keywords continue ON in the control

geo-locations during the second time period, the ad spend differential is then zero

in the control locations. For the treatment geo-locations, however , it is difficult to

approximate the ad spend differential with no ad spend information. At the same

time, we expect the ad spend in those geos decreased in the second time period

because the brand keywords switched OFF. In other words, users made conversions

through PPC channel but without bidding on the brand keywords. Therefore the ad

spend differential is expected to be negative in the treatment geos but their values

are unknown. The distribution of ad spend differential is also unknown to us and

beyond the area of this work. Therefore, estimation of the incremental revenue will

not be discussed further.

2.2 Summary and Concluding Remarks
The purpose of this chapter was to illustrate a real world application of geo-experiment.

We presented the geo-targeting approach used by the online marketing consulting

company “Consultancy F” to their client “B”, provided that the company are using

this approach to implement an experimental test to measure the incremental sale of

online advertising campaigns for several clients.

Focusing on the design strategy that applied to “B”’s campaign, the geo-locations

were set into blocks and then systematic sampling techniques based on distance from

Greenwich point was applied to assign geo-locations to treatment. The company are
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aware of the presence of the spatial autocorrelation, though, by the time we met

them, they did not have any evidence that can show the correlation between the geo-

locations. Thus they made an attempt to capture the spatial variation by measuring

distance of each geo-location from the origin.

In fact, there were other attempts made by the company to control spatial variation.

For example, they grouped geo-locations into 24 blocks. Then they split the UK into

10 longitudinal sections. The first block at the left in the first section is assigned

randomly to Geo1 or Geo2. The assignment are then selected in a respective order

from left to right in each section. Figure 2.4 illustrates the sampling strategy used

by the company.

Copyright 2013 by ‘‘Consultancy F’’.

Figure 2.4: Other systematic spatial design strategy implemented by “Consultancy F”. They

grouped the geo-locations into 24 blocks. They split the UK into 10 longitudinal

sections. The first block at the left in the first section is assigned randomly to Geo1

or Geo2. The assignment are then selected in a respective order from left to right in

each section.
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In our view, systematic spatial sampling technique ensures that geo-locations are

randomly selected and evenly distributed for treatment and control across the coun-

try. However, lack of the spatial feature makes the efficiency of the mentioned

strategies difficult to detect. Spatial information such as size of the geo-location,

demographic information, geographic searching or purchasing are all necessary to

understand how geo-locations are correlated and help to explain potential behaviours

of users in particular locations.

At the end of the chapter, revenue at geo-level were discussed briefly. We observed

that the variation of the revenue in the second time period is larger compared to

the first time period. The high variation can be related to the distribution of the

treatment geo-locations or the time factor. In this research, the design strategy is

a primary focus in using geo-experiments. In the next chapter, thus, we link UK

AdWords target geo-locations with government administrative areas in order to be

able to draw demographic inference about them.



Chapter 3

Spatial Units

As mentioned in earlier chapters, the frame of AdWords geos are not well-defined

for designing the sampling process for geo-experiments, except DMAs which are

available in US. This chapter focuses on linking UK AdWords geos information

to background information such as population and social-grades. The linking al-

gorithms is based on the the shortest great-circle distances between target geos and

local authority areas which depend mainly on the longitudes and latitudes.

The chapter begins by describing the distribution of the UK AdWords target cit-

ies and the local authority areas. Then, we move to outline the allocation process

and the linking algorithm which treat the cities and areas as points that charac-

terised by longitudes and latitudes. Then the algorithm is implemented and the

shortest distances are calculated between the cities and areas to link cities with

some demographic characteristics. Some remarks and conclusions are drawn in the

final section.

3.1 UK AdWords Target Geos

AdWords provides various type of geographic targets for the UK, including countries,

counties, postal codes, cities and TV regions. TV regions appears to be a good

option in the UK since they are supposed to be associated with some demographic

and socio-demographic information. However, there are only 15 TV regions which

43
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is a quite small number for applying in the geo-experiments especially given the

existence of a wide range of cities beside them. Thus cities might be considered

as a reasonable geographic targeting option to focus on in this study. This section

presents the distribution of the UK target cities.

It is not obvious how the target cities are determined by Google but they are available

on Google AdWords website and can be extracted easily. Google however updates

these locations continuously, based on unknown criteria. The cities presented here

were provided by the Consultancy F and were received directly from Google.

Google provided Consultancy F 1015 target cities for the UK including England,

Northern Ireland, Scotland, Wales, the Channel Islands and the Isle of Man. Most of

the cities 812 are in England, 114 in Scotland, 59 in Wales, 23 in Northern Ireland,

4 in the Channel Islands and 3 in the Isle of Man. The Channel Islands and the Isle

of Man are technically not part of the UK, but both are coded under “GB-”.

Figure 3.1 depicts the point distribution of the 1015 UK geographic targets. It

would be good if these target cities could be drawn as areal polygons but most of

the cities are small areas where their boundary data are difficult to obtain. The UK

map are plotted here based on the boundaries of the global administrative areas1,

including boundaries of counties, boroughs and districts. The points are mostly

located in England.

The 1015 geos are wide range of target locations, which gives a reasonable sample

size of geos for geo-experiments. However, the selection of geos for control and

treatment group is not straightforward due to lack of covariates such as census data

including population, income and socio-economic characteristics that needed for the

sampling process. This data, though, is expected to be accessible at the Office for

National Statistics (ONS) when AdWords geos are a part of the sites concerned

by the government in the country. Most of these locations, however, cover small

cities where their related demographic background are either not recorded for some

reason or difficult to find within published data. In this case, we suggest to link these

1https://gadm.org/download country v3.html
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Figure 3.1: 1015 UK AdWords Target Locations

target locations with standard government areas such as administrative areas or local

authority areas in order advertisers be able to draw demographic inference about

the geos. In this study, we choose to use local authority area to represent the target

cities, because the number of local authority areas is more suitable to represent the

cities compared to the administrative areas. There are 404 local authority areas and

only 192 administrative areas.
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3.2 UK Local Authority Areas

Local authority areas are administrative units of local government. Thus include

local government districts, council areas, unitary authorities, metropolitan districts,

non-metropolitan districts and London borough. Local Authority areas are districts

which are sub-divisions of administrative areas. We use these areas to describe the

UK AdWords target cities demographically.

There are 404 local authority areas shown in Figure 3.2: 324 in England, 32 in

Scotland, 22 in Wales and 26 in Northern Ireland. The boundaries of the local

authority areas are obtained the UK Data Service -Census Support- website. Official

statistics are expected to be available for these areas. The statistics are useful to

visualize the similarity and dissimilarity between areas, which is important in order

to draw conclusions about people who live in these areas.

Figure 3.2: The 404 UK Local Authority Areas
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3.3 Allocation Process

The locations on the earth’s surface are situated uniquely by a geographic coordin-

ate system which is a measurement of degrees latitude against degrees longitude.

Thus, let G = {g1, g2, ..., gn}T be n coordinates2 representing the AdWords target

cities within UK and A = {a1, a2, ..., am}T be m coordinates representing the local

authority. The allocation process relies on computing the shortest distance of each

AdWords target city gi from the local authority area aj and then assign gi to aj that

gives a minimum distance value. The shortest distance over the earth’s surface is

called a great-circle distance (Cassa et al. 2005) and is computed by the “Haversine”

formula (3.3) . Let d(gi, aj) denotes the distance between the two locations gi and

aj then:

d(gi, aj) =

0 if gi = aj

dij if gi 6= aj

The zero distance d(gi, aj) = 0 refers to the fact that the AdWords target city is a

local authority area. The dij is the great-circle distance defined as

dij = 2 ·R · atan2(
√
Dij,

√
1−Dij) (3.1)

that is

R = earth’s radius

Dij = sin2
( latj − lati

2

)
+ cos(lati). cos(latj). sin

2
( longj − longi

2

)
lati = latitude value at location i in set G

latj = latitude value at location j in set A

longi = longitude value at location i in set G

longj = longitude value at location j in set A

atan2(
√
Dij,

√
1−Dij) = arctan

√
Dij√

1−Dij

2A GPS visualizer tool GPS Visualizer Tool 2007 is used to estimate the location of the cities

and the areas.
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For a specific AdWords target city gi in G, the great-circle distance is measured over

the vector A of local authority areas. This produces a vector Vdi. of elements di..

Then the area aj corresponding to the minimum value of this vector min(Vdi.) is

noted to assign gi to it.

The set of areas {aj : j = 1, ..., p, p ≤ m} that are selected by this minimum

distance criterion forms a new set of areas, say A′. A′ represents then local authority

areas that are either AdWords target cities or contain at least one of target cities.

The number of local authority areas in A′ will be less than the number of geos in G

and less than or equal to the number of areas in A, suggesting that it is not essential

that each local authority in A includes AdWords target cities. If this is the case

then we should either ignore the m − p local authority areas that do not contain

any AdWords target cities or link these areas to their nearby areas in A′ by again

calculating the shortest distance between them. In this study we use the all available

local authority areas and hence the latter option is taken into consideration. The

allocation process is summarized in the following algorithm.

We use the term spatial units to refer to the local authority areas in A′ which

is defined here as a local authority area that is an AdWords target city, a local

authority area that includes at least one AdWords target city or a local authority

area that does not include an AdWords target city but neighbour to a local authority

area that includes at least one AdWords target city.
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Algorithm 1: Allocation Process

Result: well defined geographic areas set A′

1 1. Allocation of AdWords target locations ;

2 initialize a vector A′;

3 for i in 1 to n do

4 initialize a vector Vdi. ;

5 for j in 1 to m do

6 if gi = aj then

7 write gi to A′;

8 else

9 compute dij;

10 write dij to Vdi.

11 end

12 end

13 find min(Vdi.);

14 find aj corresponding to min(Vdi.);

15 allocate gi to aj;

16 write aj to A′;

17 end

18 2. Allocation of local authority areas not covered by

AdWords target cities;

19 initialize a vector Vdj. ;

20 for j in 1 to m do

21 if aj ∈ A′ then

22 End;

23 else

24 for r in 1 to p do

25 compute djr;

26 write djr to Vdj. ;

27 end

28 end

29 find min(Vdj.);

30 find ar corresponding to min(Vdj.);

31 allocate aj to ar;

32 write aj to A′;

33 end
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3.4 UK spatial units

The above mentioned algorithm is implemented for 1015 AdWords target cities and

404 local authority areas. The first step in the allocation process is identifying

latitudes and longitudes of both the cities and the areas. A GPS visualizer tool

GPS Visualizer Tool 2007 is used to estimate the location of the cities and the

areas.

The cities are entered in the GPS visualizer alongside their countries because cities

from different countries might have the same name, e.g. “Newport, England” and

“Newport, Wales”. The GPS visualizer does not provide the geographic coordinates

of all possible cities that have the same names. It shows the measurements of only

one of them chosen arbitrary. In addition, the country itself could include cities

with the same names at different locations such as, “Alnwick” in England, see Table

3.1. Therefore cities and areas need to be associated with countries, borough or

districts to get the right coordinates. The provided AdWords target cities, however,

have no information rather than city names, and so we did take care of any strange

results.

City longitude latitude Location

Newham, England -1.725307 55.549163 England

Newham, London 0.029318 51.53 London

Alnwick, England -1.70728 55.413541 Northumberland

Alnwick, London 0.037833 51.511928 Alnwick Road

Table 3.1: Example of Common city names within a country

The shortest distances between AdWords target cities and the local authority areas

over the earth’s surface are calculated for each country separately to overcome any

common names issue that may occur. The cities in Channel Islands and the Isle of

Man would be excluded from the allocation process.
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3.4.1 AdWords Target Cities that are Spatial Units

The names and coordinates of the Adwords target cities in each country - England,

Scotland, Wales and Northern Ireland -are compared to the names and coordinates

of the local authority areas. The common names with the same coordinates at

each country are considered to be spatial units. It is found 160 cities that are local

authority areas where 133 in England, 8 in Scotland, 8 in Wales and 11 in Northern

Ireland, as shown in Figure 3.3.

Figure 3.3: 160 AdWords Target Cities that are Local Authority
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3.4.2 AdWords Target Cities Not Spatial Units

There are 848 remaining AdWords target cities need to be assigned to the 404 local

authority areas. The shortest distance of the remaining cities from the areas is

calculated for each country. In England there are 679 out of 812 cities required to

be allocated to 324 local authority areas, whereas 106 out of 114 in Scotland, 51 out

of 59 in Wales and 12 out of 23 in Northern Ireland need to be allocated in 32, 22

and 26 areas; respectively. The results of the allocation process are summarized in

Table 3.2.

Country

England Scotland Wales Northern Ireland

local authority areas (LA) 324 32 22 26

AdWords target cities (cities) 812 114 59 23

cities are LAs (Set 1) 133 8 8 11

cities not LAs 679 106 51 12

Allocation Results

LAs include at least

one city (Set 2)
263 29 21 8

LAs in Set 1 and Set 2 102 6 7 2

LAs in Set 2 but not in Set 1 161 23 14 6

LAs in Set 1 but not in Set 2 31 2 1 9

LAs not in Set 1 nor Set 2 30 1 0 9

Total spatial units 294 31 22 17

Table 3.2: Distribution of the cities and areas and the results of allocation process.

Figure 3.4 illustrates sample of cities and their allocated areas. For example, the

target city “Lowther” appears to be close to the local authority area “Allerdale”

and “South Lakeland” where its distance from the two areas are 35.97761 km and

28.32715 km, respectively. Its nearest area therefore is “South Lakeland”. The 679

cities are allocated to 263 areas where 102 of them are in the common set. There

are then 31 spatial units out of 133 do not intersect with the 263 areas. This means
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that 812 cities in England are allocated to 294 local authorities, and so 30 areas

does not contain any of the provided target cities.

Figure 3.4: Apart of England target cities and their allocation areas

The distance computation are performed similarly for the other three countries Scot-

land, Wales and Northern Ireland. The 106 target cities in Scotland are allocated

to 29 local authority areas, and so the 114 cities are allocated to 31 areas such that

1 areas do not contain any of the target cities. From the table above, the 51 and 12

target cities in Wales and Northern Ireland are allocated to 21 and 8 local authority

areas, respectively. By excluding the common spatial units from both countries,
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the 59 and 23 cities in Wales and Northern Ireland are allocated to 22 and 17 local

authority areas, respectively.

3.4.3 Local Authority Areas Not Spatial Units

The second bottom row in Table 3.2 shows the numbers of local authority areas that

are neither in the common spatial units nor contain one of the target city. There are

30, 1 and 9 areas in England, Scotland and Northern Ireland, and none in Wales.

These areas can be ignored, treated as spatial units or allocate them to their closest

neighbour spatial units. Given that Google AdWords can remove cities from the

available list or add a city that belongs to a local authority that is not a part of the

our defined spatial units, we think those areas should not be ignored. We decided

to allocate them to their nearest spatial units using the earlier mentioned distance

criteria. This will ensure sure that all our spatial units will be linked to some of the

realistic campaign data that discussed in the previous chapter, i.e. all spatial units

will include at least one city.

Half of the 30 areas in England are located in London, where for example “Bark-

ing and Dagenham”, “Bromley”, “Lewisham” and “Newham” are allocated to the

spatial unit “Greenwich” as illustrated in Figure 3.5. “Waltham Forest” is al-

located to its closest neighbour spatial units “Enfield” as it shown on the map.

This allocation, however separates “Redbridge” from its closest spatial unit,“Tower

Hamlets” which is an allocation area to“Hackney” as well. Combining these areas

in one category might be possible but this would constrict their related information

and indeed be less consistent compared to the other generated spatial units that

are created by this allocation process. The “Waltham Forest” and “Enfield” are

considered as one target group and “Redbridge”, “Hackney” and “Tower Hamlets”

as another group.

The other local authority areas in Scotland and Northern Ireland that are not spatial

units are allocated similarly to their nearest units.“South Ayrshire” is the only area

does not contain any target city and it is allocated to “East Ayrshire”. The shortest

distance of the 9 remaining areas in Northern Ireland from the 17 spatial units are

calculated to be contained in their nearest neighbour units.
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Figure 3.5: London local authority areas and their allocation spatial units

The 40 local authority areas that were not spatial units are now grouped with

some spatial units that are spatial units. Their demographic characteristics will be

grouped as well. In a map representation, they should be treated as a one polygon by

dissolving the borders between areas within one spatial units (Lovelace and Cheshire

2014). Consider Northern Ireland, for example, “Ballymoney”, “Limavady” and

“Moyle” are local authority areas with no target cities and allocated to their neigh-

bour spatial unit “Coleraine”. The attribute of these areas have to be joined spatially

and shown as one grouped area, Figure 3.6. The aggregated areas are shaded by the

same colour as shown on the map below.
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Figure 3.6: The joint polygon of grouped local authority areas in Northern Ireland,

3.5 Assigning Demographics to Spatial Units

Spatial units are formed by the local authority areas. The best source of local

authority data is the neighbourhood statistics website which is expected to provide a

range of data for very small areas. However, it is found that the socio-economic data

at neighbourhood statistics are available individually for some local authority areas

with various collection of categorised factors. Thus it is impractical and dispersal of

effort and time working on gathering such limited data. The income per head is not

available down to the level of local authority areas. Small area income estimates for

2007/08 is available for England and Wales on an interactive map with no recorded
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data-frame where each income value needs to be recorded manually at each click

on the mapped area. Gross disposable income for 1997− 2014 is available for local

areas NUTS33 which form subset of local authority areas and so again there is

limitation on this data at local authority level. In general local authority areas are

well defined but their related covariates details are required to compile from different

sources.

The UK Data Service provides access to census micro-data. The census micro-

data, includes a wide range of individual and household characteristics at a high

level of local authority details which is worth to consider it as the main source of

the geographical and individuals covariates. The data are available for each census

office in England and Wales, Scotland and Northern Ireland. Since most of the

spatial units are located in England, the study will focus on published micro-data

for England and Wales.

Local authority areas in micro-data are grouped local authority areas. This would

present an issue in merging spatial units with micro-data. The dataset contains 265

grouped local authority areas in England and Wales whereas we have 294+22 = 316

spatial units in England and Wales. The grouped local authority areas are grouped

to achieve a certain local government purpose. It might be efficient to add detailed

grouped areas to one group that is already defined as local authority ( spatial units

). For example the grouped local authority ( Wear Valley and Derwentside) and

(Easington and Sedgefield ) can be assigned to grouped local authority Chester-

lestreet and Durham which is already a spatial unit. This joint process assures that

all grouped local authority are considered in the study and be a subset of the spatial

units. The joint process provides a total of 255 grouped local authority areas.

3Nomenclature of Territorial Units for Statistics 3, Upper tier authorities or groups of lower

tier authorities (unitary authorities or districts) (England)(Groups of unitary authorities in Wales,

council areas in Scotland, districts in Northern Ireland)
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3.6 Summary and Concluding Remarks

In this chapter, the UK AdWords target cities were linked to micro-census data of

the local authority areas. The linking algorithm is based on the shortest great-circle

distance which depends mainly on longitudes and latitudes of the cities and areas.

The algorithm returned a subset of local authority areas that is called here spatial

units. The focus in this study is on the spatial units in England and Wales, where

the total number of the spatial units in these countries is 255 units.

The longitudes and latitudes were identified by the GPS visualiser tool. The tool,

however, is very sensitive in regard to the place name and its location. The provided

AdWords target cities have a lack in details about their exact location, and hence

their coordinates could be incorrect if the name of the city is available in different

locations within a country. The spatial units, therefore, would then be incorrect too.

We took care of any obvious wrong results manually but there is always a room for

human errors.

Some local authority areas did not contain any target cities, and so they were linked

to local authority areas that are spatial units. In other words some spatial units

are in form of grouped local authority areas. These spatial units will be related to

aggregate characteristics. For example, “Greenwich” is a spatial unit that is a joint

of three local authority areas: “Barking and Dagenham”, “Bromley”, “Lewisham”

and “Newham”, Figure 3.5. The population associated to this spatial unit, for

example, is the sum of the the population of the four grouped areas.

In the coming chapters, the 255 spatial units will be considered. The realistic

campaign data that were discussed in the previous chapter are UK AdWords target

geos based. The geos will be linked to the 255 spatial units and associated with

their micro-census data.



Chapter 4

Conceptual Model of

Geo-Experiments

The effectiveness of online advertising campaigns using geo-experiments relies on two

primary factors: an ability to design an effective geographically-based campaign and

the ability to track ad-spend and behaviours of interest. However, due to practical

challenges, these two conditions have been considered tough challenges in the di-

gital marketing domain. In this chapter, a conceptual model of geo-experiments

is introduced to understand more completely the key tenets of the behaviour of

interest.

The chapter begins by laying out the potential behaviours of interest that are ob-

tained from the geo-experiments. The second part moves on to describe the concep-

tual model of the geo-experiment and outlines two possible behaviours of interest:

online search and purchase. The third section is a description of statistical mod-

els structures that will be used to measure the effectiveness of the campaign. The

models are constructed under two conditions: homogeneity and unobserved het-

erogeneity. By the end of third section, a hypothetical measure of the campaign

effect is introduced. Then primitive data, which will be used later in this thesis

when devising theoretical and simulation methods, are discussed. Some remarks

and conclusions are drawn in the final section.

59
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4.1 Potential Behaviours of Interest

Returning briefly to the geo-experiments description provided by Vaver and J.

Koehler, the experiments begin with assigning each spatial unit randomly to either

treatment or control conditions. The experiments contain two time periods; during

the first time period all spatial units receive the same advertising campaign, and

during the second, the campaign is modified for the treatment spatial units. The

modification could include changing specific campaign components such as changing

the keywords list or could be turning off the campaign completely. However, due

to potential revenue impact from having no ads in some units while the campaign

is running in other units, the advertisers prefer to keep the campaign and display

modified ads.

Geo-experiments aim to measure the effectiveness of advertising campaigns in the

form of return on ad-spend (ROAS), which is the incremental impact the ad-spend

had on the response metric of interest. Response metric refers to individual beha-

viours of interest such as clicks, online or offline sales and website visits.

The potential behaviours are outlined hierarchically in Figure 4.1. Given an ad-

vertising campaign served in a specific spatial unit during a certain time period,

individuals in that unit and during that time then do online search or do not. If

they do online search, then ads may be displayed on the search result page or may

not, depending on how well searchers’ information and search terms used match

campaign’s components such as keywords, language and age. Given ads on the

search result page, users then either click on the ads or click on organic links. Their

click behaviours are followed by conversion behaviours including: click conversion or

not click conversion. If it is a click conversion, then click converts to a desired goal

such as online sale, newsletter sign-ups, or software downloads through ads channels,

i.e. PPC channel. On the other hand, if users do not click on ads or click on them

but do not convert their clicks to desired actions, then they could possibly make

conversions through other paid channels such as displayed ads on different websites

and social media channels, or through organic channels or offline (in stores). At

the same time, there is a possibility that they do not make any conversion by any
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means.

The depiction of behaviours in Figure 4.1 is a hierarchical model of multiple out-

comes. Advertisers might be interested in multilevel behaviours or in just one beha-

viour, depending on the main objective of the campaign. The geo-experiment aim

to measure the incremental impact of ad-spend on behaviours of interest, however

our knowledge of ad-spend or its distribution is very narrow. We have seen earlier

in the introduction chapter that tracking ad-spend is a core problem in measuring

effectiveness of online advertising campaigns. This problem becomes more difficult

with a hierarchical behavioural structure, because both behaviours of interest and

ad spend are non-deterministic measures. Therefore, it might be appropriate to

neglect ad-spend, to proceed in this research study, despite the fact that ad spend

is essential for evaluating the performance of advertising campaigns.

online search

seeing ads

yes

click on ads

click conversion

not click conversion

yes

yes

yes

no

no

nono

not an online

search process

organic

conversion

paid

conversion

organic click
yes

offline

conversion

no

conversion

offline

conversion

no

conversion

PPC

conversion

no

Figure 4.1: Potential Individual Behaviours on Seeing Ads on Search Engine

Measuring the effectiveness of an advertising campaign requires detailed informa-
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tion about each behavioural change in each spatial unit. However, recall that the

central question in this thesis asks how to assign spatial units to treatment and

control groups. Thus, the first thing advertisers need to focus on is how to select

or sample a set of spatial units to serve modified advertising campaigns. It is a

simple question, yet no easy answer, due to limitation on information and data such

as demographics and socio-economics, which are required in this case to permit the

use of standard sampling techniques. Therefore, we construct a simple structure of

individuals behaviours to understand how allocation of spatial units affects a given

behaviour. Before moving on to characterise the simplified structure, it is necessary

to make a number of assumptions to make behavioural process well-defined.

4.2 Essential Assumptions

For constructing a simple and well-defined structure of behaviours, we identify four

assumptions.

1. A Conceptual geo-experiment: We assume advertisers run a standard ad-

vertising campaign in all spatial units during the first time period and run a

proposed new advertising campaign in some spatial units and the old cam-

paign in other units during the second time period. The experiment aims to

investigate the effectiveness of the new advertising campaign relative to the

old campaign.

The basic unit of measurement is the number of sales in each spatial unit

in each time period. However, the number of searches is also available on a

similar basis. Therefore, the behaviours of interest are the number of searches

and the number of which convert to purchases.

2. All online searchers in each spatial unit are exposed to ads: The beha-

viour of interest should be attributable to displayed ads in each spatial unit

during both time periods. This depends mainly on the campaign’s status in

each spatial unit in both time periods. Campaign status or ads exposure does

not rely only on setting target spatial units. There are other possible factors

that may include some interrelated targeting parameters such as demographics,
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content keywords and device types. The competitive bidding among advert-

isers can also play a considerable role as well in ads exposure. Therefore, we

assume that all factors influencing ads exposure are under control and ensure

the displaying of ads on search results. Hence, all online searchers in each

spatial unit are exposed to ads relative to its campaign status.

3. All online searchers in each spatial unit see ads: We are aware that

showing ads on search results pages does not necessarily indicate that users

see the ads. Thus, we assume as long as ads are presented on the results pages

this is equivalent to seeing the ads.

4. Online conversion includes PPC, organic or paid conversions: We be-

lieve that PPC channel is not sufficient to count sales resulting from paid search

ads due to the fact that seeing ads on the results pages could impact searcher

behaviour both explicitly and implicitly. We assume therefore that seeing ads

can lead to complete conversion through PPC, organic or paid channels.

4.3 Conceptual Behaviours of Interest

Following the assumptions mentioned above, the behaviours of interest are summar-

ised in Figure 4.2 as a two-level model: online search and online purchase. From

now on, we work on this two-stage behavioural process. Hence we should observe

the number of searches and the number of purchases in each spatial unit during two

time periods.

online search
yes

convert search to purchase
yes

online conversion

no

no

Figure 4.2: Conceptual Behaviour of Interest.

Now we continue with the original objective of the experiment, that is, to estimate

the effectiveness of the advertising campaign, which is the differential in the pur-
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chasing behaviour in the treatment spatial units relative to the control units.

4.4 Statistical Modelling Framework
For a spatial unit i, in a time period t we need to model the number of searches and

the number of searches converted to purchases. The search-purchase process is a con-

ditional stochastic process where purchases decision relies on a search model.

We suppose that a spatial unit is composed of a set of population-strata; that could

represent a group of demographic and socio-economic characteristics. The search

and purchase probabilities are likely to differ from one stratum to another within

each spatial unit in a time period. Thus, the observational unit for the search-

purchase process should be represented by a population-stratum k in a spatial unit

i during a time period t. The sets of possible spatial units and population-strata

are respectively {1, . . . , I} and {1, . . . , K}. The time interval t ∈ {0, 1}.

For the search process, let srikt represent the absence or presence of online search

for individual r in observational unit ikt, such that

srikt =

1 if an individual r in an observational unit ikt searches

0 Otherwise

Given Nik individuals in a stratum k in a spatial unit i, then for r ∈ {1, . . . , Nik} we

view srikt as independent realisations of a random variable Srikt, each has a Bernoulli

distribution with probability ϕrikt, such that

P (Srikt = 1) = ϕrikt

On a similar basis, let yrikt represent the absence or presence of purchase conversion,

such that

yrikt =

1 if individual r in observational unit ikt converts to purchase

0 Otherwise

and given the srikt, we view yrikt as independent realisations of Bernoulli random

variables Yrikt, where

P (Yrikt = 1 | Srikt = 1) = prikt

and P (Yrikt = 1 | Srikt = 0) = 0
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For all individuals in the observational units, we could in principle observe a vector

of independent pair of observations (yrikt, srikt). In geo-experiments, observations

however, are aggregates, i.e. the sum of all individual outcomes in each observational

unit. The aggregated search and purchase are given by

sikt =
∑
r

srikt

yikt =
∑
r

yrikt

and we assume that individuals in a spatial unit i at time t in stratum k all have the

same probabilities for search and purchase but individuals in different strata within

i have different probabilities; i.e. that prikt = pikt and ϕrikt = ϕikt.

In practice, however, population-strata, i.e. demographic and socio-economic cov-

ariates, to the best of our knowledge, are missing - unobserved - in the paid search

advertising database, although these covariates are likely to affect the probabil-

ity of making purchases. The distributions of some covariates are known but it

is likely that there are other important unknown and unobserved covariates. This

means that the heterogeneity between population-strata within spatial units is un-

observed.

Therefore, what are observed are sit and yit that are based only on a whole spa-

tial and a time, although the true observations are summed implicitly over some

unobserved or unknown strata, i.e.

sit =
∑
k

sikt

yit =
∑
k

yikt

(4.1)

Having defined the search and purchase observations, we now move on to discuss

their statistical model structures under the two conditions: homogeneity and het-

erogeneity within spatial units.

4.4.1 Search Model

Assuming homogeneity within spatial units, Sit has a Binomial distribution with

parameters Ni and ϕit where Ni is the size of the population in a spatial unit i
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and probability ϕit depends on the spatial unit i and time period t. We change

the notation of the probability to ϕ∗it to distinguish between the probabilities of

observations in the model assuming homogeneity and those in the model based

upon heterogeneous strata. The search process is then given by

Sit ∼ Bin(Ni, ϕ
∗
it) (4.2)

or equivalently,

P (sit) =

(
Ni

sit

)
ϕ∗it

sit(1− ϕ∗it)Ni−sit .

The probability ϕ∗it of search can be then modelled using a logit regression model,

for example

logit(ϕ∗it) = ζ∗it = ν∗i + ξ∗t . (4.3)

The probability of search is based on a spatial effect ν∗i and a temporal change effect

ξ∗. The model (4.3) can be formulated in a matrix notation such that

ζ∗it =
∑

j
xs∗it jϑ

∗
j ⇐⇒ ζ∗ = Xs∗ϑ∗ (4.4)

where Xs∗ is a design matrix of the search model and ϑ∗ =
[
ν∗1 . . . ν∗I ξ∗

]T
.

If we do not assume homogeneity, the aggregates sit has then aggregated Binomial

probability structure given by

Sit =
∑
k

Sikt, where Sikt ∼ Bin(Nik, ϕikt) are independent . (4.5)

The logit probability ϕikt is modelled by

ζikt =
∑

j
xsiktjϑj ⇐⇒ ζ = Xsϑ (4.6)

where ζikt is a search model that relies on k strata. For example

logit(ϕikt) = ζikt = νi + τk + ξt

where νi is the spatial effect νi, τk the population-stratum effect and ξ the temporal

change effect.
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4.4.2 Purchase Model

Following assumption of homogeneity, Yit | (Sit = sit) has a Binomial distribution

with parameters sit and p∗it. The purchase process is a conditional model such

that

Yit |Sit ∼ Bin(sit, p
∗
it), where Sit ∼ Bin(Ni, ϕ

∗
it) (4.7)

or equivalently,

P (yit | sit) =

(
sit
yit

)
p∗it

yit(1− p∗it)sit−yit .

The probability p∗it of purchasing given the searching process with probability ϕ∗it

is required to be attributable to the campaign status in each spatial unit. Let ui

represent the condition of a spatial unit i, i.e. control or treatment , then

ui =

0 if i ∈ control group

1 if i ∈ treatment group

Let Cit be an indicator of an advertising campaign status such that

Cit =

1 if ui = 1 and t = 1

0 Otherwise

(4.8)

where Cit = 0 indicates that a spatial unit i in time period t is serving the original

advertising campaign, whereas Cit = 1 indicates that a spatial unit i in time period

t = 1 is serving the new advertising campaign. To put it succinctly, the advertising

campaign status is determined by Cit = uit.

The probability p∗it of purchasing is modelled using a logit regression model, such

that

logit(p∗it) = η∗it = α∗i + β∗t+ δ∗Cit . (4.9)

The probability of purchase is based on a spatial effect α∗i , the temporal change

effect β∗ and the campaign effect δ∗. In a matrix notation, the model (4.9) can be

written as

η∗it =
∑

j
x∗itjθ

∗
j ⇐⇒ η∗ = X∗θ∗ (4.10)
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whereX∗ is a design matrix of the purchase model and θ∗ =
[
α∗1 . . . α∗I β∗ δ∗

]T
.

In this thesis, we use a term applied model to refer to the statistical model given

by (4.9) and (4.10), and hence we refer to its parameters θ∗ as the applied model

parameters. The term applied model probability structure is then used to refer to

the probability distribution (4.7).

If we do not assume homogeneity, the aggregates yit have then aggregated Binomial

probability structures given by

Yit =
∑
k

Yikt, where Yikt |Sikt ∼ Bin(sikt, pikt) are independent . (4.11)

The probability pikt of purchasing is modelled using a logit-linear regression model

such that

logit(pikt) = ηikt = αi + γk + βkt+ δkCit . (4.12)

The probability of purchase is based on a spatial effect αi, the population-stratum

effect γk, the temporal change effect βk and the campaign effect δk.

Using matrix notation, the model (4.12) can be written as

ηikt =
∑

j
xiktjθj ⇐⇒ η = Xθ (4.13)

In this thesis, we refer to this model as the truth and to its parameter vector θ as

the truth parameter. Hence the term truth probability structure is used to refer to

the probability distribution (4.11).

The truth parameters should be estimated using maximum likelihood estimation

method. There would be a need to impose a constraint on either the αi or the γk

when fitting the truth model in order to ensure identifiability. However, this does

not arise in practice in the thesis because the truth is always specified rather than

estimated and only the applied model is fitted to data. This is because the covariates

of the population-stratum in each spatial unit are unobserved which means that we

can not fit the truth model directly. Thus, instead we explore the consequences of

using a misspecified model.
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It might be worth mentioning here that there could be some benefit to spatial

random effects modelling, especially when one is trying to build a predictive model

for unobserved spatial units. However, such predictions are not the real interest

here which is in estimating the effects of advertising campaigns. Moreover, the

number of searches per spatial unit is generally quite large and so the spatial effect

parameter αi is well estimated. Spatial random effects for the time and campaign

parameters might help improve the modelling of data given a particular design but

would only indirectly address the issue of unobserved covariates and in particular

their consequences for design of geo-experiments, the primary focus of the thesis.

For these reasons, spatial random effects were not considered further in the thesis

but might well be an interesting line of future enquiry.

4.5 Misspecification in Applied Model

Given the applied model probability structure (4.7) and truth probability structure

(4.11), the observed (generated) search and purchase can be illustrated in Figure

4.3.
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Figure 4.3: An illustration of the breakdown of observed data purchases given search for a spatial

unit i with K population-strata in two time periods, using applied model probability structure and

the truth probability structure.
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Considering the unobserved covariates of the population-strata, i.e. heterogeneous

strata within spatial units, the applied probability structure is misspecified. How-

ever, the applied model may be fitted to data using the logistic regression model

(4.9), where parameters are often estimated using maximum likelihood estimation

technique.

In reality, the underlying probability structure generating the data is unknown.

However, in this thesis we pretend the truth probability structure (4.11) is the un-

derlying structure. As a result, the applied model (4.9) is misspecified. Therefore,

the presence of observed sources of heterogeneity between strata within spatial units

means that statistical findings based on the applied model data may be incorrect.

The question that then naturally arises: how sensitive are results to the misspecific-

ation of the applied model.

The theoretical consequences of misspecification of the applied model will be dis-

cussed in the next chapter. The effect of misspecification can be examined by

measuring the distance between the applied model and truth. The distance between

the two models is measured using the Kullback-Leibler divergence, which gives the

amount of information lost when the probability distribution of the observations is

specified incorrectly. It is therefore an essential to fit the truth.

In this research, specification of the truth parameters is taken to tackle the concern

about fitting truth. Some of which are based on realistic data as we will see in

section 4.7 and others of which must be specified to create an instance of the truth

model. A set of interesting truth instances are created in chapter 6.

Estimation of the effectiveness of advertising campaigns under misspecification will

be discussed in the forthcoming chapters through a proposed theoretical framework

and a computer experiment, for a specific truth parameters and a particular cam-

paign design.

4.6 An Overall Measure of Campaign Effect

In the truth model (4.12), the campaign effects δk are strata based, which could be

considered as non-functional measures of the effectiveness of advertising campaigns
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from a digital marketing perspective. Thus, an overall campaign effect needs to be

quantified in a meaningful way for advertisers. Practically thinking, advertisers are

more interested in sales they gain from running campaigns, so we need to express

overall campaign effects in terms of sales.

Consider purchases yit =
∑

k yikt, the total sales are then just
∑

i,t

∑
k yikt. Let

∆ be a hypothetical differential measure that measures the difference between the

expected total number of sales if the new campaign are served in all spatial units i

and the expected total number of sales if it serves in none. Let c1 and c0 denotes

the conditions of spatial units, where c1 denotes that the new campaign is served in

all spatial units, and c0 denotes that none of the units are selected to serve it. Then

the total sales with conditions c1 and c0, are labelled by yc
1

it and yc
0

it respectively,

such that

Y c1

it =
∑
k

Y c1

ikt, where Y c1

ikt |Sc
1

ikt ∼ Bin(sc
1

ikt, p
c1

ikt) and Sc
1

ikt ∼ Bin(Nik, ϕ
c1

ikt)

Y c0

it =
∑
k

Y c0

ikt, where Y c0

ikt |Sc
0

ikt ∼ Bin(sc
0

ikt, p
c0

ikt) and Sc
0

ikt ∼ Bin(Nik, ϕ
c0

ikt) .

(4.14)

The effectiveness of the new campaign is then measured using a differential measure

∆ that is given by

∆ = E
[∑

i,t

∑
k

Y c1

ikt

]
− E

[∑
i,t

∑
k

Y c0

ikt

]
=
∑
i,k,t

E[Sc
1

ikt]p
c1

ikt −
∑
i,k,t

E[Sc
0

ikt]p
c0

ikt

=
∑
i,k,t

Nikϕ
c1

ikt

e
∑
j x

c1

iktjθj

1 + e
∑
j x

c1
iktjθj

−
∑
i,k,t

Niktϕ
c0

ikt

e
∑
j x

c0

itjθj

1 + e
∑
j x

c0
iktjθj

.

(4.15)

We call ∆ an overall true effect. It is a function of a specified truth parameter vector

θ. In a similar way we compute an overall applied model effect, say ∆∗. By using

the applied model probability structure, we have

Y c1

it ∼ Bin(sc
1

it , p
∗c1
it ), where Sc

1

it ∼ Bin(Ni, ϕ
∗c1
it )

Y c0

it ∼ Bin(sc
0

it , p
∗c0
it ) where Sc

0

it ∼ Bin(Ni, ϕ
∗c0
it ) .

(4.16)
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where p∗c
0

it and p∗c
1

it are functions of a parameter vector θ∗. Hence

∆∗ = E
[∑

i,t

Y c1

it

]
− E

[∑
i,t

Y c0

it

]
=
∑
it

E[Sc
1

it ]p∗c
1

it −
∑
it

E[Sc
0

it ]p∗c
0

it

=
∑
i,t

Niϕ
∗c1
it

e
∑
j X
∗c1
itj θ

∗
j

1 + e
∑
j X
∗c1
itj θ

∗
j

−
∑
i,t

Niϕ
∗c0
it

e
∑
j x
∗c0
itj θ

∗
j

1 + e
∑
j x
∗c0
itj θ

∗
j

.

(4.17)

In the next chapters, the difference between the overall true effect ∆ and estimates

of overall applied model effect ∆∗ will be computed. The differential effect between

these two quantities will be used to quantify the error associated with estimated

applied model parameters relative to specified truth parameters.

4.7 Primitive Data
In order to study the effectiveness of advertising campaigns using statistical models

suggested above through theoretical and simulation approaches that will be dis-

cussed in the forthcoming chapters, certain primitives need to be identified in order

to ensure that subsequent procedures required by each approach can be implemen-

ted. The primitives include five elements: investigation of realistic searches and

purchases, identification of spatial units, specification of truth parameters, identific-

ation of population-strata and specification of campaign design strategies.

4.7.1 Investigation of Realistic Searches and Purchases

Consider the geo-experiments application, that was run by “Consultancy F” for

a retail company “B” , to check whether bidding on brand keywords can drive in-

cremental sales. We have discussed “B”’s dataset in chapter 2, it contained 65230

observations obtained from 820 Google targeting geo-locations, in which 491 are as-

signed to a control group and 429 to a treatment group. The number of observations

during the first time period is 38525 and during the second time period is 26705.

The dataset represents individuals who convert their search to purchases through

different traffic channels, with no information about actual search behaviours. With

some adjustment to “B”’s dataset, though, we adopt the dataset to estimate realistic

probabilities of search and purchases.

We postulate that“B”’s dataset represents individuals who search online and that
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PPC1 conversion channel is the channel of interest to observe the number of those

who convert their search to purchases. Therefore, we first aggregate the 65230

observations to summarise the number of searches in each geo in each time period.

Within the same dataset of 65049 observations, we aggregate the 11894 data values

that were received from PPC channel to summarise the number of purchases in each

geo in each time period. Both datasets are summarised by unique user IDs and

the common geo-locations in the two time periods. Now we have two data sets of

realistic information about search and purchases associated with geo-locations and

two time periods.

Having realistic data about search and purchases in geo-locations, the probability

p∗it of purchasing in each spatial unit and in each time period can be estimated using

a purchase applied model η∗it as a fitting model. Hence, estimates, in particular,

estimates of spatial effects can be used later in truth parameter specification. How-

ever, we need to draw our attention that data are based on geo-locations that are

not well-defined spatial units. Thus before fitting purchase data, we need to map

geo-locations to the spatial units that defined in the previous chapter, by employing

the mapping distance based procedure .

4.7.2 Identification of Spatial Units

In the previous chapter, we have adjusted grouped local authority areas used in a

micro-census data in England and Wales, to link spatial units to the micro-census

data. Hence, micro sample data is available and associated to 255 spatial units in

England and Wales. The geo-locations in the realistic search and purchases data

sets are combined and mapped into 205 spatial units in England and Wales, see

Appendix C. At the end, the micro sample individuals and the realistic information

are merged by spatial units. The 205 spatial units are depicted on the map in Figure

4.4 based on the company campaign design for “B”. From now on we work on these

205 spatial units in England and Wales but by applying different campaign design

strategies.

1Conversions can be through paid or organic channels, but due to errors related to data tracking

and collection found in ‘B”’s dataset, we chose to work on PPC channel.
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Figure 4.4: 205 spatial units

in England and Wales used

for “B” advertising campaign

design, where red points repres-

ent spatial units in treatment

group and green points represent

spatial units in control group

4.7.3 Specification of Truth Parameters

Provided the realistic data of search and purchase corresponding to each spatial unit

for two time periods, the probability of search ϕ∗it and probability of purchasing p∗it

in a spatial unit i in a time period t can be estimated using models (4.3) and (4.9),

respectively. These probabilities will be used to estimate spatial effect parameters

ν∗i in the search model and α∗i in the purchase model.

In this study, however, the focus will be on the truth parameters of the purchase

model αi, γk, βk and δk. Truth spatial effect αi is assumed to be known, while other

parameters need to be specified to create some truth instances. Therefore, we will

fit the realistic search and purchase data using the applied model (4.9) to estimate

α∗i . The obtained estimates will be will be used to represent the truth parameter

αi. The spatial effect values are presented in Appendix F.

The other parameters γk, βk and δk are strata based. To specify them, it may be

appropriate to investigate the availability of possible covariates in the micro-census

data.
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4.7.4 Identification of Population-Strata

It is thought that the most important covariates that can help to create heterogen-

eous strata are geographical covariates such as gross disposable income per head,

socio-economic status. Individual covariates such as life-style, gender, age and edu-

cation can be considered useful as well. However, in the micro-census data, these

covariates are either not included, have a lot of missing values or lack detailed inform-

ation with categorisations. On the other hand, such data are usually not available

in digital marketing databases.

However, the household reference person social grade is collected for individuals in

each spatial unit is available in the micro-census data. The social grade is usu-

ally classified into six groups A (upper middle class), B (middle class), C1(lower

middle class), C2(skilled working class), D(working class) and E(non working). In

the micro-census data, the social grade is classified into four groups AB, C1, C2

and DE, where each group is coded by a number AB=1, C1=2, C2=3 and DE=4.

There is a list of individuals in each spatial unit who do not belong to any of these

categorisations. This could be an error in data collection and sampling. Those in-

dividuals is grouped into NA group. The percentage of individuals in each group is

computed for each spatial unit to see the distribution of social grade in each unit.

The distribution of each social grade is illustrated in Figure 4.5.

The AB grade is distributed about the same percentage in the most spatial units, ex-

cept spatial units around London, where AB grade represents about (30-40)% of the

total individuals in each unit there. For the other grades except NA, spatial around

London have lower percentage compared to the other units. It seems the distribution

of the social grades varies substantially between spatial units. This indicates that

the social grades might have some influence on online purchasing. Therefore, it is of

interest to use the social grade as a blocking covariate to create strata of within each

spatial unit to investigate the impact of unobserved heterogeneity within spatial in

estimating the advertising campaign effect.
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Figure 4.5: A percentage distribution of individuals in each social grade category in spatial units.

It would be good to explore the real effects of the socio-economic covariate in Google

data but unfortunately this is not possible due to the limitations of the data avail-

able.

4.7.5 Specification of Campaign Design Strategies

Geo-experiment is a control comparison experiment where the control group and

treatment group are compared at the same time during the advertising campaign.

Given sample of spatial units, we need to decide which spatial units receive the new

advertising campaign during the second time period? In this thesis we have defined

the term campaign design as the strategy for allocating treatments.

Fisher 1956 proposed a method to answer such question: randomized controlled

experiments, which is regarded as the gold standard trial for evaluating the ef-

fectiveness of a treatment (Akobeng 2005). In such experiments, a sample of the

population of interest is randomly allocated to treatments, where randomisation

gives every subject in the population an equal probability of receiving the treat-

ments. The purpose of randomisation is to reduce any possible biases in the study.

Randomisation is one of the essential experimental design principles that introduced
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by Fisher 1956, 1992 and highlighted by Cochran and Cox 1957. The principle of

randomisation does not use any form of restricted allocation to ensure homogen-

eity among the experimental units. The whole of the variation among the units

is included in the experimental error, which affect the accuracy or the size of the

estimate of error.

In randomised controlled trials in medicine, for example, patients are treated hav-

ing identical characteristics except for the experimental treatment. Thus, random

allocation of patient makes it likely that any difference in outcome can be explained

only by the treatment (Akobeng 2005). In the world of marketing, randomised con-

trolled experiments have been used for some time to investigate the true effect of a

treatment in the form of user level and geo-level. For example, identifying whether

sales increase after an advertising campaign is caused by the marketing campaign

design or by known or unknown factors. However, the randomised controlled exper-

iments is still a challenge in marketing experimental studies due to the lack of user

or regional data that are required for balancing treatment allocation (Gordon et al.

2021).

In practice, there is a little advice on how to apply randomisation (Aufenanger 2017,

2018) although the randomisation statistical theory has a long history in field exper-

iments (Fisher 1956, 1992; Kempthorne 1955). Despite this, the marking academic

literature has shown an increase in using randomised experiments based on user-

level and geo-level to understand advertising effects as were discussed in Chapter

1. In geo-experiments, spatial units are not homogeneous and are diverse in their

size, population and demographic characteristics, which could impact individuals’

search and conversion behaviours. Therefore, the effectiveness of the new advert-

ising campaign depends on the characteristics of the selected spatial units. Vaver

and J. Koehler 2012 recommended to constrain random assignment by one or more

characteristics or demographic variables to reduce potential hidden biases. They

found that grouping spatial units by size prior to treatment assignment reduce the

confidence interval of the campaign effect by 10% or more. This campaign design

is known as randomised block or stratified design which is can alleviate the hetero-
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geneity among the units and produce reduction in the estimate of error.

In this chapter, we have identified some spatial features including: the average of the

social grade and population which can be used to group the spatial units into blocks

or strata prior to random assignment. Provided these two blocking covariates, the

randomised block campaign design can be applied. In this thesis, we use a special

case of randomised block design which is matched-pair design. In this design, spatial

units are grouped into pairs according to the blocking covariate, and then within

each pair, the units are randomly assigned to opposite conditions: treatment and

control (Imai 2008).

The identified realistic search data can also be used to divide the spatial units into

blocks. One can thought that pre-observed data such as the expected search rates

can assist to understand individuals’ behaviours in each spatial unit, although that

outcomes change as a result of uncontrolled effects such as advertiser or consumer

behaviour, and time and calendar effects due to different browsing behaviour on

different days, etc. Despite this, we think the expected search rates, particularly

during the first time period, will be useful in stratifying the spatial units into pairs.

For all mentioned strata covariates, the matching algorithm starts by arranging the

spatial units descendingly using one covariate at a time, and then sort units that

have close observations into pairs.

Another possible scheme for grouping spatial units into pairs is using nearest neigh-

bour matching, which pairing a given spatial unit with its closest unit (Rubin 1973;

Stuart 2010). It is interesting to consider the fact that adjacent spatial units are

more likely to share characteristics that are more similar. Using available spatial

features, the closeness between the units can be expressed in terms of distances and

dissimilarity measures. The spatial features we have are geographical coordinates,

social grades and population. The distances between spatial units can be computed

using geographical coordinates latitude and longitude points associated with each

spatial units. The dissimilarity between the units are measured using social grades

and population. The matching algorithm, inspired by the distance function k2k in

the cem R package (Iacus et al. 2018), works by selecting an unallocated spatial
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unit randomly and pairing it with a nearby unit. This procedure is repeated for the

remaining spatial units until two units only remain, which have to form a pair in

any way regardless if they are adjacent or not.

In addition to the matched-pair design strategy, the complete randomisation will be

taken into consideration, despite the fact that the spatial units are not homogen-

eous. From the marketing perspective, advertisers may find it easier to target spatial

units completely random to investigate the effectiveness of a specific change in their

advertising campaign, especially in the absence of characteristics that required to

handle the spatial heterogeneity. Also, we will take partial randomisation design,

where different percentages of the spatial units are assigned randomly to the treat-

ment group. For example, we allocate 10%, 20%, 30% and 40% of the spatial units

randomly to serve the new advertising campaign during the second time period.

The partial randomisation is considered because some changes in the advertising

campaign may cost advertisers a lot and hence a portion of units can be selected to

serve the modified campaign.

Other treatment allocation approach is the spatial design, assuming spatial depend-

ency between the units. For this approach, spatial patterns or spatial autocorrelation

is usually computed using observed spatial data to measure the similarity between

nearby observations (Dutilleul 1993; Legendre et al. 2004; Van Es et al. 2007). How-

ever, due to the lack of observed spatial data, the spatial allocation is not included

in this study.

In summary, the design strategies that will be employed to design campaigns are

• Complete randomised design

• Partial randomised design

• Matched-pair design, where pairs are matched using

– population

– social grades

– realistic expected search rates
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– nearest neighbour algorithm, using

∗ dissimilarity measures between social grades

∗ dissimilarity measures between population and social grades

∗ distances between geographical coordinates

For matched-pair designs, the matching algorithms involve to group spatial units

into pairs. This means for an odd number of spatial units, there is a one unpaired

unit remaining. Given 205 spatial units in this research, pair 204 units and one

unit left unpaired. The unpaired unit is not necessary be the same unit in each

matched-pair strategy but for simplicity we fixed the unpaired unit in all applied

design strategies. Using spatial effect estimates α∗i resulted from realistic data, the

unit associated with the minimum effect was eliminated. Henceforth, 204 spatial

units will be studied instead of 205 units.

4.8 Summary and Concluding Remarks

The purpose of this chapter was to understand the complexity of behavioural struc-

ture of response variables of the geo-experiments and suggest a conceptual beha-

vioural structure that enables measuring the impact of advertising campaign. The

conceptual behaviour is a two-stage stochastic process: search process and purchas-

ing process. The effectiveness of the campaign is assumed to be attributable to the

act of converting online searches to purchases.

Logit-linear regression models were proposed to measure the effectiveness of advert-

ising campaigns. The search and purchase data will be fitted using a statistical

model called applied models, where homogeneity with spatial units is assumed. By

taking unobserved heterogeneity into account, the applied models are known to be

misspecified and hence the estimates result by fitting this model will be incorrect.

The impact of misspecification on parameters estimation will be discussed in the

forthcoming chapters through a theoretical approach and a computer experiment

approach.

The sensitivity of estimation to misspecified models is quantified by measuring the
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distance between the models and the truth. In this chapter a truth model was pro-

posed based on heterogeneous strata with spatial units. A hypothetical measure of

campaigns effects was also proposed to summarise the effectiveness of the campaign

as an aggregate measure of strata.

At the end of the chapter, primitives data were discussed to assist in specifying

truth, given that truth is unknown in practice. The primitives include also the

identification of spatial units, the identification of population-strata and the spe-

cification of campaign design strategies. All these primitives form basic components

for both forthcoming study approaches. In the next chapter theoretical framework

is developed to study the implications of unobserved covariates for inferences about

estimated effects for geo-experiments.



Chapter 5

Consequences of Misspecification

of the Applied Model

The purpose of this chapter is to put forward a theoretical framework for assessing

the implications of unobserved covariates for inferences about the effectiveness of

paid search advertising campaigns when the geo-experiment approach is applied.

The issue results from the fact that the campaign effect is estimated using a stat-

istical model that is known to be misspecified due to the presence of unobserved

covariates. The points to be raised here are how to measure misspecification of a

model and how this reflects on the behaviour of its estimated parameters.

The effectiveness of advertising campaigns is based conceptually on a two-stage

stochastic process: searching process Sit and purchasing process Yit. The truth and

the applied structures of Yit are given in models (4.11) and (4.7), respectively. The

truth is based on the assumption of heterogeneity within a spatial unit, whereas the

applied model structure is based on the assumption of homogeneity within a spatial

unit. The truth and applied model data are fitted using the logistic regression models

represented in models (4.12) and (4.9), respectively. It was shown in the previous

chapter that the applied probability structure and the applied model used to fit the

data are misspecified. In this chapter we are going to study the performance of the

applied model by assuming the truth has a particular structure.

82
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For simplicity, we first study the consequences of misspecification of the applied

model by considering a single stage stochastic process, which is the case where

there is no search process. In other words, we assume the number of searches in

each spatial units in each time period is known with value nikt. The study is then

extended to a two-stage stochastic process.

The chapter is divided into two parts. The first part, consisting of the first five sec-

tions, studies the asymptotic behaviour of the estimated applied model parameters

using a single stage purchase model. The first part starts with a brief description of

the purchases model without search. In the following section, we provide a general

overview of robustness of likelihood specification to examine the distribution theory

of the maximum likelihood estimators under correct specified models and misspe-

cified models. In the same section, we review briefly the Kullback-Leibler divergence

criteria and the results obtained by (White 1982) about consistency property and

asymptotic normality under misspecification. A toy model is then provided to ex-

amine the asymptotic behaviour of estimates under a model that is known to be

misspecified. We propose a proxy structure of the specified applied model in the

next section to make possible the application of standard results in the literature

on maximum likelihood estimation for misspecified models. By the end of this part,

a general theoretical approximation of the asymptotic distribution of estimates is

delivered for purchase model without search process. In the second part of this

chapter, the findings of the asymptotic theory are extended for a two-stage model.

By the end of this chapter, some remarks and conclusions are drawn.

5.1 Purchase Model Without Search

Assume the number of searches in each spatial unit in each time period is known

with value n∗it, the applied model probability structure (4.7) of the two-stage process

is then reduced to a single stage process such that

Yit ∼ Bin(n∗it, p
∗
it) are independent. (5.1)
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and the truth model probability structure (4.11) is reduced to

Yit =
∑
k

Yikt, where Yikt ∼ Bin(nikt, pikt) are independent, (5.2)

where p∗it and pikt are modelled using applied and truth purchase models (4.10) and

(4.13), respectively. Figure 5.1 illustrates the truth and applied purchase model

data structures when the number of searches is known in a spatial unit i during the

two time points.
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Figure 5.1: An illustration of the breakdown of observed data purchases given known number

of searches for a spatial unit i with K population-strata in two time periods, using applied model

probability structure and the truth probability structure.

The applied model parameter vector θ∗ is estimated using the maximum likelihood

estimation method. The likelihood estimates are computed directly from the like-

lihood function of the applied probability model. However the applied model is

known to be misspecified, so how sensitive are the maximum likelihood estimates to

this misspecification.

5.2 Robustness of Likelihood Specification
By drawing on the concept of likelihood under misspecification, White 1982 studied

the consequences and detection of the model misspecification when the maximum
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likelihood method is used. He examined the robustness of the likelihood specification

and the properties of the estimators in the case of independent and identically

distributed (i.i.d) observations. In section 5.2.3 we present the results related to the

consistency and the asymptotic distribution of estimators under misspecification.

However, before presenting White’s results, we review briefly the distribution of the

score function and the asymptotic distribution of consistent estimates under classical

regularity conditions.

5.2.1 Classical Distribution of Score Function

Let l be the log-likelihood function of the yit with applied model probability structure

(5.1), the score is then the gradient of the l, i.e.

S(θ∗) =
∂l

∂θ∗
.

The score function might be seen intuitively as a measure of how close the para-

meter θ∗ is to what the observed data y suggests. For a fixed value of θ∗ the score

S(θ∗) is called the score statistic and has a distribution with a specific mean and

variance.

Assume that the applied model (5.1) is correctly specified. Then, under some reg-

ularity conditions, the expected value of the score, evaluated at the true parameter

value θ∗0 of θ∗, is zero, i.e.

E
[
S(θ∗0)

]
= 0 .

The variance of the score function is then given by

Var
[
S(θ∗0)

]
= E

[
S(θ∗0)S(θ∗0)T

]
− E

[
S(θ∗0)

]
E
[
S(θ∗0)

]T
= E

[
S(θ∗0)S(θ∗0)T

]
= E

[( ∂l
∂θ∗

)( ∂l
∂θ∗

)T ∣∣∣
θ∗0

] .

At the maximum, the second derivative of the log likelihood function is negative-

definite. Given the derivative of the score function as

∂S(θ∗)

∂θ∗
=

∂2l

∂θ∗2
,

and define the curvature of the log-likelihood at θ̂∗ as I(θ̂∗) where

I(θ∗) = −∂S(θ∗)

∂θ∗
= − ∂2l

∂θ∗2
.
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In likelihood theory I(θ̂∗) is called the observed fisher information and a large quant-

ity of I(θ̂∗) indicates a less uncertainty about θ∗. The expected value of the fisher

information is given as

I(θ∗0) = E
[
I(θ∗0)

]
= −E

[∂S(θ∗)

∂θ∗

∣∣∣
θ∗0

]
= −E

[ ∂2l

∂θ∗2

∣∣∣
θ∗0

]
.

Under some classical regularity condition, the variance of the score function can be

expressed in term of the expected value of the Fisher information such that

Var
[
S(θ∗0)

]
= I(θ∗0),

which is equivalent to state that

E
[( ∂l
∂θ∗

)( ∂l)
∂θ∗

)T ∣∣∣
θ∗0

]
= −E

[ ∂2l

∂θ∗2

∣∣∣
θ∗0

]
. (5.3)

5.2.2 Consistency and Asymptotic Normality

In classical likelihood theory, where the applied model is assumed to be correctly spe-

cified, the goodness of the estimates can be examined through the repeated sampling

properties of sample statistics which shape a basis of the statistical inferences such

as bias and variance. Given that θ̂∗ is an estimated vector of the true parameter

vector θ∗0, the bias of the estimate is defined as

b(θ∗0) = E[θ̂∗]− θ∗0,

with mean square error defined as

MSE(θ∗0) = E[(θ̂∗ − θ∗0)2] = Var(θ̂∗) + (b(θ∗0))2 .

θ̂∗ is unbiased estimator if E[θ̂∗] = θ∗0. The bias in the estimates is desired to be

small and should not dominate the variability of the estimates (Pawitan 2001).

In the i.i.d case, as the sample size increases towards infinity, under weak regularity

conditions, the estimates θ̂∗ converges almost surely to the true parameter vector

θ∗0; i.e. θ̂∗
a.s→ θ∗0.

Theorem 1 Given that θ̂∗ is consistent, then under some classical regularity con-

ditions, the distribution of θ̂∗ in the i.i.d case is asymptotically Normal such that

θ̂∗ ∼ N(θ∗0, I−1(θ∗0)),
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where I−1(θ∗0) is the inverse of the Fisher information that is used as an asymptotic

approximation of the variability of θ̂∗ around θ∗0.

Asymptotically, nVar(θ̂∗), nI−1(θ∗0) and nI−1(θ̂∗) all converge to the same constant

matrix so that the observed information can be used to approximate the variance

of θ̂∗ and consequently to calculate standard errors etc.

The theorem can be proved by using second-order expansion of the log-likelihood

function along with the Central Limit Theorem (CLT). Here we are not interested

to go through the proof but an interested reader could see the proof that was written

by Pawitan 2001, when he discussed large sample results.

In the non-i.i.d case, consistency and asymptotic normality depend on the asymp-

totic regime, i.e. on how the experimental design changes as the sample size grows.

In suitable regimes the same asymptotic results hold as stated in Theorem 1. How-

ever, in practice one wishes to use the asymptotic distribution as a useful approxim-

ation for finite sample sizes. Rather than attempt to prove consistency and asymp-

totic normality for the models used in this thesis, in Chapter 6 we assess the accuracy

of the anticipated asymptotic distribution by Monte Carlo simulation.

5.2.3 Distance From the Truth

If the truth probability structure of y are not in the applied model, then there is

no value of the applied model parameters associated to the truth. In this case the

distance between the applied probability model and the truth is measured. The

distance between the two models is measured by the Kullback-Leibler divergence

or for short KL-divergence which gives the amount of information lost when the

applied structure of observations is specified incorrectly.

Definition 1 Assume f(y; θ∗) is a misspecified probability structure of a random

variable y and g(y) is the true probability structure of y. The Kullback-Leibler di-

vergence from f to g is

DKL(g‖f) = Eg

[
log

g(y)

f(y; θ∗)

]
. (5.4)
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The KL-divergence measures the distance between the two probability structures.

Pawitan 2001 highlighted that maximising likelihood is equivalent to minimising the

KL-divergence. Let θ̃∗ be a parameter vector which minimises the KL-divergence,

Akaike 1998 observed that when the truth is unknown, the vector of parameter

estimates θ̂∗ is a natural estimator for θ̃∗, the parameter which minimizes the KL-

divergence. This statement matters because the best possible model is not reachable

in the reality because the truth is unknown, and so the maximum likelihood estim-

ator can be applied as a proxy for fitting our estimates to the truth. We mean by

the best model here is the one that fits the data exactly, i.e. when truth is included

in the applied distribution. According to KL-divergence definition 1, the best model

is obtained when f(y; θ∗) ≡ g(y), and so θ̃∗ is the value that gives the closest model

to the truth.

It is interesting to understand why maximising likelihood is asymptotically equival-

ent to minimising the KL-divergence (5.4). Let y1, y2, ..., yn be random sample, where

yi are independent and identically distributed with truth probability function g(yi).

Let f(yi; θ
∗) be the applied model that is specified to fit the data with unknown

θ∗. For independent and identically distributed sample, the average log-likelihood

is given by

1

n

∑
i

log f(yi; θ
∗) .

Maximising the likelihood is equivalent to maximising the log-likelihood. Given

large enough n, the weak law of large number says that

1

n

∑
i

log f(yi; θ
∗)→ Eg

[∑
i

log f(yi; θ
∗)
]
.

This indicates that maximising the log-likelihood is asymptotically equivalent to

minimising the expectation of the negative log-likelihood with respect to the truth

g, i.e. as n→∞

maximising
1

n

∑
i

log f(yi; θ
∗) ≡ minimising Eg

[
−
∑
i

log f(yi; θ
∗)
]
.
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The KL-divergence between g and f is defined as

DKL[g(y)‖f(y; θ∗)] = Eg

[
log

∏
i g(yi)∏

i f(yi; θ∗)

]
= Eg

[∑
i

log g(yi)
]
− Eg

[∑
i

log f(yi; θ
∗)
]
.

But Eg

[∑
i log g(yi)

]
is an unknown constant c with respect to θ∗, i.e.

DKL[g(y)‖f(y; θ∗)] = c− Eg

[∑
i

log f(yi; θ
∗)
]
.

Therefore, for large enough n, finding the maximum likelihood estimate θ̂∗ is ana-

logous to finding θ̃∗ the value that gives the nearest model to the truth in the sense

of KL-divergence. Provided that θ̃∗ is the value that gives the nearest model to the

truth, then for large enough n, θ̂∗ might be expected to converge to θ̃∗.

However, when θ̂∗ is estimated under misspecified model, the question that is then

naturally to ask in this case: is θ̂∗ consistent? and if so, is it asymptotically Normal?

Pawitan 2001 addressed the maximum likelihood under a misspecified model and he

presented an example where a misspecification can lead to a robust consistent es-

timates of the closest parameter θ̃∗. But he also mentioned that, in general applying

misspecified model yields to biased or inconsistent estimates.

5.2.4 Consistency and Asymptotic Normality Under

Misspecification

White 1982 addressed consistency and asymptotic normality under misspecifica-

tion. The results obtained were studied under some regularity conditions stated as

assumptions A1 through A7 in his paper. Although the provided conditions A1- A7

are considered simple under which the maximum likelihood is a strongly consist-

ent estimator for the parameter vector which minimize the KL-divergence (Diong

et al. 2017) compared to the general conditions provided by Huber 1967, White’s

conditions are however sufficiently general to have broad applicability.

White studied consistency and asymptotic normality distribution of the maximum

likelihood estimator for independent identical (i.i.d) random observations y1, y2, . . . , yn

that have a truth distribution function g(y) and a misspecified applied distribution
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function f(y; θ∗). By considering White’s assumption A1-A3, the maximum likeli-

hood estimator θ̂∗ of θ∗, is a consistent estimator for θ̃∗, i.e.

θ̂∗
a.s→ θ̃∗ as n→∞ . (5.5)

If the applied model f includes the truth, i.e. g(y) = f(y; θ∗0) for some θ∗0 in the

domain of θ∗, the KL-divergence DKL(g‖f) achieves its unique minimum at θ̃∗ = θ∗0

and hence θ̂∗ is consistent for parameter vector θ∗0, i.e. θ̂∗
a.s→ θ∗0. This result corres-

ponds to the classical consistency of the maximum likelihood estimator presented in

section 5.2.2.

White showed the estimator θ̂∗ is asymptotically normally distributed, provided as-

sumptions A1-A6. He obtained a variance-covariance matrix for θ̂∗ through defined

matrices related to the average log-likelihood. Consider the average log-likelihood

l(θ̂∗) =
1

n

∑
i

log f(yi; θ
∗) .

Assume partial derivatives of l exist, then White defined

An(θ∗)jj′ =
1

n

∑
i

∂2 log f(yi; θ
∗)

∂θ∗j∂θ
∗
j′

,

Bn(θ∗)jj′ =
1

n

∑
i

∂ log f(yi; θ
∗)

∂θ∗j

∂ log f(yi; θ
∗)

∂θ∗j′
.

He defined the following if expectations exist

A(θ∗)jj′ = Eg

[∂2 log f(yi; θ
∗)

∂θ∗j∂θ
∗
j′

]
,

B(θ∗)jj′ = Eg

[∂ log f(yi; θ
∗)

∂θ∗j

∂ log f(yi; θ
∗)

∂θ∗j′

]
,

where the expected value assumes yi is sampled from the truth g(y). Provided

appropriate inverses exist, he defined

Cn(θ∗) = A−1
n (θ∗)Bn(θ∗)A−1

n (θ∗),

C(θ∗) = A−1(θ∗)B(θ∗)A−1(θ∗) .

From the definition of An(θ∗) and Bn(θ∗) and the fact that the observations are i.i.d,

we see that

A(θ∗)jj′ =
1

n

∑
i
Eg

[∂2 log f(yi; θ
∗)

∂θ∗j∂θ
∗
j′

]
= Eg[An(θ∗)],

B(θ∗)jj′ =
1

n

∑
i
Eg

[∂ log f(yi; θ
∗)

∂θ∗j

∂ log f(yi; θ
∗)

∂θ∗j′

]
= Eg[Bn(θ∗)] .

(5.6)
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Given θ̃∗ and that B(θ̃∗) is a nonsingular matrix, and θ̃∗ is a regular point of A(θ∗),

White stated the asymptotic distribution theorem of maximum likelihood estimate

θ̂∗ in a misspecified model:

Theorem 2 Given assumptions A1-A6,

√
n(θ̂∗ − θ̃∗) d→ N(0, C(θ̃∗))

Cn(θ̂∗)
a.s→ C(θ̃∗).

where C(θ̃∗) is an approximate variance of the maximum likelihood estimator for

θ∗ from a single observation. However, the variance-covariance matrix C(θ∗) was

reviewed by Chow 1984, who pointed out that the covariance matrix B(θ∗) stated

by White is not correct in general. Chow examined the case for n independent,

non-identically distributed observations y1, . . . , yn. He defined

A(θ∗)jj′ = Eg

[ 1

n

∂2l

∂θ∗j∂θ
∗
j′

]
,

B(θ∗) =
1

n
Covg

[ ∂l
∂θ∗

]
.

which matches White’s definition of A(θ∗) in the i.i.d case.

For identifiable θ̃∗, Chow defined the variance-covariance matrix of maximum like-

lihood estimator for θ∗ as

C (θ̃∗) = A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗), (5.7)

Now consider the covariance matrix B(θ̃∗), such that

B(θ̃∗) =
1

n
Covg

[ ∂l
∂θ∗

∣∣∣
θ̃∗

]
=

1

n

[
Eg

[( ∂l
∂θ∗

)( ∂l
∂θ∗

)T ∣∣∣
θ̃∗

]
− Eg

[ ∂l
∂θ∗

∣∣∣
θ̃∗

]
Eg

[( ∂l
∂θ∗

)T ∣∣∣
θ̃∗

]]
.

But at θ̃∗, from (5.4) and the definition of θ̃∗ we have

Eg

[ ∂l
∂θ∗

∣∣∣
θ̃∗

]
= 0 . (5.8)
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Therefore we have

B(θ̃∗) =
1

n
Eg

[( ∂l
∂θ∗

)( ∂l
∂θ∗

)T ∣∣∣
θ̃∗

]
=

1

n
Eg

[(∑
i

∂ log f(yi; θ
∗)

∂θ∗

)(∑
i

∂ log f(yi; θ
∗)

∂θ∗

)T ∣∣∣
θ̃∗

]
=

1

n

∑
i

Eg

[(∂ log f(yi; θ
∗)

∂θ∗

)(∂ log f(yi; θ
∗)

∂θ∗

)T ∣∣∣
θ̃∗

]
+

1

n

∑
i 6=i′

Eg

[∂ log f(yi; θ
∗)

∂θ∗

∣∣∣
θ̃∗

]
Eg

[(∂ log f(yi′ , θ
∗)

∂θ∗

)T ∣∣∣
θ̃∗

]
.

By comparing this covariance equation to White’s covariance matrix B(θ∗) when

evaluated at θ̃∗, we see that White omitted the second part of this equation by

equating the expectation of each individual term ∂ log f(yi; θ
∗) to zero. Chow poin-

ted out this fact and stressed that the fact stated in equation (5.8) does not imply

that each individual term ∂ log f(yi; θ
∗) has a zero expectation, i.e.

Eg

[∂ log f(yi; θ
∗)

∂θ∗

∣∣∣
θ̃∗

]
6= 0 . (5.9)

But White considered i.i.d sample, and in this situation the equality sign instead

of the inequality sign holds in equation (5.9). Therefore for i.i.d sample, B(θ̃∗) is

the same as the covariance matrix obtained by White, i.e. B(θ∗) in (5.6) when it

is evaluated at θ̃∗. In view of all that has been mentioned so far in this section,

the variance-covariance matrix (5.7), provided by Chow holds in general situation

for independent sample. Consider Chow’s definition of the variance-covariance com-

ponents, then define: A(θ∗) = nA(θ∗) and B(θ∗) = nB(θ∗). Hence

A(θ̃∗)jj′ = Eg

[ ∂2l

∂θ∗j∂θ
∗
j′

∣∣∣
θ̃∗

]
,

B(θ̃∗) = Covg

[ ∂l
∂θ∗

]
.

(5.10)

Defining

C(θ̃∗) = A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗), (5.11)

and so the convergence result in Theorem 2 becomes
√
n(θ̂∗ − θ̃∗) d→ N(0, nC(θ̃∗))

giving rise to the approximate distribution for large n

θ̂∗ ∼ N(θ̃∗,C(θ̃∗)) . (5.12)
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The models used in this thesis have independent but non-identically distributed

observations and so it is anticipated that this asymptotic distribution may be use-

ful. In Chapter 6, the accuracy of the approximation will be assessed in various

scenarios.

In addition White showed that the obtained results of consistency and asymptotic

normality of a misspecified model are closely related to the classical consistency

and asymptotic normality provided earlier in section 5.2.2. When g(y) = f(y, θ∗0),

the KL-divergence attains its minimum at the true parameter θ∗0 as was mentioned

above. Provided Theorem 3.3 stated in White’s paper, then A(θ∗0) = −B(θ∗0) so that

C(θ∗0) = −A−1(θ∗0) = B−1(θ∗0), where −A(θ∗0) is Fisher’s information matrix I(θ∗0).

This is true because under correct specification,

B(θ∗0) = Cov
[ ∂l
∂θ∗

∣∣∣
θ∗0

]
= E

[( ∂l
∂θ∗

)( ∂l
∂θ∗

)T ∣∣∣
θ∗0

]
= I(θ∗0) .

By considering equation (5.3), then A(θ∗0) = −B(θ∗0).

Having discussed how maximum likelihood estimates behave when fitting a mis-

specified model, we will now move on to discuss the theoretical derivation of the

estimates of the applied model (4.9). Then we make an attempt to study the asymp-

totic behaviour of the estimates under two assumptions: correct specification and

misspecification.

5.3 Theoretical Derivation of Maximum

Likelihood Estimates of the Applied

Model
The derivation of the maximum likelihood estimates θ̂∗ of the applied model (4.9)

requires to solve the score equation S(θ∗) = 0, which usually has no closed form

solution. Nevertheless, it is good to show the derivation of the θ̂∗ for a small dimen-

sion of θ∗ to illustrate the procedure of the estimation and make it easer to study

the asymptotic behaviour of the estimates under misspecification.

Given the applied probability structure (5.1) of yit, purchasing process, the probab-

ility function of yit is
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f(yit) =

(
n∗it
yit

)
(p∗it)

yit(1− p∗it)n
∗
it−yit

Given independent vector y of observed data of purchases yit, the likelihood function

is then

L =
∏
i,t

f(yit) =
∏
i,t

(
n∗it
yit

)
(p∗it)

yit(1− p∗it)
n∗it−yit .

The
(
n∗it
yit

)
does not depend on p∗it and so will not affect the derivation of estimators.

In what follows, we consider the likelihood proportional to L :

L =
∏
i,t

(p∗it)
yit(1− p∗it)

n∗it−yit .

The log-likelihood is

l =
∑
i,t

yit log(p∗it) + (n∗it − yit) log(1− p∗it) . (5.13)

Given that η∗it = logit(p∗it), the likelihood is given by

L =
∏
i,t

(
p∗it

1− p∗it

)yit
(1− p∗it)n

∗
it

=
∏
i,t

(eη
∗
it)yit(1 + eη

∗
it)−n

∗
it ,

and the log-likelihood is

l =
∑
i,t

(η∗ityit − n∗it log(1 + eη
∗
it)) . (5.14)

On the basis of the matrix formulation of the applied model, the likelihood is given

by

L =
∏
i,t

(
e
∑
j x
∗
itj
θ∗j
)yit(1 + e

∑
j x
∗
itj
θ∗j
)−n∗it ,

and the log-likelihood function is

l =
∑

i,t
yit
(∑

j
x∗itjθ

∗
j

)
− n∗it log

(
1 + e

∑
j x
∗
itj
θ∗j
)
. (5.15)
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The log-likelihood depends on parameters vectors θ∗. The gradient of the log-

likelihood is then a score vector of first partial derivatives with respect to θ∗ or

in specific α∗i , β
∗ and δ∗. The score vector is then

S(θ∗) =
∂l

∂θ∗
=
[
∂l
∂α∗1

. . . ∂l
∂α∗I

∂l
∂β∗

∂l
∂δ∗

]T
.

The maximum likelihood estimates θ̂∗ is the solution of the score equation

S(θ∗) = 0 .

Example 1 (Toy Model) Let i ∈ {1, 2} such that i = 2 receives the new advert-

ising campaign. The probability of purchasing pit is then modelled as

logit(p∗it) = η∗it = α∗i + β∗t+ δ∗Cit,

such that η∗ =
[
η∗10 η∗11 η∗20 η∗21

]T
, where

η∗10 = α∗1

η∗20 = α∗2

η∗11 = α∗1 + β∗

η21∗ = α∗2 + β∗ + δ∗

Consider the log-likelihood equation (5.14), then

l = η∗10y10 − n∗10 log(1 + exp(η∗10)) + η∗11y11 − n∗11 log(1 + exp(η∗11))

+ η∗20y20 − n∗20 log(1 + exp(η∗20)) + η∗21y21 − n∗21 log(1 + exp(η∗21)),

substitute expressions of each element in η∗, we get

l = α∗1y10 − n∗10 log(1 + exp(α∗1)) + (α∗1 + β∗)y11 − n∗11 log(1 + exp(α1 + β∗))

+ α∗2y20 − n∗20 log(1 + exp(α∗2)) + (α∗2 + β∗ + δ∗)y21 − n∗21 log(1 + exp(α∗2 + β∗ + δ∗)) .

The score vector, i.e. the first partial derivatives of the log-likelihood with respect

to each parameter in η∗ is,

∂l

∂α∗1
= y10 − n∗10

exp(α∗1)

1 + exp(α∗1)
+ y11 − n∗11

exp(α∗1 + β∗)

1 + exp(α∗1 + β∗)

∂l

∂α∗2
= y20 − n∗20

exp(α∗2)

1 + exp(α∗2)
+ y21 − n∗21

exp(α∗2 + β∗ + δ∗)

1 + exp(α∗2 + β∗ + δ∗)

∂l

∂β∗
= y11 − n∗11

exp(α∗1 + β∗)

1 + exp(α∗1 + β∗)
+ y21 − n∗21

exp(α∗2 + β∗ + δ∗)

1 + exp(α∗2 + β∗ + δ∗)

∂l

∂δ∗
= y21 − n∗21

exp(α∗2 + β∗ + δ∗)

1 + exp(α∗2 + β∗ + δ∗)
.

(5.16)
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The estimate vector θ̂∗ can be found by setting each of the equation above to zero

and solving for its corresponding parameter. This results a system of four nonlinear

equations with four unknown parameters. The solution to such system is not easily

derived directly from (5.16).

By considering applied model η∗ = X∗θ∗ and η∗it = logit(p∗it) for a unit i in time t,

we see there is a composition of transformations that maps a parameter vector θ∗ to

a probability vector p∗. Define the linear map T : θ∗ → η∗ and the map U : η∗ → p∗,

then compose transformations that maps θ∗ to p∗ is (U ◦ T )(θ∗) : θ∗ → p∗.

If we can show that the composition (U ◦ T ) is bijective, then

∂l

∂θ∗
= 0⇐⇒ ∂l

∂ p∗
= 0 .

The composition (U ◦ T ) is a bijection if and only if T is a bijection and U is a

bijection. Given that η∗it = logit(p∗it) is a component-wise bijective function, then U

is a bijection. For the toy example, i.e. two spatial units, the linear map T is given

by

T (θ∗) = X∗θ∗ =


1 0 0 0

1 0 1 0

0 1 0 0

0 1 1 1




α∗1

α∗2

β∗

δ∗

 =


α∗1

α∗1 + β∗

α∗2

α∗2 + β∗ + δ∗

 =


η∗10

η∗11

η∗20

η∗21

 .

If we swap the second and third rows in X∗, we get a lower triangular matrix with

diagonal entries equal 1. Provided that if we swap rows in a matrix, the determinant

will change its sign. The determinant of a triangular matrix is the product of the

diagonal entries, hence det(X∗) = −1. Since U and T are both bijections, then so

is (U ◦ T )(θ∗).

Consider the log-likelihood l (5.13). Its first derivative with respect to p∗it is

∂l

∂p∗it
=
yit
p∗it
− n∗it − yit

1− p∗it
.

By equating this score function to zero, we get

yit
p∗it
− n∗it − yit

1− p∗it
= 0

yit(1− p∗it) = (n∗it − yit)p∗it .
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The maximum likelihood estimator of p∗it is then

p̂∗it =
yit
n∗it

. (5.17)

given that the second derivative matrix of the log-likelihood function is a negative-

definite. Then

η̂∗it = logit(p̂∗it) = log(
yit

n∗it − yit
) .

and so the maximum likelihood estimates α̂∗1, α̂∗2, β̂∗ and δ̂∗ are given by

α̂∗1 = logit(p̂∗10),

α̂∗2 = logit(p̂∗20),

β̂∗ = logit(p̂∗11)− logit(p̂∗10)

δ̂∗ = logit(p̂∗21)− logit(p̂∗20)− (logit(p̂∗11)− logit(p̂∗10)) .

(5.18)

In this toy example we have estimated the parameter vector θ∗ using a composition

bijection property, where there are four observed data points and all these points

are used to estimate the four unknown parameters. However, it is not necessary the

case for more complex model, as we see in the following example.

Example 2 Let i ∈ {1, 2, 3} such that the second spatial unit receives the new ad-

vertising campaign at the second time period, then η∗ =
[
η∗10 η∗11 η∗20 η∗21 η∗30 η∗31

]T
,

such that
η∗10 = α∗1

η∗20 = α∗2

η∗30 = α∗3

η∗11 = α∗1 + β∗

η∗21 = α∗2 + β∗ + δ∗

η∗31 = α∗3 + β∗

The log likelihood is given by

l = η∗10y10 − n∗10 log(1 + exp(η∗10)) + η∗11y11 − n∗11 log(1 + exp(η∗11))

+ η∗20y20 − n∗20 log(1 + exp(η∗20)) + η∗21y21 − n∗21 log(1 + exp(η∗21))

+ η∗30y30 − n∗30 log(1 + exp(η∗30)) + η∗31y31 − n∗31 log(1 + exp(η∗31))

or equivalently,

l = α∗1y10 − n∗10 log(1 + exp(α∗1)) + (α∗1 + β∗)y11 − n∗11 log(1 + exp(α∗1 + β∗))

+ α∗2y20 − n∗20 log(1 + exp(α∗2)) + (α∗2 + β∗ + δ∗)y21 − n∗21 log(1 + exp(α∗2 + β∗ + δ∗))

+ α∗3y30 − n∗30 log(1 + exp(α∗3)) + (α∗3 + β∗ + δ∗)y31 − n∗31 log(1 + exp(α∗3 + β∗ + δ∗)) .



5.4. Asymptotic Behaviour of Toy Model 98

The first partial derivatives of the log-likelihood with respect to each parameter in

η∗ are listed below,

∂l

α∗i
=

1∑
t=0

yi0 − n∗i0
exp(η∗i0)

1 + exp(η∗i0)
, for i = 1, 2, 3

∂l

β∗
=

3∑
i=0

yi1 − n∗i1
exp(η∗i1)

1 + exp(η∗i1)
,

∂l

δ∗
= y21 − n∗21

exp(η∗21)

1 + exp(η∗21)
.

(5.19)

By equating each of these equations to zero form a nonlinear system that has no

analytical or closed form solution. For this model, deriving the score function in

term of η∗ is not a one-to-one function because we have six observed values and five

parameters.

The score vector delivers a system of nonlinear equations in αi, β and δ, that require

special methods to find their corresponding solution. Indeed this would be the case

if we consider more observed values, i.e. spatial units i > 3. These methods are

iterative and have been built into available statistics software such as R. Iterative

weighted least squares is one of the most common iterative method that are used

to obtain the maximum likelihood estimates. In this research we do not need to be

concerned about the algorithms of these iterative methods but the interested reader

may see the text by (McCullagh and Nelder 1989) for a general description of the

algorithms used in fitting generalized linear models.

Generally, for a large sample study, the maximum likelihood estimate θ̂∗ has no

exact theoretical form which makes the theoretical asymptotic behaviour study of

estimates difficult.

5.4 Asymptotic Behaviour of Toy Model
The toy model is the model that fits data for two spatial units i ∈ {1, 2} where each

has two strata K = 2. Without strata, yit has a probability distribution given in

the applied probability structure (5.1). Given K = 2, the truth structure of yit is

yit =
2∑
k

yikt where yikt has a probability distribution given in the truth probability

structure (5.2).
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The applied toy model is given by

logit(p∗it) = η∗it = α∗i + β∗t+ δ∗Cit, (5.20)

and the truth toy model is given by

logit(pikt) = ηikt = αi + γk + βt+ δCit . (5.21)

The applied toy model has been discussed in Example 1. The maximum likelihood

estimates of the applied parameters α̂∗1, α̂∗2, β̂∗ and δ̂∗ are found in (5.18). The ques-

tion then becomes how these estimates behave in the applied model when the truth

generates purchases yit. Provided that the maximum likelihood mechanism involves

the model to be correctly specified, the behaviour of these estimates are studied

under two model structures: the applied structure and the truth structure.

5.4.1 Behaviour of the Estimates Under Correct

Specification of the Applied Toy Model:

Assume that the applied probability structure (5.1) of yit is correctly specified. Its

expected value and its variance are then given by

E[Yit] = n∗itp
∗
it, Var[Yit] = n∗itp

∗
it(1− p∗it),

and so the mean and the variance of p̂it are

µp̂∗it = E[p̂∗it] = E
[Yit
n∗it

]
=

E[Yit]

n∗it
=
n∗itp

∗
it

n∗it
= p∗it,

σ2
p̂∗it

= Var[p̂∗it] = Var
[Yit
n∗it

]
=
n∗itp

∗
it(1− p∗it)
n∗it

2 =
p∗it(1− p∗it)

n∗it
.

If n∗it is large enough, then the distribution of p̂∗it is approximately Normal such

that

p̂∗it ∼ N(p∗it, p
∗
it(1− p∗it)/n∗it) .

Using the linear approximation of the p̂∗it around p∗it gives

p̂∗it ≈ p∗it + zit ·

√
p∗it(1− p∗it)

n∗it
,
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where zit ∼ N(0, 1). Using first-order expansion of logit(p̂∗it) around p∗it gives

logit(p̂∗it) ≈ logit(p∗it) + zit ·

√
p∗it(1− p∗it)

n∗it
· ∂ logit(p∗it)

∂p∗it
,

where

∂ logit(p∗it)

∂p∗it
=

1

p∗it(1− p∗it)
,

this gives

logit(p̂∗it) ≈ logit(p∗it) + zit ·

√
1

n∗itp
∗
it(1− p∗it)

.

Then the linear approximation of α̂∗1 is

α̂∗1 = logit(p̂∗10) ≈ logit(p∗10) + z ·

√
1

n∗10p
∗
10(1− p∗10)

.

Define α∗1 = logit(p∗10), then linear approximation of α̂∗1 is given by

α̂∗1 ≈ α∗1 + z10 ·

√
1

n∗10p
∗
10(1− p∗10)

.

Similarly define

α∗2 = logit(p∗20)

β∗ = logit(p∗11)− logit(p∗10)

δ∗ = logit(p∗21)− logit(p∗20)− (logit(p∗11)− logit(p∗10)) .

The linear approximation of α̂∗2 is given by

α̂∗2 = logit(p̂∗20) ≈ α∗2 + z20 ·

√
1

n∗20p
∗
20(1− p∗20)

.

The linear approximation of β̂∗

β̂∗ = logit(p̂∗11)− logit(p̂∗10) ≈ β∗ + z11 ·

√
1

n∗11p
∗
11(1− p∗11)

+ z10 ·

√
1

n∗10p
∗
10(1− p∗10)

≈ β∗ + z ·

√
1

n∗11p
∗
11(1− p∗11)

+
1

n∗10p
∗
10(1− p∗10)

,
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where z is a standard normal value. Similarly, the linear approximation of δ̂∗

δ̂∗ = logit(p̂∗21)− logit(p̂∗20)− (logit(p̂∗11)− logit(p̂∗10))

≈ δ∗ + z ·

√√√√ 2∑
i=1

1∑
t=0

1

n∗itp
∗
it(1− p∗it)

.

In fact α̂∗1 and β̂∗ share a component of variation of logit(p∗10) which makes them

negatively correlated. Also, δ̂∗ shares one or more components of variation with each

of the other parameters and so will be correlated with all of them. The variance-

covariance matrix for (α̂1
∗, α̂2

∗, β̂∗, δ̂∗) is

Cov(θ̂∗) =


1

n∗10p
∗
10(1−p∗10)

0 − 1
n∗10p

∗
10(1−p∗10)

1
n∗10p

∗
10(1−p∗10)

1
n∗20p

∗
20(1−p∗20)

0 − 1
n∗20p

∗
20(1−p∗20)

1
n∗11p

∗
11(1−p∗11)

+ 1
n∗10p

∗
10(1−p∗10)

− 1
n∗11p

∗
11(1−p∗11)

+ 1
n∗10p

∗
10(1−p∗10)∑2

i=1

∑1
t=0

1
n∗itp

∗
it(1−p∗it)

 .

5.4.2 Behaviour of the Estimates Under Wrong

Specification of the Applied Toy Model:

Assume that the applied model (5.20) does not include the true structure of yit, then

the question is how this would affect the behaviour of the estimates α̂∗1, α̂∗2, β̂∗ and

δ̂∗. Consider the true probability structure (5.2), then yit = yi1t + yi2t, where yit is

a sum of two non-identically distributed, independent Binomial random variables,

each with probability Binomial function, say g1(yi1t) and g2(yi2t), respectively. The

convolution of g1(yi1t) and g2(yi2t) is the probability function g(yit) = g1(yi1t)·g2(yi2t)

such that

g(yit = j) =
∑
r

g1(yi1t = r) · g2(yi2t = j − r)

where j is an arbitrary value in [0, ni1t + ni2t]. This is equivalent to find the sum of

all pairwise disjoint events of yi1t = j and yi2t = j − r,

P[yit = j] =

min(j,ni1t)∑
r=max(0,j−ni2t)

P[yi1t = r ∩ yi2t = j − r]

=

min(j,ni1t)∑
r=max(0,j−ni2t)

(
ni1t
r

)(
ni2t
j − r

)
pri1t(1− pi1t)ni1t−rp

j−r
i2t (1− pi2t)ni2t−j+r .

(5.22)
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This distribution is cumbersome to find and difficult to compute. A number of

studies have proposed approximation methods to compute the convolution of inde-

pendent Binomial variables (Johnson et al. 2005; Jolayemi 1992; Eisinga et al. 2013).

An example of these method is the saddlepoint approximation which was explored

by (Daniels 1954) to approximate the probability distribution of variables whose

exact distribution cannot be conveniently obtained. Eisinga et al. 2013 examined

the saddlepoint approximation for non-identically distributed, independent Binomial

variables. The implementation of the saddlepoint approximation of the distribution

of the sum of non-identically distributed, independent Binomials in R was addressed

by (Liu and Quertermous 2017) in the open source package called sinib. For the

moment we need not to be concerned about the details of this method or its com-

putation. Alternatively, we could assume nit and nikt are very large and work with

the asymptotic distribution of yit. The asymptotic distribution of yit = yi1t + yi2t

is

Yit ∼ N(
2∑

k=1

niktpikt,
2∑

k=1

niktpikt(1− pikt)),

because by CLT,
∑2

k=1 yikt converges to a Normal distribution such that

E
[ 2∑
k=1

Yikt

]
=

2∑
k=1

E[Yikt ] =
2∑

k=1

niktpikt,

Var
[ 2∑
k=1

Yikt

]
=

2∑
k=1

Var[Yikt ] =
2∑

k=1

niktpikt(1− pikt) .

The estimate of the probability of the purchasing, p̂∗it under the applied mode is

p̂∗it =
Yit
n∗it

=
1

n∗it

2∑
k=1

Yikt .

The estimator p̂∗it is then Normally distributed with mean µp̂∗it and variance σ2
p̂∗it

such

that

µp̂∗it = E
[ 1

n∗it

2∑
k=1

Yikt

]
=

1

n∗it

2∑
k=1

E[Yikt ] =
1

n∗it

2∑
k=1

niktpikt,

σ2
p̂∗it

= Var
[ 1

n∗it

2∑
k=1

yikt

]
=

1

n∗it
2

2∑
k=1

Var[ yikt ] =
1

n∗it
2

2∑
k=1

niktpikt(1− pikt) .
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Define the total probability of purchasing p∗it as

p∗it =
2∑

k=1

niktpikt
n∗it

(5.23)

or equivalently,
2∑

k=1

niktpikt = n∗itp
∗
it,

This gives

µp̂∗it =
1

n∗it

2∑
k=1

niktpikt =
nitp

∗
it

n∗it
= p∗it,

σp̂∗it =
1

n∗it
2

2∑
k=1

niktpikt(1− pikt) =
1

n∗it
2

2∑
k=1

niktpikt −
1

n2
it

2∑
k=1

niktp
2
ikt =

p∗it
n∗it
− 1

n∗it
2

2∑
k=1

niktp
2
ikt .

The asymptotic distribution of p̂∗it is then given by

p̂∗it ∼ N(p∗it,
p∗it
n∗it
− 1

n∗it
2

2∑
k=1

niktp
2
ikt),

and so the linear approximation of p̂∗it around the mean p∗it

p̂it∗ ≈ pit∗+ zit ·

√√√√pit∗
n∗it
− 1

n∗it
2

2∑
k=1

niktp2
ikt,

and using first-order expansion of logit(p̂∗it) around logit(p∗it) gives

logit(p̂∗it) ≈ logit(p∗it) + zit ·

√√√√p∗it
n∗it
− 1

n∗it
2

2∑
k=1

niktp2
ikt ·

1

p∗it(1− p∗it)

= logit(p∗it) + zit ·

√
n∗itp

∗
it −

∑2
k=1 niktp

2
ikt

n∗it
2p∗it

2(1− p∗it)
2

.

Given p∗it in (5.23) we can express α∗1, α∗2, β∗ and δ∗ in term of pikt. Then use model

(5.21) to express them in terms of αi + γk, β and δ. So we have

α∗1 = logit(p∗10) = logit(
1

n∗10

2∑
k=1

n1k0p1k0),

α∗2 = logit(p∗20) = logit(
1

n∗20

2∑
k=1

n2k0p2k0),

β∗ = logit(p∗11)− logit(p∗10) = logit(
1

n∗11

2∑
k=1

n1k1p1k1)− logit(
1

n∗10

2∑
k=1

n1k0p1k0),

δ∗ = logit(p∗21)− logit(p∗20)− β∗ = logit(
1

n∗21

2∑
k=1

n2k1p2k1)− logit(
1

n∗20

2∑
k=1

n2k0p2k0)− β∗ .
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From model (5.21), we have

logit(pik0) = αi + γk and pik0 =
exp(αi + γk)

1 + exp(αi + γk)
,

logit(p1k1) = α1 + γk + β and p1k1 =
exp(α1 + γk + β)

1 + exp(α1 + γk + β)
,

logit(p2k1) = α2 + γk + β + δ and p2k1 =
exp(α1 + γk + β + δ)

1 + exp(α1 + γk + β + δ)
.

Hence, under a wrong specification of the applied model, the linear approximation

of the estimates α̂∗1, α̂∗2, β̂∗ and δ̂∗ can be expressed as

α̂∗i ≈ logit(p∗i0) + zi0 ·

√
n∗i0p

∗
i0 −

∑2
k=1 nik0p2

ik0

n∗i0
2p∗i0

2(1− p∗i0)2

= logit(
1

n∗i0

2∑
k=1

nik0pik0) + zi0 ·

√√√√ n∗i0( 1
n∗i0

∑2
k=1 nik0pik0)−

∑2
k=1 nik0p2

ik0

n∗i0
2( 1
n∗i0

∑2
k=1 nik0pik0)

2
(1− ( 1

n∗i0

∑2
k=1 nik0pik0))2

= logit(
1

n∗i0

2∑
k=1

nik0pik0) + zi0 ·
n∗i0 ·

√∑2
k=1 nik0pik0(1− pik0)∑2

k=1 nik0pik0(n∗i0 −
∑2

k=1 nik0pik0)

= α∗i + zi0 · Se(α̂∗i ),

where

α∗i = logit

(
1

n∗i0

2∑
k=1

nik0 ·
exp(αi + γk)

1 + exp(αi + γk)

)
.

and

Se(α̂∗i ) =

n∗i0 ·
√∑2

k=1 nik0 · exp(αi+γk)
1+exp(αi)+γk

(
1− exp(αi+γk)

1+exp(αi+γk)

)
∑2

k=1 nik0
exp(αi+γk)

1+exp(αi+γk)

(
n∗i0 −

∑2
k=1 nik0

exp(αi+γk)
1+exp(αi+γk)

)
Similarly define

β∗ = logit

(
1

n∗11

2∑
k=1

n1k1 ·
eα1+γk+β

1 + eα1+γk+β

)
− logit

(
1

n∗10

2∑
k=1

n1k0 ·
eα1+γk

1 + eα1+γk

)
,

δ∗ = logit

(
1

n∗21

2∑
k=1

n2k1 ·
eα2+γk+β+δ

1 + eα2+γk+β+δ

)
− logit

(
1

n∗20

2∑
k=1

n2k0 ·
eα2+γk

1 + eα2+γk

)
− β̂∗,
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then,

β̂∗ ≈ β∗ + z · Se(β̂∗)

δ̂∗ ≈ δ∗ − β̂∗ + z · Se(δ̂∗),

such that

Se(β̂∗) =

√√√√ ∑2
k=1 n1k1· e

α1+γk+β

1+eα1+γk+β

(
1− eα1+γk+β

1+eα1+γk+β

)
(∑2

k=1 n1k1
eα1+γk+β

1+eα1+γk+β

)2(
1− 1

n∗11

∑2
k=1 n1k1

eα1+γk+β

1+eα1+γk+β

)2 +

∑2
k=1 n1k0· e

α1+γk

1+eα1+γk

(
1− eα1+γk

1+eα1+γk

)
(∑2

k=1 n1k0
eα1+γk

1+eα1+γk

)2
(

1− 1
n∗10

∑2
k=1 n1k0

eα1+γk

1+eα1+γk

)2 ,

Se(δ̂∗) =

√√√√ ∑2
k=1 n2k1· e

α2+γk+β+δ

1+eα2+γk+β+δ

(
1− eα2+γk+β+δ

1+eα2+γk+β+δ

)
(∑2

k=1 n2k1
eα2+γk+β+δ

1+eα2+γk+β+δ

)2(
1− 1

n∗21

∑2
k=1 n2k1

eα1+γk+β+δ

1+eα1+γk+β+δ

)2 +

∑2
k=1 n2k0· e

α2+γk

1+eα2+γk

(
1− eα2+γk

1+eα2+γk

)
(∑2

k=1 n2k0
eα2+γk

1+eα2+γk

)2
(

1− 1
n∗20

∑2
k=1 n2k0

eα2+γk

1+eα2+γk

)2 .

The theoretical behaviour of the estimators in this example is complicated to in-

terpret. So far, the asymptotic Normality distribution of yit has been considered

to permit a smooth study of the theoretical behaviour of the estimators. The ex-

act distribution of yit, which is a sum of non-identically distributed, independent

Binomials, is not workable at the moment. An alternative method for making the-

oretical asymptotic behaviour of maximum likelihood estimates perceptible is by

using the asymptotic results of the estimates under misspecification, which were ob-

tained by White and reviewed by Chow. But before moving on to employ White’s

results, it is necessary to find the nearest parameters to the truth, the parameter

vector that minimises the KL-divergence function between the applied model and

the truth.

5.4.3 Distance Between Applied Model and the Truth

Consider the truth model probability structure (5.2) and the applied model prob-

ability structure (5.1). Let g denotes the truth probability function and f denotes

the applied probability function. For each yit in g, the distance between the applied

structure and the truth is

DKL(g(yit)‖f(yit)) = Eg

[
log

g(yit)

f(yit)

]
.
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On the basis on the independence property of data values yit, the KL-divergence is

given by

DKL(g‖f) = Eg

[
log

∏
i,t g(yit)∏
i,t f(yit)

]
=
∑
i,t

Eg

[
log

g(yit)

f(yit)

]
=
∑
i,t

DKL(g(yit)‖f(yit)) .

(5.24)

For the moment, we seek for simplicity, so in what follows, we drop the i, t subscript

and work with DKL(g‖f). The structure of yit is diminished to y with truth g given

by

Y =
K∑
k=1

Yk where Yk ∼ Bin(nk, pk), (5.25)

and applied model probability structure f given by

Y ∼ Bin(n∗, p∗) (5.26)

Using K = 2, then for y in g, the truth distribution of a sum of two non-identically

distributed, independent Binomials has been discussed above in (5.22) and was

concluded it is difficult to derive. Therefore the derivation of the KL-divergence in

this case is complex. Alternatively, we can assume nk is large, then the distribution

of each yk in g approaches Normal such that

Yk ∼ N(nkpk, nkpk(1− pk)),

and so the distribution of y in g is a sum of two non-identically distributed, inde-

pendent normals, y =
∑2

k=1 yk, which is given by

Y ∼ N(
2∑

k=1

nkpk,
∑

k
nkpk(1− pk)) . (5.27)

Given that n∗ =
∑2

k=1 nk, then the applied structure approaches Normal as well,

such that

Y ∼ N(n∗p∗, n∗p∗(1− p∗)) . (5.28)

To compute the KL-divergence for y in g, we need first to get the log g(y) and

log f(y). Given that µg =
∑2

k=1 nkpk and σ2
g =

∑2
k=1 nkpk(1 − pk), the log g(y) is

given by

log g(y) = log
( 1√

2π
· 1

σg
· exp

(
− (y − µg)2

2σ2
g

))
= log

1√
2π
− log σg −

(y − µg)2

2σ2
g

,
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and given that µf = n∗p∗ and σ2
g = n∗p∗(1− p∗), the log f(y) is given by

log f(y) = log
( 1√

2π
· 1

σf
· exp

(
− (y − µf )2

2σ2
f

))
= log

1√
2π
− log σf −

(y − µf )2

2σ2
f

,

and so

log
g(y)

f(y)
= log(g(y))− log(f(y))

= log(
1√
2π
· 1

σg
· exp(−(y − µg)2

2σ2
g

)− log(
1√
2π
· 1

σf
· exp(−(y − µf )2

2σ2
f

)

= log(
1

σg
)− log(

1

σf
)− (y − µg)2

2σ2
g

+
(y − µf )2

2σ2
f

= log(
σf
σg

)− (y − µg)2

2σ2
g

+
(y − µf )2

2σ2
f

.

For y in g, the KL-divergence is then

DKL(g‖f) = Eg

[
log

g(y)

f(y)

]
= Eg

[
log(

σf
σg

)− (y − µg)2

2σ2
g

+
(y − µf )2

2σ2
f

]
= log(

σf
σg

)− Eg[(y − µg)2]

2σ2
g

+
Eg[(y − µf )2]

2σ2
f

= log(
σf
σg

)− Eg[(y − µg)2]

2σ2
g

+
Eg[(y − µg)2] + (µg − µf )2 + 2(µg − µf )Eg[(y − µg)]

2σ2
f

= log(
σf
σg

)−
σ2
g

2σ2
g

+
σ2
g + (µg − µf )2

2σ2
f

= log(
σf
σg

) +
σ2
g + (µg − µf )2

2σ2
f

− 1

2
.

(5.29)

This means the applied structure f of y diverges from the truth g by log(
σf
σg

) +
σ2
g+(µg−µf )2

2σ2
f

− 1
2
. The KL-divergence here is a function of µf , σf , µg, and σg or in

particular, of n1, n2, p1, p2 and p∗. The best value to use for p∗ in the applied

structure to provide a closest structure to the truth is the one that minimises the

KL-divergence DKL(g‖f). Let p̃∗ be the value that minimises the KL-divergence,

which can be derived by differentiating DKL(g(y)‖f(y)) with respect to p∗. Provided

the mean µf and the variance σ2
f in term of p∗, then DKL(g‖f) in (5.29) is given

as

DKL(g‖f) = log
√
n∗p∗(1− p∗)− log σg +

σ2
g + (µg − n∗p∗)2

2np∗(1− p∗)
− 1

2
.
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By differentiating DKL(g(y)‖f(y)) with respect to p∗, we get

∂DKL

∂p∗
=
n∗(1− p∗)− n∗p∗

2n∗p∗(1− p∗)
+
−4n∗2p∗(1− p∗)(µg − n∗p∗)− [σ2

g + (µg − n∗p∗)2][2n∗(1− p∗)− 2n∗p∗]

(2n∗p∗(1− p∗))2

=
n∗ − 2np∗

2n∗p∗(1− p∗)
+

(−4n∗2p∗ + 4n∗2p∗2)(µg − n∗p∗)− [σ2
g + (µg − n∗p∗)2](2n∗ − 4np∗)

(2n∗p∗(1− p∗))2

=

(n∗ − 2n∗p∗)[2n∗p∗(1− p∗)]− 4n∗2µgp
∗ + 4n∗3p∗2 + 4n∗2µgp

∗2 − 4n∗3p∗3

− 2n∗σ2
g + 4n∗p∗σ2

g − 2n∗(µg − n∗p∗)2 + 4n∗p∗(µg − n∗p∗)2

(2n∗p∗(1− p∗))2

=

2n∗2p∗ − 2n∗2p∗2 − 4n∗2p∗2 + 4n∗2p∗3 − 4n∗2µgp
∗ + 4n∗3p∗2 + 4n∗2µgp

∗2 − 4n∗3p∗3

− 2n∗σ2 + 4n∗σ2p∗ − 2∗nµ2
g + 4n∗2µgp∗ − 2n∗3p∗2 + 4n∗µ2

gp
∗ − 8n∗2µgp∗2 + 4n∗3p∗3

(2n∗p∗(1− p∗))2

=
4n∗2p∗3 − 6n∗2p∗2 + 2n∗3p∗2 − 4n∗2µgp

∗2 + 2n∗2p∗ + 4n∗σ2
gp
∗ + 4n∗µ2

gp
∗ − 2n∗(σ2

g + µ2
g)

4n∗2p∗2(1− p∗)2

=
2n∗p∗3 − 3n∗p∗2 + n∗2p∗2 − 2n∗µgp

∗2 + n∗p∗ + 2σ2
gp
∗ + 2µ2

gp
∗ − (σ2

g + µ2
g)

2n∗p∗2(1− p∗)2

=
2n∗p∗3 + (−3n∗ + n∗2 − 2n∗µg)p

∗2 + (n∗p∗ + 2σ2
g + 2µ2

g)− (σ2
g + µ2

g)

2n∗p∗2(1− p∗)2
.

To find p̃∗, the best value for p∗, we set ∂DKL
∂p∗

equals to zero, which gives

2n∗p∗3 + (−3n∗ + n∗2 − 2n∗µg)p
∗2 + (n∗p+ 2σ2

g + 2µ2
g)− (σ2

g + µ2
g) = 0 .

Finding the roots of this cubic equation is not straightforward, but approximations of

the roots can be found numerically through root-finding algorithms such as Newton’s

method. However, we will not consider numerical approximations of the roots.

Considering the KL-divergence function (5.29), then the applied structure includes

the truth if the KL-divergence DKL(g‖f) converges to zero. For this example the

KL-divergence is minimised to zero by taking µf = µg and σf = σg. More spe-

cifically, the KL-divergence is minimised to zero, i.e. DKL(g‖f) = 0 if and only if

p1 = p2 = p∗, by taking into consideration the assumption that n1, n2 and n∗ are
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large enough. Figure 5.2 could elucidate that the KL-divergence meets zero when

p1 = p2 = p∗, considering that n1 = n2. This asymptotic result can be readily seen

on the figure when n1 and n2 are very large.

Figure 5.2: (DKL(g‖f))0.5 = 0 at p1 = p2 = p∗
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But when p1 6= p2, the KL-divergence is expected to deviate from zero especially if

n1 and n2 are large enough. Consider the example presented in Figure 5.3b, given

that n1 = n2 = 1000, the value of DKL(g‖f) diverges from zero distinctly when

p1 = 0.2 and p2 ∈ {0.4, 0.6, 0.8}. However, it appears that for n1 = n2 the best

value of p∗ that produces almost a zero value of the KL-divergence is p̃∗ = 1
2
(p1 +p2)

as presented in Figure 5.3.

The below numerical patterns, however, do not support the idea of studying the

theoretical asymptotic behaviour of the estimates. Additionally, by working on the

assumption of the asymptotic Normal distribution, we deviate from the original

structure of the truth which is a summation of k independent, non-identically dis-

tributed Binomial groups. The assumption of asymptotic normality distribution has

been used to unify the structure for both truth and the applied models, to make no

sharp projection in the KL-divergence computation. There is, therefore, a definite

need of computing the KL-divergence with retain possession of the truth structure.

We answer this need by proposing a proxy structure of the applied model, that

implicates the truth. The main concept of the proxy structure is to bind applied

structure to the truth, which thence permits computing the KL-divergence with no

failure in addressing the truth.
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(a)

(b)

Figure 5.3: DKL(g‖f) = 0 at p̃∗ = 1
2 (p1 + p2)
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5.5 Proxy Structure

One possible way to think of the applied model probability structure (5.1) is that Yit

is a sum of independent, non-identically distributed Binomials over k strata, such

that

Yit =
∑
k

Yikt, where Yikt ∼ Bin(nikt, p
†
ikt), (5.30)

where each p†ikt = p∗it and
∑

k nikt = n∗it. By comparing this structure to the truth

(5.2), the probability of purchasing here is identical between the strata, i.e. p†ikt = p∗it.

This new proposed structure of the applied model is considered as a proxy for the

applied structure. To retain the applied structure, the term proxy structure will be

used to refer to the probability structure (5.30).

The probability p†ikt of purchasing is modelled in a similar basis of the applied but

with consideration of the truth structure, i.e.

logit(p†ikt = p∗it) = η†ikt = α∗i + β∗t+ δ∗Cit =
∑

j
xiktjhjθ

∗
j , so that η† = XHθ∗ .

(5.31)

Where X consists of k matrices X(k=1), X(k=2), . . . , X(k=K) piled on top of each other

and H is a transformation matrix that maps the structure of θ∗ to the structure of

θ. Also X(k)H is the same for any k ∈ K so that X(k)H = X∗ and η† is a vector

consisting of k vectors η†
(k)

piled on top of each other, so that η†
(k)

= η∗ for all k.

An illustration of the breakdown of Yit using three structures: the truth, the proxy

and the applied, are provided in Figure 5.4.

To illustrate the proxy structure, consider the following toy example.

Example 3 For the toy models, the applied model η∗ (5.20) is given by

η∗ = X∗θ∗ =


1 0 0 0

1 0 1 0

0 1 0 0

0 1 1 1




α∗1

α∗2

β∗

δ∗

 ,
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∑
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∑
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Figure 5.4: An illustration of the breakdown of Yit, using applied, proxy and truth probability

structure. The applied structure is characterised by nit and p∗it, the proxy structure is characterised

by nikt and p∗it and the truth structure is characterised by nikt and pikt

and the truth η (5.21) is

η = Xθ =



1 0 1 0 0 0

1 0 1 0 1 0

0 1 1 0 0 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 0 1 1 0

0 1 0 1 0 0

0 1 0 1 1 1





α1

α2

γ1

γ2

β

δ


,

We can think of X as a set of two matrices X(k=1) and X(k=2). To illustrate the breakdown

of the proxy model we need to set a matrix H. Consider
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H =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


then, Hθ∗ =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




α∗1

α∗2

β∗

δ∗

 =



α∗1

α∗2

0

0

β∗

δ∗


.

Thus, the breakdown of η† is

XHθ∗ =



1 0 1 0 0 0

1 0 1 0 1 0

0 1 1 0 0 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 0 1 1 0

0 1 0 1 0 0

0 1 0 1 1 1





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




α∗1

α∗2

β∗

δ∗

 ,

such that

X(k=1)H =


1 0 1 0 0 0

1 0 1 0 1 0

0 1 1 0 0 0

0 1 1 0 1 1





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


=


1 0 0 0

1 0 1 0

0 1 0 0

0 1 1 1

 = X∗,

and

X(k=2)H =


1 0 0 1 0 0

1 0 0 1 1 0

0 1 0 1 0 0

0 1 0 1 1 1





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


=


1 0 0 0

1 0 1 0

0 1 0 0

0 1 1 1

 = X∗ .
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X(k=1)H = X(k=2)H = X∗, because matrix H will always include k zero rows, that cancel

a non-zero kth column in each X(k). Therefore,

XHθ∗ =

 X(k=1)H

X(k=2)H

 θ∗ =

 X∗θ∗

X∗θ∗

 .

By drawing on the structure of toy proxy model, we can see that the proxy probability

structure η† is a vector of two applied probability structures [η†
(1)

η†
(2)

]T , where η†
(1)

=

η†
(2)

= η∗.

Example 4 Given the true purchase model (4.12) for i ∈ {1, 2, . . . , I} and k ∈ {1, 2, . . . ,K},

and the applied purchase model (4.9), the H matrix is then given by



1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 0 0

0 0 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 0 0 0

0 0 . . . 0 1 0

0 0 . . . 0 1 0
...

...
. . .

...
...

...

0 0 . . . 0 1 0

0 0 . . . 0 0 1

0 0 . . . 0 0 1
...

...
. . .

...
...

...

0 0 . . . 0 0 1



α1

α2

...

αI

γ1

γ2

...

γK

β1

β2

...

βK

δ1

δ2

...

δK

α1 α2 . . . αI β δ

H =
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5.5.1 Distance Between the Proxy model and Truth

Let yit be in the truth probability structure g, then the distance of the proxy probability

structure f from the truth g is given by

DKL(g‖f) = Eg

[
log

g(yit)

f(yit)

]
= Eg

[
log

∏
i,k,t g(yikt)∏
i,k,t f(yikt)

]
=
∑
i,k,t

Eg

[
log

g(yikt)

f(yikt)

]
=
∑
i,k,t

DKL(g(yikt)‖f(yikt)) .

(5.32)

This form of DKL(g‖f) is a general form of the one that has been presented in (5.24),

where DKL(g(yikt)‖f(yikt)) for yikt in g is given by

DKL(g(yikt)‖f(yikt)) = Eg[log g(yikt)− log f(yikt)]

= Eg

[
log(pyiktikt (1− pikt)nikt−yikt − log(p∗it

yikt(1− p∗it)nikt−yikt
]

= Eg[yikt] log
pikt

1− pikt
+ nikt log(1− pikt)

− Eg[yikt] log
p∗it

1− p∗it
− nikt log(1− p∗it)

= niktpikt log
pikt

1− pikt
+ nikt log(1− pikt)

− niktpikt log
p∗it

1− p∗it
− nikt log(1− p∗it),

and hence,

DKL(g‖f) =
∑

i,k,t

[
niktpikt log

pikt
1− pikt

+ nikt log(1− pikt)

− niktpikt log
p∗it

1− p∗it
− nikt log(1− p∗it)

]
.

(5.33)

Using matrix notation of the proxy model, then

DKL(g‖f) =
∑

i,k,t

[
niktpikt

∑
j
xiktjθj − nikt log

(
1 + exp

(∑
j
xiktjθj

))
− niktpikt

∑
j
xiktjhjθ

∗
j + nikt log

(
1 + exp

(∑
j
xiktjhjθ

∗
j

))]
.

(5.34)

By taking the first derivative of the KL-divergence DKL(g‖f) with respect to θ∗j , we

get

∂DKL

∂θ∗j
=
∑
i,k,t

[
− niktpiktxiktjhj + nikt

(
1 + exp

(∑
j
xiktjhjθ

∗
j

))−1
xiktjhj

]
. (5.35)

Given that θ̃∗ is the parameter vector that minimises the KL-divergence. Then θ̃∗ is the

best parameter vector to use in the proxy or applied models for θ∗ to provide the closest

model to the truth. Again, there is no need to solve equation (5.35) analytically to find
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θ̃∗. A numerical optimisation procedure will be used to approximate θ̃∗ for real cases.

However, we can derive the best estimate of θ∗ when a toy model is applied as illustrated

in the example below.

Example 5 Consider the truth structure g in (5.2) and the the proxy structure f in

(5.30) of yit for i ∈ {1, 2}, k ∈ {1, 2} and t ∈ {0, 1}. Let yit in g, then by using expression

(5.33), DKL(g‖f) can be written as

DKL(g‖f) =
∑

i,k,t

[
niktpikt log pikt + nikt log(1− pikt)− niktpikt log(1− pikt)

− niktpikt log p∗it − nikt log(1− p∗it) + niktpikt(1− p∗it)
]
.

Using the fact that η† = X(k)Hθ∗j = X∗θ∗ = η∗ for any k, then
∑

j xiktjhjθ
∗
j =

∑
j x
∗
itjθ
∗
j .

Provided that p∗it is a composite function of θ∗, then the derivative of DKL(g‖f) with

respect to θ∗ can be found using chain rule as

∂DKL

∂θ∗j
=
∑
i,t

∂DKL

∂p∗it

∂p∗it
∂η∗it

· ∂η
∗
it

∂θ∗j
.

For this toy model, we have seen in Example 1 there is a bijection transformations (U ◦

T )(θ∗), thereby

∂DKL

∂θ∗j
= 0⇐⇒ ∂DKL

∂p∗it
= 0 .

By differentiating DKL(g‖f) with respect to p∗it, we get

∂DKL

∂p∗it
=
∑

k

−niktpikt
p∗it

+
nikt − niktpikt

1− p∗it

=
∑

k

−niktpikt + niktp
∗
it

p∗it(1− p∗it)
,

to find p̃∗it, which is the best value to use of p∗it in the applied model, we need to set this

derivative equals zero, i.e.

p̃∗it =

∑
k niktpikt∑
k nikt

=
1

n∗it

∑
k
niktpikt,

because
∑

k nikt = n∗it. Since η∗it = logit(p∗it), then the best parameter vector θ̃∗ of θ∗ is

α̃∗1 = η̃∗10

α̃∗2 = η̃∗20

β̃∗ = α̃∗1 − η̃∗11

δ̃∗ = α̃2
∗ + β̃∗ − η̃∗21

The small scale of this toy model has been discussed in section 5.4.3. Given its truth

structure (5.25) and applied structure (5.26), the best parameter p̃∗ to use for p∗ is then
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given by

p̃∗ =
n1p1 + n2p2

n∗
, (5.36)

and when n1 = n2 then p̃∗ = 1
2(p1 + p2) which is in agreement with the results illustrated

in Figure 5.3.

5.5.2 Likelihood Function of Proxy Structure

Consider the proxy probability structure (5.30), then the likelihood is

L =
∏
i,t

∏
k

f(yikt) ≡
∏
i,t

∏
k

p†ikt
yikt

(1− p†ikt)
nikt−yikt

=
∏
i,t

∏
k

p∗it
yikt(1− p∗it)

nikt−yikt

=
∏
i,t

∏
k

( p∗it
1− p∗it

)yikt
(1− p∗it)

nikt .

The log-likelihood is then

l =
∑

i,t

∑
k
yikt log

( p∗it
1− p∗it

)
+
∑

k
nikt log(1− p∗it)

=
∑

i,t
yit log

( p∗it
1− p∗it

)
+ n∗it log(1− p∗it)

=
∑

i,t
yit
(∑

j
xiktjhjθ

∗
j

)
− n∗it log

(
1 + e

∑
j xiktjhjθ

∗
j
)
.

Provided that
∑

j xiktjhj =
∑

j x
∗
itj for all k. Thus

l =
∑

i,t
yit
(∑

j
x∗itjθ

∗
j

)
− n∗it log

(
1 + e

∑
j x
∗
itj
θ∗j
)
.

This is exactly the log-likelihood (5.15) of the applied probability structure. Thus, we can

study the asymptotic distribution theory of the maximum likelihood estimate θ̂∗ using

either the proxy or the applied structures because their log-likelihood functions are the

same and so are their maximum likelihood estimators.

Example 6 Consider the applied structure (5.26) of the small scale of the toy model with

likelihood function

L(p∗, y) =

(
n∗

y

)
p∗y(1− p∗)n∗−y .

The a proxy structure is given by

Y ≡ Y1 + Y2 where Y1 ∼ Bin(n1, p
∗
1 = p∗) and Y2 ∼ Bin(n2, p

∗
1 = p∗),
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where n∗ = n1 + n2. The likelihood of the proxy structure is

L(p∗, (y1, y2)) =

(
n1

y1

)(
n2

y2

)
p∗y1+y2(1− p∗)n1−y1+n2−y2

=

(
n1

y1

)(
n2

y2

)
p∗y(1− p∗)n∗−y .

Therefore, L(p∗, (y1, y2)) ∝ L(p∗, y), and hence

arg max
p∗

L(p∗, (y1, y2)) ≡ arg max
p∗

L(p∗, y) .

As a result of this, the maximum likelihood estimator p∗ can be derived from either

structures: applied or proxy, and thence studying the asymptotic theoretical distribution

of the estimate p∗ will make no difference in using applied or proxy structure.

Consider the applied structure, the log-likelihood is

l ≡ y log p∗ + (n∗ − y) log(1− p∗) .

The score function is

∂l

∂p∗
=

y

p∗(1− p∗)
− n∗

1− p∗
=

y − n∗p∗

p∗(1− p∗)
,

and its derivative is

∂2l

∂p∗2
=
−y(1− 2p∗)

p∗2(1− p∗)2
− n∗

(1− p∗)2
=

y(2p∗ − 1)

p∗2(1− p∗)2
− n∗

(1− p∗)2
.

Let p̂∗ be the maximum likelihood estimator of p∗. Provided the consistency property (5.5)

of an estimate, then for large sample, p̂∗ converges to p̃∗ expressed in (5.36). Based on the

asymptotic normality results of the maximum likelihood estimates under misspecification,

presented in (5.12), the asymptotic theoretical distribution of p̂∗ is then given by

p̂∗
a.s∼ N(p̃∗,C(p̃∗)) .

By considering the truth structure (5.25) for K = 2 and p̃∗ (5.36), then

Eg[y] = n1p1 + n2p2 = n∗p̃∗ .

By using Chow definition of A(p̃∗) and B(p̃∗) in (5.10), we have

B(p̃∗) = Eg

[(
∂l

∂p∗

)2∣∣∣
p̃∗

]
=

Eg[(y − n∗p̃∗)2]

p̃∗2(1− p̃∗)2

=
n1p1(1− p1) + n2p2(1− p2)

p̃∗2(1− p̃∗)2

=
n1p1 + n2p2 − n1p

2
1 − n2p

2
2

p̃∗2(1− p̃∗)2
=
n∗p̃∗ − n1p

2
1 − n2p

2
2

p̃∗2(1− p̃∗)2
,
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and

A(p̃∗) = Eg

[
∂2l

∂p∗2

∣∣∣
p̃∗

]
= Eg

[
y(2p̃∗ − 1)

p̃∗2(1− p̃∗)2
− n∗

(1− p̃∗)2

]
=

Eg[y](2p̃∗ − 1)− n∗p̃∗2

p̃∗2(1− p̃∗)2

=
(n1p1 + n2p2)(2p̃∗ − 1)− n∗p̃∗2

p̃∗2(1− p̃∗)2

=
n∗p̃∗(2p̃∗ − 1)− n∗p̃∗2

p̃∗2(1− p̃∗)2
=
n∗p̃∗(p̃∗ − 1)

p̃∗2(1− p̃∗)2
=

−n∗

p̃∗(1− p̃∗)
.

Then we have

Var(p̂∗) = A−1(p̃∗)B(p̃∗)A−1(p̃∗) =
n∗p̃∗ − n1p

2
1 − n2p

2
2

n∗2
.

For correct specification of the proxy model or equivalently applied model, i.e. p1 = p2 =

p∗, the value of p̃∗ in (5.36) equals to p∗, which implies that

Var(p̂∗) = A−1(p̃∗)B(p̃∗)A−1(p̃∗) =
n∗p∗ − n∗p∗2

n2
=
p∗(1− p∗)

n∗
.

The present behaviour is closely related to the classical maximum likelihood asymptotic

normality results as mentioned in Theorem 2, where

Var(p̂∗) = E
[ ∂2l

∂p∗2

]
=
p∗(1− p∗)

n∗
= I−1(p∗) .

The following section will discuss the asymptotic distribution theory for a general applied

structure, for any i, k, where a clear benefit of a proxy structure in estimating the nearest

estimate to the truth is identified.

5.6 Asymptotic Behaviour of Estimates of

General Purchase Model
Consider the truth structure (5.2), the proxy structure (5.30) and the applied structure

(5.1). Given the log-likelihood (5.15) of the applied probability structure, the score func-

tion with respect to θ∗ is given by

∂l

∂θ∗j
=
∑
i,t

yitx
∗
itj − n

∗
itx
∗
itj

e
∑
j x
∗
itj
θ∗j

1 + e
∑
j x
∗
itj
θ∗j

=
∑
i,t

yitx
∗
itj − n

∗
itx
∗
itjp
∗
it, (5.37)

and the derivative of the score function is given by

∂2l

∂θ∗j∂θ
∗
j′

=
∑
i,t

−n∗itx∗itj
∂l

∂θj′

(
e
∑
j x
∗
itj
θ∗j

1 + e
∑
j x
∗
itj
θ∗j

)

= −
∑
i,t

n∗itx
∗
itj

e
∑
j x
∗
itj
θ∗j

(1 + e
∑
j x
∗
itj
θ∗j )2

x∗itj′ = −
∑
i,t

nitx
∗
itjp
∗
it(1− p∗it)x∗itj′ .

(5.38)
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Using the proxy structure (5.30), then the closest parameter θ̃∗ to the truth (5.2) can be

computed numerically. Given the large sample distribution theory presented in section

5.2.4, then θ̂∗ converges to θ̃∗. The asymptotic variance-covariance matrix (5.11) of the

estimates at θ̃∗ is then given by A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗), such that

[
B(θ̃∗)

]
jj′

= Covg

[
∂l

∂θ̃∗j
,
∂l

∂θ̃∗j′

]
.

Given above score function (5.37), which is a function of a random variable yit, in which

yit for different i and t are independent, then

Covg

[ ∂l
∂θ̃∗j

,
∂l

∂θ̃∗j′

]
= Covg

[∑
i,t

yitx
∗
itj ,
∑
i′,t′

yi′t′x
∗
i′t′j′

]
=
∑
i,t

∑
i′,t′

Covg[yitx
∗
itj , yi′t′x

∗
i′t′j′ ]

=
∑
i,t

∑
i′,t′

x∗itjCovg[yit, yi′t′ ]x
∗
i′t′j′ .

given that yit and yi′t′ are independent, then Covg[yit, yi′t′ ] = 0 unless i = i′ and t = t′.

Thus [
B(θ̃∗)

]
jj′

=
∑
i,t

xit
∗
jxit

∗
j′Varg[yit] =

∑
i,t

∑
k

x∗itjx
∗
itj′niktpikt(1− pikt) . (5.39)

The second derivative of the log-likelihood does not depend on yit and so the matrix A(θ̃∗)

is given by

A(θ̃∗)jj′ = Eg

[
∂2l

∂θ̃∗j∂θ̃
∗
j′

]
= −

∑
i,t

n∗itx
∗
itj

e
∑
j x
∗
itj
θ̃∗j

(1 + e
∑
j x
∗
itj
θ̃∗j )2

x∗itj′ . (5.40)

The asymptotic distribution of θ̂∗ is then

θ̂∗ ∼ N(θ̃∗,A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗)) .

5.7 Asymptotic Behaviour of an Overall

Measure of Advertising Campaigns Effect
By taking into account that the campaign effect can be strata based, we have suggested

in the previous chapter a hypothetical differential measure that measures the difference

between the expected total number of sales if the new campaign is served in all spatial
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units i and the expected total number of sales if it is served in none. Given the truth

probability structure (5.2), the total sales given in (4.14) is reduced to

Y c1

it =
∑
k

Y c1

ikt, where Y c1

ikt ∼ Bin(nikt, p
c1

ikt),

Y c0

it =
∑
k

Y c0

ikt, where Y c0

ikt ∼ Bin(nikt, p
c0

ikt) .

and so the overall true effect ∆ is given by

∆ = E
[∑
i,t

Y c1

it

]
− E

[∑
i,t

Y c0

it

]
=
∑
i,k,t

niktp
c1

ikt −
∑
i,k,t

niktp
c0

ikt

=
∑
i,k,t

nikt
e
∑
j x

c1

iktjθj

1 + e
∑
j x

c1
iktjθj

−
∑
i,k,t

nikt
e
∑
j x

c0

itjθj

1 + e
∑
j x
∗c0
iktjθj

.

Given the applied model probability structure (5.1), we have the total sales given in (4.16)

is reduced to

Y c1

it ∼ Bin(nit, p
∗c1
it ),

Y c0

it ∼ Bin(nit, p
∗c0
it ),

and hence the overall applied model effect is given by

∆∗ = E
[∑
i,t

Y c1

it

]
− E

[∑
i,t

Y c0

it

]
=
∑
i,t

nitp
∗c1
it −

∑
it

nitp
∗c0
it

=
∑
i,t

nit
e
∑
j x
∗c1
itj θ

∗
j

1 + e
∑
j x
∗c1
itj θ

∗
j

−
∑
i,t

nit
e
∑
j x
∗c0
itj θ

∗
j

1 + e
∑
j x
∗c0
itj θ

∗
j

.

Let ∆̂∗ be the estimate of the overall applied model effect. We call ∆̂∗ the applied effect.

To find the asymptotic distribution of ∆̂∗, we need to find the nearest overall effect ∆̃∗ to

the truth. Given the proxy model probability structure (5.30)

Y c1

it ∼ Bin(nit, p̃
∗c1
it ),

Y c0

it ∼ Bin(nit, p̃
∗c0
it ),

where p̃∗c
0

it and p̃∗c
1

it are functions of the nearest parameter vector θ̃∗ to the truth, and so

the overall proxy model effect, or in short the proxy effect, is

∆̃∗ =
∑
i,t

nitp̃
∗c1
it −

∑
i,t

nitp̃
∗c0
it

=
∑
i,t

nit
e
∑
j x
∗c1
itj θ̃

∗
j

1 + e
∑
j x
∗c1
itj θ̃

∗
j

−
∑
i,t

nit
e
∑
j x
∗c0
itj θ̃

∗
j

1 + e
∑
j x
∗c0
itj θ̃

∗
j

.

(5.41)
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The maximum likelihood estimate θ̂∗ of θ∗ has an asymptotic Normal distribution with

mean θ̃∗ and variance C(θ̂∗) = A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗). If the derivative of ∆∗ with respect

to θ∗ exists, then by delta method the asymptotic behaviour of the applied effect ∆̂∗

is

∆̂∗ ∼ N(∆̃∗, Ṽar(∆̂∗)), (5.42)

where

Ṽar(∆̂∗)) =

(
∂∆∗

∂θ̃∗

)T
C(θ̂∗)

(
∂∆∗

∂θ̃∗

)
,

given that

∂∆∗

∂θ∗j

∣∣∣
θ∗j=θ̃∗j

=
∑
i,t

nit
e
∑
j x
∗c1
itj θ̃

∗
j

(1 + e
∑
j x
∗c1
itj θ̃

∗
j )2

x∗c
1

itj −
∑
i,t

nit
e
∑
j x
∗c0
itj θ̃

∗
j

(1 + e
∑
j x
∗c0
itj θ̃

∗
j )2

x∗c
0

itj .

5.8 Kullback-Leibler Divergence for a two-stage

model
In this section we extend the theoretical asymptotic distribution of the estimate θ̂∗ of the

applied model parameter θ∗ using a two-stage model, in which observations of purchases

yit depend on observations of search sit.

The observations has a truth probability structure (4.11) and the applied model probability

structure (4.7). The proxy probability structure is then given by

Sit =
∑
k

Sikt, where Sikt ∼ Bin(Nik, ϕ
†
ikt = ϕ∗it),

Yit =
∑
k

Yikt, where Yikt |Sikt ∼ Bin(sikt, p
†
ikt = p∗it) .

(5.43)

The probability p†ikt of purchasing given searching process with probability ϕ†ikt is modelled

in a similar basis to the applied but with consideration of the truth structure, i.e.

logit(ϕ†ikt = ϕ∗it) = ζ†ikt = ν∗i + ξ∗t =
∑

j
xsiktjh

s
jϑ
∗
j ⇐⇒ ζ† = XsHsϑ∗,

logit(p†ikt = p∗it) = η†ikt = α∗i + β∗kt+ δ∗kCit =
∑

j
xiktjhjθ

∗
j ⇐⇒ η† = XHθ∗ .

(5.44)

Where Xs is a pile of k matrices Xs(k=1), Xs(k=2), . . . , Xs(k=K) and Hs is a transform-

ation matrix that maps the structure of the parameter vector ϑ∗ to the structure of ϑ.

Furthermore, Xs(k)H is the same for any k ∈ K given that Xs(k)Hs = Xs∗. Equivalently,

ζ† is a pile of k probability structures ζ†
(k)

, such that ζ†
(k)

= ζ∗ for all k.
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Similarly as before X is a pile of k matrices X(k=1), X(k=2), . . . , X(k=K) and H is a trans-

formation matrix that maps the structure of θ∗ to the structure of θ. Also X(k)H is the

same for any k ∈ K given that X(k)H = X∗ and η† is a pile of k probability structures

η†
(k)

, such that η†
(k)

= η∗ for all k.

Let yikt and sikt have a truth joint probability function g and proxy joint probability

function f , then the KL-divergence can be computed in a similar way to the case when

the number of searches is known and so,

DKL(g‖f) =
∑

ikt
DKL(g(yikt, sikt)‖f(yikt, sikt)),

where the KL-divergence for each joint (yikt, sikt) in g is

DKL(g(yikt, sikt)‖f(yikt, sikt)) = Eg[log gikt(yikt, sikt)− log fikt(yikt, sikt)],

where,

log g(yikt, sikt) = log
[
gikt(yikt | sikt)gikt(sikt)

]
= log

[(sikt
yikt

)
pyiktikt (1− pikt)sikt−yikt

(
Nik

sikt

)
ϕsiktikt (1− ϕikt)Nik−sikt

]
= log

(
sikt
yikt

)
+ yikt log

pikt
1− pikt

+ sikt log(1− pikt)

+ log

(
Nik

sikt

)
+ sikt log

ϕikt
1− ϕikt

+Nik log(1− ϕikt),

and

log f(yikt, sikt) = log
[
fikt(yikt | sikt)fikt(sikt)

]
= log

[(sikt
yikt

)
p∗it

yikt(1− p∗it)sikt−yikt
(
Nik

sikt

)
ϕsiktit (1− ϕit)Nik−sikt

]
= log

(
sikt
yikt

)
+ yikt log

p∗it
1− p∗it

+ sikt log(1− p∗it)

+ log

(
Nik

sikt

)
+ sikt log

ϕ∗it
1− ϕ∗it

+Nik log(1− ϕ∗it) .

For short we use the term DKL(gikt‖fikt) to refer to DKL(g(yikt, sikt)‖f(yikt, sikt)). By

using the law of total expectation, DKL(gikt‖fikt) is then computed as
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DKL(gikt‖fikt) = Eg[yikt] log
pikt

1− pikt
+ Eg[sikt] log(1− pikt)

+ Eg[sikt] log
ϕikt

1− ϕikt
+Nik log(1− ϕikt)

− Eg[yikt] log
p∗it

1− p∗it
− Eg[sikt] log(1− p∗it)

− Eg[sikt] log
ϕit

1− ϕit
−Nik log(1− ϕit)

= Eg[Eg[yikt | sikt]] log
pikt

1− pikt
+ Eg[sikt] log(1− pikt)

+Nikϕikt log
ϕikt

1− ϕikt
+Nik log(1− ϕikt)

− Eg[Eg[yikt | sikt]] log
p∗it

1− p∗it
− Eg[sikt] log(1− p∗it)

−Nikϕikt log
ϕ∗it

1− ϕ∗it
−Nik log(1− ϕ∗it)

= Eg[sikt]pikt log
pikt

1− pikt
+ Eg[sikt] log(1− pikt)

− Eg[sikt]pikt log
p∗it

1− p∗it
− Eg[sikt]log(1− p∗it)

+ Eg[sikt] log
ϕikt

1− ϕikt
+Nik log(1− ϕikt)

− Eg[sikt] log
ϕ∗it

1− ϕ∗it
−Nik log(1− ϕ∗it),

and therefore,

DKL(g‖f) =
∑

i,k,t

[
Eg[sikt]pikt log

pikt
1− pikt

+ Eg[sikt] log(1− pikt)

− Eg[sikt]pikt log
p∗it

1− p∗it
− Eg[sikt] log(1− p∗it)

+Nikϕikt log
ϕikt

1− ϕikt
+Nik log(1− ϕikt)

−Nikϕikt log
ϕ∗it

1− ϕ∗it
−Nik log(1− ϕ∗it)

]
,

or

DKL(g‖f) =
∑

i,k,t

[
Eg[sikt]pikt

∑
j
xiktjθj − Eg[sikt] log(1 + exp(

∑
j
xiktjθj))

− Eg[sikt]pikt
∑

j
xiktjhjθ

∗
j + Eg[sikt]log(1 + exp(

∑
j
xiktjhjθ

∗
j ))

+Nikϕikt
∑

j
xsiktjϑj −Nik log(1 + exp(

∑
j
xsiktjϑj))

−Nikϕiktpikt
∑

j
xsiktjh

s
jϑ
∗
j +Nik log(1 + exp(

∑
j
xsiktjh

s
jϑ
∗
j ))
]
.

(5.45)

For a two-stage process, the KL-divergence is a summation of the KL-divergence of the

purchase process and the KL-divergence of search process. Since we are interested in
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measuring the effectiveness of the campaign design, which is δk in parameter vector θ∗,

we can then consider search parameters ϑ∗ as nuisance parameters although they might

affect the proxy estimates of θ∗. Therefore we focus on the first part of equation (5.45),

i.e. the KL-divergence of purchase process. The DKL(g‖f) is then

DKL(g‖f) ≡
∑

i,k,t

[
Eg[sikt]pikt

∑
j
xiktjθj − Eg[sikt] log(1 + exp(

∑
j
xiktjθj))

− Eg[sikt]pikt
∑

j
xiktjhjθ

∗
j + Eg[sikt]log(1 + exp(

∑
j
xiktjhjθ

∗
j ))
]
.

(5.46)

Comparing DKL(g‖f) (5.46) and DKL(g‖f) (5.34), it can be seen that the current com-

putation of the KL-divergence is in agreement with prior computation when the search

process was postulated that is known, except that the known search nikt in DKL(g‖f)

(5.35) turns into the expected value of search which is Eg[sikt] = Niktϕikt in the current

result.

To minimise the KL-divergence, take the derivative of DKL(g‖f) with respect to θ∗, such

that

∂DKL

∂θ∗j
=
∑

ikt
−Eg[sikt]piktxiktjhj + Eg[sikt]

(
1 + exp(

∑
j
xiktjhjθ

∗
j )
)−1

xiktjhj .

A numerical optimisation procedure is required to find the best parameters vector θ̃∗ that

minimises the KL-divergence.

5.9 Asymptotic Behaviour of Estimates of

General Purchase Model Conditioning on

Search
Consider the two-stage applied model (4.9), the probability applied structure of purchasing

yit is given by

f(yit | sit) =

(
sit
yit

)
(p∗it)

yit(1− p∗it)sit−yit ,

given that

f(sit) =

(
Ni

sit

)
(ϕ∗it)

yit(1− ϕ∗it)Ni−sit .

Let y be a vector of independent realisations of purchases yit and s be a vector of independ-

ent realisations of searches sit. Assume y and s are sampled from Binomial distributions
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that are stated in model (4.7). The joint density function of a vector of independent pair

of observations of (yit, sit) is f(yit, sit) and the contribution of (y, s) to the likelihood is

then

L =
∏
i,t

f(yit, sit) =
∏
i,t

f(yit | sit)f(sit)

=
∏
i,t

(
sit
yit

)
(p∗it)

yit(1− p∗it)
sit−yit

(
Ni

sit

)
(ϕ∗it)

sit(1− ϕ∗it)Ni−sit

≡
∏
i,t

(
p∗it

1− p∗it

)yit
(1− p∗it)

sit

(
ϕ∗it

1− ϕ∗it

)sit
(1− ϕ∗it)Ni

=
∏
i,t

(
eη
∗
it
)yit(1 + eη

∗
it
)−sit(eζ∗it)sit(1 + eζ

∗
it
)−Ni .

On the basis of the matrix formulation of the model, the likelihood is given by

L =
∏
i,t

(
e
∑
j x
∗
itj
θ∗j
)yit(1 + e

∑
j x
∗
itj
θ∗j
)−sit(e∑j x

s∗
it j

ϑ∗j
)sit(1 + e

∑
j x

s∗
it j

ϑ∗j
)−Ni ,

taking the natural log yields the log-likelihood function:

l =
∑

i,t
yit
(∑

j
x∗itjθ

∗
j

)
− sit log

(
1 + e

∑
j x
∗
itj
θ∗j
)

+ sit
(∑

j
xs∗it jϑ

∗
j

)
−Ni log

(
1 + e

∑
j x

s∗
it j

ϑ∗j
)
.

(5.47)

The log-likelihood of two-stage applied model expresses a sum of two log-likelihoods: pur-

chase and search. We continue derivation of asymptotic theory based on log-likelihood

(5.47) for applied model. The score function of l with respect to θ∗j in a parameter vector

θ∗ is

∂l

∂θ∗j
=
∑
i,t

yitx
∗
itj − sitx

∗
itj

e
∑
j x
∗
itθ
∗
j

1 + e
∑
j x
∗
itj
θ∗j

=
∑
i,t

yitx
∗
itj − sitx

∗
itjp
∗
it, (5.48)

and with respect to ϑ∗j in a parameter vector ϑ∗

∂l

∂ϑ∗j
=
∑
i,t

sitx
s∗
itj −Nix

s∗
itj

e
∑
j x

s∗
itjϑ
∗
j

1 + e
∑
j x

s∗
itjϑ∗j

=
∑
i,t

sitx
s∗
itj −Nix

s∗
itjϕ

∗
it .

Then the second partial derivative matrix with respect to θ∗j is

∂2l

∂θ∗j∂θ
∗
j′

=
∑
it

−sitx∗itj
∂l

∂θj′

(
e
∑
j x
∗
itjθ
∗
j

1 + e
∑
j x
∗
itjθ
∗
j

)

= −
∑
it

sitx
∗
itj

e
∑
j x
∗
itjθ
∗
j

(1 + e
∑
j x
∗
itjθ
∗
j )2

x∗itj′ = −
∑
it

sitx
∗
itj p∗it(1− p∗it)x

∗
itj′,

(5.49)
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and with respect to ϑ∗j is

∂2l

∂ϑ∗j∂ϑ
∗
j′

=
∑
it

−sitxs∗itj
∂l

∂ϑj′

(
e
∑
j x

s∗
itjϑ
∗
j

1 + e
∑
j x

s∗
itjϑ
∗
j

)

= −
∑
it

sitx
s∗
itj

e
∑
j x

s∗
itjϑ
∗
j

(1 + e
∑
j x

s∗
itjϑ
∗
j )2

x∗itj′,

and the two mixed partial derivatives are

∂l

∂θ∗j∂ϑ
∗
j′

=
∂l

∂ϑ∗j∂θ
∗
j′

= 0, for all (j, j′) .

Let θ̂∗ and ϑ̂∗ be the maximum likelihood estimators, and, θ̃∗ and ϑ̃∗ are the parameters

vectors which minimises KL-divergence. By taking into consideration asymptotic theory,

the estimates θ̂∗ and ϑ̂∗ converge to θ̃∗ and ϑ̃∗, respectively. The asymptotic variance-

covariance of the estimates at θ̃∗ and ϑ̃∗ is formed by matrix A and matrix B, where

A =

 A(θ̃∗) A(θ̃∗, ϑ̃∗)

A(ϑ̃∗, θ̃∗) A(ϑ̃∗)

 ,

and

B =

 B(θ̃∗) B(θ̃∗, ϑ̃∗)

BT (θ̃∗, ϑ̃∗) B(ϑ̃∗)

 ,

such that

A(θ̃∗) = Eg

[ ∂2l

∂θ̃∗j∂θ̃
∗
j′

]
, A(θ̃∗, ϑ̃∗) = Eg

[ ∂l

∂θ̃∗j∂ϑ̃
∗
j

]
= 0,

A(ϑ̃∗) = Eg

[ ∂2l

∂ϑ̃∗j∂ϑ̃
∗
j′

]
, A(ϑ̃∗, θ̃∗) = Eg

[ ∂l

∂ϑ̃∗j∂θ̃
∗
j

]
= 0,

(5.50)

so that A is block diagonal. Also

B(θ̃∗) = Covg

[ ∂l
∂θ̃∗j

]
, B(ϑ̃∗) = Covg

[ ∂l
∂ϑ̃∗j

]
and B(θ̃∗, ϑ̃∗) = Covg

[ ∂l
∂θ̃∗j

,
∂l

∂ϑ̃∗j′

]
.

(5.51)

The variance-covariance matrix is given by matrix C such that

C =

 C(θ̂∗) = A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗) A−1(θ̃∗)B(θ̃∗, ϑ̃∗)A−1(ϑ̃∗)

(A−1(θ̃∗)B(θ̃∗, ϑ̃∗)A−1(ϑ̃∗))T C(ϑ̃∗) = A−1(ϑ̃∗)B(ϑ̃∗)A−1(ϑ̃∗)

 . (5.52)

Because θ∗ forms the central focus of this research study, the asymptotic variance-covariance

matrix of the estimate θ̂∗ at the nearest parameters to the truth θ̃∗ is then given by the
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first block of matrix C(θ̂∗). The computations of B(θ̃∗) and A(θ̃∗) depend on partial de-

rivatives equations (5.48) and (5.49), respectively. For B(θ̃∗), the expectations are found

by the law of total variance and the law of total expectation such that

[
B(θ̃∗)

]
jj′

= covg

[
∂l

∂θ̃∗j

∂l

∂θ̃∗j′

]
= covg

[∑
i,t

yitx
∗
itj ,
∑
i′,t′

yi′t′x
∗
i′t′j′

]
=
∑
i,t

∑
i′,t′

covg[x
∗
itjyit, x

∗
i′t′j′yi′t′ ]

=
∑
i,t

∑
i′,t′

x∗itjx
∗
i′t′j′covg[yit, yi′t′ ]

=
∑
i,t

x∗itjx
∗
itj′Varg[yit]

=
∑
i,t

x∗itjx
∗
itj′(Eg[Varg[yit | sit]] + Varg[Eg[yit | sit]])

=
∑
i,t

x∗itjx
∗
itj′

(∑
k

pikt(1− pikt)Eg[sikt] +
∑
k

p2
iktVarg[sikt]

)
,

(5.53)

given that covg[yit, yi′t′ ] = 0 unless i = i′ and t = t′. This expectations accords with

previous computation of expectation in (5.39), when searches is known, but the present

expectation expressed is described by Eg[sikt] and Varg[sikt].

The expectation of A(θ̃∗) (5.50) depends on the expectation of the search random variable,

such that

A(θ̃∗) = Eg

[
∂2l

∂θ̃∗j∂θ̃
∗
j′

]
= −

∑
i,t

Eg[sit]x
∗
itj

e
∑
j x
∗
itj θ̃
∗
j

(1 + e
∑
j x
∗
itj θ̃
∗
j )2

x∗itj′

= −
∑
i,t

∑
k

Eg[sikt]x
∗
itj

e
∑
j x
∗
itj θ̃
∗
j

(1 + e
∑
j x
∗
itj θ̃
∗
j )2

x∗itj′ .

(5.54)

This finding also agrees with the previous result in (5.40), but with the present A(θ̃∗)

expressed in term of Eg[sikt]. Therefore, when modelling purchase process conditional

on search process, the asymptotic variance of θ̂∗ then actually just needs to replace the

known number of search nikt or n∗it =
∑

k nikt in the asymptotic variance formula in known

searches case by expressions involving the expectation and variance of sikt. Provided B(θ̃∗)

(5.53) and A(θ̃∗) (5.54), the asymptotic distribution of θ̂∗ is

θ̂∗ ∼ N(θ̃∗,A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗)) .
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5.10 Asymptotic Behaviour of an Overall

Measure of Advertising Campaigns

Effect
The measure of overall effect of advertising campaigns has been discussed the previous

chapter for a two-stage model. The true distribution of total sales is given by the prob-

ability distribution (4.14) and the overall true effect ∆ is given by equation (4.15). The

applied distribution of total sales is given by they probability distribution (4.16) and the

overall true effect ∆∗ is given by equation (4.17). Given the proxy model probability

structure (5.43), the proxy probability structure of the total sales is then given by

Y c1

it =
∑
k

Y c1

ikt, where Y c1

ikt |Sc
1

ikt ∼ Bin(sc
1

ikt, p̃
∗c1
it ) and Sc

1

ikt ∼ Bin(Nik, ϕ̃
∗c1
it )

Y c0

it =
∑
k

Y c0

ikt, where Y c0

ikt |Sc
0

ikt ∼ Bin(sc
0

ikt, p̃
∗c0
it ) and Sc

0

ikt ∼ Bin(Nik, ϕ̃
∗c0
it ) .

(5.55)

The proxy effect is then

∆̃∗ = E
[∑
i,t

Y c1

it

]
− E

[∑
i,t

Y c0

it

]
=
∑
it

E[sc
1

ikt]p̃
∗c1
it −

∑
it

E[sc
0

ikt]p̃
∗c0
it

=
∑
i,t

E[sc
0

ikt]
e
∑
j x
∗c1
itj θ̃

∗
j

1 + e
∑
j x
∗c1
itj θ̃

∗
j

−
∑
i,t

E[sc
0

ikt]
e
∑
j x
∗c0
itj θ̃

∗
j

1 + e
∑
j x
∗c0
itj θ̃

∗
j

.

(5.56)

The proxy effect agrees with the previous result in (5.41), but the present ∆̃∗ expressed in

term of E[sikt]. The expectation of sikt is a function of ϑ̃∗. The delta method may be used

as before with the matrix C from (5.52) to find Ṽar(∆̂∗)). However, this is not pursued

further in this thesis as the focus is on consequences, for estimation of θ∗, of choice of

design strategy.

5.11 Summary and Concluding Remarks
In this chapter we have developed a theoretical framework to study the implications of

unobserved covariates for inferences about estimated effects of advertising campaigns that

are based on geo-experiments. A toy applied model has been used to understand the

theoretical behaviour of estimated effects when using a misspecified applied model. An

important part of the framework is a proxy model linking applied model and the truth.

The proxy model makes possible the application of standard results in the literature on

the maximum likelihood estimation for misspecified models.
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In reality we work on an applied probability model and usually whatever we apply or

specify will be wrong but as George Box said ”Remember that all models are wrong; the

practical question is how wrong do they have to be to not be useful” (Box et al. 1978). In

this study, we assumed truth is known, and so the presented amount of mismatch between

the applied model and the truth can be measured by KL-divergence. However, the actual

probability distribution of the truth is cumbersome to find, which makes the KL-divergence

difficult to compute. Thus, we have proposed a proxy model, which is a proxy expression

of the applied model including the truth structure to proceed the computation of the KL-

divergence. We have shown that maximising the likelihood is equivalent to minimising

KL-divergence. The asymptotic distribution theory of the estimates has been discussed

under misspecified applied model. We have confirmed through a toy model that if the

applied model is correctly specified, then the asymptotic variance of an estimate at the

nearest parameter θ̃∗ to the truth, is in agreement with the standard maximum likelihood

inferences.

We have studied the asymptotic distribution theory of estimates under misspecification

for two structures of purchase model: a one-stage model and a two-stage model. In a

one-stage model, we assumed the number of search is known in each stratum in each

spatial unit for each time period. On the other hand in a two-stage model, the purchase

process is given by search process, i.e. the number of search is random. Given that our

investigation of a asymptotic distribution theory of estimates are based on parameters θ∗

in the purchase model, we have found there are similarities between the behaviours of

estimates of parameters in a two-stage model and those in a one-stage model. In both

model structures, the asymptotic variance of estimates θ̂∗ were expressed by search term,

but in a two-stage model is expressed by the expected number and variance of searches

instead of known fixed number of searches. According to the literature on the maximum

likelihood estimation under misspecification, the asymptotic distribution theory is derived

at θ̃∗, parameters vector which minimises the KL-divergence. In line with θ∗, when a

two-stage model is considered, the expression of KL-divergence also agreed with the one

expressed by parameters of a one-stage model, except that by using a two-stage model,

the KL-divergence is expressed in term of expectation and variances of searches rather

than known searches as the case in a one-stage model.

The theoretical computation of KL-divergence and asymptotic variance in this chapter
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are subject to parameter vector θ∗ in the purchase applied model, which includes the

campaign effect δ. In a two-stage process, however, there is a parameter vector ϑ∗ in

the search applied model and θ∗ in the purchase applied model. Both parameters are a

piece of the theoretical computations of the KL-divergence and the asymptotic distribution

theory. The presented theoretical computation in this chapter, however, has considered

ϑ∗ a nuisance parameter vector. Thus, the computation was limited by θ∗. The parameter

vector ϑ∗ may lead to a different proxy estimate of the campaign effect but the effect of

ϑ∗ on estimating θ∗ has not been examined further.

Given that truth model is strata based, the overall effect of advertising campaign has

been quantified in term of sales using a differential measure ∆∗. Given the asymptotic

Normal distribution of θ̂∗, the asymptotic distribution of ∆̂∗ has been found using delta

method.

In the next chapter we will describe computational algorithms to investigate how efficient

is the theoretical computation provided in this chapter. The algorithms aim to estimate

the campaign effect for random generated data of purchases for a specified truth instance

and a particular campaign design strategy.



Chapter 6

Demonstration of the Theoretical

Asymptotic Distribution of

Estimated Applied Model

Parameters

The theoretical framework presented in the previous chapter provides the asymptotic

distribution of the estimated applied model parameters. In this chapter, we test the ap-

plicability of the theory by assessing its performance in a variety of contexts in comparison

to Monte Carlo simulations.

In the following discussions, for simplicity we shall describe the computational algorithms

used to validate the theoretical asymptotic distribution of the estimates of the purchase ap-

plied model parameters assuming that search process outcomes are known. The algorithms

are readily extended when used for a two-stage process: search and purchase.

The chapter starts with a specification of the theoretical basis including mainly specific-

ation of truth parameters and specification of campaign design. The following section

discusses how to investigate the validity of the theoretical asymptotic distribution. The

next section gives a description of the computational algorithms that are developed to

find theoretical and asymptotic distributions of θ̂∗ and ∆̂∗. Computational results are

133
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then presented for specified campaign designs using different instances of truth paramet-

ers and different number of searches. Some remarks and conclusions are drawn in the final

section.

6.1 Basic Components of Finding the

Asymptotic Distribution of Estimates
Given a vector estimate θ̂∗ of a parameter vector θ∗ in the applied model, the theoretical

distribution of θ̂∗ is then asymptotically Normal with mean θ̃∗ and variance C(θ̂∗) =

A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗), where the parameter vector θ̃∗ is the best parameter vector to use

for θ∗ in the applied model to provide a closest model to the truth.

It is also important to recall that the theoretical asymptotic distribution of the applied

overall effect estimate ∆̂∗ is Normal with mean ∆̃∗ and variance Ṽar(∆̂∗) =
(
∂∆̂∗

∂θ̃

)T
C(θ̂∗)

(
∂∆̂∗

∂θ̃

)
.

Finding the theoretical asymptotic distribution of θ̂∗ and ∆̂∗ is based upon finding the

parameter vector θ̃∗, which itself relies on two main components: a specified truth para-

meter vector θ0 and a specified campaign design Cit. The specification of both components

have been discussed at the end of chapter 4. However the specification of the truth para-

meters there was incomplete; in as far as only the parameters that depend on the data

were discussed. There are others that need to be specified in order to create an instance

of truth. In what follows, we propose a way of generating interesting instances of truth

parameters.

6.1.1 Parameters for Truth

Consider a truth parameter vector θ0 =
[
α0 γ0 β0 δ0

]
, where

α0 =
[
α1 . . . α204

]
γ0 =

[
γ1 γ2 γ3 γ4

]
, β0 =

[
β1 β2 β3 β4

]
, δ0 =

[
δ1 δ2 δ3 δ4

]
,

given that population-strata are based upon the social grades covariate, i.e. K = 4.

Assume that the values of the vector α0 are known and equal to the estimates of spatial

effects parameters that were obtained from fitting realistic purchase data. To specify the



6.1. Basic Components of Finding the Asymptotic Distribution of
Estimates 135

other parameters, we propose the following special parameter cases

δ − case: δ0 =
[
w1c w2c w3c w4c

]
, γ0 = β0 =

[
0 0 0 0

]
,

β − case: β0 =
[
w1c w2c w3c w4c

]
, γ0 = δ0 =

[
0 0 0 0

]
,

γ − case: γ0 =
[
w1c w2c w3c w4c

]
, β0 = δ0 =

[
0 0 0 0

]
.

(6.1)

Assuming that c and wk for k ∈ {1, 2, 3, 4} are real non-zero numbers. In this truth

proposal, the non-zero parameter vector in each case of the proposed truth is limited by

the use of
∑

k wkc = 0. Specifically, we consider certain values of c which are c = ±0.2,

c = ±1 and c = ±5 and we assume w1 = −1.5, w2 = −0.5, w3 = 0.5 and w4 = 1.5.

In this way we have three differences between strata depending on c: a small difference

using c = ±0.2, a moderate difference using c = ±1 and a large difference using c = ±5.

Additionally, the overall difference in each truth case for each c is centred to zero on

average. We are attempting to investigate the impact of different scales of change in the

probability of purchasing between strata on estimating parameters of the applied model,

provided that the overall change is neutral.

For each truth case, the difference between strata gets bigger or smaller depending on the

sign of c but without changing the overall difference between strata. For example, for

β−case and δ−case, the difference between strata does not change the overall difference

between the two time points and between campaigns’ effects, respectively. In addition,

given that the probability of purchasing are estimated using a logit-linear regression model,

then a small difference between strata produces a small change between their logit values

and the converse is true.

Combinations of combined truth cases will be considered as well. For example a combin-

ation of two cases such as β−case and δ−case is given by

βδ − case: β0 =
[
w1c1 w2c1 w3c1 w4c1

]
,

δ0 =
[
w1c2 w2c2 w3c2 w4c2

]
, γ0 =

[
0 0 0 0

]
,

(6.2)

or a combination of the three cases is given by

γβδ − case: γ0 =
[
w1c1 w2c1 w3c1 w4c1

]
,

β0 =
[
w1c2 w2c2 w3c2 w4c2

]
,

δ0 =
[
w1c3 w2c3 w3c3 w4c3

]
,

(6.3)
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where c1, c2 and c3 are real non-zero numbers. In this study, however, the values of c1, c2

and c3 are limited to one or more of the proposed c values mentioned above.

The defined truth cases with their level of differences between strata assist in demonstrat-

ing which design strategies work better. These may also demonstrate which theoretical

framework may provide adverse inferences.

6.1.2 Campaign Designs

In chapter 4, we specified a number of randomisation based design strategies for choosing

campaign designs. Each design strategy provides a large set of possible campaign designs.

Additionally, the sets generated from different design strategies may overlap. This study

shall not attempt to study all possible campaign designs to validate the theoretical asymp-

totic distribution of estimated applied model parameters.

In this chapter, we choose one design strategy and then consider a specific number of

resulting campaign designs, because different campaign designs influence the parameters

of the theoretical distribution even if the input truth parameters are unchanged. The

question that then arises is, how to choose a specific number of campaign designs from a

design strategy? There are different ways we might answer this question. One possible way

is to look into various theoretical asymptotic distributions of ∆̂∗ of R randomly generated

campaign designs from the chosen design strategy using a specific truth parameter θ0. This

can include checking out the behaviour of the obtained theoretical asymptotic distributions

∆̂∗ relative to the true effect ∆0, given that the true effect is design independent.

We choose to use the design strategy of the matched-pairs in terms of social grades covari-

ate. 1000 campaign designs are randomly generated from this strategy within each pair,

one allocated randomly to treatment and the other to control. The theoretical asymptotic

parameters ∆̃∗ and s̃d(∆̂∗) are found for each generated campaign design using a truth

parameter vector θ0 that is based on δ−case with extreme difference between strata using

c = 5, i.e. the truth parameters are

αi = αi, γk = βk =
[
0 0 0 0

]
, δk =

[
−7.5 −2.5 2.5 7.5

]
.

The computational algorithm that is used to find the theoretical asymptotic distribution

of ∆̂∗ is discussed in the next section. The distributions of the 1000 values of mean ∆̃∗

and 1000 values of standard deviations s̃d(∆̂∗) are depicted in Figure 6.1.
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Figure 6.1: Distributions of theoretical mean ∆̃∗ and ˜sd(∆̂∗) of 1000 campaign designs based

upon matched-pairs design strategy in terms of social grades covariate using truth

parameters of δ−case and c = 5

The points of the variability distribution s̃d(∆̂∗) can be considered close to each other,

indicating that the change in the variability of ∆̂∗ between the campaign designs is small.

Considering the distribution of ∆̃∗, the median is 312258 which is about 1% below the

true effect ∆0 = 316677.5. The location of ∆̃∗ relative to ∆0 varies between the campaign

designs, where ∆̃∗ is below, above or nearly at ∆0. Thus it would be interesting to look into

the theoretical asymptotic distributions of ∆̂∗ across a sample of campaign designs that

provides good coverage of the overall range of ∆̃∗. For simplicity we limit the investigation

of the theoretical asymptotic distribution to 10 distributions; or equivalently 10 selected

campaign designs that shown in Figure 6.2 and Figure 6.3.

Given that the theoretical distribution of ∆̂∗ is approximately Normal with parameters ∆̃∗

and s̃d(∆̂∗), then each campaign design produces a distribution in which about 99.3% of ∆̂∗

values that are not outliers lie within about 2.698 standard deviations s̃d(∆̂∗) of the mean

∆̃∗, i.e. ∆̃∗± 2.698× s̃d(∆̂∗) and about 50% of ∆̂∗ values lie within ∆̃∗± 0.6745× s̃d(∆̂∗),

(Lucas et al. 2014). Additionally, the median of the distribution is very similar to the

mean ∆̃∗. Those summaries of the distribution of ∆̂∗ are presented corresponding to the

10 campaign designs in Figure 6.3. The summaries of each distribution are presented in

the figure using a horizontal line.

The corresponding designs to those presented distributions need to be extracted to be em-

ployed alongside different specification of truth parameter θ0 to investigate the difference

between a set of theoretical distributions. The distribution of treatment spatial units in
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the 10 selected designs are presented in Appendix D in Figures D.1, D.2 and D.3.

Figure 6.2: Distributions of the theoretical means ∆̃∗ of 1000 campaign designs based upon

matched-pairs design strategy in term of social grades covariate using truth para-

meters of δ−case and c = 5

Figure 6.3: 10 randomly selected distributions of ∆̂∗ within 2.698 standard deviations ˜sd(∆̂∗) of

the mean ∆̃∗.

6.2 Validation Method of the Theoretical

Framework
The theoretical distribution of estimates θ̂∗ and ∆̂∗ are validated by assessing whether the

theoretical distribution of both estimates are suitable to describe their empirical sampling
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distribution. By using simulation procedures, a sample of size R of estimates θ̂∗ and

∆̂∗ are generated; θ̂∗1, . . . , θ̂
∗
R and ∆̂∗1, . . . , ∆̂

∗
R, where θ̂∗r =

[
α̂∗1r . . . α̂∗Ir β̂∗r δ̂∗r

]
, for

r ∈ {1, . . . , R}. Each θ̂∗r is a set of p-dimensional multivariate distribution data, where

p = I + 2. Questions that arise here are

• how can we determine if the sampling distribution of θ̂∗ comes from a theoretical

multivariate Normal with mean θ̃∗ and variance-covariance matrix C(θ̃∗).

• how can we determine if the sampling distribution of ∆̂∗ comes from a theoretical

univariate Normal with mean ∆̃∗ and variance matrix Ṽar(∆̂∗).

In other words, we need to test the following null hypothesis

H0 : θ̂∗ ∼ N(θ̃∗,C(θ̃∗)) and H0 : ∆̂∗ ∼ N(∆̃∗, Ṽar(∆̂∗)) .

We run a goodness of fit test to compare properties of the sampling distribution with the

properties of the theoretical distribution. The quick check is to compute Mahalanobis

distances between θ̂∗ and its proposed mean θ̃∗ and Mahalanobis distances between ∆̂∗

and its proposed mean ∆̃∗. Let D2
θ∗ denote the Mahalanobis distance of a value of θ̂∗ from

θ̃∗, then

D2
θ∗ = (θ̂∗ − θ̃∗)TC−1(θ̃∗)(θ̂∗ − θ̃∗),

and let D2
∆∗ denote the Mahalanobis distance of a value of ∆̂∗ from ∆̃∗, then

D2
∆∗ = (∆̂∗ − ∆̃∗)Var(∆̃∗)−1(∆̂∗ − ∆̃∗) .

For p-dimensional multivariate Normal data, the Mahalanobis distance D2
θ∗ is distributed

as a Chi-squared distribution with p degrees of freedom. Then a goodness of fit test is

applied to test

H0θ∗ : D2
θ∗ ∼ χ2

p and H0∆∗ : D2
∆∗ ∼ χ2

1 .

There exist numerous goodness-of-fit methods to test the assumption of a specific univari-

ate distribution in the literature such as Kolmogorov–Smirnov test and Anderson-Darling

test.

A computational algorithm is developed to find a theoretical and an empirical sampling

distribution of θ̂∗ and ∆̂∗ for a specific campaign design and a specific truth parameters.
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To find the empirical distribution, data are repeatedly generated and fitted using the

applied model to produce a sample of size R for each estimate: θ̂∗ and ∆̂∗.

Given 204 spatial units, each element of the sample of θ̂∗ is then a 206−dimensional mul-

tivariate distribution. The most interesting estimates are β̂∗ and δ̂∗. Thus we investigate

the sampling bivariate distribution of
¯
θ̂∗ =

[
β̂∗ δ̂∗

]
alongside ∆̂∗.

6.3 Computational Algorithms
Computational algorithms are developed to validate the asymptotic distribution of the

estimates θ̂∗ and ∆̂∗. The algorithms consist of two parts: theoretical asymptotic dis-

tribution of the estimates and empirical sampling asymptotic distribution of the estim-

ates. Both parts are based on specified truth parameters and specified campaign design.

The theoretical and empirical distributions will be compared in the subsequent section to

demonstrate the efficiency of the theoretical framework.

The algorithms are broken down into five procedures. In the first procedure, data struc-

tures are constructed. In the second procedure, model matrices are obtained. In the third

procedure, truth parameters are specified. In the fourth and fifth procedures, the theor-

etical and empirical distributions of the estimates are found, respectively. The following

outlines the basic steps in each procedure:

procedure 1: Data Structure (micro-census, campaign design)

function Ground Data (micro-census)

1. get the social grades strata; K = 4 for each spatial unit,

2. get the number of individuals in each stratum in a spatial unit nik
1,

3. create two time points t = 0 and t = 1 for each stratum k.

return ground data frame including four columns:

− spatial units, coded 1, . . . , 204,

− strata, coded 1, 2, 3, 4,

− time periods t, coded 0, 1,

− number of search nikt,

1Note: we use the number of individuals - available in microcensus data - in each stratum in a

spatial unit equal the number of search nik in that stratum, although this may be far away from

the reality. However, micro-census data is sample based and hence nik is a subset of the population

in that strata. To be close to reality, we may take a proportion of nik such as 10% and 1% of it.
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where each case of the data frame represents a number of search in

a stratum k in a spatial unit i during a time period t, assuming

that nik ≡ nikt, so each unit i is repeated 2 ∗K times.

end function

function Data Structures with No Campaign Design(ground data)

1. add campaign status Cit column to ground data such that all spatial

units serve the new advertising campaign in both time periods, i.e.

Cit = 1, ∀i, t

return truthc
1

2. convert Cit values in truthc1
to 0 so that all spatial units serve the old

advertising campaign in both time periods, i.e. Cit = 0, ∀i, t

return truthc
0

3. aggregate number of search in truthc1
by strata,

return appliedc
1

4. convert Cit values in appliedc1
to 0,

return appliedc
0

end function

function Data Structures with Campaign Design (ground data, campaign design)

1. assign spatial units in the ground data to control or treatment based

on the camping design; control: ui = 0 and treatment: ui = 1

2. generate campaign status Cit = uit

3. merge campaign status with ground data

return true data structure truth including:

− ground data,

− campaign status Cit: coded 0 (old ads) or 1 (new ads).

4. aggregate number of search in truth by strata,

return applied data structure applied

− aggregate ground data, i.e. no strata,

− campaign status Cit: coded 0 (old ads) or 1 (new ads).

end function2

2Screen-shot of subset of truth and applied data structure with and with no campaign design

are presented in Appendix E in Figure E.1 and Figure E.2.
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end procedure 1

procedure 2: Model Matrices (data structure)

function Model Matrices with No Campaign Design(data structures with no cam-

paign design)

1. create an old campaign’s true model matrix Xc0 using the data in

truthc
0
,

2. create a new campaign’s true model matrix Xc1 using the data in

truthc
1
,

3. create an old campaign’s applied model matrix X∗c
0

using the data in

appliedc
0
,

4. create a new campaign’s applied model matrix X∗c
1

using the data in

appliedc
1
,

return Xc0 , Xc1 , X∗c
0

and X∗c
1

end function

function Model Matrices with Campaign Design(data structures with campaign

design)

1. create a true model matrix X using the data in truth,

2. create an applied model matrix X∗ using the data in applied,

3. create a proxy model matrix XH using applied regressors with truth

structure,

return X, X∗ and XH

end function

end procedure 2

procedure 3: Instances of truth parameter vector θ0(realistic search and

purchase, “B” ’s advertising campaign design, K, c, (see sections 4.7.3 and 4.7.4))

function specification of spatial effect αi(realistic search and purchase, B’s

advertising campaign design)

1. set yit = realistic purchase and nit = realistic search

2. create Cit from B’s advertising campaign design

3. fit applied model: log( yit
nit−yit ) = α∗i + β∗t+ δ∗Cit

return α̂∗i ( The values of α̂∗i are presented in Appendix F)
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end function

function θ0 based on γ−, β− and δ−cases(α̂i
∗, K, c)

1. set αi = α̂i
∗

2. create γ−, β− and δ−cases using k = 4 and c.

return θ0

end function

function θ0 based on βδ−case(α̂i
∗, K, c1, c2)

1. set αi = α̂i
∗

2. create βδ−case using k = 4, c1 and c2.

return θ0

end function

function θ0 based on γβδ−case(α̂i
∗, K, c1, c2, c3)

1. set αi = α̂i
∗

2. create γβδ−case using k = 4, c1, c2 and c3.

return θ0

end function

end procedure 3

procedure 4: Theoretical Distribution (models matrices, θ0, θ∗0, nikt)

function KL-divergence Optimisation (X, XH, θ0, θ∗0)

1. calculate the truth η = Xθ0,

2. set proxy model η† = XHθ∗ as a function of θ∗,

3. set DKL function between the truth and the proxy model as a function

of θ∗,

4. optimise DKL, using θ∗0 as a starting parameter vector,

return θ̃∗: the parameter vector that minimises DKL and the

approximated mean of θ̂∗.

end function

function Asymptotic Variance of θ̂∗(X, X∗, θ0, nikt, θ̃
∗)

1. find A(θ̃∗) using X∗, nit =
∑

k nikt and θ̃∗,

2. find B(θ̃∗) using X, θ0, X∗ and nikt,

3. find inverse of A(θ̃∗),

4. compute A−1(θ̃∗)B(θ̃∗)A−1(θ̃∗)
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return C(θ̂∗): variance of θ̂∗.

end function

function Approximation of the Overall Effect ∆∗ (X∗c
0
, X∗c

1
, nit, θ̃

∗)

1. find the expected total number of sales when Cit = 1, ∀ i and t, using

X∗c
1
, θ̃∗ and nit,

2. find the expected total number of sales when Cit = 0, ∀ i and t, using

X∗c
0
, θ̃∗ and nit,

3. find the differential measure ∆̃∗; the difference between the expectations

computed in steps 1 and 2.

return ∆̃∗: the best value to use for the applied overall effect ∆∗ and the

approximated mean for ∆̂∗.

end function

function Asymptotic Variance of ∆̂∗(∆∗, θ̃∗, C(θ̂∗))

1. set the Jacobian matrix ∂∆∗/∂θ∗,

2. find Jacobian matrix at θ̃∗, i.e. ∂∆∗/∂θ̃∗,

3. compute (∂∆∗/∂θ̃∗)T C(θ̂∗) (∂∆∗/∂θ̃∗),

return Ṽar(∆̂∗): the variance of the approximated overall effect ∆̂∗.

end function

end procedure 4

procedure 5: Empirical Sampling Distribution (η, nikt, ∆∗)

1. find pikt using the truth η,

2. generate yikt ∼ Bin(nikt, pikt),

3. aggregate yikt by strata to have applied structure yit and nit,

4. fit yit using logit-linear regression model,

5. get the regression coefficients, i.e. θ̂∗

6. find the estimate ∆̂∗ by computing ∆∗ at θ̂∗,

7. repeat steps 2 to 6 R times,

8. get a sample of θ̂∗ of size R,

9. get a sample of ∆̂∗ of size R,

10. find the mean and variance of θ̂∗,

11. find the mean and variance of ∆̂∗,

end procedure 5
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The algorithms are implemented using R. In procedure 4, the KL-divergence is optimised

using Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The computational algorithm

is general enough to include different truths and different campaign designs. In addition,

design strategies procedure can be added in the algorithm over the data structure proced-

ure to take in various strategies in producing campaign designs. However, to avoid any

confusion with the pre-specified 10 campaign designs, the design strategies procedure are

not presented here but the procedure is presented in Appendix G. The procedure will be

needed in the coming chapter to evaluate performances of different design strategies.

In what follows, we investigate the empirical sampling distribution of
¯
θ̂∗ and ∆̂∗ for dif-

ferent truth instances and a meta campaign design; different simulation designs, on the

proposed truth instances.

6.4 Computational Results
Given a truth case with a specified c, the computational algorithm is implemented for the

10 specified campaign designs to find 10 theoretical asymptotic distributions of ∆̂∗. For

the same input truth and designs, the algorithm is implemented to construct empirical

sampling distribution to each theoretical distributions, each of size R = 1000. In the

following discussion, we investigate whether a specific theoretical distribution describes

best the sampling distribution when the applied inputs mechanism are the same.

6.4.1 Truth Parameters: δ−Case, c ∈ {0.2, 1, 5}
Consider the truth parameter vector θ0 based on δ−case with parameters

αi = αi, γk = βk =
[
0 0 0 0

]
, δk =

[
−1.5c −0.5c 0.5c 1.5c

]
.

Given c = 5, δk =
[
−7.5 −2.5 2.5 7.5

]
, Figure 6.3 illustrates the theoretical distri-

bution of ∆̂∗ within 2.698 units of standard deviations s̃d(∆̂∗) of the mean ∆̃∗. By adding

the empirical distributions of ∆̂∗ in line with each specified design in the figure, we get

the distributions displayed in Figure 6.4.

Figure 6.4 shows that the empirical sampling distributions ∆̂∗ - that are presented in box

plots - are in good agreement with the theoretical distributions for all 10 designs. This

agreement provides an important indication into the key role of the theoretical approx-

imation to the sampling distribution of applied effect ∆̂∗. To understand the behaviour

of these distributions, we compare them with other distributions that are generated using



6.4. Computational Results 146

the same 10 selected campaign designs but using different truth parameters. It would be

interesting to begin the comparison within the same truth case using different c values.

Figure 6.4: δ−case: together 10 empirical sampling distributions and theoretical distributions of

∆̂∗ for c = 5.

The two figures presented in Figure 6.5 show that the empirical sampling distributions

of ∆̂∗ are in harmony with the theoretical distributions. By comparing the distributions

presented here to the ones obtained by using truth instance c = 5, it is noticeable that when

c is smaller; there are smaller differences between the strata, values of all overall effects, i.e.

∆0, ∆̃ and ∆̂∗ are smaller. In other words when c is smaller, the campaign has less effect.

For example for c = 0.2, the true effect is ∆0 = 6963.728 and for c = 1 is ∆0 = 91576.92

compared to ∆0 = 316677.5 when c = 5. Interestingly, for smaller differences between

strata, locations of the centre of both theoretical and empirical distributions tend to

get closer to the true overall effects. For example when c = 0.2, in its most presented

distributions the theoretical mean ∆̃ and the median of ∆̂∗ sample are close to ∆0. The

variability between the 10 designs appears to be low when c = 0.2 followed by c = 1 and

then c = 5. The change in the variability within a single design across c values is not

clear, maybe due to the disparity in the scales. However by focusing on the scale in the

x-axis in each plot, it seems that the variation within each single design is about the same

across c.



6.4. Computational Results 147

Figure 6.5: δ−case: together 10 empirical sampling distributions and theoretical distributions of

∆̂∗ for c = 0.2, c = 1.

So far the investigation of the theoretical distribution has been about ∆̂∗. In the follow-

ing discussion we compare the theoretical distribution of
¯
θ̂∗ to its empirical distribution.

Figure 6.6 and Figure 6.7 illustrate the univariate distributions of β̂∗ and δ̂∗, respect-

ively.

Figure 6.6: δ−case: together 10 empirical sampling distributions and theoretical distributions of

β̂∗ for c = 0.2, c = 1 and c = 5.

For β̂∗, the range of the theoretical and empirical distributions is about the same across c.

This may be due to the fact that βk = 0 in δ−case. The sample means
¯̂
β∗ obtained from

the 10 designs - in the three truth instances - approach the theoretical mean β̃∗. The only
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exception is that design d3 in c = 5 produces sample mean
¯̂
β∗ that is a bit smaller than

the theoretical mean β̃∗.

Figure 6.7: δ−case: together 10 empirical sampling distributions and theoretical distributions of

δ̂∗ for c = 0.2, c = 1 and c = 5.

For δ̂∗, the values are positive and the range of the theoretical and empirical distributions

increases as the difference between strata increases. The change in the distributions of δ̂∗

between designs across c looks similar to the behaviour of ∆̂∗ presented above. The em-

pirical univariate distributions of both β̂∗ and δ̂∗ agree with their theoretical distributions,

indicating that theoretical approximations to the sampling distributions of both estimates

work well.

It is important to note that the results presented are based on having a different campaign

effect in each stratum and that the proportion of people in each stratum varies between

spatial units and the allocation of units to treatment or control varies between designs.

This is likely to affect the estimation of the weighted parameters. One interesting feature

is that δk is zero on average, but δ̃∗ and δ∗ are non-zero and typically are positive, taking

larger positive values as c increases and with more variation between designs as c increases.

On the other hand, the within design variation in δ̂∗ remains fairly constant as c increases.

However, the number of searches in each stratum is not the same and so if we calculated

the weighted of those 4 numbers using the numbers of searches as weights, the average

would not be zero. It is found that the weighted average based on proportion of population

in each stratum is positive, about 0.027. This gives some reason for why δ̃∗ and δ∗ tend

to be positive and getting larger as c increases. Moreover, it makes sense that δ̃∗ would
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vary more between designs because any difference in the weighted average of δk between

treatment and control groups (the difference varies between designs) would be magnified

as c increases.

Now consider the goodness of fit between theoretical distributions and empirical distribu-

tions. As pointed out in section 6.2, the Mahalanobis distances D2
∆∗ and D2

θ∗ are used to

measure the dissimilarity between the theoretical and empirical distributions of ∆̂∗ and

¯
θ̂∗, respectively. We applied the Kolmogorov–Smirnov (KS) and the Anderson-Darling

(AD) tests of goodness of fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆ : D2
∆∗ ∼ χ2

1.

The p−values are evaluated for both null hypotheses H0θ∗ and H0∆∗ for the three truth

instances and the 10 designs. The p−values are provided in Figure 6.8. By considering

significance level 0.05, both tests fail to reject the two hypotheses when c = 1. Looking at

part (a) and (c), the tests reject the two hypotheses except for a few designs. For c = 0.2,

the tests provide significant p−values against both hypothesis for d9. In the same graph,

the tests provide significant p−values against H0∆∗ for d5, and the KS test provides a

significant p−value against H0θ∗ for d4. In c = 5, the tests provide significant p−values

against H0θ∗ for d2.

Figure 6.8: δ−case: p−values obtained from the Kolmogorov Smirnov (KS) and Anderson

Darling (AD) tests of goodness of fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆∗ : D2
∆∗ ∼ χ2

1

for c = 0.2, c = 1 and c = 5.

It is important to note that 120 significance tests are conducted in this truth case example,

10 designs × 3 values of c × 4 tests of goodness of fit. Interestingly, the p−values presented
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in Figure 6.8 are not independent. While the same 10 designs are used throughout, the

4 tests are not independent and c is moving along a scale. Thus, it is difficult to say what

p−values should be expected. Despite this, finding some p−values less than 0.05 might be

expected due to the fact that in conducting lots of significance tests at level 0.05, there is

5% chance to reject the null hypothesis even when it is true.

The significant cases may indicate that the sampling distribution of
¯
θ̂∗ and ∆̂∗ are not

the same as their theoretical asymptotic distributions. However, the significant evidence

against the null hypotheses does not indicate how the sampling distribution differs from

the theoretical one. Especially, one of the problems with goodness of fit tests is they

are more likely to reject null hypotheses when the sample size is large. By taking into

account the investigation of the marginal distributions
¯
θ̂∗ and the distribution of ∆̂∗ that

are presented earlier in this section, we can see that their sample means are not far from

the theoretical means.

Furthermore, if we plot the Mahalanobis distances D2
θ∗ and D2

∆∗ versus quantiles of χ2
2

and χ2
1, respectively, we get the following graphs shown in Figure 6.9 and Figure 6.10,

respectively. In both figures, we can see that the points in all graphs for the three truth

instances, tend to fall along a straight line, despite extreme points on their top right

tails. Taken together, these plots suggest that
¯
θ̂∗ and ∆̂∗ are close to normal and with

distributions as predicted by the theory.

Overall, these truth instances of δ−case support the view that the theoretical asymptotic

distribution of
¯
θ̂∗ and ∆̂∗ are adequate to describe the empirical distribution.
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(a) c=0.2

(b) c=1

(c) c=5

Figure 6.9: δ−case: Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus quantiles of χ2

2
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(a) c=0.2

(b) c=1

(c) c=5

Figure 6.10: δ−case: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1
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6.4.2 Truth Parameters: β−case, c ∈ {0.2, 1, 5}
Consider the truth parameter vector θ0 based on β−case with parameters

αi = αi, γk = δk =
[
0 0 0 0

]
, βk =

[
−1.5c −0.5c 0.5c 1.5c

]
.

A comparison of the empirical and theoretical distributions of ∆̂∗ are presented in Figure

6.11. The true effect ∆0 = 0 in the three instances; because δk is specified to be zero

in this truth case. Likewise, δ−case, the range of ∆̂∗ increases as the difference between

strata gets larger. However, the values on the scale are rather smaller compared to those

in δ−case. The values of the proxy effect ∆̃∗ vary between negative and positive unlike

δ− case where all are positive. It appears from the figure that the empirical distributions

are consistent with the theoretical distributions.

Figure 6.11: β−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗ for c = 0.2, c = 1 and c = 5.

The marginal distributions of
¯
θ̂∗ for the three instances of β-case are presented in Figure

6.12 for β̂∗ and in Figure 6.13 for δ̂∗. Although δk = 0 in this case, the change in the

behaviour of δ̂∗ is obvious across c unlike the behaviour of β̂∗ in δ−case. Both figures shows

that the variations between designs gets higher as the difference gets larger. Additionally,

the behaviour of β̂∗ in this case is in parallel with the behaviour of δ̂∗ in δ−case. The

sampling distributions of β̂∗ and δ̂∗ appear to be consistent with their corresponding

theoretical distributions across designs and c values.
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Figure 6.12: β−case: together 10 empirical sampling distributions and theoretical distributions

of β̂∗ for c = 0.2, c = 1 and c = 5.

Figure 6.13: β−case: together 10 empirical sampling distributions and theoretical distributions

of δ̂∗ for c = 0.2, c = 1 and c = 5.

Figure 6.14 provides the resulting p−values form the AD and the KS tests. The values

suggest no sufficient evidences to reject the claim that
¯
θ̂∗ and ∆̂∗ are coming from the

theoretical distribution, except for some cases in c = 0.2 and c = 5. We present the

Chi-square qq-plots in Appendix H in Figure H.2 and Figure H.3 to assess normality

of
¯
θ̂∗ and ∆̂∗. The figures support normality claims in general except designs d6 in c = 5

provide rejection evidences, where we can see the points are not exactly on the straight

line. This case requires further investigations to understand why the theoretical asymptotic

normality is rejected.
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Figure 6.14: β−case: p−values obtained from the Kolmogorov Smirnov (KS) and Anderson

Darling (AD) tests of goodness of fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆∗ : D2
∆∗ ∼ χ2

1

for c = 0.2, c = 1 and c = 5.

Given that ∆̂∗ is a univariate sample, a histogram can be plotted to assess graphically

if the sample is normally distributed or not. Plotting a histogram gives an indication of

the shape of the distribution. Consider d6, the sample distribution of ∆̂∗ is presented

on histogram plots in Figure 6.15. From the figure it can be seen that the sample is

approximately bell shaped. The other graphical method of assessing the normality is the

normal Q-Q plot. On the same figure, the normal Q-Q plots are shown. The points form

a line that are roughly straight, indicating that the sets of quantiles came from the same

distribution shape, and hence the distribution of ∆̂∗ is normal in design d6.

Alternatively, Shapiro-Wilk’s (SW) test can be used to test the normality of the un-

derlying distribution of ∆̂∗. For d6, the resulting p-value is 0.4471, which supports the

hypothesis that ∆̂∗ is normal. In addition, the KS can be used to test specifically if

∆̂∗ ∼ N(∆̃∗,Var(∆̃∗)). For d6, the test p-value is about 2.665× 10−15 indicating that the

sample distribution of ∆̂∗ is biased. The distribution’s peak of ∆̂∗ in the histogram in

Figure 6.15 is not really far from the theoretical peak value.

To examine the dissimilarity between the theoretical and empirical distributions of ∆̂∗ for

d6, we consider the standardised sampling distributions of ∆̂∗ with standardised scores

z
¯
∆̂∗ such that

z∆̂∗ =
∆̂∗ − ∆̃∗

s̃d(∆̂∗)
∼ N(0, 1) .
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Figure 6.15: β−case: Graphical assessments of Normality of ∆̂∗ of design d6 in c = 5. Left:

Histogram of the empirical distribution of ∆̂∗ with densities and overlaid theoretical

asymptotic normal density curve. Right: The Normal Q-Q plot for ∆̂∗.

The mean and standard deviation of standardised ∆̂∗ is given by z̄∆̂∗ = −0.30 and

sd(zβ̂∗) = 1.03. The mean of z∆̂∗ deviates from the standard mean by 30% of the standard

units, whereas the standard deviations is approximately 1. The standardised distributions

of ∆̂∗ is shown in Figure 6.16 with a standard Normal curve. The plot of the histogram

indicates that z∆̂∗ has approximately standard Normal distribution. Equivalently, the

sample ∆̂∗ approximately follows the theoretical asymptotic distribution.

Figure 6.16: β−case: Graphical assessments of Normality of ∆̂∗ of design d6 in c = 5. Histogram

of the standardised empirical distribution of ∆̂∗ with densities and overlaid standard

normal density curve.
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In a similar way, we assess the normality of
¯
θ̂∗. The histograms and the normal Q-Q plots

of β̂∗ and δ̂∗ Figure 6.17a and Figure 6.17b, respectively, show that both samples are

normally distributed shape. Additionally, SW test provide insignificant p−values 0.1665

and 0.4331 for β̂∗ and δ̂∗ receptively. However, the KS test provides significant p−values

5.696 × 10−5 and 1.332 × 10−15 indicating that the parameters for two distributions do

not match exactly the values provided by the asymptotic theory.

To study how far the sampling distributions of β̂∗ and δ̂∗ are from the theoretical distri-

butions, consider their standardised sampling distributions with standardised scores z
¯
β̂∗

and z
¯
δ̂∗ , such that

zβ̂∗ =
β̂∗ − β̃∗

s̃d(β̂∗)
∼ N(0, 1) and zδ̂∗ =

δ̂∗ − δ̃∗

s̃d(δ̂∗)
∼ N(0, 1) .

The mean and standard deviation of standardised β̂∗ and δ̂∗ are given by z̄β̂∗ = −0.1388571,

sd(zβ̂∗) = 1.045682, and z̄δ̂∗ = −0.304391, sd(zδ̂∗) = 1.034122, respectively. The mean of

zβ̂∗ deviates from the standard mean by 13% of the standard unit and the mean of zδ̂∗

deviates from the standard mean by 30% of the standard unit. The standard deviations of

both sample estimates, however, are approximately 1. The standardised distributions of

β̂∗ and δ̂∗ are shown in Figure 6.17c with a standard Normal curve. The plots indicate

that both β̂∗ and δ̂∗ are approximately normally distributed with means close to β̃∗ and

δ̃∗ and standard deviations close to s̃d(β̂∗) and s̃d(δ̂∗).
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(a) Histogram of the empirical distribution of β̂∗ and its Normal Q-Q plot.

(b) Histogram of the empirical distribution of δ̂∗ and its Normal Q-Q plot

(c) Standardised distributions of β̂∗ and δ̂∗

Figure 6.17: β−case: Graphical assessments of Normality of β̂∗ and δ̂∗ of d6 in c = 5.
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6.4.3 Truth Parameters: γ−case, c ∈ {0.2, 1, 5}
Consider the truth parameter vector θ0 based on γ−case with parameters

αi = αi, βk = δk =
[
0 0 0 0

]
, γk =

[
−1.5c −0.5c 0.5c 1.5c

]
.

In Figure 6.18, the empirical and theoretical distributions of ∆̂∗ are provided for the

three truth instances of γ-case. Given δk = 0, the true effect ∆0 for all instances is zero.

For c = 0.2, the two distributions for all designs are almost identical with zero means.

For c = 1, the behaviour of both distributions appear to be similar to those in c = 0.2.

However there is a slight change in the empirical distributions obtained from designs d3,

d5, d7 and d8. In addition, the proxy effects of d3 and d5 in particular move slightly

from the centre ∆0. These two designs show a sign that the empirical and theoretical

distributions are not in agreement. For c = 5, the range of ∆̂∗ decreases compared to

other instances, unlike what are seen in c = 5 in β−case and δ−case, where the range

increases as c gets larger. In this case, four designs only d3, d7, d8 and d10 show full

agreement between empirical and theoretical distributions with zero means. For the other

designs the theoretical mean slightly shift either to left or right of the sample mean. By

comparing this figure to the distributions of ∆̂∗ in β−case and δ−case, the impact of level

of differences between strata on the variations between designs are not obvious in this

truth case.

Figure 6.18: γ−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗ for c = 0.2, c = 1 and c = 5.
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In contrast to earlier findings of the marginal distributions of
¯
θ̂∗, Figure 6.19 for β̂∗ and

Figure 6.20 for δ̂∗ do not show a clear effect of level of difference between strata on the

behaviour of the estimates. The theoretical and empirical distributions of both estimates

appear to meet except for designs d4 and d5 when c = 5.

Figure 6.19: γ−case: together 10 empirical sampling distributions and theoretical distributions

of β̂∗ for c = 0.2, c = 1 and c = 5.

Figure 6.20: γ−case: together 10 empirical sampling distributions and theoretical distributions

of δ̂∗ for c = 0.2, c = 1 and c = 5.

The p−values obtained from the AD and the KS tests support the idea that the empirical

distribution is consistent with theoretical distributions as shown in Figure 6.21, except

for two significant cases in c5 in d4 and d10 appear to counter this idea. However the
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Chi-square qq-plot presented in Appendix H in Figure H.4 and Figure H.5 suggest

that the
¯
θ̂∗ and ∆̂∗ are close to the normal distribution.

Figure 6.21: γ−case: p−values obtained from the Kolmogorov Smirnov (KS) and Anderson

Darling (AD) tests of goodness of fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆∗ : D2
∆∗ ∼ χ2

1

for c = 0.2, c = 1 and c = 5.

6.4.4 Truth Parameters: δ−case, β−case, γ−case, c ∈ {−0.2,−1,−5}

Consider the truth parameter vector θ0 based on δ−case, β−case, γ−case such that the

non-zero parameter vector in each case δk, βk and γk, respectively are attributed to neg-

ative values of c, i.e. c ∈ {−0.2,−1,−5}. Changing the direction of the strata’s impact

by using negative values of c in each truth case should not affect the earlier validated

alignment between the theoretical distribution and empirical sampling distributions that

were found when proposed positive c values were used. However, strata are not the same

and results may not be equivalent to those obtained from using positive c. Distributions

of the estimates of the applied model parameters obtained from the theory and simulation

are exhibited in Figure 6.22, Figure 6.23 and Figure 6.24, for all single truth cases

across negative c.

Figure 6.22a provides the theoretical and empirical sampling distributions of the applied

effect ∆̂∗ for δ−case across negative c. From the presented distributions in this figure,

it is apparent that the behaviour of all the sample distributions are aligned with their

corresponding theoretical distributions. This result matches those observed earlier in

Figure 6.5 and Figure 6.4 when positive c were used. This figure also shows that the

range of ∆̂∗ increases as the difference between strata gets larger, which is in accord with
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our earlier observations. However, the range of ∆̂∗ in c = −0.2 and c = −1 is shifted

to the left compared to the distributions made by c = 0.2 and c = 1. The decrease in

the overall campaign effects is observable in these two instances, where the true effect

∆0 decreases by more than 5000 units in c = −0.2 compared to the value obtained by

using c = 0.2, and decreases by more than 20000 units in c = −1 compared to the value

obtained by using c = 1. Focusing on the first design in these two c values, it is possible

to see that the distributions of ∆̂∗ are shifted sharply to the left; put them to the left of

their truth instance’s true effect true effect ∆0. In comparison with distributions of d1 in

c = 0.2 and c = 1, they are at the opposite direction relative to ∆0. This result might

be related to the impact of the strata relative information in the treatment spatial units

on the stratified parameters, such as relative search proportions. When c = −5, on the

other hand, the range of ∆̂∗ is shifted to the right for all designs and ∆0 is a bit larger

compared to distributions given by c = 5.

When truth parameters are β−case based, the theoretical and empirical sampling distri-

butions of ∆̂∗ listed in Figure 6.22b are aligned parallel to each other, for the three

negative c values. In accordance with earlier observations in using positive c, there is an

increment in the range of ∆̂∗ as the difference between strata widens but not when truth

parameters are γ−case based, see Figure 6.22c. By comparing the range ∆̂∗ in β−case

here to those resulted by positive c in Figure 6.11, it can be observed that the negative

limits of the applied effects obtained by the latter are cut here and hence the range de-

creases. The change in the range be seen clearly in the distributions from designs d2 and

d3 where both shift to the right. Paying particular attention to the first four designs over

all three sub-figures, the change in the range brings the variation between those designs

down.

In γ−case using c = 1 or c = −1, the range and the distributions behaviour of ∆̂∗ for all

designs do not change, and the same can be observed when using c = ±0.2. Using c = −5

makes no change too in the empirical sampling distributions of ∆̂∗ in all designs compared

with those drawn by c = 5. However, using c = −5 makes an impact on the theoretical

distributions of ∆̂∗ in almost all presented designs and clearly obvious in d1 as well as d6,

d7 , d8 and d9, where their ranges moved to the left causing mismatch with their sampling

distributions.
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(a) δ−case

(b) β−case

(c) γ−case

Figure 6.22: All single cases; δ−case, β−case and γ−case: together 10 empirical sampling dis-

tributions and theoretical distributions of ∆̂∗ for c = −0.2, c = −1 and c = −5
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(a) δ−case

(b) β−case

(c) γ−case

Figure 6.23: All single cases; δ−case, β−case and γ−case: together 10 empirical sampling dis-

tributions and theoretical distributions of β̂∗ for c = −0.2, c = −1 and c = −5
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(a) δ−case

(b) β−case

(c) γ−case

Figure 6.24: All single cases; δ−case, β−case and γ−case: together 10 empirical sampling dis-

tributions and theoretical distributions of δ̂∗ for c = −0.2, c = −1 and c = −5
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The theoretical behaviour of
¯
θ̂∗; β̂∗ and δ̂∗ in all truth cases including positive or negative

c except γ−case with c = −5 conform to their empirical sampling distributions. The

lack of agreement between the theory and the simulation in γ−case with c = −5 appears

again very clear in d1 as shown in Figure 6.23c and Figure 6.24c. Not to mention,

changing the sign of c makes no difference in the range of β̂∗ and range δ̂∗ in all single truth

instances, except γ−case with c = −5 in Figure 6.23 and Figure 6.24. Notwithstanding

the similarity in the resulting range between negative and positive c, the behaviours of

the presented distributions in using negative c are not the same as those presented in the

positive. It is not easy to explain the change in a distribution behaviour in each design,

but it might be related to the impact of proportions of search and purchases in each strata

in treatment spatial units. There are, however, other possible explanations, and further

work needs to be done to investigate and explain the behaviour of each design. In this

investigation, the aim was to assess the ability of the theory to describe the asymptotic

sampling distribution of the estimates of the applied model parameters.

P -values for the AD and the KS tests for the three truth cases across negative c values

are illustrated in Figure 6.25. Once more γ−case with c = −5, especially in d1, d6 and

d8 display the most striking significant results, indicating unusual difference between the

distributions behaviour of ∆̂∗ or
¯
θ̂∗ obtained by the theory and the simulation. Focusing on

this truth instance, we present the Chi-square qq-plots in Figure 6.26 so as to assess if the

applied estimates possibly come from the theoretical Normal distribution. The qq-plots

of design d1 clearly indicate the deviation from the straight line and hence demonstrate

the non theoretical normality of the estimates in this design.

Consider d1 in this truth circumstance, the empirical distributions of β̂∗, δ̂∗ and ∆̂∗ are

presented as histogram plots in Figure 6.28. From the figure it can be seen that the

three samples are approximately bell shaped. The red normal curve over the histograms

are the theoretical distributions of the estimates. The peaks in all three curves disagree

with the center of the bell-shaped histograms. On the same figure, the normal Q-Q plots

are shown. The points in the three estimates form a line that are nearly straight regardless

the diversion at extreme ends, indicating that the distribution of the three estimates are

not far from the Normal distribution.
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(a) δ−case

(b) β−case

(c) γ−case

Figure 6.25: All single cases; δ−case, β−case and γ−case: p−values obtained from the

Kolmogorov Smirnov (KS) and the Anderson Darling (AD) tests of goodness of

fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆∗ : D2
∆∗ ∼ χ2

1 for c = −0.2, c = −1 and c = −5
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(a) Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1

(b) Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus quantiles of χ2

2

Figure 6.26: γ−case with c = −5: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ and D2

θ∗

versus quantiles of χ2
1 and χ2

2, respectively.
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In addition, SW test provides insignificant p−values 0.2499, 0.7273 and 0.2495 for testing

the normality of the underlying distribution of ∆̂∗, β̂∗ and δ̂∗ respectively, suggesting that

all three distributions are Normal. The KS test provides significant p−values less than

2.2 × −16 indicating biased means in the sampling distribution of these three estimates.

The standardised distributions of the three estimates are shown in Figure 6.27 with

the standard Normal curve, to examine the dissimilarity between their theoretical and

empirical distributions. Again the three distributions deviate from the standard Normal.

The standard deviation of the standardised ∆̂∗, β̂∗ and δ̂∗ are about 1, in specific 1.02

0.99 and 1.02, respectively. Their means, on the other hand are not zero; 1.16, −1.03 and

1.16, respectively. The peak values of both δ̂∗ and ∆̂∗ are above the zero by about one

unit of the standard deviation and β̂∗ is below the zero by the about the same unit of the

standard deviation.

In contrast to earlier findings, the presented assessment suggests that this truth instance

shows unusual difference between the theoretical asymptotic distributions of the estimates

and their empirical distribution. This disagreement could be attributed to unrealistically

large difference between strata in an extreme truth case with zero true temporal effect

and zero true campaign effect. The disagreement though has not been shown in γ−case

in c = 5, so this may also be related to number of searches or purchases in the different

strata.

Figure 6.27: γ−case with c = −5: Standardised empirical distributions of β̂∗, δ̂∗ and ∆̂∗ of d1.
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(a) Histogram of the empirical distribution of β̂∗ and its Normal Q-Q plot.

(b) Histogram of the empirical distribution of δ̂∗ and its Normal Q-Q plot.

(c) Histogram of the empirical distribution of ∆̂∗ and its Normal Q-Q plot.

Figure 6.28: γ−case with c = −5: Graphical assessments of Normality of β̂∗, δ̂∗ and ∆̂∗ of d1.
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6.4.5 Truth Parameters: βδ−case, c1 = c2 ∈ {±0.2,±1,±5}

Consider the truth parameter vector θ0 based on βδ−case with two non-zero parameter

vectors βk and δk. Figure 6.29 and Figure 6.30 show the theoretical and empirical

distributions of the three estimates ∆̂∗, β̂∗ and δ̂∗ using positive and negative c. All

plots presented in the two figures appear to indicate no apparent difference between the

theoretical and the empirical distributions in all 10 designs except d10 in c1 = c2 = −1,

where the theoretical distribution of ∆̂∗ and δ̂∗ are slightly to the left of their corresponding

empirical distributions.

The true effect ∆0 is non-zero here as in δ−case since δk 6= 0. Focusing on c1 = c2 = ±5,

the values of δ̂∗ and ∆0 are less than those obtained in δ−case in c = ±5. The remarkable

result to emerge from these two instances that all 10 distributions of ∆̂∗ are to the left of

the true effect indicate negative bias in ∆̂∗. The range of β̂∗ and δ̂∗ are somewhat similar

to the range resulting in β−case. The behaviour of the two estimates across designs are

opposite to each other, whereas the behaviour of δ̂∗ and ∆̂∗ across designs gets along each

other. These two behaviours match what observed in earlier truth cases.

The p−values form the AD and the KS tests are presented in Figure 6.31. The values

present evidence at d9 in c1 = c2 = 1 and d10 in c1 = c2 = −1 against the claim that
¯
θ̂∗ and

∆̂∗ are coming from the theoretical distribution. The Chi-square qq-plots are presented in

Appendix H in Figure H.6 and Figure H.7, respectively to assess normality of
¯
θ̂∗ and

∆̂∗. The figures support normality claims in general except designs d10 in c1 = c2 = −1

provide rejection evidences, where we can see the points are not exactly on the straight

line.

Focusing on d10 in c1 = c2 = −1, SW test provides insignificant p−values 0.6586, 0.8559

and 0.6229 for testing the normality of ∆̂∗, β̂∗ and δ̂∗ respectively, suggesting that the

three distributions are Normal. However, KS test suggests they are not coming from the

theoretical distribution where p−values are 7.563×10−13, 3.195×10−4 and 3.252×10−12,

respectively. The histograms of their standardised distributions are shown in Figure

6.32 overlaid standard Normal curve, to check how far these distributions are from the

theoretical distributions. The peaked values in the three distributions are not far away

from the standard normal peak. Thus, we can still acknowledge the importance of the

theoretical framework in estimating the asymptotic distributions of the estimates.
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Figure 6.29: βδ−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗, β̂∗ and δ̂∗ for c = 0.2, c = 1 and c = 5
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Figure 6.30: βδ−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗, β̂∗ and δ̂∗ for c1 = c2 = −0.2, c1 = c2 = −1 and c1 = c2 = −5
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Figure 6.31: βδ−case: p−values obtained from the Kolmogorov Smirnov (KS) and Anderson

Darling (AD) tests of goodness of fit to test H0θ∗ : D2
θ∗ ∼ χ2

2 and H0∆∗ : D2
∆∗ ∼ χ2

1

for c1 = c2 = ±0.2, c1 = c2 = ±1 and c1 = c2 = ±5.

Figure 6.32: βδ−case with c = −1: Standardised empirical distributions of β̂∗, δ̂∗ and ∆̂∗ of d10.
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6.4.6 Truth Parameters: γβδ−case, c1, c2, c3 ∈ {1,−1}

Consider the truth parameter vector θ0 based on γβδ−case where the three parameters

γk, βk and δk are non-zero. The difference between strata are considered to be based on

c1, c2, c3 ∈ {1,−1} because we believe these values make the difference between strata

plausible. Eight sets of combinations of c1, c2, c3 are formed from these two values, i.e.

±1. The theoretical and empirical distributions of the three estimates ∆̂∗, δ̂∗ and β̂∗ are

displayed in Figure 6.33, Figure 6.34 and Figure 6.35.

The ranges of the three estimates vary from one truth instance to another. The true

effect also varies substantially from one truth instance to another, being estimated least

accurately in the cases where the coefficients c2 and c3 used for γk and δk have the same

sign and the coefficient c1 used for γk has the opposite sign. It is not clear why this should

happen. Figure 6.33 and Figure 6.34 show that the values of ∆̂∗ and δ̂∗ are negative

when c1 and c2 have the same sign and c3 has the opposite sign, i.e. c1 = c2 = 1, c3 = −1

and c1 = c2 = −1, c3 = 1, and are otherwise positive. Again, it is not clear why this

should be the case. Figure 6.35 shows the values of β̂∗ are positive when c1 and c2 have

the same sign and negative when they have opposite signs. Again there is no obvious

explanation but taken together these results show that an unobserved covariate has the

potential to have unpredictable effects on parameter estimation and in particular that

dependence of one parameter on a covariate can have implications for estimation of other

parameters.

The non-zero bias in ∆̂∗ is clear in this truth case too, especially when the signs of c2 and

c3 are different from the sign of c1 in Figure 6.33 (d),(e), (g). The behaviour of ∆̂∗ and

δ̂∗ across designs are almost the same. The behaviour of β̂∗ across designs on the other

hand opposes the behaviour of the other two estimates.

The empirical distributions of ∆̂∗ and δ̂∗ are in agreement with their corresponding the-

oretical distributions across the eights sets of the truth combinations. The empirical

distributions of β̂∗ are also in accord with theoretical distributions despite the slight di-

vergence at design d4 in truth set c1 = c2 = c3 = 1 in Figure 6.35 (a). In this truth

version at d4, there is some evidence that the distributions of β̂∗ differ but it is a small

difference compared to the variation in outcome between the different designs.
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Figure 6.33: γβδ−case: together 10 empirical sampling distributions and theoretical distribu-

tions of ∆̂∗ for combinations of c1, c2 and c3 in the set {1,−1}
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Figure 6.34: γβδ−case: together 10 empirical sampling distributions and theoretical distribu-

tions of δ̂∗ for combinations of c1, c2 and c3 in the set {1,−1}
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Figure 6.35: γβδ−case: together 10 empirical sampling distributions and theoretical distribu-

tions of β̂∗ for combinations of c1, c2 and c3 in the set {1,−1}
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We have already seen how to examine if any considerable inconsistency between the theor-

etical and empirical distribution exists. Thus from then on it is no longer necessary to go

further in the investigation by conducting hypotheses testing. Despite inadequacy men-

tioned in results for β̂∗, the remaining results in this truth case suggest that the theoretical

distributions can be used to describe the empirical distributions.

6.4.7 10%(nik), 1%(nik), 0.1%(nik), nik0 6= nik1

All the results presented so far are calculated based on the assumption that the number

of search nit in each spatial unit i during time t is equal to the total number of individuals∑
k nik in all strata K in that spatial unit i that are included in micro-census data.

However, by comparing the total number of micro sample individuals
∑

i,k nik to the total

available realistic search
∑

i,t nit, we found that
∑

i,k nik = 1435898,
∑

i,t=0 ni0 = 12885

and
∑

i,t=1 ni1 = 9284. The total of the used micro search
∑

i,k nik are more than 100 times

the realistic search in both time periods. Hence, one could argue that the results presented

above may not be applicable to the real world. Therefore, it would be interesting to assess

the theoretical asymptotic distribution using low search rate by taking for example 10%,

1% and 0.1% of the number of micro sample individuals nik in each stratum k in spatial

unit i. With 10% the total search is given by
∑

i,k nik = 143582, 1% gives
∑

i,k nik = 14350

and 0.1% gives
∑

i,k nik = 1442.

Consider for example the truth δ−case with c ∈ {0.2, 1, 5}, the computational algorithms

are implemented using the suggested proportions of nik. The obtained theoretical and

empirical distributions of the applied estimates ∆̂∗, β̂∗ and δ̂∗ are presented in Figure

6.36, Figure 6.37 and Figure 6.38, respectively. Interestingly, the figures show that the

empirical distributions of the three estimates in 10 designs across three positive c continue

to be consistent with the theoretical distributions except some distributions of β̂∗ and δ̂∗

in c = 5 when 0.1%(nik) are used.

Figure 6.36 also shows that by reducing the proportion of the used number of search, the

range of the estimated applied effect ∆̂∗ scales down. In addition, the random variation

within a single design gets bigger. The bias of ∆̂∗ on the other hand gets smaller in each

single design. Consequently, the variation between the 10 designs gets smaller in each δ−

truth instance as the proportion of search decreases. The range of other estimates β̂∗ and

δ̂∗ in Figure 6.37 and Figure 6.38 gets wider as the number of search gets smaller due

to large variability within a design.
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Figure 6.36: δ−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗ for 10%, 1% and 0.1% search across c ∈ {0.2, 1, 5}
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Figure 6.37: δ−case: together 10 empirical sampling distributions and theoretical distributions

of β̂∗ for 10%, 1% and 0.1% search across c ∈ {0.2, 1, 5}
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Figure 6.38: δ−case: together 10 empirical sampling distributions and theoretical distributions

of δ̂∗ for 10%, 1% and 0.1% search across c ∈ {0.2, 1, 5}
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We should not run the investigation of changing the number of search to the all proposed

truth cases. By using δ−case, there are no notable observations resist the ability of theory

to describe the sampling distribution of the estimates of the applied parameters. We

believe this would continue to be valid to other truth cases. In addition, any discrepancy

between the theory and simulation that appeared earlier for extreme truth instances will

be expected to arise in this condition as well. In addition we examine one more interesting

truth, which is γβδ−case with c1 = c2 = c3 = 1.

In Figure 6.39, the theoretical and empirical distributions of the applied estimates ∆̂∗,

β̂∗ and δ̂∗ for this γβδ−case are presented for the three suggested proportions of search.

The graphical findings shown in the figure support the considerable contribution of theory

in describing the sampling asymptotic distribution of the estimates. This includes the

distribution of β̂∗ formed by d4 unlike earlier results obtained in this truth case.

It would be also interesting to assess the theoretical asymptotic distribution when the

number of search in a stratum k in a spatial unit i in the two time periods are not similar.

So far the computation is based upon the assumption that nik0 = nik1. The realistic

search is available at spatial unit level for two time periods; i.e. ni0 and ni1. In the

computation above, the search in a spatial unit i is the total micro individuals at that

unit; i.e. ni =
∑

k nik which is time independent. Using realistic search, the proportion

of search in each spatial unit i at each time period to the total micro individuals; i.e ni0
ni

and ni1
ni

, can be used to create a difference in the number of search in each spatial unit i

during two time periods. In addition, by assuming that calculated search proportions are

strata independent within a spatial unit i, it then can be used to create a difference in

the number of search in a stratum k in a spatial unit i between the two time periods; i.e.

nik0 6= nik1. This change should return the total search in each time period equal to the

realistic search in each time period. Calculating the total search gives
∑

i,k nik0 = 12872

and
∑

i,k nik1 = 9288 which are almost equal to the realistic search by taking rounding

error of the proportion in each stratum in a spatial unit into account.

Using the above mentioned change in the number of search; i.e. nik0 6= nik1, the theoretical

and empirical distributions of the applied estimates ∆̂∗, β̂∗ and δ̂∗ for δ−case withc ∈

{0.2, 1, 5} and γβδ−case with c1 = c2 = c3 = 1 are presented in Figure 6.40 and Figure

6.41. The figures show that the empirical distributions can be described by the theoretical

findings.
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Figure 6.39: γβδ−case with c1 = c2 = c3 = 1: together 10 empirical sampling distributions and

theoretical distributions of ∆̂∗, β̂∗ and δ̂∗ for 10%, 1% and 0.1% search.
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Figure 6.40: δ−case: together 10 empirical sampling distributions and theoretical distributions

of ∆̂∗, β̂∗ and δ̂∗ using different number of search over the two time periods; i.e

nik0 6= nik1, across c ∈ {0.2, 1, 5}
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Figure 6.41: γβδ−case with c1 = c2 = c3 = 1: together 10 empirical sampling distributions and

theoretical distributions of ∆̂∗, β̂∗ and δ̂∗ using different number of search over the

two time periods; i.e nik0 6= nik1.

It would also be good to check the validity of the theoretical distributions when nik0 6= nik1

for γ−case and β−case when c = 1 as well. Figure 6.42. The figures provide a sign that

the empirical distributions can be described by the theoretical findings. The estimated

applied effect ∆̂∗ for the presented truth cases in this figure are scaled down if they

compared to their earlier results obtained by using the assumed nik; i.e. the micro number

of individuals. In addition, the variation between designs is now smaller in β−case and

βδ−case, whereas there is still no obvious change between the designs in γ−case.

It would also be interesting to investigate the impact of minimising the number of search on

a truth instance that showed a violation in theoretical distribution. Consider, for example,

γ−case with c = −5 in Figure 6.22c. Using 1%nik and nik0 6= nik1, the empirical

sampling distributions and theoretical distributions of ∆̂∗, β̂∗ and δ̂∗ are presented for

this truth cases in Figure 6.43. Both cases show there is an agreement between the

theoretical and empirical results in almost all designs as shown in the figure. Hence large

number of search in each stratum at a spatial can be used to explain the earlier finding

of this truth instance despite the fact that 1%nik and nik0 6= nik1 are more close to the

reality.



6.4. Computational Results 187

Figure 6.42: β−case and γ−case with c = 1 and βδ−case with c1 = c2 = 1: together 10 empirical

sampling distributions and theoretical distributions of ∆̂∗, β̂∗ and δ̂∗ using different

number of search over the two time periods; i.e nik0 6= nik1.
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Figure 6.43: γ−case with c = −5: together 10 empirical sampling distributions and theoretical

distributions of ∆̂∗, β̂∗ and δ̂∗ using (a): 1% of the assumed search and (b) different

number of search over the two time periods; i.e nik0 6= nik1.
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6.5 Summary and Concluding Remarks
In this chapter, we discussed the validity of the theoretical asymptotic distribution of the

estimated applied model parameters across different truth instances. The investigation

followed the assumption that the search process is known. Different number of searches

were utilised in the computation including sample micro-census individuals in each stratum

in a spatial unit nik, 10%(nik), 1%(nik), 0.1%(nik) and realistic search. In addition, the

investigations were carried out for 10 different designs in a single truth instance and the

same 10 designs across different truth.

Most truth instances reported in this chapter corroborates the ability of theory to describe

the sampling distribution of the estimates of the applied model parameters. Violations

of the theoretical distributions were only found in few cases that related to using large

difference between strata c = 5 or large numbers of search nik.

In this investigation there are several limitations that need to be acknowledged. The

specification of truth parameters does not take into account that the overall difference

between strata in a non-zero parameter vector is not centred to zero; i.e.
∑

k wkc 6= 0. The

values of wk are fixed. The specification of campaign designs relied on a one design strategy.

However, the developed computational algorithms are general enough to include different

values of c and wk. Future studies on these points are therefore recommended.

The computational algorithm can be extended for treating the two-stage model; purchase

model conditioning on search process. The overall effects ∆0, ∆̃∗ and ∆̂∗ of the two-

stage model were discussed in chapter 4 and chapter 5. They are in terms of the expected

number of searches instead of fixed number of searches. The theoretical distributions of the

estimated applied model parameters for the two-stage model were found in the previous

chapter. The search parameter vector ϑ needs to be specified alongside the purchase truth

parameter vector θ. This point needs more focus and therefore further research should be

done to investigate the theoretical distribution of the two-stage model.

Despite these limitations, the results in this chapter indicate the key role of the theoret-

ical approximation to the sampling distribution of applied model parameters. This saves

having to do expensive Monte Carlo simulation all the time. The next chapter, therefore,

moves on to discuss the performance evaluation of different design strategies.



Chapter 7

Performance Evaluation of

Different Design Strategies

Assuming the plausibility of the theoretical framework for a campaign design r in a spe-

cified design strategy and a specified truth vector parameter θ0, then θ̃∗r is the best para-

meter to use for the applied model vector parameter θ∗ and the proxy effect ∆̃∗r is a rational

measure of the applied effect ∆∗. Given that each design strategy is a meta-design that

can be replicated R times, the question that needs to be addressed then is: which design

strategy and truth instance return typically better estimates of the effectiveness of the

advertising campaign, i.e. ∆̂∗.

This chapter begins by describing the criteria that we used to assess the performance

of a specified advertising campaign design strategy for a specified truth instance. The

performance evaluation criteria take into account the difference between the proxy effect

and the truth, the difference between the estimate of the applied effect and the proxy effect

and the difference between the estimate of the applied effect and the truth. The next two

sections provide an investigation into the performance of the completely randomised design

strategy and and various matched-pairs design strategies using multiple truth instances.

Some remarks and conclusions are drawn in the final section.

190
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7.1 Performance Assessments of Advertising

Campaign Design Strategies
Given that a specified design strategy is repeated R times for a specified truth instance

θ0, then for design r, the estimated applied effect can be expressed as

∆̂∗rm = ∆0 + (∆̃∗r −∆0) + (∆̂∗rm − ∆̃∗r)

where m is a hypothetical sampling replicate within rth design. The error associated with

the estimated applied model parameters θ̂∗ in relation to the truth parameters θ0 can

be quantified by the design and sample specific total error ∆̂∗rm −∆0, which is given by

a summation of the design specific approximation error ∆̃∗r − ∆0 and the within design

sampling error ∆̂∗rm − ∆̃∗r .

The quantification of the design and sample specific total error without random sampling of

∆̂∗rm is not straightforward. However, its error components, i.e. ∆̃∗r−∆0 and ∆̂∗rm−∆̃∗r can

be used to draw inference about the design specific error. By assuming that the theoretical

approximate asymptotic distribution of ∆̂∗rm is appropriate, then the expectation of the

sampling error is given by Er[∆̂
∗
rm − ∆̃∗r) = 0 and its variability is SDr(∆̂

∗
rm − ∆̃∗r) =

s̃dr(∆̂
∗
rm). It is desirable that the value of ∆̃∗r should typically be near to ∆0 to reduce

the contribution of ∆̃∗r −∆0, and the dispersion value s̃dr(∆̂
∗
rm) should be low to stabilize

∆̂∗rm − ∆̃∗r .

For R designs sampled from the specified design strategy and the specified truth instance,

a sample of ∆̃∗, i.e. ∆̃∗1, ∆̃
∗
2, . . . , ∆̃

∗
R and a sample of s̃d(∆̂∗), i.e. s̃d1(∆̂∗1m),

s̃d2(∆̂∗2m), . . . , s̃dR(∆̂∗Rm) are computed. Therefore, information is obtained about the

three errors. Dropping the subscripts, the relationship between the errors is

∆̂∗ −∆0 = (∆̃∗ −∆0) + (∆̂∗ − ∆̃∗)

In this study, we use the short term total error to refer to ∆̂∗−∆0, the term approximation

error to refer to ∆̃∗ −∆0 and the term sampling error to refer to ∆̂∗ − ∆̃∗.

From the plausible theoretical asymptotic distribution of ∆̂∗,

E[∆̂∗] = E[E[∆̂∗|design]] = E[∆̃∗],

and

Var(∆̂∗ −∆0) = Var(∆̂∗).
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Using the law of total variance, Var(∆̂∗) is given by

Var(∆̂∗) = E[Var(∆̂∗|design)] + Var(E[∆̂∗|design])

where Var(∆̂∗|design) = Ṽar(∆̂∗) = (s̃d(∆̂∗))2. Hence the mean and variance of the total

error ∆̂∗ −∆0 are

E[∆̂∗ −∆0] = E[∆̂∗]−∆0 = E[∆̃∗ −∆0],

Var(∆̂∗) = E[Ṽar(∆̂∗|design)] + Var(∆̃∗),

where E[Ṽar(∆̂∗|design)] ≈ E[(s̃d(∆̂∗))2].

Therefore, for a specified design strategy using a specified truth instance, four performance

measures on the scale of ∆ can be calculated using the theoretical distribution of the

the campaign effectiveness estimate ∆̂∗ and the distribution of the approximation error

∆̃∗ − ∆0. The performance measures are E[∆̂∗ − ∆0], sd(∆̃∗), E[s̃d(∆̂∗)] and sd(∆̂∗),

where sd(∆̂∗) =

√
E[Ṽar(∆̂∗)] + Var(∆̃∗).

Also, the contributions of the two sources of variability, the approximation error ∆̃∗ −∆0

and the sampling error ∆̂∗−∆̃∗, can easily be investigated graphically if the distribution of

the approximation error is nearly symmetric about zero. From the theoretical asymptotic

distribution of ∆̂∗, the distribution of the sampling error is approximately normal about

0. To compare the amount of variability of these two errors around zero, typical central

variability measures can be used such as their interquartile ranges (IQR) or standard

deviations. The advantage of using measures based on quartiles is that a standard boxplot

can be used to show variability of ∆̃∗ which need not be assumed to be normal. When the

median of that boxplot lies at or near 0, the upper quartile (right end of box) is a good

measure of the variability of ∆̃∗ and the natural comparison is then to the upper quartile

of the sampling error, i.e. 0.6745× ˜sd(∆̂∗). Showing boxplots of ∆̃∗ and 0.6745× ˜sd(∆̂∗)

on the same scale provides a convenient and immediate visual comparison of the relative

sizes of the two sources of variability, as illustrated in Figure 7.1, by comparing the right

end of the boxplot of ∆̃∗ to the median of the boxplot for 0.6745× ˜sd(∆̂∗). If they lie on

the same line, as illustrated in the figure, the contributions of the two sources of variability

are then about the same.
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Figure 7.1: Graphical comparison of contributions of two sources of variability, variation in the

sampling error ∆̂∗ − ∆̃∗ within designs and variation in the approximation error

∆̃∗−∆0 between designs, within a specified design strategy and for a specified truth

instance. The label differential effect refers to the difference between ∆̃∗ and ∆0

which is used as a common label of two different quantities ∆̃∗ − ∆0 and 0.6745 ×
˜sd(∆̂∗).

When the mean bias in the approximation error is not zero, i.e. E[∆̃∗] differs noticeably

from ∆0, the two sources of variability are not directly comparable in a figure like Figure

7.1. Therefore, the four performance measures that are mentioned earlier in this section

will be taken into consideration in a different graphical presentation introduced later in

Figure 7.5.

The assessments are applied to the design strategies that are outlined in chapter 4: com-

pletely randomised design and matched pairs design using different matching algorithms.

In the following sections, the assessments are carried out for a specified design strategy

using 1000 designs and multiple truth instances to investigate how changing the truth

in a certain design strategy affects the sampling error and the approximation error. In

addition, the assumption made in the previous chapter that the search process is known

continues here.

The assessments are performed using the number of micro sample individuals nik in a

stratum k in a spatial unit i such that nik is time independent. Assessments using 1%

of nik are implemented as well to be closer to reality. In addition, the realistic search
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proportions in spatial unit i at a time period t are applied to each stratum k in that

spatial unit; i.e. nik0 6= nik1. Results for the latter two schemes of the number of searches

are presented in the following sections, whereas results for the first scheme are presented

briefly in Appendix I.1.

7.2 Completely Randomised Design
In this section, a comparison of the two sources of variability is presented when a com-

pletely randomised design strategy is applied, using different truth instances. In addition,

for the same truth instances, the variabilities are computed using partial randomisation

design strategies where different percentages of spatial units are assigned to serve the

new advertising campaign during the second time period. The employed percentages

are 10%, 20%, 30% and 40%. The variabilities resulting from the complete random-

ised design strategy are compared with those obtained from partial randomised design

strategies.

7.2.1 Truth Parameters: δ−case, β−case, γ−case

Considering truth parameters in δ−case, β−case, γ−case with c ∈ {0.2, 1, 5}, the approx-

imation error ∆̃∗ −∆0 and the upper quartiles of the sampling error ∆̂∗ − ∆̃∗ are shown

in Figure 7.2 and Figure 7.3, using 1%(nik) and nik0 6= nik1, respectively.

Focusing first on 1%(nik) in Figure 7.2, we can see that the change in the sampling error

between design strategies is about the same across given truth instances. By looking to

the design strategies in a single truth case across different c values, it is clear that the

change in the sampling error gets narrower as the percentage of randomness increases.

Comparing the variability of the sampling error associated with the complete randomised

design strategy to the those resulting from partial randomised design strategies, we can

see that the variability of the sampling error resulting from using the complete randomised

design strategy is lower than the variability obtained by both 10% and 20% randomised

design strategies but almost the same as what was obtained from using higher percentages

of randomisation, i.e. 30% or 40%.

It is apparent from the figure that the range of the approximation error expands as the

difference between strata increases. In addition, the change in the approximation error gets

narrow as the percentage of the randomness increases or when the complete randomisation

is applied. This can be observed clearly when δ truth case is used across different levels of
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Figure 7.2: 1%(nik), (complete and partial randomised design strategy using truth, δ−case,

β−case, γ−case across c ∈ {0.2, 1, 5}): comparing the contributions of the two

sources of variability: sampling error and approximation error. The true effect:

∆0δc=0.2
= 70.88837, ∆0δc=1

= 920.7419, ∆0δc=5
= 3170.888, ∆0β = ∆0γ = 0.



7.2. Completely Randomised Design 196

Figure 7.3: nik0 6= nik1, (complete and partial randomised design strategy using truth: δ−case,

β−case, γ−case across c ∈ {0.2, 1, 5}) comparing the contributions of the two sources

of variability: sampling error and approximation error. The true effect: ∆0δc=0.2
=

60.42186, ∆0δc=1
= 718.8298, ∆0δc=5

= 2404.563, ∆0β = ∆0γ = 0.
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difference between strata. It is hard on the other hand to notice this change consistently

in the approximation error in β truth instances. Also it can be seen it is difficult to tell

what is the impact of γ−case across c values on the change of approximation error over

the given design strategies.

Using the proposed assessments, we can see that the contribution of the sampling error

is higher than the contribution of the approximation error in using c = 0.2 and c = 1

across given truth cases and design strategies, though the difference between the errors’

contributions in using c = 1 is slightly smaller than in c = 0.2. For c = 5, this pattern

continues in γ−case but we notice the opposite in using β−case. The errors’ contributions

are about the same in using δ−case when complete randomised design is applied. For the

other design strategies in this truth case, the difference between their errors’ contributions

are about the same magnitude of their bias in the approximation errors.

If we turn now to Figure 7.3 when nik0 6= nik1 is used, we can see that the patterns of the

two sources of variability are almost the same as what was noticed above in using 1%(nik).

In this scheme, however, the change in the approximation error obtained by γ−case with

c = 5 is more evident compared to the earlier results.

If the whole micro sample individuals nik are employed in the computation, the stand-

ard deviations s̃d(∆̂∗) turned out to be lower than the earlier two schemes, making the

sampling error to be close to zero. The contribution of the variability of both errors related

to this scheme are presented in Figure I.1 in Appendix I.1.

The findings in the three schemes of the number of search suggest that the complete

randomised design strategy performs better in δ−case. This result can be seen also in

β−case with c = 0.2 and c = 1. This conclusion takes into consideration low magnitude of

the sampling error, low magnitude of the approximation error and nearly zero bias.

7.2.2 Truth Parameters: βδ−case

Consider truth parameters in βδ−case with c1, c2 ∈ ±1 that gives four sets of truth

combinations: c1 = c2 = 1, c1 = c2 = −1, c1 = −1, c2 = 1 and c1 = 1, c2 = −1. In Figure

7.4, distributions of the approximation errors and distributions of the upper quartiles of

the sampling errors of complete and partial randomised design strategies are presented for

the four sets of βδ−case, using 1%(nik) and nik0 6= nik1. The most striking observation to

emerge from those four sets in the two schemes is the non-zero bias in the approximation
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errors. The bias is considerably large when c1 or c2 is negative. This indicates that

the applied model is not a good description of the truth when these truth instances are

taken.

Comparing the results obtained from the four sets of combinations of the truth parameters

for the two schemes in the figure below, it can be seen that truth’s sets having different signs

of c1 or c2 lead to increase in the magnitude of the approximation error as the percentage

of the randomisation increases, whereas sets with the same signs of c1 and c2 lead to

the opposite. The sets that lead to a direct relationship between the magnitude of the

approximation error and the percentage of the randomization give the highest magnitude

of the approximation error at the complete randomised design strategy. The interquartile

range of the approximation error when the signs of c1 and c2 are the same is much larger

than the range when the signs of c1 and c2 are different. The change of the sampling

error between design strategies is about the same across the four sets of the truth. The

magnitude of the sampling error corresponding to 10% randomisation is the highest across

the four sets of the truth.

The contributions of the sampling error and the approximation error are not directly

comparable in Figure 7.4, because of the substantial bias of ∆̃∗ away from ∆0 when c1 and

c2 have opposite signs. However, the four performance measures: the variability sd(∆̂∗ −

∆0) and the average bias E[∆̂∗−∆0] of the total error, the variability of the approximation

error sd(∆̃∗ − ∆0) and the average variability of the sampling error E[s̃d(∆̂∗)] can be

considered in this case to tell more about the contributions of the variability.

In Figure 7.5, the four performance measures for both schemes of the number of search

1%(nik) and nik0 6= nik1 are presented. The results shown for the two schemes are quite

similar. When the signs of c1, c2 are the same, the variability of the approximation error

and the average variability of the sampling error have similar magnitudes though the

contribution of the approximation error is a little lower for c1 = c2 = −1. The two

variabilities achieve their minimum in this situation at the complete randomised design

strategy. The variability of the total error is summarized by the the other two variabilities

and hence it behaves the same way. When the signs of c1, c2 are different, there is a gap

between the two variabilities where the lower contribution comes from the approximation

error. The magnitude of the approximation error varies systematically between design

strategies and its magnitude is much smaller than when c1 and c2 have the same sign.
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Therefore, the total variability is almost the average theoretical variability of the estimated

overall effect ∆̂∗. The bias is positive when the signs of c1, c2 are the same and negative

when the signs of c1, c2 are different. The bias is lower in c1 = c2 = 1 than those in

c1 = c2 = −1.

Figure 7.4: 1%(nik) and nik0 6= nik1, (complete and partial randomised design strategy using

truth, βδ−case using combinations of c1, c2 ∈ ±1): comparing the contributions

of the two sources of variability: sampling error and approximation error. Using

1%(nik), the true effects are: ∆0[c1=1,c2=1] = 1011.249, ∆0[c1=−1,c2=−1] = 919.8866,

∆0[c1=1,c2=−1] = −118.6575, ∆0[c1=−1,c2=1] = 118.6575. Using nik0 6= nik1, the true

effects are: ∆0[c1=1,c2=1] = 768.2345, ∆0[c1=−1,c2=−1] = 633.9853, ∆0[c1=1,c2=−1] =

−26.01541, ∆0[c1=−1,c2=1] = 214.4006.
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Figure 7.5: 1%(nik) and nik0 6= nik1, (complete and partial randomised design strategy using

truth, βδ−case using combinations of c1, c2 ∈ ±1): comparing the four performance

measures: the variability sd(∆̂∗) and the average bias E[∆̂∗ − ∆0] =E[∆̃∗ − ∆0] of

the total error, the variability of the approximation error sd(∆̃∗) and the average

variability of the sampling error E[ ˜sd(∆̂∗)].



7.2. Completely Randomised Design 201

The results presented in this figure in both schemes suggest as one would expect, that

the complete randomised design strategy gives the minimum total variability in the four

truth instances. However, when the signs of c1, c2 are different, its variability of the

approximation error is slightly higher than for the other designs strategies. Also, it appears

in this version of the truth that the bias is large and negative. We speculate that in some

sense this version of the truth maximises the effect of the unobserved covariate on the time

and advertising components of the model while limiting the overall effect of the covariate

on the number of purchases, i.e. the opposite signs cancel out in the group receiving the

modified campaign.

When the number of micro sample individuals nik is employed in the computation - Fig-

ure I.2 in Appendix I.1 - the variability of the total error is attributed mainly to the

approximation error. When c1 and c2 have similar signs, the complete randomised design

strategy performs better compared to the partial randomisation strategies, whereas when

c1 and c2 have opposite signs, the complete randomisation gives a bit higher variability of

the total error. The bias in the later version of the truth is again large and negative.

7.2.3 Truth Parameters: γβδ−case

Consider truth parameters in γβδ−case with eight sets of combinations of c1, c2, c3 ∈ ±1.

In Figure 7.6 and Figure 7.7, distributions of the approximation errors and distribu-

tions of the upper quartiles of the sampling errors of complete and partial randomised

design strategies are presented for eight sets of γβδ−case, using 1%(nik) and nik0 6= nik1,

respectively.

The eight truth versions are divided into two plots in both figures. The first plot presents

the results obtained from the truth versions that have c1 = 1, c2 = 1, c3 = −1, c1 =

1, c2 = −1, c3 = 1, c1 = −1, c2 = −1, c3 = 1 and c1 = −1, c2 = 1, c3 = −1. The second

plot presents the results obtained from the truth versions that have c1 = c2 = c3 = 1,

c1 = c2 = c3 = −1, c1 = 1, c2 = −1, c3 = −1 and c1 = −1, c2 = 1, c3 = 1. By comparing

the two plots in both schemes, the interquartile range of the approximation error is much

wider in the second plot. Focusing on the minimum variability, the approximation error

attains its minimum value at 10% randomisation design strategy in the first plot. On

the other hand, it reaches its minimum value at the complete randomised design strategy

and 40% randomisation design strategy in the second plot. The change of the sampling

error between design strategies is about the same across the eight truth sets, where its
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maximum magnitude is corresponding to the 10% randomisation.

Figure 7.6: 1%(nik), (complete and partial randomised design strategy using truth, γβδ−case

using combinations of c1, c2, c3 ∈ ±1): comparing the contributions of the two

sources of variability: sampling error and approximation error. The true effects

are: ∆0[c1=c2=c3=1] = 838.7629, ∆0[c1=c2=c3=−1] = 987.2001, ∆0[c1=1,c2=−1,c3=−1] =

−118.6575, ∆0[c1=−1,c2=1,c3=1] = 118.6575, ∆0[c1=1,c2=1,c3=−1] = −1011.249,

∆0[c1=1,c2=−1,c3=1] = 1011.249, ∆0[c1=−1,c2=−1,c3=1] = −919.8866,

∆0[c1=−1,c2=1,c3=−1] = 919.8866.
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Figure 7.7: nik0 6= nik1, (complete and partial randomised design strategy using truth, γβδ−case

using combinations of c1, c2, c3 ∈ ±1): comparing the contributions of the two

sources of variability: sampling error and approximation error. The true effects

are: ∆0[c1=c2=c3=1] = 664.0289, ∆0[c1=c2=c3=−1] = 747.3403, ∆0[c1=1,c2=−1,c3=−1] =

−214.4006, ∆0[c1=−1,c2=1,c3=1] = 26.01541, ∆0[c1=1,c2=1,c3=−1] = −768.2345,

∆0[c1=1,c2=−1,c3=1] = 784.1475, ∆0[c1=−1,c2=−1,c3=1] = −633.9853,

∆0[c1=−1,c2=1,c3=−1] = 695.1372.
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The two schemes illustrate a non-zero bias in the approximation error across the eight sets

of truth. Unfortunately, this signifies that the applied model is inadequate as stated in

the previous truth βδ−case.

Figure 7.8 and Figure 7.9 depict the four performance measures, the variability and the

average bias of the total error, the variability of the approximation error and the average

variability of the sampling error, for the two schemes 1%(nik) and nik0 6= nik1, respectively.

The eight truth versions are presented in the two plots in both schemes in the same order as

in the previous two figures. The first plot represents the truth versions when the signs of c2

and c3 are different, combined with c1 = ±1. In these versions, the total variability comes

mainly from the average variability of the sampling error. The second plot represents

the truth versions when the signs of c2 and c3 are the same, combined with c1 = ±1.

In these truth instances, the change in the variabilities across the design strategies are

systematic. In addition, when c1 = c2 = c3 = 1 and c1 = c2 = c3 = −1, the variability

of the approximation error is lower than the variability sampling error, whereas when the

sign of c1 is different than the sign of c2 and c3, the contribution of the two variabilities is

about the same. It is apparent from the figures that there is no big gain from using partial

randomisation design strategies. In the eight truth instances, the figures show that the

complete randomisation minimizes the total variation. The magnitude of the average bias

is about the same and negative in all truth instances except when c1 = −1, c2 = c3 = 1

and c1 = 1, c2 = c3 = −1. The bias in these two versions is very large and positive.

When the whole micro sample of individuals nik- Figure I.3 and Figure I.4 in Appendix

I.1 - the average variability of the sampling error is very small and the total variability

is attributed mainly to the approximation error in most truth instances. In this scheme,

the complete randomised design strategy still can be considered efficient compared to the

partial randomisation strategies.

Overall, the investigations into the performance of the complete and partial randomised

design strategies using multiple truth instances show some evidence that support the

efficiency of the complete randomisation design strategy in that ability to control the the

sampling error and the approximation error. This means there is no big gain from using

partial design strategies. We turn now to examine the results of matched pairs designs

and compare it with complete randomisation design.
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Figure 7.8: 1%(nik), (complete and partial randomised design strategy using truth, γβδ−case

using combinations of c1, c2, c3 ∈ ±1): comparing the four performance measures:

the variability sd(∆̂∗) and the average bias E[∆̂∗ − ∆0] =E[∆̃∗ − ∆0] of the total

error, the variability of the approximation error sd(∆̃∗) and the average variability

of the sampling error E[ ˜sd(∆̂∗)].



7.2. Completely Randomised Design 206

−300 −100 100 300 500 700 900
variability

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

c1=1, c2=1, c3=− 1

c1=1, c2=− 1, c3=1

c1=− 1, c2=− 1, c3=1

c1=− 1, c2=1, c3=− 1
nik0 ≠ nik1, γβδ−case

E[∆*̂ − ∆0] E[sd
~ (∆*̂)] sd(∆*~

− ∆0) sd(∆*̂ − ∆0)

−300 −100 100 300 500 700 900
variability

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

c1=1, c2=1, c3=1

c1=− 1, c2=− 1, c3=− 1

c1=1, c2=− 1, c3=− 1

c1=− 1, c2=1, c3=1
nik0 ≠ nik1, γβδ−case

E[∆*̂ − ∆0] E[sd
~ (∆*̂)] sd(∆*~

− ∆0) sd(∆*̂ − ∆0)

Figure 7.9: nik0 6= nik1, (complete and partial randomised design strategy using truth, γβδ−case

using combinations of c1, c2, c3 ∈ ±1): comparing the four performance measures: the

variability sd(∆̂∗) and the average bias E[∆̂∗ −∆0] =E[∆̃∗ −∆0] of the total error,

the variability of the approximation error sd(∆̃∗) and the average variability of the

sampling error E[ ˜sd(∆̂∗)].
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7.3 Matched-Pair Design
In this section, a comparison of the two sources of variability are presented when matched-

pair design strategies are applied, using truth instances stated above. The pairs are

matched using population, social grades, realistic expected search and the nearest neigh-

bour algorithms including dissimilarity measures between social grades, dissimilarity meas-

ures between population and social grades and distances between geographical coordin-

ates. In addition, the variabilities resulting from those strategies are compared with that

obtained from the complete randomised design strategy.

7.3.1 Truth Parameters: δ−case, β−case, γ−case

Consider truth parameters in δ−case, β−case, γ−case with c ∈ {0.2, 1, 5}, the approxim-

ation error and the upper quartiles of the sampling error are displayed in Figure 7.10

and Figure 7.11, using 1%(nik) and nik0 6= nik1, respectively. In both schemes, there

is clear benefit of the matched-pair design strategies1 in the reduction of the variability

of the approximation error compared to the complete randomised design strategies. This

can be identified clearly in δ−case, β−case with c = 1 when pairs are matched by social

grades, and the nearest neighbour algorithms especially dissimilarity measures between

social grades and dissimilarity measures between population and social grades. However,

matching the pairs by population or the realistic expected search has no advantage over

the complete randomised design strategy. The sampling error are about the same across

used design strategies and truth instances, except γ−case with c = 5 which provides lower

sampling error. For nik scheme - Figure I.5 in Appendix I.2, the benefit of the matched-

pair design strategies is conspicuous as well and the sampling error is too low nearly zero

across c and design strategies.

Using the proposed assessment criteria, we can see that the contribution of the sampling

error is higher than the contribution of the approximation error across the design strategies

used and for truth instances with c = 0.2 and c = 1. If we compare the variability of

1In the figures, short terms are used to refer to each matched-pair design strategies: pairs

are matched by population ≡ pair.pop, social grades ≡ pair.socgr, realistic expected search≡

pair.search, dissimilarity measures between social grades ≡ pair.d.socgr, dissimilarity measures

between population and social grades ≡ pair.d.socgrpop, distances between geographical coordin-

ates ≡ pair.d.coordinate
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Figure 7.10: 1%(nik), (matched-pair design strategies using truth, δ−case, β−case, γ−case

across c ∈ {0.2, 1, 5}): comparing the contributions of the two sources of variability:

sampling error and approximation error.
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Figure 7.11: nik0 6= nik1:: matched-pair design strategies using truth: δ−case, β−case, γ−case

across c ∈ {0.2, 1, 5}:: comparing the contributions of the two sources of variability:

sampling error and approximation error.
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the approximation errors across the truth instances, we notice that the variability of the

approximation error is very low in γ−case, especially in c = 1 and c = 5. This indicate a

difficulty in estimating the campaign effects in these two extreme truth instances.

7.3.2 Truth Parameters: βδ−case

Consider truth parameters in βδ−case with four sets of truth combinations resulting from

c1, c2 ∈ ±1 for both schemes of the number of search 1%(nik) and nik0 6= nik1. Figure

7.12 presents the distributions of the approximation errors and distributions of the upper

quartiles of the sampling errors of complete and matched-pair design strategies for the four

truth sets in both schemes. The non-zero bias continues to play a role in this truth case.

In the first scheme, the advantages of matching pairs by social grades over the complete

randomised design strategies is apparent across the four truth sets, whereas in the second

scheme this is not so obvious. The sampling error is almost identical in all truth versions

but it is slightly lower in nik0 6= nik1.

In Figure 7.13, the four performance measures for both schemes 1%(nik) and nik0 6= nik1

are presented. The average variability of the sampling error between designs are the same

across the four truth instances. The change in the total variability and the variability of

the approximation error between design strategies is about the same. The variability of

the approximation error is small when signs of c1 and c2 are different, thereby the total

variability in these truth versions comes mostly from the sampling error. The magnitude

of the bias in these instances is large and negative. The four measures are bunched

almost together when the signs of c1 and c2 are the same. In these instances, design

strategies relying on the social grades appear to perform better compared to other design

strategies.

When the whole micro sample of individuals nik- Figure I.6 in Appendix I.2 - the res-

ults shows the advantage of the matched-pairs design strategies over the complete ran-

dom.
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Figure 7.12: 1%(nik) and nik0 6= nik1, (matched-pair design strategies using truth, βδ−case

using combinations of c1, c2 ∈ ±1): comparing the contributions of the two sources

of variability: sampling error and approximation error.
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Figure 7.13: 1%(nik) and nik0 6= nik1, (matched-pair design strategies using truth, βδ−case

using combinations of c1, c2 ∈ ±1): comparing the four performance measures: the

variability sd(∆̂∗) and the average bias E[∆̂∗−∆0] =E[∆̃∗−∆0] of the total error,

the variability of the approximation error sd(∆̃∗) and the average variability of the

sampling error E[ ˜sd(∆̂∗)].
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7.3.3 Truth Parameters: γβδ−case

Consider truth parameters in γβδ−case with eight sets of combinations of c1, c2, c3 ∈

±1. In Figure 7.14 and Figure 7.15, distributions of the approximation errors and

distributions of the upper quartiles of the sampling errors of complete and matched-pair

design strategies are presented for eight sets of γβδ−case, using 1%(nik) and nik0 6= nik1,

respectively. The benefit of matching pairs using social grades and spatial proximity

can be seen clearly in this truth case, especially when c1 = −1, c2 = 1, c3 = −1 and

c1 = 1, c2 = −1, c3 = 1, followed by c1 = −1, c2 = 1, c3 = 1 and c1 = 1, c2 = −1, c3 = −1.

However, these design strategies has biased results as the other design strategies.

In Figure 7.16 and Figure 7.17, the four performance measures for both schemes of

the number of search 1%(nik) and nik0 6= nik1 are presented. Following the change in the

variability of the approximation error, the advantages of using social grades can plainly

be seen in the above mentioned four truth sets. Considering no substantial change in

the variability of the sampling error across truth sets, the bias and variability of the

approximation error are low in truth sets with c1 = 1, c2 = 1, c3 = −1 and c1 = 1, c2 =

−1, c3 = 1. However the former set does not show any real difference between the design

strategies, whereas the latter points out that the design strategies which relied on the

social grades perform better. This finding shows up too when the whole micro sample of

individuals nik is used, see Figure I.7 and Figure I.8 in Appendix I.2.
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Figure 7.14: 1%(nik), (matched-pair design strategies using truth, γβδ−case using combinations

of c1, c2, c3 ∈ ±1): comparing the contributions of the two sources of variability:

sampling error and approximation error.
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Figure 7.15: nik0 6= nik1, (matched-pair design strategies using truth, γβδ−case using com-

binations of c1, c2, c3 ∈ ±1): comparing the contributions of the two sources of

variability: sampling error and approximation error.
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Figure 7.16: 1%(nik), (matched-pair design strategies using truth, γβδ−case using combinations

of c1, c2, c3 ∈ ±1): comparing the four performance measures: the average bias

E[∆̂∗ − ∆0] =E[∆̃∗ − ∆0] of the total error, the variability of the approximation

error sd(∆̃∗) and the average variability of the sampling error E[ ˜sd(∆̂∗)].
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Figure 7.17: nik0 6= nik1, (matched-pair design strategies using truth, γβδ−case using combin-

ations of c1, c2, c3 ∈ ±1): comparing the four performance measures: the average

bias E[∆̂∗−∆0] =E[∆̃∗−∆0] of the total error, the variability of the approximation

error sd(∆̃∗) and the average variability of the sampling error E[ ˜sd(∆̂∗)].
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7.4 Summary and Concluding Remarks
The purpose of this chapter was to make an investigation into the performance of the

design strategies that were suggested in Chapter 4. The assessments of the performance

of design strategies took into consideration contributions of two sources of variability: the

approximation error ∆̃∗ −∆0 and the sampling error ∆̂∗ − ∆̃∗ when the mean bias in the

approximation error is zero. When the mean bias of the approximation error is non-zero,

four performance measures are considered: the variability and the average bias of the total

error, the variability of the approximation error and the average variability of the sampling

error.

The investigation into the performance of the complete and partial randomised design

strategies showed there was no major advantage from using partial randomised design and

hence complete randomisation is sufficient. On the other hand the investigation into the

performance of the matched-pair design strategies revealed the usefulness of the social

grades in reducing the variability of the approximation error.

Multiple truth instances were used in the investigations. There were many instances where

matching pairs by social grades was more advantageous. The most interesting truth is

γβδ−case where none of the parameters in the true model is zero. The benefits of the

social grade based designs are very apparent in the instances where the differences between

strata in βk are opposite to those in δk and γk; i.e. sign of c2 is opposite to the signs of c1

and c3. The non-zero bias obtained in γβδ−case and βδ−case restricted the adequacy of

the applied model.

The findings showed that spatial designs based on the nearest neighbour matching al-

gorithms have some of the benefits of social-grade based designs. This is good because it

will not be known in practice which covariate affects purchasing and spatial designs may

act as a proxy for covariate-based designs. However, the bias issues for the applied model

in the more complicated truth scenarios seem to suggest that there is a bigger underlying

problem which is not solved even by covariate-based designs.



Conclusion

In this thesis, we addressed the estimation of the effectiveness of online geographically-

based advertising campaigns when geo-experiments are applied in the presence of unob-

served heterogeneity within geos. The main contribution of this research is the develop-

ment of a theoretical framework based on the theory of maximum likelihood estimation of

misspecified model for quantifying the error in estimated advertising effect that resulting

from fitting a statistical model that known to be wrong due to the presence of unobserved

covariates.

We began the thesis by understanding that measuring the effectiveness of online advert-

ising campaigns using geo-experiments relies on spatial and temporal targeting compon-

ents, interrelated elements for setting campaigns and the quality of tracked data. In this

study, the focus was to investigate the potential impact of the absence of some spatial

components such as demographics, social-grades and socio-economics on estimating the

campaign effect. Therefore, in Chapter 3, we built a mapping algorithm that link Google

AdWords target cities for the UK to some spatial characteristics using local authority

areas and micro-census data. The AdWords target cities were mapped to one of the local

authority areas using the shortest great-circle distance between them. The returned set

were combination of local authority areas that were AdWords target cities and local au-

thority areas that included a set of AdWords target cities. We called the returned set of

areas spatial units. Although we obtained a large set of spatial units for the whole UK,

the only spatial units in England and Wales were considered in this study. The algorithm

helped to create a well- defined frame for advertising targeting geos in UK, which - to the

best of our knowledge - has not been discussed in the literature of online advertising or

geo-experiments. The previous studies were applied to the DMAs, which are designated

market areas in the US. The other countries in the world, however, have no determined
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marketing areas in general, but they may have a limited number of media regions such as

the TV regions in the UK, which are usually not sufficient to apply geo-experiments. Thus,

countries with defined governmental, administrative, or media areas can apply the link-

ing algorithm to understand their AdWords targeting units. Alongside the benefits of the

linking algorithm, however, there was a concern over the functionality of the governmental

units as marketing areas.

In Chapter 4, we proposed a conceptual model of geo-experiments consisting of a two-level

model: online search and online purchase, where purchase decision happens after success-

ful search. A list of assumptions was provided to make the conceptual model possible.

The number of searches and purchases were discussed under two conditions: homogeneous

strata within spatial units (no strata) and heterogeneous strata within spatial units (with

strata). If we assumed homogeneity, the number of searches and purchases were set to be

both spatial and time dependent, i.e. sit and yit, but if we assumed heterogeneity, then

sit =
∑

k sikt and yit =
∑

k yikt; i.e. they were summed implicitly over some unobserved

strata in a spatial unit. Assuming homogeneity, sit and yit were taken to be Binomial ran-

dom variables and logit-linear regression models were used to fit them. The logit-linear

regression models were used as well to fit sit and yit when heterogeneity was assumed. We

used the term applied model to refer to the purchase model under homogeneity and the

term truth to refer to it under heterogeneity. The applied model was parametrised by θ∗

including spatial effect, temporal change effect and campaign effect. The truth was para-

metrised by θ including spatial effect, population-stratum effect, temporal change effect

and campaign effect, where all parameters were strata based. The applied model was then

known to be misspecified and hence the estimated applied model parameters θ̂∗ would be

incorrect. The theory of maximum likelihood estimation under misspecification and the

Kullback-Leibler divergence were therefore used in Chapter 5 to study the implications

of unobserved covariates for inferences about estimated effects for geo-experiments. The

Kullback-Leibler divergence was employed to measure the distance between the applied

and the truth probability functions to find the nearest parameters to the truth; the para-

meter vector that minimises the Kullback-Leibler divergence function between the applied

model and the truth.

However, when heterogeneity was assumed, the joint truth probability structure of yit was

cumbersome to find and difficult to compute because it was sum of k independent non-
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identical Binomial random variables, which constrained the computation of the Kullback-

Leibler divergence. To overcome this issue, we proposed a proxy probability structure of

the applied model that linking the applied model and the truth. The proxy probability

structure was similar to the truth except that the probability of purchasing in the proxy

was identical between strata. The independence property of yit was used then to compute

the Kullback-Leibler divergence. The best parameter vector to use of θ∗ in the applied

model and that minimises the Kullback-Leibler divergence was denoted by θ̃∗. It was shown

that maximising likelihood is asymptotically equivalent to minimising the Kullback-Leibler

divergence and so for large enough sample, θ̂∗ might be expected to converge to θ̃∗. The

consistency and asymptotic normality of θ̂∗ under misspecification were studied based on

the results obtained by White 1982 and Chow 1984.

The asymptotic distribution theory of θ̂∗ was presented in Chapter 5 for two structures

of purchase model: a one-stage model and a two-stage model. In a one-stage model, we

assumed the number of searches is known in each stratum in each spatial unit for each time

period. On the other hand in a two-stage model, the purchase process was given by search

process, i.e. the number of searches is random. In both model structures, the asymptotic

variance of θ̂∗ were expressed by search term, but in a two-stage model was expressed by

the expected number and variance of searches instead of known fixed number of searches.

According to the literature on the maximum likelihood estimation under misspecification,

the asymptotic distribution theory was derived at θ̃∗.

Given that the truth model was strata based, the measure of the effectiveness of the

campaign might not be a functional from a business perspective. Therefore, in section 4.6

we introduced overall measures of campaign effect in terms of sales: ∆ for the truth in

terms of θ and ∆∗ for the applied model in terms of θ∗. Given the asymptotic Normal

distribution of θ̂∗, the asymptotic distribution of ∆̂∗ has been found in Chapter 5, too,

using delta method. In addition the proxy effect ∆̃∗ in terms of θ̃∗ was introduced.

In Chapter 6, we tested the applicability of the theory by assessing its performance in a

variety of contexts in comparison to Monte Carlo simulations. We built a computational

algorithm to validate the theoretical asymptotic distribution of the estimates of the pur-

chase applied model parameters assuming that search process outcomes are known. The

algorithms involved list of procedures including: data structures, design matrices, truth

instances and campaign designs that some of which relied on predefined data that were
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discussed in section 4.7 and others of which specified in section 6.1. For example, truth

spatial parameters were identified based on real data but the other truth parameters were

specified in a way that generate interesting instances of truth parameters. Different truth

instances were suggested that give different scales of change in the probability of pur-

chasing between strata within spatial units, provided that the overall change is neutral.

The validity of the theoretical asymptotic distribution of the estimated applied model

parameters was discussed across the proposed truth instances using 10 randomly selected

campaign designs based on social-grades covariate and different number of searches in-

cluding sample micro-census individuals in each stratum in a spatial unit nik, 10%(nik),

1%(nik) and 0.1%(nik). Most truth instances reported in this chapter corroborate the abil-

ity of theory to describe the sampling distribution of the estimates of the applied model

parameters. Violations of the theoretical distributions were only found in few cases that

related to using large difference between strata or large numbers of search.

In Chapter 7, we addressed the question: which campaign design strategy and truth in-

stance return typically a better estimate of the effectiveness of the advertising campaign,

i.e. ∆̂∗. We investigated the performance of different design strategies across different

truth instances. Different design strategies were suggested in Chapter 4 to allocate part

of spatial units to serve the modified advertising campaign during the second time period.

This includes complete randomisation and matched-pair designs, where the pairs were

matched using population, social grades, realistic expected search rates and the nearest

neighbour algorithm which used dissimilarity measures between social-grades, dissimilar-

ity measures between population and social grades and distances between geographical

coordinates. The assessments of designs strategies’ performance took into consideration

contributions of two sources of variability: the approximation error ∆̃∗ − ∆0 and the

sampling error ∆̂∗ − ∆̃∗. The investigation into the performance of the matched-pair

design strategies revealed the usefulness of the social grades and the spatial proximity in

reducing the variability of the approximation error. This is good because it will not be

known in practice which covariate affects purchasing and spatial designs may act as a proxy

for covariate-based designs. However, for the more complex truth instances, none of the

design strategies were successful in avoiding bias due to unobserved heterogeneity.

While we believe that this thesis provides a substantial contribution to the online geographically-

based advertising campaigns literature, the study was limited in several ways. First, the
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conceptual model of geo-experiments was not designed to measure the return on ad-spend

(ROAS), which is the incremental impact the ad-spend had on the response metric, due

to lack of information on it. More practicality could be given to the conceptual model if

coupled with the ad-spend. The modified advertising campaigns during the second time

period cause changes in the ad-spend which are important to investigate the significant

changes on the response metrics. Second, the conceptual model was based on the two-level

model: online search and online purchase. The actual model however could be close to the

hierarchical model outlined in Figure 4.1. The advertising campaigns can affect multiple

behaviours where each has the potential to generate differences in purchasing. Consid-

erably more work will need to be done to investigate the effects of multiple outcomes of

geo-experiments. Third, the investigation of the applicability of the theoretical distribu-

tion for estimation of θ∗ was limited to a one-stage model, some specified truth parameters

and a number of selected social-grades based campaign designs. There is, therefore, a def-

inite need for assessing the two-stage model. Also, future trials should assess the impact

of different campaign design strategies or truth parameters where the overall difference

between strata is not centred to zero.

Despite the limitations, this study is the first attempt for addressing generation of geos,

designing covariate-based campaigns, and handling unobserved heterogeneity within geos

in estimating treatment effects of the geo-experiments. In addition, the conceptual model

was a good start point for understanding the complexity of behavioural structure of re-

sponse variables of the geo-experiments and providing insights into the estimation of ad-

vertising campaigns under misspecification.
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Abbreviations and Symbols

Abbreviations

PPC pay per click

CPC cost per click

CTR click through rate

CPM cost per thousand impressions

CPA cost per action

DMAs designated market areas

CPV cost per view

ROI return on investment

CR conversion rate

IAC incremental ad clicks

ROAS return on ad-spend

ACE AdWords campaign experiment

Symbols

ikt unit referred to a stratum k in a spatial unit i and time period t

224
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it unit referred to a spatial unit i and time period t

Nik size of the population in a stratum k in a spatial unit i

Ni size of the population in a spatial unit i

Sikt search process in a unit ikt

Sit search process in a unit it

ϕikt probability of searching in a unit ikt

ϕ∗it probability of searching in a unit it

ζikt search model, assuming heterogeneity within spatial units

ζit search model, assuming homogeneity within spatial units

Cit advertising campaign status

Yikt purchase process in a unit ikt

Yit purchase process in a unit it

pikt probability of purchasing in a unit ikt

p∗it probability of purchasing in a unit it

ηikt truth

η∗it applied model

X truth design matrix

X∗ applied design matrix

θ truth parameter

θ∗ applied model parameter

α∗i spatial effect in the applied model

β∗ temporal change effect in the applied model

δ∗ campaign effect in the applied model

γk stratum effect γk

yc
1

it total number of sales if the new campaign are served in all spatial units
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yc
0

it total number of sales if none of spatial units selected to serve the new cam-

paign

g true probability structure

f misspecified probability structure

DKL(g‖f) Kullback-Leibler divergence from f to g

θ̃∗ parameter that gives the nearest model to the truth

θ̂∗ maximum likelihood estimate

η†ikt proxy model for the applied structure

H transformation matrix that maps the structure of θ∗ to the structure of θ.

C(θ̃∗) asymptotic variance-covariance matrix of θ̂∗

∆ overall true effect

∆∗ overall applied model effect

∆̃∗ overall proxy effect

Ṽar(∆̂∗)) asymptotic variance-covariance matrix of the estimate of Delta∗



Appendix B

Spatial Units

Table B.1: spatial units: Mapping Google advertising geos with grouped local authorities

spatial unit code spatial unit label

1 Stockton-on-Tees, Hartlepool

2 Middlesbrough

3 Redcar and Cleveland

4 County Durham

5 Darlington

8 Halton

9 Warrington

10 Blackburn with Darwen

11 Blackpool

12 Kingston upon Hull, City of

13 East Riding of Yorkshire

14 North East Lincolnshire

15 North Lincolnshire

16 York, Selby

17 Derby

18 Leicester

19 Melton, Harborough, Rutland

20 Nottingham

21 Herefordshire, County of

22 Telford and Wrekin

23 Stoke-on-Trent

24 Bath and North East Somerset

25 Bristol, City of

26 North Somerset

27 South Gloucestershire

28 Plymouth
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Table B.1 – continued from previous page

spatial unit code spatial unit label

29 Torbay

30 Bournemouth

31 Poole

32 Swindon

33 Peterborough

34 Luton

35 Southend-on-Sea

36 Thurrock

37 Medway

38 Slough, Bracknell Forest

39 West Berkshire

40 Reading

41 Windsor and Maidenhead

42 Wokingham

43 Milton Keynes

44 Brighton and Hove

45 Portsmouth

46 Southampton

47 Isle of Wight

48 Northumberland

50 Cheshire West and Chester

52 Cheshire East

54 Shropshire

56 Cornwall,Isles of Scilly

59 Wiltshire

62 Bedford

63 Central Bedfordshire

64 Aylesbury Vale

65 South Bucks, Chiltern

66 Wycombe

67 Cambridge

68 Fenland, East Cambridgeshire

69 Huntingdonshire

70 South Cambridgeshire

71 Carlisle, Allerdale

72 Copeland, Barrow-in-Furness

73 South Lakeland, Eden

74 North East Derbyshire, Amber Valley

75 Chesterfield, Bolsover

76 High Peak, Derbyshire Dales

77 South Derbyshire, Erewash

78 Mid Devon, East Devon

79 Exeter

80 Torridge, North Devon

81 West Devon, South Hams
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Table B.1 – continued from previous page

spatial unit code spatial unit label

82 Teignbridge

83 Purbeck, East Dorset, Christchurch

84 Weymouth and Portland, West Dorset, North Dorset

85 Lewes, Eastbourne

86 Rother, Hastings

87 Wealden

88 Basildon

89 Uttlesford, Braintree

90 Harlow, Brentwood

91 Rochford, Maldon, Castle Point

92 Chelmsford

93 Colchester

94 Epping Forest

95 Tendring

96 Cotswold, Cheltenham

97 Stroud, Forest of Dean

98 Tewkesbury, Gloucester

99 Basingstoke and Deane

100 Havant, East Hampshire

101 Eastleigh

102 Gosport, Fareham

103 Rushmoor, Hart

104 New Forest

105 Winchester, Test Valley

106 East Hertfordshire, Broxbourne

107 Dacorum

108 Welwyn Hatfield, Hertsmere

109 Stevenage, North Hertfordshire

110 St Albans

111 Watford, Three Rivers

112 Tunbridge Wells, Ashford

113 Canterbury

114 Gravesham, Dartford

115 Shepway, Dover

116 Maidstone

117 Tonbridge and Malling, Sevenoaks

118 Swale

119 Thanet

120 Pendle, Burnley

121 West Lancashire , Chorley

122 Wyre, Fylde

123 Rossendale, Hyndburn

124 Lancaster

125 Preston

126 South Ribble, Ribble Valley
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Table B.1 – continued from previous page

spatial unit code spatial unit label

127 Oadby and Wigston, Blaby

128 Charnwood

129 North West Leicestershire, Hinckley and Bosworth

130 West Lindsey, South Holland, Boston

131 East Lindsey

132 Lincoln

133 South Kesteven, North Kesteven

134 Breckland

135 Broadland

136 North Norfolk, Great Yarmouth

137 King’s Lynn and West Norfolk

138 Norwich

139 South Norfolk

140 Kettering, Corby

141 South Northamptonshire, Daventry

142 Wellingborough, East Northamptonshire

143 Northampton

144 Richmondshire, Hambleton, Craven

145 Harrogate

146 Scarborough, Ryedale

147 Mansfield, Ashfield

148 Newark and Sherwood, Bassetlaw

149 Rushcliffe, Gedling, Broxtowe

150 Cherwell

151 Oxford

152 South Oxfordshire

153 West Oxfordshire, Vale of White Horse

154 Sedgemoor, Mendip

155 South Somerset

156 West Somerset, Taunton Deane

157 South Staffordshire, Cannock Chase

158 Staffordshire Moorlands, East Staffordshire

159 Tamworth, Lichfield

160 Newcastle-under-Lyme

161 Stafford

162 Ipswich, Babergh

163 St Edmundsbury, Mid Suffolk, Forest Heath

164 Waveney, Suffolk Coastal

165 Epsom and Ewell, Elmbridge

166 Guildford

167 Waverley, Mole Valley

168 Tandridge, Reigate and Banstead

169 Spelthorne, Runnymede

170 Woking, Surrey Heath

171 Rugby, North Warwickshire
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Table B.1 – continued from previous page

spatial unit code spatial unit label

172 Nuneaton and Bedworth

173 Stratford-on-Avon

174 Warwick

175 Worthing, Adur

176 Arun

177 Horsham, Chichester

178 Mid Sussex, Crawley

179 Wyre Forest, Bromsgrove

180 Worcester, Malvern Hills

181 Wychavon, Redditch

182 Bolton

183 Bury

184 Manchester

185 Oldham

186 Rochdale

187 Salford

188 Stockport

189 Tameside

190 Trafford

191 Wigan

192 Knowsley

193 Liverpool

194 St. Helens

195 Sefton

196 Wirral

197 Barnsley

198 Doncaster

199 Rotherham

200 Sheffield

201 Gateshead

202 Newcastle upon Tyne

203 North Tyneside

204 South Tyneside

205 Sunderland

206 Birmingham

207 Coventry

208 Dudley

209 Sandwell

210 Solihull

211 Walsall

212 Wolverhampton

213 Bradford

214 Calderdale

215 Kirklees

216 Leeds
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Table B.1 – continued from previous page

spatial unit code spatial unit label

217 Wakefield

218 City of London,Westminster

219 Barking and Dagenham

220 Barnet

221 Bexley

222 Brent

223 Bromley

224 Camden

225 Croydon

226 Ealing

227 Enfield

228 Greenwich

229 Hackney

230 Hammersmith and Fulham

231 Haringey

232 Harrow

233 Havering

234 Hillingdon

235 Hounslow

236 Islington

237 Kensington and Chelsea

238 Kingston upon Thames

239 Lambeth

240 Lewisham

241 Merton

242 Newham

243 Redbridge

244 Richmond upon Thames

245 Southwark

246 Sutton

247 Tower Hamlets

248 Waltham Forest

249 Wandsworth

250 Isle of Anglesey, Gwynedd

251 Conwy, Denbighshire

252 Flintshire

253 Wrexham

254 Ceredigion, Pembrokeshire

255 Carmarthenshire

256 Swansea

257 Neath Port Talbot

258 Bridgend

259 The Vale of Glamorgan

260 Cardiff

261 Rhondda Cynon Taf
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Table B.1 – continued from previous page

spatial unit code spatial unit label

262 Caerphilly, Blaenau Gwent, Merthyr Tydfil

263 Torfaen, Monmouthshire

264 Newport

265 Powys
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Primitive Data Structure

Table C.1: prior search and purchases matched with adjusted micro-census population

spatial unit code Country channel search.t0 purchase.t0 search.t1 purchase.t1 micro sample individuals

1 ENG PPC 40.00 15.00 27.00 7.00 11357

2 ENG PPC 56.00 15.00 39.00 10.00 5521

3 ENG PPC 47.00 16.00 23.00 6.00 5497

4 ENG PPC 59.00 24.00 43.00 8.00 20188

5 ENG PPC 30.00 14.00 34.00 7.00 5266

8 ENG PPC 74.00 32.00 39.00 5.00 5033

9 ENG PPC 76.00 33.00 39.00 9.00 8140

10 ENG PPC 27.00 7.00 33.00 10.00 5610

11 ENG PPC 17.00 9.00 19.00 6.00 5763

12 ENG PPC 48.00 22.00 40.00 8.00 10353

13 ENG PPC 39.00 16.00 21.00 9.00 13869

14 ENG PPC 37.00 12.00 24.00 5.00 6345

15 ENG PPC 20.00 9.00 16.00 4.00 6732

16 ENG PPC 62.00 30.00 38.00 10.00 11645

17 ENG PPC 60.00 17.00 39.00 8.00 9789

18 ENG PPC 113.00 38.00 96.00 9.00 13074

19 ENG PPC 54.00 22.00 48.00 11.00 6999

20 ENG PPC 101.00 39.00 65.00 20.00 12520

21 ENG PPC 25.00 9.00 17.00 5.00 7543

22 ENG PPC 31.00 6.00 22.00 2.00 6567

23 ENG PPC 56.00 24.00 38.00 7.00 9892

24 ENG PPC 58.00 18.00 33.00 6.00 7366

25 ENG PPC 136.00 43.00 82.00 21.00 17471

26 ENG PPC 47.00 15.00 27.00 8.00 8140

27 ENG PPC 109.00 46.00 76.00 17.00 10605

Continued on next page
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Table C.1 – continued from previous page

spatial unit code Country channel search.t0 purchase.t0 search.t1 purchase.t1 micro sample individuals

28 ENG PPC 57.00 21.00 54.00 7.00 10415

29 ENG PPC 44.00 22.00 30.00 7.00 5369

30 ENG PPC 32.00 11.00 18.00 2.00 7663

31 ENG PPC 40.00 15.00 17.00 4.00 5974

32 ENG PPC 36.00 8.00 15.00 2.00 8439

33 ENG PPC 70.00 26.00 71.00 8.00 7177

34 ENG PPC 54.00 10.00 46.00 1.00 7823

36 ENG PPC 69.00 28.00 37.00 2.00 6151

37 ENG PPC 109.00 45.00 79.00 5.00 10459

38 ENG PPC 100.00 21.00 71.00 4.00 9759

39 ENG PPC 57.00 24.00 42.00 16.00 6076

40 ENG PPC 70.00 17.00 42.00 2.00 6273

42 ENG PPC 53.00 7.00 53.00 3.00 6169

43 ENG PPC 56.00 8.00 47.00 4.00 9604

44 ENG PPC 39.00 14.00 26.00 7.00 11404

45 ENG PPC 128.00 60.00 77.00 19.00 8349

46 ENG PPC 93.00 32.00 56.00 18.00 9799

47 ENG PPC 24.00 11.00 18.00 4.00 5713

48 ENG PPC 17.00 9.00 9.00 4.00 13084

50 ENG PPC 37.00 10.00 26.00 4.00 13452

52 ENG PPC 60.00 24.00 43.00 11.00 15166

54 ENG PPC 29.00 9.00 19.00 5.00 12484

56 ENG PPC 110.00 43.00 75.00 19.00 21966

59 ENG PPC 66.00 12.00 50.00 6.00 18780

62 ENG PPC 38.00 4.00 22.00 1.00 6189

63 ENG PPC 35.00 14.00 20.00 3.00 10276

64 ENG PPC 44.00 12.00 29.00 3.00 6892

66 ENG PPC 48.00 1.00 41.00 1.00 6810

67 ENG PPC 29.00 9.00 20.00 3.00 5371

68 ENG PPC 70.00 32.00 51.00 8.00 7268

69 ENG PPC 44.00 18.00 39.00 5.00 6752

70 ENG PPC 14.00 2.00 15.00 1.00 5920

72 ENG PPC 65.00 35.00 45.00 10.00 5698

73 ENG PPC 56.00 16.00 27.00 4.00 6575

74 ENG PPC 18.00 10.00 13.00 4.00 9006

75 ENG PPC 68.00 29.00 43.00 13.00 7316

77 ENG PPC 109.00 35.00 68.00 11.00 8365

78 ENG PPC 59.00 23.00 51.00 10.00 8606

79 ENG PPC 76.00 26.00 50.00 7.00 4951

80 ENG PPC 26.00 14.00 17.00 5.00 6419

82 ENG PPC 19.00 6.00 17.00 1.00 5050

83 ENG PPC 54.00 18.00 59.00 12.00 7473

86 ENG PPC 76.00 18.00 58.00 7.00 7393

87 ENG PPC 28.00 8.00 19.00 6.00 6073

88 ENG PPC 28.00 6.00 18.00 1.00 6901

Continued on next page
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Table C.1 – continued from previous page

spatial unit code Country channel search.t0 purchase.t0 search.t1 purchase.t1 micro sample individuals

89 ENG PPC 89.00 26.00 61.00 4.00 9073

93 ENG PPC 37.00 18.00 39.00 3.00 7037

94 ENG PPC 26.00 9.00 20.00 2.00 4921

95 ENG PPC 70.00 16.00 60.00 5.00 5620

96 ENG PPC 44.00 13.00 32.00 5.00 8228

97 ENG PPC 48.00 17.00 47.00 7.00 7924

98 ENG PPC 42.00 16.00 35.00 7.00 8216

99 ENG PPC 21.00 3.00 17.00 2.00 6693

100 ENG PPC 93.00 42.00 49.00 13.00 9529

101 ENG PPC 32.00 12.00 13.00 2.00 5084

102 ENG PPC 39.00 7.00 37.00 4.00 7952

103 ENG PPC 23.00 10.00 16.00 6.00 7244

104 ENG PPC 15.00 6.00 11.00 1.00 7292

106 ENG PPC 45.00 9.00 28.00 3.00 9204

107 ENG PPC 21.00 4.00 19.00 3.00 5771

108 ENG PPC 75.00 24.00 66.00 4.00 8518

109 ENG PPC 81.00 21.00 52.00 7.00 8399

110 ENG PPC 25.00 5.00 15.00 2.00 5478

112 ENG PPC 88.00 46.00 51.00 5.00 9170

114 ENG PPC 208.00 50.00 161.00 7.00 7899

116 ENG PPC 28.00 8.00 20.00 1.00 6167

117 ENG PPC 55.00 13.00 40.00 5.00 9307

118 ENG PPC 58.00 25.00 37.00 4.00 5423

119 ENG PPC 68.00 24.00 43.00 4.00 5365

120 ENG PPC 75.00 28.00 57.00 15.00 7006

121 ENG PPC 42.00 10.00 25.00 5.00 8820

122 ENG PPC 18.00 9.00 11.00 2.00 7640

123 ENG PPC 36.00 16.00 27.00 6.00 5872

124 ENG PPC 24.00 8.00 13.00 2.00 5759

125 ENG PPC 52.00 18.00 49.00 11.00 5691

127 ENG PPC 38.00 13.00 27.00 2.00 6090

128 ENG PPC 47.00 14.00 28.00 6.00 6851

129 ENG PPC 75.00 25.00 56.00 8.00 8036

130 ENG PPC 70.00 24.00 51.00 10.00 6293

131 ENG PPC 58.00 21.00 37.00 9.00 5680

132 ENG PPC 16.00 7.00 7.00 2.00 7549

133 ENG PPC 59.00 23.00 51.00 7.00 9837

134 ENG PPC 20.00 6.00 12.00 2.00 5402

136 ENG PPC 94.00 25.00 54.00 2.00 8228

137 ENG PPC 119.00 41.00 78.00 6.00 6060

138 ENG PPC 27.00 9.00 23.00 2.00 5584

139 ENG PPC 8.00 3.00 9.00 1.00 5006

140 ENG PPC 88.00 24.00 54.00 4.00 6112

142 ENG PPC 52.00 28.00 32.00 4.00 6406

143 ENG PPC 107.00 45.00 88.00 8.00 8362

Continued on next page
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Table C.1 – continued from previous page

spatial unit code Country channel search.t0 purchase.t0 search.t1 purchase.t1 micro sample individuals

145 ENG PPC 61.00 21.00 40.00 9.00 6308

146 ENG PPC 34.00 9.00 49.00 20.00 6633

147 ENG PPC 125.00 50.00 88.00 22.00 9064

148 ENG PPC 82.00 32.00 48.00 14.00 9295

149 ENG PPC 18.00 7.00 15.00 4.00 13622

151 ENG PPC 33.00 12.00 23.00 5.00 6482

154 ENG PPC 66.00 25.00 49.00 11.00 9067

155 ENG PPC 22.00 9.00 12.00 1.00 6548

156 ENG PPC 32.00 8.00 15.00 1.00 5909

157 ENG PPC 66.00 33.00 38.00 6.00 8415

158 ENG PPC 81.00 36.00 51.00 17.00 8609

159 ENG PPC 153.00 62.00 128.00 42.00 7272

160 ENG PPC 80.00 35.00 53.00 10.00 5131

161 ENG PPC 24.00 8.00 19.00 4.00 5417

162 ENG PPC 134.00 66.00 90.00 7.00 8842

165 ENG PPC 112.00 16.00 90.00 5.00 8040

166 ENG PPC 36.00 5.00 26.00 1.00 5601

172 ENG PPC 52.00 19.00 29.00 4.00 4994

173 ENG PPC 15.00 4.00 7.00 1.00 4902

174 ENG PPC 49.00 14.00 32.00 7.00 5640

175 ENG PPC 27.00 12.00 25.00 4.00 6697

176 ENG PPC 25.00 11.00 16.00 3.00 6176

177 ENG PPC 30.00 12.00 28.00 8.00 9928

179 ENG PPC 65.00 21.00 48.00 5.00 7844

180 ENG PPC 48.00 25.00 29.00 8.00 7043

181 ENG PPC 49.00 19.00 35.00 8.00 8123

182 ENG PPC 84.00 32.00 52.00 6.00 10818

184 ENG PPC 91.00 28.00 78.00 18.00 20426

185 ENG PPC 26.00 14.00 17.00 2.00 8636

186 ENG PPC 19.00 7.00 14.00 5.00 8269

187 ENG PPC 85.00 25.00 47.00 11.00 9422

188 ENG PPC 96.00 37.00 64.00 15.00 11408

189 ENG PPC 54.00 21.00 31.00 16.00 8729

190 ENG PPC 51.00 18.00 41.00 11.00 8993

191 ENG PPC 37.00 20.00 37.00 7.00 12771

192 ENG PPC 53.00 19.00 23.00 8.00 5819

193 ENG PPC 94.00 37.00 60.00 12.00 19526

194 ENG PPC 70.00 40.00 45.00 9.00 7110

195 ENG PPC 64.00 18.00 66.00 16.00 11203

196 ENG PPC 81.00 21.00 41.00 7.00 12900

197 ENG PPC 57.00 19.00 41.00 15.00 9340

198 ENG PPC 41.00 20.00 30.00 8.00 12156

199 ENG PPC 74.00 27.00 51.00 22.00 10286

200 ENG PPC 91.00 26.00 46.00 13.00 22486

201 ENG PPC 78.00 31.00 45.00 10.00 8171

Continued on next page
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Table C.1 – continued from previous page

spatial unit code Country channel search.t0 purchase.t0 search.t1 purchase.t1 micro sample individuals

202 ENG PPC 57.00 25.00 45.00 13.00 11672

203 ENG PPC 119.00 40.00 72.00 17.00 8189

204 ENG PPC 31.00 9.00 16.00 4.00 6039

205 ENG PPC 152.00 63.00 120.00 4.00 11237

206 ENG PPC 177.00 69.00 164.00 30.00 41160

207 ENG PPC 83.00 28.00 41.00 6.00 12615

208 ENG PPC 129.00 43.00 101.00 23.00 12563

209 ENG PPC 76.00 23.00 62.00 18.00 12103

210 ENG PPC 78.00 30.00 81.00 21.00 8307

211 ENG PPC 124.00 56.00 84.00 18.00 10587

212 ENG PPC 87.00 32.00 54.00 18.00 9967

213 ENG PPC 198.00 75.00 159.00 46.00 19965

214 ENG PPC 65.00 23.00 44.00 17.00 8140

215 ENG PPC 70.00 19.00 66.00 17.00 16702

216 ENG PPC 36.00 11.00 35.00 9.00 30701

217 ENG PPC 67.00 30.00 52.00 13.00 13148

218 ENG PPC 51.00 11.00 34.00 1.00 9935

222 ENG PPC 112.00 33.00 73.00 4.00 12433

225 ENG PPC 59.00 20.00 59.00 5.00 14114

226 ENG PPC 65.00 25.00 74.00 3.00 13529

227 ENG PPC 103.00 40.00 76.00 3.00 12027

228 ENG PPC 121.00 46.00 64.00 6.00 9973

232 ENG PPC 65.00 12.00 52.00 2.00 9504

236 ENG PPC 171.00 53.00 123.00 7.00 8794

237 ENG PPC 55.00 19.00 42.00 5.00 6835

238 ENG PPC 34.00 3.00 34.00 1.00 6541

239 ENG PPC 130.00 47.00 105.00 9.00 12454

244 ENG PPC 38.00 3.00 20.00 3.00 7488

246 ENG PPC 63.00 46.00 37.00 4.00 7501

247 ENG PPC 327.00 106.00 309.00 11.00 10411

250 WLS PPC 56.00 14.00 48.00 6.00 7945

251 WLS PPC 58.00 25.00 46.00 12.00 8535

252 WLS PPC 29.00 14.00 19.00 3.00 6138

253 WLS PPC 23.00 9.00 15.00 4.00 5465

254 WLS PPC 63.00 22.00 56.00 11.00 8205

255 WLS PPC 14.00 1.00 9.00 1.00 7475

256 WLS PPC 80.00 41.00 66.00 7.00 9858

257 WLS PPC 49.00 23.00 30.00 3.00 5648

258 WLS PPC 68.00 18.00 47.00 3.00 5655

260 WLS PPC 65.00 20.00 37.00 4.00 14194

261 WLS PPC 39.00 19.00 28.00 3.00 9439

262 WLS PPC 156.00 52.00 99.00 11.00 12323

263 WLS PPC 89.00 22.00 73.00 13.00 7278

264 WLS PPC 69.00 25.00 38.00 3.00 5746

265 WLS PPC 35.00 10.00 25.00 4.00 5381
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Appendix D

Campaign Designs

Figure D.1: campaign designs (treatment spatial units in red colour): generated by matched-

pairs in term of social grades covariate and the truth parameter vector θ0 based on

δ−case withc = 5
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Figure D.2: campaign designs (treatment spatial units in red colour): generated by matched-

pairs in term of social grades covariate and the truth parameter vector θ0 based on

δ−case withc = 5
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Figure D.3: campaign designs (treatment spatial units in red colour): generated by matched-

pairs in term of social grades covariate and the truth parameter vector θ0 based on

δ−case withc = 5



Appendix E

Data Structures Used in

Computational Algorithms

Figure E.1: Screenshot of subset of truth and applied data structure with campaign design:

area≡spatial units, group≡strata, ad≡ Cit, n ≡number of search, geo≡spatial unit

condition where 1 =control and 2 =treatment.
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(a) Example of truth and applied data structure with ad in all spatial units

(b) Example of truth and applied data structure with no ad in all spatial units

Figure E.2: Screenshot of subset of truth and applied data structure with no campaign design:

area≡spatial units, group≡strata, ad≡ Cit, n ≡number of search, geo≡spatial unit

condition where 1 =control and 2 = treatment.



Appendix F

Spatial Effects Values used to

Specify αi

Table F.1: specification of truth spatial effects αi using estimate α̂∗
i obtained by fitting realistic

search and purchase.

i αi = α̂∗i i αi = α̂∗i i αi = α̂∗i i αi = α̂∗i

la group1 -0.46 la group23 -0.45 la group45 -0.23 la group77 -0.81

la group2 -0.78 la group24 -0.81 la group46 -0.45 la group78 -0.56

la group3 -0.58 la group25 -0.65 la group47 -0.31 la group79 -0.55

la group4 -0.52 la group26 -0.57 la group48 0.53 la group80 0.35

la group5 -0.38 la group27 -0.40 la group50 -1.00 la group82 -0.86

la group8 -0.50 la group28 -0.47 la group52 -0.40 la group83 -0.69

la group9 -0.34 la group29 0.13 la group54 -0.64 la group86 -0.97

la group10 -0.58 la group30 -0.83 la group56 -0.43 la group87 -0.61

la group11 0.01 la group31 -0.51 la group59 -1.44 la group88 -1.29

la group12 -0.37 la group32 -1.24 la group62 -2.19 la group89 -0.92

la group13 -0.11 la group33 -0.51 la group63 -0.35 la group93 -0.29

la group14 -0.71 la group34 -1.59 la group64 -0.89 la group94 -0.63

la group15 -0.29 la group36 -0.50 la group67 -0.88 la group95 -1.12

la group16 -0.16 la group37 -0.49 la group68 -0.15 la group96 -0.91

la group17 -0.85 la group38 -1.31 la group69 -0.35 la group97 -0.78

la group18 -0.68 la group39 -0.11 la group70 -1.58 la group98 -0.57

la group19 -0.10 la group40 -1.17 la group72 0.22 la group99 -1.39

la group20 -0.35 la group42 -1.71 la group73 -0.77 la group100 -0.24

la group21 -0.44 la group43 -1.52 la group74 0.08 la group101 -0.44

la group22 -1.48 la group44 -0.22 la group75 -0.25 la group102 -1.49
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Table F.1 – continued from previous page

i αi = α̂∗i i αi = α̂∗i i αi = α̂∗i i αi = α̂∗i

la group103 -0.10 la group145 -0.62 la group191 -0.23 la group236 -1.11

la group104 -0.74 la group146 -0.24 la group192 -0.41 la group237 -0.85

la group106 -1.20 la group147 -0.41 la group193 -0.52 la group238 -2.24

la group107 -0.99 la group148 -0.37 la group194 -0.04 la group239 -0.61

la group108 -0.84 la group149 -0.40 la group195 -0.72 la group244 -1.96

la group109 -0.87 la group151 -0.57 la group196 -1.01 la group246 0.25

la group110 -1.13 la group154 -0.52 la group197 -0.37 la group247 -0.91

la group112 -0.05 la group155 -0.44 la group198 -0.16 la group250 -1.16

la group114 -1.21 la group156 -1.25 la group199 -0.18 la group251 -0.31

la group116 -0.99 la group157 -0.28 la group200 -0.72 la group252 -0.35

la group117 -0.97 la group158 -0.15 la group201 -0.46 la group253 -0.40

la group118 -0.33 la group159 -0.24 la group202 -0.24 la group254 -0.35

la group119 -0.62 la group160 -0.14 la group203 -0.62 la group255 -1.95

la group120 -0.46 la group161 -0.67 la group204 -0.75 la group256 -0.11

la group121 -1.02 la group162 -0.20 la group205 -0.57 la group257 -0.22

la group122 -0.25 la group165 -1.67 la group206 -0.59 la group258 -1.03

la group123 -0.35 la group166 -1.79 la group207 -0.77 la group260 -0.75

la group124 -0.57 la group172 -0.49 la group208 -0.64 la group261 -0.16

la group125 -0.61 la group173 -1.04 la group209 -0.58 la group262 -0.65

la group127 -0.71 la group174 -0.81 la group210 -0.43 la group263 -0.75

la group128 -0.78 la group175 -0.17 la group211 -0.34 la group264 -0.61

la group129 -0.83 la group176 -0.41 la group212 -0.36 la group265 -0.69

la group130 -0.41 la group177 -0.33 la group213 -0.39

la group131 -0.27 la group179 -0.95 la group214 -0.29

la group132 -0.25 la group180 -0.04 la group215 -0.72

la group133 -0.69 la group181 -0.49 la group216 -0.63

la group134 -0.65 la group182 -0.48 la group217 -0.29

la group136 -1.09 la group184 -0.70 la group218 -1.37

la group137 -0.69 la group185 -0.27 la group222 -0.93

la group138 -0.71 la group186 -0.29 la group225 -0.70

la group139 -0.50 la group187 -0.76 la group226 -0.71

la group140 -0.97 la group188 -0.48 la group227 -0.64

la group142 0.04 la group189 -0.02 la group228 -0.73

la group143 -0.41 la group190 -0.50 la group232 -1.51



Appendix G

Campaign Design Procedure Using

Different Design Strategies

procedure design strategies(spatial units, population, social

grades, search rates, coordinates)

function completely random (spatial units)

sample spatial units randomly to allocate in control or treat-

ment group

return comp.random

end function

function matched-pairs based on covariates (spatial units,

population,social grades, search rates)

1. sort spatial units by their number of individuals

2. group spatial units into pairs

3. within each pair assign each spatial units randomly to

treatment or control.

return pair.pop
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4. sort spatial units by their weighted mean of social grades

5. repeat steps 2 and 3

return pair.socgr

6. sort spatial units by their expected searches

7. repeat steps 2 and 3

return pair.search

end function

function matched-pairs based on nearest neighbour

(spatial units, social grades, population, coordinates)

1. compute pairwise distance between spatial units using

social grades

2. set a matrix showing distance between each pair of spatial

units

3. select a spatial unit randomly and pair it with its a nearby

spatial unit

4. remove the selected pairs from the distance matrix

5. repeat steps 3 and 4

6. pair the remaining unused two spatial units

7. within each pair assign each spatial units randomly to

treatment or control.

return pair.d.socgr

8. compute pairwise distance between spatial units using

social grades and population

9. repeat steps 2 to 7

return pair.d. socgrpop
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10. compute pairwise distance between spatial units using

geographic coordinates

11. repeat steps 2 to 7

return pair.d.coordinates

end function

end procedure



Appendix H

Chi-square Q-Q plot

Figure H.1: β−case with c = 0.2: Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus

quantiles of χ2
2
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(a) c=1

(b) c=5

Figure H.2: β−case with c = 1 and c = 5: Chi-square Q-Q plot: Mahalanobis distances D2
θ∗

versus quantiles of χ2
2
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(a) c=0.2

(b) c=1

(c) c=5

Figure H.3: β−case: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1
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(a) c=0.2

(b) c=1

(c) c=5

Figure H.4: γ−case: Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus quantiles of χ2

2
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(a) c=0.2

(b) c=1

(c) c=5

Figure H.5: γ−case: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1
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(a) Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1

(b) Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus quantiles of χ2

2

Figure H.6: βδ−case with c1 = c2 = 1: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ and

D2
θ∗ versus quantiles of χ2

1 and χ2
2, respectively.
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(a) Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ versus quantiles of χ2

1

(b) Chi-square Q-Q plot: Mahalanobis distances D2
θ∗ versus quantiles of χ2

2

Figure H.7: βδ−case with c1 = c2 = −1: Chi-square Q-Q plot: Mahalanobis distances D2
∆∗ and

D2
θ∗ versus quantiles of χ2

1 and χ2
2, respectively.



Appendix I

Performance of Design Strategies

Using the Whole Micro Sample

Individuals nik

I.1 Complete and Partial Random Design

The figures presented in this section investigate the performance of

the complete and partial randomised design strategies across differ-

ent truth instances, when the whole micro sample individuals nik are

utilised in the computation. The investigation includes a comparison

between the contributions of the two sources of variability: the ap-

proximation error ∆̃∗ −∆0 and the sampling error ∆̂∗ − ∆̃∗

Considering truth parameters in δ−case, β−case and γ−case with c ∈

{0.2, 1, 5}, Figure I.1 shows that the standard deviations s̃d(∆̂∗) turn

out to be lower than the values obtained from using 1%(nik) and nik0 6=

nik1, making the sampling error corresponding to the given design

257
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strategies to be too low and close to zero. Focusing on δ− case across

c values, we can see that the complete randomised design strategy

meets the lowest typical magnitude of the approximation error with

nearly zero sampling error and zero bias.

Considering truth parameters in βδ−case with four sets of combin-

ations of c1, c2 ∈ ±1, Figure I.2a shows a non-zero bias in the ap-

proximation error for the complete and partial randomisation design

strategies. When the sign of c1 and c2 are different, the magnitude

of the approximation error is minimum at 10% randomisation design

strategy, whereas the other way round happens in the bottom two

sets where the sign of c1 and c2 are the same. These results are in

consistent with what was observed in using 1%(nik) and nik0 6= nik1.

The sampling error tended to be too low in this scheme and very close

to zero.

Figure I.2b illustrates the four performance measures: the variability

sd(∆̂∗) and the average bias E[∆̂∗−∆0] of the total error, the variab-

ility of the approximation error sd(∆̃∗) and the average variability of

the sampling error E[s̃d(∆̂∗)]. The variability of the sampling error is

lower than the variability of the approximation error across the four

truth instances and design strategies except 10% randomisation design

strategy in c1 = −1, c2 = 1. When c1 and c2 have same signs, the vari-

ability of the approximation error is higher than for the case when

their signs are different. The bias is positive when the signs of c1, c2

are the same and negative when the signs of c1, c2 are different. The

variability of the total error achieve their minimum in this situation
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Figure I.1: nik, (complete and partial randomised design strategy using truth, δ−case, β−case,

γ−case across c ∈ {0.2, 1, 5}): comparing the contributions of the two sources of

variability: sampling error and approximation error. The true effect: ∆0δc=0.2
=

6963.728, ∆0δc=1
= 91576.92, ∆0δc=5

= 316677.5, ∆0β = ∆0γ = 0.
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at the complete randomised design strategy.

(a) comparing the contributions of the two sources of variability: sampling error and approximation error.

−80000 −40000 0 20000 40000 60000
variability

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

10% random
20% random
30% random
40% random

comp.random

c1=1, c2=1

c1=− 1, c2=− 1

c1=1, c2=− 1

c1=− 1, c2=1
βδ−case
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− ∆0) sd(∆*̂ − ∆0)

(b) Comparing the four performance measures: the average bias E[∆̂∗ −∆0] =E[∆̃∗ −∆0] of the total error, the

variability of the approximation error sd(∆̃∗) and the average variability of the sampling error E[ ˜sd(∆̂∗)].

Figure I.2: nik, performance evaluation of complete and partial randomised design strategy using

truth, βδ−case with combinations of c1, c2 ∈ ±1. The true effects are: ∆0[c1=1,c2=1] =

100812.8, ∆0[c1=−1,c2=−1] = 92423.04, ∆0[c1=1,c2=−1] = −11325.6, ∆0[c1=−1,c2=1] =

11325.6.
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Considering truth parameters in γβδ−case with eight sets of combin-

ations of c1, c2, c3 ∈ ±1, Figure I.3 shows a non-zero bias in the ap-

proximation error for the complete and partial randomisation design

strategies. For the upper four sets of the truth instances in the figure,

the magnitude of the approximation error becomes the largest when

the complete randomisation are applied, whereas the other way round

happens in the bottom four sets. These results are consistent with

what was observed in using 1%(nik) and nik0 6= nik1. The sampling

error tended to be too low in this scheme and very close to zero.

Figure I.4 illustrates the four performance measures: the variability

sd(∆̂∗) and the average bias E[∆̂∗−∆0] of the total error, the variab-

ility of the approximation error sd(∆̃∗) and the average variability of

the sampling error E[s̃d(∆̂∗)]. The average variability of the sampling

error is small across the eight truth instances and design strategies.

The total variability is attributed mainly to the approximation error

in most truth instances. However, the magnitude of the total variab-

ility appears to be much larger in the second plot in the figure. In

these truth version, complete randomised design strategy appears to

provide the lowest variability. However, in the first plot in the figure,

the complete randomisation appears having a bit higher variation than

the partial randomisation design. The magnitude of the average bias

is negative in all truth instances except when c1 = −1, c2 = c3 = 1

and c1 = 1, c2 = c3 = −1,.
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Figure I.3: nik, (complete and partial randomised design strategy using truth, γβδ−case

using combinations of c1, c2, c3 ∈ ±1): comparing the contributions of the two

sources of variability: sampling error and approximation error. The true effects

are: ∆0[c1=c2=c3=1] = 83837.85, ∆0[c1=c2=c3=−1] = 98900.54, ∆0[c1=1,c2=−1,c3=−1] =

−11325.6, ∆0[c1=−1,c2=1,c3=1] = 11325.6, ∆0[c1=1,c2=1,c3=−1] = −100812.8,

∆0[c1=1,c2=−1,c3=1] = 100812.8, ∆0[c1=−1,c2=−1,c3=1] = −92423.04,

∆0[c1=−1,c2=1,c3=−1] = 92423.04.
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Figure I.4: nik, (complete and partial randomised design strategy using truth, γβδ−case using

combinations of c1, c2, c3 ∈ ±1:): comparing the four performance measures: the

variability sd(∆̂∗) and the average bias E[∆̂∗ −∆0] =E[∆̃∗ −∆0] of the total error,

the variability of the approximation error sd(∆̃∗) and the average variability of the

sampling error E[ ˜sd(∆̂∗)].
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I.2 Matched-Pair Design

The figures presented in this section investigate the performance of the

matched-pair design strategies and the complete randomisation design

strategy across truth instances mentioned above, when the whole mi-

cro sample individuals nik are employed in the computation.

Considering truth parameters in δ−case, β−case, γ−case with c ∈

{0.2, 1, 5}, Figure I.5 shows there is a considerable gain from using the

matched-pair design strategies, as the variability of the approxima-

tion is lower than that obtained by the complete randomised design

strategy. The advantage of matching pairs by social grades can be

seen clearly in δ−case, β−case in c = 1. Unlike the other two schemes

1%(nik) and nik0 6= nik1, the contribution of the sampling error is lower

than the contribution of the approximation error. The existence of the

non-zero bias continue occur in c = 5.

Considering truth parameters in βδ−case with four sets of combin-

ations of c1, c2 ∈ ±1. In this scheme, the average variability of the

sampling is much lower then the approximation error. The large num-

ber of search reduces the variability of sampling error and makes the

contribution of the approximation error as the total error. The benefit

of matching pairs using the social grades is clear in this scheme too as

shown in Figure I.6a. The low variability of the total error is obtained

from the design strategies that relied on the social grades in the four

truth instances.
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Figure I.5: nik, (matched-pair design strategies using truth, δ−case, β−case, γ−case across c ∈

{0.2, 1, 5}), comparing the contributions of the two sources of variability: sampling

error and approximation error.
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(a) Comparing the contributions of the two sources of variability: sampling error and approximation error
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(b) Comparing the four performance measures: the average bias E[∆̂∗ −∆0] =E[∆̃∗ −∆0] of the

total error, the variability of the approximation error sd(∆̃∗) and the average variability of

the sampling error E[ ˜sd(∆̂∗)].

Figure I.6: nik, performance evaluation of matched-pairs randomised design strategy using truth:

βδ−case using combinations of c1, c2 ∈ ±1.
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Considering truth parameters in γβδ−case with eight sets of combin-

ations of c1, c2, c3 ∈ ±1, Figure I.7 shows a reduction in the variability

of the approximation error when matching pairs by the social grade,

especially when c1 = −1, c2 = 1, c3 = −1, c1 = 1, c2 = −1, c3 = 1,

c1 = −1, c2 = 1, c3 = 1 and c1 = 1, c2 = −1, c3 = −1. The bias

in the first two sets of those four instances is lower than the bias in

the other two set. The expected variability of the sampling error is

about the same across the applied design strategies in the eight truth

instances.

The four performance measures are shown in Figure ??. The figure

shows that the minimum total variability is attributed to the social

grades and spatial proximity design strategies. However, the results

are biased due to unobserved heterogeneity.
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Figure I.7: nik:: matched-pair design strategies using truth: γβδ−case using combinations of

c1, c2, c3 ∈ ±1:: comparing the contributions of the two sources of variability:

sampling error and approximation error.
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Figure I.8: nik, (matched-pair design strategies using truth, γβδ−case using combinations of

c1, c2, c3 ∈ ±1): comparing the four performance measures: the average bias E[∆̂∗ −

∆0] =E[∆̃∗−∆0] of the total error, the variability of the approximation error sd(∆̃∗)

and the average variability of the sampling error E[ ˜sd(∆̂∗)].
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