
Durham E-Theses

Functional and Structural Insights into Novel

Bacteriophage Defence Islands

PICTON, DAVID,MARK

How to cite:

PICTON, DAVID,MARK (2021) Functional and Structural Insights into Novel Bacteriophage Defence

Islands, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/14160/

Use policy

This work is licensed under a Creative Commons Attribution Non-commercial 3.0
(CC BY-NC)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14160/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
http://etheses.dur.ac.uk


  

1 
 

 

Functional and Structural Insights into Novel Bacteriophage 

Defence Islands 

David Mark Picton 

BSc Hons, MPhil 

A thesis submitted for the degree of Doctor of Philosophy 

March 2021 

Department of Biosciences 

Durham University 



  

2 
 

Abstract 

Bacteriophages are the most abundant organisms on the planet and are a major driving force in 

bacterial evolution. As obligate intracellular parasites, phages are reliant on their bacterial host 

for propagation, but bacteria have evolved means to prevent phage infections. Bacteriophage 

exclusion (BREX) is a novel phage-resistance system that confers resistance to a wide array of 

phages, functioning independently of restriction-modification, CRISPR-Cas and abortive 

infection mechanisms. BREX loci are present in ~10% of bacterial and archaeal genomes, 

including pathogenic strains such as non-typhoidal invasive Salmonella enterica and multidrug 

resistant Escherichia fergusonii.  

Whilst investigating the mechanism of BREX in E. fergusonii, a putative endonuclease was 

discovered, clustered within the BREX locus. This enzyme, BrxU, was biochemically and 

structurally characterised, and shown to be a standalone phage defence system that targets 

modified phage genomes. It became clear that the BREX and BrxU phage defence systems 

were organised into a phage defence island, constituting a bacterial immune system capable of 

resisting multiple phage types.  

Both systems detailed in this thesis represent novel antiphage mechanisms with potential for 

biotechnological application. The BrxU endonuclease structure has been solved to 2.12 Å and 

reveals insight into key protein domains implicated in type IV restriction enzymes. BrxU has 

been observed to utilise a range of nucleotide and metal cofactors and confers extensive 

protection to its bacterial host against phage infection. 
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Chapter 1: Introduction 

1.1 Introduction to Bacteriophage Biology 

Bacteriophages (phages) are viruses that are natural predators of bacteria, and outnumber their 

prey by a factor of 10 (Stern and Sorek 2011a). Phages are the most ubiquitous set of organisms 

on the planet, and are the major driving force in the evolution of bacterial populations 

(Sulakvelidze 2011; Pingoud, Wilson, and Wende 2014). As obligate intracellular parasites, 

phages are reliant on their bacterial host for propagation, using the host machinery to replicate 

their genome and form progeny (Salmond and Fineran 2015). Phage genomes can be RNA 

based such as that of MS2, which was the first genome to ever be sequenced (Fiers et al. 1976). 

However, the majority of studies performed on phage resistance focus on dsDNA phages, 

therefore this study has excluded RNA phages, as host interactions with phage DNA form a 

substantial chapter of phage-resistance literature. Occasionally, phage encoded DNA can be 

recombined into the host genome, which may confer the host with an evolutionary advantage 

such as antibiotic resistance, or the acquisition of an exotoxin (Safa, Nair, and Kong 2010). 

However, the majority of phage interactions with the host result in the propagation of progeny 

phages, and the subsequent lysis of the host. Constant interactions between bacterial hosts and 

phages has led to the co-evolution of mechanisms for phage propagation, and bacterial phage-

resistance mechanisms (Labrie, Samson, and Moineau 2010). The use of phages as a means to 

treat bacterial infections, known as “phage therapy”, has become a re-emerging field after being 

somewhat abandoned following the discovery of antibiotics in the late 1920s, which provided 

much cheaper, more efficacious options for treating bacterial infections. Phage-host 

interactions were poorly understood during this period, and even before phages could be 

harnessed for their bactericidal effects, researchers were already becoming aware of bacterial 

phage-resistance arising in secondary cultures (Summers 2001).  
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1.1.1 Phage therapy and the discovery of targeted antimicrobial agents 

The majority of interest in phage biology following their discovery was to generate methods 

of utilising phages as antimicrobial agents. Parallels are often drawn between the effects of the 

simple chemical antibiotics and biological machines that phages represent due to their shared 

suppression of bacteria. Much of the interest in phage biology stems from the highly selective 

nature of phage-host interactions and the potential to selectively target a bacterial species for 

removal. Phage-based therapies are being developed and are currently used to treat bacterial 

infections that have not responded to antibiotic treatments.  

Penicillin was discovered in 1928 by Sir Alexander Fleming, who noticed a clearance zone on 

an agar plate with a lawn of bacteria. The clearance zone formed a perimeter around a growth 

of Penicillium notatum, and Fleming named the active compound penicillin. The first 

antimicrobial agents were discovered in 1910 by Paul Ehrlich, with arsphenamine and its 

derivative neoarsphenamine being used to treat Treponema pallidum, causative agent of 

syphilis. Significant efforts were made to find new drugs with similar effects, but these were 

unsuccessful until Fleming’s discovery. Gerhard Domagk observed the antibacterial activity of 

compound in an oil dye called sulfamidochrysoidine. This was developed to produce the 

closely related sulphanilamide (van Miert 1994). The desire to increase development of these 

‘magic bullet’ compounds shifted much of the interest in phage therapy to researching new 

antibiotics (Rohwer and Segall 2015). Whilst interest in phage therapy waned, however, they 

remained a vital model system for our molecular understanding of the biological central dogma. 

A new era of phage biology has emerged, and with a greater understanding of phage 

interactions and processes, the biotechnological and medical potential is markedly increased. 
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1.1.2 Phages as a model for understanding DNA 

Alfred Hershey and Martha Chase demonstrated the process of DNA injection by invading 

phages, showing that the genetic material entered the host whilst the remainder of the phage 

did not. Radiolabelled phage DNA was found within bacterial hosts after they had been sheared 

with a high-speed blender which effectively removed the adsorbed phages. It was this 

observation that showed that DNA is the genetic material responsible for encoding genomes 

(Hershey and Chase 1952). The first sequenced genome was of the phage ΦX174, and as more 

genomes were discovered, it was observed that significant transfer between genomes was 

occurring (Sanger et al. 1977). This led to the understanding of horizontal gene transfer (HGT) 

between organisms as a major driving force of genetic diversity (Hendrix et al. 2000).  

Much of the phage research during the dawn of molecular biology was focused on a handful 

of coliphages such as λ and P1. Through the study of phages, restriction modification was 

discovered, as well as the usage of a 3-nucleotide sequence to code for each amino acid. With 

the development of new technologies and understanding of life sciences, much of the scientific 

community focused on other research areas such as cancer and human pathogens such as HIV 

(Rohwer and Segall 2015).   

1.1.3 Classification of bacteriophages 

There are four realms of viruses, separated by the nature of their genomes. The Monodnaviria 

are single stranded DNA viruses that have a replicative doubled stranded intermediate (NCBI 

2020). The Riboviria encode RNA-dependent polymerases, such as reverse transcriptase and 

RNA-dependent RNA polymerase (Venkataraman, Prasad, and Selvarajan 2018). The 

Varidnaviria are double stranded DNA viruses which encode vertical jelly roll-type major 

capsid proteins (Koonin et al. 2019). The Duplodnaviria encompasses all double stranded DNA 
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viruses that encode the major capsid protein HK97 (Koonin et al. 2019). Also with the 

Duplodnaviria are the Herpesvirales that infect eukaryotes.  It is within this realm the 

Caudovirales order exist, which contain viruses that solely infect prokaryotes 

The Caudovirales (caudo – Latin ‘tail’) order consists of three families, classified mainly on 

the properties of their tails (Figure 1.1). The Podoviridae, such as T7 and P22, have a simple 

tail morphology which is non-contractile. The Myoviridae such as T4, have long contractile 

tails and the Siphoviridae, such as λ, have long, non-contractile tails. The Ackermannviridae, 

Autographiviridae, Chaseviridae, Demerecviridae, Drexlerviridae and Herelleviridae account 

for the remainder of the Caudovirales, but are significantly less common and much less studied 

(Virus Metadata Resource 2019). Caudovirales are non-enveloped viruses with a single linear 

double stranded DNA genome packaged within an icosahedral protein head. Their DNA 

genome is injected into the bacterial host though the tail, which is linked to the head via head-

to-tail connector proteins. The Caudovirales account for 95% of all studied phages.  
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Figure 1.1: Structural features of tailed coliphages. A) Negatively stained electron micrograph of 

a Myoviridae. B) Schematic labelling of typical Myoviridae phage. C) Negatively stained electron 

micrographs of the three most common families of Caudovirales that infect Escherichia coli. Images 

provided by Dr Tim Blower, from the Durham University undergraduate Microbiology Workshop. 
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1.1.4 Phage adsorption and injection 

The life cycle of a phage begins with the attachment of the tail fibres to the host receptor, 

known as adsorption. There are many modes of action for different phages, and the processes 

of the Myoviridae T4 and Siphoviridae λ will be detailed.  The T4 phage binds OmpC and 

lipopolysaccharide (LPS) on the outer membrane of E. coli, resulting in an irreversible binding 

to the bacterial surface, facilitated by a rotation of the long tail fibres and a large conformational 

change in the baseplate (Figure 1.2). A contraction of the sheath occurs, piercing the bacterial 

surface allowing for the translocation of the viral genome into the host (Maghsoodi et al. 2019). 

Piercing the host’s membrane is a three-step process. First, the needle of the tail tip is thrust 

through the outer membrane mechanically, followed by lysozyme driven degradation of the 

periplasmic peptidoglycan layers (Nakagawa, Arisaka, and Ishii 1985). The lysozyme domain 

of gp5 shares structural similarities to hen egg white lysozyme (Yap and Rossmann 2014). The 

last step involves the fusion of the tail tube with the cytoplasmic membrane and the dissociation 

of the tail tip from the main body of the tail tube (Maghsoodi et al. 2019). Phage λ does not 

have a contractile tail, and as such, cannot mechanically pierce the outer membrane. Instead, 

once bound to the maltose outer membrane protein, DNA translocates through the membrane 

pore directly into the host periplasm, and then is passed through the mannose permease 

complex into the cytoplasm (Erni 2006). Effectively, both phages must inject their genomes 

into the host in order to establish an infection.  
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1.1.5 Lytic cycle of T4 

T4 is a lytic phage and does not integrate into the host genome. Replication proceeds in phases 

(Figure 1.3). In the early phase, the T4 genome has entered its bacterial host, host gene 

expression is arrested, and host DNA is degraded. T4 relies on reassigning host RNA 

polymerases (RNAP) to transcribe its DNA as it does not encode its own (Hinton 2010). The 

early phase genes are transcribed as their promoter sequences strongly compete for host σ70-

RNAP complexes. The early phase of T4 involves the transcription of factors to hijack host 

processes, such as preventing transcription using deoxycytosine. This is facilitated by the 

production of T4 Alc, which terminates transcription of deoxycytosine containing DNA.  

Figure 1.2: Adsorption of a bacteriophage. Binding of T4 phage to the bacterial outer 

membrane via OmpC/LPS results in the rotation of the phage baseplate, irreversibly locking 

the membrane to the phage. The contraction of the sheath pierces the outer membrane, allowing 

the phage genome to translocate into the periplasm before entering the cytoplasm. 
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T4 overcomes this transcription arrest by incorporating modified cytosines that have been 

methylated into its genome, and further modifying these bases by glycosylation (Severinov et 

al. 1994). The anti-sigma factor AsiA is produced during early infection, preventing RNA 

polymerase from binding host promoters, and instead paving the way for transcription of 

middle phase genes. This is driven by the activity of T4 MotA (modified of transcription) which 

directs the RNAP-AsiA complex to middle phase gene promoters (Hinton 1991). This drives 

the production of components for genome replication.  

Finally, late phase genes for the production of the structural proteins for the head and tail are 

transcribed, as well as key assembly proteins. Late phase transcription is activated by the 

production of T4 encoded sigma-55 (Miller et al. 2003). Once the biosynthesis of progeny 

components is complete, the procapsid is produced and matured. Gp16, gp17 and gp20 form 

the terminase complex which translocates the linear T4 dsDNA genome into the head. This 

mechanism requires hydrolysis of ATP in order to package unit-length DNA into a condensed 

structure within the phage head (Rao and Black 2005).  

Once new phage virions are assembled, host lysis is induced through phage-encoded holins 

and lysozyme that disrupt and degrades the host’s cell wall, leading to the destruction of the 

cell’s integrity and the release of progeny phage. T4 can detect superinfection of the host by 

another phage, and through lysis inhibition it can delay the cycle, allowing T4 to accumulate a 

significantly number of progeny phage, resulting in a greater “burst size” upon lysis (Burch et 

al. 2011). Released progeny reinitiate the phage life cycle by adsorbing to another host cell. 
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1.1.6 Lysogenic life cycle of phage λ 

Phage λ exhibits both lytic and lysogenic activity which is largely modulated by cI (Figure 

1.4). The repressor cI is the sole product of the lysogenic cycle λ, preventing transcription from 

the PL and PR regions (Lewis et al. 2011). The first mRNAs produced are cro and N, transcribed 

in opposite directions. N binds terminator regions allowing for polycistronic transcription by 

allowing RNA polymerase to continue transcribing past terminators, expressing the cII and cIII 

genes, which drive bacteriostasis favouring lysogeny (Rajamanickam and Hayes 2018). The 

presence of cI prevents expression of lytic genes, maintaining the lysogenic cycle as the 

prophage genome is replicated with every replication of the host chromosome. Under cellular 

stresses such as UV light, DNA SOS repair induces the cleavage of cI due to its similar structure 

to the LexA transcription repressor, allowing for lytic genes to be expressed (Little 1984).  

Figure 1.3: Lytic life cycle of T4. Phage DNA is replicated and expressed by host machinery 

and progeny phages are packaged before being released. 
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1.1.7 Prevention of superinfection 

Phage λ encodes the Rex two-component system, consisting of a cytoplasmic phage 

recognition unit RexA, and an ion channel forming protein RexB. Phage λ undergoes lysogenic 

cycles within the E. coli host and the Rex system is expressed. RexA detects a DNA-protein 

complex induced by a new phage infection, inducing the activity of the membrane pore 

produced by RexB. This leads to a loss of membrane potential due to the movement of 

monovalent cations, leading to cell death (Snyder 1995). As a result, the newly invading phage 

cannot produce progeny and establish a wider phage community. T5 phage uses the outer 

membrane protein FhuA, an iron uptake protein, as its receptor and covers it with the 

lipoprotein Llp. This prevents other phages such as T1 from binding and establishing a 

superinfection (Pedruzzi, Rosenbusch, and Locher 1998). 

Figure 1.4: Lysogenic cycle of λ phage. Phage DNA is introduced into the host genome. 

Expression of the prophage DNA leads to the production of progeny phages, resulting in the 

release of progeny phage. 
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1.1.8 Environmental bacteriophage interactions with their bacterial hosts 

It is estimated that there are 1031 phages within the biosphere, making them ten times more 

abundant than their bacterial hosts (Whitman, Coleman, and Wiebe 1998). Parsons et al. 

estimate that there are a total of 1030 virioplankton in the oceans, accounting for 94% of the 

total number of nucleic-acid-containing particles and organisms (Parsons et al. 2012; Suttle 

2007). As a result, phages are a major driving force for shaping the microbial ecology of 

oceans, turning over roughly 20% of the marine microbial biomass every day. This releases 

dissolved organic carbon back into the marine environment, affecting biogeochemical cycling 

of nutrients (Suttle 2007).  Phages are also highly abundant in soil, with estimates of up to 1010 

per gram in rich soils. The infection of key biogeochemical cycling prokaryotes means that the 

activity of soil phages is a nutrient cycling factor with the soil environment (Braga et al. 2020). 

The human intestines contain a diverse community of microorganisms, with estimates of total 

cell counts exceeding 1014
 cells, with an average of 500 different species contributing to the 

microbiota (Thursby and Juge 2017). Despite the abundance of food sources for 

microorganisms within the human intestines, there are significant pressures to maintain 

microbial communities. Phages are highly abundant within the intestine and directly shape the 

microbiome, and as a result, the intestine represents another niche is which bacteria rely on 

anti-phage mechanisms to ensure their survival (Sausset et al. 2020).  
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1.2 Gene Regulation in Bacteria 

Control of bacterial gene expression is largely achieved by regulation of transcription and 

translation. Bacterial genes are commonly clustered together in polycistronic operons and are 

transcribed under the control of a single upstream promoter. Studies of the lac operon of E. coli 

laid the foundations of gene expression research and detailed expression dynamics such as 

inducers and repressors. Sequence specific DNA-binding proteins bind operator sequences in 

close proximity to the promoter sequence, preventing RNAP from binding. The λ cI repressor 

functions this way by repressing transcription from the pR promoter (Rojo 1999). Bacteria 

mRNA transcripts are much less stable than eukaryote transcripts, and therefore the coupling 

transcription and translation is stringently coupled (Rauhut and Klug 1999).  

1.2.1 WYL domain-containing proteins and transcriptional regulation 

The WYL domain contains a Sm-like SH3 beta-barrel fold domain, and proteins containing 

this domain belong to the WYL-like superfamily. The domain is named after the three 

conserved residues WYL, which has subsequently been shown to only be present in a small 

subset of these proteins (Makarova et al. 2014). WYL containing proteins are predicted to have 

a ligand-binding domain that recognises negatively changed elements such as DNA or 

nucleotides. These proteins have been implicated in the detection of modified nucleotides and 

their derivatives. A WYL domain protein sl7009 has been shown to negatively regulate the I-

D CRISPR-Cas system in cyanobatcteria by repressing transcription. This protein also contains 

a helix-turn-helix motif for DNA binding (Hein et al. 2013). It is speculated that these proteins 

represent a viral DNA sensing system that activates anti-phage effector proteins. 
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1.2.2 Bacterial RNA polymerase and sigma factors 

Dissimilar to eukaryotes which employ several RNAPs, bacteria utilises only one, comprised 

of two α subunits, two β subunits and a single ω subunit, arranged as α2ββ΄ω (Rauhut and Klug 

1999). The RNAP complex binds a σ-factor to form the RNAP holoenzyme (Figure 1.5). The 

dimerisation of the α subunits allows for the binding of the other subunits via the N-terminals, 

whilst regulatory elements interact with the C-terminal domains (Liu et al. 1996). The β and β’ 

subunits comprise the catalytic core of RNA synthesis and bind double stranded nucleic acid 

molecules. The beta subunits are recruited via the ω subunit, which also maintains the structural 

integrity of the enzyme (Mathew and Chatterji 2006; Zhou et al. 2013) 

  

Figure 1.5: Recruitment of RNA polymerase. RNA-polymerase subunits form the RNA 

polymerase holoenzyme capable of transcribing DNA. Alpha subunits organise first and beta 

and omega subunits to form an active complex when bound to a sigma factor. 
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1.2.3 Sigma factors 

σ factors direct RNAP to promoter sequences at positions upstream of the transcription start 

sites (TSSs). The σ70 family contains the housekeeping sigma factors for expression during 

normal growth conditions in E. coli, such as RpoD in exponential phase, and directs RNAP to 

conserved hexanucleotide sequences at positions -35 and -10 relative to the TSS. Bacteria 

employ many other sigma factors to drive a specific gene expression profile (Bervoets and 

Charlier 2019). Under stress conditions such as starvation RpoS is utilised driving a change in 

10% of E. coli genes (Tripathi, Zhang, and Lin 2014). Similarly, RpoF drives flagellar 

synthesis, RpoN is produced in response to nitrogen starvation, and RpoH initiates the 

expression of heat shock response proteins such as DNA repair enzymes and chaperones 

(Narberhaus and Balsiger 2003; Kazmierczak, Wiedmann, and Boor 2005). Alternative σ 

factors are encoded by phages to drive specific gene expression from their own genomes. Once 

transcription has been initiated, σ factors are displaced. 

1.2.4 The lac operon as a regulatory model and its experimental use 

Much of the current understanding of gene expression is resultant of studies on the lactose 

regulatory system in E. coli. The lac operon consists of the effector genes lacZ, lacY and lacA. 

Lactose is hydrolysed by the product of lacZ, β-galactosidase, producing galactose and glucose 

(Figure 1.6). LacY is a galactoside transporter which imports lactose, and LacA catalyses 

acetylation of thiogalactosides (Lewis 2005). In the absence of allolactose in the growth media, 

the LacI repressor binds the operator sequence with high specificity, preventing RNAP from 

transcribing the downstream effector genes (Agnes Ullmann 2009).  
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Figure 1.6: Regulation of the lac operon. A) Binding of allolactose displaces the LacI 

complex from the operator sequence, allowing RNA polymerase to bind the lac promoter. 

B) Production of cAMP activates CAP which aids RNA polymerase binding to the lac 

promoter. 
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1.2.5 Helix-turn-helix motifs 

Helix-turn-helix (HTH) motifs bind the major groove of DNA via hydrogen bonds and Van 

der Waals interactions. Monomers consists of α-helices separated by a short region of amino 

acids. HTH motifs were originally discovered due to similarities being observed between 

several regulatory components encoded by E. coli and phage λ. This led to the observation that 

Cro, CAP and the λ repressor all contain a 20-25 amino acid sequence that recognises DNA 

(Matthews et al. 1982; Anderson et al. 1981; McKay and Steitz 1981).  Each monomer contains 

at least 2 α-helices, with one helix contributing to DNA recognition, supported by the other 

helix/ helices (Matthews et al. 1982). Winged HTH domains consists of a 3-helix bundle, and 

a 3 or 4-stranded beta sheet that forms the ‘wing’. The α-helical regions contain the DNA 

recognition helix, and the wing stabilise the protein-DNA interaction by making separate 

contacts such as at the minor groove (Gajiwala and Burley 2000).  
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1.3 Overview of Phage Defence Systems 

Phage defence systems are usually driven through a specific mode of action, such as the 

recognition of a specific DNA motif which is targeted by an effector protein. As a result, a 

single phage defence system provides limited resistance. This is due to a number of reasons, 

such as the small temporal margins during a phage infection in which effectors must be active, 

but also due to phage encoded counter-resistance mechanisms. Therefore, bacteria employ a 

range of phage resistance systems, forming a multi-pronged defence.  

1.3.1 Individual DNA sensing phage defence systems 

Prokaryotes employ a wide range of anti-phage systems to prevent infections. Detailed 

examination of selected systems is provided in section 1.4, whereas this section provides an 

overview including restriction modification in which foreign DNA is degraded, abortive 

infection systems that prevents the spread of phage progeny by arresting bacterial cell growth, 

and BREX which functions independently of previously characterised systems.  

1.3.2 Restriction Modification 

Restriction modification (RM), primarily a two-component system, relies on the recognition of 

foreign DNA that can be distinguished from host DNA. The majority of RM systems employ 

a methyltransferase that modifies host DNA to ensure the cognate restriction endonuclease can 

no longer target it (Vasu and Nagaraja 2013). The endonuclease targets specific DNA 

sequences, generating double stranded breaks producing blunt or overhanging ends. The 

methyltransferase targets the same DNA sequence, adding a methyl group to the N6
  amino 

group of adenine, or the C5 carbon or N4 amino group of cytosine (Cheng and Roberts 2001).  
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1.3.3 Abortive infection 

Abortive infection is an altruistic mechanism that prevents the spread of a phage infection by 

inducing cellular suicide, preventing phage progeny from spreading to neighbouring cells. 

Abortive infections covers a wide array of strategies and can be used to denote systems that 

upon detecting a phage infection, induce cell death before mature phages can be replicated 

(Lopatina, Tal, and Sorek 2020). These systems utilise a phage sensing element, and an element 

that induces cell death. As the activity of abortive infections systems results in the death of the 

host, it is seen as a second line defence, to be utilised when other systems such as RM have 

failed to prevent an established phage infection. 

1.3.4 CRISPR-Cas 

CRISPR-Cas systems comprise two components. The cas genes encode effector proteins such 

as the Cas9 nuclease that degrades target DNA. The CRISPR array is made of sections of direct 

repeats of DNA, separated by small spacer regions which have originated from previous 

encounters with foreign DNA, which can be introduced during phage infections. The CRISPR 

arrays form libraries of previously encountered phage DNA, allowing the host to identify 

phages in subsequent infections. This provides the host with an adaptive immune response 

(Stanley and Maxwell 2018).   

1.3.5 Cyclic-oligonucleotide-based antiphage signalling systems  

Cyclic-oligonucleotide-based antiphage signalling systems (CBASS) comprise another form 

of two-component system, employing a cyclic oligonucleotide cyclase that produces cGAMP 

upon sensing viral DNA, and a phospholipase that targets the host’s inner membrane inducing 

cell death (Cohen et al. 2019). CBASS induces cell death and therefore falls under the category 

of abortive infection systems with a distinct detection and effector profile. 
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1.3.6 Defence island system associated with restriction-modification (DISARM) 

DISARM represents a phage defence system that restricts incoming phage DNA, and is 

modulated by a DNA methyltransferase. Class I DISARM systems employ an adenine-

methylase, a helicase domain containing protein, a DUF1988 domain protein, an SNF2-like 

helicase and a phospholipase-D domain protein. Class II systems vary by encoding a cytosine 

methyltransferase instead of an adenine methyltransferase and do not include a SNF2-like 

helicase (Ofir et al. 2018). DISARM is widespread in bacterial and archaeal genomes, and 

differs from classical RM systems, as it utilises multiple components to form a restriction 

module.  

1.3.7 Phosphorothioate (PT) sensing phage defence 

The Dnd system introduces sulphur atoms into the DNA backbone, protecting DNA from 

cleavage by RM systems. The Ssp system employs SspE which identifies PT modifications 

and can introduce single stranded DNA breaks to prevent phage DNA from replicating (Xiong 

et al. 2020). 

1.3.8 Prevention of adsorption to cell surface 

Biofilm formation can provide an indirect system of phage defence by allowing cells within 

the biofilm’s interior to divide, whilst cells on periphery are susceptible to infection. The 

production of a dense extracellular matrix consisting of amyloid fibres prevents phages from 

disseminating to the colony’s core (Vidakovic et al. 2018). Gram-negative bacteria such as 

Vibrio cholerae can produce outer membrane vesicles (OMVs) which contain phage receptors, 

effectively acting as a decoy landing site for phages. OMVs pinch of the host cell and form 

spherical structures that mimic the phage’s bacterial target, ultimately reducing the infectively 

of the phage (Reyes-Robles et al. 2018).  
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1.3.9 Bacteriophage Exclusion 

The Bacteriophage Exclusion (BREX) system shares similarities with other phage defence 

systems in that it utilises a methyltransferase to distinguish host DNA from foreign DNA, 

however it forms a distinctly different defence system by employing a variety of 

uncharacterised anti-phage components (Goldfarb et al. 2015). 
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1.4 Mechanisms of Phage Defence Systems 

As BREX shares similarities with CRISPR-Cas and RM defence systems in its interactions 

with DNA, this review will focus on and compare these systems. 

1.4.1 Initial characterisation of BREX    

The simultaneous adaptation of the bacterial host through evolving phage-resistance 

mechanisms, alongside the rapid variation of phage genomes, has led to this field of research 

being regularly described as a militaristic “arms race” (Seed 2015; Stern and Sorek 2011b; 

Goldfarb et al. 2015; Nechaev and Severinov 2008). BREX systems have recently been 

described by Goldfarb et al. to confer resistance to an array of both lytic and temperate phages. 

These observations were made when BREX-negative Bacillus subtilis was transformed with 

the full BREX system isolated from Bacillus cereus (Goldfarb et al. 2015). Goldfarb et al. 

originally screened ~1,500 bacterial and archaeal strains for the presence of the phage growth 

limitation (Pgl) system, consisting of the essential alkaline phosphatase (pglZ), as well pglWXY. 

This system has been shown to confer resistance in Streptomyces coelicolor to temperate 

phages (Sumby and Smith 2002). Upon screening for PglZ, Goldfarb et al. established that 

pglZ was encoded by ~10% of the screened bacterial and archaeal genomes, often within a 

gene cassette containing five other genes. BREX is commonly organised into two operons of 

brxABCL and pglXZ. BrxA is an RNA-binding anti-termination protein, BrxB is a protein with 

unknown function, BrxC is an ATP-binding protein, and BrxL is a Lon-like protease. PglX has 

been shown to be a methyltransferase that targets the host genome at specific motifs (Figure 

1.7), and PglZ is a phosphatase (Barrangou and van der Oost 2015; Goldfarb et al. 2015). These 

six genes make up the core BREX system, denoted the BREX 1 or consensus system. Multiple 

similar systems exist however, often containing gene inversions, duplications, or additional 

genes with separate functions. Six distinct systems were identified and clustered based on their 
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gene content and organisation, as well as an additional minority group that did not subscribe to 

either of the other six groups and showed no homology to each other. A striking difference 

between BREX-encoding and Pgl-encoding strains, was that Pgl-encoding bacteria were 

susceptible to phage infection during the first infection cycle but not the second, however 

BREX-encoding strains were resistant during the first infection cycle. 

1.4.2 Activity of BREX methyltransferases on phage DNA 

Gordeeva et al. showed that progeny phages isolated from BREX-positive E. coli contain the 

same methylation pattern on the non-palindromic sequence GGTAAG as host genomic DNA 

(Gordeeva et al. 2019). The induction of λ prophages from BREX-positive cells produces 

resistant progeny phage, showing that the epigenetic modification of the phage genome confers 

protection from BREX. PacBio sequences of λ phage genomes showed that the complementary 

motif CTTACC was not methylated. Mutational analysis of the BREX operon showed that 

brxA was non-essential for methylation of GGTAAG motifs or for conferring resistance to 

phages. Deletion of brxL abolished resistance to phages, however methyltransferase activity of 

PglX was still observed. All other gene deletions resulted in a lack of methylation and abolished 

phage resistance (Gordeeva et al. 2019). REBASE predicts that PglX is a multifunctional 

restriction endonuclease/ methyltransferase fusion, however no endonuclease activity has been 

observed (Hui et al. 2019).  
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Figure 1.7: Activity of PglX on target DNA. A) Incoming phage DNA remains unmethylated and 

remains susceptible to BREX effectors. B) Asymmetric, distinct methylation patterns are formed 

on host DNA rendering it protected from BREX effector proteins. 
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1.4.3 Identifying distinctions between BREX and other resistance systems  

BREX has been shown to operate in a distinct manner from other previously described 

resistance mechanisms. BREX has not been found to prevent the initial stages of infection such 

as phage adherence to the host surface or injection of DNA, and BREX does not mediate 

cleavage of phage DNA by restriction endonucleases. Structural modification or physical 

masking of surface receptors can lead to inhibition of phage adsorption, however this is not 

mediated by BREX (Coffey and Ross 2002). Phage receptors can be blocked by the production 

of host factors that competitively bind the surface receptor. Adsorption assays show that Φ3T 

adhere to BREX-positive B. subtilis as effectively as it can adhere to WT. Phage DNA is 

detected within cell lysates indicating that DNA injection following adsorption is successful 

and not inhibited by BREX (Goldfarb et al. 2015).   

Another commonly employed phage resistance mechanism is the altruistic system of abortive 

infection (Abi), where an infected bacterium mediates its own death in order to prevent phages 

from spreading throughout the population (Chopin, Chopin, and Bidnenko 2005). BREX does 

not mediate this, as BREX-positive cultures do not exhibit arrested growth or culture decline, 

which is observed when abortive infection occurs (Goldfarb et al. 2015; Fineran et al. 2009). 

Therefore, abortive infection has been ruled out as a possible mechanism as to how BREX 

confers phage resistance.  

1.4.4 Variations of BREX systems 

Goldfarb et al. used a bioinformatic approach to identify 6 key types of BREX systems, 

clustered based on the components that they encode (Figure 1.8). The type I system detailed in 

2015 is most commonly observed accounting for 55% of systems, however there are a further 

5 classifications (Goldfarb et al. 2015). Type II accounts for 15% of BREX systems and 
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constitutes the phase growth limitation (Pgl) system, encoding a kinase PglW, an ATP-binding 

protein BrxD, a helicase BrxH, as well as PglX and PglZ. The ATPase BrxC is replaced by 

PglY, which shares the P-loop motif of BrxC and DUFs 2791 and 499. BREX type III encodes 

proteins of unknown function brxF, brxA, brxC, pglXI, pglZ and brxHII.  

The type III systems have greater homology to type I systems, sharing the predicted RNA-

binding protein brxA and pglX. However, type I pglX incorporates the methylase domain 

pfam13659 and type 3 pglXI pfam01555. The predicted helicase pglHII is present and brxL is 

absent. Type IV encodes only 5% of systems and comprise of only brxC/pglY, PglZ, BrxL and 

a phosphoadenynyl-sulphate (PAPS) reductase domain containing protein, brxP. There is no 

pglX encoded within these systems. The pfam10507 domain within brxP is implicated in the 

DND resistance system in which the DNA backbone is modified with sulphur additions. Type 

V also account for 5% of systems within this study and contains brxA, brxB, brxC/pglY, pglX, 

pglZ and brxHII, with no brxL present. It encodes the same helicase as type III, the same pglX 

as type I, as well as a duplication of pglY/brxC separated by brxB. Finally, type VI systems 

include brxE, a protein of unknown function, in addition to brxA, brxB, brxC/pglY, pglX, pglZ, 

brxD and brxHI. 7% of the systems found have not been classified into a specific group 

(Goldfarb et al. 2015). 
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Figure 1.8: Genetic components of BREX. A) Operonic representation of the 6 core BREX 

types. B) Annotation of individual BREX components with predicted function 
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1.4.5 BREX protein analogues 

Between the 6 classes of BREX systems, certain proteins are substituted for others which 

replace their function. BrxC which is found within the type I system, is replaced by another 

ATPase PglY in type II. Both proteins contain a nucleotide binding P-loop characteristic of 

kinases, helicases, and motor proteins (Thomsen and Berger 2008). However, only 4% of their 

sequences are shared which is primarily the result of the P-loop, indicating that they are 

significantly different proteins. However, they share a DUF499 and are predicted to have a 

shared role in BREX defence. 

This variability is also observed for the predicted helicases BrxHI and BrxHII. Whilst BrxHI 

contains the COG1201 Lhr-like helicase domain, BrxHII contains a COG0553 DNA/RNA 

helicase domain. PglX and PglXI also incorporate different adenine-specific methyltransferase 

domains but are predicted to have the same function to their respective systems. However, not 

all systems encode a PglX or BrxH variant, whereas all systems encode a PglZ or BrxC/PglY 

component (Goldfarb et al. 2015).  

1.4.6 The role of methyltransferases in phage resistance mechanisms 

Bacteria employ restriction modification (R-M) systems in order to cleave injected phage DNA 

to prevent propagation and is often viewed as a primitive bacterial immune system. R-M 

systems are ubiquitous, and have almost infallible specificity to their targets (Vasu and 

Nagaraja 2013). R-M systems are often encoded by highly mobile elements such as plasmids 

or transposons, contributing to their ubiquity (Kobayashi 2001). R-M systems utilise 

methyltransferases to distinguish between viral and host DNA motifs, ensuring that host DNA 

is not cleaved by the endonuclease (Bickle 2004). Phage genomes that contain fewer restriction 

sites have a selective advantage as they are less prone to enzymatic cleavage (Samson et al. 
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2013). However, whilst BREX does encode a methyltransferase, phage DNA has been shown 

to not be degraded by BREX encoded proteins. PglX encodes for an adenine specific 

methyltransferase that methylates the non-palindromic TAGGAG motif at the fifth position.  

Comparisons have been drawn between R-M and toxin antitoxin (TA) systems, where an 

antitoxin sequesters a toxin inhibiting it from causing cell death. The removal of the antitoxin 

causes the toxin to mediate its effect, and the removal of a methyltransferase from an R-M 

system can lead to cleavage of host DNA, both resulting in growth arrest or cell death (Stern 

and Sorek 2011a; Hayes 2003). The deletion of pglX in BREX-positive B. subtilis however 

does not result in cell toxicity, suggesting that PglX activity does not prevent a restriction 

endonuclease from inadvertently cleaving the host genome (Goldfarb et al. 2015). The specific 

structure and function of pglX has yet to be solved however, and therefore assessing the effect 

of the deletion of pglX is speculative.  

Southern blot analysis has led to the hypothesis that BREX is not an R-M system, but rather 

mediates resistance by preventing the propagation of progeny phages by inhibiting DNA 

replication (Goldfarb et al. 2015). This has WT B. subtilis was shown to have an 81-fold 

increase in phage DNA 30 minutes post-infection (PI) with Φ3T when compared to 10 minutes 

PI, however BREX-positive B. subtilis exhibited no increase in phage DNA levels between 30 

minutes and 10 minutes PI (Goldfarb et al. 2015). This evidence suggests that the BREX system 

mediates its action largely by preventing replication of phage DNA, preventing the propagation 

of any progeny phages. The mechanism in which this is achieved remains ambiguous.  
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1.4.7 Potential applications of BREX 

Phage resistance mechanisms have been previously harnessed for powerful biotechnological 

functions, such as the use of restriction endonucleases for cloning, and CRISPR-Cas for 

genome editing (Sander and Joung 2014; Salmond and Fineran 2015). The potential for BREX 

to be utilised in such a manner is promising, as although its mechanisms are currently unclear, 

it represents a distinct variation from any of the previously described antiviral systems. One of 

the key potential uses of BREX proteins is the ability of PglX to perform sequence specific 

hemi-methylation. This could act as a molecular switch, in which the induction of PglX drives 

site-specific DNA methylation, driving different gene expression profiles. Bioengineering 

bacterial genomes to contain multiple target motifs would allow for the activation/repression 

of multiple genes under the control of one mode of action. The study of methyltransferase 

mechanics is key to understanding the changes of methylation patterns in human disease. in 

Distinct methylation patterns are observed in cancer patients, and these abnormalities can be 

screened for to identify tumours. There are a number of genes found to contain mutations 

involved in the oxidation of methylcytosine in cancer patients (Pfeifer et al. 2014). A 

recurrence of interest has emerged in the use of phages as a bactericidal treatment due to the 

stalled progress of antibiotic discovery (Bragg et al. 2014). In order to fully utilise phages for 

this purpose, it is important that the resistance mechanisms are understood, in order to prevent 

an analogous situation to that of the current antibiotic resistance crisis.   

1.4.8 Phage encoded BREX counter-resistance mechanisms  

Selective pressure from bacterial phage-resistance systems reciprocally drives phage evolution, 

and counter-resistance mechanisms have arisen allowing phages to evade bacterial antiviral 

systems. These counter-resistance mechanisms include the modification or reduction of 

restriction sites, encoding a molecular mimic to hijack the host abortive infection response and 
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initiating the stimulation of methyltransferases to methylate phage DNA to evade R-M systems 

(Kruger et al. 1988; Samson et al. 2013; Blower, Evans, et al. 2012).  

The similarities shared between R-M systems and BREX regarding the use of a 

methyltransferase to distinguish between self and foreign DNA may give insight into potential 

counter-resistance mechanisms against BREX. A phage that could stimulate PglX to increase 

its activity, therefore driving the methylation of its own DNA before another element of BREX 

sequesters it, would give the phage a selective advantage. However, despite the similarities of 

the two systems, another hypothetical BREX resistance mechanism would be the modification 

of the TAGGAG motif of the bacterial chromosome that is methylated by PglX. This could be 

achieved either by incorporating unorthodox nucleotides or reducing the number of motifs 

present. This mechanism is employed by T-even coliphages by utilising hydroxymethyl 

cytosine instead of cytosine (Figures 1.9 and 1.10), effectively modifying the recognition motif 

(Kruger and Bickle 1983). BREX needs to be effectively characterised before an investigation 

into how other counter-resistance mechanisms might operate (Gordeeva et al. 2019). 
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Figure 1.9: Structural formula of dCTP and hm-dCTP. hm-dCTP (5hmC) is modified 

at the C5 carbon of the cytidine base. 
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A 

Figure 1.10: Modification of DNA motifs with 5hmC. Recognition of target DNA sequences 

by a type II restriction endonuclease, EcoRI, and the evasion of restriction by the incorporation 

of a non-canonical DNA base. A) Incorporation of canonical cytosine residues allows EcoRI 

to introduce a double stranded break. B) Incorporation of 5hmC protects DNA against 

restriction. 

B 
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1.4.9 CRISPR-Cas; discovery, functionality and applications 

The initial identification of clustered regularly interspaced short palindromic repeats 

(CRISPRs) was in 1987 by Ishino et al. whilst investigating iap driven alkaline phosphatase 

isoenzyme conversion (Interthal, Pouliot, and Champoux 2001). Secondary structures formed 

within CRISPR regions due to complementation of the palindromic sequences, making it 

difficult to read the sequence.  It was due to the formation of these DNA hairpins that attention 

was given to the nature of CRISPR regions.  With the advances of DNA sequencing, CRISPRs 

were appearing regularly in bacterial and archaeal genomes, and in 2005 Mojica et al. showed 

that non-repeating CRISPR sections originated from mobile elements such as plasmids or 

bacteriophages (Mojica et al. 2005). CRISPR associated (cas) genes were discovered to 

associate with CRISPR regions and the protein products of cas genes formed an adaptive 

immune response to viral infections (Makarova and Koonin 2015). The cas genes were initially 

discovered via genome comparisons of CRISPR containing genomes and have been 

categorised. Cas1 and Cas2 families sharing no known domains with other proteins. Cas3 was 

found to contain multiple conserved motifs of the superfamily 2 helicases, and Cas4 showed 

homology to RecB, an exonuclease involved in RecBCD homologous recombination (Ishino, 

Krupovic, and Forterre 2018). 

1.4.10 CRISPR-Cas phage resistance 

The CRISPR-Cas defence system functions by incorporating phage DNA sequences as spacers 

within CRISPR regions, which when expressed form crRNA sequences (Figure 1.11). crRNA 

sequences hybridise to their complementary phage DNA sequences, so that future phage 

infections can be targeted. Cas effector proteins bind tracrRNA sequences, which are guided 

by the crRNAs, localising the Cas nucleases to specific DNA motifs (Dy, Rigano, and Fineran 

2018).  
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As a result, phage DNA is targeted by Cas nucleases in a sequence specific manner, which also 

prevents Cas nucleases from targeting host DNA (Figure 1.12).  

 

 

 

Figure 1.11: Production of CRISPR array from viral DNA. Viral DNA is inserted into the host cell, 

and small spacer regions are added to the CRISPR array, flanked by direct repeating elements. 

Transcription and processing by RNAase of these regions leads to production of mature crRNA, 

which in complex with tracrRNA associates with the Cas9 nuclease (Jiang and Doudna 2017). 
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Figure 1.12: Activity of Cas9 nuclease. Subsequent viral infections with genomes containing 

the region incorporated into the spacer regions of the CRISPR array are hybridised with the 

Cas9 complex. Cas9 forms a double stranded break in the viral DNA (Jiang and Doudna 2017). 
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1.4.11 Biotechnological applications of CRISPR-Cas 

Aside from the biological role in phage-resistance systems, CRISPR-Cas has been widely 

adopted for biotechnological purposes. The most heavily utilised CRISPR gene manipulation 

system is the type II CRISPR-Cas9, commonly from Streptococcus pyogenes (Gong et al. 

2019). In this S pyogenes system, crRNA is hybridised with tracrRNA, directing the Cas9-

RNA complex to the complementary viral sequence. Cas9 incorporates an HNH nuclease 

domain which cleaves the complementary target DNA strand, and a RuvC-like nuclease that 

cleaves the non-hybridised strand (Rodríguez-Rodríguez et al. 2019). The complex can be 

targeted to any 18-24 nt DNA motif to produce blunt end cuts.  This revolutionised genome 

editing in eukaryotes due to the utilisation of non-homologous end joining in eukaryotic 

systems. Genome editing in a wide range of prokaryotes was already feasible due to the array 

of molecular processes for editing such as λ-red recombineering. Beyond using Cas9 for 

targeted DNA cleavage, mutant Cas proteins can be engineered to bind, but not cleave, target 

sequences. This can be used to effectively block other proteins from interacting with the target 

DNA sequence such as transcription factors. Cas9 can be fused to reporter elements such as 

GFP to allow for specific location labelling (Ishino, Krupovic, and Forterre 2018). 

1.4.12 Evasion of CRISPR/Cas  

Following a phage infection, a subset of bacterial and archaeal hosts incorporate spacer 

sequences of the phage genome. These spacer sequences are transcribed and cleaved to form 

small CRISPR RNAs. These crRNAs are complementary to phage genetic material and 

hybridise with incoming genetic material. These crRNAs deliver nucleases to the target phage 

genome for degradation (Stern and Sorek 2011b). Phages encoding non-canonical bases within 

their CRISPR recognition sites can evade crRNA targeting. Phages may also mutate or lose 

their spacer sequence in between the first and second round of infection (Barrangou et al. 2007).  
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Anti CRISPR (Acr) proteins are utilised by phages and mobile genetic elements to inhibit DNA 

recognition and cleavage by host CRISPR-Cas immune systems. These proteins can directly 

interact with the Cas nuclease to block DNA recognition, such as the mechanism of AcrIIA4 

which binds the Pam recognition domain of Cas9 (Marino et al. 2020). The Cas9 nuclease can 

also be inhibited by AcrIIC1, which prevents DNA cleavage by associating with the HNH 

nuclease domain (Rauch et al. 2017). Other mechanisms of blocking CRISPR-cas activity 

including preventing crRNA loading and blocking effector complexes from being built.  

1.4.13 Classification of restriction enzymes 

Restriction modification (RM) systems operate based on the methylation of specific DNA 

motifs, facilitated by a methyltransferase. The cognate endonuclease typically degrades 

unmethylated DNA as the addition of methyl groups to host DNA is used to determine self 

from non self. Unmethylated phage DNA is susceptible to these endonucleases, preventing an 

infection from being established. Decades before the application of CRISPR-Cas systems, RM 

systems were demonstrated to cut specific DNA sequences, which revolutionised DNA cloning 

(Cohen et al. 1973; Morrow and Berg 1972). The endonucleases that comprise the cleavage 

activity of restriction modification (RM) systems can be classified into 4 main types (Type I-

IV) characterised by the composition of their subunits, position at which they cleave relative 

to the recognition motif, cofactor requirements and substrate specificity (Loenen et al. 2013). 

There are subclasses that further divide these enzyme classes. Type I restriction endonucleases 

(REases) are typically grouped on their homology, type II REases are grouped on their catalytic 

properties, type III enzymes are combined REase and MTase complexes, and type IV are 

enzymes that are methylation dependent. Type IV enzymes are not classed as restriction 

modification systems due to the lack of a cognate MTase and their activity against methylated 
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DNA  (Loenen et al. 2013; Pingoud et al. 2005). Bacteria employ a wide range of these systems 

in order to mount a thorough defence against phage infection. 

1.4.14 Type I restriction enzymes 

The earliest class of restriction enzymes were first introduced in the 1950s, when non-

hereditary DNA modifications were discovered as a host-controlled variation (Bertani and 

Weigle 1953; Luria and Human 1952). Type I systems are present in roughly half of 

prokaryotic genomes and form a significant defence against introduction of foreign DNA, 

greatly reducing the success of transformation, conjugation and transduction. This produces a 

barrier to horizonal gene transfer (HGT) as unmethylated foreign DNA is readily degraded 

(Cooper et al. 2017). Evidence for the degradation and methylation of DNA was provided in 

the 1960s, adding insight into the mechanisms by which reversible changes to viral DNA 

affected progeny phage abilities to grow within their bacterial hosts (Dussoix and Arber 1962). 

RM systems comprising type I REases were demonstrated to consist of an element responsible 

for methylation of DNA, and another element responsible for the cleavage of DNA that did not 

have this methyl modification (Loenen et al. 2014). A key characteristic of type I systems is 

the translocation along DNA facilitated by the hydrolysis of ATP, initiated by the recognition 

of foreign DNA, driving endonuclease activity and supressing methyltransferase activity (van 

Noort et al. 2004). In the absence of divalent cations, protein-DNA complexes show disrupted 

hydrogen bonding networks and DNA contortion by the enzyme is not observed.  DNA 

cleavage typically occurs as the result of the enzyme complex stalling against another complex 

(McClelland and Szczelkun 2004). As a result, there are no distinct cutting patterns produced 

by these enzymes.  
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Type I REases are formed of several subunits denoted Hsd, for host specificity. The recognition 

sequences for Type I enzymes are formed of two asymmetric parts, separated by a non-specific 

spacer region of 6 to 8 bp. For example, the REase EcoKI recognises the bipartite DNA 

sequence AACN6GTGC (Murray 2000). The EcoKI system can significantly reduce the 

success rate of infecting phages, allowing fewer than 1 in 105 to avoid degradation (Cooper et 

al. 2017). The genes encoding for each of the subunit components are denoted host specificity 

genes (hsd). The assembled protein complex has a stoichiometry of 1:2:2 comprised of HsdS, 

HsdM and HsdR respectively (Jindrova et al. 2005; Bourniquel and Bickle 2002).  

HsdS is responsible for the recognition of the target sequence and as a monomer forms the core 

of the system. The majority of HsdS subunits are roughly 50 kDA and contain two target 

recognition domains (TRDs), with each domain recognising a different part of the target 

sequence. The 3′ end of the target sequence is recognised by the C-terminal TRD and the 5′ 

end is recognised by the N-terminal TRD (Fuller-Pace and Murray 1986; Dryden, Murray, and 

Rao 2001; Seidel et al. 2008). However, there are systems utilising smaller HsdS proteins that 

have been shown to contain only one TRD. Single TRD HsdS proteins are able to dimerise in 

order to recognise symmetrical target sequences (MacWilliams and Bickle 1996).  HsdS can 

form a complex with HsdM as M2S1 which has methyltransferase activity and will methylate 

hemi-methylated target sequences (Kennaway et al. 2009). HsdM subunits recognise the 

methylation status of target sequences, transferring a methyl group from S-Adenosyl-L-

methionine to adenine residues to form N6-methyl adenine (N6mA). This allows for the semi-

conservative replication of DNA to produce two hemi-methylated products, containing a 

methylated parental strand, and a non-methylated daughter strand which can in turn be 

methylated again (Kozdon et al. 2013). Despite adenine being the most commonly methylated 

base via HsdM activity, more recently cytosine residues have been shown to undergo 

methylation to form N4-methyl cytosine (N4mC) (Morgan et al. 2016).  
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HsdR subunits are responsible for the restriction of unmethylated DNA and bind either side of 

the M2S1 complex to HsdM. The hydrolytic activity of HsdR is only activated when the full 

complex encounters unmethylated target sequences (Kennaway et al. 2009). HsdR subunits 

contain a PDE(x)K nuclease domain and an SF2 helicase domain (McClelland and Szczelkun 

2004). The MTase core binds to the target sequence, and in the absence of methylation at key 

residues, each HsdR subunit translocates DNA resulting in loops of dsDNA being formed. ATP 

is hydrolysed in order to process the DNA and cleavage typically occurs when it can 

translocation is blocked by contact with another complex (Seidel et al. 2008).  

It has been shown that the Ocr (obstruction of classical restriction) protein mimics DNA and 

confers protection to the T7 phage against type I restriction endonucleases, and also protects 

against BREX (Figure 1.13). Ocr binds PglX specifically, allowing T7 to circumvent BREX 

defences. The presence of the T7 0.3 gene that encodes Ocr allows the phage to form progeny 

phage and lyse its bacterial host, whereas T7 Δ0.3 mutants cannot. Ocr was shown to bind PglX 

via affinity chromatography pull-downs, suggesting that the interaction of Ocr within the DNA 

binding domain on PglX is responsible for the inhibition of BREX. Only a slight reduction of 

methylation of BREX motifs was observed in Ocr+ BREX+ strains compared to Ocr- BREX+ 

(Isaev et al. 2020). Ocr is the first protein to be produced during T7 infection, inhibiting host 

nucleases, allowing the remainder of the T7 genome to be replicated and transcribed without 

restriction (Roberts et al. 2012). Similarly, coliphage P1 masks its restriction sites by injecting 

DarA and DarB simultaneously to its genome. DarA and B are packaged into the phage head 

during assembly and prevent type I RM systems from binding (Iida et al. 1987). 
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Figure 1.13: Mechanism of Ocr inhibition of type I REases. A) Ocr -ve phages are susceptible to 

restriction and phage infection is prevented. B) Ocr successfully inhibits the activity of the host 

endonuclease allowing phage progeny to form following a successful infection. 

 

A 

B 
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1.4.15 Type II restriction enzymes 

The discovery and development of type II REases has largely shaped the field of molecular 

biology today. The key characteristic of type II enzymes is that DNA cleavage occurs at defined 

sites, either directly within the target sequence or close by. Commercially, this class of REases 

have significant biotechnological uses in laboratory practise for cloning and producing distinct 

DNA fragments (NEB. 2020). Type II REases exhibit significant heterogeneity compared to 

other classes of REases as they are classified on their catalytic properties, rather than sequence 

homology (Pingoud, Wilson, and Wende 2014). These enzymes produce DNA fragments with 

distinct, reproducible properties allowing for routine analysis via DNA gel electrophoresis. 

Similarly to type I REases, they typically require a divalent metal cation as a nuclease cofactor 

to coordinate interactions with target DNA. Certain enzymes such as EcoRV can still bind 

DNA non-specifically in the absence of metal ions, but exhibits no hydrolytic activity (Zahran 

et al. 2011). EcoRI can bind DNA in the presence of Ca2+ but is catalytically inactive without 

another metal ion present such as Mn2+ or Mg2+. The activity of these enzymes is typically 

modulated by a methyltransferase, either as a separate entity or as a domain within the same 

protein chain (Pingoud, Wilson, and Wende 2014).  

1.4.16 Further classification of type II restriction enzymes 

Type II REases are further categorised into subclasses based on their features. Type II enzymes 

vary significantly in sequence and structure, and were originally categorised to include 

enzymes such as EcoRI and HindII, which cleave at palindromic sites and require divalent 

cations for hydrolysis (Boyer 1971). Enzymes of this type that were discovered early such as 

EcoRI and EcoRV became the basis for type II REase research until more enzymes were 

discovered and shown to exhibit large differences. Grouping these enzymes on phylogenetic 

proximity made little sense due to the lack of similarity observed between them. Instead, the 
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phenotypic properties of these enzymes form the classification structure (Niv et al. 2007; 

Pingoud et al. 2005; Roberts et al. 2003). These REases are divided into groups A-C, E-H, M, 

P, S and T, and many enzymes exist within more than one group (Loenen et al. 2013). Class II 

REases and their recognition sequences have been shown below (Table 1.1).  

  

Table 1.3: Type II REases and their recognition sequences. Cut sites are denoted by ▼. 

Nucleotides in RED have N6-methylation (Pingoud et al. 2005). 
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Figure 1.14: Mechanism of action for type II restriction enzymes. A) Cohesive end 

formation by a type IIP REase. Introduction of staggered double stranded breaks in DNA 

by type IIP REase EcoRI. B) Introduction of staggered double stranded breaks by a type 

IIS REase. FokI is required to dimerise with an adjacent FokI unit in order to cleave its 

target. 

A 

B 
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Type IIP REases are a generic collection of enzymes that recognise palindromic sequences and 

cleave at symmetrical sites within the target sequence or directly beside it (Roberts et al. 2003) 

(Figure 1.14). Type IIP represents the group that are routinely used in laboratories for cloning 

and gene analysis, such as EcoRI and HindIII. Type IIP enzymes typically act as homodimers, 

binding either side of a DNA duplex and cleave both strands simultaneously producing a 

double stranded break (Brickner and Chmielewski 1998). However, some type IIP enzymes 

operate as monomers and homotetramers. Monomeric REases of this class cut one strand of 

DNA at a time, producing nicks before the double stranded break is formed (Pingoud, Wilson, 

and Wende 2014). The arrangement of the active site within the enzyme subunits dictates the 

properties of the fragment terminus. For example, EcoRI recognises the palindromic sequence 

5ʹ-G^AAATC-3ʹ and cuts between G1 and A2 (denoted by ^), producing a staggered cut leaving 

a 3′ overhand of 4 bases. Both subunits of the EcoRI homodimer cleave their respective DNA 

strands at this site, leading to complementary overhands that are capable of hydrogen bonding 

to each other (Griffiths AJF 2000). Other enzymes such as EcoRV arrange their active sites 

symmetrically producing a straight cut within the target sequence, producing no overhang 

(Zhao et al. 2013). EcoRV recognises the sequence 5′-GAT^ATC-3′, cleaving between T3 and 

A4. The cognate methyltransferase M.EcoRV also recognises the GATATC and methylates the 

first adenine within the sequence. The addition of this methyl group to A2 at the N6 position 

protects the DNA from restriction by sterically hindering the binding of EcoRV (Jurkowski et 

al. 2007). EcoRI adenine methyltransferase acts in a similar manner by methylating the second 

adenine within the GAATTC. What made type IIP REases so important in the development of 

molecular biology was the manipulation of these controlled cleavage reactions to clone foreign 

DNA sections for genetic analysis. Restriction enzyme cloning allowed proteins from 

otherwise infeasible organisms to be overexpressed within a host such as E. coli and purified 

for analysis.  
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Type IIS REases such as FokI recognise non-palindromic, asymmetric sequences and cleave 

outside of their recognition target (Loenen et al. 2013). It requires two sites for DNA cleavage 

and dimerises in the presence of certain divalent metal ions to achieve this (Vanamee, 

Santagata, and Aggarwal 2001). Type IIS enzymes such as FokI typically bind DNA as 

monomers, however they cooperate with other FokI molecules to achieve dimerization, hence 

the necessity for more than one restriction site.   Unlike the mechanism of type I REases, type 

IIP cut sites are fixed at a determined number of bases downstream or upstream of the 

recognition sequence. FokI recognises the target sequence 5′-GGATGN14-3′, cleaving the top 

strand after N9 and the bottom strand at N13 as shown below (Schierling et al. 2012). The reach 

of these enzymes is determined by the helical rotation of the bound DNA and the spatial 

arrangement of the recognition and cleavage domains. 

Type IIA REases share a similarity to type IIS in that they recognised asymmetrical target 

sequences. As a result, FokI can be classified as both types due to its cleavage site being located 

outside of the asymmetrical recognition sequence (Loenen et al. 2013). Another type IIA 

enzyme, SapI, recognises the sequence GCTCTTCN5, cutting as shown below (Pingoud, 

Wilson, and Wende 2014). 

Type IIB REases cleave on both sides of the recognition sequence, producing two double 

stranded breaks within their DNA substrate (Marshall, Gowers, and Halford 2007). These 

enzymes typically have asymmetric recognition sequences that are bipartite, similar to type I 

REases, however they cut at distinct sites rather than at random. BcgI cuts double stranded 

DNA upstream and downstream of its recognition site, and requires Mg2+ and AdoMet for 

activity (Kong et al. 1993).  Type IIB enzymes also require two recognition sites, typically 

preferring to bind in cis to another site on the same DNA molecule rather than in trans to a site 

on a separate DNA molecule. For this reason, enzymes such as BcgI exhibit much lower 
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activity on substrates containing only one site, due to the inability to crosslink to a separate site 

on another DNA chain (Marshall, Gowers, and Halford 2007). BcgI operates as a complex of 

two polypeptide chains, with subunit A containing domains for both methylation and 

restriction, and subunit B directing the complex to the recognition sequence. BcgI forms a 

complex of A and B in a 2:1 ratio, however many other type IIB enzymes have different subunit 

stoichiometries such as BplI with operates at a ratio of 1:1 (Vitkute et al. 1997; Kong et al. 

1993). 

Type IIC REases exist as a single polypeptide comprising both the endonuclease and 

methyltransferase as individual domains within a fusion protein. These enzymes typically have 

the PD-D/EXK nuclease domain situated at the N-terminus followed by an NPPY/F/W 

methylation domain (Pingoud, Wilson, and Wende 2014). HaeIV is an example of a single 

chain R-M system which recognises the sequence 5'-GAPyNNNNNPuTC-3′, cleaving either 

side of the target sequence and excising it (Piekarowicz et al. 1999). Due to the nature of this 

cleavage mechanism producing two DSBs, HaeIV also belongs to the IIB subclass of REases 

too.  

Type IIE REases require more than one recognition site in order to cleave DNA. However, 

unlike other subclasses of type II REases, type IIE comprises a group of enzymes that bind 

multiple sites but only cleaves one. For example, EcoRII contains a domain for DNA cleavage 

that recognises the target sequence 5′-CCWGG-3′ at the C terminus, and two more at the N-

terminus that recognise the same sequence but do not cleave it (Tamulaitis et al. 2006). The N-

terminal domains act as allosteric activators that facilitate the hydrolytic activity of the C-

terminal domain (Golovenko et al. 2009).  
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Type IIF REases also require more than one recognition site in order to cleave DNA, however 

they must form larger oligomeric structures such as homotetramers.  Type IIF REases such as 

NgoMIV, Cfr10I and SfiI also belong to the PD-E(E/D)XK superfamily and form a dimer of 

dimer, with each primary dimer binding one DNA molecule each (Gasiunas et al. 2008). SfiI 

recognises the bipartite symmetrical sequence GGCCNNNNNGGCC, and the spacer sequence 

in between specific bases can largely affect the enzyme’s activity rate (Williams and Halford 

2001).  

Type IIG encompasses a subclass of REases that recognise a variety of symmetric and 

asymmetric targets and are primarily grouped based on their requirement for AdoMet. Type 

IIG enzymes have evolved to combine the REase, MTase and subunit for substrate specificity 

within a single protein chain (Shen et al. 2011). There is significant crossover between enzymes 

of the IIB, IIC and IIG subclasses. MmeI is an example of a type IIG REase that consists of an 

N-terminal endonuclease domain, a C-terminal substrate recognition domain and is bridged by 

a methyltransferase domain in the middle of the chain. The MTase domain of MmeI only 

methylates one strand on its target DNA which is a significant enough modification to prevent 

restriction. MmeI is only sensitive to top strand N6mA methylation, and the methylation status 

of the bottom strand does not confer protection again resistance (Morgan et al. 2008). However, 

this would mean that during semi conservative replication, the daughter unmethylated DNA is 

vulnerable to restriction. How MmeI prevents itself from cleaving the unmethylated host DNA 

is unclear, however MmeI-like R-M systems are widespread and this potential toxicity is 

somehow negated (Morgan et al. 2009). MmeI cuts a full two rotations downstream from its 

asymmetric recognition site, with a spacer region of roughly 20 unspecified bases (Morgan et 

al. 2008). The long reach of this enzyme is likely facilitated by the positioning of the cleavage 

domain far away from the target recognition domain, separated by a helical spacer aligning the 

cleavage domain 20 bases away from the target sequence (Callahan et al. 2016) 
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Type IIH REases have separate methyltransferase and restrictions units, with the 

methyltransferase encompassing a similar organisation to a type I MTase. AhdI represents a 

type IIH REases with an endonuclease typical of a type II system, but with a type I like MTase. 

The recognition sequence of AhdI (GACN5GTC) is bipartite making it typical of type I systems 

but exhibits rotational symmetry which is characteristic of type II systems (Marks et al. 2003). 

Type IIM enzymes are grouped together as they recognise and cleave methylated DNA 

sequences. DpnI is a well utilised example and is routinely used within laboratories to remove 

methylated template DNA from reactions such as PCR (Krishnamurthy et al. 2015). DpnI has 

a short recognition sequence of Gm6ATC and cleaves one strand at a time, existing as a 

monomer (Pingoud, Wilson, and Wende 2014).  

Type IIT represents a group of heterodimeric enzymes in which the majority are composed of 

two separate protein chains. Each protein chain contains a catalytic site and as a complex 

recognises asymmetric target sequences. Each subunit cleaves its own DNA strand, and so 

disruption of a single subunit results in DNA nicking due to cleavage of only one strand (Shen 

et al. 2018). This has led to the development of ‘nickases’, allowing for controlled nicking of 

dsDNA that can be used to target either the top or bottom strand depending on which enzyme 

subunit is disrupted (Wei et al. 2016). Some type IIT enzymes exist as a fusion protein on a 

single chain, but still act as a heterodimer functionally due to the difference within the TRD.  

Prior to the subclassification system, all type II enzymes were grouped based on the premise 

that they cleave near to their recognition site. However, it is clear that within this class of 

REases, significant catalytic variation is observed. Before the discovery of type II REases, 

restriction assays were performed by measuring viscosity. However, type II enzymes were 

found to produce distinct fragments allowing for more precise analysis via gel electrophoresis 
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(Sharp, Sugden, and Sambrook 1973). This later led to the technology that is widely referred 

to as DNA fingerprinting (Jeffreys, Wilson, and Thein 1985).  

1.4.17 Type III restriction modification systems 

Type III REases are multisubunit complexes encoded by res and mod genes, and require two 

recognition sites to be present organised in an inverted repeated orientation (Butterer et al. 

2014). Type III REase complexes such as EcoPI and PstII typically assemble with a 

stoichiometry of M2R1, however some assemble as M2R2. These enzymes target unmethylated 

DNA sequences, require ATP for hydrolysis, and AdoMet for methylation (Rao, Dryden, and 

Bheemanaik 2014). What separates them from other classes such as type I is that they have 

fixed cut sites close to the recognition sequence.  

Type III REases recognise short asymmetric sequences (5-6 bp) and cleave downstream (25-

27 bp) leaving 5′ overhangs. The Mod subunits are N6 adenine methyltransferases, and 

methylate only one strand of their target DNA, which is sufficient to prevent restriction (Sistla 

and Rao 2004). The presence of magnesium is required for enzyme activity, and DNA cleavage 

is dependent on ATP hydrolysis (Butterer et al. 2014). There are significantly fewer type III 

enzymes characterised than type II, as despite being an area of interest biochemically, as they 

do not currently provide as much of a biotechnological output as type II.  
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1.5 Type IV Restriction Enzymes 

The most distinguishing property of type IV REases is the recognition and cleavage of modified 

DNA substrates. This class of REases contains a wide variety of enzymes that recognise base 

modifications such as methylcytosines (5mC), hydroxymethylcytosines (5hmC) and 

methyladenine (N6mA) (Xu et al. 2011; Lepikhov et al. 2001). Type IV REases also act on 

DNA substrates that have been further modified such as glucosyl-hydroxymethylcytosine (glc-

5hmC). The addition of a glucose moiety to 5hmC can often protect a DNA substrate that 

would be susceptible to restriction in its absence (Loenen and Raleigh 2014). Similarly to type 

II REases, they are clustered based on their catalytic activity rather than by sequence or 

structural homology, however many share conserved domains. Before discussing details of 

type IV REases it is important to examine the types of DNA modifications that might be 

encountered.  

1.5.1 DNA modifications in eukaryotes, prokaryotes and phages 

DNA modifications can exist as both covalent binding of methyl groups directly to a DNA base 

such as cytosine, and changes to DNA ultrastructure such as acetylation of lysine residues of 

histone-DNA complexes (Ali et al. 2018) (Kumar, Chinnusamy, and Mohapatra 2018). This 

review will focus on the reversible covalent modification of DNA bases in the context of 

restriction and epigenetics.  

1.5.2 Covalent DNA modifications in eukaryotes 

The major modification of eukaryote DNA is the major epigenetic marker 5mC and is one of 

the most characterised epigenetic systems. Other less common modifications include 5hmC, 5-

formylcytosine (5fC) and carboxylcytosine (5caC) (Jin and Liu 2018). Patterns of 5mC 
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modifications typically occur within DNA promoter regions, with the majority of CpGs in the 

human genome being methylated. Plants are the most highly methylated eukaryotic organisms, 

exhibiting up to 50% of all their cytosines being methylated (Zabet et al. 2017). CpG refers to 

any cytosine followed directly by a guanosine in the 5′>3′ direction. CpGs in the human 

genome are typically clustered within CpG island located within promoter regions and typically 

repress transcription, effectively reducing gene expression (Lim and Maher 2010). This 

achieved by preventing transcription factors to bind, or by recruiting repressors (Moore, Le, 

and Fan 2013). 5hmC differs significantly from 5mC in humans in that it has a contrasting 

permissive effect on gene expression (Mellén et al. 2012). It is distributed less at random that 

5mC and its absence in certain tissues provides a potential biomarker for cancer diagnostic due 

to low levels within tumour tissues (Song et al. 2017). Type IV enzymes provide a potential 

method for identifying DNA modifications. By substituting the required nucleotide cofactor 

such as GTP for a non-hydrolysable analogue, type IV enzymes will bind their targets but will 

be unable to undergo hydrolysis. This presents an effective opportunity for localising and 

tagging motifs (Irizarry et al. 2008). 
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1.5.3 Covalent DNA modifications in prokaryotes 

Whilst DNA methylation serves to primarily control gene expression in eukaryotes, it has other 

key roles in prokaryotes such as modulation R-M systems. Modification of GATC motifs in γ-

proteobacteria is modulated by DNA adenine methylase (Dam), which is referred to as an 

orphan enzyme in that it does not exist as part of an R-M system (Adhikari and Curtis 2016). 

Dam transfers a methyl group from AdoMet to the N6 position of adenine produced N6-

methyladenine (Payelleville et al. 2018). Analogous to the effects of 5mC methylation in 

eukaryotes, N6mA modifications within GATC motifs serves to control gene expression by 

repressing transcription. One such example of regulation in E. coli by N6mA modification is 

found within the pyelonephritis associated pili (pap) region (Stephenson and Brown 2016). 

This phase variation of expressing or repressing pap is modulated by the methylation state of 

the intergenic region of papIB (Hernday, Braaten, and Low 2003).  

In E. coli, 5mC is also utilised. It is produced by the transfer of a methyl group from AdoMet 

to the C5 position of cytosine and is a pre-replicative modification. DNA cytosine methylase 

(Dcm) recognises the sequences 5′-CCWGG-3′, modifying the highlighted internal cytosine 

residues (Beaulaurier, Schadt, and Fang 2019). Dcm activity results in almost every CCWGG 

motif being methylated with very few remaining unmethylated (Casadesus and Low 2006). In 

prokaryotes, this modification typically occurs to protect against host nucleases that contain 

cytosine residues in their target sequence (Takahashi et al. 2002). 

  



Chapter 1: Introduction 

76 
 

Phages also incorporate DNA modifications, in order to evade their bacterial host’s restriction 

systems that would otherwise cleave the phage genome. All unmodified cytosines are replaced 

by 5hmC on T-even phage genomes, preventing restriction enzymes that have cytosines within 

their recognition sequence from targeting them (Wyatt and Cohen 1953). Within T-even 

coliphages such as T4, hydroxymethylcytosine modifications occur pre-replication, 

substituting the unmodified base for the methylated or hydroxymethylated counterpart. To 

produce 5hmC, unmethylated dCTP is dephosphorylated forming dCMP which is then 

hydroxymethylated by dCMP hm-transferase to form hydroxymethylcytidine monophosphate 

(5hm-CMP). Kinases add on two phosphate groups to produce 5hm-CTP which is then 

incorporated into the daughter DNA strand during replication (Weigele and Raleigh 2016). The 

dNTP synthesis complex (DSC) is provided with additional dCTP as a result of phage encoded 

DenA and DenB nucleases which degrade the host genome (Souther, Bruner, and Elliott 1972). 
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Figure 1.15: Biosynthesis of 5hm-dCTP. Structural formula showing systematic 

production of 5-hydroxymethyl deoxycytidine triphosphate to be incorporated into phage 

genomes via DNA polymerase. 
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1.5.4 DNA hypermodifications and other non-canonical bases in phage genomes 

Phage genomes exhibit the widest variety of DNA base modifications of all organisms, and 

many of these secondary modifications occur post replication (Weigele and Raleigh 2016). 

DNA hypermodification refers to further changes of non-canonical bases such as 5hmC by the 

addition of groups such as glucose. Hypermodifications primarily serve to render methylated 

DNA that is susceptible to type IV REases unable to be restricted due to the addition of a 

moiety that changes the composition of that base. In T-even phages, 5hmC residues are 

glycosylated by glucosyl-transferases that transfer a glucose moiety from UDP-glucose to the 

hydroxyl group of 5hmC (Sommer, Depping, Piotrowski, and Ruger 2004).  

 

  

Figure 1.16: Modification of 5hm-dCTP by β-glucosyltransferase. Condensation of uridine 

diphosphate glucose and 5-hydroxymethyl cytidine triphosphate to produce a hypermodified 

DNA base. 
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1.5.5 Carbamylation 

The E. coli phage μ incorporates N6-carbamoyl-methyladenine into its genome, accounting for 

~15% of all adenine bases. This hypermodification of N6-methyladenine confers significant 

resistance to a wide array of REases that are active against non-hypermodified genomes (Allet 

and Bukhari 1975). This reaction is catalysed by the Mom protein which transfers a formamide 

moiety to N6mA from a coenzyme-A carrier (Kaminska and Bujnicki 2008).  

1.5.6 Substitution with 2,6-diaminopurine 

The Synechococcus phage S-2L contains 100% substitution of adenine for 2,6-diaminopurine. 

2,6-diaminopurine nucleosides undergo several rounds of phosphorylation to produce 2,6-

diaminopurine nucleotides which are incorporated into the genome during replication 

(Khudyakov et al. 1978) (Weigele and Raleigh 2016).  

1.5.7 Guanine modifications  

The Shigella phage DDVI contains 7-methyguanine, in which the nitrogen at position 7 has 

been methylated and accounts for ~1% of all guanine-based residues.  (Nikolskaya, Lopatina, 

and Debov 1976; Weigele and Raleigh 2016). Guanine methylase is induced by a DDVI 

infection and transfer a methyl group from AdoMet to guanine. The incorporation of 7-

methylguanine aids protection against restriction in B-type E. coli strains (Nikolskaya et al. 

1979). 7-methylguanine is an essential 5′ DNA and RNA modification in eukaryotes allowing 

for the efficient translation of mRNA transcripts (Cowling 2009). 
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1.5.8 Unmethylated 5-hydroxycytosine 

The N-17 phage of Shigella flexneri substitutes all cytosine residues for 5-hydroxycytosine 

(5hC), where hydroxylation of the 5th carbon occurs directly, rather than to the methyl group 

observed with 5hmC (Kchromov et al. 1980). Rhizobium phage RL38JI incorporates 5hC in its 

genome and also incorporates glycosylated 5hC (Weigele and Raleigh 2016).  

1.5.9 Thymine and uracil derivatives  

The Bacillus phage PBS1 completely substitutes thymidine for uridine in its genome, facilitated 

by increasing the dUTP availability in contrast to dTTP availability. Uracil DNA glycosylase 

is inhibited by UDG inhibitor (UGI), preventing uracil from being removed from the genome 

by DNA repair mechanisms (Wang and Mosbaugh 1989).  The concentration of dTTP is 

reduced by the activity of a phosphorylase that removes the γ-phosphate, leaving only dTDP. 

The concentration of dUTP is increased by the activity of dCTP deaminase which ensures an 

equilibrium of dUTP and dCTP availability (Price 1974).  

Simarly to PBS1, another Bacillus phage SPO1 substitutes 100% of its thymidine bases for 5-

hydroxymethyldeoxyuracil (5hmdU) instead. SPO1 also uses cytidine deaminase to produce 

dUTP, which is then hydroxylated to produce 5hmdU. In phages such as SPO10, 5hmdU can 

be further modified via the addition of pyrophosphate to the 5-hydroxyl group, which can be 

further modified to produce hypermodified bases such as α-glutamylthymine and α-

putrescinylthymine (Weigele and Raleigh 2016). 
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1.5.10 DNA modification dependent restriction endonucleases 

As previously discussed in this chapter, type IV REases recognise and cleave methylated DNA 

sequences. Type IIM REases such as DpnI share this characteristic, and therefore Loenen et al 

advocate including type IIM enzymes within the type IV family (Loenen and Raleigh 2014). 

The restriction endonuclease database (REBASE) clusters type IIM and type IV enzymes 

separately (Roberts et al. 2015).  

1.5.11 Original studies of modified DNA hydrolysis 

The initial identification of a type IV restriction REase was of the RgIB (restricts glucoseless 

phage) system and its activity against T-even phage glucosyl transferase mutants. T-even 

phages incorporate glc-5hmC as a result of glucosyl transferase (gt) activity, which protects 

the phage genome from restriction. T-even gt mutants were found to be susceptible to cleavage 

from RglB whereas WT T-even phages were not (Revel and Georgopoulos 1969). The rgl 

Figure 1.17: Structural formulae of non-canonical bases. Non-canonical bases 

incorporated in phage DNA genomes as a method of evading host defences.  
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genes were renamed mcrA for the prophage-like element, and mcrBC for the two genes 

encoding the restriction system. The McrBC system requires GTP rather than ATP for 

hydrolysis, as well as Mg2+, and binds specifically to DNA containing methylated cytosine 

residues (Stewart et al. 2000b). Cleavage via McrBC is conditional on the presence of two 

recognition sites, with optimal cleavage occurring between a spacer element of 55-103 bp. 

Recognition elements were shown to have no requirement to be situated on the same face of 

the DNA helix as changing the spacer size by 4 bp has no effect on hydrolytic activity of 

McrBC (Stewart and Raleigh 1998). McrBC primarily forms tetradecameric complex in the 

presence of GTP, and translocates DNA until a collision with a secondary complex occurs. 

Upon this collision, DNA is hydrolysed approximately 30 bp away from the recognition 

sequence (Panne et al. 2001). The translocation of DNA and the stimulation of cleavage 

resulting from complex collision draws many comparisons to the activity of type I REases. 

Later, other systems such as Mrr (modified rejection and restriction) were shown to restrict 

N6mA and 5mC modified DNA (Zheng et al. 2010; Waite-Rees et al. 1991). 

1.5.12 Diversity within type IV systems 

Type IV systems are not clustered based on their catalytic activities in the way that type II 

systems are. For example, the type IIS are clustered on their characteristic of recognising 

asymmetric sequences and cleaving outside of their recognition target. Type IV REases vary 

significantly regarding the sequence nature that they recognise, the methods in which they 

cleave and the modifications in which they recognise. Therefore, the type IV classification 

covers a broad spectrum of enzymes that recognise DNA containing modifications. There is 

little sequence homology collectively between type IV enzymes, with a variety of DNA binding 

and endonuclease domains present, as well as significant variability in nucleotide and cofactor 

requirements (Loenen and Raleigh 2014).  
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1.5.13 Endonuclease domains within type IV systems 

A common nuclease domain within type IV REases is the HNH domain, grouping them to the 

HNH superfamily along with colicins, transposases and DNA packaging factors (Cymerman 

et al. 2006). A loop region connects two anti-parallel β-sheets within the core of the HNH 

domain, flanked by an α-helix. The first histidine residue located at the terminus of the first β-

sheet, is involved in DNA cleavage and the second histidine binds a metal cation. The 

asparagine residue coordinates the β-sheets together (Flick et al. 1998). HNH endonuclease 

domains are found within the type IV system of McrA.  

PD-(D/E)XK phosphodiesterases are also commonly incorporated into type IV systems. 

Outside of RM systems, this domain is utilised by systems for tRNA splicing, DNA repair, 

Holliday junction resolving and DNA polymerase termination (Steczkiewicz et al. 2012; 

Aravind, Makarova, and Koonin 2000). The conserved structural core of the domain is 

comprised of four β-sheets, flanked by an α-helix at each side. This family of proteins exists in 

type I, II and II RM systems as well. The D/E and K residues are located within the active site 

of the domain in the Y-shaped bend of the 2nd and 3rd β-sheets (Feder and Bujnicki 2005).  

The S. aureus SauUSI contains a phospholipase D (PLD) domain located within its N-terminal 

region (Loenen and Raleigh 2014). The PLD superfamily is another highly diverse collection 

of enzymes and other proteins involved in DNA hydrolysis, toxicity, viral envelopes and 

membrane metabolism (Interthal, Pouliot, and Champoux 2001). There are other domains 

incorporated by type IV REases that are less characterised than HNH and PD-(D/E)XK 

domains. 



Chapter 1: Introduction 

84 
 

The nuclease domain of GmrD (sometimes expressed as a GmrSD fusion) contains a 

DUF1524. Despite a lack of further characterisation, DUF1524 has been implicated in DNA 

restriction in GmrSD homologues.  
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1.6 Phage Defence Evasion Mechanisms 

The incorporation of modified DNA bases by phages leads to effective evasion of host defence 

systems. However, beyond the evasion strategies already described for BREX, CRISPR-cas 

and RM systems, there are many other evasion systems used to inhibit host defences. 

1.6.1 Manipulating host receptors binding and access 

Phage λ typically binds to the Escherichia maltose pore LamB, which is also the receptor for 

phages such as K10 and TP1 (Roa 1979; Chatterjee and Rothenberg 2012). As a defence 

mechanism against phage absorption, E. coli can suppress lamB expression, reducing the 

number of receptors available to the invading phage. A pattern of four mutations within the 

distal domain of the λ protein J allows the phage to interact with OmpF of the host (Samson et 

al. 2013). A trimeric β-barrel pore is formed by both OmpF and LamB which may account for 

why the mutant receptor binding protein J can interact with both.  

Phages that interact with host lipopolysaccharide (LPS) as their receptor can often be prevented 

access by the modification of the LPS. E. coli strains that express modified LPS however can 

still be susceptible to T7 phages that encode mutations within the tail tubular proteins A and B 

(Qimron et al. 2006). E. coli O18:K1:H7 strains expressing the K1 capsular polysaccharide 

exhibit increased virulence. The sialic acid capsule reduces human complement activation and 

opsonisation, providing resistance to the innate immune system (Abreu and Barbosa 2017). 

The K1 capsule also forms a layer above host receptors for phage RBPs. Coliphages such as 

K1F and T7 encode endosialidases that actively degrade the capsule, allowing the phage to 

access the buried host receptors. 
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1.6.2 Negation of abortive infection systems  

Abortive infection systems serve to prevent the spread of an invading phage by shutting down 

cellular responses in a controlled host death. This prevents the formation of progeny phages 

and the spread of the infection further within the host’s community. Abortive infection can be 

mediated by toxin-antitoxin systems (Figure 1.18). In Pectobacterium atrosepticum, a type III 

TA system consisting of a protein toxin ToxN, and an RNA antitoxin ToxI, form a 

heterohexameric complex in a 3:3 stoichiometry (Blower, Short, et al. 2012). ToxI is 

transcribed to produce multiple repeats of the same sequence. ToxN is a sequence specific 

endoribonuclease of the Kid family that has cellular targets as well as ToxI. ToxN cleaves ToxI 

transcripts to produce 36 nucleotide length units, which bind the active site of ToxN to form a 

triangular complex that prevents toxicity (Short et al. 2018). The P. atrosepticum phage TE 

genome has been shown to incorporate short sequences homologous to the host’s ToxI, TE 

phages that were ToxIN sensitive were shown to have 1.5 repeats of these pseudo-ToxI 

sequences, whereas ToxIN resistant escape phages were found to contain 4.5 to 5.5 repeats 

(Blower, Evans, et al. 2012). The phage encoded pseudo-ToxI mimics the activity of ToxI and 

forms a pseudoknot with ToxN, preventing it from cleaving its cellular targets and inducing 

host death. This allows the invading phage to propagate and subvert a toxin-antitoxin abortive 

infection system. 
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1.6.3 Expression of inhibitory components for restriction enzymes 

Phages encode a variety of systems designed to inhibit bacterial host defence systems. The T4 

genome is heavily modified due to the incorporation of 5hmC, which is further modified by 

the glycosylation of these residues. In order to target these modified genomes, bacteria have 

evolved restriction systems that target genomes that contain these modified cytosine residues. 

As a counter-resistance measure, T4 phages produce the IPI protein, which inhibits the activity 

of the type IV REase GmrSD (Rifat et al. 2008b). IPI is expressed as a late gene and package 

as an internal head protein of progeny phages, which protects phage gDNA from restriction by 

GmrSD family enzymes during DNA injection. 

Figure 1.18: Interaction of toxin-antitoxin systems. Antitoxins suppress the toxic effects of 

the toxin until infection occurs, resulting in unbound toxins exerting their effects to prevent 

phages from hijacking host machinery and producing progeny. 
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1.7 Clustering of Phage Defence Systems  

Phage defence systems target all aspects of the phage life cycle, from the point of phage 

interaction at the outer membrane in the form of adsorption prevention, to prevention of phage 

assembly later in the life cycle. Phage defence systems such as RM, and those closely 

associated such as BREX or DISARM, rely on the recognition of foreign DNA and its 

subsequent degradation. These systems rely on the activity of a methyltransferase that 

distinguishes host from foreign DNA. They share similarities with CRISPR-Cas as both 

systems employ a nuclease to degrade foreign DNA. However, the mechanism in which Cas 

enzymes identify their target differs by their use of crRNA components that direct the nuclease 

to the target, rather than the nuclease identification of methylation states. Abortive infection 

systems may involve the recognition of foreign DNA in order to trigger their activation, 

however the effector mechanisms employed are much diverse. As a result, strains that employ 

multiple phage defence systems can effectively muster a multi-level defence against phages, 

reducing the efficiency of DNA injection, degrading DNA that enters the cytoplasm and 

inducing host cell death in the event of a failure in first line defences. There has been a large 

proliferation in phage defence systems being discovered due to their association with other 

systems. BREX was first detected by Goldfarb et al when screening for genes associated with 

the Pgl system (Goldfarb et al. 2015). Similarly, the DISARM system was discovered by the 

identification of a DUF1998 protein within defence islands. This domain was predicted to have 

antiphage activity as it was found to be enriched within prokayotic defence islands (Ofir et al. 

2018). The recently discovered PARIS phage defence system was identified a two component 

toxin-antitoxin system, due to its proximity to P4-like prophage elements in E. coli (Rousset et 

al. 2021). Our initial interest in the Escherichia fergusonii plasmid pEFER was due to the 

presence of a type I BREX system, however upon further characterisation it is clear that BREX 

is not the only phage defence system encoded by pEFER.  
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The clustering of defence systems provides prokaryotic hosts with a significant advantage, 

mediated by a multi-faceted approach to preventing phage proliferation. For example, phages 

that can evade a type II RM system by incorporating non-canonical bases may still be 

susceptible to an Abi system. RM systems are typically employed during the earlier stages of 

the phage life cycle, and if successful, negates the requirement for host cell growth arrest or 

death as a result of abortive infection. The association of these systems within defence islands 

may indeed make it easier to disseminate to new hosts, and provide a collectively greater 

selective advantage.
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1.8 Project Aims 

This project aimed to broaden our understanding of the mechanisms utilised by bacteria to 

protect against viral infection. The novel BREX resistance system contains uncharacterised 

components that exhibit different functionalities to previously characterised systems. 

 The primary aims of this study were: 

1) Quantify the resistance potential of BREX against a variety of phages and ascertain 

which BREX components are essential for function. 

2) Understand the regulatory systems of BREX. 

3) Functionally characterise a novel type IV restriction endonuclease both in vivo and in 

vitro, demonstrating its phage resistance phenotype and capacity for specific DNA 

cleavage. 

4) Obtain a 3D macromolecular structure for this type IV restriction endonuclease via X-

ray crystallography.  

  



Chapter 2: Materials and Methods 

91 
 

Chapter 2: Materials and Methods 

2.1 Media, Reagents and Solutions 

Growth media, antibiotics (and other culture supplements) and solutions used during this study 

are detailed in Tables 2.1, 2.2 and 2.3 respectively. All growth media was sterilised by 

autoclaving at 121 °C for 20 min. Where appropriate, solutions were sterilised by vacuum 

filtration through 0.22 μm filters (Merck). 

2.2 Bacterial Strains and Growth Conditions 

All bacterial strains used in this study are detailed in Table 2.4. Unless otherwise stated, E. coli 

and S. enterica strains were grown at 37 °C, either on agar plates or shaking at 220 rpm for 

liquid cultures. Luria broth (LB) was used as the standard growth media for liquid cultures, and 

was supplemented with 0.35% w/v or 1.5% w/v agar for semi-solid and solid agar plates, 

respectively. Growth was monitored using a spectrophotometer (WPA Biowave C08000) 

measuring optical density at 600 nm.   
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2.3 Bacteriophage Work 

All bacteriophages detailed in this study (Table 2.5) were isolated during the duration of this 

project from various water sources in Durham, UK.  

2.3.1 Isolation of environmental bacteriophages 

All E. coli bacteriophages listed in Table 2.5 were isolated from freshwater sources in Durham 

city centre and the surrounding areas. Water sampling and the first round of phage isolation 

was performed as an undergraduate laboratory practical session ran by Dr Blower. A 10 ml 

water sample was filtered through a 0.22 μm filter to remove debris. Filtrates were 

supplemented with 10 ml of LB, and then inoculated with 1 ml of an overnight culture of DH5α. 

For S. enterica phages, sewage effluent was collected from a sampling site in Durham, courtesy 

of Northumbrian Water Ltd. Filtrates were supplemented with 10 ml of LB, and inoculated 

with 10 ml of D23580ΔφΔBREX. Cultures were grown for 3 days before a 1 ml aliquot was 

transferred to sterile microcentrifuge tube and centrifuged at 12000 g for 5 min at 4 °C. The 

supernatant was transferred to a new microcentrifuge tube and 100 μl of chloroform was added 

to kill any remaining bacteria. Samples were vortexed before a serial dilution series was 

prepared in phage buffer, ranging from factors of 10-1 to 10-8. 10 μl of serial dilutions and 200 

μl of DH5α was added to 4 ml of semi-solid LB agar in a sterile 7 ml plastic bijou. Samples 

were gently mixed and poured on to LB agar plates. Plates were incubated overnight and 

individual plaques were harvested the following morning using sterile toothpicks into 200 μl 

phage buffer. Serial dilutions were re- prepared, and a series of agar plates were poured as 

detailed above. These steps were repeated if necessary, to ensure a single plaque morphology 

was observed for all dilutions. The semi-solid agar layer of a plate exhibiting syncytial plaque 

formation was scraped off into a 50 ml centrifuge tube. 3 ml of phage buffer and 500 μl of 

chloroform was added before vortexing for 2 min.  
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Samples were incubated at 4 °C for 30 min before being centrifuged at 4000 g for 20 min. The 

supernatant was transferred to sterile glass bijou and 500 μl of chloroform was added. Phage 

lysates were stored at 4 °C. 

2.3.2 Efficiency of plating assays 

Phage titres were calculated by making a serial dilution of lysates in phage buffer. A series of 

agar plates were prepared as detailed in section 2.3.1 and incubated overnight at 37 °C. Visible 

plaques were counted to determine the plaque forming units per ml (pfu/ml). If calculated 

phage titres were <108 pfu/ml, another round of lysate preparation was performed to increase 

phage titres. Phage stocks with titres >108 pfu/ml were selected for EOP assays (Ellis and 

Delbrück 1939). Serial dilution series were made of phage lysates and semi solid LB agar plates 

were poured using the relevant bacterial strain and incubated overnight at 37 °C. Titres were 

calculated and EOP values were obtained by dividing the titre from the test host over the titre 

of the control host.  

2.3.3 Purification of phage genomic DNA 

Phage gDNA was prepared from high titre lysates via phenol-chloroform extraction. 500 μl of 

phage lysates was transferred to a 1.5 ml microcentrifuge tube and 2 μl of DNase I (Thermo) 

was added to remove bacterial DNA. Samples were incubated at 37 °C for 30 min before 20 μl 

1 M EDTA was added. Samples were incubated at 75 °C for 30 min to inactivate DNase I. 500 

μl of a 25:24:1 phenol:chloroform:isoamyl alcohol mixture was added. Samples were vortexed 

and incubated at 4 °C for 10 min before centrifugation at 12000 g for 10 min. Supernatants 

were transferred to a fresh tube and an equal volume of 24:1 chloroform:isoamyl alcohol was 

added. Samples were centrifuged and supernatants were transferred to a fresh tube. Residual 

organic material was removed by repeating the above step if necessary.  
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Phage gDNA was purified using ethanol precipitation and gDNA pellets were dried using 

vacuum centrifugation at room temperature. Pellets were resuspended in sterile MQ water and 

incubated at room temperature of a rocking shaker for 1 hour. Samples were incubated at 4 °C 

for 24 hours to ensure samples had fully dissolved before use. gDNA purity and integrity was 

analysed via agarose gel electrophoresis in 1% agarose TAE at 120 V for 45 min. gDNA 

content was quantified via nanodrop (Cytiva). 

2.3.4 Growth assays during phage infection  

A single colony was used to inoculate an overnight culture of LB incubated at 37 °C. The 

overnight culture was used to inoculate 200 µl of LB at an OD600 of 0.01 in the corresponding 

well of a sterile 96-well plate. Cultures were infected with phage stocks to an MOI of 0.001. 

Plates were incubated at 37 °C within a SPECTROstar Nano plate reader (BMG Labtech) 

shaking at 400 rpm. OD600 was measured at 10-min intervals and data was averaged from 3 

independent cultures to plot growth curves in Figure 3.5. 

2.4 Recombinant DNA Work 

All molecular biology performed in this study were done using standard methods unless 

otherwise stated (Sambrook 2001). All oligonucleotide primers were obtained from Integrated 

DNA Technologies (IDT) and are detailed in Table 2.6. Plasmids used in this study are detailed 

in Table 2.7. 

2.4.1 Bacterial plasmid and genomic DNA extraction 

Plasmid DNA was isolated using the NEB Monarch series of plasmid mini-prep spin kits 

according to the manufacturer’s instructions. Bacterial genomic DNA was prepared via phenol 

chloroform extraction. 500 μl of overnight liquid culture was centrifuged at 12000 g for 10 
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min. Pellets were resuspended in 0.1 M Tris pH 7.4 and added to a 500 μl  mixture of  25:24:1 

phenol:chloroform:isoamyl alcohol. Samples were vortexed and incubated at 4 °C for 10 min 

before centrifugation at 12000 g for 10 min. Supernatants were transferred to a fresh tube and 

an equal volume of 24:1 chloroform:isoamyl alcohol was added. Samples were centrifuged and 

supernatants were transferred to a fresh tube. Residual organic material was removed by 

repeating the above step if necessary. Bacterial gDNA was purified using ethanol precipitation 

and gDNA pellets were dried using vacuum centrifugation at room temperature. Pellets were 

resuspended in 10 mM Tris pH 7.4, 1 mM EDTA and incubated at room temperature of a 

rocking shaker for 1 hour. Samples were incubated at 4 °C for 24 hours to ensure samples had 

fully dissolved before use. gDNA purity and integrity was analysed via agarose gel 

electrophoresis in 0.7% agarose TAE at 120V for 45 min. gDNA content was quantified via 

nanodrop (ThermoFisher). PacBio sequencing was facilitated by Dr Rick Morgan, NEB and 

Dr Darren Smith, Northumbria University. 

 

2.4.2 DNA purification from enzymatic reactions 

DNA was extracted from agarose gels using the NEB Monarch range of DNA gel extraction 

kits according to the manufacturer’s instructions. PCR and restriction digest products that were 

not analysed via gel electrophoresis were also purified using NEB Monarch range of DNA gel 

extraction kits. These products were mixed with an equal volume of DNA binding buffer 

(NEB) prior to column purification.  
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2.4.3 Polymerase chain reaction 

All PCRs were performed using Q5 polymerase (NEB). Reactions were incubated in a Nexus 

GX2 thermocycler (Eppendorf). Primer annealing temperatures were calculated using the NEB 

Tm Calculator. Reactions were set up using the parameters below. 
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2.4.4 Restriction enzyme cloning with DNA ligase 

DNA digestion for cloning was performed using restriction enzymes from NEB and 

ThermoFisher, using the manufacturer’s instructions. Digest products were purified either by 

PCR clean up or by agarose gel electrophoresis and subsequent extraction (Section 2.4.2). For 

ligation, a ratio of 3:1 insert: vector was used and reactions were set up as detailed below prior 

to transformation of heat-shock competent DH5α. Positive colonies of transformed DH5α were 

selected for on LB agar containing the relevant antibiotic. 

  

2.4.5 Heat-shock competent E. coli preparation  

Heat shock competent E. coli were prepared by inoculating 5 ml of LB with a single colony 

(and relevant antibiotic where necessary) and grown overnight at 37 °C. Overnight cultures 

were used to inoculate 25 ml to an OD600 of 0.05 and were supplemented with 375 μl of 1M 

MgCl2. Cultures were grown to an OD600 of 0.6-0.8 before being pellet by centrifugation at 

4000 g for 10 min at 4 °C. Cell pellets were washed by resuspension in 10 ml ice-cold Solution 

A (Table 2.3) and incubated on ice for 20 min. Cells suspensions were centrifuged at 12000 g 

for 10 min at 4 °C and another wash step with Solution A was performed. Cell pellets were 

then resuspended in Solution A + glycerol (Table 2.3). Competent cells were either used 
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immediately or flash frozen in liquid nitrogen as 50 or 100 μl aliquots and stored for up to six 

months at -80 °C.  

2.4.6 Transformation of heat-shock competent E. coli  

For transformation of E. coli with supercoiled plasmid DNA, 1 μl of plasmid DNA (50 ng/μl) 

was added to a 50 μl cell aliquot and incubated on ice for 30 min. For cloning, the entire ligation 

mix was added to a 100 μl cell aliquot. After 30 min, cells were incubated for 45 seconds in a 

42 °C water bath and placed on ice for 2 min. Cells were supplemented with 1 ml of 2x YT 

and recovered for 1 hour at 37 °C. Cells were plated on LB agar containing the relevant 

antibiotic. When transforming cells with pBAD30 constructs, recovery cultures and LB agar 

were supplemented with 0.2% D-glucose to repress transcription of the target gene.  

2.4.7 Ligation independent cloning 

Ligation independent cloning (LIC) was used to generate N-terminal 6His-tagged constructs 

for protein overexpression using pSAT1-LIC. Immediately following the 6His-tag is the 

hSUMO2 gene, allowing expression of a 6His-hSUMO2-yORF fusion protein. Further vector 

and expression details can be found in Section 4.3. 1 μg of pSAT1-LIC was digested with StuI 

making a single cut, blunt ended, linear product which was purified via gel extraction. Inserts 

were amplified via PCR using pEFER as a DNA template and primers shown in Table 2.6. 

Primers were designed to include an 18-21 bp complementary sequence to the target region, 

with an upstream LIC site to allow interaction with LIC treated linear pSAT1-LIC. Both vector 

and insert were treated by T4 DNA polymerase to produce extended overhangs. T4 DNA 

polymerase exhibits 3'-5' exonuclease activity in the absence of nucleotides. Insert LIC sites 

are designed to exclude adenines, and vector LIC sites exclude thymine. As a result, T4 DNA 

ligase can create extended cohesive ends. With the addition of dTTP to vector reactions and 
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dATP to insert reactions, T4 DNA polymerase will stall upon encountering the first dTTP (for 

vectors) or dATP (for inserts), allowing for control over the length of the generated overhangs 

(Aslanidis and de Jong 1990). Following treatment with T4 DNA polymerase, a 10 μl 1:1 

vector: insert mixture was prepared and left overnight at room temperature to allow for 

annealing to occur prior to transformation into heat-shock competent DH5α. Positive colonies 

of transformed DH5α were selected for on ampicillin containing LB agar. 

2.4.8 Golden Gate Assembly 

Golden gate assembly was performed to produce a plasmid containing the BREX locus without 

pEFER background DNA. Quikchange mutagenesis was performed to remove BsaI sites from 

pUC19 to produce pTRB479. BREX locus was partitioned into multiple ~3-4 kb regions and 

amplified using primers (Table 3.4) with flanking BsaI sites with unique overhang sequences. 

GGA design is detailed in Section 3.8. pTRB479 and inserts were digested with BsaI and 

ligated with T4 DNA ligase to create GGA donor constructs. A 3:1 insert: vector ratio was used 

in a golden gate assembly reaction containing BsaI and T4 DNA ligase.  Positive colonies of 

transformed DH5α were selected for on ampicillin containing LB agar.  

 

2.4.9 Construction of D23580ΔφΔBREX via λ-red recombination  

λ-red recombination was used to delete all genetic material including and between STM4491 

and STM4498 in D23580ΔφΔBREX. Primers were designed to contain ~40 bp complementary 

regions immediately followed  λ-red recombination sites. pKD4 was used as a DNA template 

which encodes a Km resistance cassette to allow positive selection, flanked by FRT sites to 

allow its removal (Datsenko and Wanner 2000). Following PCR, samples were resolved via 

gel electrophoresis and extracted. As pKD4 cannot replicate without the host expressing the λ-
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pir protein, there is no requirement to treat PCR products with DpnI prior to PCR clean up. For 

the preparation of electrocompetent D23580Δφ-pKD46, firstly electrocompetent D23580Δφ 

was prepared (Section 2.4.10). pKD4 PCR products were concentrated by ethanol precipitation 

and 2 μl was added to electrocompetent D23580Δφ-pKD46 cells. Following electroporation, 

cells were supplemented with 1 ml 2x YT and incubated at 37 °C for 1 hour to remove the 

temperature sensitive pKD46. KmR mutants were transformed via another round 

electrocompetent cell preparation and electroporation with pCP20-Gm. Following 

electroporation, samples were plated on LB agar containing gentamycin and incubated 

overnight at 30 °C. GmR mutants were selected and grown at 43 °C to remove pCP20-Gm. 

Mutants were screened for both kanamycin and gentamycin sensitivity to confirm the removal 

of both the KmR resistance cassette from pKD4 and pCP20-Gm. gDNA was prepared from 

KmS GmS mutants and sequenced to confirm the removal of the BREX locus as well as the 

KmR cassette. 

 

2.4.10 Electrocompetent S. enterica preparation for λ-red recombination 

A single colony of D23580Δφ was used to inoculate 10 ml LB and cultures were grown at 37 

°C degrees until an OD600 of 0.6-0.8. Cells were pelleted via centrifugation at 4000 g for 10 

min at 4 °C and resuspended in ice-cold MQ H2O. Cells were kept on ice at all times. Cell 

washing was repeated twice to remove salts before a final washing step in ice-cold 10% 

glycerol. D23580Δφ was incubated with 1 μl of pKD46 (20 ng/μl) for 10 min. Samples were 

electroporated using a Gene Pulser (BioRad) and immediately supplemented with 1 ml of 2x 

YT media. Samples were incubated shaking at 37 °C for 1 hour before plating on LB agar 

containing ampicillin. A second round of electrocompetent cell preparation was performed 

with D23580Δ-pKD46 by inoculating an overnight culture of 10 ml of LB supplemented with 
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ampicillin and grown at 30 °C. The overnight culture was used to inoculate 10 ml of fresh LB 

containing ampicillin and 0.1% L-ara. Cultures were grown at 30 °C until an OD600 of 0.6-0.8 

was reached. Washing steps were performed as previously described. D23580Δ-pKD46 KmR 

mutants were selected for on LB agar containing kanamycin. 

2.4.11 Transposon mutagenesis  

Transposon mutagenesis was performed using EZ::Tn5TM <Kan-2> according to the 

manufacturer’s instructions (Cambridge Bioscience). Insertion events were mapped using 

random-primed PCR and subsequent DNA sequencing (Zou et al. 2003).  

2.4.12 DNA sequencing 

All DNA sequencing in this study was performed by DBS Genomics, Durham University. 

Sequences were confirmed using Chromas software (Technelysium). 

2.4.13 Site directed mutagenesis 

Site directed mutants were designed and then Genscript were commissioned to generate the 

constructs. 

2.5 Protein Production and Purification 

2.5.1 1D SDS-PAGE gel electrophoresis 

SDS-PAGE gels were prepared as detailed in Table 2.3 using BioRad mini-gel casts. 5 ml of 

resolving gel was poured per gel and 250 μl of isopropanol was gently layered on top to ensure 

a smooth surface was formed and all bubbles were dissipated. Resolving layers were left to set 

for up to 1 hour depending on acrylamide content before isopropanol was decanted. The 
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remaining gel volume was filled with stacking gel mix and 10-well or 15-well combs were 

fitted gently to prevent bubble formation. Gels were left to set for 1 hour before use. Protein 

samples were prepared by mixing with 4x SDS loading buffer and denatured at 95 °C for 5 

min. For 10-well gels, 10 μl sample volumes were loading and for 15-well gels, 5 μl sample 

volumes were loading. Gels were ran at 180 V for 100 min unless otherwise stated. Gels were 

rinsed in dH2O before being stained using InstantBlue Coomassie protein stain (AbCam).  

2.5.2 Overexpression of native proteins 

For expression of target proteins, BL21 (DE3) was transformed with pSAT1-LIC or pBAD30 

expression constructs (Table 2.7). Expression strain ER2566 has been used as a substitute for 

BL21 (DE3), however no significant changes in yield were observed for the proteins expressed 

in this study. A single colony was used to inoculate 25 ml LB containing ampicillin and grown 

overnight at 37 °C. Overnight cultures were used to inoculate six 2 L baffled flasks containing 

1 L 2x YT supplemented with ampicillin. Cultures were grown at 37 °C shaking at 180 rpm 

until an OD600 of ~0.6 and which point protein expression was induced. For pSAT1-LIC 

constructs, expression was induced by the addition of IPTG to a final concentration of 1 mM 

and cultures were grown overnight at 18 °C. For pBAD30 constructs, expression was induced 

by the addition of L-arabinose to a final concentration of 0.1% w/v and grown for 4 hours at 

37 °C. Cultures were pelleted at 5000 g for 30 min at 4 °C using an Avanti JXN-26 series 

centrifuge in a JLA-8.1 rotor (Beckman). Cell pellets were resuspended in 50 ml of ice-cold 

A500 (Table 2.3) and used immediately or were flash frozen in liquid nitrogen and stored at -

80 °C.  
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2.5.3 Overexpression of selenomethionine-labelled protein 

SM-labelled protein expression was performed using the SM Medium (Molecular 

Dimensions). pSAT1-LIC expression constructs were used to transform BL21 (DE3) and a 

single colony was used to inoculate a 5 ml SM Complete Medium (Table 2.3) starter culture 

containing ampicillin, which was grown for 36 hours at 37 °C. Starter cultures were used to 

inoculate 1 L of SM Complete Medium in a 2 L baffled flask to an OD600 of 0.05 and cultures 

were grown at 37°C until an OD600 of 0.6-0.8, at which point 10 ml of 100x methionine 

inhibitory feedback mix was added (which contains a total of 100 mg SM). 30 min after the 

addition of 100x methionine inhibitory feedback mix, IPTG was added to a final concentration 

of 1 mM to induce protein expression by T7 RNA polymerase. Cultures were grown overnight 

at 18 °C and were pelleted as described in Section 2.5.2. Once purified, SM incorporation was 

quantified by ES+ TOF MS (Figures 5.3 and 5.13).  

2.5.4 IMAC protein purification 

Samples and buffers were kept on ice or at 4 °C at all times during purification. Cell pellets 

suspended in A500 were sonicated for a total of 2 min. Sonication was performed in 4x 30 sec 

bursts with samples cooled on ice in-between bursts. Cell lysates were centrifuged at 25000 g 

for 30 min using an Avanti JXN-26 series centrifuge in a JA-25.50 rotor (Beckman). Clarified 

cell lysates were transferred to a pre-chilled flask and loaded through a 5 ml pre-packed NI-

NTA His-Trap HP column (Cytiva) using a peristaltic pump with a flow rate of 1 ml/min. 

Following lysate loading, 50 ml of A500 was used to wash the column to remove unbound 

contaminants. For the expression of mutant pBAD30-brxU constructs (Figure 4.22), an 

additional wash step using A500 supplemented to a final imidazole concentration of 50 mM 

was used. Target proteins were eluted were using high imidazole buffer B500 which contains 
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250 mM imidazole. Fusion proteins expressed from pSAT1-LIC constructs were further 

purified via removal of the affinity 6His-tag and FPLC. 

2.5.5 Affinity tag removal with Sentrin protease 

200 μl of 0.25 mg/ml 6His-SenP was added to fusion proteins that had been purified via IMAC 

(Section 2.5.4) and dialysed into A100 (Table 2.3) overnight at 4 °C. Samples were then loaded 

onto a clean 5 ml His-Trap column equilibrated in A100 at 1 ml/min using a peristaltic pump 

and the flow-through fraction was collected.  Cleaved affinity tags as well as the 6His-tagged 

SenP are retained by the column in these conditions.  The flow-through was loaded onto a pre-

packed 5 ml Hi-Trap Q column (Cytiva) at 1 ml/min. Flow-through was collected and stored 

as a precautionary measure in the event that column binding efficiency was low.  
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2.5.6 Anion exchange chromatography 

A pre-loaded Hi-Trap Q column (Section 2.5.5) was loaded onto an ÄKTA Pure purification 

system (Cytiva) equilibrated in A100. C1000 was titrated in until a final NaCl concentration of 

500 mM was reached over a 40 ml elution period. Fractions were dispensed in 2 ml aliquots in 

96-well deep trays and analysed by SDS-PAGE for purity and content. An example 

chromatogram for anion exchange during the purification of BrxR is shown in Figure 2.1. 

Fractions containing target protein were pooled together and concentrated to be used in size 

exclusion chromatography.  

Figure 2.1: Anion exchange chromatogram showing the elution of native mature BrxR. 

Fractions were collected in 96-well plates in 2 ml volumes. Conductivity increases as 

increasing concentrations of C1000 are titrated in. Conductivity reaches its max value of 44.05 

mS/ cm at an elution volume of 40 ml, corresponding to 100% C1000.  
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2.5.7 Preparative size exclusion chromatography 

A HiPrep S-300 HR 16/60 (Cytiva) was used for resolving protein samples with a mass (in 

solution) greater than 100 kDA and a Hi Prep S-200 16/60 (Cytiva) was used for samples below 

100 kDA. Pooled fractions following anion exchange chromatography were concentrated and 

loaded on to the ÄKTA Pure system. A total protein volume of 2 ml was used primarily, 

however 5 ml volumes were occasionally used in the event of a high protein yield, to avoid 

precipitation. Columns were equilibrated in FPLC sizing column buffer (Table 2.3) by running 

2 column volumes through at 0.5 ml/min. Samples were manually loaded into storage loops 

and were then injected onto columns to be resolved at a flow rate of 0.5 ml/min. Fractions were 

collected in 2 ml volumes and analysed via SDS-PAGE. Fractions containing only purified 

products were pooled. For storage, samples were concentrated to 1 mg/ml and 0.5 volumes of 

sample storage buffer (Table 2.3) was added. Samples were aliquoted in 20 μl volumes prior 

to flash freezing in liquid nitrogen and storage at -80°C. For crystallography, samples were 

dialysed into crystallisation buffer (Table 2.3) and concentrated. For longer term storage, 

samples were flash frozen in liquid nitrogen for storage at -80 °C. 

2.6 Protein crystallography 

2.6.1 Protein crystallisation 

Following concentration, samples were kept on ice for short term storage and either a Mosquito 

Xtal3 robot (SPT Labtech) was used to set automated crystallisation trials, or hand drops were 

made using Cryschem M plates (Hampton Research). For a detailed description of protein 

crystallisation screening and condition optimisation, see Sections 5.2-5.8.  It should be noted 

that a single freeze-thaw cycle of BrxU before crystallisation resulted in significantly poorer 

X-ray diffraction, with only 1 in 20 crystals diffracting beyond 4 Å. 
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2.6.2 Protein crystal harvesting and data collection 

A cryo-solution of 50 mM Tris pH 7.9, 150 mM NaCl and 80% w/v glycerol was prepared and 

mixed in a 1:1 ratio with crystal drop mother liquor to form the cryoprotectant. A 2 μl drop of 

cryoprotectant was placed on a glass microscope slide. Protein crystals were harvested from 

drops using cryo-loops and were placed in the cryoprotectant drop for 10 sec. Mounted crystals 

within cryo-loops were immediately transferred to a unipuck in liquid nitrogen for storage and 

shipment to Diamond Light Source (DLS). 

2.6.3 Data collection and structure determination 

X-ray data collection is detailed in Tables 5.1 and 5.2. Diffraction data were processed with 

iSpyB (DLS) and then AIMLESS from CCP4 (Winn et al. 2011) was used to corroborate the 

spacegroups. The crystal structure of SM-BrxU was solved using single anomalous dispersion 

(SAD), by providing the SHELX suite (Sheldrick 2008) in CCP4 with the SM-BrxU anomalous 

dataset. The solved starting model for SM-BrxU was then built in REFMAC (Vagin et al. 2004) 

and BUCCANEER (Cowtan 2006). The refined model for SM-BrxU was then used as a search 

model to solve the native BrxU structure by molecular replacement using Phaser (McCoy et al. 

2007). The initial native BrxU model was built in BUCCANEER, then iteratively refined and 

re-built using PHENIX (Adams et al. 2010) and COOT  respectively. The quality of the final 

model was assessed using PHENIX, COOT and the wwPDB validation server (Emsley and 

Cowtan 2004). Structural figures were generated using PyMol (Schrödinger). 
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2.7 Assays for Protein Characterisation  

2.7.1 β-galactosidase reporter assays 

Reporter assay designs were based on the original Miller assays (Miller 1972). Regions of the 

E. fergusonii BREX operon were cloned into the pRW50. DH5α was transformed with pRW50 

constructs (Section 4.6) and transformants were selected on LB agar containing tetracycline. 

DH5α containing pBAD30-brxR was transformed with the same constructs. A single colony 

was used to inoculate an overnight culture at 37 °C shaking at 180 rpm. The overnight culture 

was used to inoculate 15 ml volume of LB containing tetracycline and 0.1% L-arabinose, and 

grown until mid-log phase at 37 °C with shaking at 180 rpm. OD600 was recorded for each 

culture. 120 μl of β-galactosidase reaction buffer was added to a 96-well plate followed by 80 

μl of culture. The plate was incubated at 30 °C for 30 min and the reaction was stopped by the 

addition of β-galactosidase stopping buffer. Absorbance was measured at OD420 and OD520 

using a SPECTROstar Nano plate reader (BMG Labtech). Miller units were calculated as 

instructed (Schaefer et al. 2016). 

2.7.2 DNA hydrolysis assays  

Phage gDNA was isolated using a phenol-chloroform extraction method and ethanol 

purification. 2 μl of 100 ng/μl gDNA was added to a mixture of 2 μl 10x DPMG buffer, 2 μl 

10 mM ATP, 5 μl of 2 µM BrxU and 9 μl of nuclease free water. Nuclease free water was used 

for negative controls in place of ATP. When additional metals were used (Figure 4.13), these 

were added to replace some of the water volume. For these experiments, a version of DPMG 

buffer was used that did not contain MgSO4. Samples were incubated at 37 °C for 30 min and 

reactions were terminated by incubating at 75 °C for 10 min. 4 μl of 6x TriTrack loading dye 

(Thermo Scientific) was added and thoroughly mixed. 12 μl was loaded on to a 0.9% agarose 
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gel containing EtBr at a concentration of 0.5 μg/ml. 2 µl of 1 kb GeneRuler (ThermoFisher) 

was loaded as a ladder. Agarose gels were resolved at 120 V for 45 min in 1x TAE buffer 

containing 0.5 μg/ml EtBr. Gels were visualised with BioRad Image Lab software. Band 

intensity was calculated using ImageJ. Enzyme activity was quantified by dividing the band 

intensity of sample by the band intensity of the negative control without ATP.   

2.7.3 Analytical Gel Filtration 

A Superdex 200 Increase GL 5/150 (Cytiva) was connected to an ÄKTA Pure system (Cytiva) 

and equilibrated by running through 2 column volumes of filtered MQ water and 5 column 

volumes of FPLC sizing column buffer at 0.15 ml/min. A 50 µl sample was prepared containing 

5 μl of 5 µM BrxU and 5 μl 10x DPMG buffer, and made up to 50 µl with MQ water. 5 μl of 

10 mM nucleotide was used to replace 5 μl of MQ water in nucleotide +ve samples. Samples 

were incubated at 37 °C for 15 min and were loaded into a 10 μl loop via a 50 μl Hamilton 

syringe. 2 column volumes of analytical sizing buffer was run through the sample loop directly 

on to the column at 0.15 ml/min. Absorbance at 280 nm was measured corresponding to the 

concentration of protein. Experiments were run in triplicate. 

2.7.4 Phosphate production assays 

Phosphate detection assays were performed according to the BIOMOL green (Enzo Life 

Sciences) protocol. A 96-well plate format was used and columns 1 and 2 were used for 

phosphate standard serial dilutions to obtain a slope intercept form to allow for calculation of 

experimental results. Experimental wells were set up in 50 μl total volumes. Each well 

contained 5 μl 10x DPMG buffer, 5 μl NTP and 5 μl protein, made up to 50 μl with MQ H2O. 

5 μl was added for each additional reagent (EDTA, DNA) in place of equal volumes of MQ 

H2O . All experiments were incubated at 37 °C for 30 min shaking at 400 rpm and reactions 
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were terminated by the addition of 100 μl of BIOMOL green reagent (Cambridge Bioscience) 

and immediately transferred to a SPECTROstar plate reader. Plates were incubated at 30 °C 

shaking at 400 rpm whilst the BIOMOL green reagent developed. Absorbance at 620 nm was 

measured after 30 min. Values were averaged from 3 independent wells. 
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Chapter 3: Investigating BREX within Phage Defence Islands 

3.1 Introduction 

The origins of the BacteRiophage EXclusion (BREX) system trace back to 2015 when it was 

first described by Goldfarb et al., and shown to confer resistance to phage infection. The 

Bacillus cereus BREX system is a type 1 BREX system comprised of 6 core BREX genes. 

Type 1 BREX systems are encoded within both Gram-positive and Gram-negative bacteria 

(Goldfarb et al. 2015), including pathogens such as Escherichia fergusonii and Salmonella 

enterica Serovar Typhimurium. E. fergusonii is an emerging human and animal pathogen, 

closely related to extraintestinal pathogenic E. coli (ExPEC) (Adesina et al. 2019). E. fergusonii 

ATCC 35469 encodes a 55.15 kb plasmid, pEFER, that contains a type 1 BREX locus and 

represents an extrachromosomal model system for studying BREX. The second Gram-negative 

pathogen example, S. enterica sv Typhimurium is typically considered as a non-typhoidal 

serovar, primarily causing gastrointestinal infections and arising from consumption of infected 

foods (Mead et al. 1999). Historically, this serovar has been widely regarded to cause self-

limiting enterocolitis, however multiple lineages of invasive non-typhoidal Salmonella (NTS) 

have recently been shown to cause invasive, systemic clinical syndromes (Rodwell et al. 2021). 

S. Typhimurium ST313, notably strain D23580, has been extensively linked to invasive NTS 

infections in sub-Saharan Africa where it is responsible for 50,000 deaths every year (Stanaway 

et al. 2019). Studying both of these loci allows us to consider whether BREX is active in Gram-

negative bacteria and how it may differ according to whether it is encoded on a plasmid, or the 

chromosome.  

In addition to potentially providing phage-resistance, the E. fergusonii plasmid pEFER also 

encodes three antibiotic resistance genes conferring resistance to ampicillin, 

streptomycin/spectinomycin and tetracycline. The products of these genes form a beta-
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lactamase, a streptomycin kinase and a tetracycline exporter pump respectively, providing a 

significant survival advantage to its host. As a result, pEFER represents a mobile genetic 

element that might provide resistance to both antibiotics and phages. Plasmid pEFER encodes 

the six BREX genes homologous to those from B. cereus, from brxA to brxL. However, the 

pEFER BREX locus also appears to include multiple genes upstream of brxA. Furthermore, 

the additional gene brxU is inserted between brxC and pglX. Similarly, the Salmonella BREX 

system included genes STM4494 and STM4493 inserted between pglX and pglZ. As there is 

increasing evidence that phage-resistance systems are often encoded within extensive phage 

defence islands (Rousset et al. 2021; Zhang et al. 2019), it was hypothesised that both of these 

BREX loci might include multiple phage-resistance mechanisms. Our initial aim was therefore 

to study BREX activity in Gram-negative hosts, as part of investigating the overall impact of 

phage defence islands.  

3.2 Open reading frames encoded by pEFER and predicted functions 

The 58 ORFs of pEFER were annotated with gene size, orientation, position, and predicted 

function (Table 3.1). The canonical type I BREX locus consists of brxA, brxB, brxC, pglX, 

pglZ and brxL (Table 3.1). The putative defence island also includes the inserted brxU gene, 

and the immediate upstream gene, brxR, which had a predicted function as a transcriptional 

regulator. As a result of later experiments, it became apparent that a further two genes upstream 

of brxR, named brxS and brxT, were also required for BREX function, and have been added 

here for clarity. The full pEFER phage defence island is shown in bold (Table 3.1). A scale 

diagram of pEFER and its notable features is shown in Figure 3.1. The putative pEFER BREX 

locus encodes proteins with a range of predicted functions (Table 3.1).  
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 BrxR was predicted to contain a WYL domain with a SH3 beta-barrel fold. The autorepressor 

sll7009 from Synechocystis sp also contains a WYL domain and has been shown to act as a 

negative regulator of CRISPR-Cas (Makarova et al. 2014). Genes brxS and brxT were 

originally excluded from the BREX locus and were not included in the initial plasmid 

constructs produced. However, they were later found to be required for phage defence, and that 

PglX activity was dependent on the presence of both brxS and brxT. The initial BREX 

experiments and the construction of plasmids for assaying BREX activity are detailed first in 

this chapter, followed by analyses including brxS and brxT.  No function could be predicted 

for BrxA and BrxB, although BrxA has been predicted to be an inner membrane protein. BrxC 

is predicted to be an ATPase of the AAA superfamily and contains a phosphate binding loop. 

BrxU has been predicted to be an endonuclease due to its DUF1524 and DUF262 domains, and 

is a homologue of the fused type IV restriction enzyme GmrSD (He et al. 2015), sharing  13% 

sequence identity. PglX has previously been characterised as a methyltransferase (Goldfarb et 

al. 2015). PglZ is predicted to belong to the alkaline phosphatase family, which form dimers 

and require both zinc and magnesium for their activity (Orhanović and Pavela-Vrančič 2003). 

BrxL is a homologue of the protease LonA, which is an ATP-dependent serine peptidase (Wang 

et al. 1993).  

Outside of the BREX locus, EFER_p0036 has been identified as the beta-lactamase, with 

EFER_p0037 to EFER_40 constituting a tetracycline resistance cassette and EFER_p0047 to 

EFER_p0049 encoding a streptomycin/ spectinomycin resistance cassette.  EFER_p0053 and 

EFER_p0054 may encode a type II TA system of the VapC family of toxins. VapC toxins are 

ribonucleases that stall protein translation by degrading tRNAs (Walling and Butler 2018). A 

significant portion of pEFER is comprised of insertion elements and transposons with limited 

predicted functions. EFER_p0001 is predicted to be involved in replication initiation, although 

the copy number of pEFER is unknown. 
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Due to its size, pEFER is predicted to be low copy number and likely uses EFER_p0004/5, 

homologues of ParAB partition systems (Yamaichi and Niki 2000), to ensure daughter cells 

receive at least one copy during cell division.  

 

 

 

Figure 3.1: Plasmid map of Escherichia fergusonii ATCC 35469 pEFER with ORFs 

to scale. Additional ORFs (outside of BREX) not shown. ORFs coding for antibiotic 

resistance cassettes are shown as AmpR, TetR and SmR. 
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Table 3.1: Annotation of pEFER ORFs with predicted protein function. BREX locus shown in bold.  
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3.3 pEFER and S. enterica as model systems for studying BREX 

Having identified the putative phage defence island from pEFER, it can be compared to the 

chromosomal phage defence island in Salmonella D23580 (Figure 3.2). The D23580 BREX 

locus shares the six core type 1 BREX genes in the pEFER and B. cereus systems, with two 

additional ORFs located between pglX and pglZ, denoted STM4494 and STM44943 (Figure 

3.2). This cassette is encoded on the antisense strand of the D23580 genome.  Bioinformatic 

analysis of these additional ORFs indicates that they function as a standalone phage defence 

system, homologous to the two component anti-anti-restriction system, PARIS (phage anti-

restriction-induced system). As detailed by Rousset et al, PARIS consists of a AAA+ ATPase 

and a DUF4435 protein and confers resistance to a broad range of phages (Rousset et al. 2021). 

In D23580, STM4494 is predicted to be an AAA+ ATPase and STM4493 contains DUF4435, 

indicating that a PARIS system is embedded within the BREX locus. As a result, both the 

pEFER and D23580 BREX loci constitute phage defence islands, with pEFER encoding a type 

IV restriction system and D23580 encoding PARIS. D23580 provides a model chromosomal 

system in a pathogenic strain of S. enterica whilst pEFER constitutes a plasmid-borne BREX 

system, allowing ease of mutagenesis. 

Figure 3.2: BREX phage defence islands in E. fergusonii pEFER and S. enterica D23580. 

Homologues are shown in conserved colours.  
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3.4 Isolation of environmental phages and initial testing against pEFER.  

Having mapped out our putative phage-resistance systems, we needed suitable phages for 

testing. Phages used in this study were isolated from freshwater sources within Durham, UK, 

as part of demonstrations performed for third-year undergraduate practical laboratory sessions. 

Over two years, thirty environmental coliphages were isolated and purified. Based on 

transmission electron microscopy undertaken by the students, all phages isolated in this study 

are dsDNA phages belonging to the Myoviridae, Siphoviridae and Podoviridae families. Using 

this diverse collection, it was then possible to perform Efficiency Of Plating (EOP) assays to 

determine anti-phage activity. Plasmid pEFER was used to transform E. coli DH5α, selecting 

for ampicillin resistance via the native beta-lactamase encoded on pEFER. The EOPs obtained 

using DH5α pEFER, against a DH5α control, demonstrate that pEFER reduced plating for 22 

of the 30 phages (Table 3.2). The scale of effect varied, with phages such as CP and Paula 

unable to form plaques on DH5α pEFER, whereas phages such as TB34 and Trib had a 100-

fold reduction (Table 3.2).  

In order to attribute this anti-phage activity to the BREX locus, transposon mutagenesis was 

performed on pEFER to produce knockout mutants. Positive clones from the mutagenesis were 

screened for (i) loss of anti-phage activity against phage Paula or (ii) loss of streptomycin 

resistance. Following screening, mutant plasmids were isolated and the insertion sites were 

mapped in pEFER using random-primed PCR (Zou et al. 2003). Clone Km5 was identified by 

screening for sensitivity to phage Paula, and had a transposon insertion within brxA, so was 

therefore considered to be a BREX knock-out mutant (Figure 3.3).  
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Clone Km7 was identified by screening for streptomycin sensitivity, and had a transposon 

insertion within the streptomycin gene (Figure 3.3). Both of these mutant plasmids were tested 

against the suite of thirty phages, again using DH5α as a common control strain (Table 3.2). 

Km5 had significantly reduced impact on phage plating compared to pEFER wild type (WT) 

(Table 3.2). Despite the reduction in anti-phage activity, phages Bam, CS16, and Titus were 

still impacted by Km5, though to a lesser extent than by pEFER WT (Table 3.2). Interestingly, 

the Km5 mutation had no impact on the phage-resistance seen against phages Mak and Mav 

(Table 3.2), which could imply a further phage-resistance system on the pEFER plasmid but 

outside of the identified phage defence island. In contrast, the Km7 mutant had broadly the 

same phage-resistance profile as for pEFER WT (Table 3.2). 

 

 

 

Figure 3.3: Plasmid map of pEFER showing Tn5 insertion locations. Km5 is the result on 

Tn5 inserting into brxA (EFER_p0021), and Km7 is the result of Tn5 inserting into the 

streptomycin resistance gene StrB (EFER_p0048).  
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Table 3.2: EOP values for pEFER-based assays. Values are 

mean EOPs from triplicate data. Values  with < extended 

below the range of this assay and formed no plaques.  
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3.5 Characterisation of Salmonella BREX and generation of BREX knockout 

Having confirmed that pEFER provides phage resistance against a wide range of environmental 

coliphages, a strategy was devised to similarly investigate the Salmonella BREX system. As 

Salmonella ST313 strain D23580 encodes BREX within its chromosome, in order to isolate 

any phages that might be susceptible to BREX, it was first necessary to delete the BREX locus. 

This was performed using λ-red recombination (Datsenko and Wanner 2000). The deletion 

mutant would then allow potential BREX sensitive ST313 phages to be enriched from 

environmental samples, prior to isolation and testing against ST313 WT.  The ST313 strain 

D23580 is highly virulent due its repertoire of 5 prophages within its chromosome and poses a 

significant health hazard. D23580Δφ is a mutant with all prophage regions removed and can 

be safely worked on within a containment level 2 laboratory (Owen et al. 2017). D23580Δφ 

will from here on be referred to as D23. The progenitor D23580, which contains the prophage 

regions, is not used in this study. The BREX locus was removed from D23 using scar-less λ 

red recombination, as described in Blank et al, 2011 (Blank, Hensel, and Gerlach 2011). 

Flanking primers were designed to remove all ORFs from STM4498 (brxA) to STM4491 

(brxL) (Figure 3.4).  
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pKD4 was used as a template for PCR using pKD4 ΔBREX FW/RV to generate a 1.4 kb 

fragment with homologous terminal regions for the target sites (STM4498/91). D23 was 

electroporated with this cassette, and the kanamycin resistance cassette was removed with FLP 

recombinase (Derous et al. 2011). Following removal of the kanamycin cassette, the deletion 

site was confirmed by sequencing of amplicons generated across the deletion site, showing an 

inframe fusion of the upstream and downstream regions flanking the BREX locus. This 

produced the strain D23850ΔφΔBREX, which will be referred to as D23ΔB. 

 

 

 

Figure 3.4: Generation of BREX knockout using lambda red recombination. All genetic material 

between STM4498 and STM4991 was removed and the kanamycin resistance cassette was cured.
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3.6 Isolation of ST313 Phages 

Attempts were made to isolate Salmonella phages from freshwater sources within Durham, 

UK, using the D23ΔB strain. Unfortunately, no phage plaques were obtained following 

enrichment. Sewage effluent was then obtained with assistance from Northumbrian Water and 

this was used for phage enrichment on D23ΔB. A range of plaques were obtained following 

these enrichments, and eight phage lysates were prepared from visibly distinct plaques. EOP 

assays were performed for the eight phage isolates, testing the ability of the phages to plaque 

on D23, with D23ΔB as the control (Table 3.3).  

Phages KMP, SB58 and SL2K were sensitive to the Salmonella phage defence island, with a 

100-fold reduction in EOP (Table 3.3). Phage DB1 was weakly affected, with an EOP of 0.13 

(Table 3.3).  The remaining four phages appeared unaffected. These data confirm that the phage 

defence island within D23 is active, and open to further study.  

  

Table 3.3: EOP values for phages against D23. These are mean EOP 

values from triplicate data.  
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3.7 Growth curves with pEFER, Km5, Km7 and WT. 

Having demonstrated that both the model phage defence islands from E. fergusonii and 

Salmonella were indeed active, the E. fergusonii model was selected to pursue due to the 

greater range of observed effects versus phages. To continue to characterise the pEFER system, 

the growth of DH5α and DH5α pEFER was monitored, with and without the addition of phages 

(Figures 3.5 and 3.6). Phages Pau (p = 7.3x10-13) and PATM (p = 1.4x10-15) drastically reduced 

the optical density of DH5α cultures after 100 minutes, followed again by recovery at around 

300 minutes, whereas the DH5α pEFER continued to grow throughout (Figure 3.5A and B). In 

contrast, phage Baz (p = 0.16)  was unaffected by pEFER (Table 3.2) and for both DH5α and 

DH5α pEFER, optical density is reduced in Baz-infected cultures, with growth recovery 

occurring around 300 minutes post-infection, likely due to the selection of phage-resistant 

mutants (Figure 3.5C). Phage Trib (p = 4.6x10-14)  also reduced growth of the DH5α culture, 

and the DH5α pEFER culture continued to grow, but it reached a lower stationary density than 

the cultures infected with PATM and Paula (Figure 3.5D). This might be due to pEFER 

providing lower resistance to Trib than to PATM and Paula (Table 3.2 and Figure 3.6). The 

DH5α and DH5α pEFER cultures grew similarly when not challenged with phages (p = 0.09) 

(Figure 3.5E). The reduced initial growth rate observed in the DH5α pEFER uninfected culture 

can be attributed to the addition of chloramphenical in the growth media which was absent 

from the DH5α uninfected culture. 
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Figure 3.5: Culture dynamics of phage infected DH5α (black) and DH5α containing pEFER (red).

A+B) No significant reduction in culture is observed in pEFER+ cultures when infected with Pau 

and PATM. C) Reduction in culture density is observed for pEFER+ cultures when infected with Baz. 

D) pEFER confers significant resistance to Trib, however culture density is reduced in comparison 

to uninfected controls. Bacterial cultures were grow3n to mid exponential phase and diluted to a 

starting OD600 of 0.05. Cultures were inoculated at time point 0 minutes and cell density was 

measured every 10 minutes (A-D). Experiments were run in triplicate and the mean values are plotted. 

Error bars represent standard deviation of replicates. An uninfected control is shown in E which has 

not been inoculated with phage. A one-way ANOVA was performed for each dataset to indicate 

statistical significance between pEFER- and pEFER+ strains. 

p=0.09 

p=0.16 p=4.6x10-14 

p=1.4x10-15 p=7.3x10-13 
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3.8 Golden Gate Assembly of pGGA-BREX 

Due to the observation of additional anti-phage activity encoded by pEFER outside of the 

identified phage defence island (Table 3.2), it was decided to prepare a plasmid containing only 

the target region (Figure 3.3). Initial designs did not take genes brxS and brxT into account, 

and instead focussed on sub-cloning from brxR to brxL (Figure 3.7 A). Due to the large size of 

this region (18 kb), a single PCR fragment could not be obtained, and efforts to produce an 

intact locus via overlap PCR were unsuccessful. A new approach was prepared, based on 

Golden Gate Assembly (GGA) (Engler, Kandzia, and Marillonnet 2008; NEB 2020). The 

BREX locus was split into 7 fragments of ~3 kb sizes, encompassing the entire locus and 

upstream promoter regions from nucleotide positions 12400 to 28950 (Figure 3.7 A). Each 

fragment was amplified via PCR with primers containing BamHI/PstI restriction sites for 

cloning into pTRB479. pTRB479 is a pUC19 derivative prepared by Dr Tim Blower, which 

has undergone mutagenesis to remove additional BsaI sites that would otherwise interfere with 

GGA reactions. To prepare suitable fragments for GGA cloning, primers were designed to 

Figure 3.6: Representation of EOP assays 

for phages used in growth assays. Phages 

are pipetted onto bacterial soft agar lawns. 

Phage stock serial dilutions were prepared 

from 10-1 to 10-8 and 10 ul was added. Baz 

shows no reduction in EOP against pEFER. 

Paula, PATM and Trib are observed to have 

reduced EOP values.  
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include ~20 bp terminal regions encoding upstream BsaI sites, and a further restriction cloning 

site for cloning into pTRB479 (Table 3.4). Fragments were cloned into pTRB479 and 

confirmed via sequencing with M13 Fw and Rv. An additional primer (F7_C_Rv) was used to 

produce a GGA construct containing only fragment 1 for use as a negative control plasmid in 

phage assays. 

 

Figure 3.7: Synthesis pathway for pBREX via GGA. A) The BREX locus is divided into 7 sections 

and each individual fragment is amplified and cloned in pTRB479. B) pTRB479 donor plasmids 

containing BREX fragments are digested with golden gate reaction mix. BsaI cleaves donors and 

T4 DNA ligase fuses the cohesive assembly. 
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Equimolar concentrations of each of the seven donor plasmids were used in a GGA reaction 

with pGGA. As show in in Table 3.4 in cyan, each primer contains a unique 4 nucleotide 

sequence downstream of the BsaI recognition sequence. This results in the generation of unique 

cohesive ends, ensuring that fragments are ligated in the correct order and orientation. In Figure 

3.7A, fragment amplification is shown with flanking regions containing the BsaI recognition 

and cleavage sites. In Figure 3.7B, individual donor plasmids can be seen undergoing digestion 

and ligation to form pBREX. Transformants were selected on chloramphenicol containing agar. 

Extracted plasmids were digested with EcoRI and the digestion pattern was compared to the 

predicted fragment lengths (Figure 3.8). The final resulting plasmid was named pBREX 

(Figure 3.7). A second control plasmid, pGGA-C, was constructed using primers F1_Fw and 

F7_C_Rv (Table 3.4), and therefore contains the pGGA backbone and a single fragment of the 

BREX locus.  

Table 3.4: Primer sequences for donor fragment PCR. Bold text highlights BamHI restriction 

sites in RED, PstI restriction sites in PINK, BsaI recognition sites in GREEN and BsaI cut sites 

containing  are highlighted in CYAN and shown in bold .  
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Having obtained the sub-clones of pEFER, EOP assays were performed with DH5α pBREX, 

using DH5α pGGA-C as a negative control. Unexpectedly, phages that were previously shown 

to be affected by pEFER were not inhibited by pBREX, with Paula and PATM being observed 

to have EOP values of 1.21 and 1.43, respectively. To ascertain whether the BREX locus in 

pBREX is active,  we undertook PacBio methylome sequencing of genomic DNA extracts from 

E. coli strain NEB2796 containing pEFER or pBREX, in an attempt to observe BREX-

dependent DNA modifications as per the B. cereus system (Goldfarb et al. 2015). This work 

was done in collaboration with Dr Rick Morgan (New England Biolabs) and Dr Darren Smith 

(Northumbria University). Whilst modifications were observed with pEFER (see section 3.11), 

no modifications were observed with pBREX. This suggested that the BREX system was not 

active in pBREX.  It was hypothesised that two further ORFs upstream of brxR in pEFER, 

denoted brxS and brxT, might be required for BREX activity as they could potentially be 

Figure 3.8: Restriction digest of pBREX with EcoRI. 500 ng of plasmid DNA was 

incubated with EcoRI for 3 hours at 37 °C and resolved via agarose gel electrophoresis at 

120 V for 60 minutes in 1% agarose in 1x TAE. Fragment sizes were predicted using 

NEBcutter V2.0. 
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operonic. Upon closer inspection, these two ORFs were found to be conserved in other γ-

proteobacterial BREX systems.  

3.9 Addition of brxS and brxT to sub-cloned BREX constructs 

Two additional pTRB479 based donor plasmids were produced, with F_0 containing the brxS 

and brxT regions, and a new F1 that could form cohesive ends to F_0 in a GGA reaction. The 

resulting GGA plasmid constructs were digested with EcoRI and the digest pattern was 

analysed (Figure 3.9).  

 

The additional of brxS and brxT successfully increased the size of fragment 2 by 953 bp, 

allowing easy identification of correct assembly. This larger plasmid was named pBrxXL. 

pGGA and internal BREX primers were used for sequencing to confirm the construct assembly 

was correct. Preliminary EOP testing showed pBrxXL conferred resistance to pEFER-

susceptible phages, which indicated this construct was a suitable minimal template for further 

mutagenesis studies, prior to full EOP assays (Section 3.12).  

Figure 3.9: Restriction digest of pBrxXL with EcoRI. 500 ng of plasmid DNA was incubated 

with EcoRI for 3 hours at 37 °C and resolved via agarose gel electrophoresis at 120 V for 60 

minutes in 1% agarose in 1x TAE. Fragment sizes were predicted using NEBcutter V2.0.  
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3.10 Golden gate assembly of mutant BREX constructs 

In order to assess the role of individual components of the BREX locus, gene deletion donor 

plasmids were prepared. pTRB479-based donor plasmids were produced using truncated PCR 

fragments, removing the ribosomal binding site (RBS) and beginning of individual target 

genes. GGA reactions were then successfully performed as previously described to generate 

ΔbrxS, ΔbrxT, ΔbrxU, ΔpglX single mutants, and a ΔbrxUΔpglX double mutant. Deletion donor 

plasmids were produced for ΔbrxR, ΔbrxL, ΔbrxC, ΔbrxB and ΔpglZ however no correctly 

assembled GGA constructs were obtained for these mutants. 

3.11 Identification of PglX target site and host methylome sequencing 

Further runs of PacBio sequencing was used to confirm the target sequence of the pEFER 

methyltransferase PglX, and the impact of the generated mutations. Strain ER2796 is a 

methyltransferase deficient E. coli that can be used to unambiguously deduce methylation 

patterns from introduced methyltransferases (Anton et al. 2015). ER2796 was individually 

transformed with pBREX, pBrxXL, pBrxXL-ΔbrxU, pBrxXL-ΔpglX and pBrxXL-

ΔbrxUΔpglX. ER2796 could not be transformed with pEFER, for reasons that remain unclear. 

DH5α was used as a host for pEFER. Genomic DNA was prepared from each strain, and also 

ER2796 and DH5α without plasmids. These samples, alongside E. fergusonii ATCC 35469 

genomic DNA (purchased from ATCC), were sent for PacBio sequencing, once again 

performed by Dr Rick Morgan (New England Biolabs). 

The motif GCGAAT was observed to be methylated at the fifth position of DH5α gDNA when 

pEFER was present, and this was not seen when pEFER was absent. This pattern had 

previously also been observed in earlier samples of E. coli NEB2796 pEFER genomic DNA 

(see section 3.8). The E. fergusonii genomic DNA also showed this methylation motif, amidst 
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other modifications. This motif is distinct from both the original PglX motif identified for the 

B. cereus BREX system (Goldfarb et al. 2015) and the E. coli BREX system (Gordeeva et al. 

2019), but all three have N6-methylation of adenines at the 5th position of the 6 bp non-

palindromic motif (Figure 3.10). As non-palindromic sequences are only hemi-methylated, 

methylation is not observed on the complementary strand (Marinus and Casadesus 2009; 

Adhikari and Curtis 2016).  Methylation at GCGAAT was also observed in gDNA prepared 

from ER2796 in the presence of pBrxXL and pBrxXL-ΔbrxU, which suggests that BrxU is not 

required for methylation. In contrast, this methylation pattern was not observed for gDNAs 

prepared from pBrxXL-ΔpglX and pBrxXL-ΔbrxUΔpglX, indicating that it is PglX-dependent. 

Figure 3.10: Target sequences of the BREX methyltransferase in different species. Non-

palindromic DNA sequences are hemimethylated at the adenine at the fifth position shown 

in red. 
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3.12 Efficiency of Plating assays with GGA constructs 

The full library of 30 phages were tested against four of the GGA constructs, using DH5α as 

the host and pGGA-C as a control. pBrxXL retained a similar phage-resistance profile to 

pEFER (Table 3.5). pBrxXL provided resistance against 18 of the phages, with a range of 

effects, from prevention of plaque formation (eg. Paula), to a modest 100-fold decrease in EOP 

(eg. BGP). Phages such as Bam, Mak, Mav and Titus were not affected by pBrxXL, which 

further supports the earlier hypothesis that there is another phage-resistance system elsewhere 

on pEFER, as shown by EOP data with Km5 (Table 3.2). When tested against BrxXL-ΔpglX, 

phages CS16, PATM, Paula, Sipho and Trib were no longer reduced in EOP (Table 3.5). This 

indicates that these phages are targeted by a PglX-dependent mechanism, therefore BREX. 

Surprisingly, these data demonstrate that the more extensive range of phage resistance is 

BREX-independent. EOP values on the pBrxXL-ΔbrxU strain show that resistance against 

phages BGP, CP, EH2, EL, Geo, NP, NR1, QOTSP, SAP, Solly, Some, TB36 and TB37 is 

dependent on BrxU (Table 3.5). TB37 was shown to be resistant to pEFER, but was found to 

be susceptible to pBrxXL. A repeat of TB37 will be performed as it is possible the lysate 

preparation at the time of testing with pEFER was of poor quality. All phage resistance is 

removed in the double mutant (Table 3.5). Collectively, these data show that BrxU is the 

primary source of phage-resistance in the pEFER phage defence island. 

In order to better understand the BREX mechanism, attempts were made to isolate ‘escape 

mutant’ phages for BREX-sensitive phages PATM and Paula. In order to obtain plaques for 

PATM and Paula, the maximum phage concentration used in plating assays was increased 10-

fold. Individual plaques that had formed on pBrxXL-ΔpglX containing hosts were isolated and 

fresh phage lysates were prepared EOP assays were repeated with the putative escape mutants, 

however values remained in line with previous EOP assays. 
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Table 3.5: EOP values for with Golden gate assembled plasmid 

constructs. Values presented with < extended beyond the range of this 

assay and formed no plaques. Values shown are calculated mean 

average of three individual experiments.  

 



Chapter 3: Investigating BREX within Phage Defence Islands 

144 
 

3.13 Understanding the requirement of brxS and brxT by GGA mutagenesis  

As brxS and brxT are an unexpected requirement for BREX activity, beyond the systematic 

mutagenesis performed on the E. coli BREX system (Gordeeva et al. 2019), the previously 

obtained mutant GGA constructs (section 3.10) were used to transform DH5α for EOP assays, 

using pGGA-C as a control (Table 3.6). Tables are shown with standard deviation values in 

supplementary material .Phages BGP, CP, Geo, NR1 and TB37 are all susceptible to BrxU, 

whereas Paula is BREX-sensitive. pBrxXL-ΔbrxS had no impact on phage resistance, but 

resistance was abolished for all phages by the deletion of brxT (Table 3.6). This implies that 

BrxS is dispensable for phage resistance, but BrxT is required for resistance by both BrxU and 

BREX. Alternatively, the brxT deletion may have somehow affected regulation of locus 

expression. Further experiments are required to explore the contribution of brxT and assess 

why its deletion results in deactivation of both BREX and BrxU in their entirety. 

 

Table 3.6: EOP values with pBrxXL-ΔbrxS and pBrxXL-ΔbrxT GGA 

constructs. Values presented with < extended beyond the range of this 

assay and formed no plaques. Values shown are calculated mean average 

of three individual experiments.  
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3.14 Discussion 

Combining multiple phage defence systems produces a phage defence island that increases the 

likelihood a bacterium will be protected from phage infection (Bernheim and Sorek 2020). 

Phages that incorporate modified DNA bases in order to evade classical type IIP REases 

(Bryson et al. 2015) or BREX (Gordeeva et al. 2019) may be susceptible to other systems, such 

as type IV restriction enzymes. The initial interest in the pEFER BREX system was due to the 

ease of genetic manipulation as it represented a system from a close relative of E. coli that was 

plasmid-borne. However, upon investigating the effects of BREX via EOP assay, it was found 

that the once deprioritised brxU ORF situated between brxC and pglX was encoding an 

effective type IV restriction enzyme.  

A BREX deletion mutant was generated in D23580 removing the entire BREX locus. This was 

performed to permit the enrichment and isolation of BREX sensitive phages, and has resulted 

in a collaborative publication (Rodwell et al. 2021). As mentioned earlier in section 3.5, a 

recent pre-publication article has detailed a new phage defence system, PARIS. PARIS 

involves the detection of phage encoded anti-restriction components and consists of a AAA+ 

ATPase and a DUF4435 protein. At the time of mutant generation, STM4493 and STM4494 

were predicted to have accessory roles within BREX. However, they have since been identified 

as a standalone two-component phage defence system. As a result, the EOP values shown in 

Table 3.3 detail effect of a combined BREX and PARIS defence island. Further mutations are 

to be generated by removing STM4493 and STM4494 to assess the effects of BREX. A BREX 

knockout mutant could be obtained via a single round of λ-red recombination, removing the 

upstream BREX region of STM4494. Deletion of pglX has been shown in this chapter, as well 

as by Gordeeva et al, to inactivate BREX activity (Gordeeva et al. 2019). Therefore, it is 

unnecessary to remove the remaining pglZ and brxL as they do not confer phage resistance in 
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the absence of pglX. However, deletion of both regions would provide a “cleaner” BREX 

deletion mutant. 

BREX was initially discovered by Goldfarb et al, who identified conserved genes clustered 

with pglZ. Here, two additional phage defence systems have been identified that are encoded 

within BREX systems. Within the pEFER BREX locus, BrxU and BREX work simultaneously 

to prevent against phage infection. From the 30 phages tested within this study, they target 

distinctly different phages, with no phage demonstrating susceptibility to both systems (Table 

3.2 and 3.5). Our interest shifted from investigating pEFER as a means to study BREX to 

analysing the plasmid as a mobile, multi-system phage defence island. The acquisition of 

pEFER by a bacterial host transforms it into a multi-drug, multi-phage resistant strain. Bacterial 

communities that are modulated by the constant pressures of phage infection have the potential 

to expand beyond the phage-host equilibrium upon acquisition of pEFER. Beyond BREX and 

BrxU, pEFER also encodes an additional unidentified phage resistance system (Table 3.1). 

Bioinformatic analysis of the additional genes encoded within pEFER reveal a number of 

potential Candidates. For instance, pEFER_p0052 and pEFER_0053, which likely encode for 

a VapC toxin and putative antitoxin, respectively. The VapBC family of TA systems constitutes 

the largest type II TA system families in bacteria and archaea, accounting for ~40% of all type 

II TA systems (McKenzie et al. 2012; Pandey and Gerdes 2005). The VapC toxin functions 

primarily as a ribonuclease and degrades tRNA to stall protein translation. Whilst VapC toxins 

have not yet been reported to abort phage infections, multiple TA systems are involved in phage 

defence (Song and Wood 2020). pEFER also contains multiple insertion sequence (IS) 

elements, indicating several occurrences of transposase uptake. It is possible that one or more 

of the IS elements integrated into pEFER might a role in phage defence but there is no proposed 

mechanism. Effectively, pEFER represents a phage defence island with multiple defence 

systems working synergistically. Phages that incorporate modified bases may be resistant to 
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restriction by type II endonucleases, however they in turn become susceptible to the type IV 

endonuclease, BrxU. Likewise, phages that are resistant to multiple classes of restriction 

endonucleases may be susceptible to BREX. This ensures a multi-strategy approach to 

preventing phage infection for the host.  

Using transposon mutagenesis, the BREX locus has been inactivated in Km5. The Tn5 

transposon contains a kanamycin resistance cassette, flanked by hairpin forming regions which 

act as transcriptional terminator regions. Along with identifying the potential presence of an 

additional phage defence system encoded outside of the BREX locus, it allowed for the 

identification of BREX/BrxU-sensitive phages (Table 3.2). The production of GGA assembly 

constructs allowed for the targeted study of components within the BREX locus of pEFER. It 

was shown that BrxU activity accounted for reduced EOP values for the majority of phages 

tested, however BREX was the active system against PATM, Paula, Sipho and Trib. Deletion 

of brxU did not have an effect on EOP values for BREX-sensitive phages, indicating that there 

is no interaction between BrxU and BREX components. Similarly, deletion of pglX did not 

hinder BrxU activity. Interestingly, the BREX-induced EOP was significantly lower for PATM 

and Paula than for Sipho and Trib. This difference could be explained via future comparison 

of the two viral genomes. It is possible that PATM and Paula contain a higher number of 

GCTAAT motifs and are therefore more readily recognised by BREX. Alternatively, Sipho 

and Trib might have counter-defence mechanisms that reduce the impact of BREX. There are 

a number of important BREX components that remain to be tested by generating deletion 

mutants via GGA. Gordeeva et al have shown the requirement of brxB, brxC, pglX, pglZ and 

brxL for an active BREX system (Gordeeva et al. 2019). It is predicted that brxR is a required 

component of pEFER BREX, however the construct pBrxXL-ΔbrxR has not yet been made. It 

is expected that the observations following deletion of individual pEFER BREX genes will 

align with Gordeeva et al, however this remains to be tested. 
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Deletion of brxS from pBrxXL had no significant effect on EOP values for the 6 phages tested 

and is likely uninvolved in phage-resistance. However, deletion of brxT resulted in the 

inactivation of both BREX and BrxU. The requirement for BrxT could be easily tested by 

separately expressing BrxU and testing for anti-phage activity. If BrxT is not required, at least 

for BrxU, the role of BrxT might be more focussed on regulation and expression of the BREX 

locus. In order to fully assess the role of brxT, additional experiments are required. Introduction 

of a point mutation that prevents translation of brxT, but allows transcription of the rest of the 

operon would show whether the abolished phenotype for pBrxXL-ΔbrxT (Table 3.6) is due 

directly to BrxT activity, or due to the interference in regulatory regions when generating 

pBrxXL-ΔbrxT. 

With the pEFER defence island established as containing independent BREX and type IV 

restriction endonuclease phage defence systems, the next chapter will detail the biochemical 

investigation of BREX components and BrxU. Inducible constructs have been generated for 

the overexpression of individual proteins for biochemical analysis. With the majority of phages 

tested in this chapter being sensitive to BrxU, a large portion of Chapter 4 will focus on this 

system. A number of biochemical assays have been developed for assessing BrxU activity, 

such as FPLC gel filtration, DNA hydrolysis and inorganic phosphate production. As Chapter 

3 has focused on the in vivo characteristics of BREX and BrxU, Chapter 4 details the in vitro 

experiments performed on these systems. 
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Chapter 4: Functional Characterisation of BREX and BrxU Phage 

Resistance Mechanisms 

4.1 Introduction  

Chapter 3 has shown that the BREX locus of pEFER encodes two phage defence systems that 

confer resistance to different subsets of phages. This was demonstrated primarily through 

deletion mutagenesis of pglX and brxU and quantifying the effect on phage plaquing. The in 

vivo impact of both BREX and BrxU was determined using an array of 30 phages. In this 

chapter, both systems are investigated biochemically, primarily through the overexpression and 

purification of each individual protein, to investigate the activity in vitro. Due to the 

identification of DUF262 and DUF1524 domains, it was predicted that BrxU would function 

similarly to GmrSD (He et al. 2015). The presence of the DUF262 domain indicated that 

nucleotide hydrolysis was required for activity, and the DUF1524 domain indicated that 

BrxU’s main function was to cleave DNA. He et al. have shown that GmrSD targets phages 

with modified genomes, allowing multiple assays to be developed for the functional 

characterisation of BrxU. Using this information, assays have been developed to assess the 

enzymatic activities of key BREX proteins and BrxU. Individual BREX proteins have been 

overexpressed as soluble proteins and purified. FPLC gel filtration analysis has then been used 

to determine the multimeric states of each protein. The BrxU endonuclease has also been 

extensively characterised, with the identification of its target substrate, reaction conditions, 

multimeric state, cofactor requirements and catalytic properties. This allows a better model to 

be developed as to the complementary nature of BREX and BrxU within the pEFER phage 

defence island. 
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4.2 Phyre2 protein modelling 

Functional predictions were made for each protein of the pEFER phage defence island using 

Phyre2 (Kelley et al. 2015) to perform protein modelling and identify potentially related protein 

structures (Table 4.1). Hits were obtained for all proteins except BrxT, which could not be 

modelled due to a lack of suitable templates (Table 4.1). As Phyre2 modelling relies solely on 

the input target protein sequence, the hits have to be carefully considered. Nevertheless, 

identification of conserved domains can be used to develop appropriate assays to test protein 

activity. Structural models are shown in Figure 4.1 overleaf. 

65% of BrxS was modelled with 99.8% confidence using the catalytic core domain of the 

MMTV integrase (PDB: 5CZ1). Retroviral integrases catalyse the insertion of viral DNA into 

the host DNA (Ballandras-Colas et al. 2016). It is possible that BrxS is involved in the 

integration of the BREX locus and has a role in horizontal gene transfer. 84% of BrxR was 

modelled using PafBC (Müller et al. 2019), identifying a winged helix-turn-helix (wHTH) 

domain. This strongly suggested that BrxR might be a DNA-binding protein, and therefore a 

transcriptional regulator of the phage defence island. BrxA was modelled using a protein of 

unknown function from Magnetospirillium magneticum, and BrxB was modelled using an 

isomerase, though the confidence score was low (Table 4.1). Neither of these hits gives much 

indication of biochemical activity. BrxC was modelled against a replicative helicase Mcm2-7 

Table 4.1: Phyre2 output parameters for pEFER phage defence island proteins.  
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with 35% coverage at the N-terminus (Table 4.1). Though the scores were low for the BrxC 

model, this did identify BrxC as a potential AAA family ATPase (Yuan et al. 2017). BrxU was 

modelled against SspE, a DNA nicking enzyme involved in the phosphorothioation-sensing 

phage defence system (Xiong et al. 2020). PglX was modelled against MmeI, a type IIG 

restriction enzyme expected to have methyltransferase activity (Callahan et al. 2016). This 

matches the previously identified role of PglX (Gordeeva et al. 2019; Goldfarb et al. 2015), 

though the hit is based on only 71% of PglX, leaving the C-terminal domain unmodelled. Both 

PglZ and BrxL also produced hits matching expected activities, alkaline phosphatase, and lon 

protease, respectively (Table 4.1).  

Figure 4.1: Phyre2 structural models for pEFER phage defence island proteins.

Models are coloured in rainbow format with the N-terminus in BLUE and C-terminus 

in RED. Coverage (%) is shown beside labels. 
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4.3 Cloning of individual BREX genes into an inducible expression system 

In order to study the properties of individual BREX proteins, each gene was cloned into 

pSAT1-LIC, an IPTG-inducible plasmid under the control of the lac repressor. Ligation 

independent cloning (LIC) (Aslanidis and de Jong 1990) was used to create constructs for each 

BREX gene. pSAT1-LIC is a 4.7 kb plasmid that can be linearised by the restriction enzyme 

StuI, forming blunt ends at the cloning site (Figure 4.2). 

 

Figure 4.2: Scaled plasmid map of pSAT-LIC. T7 promoter is directly 

upstream of the ribosomal cloning site (RBS). Presence of IPTG causes LacI 

to dissociate from the T7 promoter, allowing T7 RNA polymerase to transcribe 

a 6His-hSUMO2-Protein fusion.  
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Following blunt-end cleavage, the 3′ to 5′ exonuclease activity of T4 DNA polymerase was 

used to create 5′ overhangs. Complementary LIC regions were engineered into PCR primers to 

allow the generated overhangs between vector and insert to anneal. A full protocol for LIC is 

detailed in Section 2.47. The DNA sequence immediately upstream of the LIC cloning site 

encodes a hexahistidine (6His) tag fused to the hSUMO2 gene. Proteins cloned into the LIC 

site are expressed with an N-terminal 6His-hSUMO2 tag that can be removed via cleavage 

with Sentrin protease (SenP) to yield a mature, scarless protein (Figure 4.3).  

 

The removal of the hexahistine tag ensures there is no downstream interference and allows for 

a two-step immobilised metal affinity chromatography (IMAC) purification (Section 2.47). 

PCR products and linearised pSAT1-LIC were treated with T4 DNA polymerase and annealed 

samples were used to transform DH5α (Figure 4.4). Constructs were confirmed via sequencing. 

Constructs for all BREX genes were produced including brxS and brxT (data not shown for 

brxS and brxT; Table 2.7). 

Figure 4.3: Target protein construct expressed from pSAT1-LIC. Protein of interest is 

immediately preceded by the SenP cut site, allowing scarless cleavage of the mature 

protein from the 6His-hSUMO2 tag. 
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4.4 Protein overexpression and purification 

All proteins expressed from pSAT1-LIC were purified using the same workflow. Following 

over-expression and bacterial cell lysis, clarified cell extracts were subjected to a single 

(IMAC) step. The eluted fusion proteins were then cleaved to remove the 6His-hSUMO2 tag, 

then subjected to another round of IMAC. The flow-through samples containing the cleaved 

target protein were then further purified by anion exchange chromatography, and finally by 

size exclusion chromatography. Using this throughput, soluble protein was obtained for BrxR, 

BrxA, BrxB, BrxC, BrxU, PglX, PglZ and BrxL (Figure 4.5). BrxS and BrxT have not yet been 

expressed and purified. 

Figure 4.4: Production of phage defence island gene expression vectors. Agarose gel 

electrophoresis in 1% agarose with 1x TAE. Samples were resolved for 1 hour at 120 

V. A) Linearised pSAT1-LIC migrates slower following digestion with StuI than super-

coiled pSAT1-LIC. B) PCR products for individual genes using pEFER as a template 

and primers detailed in Materials and Methods (Section 2.43 and Table 2.6). 
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4.5 Analytical size exclusion chromatography of BREX proteins 

To determine the multimeric state of each phage defence island protein, size exclusion 

chromatography was performed on purified samples using a Superdex 200 increase GL 5/150 

(S200i; Cytiva). The S200i is a small gel filtration column with a bed volume of 3 ml for rapid 

analytical size exclusion chromatography. The elution volume (eV) of each protein was 

compared to eV of known protein standards and a calculated complex mass was obtained for 

each protein (Figure 4.6). Blue dextran was used a control standard to calculate the void elution 

volume of 0.99 ml. The calculated protein mass is calculated using the gradient and Y intercept 

in Figure 4.6. KaV is calculated with the following formula:   

KaV can then be used to calculate the molecular mass:  

Figure 4.5: SDS-PAGE of purified BrxU and BREX proteins. Following purification, final 

samples were separated by SDS-PAGE and ran for 100 min at 180 V. Molecular weights 

shown in kDa. 10 μl of samples were loaded at a concentration of 0.1 mg/ml.  A) BrxR, BrxA 

and BrxB were resolved in 15% acrylamide gels. B and C) BrxC, PglX, PglZ and BrxL were 

resolved in 8% acrylamide gels. D) BrxU was resolved in 10% acrylamide gels. 
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BrxR was observed to elute from the S200i with a peak eV of 1.84 ml, giving it a KaV value 

of 0.43. This KaV value was used to obtain a calculated Mr of 67404 daltons, which is 1.97x 

its theoretical Mr. This data shows that BrxR forms a dimer in solution. This supports the 

Phyre2 model wherein BrxR was predicted to contain a wHTH domain, common in dimeric 

transcriptional regulators (Sarkar-Banerjee et al. 2018). The remaining BREX proteins were 

analysed in the same manner (Figure 4.6C). 

 

 

 

 

 

Figure 4.6: Analytical gel filtration indicates protein multimeric states. A) Calibration KaV 

values against known molecular masses. The y = mx + c equation is used for all calculations of 

molecular mass. B) Chromatogram of BrxR elution on the S200i. X-axis value shown for main 

peak corresponding to BrxR. C) Calculation of protein mass from elution volume. Deductions for 

multimeric state are made by comparing the calculated mass from the eV to the theoretical mass 

calculated from the protein sequence. 
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BrxA was observed to form a dimer with a calculated mass at 1.93x its Mr, and BrxB was 

found to remain as a monomer (Figures 4.6C and 4.7). BrxC was observed to have the lowest 

eV of all proteins tested and was calculated to form a pentamer (Figure 4.7). This fits with the 

Phyre2 identification of BrxC as a AAA family ATPase (Table 4.1), as these have been 

reported to sometimes form higher order structures (Hilbert et al. 2015). Surprisingly, the 

calculated mass of PglX was exactly 1.5x greater than its theoretical Mr (Figure 4.6C). It is 

most likely that PglX is a monomer in solution and that its non-globular shape causes it to 

migrate slower than expected through the S200i. This would be consistent with the overall 

shape of the type IIL restriction endonuclease MmeI (Callahan et al. 2016), which was 

identified as the top hit for PglX by Phyre2 (Table 4.1). MmeI cleaves DNA as a dimer, 

however it requires at least two recognition sequences to function (Callahan et al. 2016). It is 

plausible that PglX exists as a monomer catalytically, or that it forms dimers when in complex 

with target DNA similarly to MmeI (Callahan et al. 2016). Both PglZ and BrxL were found to 

form dimers (Figure 4.6C). As PglZ was predicted to have an alkaline phosphatase domain 

(Table 4.1),  this is  consistent with other studied alkaline phosphatases (Orhanović and Pavela-

Vrancic 2003). The major peak for BrxL is at 1.58 ml (Figure 4.7) and so BrxL was calculated 

to be a dimer in solution (Figure 4.6C). An additional smaller peak was observed at 1.20 ml 

which would mean BrxL had assembled into an octameric structure (Figure 4.7). BrxL was 

modelled against Lon protease (Table 4.1), which forms hexameric rings (Vieux et al. 2013). 

It is therefore possible that BrxL forms large multimeric complexes such as octamers, albeit it 

is also possible that BrxL has migrated more slowly due to an asymmetric overall shape, and 

that the peak observed at 1.72 ml corresponds to monomeric BrxL. 
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Having calculated the individual multimeric states of each BREX, it is important to consider 

that this might not correspond to their final assembly as part of an active BREX complex. 

Further investigation is required to see how the BREX components interact, what sub-

complexes might form and whether the multimeric state of an individual BREX protein alters. 

Figure 4.7: Gel filtration chromatograms of individual protein elutions via S200i. A 10 μl 

sample at 500 nM was resolved at 0.175 ml/min. Trace shown is representative of three 

experimental repeats. X-axis value shown for major peaks.  
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4.6 BrxR is a transcriptional regulator and an autorepressor 

BrxR was predicted to have a role in transcriptional control of the pEFER BREX locus due to 

its position directly upstream of BrxA, the modelling of a wHTH domain by Phyre2 (Table 

4.1) and its dimeric state in solution (Figures 4.6C and 4.7). Goldfarb et al. predicted that that 

the BREX locus in B. cereus contained two major promoter regions. They suggested that ABCX 

were transcribed as one operon and that ZL formed a separate operon (Goldfarb et al. 2015). 

To explore this model further, whole transcriptomic data for Salmonella was analysed as part 

of SalComMac (Salmonella Compendium Mac) (Srikumar et al. 2015). Using data from S. 

enterica ST4-74, primary transcriptional start sites were identified directly upstream of 

STM4498 (brxA) and STM4491 (pglZ), consistent with the RACE sequencing in Goldfarb et 

al. 2015. ST4-74 is very closely related to strain ST313 that was investigated within Chapter 

3, and the BREX phage defence islands have identical sequences. Based on these observations, 

it was predicted that pEFER BREX would operate in a similar manner, though due to the larger 

size of the pEFER phage defence island, there might potentially be an additional promoter 

region upstream of brxR (Figure 4.8). It is important to point out that the following BrxR 

analysis was performed prior to identification of the need for brxS and brxT. These two genes 

and any preceding promoters are therefore not in the analysis, and those experiments would be 

needed in future. Working with the region brxR to brxL, six regions within the pEFER phage 

defence island were selected for further analysis (Figure 4.8). 
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The six identified regions were cloned into pRW50 and were confirmed via sequencing. 

pRW50 contains a tetracycline resistance cassette and a β-galactosidase reporter gene, lacZ. 

lacZ is downstream of the multiple cloning site (MCS), and in its native form pRW50 does not 

encode a promoter for lacZ. Introduction of an active promoter sequence into the MCS of 

pRW50 results in quantifiable transcription of lacZ, using variants of the Miller assay (Schaefer 

et al. 2016).  

  

As BrxR was predicted to function as a transcriptional regulator of the pEFER phage defence 

island operon, a pBAD30-brxR expression construct was prepared. DH5α was transformed 

with either pBAD30 as a control or with pBAD30-brxR. These strains were transformed further 

with one of the 6 pRW50 constructs, or an empty pRW50 plasmid as a promoterless negative 

control. In the absence of brxR, regions S1, S2, S3 and S6 displayed promoter activity beyond 

that of the negative control strain (Figure 4.9). Region S6 had the strongest promoter, but 

activity was relatively lower in S1 then S2 and then S3. In the absence of BrxR, regions S4 and 

S5 showed no additional promoter activity (Figure 4.9). When BrxR was expressed, however, 

the promoter activity from S6, S1 and S2 was reduced (Figure 4.9). In contrast, the activity 

from S3 increased, and region S4 now also showed activity, though S5 remained inactive 

(Figure 4.9). This indicates that BrxR can act both as a transcriptional repressor, and as a 

Figure 4.8: Identification of promoter regions within the BREX locus. Genes are group 

into predicted operons and coordinated by colour. 
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transcriptional activator, differentially controlling gene expression from the phage defence 

island.   

 

 

Figure 4.9: Phage defence island promoter activity. LacZ activity was quantified measuring 

absorbance at 420 nm and Miller units were calculated. Presented data are the mean and 

standard deviations from triplicate data.   
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4.7 Inorganic phosphate detection assay development for BrxC, PglZ and BrxL 

BrxC was predicted to be an AAA family ATPase by Phyre2 (Table 4.1) and encodes a Walker 

box motif. PglZ was found to belong to the alkaline phosphatase-like family which non-

specifically remove terminal phosphates, and BrxL was modelled to be structurally similar to 

Lon protease that also belongs to the AAA superfamily of ATPases. Each of these proteins had 

a predicted role in phosphate removal, either as an ATPase or phosphatase. A single assay was 

developed to test if each protein was able to hydrolyse ATP to produce inorganic phosphate 

(Pi). The commercial reagent BIOMOL green was used, as it undergoes a colour change when 

Pi is present. The amount of Pi production was calculated against a standard of known 

phosphate concentrations. Titrations of each protein were tested for production of Pi (Figure 

4.10). 

Figure 4.10: BIOMOL green inorganic phosphate detection assays. BrxC was observed 

to produce inorganic phosphate. Presented data are the mean and standard deviations from 

triplicate data.  
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BrxC was observed to have ATPase activity that increased in a concentration dependent 

manner. 1.51 nmol of Pi was detected at 100 nM, decreasing to 0.91 nmol at 50 nM BrxC 

(Figure 4.10). At the lower BrxC concentrations (10 nM and 1 nM), Pi production could not be 

distinguished against negative controls. No increase in Pi could be detected for both PglZ and 

BrxL, indicating that these proteins did not have activity in the conditions tested. It is possible 

that both of these proteins exhibit ATPase activities in the presence of a required cofactor, such 

as a divalent metal cation, a partner protein or targeted substrate, which would have been 

missing from this assay. The commercial alkaline phosphatase FastAP (Thermo) at 0.1 U/μl 

was used as a control, producing 2.49 nmol of Pi (data not shown).  

4.8 Identification of BrxU as a putative endonuclease 

BrxU has been identified as a phage-defence system operating independently of the pEFER 

BREX system. Bioinformatic analysis of BrxU using BLASTp (Altschul et al. 1990) identified 

DUF262 and DUF1524 domains, which are also encoded by the single polypeptide type IV 

restriction enzyme GmrSD (Machnicka et al. 2015) (He et al. 2015). Direct sequence alignment 

of BrxU and GmrSD nevertheless shows a low shared sequence identity of 24.8%, using 

EMBOSS Stretcher (Madeira et al. 2019). Members of the DUF262 family exhibit variable 

architectures, often resembling the ParB DNA binding domain and contain the DGQQR 

nucleotide-binding motif (Chen et al. 2015). DUF1524 proteins contain a conserved DHxxP 

motif which is found in the histidine-metal finger nucleases (Jablonska et al. 2017). As a result, 

the GmrSD family has been extensively characterised bioinformatically, identifying multiple 

conserved motifs (Machnicka et al. 2015). Using PROMALS3D (Pei, Kim, and Grishin 2008) 

to perform a sequence alignment of BrxU with GmrSD, these motifs appear to be present in 

BrxU (Figure 4.11). 
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Figure legend overleaf 
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The two key motifs highlighted by Machnika et al. are highlighted in Figure 4.11. Both GmrSD 

and BrxU contain a DGQQR motif in the N-terminal domain, highlighted in Figure 4.11 in 

cyan, reflecting the signature sequence of NTP binding domains of sulfiredoxin (Srx) 

(Machnicka et al. 2015). Additionally, both proteins contain a DHxxP domain, highlighted in 

green in Figure 4.11. This motif is predicted to form the active site of the endonuclease. BrxU 

has a DHIYP motif, whereas GmrSD has DHLMP. The conservative substitution of isoleucine 

for leucine is unlikely to have a significant effect on this motif as they both contain non-polar, 

aliphatic side chains however this is yet to be tested (Creixell et al. 2012). Substitution of 

tyrosine for methionine is a larger substitution, but as both BrxU (this study) and GmrSD (He 

et al. 2015) have been shown to degrade phage gDNA and confer resistance in vivo, the 

difference at this residue does not affect enzyme activity.  

 

Figure 4.11: Sequence alignment of BrxU and GmrSD.  BrxU and Eco94GmrSD were aligned 

using PROMALS3D. Predicted domain architectures are indicated. RLFDS, DGQQR and DHIYP 

motifs are highlighted in yellow. Residues selected for mutation (Fig. 5) are shown in red and 

underlined. Conservation of residues is denoted using the following key: conserved amino acid 

residues are shown in bold and uppercase letters; conserved aliphatic residues (I, V, L), shown 

as l; conserved aromatic residues (Y, H, W, F), shown as @; conserved hydrophobic residues (W, 

F, Y, M, L, I, V, A, C, T, H), shown as h; conserved alcohol residues (S, T), shown as o; conserved 

polar residues (D, E, H, K, N, Q, R, S, T), shown as p; conserved “tiny” residues (A, G, C, S), 

shown as t; conserved small residues (A, G, C, S, V, N, D, T, P), shown as s; conserved 

bulky residues (E, F, I, K, L, M, Q, R, W, Y), shown as b; conserved positively charged residues 

(K, R, H), shown as +; conserved negatively charged residues (D, E), shown as -; conserved 

charged residues (D, E, K, R, H), shown as c. Secondary structure (2°) prediction denoted using 

the following key; α-helices, h, β-strands, s. 
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4.9 BrxU provides resistance against phages in vivo 

To confirm that BrxU can act independently to reduce phage plaquing, brxU was cloned into 

pBAD30. EOP assays were performed against the suite of 30 coliphages and compared to 

values obtained for pBrxXL-ΔpglX (Table 4.2).  The overall trends of EOP values obtained 

with pBAD-brxU and pBrxXL-ΔpglX were highly consistent. This further reinforces that BrxU 

is a standalone phage defence system embedded within the pEFER phage defence island, 

functioning entirely independent of BREX. The majority of BrxU-sensitive phages were 

completely prevented from forming plaques, such as phage CP (Table 4.2). In contrast, BGP 

and TB37 were the only BrxU sensitive phages to show modest impact. 
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Table 4.2: EOP values for pBrxXL-ΔX in comparison with pBAD30-brxU. EOP values 

align indicated BrxU is the only active phage defence component of pBrxXL-ΔX. Values 

with < extended below the range of this assay and formed no plaques. Data shown are 

mean values from triplicate experiments.  
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4.10 BrxU hydrolyses sensitive phage genomes into non-specific fragment lengths 

Due to its activity against a range of phages (Table 4.2), and its predicted function as a nuclease 

due to the presence of DUF262 and DUF1524 domains (Figure 4.11), BrxU was tested for its 

ability to cleave DNA substrates. Phage gDNA was purified via phenol-chloroform extraction 

and used in DNA digest assays. Initial DNA hydrolysis trials were performed using gDNA 

from Geo (Figure 4.12). gDNA was not hydrolysed in the absence of ATP, however addition 

of ATP to a final concentration of 1 mM resulted in the complete degradation of Geo gDNA 

(Figure 4.12A). gDNA hydrolysis was observed to be dependent on the presence of suitable 

divalent cation such as Mg2+ (Figure 4.12B). Addition of EDTA prevented BrxU from binding 

Mg2+, resulting in no gDNA hydrolysis (Figure 4.12B). 

 

Figure 4.12: Initial trial BrxU DNA hydrolysis assays. A) Geo gDNA is hydrolysed upon the 

addition of 1mM ATP. Each sample contains 500 nM BrxU and 10 mM MgSO4. Samples 

resolved in 1% agarose TAE at 120 V for 45 min. B) gDNA hydrolysis is dependent on the 

addition of 10 mM MgSO4. Addition of 10 mM EDTA prevents BrxU from binding Mg2+. 

Samples resolved in 0.8% agarose TAE at 120 V for 45 min. 
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Next, gDNAs from all 30 coliphages, and with the addition of phage λ, were tested for BrxU 

sensitivity in vitro, in the absence and presence of ATP (Figure 4.13). The gDNAs from phages 

that showed reduced EOP with pBAD-brxU (Table 4.2), were degraded by BrxU (Figure 4.13). 

Whilst phages BGP and TB37, which both had modest reductions in EOP, were not fully 

degraded (Figure 4.13), phage NR1, with a very low EOP (Table 4.2), was also not fully 

degraded. Despite this discrepancy with NR1, overall, the trends were consistent where BrxU 

degraded the DNA at a  level matching the impact on EOP. λ gDNA was not hydrolysed, and 

would therefore be predicted to be resistant to pBAD-brxU in EOP assays.  Whilst it could be 

predicted that some phages may encode proteins to inhibit type IV restriction enzymes, such 

as T4 IPI (Rifat et al. 2008a), none of the phages showed gDNA degradation despite a high 

EOP value, indicating our suite of coliphages does not encode inhibitors of BrxU. 

Figure 4.13: Phage gDNA hydrolysis by BrxU. Phages with reduced EOP values in Table 4.2 

correspond with cleaved gDNA. All samples contain 500 nM BrxU. Sample ATP content shown 

above lanes and denote by +/-. Samples resolved in 1% agarose TAE at 120 V for 45 min. 
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4.11 BrxU requires a divalent metal cofactor for hydrolysis 

Early DNA hydrolysis assays were attempted using a standard protein storage buffer with no 

additional metals added, and no DNA hydrolysis was observed (data not shown). Addition of 

MgSO4 to a final concentration of 10 mM stimulated BrxU activity, and this could be blocked 

by the addition of 10 mM EDTA (Figure 4.12B). In order to assess the metal cofactor 

requirements of BrxU, a range of metals were titrated in DNA hydrolysis assays, using 

concentrations from 10-8 M to 10-2 M and Geo gDNA as substrate (Figure 4.14). The amount 

of remaining Geo gDNA was enumerated by measuring band intensity using ImageJ (Figure 

4.15). Mg2+ had been demonstrated to induce hydrolysis at 10-2 M in previous assays (Figure 

4.9). Mg2+ was observed to induce activity as low as 10-4 M resulting in only 4% of substrate 

remaining (Figures 4.14 and 4.15). 

Figure 4.14: Metal-dependent DNA hydrolysis by BrxU. BrxU can utilise Mg2+, Mn2+, Ni2+, 

Fe2+ and Fe3+. All samples contain 500 nM BrxU and 1 mM ATP. Data shown is representative 

of triplicate experiments. Samples were resolved in 1% agarose TAE at 120 V for 45 min. 
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No activity was observed at 10-5 M indicating a minimum threshold between these two values 

is required for BrxU activity with Mg2+. Mn2+ was observed to induce activity as low as 10-5 

M resulting in 30% of substrate being hydrolysed. Fe3+ was found to induce DNA hydrolysis 

at 10-4 M resulting in only 31% of substrate remaining. Fe2+
 also induced DNA hydrolysis at 

10-4 M, however significantly greater substrate (65%) was left remaining. (Figure 4.15). Fe2+ 

was observed to induce weak activity as low as 10-5 M, with 86% of substrate remaining. BrxU 

can utilise both oxidation states of iron, however activity is higher with Fe3+ than Fe2+. Ni2+ 

and Co2+ induced hydrolysis at 10-2 M however no activity was observed with lower 

concentrations. Cu2+, Zn2+ and Ca2+ did not induce any BrxU activity even at the highest 

concentration tested (Figure 4.14). 

Figure 4.15: Quantification of BrxU metal specificity. BrxU can utilise manganese at lower 

concentrations than any other divalent cations tested. Data shown are mean values from triplicate 

experiments. Error bars represent standard deviation.  



Chapter 4: Functional  Characterisation of BREX and BrxU Phage Resistance Mechanisms 

172 
 

4.12 BrxU is most active with ATP as the nucleotide cofactor 

BrxU was found to be active when 1 mM ATP was present (Figure 4.12A). To assess the 

optimal conditions for BrxU, hydrolysis assays were repeated with a range of nucleotide 

cofactors, at a range of concentrations from 0.1 mM to 10 mM (Figure 4.16). Geo gDNA was 

digested into smeared fragments no larger than 1 kb at 1 mM and 10 mM ATP. Smeared 

fragments extended as far as 2 kb for 0.1 mM ATP, however no intact gDNA remained at all 

concentrations.  

Figure 4.16: Nucleotide specificity DNA hydrolysis assays show BrxU has a preference for 

ATP. A) rNTPs B) dNTPs. In both gels, each sample contains 500 nM BrxU and 10 mM MgSO4. 

Nucleotide concentration shown above each lane. Gels are representative of triplicate data. 

Samples were resolved in 1% agarose TAE at 120 V for 45 min. Non-hydrolysable analogues 

γA (ATP-γ-S) and γG (GTP- γ-S) are shown as controls and cannot be utilised by BrxU for 

DNA hydrolysis. 
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The optimal concentration for ATP was assessed to be 1-10 mM as the smeared fragment sizes 

are at their smallest indicating more complete hydrolysis (Figure 4.16). At 10 mM, GTP did 

not induce BrxU activity, however at lower concentrations Geo gDNA was partially digested. 

A similar pattern was observed with CTP with the highest activity observed at 0.1 mM, 

however BrxU activity was reduced at 1 mM and was found to cause partial hydrolysis at 10 

mM. TTP induced hydrolysis at all concentrations, however peak activity was observed at 1 

mM. UTP induced equal activity levels at 0.1 mM and 1 mM and BrxU was inactive at 10 mM. 

Addition of the non-hydrolysable ATP analogue, ATP-γ-S, resulted in no hydrolysis of Geo 

gDNA, which was also observed with GTP- γ-S (Figure 4.16). Deoxynucleotides could also be 

used by BrxU (Figure 4.16B), demonstrating BrxU has wide substrate promiscuity. 

Collectively, these data show that hydrolysis of the γ-phosphate of a nucleotide is required for 

DNA to be cleaved, and that binding of a nucleotide is not sufficient.  

In order to quantify the amount of nucleotide hydrolysis by BrxU, an assay was designed, again 

using BIOMOL green, to detect Pi production. Nucleotides and deoxynucleotides were tested, 

as well as the requirement for substrate DNA and magnesium for BrxU NTPase activity (Figure 

4.17). The base reaction conditions were set up using a final concentration of 500 nM BrxU, 

0.1 mM NTP, 10 mM MgS04 and 100 ng of BGP gDNA. NTPase activity was the highest when 

ATP was used, producing 2.9 nmol of Pi. This activity remained unchanged when BGP gDNA 

was substituted for resistant λ gDNA, highly sensitive Geo gDNA (Figure 4.17) or when gDNA 

was absent (Figure 4.17). This indicates that the NTPase domain of BrxU is not stimulated by 

the presence of target DNA and that hydrolysis of NTPs occurs independently. Of the 

remaining rNTPs, TTP produced the next highest amount of Pi at 1.97 nmol, followed by UTP 

(1.63 nmol), CTP (1.42 nmol) and GTP (1.21 nmol). 
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All rNTPs produced higher levels of Pi compared to the negative controls; in the absence of 

BrxU, only 0.36 nmol of Pi was detected, and in the absence of any NTP, only 0.19 nmol was 

detected (Figure 4.17). 0.19 nmol was recorded as the background Pi level, likely present due 

to the slight absorbance of the BIOMOL reagent at 620 nm. The increase from 0.19 nmol to 

0.36 nmol observed in the BrxU negative control could be accounted for by non-enzymatic 

hydrolysis of ATP due to the conditions of the assay. Phosphate production was decreased 

when dNTPs were used indicating that deoxyribose sugars as part of the dNTP were less 

suitable for the BrxU NTPase. A slight correlation was observed between rNTPs and dNTPs, 

with ATP and dATP producing the highest levels of Pi in each class, with TTP and dTTP 

producing the second highest. This suggests a direct preference for adenine and thymine bases, 

with a further preference for ribose over deoxyribose.  

Figure 4.17: BIOMOL green phosphatase assays with BrxU identify ATP as the most readily 

hydrolysed NTP substrate. BGP gDNA was the default DNA substrate. Data shown are mean 

and standard deviation from triplicate data. 
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The non-hydrolysable analogues, ATP-γ-S and GTP-γ-S produced no increase in Pi production 

as expected. In the absence of magnesium, 0.47 nmol of Pi was produced, comparable with the 

no BrxU control. The addition of EDTA to samples containing magnesium prevented ATP 

from being hydrolysed, demonstrating that magnesium is required for nucleotide hydrolysis 

(Figure 4.17).   
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4.13 Gel filtration analysis shows dimeric BrxU dissociating upon nucleotide binding 

Having analysed the BREX proteins by analytical gel filtration, BrxU was also assessed, in the 

presence and absence of ATP (Figure 4.18). BrxU was observed to have an elution volume of 

1.61 ml when resolved using an S200i size exclusion column. When the sample was incubated 

with 1 mM ATP prior to loading, BrxU eluted at 1.79 ml indicating a significant change in 

multimeric state. This corresponds with a shift from a dimer to a monomer when calculated 

from a standard of known protein sizes (Figure 4.18). This shift suggests nucleotide binding 

causes BrxU dimers to dissociate into monomers. 

Figure 4.18: BrxU undergoes a multimeric shift upon ATP binding. A) BrxU elutes from the 

S200i at 1.61 ml in the absence of ATP, and at 1.79 ml in the presence of ATP. A 10 μl sample 

at 500 nM was resolved at 0.175 ml/min. Traces are representative of triplicate data. No data 

is shown beyond 2.2 ml due to significant absorbance from unbound ATP. B) Calculation of 

protein mass from elution volume. Deductions for multimeric state are made by comparing the 

calculated mass from the eV to the theoretical mass calculated from the protein sequence. 
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It cannot be confidently stated that the active form of BrxU is monomeric, as higher order 

structures may form in the presence of target DNA. However, it is plausible to suggest that 

upon nucleotide binding, a shift in protein conformation occurs. To investigate the role of 

nucleotides on the multimeric state of BrxU, all nucleotides previously tested as supporting 

DNA cleavage, in the presence or absence of magnesium, were incubated with BrxU prior to 

analysis by gel filtration (Figure 4.19). BrxU elutes at 1.61 ml in both the presence or absence 

of magnesium, showing that the binding of metal cofactor alone is insufficient in inducing this 

change (Figure 4.19A). However, magnesium was found to have an important role in inducing 

this change for each nucleotide tested other than ATP and its derivative ATP-γ-S (Figure 4.19B 

and K). The shift observed with both ATP-γ-S and GTP-γ-S also indicates that nucleotide 

hydrolysis is not a requirement for BrxU to monomerise (Figure 4.19K and L). Whilst ATP 

was found to induce to dimer to monomer shift whether magnesium was present or not, for all 

other nucleotides tested, magnesium was required for a full shift from 1.61 ml to 1.79 ml. A 

partial shift was observed for all nucleotides in the absence of magnesium indicated by a 

‘shoulder’ peak at 1.79 ml (Figure 4.19C-J and L). When magnesium is added, the major peak 

shifts to 1.79 ml for all nucleotides. CTP with magnesium induces this shift, however a 

significantly larger second peak remains at 1.6 ml indicating that at the concentration tested, 

addition of CTP results in reduced BrxU monomer formation. dNTPs were also tested and did 

not fully reflect the profiles observed when NTPs were used (Figure 4.19). As for the NTPs, in 

the presence or absence magnesium, all dNTPs were able to induce a shift to the monomer state 

to some degree. However, in the absence of magnesium, dATP (unlike ATP) only induced a 

small subset of BrxU molecules to form monomers, producing a smaller ‘shoulder’ peak at 

1.79 ml, with the largest peak at 1.61 ml. (Figure 4.19G). This further shows that whilst being 

promiscuous for nucleotide substrates, BrxU has a preference for NTPs over dNTP, and that 

nucleotide binding induces a large conformational change from a dimeric to monomeric state. 
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Figure 4.19: Gel filtration analysis shows ATP is the optimal nucleotide. Presence of Mg2+ aids 

monomer formation. Traces in black (Mg+) represent samples that were preincubated with 10 

mM MgSO4. Traces in red (Mg-) represent samples that do not contain MgSO4 prior to loading. 

10 μl sample at 500 nM was resolved at 0.175 ml/min. Traces are representative of triplicate data.
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To further assess the role of the phosphate groups within ATP, BrxU was analysed using ADP 

and AMP (Figure 4.20). ATP induces BrxU monomer formation regardless of Mg2+
 presence 

(Figure 4.20A), however BrxU remains dimeric when ATP is substituted for AMP (Figure 

4.20B). ADP induces monomer formation, however in the absence of Mg2+, dissociation is 

only part achieved (Figure 4.20C). This indicates a direct role for the both the β and γ-phosphate 

of ATP. As AMP does not induce monomer formation, a direct interaction of BrxU and the β-

phosphate of ATP is required. As Mg2+
 aids monomer formation for ADP (Figure 4.20C), it is 

likely that the β-phosphate is stabilised by Mg2+
 in place of the γ-phosphate which is absent in 

ADP. Mg2+ has been shown to bind ADP in this manner in other ATPase domains (Thomsen 

and Berger 2012).  

 

 

 

Figure 4.20: BrxU dimers undergo dissociation when bound to ATP and ADP, but not AMP. 

Traces in black represent samples that were preincubated with 10 mM MgSO4. Traces in red 

represent samples that do not contain MgSO4 prior to loading. 10 μl sample at 500 nM was 

resolved at 0.175 ml/min. Traces are representative of triplicate data. 
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4.13 BrxU targets phage genomes that incorporate modified cytosines 

Phages such as T4 incorporate 5hmC into their genome during DNA replication instead of 

unmodified cytosine (Kutter and Wiberg 1969; Vlot et al. 2018). Modified bases such as 5hmC 

provide resistance against restriction enzymes with cytosine within their recognition sequence. 

Modified T4 genomes containing 5hmC are further modified by the addition of glucose 

moieties, catalysed by glucosyltranferases, yielding glc-5hmC containing genomes (Sommer, 

Depping, Piotrowski, and Rüger 2004). This large glucosylation modification functions along 

with cytosine methylation to circumvent restriction by causing increased steric hindrance to 

restriction enzymes. Type IV restriction enzymes such as McrBC have evolved to target 

modified DNAs, as a response to the phage counter-defence (Stewart et al. 2000a). To test if 

BrxU targets DNA with modified cytosines, artificial substrates were generated via PCR. PCR 

was performed using pUC19 as a template with primers amplifying a 2.7 kb fragment, with 

dCTP substituted with 5mC and 5hmC (Figure 4.21A). Some of the 5hmC modified sample 

was treated with T4 β-glucosyltransferase to generate glc-5hmC. Hydrolysis assays were 

performed with 1 mM ATP and 10 mM MgSO4. BrxU hydrolysed all samples that contained 

modified cytosines, regardless of the nature of modification (Figure 4.21B). No hydrolysis of 

PCR products containing dCTP was observed (Figure 4.21B).  Interestingly, 5mC containing 

substrates were hydrolysed, which contrasts with the more limited substrate range of  the 

homologue GmrSD (He et al. 2015). To test if BrxU exhibited endonuclease or exonuclease 

activity, PCR product containing 5hmC from Figure 4.21A was phosphorylated with 

polynucleotide kinase, and ligated with T4 DNA ligase to form a circular product. Due to a 

limited yield of ligated DNA, only a faint band can be observed in Figure 4.21C representing 

circular DNA. Nevertheless, both linear and circular DNAs were degraded by BrxU, showing 

that BrxU is an endonuclease (Figure 4.21C). 
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Figure 4.21: BrxU is an endonuclease that targets DNA substrates that contain modified 

cytosine residues. A) PCR amplification of artificial BrxU substrate following substitution 

of dCTP for modified cytosine bases. B) DNA hydrolysis assays show BrxU degrades DNA 

containing 5mC, 5hmC and glc-5hmC. BrxU does not degrade DNA that does not 

incorporate modified cytosines. BrxU at 500 nM. C) BrxU has endonuclease activity as it 

degrades both linear and circular DNA. PCR product from Figure 4.21A was 

phosphorylated and ligated to produce a circular product which is degraded. Geo gDNA is 

shown as a positive control. A faint band representing circular DNA can be seen at ~5 kb. 

All samples were resolved in 1% agarose TAE at 120 V for 45 min. 
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4.14 Mutation analysis of BrxU identifies key residues for enzyme activity 

Following consideration of the identified amino acid sequence motifs in the GmrSD 

homologue, and alignment to BrxU (Figure 4.11), 11 single point mutants and 1 double mutant 

of BrxU were selected for further analysis. To reduce the steps required for purification, and to 

allow analysis of EOP within the same DH5α host strain as for previous assays, a 6His-BrxU 

construct was designed for mutation and cloning into pBAD30 (Guzman et al. 1995). These 

constructs were made commercially by Genscript. The models presented in Machnicka et al 

were used extensively to aid identification of mutational targets. In GmrS, the DGQQR motif 

is proposed as an equivalent of the signature sequence (F(G/S)GCHR) of the NTP binding 

motif of Srx (MACH REF).  

In the N-terminal DUF262 domain, the mutants Q35A, R38A, S42A, S42D, Q101A and 

R102A were generated, along with a double mutant R38A/S42D. In the C-terminal DUF1524 

domain, the mutants D474A, H475A, N485A, N519A and E528A were generated. It was 

predicted that the R38 and S42 of the N-terminal domain were involved in binding the 

nucleotide base (Machnicka et al. 2015), and that mutating these residues to alanine would 

prevent nucleotide binding. Generation of the S42D and R38/S42D double mutant was chosen 

due to the hypothesis that substituting a negatively charged residue could change nucleotide 

preference from ATP. Q101 and R102 are part of the highly conserved DGQQR motif of 

DUF262, aligning with the GmrSD residues Q86 and R87 that were modelled to interact with 

the phosphate chain of ATP (Machnicka et al. 2015). Using the model from Machnicka et al, 

Q35 of BrxU (Q34 of GmrS) was predicted to interact with the α-phosphate of ATP, with Q101 

and R102 binding the β and γ-phosphate respectively.  
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D507, H508 and N522 were found to be key catalytic residues in GmrSD and that alanine 

substitution removed its endonuclease activity (He et al. 2015). D474 and H475 of BrxU align 

with GmrSD D507 and H508 and were chosen as a similar result was expected. It was predicted 

that N519 was a key residue and formed part of the HNH nuclease motif of DUF1524.  

 

 

 

 

 

 

 

The ability for 6His-BrxU to confer resistance against phage Geo matched values for the 

untagged pBAD30-brxU construct (Tables 4.2 and 4.3), demonstrating that the N-terminal 

6His tag had no impact on BrxU activity. Counter-resistance activity was abolished in S42A, 

S42D, R38A/S42D, Q101A, R102A, D474A and H475 (Table 4.3). EOP values for Q35A, 

R38A and N485A remained constant with WT indicating no changes to the activity of BrxU 

(Table 4.3). EOPs of 0.36 and 0.13 were observed for N519A and E528A, respectively, 

showing that these mutations have greatly reduced BrxU activity, but it was not entirely 

abolished.  

Table 4.3: EOP values for 6His-brxU and mutants against phage Geo. Data shown is mean 

calculated from triplicated experiments. Values  with < extended below the range of this assay 

and formed no plaques.  
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4.15 Expression and purification of BrxU mutants 

BrxU can be expressed from pBAD30-6His-brxU in both DH5α and BL21 DE3 strains. A 

higher yield was observed in protein expression with BL21 DE3 and so all mutants, and the 

WT, were expressed in this strain. No toxicity was observed during any preparation for all 

mutants. Expression of BrxU from this construct yields an N-terminal 6His-BrxU that can be 

purified via one-step IMAC. Contaminating proteins can be removed using 50 mM imidazole 

in wash buffers, and BrxU can be eluted at 250 mM imidazole. Purified protein was obtained 

for all mutants, with similar expression levels (Figure 4.22).  

 

Figure 4.22: SDS-PAGE showing the purity of IMAC purified BrxU constructs expressed 

from pBAD30-brxU. Samples resolved in 10% acrylamide at 180 V for 100 min. 
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4.16 BrxU mutant DNA digest assays 

In order to investigate the effect of introduced mutations on the ability of BrxU to cleave phage 

gDNA, DNA hydrolysis assays were performed using purified protein for each mutation. The 

aim of these experiments was to semi-quantify the capacity for each BrxU mutant to hydrolyse 

phage Geo gDNA, using a gradient of protein concentration (Figure 4.23). 

 

 

 

 

Figure 4.23: DNA hydrolysis assays with BrxU mutants. 100 ng of Geo gDNA was incubated 

with a gradient of BrxU concentrations at 37 °C for 60 min and resolved via agarose gel 

electrophoresis at 120 V for 45 min. All samples contain 10 mM MgSO4 and 1 mM ATP. 

Control sample is untagged BrxU expressed from pSAT1-LIC-brxU. WT and mutants are 

expressed from pBAD30-brxU and its derivatives. Data shown are representative of triplicate 

experiments. 
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WT BrxU expressed from pBAD30-6His-brxU was observed to be as active as the positive 

control expressed from pSAT1-LIC-brxU (Figure 4.23). WT BrxU degraded the gDNA 

substrate at 50 nM but not at 10 nM. Q35A, R38A and N519A were found to be as active as 

WT (Figure 4.23). R38A/S42D, S42A, S42D, Q101A, R102A, D474A and H475A were 

observed to be inactive even at protein concentrations of 1000 nM, indicating a complete 

inactivation of the enzyme (Figure 4.23). In contrast, N485A and E528A were observed to be 

more active than WT, degrading gDNA at 10 nM, however substrates were only partially 

degraded at this concentration. The observed phage-resistance and gDNA digestion phenotypes 

correlate for Q35A, R38A and N485A (Table 4.3). In addition, whilst N519A and E528A have 

reduced impact on EOP, these data show they are still able to digest gDNA (Table 4.3 and 

Figure 4.23). 
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4.17 ATPase activity is elevated in S42A  

NTPase assays were repeated using each purified BrxU mutant. Assays conditions were 500 

nM BrxU, 0.1 mM ATP, 10 mM MgSO4 and 100 ng Geo gDNA for test samples. Untagged 

BrxU expressed from pSAT1-LIC-brxU was used as a positive control and found to show no 

significant difference in activity compared to 6His-BrxU WT from pBAD30-6His-brxU 

(Figure 4.24). Mutants that were previously shown to provide phage-resistance and digest 

modified phage gDNA, Q35A, R38A, N485A, N519A and E528A, all had similar activity to 

WT (Figure 4.24). Surprisingly, whilst showing no phage resistance or ability to cleave phage 

gDNA, S42A had increased NTPase activity, producing 5.57 nmol of Pi (Figure 4.24). In 

contrast. a reduction in activity was observed for inactive mutants S42D, R38A/S42D, Q101A 

and R102A (Figure 4.24). Whilst mutants D474A and H475A were shown to not restrict phage, 

and were unable to digest phage gDNA, they were observed to have WT levels of NTPase 

activity (Figure 4.24). That could suggest that these mutants were somehow deficient for DNA 

substrate cleavage and recognition, rather than NTP binding and hydrolysis.  

Figure 4.24: BIOMOL green phosphate detection assays with BrxU mutants. Elevated 

phosphate levels are detected for S42A.  Presented data are the mean and standard 

deviations from triplicate data.  
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4.18 Identification of key residues in BrxU dimerisation 

Next, the mutants were tested to examine their impact on switch from BrxU dimers to 

monomers. All experiments were run with 10 mM MgSO4. WT BrxU expressed from 

pBAD30-6His-brxU was compared to BrxU expressed from pSAT1-LIC-brxU (Figure 4.25). 

The addition of 1 mM ATP induced a shift from a dimer to monomer for both BrxU (“Control”; 

Figure 4.25A) and 6His-BrxU (“WT”, Figure 4.35B), confirming the 6His tag does not alter 

BrxU behaviour in these experiments 

 

With data from Figure 4.25 confirming that WT 6His-BrxU expressed from pBAD30:brxU 

undergoes the same multimeric shift as untagged BrxU, mutant 6His-BrxU proteins were 

analysed in a similar manner (Figure 4.26). All mutations in the C-terminal domain (D474A to 

E528A) were found to behave similarly to WT, with the addition of 1 mM ATP inducing a full 

shift to the monomer form of BrxU (Figure 4.26H-L).  

Figure 4.25: Gel filtration analysis confirms 6His-tagged BrxU undergoes 

monomerisation upon ATP binding. Traces in black represent samples that were 

incubated with 1 mM ATP prior to loading, traces in red were not. 10 μl sample at 

500 nM was resolved at 0.175 ml/min. Traces are representative of triplicate data.
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Figure 4.26: Gel filtration analysis of BrxU mutants reveals S42 is involved in dimer formation.

Traces in black represent samples that were incubated with 1 mM ATP prior to loading, traces in red 

represent samples that contained 0 mM ATP. 10 μl sample at 500 nM was resolved at 0.175 ml/min. 

Traces are representative of triplicate data. 



Chapter 4: Functional  Characterisation of BREX and BrxU Phage Resistance Mechanisms 

190 
 

This suggests that D474A and H475A are not compromised for ATP binding, hydrolysis, and 

conformational changes, so the observed lack of activity for these mutants against phages might 

instead be down to substrate DNA recognition and cleavage. Within the N-terminal domain, 

Q35A, R38A and R102A acted as WT. Q101A was also observed to undergo a shift in the 

absence of ATP, with a larger shoulder peak at 1.8 ml. However, in the presence of ATP, 

Q101A elutes over a wider peak at 1.71 ml, indicating equal levels of dimer and monomer 

(Figure 4.26F). S42A resulted in an elution volume of 1.8 ml even in the absence of ATP, 

indicated that the mutation results in BrxU permanently forming monomers (Figure 4.26D). 

This corresponds with the increased NTPase activity (Figure 4.24). However, in both 

R38A/S42D and S42D mutants (Figure 4.24C and E), BrxU elutes as a dimer in both the 

absence and presence of ATP, which again correlates with the reduced ATPase activity of these 

mutants (Figure 4.24). S42 therefore appears to be an important residue in NTP recognition 

and hydrolysis, which then impacts conformational shifting of BrxU. 

4.19 Discussion 

4.19.1 Individual BREX protein roles 

All BREX proteins with the exception of BrxS and BrxT have been expressed as soluble 

proteins and can be purified. BrxR has been identified as a transcriptional regulator and has 

been shown to act as an autorepressor using β-galactosidase assays (Figure 4.9). Assessment 

of the 6 promoter regions investigated in section 4.6 shows that a strong promoter region lies 

direct upstream of brxR, indicating that RABCUX are transcribed as one polycistronic operon. 

It is possible that ZL may also be transcribed as part of this operon, however expression of 

BrxR was shown to also increase transcription of a promoter upstream of ZL. This indicates 

that the BREX locus in pEFER may be transcribed as a two-step system, with RABCUX being 

expressed first. The presence of BrxR prevents further transcription of this operon, whilst an 
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increase in activity in the ZL promoter suggests that during this autorepression at RABCUX, ZL 

is activated and levels of PglZ and BrxL increase. BrxR showed significant homology to PafBC 

which upregulates response genes when DNA damage is detected (Müller et al. 2019). It is 

predicted that BrxR interacts with DNA similarly to PafBC, as Phyre2 modelling has predicted 

the presence a wHTH domain. This would involve the recognition helices of the wHTH domain 

binding into the major groove of DNA stabilised by the interaction of the wings with the minor 

groove. Interestingly, BrxR is regularly found clustered with other phage defence genes. 

Bioinformatic analysis of BrxR performed by Joshua Lee (Unpublished MBiol thesis) 

identified 197 BrxR homologues that are found upstream of phage defence systems. It is likely 

that BrxR functions as a phage sensing element, activating transcription of BREX and brxU as 

a result of a phage infection. BrxR encodes a WYL-domain, that has been proposed to bind a 

yet-unidentified ligand (Müller et al. 2019). This ligand may well regulate BrxR-DNA binding. 

BrxR could therefore be a sensor of phage infection, regulating an appropriate response. 

Further analysis of BrxR should be undertaken by creating a deletion mutant in pBrxXL to 

determine if the phage defence island is still active without it, and performing electrophoretic 

mobility shift assays to determine sites of DNA binding. Furthermore, the promoter analysis 

should be expanded to brxS and brxT, and the region just upstream of these genes. 

BrxC was predicted to have ATPase activity, which was demonstrated in Figure 4.10. BrxC 

was able to hydrolyse ATP in the absence of other BREX proteins, indicating that the ATPase 

domain of BrxC requires no additional protein factors to be active. It is predicted that the 

ATPase activity of BrxC is providing the energy for translocation of a BREX complex along 

target DNA, and so it is feasible that BrxC forms complexes with BREX effector proteins. Both 

PglZ and BrxL were observed to not hydrolyse ATP in the same assay. PglZ was also observed 

to not cleave another substrate, p-nitrophenol phosphate (data not shown). This suggests that if 

either BrxL or PglZ does function as a phosphatase, it is dependent on other factors to activate 
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it such as another BREX protein, or target substrate. Having purified the BREX proteins, it will 

be possible to mix them and separate by analytical sizing as part of future experiments. This 

will allow observation as to whether any BREX complexes form. These can then be tested for 

ATP hydrolysis activity.  

PglX has been shown to be required for BREX activity as its deletion abolishes phage 

resistance and target DNA remains unmethylated (Table 3.5). A structural and biochemical 

analysis of PglX from S. enterica is being performed by another PhD student, Sam Went, 

within the Blower laboratory. PglX from pEFER can be expressed as a soluble protein and 

purified. Using purified PglX, it will be possible in future to test PglX and any BREX 

complexes for methyltransferase activity. 

4.19.2 Gel filtration analysis of BREX proteins 

Gel filtration analysis allows for the prediction of multimer formation based on the calculated 

size of protein eluates. BrxR was observed to form dimers which is supported its role as a 

transcriptional regulator. BrxA was found to be dimeric in solution and BrxB was found to be 

monomeric. With no further characterisation of each protein, it is difficult to suggest roles for 

each protein and how their multimeric state would affect this. The pentamer formed by BrxC 

is characteristic of many AAA ATPases. For instance, the large terminase, TerL, packages viral 

DNA into the procapsid and forms pentameric ring structures (Hilbert et al. 2015). The 

hydrolysis of ATP then powers DNA translocation into the procapsid. It is possible that the 

ATPase activity of BrxC provides the mechanical force for a complex of BREX proteins to 

translocate target DNA.  

PglX is most likely to be monomeric in solution, although it is likely that it forms homodimers 

upon binding DNA. The PglX homologue, MmeI, forms dimers in complex with DNA with 
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subunits interacting with each strand (Callahan et al. 2016). Phyre2 models of PglX using 

MmeI as a template shows PglX as an elongated protein which likely migrates through the 

S200i slower than more globular proteins. PglZ and BrxL were both calculated to form dimers, 

however due to their predicted elongated shapes it is possible that they migrate slower and are 

monomeric. Interestingly, the smaller peak at 1.2 ml observed for BrxL may represent a small 

proportion of BrxL multimers that may assemble under the correct conditions. Addition of 

magnesium and ATP was performed however no change was observed.  

4.19.3 BrxU confers resistance to BREX-resistant phages  

BrxU was originally identified as a putative nuclease due to the presence of the C-terminal 

DUF1524 domain. DUF1524 has been implicated in phage defence systems such as GmrSD, 

which targets phages encoding modified cytosine residues in their genomes (He et al. 2015). 

In vivo, expression of BrxU from pBAD30-6HisbrxU conferred resistance to all phages 

susceptible to pBrxXL-ΔpglX, showing that BrxU functions independently of BREX (Table 

4.2). DNA hydrolysis assays have shown that all phages that were susceptible in vivo are 

degraded by BrxU (Figure 4.13). BGP and TB37 were found to be sensitive to BrxU but to a 

much lesser extent that an all other sensitive phages. Both BGP and TB37 were only partially 

degraded and had EOP values that sat in between hypersensitive and resistant phages. It would 

be interesting to explore the mechanism behind the reduced activity against these phages and 

what distinguishes them from hypersensitive phages such as TB36.  

4.19.4 Endonuclease activity of BrxU 

One of the more intriguing aspects of BrxU is the generation of DNA ‘smears’ observable 

during hydrolysis assays (Figure 4.12 and Figure 4.16). Rather than generating distinct DNA 

fragments characteristic of type IIP enzymes, DNA smears appear indicating cleavage at non-
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specific sites. GmrSD has been detailed to cut 17-23 bp away from the recognition sequence 

(He et al. 2015). It is likely that BrxU cleaves DNA at a similar distance away however this 

has not been investigated in this study, and would require future purification and sequencing 

of digested fragments. A key part of the biochemical characterisation of BrxU was to assess its 

cofactor requirements. BrxU was found to exhibit endonuclease activity in the presence of 

ATP, however it was able to utilise GTP, CTP, TTP and UTP, as well as all canonical dNTPs 

(Figure 4.16). It was through this assessment that the requirement for nucleotide hydrolysis 

was noted, as binding of non-hydrolysable nucleotide analogues resulted in DNA substrates 

remaining intact (Figure 4.16). With the putative NTPase activity situated in the N-terminal 

DUF262 domain, and the putative nuclease domain situated in the C-terminal DUF1524 

domain, it is most likely that nucleotide hydrolysis is required for molecular motion and/or 

DNA manipulation rather than DNA hydrolysis. ATP was found to be the preferred nucleotide 

cofactor, generating the smallest DNA fragments. However, BrxU is able to utilise a wide range 

of nucleotide cofactors, indicating that the nucleotide binding site exhibits flexibility around 

the nitrogenous base. BrxU NTPase activity was demonstrated through colourimetric assays 

developed using BIOMOL green, indicating that ATP is more readily hydrolysed than other 

nucleotides, supporting the hypothesis that BrxU has preference for ATP (Figure 4.17). 

Interestingly, NTPase activity was not further stimulated by the addition of target DNA (Figure 

4.17). It was predicted that the energy derived from the hydrolysis of ATP was utilised for 

DNA manipulation. It is still possible that the hydrolysis of ATP does drive a mechanical force 

and that DNA does not have to be bound for this to occur. Furthermore, it can be deduced that 

BrxU has at least one metal binding site as the removal of magnesium (or its sequestering with 

EDTA) prevented nucleotide hydrolysis (Figure 4.12B). BrxU was originally noted to be a 

Mg2+ dependent nuclease, however it has been found to be active in the presence of Mn2+, Fe2+
, 

Fe3+, Ni2+ and Co2+
.  The promiscuity of BrxU and its coordinating metal ions suggests that the 
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nuclease active site may be functional in a range of conformations. Manganese was noted to 

be utilised at lower concentrations that magnesium, however this does not necessarily suggest 

a preference for manganese. Cellular manganese levels can increase significantly during phage 

infections as demonstrated in S. enterica, whilst levels of zinc, iron and magnesium decrease 

(Yousuf et al. 2020).  

4.19.5 BrxU dissociates from a homodimer to a monomer upon nucleotide binding 

Gel filtration analysis was used to investigate the effect of nucleotide binding on BrxU. In the 

presence of Mg2+, all nucleotide cofactors tested were able to induce the dissociation, however 

only ATP and ATP-γ-S induced this shift without Mg2+. It is hypothesised that binding of a 

metal cofactor correctly coordinates the nucleotide binding site, allowing for non-preferred 

nucleotides to bind and induce this dissociation. It is possible that BrxU forms higher order 

structures in the presence of DNA, with BrxU monomers binding individuals target sites and 

dimerising. McrBC forms tetradecameric multimers in the presence of Mg2+
 and GTP (Panne 

et al. 2001), however no large structures were observed for BrxU. The dissociation observed 

may be due to the binding of nucleotides inducing a conformation change, allowing BrxU 

monomers to bind target DNA. The DNA binding regions of BrxU may be occluded when 

dimerisation occurs and may become exposed again during dissociation. 

4.19.6 BrxU substrate identification 

Type IV restriction enzymes recognise modified DNA substrates that contain non-canonical 

bases, such as 5hmC. GmrSD was found to hydrolyse DNA substrates that contained 5hmC 

and glc-5hmC but not 5mC (He et al. 2015). BrxU was observed to hydrolyse artificial DNA 

substrates that had been synthesised with dCTP substituted for 5mC, 5hmC and glc-5hmC. 

DNA glycosylation is utilised by phages such as T4 to evade restriction, conferring resistance 
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to defence systems such as CRISPR-Cas (Bryson et al. 2015). The addition of a large glucose 

moiety to target bases can cause steric hindrance to enzymes such as Cas9. However, BrxU is 

able to hydrolyse a wide range of modified DNA substrates, including glycosylated DNA. As 

BrxU is also able to digest DNA containing 5mC, it is likely that the DNA recognition 

apparatus of BrxU has a direct interaction with the C5 of cytosines, and that the addition of a 

methyl group is sufficient to result in cleavage. 

4.19.7 Identification of key catalytic residues in BrxU 

Mutagenesis of BrxU has revealed the importance of several residues within both domains. In 

the N-terminal DUF262 domain, mutations were designed to prevent interactions with 

nucleotides. Both Q35A and R38A were found to remain active, indicating that nucleotide 

binding is less conditional on these residues that previously believed. Modifications of S42 

resulted in BrxU antiphage activity being inactivated. Interestingly, the S42A mutant was 

found to be monomeric in the absence of ATP, suggesting this residue has an important role in 

the dimer interface and that its disruption results in a fixed state of BrxU. The binding of ATP 

inducing the monomerisation of BrxU has been hypothesised as an activation step for activity, 

and the disruption of S42 likely prevents nucleotide binding correctly. Strikingly, the S42A 

mutant was observed to hydrolyse ATP at an increased rate. It is currently unclear as to how 

this is facilitated. Conversely, S42D mutants were observed to be fixed as dimers even in the 

presence of ATP. This mutant was generated in order to assess if nucleotide preference could 

be altered by substituting for a negatively charged residue at this position. It is possible that the 

S42D mutant is still able to switch conformations when other NTPs such as GTP are present, 

however this has not been tested yet. Q101 and R102 are part of the highly conserved DGQQR 

motif, predicted to bind the β- and γ-phosphates of ATP, respectively. Both Q101A and R102A 

yielded inactive enzymes, illustrating the importance of these two residues. D474 was predicted 
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to be involved in metal binding, and its substitution to alanine prevented BrxU from cleaving 

DNA. ATPase activity of all C-terminal mutants was found to be unchanged as expected.  

Having performed a range of biochemical assays with BrxU and assessing its required reaction 

conditions, nuclease activity, multimeric state and nucleotide interaction, as well as 

demonstrating its anti-phage activity in vitro, BrxU was selected as a candidate for structural 

characterisation. The next chapter will detail the progress made in BREX protein 

crystallisation, and will detail the crystallisation, structure determination and analysis of BrxU.  
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Chapter 5: BREX Protein Crystallisation and Structural Analysis of BrxU 

5.1 Introduction 

The pEFER phage defence locus contains multiple target proteins of interest for 

crystallographic studies. Phyre2 models gave insight into the potential function of each protein 

with partial modelling of certain domains, leaving other domains unmodelled. For example, 

modelling the winged HTH domain of BrxR (Figure 4.1) aided its identification as a 

transcriptional regulator, however the C-terminal domain was left unmodelled. Comparative 

bioinformatics hinted that the C-terminal domain may function as a sensor of phage infection, 

making BrxR an interesting target for structural characterisation. Similarly, BrxC, PglX, PglZ 

and BrxL were identified as interesting targets for crystallographic study as they represent 

novel enzymes in phage defence. Protein crystallisation was performed alongside functional 

characterisation. Following the characterisation of BrxU as an independent type IV restriction 

enzyme, efforts to solve the structure of BrxU were prioritised over other proteins such as 

BrxR. A structure for BrxU was obtained and further work is ongoing for BrxR. This chapter 

covers progress on each protein, detailing the advances in crystallisation for each before a full 

report on the structural characterisation of BrxU is presented.  
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5.2 Protein crystallisation preparation 

Crystallisation trials were performed with purified protein samples (Figure 4.5) expressed from 

pSAT1-LIC constructs. Samples were dialysed to remove glycerol and reduce salt content, and 

concentrated. For initial screening, starting protein concentrations were 12 mg/ml for BrxR, 

BrxA and BrxU, and 10 mg/ml for BrxC, PglZ, BrxL. Screens were set using 96 well 2-drop 

vapour diffusion sitting drop plates (Swissci MRC) using either an Innovadyne or an 

STPlabtech Mosquito Xtal3 robot. Drops were set at 1:1 and 2:1 protein: precipitant ratios 

forming 200 nl and 300 nl final drops. A range of 10 commercially available screens for soluble 

proteins (Molecular Dimensions) were used; BCS Eco, Clear Strategy 1+2 Eco, JCSG+ Eco, 

LMB, MIDAS, Morpheus, Pact Premier Eco, SG1 Eco, Structure Screen 1 Eco and Structure 

Screen 2 Eco. A total of 1920 conditions were set for each protein. No crystals were obtained 

for BrxC. 

5.3 BrxR protein crystallisation and data collection 

BrxR formed crystals overnight in 21 screening conditions, mostly forming very thin, needle 

crystals unsuitable for mounting (Figure 5.1 R1-R3). Long rod crystals appeared in SG1 F8 

(Figure 5.1 R6). The best crystals appeared in Pact Premier F8, comprised of mostly needle 

crystals and a number of shorter, thicker rods. This condition consisted of 0.1 M Bis-Tris 

propane pH 6.5, 0.2 M sodium sulphate and 20% w/v PEG 3350 (Figure 5.1 R4). This condition 

was selected for manual optimisation. Reduction of the starting PEG 3350 concentration to 

19% yielded thicker rods that were suitable for mounting (Figure 5.1 R5). PEG 3350 

concentration was reduced further in an attempt to slow crystal formation but no significant 

crystal growth was observed below 19%.  
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These crystals were flash frozen in liquid nitrogen following cryoprotection and transported to 

the Diamond Light Source (DLS) synchrotron facility in Didcot, UK. The highest resolution 

dataset obtained for BrxR had a max resolution of 2.8 Å (Figure 5.2). Parameters for data 

obtained for this crystal are detailed in Table 5.1. No solution could be obtained for BrxR via 

molecular replacement due to a lack of a suitable model at this resolution.  

 

Figure 5.1: Native BrxR crystallisation conditions. Not all conditions shown. 

Images are not to scale. Diffraction data for R5 can be seen in Figure 5.2. BrxR set 

at 12 mg/ml. 
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Figure 5.2: X-Ray data collection of native BrxR. A) Mounted crystal from 

condition R5 of Figure 5.1. B) A single lattice is observed with BrxR diffracting to 

a max resolution of 2.8 Å. 

Table 5.1: Crystallographic parameters for data collection of R5 in Figure 5.2. A 

single dataset processed via DIALS to 2.8 Å was processed via AIMLESS.  
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Strategies for obtaining phase data were discussed, with BrxR being identified as a suitable 

candidate for selenomethionine (SM) substitution. Including the N-terminal methionine, BrxR 

has a total of 4 methionine residues. As this protein was expressed as a tagged fusion construct, 

the N-terminal methionine is still present and has not been cleaved by methionine 

aminopeptidase. SM-BrxR was produced using a commercially available methionine-deficient 

nutrient mix (Molecular Dimensions). Following expression, SM-BrxR was purified by the 

exact procedure used for native BrxR. Positive electrospray time of flight (ES+ TOF) mass 

spectrometry was used to determine SM incorporation (Figure 5.3). For each methionine 

residue substituted for SM, a mass change of +47 will be observed. Native BrxR was observed 

to have a mass of 33595 and SM-BrxR was observed to have a mass of 33735. The difference 

between the two species was calculated to be 140, which closely corresponds to 3 SM 

substitutions. A smaller peak was found in SM-BrxR at 33688, which closely corresponds to 2 

SM substitutions. SM-BrxR was rescreened against the 10 commercial screens and was also 

manually set using a matrix of conditions based on Pact Premier F8, however no significant 

crystal formation was observed in the commercial screen. Crystallisation was observed within 

the optimised matrix but only small, thin needles were formed, which were unsuitable for 

mounting. Greater optimisation is required to proceed with BrxR structural studies. 
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Figure 5.3: Mass spectrometry for native and selenomethionine substituted BrxR. Positive 

electrospray time of flight mass spectrometry (ES+ TOF MS) shows a native mass increase 

of 140 for SM-BrxR (right) compared to native-BrxR (left), closely corresponding to 3 

residues of SM being incorporated.  
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5.4 Crystallisation trials of BrxA 

BrxA crystals were found in MIDAS™ D6 forming small, plate-like crystals after 5 months 

(Figure 5.4). These crystals were mounted and flash frozen in liquid nitrogen, however they 

were damaged during transit to DLS due to a dewar malfunction and no X-ray diffraction data 

could be obtained. Due to the length of time required for crystal formation, and due to a solution 

for the NusB homologue already being deposited in the PDB, BrxA was designated as a low 

priority target and has yet to be further pursued .  

 

 

 

 

 

 

 

 

 

 

Figure 5.4: BrxA crystallisation condition. Significant crystal growth was observed in a 

single condition. No X-ray diffraction was obtained for BrxA. BrxA set at 12 mg/ml. 
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5.5 Crystallisation trials of PglZ 

PglZ was observed to crystallise in the presence of 0.2 M KSCN, PEGs of mixed weights and 

at a pH of 8.5 (Figure 5.5). Crystals were observed to be thin, weak needles, typically unsuitable 

for mounting. Multiple replicates were performed and needle crystals from Z1-Z3 were 

mounted and frozen in liquid nitrogen. To assess if the crystals produced diffraction patterns 

prior to shipping to DLS, they were tested using a MetalJet D2 homesource beamline (Bruker), 

with the assistance of Dr Arnaud Basle (Newcastle University). Unfortunately, no diffraction 

could be detected.  

 

5.6 BrxL crystallisation and data collection 

Crystal formation was observed for BrxL in Pact Premier B5, which produced small, bi-

pyramidal crystals (Figure 5.6 L1). Drops were re-set manually (Figure 5.6 L2 and L3), which 

produced similar crystals. Higher protein: precipitant ratios caused fewer crystals to form. The 

crystals in L3 were mounted and frozen in liquid nitrogen before being shipped to DLS. 

Figure 5.5: Crystallisation conditions of PglZ. Needle crystal formation was observed in drops 

containing KSCN. No X-ray diffraction data was obtained for PglZ. PglZ set at 10 mg/ml.  
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The best dataset diffracted to 3.50 Å, ruling out the possibility of salt crystals being harvested 

(Figure 5.7). BrxL has yet to be further optimised to improve crystal quality and no higher 

resolution data has been obtained. LonA has been identified as a homolog (Figure 4.1 and Table 

4.1) and may be a suitable model for molecular replacement once higher resolution data is 

obtained for BrxL.  

Figure 5.6: Crystallisation conditions for BrxL. The crystallisation screening condition Pact 

Premier B5 was identified in L1. Manual replication of this condition is shown in L2 and 3 in 

larger drop sizes (3 μl and 2 μl, respectively) with varying drop ratios. BrxL set at 10 mg/ml.

Figure 5.7: Data collection for BrxL crystals. A) Mounted crystal from Figure 

5.6. B) X-ray diffraction of BrxL extends to 3.5 Å. 
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5.7 BrxU crystallisation trials and optimisation 

BrxU was initially screened with no additional cofactors, producing crystals with poor 

morphologies. With developments in the functional characterisation of BrxU, it was 

hypothesised that BrxU may crystallise bound to a nucleotide ligand in the presence of a 

divalent cation. BrxU was rescreened with the addition of 2 mM AMP-PnP and 5 mM MgSO4, 

yielding multiple new crystals (Figure 5.8). Crystal formation was observed in a total of 18 

different screening conditions. Crystals from U5 and U6 were found to be salt crystals due to 

the distinct diffraction patterns observed during data collection at DLS. U2 was observed to 

form highly feathered crystals that were deemed unsuitable for mounting in cryoloops. U4 

formed mostly long needles with fewer rod-like crystals. Significant improvements were 

observed during optimisation of U4 (Figure 5.8) 

 

.       

U2 U1 U4 U3 

U6 U5 U8 U7 

Figure 5.8: BrxU crystallisation trials with AMP-PnP. N1-N8 show initial crystal hits from 96-

well screening plates. N5-6 were noted to be salt crystals when subject to X-ray diffraction. N4 

was selected for manual optimisation. BrxU set at 12 mg/ml, 2 mM AMP PnP, 5 mM MgSO4. 
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As (NH4)2SO4 was found to be a common salt required for BrxU crystal formation across all 

18 hits, the condition used for N4 was adjusted. Sodium sulphate was substituted for (NH4)2SO4 

and a manual optimisation screen was designed, altering pH, salt concentration and drop ratio. 

Drop setting at pH 8.0 resulted in weaker crystal formation with highly feathered ends making 

them unsuitable for mounting. Reduction in (NH4)2SO4 to 0.15 M increased the number of 

crystals forming, however they were much smaller and also unsuitable for mounting. 

Increasing (NH4)2SO4 concentration to 0.3 M prevented crystal formation. Crystal formation 

was observed at higher PEG 3350 concentrations (>24%) for these salt concentrations, however 

they were also deemed unmountable. In order to change multiple variables in a single drop, a 

matrix of drop ratios was designed. Drops were set with variable protein: precipitant ratios. 

Representative images of the best crystals formed at each ratio are shown below in Figure 5.9.  

 

 

Figure 5.9: Manual optimisation of BrxU crystal formation with AMP-PnP. Protein 

concentration decreases from right to left by increasing the ratio of precipitant to protein in the 

drop. BrxU set at 12 mg/ml, 2 mM AMP PnP, 5 mM MgSO4. 
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A general trend can be observed of larger, thicker, crystals appearing at greater protein: 

precipitant ratios (Figure 5.10). U12 contains higher ammonium sulphate and PEG 3350 

concentrations, producing a large quantity of thin, needle crystals. U10 crystals appear thicker 

and are suitable candidates for mounting. In a number of replicates of U9 no crystals were seen, 

however replicates that formed were suitable candidates for mounting despite being much 

longer than those in U10. Previously, drops had been set using the non-hydrolysable analogue 

AMP-PnP. It was also hypothesised that crystals could be obtained bound to ATP in the 

absence of magnesium, allowing BrxU to interact with its preferred nucleotide whilst still 

remaining inactive and incapable of hydrolysing the γ-phosphate of ATP. Drops were set 

substituting AMP-PnP for ATP, but without magnesium. Unfortunately, no crystals formed. 

However, crystals were obtained when ATP was used with magnesium (Figure 5.10). 

  Figure 5.10: BrxU crystallisation with ATP. Higher precipitant concentrations 

inducing more crystal nucleation. BrxU set at 12 mg/ml, 2 mM ATP, 5 mM MgSO4. 
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A similar pattern in the ATP with magnesium crystals is observed as when compared to Figure 

5.9, with larger crystals forming at higher protein: precipitant ratios. Strikingly, crystals 

appeared in a significantly different form when set with ATP (Figure 5.10) compared to AMP-

PnP (Figure 5.9), and were only observed in drops with magnesium. Crystals appear as long 

rods with AMP-PnP (Figure 5.9) but distinct flat squares or thicker cubic crystals with ATP 

(Figure 5.10). As BrxU was observed to undergo a multimeric shift when incubated with 1 mM 

ADP but not with 1 mM AMP, it was predicted that BrxU crystals would also form when AMP-

PnP/ATP was substituted for ADP. Morphology of crystals U16-U18 (Figure 5.11) reflect the 

patterns observed for U13-U15 (Figure 5.10), with lower protein: precipitant ratios resulting in 

a greater number of less uniformly shaped, cubic crystals (Figure 5.11).  

 

Figure 5.11: Crystallisation of BrxU with ADP. Higher precipitant concentrations inducing 

more crystal nucleation. BrxU set at 12 mg/ml, 2 mM ADP, 5 mM MgSO4. 



Chapter 5: BREX Protein Crystallisation and Structural Analysis of BrxU 

211 
 

5.8 BrxU X-ray diffraction data collection 

With crystals set in the absence of AMP-PnP and MgSO4, the highest resolution dataset reached 

5.05 Å (Figure 5.12A and B). In the presence of AMP-PnP and MgSO4, the best crystal 

diffracted to a conservative estimate of 2.49 Å (Figure 5.12C and D). Two individual datasets 

were then collected on the same crystal (Figure 5.12C) and merged to create a dataset with a 

maximum resolution of 2.12 Å. All data collection parameters can be seen in Table 5.2. No 

suitable model could be obtained for structure solution via molecular replacement, so SM 

substituted protein was produced for BrxU.   

Figure 5.12: X-ray data collection of native BrxU. A) Mounted BrxU crystal set without 

AMP-PnP or MgSO4. B) Weak diffraction of BrxU to 5.05 Å. C) Mounted BrxU set with AMP-

PnP. D) BrxU crystal set with AMP-PnP diffracting to 2.49 Å.  
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5.9 Obtaining phasing data for BrxU via selenomethionine substitution 

BrxU was determined as a suitable candidate for SM substitution as it encodes 13 methionine 

residues including the N-terminal methionine. An identical procedure was followed to section 

5.3. BrxU has a mass of 67908 and ES+ TOF MS showed native BrxU to have a mass of 67906, 

which is within the range of expected values. The major peak for SM-BrxU was at 68493 which 

corresponds to approximately 12 SM substitutions (Figure 5.13). This suggests the sample had 

sufficient SM incorporation for obtaining phasing data by anomalous dispersion.  

Figure 5.13: Mass spectrometry for native and selenomethionine substituted BrxU.

Positive electrospray time of flight mass spectrometry (ES+ TOF MS) shows a native 

mass increase of 587 for SM-BrxU (right) compared to native-BrxU (left) 

corresponding to approximately 12 residues of SM being incorporated. 
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Due to a limited final yield for SM-BrxU (~0.6 mg), no further screening was performed, and 

trays were set based on the conditions used for U9-12. Crystal formation for SM-BrxU was 

observed to be comparable to BrxU, following a similar pattern to that shown in Figure 5.9. A 

strategy was designed to obtain datasets at a single wavelength for phasing via single-

wavelength anomalous dispersion (SAD). The selenium K edge was identified via fluorescence 

scanning (Table 5.2). Due to the relatively weak anomalous signal detected, 15 datasets from 

across 4 individual crystals were merged into a final dataset at 2.7 Å. This dataset had sufficient 

anomalous signal to produce a solution using SHELX (Usón and Sheldrick 2018), and the 

initial output model was then built using BUCCANEER (Cowtan 2006). 

 

 

Figure 5.14: X-ray data collection of SM-BrxU. A) Mounted SM-BrxU crystal set with AMP-

PnP. B) X-ray diffraction pattern of BrxU extending to 3.06 Å. 15 datasets collected at 0.9786 Å

were merged to produce a single file containing significant anomalous signal to be used in 

obtaining phasing data.  



Chapter 5: BREX Protein Crystallisation and Structural Analysis of BrxU 

214 
 

 

Table 5.2: Crystallographic data for BrxU in both native and SM substituted form.  
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5.10 Protomeric structure of BrxU 

A protomer model generated for SM-BrxU was used as a molecular replacement search model 

to solve the native-BrxU dataset at 2.12 Å (Table 5.2). The initial PHASER molecular 

replacement output model was updated with BUCCANEER and then iteratively improved 

using COOT and PHENIX.REFINE (Table 5.2). The final model contained two copies of BrxU 

in the asymmetric unit. Figure 5.15 shows a cartoon representation of a BrxU protomer in three 

orientations.  

Figure 5.15: Protomeric structure of BrxU shown as cartoon. A-C) Views of single BrxU 

subunits indicated by the rotation shown between each image. D) Domain architecture of 

BrxU is shown with N-terminal DUF262 (green) and C-terminal DUF1524 (orange) joined 

by a short linker sequence (cyan) forming a flexible loop region. D has been orientated to 

more clearly show the linker sequence.   
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In panel D, BrxU has been orientated to show the distinct domain architecture of BrxU 

protomers consisting of two separate domains bridged by a short linker sequence. The N-

terminal DUF262 domain consists of 8 alpha helices and 8 beta sheets, from residues M1 to 

M238. Within the DUF262 domain, residues Q25, R26 and E27 have not been built due to poor 

density. These residues form the most disordered section of an extended loop region extending 

from Q18 to R32. A short linker sequence extends from M238 to S246, connecting the DUF262 

and DUF1524 domains (Figure 5.15D). The DUF1524 domain spans from Y247 to E587. It 

consists of mainly alpha helical regions with 2 short antiparallel beta sheets forming part of the 

DHIYP proposed nuclease site. 

5.11 BrxU complex and dimeric interface 

Two BrxU copies were observed in the asymmetric unit, showing each copy interlocking the 

other via the short linker sequence between each domain. Additional electron density 

surrounding each BrxU copy was attributed to crystallographic symmetry, and with the 

visualisation of the interlocking linker sequence, the biological assembly of BrxU has been 

determined to be dimeric (Figure 5.16). Rotation of the assembly reveals a channel of 

approximately the correct dimensions to indicate a double-stranded DNA binding cleft. Due to 

presence of Mg2+ and AMP-PnP in the crystallisation condition, and given that crystals do not 

form in their absence in this condition, it was expected that BrxU would be monomeric in this 

structure. However, metal ions and nucleotides could not be accounted for by unmodelled 

electron density during model building, and it appears as a dimer.  
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Figure 5.16: Dimeric BrxU shown as a cartoon. A) Cartoon overview of the BrxU dimer 

Each protomer is coloured either cyan or magenta. The DHIYP motif is indicated by the box 

region, and a focused view of this region is shown with key residues. B) A 90° rotation of A 

is shown. C) Domain architecture of BrxU dimer shows assembly of DUF1524 (orange) and 

DUF262 domains (green) with linker region shown in cyan. 

DUF262 

DUF1524 
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5.12 Ligand identification 

As mentioned in the previous section, BrxU was predicted to be in a monomeric form within 

these crystals due to the presence of Mg2+ and AMP-PnP. Size exclusion chromatography data 

showed a distinct shift from a calculated dimer mass to a monomer upon binding nucleotide 

cofactors (Figure 4.18), although AMP-PnP was not specifically tested by size exclusion. It 

was briefly proposed that these crystals may have formed irrespective of the Mg2+ and AMP-

PnP in the drop, however control drops were found not to crystallise in the absence of either of 

these cofactors. Unmodelled electron density blobs observed during model building and 

structural refinement were identified and accounted for. Each subunit was found to bind 2 

sulphate ions, a single chloride ion and a single molecule of glycerol. Ligand interactions are 

shown in Figure 5.17 for one subunit and are reflected in the biological assembly in the other 

subunit. Sulphate is present due to the 0.2 M (NH4)2SO4 in the crystallisation condition, 

chloride is present due to the 0.15 M NaCl in the protein storage buffer. Glycerol is used in the 

purification process as a solubilising agent during chromatography and small quantities may 

be present following dialysis. The first sulphate ion can be seen modelled to bind within the 

DGQQR domain (Figure 5.17A). AMP-PnP could not account for the unmodelled density as 

it was significantly too large to fit. It is possible that the high concentration of sulphate in the 

crystallisation condition prevents stable binding of AMP-PnP. This would be accounted for by 

the strong ionic interactions with R102 and polar interactions with both Q100 and Q101. 

However, it is more likely that nucleotide binding is prevented due to the steric hindrance 

caused by protomer B (Figure 5.17A). The second sulphate ion is coordinated by the side chains 

of S392 and S397, likely due to hydrogen bonding between the oxygen atoms of sulphate and 

the hydrogens of serine (Figure 5.17B). The chloride ion is situated between S397 and N400, 

likely interacting with hydrogen in the asparagine side chain. Glycerol was modelled to bridge 

between the DUF262 and DUF1524 domains (Figure 5.17B). 
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Figure 5.17: Ligand identification with key residues. Protomer A shown in 

magenta, protomer B shown in cyan. Key residues are highlighted in green and  

side chains are shown as sticks. Oxygen shown as red, nitrogen as blue.  A) A single 

sulphate ion is tightly coordinated within the DGQQR motif of DUF262. B) 

Sulphate, chloride and glycerol can be seen in the pocket formed between DUF262 

and DUF1524.  
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5.13 Linker domain and its role in dimerisation 

As previously mentioned, there are two units in the biological assembly of this BrxU structure. 

The dimer interface is stabilised by the linker region of each subunit crossing over the other 

(Figure 5.18). This linker region separates the DUF262 and DUF1524 domains, allowing each 

domain to interact with its respective counterpart in the other unit. Flexibility in this linker 

would allow BrxU dimers to dissociate, as observed by size exclusion chromatography (Figure 

4.18). The linker domains interlock the two subunits, with a loop from each N-terminal domain 

connecting with the corresponding C-terminal domain. This interaction is bridged by a glycerol 

molecule in Figure 5.17. In the orientation shown in Figure 5.18A, the linker region and C-

terminal domain of chain A (magenta) is topologically in front of chain B. Note that only 

residues D151-S301 are shown in order to present the linker region clearly. The N-terminal 

domain of chain A can then be seen behind chain B. A wider perspective of the routing of each 

chain can be seen in Figure 5.18C. The interlocking of BrxU subunits suggests that in order for 

monomerization to occur, a conformational change must happen, allowing the domains of each 

subunit to move apart. This is likely driven by the binding of a nucleotide in the DGQQR motif. 

In Figure 5.18D, the electron density of the linker regions is shown to demonstrate the distinct 

routing of each protomer. 
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Figure 5.18: Cartoon of dimeric BrxU showing interlocked linker regions. A and B) 

Views of the crosslinking of linker regions of each BrxU subunit. Protomer A 

(magenta) can be seen passing over and under protomer B (cyan). C) Wider 

perspective of interlocking linker regions. Perspective does not relate to panels A and 

B. Residues 151-301 are shown. D) Close up of the proposed nucleotide binding site 

and linker regions. A Fo-Fc map has been contoured to 2 σ to demonstrate the 

intertwining of the two protomers. Selected residues of the DGQQR motif are shown 

as sticks. 
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5.14 Surface charge representation of BrxU 

In order to visualise the DNA binding cleft, surface charges were calculated via APBS 

Electrostatics in PyMOL (Figure 5.19A-C). Mapping of the electrostatic surface potential of 

BrxU reveals a distribution of positive charges within the proposed DNA binding cleft that 

suggests a suitable binding surface for double phosphodiester backbones. In Figure 5.19A and 

B, the core of the BrxU can be seen to exhibit significant positive charges. In the conformation 

shown, the proposed binding cleft is 21 Å which is too narrow to allow DNA to dock. However, 

upon dissociation of the dimer, BrxU monomers would be able to bind DNA and then 

reassociate. In Figure 5.19C, the structure has been positioned to show how open pores form 

at each end of the complex, with highly positive electrostatic potential. Each pore is formed by 

the DUF262 and DUF1524 domains coming together, supported by an extended loop and a 

bridging glycerol at the tip of the loop. For reference, a cartoon representation of BrxU in the 

same perspective is shown beside it, showing the loop that closes the pore (Figure 5.19C). Due 

to the distribution of complementary charges, two models could be considered, wherein the 

dsDNA might thread through these pores, should they be able to open and close, or bind across 

the surface of BrxU, aligning past, but not through, the pore.  
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Figure 5.19: Surface charge representation of BrxU dimers. Positive potential is shown 

in blue, negative potential is shown in red. Colour saturation corresponds to charge 

intensity. A-B) Two stereo views of BrxU showing the positive charge potential in the 

proposed DNA binding cleft. Dimension of the cleft are shown in B to demonstrate that in 

the current conformation, dsDNA cannot be docked. C) (Left) BrxU has been orientated to 

show the pore (arrow). (Right) Cartoon shown beside for reference, with the extended loop 

bridging the two domains (arrow).  
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5.15 Key residue identification within BrxU 

As detailed in Chapter 4, 12 BrxU mutants were generated based on alignments with GmrSD 

(Figure 4.11). Solving the structure of BrxU has allowed for close observation of these residues 

and identification of new residues as targets for mutagenesis studies. A key interaction between 

the protomers is shown below (Figure 5.20). In Figure 5.20A, a sulphate ion can be seen 

coordinated by the DGQQR motif. It was predicted that the DGQQR would bind the 

phosphates of nucleotide substrates (Machnicka et al. 2015). The linker region of protomer B 

extends directly past the DGQQR motif. In this conformation, this linker region causes steric 

hindrance to nucleotide binding and provides an explanation for the missing AMP-PnP. In 

close proximity to the DGQQR motif is an α-helix consisting of residues P33 to Q45. Closer 

observation of S42 (Figure 5.20), reveals an interaction with I234 of protomer B. The oxygen 

of S42 is shown 3.5 Å from I234 of protomer B. This interaction may be stabilising the 

proximity of these α-helices, closing the BrxU in a conformation that blocks the DGQQR from 

binding nucleotides. Mutants have been generated in PyMOL to show the change observed 

with a single residue mutation. The S42A mutant, which was shown to be permanently 

monomeric by size exclusion chromatography (Figure 4.26D) cannot form this interaction due 

to the increased distance to I234. The S42D mutant, which was shown to be permanently 

dimeric by size exclusion chromatography (Figure 4.26E), shows the oxygen of aspartate 

within 2.7 Å of I234, an interaction that is unfavourable and unlikely to occur (Figure 5.20D). 

This suggests that this region is destabilised in S42D and may cause perturbations in nucleotide 

binding and prevent BrxU dimers for dissociating. S42 is likely involved in the binding of the 

base of NTPs, and disturbing this interaction affects the dissociation of dimeric BrxU. 
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Figure 5.20: Interactions between BrxU protomers. Protomer A in magenta, protomer B in 

cyan. Key side chains shown as green, oxygen as red, nitrogen as blue, sulphur as yellow. A) 

N-terminal DUF262 domain of protomer interaction with linker region of protomer B. Linker 

region of protomer B is blocking the DGQQR domain of protomer A from binding AMP-PnP. 

Sulphate appears to take the putative position of the gamma phosphate. B) Weak interactions 

shown between S42 of protomer A and I234 of protomer B. C and D) Residue mutagenesis for 

S42 to alanine (C) and aspartate (D). Weaker interactions are observed for S42A. S42D is 

shown in an unfavourable position due to the close proximity of its oxygens to I234. 
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Within the C-terminal domain, key residues around the DHIYP nuclease motif are shown in 

Figure 5.21. Panels A and B show the same region in two orientations in order to show the 

architecture of the DHIYP motif as well as highlight the distance of N485 from the rest of the 

key residues (Figure 5.21). N485 and N519 are both located on the exterior of the protein, with 

sidechains protruding away from the nuclease motif. N505 and N509 have been identified as 

potentially key residues that form the predicted HNH nuclease motif within BrxU. In the HNH 

nuclease domain of N. meningitidis Cas9, the equivalent residue N509 forms a stack within the 

nuclease domain of BrxU (S. Taleb, unpublished MBiol thesis) (Harrington et al. 2017). N518 

is shown stacking with D474, H475 and N509 (Figure 5.21B).   

Figure 5.21: C-terminal DUF1524 key residue identification. A and B) Views of C-

terminal DHIYP domain and putative associated residues. Key side chains shown as 

green, oxygen as red, nitrogen as blue. C and D) Interaction of K521 with D474. C) 

D474 forms hydrogen bonds with K521. D) Mutagenesis of K521 to alanine disturbs this 

interaction, identifying a new key residue for mutational studies.   
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Additionally, it appears that D474 is being coordinated by K521, forming hydrogen bonds. The 

oxygen of D474 is noted to be 2.7 Å from the nitrogen of K521 (Figure 5.21C). Mutation of 

this D474 to alanine would disrupt this interaction and may prevent D474 from functioning 

properly (Figure 5.21D). No direct interaction could be observed for E528, however its side 

chain can be seen oriented towards the DHIYP motif and therefore may be involved in 

hydrolysis or bonding with key residues. It was originally predicted that magnesium ions would 

be located near D474, however they could not be accounted for within this region. It is currently 

unclear as to why metal ions are absent despite being required for nuclease activity. 

5.16 Alignment of BrxU with SspE 

Phyre2 homology searches identified SspE (PDB: 6JIV) as a close structural homologue 

(Xiong et al. 2020). A sequence-structure alignment was produced via the PROMALS3D 

server (Pei, Kim, and Grishin 2008).  The pre-deposit structure obtained for BrxU was aligned 

with 6JIV. The DHIYP motif of BrxU could not be aligned due to a lack of structural 

information in this region of 6JIV (data not shown). A sequence alignment of SspE and BrxU 

was produced (Figure 5.22). This sequence alignment allows for comparison within the two 

domains of key motifs. Within the DUF262 domain, the DGQQR domains can be seen as 

highly conserved between the two proteins. Immediately preceding this motif is a β-sheet of 5 

hydrophobic residues. The first two positions before D98 are conserved as aliphatic, 

hydrophobic residues. A key observation in this alignment is the presence of the linker region. 

This linker region can be identified in Figure 5.23 which shows the superpositioning of BrxU 

over SspE. This alignment predicts N239 and S240 of BrxU to be part of an α-helix, however 

these residues form part of the flexible linker region. The DHIYP motif of BrxU aligns with 

the EHVAP motif of SspE, reflecting the consensus D/EHxxP of DUF1524 proteins. 
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In order to investigate the extent of the conserved regions, a structural alignment of chain D of 

SspE and chain A of BrxU was performed in PyMOL. The overall alignment is poor, with an 

RMSD of 8.548, but both proteins exhibit the same general architecture of an N-terminal 

DUF262 domain containing the DGQQR motif, which is preceded by a β-sheet. However, 

within the N-terminal domain there is little alignment of ordered components. In the C-terminal 

domain, the main area of interest is the DHIYP motif. The SspE residues that would align to 

this region are not present within 6JIV and so a comparison cannot be made. As a result, though 

SspE is the closest structural homologue available, detailed comparison provides little 

additional insight. Finally, whilst SspE was reported as a monomeric structure, the crystal form 

does show an intertwined dimer as per BrxU (Xiong et al. 2020).  

Figure 5.22: Sequence-structure alignment of SspE and BrxU.  SspE and BrxU were aligned 

using PROMALS3D. Predicted domain architectures are indicated. RLFDS, DGQQR and 

DHIYP motifs are highlighted in yellow and shown in bold. Conservation of residues is denoted 

using the following key: conserved amino acid residues are shown in bold and 

uppercase letters; conserved aliphatic residues (I, V, L), shown as l; conserved 

aromatic residues (Y, H, W, F), shown as @; conserved hydrophobic residues (W, F, Y, M, L, I, 

V, A, C, T, H), shown as h; conserved alcohol residues (S, T), shown as o; conserved 

polar residues (D, E, H, K, N, Q, R, S, T), shown as p; conserved “tiny” residues (A, G, C, S), 

shown as t; conserved small residues (A, G, C, S, V, N, D, T, P), shown as s; conserved 

bulky residues (E, F, I, K, L, M, Q, R, W, Y), shown as b; conserved positively charged residues 

(K, R, H), shown as +; conserved negatively charged residues (D, E), shown as -; conserved 

charged residues (D, E, K, R, H), shown as c. Secondary structure (2°) prediction denoted using 

the following key; α-helices, h, β-strands, s. 
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Figure 5.23: Superposition of BrxU and SspE monomers. Chain A of BrxU in magenta 

is aligned with chain D of SspE (PDB 6JIV) in orange. A and B are shown related by a 90° 

rotation around the X axis. In both A and B, individual domain architecture can be 

observed, separated by a flexible linker region. The region is indicated in A by the boxed 

region. RMSD: 8.548  
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5.17 Discussion 

This chapter has detailed the advances in protein crystallisation of 4 BREX proteins and the 

crystallisation and structure solution for BrxU. Crystallisation conditions have been obtained 

for BrxA and PglZ. BrxA crystals have not yet been tested to see if they produce diffractions 

patterns and may present a relatively simple solution for obtaining a structure. The PDB 

deposition 3BHW of an uncharacterised protein from Magnetospirillum magneticum is 

predicted to be almost identical to BrxA, providing a strong molecular replacement model. 

PglZ crystals were obtained and with optimisation may become suitable for cryomounting and 

testing for diffraction. In contrast, BrxR and BrxL represent more attractive options for 

structural characterisation due to the progress already made. In order to fully characterise BrxU, 

other proteins had to be deprioritised and as a result, BrxR and BrxL remain a work in progress. 

As demonstrated by the phasing of the native BrxU dataset in Table 5.2, selenomethionine 

substitution and subsequent SAD phasing remains a viable option for BrxR and BrxL. A dataset 

has been collected from BrxL at a max resolution of 3.5 Å, which suggests with optimisation 

these crystals could be improved well below 3 Å. 

Biochemical characterisation of BrxU detailed in Chapter 4 provided insight into the 

requirements for BrxU activity and the key components it utilises. Identification of its 

requirement for not only nucleotides, but also divalent metal ions, aided protein crystallisation 

by the addition of AMP-PnP and ultimately led to a structural solution. However, one key 

question remains now that the BrxU structure has been obtained: where are the ligands? It was 

proposed that the earliest BrxU crystals tested (Figure 5.12A) diffracted poorly due to internal 

disorder, and crystal formation was highly irreproducible. Rescreening BrxU with AMP-PnP 

and MgSO4 produced significantly more hits indicating the protein was more readily 

crystallisable in this form. Based on the FPLC data in Chapter 4 that showed a shift from a 
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dimer to a monomer upon nucleotide binding, it was hypothesised that the readily crystallisable 

form of BrxU was monomeric and bound to a nucleotide. However, analysis of the obtained 

structure reveals that the predicted nucleotide binding to the DGQQR motif within the DUF262 

domain (Machnicka et al. 2015) is blocked by the linker region of the other BrxU subunit. This 

flexible linker region that joins the N-terminal DUF262 domain to the C-terminal DUF1524 

domain runs directly across the nucleotide binding pocket, hindering the binding of a 

nucleotide. It was initially proposed that the added AMP-PnP and Mg2+ was non-essential for 

crystallisation, however BrxU failed to crystallise in the absence of these cofactors. Therefore, 

there is a direct role for these cofactors in the crystallisation of BrxU but in the structure shown, 

both are absent. To explain this discrepancy, it is important to consider the nature of the 

nucleotides used in each experiment. A shift from dimer to monomer was observed when using 

ATP and ATP-γ-S (Figure 4.19), but AMP-PnP was not specifically used in these experiments. 

AMP-PnP was used for crystallisation as it was considered more stable and therefore a better 

substrate for crystallisation studies. In retrospect, it would be important to confirm the size 

exclusion data using AMP-PnP. Furthermore, it has been shown that the nature of the 

nucleotide used can produce drastically different outcomes on structural studies, with different 

results obtained for ATP-γ-S and AMP-PnP (Thomsen and Berger 2012). To this end, it could 

be suggested that our structure represents an “apo” complex due to lack of nucleotide binding. 

Using ATP and ADP in future studies would then provide a post-hydrolysis ADP-bound 

complex (assuming ATP hydrolysis to ADP is rapid), and use of ADP-BeF3 might provide the 

nucleotide bound pre-hydrolysis state. In support of this hypothesis, a distinctly different 

crystal form is observed when BrxU is bound to ATP or ADP (Figures 5.10 and 5.11), 

compared to AMP-PnP (Figure 5.9), indicative of a change in the crystal packing and likely 

representative of a nucleotide-bound form of BrxU with ATP and ADP. This matches previous 

examples where crystal forms differ greatly depending on choice of nucleotide (Thomsen and 
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Berger 2012). However, at this stage the changes observed for these crystals remains 

speculative. Irrespective of nucleotide binding, it is unclear why Mg2+ cannot be accounted for 

in the unmodelled density surrounding BrxU. Again, biochemical analysis has shown a direct 

requirement for divalent metal ions for nuclease and NTPase activity, which suggested at least 

two metal binding sites. Magnesium ions could not be detected in either domain. The absence 

of AMP-PnP has been accounted for by the steric hindrance induced by the linker region, 

however this would not block the binding of a singular, small ion such as magnesium. As 

observed by Thomsen and Berger, it is possible that magnesium interacts with the phosphate 

groups of ATP when bound by the NTPase domain (Thomsen and Berger 2012). Future studies 

will involve looking at co-crystallising BrxU with target DNA, and it is possible that in the 

presence of DNA, BrxU coordinates metal ions within the nuclease domain.  All this of course 

does not yet explain why the crystals were obtained only in the presence of AMP-PnP and Mg, 

though this could potentially be attributed to altered conditions aiding nucleation and crystal 

growth. 

Cross referencing with biochemical data in Chapter 4, a number of key residues were identified 

as required for protein activity, whether they contributed to NTPase or nuclease activity. In 

section 5.15, a role for S42 has been suggested. It was initially hypothesised that S42 was 

involved in the binding of the nucleotide base, and that mutagenesis to a negatively charged 

aspartate would alter the enzyme’s nucleotide preference from ATP. This has yet to tested in 

vitro, however due to the absence of AMP-PnP in the structure solution, the role of S42 in 

nucleotide binding is still uncertain. However, it is shown that S42 is in close proximity to the 

α-helix immediately preceding the linker region of the other BrxU subunit (Figure 5.20). It is 

proposed that this side chain interacts with I234 of the other subunit to stabilise dimer 

formation. Mutagenesis of this residue results in a change in behaviour when analysed via 

FPLC. Alanine substitution at S42 results in monomer formation in the absence of nucleotides 
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which is unseen for the other mutants tested. Replacing serine with aspartate, originally 

designed to change the nucleotide preference, results in BrxU being locked as a dimer during 

size exclusion assays. Figure 5.21D shows the theoretical positioning of S42D in relation to 

I234, an arrangement that would be unfavourable to due to proximity of the aspartate’s oxygen 

in relation to the hydrophobic I234. This suggests that S42D induces instability/disorder within 

this region, preventing nucleotide binding, so BrxU can no longer undergo a conformational 

change and dissociate into a monomer.  

Additionally, N485 has been identified as redundant due to its outwards-facing side chain. This 

corresponds with EOP and hydrolysis assays which return similar values to WT. Replacement 

of N519 abolishes BrxU activity, however from the structure obtained it is unlikely that this 

residue forms part of the nuclease motif and is likely important in the structural integrity of this 

domain. How this is achieved given that no direct interactions can be seen for N519 remains 

unclear, as α-helix formation would still occur in this region when substituted for alanine. It is 

more likely that the HNH nuclease motif forms with N509, which can be observed on the base 

of the antiparallel β-sheet alongside H475. As a result, N509 has been identified as a candidate 

for mutagenesis and is predicted to be required for nuclease activity. D474 was predicted to 

interact with metal ions, however this was not observed as no metal ions could be accounted 

for. However, a potential interaction with K521 likely stabilises the proximity of these two α-

helices. Experimentally, a number of issues were encountered during the process of obtaining 

phasing data for BrxU. For both native and SM substituted crystals, the rate of obtaining 

diffraction patterns that extended beyond 4 Å was roughly 1 in 20. As a result, for each 

synchrotron trip around 80 crystals would be harvested in the hope that 4 would diffract. What 

differentiated a well diffracting crystal from a non-diffracting crystal remained unclear for a 

significant portion of the BrxU project. The phasing data using SM-BrxU came from a fresh 

protein expression that had never been subjected to flash freezing in liquid nitrogen prior to 
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crystallisation. As a standard procedure, proteins would be aliquoted into 20 μl aliquots and 

flash frozen for storage at -80°C. From these results, it is foreseeable that BrxU becomes 

partially disordered during this freezing process and likely resulted in the poorer diffraction 

observed. This should be noted for future crystallisation experiments with BrxU.  

SspE was identified as the closest structural homologue of BrxU (Table 4.1). Overall structural 

similarities can be observed between BrxU and SspE, notably the separation of DUF262 and 

DUF1524 domains by a flexible linker sequence. Despite observing intertwined protomers of 

SspE in the crystals, there is no comment on complex formation (Xiong et al. 2020). Beyond 

this architecture however, these enzymes align poorly (Figure 5.23) and so it is difficult to 

derive information from this alignment, and SspE is solved to only 3.3 Å.  SspE is involved in 

the Ssp phosphorothioation (PT) sensing phage defence system, detecting PT modifications of 

phage genomes and introducing single stranded nicks (Xiong et al. 2020). Contrastingly, BrxU 

detects cytosine modifications with phage gDNA and introduces DSBs. Despite both enzymes 

contain a similar domain architecture and providing defence against phage infection, they 

exhibit different biochemical properties. This is reflected when comparing BrxU to more 

distant homologs such as Homo sapien Srx. In the N-terminal domain, H100 and R101 of hsSrx 

form hydrogen bonds with the β- and γ- phosphates of ATP, respectively, similar to Q101 and 

R102 of BrxU (Lee et al. 2006). BrxU was solved to 2.12 Å and currently represents the highest 

resolution structure for DUF262 and DUF1524 domains, as well as being the first structure of 

a GmrSD family type IV restriction enzyme.  
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Chapter 6: Final Discussion 

Initial interest in E. fergusonii and its native plasmid, pEFER, stemmed from the idea that a 

plasmid-borne type I BREX system would allow ease of investigation over a chromosomally 

encoded system. As a member of the Escherichia genus, E. fergusonii components could be 

studied in lab strains of E. coli without having to perform experiments in a distantly related 

species. Upon further investigation, it became apparent that pEFER did not just encode a 

plasmid-borne BREX system, but a more complex phage defence island. Likewise, during the 

characterisation of the BREX system of S. enterica D23580, it was discovered that a secondary, 

uncharacterised phage defence system was encoded within the BREX locus. Whilst initial 

efforts were focused on the understanding of BREX in these organisms, this study has 

developed to examine the activities of multifaceted phage defence islands. By utilising several 

defence systems simultaneously, the host is protected from a wider variety of phages (Figure 

6.1). Phages that are resistant to certain type II endonucleases due to the incorporation of non-

canonical bases are subsequently restricted by type IV endonucleases such as BrxU. Phages 

that are resistant to multiple classes of restriction enzymes may be sensitive to BREX due to a 

lack of methylation at the recognised non-palindromic repeat (Figure 6.1). Phages such as T7 

that encode anti-restriction proteins such as the DNA mimic Ocr will circumvent certain host 

BREX and REase defences, but in turn can activate Abi systems such as PARIS (Rousset et al. 

2021). As phages have evolved mechanisms to evade defence systems, their prokaryotic hosts 

have in response developed additional counter measures, which have clustered in defence 

islands. 
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Figure 6.1: Encoding multiple phage defence systems manifests a bacterial immune system 

capable of suppressing multiple phage types. A) Phage infection of a susceptible host cell results 

in the propagation of progeny phages, resulting in lysis of the hosts and dissemination of phage.  

B) Phage infection is prevented by a multi-strategy phage defence response. Left: Phage DNA is 

detected to contain modified cytosines and is subsequent hydrolysed by a BrxU. Right: BREX 

effector proteins recognise unmethylated non-palindromic motifs in phage DNA and prevent 

phage propagation. Methylation of this motif on host DNA by PglX protects the host from BREX 

effectors.  
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6.1 Summary of Findings 

BREX loci from E. fergusonii and S. enterica were observed to confer resistance to phages 

(Table 3.5 and 3.3). Generation of a D23580ΔφΔBREX was utilised to isolate 8 S. enterica 

phages from sewage effluent. Using these strains, it was demonstrated that the BREX locus 

encoded antiphage apparatus that affected 4 of the 8 phages isolated. It was assumed at this 

point that all resistance to these phages was attributable to BREX, however additional findings 

have introduced new variables. Bioinformatic analysis by another PhD student in the Blower 

group, Sam Went, identified STM4493 and STM4494 as a putative TA system. Furthermore, a 

pre-print publication in BioRxiv has since identified STM4493 and STM4494 homologues as 

novel Abi system, PARIS (Rousset et al. 2021). It is currently unclear if the reduced EOP 

values observed with D23580Δφ is resultant of BREX or PARIS. Whilst BREX functions by 

distinguishing self from non-self DNA by methylating non-palindromic motifs, PARIS detects 

the anti-restriction protein Ocr and triggers growth arrest. Fundamentally, the premise of this 

thesis is strengthened by this ambiguous result, as the BREX locus of D23580Δφ encompasses 

another phage defence island. 

Preliminary work on pEFER performed at the beginning of this study, found that the 

introduction of a transposon into brxA abolished the resistance it once conferred to almost every 

phage tested (Table 3.2). Despite the inactivation of BREX, resistance was still conferred to 

Bam, Mak, Mav and Titus for which reduced EOP values were still observed when plated on 

pEFER-Km5. This became the first indication that BREX was not the only phage defence 

system encoded within pEFER. Whilst this additional system has not yet been characterised, it 

is predicted that it forms an additional layer of defence, as both Mak and Mav are resistant to 

both BREX and BrxU. Upon constructing a “BREX-only” plasmid construct via GGA, it 

became apparent that the inclusion of all genetic material from brxR (and its promoter regions) 
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to brxL was not sufficient to manifest an active BREX system. This was further clarified by 

PacBio sequencing, revealing that pEFER encoded an active methyltransferase, but pBREX 

did not. EFER_p0017 and EFER_p0019 were judged to be required components due to their 

conservation with other γ-proteobacterial BREX systems. Addition of these ORFs restored 

BREX function and the resulting “pBrxXL” was found to encode an active methyltransferase, 

and so the ORFs were denoted brxS and brxT, respectively. Deletion of brxT from pBrxXL 

abolished all antiphage activity of pBrxXL, suggesting that BrxT was a required component 

for BREX and BrxU activity (Section 3.6). However, if BrxT was a necessary component for 

BREX activity, then it is unlikely that would entirely neutralise BrxU activity. It is therefore 

possible that the deletion of brxT disrupted regulatory regions upstream of the BREX locus, 

resulting in suppression of transcription of the entire operon.   

All BREX proteins with the exception of BrxS and BrxT, (which are yet to be confirmed as 

expressed proteins), have been overexpressed as soluble proteins and purified to homogeneity 

(Figure 4.5). BrxR was confirmed to be a transcriptional regulator as predicted from Phyre2 

structural modelling (Section 4.2). The modelling of a wHTH domain indicated that BrxR 

interacted with double stranded DNA, and its location upstream of a type I BREX system 

strengthened this projection. Expression of BrxR was found to significantly reduce 

transcription initiation from Region S6, which contained the strongest promoter (Figure 4.9). 

Whilst a role has been determined for the N-terminal DNA binding domain of BrxR, it is 

currently unclear how the other protein domains function. As predicted, BrxR has been shown 

to form dimers in solution, characteristic of a transcriptional regulator (Figure 4.6). Potentially, 

the C-terminal region of BrxR could be involved in recognition of elements induced by phage 

infection. BrxR encodes a WYL-domain, which has been implicated in recognition of currently 

unidentified response ligands (Müller et al. 2019). There is potential for BrxR to bind stress 
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response molecules such as cyclic nucleotides that are upregulated upon phage infection 

(Høyland-Kroghsbo 2019).  

Development of a biochemical assay for measuring inorganic phosphate production confirmed 

BrxC as an ATPase. No increase in inorganic phosphate was detected for PglZ and BrxL. PglZ 

and BrxL may exhibit phosphatase/NTPase activity, however in the conditions tested they did 

not. Additional components may be required and complex formation may be a necessity for 

hydrolysis. BrxC was predicted to have ATPase activity due to the presence of a Walker box 

motif in Phyre2 models (Section 4.2). Gordeeva et al. showed that deletion of BrxC abolished 

both methylation of host DNA by PglX and any resistance conferred to phage infection 

(Gordeeva et al. 2019). Gel filtration analysis shows that BrxC forms multimers, most likely 

pentamers or hexamers (Figure 4.7).  

It is predicted from these results that BrxC provides the mechanical force for DNA 

translocation, and that it forms a complex with other BREX proteins, which use BrxC to move 

to their target regions. Deletion of PglX from pBrxXL resulted in the disabling of BREX, 

indicated by increased EOP values for BREX-sensitive phages (Table 3.5), aligning with 

findings by Gordeeva et al. PglX from pEFER was found to methylate the non-palindromic 

sequence GCTAAT at the 5th position. This differs from the target sequence of E. coli HS and 

B. cereus PglX enzymes, which target GGTAAG and TAGGAG, respectively. However, all 3 

PglX homologues are adenine specific methyltransferases that methylate at the fifth position 

of their respective non-palindromic sequences. Whilst the biochemistry of PglZ and BrxL has 

not been prioritised during this study, both proteins represent novel proteins implicated in 

phage defence. Both have been demonstrated by Gordeeva et al. to be required for BREX to 

confer phage resistance, however only PglZ is required for PglX to methylate target DNA. 

Therefore, it is predicted that PglZ forms a complex with PglX and other BREX proteins, and 
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that BrxL is an effector protein that exhibits proteolytic activity resulting in a response against 

the invading phage DNA. Whilst the majority of structural work has focused on BrxU, 

advances have been in protein crystallisation for multiple BREX proteins. Crystals were 

obtained for BrxA and PglZ (Figure 5.4 and 5.5). BrxL has been crystallised and a native 3.5 

Å dataset has been obtained. BrxL crystals shown in Figure 5.6 represent strong candidates for 

optimisation, and could be used for micro-seeding to identify additional crystallisation 

conditions. A BrxR native dataset was also collected at 2.8 Å, and optimisation of 

selenomethionine-BrxR crystals should allow the structure to be solved. 

BrxU was originally predicted to have a non-essential role within BREX, as accessory genes 

were identified to associate within type I BREX systems (Goldfarb et al. 2015). Initial 

bioinformatic analysis identified an N-terminal DUF262 domain, indicative of a DNA binding 

protein. Upon consultation with Dr David Dryden, our interest in characterising BrxU was 

magnified and BrxU was no longer denoted as a BREX accessory component. Further 

bioinformatic characterisation of BrxU revealed the presence of a C-terminal DUF1524 

domain, a member of the histidine-metal finger endonuclease superfamily, which include HNH 

nucleases. BrxU was observed to specifically hydrolyse gDNA substrates from phages that 

were affected by pBrxXL-ΔpglX. The phage resistance properties of BrxU were confirmed in 

vivo, as BrxU provided resistance against the same phages when expressed from pBAD30-

brxU (Table 4.2). The activity of BrxU was dependent on the presence of Mg2+ and ATP. Not 

only is BrxU able to utilise Mn2+, Co2+, Ni2+, Fe2+ and Fe3+ as a substitute for Mg2+, it is able 

to use all canonical nucleotides in place of ATP (Figure 4.14 and 4.16). Whilst ATP was noted 

to be the most readily utilised nucleotide cofactor, dNTPs and rNTPs could be used by BrxU 

at lower efficiency. This promiscuity of cofactor requirements showcases the broad range of 

conditions BrxU in which exhibits activity. It was hypothesised that BrxU targeted modified 

phage genomes, as demonstrated by the homologue GmrSD (He et al. 2015). By substituting 
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dCTP for modified cytosines, synthetic DNA substrates were constructed (Figure 4.21). It was 

found that BrxU cleaved DNA substrates that incorporated 5mC-dCTP and 5hmC-dCTP, but 

not dCTP. This is in contrast with the activity of GmrSD which did not restrict DNA substrates 

containing 5mC. Furthermore, the glycosylation of target DNA by β-glucosyltransferase did 

not prevent BrxU from exhibiting nuclease activity. As a result, BrxU represents a single chain 

type IV restriction endonuclease that confers provides significant resistance against a wide 

range of susceptible phages, whilst being capable of utilising a extended array of cofactors.  

A key finding within this study was the identification of a multimeric shift upon BrxU binding 

nucleotides. Gel filtration analysis showed that upon binding nucleotides, BrxU dimers 

dissociated to monomers. Whilst it is foreseeable that higher order structures are formed upon 

DNA binding, this result shows that nucleotide binding induces a significant change in enzyme 

morphology and phosphate hydrolysis is not specifically required to induce this change (Figure 

4.19). This shift was aided by the addition of Mg2+, which is likely due to its role in coordinating 

the terminal phosphate of the bound nucleotide, as demonstrated in other ATPase domain-

containing proteins (Thomsen and Berger 2012). It was found that binding to ADP was also 

able to induce this shift, however AMP was not, also suggesting a direct role of the β-phosphate 

in inducing dimer dissociation. Figure 6.2 illustrates the nucleotide cycling of BrxU, and the 

role of nucleotides in allowing BrxU to bind target DNA. Although it remains unclear when 

ADP is ejected from BrxU subinits, and whether BrxU cuts once or twice per dimer, the role 

of the nucleotide in inducing monomer/ dimer of BrxU can be proposed. 
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Figure 6.2: Proposed multi-step reaction cycle of BrxU. A) When not bound to a nucleotide, 

BrxU exists as a dimer. B) Upon binding a nucleotide, dimeric BrxU dissociates into 

monomers. C) BrxU monomers can associate and dock with dsDNA (orange). D) BrxU 

recognises its target sequence which contains modified cytosine(s). It is currently unclear when 

ADP is released by BrxU subunits. E) dsDNA is cleaved. Binding of ATP to the dimeric BrxU 

can initiate the next cleavage cycle. This may be required for the release of the cleaved dsDNA.
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Crystallisation trials were repeated for BrxU, this time with the addition of metal and nucleotide 

cofactors. AMP-PnP was substituted in place of ATP, as it was predicted that AMP-PnP would 

remain bound and induce a stable monomeric shift, as its γ-phosphate is only very slowly 

hydrolysed. The addition of AMP-PnP produced a much greater number of crystal hits, 

suggesting AMP-PnP was bound. However, upon structure solution via phasing a native 2.12 

Å dataset using SM-SAD, no nucleotide ligand could be accounted for in the unmodelled 

electron density. Furthermore, BrxU was found to be a dimer in its crystal form, contrasting 

gel filtration analysis. Dimers were observed to be ‘locked’ together, with linker regions 

between DUF262 and DUF1524 domain interlocking the protomers. Initially, this was 

particularly perplexing as it had been assumed that AMP-PnP was bound in BrxU crystals, as 

the absence of AMP-PnP in these conditions resulted in no crystal formation. AMP-PnP 

perhaps therefore aids crystal formation, likely due to a weak interaction at the nucleotide 

binding site of DUF262, however, BrxU does not interact strongly enough with it to bind. The 

non-hydrolysable analogues ATP-γ-S and GTP-γ-S were shown to induce monomer formation 

by analytical gel filtration (Figure 4.19). However, as an oversight, it was assumed that AMP-

PnP would interact with BrxU in a similar manner and gel filtration analysis with this 

nucleotide was not performed. Analysis of ATP analogue binding by Thomsen et al reveals 

that AMP-PnP does not bind any of the six ATPase domains of Rho, whereas ADP and ADP-

BeF3 do bind. As there is precedent, it is possible that AMP-PnP does not induce monomer 

formation, and this will be tested in future. In hindsight, it is strikingly apparent that AMP-PnP 

could behave differently to other ATP analogues such as ATP-γ-S, however it was chosen due 

to its superior stability. This is further corroborated by the fact that the bridging oxygen 

between the β and γ-phosphates of ATP is replaced by nitrogen in AMP-PnP. In ATP-γ-S, a 

mercapto group replaces a hydroxyl group on the γ-phosphate. As a direct role of the β-

phosphate has been implicated for binding BrxU and inducing dimer dissociation, it is foreseen 
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that the nitrogen in AMP-PnP’s phosphate groups prevents interaction with the DUF262 

domain.  

A number of key residues within BrxU were identified by a combination of comparative 

alignments, point mutagenesis and structural analysis. The DGQQR motif of DUF262 is 

conserved between GmrSD and BrxU, and alanine substitution of Q101 and R102 inactivates 

BrxU in vivo and in vitro. As shown in Figure 5.17, the linker region of the adjacent protomer 

passes directly across the DGQQR motif. Binding of a nucleotide to this region likely induces 

a conformational change resulting in the multimeric shift observed in gel filtration analyses. 

Interestingly, the S42A mutant was found to exist as a monomer in the absence of nucleotides 

(Figure 4.26), suggesting that this serine side chain is involved in stabilising dimers. 

Conversely, S42D did not form monomers when incubated with ATP, potentially due to the 

disruption caused at the dimer interface by introducing a highly negatively charged side in 

close proximity to the hydrophobic I234 on the other protomer. It is possible that this induces 

a conformation change that prevents successful nucleotide binding in the DGQQR motif, and 

stops the shift to a monomeric state, however this has yet to be tested.  

6.2 Future Work on BREX and BrxU 

Progress has been made on the characterisation of BREX and BrxU, however certain questions 

remain to be answered. In particular for BREX, how do the components interact, and what are 

the effector mechanisms? PglX is documented to distinguish foreign DNA from host DNA by 

methylating host DNA at non-palindromic motifs, but how does this translate to preventing 

viral infection? All BREX proteins, other than BrxS and BrxT, have been expressed and 

purified, and their multimeric states in solution as individual proteins are known. Protein-

protein interactions can now be investigated by gel filtration analysis, looking for shifts in 
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elution volumes caused by complex formation. This can also be assessed by expressing 6His-

tagged variants of BREX proteins and binding to Ni-NTA. Incubation of a tagged variant with 

the other untagged BREX proteins followed by washing and elution of the tagged variant would 

allow for identification of interactions by SDS-PAGE. A 2.8 Å native dataset has been obtained 

for BrxR, and phasing with SM remains a viable option. Previously, SM-labelled BrxR did not 

crystallise well enough to be mounted in cryoloops, however, due to limited yield additional 

purification steps could not be performed. Subsequent attempts will scale up expression of SM-

labelled BrxR to allow for more efficient purification. Additionally, BrxL crystals will be used 

in micro-seeding experiments in order obtain new crystal conditions for optimisation to 

improve upon the 3.5 Å dataset obtained. BrxA represents a fairly simple structural target due 

to the identification of highly similar homologue, however this is dependent on the obtained 

crystals diffracting.  

Whilst the observation that BrxU was dimeric in the obtained structure was unexpected at first, 

it fortuitously provided the apo structure, and provides an opportunity to obtain structures of 

both the ATP and ADP-bound forms. In the absence of AMP-PnP, BrxU crystals were poorly 

ordered and diffracted to a max resolution of 5.05 Å (Figure 5.12). As shown in Figure 5.10 

and 5.11, a distinctly different crystal morphology is observed when BrxU is crystallised with 

ATP and ADP, respectively. These crystals are to be optimised and harvested for data 

collection and will likely be the ADP-bound form (assuming ATP is rapidly hydrolysed). Using 

ADP-BeF3 could also potentially trap the ATP bound state. A single protomer of the BrxU 

model can then be used to phase these monomeric forms of BrxU via molecular replacement. 

This would allow for direct comparison of the nucleotide bound and unbound forms of BrxU. 

Additionally, tests against type IV restriction enzyme inhibitors such as IPI from T4, and 

potential co-crystallisation with BrxU, could reveal even more insight into the mechanics of 

this novel type IV restriction enzyme. In reflection, a study which was conceived with the 
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notion of purely investigating the mechanism of the BREX system in E. fergusonii has led to 

the identification of new phage defence systems that cluster to form defence islands. In this 

“molecular arms race”, the acquisition of multiple defence systems provides the host with a 

stronger, more robust barricade to the omnipresent phages that seek to destroy them.  
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