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Cosmology with weak lensing voids and peaks

Christopher T. Davies

Abstract: The goal of modern cosmology is to measure cosmological parameters as accu-

rately and precisely as possible, with future stage-IV surveys aiming to achieve this at the

sub-percent level. To maximise the utility of such surveys, we must develop methods that

can more fully capture the wealth of cosmological information contained within the data. In

this thesis, I develop new weak gravitational lensing statistics as a means to achieve this. To

this end, I study in detail the properties of weak lensing voids and peaks. First, I establish

weak lensing voids as a new statistic that corresponds to extended underdense regions of

convergence maps, and show that they offer several advantages over galaxy voids, including

larger lensing profile amplitudes. I then study a range of void finders to test the impact

of the void definition on the resulting weak lensing void properties, and identify the tunnel

algorithm as the most promising void finder. This is followed by wCDM parameter forecasts

from an LSST-like survey for weak lensing voids, which shows that they perform better than

the standard shear two-point correlation function. I then show that weak lensing voids also

have higher sensitivity to modified gravity theories than galaxy voids. Next, I study the

clustering of weak lensing peaks and present simple scaling relations for their two-point cor-

relation function. I then make similar parameter forecasts for the peak two-point correlation

function, and show that when combined with the peak abundance, peaks can give tighter

constraints than the shear two-point correlation function. Finally, both the void and peak

statistics presented in this thesis offer complementary parameter degeneracy directions to the

shear two-point correlation function. This makes these statistics invaluable for cosmological

parameter measurements from ongoing and future weak lensing surveys.
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Chapter 1. Introduction 2

Under the current paradigm of modern cosmology, we measure the properties of the Universe

by identifying its constituent components, determining their nature and calculating their

contribution to the Universe’s total content and its expansion history.

Over recent years, by adopting this methodology, and through the concordance of many

observations, the standard cosmological model, ΛCDM (Λ-cold-dark-matter) has emerged.

These observations include the measurements of type Ia supernova light curves (Riess et al.,

1998; Perlmutter et al., 1999), which reveal an accelerated expansion at low redshift, that

could be driven by a cosmological constant, Λ, coined dark energy. The measurements of

temperature fluctuation in the cosmic microwave background (CMB) give strong evidence for

the presence of cold dark matter (Planck Collaboration et al., 2018), the dominant matter

component in this model, which is a form of non-relativistic matter that only interacts with

gravity. Together, dark energy and dark matter, the so called dark sector, make up roughly

95% of the Universe’s total contents today (Planck Collaboration et al., 2018). The remaining

5% of the Universe consists of baryonic matter, which interacts with all four fundamental

forces, and is the only component of this model (alongside photons) that we can directly

observe. Obviously, inferring the nature of the Universe from only 5% of its contents is a

remarkably difficult task and poses many challenges. To achieve this goal, we must consider

alternative models and extract information from a plethora of observations of the Universe’s

properties.

Many models beyond ΛCDM exist, and one such example that will be of interest in this thesis

is modified gravity, which is a class of models in which the large-scale behaviour of gravity

is different from General Relativity (GR). These models can be employed as tests of GR on

cosmological scales, and may also offer an alternative explanation to the cosmic acceleration.

In order to ensure that our inferences about the underlying cosmological model of the Uni-

verse are as accurate as possible, it is important to measure various different observational

properties of the universe, each of which serve as independent probes of the universe. With

more probes, we are able to infer more about the underlying cosmological model. This ap-

proach allows us to test for the presence of new physics, such as modified gravity, or for

unknown systematics, which may affect different probes in different ways.

The presence of any of the above unknown features will lead to disagreements in parameter

measurements between probes. One such example in modern cosmology is given by the

Hubble tension, which is a disagreement between the measurements of the Hubble constant

from probes at high and low redshift (Verde et al., 2019).
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The main goal of this thesis is therefore to present a new method that can be exploited to

further our understanding of the universe and give improved cosmological parameter measure-

ments. First I will present the relevant background information and use it to exemplify how

we are able to model the different components that make up the universe. I will also present

the relevant theory for inferring the distribution of dark matter in the universe through weak

gravitational lensing (WL), a powerful probe that allows us to confront the challenge of

probing dark matter through observations of baryonic matter alone. Then I will discuss how

to interpret WL as a cosmological probe, along with the standard techniques used in WL

analysis.

1.1 Friedmann–Lemaître–Robertson–Walker cosmology

In this section I will present the Friedmann–Lemaître–Robertson–Walker (FLRW) cosmol-

ogy, and the corresponding equations. First we start with the cosmological principle, an

assumption that on large scales (roughly above 100 Mpc) the universe is homogeneous and

isotropic. This assumption allows us to define the following line element,

ds2 = a2dxxx2 − c2dt2 , (1.1.1)

where a = a(t) is the scale factor of the universe, xxx = (x1, x2, x3) is a vector corresponding

to the three spatial dimensions, and t corresponds to time.

Next we require Einstein’s field equations,

Gµν + Λgµν = 8πG
c4 Tµν , (1.1.2)

with

Gµν = Rµν −
1
2Rµνgµν . (1.1.3)

Here, Gµν is the Einstein tensor, Λ is the cosmological constant, gµν is the metric tensor, G is

Newton’s gravitational constant, c is the speed of light, Tµν is the stress-energy tensor, Rµν
is the Ricci curvature tensor and R is the scalar curvature. The Greek indices run through

(0,1,2,3). This equation shows how the geometry of space-time (left hand side) is related to

the distribution of matter (right hand side). Through the combination of Eqs. (1.1.1) and

(1.1.2) it is possible to derive the following two FLRW equations, assuming a perfect fluid,

(
ȧ

a

)2

= 8πGρ
3 − kc2

a2 + Λc2

3 , (1.1.4)
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ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 . (1.1.5)

Here, the dot (double dot) represents the time derivative (second time derivative), k is the

spatial curvature, ρ is the matter density and p is the pressure.

From Eq. (1.1.4) we can define the critical density ρc(t), which is the density required for a

spatially flat universe, which gives

ρc(t) = 3H(t)2

8πG , (1.1.6)

where H(t) = ȧ/a is the Hubble constant. From here we can rewrite Eq. (1.1.4) in the

following way (Ω is the density parameter),(
H

H0

)2

= Ωr

a4 + Ωm

a3 + Ωk

a2 + ΩΛ , (1.1.7)

where Ωr = ρr/ρc and ρr is the present day radiation density, Ωm = ρm/ρc and ρm is

the present day total matter density (including both baryons and dark matter), Ωk =

−3kc2/8πGρc and ΩΛ = Λc2/8πGρc. Note that here, ρc is the present day value of the

critical density. Eq. (1.1.7) shows how the expansion history of the universe depends on its

contents, and that this can be split up into its constituent components, including the matter

density, radiation density, spatial curvature and a cosmological constant. Certainly there are

other cosmological parameters not presented in the above equation that are also of interest,

such as those dictating the clustering of matter, the dark energy equation of state parameter

and modified gravity parameters. Nonetheless, this highlights how the different components

of the universe come together to produce what we observe, which is one dominated by the

dark sector, and that in order to fully understand the nature of the universe we must develop

cosmological probes and statistical methods that allow us to accurately determine the values

of each cosmological parameter.

1.2 Gravitational lensing

Gravitational lensing is the physical phenomenon in which light is deflected by gravitational

potentials along the line of sight, which results in the distortion and magnification of distant

galaxy images. Because the lensing is sensitive to the gravitational potentials, this allows us

to probe both the baryonic and dark matter content of the universe. This phenomenon can be

split into two regimes, strong and weak gravitational lensing. For strong gravitational lensing,
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observed galaxy images are visibly distorted and multiple images of the same source galaxy

can be produced. In the case of weak gravitational lensing (WL), where image distortions

are very small, the underlying lensing signal can be recovered by statistically correlating

distortions in many source galaxy images over extended patches of the sky (Bacon et al.,

2000; Kaiser et al., 2000; Van Waerbeke et al., 2000; Wittman et al., 2000). In particular, WL

is sensitive to moderate variations in the mass distribution, such as the large-scale structure

(LSS) of the universe, and allows us to map the cosmic mass content over a large range

of scales, from kiloparsecs to hundreds of Megaparsecs (see Bartelmann & Schneider, 2001;

Kilbinger, 2015, for a review).

For WL surveys, the precision with which cosmological parameters can be measured increases

both with the survey area (which reduces the cosmic variance), and with the galaxy source

number density (which reduces the noise in the measured WL signal). Maximising both of

these features significantly increases costs, and so, in the absence of more powerful telescopes,

the current generation of surveys tend to prioritise only one of these aspects. The current

generation of WL surveys include DES (DES Collaboration et al., 2021), HSC (Hikage et al.,

2019) and KiDS (Asgari et al., 2020). These surveys have a range of sky coverages, at 4143,

137 and 777 deg2, and a range of source galaxy number densities, at 5.9, 17 and 6.2 arcmin−2,

respectively. It is clear that each survey in the current generation occupies a distinct position

in the trade off between survey area and source number density, which makes the surveys

complementary to each other. For the future generations of surveys, such as LSST and Euclid,

the goal is to maximise both the survey area and the galaxy source number density, both of

which will cover roughly half the sky (∼ 20000 deg2) with a galaxy source number density

at ∼ 25 arcmin−2. The increased amount of data from these surveys will prove invaluable in

making WL measurements an exceptional observational probe of the Universe. In addition,

both the current and upcoming generations of WL surveys can greatly benefit from the

development of new statistics that can extract information beyond the standard shear two-

point correlation function, which is a powerful and cost saving alternative to increasing the

survey area or source density.

In this section I present the relevant theory and explanations for interpreting WL measure-

ments.
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1.2.1 Weak gravitational lensing theory

The lens equation for a gravitationally lensed image is

ααα = θθθ − βββ , (1.2.1)

where ααα is the deflection angle between βββ, the true position of the source on the sky, and θθθ,

the observed position of the lensed image. The corresponding Jacobian matrix of the (linear)

lens mapping is the deformation matrix A,

Aij = ∂βi
∂θj

= δij −
∂αi
∂θj

. (1.2.2)

Under the Born approximation and neglecting lens-lens coupling and other second-order

effects, the deflection angle can be expressed as the gradient of a 2D lensing potential ψ,

ααα =∇∇∇ψ , (1.2.3)

where ψ is given by

ψ(θθθ, χ) = 2
c2

∫ χ

0

χ− χ′

χχ′
Φ(χ′θθθ,θθθ)dχ′ . (1.2.4)

Here, χ is the comoving distance from the observer to the source and χ′ is the comoving

distance from the observer to the continuously-distributed lenses, which is also the integration

variable, and Φ is the 3D lensing potential of the lens. Φ is related to the non-relativistic

matter density contrast, δ = ρ/ρ̄− 1, through the Poisson equation

∇2Φ = 4πGa2ρ̄δ , (1.2.5)

where ρ is the matter density of the universe (with a bar denoting the mean).

Eq. (1.2.4) shows that the lensing potential is a line-of-sight integral of the matter distribution

from the source to the observer. The contribution that matter at distance χ′ along the line

of sight makes to the total lensing potential is weighted by (χ − χ′)/χχ′ and so depends on

its distances from the source and observer.

Eq.(1.2.3) allows Eq. (1.2.2) to be expressed in terms of ψ

Aij = δij − ∂i∂jψ , (1.2.6)

where partial derivatives are taken with respect to θθθ. The matrix AAA can be parameterised



1.2. Gravitational lensing 7

through the more physically instructive terms convergence, κ, and shear, γ = γ1 + iγ2, as

AAA =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (1.2.7)

This parameterisation allows the convergence and shear to be related to the lensing potential

via

κ ≡ 1
2∇

2
θθθψ , (1.2.8)

and

γ1 ≡
1
2 (∇θθθ1∇θθθ1 −∇θθθ2∇θθθ2)ψ, γ2 ≡ ∇θθθ1∇θθθ2ψ, (1.2.9)

where ∇θθθ ≡ (χ′)−1∇. It is important to note that WL convergence maps are not directly

observable, but can be obtained from the reduced shear, g = γ/(1 − κ), where in the weak

lensing regime it can be assumed that g = γ because κ� 1.

Eq. (1.2.8) can be interpreted as a 2D Poisson equation, and so by substituting Eq. (1.2.5)

and Eq. (1.2.4) into Eq. (1.2.8), the convergence can be expressed in terms of the matter

overdensity

κ(θθθ, χ) = 3H2
0 Ωm

2c2

∫ χ

0

χ− χ′

χ
χ′
δ(χ′θθθ, χ′)
a(χ′) dχ′ . (1.2.10)

This shows that the observed WL convergence can be interpreted as the projected density

perturbation along the line of sight, weighted by the lensing efficiency factor (χ − χ′)χ′/χ.

Here, the lensing efficiency is greatest at χ′ = χ/2, when the lens is halfway between the

source and the observer.

The above derivation assumes a fixed source plane. However, in real WL observations, the

source galaxies do not occupy a single plane at a fixed distance from the observer. The

observed catalogue of source galaxies has a probability distribution n(χ) that spans over a

range of χ values, and Eq. (1.2.10) must be weighted by this source galaxy distribution in

order to obtain κ(θθθ) (see, e.g., Kilbinger, 2015, for details)

κ(θθθ) =
∫ χ

0
n(χ′)κ(θθθ, χ′)dχ′ . (1.2.11)

In this thesis, we will measure the κ profile, κ(r), in and around objects defined within the

WL map. However, as κ(r) is not directly observable, it is also useful to relate it to the radial

tangential shear profile, γt(r), through

γt(r) = κ̄(< r)− κ(r) , (1.2.12)



1.2. Gravitational lensing 8

where

κ̄(< r) = 1
πr2

∫ r

0
2πr′κ(r′)dr′ (1.2.13)

is the mean enclosed convergence within radius r. Notice that here and throughout this

thesis we use r rather than θ to represent the 2D projected distance from the centre of a

circle placed on the map, which is a definition that will be useful later on in this thesis.

WL observations rely on accurately measuring the shapes of galaxies, and cross correlating

the shapes of neighbouring galaxies. However, any correlation in shape due to lensing is

dominated by the random shapes and orientations of galaxies, which is the leading source

of noise in WL observations, referred to as galaxy shape noise (GSN). Because the lensing

signal is weak by definition, when identifying WL peaks (local maxima in the convergence

field κ(θθθ)) it is convenient to express the convergence relative to the standard deviation of

the corresponding GSN component of the field. This is given by

ν = κ

σGSN
, (1.2.14)

where σGSN is the standard deviation of the contributions to the signal from galaxy shape

noise. σGSN can be calculated by generating mock GSN maps and applying any transfor-

mations also applied to the convergence maps, such as smoothing. Mock GSN maps are

generated by assigning to pixels random convergence values from a Gaussian distribution

with standard deviation

σ2
pix = σ2

int
2θ2

pixngal
, (1.2.15)

where θpix is the width of each pixel, σint is the intrinsic ellipticity dispersion of the source

galaxies, and ngal is the measured source galaxy number density.

In the later Chapters it will also be useful to compare constraints from new statistics to those

from the standard shear two-point correlation function. This will show how much additional

information can be extracted from the techniques presented in this thesis compared to the

current paradigm. The shear two-point correlation function is given by

ξ±(θθθ) = 〈γtγt〉 ± 〈γ×γ×〉 = 1
2π

∫ ∞
0

dllPκ(l)J0,4(lθθθ) , (1.2.16)

where γt = −R(γe−2iφ) (equivalent to Eq. (1.2.12), but presented for completeness), γ× =

−I(γe−2iφ), φ is the polar angle of the separation vector θθθ , J0 and J4 are the Bessel functions

for ξ+ and ξ− respectively, and l is the Fourier mode.
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1.2.2 Interpreting weak lensing measurements

From section 1.2.1 it is clear that WL measurements correspond very closely to the projected

total matter density along the line of sight. The lensing signal can be expressed in terms of

both the shear and the convergence, and Fig. 1.1 shows how to physically interpret these

quantities. The three rows show how each component contributes to the lensing transfor-

mation, that is the transformation that maps the unlensed image (exemplified by the green

circle in this case) onto the lensed image (the black circle outlines). The top row shows this

for the convergence, and the middle and bottom rows show this for the real and imaginary

components of the shear. In the case of the convergence, positive (negative) values correspond

to a magnification (demagnification) of the image size. For the shear, the real component

stretches the image along an orthogonal set of axis, with positive (negative) values stretching

the image along the x-axis (y-axis). The imaginary component of the shear behaves in the

same way, except the axis upon which elongation occurs are rotated by 45 degrees relative to

the former axes.

Finally, I will discuss the impact of GSN on our ability to measure WL convergence maps.

Fig 1.2 shows simulated convergence maps in three cases. The left sub-panel shows the true

convergence field as measured from an N-body simulation. Here, there is clear structure in

the WL map, which can be easily interpreted as the projected total matter density. The

middle sub-panel shows the same convergence field, but with the inclusion of GSN (that

matches the noise level expected for an LSST-like survey). It is immediately apparent that

the presence of GSN (which is unavoidable in WL observations) wipes out all structure in the

map, which becomes indistinguishable from a noise field, and imposes significant limitations

on our ability to measure the true underlying convergence field. However, this problem can

be overcome through smoothing the WL map. This is shown by the right sub-panel, which

is the same as the middle panel, except now the WL map is smoothed with a Gaussian filter,

with a length scale of 1 arc-minute. Here, we can see that the true convergence field is mostly

recovered, however some limitations remain. Whilst the GSN has been highly suppressed,

it does induce some spurious features in the final WL map, and by smoothing the map to

recover the physical signal, we are unable to access information about the convergence field

on scales below the smoothing length. Throughout this thesis it will therefore be important

to make considerations on how the WL statistics measured here are impacted by GSN.

1Image source: https://commons.wikimedia.org/wiki/File:Shear-components.svg

https://commons.wikimedia.org/wiki/File:Shear-components.svg
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Figure 1.1: An illustration of how the lensing convergence and shear transform an unlensed
image.1
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Figure 1.2: Simulated weak lensing convergence maps for three cases. Left: A convergence
map without the inclusion of galaxy shape noise and no smoothing. Middle: The same as
the left panel, but with galaxy shape noise added. Right: The same as the middle panel, but
smoothed over a 1 arcminute scale. The convergence maps cover a 10× 10 deg2 patch of the
sky. θ1 and θ2 denote two orthogonal directions on the sky.

1.3 This Thesis

Throughout this thesis I will present both a new probe of cosmology, WL voids, and some

additional methods that can further push the utility of WL peaks. In Chapter 2 I establish

how WL voids are identified as underdense 2D regions in WL convergence maps, I then show

that WL voids have lensing profiles with larger amplitudes than voids identified in the galaxy

distribution, indicating a higher signal-to-noise ratio for WL voids. Next, in Chapter 3 I

study in detail various possible definitions of WL voids through the modification of 7 different

void finders typically applied to the galaxy distribution. I test the impact of GSN on the

different WL void definitions and measure the signal-to-noise ratio of their lensing profiles

in each case, concluding that the tunnel algorithm offers the best compromise between high

signal-to-noise and minimal impact from GSN. In Chapter 4 this is followed by a forecast of

wCDM parameter constraints from WL voids for an LSST-like survey, which shows that WL

voids are able to measure cosmological parameters with higher accuracy than the standard

method, the shear-shear two-point correlation function. Then, in Chapter 5, I show how WL

voids are also a promising probe of modified gravity and that they can distinguish between

ΛCDM and modified gravity cosmologies with a signal-to-noise ratio that is over twice as

large as that from galaxy voids. In 6 I present some numerically calibrated scaling relations

for the clustering of WL peaks which provides a basis for further investigation into the WL
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void abundance scaling relation from Chapter 2. In the final science Chapter 7, by adopting

the same framework from Chapter 4, I present the WL peak two point correlation function

as a cosmological probe, and show that this also shows significant promise as a method to

further improve the constraining power of WL peaks, and that they are complementary to

WL voids. Finally, in Chapter 8 I summarise the results from this thesis and discuss possible

future works.



Chapter 2

Weak lensing by voids in weak

lensing maps

13
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2.1 Introduction

The large-scale structures of the Universe, collectively called the cosmic web, describe the

matter distribution in our Universe in the forms of structures such as voids, sheets, filaments

and knots. These structures result from the anisotropic gravitational collapse of matter on

cosmic scales. These components are intertwined in a complex web where the knots form at

the intersections of filaments, filaments form at the intersections of sheets, and voids occupy

the underdense space between all three (Bond et al., 1996).

Voids, which represent large regions mostly devoid of matter and galaxies, have attracted a lot

of interest as powerful probes of cosmological parameters (Lavaux & Wandelt, 2012; Hamaus

et al., 2016), dark energy (Li, 2011; Bos et al., 2012; Pisani et al., 2015) and dark matter

(Massara et al., 2015). Voids are especially useful for testing cosmological models that make

environmentally dependent predictions, such as the fifth force of modified gravity theories

which, while screened in high density regions, attains maximum values in voids (Clampitt

et al., 2013; Cai et al., 2015; Barreira et al., 2015; Falck et al., 2018; Baker et al., 2018). The

largest constraining power of voids comes from measuring their total matter content (e.g.

Cautun et al., 2018), which can be achieved via gravitational lensing (Melchior et al., 2014;

Gruen et al., 2015; Clampitt et al., 2016; Sánchez et al., 2017; Cai et al., 2017), redshift space

distortions (Hamaus et al., 2015; Cai et al., 2016) as well as the integrated Sachs-Wolfe effect

in the cosmic microwave background (Granett et al., 2008; Nadathur, 2016). In particular,

weak lensing (WL) measurements using upcoming large area and deep imaging surveys such

as euclid and lsst will result in tight constraints on the mass profile of voids (Krause et al.,

2013; Cautun et al., 2018).

Theoretically, voids correspond to low density regions in the large-scale matter field (Sheth

& van de Weygaert, 2004; van de Weygaert & Platen, 2011; Aragon-Calvo & Szalay, 2013).

However, because the full mass distribution is not easily observable, observational studies

typically identify voids using the galaxy distribution (e.g. Nadathur, 2016). Due to the

sparsity of galaxy tracers and their bias, which depends on environment (Neyrinck et al.,

2014), the relation between matter and galaxy voids is a complex one, with galaxy voids

being typically less underdense than would have otherwise been identified using the full matter

density field. This could potentially weaken the lensing signals (which are produced by the

total matter) from galaxy voids, and, due to difficulties in simulating galaxies in cosmological

volumes, it is also more challenging to test cosmology using galaxy void properties such as

abundances and sizes (see, e.g., Cautun et al., 2018).
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In this Chapter, we propose a new paradigm for void studies: the identification of voids from

weak lensing convergence maps, which we refer to as voles (VOids from LEnsing). The

convergence field represents the projected line-of-sight density field weighted by the lensing

kernel, and thus the identified underdensities correspond to voids in the projected density

field (for example Chang et al. 2018 have shown that the deepest minima of the convergence

field have good correspondence to galaxy voids). This approach represents a simple way of

finding voids that relates directly to our theoretical understanding of voids as underdensities

in the total matter field. As void lensing is a key observable, it is only natural to identify

voids and extract their lensing signal from the very same observations, such as a convergence

map. voles not only help avoid some of the disadvantages of galaxy voids, but also allow

for a more complete exploitation of lensing maps by naturally combining voles with other

statistics, such as WL peaks and Minkowski functionals.

There are many void finders in the literature (e.g. see the void comparison project of Colberg

et al., 2008) and here we choose to illustrate our methodology using the tunnel finding method

(Cautun et al., 2018), but, in principle, many of the previous void finding approaches can

be applied to the lensing convergence maps by using the convergence field itself, rather than

using peaks as tracers. Our choice of tunnels is based on the Cautun et al. (2018) and Paillas

et al. (2019) studies which find that WL by tunnels identified in the galaxy distribution is

the most promising method for testing a wide range of modified gravity theories.

2.2 Method

2.2.1 N-body and ray-tracing simulations:

The WL maps used in this analysis are made using an analytical on-the-fly ray tracing

algorithm, ray-ramses (Li, 2011; Barreira et al., 2016), which is inbuilt in the publicly

available N-body and hydrodynamical adaptive mesh refinement simulation code ramses

(Teyssier, 2002). The N-body evolution part is done using the default RAMSES code. To

construct the first map, five independent realisations of simulations evolving 10243 particles

in a 512 h−1Mpc box are tiled together to form a light cone up to a source redshift zs = 1

(see Fig.1 of Barreira et al. 2016 for an illustration). The second map is constructed from the

same box repeated 5 times. The cosmological parameters adopted are Ωm = 0.32, ΩΛ = 0.68

and H0 = 67 km s−1 Mpc−1. The two WL convergence maps cover a field of view of 10× 10

deg2 with a resolution of 20482 pixels. In order to use information from separate maps in
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conjunction with each other, we respectively subtract the mean convergence value of each

map, to give us zero-mean convergence maps.

2.2.2 Galaxy shape noise:

The convergence field is determined observationally by averaging over a large number of

source galaxies, which, due to their intrinsic ellipticity, leads to measurement uncertainties.

This effect is known as galaxy shape noise (GSN) and can be a main uncertainty source on

small angular scales. To allow our method to be interpreted in the context of observations,

we generate WL maps with added GSN and compare the voles identified with and without

GSN. For each pixel of the WL maps, we add GSN by drawing from a Gaussian with standard

deviation given by Eq (1.2.15). Here we use σint = 0.4 and ngal = 40 arcmin−2 corresponding

to lsst (LSST Science Collaboration et al., 2009).

2.2.3 Peak extraction:

In a first step, we identify peaks in the convergence map. In order to suppress GSN, we

smooth the convergence map using a Gaussian window with a smoothing scale, θs, of 2.5

arcmin (unless otherwise stated). We define a peak as a pixel whose convergence value

is greater than that of its 8 neighbours. We also trim the peaks in each map within one

smoothing length of the edge of the map to exclude the boundary effects of smoothing a

finite map. Each peak is characterised by the lensing convergence at its position, which we

express as a signal-noise-ratio (SNR), ν ≡ κ/σ, where σ is the standard deviation of the

smoothed convergence maps, which is 0.011 and 0.012 for the maps without and with GSN,

respectively.

The resulting number density of WL peaks averaged across both of our convergence maps as a

function of SNR, ν, is shown in Fig. 2.1. It shows that the number of peaks is largest for small

SNR, increasing from 2 deg−2 at SNR' 3 to 20 deg−2 at SNR' 0. Fig. 2.1 shows that our

choice of θs (2.5 arcmin) leads to only small differences in the peak number densities. We have

checked that both the number density and the two point correlation functions of peaks agree

with previous studies (e.g. Shan et al., 2014; Shirasaki, 2017). For each map, we generate peak

catalogues by selecting all the peaks with SNR, ν, above a given threshold value. Throughout

this Chapter, we mainly identify voids from three peak catalogues corresponding to ν > 1,

ν > 2 and ν > 3, but in some places we also use catalogues with ν > 1.5 and ν > 2.5.
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Figure 2.1: (Colour Online) Cumulative number per unit area of convergence peaks as a
function of peak SNR, ν = κ/σ, for the maps with and without GSN. The inlay plot shows
the two-point peak correlation functions, w(θ), for peak catalogues with ν thresholds indicated
in the legend, identified using θs = 1 arcmin, with the peak pair separation θ (horizontal axis)
and w(θ) (vertical axis) both scaled by θ̄p, the mean peak separation in the respective peak
catalogue. Though noisy due to the small map size, the rescaled curves show self-similarity
for a range of ν thresholds. The shaded regions show 1σ uncertainties.
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Figure 2.2: (Colour Online) Visualisation of 2D voids found in a small region of the smoothed
lensing convergence maps (with and without galaxy shape noise). The panels show the voids
for two convergence peak selection criteria, from left to right: ν > 1, ν > 2, and the third
panel shows ν > 2 with galaxy shape noise added to the map. The background colours show
the convergence map, expressed in terms of ν. The dots show the peaks that satisfy each
selection criterion, and the circles show the voids identified in each peak catalogue. θ1 and
θ2 denote angular coordinates of the map in two orthogonal directions.
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2.2.4 Void identification:

We identify voids using the tunnel finding algorithm of Cautun et al. (2018), which is so-

named because it has been developed to find regions in the projected distribution of galaxies

that do not contain any galaxies. The method can easily be extended and applied to the

WL peak field by identifying the largest circles that are devoid of peaks. Thus, the tunnels

correspond to circles in the 2D convergence map that contain no WL peaks.

The tunnels are obtained by first constructing a Delaunay tessellation with its vertices cho-

sen to be the WL peaks. By definition, the circumcircle of every Delaunay triangle does

not enclose any WL peak. The WL peaks, which define the triangle, reside directly on its

circumcircle. Thus, each circumcircle represents a candidate tunnel with radius, Rv, and

centre given by that of the corresponding circumcircle. We further discard any tunnels whose

centres are found inside a larger tunnel. A visualisation of the tunnels found from the WL

peak catalogues in one of our maps is shown in Fig. 2.2.

2.2.5 Calculating void profiles:

We calculate the convergence profiles of voids by using annuli of thickness Rv/Nbin, where

Rv is the void radius and Nbin = 20, and then stack all the voids in terms of the scaled radial

distance, r/Rv. To get better statistics, we average over both lensing maps.

The tangential shear profile γt(r) is calculated from the convergence profile using Eq (1.2.12).

All of our uncertainties, including those of the convergence and shear profiles, are estimated

using bootstrap sampling. For each of the two maps we generate 100 bootstrap resamples,

which we then combine and quote the uncertainties obtained by taking the 16th and 84th

percentiles of these resamples.

2.3 Results

Fig. 2.2 shows that, as the ν threshold increases, the WL peaks are more spread out, and less

numerous, resulting in larger voids. This is as expected because high-SNR peaks generally

correspond to more massive structures or more structures aligned along the line of sight,

which are rarer (e.g., Liu & Haiman, 2016). The third panel shows how adding GSN can

slightly alter the void catalogue. The dependence of void size on ν is quantitatively confirmed

in the cumulative void radius distribution given in Fig. 2.3, which shows that the ν > 1 void
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Figure 2.3: (Colour Online) Cumulative number density of voids as a function of the void
radius, Rv. The curves correspond to void catalogues defined using WL peaks above different
ν thresholds. The inlay plot shows a universal relation in the void abundance for catalogues
with θs = 1 arcmin, where Rv, is scaled by the mean peak separation, θ̄p, and n(> Rv), is
divided by the mean peak number density, np, of the corresponding peak catalogue. The
shaded regions show 1σ uncertainties.



2.3. Results 20

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r / Rv

4

2

0

2

4

6

8

(r)
[1

0
3 ]

w/o shape noise
w/ shape noise

> 1
> 2
> 3

Figure 2.4: (Colour Online) The stacked convergence profiles of WL voids. Each curve
corresponds to an average over all of the objects in each of the void catalogues. The dashed
lines show the added GSN case. The shaded regions show the 1σ bootstrap uncertainties of
the no GSN catalogues, which are similar to the GSN added case.
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catalogue has more small voids and fewer large voids, with none above Rv ∼ 0.7 deg, while

the ν > 3 catalogue has fewer small voids and more large voids with radii up to Rv ∼ 1.1

deg. Again we can see that GSN has a small impact on the voles size distribution, where

the addition of spurious peaks tend to slightly reduce the size of the voles. The inlay plot

in Fig. 2.3 shows self-similarity in the void abundance across the void catalogues with peak

thresholds ν ≥ 1, which is achieved by dividing the void radius by the mean peak separation

and the void number density by the mean peak number density. We find this self-similarity

for a range of smoothing scales, but we show only results for a small smoothing scale, θs = 1

arcmin, which gives the largest number of voles and thus provides the most stringent test

of self-similarity. We also found that adding GSN has very little impact on the self-similarity

of the void abundance, which allows us to choose the previously stated smaller smoothing

scale. This self-similar scaled void abundance is likely related to the self-similarity in the

peak two-point correlation functions from the peak catalogues with different SNR thresholds

(see the inlay panel of Fig. 2.1), and we will present a detailed analysis on this, based on

larger and more realistic lensing maps, in a forthcoming work.

2.3.1 Void convergence profiles:

Fig. 2.4 shows the convergence profiles as a function of scaled radial distance, r/Rv, averaged

over all voids in both lensing maps. The profiles are plotted up to twice the void radius

to show how, at large distances, they return to background levels (which we have set to be

0). Each curve corresponds to one of the three void catalogues. For r . 0.75Rv, we find

negative convergence values, which indicates that the voids are underdense in those regions.

Interestingly, the ν > 3 void catalogue has the least underdense voids. This is to be expected,

since the ν > 3 voids are the largest and can enclose inside them slightly overdense regions,

i.e. with κ > 0. As the peak SNR threshold used to identify voids decreases, the voids

become smaller, they enclose fewer overdense regions and thus have lower overall κ values.

The maximum convergence is achieved at r = Rv and all three void catalogues have roughly

similar maximum values. At even larger radii, the convergence profiles decrease towards the

mean background value of κ = 0. Of the three catalogues, ν > 3 voids take the longest to

reach the background value, which is a manifestation of the fact that the large peak values

that define the boundary of ν > 3 voids are typically found in large-scale overdense regions.

Voids identified using high SNR peaks, i.e. ν & 2, have the same profiles in WL maps with

and without GSN, but differences appear when using low SNR peaks, i.e. ν . 1, where GSN
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Figure 2.5: (Colour Online) The stacked tangential shear profiles of WL voids. The coloured
lines show the average profile for the void catalogues identified in this Chapter, without
GSN (solid) and with GSN (dashed). The shaded regions, show the 1σ bootstrap uncertain-
ties. The black patterned lines correspond to the shear profile of underdensities identified in
the galaxy distribution: tunnels (dot-dashed), troughs (dotted) and Watershed Void Finder
(WVF; circle-solid) voids (Cautun et al., 2018).

can lead to spurious peaks, and thus spurious voids.

A final feature of the convergence profiles is that the width of the convergence maximum

somewhat decreases as we increase the ν threshold of the WL peaks used for finding voids.

This is due to the profiles being plotted against the rescaled distance, r/Rv, rather than the

physical distance, r. The ν > 2 and 3 voids actually have wider convergence maxima when

expressed as a function of r, but this larger width is overcompensated by their even larger

radii which results in a narrower maxima when expressed in rescaled distances.

2.3.2 Tangential shear profiles:

Fig. 2.5 shows the tangential shear profiles of the voles, calculated using Eq. (1.2.12). These

profiles are qualitatively similar with the tangential shear of galaxy voids (e.g., Cautun et al.,

2018) and show a maximum signal at r = Rv. The maximum signal has a negative value,

indicating that voids lead to diverging lensing, similar to a concave lens. Like the convergence

profiles, larger ν thresholds reduce the width associated to the maximum tangential shear
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signal, while the height and position of the maximum signal are almost independent of the

ν threshold from ν > 2. The shear signals are very similar for the case with GSN, with the

greatest deviation at the lower ν threshold, ν > 1 due to spurious peaks from GSN, which

create spurious voids.

The error bars for the tangential shear profiles are smaller than those for the convergence

profiles (see Fig. 2.4). The uncertainty in the convergence profile is dominated by modes

many times larger than the void size, which determines on average a systematic shift up or

down between the convergence profiles of voids some distance apart. We checked that the

voids in different regions of the lensing map have the same convergence profile up to some

constant shift in κ values. In contrast, the tangential shear profiles are only sensitive to the

shape of the convergence profiles, and are not affected by a constant shift of the latter. Thus,

given one WL peak catalogue, different voles have very similar lensing profiles, however the

profiles show a weak dependence on the ν threshold used to define the peak catalogue. It

remains to be seen whether there is a strong cosmological model dependence of the voles γt
profiles, which we will study in Chapter 4.

Fig. 2.5 also compares the voles tangential shear profiles to results from other void definitions

used in previous works. We compare the voles with three types of voids identified in the

galaxy distribution: 3D watershed voids (WVF, Platen et al. 2007), fixed-aperture cylinders

along lines-of-sight with low projected galaxy number densities (troughs; Gruen et al., 2016)

and tunnels (the same as the method used in this Chapter but applied to galaxy fields).

These three void catalogues are obtained from a z = 0.5 halo occupation distribution galaxy

catalogue that matches the clustering of sdss-cmass which has a galaxy number density,

n̄g ≈ 3× 10−4h3Mpc−3 (see Cautun et al., 2018, for more details). This represents a typical

galaxy catalogue at redshift, z = 0.5. We take the WL signals of the galaxy voids from

Cautun et al. (2018), and we rescale them to match our source galaxies’ redshift, zs = 1.

We find that the maximum γt signal of voles is roughly twice as large as tunnels identified

from a galaxy field, and about 10 and 40 times larger than the signals of troughs and WVF

voids, respectively. The stronger lensing signal in voles is not surprising since the WL peaks

are taken straight from the convergence field itself, which is directly related to the projected

total matter distribution. The projected galaxy number density used to identify the Cautun

et al. tunnels and troughs is ∼500 gal deg−2 and is much larger than that used for the voles

catalogues (see Fig. 2.1). We find that using higher number density peak catalogues, which

could be obtained with a smaller smoothing scale and smaller GSN, results in voles with an
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even higher tangential shear signal and thus increases further the differences between voles

and galaxy tunnels.

2.4 Conclusions and future work

Cosmic voids are becoming an increasingly important cosmological probe. While theoretical

studies usually focus on voids identified from the dark matter field, in observations galaxies

are usually used as tracers to find voids. Here, we have proposed an alternative: to identify

voids in the WL convergence field (dubbed voles), which, since it represents the line-of-sight

projected matter distribution, is conceptually closer to identifying voids as underdensities in

the matter distribution. This opens a new window for exploring the cosmic mass distribution

and, in particular, for designing novel environment-sensitive cosmological tests.

As an example, we identified voles by applying the tunnel algorithm of Cautun et al. (2018)

to the WL lensing peak distribution, and investigated several properties, including their

abundance, convergence and tangential shear profiles. Using peaks with lower SNR leads to

finding smaller voids, which are on average more underdense. The void convergence profiles,

which are indicative of the projected matter density inside and around the voids, are negative

for r ≤ 0.75Rv, which corresponds to line-of-sight underdensities, and show a sharp overdense

peak at the void edge, r = Rv. In terms of tangential shear profiles, the voles show a

maximum signal at r = Rv, with the maximum signal height somewhat independent of the

peak catalogue used to identify the voids. However, the width of the tangential shear signal

decreases when using peaks corresponding to a higher SNR threshold. We found that the

amplitude of the maximum signal in the tangential shear profiles for the voles is roughly

twice as large as that of voids generated using the same void finder (tunnels) but by using

galaxies as tracers. The amplitude is more than an order of magnitude larger compared

to those corresponding to galaxy voids identified using other algorithms (troughs and WVF

voids). This shows the benefit of using a more reliable tracer of the projected total matter

field.

The method introduced here represents a new avenue to identify 2D voids rather than a

new void-finding algorithm, in the sense that many, if not all, existing void finders (troughs,

spherical void finders, WVF, zobov, etc.) can be applied to the WL convergence maps.

Indeed, in principle one can use the WL convergence field itself (i.e. not just the peaks from

it) as a tracer field for void identification. The study of void identification and void lensing
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from the same WL observation is also convenient in practice, because there is no need for

foreground galaxies, whose redshifts are hard to measure accurately and can be affected by

the peculiar velocities of the galaxies. Instead, the particular lensing map that is used to

study void lensing is expected to offer sufficient information for locating those very voids.

With the upcoming WL surveys (hsc, euclid, lsst, etc.) which offer lensing maps with

increasing sky coverage, we hope that this approach will take us a step forward in extracting

information from such maps in a maximal way.

Unlike galaxy voids, for voles it is also possible to use void abundance to discriminate

different models as there is no ambiguity in modelling the galaxy populations for these models.

The universal scaled void abundance shown in Fig. 2.3 implies that it is possible to find generic

simulation-calibrated fitting formulae for these void properties (e.g., Hamaus et al., 2014)

which can be used as theoretical templates in cosmological tests. For the latter purpose,

it is also critical to test the voles void finding method in real weak lensing data sets to

understand how observational systematics and galaxy formation physics can affect the void

properties. These possibilities will be investigated in follow-up studies.
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3.1 Introduction

WL represents a powerful cosmological probe because it is an unbiased tracer of the cosmic

LSS, whose properties and evolution are governed by the underlying cosmological model,

including the matter content in the Universe and the law of gravity. Thus, WL can be

used to constrain cosmological parameters within the standard ΛCDM paradigm, as well as

models beyond ΛCDM (Albrecht et al., 2006; LSST Dark Energy Science Collaboration, 2012;

Amendola et al., 2013; Weinberg et al., 2013). In order to achieve this, one must construct

statistics which efficiently capture the cosmological information embedded within WL maps.

This can be achieved through two-point statistics such as the power spectrum or the two-point

correlation function. One such example is the shear-shear correlation function which has been

used to provide constraints on cosmological parameters within ΛCDM (e.g. Schneider et al.,

2002; Semboloni et al., 2006; Hoekstra et al., 2006; Fu et al., 2008; Heymans et al., 2012;

Kilbinger et al., 2013; Hildebrandt et al., 2017). The convergence power spectrum and shear-

shear correlation have also been used to test modified gravity theories beyond ΛCDM (e.g.

Schmidt, 2008; Tsujikawa & Tatekawa, 2008; Huterer, 2010).

The power spectrum encapsulates all the information required to describe a Gaussian ran-

dom field, which is an accurate representation of the matter distribution in the Universe at

early times. However, the growth of LSS is governed by gravity which induces non-Gaussian

features due to nonlinear evolution at late times, when the power spectrum becomes an in-

complete description of the underlying matter field. Therefore, for non-Gaussian observables

such as WL maps, it is important to develop complementary statistics beyond the power

spectrum in order to maximise the cosmological information that can be extracted.

A popular and simple alternative WL statistic that is complementary to the WL power

spectrum is the abundance of WL peaks (Jain & Van Waerbeke, 2000; Pen et al., 2003;

Dietrich & Hartlap, 2010), which are usually defined as the local maxima in the convergence

field. The strongest WL peaks are typically produced by the most massive structures in the

universe, such as galaxy clusters (Yang et al., 2011; Liu et al., 2015; Liu & Haiman, 2016),

and so the abundance of these WL peaks is directly sensitive to the non-Gaussian features of

the cosmic web. Furthermore, low amplitude WL peaks have been shown to contain useful

cosmological information (Dietrich & Hartlap, 2010; Kratochvil et al., 2010; Yang et al.,

2011), making the study of weak lensing peaks crucial for cosmological constraints. This

complementary information contained in the abundance of WL peaks has been exploited to

improve cosmological constraints on ΛCDM parameters (Shan et al., 2012; Van Waerbeke
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et al., 2013; Shan et al., 2014; Liu et al., 2015), modified gravity (Cardone et al., 2013; Liu

et al., 2016b; Higuchi & Shirasaki, 2016; Shirasaki et al., 2017; Peel et al., 2018), dark energy

(Giocoli et al., 2018), and the sum of neutrino masses (Li et al., 2019). Additional WL peak

statistics, such as the two point correlation function, will be shown to be sensitive to the

ΛCDM parameters in Chapters 6 and 7.

There are multiple other WL statistics beyond the power spectrum that have been utilised to

constrain cosmology, and we briefly mention a few here. The first is Minkowski functionals,

which can provide additional constraints on the dark energy equation of state parameter

(Kratochvil et al., 2012; Petri et al., 2013; Ling et al., 2015; Marques et al., 2019). The WL

bispectrum, which is sensitive to non-Gaussianity by definition, has been shown to be a useful

statistic for future surveys (Cooray & Hu, 2001; Rizzato et al., 2019; Munshi et al., 2020),

and can be used to improve parameter constraints, such as neutrino masses (Coulton et al.,

2019a). And finally, WL minima, local minima in the convergence field, are less sensitive to

baryonic effects, and offer certain advantages over WL peaks (Coulton et al., 2019b). Every

such novel statistic offers its own unique advantages, which makes the study of novel statistics

crucial.

The goal of this Chapter is to explore the properties of another such statistic, WL voids,

first introduced in Chapter 2. Typically voids are identified in the full 3D distribution of

the LSS, as regions with low densities of matter or tracers. The void abundance, their radial

profiles and shapes contain higher order clustering information (and hence non-Gaussian

information; White 1979; Fry 1986; Biswas et al. 2010; Bos et al. 2012; Lavaux & Wandelt

2012). Most studies have focused on galaxy voids, which corresponds to underdensities in the

galaxy distribution (e.g. Paz et al., 2013; Sutter et al., 2014; Cautun et al., 2016; Nadathur,

2016). The statistics of galaxy voids contain complementary information to the galaxy power

spectrum and baryonic acoustic oscillations (e.g. Pisani et al., 2015; Hamaus et al., 2016;

Nadathur et al., 2019). One useful void statistic is their WL profiles, which have been argued

to represent a powerful cosmological probe (Cai et al., 2015; Barreira et al., 2015; Falck et al.,

2018).

Compared with galaxy voids, WL voids have been shown in the previous Chapter to corre-

spond to deeper line-of-sight projected underdensities and thus they have a larger tangential

shear signal. This potentially makes WL voids better cosmological probes than galaxy voids.

This will be exemplified in Chapter 5 in the context of a class of modified gravity models,

which can be considerably better constrained with 2D WL voids than with galaxy voids.
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The total SNR of void lensing profiles depends on the number of voids and the amplitude of

the lensing profile. Depending on how voids are identified, either fewer or more 2D voids can

be obtained relative to 3D voids. However, most importantly, the 2D void lensing profiles

have amplitudes roughly an order of magnitude larger than those of 3D voids (Cautun et al.,

2018; Davies et al., 2018). This is the most important factor that contributes to higher SNR

for 2D WL voids compared to 3D voids in the cosmic web.

Chapter 2 focused on a particular class of WL voids, called VOLEs (VOids from LEnsing),

where the voids are identified as circles devoid of weak lening peaks. However, as for 3D

voids, the definition and therefore the finding algorithm of 2D voids are not unique. There

are multiple methods of finding underdensities, and thus multiple approaches to define voids

(e.g. Colberg et al., 2008; Cautun et al., 2018). This ambiguity can lead to systematic

differences in void observables among the various void finders. However this ambiguity can

also be exploited, by picking the void-finding algorithm that best suits the intended purpose.

In our case, we want to maximise the amplitude of the WL void lensing profiles (or similarly

the SNR of the WL void lensing profiles), whilst also limiting the impact of observational

noises on the resulting void statistics. To this end, we will present WL void statistics for

a range of void-finding algorithms, and discuss the limitations and advantages of each void

finder.

Here, we compare seven different void definitions. These can be split into two classes. First

and seemingly the most natural approach, consists of the methods which identify voids di-

rectly from the WL convergence field. In the following, we denote the convergence with κ.

The simplest objects that can be considered as WL voids are the WL minima (i.e., local

minima in the κ field) where the deepest minima have been shown to correspond to large

supervoids along the line of sight (Chang et al., 2018). More advanced void definitions include

the watershed void finder (WVF; Platen et al. 2007), which identifies voids as the watershed

basins of the convergence field, the spherical void finder (SVF; e.g., Padilla et al. 2005) ap-

plied to the convergence field (which we denote as SVF κ), which finds the largest circles

whose mean κ is below a given threshold, and troughs (denoted with Troughs κ; Gruen et al.

2015), which consists of fixed sized circles whose mean convergence is below a given threshold.

By construction, the number and properties of voids identified in the convergence field are

sensitive to the lowest κ values. These regions are the ones affected the most by galaxy shape

noise (GSN). For this reason we consider a second class of void finders, which consists of

methods that identify voids using a distribution of tracers, which we take to be the peaks
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of the convergence field (as we shall discuss, the peaks are less affected by GSN). We study

three methods in this class: the ‘tunnel’ algorithm (Cautun et al., 2018) employed in Chapter

2, which identifies voids as the largest circles devoid of tracers, the SVF but now applied to

the peak distribution (hereafter referred to as ‘SVF peak’), and troughs identified in the

peak distribution (denoted with ‘Troughs peak’), which consists of fixed sized circles that

enclose fewer than a given number of peaks. A detailed description of each WL void finder

is presented in Section 3.3.

The content of the Chapter is as follows: The numerical simulations and galaxy shape noise

prescription used in this study are presented in Section 3.2 along with the basic WL map

statistics which will help the interpretation of results from different WL void finders. The

void finders studied here are presented in Section 3.3, and the statistics describing the WL

voids associated to each WL void finder are presented and discussed in Section 3.4. We

then compare useful properties of the WL void finders in Section 3.5, with the discussion

and conclusions in Section 3.6. We also present the correlation matrices of the tangential

shear profiles for different void finders in Appendix .1. In Appendix .2 we test how WL voids

behave in WL maps with only GSN i.e. WL maps with no physical signal, and discuss how

WL voids are sensitive to the physical information in WL maps.

3.2 Weak lensing maps

In this section, we briefly outline the numerical simulations and the weak lensing maps used in

this study, our prescription for including galaxy shape noise in our analysis, and a discussion

on the relevant WL statistics that will inform the interpretation of our results from different

void finders.

3.2.1 Numerical simulations

To study WL voids we use WL maps generated from N-body simulations taken from Taka-

hashi et al. (2017) (herein T17) which provide publicly-available all-sky WL convergence

maps. The WL maps are generated with the ray tracing algorithm from Hamana et al.

(2015) (see also Shirasaki et al., 2015). These WL convergence maps have a HEALPix res-

olution of Nside = 16384, and a source redshift of zs = 1. The N-body simulations have

a particle number of 20483, and the particle mass varies with the box size ranging from

8.2×108 to 2.3×1012M� (see Table 1 of T17 for more details). To avoid repeating structures



3.2. Weak lensing maps 31

along the line-of-sight, T17 constructed the light cone by stacking cubic simulation boxes of

increasing size, with comoving sizes L, 2L, 3L, · · · , 14L, where L = 450h−1Mpc. These boxes

are then duplicated 8 times and nested around the observer, where nests of larger boxes

contain nests of smaller boxes at their centres. The matter distribution of these nested boxes

is projected onto the nearest spherical shell centered on the observer, where the shells have

radii of N × 150 h−1Mpc with N = 1, · · · , 14 (see T17 for illustration). The cosmological pa-

rameters used for these WL maps correspond to a flat universe with Ωm = 0.279, ΩΛ = 0.721,

σ8 = 0.820 and h = 0.7, where h = H0/100 km s−1 Mpc−1.

We split the all sky WL convergence maps into 192 10 × 10 deg2 maps and then extend

the map boundaries by a further 5 deg on all sides giving us 192 20 × 20 deg2 maps with a

resolution of 40962 pixels. This approach results in maps where the central 10×10 deg2 region

of each map does not overlap with the central 10×10 deg2 region of any of the remaining 191

maps. The use of the 192 smaller maps allows us to stick to the flat sky approximation. Void

detection is carried out on the full 20× 20 deg2 and voids with centres outside of the central

10×10 deg2 are discarded. Additionally, voids that are within twice their radius from the map

boundary are discarded when calculating the void lensing profiles. This approach guarantees

that void identification is not biased away from large voids due to boundary effects. For more

details on our projection method, see Appendix .7

3.2.2 Galaxy shape noise

The observed correlation in galaxy shapes induced by gravitational lensing is entirely dom-

inated by the random shapes and orientations of galaxies, which are referred to as galaxy

shape noise (GSN). As shown by Van Waerbeke (2000), GSN can be modelled by adding

random values drawn from a Gaussian distribution to each pixel of our simulated WL maps.

The standard deviation of this distribution is given by Eq. (1.2.15) We use σint = 0.4 and

ngal = 40 arcmin−2, which match lsst specifications (LSST Science Collaboration et al.,

2009).

The inclusion of GSN results in noise-dominated WL maps. Nevertheless, the noise effect

can be suppressed by smoothing with a (usually) Gaussian filter with smoothing length θs.

Using a small value for θs allows a given WL statistic to probe the smallest scales and

maximise the information gained, however this also leaves significant contamination from

GSN. Using larger θs values reduces the GSN contamination, but suppresses the small scale

information within the WL maps. This means that a trade off must be struck between
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sufficiently suppressing GSN and retaining WL information on small scales. Additionally, the

analysis carried out here relies on WL maps generated from dark matter only simulations, and

do not include baryon physics. To suppress the differences between dark matter only and full

hydrodynamic simulations, Weiss et al. (2019) found that very large smoothing scales must

be used. Furthermore, Liu et al. (2015) found that constraints on cosmological parameters

from WL peaks are improved when multiple smoothing scales are used. These imply that

there is no single best choice of smoothing scale that fits all purposes when analysing WL

statistics. So in order to explore this fully, all statistics in this Chapter will be shown for

multiple smoothing scales, θs = 1 (blue), 2.5 (orange), and 5 (green) arcmin, both in the

presence (dashed) and absence (solid) of GSN.

By presenting all statistics for multiple smoothing scales, with and without GSN, we will be

able to identify the void finders that are the least affected by GSN. However at this point

the impact of GSN on cosmological parameter constraints from WL voids is not known. It

is possible that the inclusion of GSN may improve cosmological parameter constraints from

WL voids by increasing the signal-to-noise (SNR) ratio relative to the case where GSN is not

included, as has been found with WL peaks (Yang et al., 2011). However, GSN could also

bias or degrade the cosmological parameter constraints from WL voids. We leave such an

investigation to further work and focus on identifying void finders that are the least affected

by GSN in this Chapter.

For the analysis of WL peaks it is useful to define the amplitude of a given peak relative to

the r.m.s. fluctuation of the added GSN component of the WL field. As such ν is defined as

ν ≡ κ

σGSN(θs)
, (3.2.1)

where σGSN(θs) is the standard deviation of the smoothed GSN map (without contributions

from the physical WL convergence map i.e. noise only) and varies depending on the smoothing

scale with which the WL peak is identified, with σGSN = 0.0126, 0.0051 and 0.0025 for

θs = 1, 2.5 and 5 arcmin respectively.

3.2.3 Convergence PDF and WL peak abundance

In order to aid the interpretation of the various WL void statistics, we first present some

simple statistics that describe the information given to the WL void finders. In the cases of

void finders applied directly to the convergence field this is the WL convergence probability

distribution function (PDF) shown in the left panel of Fig. 3.1, and for the void finders that



3.2. Weak lensing maps 33

0.04 0.02 0.00 0.02 0.04 0.06 0.08

10 1

100

101

102

PD
F

Smoothing scale
s = 1 arcmin
s = 2.5 arcmin
s = 5 arcmin
Map type

w/o GSN
w/ GSN

0.02 0.00 0.02 0.04 0.06 0.08
10 3

10 2

10 1

100

101

dn
p/d

[d
eg

2 ]

0.04 0.02 0.00 0.02 0.04 0.06 0.08
0

2

4

w
/G

SN
w

/o
G

SN

0.02 0.00 0.02 0.04 0.06 0.08
0

2

4

w
/G

SN
w

/o
G

SN

Figure 3.1: Left panels: the probability distribution function (PDF) of the WL convergence
field, κ. Right panels: The differential abundance of WL peaks as a function of peak height
ν. The results shown here are obtained using a ∼19, 000 deg2 area with the shaded regions
denoting the one sigma error bars (most of the time the errors are smaller than the line
thickness). The dashed and solid lines correspond to the WL convergence maps with and
without GSN respectively. The colours correspond to different smoothing scales of the κ field:
1.0 (blue), 2.5 (orange) and 5.0 (green) arcmin. The relative differences between the cases
with and without GSN are shown in the lower sub-panels.

use weak lensing peaks as tracers this is the WL peak abundance shown in the right panel

Fig. 3.1. Note that we define a WL peak as a pixel with a convergence value larger than that

of its eight neighbours.

The left panel of Fig. 3.1 shows the WL convergence PDF for the three smoothing scales (1,

2.5 and 5 arcmin), for cases with and without the inclusion of GSN (dashed and solid). The

convergence PDF is well described by a log normal distribution convolved with a Gaussian

when GSN is included (Clerkin et al., 2017). The different colours show that as the smooth-

ing scale increases, the width of the distribution decreases, suppressing the non-Gaussian

structures within the WL map, and the agreement between the cases with and without GSN

improves. The relative differences in the convergence PDF between the no-GSN and the

GSN-added cases are larger for κ < 0 than for κ > 0, as can be seen more clearly in the

lower panel. Therefore in order to find agreement in WL void statistics with and without

the inclusion of GSN we will likely require larger smoothing scales than what is required to

get the same agreement for WL peak statistics. Finally, for a smoothing scale of 1 arcmin

(blue curves), the inclusion of GSN introduces a significant number of negative convergence

values that are much lower than the lowest convergence values found in the WL maps without

GSN. This indicates that 1 arcmin smoothing might be too small for WL void finders applied
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directly to the convergence field in order to agree before and after GSN is added. However,

agreement between the two cases is largely improved once the smoothing scale is increased

to 2.5 or 5 arcmin.

The differential WL peak abundances identified from WL maps with and without GSN

smoothed over the three smoothing scales (1, 2.5 and 5 arcmin) are displayed in the right

panel of Fig. 3.1. By adding GSN, the peak of the distribution is shifted to the right, and

more peaks are created. The addition of these spurious peaks from GSN will lead to the

identification of spurious voids for void finders that find voids in the WL peak distribution.

The differences between WL peak catalogues for maps with and without GSN is suppressed

as the smoothing scale increases, but this also decreases the overall abundance of the WL

peaks. It can also be seen that, as κ increases, the differences between the maps with and

without GSN decreases. This is because the largest WL peaks are less affected by GSN, since

the physical peak signal dominates over the noise.

The right panel of Fig. 3.1 also shows that there are many WL peaks with negative conver-

gence values, which are local maxima in underdense regions of the WL convergence maps.

This is as expected, since most regions have κ < 0 (see left panel in Fig. 3.1) and thus many

local maxima will have heights κ < 0. As we will discuss in Section 3.3, the void finders based

on the peak distribution identify the voids as the regions that are largely devoid of peaks.

Including all the WL peaks in our analysis can raise two problems. Firstly, it reduces the

contrast in peak number density between overdense and underdense regions, and thus makes

it difficult to robustly identify the underdense regions. Secondly, the location and height of

κ . 0 peaks is much more affected by GSN than for the high κ peaks. This defeats the main

reason for identifying voids using the WL peaks, which is to mitigate the effect of GSN on

the WL void population. Therefore, to deal with these two issues, we proceed by imposing a

peak height cut on the WL peak catalogues, and remove all peaks below a given threshold.

This adds a free parameter to the analysis and thus, for the void finders that use WL peaks

as tracers, we will present results for peak catalogues with peak heights of ν > 2 and ν > 4.

3.3 Void finders

In this section, we describe the implementation of each WL void finder used in this Chapter.

These void finders were originally developed to identify voids in a 3D galaxy or matter

distribution, which means that some must be modified slightly to identify 2D WL voids. In
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each case we try to minimise the extent of the modification so that the interpretation of

results can remain as similar as possible to the interpretation of 3D voids. Furthermore,

where possible, we apply each void finder to both the WL peak distribution and the WL

convergence field to see which approach provides the most information (in terms of the

signal-to-noise ratio, SNR) and which is least affected by GSN. Finally, all void identification

is carried out on the full 20× 20 deg2 maps, while the voids whose centres reside outside of

the central 10 × 10 deg2 are discarded. This ensures that the void identification process is

not contaminated by edge effects, and that we do not bias our results away from large voids,

since larger voids are more likely to intersect the map boundary.

3.3.1 Minima

Weak lensing minima are the simplest objects which can be interpreted as WL voids, which

correspond to the most underdense lines of sight within the WL convergence maps. Here

we define WL minima as local minima in the convergence field, which is a pixel whose κ

value is lower than those of its eight neighbours. We identify WL minima in the smoothed

convergence field and discard all minima with a positive κ value, because a positive κ value

indicates that the minimum and its neighbours reside within a local overdensity. This allows

us to remain consistent with the general definition of a WL void, which is an underdense

patch of the WL convergence map.

3.3.2 Troughs

Troughs (Gruen et al., 2015) are underdense circles of a fixed size. Typically troughs are

identified by randomly placing circles of that fixed size in a projected galaxy field and dis-

carding the circles that contain the most galaxies, leaving only those that contain the least

galaxies. Here we adapt the trough algorithm and apply it to both the WL peak field and

the WL convergence field.

For troughs applied directly to the convergence field (Troughs κ), we first place 5000 circles1

randomly such that their centres fall into the central 10 × 10 deg2 of the WL convergence

map. For each of these circles, the mean enclosed convergence is calculated. The trough

catalogue consists of the 20% of the circles with the lowest mean enclosed convergence. The

1We have also run the trough algorithm with 10 times as many randomly placed circles, and find that this
does not change the SNR values of the trough tangential shear profiles. Therefore in this Chapter we stick to
5000.
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above procedure is carried out for circles with radii of 10, 20 and 30 arcmin, which correspond

to the typical values used in previous studies (e.g., Barreira et al., 2017; Gruen et al., 2018).

For troughs identified in the WL peak distribution (Troughs peak), the same steps are re-

peated except that, rather than calculating the mean enclosed convergence, we count the

number of enclosed peaks, and keep the 20% of circles which contain the fewest peaks. Again,

these steps are repeated for circles of radii of 10, 20 and 30 arcmin.

The number of randomly placed circles and the upper fraction of circles to be discarded are

both free parameters. However, to keep the analysis in this Chapter simple we do not vary

these parameters, and their values above have been chosen to match the typical abundances

of WL voids produced by the other algorithms for a fair comparison.

3.3.3 Watershed void finder (WVF)

The watershed void finder (Platen et al., 2007, WVF) defines voids as the watershed basins,

which are analogous to water basins formed from rain running down a landscape. To identify

the watershed basins, each pixel of the convergence map is connected to its neighbour with

the lowest density, and this process is repeated for successive neighbours until a local minima

is reached. All pixels connected to the same minima then belong to the same watershed

basin. This results in ridges of local overdensities along the basin boundaries.

To mitigate the impact of GSN, we compare the average amplitude of each basin boundary

with the amplitude of their corresponding minima. If the absolute difference in amplitude

between the two is less than hboundary, we merge that basin with its neighbour, which creates

a single larger basin. In this analysis we choose hboundary = σGSN/2, which allows watershed

basins that have been artificially split by spurious structures introduced by GSN to be re-

merged. Adding the basin merge criteria means that hboundary is an additional free parameter

in the WVF algorithm. We have tested the impact of varying hboundary and find that it

has little impact on our results. We choose hboundary = σGSN/2 as a compromise between

mitigating the impacts of GSN on watershed basins and over merging, which would on average

flatten out void lensing profiles.

This algorithm generates irregular basins which span the entire area of the WL convergence

map. In order to calculate the stacked lensing profiles of the voids, we must define their void

centres and radii using the information of the corresponding basins. We take the void centres

as the area-weighted barycentre of all the pixels in each basin and define an effective void
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radius of Rv = (A/π)1/2 (which is the radius of a circle with the same area A as the irregular

basin) when calculating the WVF lensing profiles.

When the watershed algorithm is applied to the galaxy distribution to find 3D voids in the

LSS, the galaxies are first used as tracers to construct an estimate of the underlying density

field using a Delaunay tessellation field estimation (DTFE) (Schaap & van de Weygaert, 2000;

Cautun & van de Weygaert, 2011). This in principle means that WL peaks could also be used

to identify WL voids with the watershed algorithm, by using the WL peaks to construct a

WL peak density field. However, we find that the usual DTFE approach is insufficient, since

it results in WL voids identified from the WL peak distribution that bear little correlation

to underdensities in the original convergence map. While it may be possible to improve this

procedure by using information about the WL peak heights in the DTFE reconstruction, this

is beyond the scope of this Chapter, and we thus instead choose to only study voids identified

by applying the watershed algorithm to the WL convergence field.

3.3.4 Spherical void finder (SVF)

The spherical void finder (SVF) (e.g., Padilla et al., 2005) identifies underdense spherical

regions in the galaxy distribution, by growing spheres around regions that are empty of

galaxies. When applied to find WL voids, the SVF identifies circular regions in the WL

convergence or peak fields that are below a specified ‘density’ threshold. In practice, in order

to allow SVF voids to ‘grow’ as large as possible, circles are shrunk from some arbitrarily

large size around candidate void centres until the threshold is met.

For the SVF applied directly to the WL convergence map (SVF κ), local minima are con-

sidered as prospective void centres. Starting from a large radius, circles are then shrunk

around these void centres until the mean enclosed convergence reaches a predefined thresh-

old, κthresh. Here, larger values of κthresh result in larger voids, and note that we require κthresh

to be negative so that the SVF finder identifies regions that enclose underdense sections of the

convergence map. We have tested a range of values for κthresh, and as a compromise between

identifying the most underdense regions and allowing voids to grow as large as possible, we

set κthresh = −0.01 in this analysis. Once all prospective voids are shrunk until their mean

convergence is κthresh, we proceed to remove the objects that overlap significantly. That is,

if the distance between any two prospective voids is less than half the sum of their radii, we

discard the smaller of the two. Finally, we remove all voids with radii less than twice the

smoothing scale that is applied to the convergence map (θs) to reduce the number of spurious
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voids.

For the SVF applied to the WL peak distribution (SVF peak), a Delaunay triangulation of the

peak field is performed, and the circumcentres associated to each triangle are considered as

potential void centres. Starting from a large radius, circles around those centres are shrunk,

until the mean enclosed WL peak number density reaches a predefined fraction of the mean

WL peak number density. We find that the resulting void catalogues are somewhat insensitive

to the exact choice of this threshold value, and therefore pick 40% as a good compromise

between allowing SVF voids to grow as large as possible and ensuring these voids correspond

to underdense regions of the WL convergence maps. Next, we randomly shift void centre

positions within the void radius, in order to verify if it is possible for the void to ‘grow’ a bit

more (i.e., to reach the density threshold at a slightly larger radius). Finally, if the centres

of two voids are separated by less than half of the sum of their radii, we remove the smaller

of the two.

3.3.5 Tunnels

The tunnel algorithm (Cautun et al., 2018) identifies the largest circles in a 2D tracer cat-

alogue that are empty of tracers. Initially, a Delaunay tessellation with WL peaks as the

vertices is constructed. This produces a tessellation of Delaunay triangles, with a WL peak

at the corner of each triangle, and no WL peaks within the triangles. Each Delaunay trian-

gle is then used to construct its corresponding circumcircle, which is the circle that resides

directly on top of the Delaunay triangle, with the three vertices of the triangle falling on the

circumcircle’s circumference. This unique tessellation, by definition, produces circles which

do not enclose any WL peaks. To avoid highly overlapping objects, we discard any tunnels

whose centres reside within a larger tunnel.

3.3.6 Visualisation

Fig. 3.2 shows a visualisation of each of the void finders studied in this Chapter. The eight

panels in the top section (1A – 1H) show results for WL maps without GSN and the eight

panels in the bottom section (2A – 2H) are results for WL maps with GSN. Each panel

corresponds to a different void finder, apart from the first panels of each section (panel 1A

and 2A) which show only the WL convergence field for reference. Only the central 6×6 deg2

of one of the maps are shown, to avoid over crowding whilst still displaying a fair sample of

each void catalogue. The results shown here are for a smoothing scale of θs = 2.5 arcmin and
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Figure 3.2: A visualisation of the weak lensing void finders discussed in this Chapter. The
convergence field is shown by the background colour map in each panel, with the convergence
values illustrated by the colour-bar at the top of the figure. Here the brightest (orange)
colours correspond to high κ values and the darkest (purple) colours show low κ regions.
The results presented here are for a Gaussian smoothing scale, θs = 2.5 arcmin. The top
eight panels are for WL maps with no GSN (1A to 1H), and the bottom eight panels are for
WL maps with GSN (2A to 2H). Panels 1A and 2A show only the convergence fields as a
reference point. The panels 1B to 1E and 2B to 2E show voids identified in the convergence
field and correspond to: WVF, troughs and SVF applied to the κ field, and minima. The
remaining panels (1F to 1H and 2F to 2H) show voids identified using WL peaks with height,
ν > 2, and correspond to: tunnels, troughs and SVF applied to the peak distribution. Only
the central 6× 6 deg2 of the convergence maps are shown to avoid overcrowding.
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for peak catalogues with WL peak heights of ν > 2 (where applicable). The top row of each

section (panels 1A - 1D and 2A - 2D) corresponds to voids identified in the WL convergence

maps and the bottom rows (panels 1E - 1H and 2E - 2H) corresponds to voids identified

in the WL peak distribution. The WL peaks are shown by the green points, while the WL

minima are shown by the cyan points.

Panels 1B and 2B of Fig. 3.2 shows the WVF voids identified in the WL convergence map.

These voids tend to avoid the more overdense patches of the convergence map, since these

more overdense regions reside at the watershed basin boundaries. The WVF voids occupy

most of the area of the WL convergence map, which is due to every pixel within the map

being assigned to a watershed basin. In some cases, the largest voids enclose smaller voids,

as can be seen towards the top left of Panel 1B. The overlap is an artefact of illustrating

the WVF as circles when actually these voids have highly non-circular and non-overlapping

shapes (e.g. see Platen et al., 2007; Cautun et al., 2016). By adding GSN, the size of the

WVF voids is reduced and their abundance is increased.

Troughs identified directly on the convergence map are shown in Panels 1C and 2C, where

it can be seen that these troughs trace only the most underdense regions of the convergence

maps, which is by construction. The consequence of this algorithm is that many troughs

significantly (or nearly entirely) overlap with other troughs, with very few troughs existing in

isolation from other troughs. This will lead to highly correlated information in the statistics

describing these troughs, as will be seen in their correlation matrices in Appendix .1. Panel

2C shows how adding GSN can change the spatial distribution of the troughs, although the

degree of overlap between neighbouring troughs remains similar to the no-GSN case in panel

1C.

Panels 1D and 2D show the SVF voids identified in the convergence field. As can be seen there,

the abundance of these voids is significantly lower compared to void catalogues from other

algorithms, and more small voids are generated. However, these voids trace the underdensities

of the convergence map reasonably well, as can be seen by their dark interiors. There are

more voids in panel 2D, indicating that GSN increases the abundance of these voids.

The WL minima are displayed in Panels 1E and 2E. We remind the reader that we only

study underdense minima, i.e., ν < 0, and so only these minima are shown in the figure.

These panels illustrate that the WL minima are slightly different from the typical WL void

definition used in this Chapter, since they have no size or radius, which has the advantage of

simplicity. In later sections we’ll discuss the abundance of WL minima as a function of their
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amplitude, rather than as a function of their size, and the abundance of WL minima has

been shown to provide complementary cosmological information to the WL peak abundance

(Coulton et al., 2019b). We also discuss, for the first time, the potential for the radial lensing

profiles of WL minima to be used in a cosmological analysis. There are more WL minima in

panel 2E compared to 1E, indicating that there are more spurious minima created by GSN

than physical minima removed by GSN.

A visualisation of the tunnel algorithm is shown in Panels 1F and 2F. The WL peaks used

to identify the tunnels are shown by the green points, highlighting that the tunnels do not

enclose any WL peaks, and that the peaks only reside on the void boundaries. Like the WVF,

the tunnels occupy most of the area of the convergence map, however the tunnel algorithm

identifies a wider range of void sizes, producing more large voids than those identified in the

convergence maps. Smaller tunnels tend to cluster more than the larger ones, with the former

appearing more in the overdense parts of the convergence map. Also similar to the WVF

voids, panel 2F contains more tunnels which are on average smaller than the tunnels in panel

1F. This is because the spurious WL peaks created by GSN break up the larger tunnels in

panel 1F into the multiple smaller tunnels seen in panel 2F.

Panels 1G and 2G show the troughs identified in the WL peak distribution. The troughs

identified in this way still have a significant degree of overlap, however the overlap in this case

is much weaker than for the troughs identified in the convergence maps. There are underdense

patches in which no troughs have been placed, whilst many overlapping troughs can be seen

in other regions. This highlights the inefficiency of the trough algorithm when applied to

a WL peak distribution. This may be solved by increasing the number of troughs that are

placed, however this will also increase the number of significantly overlapping troughs. As

with the troughs applied to the convergence map, the troughs identified in the WL peak

distribution trace different regions of the WL maps when GSN is added, and the degree of

overlap between neighbouring troughs appears similar in both panels 1G and 2G.

Finally, Panels 1H and 2H show the SVF voids identified in the WL peak distribution. This

algorithm produces the largest voids of all void finders and, similar to the WVF and tunnel

algorithms, populates most of the area of the convergence map with voids. Also similar to

the tunnels, the largest voids are in underdense regions and the smaller voids cluster in the

overdense patches. It is interesting to note that in some cases, the tunnels and SVF identify

the same voids in the WL peak distribution, as can be seen towards the top left of panels 1F

and 1H. Panel 2H shows that the SVF voids identified in the WL peak distribution respond
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to GSN in the same way as tunnels and WVF, where these voids become smaller and more

abundant in the presence of GSN.

3.4 Void statistics

In this section we discuss the statistics of each of the seven void populations analysed here and

study how the physical signal is affected by GSN in each case. We also investigate the impact

of varying the smoothing scale to quantify how this mitigates the impact of GSN. For each

void type we present the abundance, convergence profiles and tangential shear profiles. Then,

in Section 3.5, we will compare the different void populations and investigate which type of

void is least affected by GSN while giving rise to the strongest tangential shear signature.

3.4.1 Minima

Fig. 3.3 shows the statistics of the WL minima depicted in Panels 1E and 2E of Fig. 3.2 with

and without GSN (dashed and solid lines respectively) for three smoothing scales, 1, 2.5 and

5 arcmin (blue, orange and green respectively).

The top panel shows the differential WL minima abundance as a function of amplitude κ.

The distribution peaks at κ ∼ −0.01, with the peak shifting closer to 0 as the smoothing

scale increases. The distributions are also positively skewed, highlighting the non-Gaussian

properties of WL minima. When GSN is included, the abundance of minima is significantly

contaminated, especially for small smoothing scales. For θs = 1 arcmin, GSN introduces a

large amount of spurious negative minima, while minima with such low negative amplitudes

do not exist in the no GSN case. This is shown by the steep cutoff at κ = −0.03 for the no

GSN case, while the minima abundance is still steadily decreasing below κ = −0.03 in the

GSN-added case. A non negligible amount of spurious positive minima are also added by

GSN, however this affect is less extreme than for negative minima. The creation of spurious

minima due to GSN is suppressed as the smoothing scale increases, however even with θs = 5

arcmin, there is still a noticeable amount of spurious negative minima. For each smoothing

scale it can be seen that the WL minima are significantly more impacted by GSN than WL

peaks by comparing with the right panel of Fig. 3.1.

Lensing profiles are calculated from minima with amplitudes κ < 0, as indicated by the shaded

grey region in the top panel. The middle panel shows the mean stacked radial convergence

profiles around the WL minima out to 12 arcmin. For θs = 1 arcmin, by comparing the blue
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Figure 3.3: The statistics describing the properties of WL minima depicted in panel E of
Fig. 3.2. Solid lines show the properties of WL minima identified in WL maps with no GSN,
while dashed lines show the properties of WL minima identified in WL maps with GSN.
Different colours correspond to different smoothing scales applied to the convergence maps
before identifying the minima, with blue, orange and green for θs = 1, 2.5 and 5 arcmin
respectively. One sigma standard error bars corresponding to the uncertainties associated to
our analysis (which makes use of a 19200 deg2 sky area) are given by the shaded coloured
regions around each curve, however in most cases these error bars are a similar thickness
to the curves. The top panel shows the WL minima abundance as a function of their WL
convergence amplitude κ, and the shaded grey region indicates the minima that are used to
calculate the lensing profiles. The middle panel shows the radial WL convergence profiles
of the WL minima out to 12 arcmin, and the bottom panel shows the corresponding WL
tangential shear profiles. The lower sub-panel in the top (bottom) panel shows the relative
(absolute) difference between the minimum abundances (tangential shear profiles) measured
in WL maps with and without GSN.
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solid and dashed lines, it can be seen that the addition of GSN artificially boosts the depth

of the convergence profile at r ∼ 0 by over a factor of 3. This is caused by the creation of a

significant number of spurious minima with unphysically deep negative κ values, as shown by

the minima abundance in the top panel. For the GSN case, the minima convergence profile

briefly becomes positive between ∼ 1.5 and 3 arcmin, which is possibly due to the creation

of spurious (negative) minima in local overdensities from GSN. In contrast, for the no GSN

case, the convergence profile gradually approaches the mean background value of κ = 0. For

larger smoothing scales, similar behaviour is still present, with the κ amplitude at r = 0 still

artificially boosted by GSN, however this boost decreases with increasing smoothing scale.

The bottom panel shows the tangential shear profiles around the WL minima, γt(r), cal-

culated from κ(r) using Eq. (1.2.12). As the smoothing scale increases, the peak of the

tangential shear profile moves to outer radii, whereas the inclusion of GSN shifts the peak to

inner radii relative to the no GSN case. The difference in amplitude between the no GSN and

GSN cases for the tangential shear profiles is smaller than for the convergence profiles, but

significant contamination due to GSN still remains. For the no GSN maps, the height of the

peak of the tangential shear profiles is somewhat insensitive to the smoothing scale, whilst

increasing θs quickly suppresses the peak in the tangential shear profiles for the GSN-added

maps.

These statistics in Fig. 3.3 show that the WL minima are significantly affected by GSN and

are more susceptible to GSN than WL peaks.

3.4.2 Troughs in the convergence map

Fig. 3.4 shows the statistics of troughs identified directly in the convergence field. The top row

shows the probability distribution function (PDF) of the mean enclosed convergence within

all randomly placed circles, and the three columns (from left to right) are for trough radius

Rv equal to 10, 20 and 30 arcmin respectively. The shaded grey regions show the circles with

a mean enclosed convergence in the bottom 20% of all circles, which are the troughs that are

used to calculate the trough lensing profiles. For a fixed trough radius, the κ value above

which circles are discarded depends on the smoothing scale and whether or not the WL maps

include GSN. For simplicity the shaded grey regions shown here are for θs = 2.5 arcmin in

WL maps without GSN.

Increasing the smoothing scale θs decreases the width of the PDFs, and improves the agree-

ment between the no GSN and GSN maps. As with the minima abundances, the largest
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Figure 3.4: The statistics describing troughs identified directly in the convergence field. For
the meaning of line colours and line types see the legend and, for more details, the caption
of Figure 3.3. The top row shows the PDF of the mean enclosed convergence within all
randomly placed circles. The shaded grey region indicates the circles we define as troughs,
that is the ones with a mean enclosed convergence in the bottom 20% of all circles (here
we show the threshold for maps without GSN and for θs = 2.5 arcmin; the exact threshold
depends slightly on smoothing scale and if GSN is included). The middle row shows the mean
convergence profiles and the bottom row shows the mean tangential shear profiles. The three
columns correspond to troughs of different sizes: 10 (left), 20 (centre) and 30 (right) arcmin.
The lower sub-panels in the top (bottom) row shows the relative (absolute) difference between
the trough κ PDFs (tangential shear profiles) measured in WL maps with and without GSN.
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differences between the no GSN and GSN maps are found at the negative-κ regions of the

PDF. As the trough radius increases, the agreement between the no GSN and GSN maps

improves, and so does the agreement between different smoothing scales. These PDFs are all

positively skewed indicating that the troughs identify more underdense regions than overdense

regions.

The middle row shows the mean stacked convergence profiles of the troughs for different radii.

The troughs have very underdense centres, and κ gradually increases with r. This increase

gets sharper near r = Rv and then slows down further outside the trough radius. The depth of

the convergence profiles is larger for the GSN maps, and the smoothing scale has a relatively

small impact. As the trough radius increases, the overall depth of the convergence profiles

decreases, however the shapes of the convergence profiles remain the same. The impact of

GSN on the convergence profile decreases with Rv, with the case Rv = 30 arcmin showing

little difference between the GSN and no GSN cases.

The bottom row shows the tangential shear profiles of troughs, which are characterised by

a maximum amplitude that is roughly an order of magnitude smaller than that of the WL

minima. The inclusion of GSN has little impact on the trough tangential shear profiles for

r . Rv (especially for the 20 and 30 arcmin troughs). At larger distances, GSN leads to an

increase in tangential shear which persists even up to r = 2Rv. The difference between the

maximum tangential shear amplitude for the no GSN and GSN maps is very small relative

to the same feature in the WL minima. The difference between the no GSN and GSN maps

is somewhat insensitive to the smoothing scale, and depends more strongly on the trough

radius. As the trough radius increases, the amplitude of the tangential shear profiles decreases

slightly and so does the difference between the no GSN and GSN maps.

The statistics describing the troughs identified directly in the convergence maps are signifi-

cantly less contaminated by the inclusion of GSN than the WL minima. However, the overall

amplitude of the tangential shear profile of troughs is also significantly lower, which, as we

shall see in Section 3.5, implies that we need a larger survey to measure trough profiles with

the same SNR as the minima profiles.

3.4.3 Troughs in the peak distribution

We next study the troughs identified in the distribution of WL peaks. Before identifying

troughs, we first remove all peaks below a predetermined ν threshold from the peak catalogue.

This reduces the impact of GSN by discarding peaks with low height. This approach adds
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Figure 3.5: The statistics for troughs identified in the distribution of WL peaks. For the
meanings of line colours and line types see the legend and, for more details, the caption of
Figure 3.3. The top row shows the PDF of the mean enclosed convergence within the troughs,
the middle row shows the mean convergence profiles of the troughs and the bottom row shows
the mean tangential shear profiles of the troughs. All results shown here are for a fixed trough
size of r = 30 arcmin. We identify troughs using only the high WL peaks and we show results
for two peak height selections: ν > 2 (left column) and ν > 4 (right column). The lower sub-
panel in the top (bottom) panel shows the relative (absolute) difference between the trough
κ PDFs (tangential shear profiles) measured in WL maps with and without GSN.
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another free parameter to the void identification process compared to troughs identified in

the convergence field, the ν threshold for peak heights. In Fig. 3.5, we present results for two

ν thresholds, ν > 2 and ν > 4, to test the impact of this threshold on the resulting trough

statistics. To improve clarity, in Fig. 3.5 all results are presented for a fixed trough size

of Rv = 30 arcmin, which is chosen because it is the trough radius at which results for the

troughs agree best between the no GSN and GSN maps.

The top row of Fig. 3.5 shows the PDFs of the mean enclosed convergence for troughs iden-

tified from WL peak catalogues with heights ν > 2 and ν > 4. Note that this is the trough

PDF, which is calculated after the randomly placed circles with κ(< Rv) in the top 80%

are discarded, unlike in Fig. 3.4. Away from the peak of the PDF, the results from the no

GSN and GSN maps disagree for all smoothing scales for both peak thresholds. However,

the agreement between the no GSN and GSN maps is good near the positive-κ end of the

PDF for all smoothing scales in the ν > 4 catalogue. For the ν > 2 catalogue, the PDFs are

positively skewed, indicating that the trough algorithm is preferentially selecting underdense

regions, however for the ν > 4 catalogues the PDFs are more symmetric. This is due to the

sparsity of tracers at this threshold, where the low number density of WL peaks implies that

the ν > 4 catalogue does not give an accurate representation of the underlying convergence

field since, for example, many overdense regions of the convergence map do not have peaks

with ν > 4. Despite this, the maximum of the PDF is still below zero indicating that we

predominantly select underdense regions.

The middle row shows the radial convergence profiles of the troughs identified in the WL

peak distribution. These profiles have a similar shape to those of the troughs identified in the

WL convergence maps. For the ν > 2 catalogue, agreement between the no GSN and GSN

maps improves as the smoothing scale increases, and the two convergence profiles are within

the one sigma standard error for θs = 5 arcmin. Here, the overall depth of the convergence

profiles also decreases with increasing smoothing scale. However, for the ν > 4 catalogues,

increasing the smoothing scale only slightly improves the agreement between the no GSN and

GSN maps, and there is no trend between smoothing scale and convergence profile depth,

since θs = 2.5 arcmin produces the deepest convergence profile. This is due to the sparsity

of WL peaks for ν > 4, which results in the troughs more randomly tracing the underlying

convergence field when compared to a lower ν threshold. This is evident from the fact that

the convergence profiles are not as deep in the ν > 4 catalogue when compared to the ν > 2

catalogue.
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The bottom row shows the radial tangential shear profiles of the troughs identified in the

WL peak distribution. For all smoothing scales and both the no GSN and the GSN maps,

the tangential shear profiles agree with each other reasonably well below r = Rv, for both ν

thresholds. This is due to the consistent shape of the convergence profiles (with only constant

shifts with respect to each other) in all cases, which is the main feature that the tangential

shear profile is sensitive to. The tangential shear profiles peak at r ∼ 1.2Rv, which is where

results from the different smoothing scales separate. The difference between the no GSN maps

and the GSN maps is largest at the peak of the tangential shear, and slowly reduces out to

larger radii. These tangential shear profiles are also noisier than for other void finders – this

is due to the larger scatter in the locations of the troughs identified in the peak distribution,

as can be seen in Panel G of Fig. 3.2, which results in a larger scatter of convergence profiles.

Compared to troughs found directly in the κ map, troughs identified using peaks have tan-

gential shear profiles that have slightly lower amplitudes, however the agreement between the

no GSN and GSN cases is better, which is a consequence of the fact that the WL peaks are

less affected by GSN than the convergence field in the low κ regions of the WL map.

3.4.4 WVF voids

Fig. 3.6 shows the properties of the WVF voids. The top panel shows the differential void

abundance as a function of void radius Rv. For the smallest smoothing scale, the largest void

that is identified is 0.2 deg, and as the smoothing scale increases the sizes of the voids also

increases, which also reduces the total number of voids. The size distributions of the voids are

significantly different between the no GSN and GSN maps, where including GSN increases

the total number of voids and reduces their size. This is due to GSN adding spurious features

to the convergence field such as artificial ridges and minima, which results in the production

of spurious voids. Since the WVF voids fill the entire area of the convergence map, having

more voids implies that the average void size decreases. Even for θs = 5 arcmin, there is

still a disagreement in the size distribution between the no GSN and GSN maps, and this

disagreement is much larger than the one-sigma standard error bars (shown by the shaded

regions around the curves).

The convergence profiles of WVF voids are shown in the middle panel. They have a smooth

shape, with negative convergence values at r = 0, gradually increasing outwards and crossing

κ = 0 at r ∼ 0.7Rv. The convergence profiles continue to smoothly increase until r = Rv,

at which point they start to decrease and return to the mean background value of κ = 0 far
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Figure 3.6: The abundance (top row), and the convergence (middle row) and tangential shear
(bottom row) profiles of WVF voids. For the meanings of line colours and line types see the
legend and, for more details, the caption of Figure 3.3. The lower sub-panel in the top
(bottom) panel shows the relative (absolute) difference between the WVF void abundances
(tangential shear profiles) measured in WL maps with and without GSN.
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outside of the void radius. At r ∼ 1.5Rv some of the void profiles briefly become underdense,

which is because the boundary of each void is also the boundary of one of its neighbours

voids, which has an underdense interior. This feature is exaggerated for the smaller voids

since averages are taken over smaller areas.

In the absence of GSN, the convergence profiles are very similar for different θs values. How-

ever, after adding GSN, the convergence profiles are heavily dependent of the chosen smooth-

ing scale. For θs = 1 arcmin, the addition of GSN significantly reduces the κ value at r ∼ 0,

which is very similar to the behaviour seen in the WL minima convergence profiles. The sim-

ilarity between the two is due to the fact that each watershed basin is connected to a local

minima, which on average resides close to the centre of the void, and GSN produces a large

number of spurious local minima, which can often be deeper than true minima (Fig. 3.3, top

panel). This same feature will be seen in SVF voids found from the κ field below. Further-

more, the amplitude of convergence profile in the positive regions is also boosted by GSN,

which makes the peak at r = Rv significantly higher. The above behaviour occurs because

the boundary of WVF voids consists of ridges in the κ field and positive GSN values can

move and enhance the height of these ridges (the algorithm chooses the highest local ridge

and thus preferentially selects the regions with positive GSN values). This is more apparent

for smaller smoothing scales, where GSN has not been sufficiently suppressed. The differences

between the no GSN and GSN convergence profiles are quickly suppressed with increasing

θs.

The bottom panel shows the tangential shear profiles for the watershed voids, which peak at

r ∼ 0.85Rv and converge to γt ' 0 at large distances. Again, the γt profiles are significantly

boosted by GSN, and quickly converge back to the no GSN counterparts as the smoothing

scale increases. However, visible difference still remains even with θs = 5 arcmin.

3.4.5 SVF in the convergence map

Fig. 3.7 shows the statistics for SVF voids identified directly in the convergence field (SVF κ).

The shape of the void abundance function is different from the other void finders, declining

faster with void radius than for other void types. Additionally, there is no turning point at

the small-radius part of the distribution. For example, the WVF finds few very small voids,

where the abundance of small voids briefly increases as the void radius increases, before the

peak of the distribution. This is not the case for the abundance of SVF κ voids, which does

not reach a peak even at the smallest radii plotted. This is due to the SVF identifying voids
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Figure 3.7: The statistics describing the SVF applied directly to the convergence maps: the
abundance (top row), and the convergence (middle row) and tangential shear (bottom row)
profiles of SVF κ voids. For the meanings of line colours and line types see the legend and,
for more details, the caption of Figure 3.3. The lower sub-panel in the top (bottom) panel
shows the relative (absolute) difference between the SVF-κ void abundances (tangential shear
profiles) measured in WL maps with and without GSN.
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with sizes down to the pixel resolution. As mentioned above, in this Chapter we remove very

small voids by imposing a minimum void size, Rv ≥ 2θs.

The abundance of voids is systematically larger for the GSN maps than the no GSN maps,

for all smoothing scales. In the case of the WVF, GSN increases the abundance of small

voids but decreases the abundance of large voids, due to spurious structures introduced by

GSN splitting the larger voids into smaller objects. For the SVF, the abundance of large

voids is much lower to start with, and the voids populate the convergence maps much more

sparsely, as shown in Panel D of Fig. 3.2. This means that the spurious structures introduced

by GSN contribute less to the degradation of true voids and largely only produce spurious

voids, which is due to the addition of spurious minima from GSN (Fig. 3.3, top panel) which

are the seeds for the SVF κ voids; this can be visibly seen by comparing panels 1D and 2D

in Fig. 3.2. Also, note that the abundance of SVF κ voids decreases for all void radii when

θs increases, which is because the abundance of WL minima decreases with increasing θs, as

shown by the top panel of Fig. 3.3.

The middle panel shows the mean radial convergence profiles of the SVF κ voids. These voids

are very deep at r ∼ 0, similar to the WL minima, and the convergence increases continuously

out to r = 2Rv. Like in the WFV case, the convergence profiles in the no-GSN maps are

somewhat insensitive to the chosen smoothing scale, whereas the depth of the profiles for the

GSN maps is quickly suppressed with increasing θs. The depth of the convergence profiles at

r ∼ 0 is artificially boosted when GSN is included (e.g. by a factor of 3 for θs = 1 arcmin),

which is again due to the creation of spurious minima with very low κ values. However by

r = 0.5Rv the no GSN and GSN maps agree reasonably well, apart from the voids in the

GSN added map for θs = 1 arcmin, whose convergence profile returns to κ = 0 faster than

the other voids.

The bottom panel shows the tangential shear profiles for the SVF κ voids. For all other

void finders, the inclusion of GSN boosts the amplitude of the tangential shear profile, and

in some cases also changes slightly the radius where the signal reaches maximum. For the

SVF κ voids, the γt signal, which is maximal at r ∼ 1.1Rv, is also boosted in the GSN maps

relative to the no GSN maps. But here we find a secondary peak of γt at r/Rv ∼ 0.15, which

is particularly strong for small smoothing scales and when GSN is included. This is due to

the flattening of the κ profile at 0.3 . r/Rv . 0.8 following a steep increase at r/Rv . 0.3.

Such a large inner gradient of the κ profile is due to these voids being centred on local WL

minima, and this is more true in the GSN maps for which many of the SVF void centres
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correspond to spurious WL minima that are typically considerably deeper than the physical

minima, as can be seen from the abundance of WL minima shown in the top panel of Fig. 3.3

(and also the middle panel of Fig. 3.3). These spurious minima, on average, have much lower

κ values than their neighbours that manifests as a strong κ gradient, which explains why the

secondary peak is more pronounced for the case of GSN maps.

The agreement between the tangential shear profiles in the no-GSN maps and the GSN maps

improves slightly as the smoothing scale increases. However, a significant difference remains

even for θs = 5 arcmin, as in the case of WVF voids, highlighting the fact that the impact of

GSN is hard to be completely eliminated for voids identified from the WL convergence map.

3.4.6 SVF in the peak distribution

Fig. 3.8 shows the statistics for SVF voids identified in the WL peak distribution (SVF peak).

The top panel shows the differential void abundance. The SVF peak algorithm identifies the

largest voids of all the void finders studied in this Chapter, with some voids as large as two

degrees in radius. Here larger smoothing scales reduces the total number of voids but creates

larger voids, and including GSN adds spurious small voids and reduces the abundance of large

voids. This is due to the generation of spurious WL peaks from the addition of GSN, where a

higher number density of tracers split large voids into multiple smaller ones. Fewer voids are

detected overall in the ν > 4 catalogue compared to the ν > 2 catalogue, however these voids

are larger than their counterparts in the ν > 2 catalogue. This is again due to the reduced

number density of WL peaks that are used as tracers in the void identification. Apart from

this the abundances of the voids in the two catalogues appear qualitatively similar.

The middle row shows the convergence profile for the SVF peak voids, which are underdense

close to the void centre and overdense near the void boundary. Outside of the void radius

the convergence gradually approaches the background value of κ = 0. The depths of the

void centres and amplitudes at the void radius are boosted in the GSN maps, however the

difference between the void convergence profiles in the no-GSN and GSN added maps is

quickly suppressed as the smoothing scale increases, and at θs = 5 arcmin the difference is

small. The depth close to the void centres and the peak at the void boundary also decrease

when the smoothing scale increases. These voids are less underdense than most of the other

void types.

The bottom row presents the tangential shear profiles for the SVF peak voids. These profiles

have a sharp peak at r = Rv and the amplitude of these peaks is large despite the shallow
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Figure 3.8: The statistics describing the SVF applied to the WL peak distribution: the
abundance (top row), and the convergence (middle row) and tangential shear (bottom row)
profiles of SVF peak voids. For the meanings of line colours and line types see the legend and,
for more details, the caption of Figure 3.3. Each column corresponds to voids identified in a
different WL peak catalogue, ν > 2 on the left and ν > 4 on the right. The lower sub-panel
in the top (bottom) panel shows the relative (absolute) difference between the SVF-peak void
abundances (tangential shear profiles) measured in WL maps with and without GSN.
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convergence profiles near the void centres. This is due to the rapid increase in κ(r) seen in

the range r/Rv ∈ [0.7, 1.0], with the γt(r) amplitude being largest when κ(r) changes rapidly.

This highlights that identifying the deepest underdensities is not the most important criterion

when the tangential shear profile is the observable of main interest. Similar to the other void

finders, the peak of the tangential shear profiles is boosted in the GSN maps, however, as

with the convergence profiles this difference is quickly suppressed as θs increases, with most

of the difference removed with θs = 5 arcmin. The amplitude of the tangential shear profiles

is slightly smaller for the peak catalogue with a larger ν threshold, indicating that it does not

depend strongly on the ν threshold used for WL peak selection. The main difference comes

from the fact that having a higher ν threshold results in fewer voids that, as we shall see in

Section 3.5, means a lower SNR when measuring the shear profiles of these voids for a given

sky area.

3.4.7 Tunnels

Fig. 3.9 shows the statistics of voids identified in the WL peak distribution using the tunnel

algorithm, where the left and right columns correspond to tunnels identified in WL peak

catalogues with heights ν > 2 and ν > 4 respectively. The top row shows the differential

void abundance of the tunnels. The tunnel algorithm also identifies some of the largest voids

studied in this Chapter, although the largest SVF peak voids are larger than the largest

tunnels. Consistent with other void finders, the tunnel algorithm identifies more voids in

total in the maps that include GSN, and fewer large voids. The abundance of the tunnels

decreases, and the size of the tunnels, increases with increasing θs. The differences in the

void abundances between the no-GSN and GSN maps decreases with increasing θs and the

difference becomes small at θs = 5 arcmin.

The middle row shows the tunnel convergence profiles, which have a very similar shape

to that of the SVF peak voids. This is to be expected as in some cases both of these

algorithms identify the same voids. Beyond their similarities, the tunnel algorithm identifies

voids with slightly deeper convergence profiles near the centre and more overdense ridges at

the boundary. This is because the tunnels by definition do not enclose any WL peaks but

instead only have peaks residing at their boundaries, whereas the SVF peak algorithm allows

WL peaks to reside within voids, which can lead to higher κ values inside SVF peak voids

than inside tunnels. Similar to other void types, adding GSN leads to lower κ values at the

tunnel centres and a higher overdensity at the tunnel boundaries. This difference is again
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Figure 3.9: The statistics describing the Tunnels identified in the WL peak distribution: the
abundance (top row), and the convergence (middle row) and tangential shear (bottom row)
profiles of tunnels. For the meanings of line colours and line types see the legend and, for
more details, the caption of Figure 3.3. The left and right columns correspond to tunnels
identified in WL peak catalogues with heights ν > 2 and ν > 4 respectively. The lower sub-
panel in the top (bottom) panel shows the relative (absolute) difference between the tunnel
abundances (tangential shear profiles) measured in WL maps with and without GSN.
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strongly suppressed for θs = 5 arcmin. The tunnels behave similarly to the SVF peak voids

when the ν threshold of the WL peak catalogue is increased, slightly reducing the depth of

κ profiles at the void centre and the peak at the void boundary, whilst the peak becomes

sharper.

The bottom row shows the tangential shear profiles which are qualitatively similar to the

results of SVF peak voids, except that the tunnels have a higher peak at r = Rv. The

difference between the no-GSN and GSN-added maps respond to the chosen smoothing scale

in the same way as the convergence profile, with little difference remaining when θs increases

to 5 arcmin. Changes in the tangential shear in response to increasing the ν threshold are also

the same as in the convergence profiles. Here we note that for the ν > 4 WL peak catalogue,

the convergence and tangential shear profiles for all smoothing scales, and for maps with and

without GSN, are all very similar and follow each other closely, overlapping in some places.

The main difference between the different curves can be seen at the peak of the profiles where

most of the information in terms of SNR is contained (Cautun et al., 2018).

3.5 Comparison of different void definitions

In this section we quantify the relative merit of each void finder. There are many criteria

that one could use to quantify the suitability of a specific void finder for a given purpose

(e.g. see Cautun et al., 2018; Paillas et al., 2019). Here we are interested in a rather general

comparison of the various methods that identify WL voids. We choose to do so by answering

two questions: i) Which void populations are least affected by GSN? and ii) Which void types

have the highest tangential shear signal, as quantified in terms of SNR? These questions are

motivated by the goal of using WL voids to constrain cosmological parameters and alternative

cosmological models. To a first approximation, we expect that the constraints derived from

voids will be maximal when their signal, such as γt profiles, can be measured with low

uncertainties (i.e., high SNR) and when the effects of GSN are minimised (e.g. see Cautun

et al., 2018; Paillas et al., 2019). This might not always be the case as we discuss later on,

but nonetheless is a good starting point for a general comparison.

3.5.1 Impact of GSN

GSN is the leading contribution to noise that contaminates the observed WL signal, and

for this reason it is important to understand how the void finders respond to GSN, before
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the statistics developed here can be used to constrain cosmological parameters. As we saw

in Section 3.4, GSN can lead to the identification of spurious voids and to the breaking of

physical voids into more objects. This could potentially degrade the cosmological information

contained in the statistics of voids, and thus lower the cosmological constraints that can be

inferred using WL voids.

To assess the effect of GSN, we proceed by comparing voids in maps with and without GSN.

Such a test requires us to choose a WL void statistic to measure the impact of GSN. Up

to now, we have studied the abundances and γt profiles with and without GSN, and here

we choose to focus on the tangential shear profile, which will be shown to provide tighter

cosmological constraints, such as when testing modified gravity models in Chapter 5. We

measure the change in the amplitude of the γt signal when GSN is added, as a means to

quantify the impact of GSN on the lensing profile. Typically, for the void γt profiles most of

the cosmological constraining power comes from the bins where the amplitude of the signal

is maximal (e.g., Cai et al., 2015; Barreira et al., 2015; Cautun et al., 2018; Davies et al.,

2019a) and, as such, we measure the impact of GSN at this location.

The left panel of Fig. 3.10 shows the relative difference, |γGSN
t −γno−GSN

t |/|γno−GSN
t |, between

γt in the GSN-added and no-GSN convergence maps, at the radius at which the amplitude of

γt in the no-GSN is maximal (i.e., where γt has the most negative value), for all void finders

studied in this Chapter. Here, lower values correspond to a small relative impact on the γt

amplitude from GSN while large values indicate that GSN is significantly boosting the γt

amplitude (for all void populations studied here, GSN always increases the amplitude of the

γt signal; see Appendix .2 for a discussion of the reason behind that).

We find that GSN has the largest impact on the γt profiles of WL minima. This is due to

the fact that GSN creates more spurious minima than spurious structures in the other void

finders, which is one drawback of the simplicity of the WL minima definition. The boost

from GSN is somewhat decreased for the minima when larger smoothing scales are applied.

However, in many cases the boost to the minima γt profiles from GSN with θs = 5 arcmin

(about 55%) is larger than the γt boost from GSN for other void finders with θs = 1 arcmin.

The γt signal for SVF κ is also boosted by GSN by a similar (relative) amount as the WL

minima, which is due to the minima being used as prospective void centres at the start of

the SVF κ void identification process. For SVF κ the relative difference between the no-GSN

and GSN γt amplitudes is more quickly suppressed by increasing θs than for the WL minima,

reaching ∼ 20% for θs = 5 arcmin. The WVF voids also appear to respond to GSN in a
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Figure 3.10: Comparisons of the seven void populations studied here in terms of the impact
of GSN and in terms of the SNR associated to the tangential shear measurement for a lsst
like survey. Left panel: the relative difference between γt in the GSN-added and no-GSN
convergence maps, at the radius at which the amplitude of γt in the no-GSN maps is highest
(γt is lowest). Right panel: An lsst forecast of the total SNR with which the γt(r) profile
will be measured for each void type. All results in both panels are for all void finders studied
in this Chapter (x-axis). A yellow background indicates results for void finders applied to
the WL peak distribution and a blue background indicates results for void finders applied
directly to the WL convergence maps. Circles correspond to results from voids identified in
WL peak catalogues with ν > 2, triangles are for ν > 4, and squares are from voids identified
directly in convergence maps. Blue, orange and green markers indicate different smoothing
scales, with θs = 1, 2.5 and 5 arcmin, respectively. In the right panel solid markers indicate
results from no GSN maps, and empty markers show results for WL maps with GSN added.
Here we plot troughs with a radius of Rv = 10 and 30 arcmin (labelled as r10′ and r30′,
respectively), to show the impact of changing the trough radius.
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similar way to the WL minima and SVF κ, however the amplitude of the boost due to GSN

is slightly lower. Finally, for all of the void finders applied directly to the convergence maps,

troughs κ appears to be the least impacted by GSN, and they also see the smallest impact on

the agreement between the no-GSN and GSN maps from increasing θs, as can also be seen

in Fig. 3.4.

The void populations that are the least impacted by GSN are those identified in the distri-

bution of WL peaks. This is due to high amplitude WL peaks (Fig. 3.1, right panel) being

more resilient to GSN than underdense regions, i.e., κ < 0, which are the ones determining

most of the properties of voids identified directly in the convergence field.

We find that both the tunnels and SVF peak voids respond to GSN in very similar ways

and that the impact of GSN is reduced for voids identified in peak catalogues with larger ν

thresholds. Finally, the trough peak void finder is the most resilient to GSN of all the methods

that employ WL peaks, however in contrast to the tunnels and SVF peak, the impact of GSN

increases when the ν threshold increases, which is because troughs peak is more sensitive to

tracer sparsity than tunnels and SVF peak.

Both of the trough algorithms are the least impacted by GSN for Rv = 30 arcmin, however

for a trough radius of 10 arcmin, the impacts of GSN on the tangential shear profiles for both

trough peak and trough κ voids becomes worse than tunnels and SVF peak.

3.5.2 The SNR of tangential shear profiles

Next we investigate the signal-to-noise ratio (SNR) with which we can measure the tangential

shear signal of WL voids. Our goal is to assess which void type has the largest SNR since

potentially those voids are the most promising to use for cosmological constraints. For ex-

amples, Cautun et al. (2018) and Paillas et al. (2019) have studied the signature of modified

gravity models in the void population identified using multiple void finders. For 2D voids,

they have found that all methods show roughly equal fractional differences in the void shear

profiles when comparing modified gravity with the standard model, and thus the optimal

void type to constrain such alternative cosmological models is the one in which the γt profile

can be measured with the highest SNR.

We define the SNR with which we can measure the tangential shear profile of voids as:

SNR2 ≡
∑
i,j

γt(i) α Cov−1(i, j) γt(j) , (3.5.1)
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where the sum is over all bins of r/Rv ∈ [0, 2], i and j denote the bins to be summed over,

and Cov−1 is the inverse of the covariance matrix for the tangential shear measurements.

Here γt is the mean tangential shear measured from all voids from all 192 maps used in this

study and α is the Anderson-Hartlap factor (Anderson, 2003; Hartlap et al., 2007) which we

use to compensate for the bias introduced by inverting a noisy covariance matrix. The α

factor is given by

α = N −Nbin − 2
N − 1 , (3.5.2)

where N = 192 is the number of realisations used to calculate the covariance matrix, and

Nbin = 50 is the number of radial bins. We calculate the covariance matrix using the central

10×10 deg2 region of the 192 maps described in Section 3.2. We then rescale the SNR values

by
√
ALSST/A = 13.4 in order to present a forecast for an lsst like survey that has a sky

coverage, ALSST = 18, 000 deg2.

The right panel of Fig. 3.10 shows the SNR (see Eq. (3.5.1)) for the tangential shear profiles

from each void finder we have studied. The coloured symbols indicate the results for the

three smoothing scales we have studied and we present the SNR values for convergence maps

with (open symbols) and without (filled symbols) GSN. This allows us to characterise how

the SNR changes when identifying voids in noisy maps.

For all void types, we find that increasing the θs smoothing length decreases the SNR ratio;

the only exceptions are the troughs peak (Rv = 30 arcmin) and troughs κ voids (Rv = 10

and 30 arcmin), for which the SNR is roughly the same for all three smoothing scales that

we used. For the voids found in the peak distribution, increasing the peak threshold leads to

lower SNR. Thus, the SNR is maximised for small smoothing scales and for peak catalogues

with small ν thresholds.

The right panel of Fig. 3.10 reveals a rather interesting result, which is surprising at first.

All void types (except SVF κ) identified in the maps with GSN show a larger SNR than the

voids found in the map without GSN. This might be counter-intuitive since, as we discussed,

GSN fragments large voids into two or more components and adds spurious objects to the

sample, which potentially reduces the sensitivity of voids to cosmology. The answer is given

by the fact that the SNR we calculate describes how well we can measure the γt signal of a

void and not the amount of cosmological information it contains.

The SNR of WL voids in maps with GSN is higher than for the maps without GSN due to

two factors: i) adding GSN increases the amplitude of the mean γt profile, and ii) it leads

to identifying more voids, as shown in Figs. 3.3-3.9. The change in void shear profiles and
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abundance is an artificial one and it is due to using the same noisy map to identify voids

and calculate their profiles. For example, adding a negative GSN value to a pixel makes it

more likely to be associated to the interior of a void, and, as a result, the interior of voids

is deeper for maps with GSN since it is more likely to contain regions with negative GSN

contributions than positive ones. The opposite holds true for the void boundaries. A pixel

with a positive GSN value is more likely to be identified as part of a void’s edge, and thus

the void boundaries in maps with GSN contain a higher fraction of pixels with positive GSN

values, which artificially boosts the mean κ value at the void boundary. These two effects

lead to an artificially stronger tangential shear profile for voids in GSN maps (for a more

detailed discussion and examples see Appendix .2).

We find that the WL minima tangential shear profiles have the largest SNR both in the no-

GSN maps and the GSN-added maps, which indicates that they are promising cosmological

probes. The WVF has the second highest SNR in the GSN-added maps, but is beaten by SVF

κ in the no-GSN maps. Both of the trough algorithms give the lowest SNR values despite

being the least affected by GSN in the left panel of Fig. 3.10. SVF peak gives reasonable

SNR values, but fares slightly less well in almost all cases than tunnels, which gives SNR

values comparable to the void finders applied directly to the WL convergence maps.

3.5.3 Which void definition is best?

Ideally, the optimal void finder would be the one least affected by GSN while having the

largest SNR for its tangential shear profile. Fig. 3.10 shows that these two requirements

are not compatible: the void finders least affected by GSN (either troughs peak or troughs

κ) have the lowest SNR for γt, while the voids with the highest SNR (WL minima) are

strongly impacted by GSN. The same behaviour is seen when varying the void parameters

studied here. Increasing the κ smoothing length, θs, used to identify voids, while lowering

the impact of GSN, also decreases the SNR for tangential shear. For voids identified in the

peak distribution, increasing the ν threshold used for selecting the peak catalogue mitigates

the effect of GSN, but again reduces the γt SNR. Therefore, there is no clear choice for the

best void finder or the best selection of void finding parameters, such as θs or WL peak ν

threshold.

In general, we find that the void finders that use WL peaks as tracers are less impacted by

GSN, while the void finders applied directly to the WL convergence maps give higher SNR

values. The void finder that generally offers a good compromise between minimal impact
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from GSN and a high SNR value is the tunnel algorithm. It has a γt SNR similar to that of

the SVF and WVF κ field voids finders while being the second least affected by GSN, after

troughs.

We would also like to point out that GSN does not necessarily decrease the amount of

cosmological information contained by a probe, and that in some special circumstances it

can help make this information more easily accessible. For example, this has been pointed

out by Yang et al. (2011), who have shown that the abundance of WL peaks in maps that

include GSN provides better cosmological constraints than for maps without GSN. Yang

et al. have attributed this effect to stochastic resonance, which is a well-studied phenomenon

(Gammaitoni et al., 1998) where a signal in a physical system may be boosted when a source

of noise is added, under certain conditions. The conditions required for stochastic resonance

to take place within a system are: i) a form of a threshold, ii) a weak coherent input, and iii)

a source of noise that adds to the coherent input. From the above it is clear that all three of

these conditions apply to WL peaks as discussed in Yang et al., and hence they also apply

to WL voids. The first requirement for stochastic resonance is a form of threshold, which

in the context of WL voids is the criteria that all void finders identify underdense regions

through one means or another. The second requirement is a weak coherent input, which in

this context is the WL convergence map. The WL map can be considered weakly coherent

because GSN dominates the signal (before smoothing), but contains coherent information due

to physical correlations in the map induced by gravitational collapse. Finally, for stochastic

resonance we require a source of noise that is added to the WL convergence map, which

exactly matches our prescription for modelling GSN.

In the case of WL voids, stochastic resonance occurs because the void finders are designed

to identify underdense regions, or underdense regions enclosed by overdense regions etc..

The inclusion of GSN exaggerates some underdense regions and some overdense regions.

However, since GSN is random and uncorrelated (neglecting higher order effects such as

intrinsic alignment), it could also make some underdense and overdense regions flatter (i.e.,

smoothed out). Because all void finders fulfil a set of criteria when identifying voids, they

will preferentially select the regions that have been exaggerated by GSN and neglect the

regions that have been flattened by GSN. Furthermore, distinct deep voids in the physical

maps (without GSN) are less likely to be removed by GSN, because the physical signal will

dominate the GSN. However less distinct voids that might be missed in the physical maps

have a chance to be randomly boosted by GSN, which will result in their detection in the

GSN-added maps. These are competing factors with the consequence that GSN can affect
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true voids and generate spurious fake voids, though true voids are rarely destroyed by GSN

but instead are most commonly split up into smaller voids (e.g., as discussed with the tunnel

algorithm). It is currently unclear whether or not the boost in SNR from GSN seen in

Fig. 3.10 will translate to improved parameter constraints relative to the case without GSN

(which is unobservable), however we leave this to a future study. For this reason, we have

focused on identifying the void finder that is the least impacted by GSN, whilst still producing

high SNR values.

3.6 Discussion and conclusions

In this Chapter we have presented a comparison of different void finders used to identify WL

voids within WL convergence or peak fields. The void finders discussed in this Chapter are

modified versions of popular void finders that are typically applied to the galaxy distribution.

We have shown how each void finder can be modified such that it can be applied to WL maps

and have discussed the impact of varying each free parameter associated with the void finders

(see Section 3.3). The WL void finders have been split broadly into two classes: i) those that

can identify voids directly in the WL convergence maps, and ii) those that require WL peaks

as tracers in order to define the voids. We have found that both void classes offer useful

information.

We investigate the WL void abundances, convergence profiles and tangential shear profiles

for all void finders (where applicable) in Section 3.4. The average void convergence profile

consists of an underdense region (i.e. κ < 0) for r . Rv (with Rv the void radius), an

overdensity at r ∼ Rv (not present for troughs), followed by a slow convergence to the

background expectation of κ = 0 at large radial distances. This translates into a negative

tangential shear profile for voids, with the amplitude of γt being maximal at r ' Rv. We

found that WL minima and SVF κ produce the deepest (most underdense) convergence

profiles at r = 0, and the γt profiles with the largest amplitudes are produced by tunnels

(without GSN) and WL minima (with GSN).

To differentiate the various void finders, we have studied, for each void type, the impact of

GSN and the SNR with which their tangential shear profiles can be measured in an lsst like

survey. In general, voids identified directly in the convergence field have the highest γt SNR

but are also most severely affected by GSN. The void finders based on the peak distribution

have moderate SNR and are less affected by GSN. Troughs with large sizes are least impacted
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by GSN but are also the ones with the lowest γt SNR. Increasing the smoothing length or

the peak threshold used to identify voids, while it lowers the impact of GSN, also decreases

the SNR with which the void tangential shear profile can be measured. The tunnel algorithm

provides a good compromise between mitigating the impact from GSN and producing objects

with a large γt SNR.

In the later Chapters we will use WL voids to provide cosmological parameter constraints

and investigate how WL void statistics can be used in a manner that is complementary to

constraints from other probes such as WL peaks and the convergence power spectrum. This

will be especially interesting in the context of the Ωm−σ8 degeneracy. Both galaxy voids and

WL peaks have been shown to be able to help break this parameter degeneracy (Nadathur

et al., 2019; Dietrich & Hartlap, 2010; Davies et al., 2019b), and WL voids may offer another

promising avenue to do so.

For parameter constraints, tunnels may prove useful, since we have found it to be the best

WL void finder working in the WL peak distribution, in terms of both large SNR value

and small impact from GSN, followed closely by SVF peaks. The high SNR values from

the WL minima and WVF tangential shear profiles make these WL void definitions viable

candidates for parameter constraints as well. It is possible that void finders applied directly

to the convergence field may be complementary to those that use WL peaks, since they are

sensitive to different aspects of the WL convergence maps when identifying voids.

Additionally, some of the void finders have high SNR values for all smoothing scales studied

here. This makes combining different smoothing scales a possible and potentially useful

approach when applied to cosmological parameter constraints, since it has been shown that

constraints from WL peaks are improved when multiple smoothing scales are used (Liu et al.,

2015). Finally, in this Chapter we discuss the merit of a given WL void in terms of their

tangential shear profiles, however other WL void statistics such as the void abundance and

void correlation functions may also provide useful cosmological information.

When considering the impact of baryons on the WL void statistics, sufficiently large smooth-

ing scales must be used in order to get agreement between hydro simulations and dark matter

only simulations, as is the case with other WL statistics (Weiss et al., 2019). Paillas et al.

(2017) have shown that voids in the LSS are less impacted by baryons, and Coulton et al.

(2019b) have shown that WL minima are more robust to baryons than WL peaks. Therefore,

given that Chang et al. (2018) have also shown that the deepest WL minima correspond

to large supervoids, confirming that the underdense regions of the WL convergence maps
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are due to underdensities along the line of sight, it is reasonable to expect that the WL

voids identified directly in the convergence maps may be more resilient to baryonic physics.

However, the void finders which use WL peaks as tracers will be more affected since WL

peaks are more sensitive to baryons (Osato et al., 2015; Weiss et al., 2019; Coulton et al.,

2019b), and changes to the WL peak distribution could impact the resulting void catalogues.

More detailed studies, potentially with the aid of cosmological hydrodynamic simulations,

are needed to better understand these issues.



Chapter 4

Constraining cosmology with weak

lensing voids

68
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4.1 Introduction

Some of the most recent WL observations that supplement the parameter measurements

from the CMB include the DES (Troxel et al., 2018) 1, HSC (Hikage et al., 2019) 2 and KiDS

(Asgari et al., 2020) 3 WL surveys. However, all of these surveys measure lower values of σ8

compared to Planck, with a statistically significant disagreement arising in the comparison

between the Planck and KiDS constraints. More recent measurements from DES however,

are consistent with the CMB (DES Collaboration et al., 2021). This is one example of the

parameter tensions that have arisen in recent years, where different observations point to

slightly different values of certain cosmological parameters, implying the presence of either

unaccounted for systematics or new physics which are unaccounted for. Another example is

the H0 tension, where multiple observations find that measurements from the early Universe

are broadly inconsistent with those of the late universe (Verde et al., 2019), particularly the

distance scale measurement of H0 based on Cepheids by the SH0ES collaboration (Riess

et al., 2019).

In order to address these parameter tensions, it is important to measure cosmological param-

eters as precisely as possible, by maximising the information that can be extracted from a

given survey. The standard approach for weak lensing surveys is to measure ΛCDM parame-

ters with two-point statistics such as the shear-shear correlation function or the convergence

power spectrum (Schneider et al., 2002; Semboloni et al., 2006; Hoekstra et al., 2006; Fu et al.,

2008; Heymans et al., 2012; Kilbinger et al., 2013; Hildebrandt et al., 2017; Troxel et al., 2018;

Hikage et al., 2019; Aihara et al., 2019; Asgari et al., 2020). However, two-point statistics

do not capture non-Gaussian information, and weak lensing data are highly non-Gaussian

due to the non-linear evolution of the Universe. To address this loss, many complementary

statistics have been developed, which encapsulate information beyond two-point statistics.

A common and popular example is the abundance of WL peaks, which has been shown to

be complementary to the two-point function and helps break the Ωm-σ8 parameter degen-

eracy (Jain & Van Waerbeke, 2000; Pen et al., 2003; Dietrich & Hartlap, 2010). Peaks are

also shown to outperform the standard methods for constraining the sum of neutrino mass

(Li et al., 2019) and w0 Martinet et al. (2020). By including complementary statistics, the

measurement errors on cosmological parameters can be reduced, which will help inform the

1https://www.darkenergysurvey.org/
2https://hsc.mtk.nao.ac.jp/ssp/
3http://kids.strw.leidenuniv.nl/

https://www.darkenergysurvey.org/
https://hsc.mtk.nao.ac.jp/ssp/
http://kids.strw.leidenuniv.nl/
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statistical significance of any parameter tensions between multiple observations.

The goal of this Chapter is to present parameter constraint forecasts for one such comple-

mentary probe, WL voids. Voids are typically identified within the full 3D distribution of

matter as regions of low matter density or low tracer density, for which void statistics such

as their abundance, radial profiles and shapes contain useful non-Gaussian information (see,

e.g., White, 1979; Fry, 1986; Lee & Park, 2009; Biswas et al., 2010; Bos et al., 2012; Lavaux

& Wandelt, 2012; Jennings et al., 2013; Hamaus et al., 2014). Most studies use galaxy voids,

which are identified as underdense regions in the galaxy distribution (e.g., Pan et al., 2012;

Paz et al., 2013; Sutter et al., 2014; Cautun et al., 2016; Nadathur, 2016; Mao et al., 2017;

Pollina et al., 2019; Hamaus et al., 2020; Aubert et al., 2020), where galaxy void statistics are

complementary to the galaxy power spectrum and baryonic acoustic oscillations (e.g., Pisani

et al., 2015; Hamaus et al., 2016; Nadathur et al., 2019). Recently, void WL profiles have also

been shown to be a powerful cosmological probe (see, e.g., Melchior et al., 2014; Clampitt &

Jain, 2015; Cai et al., 2015; Barreira et al., 2015; Gruen et al., 2016; Barreira et al., 2017;

Falck et al., 2018; Baker et al., 2018; Fang et al., 2019).

While less explored compared with 3D voids, voids can also be identified in projection, such

as in the projected galaxy distribution (e.g. Gruen et al., 2015; Barreira et al., 2017; Sánchez

et al., 2017; Cautun et al., 2018) or in a weak lensing map (e.g. Davies et al., 2018; Coulton

et al., 2019b). Here, we follow the latter approach and define WL voids generally as 2D

regions within WL convergence maps that contain low convergence or few to no tracers. In a

previous Chapter, we have shown that the lensing profiles of WL voids identified directly in

WL convergence maps can be measured with a larger signal-to-noise ratio (SNR) than those of

galaxy voids. This is because WL voids correspond to deeper underdensities projected along

the line of sight than galaxy voids, and hence they have larger tangential shear profiles. The

higher signal-to-noise ratio from WL voids also means that they are better at distinguishing

between cosmological models in terms of the signal-to-noise ratio, such as modified gravity

models, than galaxy voids as we will see in Chapter 5. Additionally, compared to other WL

statistics, WL voids are less affected by baryonic physics (Coulton et al., 2019b).

In this Chapter we use the cosmo-SLICS simulation suite (Harnois-Déraps et al., 2019) to

identify a particular class of WL voids, the tunnels, for a range of cosmological parameters.

We use this data to train a Gaussian process regression emulator, which, combined with

Markov chain Monte Carlo, allows us to generate likelihood contours and provide forecast

parameter constraints for an lsst-like survey.
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The tunnel algorithm we use here is one possible choice of WL void finder. In fact, similar to

voids identified in the galaxy distribution (e.g. Colberg et al., 2008; Cautun et al., 2018; Baker

et al., 2019), there are several void finding methods that have been successfully applied to

WL maps. For example, in Chapter 3 we have carried out a detailed analysis on the impact

that varying the WL void definition might have on the resulting WL void statistics. It

showed that the ‘tunnel’ void finding algorithm offers a great trade off between maximising

the observable tangential shear profile SNR and minimising the impact of observational noise

on the void statistics. Therefore, we limit our analysis to only tunnels, and we defer a more

detailed study comparing the parameter constraining powers of different void finders to a

future work. For galaxy voids, studies have shown that combining different void definitions

can lead to improved cosmological constraints (e.g. Paillas et al., 2019).

The layout of the Chapter is as follows. In Section 4.2 we describe our mock observational

data, emulation and likelihood analysis pipeline and void finding algorithm. In Section 4.3

we present the WL void statistics used in our analysis and in Section 4.4 we present our

parameter constraint forecasts. Finally we conclude in Section 4.5. For completeness, we also

have three appendices where we study respectively the accuracy of our emulator, the impact

of varying the smoothing scale of WL maps, and present the covariance matrix used in our

analysis.

4.2 Methodology

In this section we describe the methodology followed in this Chapter, including the simula-

tions, mock lensing data, emulation, likelihood analysis and the weak lensing void (tunnels)

finding algorithm.

The goal of this Chapter is to present the maximum constraining power that can be achieved

with WL voids, in order to motivate further development such as theoretical models and

dealing with observational systematics, all of which will be studied in a future work. We note

that (Harnois-Déraps et al., 2020) present a methodology for using the emulated WL peak

abundance to constrain cosmological parameters from the DES year 1 data whilst accounting

for observational systematics, and that this approach can be generalised to any non-Gaussian

statistic, which would be appropriate for future WL void studies.
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4.2.1 Mock Data

In this Chapter we use mock WL convergence maps generated from the cosmo-SLICS and

SLICS simulation suites (Harnois-Déraps & van Waerbeke, 2015; Harnois-Déraps et al., 2018,

2019), which we briefly outline in this subsection.

The cosmo-SLICS suite is a set of N-body dark-matter-only simulations run for 26 cosmology

nodes in the [Ωm, S8, h, w0] parameter space. Here Ωm is the matter density parameter today,

S8 = σ8(Ωm/0.3)0.5, h = H0/100kms−1 Mpc−1 is the reduced Hubble constant, and w0 is

the dark energy equation of state parameter, which is assumed to be a constant. The σ8

parameter is the present-day root-mean-squared matter density perturbation smoothed on

8h−1 Mpc scales.

The four dimensional parameter space is sampled using a Latin hypercube, which is a sam-

pling algorithm designed to give a high interpolation accuracy for a low node count. The

exact cosmological parameter space that is modelled by each simulation node is shown in

Fig. 4.1. At each node, a carefully-designed pair of simulations are run, for which sampling

variance is highly suppressed. This is achieved by selecting a pair of initial conditions out of

a large number of random realisations, such that the mean matter power spectrum closely

matches the ensemble average. The random phases of this pair of initial conditions are used

for all cosmology nodes. The simulation volume is a cube with length L = 505 h−1Mpc, with

N = 15363 dark matter particles.

For each node, 50 pseudo-independent light-cones are constructed by resampling projected

mass sheets, which are then ray-traced under Born approximation to construct lensing maps

and catalogues (see Harnois-Déraps et al., 2019, for full details about the light-cone and

catalogue construction).

We use the cosmo-SLICS source catalogue down-sampled to match lsst specifications with a

source redshift distribution of zs = [0.6, 1.4], which gives a conservative source galaxy number

density of 20 arcmin−2. From this we generate 50 WL convergence maps for each of the 26

cosmology nodes, with a sky coverage of 10×10 deg2 each and pixel grid of dimensions 36002

(Giblin et al., 2018). These maps are smoothed with a Gaussian filter with smoothing scale

θs = 1 arcmin.

For estimates of the covariance matrices, we use the SLICS suite to produce 615 WL conver-

gence maps at the fiducial cosmology, which match the properties of the cosmo-SLICS maps.

However, unlike the cosmo-SLICS maps, the SLICS maps are fully independent which allows
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Figure 4.1: The four dimensional parameter space ([Ωm, S8, h, w0]) sampled by the cosmo-
SLICS simulation suite. The fiducial cosmology is indicated by a star with parameter values
[0.29, 0.82, 0.69, −1.00]. We have highlighted two additional nodes with blue ([0.48, 0.68,
0.64, −0.77]) and red ([0.17, 0.86, 0.79, −1.69]) stars, which are selected as nodes in separate
regions of the parameter space, used to exemplify the behavior of WL voids as a function of
cosmological parameters.
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us to completely capture the sample variance of the probes studied in this Chapter. Addi-

tionally, the larger number of SLICS realisations relative to cosmo-SLICS allows for larger

data vectors in the likelihood analysis when measuring and combining probes.

4.2.2 Emulation and likelihood analysis

In this subsection, we outline the procedure used to test the sensitivity of WL void statistics

to the cosmological parameters Ωm, S8, h and w0.

The first step is to measure the WL void statistics from the 50 convergence maps for each of

the 26 cosmo-SLICS cosmologies shown in Fig. 4.1. Then, in order to make predictions of

the WL void statistics at arbitrary points in the 4D parameter space shown in Fig. 4.1, we

use a Gaussian process (GP) regression emulator from scikit-learn (Pedregosa et al., 2011)

to interpolate the void statistics between nodes. GP regression is a non-parametric Bayesian

machine learning algorithm used to make probabilistic predictions that are consistent with

the training data (see, e.g., Habib et al., 2007; Schneider et al., 2008, for some of its early

applications in cosmology). The emulator requires the training data to sample the parameter

space sufficiently, and generally the accuracy of the emulator is limited by the availability

of training data. The accuracy of the GP emulator trained on cosmo-SLICS was tested

extensively and found to yield few per cent accuracy in its predictions of weak lensing two-

point correlation functions (Harnois-Déraps et al., 2019), density split statistics (Burger et al.,

2020) persistent homology statistics Heydenreich et al. (2020) and aperture mass statistics

(Martinet et al., 2020). In this Chapter the average void statistics and their standard errors

at each node are used as the training data for the emulator. We present results showing the

accuracy of the emulator in Appendix .3.

Finally, once the emulator has been trained we use Monte Carlo Markov Chain (MCMC)

to estimate the posteriors of the parameters for the entire parameter space and produce

likelihood contours. We use the emcee python package (Foreman-Mackey et al., 2013) to

conduct the MCMC analysis in this Chapter sampling the 4D parameter space as follows.

We employ a Bayesian formalism, in which the likelihood, P (ppp|ddd), of the set of cosmological

parameters ppp = [Ωm, S8, h, w0] given a data set ddd, is given, according to Bayes’ theorem, by

P (ppp|ddd) = P (ppp)P (ddd|ppp)
P (ddd) , (4.2.1)

where P (ppp) is the prior, P (ddd|ppp) is the likelihood of the data conditional on the parameters,

and P (ddd) is the normalisation. In our analysis we use flat priors with upper and lower limits
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respectively for Ωm: [0.10, 0.55], S8: [0.61, 0.89], h: [0.60, 0.81], w0: [-1.99, -0.52]. These

priors match the parameter space sampled by the nodes in Fig. 4.1.

The log likelihood can be expressed as

log(P (ddd|ppp)) = −1
2 [ddd− µ(ppp)]C−1 [ddd− µ(ppp)] , (4.2.2)

where µ(ppp) is the prediction generated by the emulator for a set of parameters ppp, and C−1 is

the inverse covariance matrix. In practice we use the emulator’s prediction of a statistic at the

fiducial cosmology as the data ddd. This choice is for presentation purposes since it ensures that

the confidence intervals are always centred on the true values of the cosmological parameters

and thus allows for easier comparisons between multiple probes.

The likelihood returns a 4D probability distribution that indicates how well different regions

of the parameter space describe the input data ddd. Note that in Eq. (4.2.2) we have assumed

that the covariance matrix does not vary with a change in the cosmological parameters.

We calculate the covariance matrices from the 615 WL map realisations from the SLICS suite

which match the fiducial cosmology, and divide it by a factor of 180 in order to rescale the

covariance matrix from a 100 deg2 area to the lsst survey area, which we take as 18, 000

deg2. The joint covariance matrix for all probes studied in this Chapter is presented appendix

.5. We also multiply the inverse covariance matrix by a factor α, which accounts for the bias

that is present when inverting a noisy covariance matrix (Anderson, 2003; Hartlap et al.,

2007), given by:

α = N −Nbin − 2
N − 1 , (4.2.3)

where N = 615 is the number of weak lensing maps that have been used to calculate the

covariance matrix and Nbin is the number of bins for which the statistic is computed. We note

however that Sellentin & Heavens (2016) present an alternative approach to robustly account

for the uncertainty in the estimated covariance, via a student-t likelihood distribution.

4.2.3 The tunnel algorithm

To identify WL voids, we use the tunnel algorithm initially proposed in Cautun et al. (2018),

which identifies the largest circles in a 2D tracer catalogue that are empty of tracers. We

choose to use this void finding algorithm since, compared with several other common 2D void

finders, it gives void lensing profiles with high SNR, whilst also being least affected by the

observational noises associated with weak lensing measurements, such as galaxy shape noise
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Figure 4.2: (Colour Online) A visualisation of WL peaks (green points) used to identify the
tunnels (white circles) in the WL convergence maps (colour map) for the ν > 2 catalogues.
The left panel shows tunnels for the fiducial cosmology, while the middle and right panels
show tunnels for the blue and red cosmologies highlighted in Fig. 4.1 respectively. The colour
bar on the right indicates the convergence field in units of ν = κ/σGSN.

(Chapter 3). The tunnel algorithm requires an input tracer catalogue to identify voids. For

the identification of WL voids, we use WL peaks as tracers of the underlying convergence

field (this avoids the necessity to have a synthetic 2D galaxy map for this analysis). Here we

define WL peaks as local maxima in the WL convergence map as in Eq. (1.2.14).

To identify tunnels, we first construct a Delaunay triangulation of the tracers (WL peaks).

This produces a unique tessellation of the map with triangles, where each vertex is a tracer and

the tessellated triangles enclose no tracers. From each triangle, a corresponding circumcircle

can be defined, which is a circle that is directly on top of its Delaunay triangle with all

vertices of the latter residing on the circumcircle’s circumference. This tessellation is unique,

and by definition gives circles that do not enclose any tracers. To avoid identifying the same

regions as voids multiple times, we discard any circumcircles whose centers reside inside a

larger circumcircle. The resulting list represents our tunnel catalogue, where each tunnel is

characterized in terms of the centre and radius of its corresponding circumcircle.

The WL peak catalogues that may be used to identify tunnels contain peaks with a range

of amplitudes (or heights) ν. WL peaks of different amplitudes trace different components

of the WL map, where the peaks with low or negative amplitudes trace underdense regions

of the map, and those with high amplitudes trace overdense regions. Furthermore, peaks

with low amplitudes are more susceptible to either being created or contaminated by GSN.

It is therefore convenient to generate multiple sub-catalogues of a given WL peak catalogue,

by retaining only the peaks with amplitudes larger than a given ν value. Varying the ν

thresholds allows us to study how the tunnels respond to tracer catalogues with different
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Figure 4.3: (Colour Online) The differential void abundance as a function of void radius RV .
The three panels correspond to voids identified in different WL peak catalogues, with peak
heights ν > 1, 2 and 3 (from left to right). The void abundances for all cosmologies in Fig.
4.1 are plotted in grey. Results for the fiducial (black), red (red) and blue (blue) cosmologies
are over-plotted in colour.

properties. In this Chapter we use WL peak catalogues with amplitudes of ν > 1, 2 and

3 to identify tunnels, and will also use these ν values to denote the corresponding tunnel

catalogues.

In Fig. 4.2 we show a visualisation of tunnels identified from catalogues of WL peaks with

amplitudes ν > 2. The figure shows WL maps, WL peaks and tunnels for the fiducial

cosmology (left), and two sample cosmologies, blue (middle) and red (right) to exemplify the

impact of changing cosmological parameters. Here it can be seen in the bottom left part of

the panels that the red cosmology, which has the highest S8 value of the three highlighted

cosmologies, contains more overdense (orange) regions than the other two cosmologies. The

changes in overdensity in the red-cosmology leads to more small tunnels in the bottom left of

the panel, and more large tunnels at the top of the panel relative to the other two cosmologies.

This highlights how changing the cosmological parameters changes the structure observed in

WL maps and the corresponding WL void properties.

4.3 Weak lensing void statistics

In this section we present the weak lensing void statistics used in this analysis, showing their

abundance in Section 4.3.1, and the tangential shear profiles in Section 4.3.2.

4.3.1 Void abundance

Fig. 4.3 shows the differential void abundance per unit area as a function of void radius.

The three panels correspond to voids identified in three WL peak catalogues, with peak
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Figure 4.4: (Colour Online) The tangential shear profiles as a function of re-scaled distance
to void centre, r/RV . The three panels correspond to voids identified in three WL peak
catalogues with peak heights ν > 1, 2 and 3 (from left to right). The tangential shear profiles
for all cosmologies in Fig. 4.1 are plotted in grey. Results for the fiducial cosmology (black),
red (red) and blue (blue) cosmologies are over-plotted in colour.

heights ν > 1, 2 and 3. Void abundances for each of the nodes in Fig. 4.1 are plotted in

grey, the fiducial cosmology in black and two sample cosmologies in colour (blue and red –

corresponding to the two cosmologies in the middle and right panels of Fig. 4.2).

The figure shows that as the ν threshold increases, the total number of WL voids decreases

(given by the area under the curves), and the average size of the voids increases. The spread

in the void abundances over all cosmologies is largest for the ν > 3 catalogue. However,

the data is also noisier in this catalogue, because there are fewer peaks with ν > 3 and

subsequently fewer tunnels.

The red cosmology produces more large voids for the ν > 1 and 2 catalogues than the fiducial

and blue cosmologies. However, the same behaviour is not seen for the ν > 3 catalogue, which

may indicate that the sensitivity of the void abundance to specific cosmological parameters

changes as fewer tracers are used to identify WL voids. The red cosmology has the largest

S8 and smallest Ωm compared to the fiducial and blue cosmologies. Increasing S8 or Ωm

increases the clustering of matter which leads to a wider range of WL void sizes, as we have

seen in Fig. 4.2: this is because the enhanced clustering creates more peaks with ν > 1 or 2

in dense regions, reducing the void sizes there, and at the same time reduces the amplitudes

of some low peaks in underdense regions, increasing void sizes there. On the other hand, for

the ν > 3 catalogue, the peaks are sparser in all three cosmologies (hence voids are larger),

and the fact that the red cosmology has more peaks at ν > 3 again restricts the sizes of its

voids, this time affecting the largest ones.

For ν > 1 the fiducial cosmology produces the fewest large voids compared to the red and

blue cosmologies, however for ν > 3 it produces the most large voids. The change in rela-
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Table 4.1: Forecast of percentage uncertainties obtained from various WL void statistics for
an lsst-like survey. The first block of 4 rows show 68% CL while the bottom 4 rows show
95% CL. In each block, the results shown in the first three lines are quoted from the tightest
contours in each figure in Section 4.4 (see first column for more details). In the last line of
each block, ‘γ-2PCF’ stands for the parameter constraints using the cosmic shear two-point
correlation functions for the same maps as used for the cosmic void statistics.

Statistic Ωm S8 h w0

68% confidence limits
dn/dRv (combined) 1.7% 0.4% 2.1% 3.0%
γt (combined) 2.3% 0.5% 2.3% 4.4%
dn/dRv and γt (combined) 1.5% 0.3% 1.5% 2.7%
γ-2PCF 1.5% 0.5% 1.0% 3.9%

95% confidence limits
dn/dRv (combined) 3.4% 0.8% 4.0% 5.9%
γt (combined) 4.6% 0.9% 4.5% 8.6%
dn/dRv and γt (combined) 2.9% 0.7% 2.9% 5.3%
γ-2PCF 3.1% 1.1% 2.1% 8.0%

tive behaviour between the fiducial, red and blue cosmologies as the ν threshold increases,

indicates that void abundances measured from different WL peak catalogues contain comple-

mentary information to each other. We will see this point more clearly later when looking at

the constraints from void abundances.

For the ν > 1 catalogue, it is difficult to distinguish between the blue and fiducial cosmology,

despite the two cosmologies occupying distinctly separate regions of the parameter space.

This is because the cosmological parameters are degenerate, where different combinations of

parameters can produce the same void abundances. The degeneracy between parameters also

changes between different catalogues.

4.3.2 Lensing tangential shear profiles

Fig. 4.4 shows the tangential shear profiles for WL voids, where the panels (from left to right)

show WL voids identified in the ν > 1, 2 and 3 catalogues. Tangential shear profiles for all

cosmologies are plotted in grey, with the fiducial and two highlighted cosmologies plotted

in colour as in Fig. 4.3. The tangential shear profiles are calculated by first measuring the

convergence profiles in annuli centered on the void center (pixels are interpolated for small

annuli), where the number of annuli used is the lensing profile bin number. The annuli are

then stacked as a function of relative angular size (r/RV ), weighted by their corresponding

void area. Using Eq. 1.2.12, this is then converted to the tangential shear profiles.
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Figure 4.5: (Colour Online) Constraint forecasts on cosmological parameters measured from
void abundances. Contours are shown for WL voids identified in WL peak catalogues with
ν > 1 (blue), ν > 2 (orange), ν > 3 (green) and the combination of all three catalogues
(red). The true cosmological parameter values used to generate the data are indicated by
the black point. The diagonal panels show the 1D marginalised probability distribution, and
remaining panels show the marginalised 2D probability contours enclosing the 68% and 95%
confidence intervals. The table in the top right shows true parameter values (top) and the
inferred parameter values for the different peak catalogues with 68% (upper section) and 95%
(lower section) confidence limits.
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Figure 4.6: (Colour Online) The same as Fig. 4.5 but for the tangential shear profiles. See
the caption in Fig.4.5 for more details
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Figure 4.7: (Colour Online) The same as Fig. 4.5 but for the combination of the tangential
shear profiles and the void abundance. Results are shown for the three WL Peak catalogues
with ν > 1 (blue), ν > 2 (orange), ν > 3 (green). See the caption in Fig. 4.5 for more details.
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Figure 4.8: (Colour Online) The same as Fig. 4.5 but for the tangential shear profiles (blue)
and void abundance (orange). Results are shown for the combination of all three WL peak
catalogues. See the caption in Fig. 4.5 for more details. Note that, for comparison, we have
added the contours from the shear-shear two-point correlation function (without tomography)
extracted from the same maps in grey colour, and the corresponding constraints on the
parameters are also listed in the table in grey.
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The tangential shear profiles plotted here are negative, which indicates that the WL voids

behave like concave lenses and their interiors correspond to underdense regions. The figure

shows that as the ν threshold increases, the depth of the tangential shear profiles at r/RV = 1

decreases, but meanwhile the spread in the amplitude of the tangential shear profiles, as well

as the spread in the width of the peak around r/RV = 1, amongst all cosmologies, increases.

Note that the peaks of the tangential shear profiles appear to be narrower as the ν threshold

increases, but this is an artificial consequence of the fact that these plots are made against

r/RV with the void radius RV larger for larger ν thresholds.

For the ν > 1 catalogue, the fiducial, red and blue cosmologies all lie on top of each other.

For ν > 2, the red cosmology (with the largest S8 value) has a deeper tangential shear profile

compared to the other two cosmologies. For ν > 3 the difference in amplitude increases

further between the three reference cosmologies, with the fiducial cosmology having the lowest

(absolute) amplitude, however the general trend between the three reference cosmologies is

the same for all ν thresholds. Part of this can again be attributed to the high S8 value in

the red cosmology, which enhances the clustering of matter, resulting in low-density regions

becoming more underdense. However, the three highlighted cosmologies have very distinct

values for the other three parameters, in particular Ωm, which means that an intuitive and

yet complete explanation of their relative behaviours is difficult to gauge by eye.

The observation that, although the spread in shapes amongst all cosmologies increases with

the ν threshold, the general order in which they appear does not change, indicates that there

may not be much complementary information between tangential shear profiles measured

from different ν thresholds. Also, while the differences between the different cosmologies are

larger for the ν > 3 catalogue, the fact that there are relatively fewer voids in this catalogue

means that its constraining power is not necessarily stronger than the other two catalogues,

as we will see shortly.

4.4 Parameter constraints forecast

In this section we present parameter constraint forecasts for an lsst-like survey from the

void abundances and tangential shear profiles of WL voids, as well as their combinations.
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4.4.1 Void abundance constrains

Fig. 4.5 shows the likelihood contours for measuring the four cosmological parameters with the

WL void abundance. The diagonal panels of the figure show the 1D marginalised likelihood

distribution and remaining panels show the 2D marginalised likelihood contours. For each

inference case, the inner and outer contours indicate respectively the 68% and 95% confidence

limits (CL). As mentioned above, we use the fiducial cosmology as our ‘observed’ data set,

which is indicated by the black point. The figure shows results for three ν thresholds with

ν > 1 (blue), ν > 2 (orange) and ν > 3 (green). We also show results for the combination

of all three catalogues (red). The table in the top right of the figure indicates the estimated

cosmological parameters with their corresponding 68% (top) and 95% (bottom) CL, for each

of the contours. The tightest contours are for the Ωm − S8 plane, which is expected since

these are the cosmological parameters to which WL analysis is the most sensitive.

For nearly every combination of parameters, the three contours for the ν > 1, 2 and 3 void

catalogues occupy different parts of the marginalised 2D parameter space, or have different

degeneracy directions, where most of the overlapping occurs around the true values. As

suggested by the behaviour of the three reference cosmologies discussed in Section 4.3.1, this

indicates that void abundances measured from different catalogues contain complementary

information to each other. We therefore also show parameter likelihood contours for the

combination of the WL void abundances from the three catalogues in red.

We note that for the panels that include h, the ν > 1 contours are slightly cut off by the lower

prior boundary on h. The CLs on h for the ν > 1 catalogue are therefore likely to be slight

underestimates compared to the case where a larger prior range on h is used. We do not

expand the priors to account for this since the emulator accuracy quickly diminishes outside

of the parameter space for which we have training data (which matches our prior range).

This does not impact the resulting contours and CLs when all catalogues are combined, since

the ’Combined’ contours are much smaller and do not approach the prior boundaries.

The ‘Combined’ contours are smaller than any of the individual contours, for all combinations

of parameters. This shows that parameter measurements from the WL void abundances are

significantly improved when multiple catalogues are used. The 68% and 95% CL percentage

accuracy that the combined WL void abundance is able to measure the parameters which is

shown in Table 4.1.

The WL void abundances for all catalogues are initially measured with 30 bins, which spans

the entire range of the WL void sizes measured across all cosmologies. However, since some



4.4. Parameter constraints forecast 86

cosmologies produce more large voids than others. As the void size increases, the point at

which the WL void abundance becomes discontinuous due to sample sparsity varies for each

cosmology. Therefore, for each catalogue, all bins (for all cosmologies) above the point at

which the first discontinuity in any cosmology occurs are discarded. This leads to the WL

void abundance being measured with roughly 20 bins, that varies slightly between catalogues,

where the largest voids are discarded to due sample sparsity.

Theoretically, the abundance of tunnels identified from a WL peak catalogue depends not

only on the number of peaks, but also on their clustering pattern. We therefore expect that

the information contained within the WL void abundance and peak correlation functions may

have a substantial overlap. The latter probe has been studied in detail in previous Chapters,

with certain scaling properties observed. While it is beyond the scope of the current Chapter,

we will conduct a similar analysis by forecasting the parameter constraining power by WL

peak two-point correlation functions in Chapter 7.

4.4.2 Tangential shear constraints

Fig. 4.6 shows likelihood contours for the four cosmological parameters from the tangential

shear profiles. The colours of the contours correspond to the same void catalogues as in

Fig. 4.5. Again, the contours are smallest in the Ωm-S8 plane. The figure shows that the

contours from ν > 1 and ν > 2 are similar in size, and the ν > 3 contours are significantly

larger and in most cases entirely enclose the other contours. All of the contours in this figure,

unlike in the case of the void abundances, occupy similar regions of the parameter space, or

have similar degeneracy directions. This confirms our conclusion based on the observation

of Fig. 4.4, namely the tangential shear profiles from different peak catalogues do not offer

much complementarity.

As in Section 4.4.1, we combine the tangential shear profiles from all three catalogues to

generate ‘Combined’ likelihood contours. Note that for individual catalogues the tangential

shear profiles are calculated with 30 bins each. In the likelihood analysis the first two bins

are removed. This is because at r/Rv = 0, γt = 0, and so the variance is also 0. This feature

induces a singularity close to the origin when inverting the covariance matrix, and so bins

near the origin must be removed.

By combining catalogues, we find an improvement in contour size relative to the ν > 1 cat-

alogue, which again suggests that there is complementary information between the different

ν catalogues for the tangential shear profiles.
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The strongest constraints from the tangential shear profiles are for the combined contour.

We summarise the 68% and 95% CL for the γt combined case in Table 4.1.

4.4.3 Constraints by combining void abundance and tangential shear

In this section we present parameter constraint forecasts for the combination of the WL void

abundance and tangential shear profiles.

Fig. 4.7 shows contours for the WL void abundance and tangential shear profiles combined,

for the three catalogues ν > 1 (blue), 2 (orange) and 3 (green) and for the combination of all

three catalogues (red). The smallest contours for an individual catalogue are for the ν > 2

catalogue, and the ν > 3 threshold has the largest contour size, which almost entirely encloses

the smaller contours in all cases. This is likely because the number of voids decreases as the

ν threshold increases, meaning that by ν > 3, the statistical uncertainties are large and the

constraining power is weakened.

Nevertheless, it is interesting to note that in Fig. 4.6 the tangential shear contours for the

ν > 3 catalogue are large. The same is also true in Fig. 4.5 with the WL void abundance for

the same catalogue. The resulting contour when the two statistics are combined however is

significantly smaller, as shown by the green contour in Fig. 4.7. So even for this catalogue

where individual constraints are poor, their combination is highly beneficial.

Fig. 4.8 shows contours for the tangential shear profiles (blue) and WL void abundance

(orange) for all three catalogues combined. Note that these contours are also presented as

the red contours in Fig. 4.5 and Fig. 4.6 respectively. The combination of these two probes,

labelled WL voids, is shown by the green contour (repeated from Fig. 4.7). We also include

the shear-shear two-point correlation function constraints as a comparison, which are obtained

using the same methodology as that for WL voids. We follow Asgari et al. (2020) and sample

the 2PCF using 9 logarithmically-spaced angular separation bins from 0.5 to 300 arcmin, and

use both the ξ+ and ξ− correlation functions, which gives us 18 bins in total. We show the

percentage errors (at 68% and 95% CL) for the combination of the shear two-point correlation

functions (γ-2PCF) in Table 4.1.

For all combinations of parameters, the WL void abundance contours and the tangential

shear contours occupy similar regions of the parameter space and have similar degeneracy

directions, where the void abundance contours are slightly smaller than the tangential shear

profile contours. Compared to the shear 2PCF, both the WL void abundance and tangential

shear profiles are able to constrain S8 with greater accuracy, and the abundance also provides
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tighter constraints on w0.When all of the WL void statistics are combined, the WL void

contours are smaller than the shear 2PCF contours for every combination of parameters,

except the Ωm-h plane, where the two contours have comparable sizes. However, in this plane

the two contours also appear to have complementary degeneracy directions. Furthermore,

there also appears to be stronger complementary degeneracy directions between the green

and grey contours in the S8-h plane and the h-w0 plane. Finally, the combined WL void

constraints are significantly tighter on w0 compared to the shear 2PCF.

We show the percentage errors (at 68% and 95% CL) for the combination of the WL void

abundance and tangential shear profiles over all three catalogues in Table 4.1. The table

shows that, compared to the shear 2PCF, the combined WL void statistics are able to provide

tighter constraints on S8 and w0 at the 68% CL, and tighter constraints on Ωm, S8 and w0

at the 95% CL. Although the shear 2PCF provides tighter constraints on h, Fig. 4.8 shows

that the WL void statistics have complementary degeneracy directions to the shear 2PCF in

all panels that include h. This indicates that the WL void statistics will also be useful for

constraining h when combined with the shear 2PCF.

4.5 Discussion and conclusions

In this Chapter we have tested the sensitivity of the WL void abundances and tangential

shear profiles to four cosmological parameters: Ωm, S8, h and w0. To this end, we have

trained a Gaussian Process emulator with 26 cosmologies sampled in this 4D parameter space

using a Latin hypercube, which can be used to predict these two void statistics for arbitrary

cosmologies (within the range spanned by the training cosmologies). We have investigated the

impact of changing the number of WL peaks used as tracers to identify voids, and ran Markov

Chain Monte Carlo samplings from our mock weak lensing data to forecast the accuracies at

which these four parameters can be constrained by a future, lsst-like, lensing survey, using

different combinations of the above WL void statistics.

The results from Fig. 4.5 show that the WL void abundance combined over all catalogues

gives the tightest parameter constraints, where the greatest sensitivity is to the S8 parameter.

This is because the abundances of WL voids identified from WL peak catalogues at different

ν thresholds have different dependencies and degeneracy directions in the studied parameter

space. We suspect that there is a close interlink between the void abundance and the peak

two-point correlation function, but will defer a detailed study of the latter to a follow-up
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work. For now, we conclude that complementary information is contained in the abundances

of voids from different WL peak catalogues, a fact that should be utilised in order to maximise

the use and scientific return of future lensing data.

WL void tangential shear profiles, in contrast, provide slightly less tight constraints on the

same cosmological parameters, and the results from different peak catalogues do not seem

to be complementary to each other. In particular, for low-ν peak catalogues such as ν > 1

(Fig. 4.6), there is little degeneracy between Ωm and S8; this is because S8 is designed to

break the degeneracy between Ωm and σ8 for standard WL analysis, e.g., shear two-point

correlation function, and the low-ν peaks have little bias with respect to the underlying

convergence field, so that their tangential shear profiles follow more closely the parameter

dependency of the shear two-point correlation functions. WL void abundances, on the other

hand, can have further degeneracies between Ωm and S8 (as seen in Fig. 4.5), indicating

that they have different degeneracy directions between Ωm and σ8 compared with the shear

two-point function, and therefore can lead to additional constraints to the latter.

Nevertheless, we highlight that the above conclusions only apply to the 4D parameter space

that we have focused on in this Chapter. This may change if additional ΛCDM parameters

such as the spectral index are included. Our results may also be sensitive to changes in

curvature, massive neutrinos or other sources of additional physics. In Chapter 5 we will show

that the tangential shear profiles are able to distinguish between modified gravity models with

a larger signal-to-noise ratio than the void abundance. This suggests that there may be other

cosmological parameters not studied here, such as those governing modified gravity laws, to

which the tangential shear profile is more sensitive than the WL void abundance. We leave

an exploration of this possibility to future works.

Finally, we have found that combining void abundance and tangential shear is another way

to obtain tighter parameter constraints. Even for the ν > 3 catalogues, for which these two

void statistics give poor individual constraints, significant improvement has been found with

their synergy.

Overall, we find that weak lensing voids can be a promising cosmological probe to constrain

models. The cosmological parameter to which the WL void statistics are most sensitive is

S8, which can be measured at the sub percent level (68% CL). We also find that Ωm can be

measured to within ' 2%, h to within ' 2% and w0 within ' 3% (all 68% CL).

As a comparison, we find that parameter constraints from the combination of void abundances

and tangential shear profiles are tighter than those from the shear two-point correlation func-
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tion (which were obtained from the same WL maps, using the same methodology) at the

68% and 95% CLs for all parameters, except h. However, the void statistics also have com-

plementary degeneracy directions to the shear 2PCF for all combinations of parameters that

include h, which indicates that WL voids are also useful for constraining h when combined

with the shear 2PCF, even if the constraints from WL voids alone are not tighter than those

from the shear 2PCF.

Additionally, the WL void constraints presented here are for the combination of three peak

catalogues. These constraints can be further improved through the inclusion of additional

peak catalogues, which may be able to make WL voids a significantly more powerful probe

than the shear 2PCF.

We also note that constraints from the shear two-point correlation function can be improved

by using tomography (Martinet et al., 2020), and it is therefore also important to test how

tomography can improve the constraints from WL void statistics in the future.

Throughout this study, we have adopted a Gaussian smoothing of θs = 1 arcmin. It may also

be interesting to study how the parameter constraints depend on the smoothing scale used

to smooth the WL convergence maps. We know from Chapter 3 that using larger smoothing

scales increases the size of the WL voids and reduces their total number. A larger number of

WL map realisations will then be required in order to accurately measure WL void statistics

for larger smoothing scales, so we leave such a study to future work. Nevertheless, we have

performed a test by using a larger smoothing scale, θs = 2 arcmin, and in Appendix .4 we

give a brief summary of the resulting parameter constraints. We can see that the results are

similar to what we have found for a 1 arcmin smoothing, cf. Fig. 4.8.

It will also be important to develop an understanding of how the void function is affected by

systematics including intrinsic alignments, baryonic feedback, and masking (which can bias

statistics measured from convergence maps, e.g. see Giblin et al. (2018) ), which we leave to

future study.

In Chapter 3 we studied the differences in WL void statistics between WL voids identified

from different void finders. We found that the tunnel algorithm offered one of the best

compromises between high signal-to-noise ratio and small impact from galaxy shape noise in

the tangential shear profiles. However, it will also be interesting to assess the constraining

power of WL voids identified using other void finders such as the watershed algorithm. The

aim is to have a fully comprehensive study of the many different and unexplored ways to use

future high-quality weak lensing data to maximise our ability to test cosmological models
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and constrain cosmological parameters.



Chapter 5

Cosmological test of gravity using

weak lensing voids

92
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5.1 Introduction

One of the fundamental questions of cosmology concerns the cause of the accelerated ex-

pansion of the Universe, first detected by Riess et al. (1998) and Perlmutter et al. (1999).

Many possible explanations have been proposed (e.g. see the recent review by Caldwell &

Kamionkowski, 2009), but a very intriguing one concerns modifying gravity on large cosmo-

logical scales by including an extra scalar field, which mediates an additional, or fifth, force.

However, GR has been shown to conform accurately with gravity tests in the Solar System

(Bertotti et al., 2003; Will, 2014), and, since any modifications to GR must pass the same

tests, it requires that the fifth force must be suppressed in our Solar System. One way to

achieve this suppression is through screening mechanisms, where the effects of the fifth force

only become important in under-dense regimes (Brax, 2013). One of such phenomenological

models which contains a screened fifth force is the normal branch of the Dvali-Gabadadze-

Porrati braneworld models (nDGP) (Dvali et al., 2000). In the nDGP model, the fifth force is

suppressed through Vainshtein screening (Vainshtein, 1972), which is least effective far from

massive objects, and so we expect that the greatest detectable signatures of the fifth force

would be most apparent within voids.

Given that WL maps correspond closely to the projected LSS, it is only natural to use them

to identify structures such as high density peaks as well as low density regions. In this

Chapter, we study the latter, i.e., WL voids, by employing the method from Chapter 2 of

identifying voids in the WL convergence field. The objective is to study the potential of these

WL voids to constrain modified gravity models. Our study was motivated by the results of

Cautun et al. (2018) and Paillas et al. (2019) who found that voids identified in the galaxy

distribution are emptier in modified gravity models compared to the standard cosmological

model, ΛCDM, and that this signature can be measured in the tangential shear profile of

voids. The first Chapter showed that the tangential shear of WL voids is about 3 times

higher than that of galaxy voids and therefore WL voids represent a promising approach

for testing MG models. We exemplify the constraining power of WL voids by studying the

nDGP model above, and the results will have implications for upcoming surveys, such as

LSST (LSST Science Collaboration et al., 2009) and Euclid (Refregier et al., 2010), which

aim to provide high resolution WL maps over a large fraction of the sky. Studying WL voids

represents a new approach of maximising the information that can be gained from such future

data sets.

This Chapter is structured as follows: in Section 5.2 we discuss the relevant modified gravity
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and weak lensing theory, in Section 5.3 we present the data used in this study. We describe

the prescription we follow to include galaxy shape noise (GSN) in our analysis in Section

5.3.2. The void finder used in this Chapter is described in Section 5.4, followed by results for

the WL peak abundance, void abundance, void convergence profile and void shear profile in

ΛCDM and MG in Section 5.5. We finally conclude in Section 5.6.

5.2 Theory

In this section, for completeness, we very briefly describe the main points of the nDGP model

and the weak lensing theory.

5.2.1 Modified gravity theory

nDGP is a brane-world model in which the 4D spacetime (a brane) is embedded in a 5D

spacetime called the bulk. Matter particles are confined to the brane, while gravitons can

move through the extra dimensions of the bulk. A scalar field is introduced to represent

the coordinate of the brane in the extra dimension, known as the brane-bending mode. The

scalar field is a physical degree of freedom in the model which mediates a fifth force, and

the strength of the fifth force is controlled by a crossover scale rc, the scale at which the

behaviour of gravitons changes through 4D or 5D. The nDGP action for gravity is

S =
∫

bulk
d5x

√
−g(5) R(5)

16πG(5) +
∫

brane
d4x
√
−g R

16πG , (5.2.1)

where g is the determinant of the metric tensor, R is the Ricci scalar, G is the gravitational

constant, all on the brane, and a superscript (5) denotes the 5D bulk counterparts to the

above 4D brane terms. The cross-over scale at which gravity transitions from 5D to 4D is

related to G and G(5) as

rc = 1
2
G(5)

G
, (5.2.2)

and the modified Poisson equation receives an additional contribution from the scalar field ψ

in the form

∇2Ψ = ∇2ΨN + 1
2∇

2ψ , (5.2.3)

where ΨN is the standard Newtonian potential satisfying

∇2ΨN = 4πGa2δρ , (5.2.4)
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a is the scale factor, ∇ is the spatial derivative and δρ = ρ− ρ, where ρ is the matter density

and ρ is the background matter density.

The equation of motion of ψ is given by

∇2ψ + r2
c

3β(a)a2

[
(∇2ψ)2 −∇i∇jψ∇i∇jψ

]
= 8πG

3β(a)δρa
2 , (5.2.5)

where i, j run through 1,2 and 3, and β, which dictates the strength of the fifth force, is a

function of time given as

β(a) = 1 + 2Hrc
(

1 + Ḣ

3H2

)

= 1 +
[Ωm0a

−3 + ΩΛ0
Ωrc

] 1
2
− 1

2
Ωm0a

−3√
Ωm0a−3 + ΩΛ0

,

(5.2.6)

where H is the Hubble parameter, H0 its present day value, Ḣ is its time derivative, Ωm0

is the present-day matter density parameter, ΩΛ0 is the present-day vacuum energy density

parameter and Ωrc = 1/4H2
0r

2
c . By linearising Eq. (5.2.5), the modified Poisson equation can

be written as

∇2Ψ = 4πGa2
(

1 + 1
3β(a)

)
δρ . (5.2.7)

Any modification to GR must pass the stringent Solar System tests of gravity, which means

the fifth force must be well ‘screened’ in environments like the Solar System, though it can

still attain its full strength in under-dense regions. In the nDGP model, the fifth force is

suppressed in over-dense regions through the Vainshtein mechanism in which, for an object

in isolation, the radius within which screening is efficient is given by the Vainshtein radius

rV ,

r3
V = 4GM

9β2H2
0 Ωrc

. (5.2.8)

The fifth force becomes unscreened on scales r & rV .

5.2.2 Weak lensing theory

The convergence κ, for a single object along a line of sight, is linked to the lensing potential

by

κ = 1
2∇

2Ψ2D , (5.2.9)

where Ψ2D is the lensing potential

Ψ2D(θθθ) = Dls

DlDs

1
c2

∫ zs

0
Φlen(Dlθθθ, z)dz , (5.2.10)



5.2. Theory 96

in which θθθ is the sky coordinate of the lensed object, Ds, Dl and Dls are respectively the

angular diameter distances between the observer and source, observer and lens, and lens and

source, zs the source redshift, c the speed of light and Φlen is the gravitational potential that

couples to photons (not matter) which determines photon geodesics.

The distinction between different types of potentials is important for modified gravity, since in

some models the fifth force acts only on the massive matter particles (e.g., the default nDGP

model), while in other models the fifth force directly modifies the photon geodesics (e.g.

our nDGPlens model). In this Chapter we consider two MG models, nDGP and nDGPlens

(Barreira et al., 2017), where the only difference between the two models is the form of Φlen,

which for nDGP is

∇2ΦnDGP
len = ∇2ΦGR

len = 4πGa2δρ , (5.2.11)

and which for the so-called nDGPlens model is given by

∇2ΦnDGPlens
len = ∇2ΦGR

len + 1
2∇

2ψ = 4πGa2δρ+ 1
2∇

2ψ. (5.2.12)

These imply that in nDGPlens, the lensing of photons receives an extra contribution from

the scalar field, when compared to ΛCDM and nDGP. nDGPlens is created by us to illustrate

the behaviour of a MG model where photon geodesics are modified as well, and such models

do exist in the literature, such as the cubic Galileon model studied in (Barreira et al., 2015)1.

The previous equations apply to the lensing induced by a single lens, however for cosmic

shear it is important to consider lensing contributions from all matter along the line of sight.

So κ can be written more generally as

κ(θθθ) =
∫ zs

0
W (z)δρ(Dl(z)θθθ, z)dz , (5.2.13)

for a lensing potential given by Eq. (5.2.11), i.e., one that is the same as the GR case. Where

W (z) is the lensing kernel that includes the redshift distribution of the multiple lenses, given

by

W (z) = 3H2
0 Ωm0
2c

1 + z

H(z)χ(z)
∫ zs

z

dn

dzs
dzs

χ(zs)− χ(z)
χ(zs)

, (5.2.14)

χ denotes the comoving distance, and dn
dzs

is the redshift distribution of sources. If, however,

1Note that in the nDGP model considered here the accelerated expansion is driven by an additional dark
energy species, which we tune to ensure that the background expansion history is identical to that of ΛCDM,
while in the Galileon model self-acceleration by the scalar field can be achieved and the expansion history is
generally different from ΛCDM. The nDGPlens model is chosen to have the same expansion history as nDGP,
and so it is different from cubic Galileon, and is only used as a toy model to single out the effect of modified
photon geodesics.
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the lensing potential is modified as in Eq. (5.2.12), κ (in the linear regime) becomes

κ(θθθ) =
∫ zs

0
W (z)

(
1 + 1

3β(α)

)
δρ(Dl(z)θθθ, z)dz , (5.2.15)

which indicates that the convergence values will be rescaled by a constant (in space) across a

WL map. Due to the Vainshtein screening, however, the MG effect on κ is more complicated

and can only be accurately predicted through simulations.

5.3 Weak lensing maps

All the convergence maps used in this Chapter cover a 10 × 10 deg2 sky area and have a

resolution of 20482 pixels per map and a source redshift of zs = 1. Throughout this Chapter,

we will make use of WL maps generated from two sets of simulations. The first data set

we use are three WL maps from Barreira et al. (2017) (hereafter B17) with ΛCDM, nDGP

and nDGPlens cosmologies respectively, generated from the modified N-body code ecosmog

(Li et al., 2012, 2013) and ray tracing performed with ray-ramses (Barreira et al., 2016), a

code that implements the on-the-fly ray tracing algorithm proposed by White & Hu (2000);

Li et al. (2011). These maps are used to predict the differences of several lensing and void

observables between the different gravity models. Secondly, in order to generate covariance

matrices and error bars used in the SNR analysis in Section 5.5, we use the all-sky ΛCDM WL

maps from Takahashi et al. (2017) (hereafter T17) which we split into 184 non-overlapping

10× 10 deg2 maps following the method presented in Chapter 6.

5.3.1 Numerical simulations

The lightcone geometry used to generate the WL maps from B17 consists of seven tiled dark-

matter-only simulation boxes, of which the first five (the ones closest to the observer) have a

box size of L = 300 h−1Mpc and the remaining two boxes, in order of increasing distance from

the observer, have sizes L = 350 h−1Mpc and L = 450 h−1Mpc. Each of the seven N-body

simulations were run using a particle number of Np = 5123. The cosmological parameters

used for B17 were the fractional baryon density Ωb = 0.049, fractional dark matter density

Ωdm = 0.267, dimensionless Hubble rate h = H0/100 km s−1 Mpc−1 = 0.6711, primordial

scalar spectral index ns = 0.9624 and root-mean-squared (rms) density fluctuation smoothed

over 8 h−1Mpc σ8 = 0.8344. For a more detailed description of the simulation procedure

used to generate the B17 maps we refer the reader to Barreira et al. (2017, 2016).
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For the WL maps from T17, a series of dark matter-only simulation boxes with comoving

sizes L, 2L, 3L, ..., 14L where L = 450 h−1Mpc are produced. Each of these simulation boxes

are duplicated eight times and then nested around the observer, such that the larger boxes

enclose and overlap with the smaller boxes (see Figure 1 of Takahashi et al. (2017) for an

illustration). Ray tracing was performed with the algorithm from Hamana et al. (2015), on

the mass distribution from the nested simulation boxes projected onto spherical shells with a

thickness of 150 h−1Mpc. The simulation used a partical number of 20483 and cosmological

parameters Ωb = 0.046, Ωdm = 0.233, σ8 = 0.820, ns = 0.97 and h = 0.7. For a more detailed

description see Takahashi et al. (2017).

5.3.2 Galaxy shape noise

Weak lensing maps obtained from observational data require measurements of redshifts and

shapes for a large number of background galaxies. Intervening cosmic structure acts as a lens

for the source galaxies and induces small correlations in galaxy shapes across the sky, from

which the cosmic shear signal can be extracted. However the amplitude of this correlation is

small, and is largely dominated by the random orientation of galaxies, which is referred to as

galaxy shape noise (GSN).

Here, we are interested in characterising how well the difference between the ΛCDM and

MG models, can be measured observationally so we add GSN to all of the convergence maps

used in this study. We smooth the convergence maps with a compensated Gaussian filter U

(Hamana et al., 2012), which satisfies
∫ θo U(θ)θdθ = 0, where

U = 1
πθ2

s

e−θ
2/θ2

s − 1
πθ2

o

(1− e−θ2
o/θ

2
G) (5.3.1)

for θ < θo, and U = 0 otherwise, with θs = 2.5 arcmin, and θo = 15 arcmin. This choice

of filter allows us to account for the mass sheet degeneracy (Schneider, 1996), and removes

the long wavelength modes. For the peak and void abundances discussed in Sections 5.5.1

and 5.5.2 we also show results for the ΛCDM case using Gaussian smoothing (with θs =

1.5 arcmin). We make this comparison since both the compensated Gaussian filter (e.g.

Hamana et al., 2012; Shirasaki et al., 2018) and the Gaussian filter (e.g. Liu et al., 2015) are

common choices for weak lensing studies, and we include SNR values for both filters for all

statistics measured throughout this Chapter. This comparison allows us to demonstrate the

impact the choice of filter can have on measurements made in WL maps, beyond variations

in the smoothing scale.
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Our prescription for including GSN is based on Van Waerbeke (2000), where we add random

values to each pixel taken from a Gaussian distribution with standard deviation, σpix, given

by

σ2
pix = σ2

int
2θpixngal

, (5.3.2)

where σint is the dispersion of source galaxy intrinsic ellipticity, θpix is the angular width the

pixels in the WL maps, and ngal is the number density of source galaxies. In order to make

a forecast for LSST, we use σint = 0.4 and ngal = 40 arcmin−2 (LSST Science Collaboration

et al., 2009).

For consistent definitions between the different cosmological models, we define the amplitude

ν of a κ pixel as

ν = κ

σGSN
, (5.3.3)

where σGSN = 0.007 is the standard deviation of the GSN map (smoothed with the compen-

sated filter) that is added to the data.

5.4 Void finding algorithm

In this Chapter we apply the tunnel algorithm of Cautun et al. (2018) to find voids. This is

a 2D void finding algorithm which identifies voids based on an input tracer catalogue. This

algorithm first constructs a Delaunay tessellation with the tracers as its vertices of the cells,

and then voids are identified as the circumcircles of every Delaunay triangle, which is, by def-

inition, empty of tracers. A void’s centre corresponds to the centre of its respective Delaunay

circumcircle and the void size, Rv, is given by the radius of the respective circumcircle.

To apply the tunnel algorithm to WL maps, we use WL peaks as the input tracer catalogue.

This produces 2D voids found in the WL convergence maps that, by definition, are devoid

of WL peaks, with the closest peaks being found on the boundaries of the voids. To deal

with the boundaries of the map, for the void abundance we remove any voids whose distance

from the boundary is smaller than their radius, for the convergence and tangential shear (γt)

profile plots we remove voids whose centres are within 2Rv from the map boundary.

Furthermore, in order to increase the number of voids, which is necessary because of the small

area of our WL maps, we consider all possible voids, including neighbouring ones which have

a large degree of overlap (i.e., we do not exclude small voids which overlap with larger ones).

The convariance matrix calculation, which is based on a much larger number of ΛCDM maps,

ensures that the duplicate information is counted accordingly.
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Figure 5.1: Illustration of the convergence field, and the peak and void catalogues in the
ΛCDM (top row), nDGP (middle row) and nDGPlens (bottom row) models studied here.
The κ values are shown by the background colours, with bright colours corresponding to high
κ values and dark colours to low κ values. The axes θ1 and θ2 are two orthogonal angular
coordinates, and only the central regions of the κ maps are shown to avoid overcrowding the
visualisation. The WL peaks identified in these κ maps are indicated by the green points,
with the three columns corresponding to peaks of different heights: ν > 1 (left column), ν > 2
(middle column) and ν > 3 (right column). The white circles show the size and distribution
of voids for each of the three peak catalogues.
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To identify WL peaks, we first smooth the convergence maps with a compensated Gaussian

filter with smoothing scale θs = 2.5 arcmin. From the smoothed WL maps, we identify WL

peaks as pixels whose convergence values are larger than those of their eight neighbours. The

peak catalogue used for the tunnel algorithm is created using information about the position

and height of the WL peaks in the WL maps. For a given WL map and its associated peak

population, we obtain three peak catalogues by selecting the peaks according to their height.

The catalogues are comprised of peaks higher than a given ν threshold, with ν > 1, 2 and 3.

For each WL map, we generate void catalogues from each of the three peak catalogues.

A visualisation of the tunnels identified in the WL maps studied here is shown in Fig. 5.1,

where each row corresponds to one of the three models studied here. The columns correspond

to peaks of different heights, and the associated void catalogues, with ν > 1, 2 and 3 from

left to right. It is evident from this figure that the ν > 1 peak catalogues produce the most

voids, while the ν > 3 catalogues produce more large voids. This means that the different

void catalogues should respond to the large scale modes of the κ maps differently, and so

it is possible that the tightest constraints may be achieved through a combination of all

three void catalogues, however due to the limited sample, this remains to be tested. The

differences between ΛCDM and MG in Fig. 5.1, can be studied quantitatively using peak and

void abundances as well as void WL profiles, which is the subject of the next section.

5.5 Results

In this section we discuss the properties of voids identified in WL maps, and present signal-

to-noise-ratios (SNR) for the peak abundance, void abundance and tangential shear profiles

as measures of the ability to distinguish between MG and GR.

We define the SNR for a given statistic S as

SNR2 ≡
∑
i,j

δS(i) cov−1(i, j) δS(j) , (5.5.1)

where δS = SMG − SGR is the difference in that statistic between MG and standard GR,

cov−1 is the inverse of the covariance matrix for the statistic S and i and j indicate the

bin numbers that are summed. We multiply the cov−1 term by the Anderson-Hartlap factor

α (Anderson, 2003; Hartlap et al., 2007) in order to compensate for the bias present when

inverting a noisy covariance matrix. The Anderson-Hartlap factor is given by

α = N −Nbin − 2
N − 1 , (5.5.2)
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Table 5.1: Forecasted SNR with which an LSST-like survey could discriminate between the
two MG models studied here and ΛCDM. We show SNR values for WL peak and void
abundance, as well as for the void tangential shear profile. For voids, we consider three
different catalogues that were identified using the distribution of WL peaks with heights,
ν > 1, 2 and 3.

ν range Compensated Gaussian Gaussian
nDGP nDGPlens nDGP nDGPlens

peak abundance, n(> ν) – Fig. 5.2
1 ≤ ν ≤ 5 71 146 110 195

void abundance, n(> Rv) – Fig. 5.3
ν > 1 44 58 29 32
ν > 2 68 49 29 44
ν > 3 50 42 49 53

void tangential shear, γt(r) – Fig. 5.5
ν > 1 46 80 51 68
ν > 2 50 68 41 59
ν > 3 51 64 35 48

where N = 184 is the number of realisations (WL maps) used to estimate the covariance

matrix, and Nbin is the number of bins. The covariance matrices used for SNR measure-

ments, using the compensated Gaussian filter, are shown and discussed in Appendix .6. The

covariance matrices used for the Gaussian filter are qualitatively similar to the compensated

Gaussian case, and so we do not include them for brevity. The SNR values that we present

in this Chapter are forecast for LSST so we rescale the SNR values calculated from the

A = 100 deg2 maps by
√
ALSST/A = 13.4, assuming LSST will achieve a sky coverage of

ALSST = 18000 deg−2.

5.5.1 WL peak abundance

Whilst the primary purpose of the WL peaks in this Chapter is to be used as tracers for void

identification, it is also interesting to consider how their abundance is affected by the MG

models.

In the top panel of Figure 5.2, we show the number density of WL peaks as a function of peak

height, ν, for ΛCDM, nDGP and nDGPlens. The bottom panel shows the difference between

the MG models and the fiducial ΛCDM one. The shaded regions in the figure (which are very

small) indicate the uncertainties with which the ΛCDM peak abundance will be measured by

LSST and are obtained from the peak abundance covariance matrix calculated using the T17

maps. In the top panel, we can see that the modified gravity models produce slightly fewer
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Figure 5.2: Top panel: the WL peak abundance for ΛCDM (solid), nDGP (dashed) and
nDGPlens (dotted) plotted as a function of peak height, ν. The shaded regions indicate
1σ uncertainties for the ΛCDM result expected for an LSST-like survey. The WL peak
abundance for ΛCDM smoothed with a Gaussian filter is shown by the grey dot-dashed line
Bottom panel: the relative difference of the peak abundance between the MG models and
ΛCDM. Only the error bars for the ΛCDM curve have been plotted for clarity.
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small peaks with ν < 2. For ν > 2, nDGP and nDGPlens produce a higher number of large

peaks than ΛCDM at fixed ν, which is a consequence of the enhanced structure formation

present in these MG models. This difference is present even for peaks with ν > 3, which

typically correspond to massive haloes, whose growth in the nDGP model is significantly

enhanced. In each instance, the nDGPlens models shows the largest deviation from ΛCDM.

Whilst the matter distribution is the same in nDGP and nDGPlens, the extra contribution

to the lensing potential from the scalar field in nDGPlens allows for further modifications to

the final WL maps, which boosts the amplitude of the peaks and thus results in more peaks

for a fixed ν value.

The WL peak abundance for the ΛCDM map smoothed with a Gaussian filter (θs = 1.5)

is shown by the grey dot-dashed line in the top panel of Figure 5.2. The exact value of θs
impacts the overall amplitude of the peak abundance, but the shape of the curve remains

largely unaffected by changes in θs, and so we choose a smoothing scale for the Gaussian filter

that gives roughly the same number of peaks with ν > 2 as the compensated Gaussian case.

The grey dot-dashed line illustrates that the Gaussian filter produces a shallower curve than

the compensated Gaussian filter. This is possibly because more large peaks are identified

with the Gaussian filter since the peaks receive contributions to their height from the large

scale modes, which in the case of over-densities, will boost their height. These large scale

modes are removed with the compensated Gaussian, which produces fewer large peaks. The

affect this has on the void abundance is discussed in section 5.5.2.

The differences in peak abundance between various MG models and the fiducial cosmology

can be used as a cosmological test. For example, Liu et al. (2016b) have shown that the WL

peak abundance in the Canada-France-Hawaii-Telescope Lensing Survey (Erben et al., 2013)

can be used to make tight constraints on the parameters of f(R) gravity. Motivated by this,

the first row in Table 5.1 shows the SNR with which LSST data for the peak abundance can

distinguish between the MG models studied in this Chapter and ΛCDM. We calculated the

SNR using all peaks with 1 ≤ ν ≤ 5, since peaks ν < 1 are most likely to be contaminated

by GSN, and peaks with ν > 5 will be subject to stronger influence by sample variance due

to the small sizes of the available WL maps. The SNR values for the Gaussian smoothing

case are larger since this filter identifies more large peaks, which correspond to large haloes

that are more likely to receive a boost in their growth due to MG. The model differences

are qualitatively similar between the Gaussian and compensated Gaussian cases. In the

next subsection, we study the extent to which the void abundance can also be used as a

cosmological test.
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5.5.2 Void size function

Fig. 5.3 shows the distribution of void sizes for voids identified from the three WL peak

catalogues that we study here, with ν > 1, 2 and 3. The error bars are calculated from the

void abundance covariance matrix obtained using the 184 T17 maps and are scaled up to

the area of the LSST survey. As we have already seen from Fig. 5.1, the smallest voids are

generated by the ν > 1 WL peak catalogue, which also produces the most voids. As the

ν threshold increases, the typical void size increases, however there are fewer voids overall.

For ν > 1 and 2, the total peak abundance is similar between ΛCDM and MG, which yields

similar void abundances for all models in the ν > 1 and 2 void catalogues. For ν > 3, there

are more peaks for MG than for ΛCDM, which manifests itself as creating more small voids

and fewer large voids in MG than in ΛCDM. This is a consequence of the larger number of

peaks in the MG models that end up splitting large voids into several smaller ones. We note

that the (very few) largest voids in each catalogue are not plotted in Fig. 5.3, and are also left

out of the SNR calculation, since the differences between the models appear to be dominated

by sample variance. This allows us to give more conservative estimates of the SNR for the

void abundance, which are less affected by noise.

The SNRs with which the void abundance measurements in an LSST-like survey can distin-

guish between ΛCDM and the considered MG models are shown in middle rows in Table 5.1.

In all cases, the void abundances produce lower SNR values than the peak abundance. The

ν > 1 catalogue produces the largest SNR values for nDGPlens, and the ν > 2 catalogue gives

the highest SNR for nDGP. Although the model differences between ΛCDM and nDGPlens

are larger, the SNR values are not consistently higher than for nDGP. This is due to the

relation between various entries of the covariance matrix that arises from the fact that fewer

large voids imply more smaller voids, and thus the void abundance signature of nDGPlens is

more similar to the trends expected from ΛCDM sample variance than for the nDGP case.

The faded dot-dashed lines show the void abundance for the Gaussian smoothing case. For

the ν > 1 catalogue, there is a larger total number of voids, and fewer large voids, than in

the compensated Gaussian case. This is unexpected since the abundance of peaks with ν > 1

is lower for the Gaussian filter case than for the compensated Gaussian one, and typically

having fewer peaks implies fewer voids too. However, we find that most of the extra peaks in

the compensated Gaussian case are very highly clustered along the void boundaries for the

ν > 1 catalogue, and these peaks do not contribute additional voids to the catalogue despite

contributing additional peaks. These highly clustered peaks on the void boundary for the
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Figure 5.3: Top panel: the void abundance as a function of void radius. The coloured curves
correspond to voids identified in the WL peak distribution with heights: ν > 1 (blue), ν > 2
(orange), ν > 3 (green). The void abundance for ΛCDM is shown by the solid line, nDGP
is shown by the dashed line and nDGPlens is shown by the dotted line. The shaded region
around the ΛCDM curve indicates 1σ error bars expected for a LSST-like WL survey (the
error bar is roughly the same size as the thickness of the curves). Bottom panel: the relative
difference between the void abundances in MG models and the fiducial ΛCDM cosmology for
the three void catalogues shown in the top panel.
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ν > 1 catalogue can be seen in the left column of Figure 5.1. The void abundance SNR

values for the Gaussian smoothing case are on average lower than those for the compensated

Gaussian one.

The voids are generated from the spatial distribution of the WL peaks, and hence depend

on the clustering of these peaks. One way to measure this is through the N-point correlation

functions of the peak catalogues. Therefore, an alternative way to exploit the void abundance

is to study the N-point correlation functions of the WL peaks, or the cross correlations

between the void centres and the WL peaks. However, we find that within the limited

statistics of our small maps, the 2-point correlation functions of WL peaks do not show any

significant differences between ΛCDM and the MG models.

5.5.3 Convergence profiles

In the MG models studied here, the fifth force enhances structure formation, which results

in more underdense voids than in the fiducial GR case (e.g. Falck et al., 2018), with the

excess matter that was evacuated from voids being deposited in the walls and filaments of

the cosmic web that surround the voids (Cautun et al., 2016; Paillas et al., 2019). These

differences in the clustering of matter manifest themselves in both the distribution of voids

(as was seen in the previous section) and in the density profiles of voids. The κ values in a

WL map correspond to the projected matter density weighted by the lensing kernel and thus

the differences in the matter content of voids are likely to be manifested also in the void κ

profiles. In this section, we study the mean convergence profiles of our three void catalogues

and compare these profiles between different cosmological models.

We calculate the average κ profile of voids by stacking all the voids in a given catalogue.

Since the void size can vary by a factor of several between the largest and the smallest

voids, we stack the voids in terms of the rescaled radial distance from the void centre, r/Rv,

i.e., we express the distance in units of the void radius. Note that while the WL voids are

identified in the smoothed WL maps, for calculating the κ profiles we use the unsmoothed

convergence map. Using instead the smoothed κmap results in shallower void profiles because

the smoothing “redistributes" the high κ values found at a void’s edge over the entire area of

the void.

Figure 5.4 shows the κ profiles for each void catalogue in each of the cosmological models

studied here. Similarly as before, the barely visible shaded regions correspond to error bars

for an LSST-like survey and were obtained form the covariance matrix calculated from the
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Figure 5.4: Top panel: The stacked radial convergence profiles of the voids shown in Fig. 5.1
(excluding those within 2Rv from the map boundary). The three coloured curves correspond
to voids identified from the three WL peak catalogues with ν > 1 (blue), ν > 2 (orange)
and ν > 3 (green) respectively. The ΛCDM model is shown by the solid line, nDGP by the
dashed line and nDGPlens by the dotted line. The shaded regions around the ΛCDM results
show the 1σ error bars for an LSST-like survey. Bottom panel: The relative difference of the
κ profiles between the MG models and ΛCDM.
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184 T17 maps. The overall shape of the profile shows that the voids identified in the WL

maps correspond to projections of under-dense structures since for r < 0.75Rv all κ profiles

have negative convergence values. The κ profile peaks at r = Rv for the void catalogues

with the height of the maximum increasing as the ν threshold of the WL peak catalogues

increases. The depth of the under-densities decreases as the ν threshold increases. This is

because the void catalogues with a larger ν threshold contain larger voids, and since larger

voids cover a larger number of pixels of the WL map (whose mean κ value is 0), their profiles

in general tend to 0. It can also be seen that the regions outside of the void boundary remain

over-dense at least up to a radial distance, r = 2Rv for the ν > 3 catalogue, with the smaller

ν catalogues returning to 0 at lower r/Rv.

In general, we find that the void interiors (r < 0.75Rv) in MG models have slightly lower κ

values than the corresponding points in ΛCDM (this effect is most readily visible in the ν > 1

and 2 catalogues, while for the other void catalogue the signal is slightly more noisy, in good

agreement with previous studies (e.g., Falck et al., 2018; Paillas et al., 2019). Once the κ

profiles of voids become over-dense at r/Rv = 0.75 the MG profiles become more over-dense

than the ΛCDM ones out to r = 2Rv. The maximum difference in the κ profiles between

each model can be found at the void radius r = Rv.

5.5.4 Tangential shear profiles

Next we calculate the tangential shear profile γt(r), for the different void catalogues. The

tangential shear profile can be related to the convergence profile through Eq. 1.2.12. Whilst

the convergence profiles of voids allow for a simple physical interpretation of their mass

content, where positive and negative κ correspond to projected over-dense and under-dense

regions, it is the shear which can be measured directly in observations. Therefore, to more

easily compare with observations, we also study the void tangential shear profiles.

Fig. 5.5 shows the tangential shear profiles for the three void catalogues studied here. The

typical shear value is negative indicating that voids act as concave lenses that bend light

outwards from the void centres. It can be seen that the tangential shear peaks at r = Rv and

the amplitude of this peak is largest for the ν > 3 catalogue.

Voids in MG models have larger tangential shear profiles, and the difference is the largest

for the nDGPLens model, in which the fifth force both enhances structure formation and

also directly affects the photon geodesics. To quantify the potential of void γt profiles as a
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Figure 5.5: The same as Fig. 5.4 but for void tangential shear profile γt.
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cosmological test, we summarise in the bottom three rows of Table 5.1 the SNRs with which

an LSST-like survey can distinguish the MG models studied here from ΛCDM.

Table 5.1 shows that the SNR values of the γt profiles in the nDGP model are roughly the

same for all three void catalogues, although the ν > 3 catalogue has a slightly larger SNR.

For the nDGPlens model the SNR vary more between the various void catalogues, being the

largest for ν > 1 case. Overall the SNR values are highest for the nDGPlens model. Again,

we find that on average the compensated Gaussian filter can discriminate MG model better

than the Gaussian filter.

It was found in Paillas et al. (2019) that, with the same void finder and the same nDGP

variant (N1), galaxy voids give an SNR value of 20, whereas here we find that voids identified

directly in weak lensing maps produce SNR values up to 51. This shows that voids identified

in weak lensing maps are ideal objects for studying the tangential shear profile. This is further

motivation for the use of voids identified in weak lensing maps as complementary statistics

to the WL peak abundance, two-point correlation function and power spectrum.

5.6 Discussion and conclusions

We have investigated the potential of voids identified in WL maps to distinguish between

ΛCDM and a popular class of MG models, nDGP and its variant nDGPlens. For this, we

smooth the WL maps with a 2.5 arcmin compensated Gaussian filter, before we identify WL

peaks and use them as tracers for the tunnel void finding algorithm. We have then done a

forecast for LSST, in which GSN is properly included and found that the WL void statistics,

such as abundances and tangential shear profiles, are different in MG models compared to

ΛCDM and can distinguish between ΛCDM and MG up to an SNR of about 80. The SNR

values from γt(r) for voids identified inWLmaps are over two times larger than those of galaxy

voids, making a strong case for the use of voids identified in WL maps as a complementary

probe of the LSS, and as a test of gravity.

Throughout the Chapter, for the void abundance and the tangential shear profiles, we have

used a range of ν thresholds in order to generate multiple void catalogues. However, from Ta-

ble 5.1, there is no clear systematic trend which would indicate the best choice of ν threshold.

Given the large range of void sizes in Fig. 5.3, it is possible that each catalogue will respond

to the small and large scale modes of the WL maps differently, and so there is potential for

the multiple catalogues to provide complementary information to each other in the case of

modified gravity. This has been verified for wCDM cosmologies in the previous Chapter.
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We find that the peak abundance gives larger SNR values than either the WL void abundance

or the tangential shear profiles. This indicates that it is likely that the peak abundance will

be able to provide tighter constraints on MG. However, the extent to which voids identified

in weak lensing maps provide complementary constraining power to the peak abundance

remains to be studied, as the two statistics may respond differently to the changes in structure

formation induced by MG, or have different degeneracy directions with other cosmological

parameters. Additionally, it is possible that the results for the voids in this study are not

fully converged due to the limited sample size: because the voids are physically larger than

the peaks, it is possible that the voids require a larger sample area than the peaks before the

measured SNR values are robust to changes in map area.

In order to reliably constrain MG with future surveys, further systematics must be taken into

account. This includes the effect of baryons on simulated WL convergence maps, since we

have used dark matter only simulations in this Chapter. The full extent to which baryons alter

WL statistics from dark matter only simulations depends on the sub grid model used. Yang

et al. (2013) found that there is a significant amplitude increase in the WL power spectrum,

and that low amplitude WL peaks remain unaffected by baryons, whilst the number of large

peaks is increased by the inclusion of baryons. Weiss et al. (2019) found that in order for WL

statistics from dark matter only and hydro simulations to agree, very large smoothing scales

must be used (8− 16 arcmins), which is partly due to the inclusion of AGN feedback in the

hydro simulations (with sub grid physics). Osato et al. (2015) found that baryon physics can

induce significant biases when applied to parameter constraints, and Fong et al. (2019) state

that these biases are still present even with baryon physics, unless massive neutrinos are also

considered. So a complete understanding of the impact baryons may have on voids identified

in WL maps will be important before cosmological constraints can be made. Furthermore,

it is possible that baryons may have different impacts on the peak and void statistics, which

is motivation for studying the use of weak lensing voids as a complementary probe to WL

peaks.

It will also be interesting to consider other MG or dark energy theories such as those with

different screening mechanisms. The models tested in this Chapter employ the Vainshtein

screening mechanism which depends on derivatives of the scalar field, where other screening

mechanism such as chameleon screening in f(R) gravity may leave different imprints on the

WL convergence maps, and hence on the statistics of WL voids. For galaxy voids, the tun-

nel algorithm is a better test of chameleon screening (Cautun et al., 2018) than Vainshtein

screening (Paillas et al., 2019). So it will be important to consider multiple screening mech-
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anisms, where this method can then be used to place constraints on the screening thresholds

for MG theories.

To summarise, the work presented here shows that the study of 2D voids identified in WL

maps can be a useful statistic to develop in order to maximise the information that can be

gained from future surveys. Further development such as testing multiple screening mecha-

nisms, the impact of baryon physics on the peak and void statistics in MG will be left for

future work.
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6.1 Introduction

The most commonly used WL statistics are the shear correlation function and convergence

power spectrum. These two-point statistics alone, however, cannot account for the non-

Gaussian features introduced by the nonlinear evolution of structures in the Universe, and

other statistics can provide additional and complementary information. In this Chapter we

study one such additional probe, WL peaks, which are the maxima of the WL convergence

field. The WL peak abundance is a good example of a statistic that contains complementary

information to two-point statistics (Jain & Van Waerbeke, 2000; Pen et al., 2003; Dietrich &

Hartlap, 2010; Shirasaki et al., 2018), and can be used to constrain cosmological parameters

within ΛCDM (Shan et al., 2012; Van Waerbeke et al., 2013; Shan et al., 2014; Liu et al.,

2015), to test alternative cosmological models such as modified gravity (Cardone et al., 2013;

Liu et al., 2016b; Higuchi & Shirasaki, 2016; Shirasaki et al., 2017; Peel et al., 2018), dark

energy (Giocoli et al., 2018), and to measure the neutrino mass (Li et al., 2019). WL peaks

can also be extracted from CMB lensing to provide cosmological constraints (Liu et al.,

2016a). Various models have been developed to accurately describe high signal-to-noise-ratio

(SNR) WL peaks (e.g., Hamana et al., 2004; Hennawi & Spergel, 2005; Maturi et al., 2005;

Fan et al., 2010; Marian et al., 2012; Hamana et al., 2012; Liu & Haiman, 2016; Shan et al.,

2018; Wei et al., 2018).

In contrast to high WL peaks, there have been relatively few studies on the abundance of

low and intermediate peaks (see, e.g., Yang et al., 2011; Lin & Kilbinger, 2015; Shirasaki,

2017), which nevertheless contains rich cosmological information (Dietrich & Hartlap, 2010;

Kratochvil et al., 2010; Yang et al., 2011), and even fewer on the spatial correlation of such

peaks (e.g., Marian et al., 2013; Shan et al., 2014). Upcoming wide and deep field galaxy

surveys such as euclid (Refregier et al., 2010) and lsst (LSST Science Collaboration et al.,

2009) will produce large high-resolution WL maps, with significant improvements compared

to the current generation of WL observations. Understanding how WL peak statistics behave

will be important if we want to maximise the cosmological information that can be gained

from the new surveys. In particular, the higher source number density of these surveys will

lead to a reliable determination of peak abundance and clustering down to low SNR values,

so it is important to have accurate models to describe the statistics of low- and intermediate-

height peaks.

In this Chapter we study properties of WL peak statistics in ΛCDM, by modelling the

peak abundance, peak two-point correlation functions (2PCFs) and the convergence rms
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fluctuation (convergence map standard deviation). Most importantly, we identify a universal

self-similar behaviour in the peak 2PCF, which holds for a large range of peak heights and

different cosmologies. The self-similarity is observed when expressing the 2PCF in terms

of the angular separation divided by the mean peak separation, with the resulting rescaled

2PCFs lying on top of each other. We propose a general model that describes the abundance

and clustering of WL peaks and that allows us to access cosmological information contained

on non-linear scales.

The structure of the Chapter is outlined as follows: in Section 6.2 we describe the numerical

simulations used to construct the WL maps, and introduce the statistics we use to study WL

peaks. Next, in Section 6.3 we present the WL peak abundance, WL peak 2PCF, and identify

a self similarity in the peak 2PCF for a given fiducial cosmology. Then, in Section 6.4 we

give general fitting functions that describe the convergence rms fluctuation, peak abundance,

2PCF and its self similarity in ΛCDM for a large range of Ωm and σ8 values. We then show

in Section 6.5 that our model can accurately reproduce the original peak 2PCF. Finally, in

Section 6.6 we show that the self similarity of the 2PCF is robust to the inclusion of galaxy

shape noise.

6.2 Simulations and analysis pipeline

In this section we describe the simulations and methodology used in this Chapter to study

WL peak statistics.

As shown in previous Chapters, the WL convergence corresponds to the projected mass

density contrast weighted by a geometric factor, and thus positive and negative κ values

correspond to overdense and underdense lines of sight. For self consistency across different

convergence maps we define the SNR, ν, as

ν = κ− µ
σ

, (6.2.1)

where µ is the mean value of the convergence field of a given map, and σ is its rms fluctuation.

We have subtracted the map mean µ in the definition of SNR because our maps are relatively

small and can have non-zero means due to sample variance that vary from map to map, which

can affect the consistency of the SNR definition. Note that the subtraction of µ does not

affect σ, and it is not needed in the case of κ reconstructed from the (directly observable)

cosmic shear field. An example of a κ map generated from numerical simulations through

ray tracing is shown in Fig. 6.1.
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Figure 6.1: An illustration of a WL convergence map and the distribution of peaks of different
heights (green points). The convergence field is expressed in terms of the SNR, ν, as indicated
by the colour-bar on the right. Peaks with a height below νcut = 1, 2 and 3 are removed
to produce the three peak catalogue shown in the three panels (all plotted on the same
convergence map). The axes θ1 and θ2 give angular coordinates of the map in two orthogonal
directions. The map is smoothed with θs = 2 arcmin before the peaks are identified. We
use 2 arcmin smoothing here for visualisation purposes, to clearly show the presence of WL
peaks in a convergence map. As 1 arcmin smoothing (which is used in the main analysis of
the Chapter) results in a large number of peaks that would reduce the clarity of the figure.

For most of the Chapter, the lensing quantities are measured in maps obtained from cos-

mological simulations without added noise, except for Section 6.6 where galaxy shape noise

is included and all quantities are measured from the noise-added maps (for more details see

Section 6.6).

6.2.1 Numerical simulations

In order to study weak lensing peak statistics, in this Chapter we use a large suite of WL

convergence maps constructed from two sets of N-body simulations. The first are the publicly-

available all-sky convergence maps of Takahashi et al. (2017) (hereafter T17). These maps

have a source redshift of zs = 1 and have been generated using the ray tracing algorithm de-

scribed in Hamana et al. (2015) (see also Shirasaki et al., 2015), with a HEALpix resolution

of Nside = 16384. To avoid probing the same structures along the line-of-sight, T17 con-

structed the light cone by stacking a hierarchy of cubic simulation boxes, with comoving sizes

L, 2L, 3L, · · · , 14L, where L = 450h−1Mpc. The simulations had a particle number of 20483,

where the particle mass depends on the box size, and ranges from 8.2× 108 to 2.3× 1012M�

(see Table 1 of T17 for more details). Each of the simulation boxes was duplicated 8 times

and nested around the observer, such that nests of larger boxes contain nests of smaller boxes

at their centers. Ray tracing was then performed on the nested simulation boxes by taking

the projected mass distribution in spherical shells of 150 h−1Mpc in thickness centred on
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the observer (see T17 for illustration). The cosmological parameters adopted for the T17

simulations are Ωm = 0.279, σ8 = 0.820 and h = 0.7, where h = H0/100 km s−1 Mpc−1.

Throughout this Chapter we have split the T17 all-sky map into 184 separate 10 × 10 deg2

maps with 20482 pixels per map, for which we can use the flat sky approximation to simplify

our analysis. A detailed description of the method we use to split the all-sky map into smaller

squares is given in Appendix .7.

The second set of WL maps we use are taken from Matilla et al. (2016) (hereafter Z16;

see also Gupta et al. 2018) and consist of maps for 96 different cosmologies. It was built

with the simulation pipeline described in Petri (2016). For each cosmology, the maps were

obtained from an N-body simulation of a periodic box with length L = 240 h−1Mpc and 5123

simulation particles with a particle mass of ∼ 1010h−1M� (the exact value depends on the

actual cosmology). Ray tracing was then performed by using a source redshift of zs = 1 and

by stacking particles into lens planes with a thickness of 80 h−1Mpc between the source and

the observer. The lens planes were generated by taking a slice along a coordinate axis of the

original simulation box and applying a random shift and rotation. This process was repeated

to generate 512 3.5 × 3.5 deg2 maps per cosmology with 1024 × 1024 pixels per map. Note

that each of the 512 maps were obtained from the same periodic simulation by varying the

orientation of the line-of-sight direction. For a more detailed description we refer the reader

to Z16.

In total we have two sets of maps, one with 184 10× 10 deg2 maps for a fixed cosmology and

the other with 512 3.5×3.5 deg2 maps for 96 cosmologies with different values of Ωm and σ8.

Larger maps are ideal for 2PCF studies as the 2PCF cannot be reliably calculated at large

separations where pair measurements are affected by the finite size of the map. However,

the differences in the two simulation data sets used here bring some benefits for our analysis.

First, given the simulations use different ray tracing codes and box tiling methods, if we are

able to identify certain features of the WL peak statistics in both simulations, this can be

a check that the said features are not an unphysical consequence of the procedure used to

generate the convergence maps. Second, the different simulation maps have different angular

sizes and resolutions, which can help highlight any potential systemics in our analysis due to

the box size or the pixel resolution.
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6.2.2 Weak lensing peaks

WL peaks in this Chapter are defined as the maxima of the convergence field, which trace

local over-densities in a range of environments. To extract the WL peaks, we first smooth

the convergence map with a Gaussian filter. The convergence field has power on all scales,

so the number and spatial distribution of WL peaks depends on the smoothing scale, with

a larger smoothing washing out low contrast peaks and merging neighbouring peaks. We

mainly study peaks identified with a Gaussian filter with smoothing length θs = 1 arcmin, a

range of smoothing scales have been studied in Liu et al. (2015), showing that this smoothing

scale is ideal for WL peak studies. In some cases (which will be explicitly mentioned), we vary

θs to understand how the results depend on smoothing scale. Next we identify WL peaks by

finding all pixels in the maps whose values are larger than those of their 8 neighbours, and

peaks within 3θs of the map boundary are removed to avoid edge effects where the Gaussian

filter is truncated. The height of a peak is given by the ν value of the smoothed convergence

field at the peak position. For a given convergence map, we can generate multiple peak

catalogues by imposing a νcut threshold and keeping only peaks with ν ≥ νcut.

Fig. 6.1 illustrates the distribution of peaks (shown as green dots) for three different SNR

thresholds, νcut = 1, 2 and 3. To highlight the distribution of peaks on both small and large

scales, we show peaks identified with a Gaussian smoothing scale, θs = 2 arcmin; using a

smaller θs value would result in many more peaks and make the graph less legible.

Fig. 6.1 shows that peak catalogues with different νcut values trace different features of

the convergence field. The catalogue with νcut = 1 traces the over-dense regions of the

convergence map, whilst avoiding the darker under-dense regions. In particular, many peaks

seem to be arranged in a somewhat filamentary pattern. By increasing νcut to 2, we find

that the resulting catalogue has a significantly lower number of peaks and the peaks are now

more clustered. Most of these peaks are found in highly over-dense regions, with some small

filamentary patterns still remaining. Finally, there are few peaks with νcut = 3, but they

show a high degree of spatial clustering and are located in the very over-dense regions of the

map.

The description of Fig. 6.1 above highlights two important features in the behaviour of

WL peaks: the number of WL peaks and their clustering, which are respectively quantified

by two commonly used statistics, the peak abundance and the peak two point correlation

function (2PCF). The former is well studied and has been considered for many cosmological

applications (e.g., Liu et al., 2015; Liu & Haiman, 2016; Liu et al., 2016b; Shirasaki et al.,
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2017; Shirasaki, 2017; Shan et al., 2018; Li et al., 2019; Wei et al., 2018), whereas weak

lensing 2PCFs are usually measured as shear-shear correlations (Fu et al., 2008; Heymans

et al., 2012; Kilbinger et al., 2013), with very few studies directly focused on the peak 2PCFs

(Marian et al., 2013; Shan et al., 2014).

The two point correlation function measures the probability of finding two points (or in our

case, WL peaks) at a given separation (θ for angular separations on the sky). It can also be

interpreted as a measure of the excessive clustering of a distribution of points relative to the

clustering of randomly distributed points. To estimate the 2PCFs, we use the Landy-Szalay

estimator (Landy & Szalay, 1993), which is a robust way of measuring 2PCFs, especially for

small maps and low tracer number densities. Using this estimator requires a catalogue of

randomly distributed points, whose role is to account for boundary effects and serves as a

proxy for the volume (area in 2D) of the sample. The Landy-Szalay estimator is evaluated

as

ξLS(θ) = 1 +
(
NR

ND

)2DD

RR
−
(
NR

ND

)
DR

RR
, (6.2.2)

where ND and NR are the numbers of data and random points and DD, DR and RR are the

number of data-data, data-random and random-random pairs in bins θ ± δθ. We calculate

the 2PCFs by taking the average over many small maps (see description in section 6.2.1).

Since the maps are small, taking the average of the ξ values measured for each map leads

to biased results and we discuss this subtlety in detail in appendix .8. To obtain unbiased

results, we calculate the average of the DD, DR and RR pair counts over all maps, and then

we insert the average pair counts into Eq. (6.2.2).

6.3 Weak lensing statistics

As mentioned above, we are mainly interested in the one- and two-point statistics of WL

peaks. In order to gain some first insight into the properties of these quantities, we use the

large, 100 deg2, maps from the T17 simulations for the results shown in this section. In the

next section we shall use the small maps from the Z16 simulations to quantify the dependence

of peak statistics on cosmology.

6.3.1 Peak abundance

We start by studying the mean abundance of WL peaks, which is expressed in terms of the

cumulative peak abundance, n(> ν). This represents the number density in deg−2 of all
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Figure 6.2: WL peak number density as a function of peak signal-to-noise, ν, for two smooth-
ing scales, θs = 1 arcmin (blue) and θs = 2 arcmin (orange) from the T17 maps. The shaded
grey region highlights the ν range that we study in this Chapter, discussed in section 6.3.3.

peaks whose SNRs are higher than ν. The peak abundance is illustrated in Fig. 6.2, where

the results are averaged over the 184 T17 maps. The blue (upper) and orange (lower) curves

correspond to a Gaussian smoothing kernel θs = 1 and 2 arcmin, respectively. According to

Eq. (6.2.1), the smoothing scale θs enters the definition of ν in two ways, by affecting the

pixel values of κ and the overall rms κ fluctuation, σ. For the T17 maps we find σ = 0.013

and 0.010 respectively for θs = 1 and 2 arcmin, and in the next section we will see that σ

has a clear cosmology dependence as well.

The qualitative behaviour shown in Fig. 6.2 is as expected. There are very few peaks with

high ν values since these correspond to massive dark matter structures, which are rare. As

ν decreases, the peak abundance, n(> ν), increases quickly until ν ∼ 0 since lower ν values

correspond to lower mass and thus more abundant dark matter structures. However, for

ν . 01 we see that n(> ν) flattens, showing that there are few peaks with ν < 0. It

highlights that there are few structures in underdense regions that are massive enough to

lead to a local maximum, especially when smoothing over 1 and 2 arcmin. Increasing the

1Note that WL peaks can have ν < 0, or equivalently κ < 0. These are local maxima in underdense regions
of the convergence map.
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Figure 6.3: The 2PCFs of WL peaks for different peak catalogues obtained by varying the
threshold, νcut, in the range [1.5, 3.5] in increments of ∆νcut = 0.25. The results are for the
T17 maps and for two different smoothing scales, θs = 1 (top-row) and 2 arcmin (bottom-
row). The left column shows the 2PCFs as a function of angular separation, θ. The right
hand column shows the rescaled 2PCFs,which are the 2PCFs expressed in terms of θ/θp, with
θp the mean peak separation in the catalogue. The 2PCFs displays a striking self-similar
behaviour, with all rescaled 2PCFs curves lying on top of each other. The black dashed
line in the right-hand column shows the best fitting power law to the rescaled 2PCFswith
gradients −0.94 (top) and −1.02 (bottom).

smoothing scale θs leads to a lower peak abundance at fixed ν, since smoothing over a larger

region tends to eliminate some peaks.

We have checked that the WL peak abundance shown in Fig. 6.2 can be well fitted by the

function n(>ν) = −a [tanh(bν)− 1] for the entire ν range. However, for reasons that will

become clear in Section 6.3.3, in this Chapter we are interested in the range ν ∈ [1.5, 3.5]

(shown as the grey shaded region in Fig. 6.2), where n(> ν) can be modelled as a power law

(see Section 6.4.2). Note that Fig. 6.2 also shows the uncertainties in the n(> ν) measurement,

which are the standard errors of the mean of the 184 T17 maps; however, these error bars

are not visible as they are roughly of the same size as the line width.
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6.3.2 Peak two point correlation function and νcut dependence

For WL peaks it has been suggested that the 2PCF can be well modelled by a power law

(Shan et al., 2014). In this section, we will confirm this power-law description using the T17

convergence maps, and show that it works well for peak catalogues with a wide range of νcut

thresholds.

The 2PCF dependence on νcut is of particular interest, because by decreasing νcut we are in-

cluding lower peaks into the analysis, which is equivalent to incorporating smaller dark matter

structures into the clustering statistics. In the current standard cosmological paradigm, large-

scale structures (LSS) evolve hierarchically, with larger objects forming from higher initial

density peaks. This means that by varying νcut we probe the different regimes of nonlin-

ear LSS formation and thus potentially provides more powerful cosmological tests. As an

example, in certain modified gravity models, smaller structures experience a stronger boost

in their nonlinear growth (e.g., Clifton et al., 2012, and references therein), and we expect

this to leave potentially detectable signatures in the peak 2PCFs at different νcut values. In

addition, as we have seen above, lowering the νcut threshold increases the number of peaks

included in the catalogue, and this can help increase the statistical constraining power. We

will see shortly that there is a self-similarity in the peak 2PCF, which means that having peak

catalogues for multiple νcut values does not require separate modelling for each catalogue;

this can potentially strongly improve the constraining power by WL peaks.

The left panels of Fig. 6.3 show the mean 2PCFs of the T17 maps for a range of νcut values

and for two smoothing scales, θs = 1 and 2 arcmin. The error bars, which are the standard

errors of the 184 maps, are shown as shaded regions around the curves, but they are very

small and barely visible.

A quick inspection of Fig. 6.3 by eye confirms that the 2PCFs are well described by power

laws. We can see that as νcut increases the amplitude of the 2PCF, ξ(θ), also increases. This

is intuitive to understand: the high WL peaks correspond to more massive structures which

tend to cluster more strongly. Moreover, the 2PCF amplitude is higher for peak catalogues

obtained using a larger smoothing length, θs. This is because a higher θs value suppresses

peaks originating from low mass dark matter structures that cluster less. The gradient of the

2PCFs from maps with a fixed θs increases slightly with νcut, but this effect is weak for both

smoothing scales shown, and the dominant effect of varying νcut is in the amplitude of the

2PCF.

Note that smoothing can lead to a merging of peaks separated by distances comparable to
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the smoothing scale θs, and therefore eliminates some peaks which are close to each other.

This leads to a drop off of the 2PCF from the power law on scales . θs, which is why we

show a different θ range in the two left panels of Fig. 6.3. Additionally, for a given WL map

size, the 2PCFs cannot be reliably measured at large separations as there are too few peak

pairs, which is why in Fig. 6.3 we adopted a conservative θmax which is 1/10 the map size.

Therefore, the smoothing scale and the map size set a limited range in θ within which we can

measure the 2PCF. More explicitly, while for the T17 maps we use θs ∈ [1, 3] arcmin in this

study, for the smaller Z16 maps we only use θs = 1 arcmin to avoid having a too narrow θ

range. A larger θs is necessary for maps where galaxy shape noises (GSNs) are included, to

suppress the biasing effects caused by the latter (shown in Chapter 2); we will come back to

this point in Section 6.6 below.

6.3.3 2PCF rescaling and self-similarity

We now move on to one of the most important results of this Chapter: the self similarity

of the peak 2PCFs. This has been first studied (very briefly) in Chapter 2 in the context of

explaining the self-similar behaviour of the abundances for voids identified from WL peaks

with varying νcut. As we show later, the 2PCF self similarity is a very useful property that

merits the more detailed investigation presented here.

The quest for a self-similar behaviour in the peak 2PCFs is motivated by the following obser-

vations: the 2PCF amplitude is lower for peak catalogues with lower νcut; meanwhile, these

catalogues have more peaks and hence a smaller mean peak separation, θp. By expressing

the 2PCF in terms of θ/θp the various curves could potentially be brought closer together.

The question is whether after this rescaling the 2PCF curves for different νcut thresholds can

be made to overlap, in which case their modelling can be significantly simplified.

The right panels in Fig. 6.3 show the rescaled 2PCF, that is the 2PCF expressed as a

function of θ/θp instead of θ. To obtain this result, we calculated the mean peak separation

as θp = (N/A)−1/2, where N is the number of peaks in a catalogue and A is the area of the

map. The θp value for a peak catalogue can be directly inferred from the peak abundance,

n(> ν), as θp = n(ν > νcut)−1/2. We find that the rescaled 2PCFs lie on top of each other and

thus it indicates that the peak 2PCF is self similar. This shows that the one-point statistic

of WL peaks, n(> ν), can be tied to the amplitude of the 2PCF to achieve the mentioned

self similarity. The self-similar behaviour is mainly limited to the range νcut ∈ [1.5, 3.5],

with the rescaled 2PCFs starting to peel off from the average relation for νcut < 1.5 and
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νcut > 3.5. At this stage it is unclear whether the breakdown of self-similarity at νcut > 3.5

is physical or due to the small number of high SNR peaks in our maps which, (as discussed

in Appendix .8, could bias the estimation of the two-point correlation function); this will be

investigated in more detail in the future. Bearing this issue in mind, in this Chapter we limit

our investigation to the modelling of WL peak statistics for 1.5 < νcut < 3.5 only. Note that

this happens to be the same range within which the peak abundance can be well described

by a power law (see Section 6.3.1).

The self-similar behaviour holds for both smoothing scales shown in Fig. 6.3, however, the

rescaled 2PCFs for the larger smoothing length (θs = 2 arcmin; bottom right panel of Fig. 6.3)

are shifted to lower θ/θp values than the results for θs = 1 arcmin. It suggests that 2PCFs are

self-similar when keeping the smoothing scale constant, and that the self-similarity behaviour

does not hold when comparing 2PCFs obtained for peak catalogues with different smoothing

scales.

The panels in the right column of Fig. 6.3 also show that the rescaled 2PCFs are well fitted

by a power law, as shown by the black dashed curves with gradients −0.94 (θs = 1 arcmin)

and −1.02 (θs = 2 arcmin) .

6.4 Cosmology dependence and universal fitting functions

In this section we study the dependence of peak abundance and peak 2PCF on the Ωm and

σ8 cosmological parameters by analysing these statistics for the set of 96 different cosmologies

used for the Z16 maps. The (Ωm,σ8) parameter space of the Z16 maps is indicated by the

points in Fig. 6.4. The parameter space is densely sampled around Ωm = 0.26 and σ8 = 0.8,

which corresponds to the fiducial cosmology, and only sparsely sampled for models with

very different parameter values. In particular, when describing the cosmology dependence

of various peak statistics, we will limit our fitting procedure to the (Ωm, σ8) pairs shown as

orange points in the figure. This removes extreme and unrealistic cosmological parameters

from our analysis. For comparison, the parameters used for the T17 maps are indicated by

the black triangle in Fig. 6.4.

The two cosmological parameters, Ωm and σ8, are degenerate because they can impact the

size of the matter fluctuations in similar ways, and the direction of degeneracy depends on

the physical quantity which is being studied. In order to better assess the potential and

limitations of using WL peak statistics to constrain these cosmological parameters, it is
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Figure 6.4: The (Ωm,σ8) parameter space that is probed with our suite of 96 simulations from
Z16. The faded grey lines indicate the cuts that are made to remove extreme cosmological
parameters and give the orange points which we use to construct our Ωm,σ8 dependant model
for 2PCF reconstruction in section 6.4. The black triangle shows the Ωm and σ8 values of
the T17 simulations.
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Figure 6.5: The rms fluctuations, σ, of the WL convergence map as a function of σ8(Ωm/0.3)α.
The power α indicates the degeneracy direction between σ8 and Ωm that gives the same rms
fluctuations in the convergence field. The blue points correspond to the 96 cosmologies from
Z16 (see Fig. 6.4) and the orange point corresponds to the T17 one. The top and bottom
panels show the mean σ values for two smoothing scales, θs = 1 and 2 arcmin, respectively.
The bottom sub-panels show the residuals between the mean σ values and the best fitting
line (blue). The vertical bars show the standard errors, which may be underestimated as
discussed in Appendix .9.
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important to know the degeneracy direction for the physical quantities of interest. Following

the usual approach, we define the parameter combination, Σ8(α) ≡ σ8 (Ωm/0.3)α, where α

characterises the degeneracy for a given statistic (α is allowed to vary for different statistics

since they usually do not have exactly identical degeneracy directions). Note that for studying

the cosmology dependence we use only the Z16, and not the T17, convergence maps, and the

latter is used as a consistency check of the fitted models.

The fittings carried out in this section are mainly to exemplify the cosmology dependence

of the self-similar feature present in the 2PCF in Fig. 6.3, which applies only to theoretical

(simulated) lensing maps with no noises and with a specific smoothing length. Before this

approach can be used for observational constraints, further development will be required,

notably the inclusion of galaxy shape noise. We discuss briefly the impact the latter has on

the self similarity of the 2PCF in Section 6.6. In order to study the rescaled 2PCF for a

range of cosmologies using more realistic noise-added maps, larger simulations for this range

of models are required, which we leave to future work.

6.4.1 Convergence rms fluctuation

We describe peaks in terms of the convergence SNR value at their position. To calculate

this, we use the root-mean-square (rms) fluctuations, σ, of the convergence field (see e.g.

Eq. 6.2.1). In principle, σ is used merely as a normalisation factor and it is not entirely

unreasonable to use the same value to define ν across all cosmologies. However, the standard

deviation (or rms fluctuation) of the corresponding WL convergence map, σ is a quantity with

a clear physical meaning, and hence it is natural to use its correct value for a given cosmology.

Therefore, we need a general description of σ as a function of input cosmological parameters,

σ = σ(Ωm, σ8). Having this function is also of interest on its own, since it is useful to know

how the rms fluctuation of the WL convergence field depends on the cosmological model.

The dependence of the convergence rms fluctuation, σ, on σ8 and Ωm is illustrated in Fig. 6.5,

where we show the results for two smoothing lengths, θs = 1 (left panel) and 2 arcmin (right

panel). In both cases we varied α such that σ is well described by a linear function of Σ8(α),

that is:

σ = mΣ8(α) + c ≡ mσ8

(Ωm

0.3

)α
+ c . (6.4.1)

We achieved this by performing a χ2 minimisation procedure with three free parameters: m,

c and α. The best fitting parameter values are: m = 2.08 × 10−2, c = −3.39 × 10−3 and

α = 6.66×10−1 for θs = 1 arcmin and m = 1.59×10−2, c = −2.37×10−3 and α = 6.56×10−1
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for θs = 2 arcmin. For these fits, we used the standard errors in the determination of σ. These

errors are shown in Fig. 6.5 as vertical error bars, however in most cases the error bars are

smaller than the size of the data points plotted and are not visible. The bottom panels

in Fig. 6.5 show the residuals, i.e., the deviations of the σ values for each cosmology from

the best-fitting lines. The fit residuals are small when compared to the absolute values of

σ and show no systematic trend with Σ8, indicating that Eq. (6.4.1) provides an excellent

description for both smoothing lengths. In particular, we notice that the best-fit value of

α is similar for θs = 1 and 2 arcmin, and thus weakly dependent on the smoothing scale,.

It is also reassuring to note that T17 is in very good agreement with the best-fitting lines,

which are obtained from the Z16 convergence maps only, even though the two sets of maps

are constructed from very different simulations.

Even though it is not the main line pursued in this Chapter, we note that the measured stan-

dard deviation of the (reconstructed) WL maps is a useful quantity (see, e.g., Van Waerbeke

et al., 2013) and therefore a simple fitting formula for σ in terms of Ωm and σ8 will be useful

both theoretically and observationally. However, because GSN introduces a major systematic

uncertainty in real WL maps, it is necessary to study the Eq. (6.4.1) fitting formula using

maps in which realistic GSN is included; this is beyond the scope of this study, because the

Z16 maps used in the analysis above have relatively small sizes. In this Chapter, instead, the

primary use of Eq. (6.4.1) will be to define ν for a convergence map with given Ωm and σ8

values.

As shown in Figure 6.5, within the large range of cosmological parameters covered in this

study, σ varies strongly, by up to a factor of 5-7. By defining ν relative to the σ of the

corresponding model, we are able to define the SNR in different models relative to their own

clustering amplitude. The alternative way to is use a constant σ definition, such as the value

for a fiducial model or the rms of the typical noise map. However, in our case this would mean

comparing the clustering of map pixels with smaller κ values in one model to the clustering

of pixels with large κ values in another model, when using the same νcut, and so a cosmology

dependant νcut range would have to be applied which is a far more complicated approach.

We have explicitly checked by defining the SNR ν in Eq. (6.2.1) using the σ of the fiducial

model where σ8 = 0.8 and Ωm = 0.3, and found that the self-similar behaviour still holds

though slightly worse than shown here. Later in Section 6.6, when dealing with noisy maps,

we shall use the σ measured from the smoothed noisy maps to define the SNR.
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Figure 6.6: The peak abundance, n(> ν), for the 96 cosmologies from Z16 plotted against ν.
The lines are coloured according to a combination of the cosmological parameters Ωm and σ8
(see colour bar).

6.4.2 WL peak abundance

The peak abundances for the 96 models in the Z16 simulations are shown in Fig. 6.6.

The colour-bar shows the cosmological parameters for a given curve with the form Σ8 =

σ8(Ωm/0.3)−0.637. The spread of the amplitudes of the peak abundances across the 96 cos-

mologies is up to a factor of two. Most of the curves appear straight, indicating that the

peak abundance is well described by a power law. The only exceptions are the black curves

with very small values of Σ8: these curves will be removed in the analysis as they correspond

to the extreme cosmological parameter values indicated by the blue points in Fig. 6.4. As Σ8

increases, the slope of the peak abundance decreases, while its amplitude increases at larger

ν (ν & 2.5) and decreases for small ν (ν . 2.5). This ‘rotation’ of the curves about ν ≈ 2.5

as Σ8 changes implies a correlation between the slope and amplitude of the peak abundances

as the cosmological parameters vary, and we shall see shortly that this fact can be utilised to

reduce the number of fitting parameters in our peak abundance model.

In the range 1.5 < νcut < 3.5, the peak abundance as a function of ν is well described by the

power-law,

logn(> ν) = Bnν +An, (6.4.2)
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Figure 6.7: Left panel: the dependence of An, which is the one parameter fit to the peak
abundance (see Eq. 6.4.3), on a combination of σ8 and Ωm parameters. The exact combi-
nation is σ8(Ωm/0.3)−0.637, where the power represents the degeneracy direction between σ8
and Ωm that gives the same An value. The blue line shows the best fitting linear function
(see Eq. 6.4.5). Right panel: the triangle symbols show the percentage residuals of the one
parameter power law fit to the peak abundance. The circle symbols show the extent to which
our model can predict the peak abundance. The model works in two steps: i) use the blue
solid line shown in the left panel to predict An for a pair of σ8 and Ωm values, and ii) given
An, infer the peak abundance using Eq. (6.4.3). The various symbols are coloured according
to the Ωm cosmological parameter (see colour bar on the right).

in which the fitting parameters An and Bn depend on the input cosmology.

In order to model An = An(Ωm, σ8) and Bn = Bn(Ωm, σ8), we fit Eq. (6.4.2) to the peak

abundance for each of the cosmological models indicated by the orange points in Fig. 6.4.

The fitting results confirm that An and Bn – which respectively characterise the amplitude

and slope of the peak abundance – are strongly correlated, so that Bn can be replaced with a

function of An, Bn(An), and the peak abundance can now be described using a one-parameter

power law of the form

logn(> ν) = νBn(An) +An, (6.4.3)

with

Bn(An) = −0.33An + 0.28. (6.4.4)

This indicates that a universal model for WL peak abundance that works for a wide range

of cosmological models can be obtained if one can fit the cosmology dependence of the single

parameter An. The result is shown in the left panel of Fig. 6.7, where the An values measured

from the 96 Z16 cosmologies are plotted against Σ8(α) with α = −0.637. The value of α

corresponds to the one for which An is well fitted by a linear function of Σ8(α). The latter
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is shown as the solid line in the left panel of Fig. 6.7, and is given by

An = −0.30 σ8(Ωm/0.3)−0.637 + 2.20 . (6.4.5)

For fitting the above equation the errors in An are given by the uncertainties of fitting

Eq. (6.4.4) to the peak abundance. These errors are small and are not visible in Fig. 6.7

since they are smaller than the symbol size. We note that there is an outlier in this panel.

We have checked the corresponding convergence maps and have not found an explanation for

this outlier.

Eqs. (6.4.3)-(6.4.5) can be used to predict the peak abundance for any input Ωm and σ8

values. For this, we first use Eq. (6.4.5) to calculate An for given (Ωm, σ8), and then infer

n(> ν) using Eq. (6.4.4). The accuracy of this prediction is shown by circle symbols in

the right panel of Fig. 6.7. We quantify the success of the method in terms of the mean

percentage residual, which is defined as the absolute value of the fractional difference between

the measured peak abundance and the predicted one, averaged over all bins in ν ∈ [1.5, 3.5].

We find a mean percentage residual of 1 − 5 percent, indicating that the model performs

well. To understand what is the major factor affecting the model accuracy, we also calculate

the mean percentage residual between the measured n(> ν) and the direct one-parameter

power-law fit to it, which is shown as triangles in the right panel of Fig. 6.7. There is only a

very slight difference between the triangles and the circles, with the former being generally

lower. This indicates that our prediction of the peak abundance is very similar in accuracy

to the original fit, which is further supported by the fact that the blue line in the left panel

fits the various An data points rather well. In summary, our model is able to predict the

peak abundance to within ∼3 percent accuracy for most of the chosen cosmological models.

If we use the original form of the power law, Eq. (6.4.2), to model the peak abundance,

with the two parameters, An and Bn, both left to vary freely in the fitting, we get fits

and predictions that match the raw data at the sub percent level. However, in attempt to

minimise the number of parameters in our model we chose the one parameter power law, Eq.

(6.4.3), at the cost of roughly a 2% loss in accuracy.

6.4.3 Peak two-point correlation functions

We now move on to check whether peak 2PCFs display the self-similar behaviour described

in Section 6.3.3 for a wide range of cosmological models. The result is shown in Fig. 6.8,

where we plot the rescaled 2PCFs for all the pairs of (Ωm, σ8) values of the Z16 maps (96
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Figure 6.8: The rescaled 2PCFs as a function of θ/θp for various cosmological models. Each
panel corresponds to a pair of (Ωm, σ8) parameters (see labels in each panel). The lines in
each panel correspond to peak catalogues with different νcut thresholds, with νcut varying
from 1.5 to 3.5 in ∆νcut = 0.25 increments. We find that all cosmologies have self-similar
2PCFs for peak catalogues with νcut ∈ [1.5, 3.5]. The x- and y-axis amplitudes of each sub-
panel have been normalised to their respective centers to highlight the presence of the rescaled
self-similarity across all of the Ωm, σ8 models. For this reason, axis labels are not included
to avoid overcrowding.
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Figure 6.9: The gradient, β, of the power laws fitted to each of the rescaled self-similar 2PCFs
in Fig. 6.8 plotted against the σ8 of the respective model with the associated Ωm value given
by the colour-bar. The vertical bars show the uncertainties in determining β.

models in total). The re-scaled 2PCFs are normalised to the center of the panels to exemplify

the self-similar behaviour. Fig. 6.8 illustrates that the self-similarity of the 2PCFs is indeed

robust against the change of cosmological parameters σ8 and Ωm. The parameter space

in Figs. 6.4 and 6.8 is much larger than what is allowed by current constraints. Thus a

model describing this self similarity will not only have the potential to provide additional

cosmological constraints, but can also be applied to scenarios where predictions for a large

parameter space is required, such as generating training sets for machine learning algorithms.

Fig. 6.8 also shows that the rescaled 2PCFs are well described by power laws which have very

similar slopes across all cosmological models. To be more quantitative, we have fitted the

following power-law function,

ξ = ξ0

(
θ

θp

)β
, (6.4.6)

to the curves in each of the panels, with each data point weighted by its standard error (see

Appendix .9 for details about the error calculation). The best-fitting slope, β, as a function

of cosmological parameters is shown in Fig. 6.9, where the horizontal axis shows σ8 while

the colour of the points indicates the Ωm value. The scatter of the points in Fig. 6.9 does

not follow any clear trends, and combinations of σ8 and Ωm in the form of σ8(Ωm/0.3)α,
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Figure 6.10: Left panel: the amplitude parameter of the power-law best fitting the rescaled
2PCFs as a function of σ8 and Ωm. Each blue point shows the amplitude for a pair of (σ8,Ωm)
values and the solid line shows the best fitting quadratic function. Middle panel: an example
of the rescaled 2PCF for different νcut values and and its best fitting power law (black line).
The solid grey line shows our reconstructed power law, which was calculated using the best
fitting line from the left panel. Right panel: the percentage residuals between the fitted power
law and the data (triangles), and between the reconstructed power law and the data (circles).
The x-axis (σ8) and the colour-bar (Ωm) indicate the cosmology of the model for which the
residuals are being measured.

where α is allowed to vary, does not to lead to improvements in the correlation between β

and the input cosmology. In Fig. 6.9 we find that the mean value across the entire sample

is β ≈ −1.1. As such, for simplicity, we take β = −1.1 as the power-law slope of the rescaled

2PCF (we have checked that the results are not particularly sensitive to the value of β).

On the other hand, we find that the amplitude of the rescaled peak 2PCFs, ξ0 = ξ0(Ωm, σ8)

in Eq. (6.4.6), shows a systematic dependence on the cosmological parameters. Therefore,

in order to have a complete description we also need to model ξ0(Ωm, σ8). The fitting result

for ξ0 for the selected cosmological models (orange points in Fig. 6.4) is displayed in the

left panel in Fig. 6.10, where it is plotted against σ8(Ωm/0.3)0.501 with the index α = 0.501

characterising the degeneracy direction between Ωm and σ8 for the rescaled 2PCF amplitude

ξ0. The value 0.501 is tuned such that the data points on the left panel of Fig. 6.10 are fitted

using a smooth quadratic curve with the lowest χ2. This is shown as the blue solid line in

the left panel of Fig. 6.10, which takes the form

ξ0 = ξ0,ax
2 + ξ0,bx+ ξ0,c , (6.4.7)

where

ξ0,a = 0.253 , ξ0,b = −0.605 , ξ0,c = 0.514 , (6.4.8)

and x = σ8(Ωm/0.3)0.501. The lower sub-panel of the left panel shows the residual between
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the measured amplitude ξ0 and its fitted values. The residuals show no systematic trends

with varying σ8(Ωm/0.3)0.501, indicating that the fitting function works equally well for all

cosmologies.

In the middle panel of Fig. 6.10 we have randomly selected one of the cosmologies from

the Z16 maps, and compared the rescaled 2PCFs at several νcut values between 1.5 and 3.5

(coloured lines), the power-law fit to these rescaled 2PCFs (black solid line, which we call

the ‘fitted’ curve), and the predicted rescaled 2PCF for this particular cosmology (the grey

straight line, which we call the ‘predicted’ curve). The latter was obtained by calculating ξ0

using Eq. (6.4.7), and then inferring the 2PCF from Eq. (6.4.6). This matches the original

fitted power law very closely, indicating that the model described by Eqs. (6.4.6) and (6.4.7)

works very well.

We next quantify the accuracy of our prediction for the rescaled 2PCF. For a given cosmolog-

ical model, such as the one shown in the middle panel of Fig. 6.10, we calculate the residuals,

i.e., the fractional differences of the ‘fitted’ and ‘reconstructed’ curves with respect to the

rescaled measured 2PCFs. This is done for each of the five νcut values shown in Fig. 6.10,

and we define the mean residual as the average over all θ/θp bins and all νcut values. The

mean residuals for the fitted and predicted curves are respectively shown by a large triangle

and a large circle in the right panel of Fig. 6.10. We have repeated this procedure for all the

cosmological models and have plotted their residuals in the right panel, with the associated

σ8 values shown in the x-axis and Ωm values shown by the colour bar to the right. We find

that the model prediction is almost as accurate as the direct fitting, and is able to match the

rescaled 2PCFs at about 5% accuracy level. The large symbols in the right panel correspond

to the model shown in the middle panel, to give a visual illustration about how well the 2PCF

model in Eqs. (6.4.6, 6.4.7) works for an ‘average’ cosmology for which the mean residual is

4.8%.

6.5 A pipeline for 2PCF Reconstruction

We can combine the models developed in the previous section for the convergence rms fluc-

tuation, peak abundance and rescaled peak 2PCF, to develop an integrated pipeline that

allows us to predict the (un-rescaled) peak 2PCFs, ξ(θ), as a function of νcut. The procedure

is schematically illustrated in Fig. 6.11 and outlined as follows:

1. For chosen Ωm and σ8 values, one can use the models to predict the peak abundance
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Input cosmology:

Ωm,σ8

Rescaled 2PCF

ξ(θ/θp)
 Section 4.3, Eqs. (12) - (16)

Peak abundance

n(>ν)
Section 4.2, Eqs. (8) - (11)

2PCF

ξ(θ;>ν)
Section 5

Convergence rms 
fluctuation

σ 
Section 4.1, Eq. (7) 

2PCF and Peak abundance 
in terms of κ

ξ(θ;>κ) & n(>κ)
Eq. (5)

Figure 6.11: This flowchart describes the pipeline our model uses to reconstruct the peak
2PCF by exploiting its self similarity. First we take input cosmological parameters, Ωm

and σ8, which our model uses to predict the rescaled 2PCF, the peak abundance and the
rms fluctuations of the convergence map. These statistics can then be combined to give the
original 2PCF for peaks of different heights, expressed in terms of either ν or κ.
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Figure 6.12: Left panel: Reconstructed 2PCFs from our model (dashed) compared to mea-
sured 2PCFs from N-body simulations (solid), for peak catalogues with νcut ∈ [1.5, 3.5].
Right panel: Mean percentage residuals between the reconstructed and measured 2PCFs.
The larger symbol indicates the example model that is shown in the left panel. The x-axis
and colour-bar indicate the σ8 and Ωm values of the models respectively.

(Section 6.4.2) and the rescaled 2PCF (Section 6.4.3).

2. These two statistics are combined, using θp = 1/
√
n(> νcut), to give the 2PCF, ξ(θ),

for peak catalogues with νcut ∈ [1.5, 3.5].

3. If needed, the above-predicted peak abundance and 2PCFs can then be expressed in

terms of κ by using the σ(Σ8) fit in Section 6.4.1.

This pipeline offers a simple apparatus to make predictions of the one- and two-point statistics

for intermediate (ν ∈ [1.5,3.5]) WL peaks, which can be used (on its own or together with

other cosmological probes) to constrain the parameters (σ8,Ωm) using observational data. It

will be interesting to see if these new statistics are complementary to other probes, such as

the shear-shear correlation, when constraining (Ωm,σ8), but this will be left for future follow

up works, with the peak 2PCF specifically studied in the next Chapter. In the next section

we will discuss further aspects which need to be checked before applying this method.

As a proof of concept, we show an example of this 2PCF reconstruction pipeline in the left

panel of Fig. 6.12. The solid curves show the 2PCFs measured from the simulation data for an

arbitrarily selected cosmology, with shaded regions showing the (under) estimated standard

error (see Appendix .9 for more detail). The dashed lines show the predictions by our 2PCF

reconstruction pipeline. We find a reasonably good agreement between the simulated and

reconstructed 2PCFs, with the latter mostly lying within or just outside the (under)estimated
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errors bars. The second panel in Fig. 6.12 shows the mean percentage difference between the

reconstructed and measured 2PCFs, averaged over the 5 plotted 2PCFs and all θ bins with

νcut ∈ [1.5, 3.5] separated by a ∆νcut = 0.5 increment. The model that has been selected to

exemplify the reconstruction is indicated by the large symbol in the left panel of Fig. 6.12,

which is an "average" one in terms of the performance the reconstruction (there are many

models for which the reconstruction works better). We can see that for all of the selected

cosmologies, our model is able to predict the 2PCF to within a roughly 6% uncertainty on

average. Relative to the estimated errors bars, the quality of our reconstruction is reasonably

good.

We find that generally the amplitude of the 2PCFs is overestimated for the larger νcut cat-

alogues. This could be a fundamental aspect of the 2PCF evolution, however due to small

map sizes and low peak number densities (at approximately 7 deg−2) it is likely that 2PCFs

with ν > 3.5 are biased. The true amplitude of the 2PCFs with larger νcut could be measured

more accurately with larger weak lensing maps, which we leave to further study.

6.6 The impact of galaxy shape noise

Up to here, we have discussed the WL peak abundance and 2PCF in a theoretical context with

the aim of having a model that allows us to accurately describe and predict these statistics

in an idealised situation. Whilst this theoretical model can have useful applications in, e.g.,

mock WL peak catalogue generation, to be more useful for cosmological constraints, we need

to investigate the self similarity of the 2PCF in more realistic situations. One of the things

we have not included in our analysis so far is galaxy shape noise (GSN).

GSN is a source of uncertainty in WL observations, where the measured ellipticity of galaxies

is dominated by their random orientation, and only weakly correlated due to gravitational

lensing on scales much larger than the galaxy-galaxy separation. Observations of cosmic

shear, and therefore cosmic convergence, is contaminated by this noise. One usually uses large

smoothing lengths to suppress this noise in order to recover statistics more reliably. However,

large smoothing lengths could either dampen the amplitude of the measured statistics, which

is evident from the decrease of the WL peak abundance with increasing smoothing scales in

Fig. 6.2, or increase the noise in the measurements, which can be seen to a small extent in

the 2PCFs for different smoothing lengths in Fig. 6.3. Therefore, a trade-off has to be struck

between using a large enough smoothing length in order to suppress the galaxy shape noise,
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Figure 6.13: Weak lensing peak abundances for four smoothing scales, θs = 1.0, 2.0, 2.5 and
3.0 arcmin (see labels), for peaks extracted from convergence maps without GSN (solid) and
for peaks extracted from convergence maps with added GSN (dashed). Here the added GSN
matches LSST specifications (σint = 0.4, ngal = 40 arcmin−2).
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Figure 6.14: Rescaled 2PCFs for four smoothing scales, θs = 1.0, 2.0, 2.5 and 3.0 arcmin
(see label in each panel), for peak catalogues extracted from convergence maps with added
GSN that matches LSST specifications (σint = 0.4, ngal = 40 arcmin−2). The various solid
coloured lines correspond to peak catalogues with different νcut thresholds (see legend in the
upper left panel), with νcut ∈ [1.5, 3.5] incremented in steps ∆νcut = 0.25. The grey thick
dashed lines show the fits to the rescaled 2PCFs for the same smoothing scales but without
GSN.
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and not over smoothing so that interesting statistics are not suppressed more than they need

to be. With convergence maps from N-body simulations, we can test the difference in the

peak abundance and 2PCF for cases with and without GSN for a range of smoothing lengths.

For this section, we include GSN in the T17 convergence maps that match LSST specifications

by adding to each pixel within a map random values drawn from a Gaussian distribution

with a standard deviation σpix given by Eq. (1.2.15). To match LSST specification we use

σint = 0.4 and ngal = 40 arcmin−2 (LSST Science Collaboration et al., 2009)

After GSN is added to the pixels, we smooth the maps, identify peaks in the noise-added

smoothed WL maps using Eq. (6.2.1) with σ also directly measured from the noisy maps,

recalculate the peak abundance and peak 2PCFs, and compare these statistics to the case

with no GSN, with the same smoothing.

The impact of GSN on the WL peak abundance is shown in Fig. 6.13, where the solid and

dashed lines respectively correspond to peaks identified in WL maps with and without GSN.

Here we study four smoothing scales, θs = 1, 2, 2.5 and 3 arcmin. In each instance, ν is

defined relative to the WL map in which the peaks are identified, so for the GSN added

case, σ in Eq. (6.2.1) includes contributions to the rms fluctuations from both GSN and the

underlying convergence signal, while for the no GSN case ν is defined by taking σ as the rms

convergence fluctuation.

For all smoothing lengths, by adding GSN, the peak abundance increases at low ν and

decreases at high ν, with a crossover between ν = 1.5 and 2.5 depending on the smoothing

scale. GSN has the largest impact on the peak abundance for the smallest smoothing length,

while for larger θs the agreement between the peak abundances in the GSN and no GSN cases

is better, although substantial difference remains even in the case of θs = 3 arcmin. This

means that the fitting formulae, Eqs. (6.4.3, 6.4.4), which describe the cosmology dependence

of peak abundance, need to be recalibrated by using peaks extracted from GSN-added maps.

Due to the small size of the Z16 WL maps, this will be left as future work when larger

simulations of different cosmologies are available.

Note that in Fig. 6.13 the peaks are defined using Eq. (6.2.1), where σ is the total rms

convergence that includes contributions from the physical rms convergence and from the rms

of noise. This explains the crossover mentioned above: because σ is increased, for the high

peaks their ν values actually decrease, and the number of such high peaks does not increase

quickly enough to maintain n(< ν) at large ν, which causes the latter to drop compared

with the no GSN case. We have explicitly checked (not shown here) that, if one defines ν in
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Eq. (6.2.1) by using the same σ for the GSN and no GSN cases, then the peak abundance is

consistently higher in the former case, due to artificial peaks created by noise.

In order to closely inspect the impact of using different smoothing lengths on the self similarity

of the rescaled 2PCFs, we have tried four different θs values, respectively θs = 1, 2, 2.5 and 3

arcmin. The results are shown in Fig. 6.14, where the peaks are all identified from, and the σ

used to define the SNR ν are all measured by using, the smoothed noisy maps. Interestingly,

we find that the rescaled 2PCFs are still on top of each other for all four smoothing lengths.

With θs = 1 arcmin, the agreement between the rescaled 2PCFs is weaker, where only the

curves with 2 ≤ νcut ≤ 3.5 appear to be self similar. For 2 arcmin smoothing the 2PCFs

appear to be self similar in the entire 1.5 ≤ νcut ≤ 3.5 range, and shows that the self-similarity

of 2PCFs is robust against GSN. With 2.5 arcmin smoothing the overall self similarity appears

to be tighter, however the νcut = 1.5 appears to be outside the self similar range. Finally, for

3 arcmin smoothing we see that the self similarity of the 2PCFs holds up to νcut = 3, after

which the rescaled 2PCFs drop off in amplitude. It is possible that this drop in amplitude is

caused by the small map size (10×10 deg2) and low number density of tracers (≈ 0.5 deg−2),

rather than a breakdown of the self similarity. As θs increase it also appears that the overall

gradient of the rescaled 2PCFs decreases.

Having verified that the 2PCFs remain self similar in the presence of GSN, next we want to

see how including the latter affects the power law of the rescaled self-similar peak 2PCFs. In

each subpanel of Fig. 6.14, we have overplotted, as the grey dashed lines, the best-fit power-

law functions for the rescaled 2PCFs of the peaks extracted from the T17 maps smoothed

using the same θs values but without adding GSN (the grey dashed lines in the top two

panels of Fig. 6.14 are the same as the black dashed lines in Fig. 6.3). The two cases are

in good agreement for all four smoothing scales, which shows that the impact of GSN on

the rescaled 2PCF is minor. This is a nice property, since it indicates that GSN will not

significantly contaminate the underlying cosmology dependence of the rescaled 2PCF if the

same observation applies to other cosmologies. However, due to the limited map size from

Z16 we leave this investigation to future study.

In short, we conclude that the prevalence of the self similarity in the 2PCFs for peaks extracted

from GSN-added WL maps shows that this feature is robust to this observational systematic,

and therefore has the potential to be used in cosmological constraints.
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6.7 Discussion and Conclusions

In this Chapter, we have investigated the one- and two-point statistics for intermediate peaks,

with SNR values ν ∈ [1.5, 3.5], from weak lensing convergence maps. These WL peaks

contain useful information about the LSS formation, and the analyses of them are expected

to place complementary constraints on the cosmological model. However, unlike high peaks,

the intermediate WL peaks are not individually associated to the most massive dark matter

structures, making the modelling of their statistical properties more challenging. To overcome

this difficulty, we rely on WL convergence maps constructed from a large number of N-body

simulations with varying cosmological parameters and technical specifications, to attempt to

find patterns of the peak statistics and their cosmology dependence. Our main findings are

summarised as follows:

• The rms fluctuation of WL convergence, σ, has a linear dependence on a particular

combination of Ωm and σ8 via σ8 (Ωm/0.3)α, with the parameter α weakly dependent

on the smoothing length of the convergence map, cf. Fig. 6.5. This linear dependence

is given in Eq. (6.4.1), and highlights a universal behaviour within ΛCDM which may

be exploited to make cosmological constraints.

• A universal one-parameter power law function is found, which can describe the WL

peak count for ν ∈ [1.5, 3.5] with an accuracy of within ≈ 1-5%, for a large range of Ωm

and σ8 values, cf. Fig. 6.2 and Eq. (6.4.3). The accuracy of the power-law description

of the peak abundance can reach the sub-percent level if two free parameters are used

in the power-law function.

• A self-similar behaviour of the WL peak 2PCF has been found by rescaling the angular

separation, θ, between a pair of peaks by the mean inter-peak separation, θp. While

the amplitude of the original 2PCF increases with νcut, the rescaled 2PCFs for νcut ∈

[1.5, 3.5] lie on top of each other cf. Fig. 6.3.

• This self-similar behaviour holds for a very wide range of (Ωm, σ8) values, and we find a

simple quadratic dependence of the amplitude of the rescaled 2PCFs on σ8 (Ωm/0.3)α,

while the slope of the rescaled 2PCFs have negligible dependence on Ωm and σ8,

cf. Figs. 6.8, 6.9 and 6.10. A fitted model to predict the peak 2PCF for any chosen Ωm

and σ8 is given in Eq. (6.4.6).
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• A pipeline is developed which combines the above three fitted models, for the conver-

gence rms fluctuation, WL peak abundance and rescaled peak 2PCF respectively, to

predict the raw peak 2PCF ξ(θ; νcut) for νcut ∈ [1.5, 3.5] and any given Ωm and σ8 with

good accuracy, cf. Fig. 6.12.

• We found that the self similarity of the peak 2PCF holds in the presence of galaxy

shape noise and larger smoothing lengths, cf. Fig. 6.14.

The most important application of the results presented in this Chapter is in constraining

the Ωm and σ8 cosmological parameters. As demonstrated above, the pipeline integrating

the models for WL peak abundance and self-similar rescaled 2PCFs is able to reconstruct

the raw, unrescaled, peak 2PCFs for various νcut values with a typical accuracy of better

than 6%. Furthermore, we have seen that the WL peak abundance and 2PCFs depend

on very different combinations of Ωm and σ8, one with σ8 (Ωm/0.3)−0.638 and the other

σ8 (Ωm/0.3)0.501. This indicates that a simultaneous use of these statistics already holds the

potential of breaking the degeneracy between Ωm and σ8 before including other cosmological

probes. Marian et al. (2013) found that the 2PCFs of high WL peaks only provide weakly

complementary constraints on (Ωm,σ8) when combined with the peak abundance. In this

Chapter we investigate the 2PCFs of WL peaks with intermediate heights and above, as

well as combining the 2PCFs from multiple peak catalogues in the form of a rescaled 2PCF

described by a single power law. The powerlaw describing the rescaled 2PCF may be more

sensitive to cosmology than the 2PCF of high peaks.

We note that the degeneracy direction of the peak abundance of intermediate height peaks,

which are studied in this Chapter, are very different to that of low and high peaks, which

has also been observed in Liu et al. (2015) and explained in Yang et al. (2011). Therefore,

using the counts of intermediate height peaks may be complementary to using the full peak

abundance and could aid in breaking the Ωm and σ8 degeneracy.

Another potential application of our results is the generation of mock WL peak catalogues.

For a given input cosmological model, the pipeline can be used to predict the WL peak counts

and 2PCFs as described above. Random realisations of peaks can then be generated with

the peaks arranged such that they have the desired number density and spatial clustering.

One technique to do this is point process (see, e.g., Öztireli & Gross, 2012, for some recent

progress and applications). This is a Monte Carlo approach where a candidate point (e.g.,

a WL peak) is placed in a field, which is accepted if its inclusion into the field pushes the
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measured 2PCF closer to the input one, and rejected otherwise. Point process is a well-

developed and widely-used technique to generate point catalogues. In the WL peak case, the

situation is slightly more complicated, because the generated catalogue should have peaks of

different SNR (or ν values), which simultaneously have the desired 2PCFs at different νcut

values. We expect that the good agreement between the rescaled peak 2PCFs will prove

useful in dealing with this issue, though a detailed investigation into this interesting question

will be left for a future work. The fast generation of mock WL peak catalogues can be used

for evaluating covariance matrices and studying other cosmological quantities, such as voids

identified from WL peaks.

The proof-of-concept study in this Chapter has also left various possible further extensions

of the analyses presented here. One of the most important considerations for future WL

surveys and their cosmological applications is the effect of galaxy shape noise. Using the

all-sky maps from T17, we have shown that (i) the inclusion of GSN necessitates a larger

smoothing length than used in the bulk of this Chapter, θs = 2-3 arcmin, to suppress its

impact on the extracted cosmological statistics, and (ii) with a suitable smoothing, the self-

similarity of the peak 2PCFs still holds for the cosmology used in the T17 simulations. While

we expect these conclusions to apply for other cosmological models, Fig. 6.14 shows that the

use of GSN and larger θs does indeed affect the slope of the rescaled peak 2PCF. Therefore,

in the presence of GSN our fitted models need to be re-analysed before it can be directly

useful for cosmological tests.

Unfortunately, the 96 Z16 maps with varying cosmological parameters have a relatively small

size, at 3.5×3.5 deg2. Including GSN in these maps and increasing the smoothing length will

reduce both the number of peaks in the maps and the dynamical range over which the 2PCFs

can be reliably studied. This consideration makes a compelling case that larger convergence

maps, constructed from N-body simulations with larger boxes and varying cosmologies, are

a natural next step, to re-calibrate our peak models so that they can be readily applied for

upcoming WL surveys. Again, we leave these to a future, more comprehensive, study.

The planned larger simulations will have other applications as well. For example, they will

allow us to study low/intermediate WL peaks and the high peaks, as well as other statistics

such as the WL shear power spectrum, simultaneously. It will also be possible to look at

source galaxies with a certain redshift distribution compared to the currently idealised case

with a single source redshift, zs = 1. Larger WL maps will also allow us to more accurately

estimate the errors on the 2PCFs, with large-scale modes properly included. Further more, in
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future studies we will try methods of extracting WL peaks that are more similar to approaches

taken in observations, such as starting with the shear field and adding GSN to this before we

then transform to the convergence field.

Finally, it will also be interesting to analyse the rescaled WL peak 2PCFs in cosmological

models beyond ΛCDM. We can envisage two possible scenarios here: the first is that the

rescaled 2PCFs may not be self similar, which would offer a potentially strong constraint

on these models. Alternatively, the detailed properties of the self-similarity in the 2PCFs

may change, in the form of a different amplitude or slope, which can also be used to test

models with observational data. Therefore, it will be important to consider models which are

expected to alter the large-scale clustering of matter. These include the various dark energy

models which may couple to dark matter or have different equation-of-state w parameters.

The neutrino mass is another interesting possibility, as massive neutrinos tend to dampen

structure formation, which leaves signatures in the WL peak abundance and 2PCF. Modified

gravity models can also be potentially tested since they generally introduce fifth forces on

cosmological scales, which modify the clustering of matter or even the geodesics of photons.

The studies of these topics will require new simulations and dedicated effort, and will be

deferred for the future.
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7.1 Introduction

In order to more deeply probe the nature of the Universe, it is important to measure cosmolog-

ical parameters as precisely as possible. This can be achieved by maximising the information

that can be extracted from a given survey. The standard approach for weak lensing surveys is

to measure ΛCDM parameters with two-point statistics, such as the shear-shear correlation

function (Schneider et al., 2002; Semboloni et al., 2006; Hoekstra et al., 2006; Fu et al., 2008;

Heymans et al., 2012; Kilbinger et al., 2013; Hildebrandt et al., 2017; Troxel et al., 2018;

Hikage et al., 2019; Aihara et al., 2019; Asgari et al., 2020; DES Collaboration et al., 2021).

However, the shear two-point correlation function (2PCF) does not capture non-Gaussian in-

formation, and, due to the non-linear evolution of the Universe, weak lensing data are highly

non-Gaussian. To fully exploit the data, many non-Gaussian statistics have been developed,

which encapsulate information beyond two-point statistics. A well-established example is

the abundance of WL peaks (local maxima in the convergence field), which has been shown

to be complementary to the shear two-point function and helps break the Ωm-σ8 parameter

degeneracy (Jain & Van Waerbeke, 2000; Pen et al., 2003; Dietrich & Hartlap, 2010). Peaks

are also shown to outperform the standard methods for constraining the sum of neutrino

mass (Li et al., 2019) and w0 (Martinet et al., 2020), and can be used to provide constraints

on modified gravity theories (Liu et al., 2016b). When used in conjunction with the shear

two point correlation function, WL peaks have been used to provide the tightest constraints

on S8 from DES-Y1 WL data (Harnois-Déraps et al., 2020). WL peaks also offer utility for

other non-Gaussian statistics, such as WL voids (see previous Chapters), where the peaks

can be used as tracers to identify the voids. By including WL peaks as a complementary

statistic, the measurement errors on cosmological parameters can be reduced, which will help

inform the statistical significance of any parameter tensions between multiple observations.

When used to constrain cosmological parameters, peak analyses typically focus on the WL

peak abundance, which is the number density of WL peaks as a function of their lensing

amplitude. Studies have shown that the WL peaks with the highest amplitudes tend to

correspond to large haloes along the line of sight (Hamana et al., 2004; Liu & Haiman,

2016; Wei et al., 2018). For this reason, WL peaks identified in surveys such as HSC can

be used to search for galaxy clusters (e.g., Hamana et al., 2020). Furthermore, shear 2PCF

measurements are typically combined with measurements of galaxy clustering (and galaxy-

galaxy lensing) to further tighten the cosmological constraints (e.g., DES Collaboration et al.,

2021). So, if WL peaks correspond to massive haloes, and hence massive galaxies, and the
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clustering of these galaxies is known to contain complementary information, then studying

and exploiting the clustering of WL peaks is a natural next step in maximising the utility of

WL peaks.

Previously, Marian et al. (2013) have shown that the 2PCF of WL peaks with high lens-

ing amplitudes does not contain much complementary information to the peak abundance

alone. In Chapter 6, we presented some simple scaling relations for the WL peak 2PCF,

and found that the clustering of low-amplitude WL peaks also appears to be sensitive to the

cosmological parameters Ωm and σ8. In this Chapter, with a more detailed analysis, we show

that the clustering of low-amplitude peaks contains significant complementary information

to the clustering of high peaks, and that when the clustering of multiple peak height ranges

are combined, the WL peak 2PCF offers similar constraining power to the peak abundance

alone, where the two probes have different degeneracy directions. Therefore, we also show

that, when their abundance and 2PCF are combined, the total cosmological information that

is extracted from the WL peaks is significantly improved.

We use the cosmo-SLICS simulation suite (Harnois-Déraps et al., 2019) to measure the peak

abundance and 2PCF, for a range of cosmological parameters. This data is then used to train

a Gaussian process regression emulator, which, combined with Markov chain Monte Carlo,

allows us to generate likelihood contours and provide forecast parameter constraints for an

lsst-like survey.

The layout of the Chapter is as follows. In Section 7.3 we describe how we generate our

mock observational data, and our emulation and likelihood analysis pipeline. In Section 7.4

we present the WL peak statistics used in the analysis, first from the mock data, and then

from the emulator, in order to understand how these statistics depend on the cosmological

parameters Ωm, S8, h and w0. In Section 7.5 we present the parameter constraint forecasts

for the WL peak 2PCF and peak abundance. Finally, our conclusions are presented in Section

7.6. We also have two appendices where we present the covariance matrix used in our analysis,

and study the accuracy of our emulator.

7.2 Theory

This section briefly outlines the theory relevant for the 2PCF measurements.

As mentioned previously, WL peaks are closely related to the dark matter haloes along the line

of sight. In cosmology, both the abundance and large-scale clustering of haloes encode useful
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information about the underlying cosmological model and parameter values. Therefore, as

well as studying the abundance of WL peaks, we will also study their clustering. The extent

to which objects are clustered can be measured through the two-point correlation function

(2PCF) which is defined as the excess probability, relative to a random distribution, of finding

a pair of objects at a given separation θ. Formally, this is written as

dPij(θ) = n2(1 + ξ(θ))dVidVj , (7.2.1)

where n is the expected tracer number density, dVi and dVj are two sky area elements that are

separated by a displacement θ with amplitude θ, and ξ(θ) is the 2PCF. We have ξ(θ) = ξ(θ)

thanks to statistical isotropy. In practice, the 2PCF can be measured through the Landy-

Szalay estimator which requires the generation of matching catalogues containing randomly

distributed points and is given by

ξLS(θ) = 1 +
(
NR

ND

)2DD(θ)
RR(θ) −

(
NR

ND

)
DR(θ)
RR(θ) . (7.2.2)

In the above ND and NR are the numbers of data and random points, and DD, DR and

RR are the numbers of data-data, data-random and random-random pairs in bins θ ± δθ,

respectively. See Chapter 6 and Appendix .8 for more details about the measurement of the

peak 2PCF, which are important for small lensing maps.

7.3 Methodology

In this section we describe the methodology followed in this Chapter, including the simula-

tions, mock lensing data, emulation and likelihood analysis.

7.3.1 Mock Data

In this Chapter we use the SLICS and cosmo-SLICS (Harnois-Déraps & van Waerbeke, 2015;

Harnois-Déraps et al., 2018, 2019) mock WL convergence maps, which we briefly outline in

this subsection.

cosmo-SLICS is a suite of high-resolution N-body simulations that were run for 26 sets of

[Ωm, S8, h, w0] cosmological parameters. Here S8 ≡ σ8(Ωm/0.3)0.5, h = H0/100kms−1 Mpc−1

is the reduced Hubble constant, and w0 the dark energy equation-of-state parameter, which

is assumed to be a constant that is allowed to deviate from −1 (cosmological constant).
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The four dimensional parameter space is sampled using a Latin hypercube, which maximises

the interpolation accuracy for a low node count. The exact cosmological parameter space

that is probed by cosmo-SLICS is shown in Fig. 7.1. The simulation volume is a cube with

length L = 505 h−1Mpc, with N = 15363 dark matter particles. To reduce the impact of

cosmic variance, two simulations are run for each cosmology, starting from different (paired)

initial conditions. For each node, i.e., set of cosmological parameters, 50 pseudo-independent

light-cones are constructed by resampling projected mass sheets, which are then ray-traced

under the Born approximation to construct lensing maps and catalogues (see Harnois-Déraps

et al., 2019, for full details about the light-cone and catalogue construction).

We use the cosmo-SLICS source catalogue down-sampled to match lsst specifications with a

source redshift distribution of zs = [0.6, 1.4], which gives a conservative source galaxy number

density of 20 arcmin−2. From this we generate 50 WL convergence maps for each of the nodes,

with a sky coverage of 10× 10 deg2 each and 36002 pixels (Giblin et al., 2018). These maps

are then smoothed with a Gaussian filter with smoothing scale θs = 1 arcmin. Chapter 6

contains a study of the impact of different smoothing scales on the WL peak 2PCF.

For estimates of the covariance matrices, we use the SLICS suite to produce 615 WL conver-

gence maps at the fiducial cosmology, which match the properties of the cosmo-SLICS maps.

The larger number of SLICS realisations relative to cosmo-SLICS allows us to calculate ro-

bust covariance matrices and to use large data vectors in the likelihood analysis below when

combining probes.

7.3.2 Emulation and likelihood analysis

In this subsection, we outline the procedure used to test the sensitivity of WL peak statistics

to the cosmological parameters Ωm, S8, h and w0.

First, we measure the WL peak statistics from the 50 convergence maps for each of the nodes

shown in Fig. 7.1. Then, in order to predict the WL peak statistics at arbitrary points in this

parameter space, we use the Gaussian process (GP) regression emulator from scikit-learn

(Pedregosa et al., 2011) to interpolate the peak statistics between nodes. GP regression is a

non-parametric Bayesian machine learning algorithm used to make probabilistic predictions

that are consistent with the training data (see, e.g., Habib et al., 2007; Schneider et al., 2008,

for some of its early applications in cosmology). The accuracy of the GP emulator trained on

cosmo-SLICS has been tested extensively and shown to reach a few percent level in predictions

of weak lensing shear two-point correlation functions (Harnois-Déraps et al., 2019), density
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split statistics (Burger et al., 2020), persistent homology statistics (Heydenreich et al., 2020),

aperture mass statistics (Martinet et al., 2020) andWL void statistics (see previous Chapters).

In this Chapter the average peak statistics and their standard errors at each node are used as

the training data. We present results of the accuracy of the emulator for the peak statistics

in Appendix .11.

Finally, once the emulator has been trained and tested, we use Monte Carlo Markov Chain

(MCMC) to estimate the posteriors of the parameters for the entire parameter space and

produce likelihood contours. We use the emcee Python package (Foreman-Mackey et al.,

2013) to conduct the MCMC analysis in this Chapter sampling the 4D parameter space as

follows. We employ a Bayesian formalism, in which the likelihood, P (ppp|ddd), of the set of

cosmological parameters ppp = [Ωm, S8, h, w0] given a data set ddd, is given, according to Bayes’

theorem, by

P (ppp|ddd) = P (ppp)P (ddd|ppp)
P (ddd) , (7.3.1)

where P (ppp) is the prior, P (ddd|ppp) is the likelihood of the data conditional on the parameters,

and P (ddd) is the normalisation. In this Chapter we use flat priors with the following upper

and lower limits respectively for Ωm: [0.10, 0.55], S8: [0.61, 0.89], h: [0.60, 0.81], w0: [-1.99,

-0.52], which matches the parameter space sampled by cosmo-SLICS. The log likelihood can

be expressed as

log(P (ddd|ppp)) = −1
2 [ddd− µ(ppp)]C−1 [ddd− µ(ppp)] , (7.3.2)

where µ(ppp) is the prediction generated by the emulator for a set of parameters ppp, and C−1

is the inverse of the covariance matrix. We use the emulator’s prediction of a statistic at

the fiducial cosmology as the data ddd. This choice is for simplicity and presentation purposes,

which ensures that the confidence intervals are always centred on the true values of the

cosmological parameters allowing for easier comparisons between multiple probes.

The likelihood returns a 4D probability distribution that indicates how well different regions

of the parameter space match the input data ddd. Note that Eq. (7.3.2) assumes that the

covariance matrix does not depend on the cosmological parameters.

We use the 615 SLICS WL map realisations (which match the fiducial cosmology) to calculate

the covariance matrices, and then divide it by a factor of 180 to rescale the covariance matrix

from a 100 deg2 area to the lsst survey area, which we take as 18, 000 deg2. The joint

covariance matrix for the peak probes studied in this Chapter is presented appendix .12.

We also multiply the inverse covariance matrix by a factor α, which accounts for the bias

introduced when inverting a noisy covariance matrix (Anderson, 2003; Hartlap et al., 2007),
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given by:

α = N −Nbin − 2
N − 1 , (7.3.3)

where N = 615 is the number of WL maps used to calculate the covariance matrix and Nbin

is the number of bins used to measure the statistic.

7.4 Weak lensing peak statistics

In this section, we present the weak lensing peak statistics studied in this Chapter, which

include the peak abundance and the peak 2PCF. For each statistic, we first show their

measurements from the cosmo-SLICS nodes which are used as the training data for the

emulator. We then present emulations of the statistic by varying one cosmological parameter

at a time, to exemplify its sensitivity to different cosmological parameters, which will aid the

interpretation of the forecast cosmological constraints in Section 7.5.

7.4.1 Weak lensing peak abundance

Fig. 7.2 shows the differential WL peak abundance (number density) measured in each of the

26 nodes in Fig. 7.1. The abundance of the fiducial cosmology is shown by the blue curve,

with the rest of the cosmologies plotted in grey.

First, the figure shows that there are an appreciable number of peaks with amplitudes below

ν = 0, which correspond to local maxima in regions that are underdense. In this analysis

we do not use peaks with ν < 0 for our forecast constraints for the following two reasons.

First, Martinet et al. (2018) have shown that negative peaks correlate very strongly with

positive peaks, and so there is little gain in parameter constraints when negative peaks are

included. Second, in Section 7.5 we introduce the cosmological forecasts for WL voids from

Chapter 4, which correspond to 2D underdense regions in WL maps. So we leave the study

of underdense regions of the WL maps to WL void analysis, rather than WL peak analysis.

The maximum of the peak abundance is just above ν = 1 for all cosmologies. Due to the

low signal-to-noise ratio, this indicates that a large fraction of the total number of peaks

correspond to spurious local maxima induced by galaxy shape noise, rather than a physical

signal induced by matter overdensities along the line of sight, while more peaks at the high-ν

end are produced by a true physical signal.

As the peak abundance approaches higher ν values, the spread in the peak abundances

between different cosmologies increases significantly, where the abundance of peaks at ν = 6
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Figure 7.1: The 4-dimensional parameter space ([Ωm, S8, h, w0]) sampled by the cosmo-SLICS
simulation suite. The fiducial cosmology is indicated by a star with parameter values [0.29,
0.82, 0.69, −1.00].
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Figure 7.2: (Colour Online) The differential WL peak number density (abundance) as a
function of peak height ν. The grey curves correspond to the 26 cosmo-SLICS nodes in
Fig. 7.1, with the fiducial cosmology plotted as a blue thick curve.
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Figure 7.3: (Colour Online) Top row: the emulated peak abundance. The curves correspond
to the cosmological parameters [Ωm, S8, h, w0] with values [0.3, 0.8, 0.7, −1.0], unless other-
wise stated in the sub-panel legends. Each sub-panel corresponds to varying one cosmological
parameter at a time, denoted in the legend. Bottom row: The curves from the top row, di-
vided by the fiducial cosmology (blue curve in the top row). The 1σ standard errors measured
from the 50 cosmo-SLICS realisations are included on the fiducial (blue) curves, and they are
barely visible in the upper sub-panels.
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can differ by an order of magnitude between the most extreme cosmologies. This is due to two

factors. First, because the peaks at this amplitude are not dominated by noise, differences

in the physical signal are more visible. Second, because the high mass end of the halo mass

function varies more significantly as a function of cosmological parameters, so does the peak

abundance, since the largest peaks are created by the largest haloes (Liu & Haiman, 2016;

Wei et al., 2018).

Whilst the high ν end of the abundance exhibits the greatest variation amongst the different

cosmological parameters, this region also has the highest sample variance, since high peaks are

orders of magnitude less abundant than low peaks. Therefore, as ν increases, the increased

spread between cosmologies is in direct competition with the increased statistical uncertainty.

For this reason it is important to consider the abundance of peaks over a wide ν range in our

forecasts.

Next, in order to aid the physical interpretation of how the WL peak abundances (Fig. 7.2)

depend on the four parameters, Ωm, S8, h and w0, individually, we use the cosmo-SLICS data

to train a GP emulator as discussed in 7.3.2 and present emulated peak abundances in the

cosmo-SLICS parameter space by varying one parameter at a time. The results are plotted

in Fig. 7.3.

The emulated peak abundances plotted in Fig. 7.3 are for the cosmological parameters

[Ωm,S8,h,w0] = [0.3, 0.8, 0.7, −1.0], unless otherwise stated in a sub-panel legend. Each

sub-panel contains curves for the varied parameter above and below the fiducial value. The

bottom row of sub panels shows the ratio of the curves relative to the fiducial cosmology. 1σ

standard errors measured from the 50 cosmo-SLICS realisations are included on the fiducial

cosmology, shown by the shaded blue region. Finally, the ν range plotted here is slightly

narrower than that presented in Fig. 7.2, since we are now showing the ν range that will be

used to forecast the peak abundance constraints, which is ν ∈ [0, 6].

The left panel shows how the peak abundance depends on Ωm. Increasing Ωm reduces the

abundance of peaks with amplitudes ν < 2 but increases the abundance of peaks with ampli-

tudes ν > 2, relative to the fiducial case. This is because a higher Ωm increases the matter

content of the universe, which allows dark matter haloes to grow more massive, increasing

their lensing signal and the resulting peak amplitudes. The opposite behaviour can be seen

when Ωm is reduced relative to the fiducial case, with more peaks below ν = 2 and fewer

above. There is an upturn in the peak abundance for Ωm = 0.1 at ν ≈ 5, which is due to the

fact that S8 is held constant, rather than σ8. Since S8 = σ8
(
Ωm/0.3

)0.5, σ8 increases when
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Ωm is reduced, in order for S8 to remain constant.

The middle left panel shows the peak abundance for different S8 values. The results presented

in this sub-panel vary more strongly compared to all other sub-panels, verifying that the

peak abundance is the most sensitive to S8 of all the parameters studied here. Similar to

the behaviour seen for Ωm, increasing S8 reduces the number of small peaks below ν ≈ 2.7,

but increases the number of large peaks above this point. The opposite behaviour is seen

for decreasing S8. Increasing S8 leads to greater clustering of matter, which will place more

haloes closer together. The increased mass along an overdense line of sight translates into a

greater lensing signal, which produces more peaks of higher amplitudes. This also reduces the

number of small peaks since fewer haloes are in isolation which would produce small peaks.

The middle right panel shows how the peak abundance changes with h. Peaks with amplitudes

ν < 3 are mostly unaffected, however there is a small amount of sensitivity to h at the high

ν end, where increasing h slightly increases the number of high peaks and vice versa. This

result is not entirely surprising: from Eq. (1.2.10) we can see that the dependencies of h, or

equivalently H0, cancel out, because the comoving distance can be written as

χ(z) = c

H0

∫ 1
E(z′)dz

′ , (7.4.1)

where EΛCDM(z) is defined as

EΛCDM(z) ≡ HΛCDM(z)
H0

= Ωm(1 + z)3 + 1− Ωm , (7.4.2)

for a flat ΛCDM cosmology (as is the case of our fiducial cosmology), and is independent of

h. This means that the H0 factors in the pre-factor, and the χ and dχ terms of Eq. (1.2.10)

cancel out, so that the only dependence on H0 in κ would come through the matter density

contrast δ. In the linear-perturbation regime, the evolution of δ can be expressed in the linear

growth factor D+, which for a flat ΛCDM cosmology is given by the following solution:

D+(z) = EΛCDM(z)
[∫ ∞

0

(1 + z′)
E3

ΛCDM(z′)dz
′
]−1 ∫ ∞

z

(1 + z′)
E3

ΛCDM(z′)dz
′, (7.4.3)

where the term in the bracket offers the normalisation to ensure that D+(z = 0) = 1 as

per the usual convention—this suggests that for flat ΛCDM models with the same Ωm, σ8

and D+, κ is independent of h. However, we remark that the above argument only applies

to a strictly matter-dominated Universe. In practice, increasing h with Ωm fixed would

mean that the physical matter density today, Ωmh
2, increases, which brings the matter-

radiation equality to higher redshift. Since the growth of matter perturbations is slower



7.4. Weak lensing peak statistics 159

during radiation domination but faster during matter domination, this means that small-scale

matter perturbations experience a stronger growth in the case of a larger h, and therefore

it requires a lower value of As (the amplitude of the primordial power spectrum) to reach

the desired σ8. Consequently, the matter clustering on large scales—e.g., at k smaller than

' 0.01hMpc−1, which corresponds to the horizon scale at matter-radiation equality—will

indeed be weaker. Actually, a more detailed calculation shows that, when comparing the

cases of h = 0.9 and 0.7 (with Ωm and σ8 fixed), the late-time matter power spectrum P (k)

is higher (lower) in the latter than in the former for k & 0.1hMpc−1 (k . 0.1hMpc−1). This

will have nontrivial implications for the peak 2PCFs as we shall see shortly. Nevertheless,

for the peak abundance, the most relevant scales are k ' 0.1–1hMpc−1, where the cases of

h = 0.7 and 0.9 have similar matter clustering amplitudes, which is slightly higher for larger

h: as this k range corresponds to the sizes of halo-forming regions, this is consistent with the

high-ν behaviour of the middle right panel.

The right panel shows the peak abundances with varying w0. Similar to h, the peak abun-

dance does not appear to be very sensitive to changes in w0, but increasing w0 does indeed

create slightly more low-ν peaks and fewer high-ν peaks compared to the fiducial case, and

vice versa. A different dark energy equation of state can change the expansion rate, there-

fore affecting the comoving distances, the lensing kernel in Eq. (1.2.10), and the growth

rate of matter perturbation δ. The physics underlying the qualitative behaviours shown in

these panels is actually complicated and quite interesting. Usually, a more negative w0, e.g.,

w0 < −1.0, implies an increase of the dark energy density with time and therefore (for the

same matter density) a faster transition from the phase of decelerated expansion to an accel-

erated one dominated by dark energy, compared to standard ΛCDM. But given that we fix

h and therefore H0, at z > 0 the expansion rate is actually slower than the fiducial ΛCDM

model, because the density of dark energy in this case decreases with redshift, and so at z > 0

the total density of matter and dark energy is smaller than in ΛCDM. More explicitly, we

have Ew0(z) ≤ EΛCDM(z) for w0 < −1, where

Ew0(z) = Hw0(z)
H0

= Ωm(1 + z)3 + [1− Ωm] (1 + z)3(1+w0), (7.4.4)

which reduces to Eq. (7.4.2) when w0 = −1. Because the dark energy in our simulations

is assumed to be non-clustering, the only effect of varying w0 is to modify the background

expansion history, which leads to a scale-independent change in the linear matter clustering,

P (k). It may seem that, since w0 = −1.5 leads to a slower expansion, it will increase matter

clustering. While this is true, we have to note that in this comparison we have fixed S8 (and
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equivalently σ8) today in all three cases, and so this means that, in order to have the same

σ8 at the present day, the primordial power spectrum must be lower in the w0 = −1.5 case

(we have explicitly checked this using camb). At an initial sight, this seems to suggest that

this model predicts less structure formation than ΛCDM (until z = 0), which is against the

results of Fig. 7.3. However, recall that another effect of having a slower expansion is that

the Universe becomes older at z = 0, and distances to the same redshift become larger; the

latter, in particular, means that in between the observer and the source(s) there would be

more volume, and more structures such as large dark matter haloes. Since these haloes are

what produce the high-ν peaks, the net effect is that the case of w0 = −1.5 actually gives

a larger peak abundance at ν & 2. The behaviour of the w0 = −0.5 model can be similarly

explained.

Figs. 7.2 and 7.3 show that the peak abundance is mostly sensitive to changes in Ωm and S8,

and less so to h and w0, with sensitivity to cosmology coming from both the high and low

amplitude peaks.

7.4.2 Weak lensing peak two-point correlation function

In order to measure the WL peak 2PCF, we first remove peaks with amplitudes below a given

ν threshold, and then repeat this step with different ν thresholds in order to create multiple

peak catalogues. This procedure is motivated by the following factors.

First, as discussed in Section 7.4.1, a significant fraction of the WL peak population is noise-

dominated (low ν), suggesting that their spatial distribution (to which the 2PCF is sensitive)

may not contain useful cosmological information. We have tested this assertion, and found

that the WL peak 2PCF measured using peaks of all heights has a very low amplitude and

exhibits only small variations between the 26 cosmo-SLICS nodes. This indicates that when

no distinction is made based on peak heights, the average clustering of WL peaks is close to

that of a randomly distributed sample. Therefore, in order to extract useful information on

the clustering of WL peaks, we must first remove the low-amplitude noise-dominated peaks.

This can be achieved with a threshold as low as ν = 1.

Second, varying the ν threshold and using multiple WL peak catalogues produces multiple

WL peak 2PCF measurements. The change in the 2PCF as the ν threshold changes is also

sensitive to the underlying cosmology, so we expect that the different 2PCF measurements

will contain complementary information to each other, so that combining these measurements

will yield tighter cosmological parameter constraints.
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Figure 7.4: (Colour Online) The WL peak 2PCF, where each subpanel corresponds to the
2PCF of a different peak catalogue. The various peak catalogues (and hence their 2PCF)
only contain peaks with amplitudes ν > 1 (top left), ν > 2 (top right), ν > 3 (bottom left)
and ν > 4 (bottom right). The curves in each subpanel correspond to the 26 cosmo-SLICS
nodes in Fig. 7.1, with the fiducial cosmology plotted in colour.
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Figure 7.5: (Colour Online) The emulated peak 2PCF for two different peak catalogues,
ν > 2 (top section) and ν > 4 (bottom section). The curves correspond to the cosmological
parameters [Ωm, S8, h, w0] with values [0.3, 0.8, 0.7, −1.0], unless otherwise stated in the
sub-panel legends. Each sub-panel corresponds to varying one cosmological parameter at a
time, as specified in the legend. The bottom rows in each section show the ratio of the curves
relative to the fiducial cosmology. The 1σ standard errors measured from the 50 cosmo-SLICS
realisations are shown for the fiducial cosmology by the shaded blue region.
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Fig. 7.4 shows the 2PCFs for four WL peak catalogues with ν > 1 (top left), ν > 2 (top right),

ν > 3 (bottom left) and ν > 4 (bottom right). The 2PCFs for the 26 cosmo-SLICS nodes

are plotted, with the fiducial cosmology plotted in blue, and all other cosmologies plotted in

grey.

The 2PCF measurements for the ν > 1 catalogue have the lowest amplitude. As the ν

threshold increases, so does the amplitude of the 2PCF for all cosmologies, indicating that the

high ν peaks are more clustered than the low ν peaks. Both the gradient and the amplitude

of the 2PCF change as the ν threshold increases, however the changes in amplitude appear

to be the most dominant feature. This can be explained by the relationship between WL

peaks and dark matter haloes – more massive haloes are known to be more strongly biased

and clustered, because they form from higher density peaks of the primordial density field.

Similar to Section 7.4.1, we use the cosmo-SLICS data from Fig. 7.4 to train a GP emulator

as discussed in 7.3.2, and present emulated peak 2PCFs in the cosmo-SLICS parameter space

by varying one parameter at a time. The results are plotted in Fig. 7.5. The bottom row

in each section shows the ratio relative to the fiducial cosmology. The 1σ standard errors

measured from the 50 cosmo-SLICS realisations are included for the fiducial cosmology and

are shown by the shaded blue region. The top and bottom sections of Fig. 7.5 shows results

for the 2PCF of peaks with ν > 2 and ν > 4 respectively. We choose to show results for

ν > 2 rather than ν > 1 since, as we will see in Fig. 7.6, ν > 2 gives stronger parameter

constraints than the ν > 1 case.

The top left panel shows the emulated 2PCF for ν > 2 varying only Ωm. Increasing Ωm

has less of an impact on the 2PCF for small θ compared to large θ, effectively steepening

the curve relative to the fiducial case by a small amount. When decreasing Ωm, the above

behaviour is mirrored, except the overall magnitude of the change is larger compared to the

case where Ωm is increased. This shows that Ωm dictates the gradient of the 2PCF, and

appears to be more sensitive to low Ωm values. It may seem counter-intuitive that a model

with smaller Ωm would predict a stronger cluster for WL peaks, but we note again that here

S8 has been fixed when Ωm is being varied, so that a smaller Ωm corresponds to a larger σ8,

and the latter means there is more matter clustering.

The bottom left panel shows the peak 2PCFs for ν > 4 for the same Ωm values. Similar to the

ν > 2 case, increasing Ωm decreases the 2PCF amplitude and vice versa, and the behaviour

relative to the fiducial case is asymmetric, where changing Ωm by a fixed amount in either

direction has a larger impact on the amplitude when Ωm is decreased, suggesting that the
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ν > 4 catalogue is also more sensitive to small Ωm. However, compared to the ν > 2 case,

there appears to be slightly less change to the overall slope of the 2PCF as Ωm is varied.

The top middle-left panel is the same as the previous panels except S8 is varied in this case.

The figure shows that changes to S8 affect the amplitude of the 2PCF, where lowering S8

lowers the 2PCF amplitude since it corresponds to a smaller σ8 and therefore less clustering

of matter. Increasing S8 by the same amount increases the amplitude relative to the fiducial

case, but the magnitude of the change is slightly smaller compared to the decreased S8 case.

The bottom middle-left panel shows the ν > 4 2PCF for the same three S8 values. The

overall trend is the opposite as in the ν > 2 case. Initially it seems counter-intuitive that

higher S8 values will lead to a lower clustering amplitude, however, as shown by Fig. 7.3

the abundance of peaks is also larger for this catalogue. Therefore, when S8 increases, the

number of peaks with ν > 4 increases, meaning that smaller maxima in the primordial density

field—which are less biased and hence less clustered tracers of the matter density field—end

up contributing to this peak catalogue, and so the clustering of the peaks decreases and vice

versa.

The top middle-right panel shows how the 2PCF for the ν > 2 catalogue depends on h. The

2PCF appears to be sensitive to changes in h, where increasing h decreases its amplitude,

and vice versa. This observation is actually consistent with the discussion above about the

physical impact of varying h—with Ωm and σ8 fixed—on matter clustering: increasing h

from 0.7 to 0.9 weakens the late-time matter clustering at k . 0.1hMpc−1, and these are

the scales most relevant for the peak clustering (which is expected to trace the dark matter

clustering) as well. Unlike the behaviour seen for Ωm and S8, changing h by a fixed amount

in either direction appears to change the 2PCF amplitude by an equal amount. The bottom

middle-right panel shows the ν > 4 2PCF for the same three h values. As for the case of

ν > 2, the 2PCF amplitude increases when h decreases and vice versa. Indeed, the impacts

of varying h are similar for both the ν > 2 and the ν > 4 catalogues, except the ν > 2 case

appears to be more sensitive to h at large θ.

The top right panel shows the ν > 2 2PCFs for different values of w0. Increasing w0 decreases

the amplitude and vice versa, with no apparent changes to the gradient. This behaviour also

appears to be symmetric relative to the fiducial cosmology, similar to that seen for h, and

unlike Ωm and S8. The bottom right panel is the same but shows the ν > 4 2PCF, which

appears to have little sensitivity to changes in w0. In both catalogues, we think that the

physical reason underlying the w0 dependence is the same as in the case of peak abundance.
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Although naively it seems that the case of w0 = −1.5—which has faster growth of structures

at late times and hence requires a lower initial power spectrum amplitude to achieve the same

σ8 or S8 at z = 0—should predict less matter clustering during the entire lensing kernel and

so lead to a lower amplitude of the peak 2PCF, we note that this model also covers a larger

volume for the same redshift range and therefore receives contribution from a greater number

of massive haloes. Also, the peak 2PCF is a projection effect, and the projection depth is

larger for the case of w0 = −1.5, which leads to a larger line-of-sight integration. These

different effects compete with each other and can have cancellations, which may explain why

for the ν > 4 catalogue there is almost no dependence on w0 (also note that the same ν > 4

peak height threshold can lead to different peak populations for the different models, which

could also have an impact on the peak correlation).

Comparing the bottom row (ν > 4) to the top row (ν > 2), we see that the amplitudes of

the 2PCFs are all higher. Given that fewer tracers are used for the ν > 4 measurements, the

errors on these curves should be larger. This will be in direct competition with any increased

sensitivity to the cosmological parameters relative to the ν > 2 case. Nonetheless, separate

catalogues still contain complementary information to each other regardless of which factors

wins out, as we will show later.

7.5 Parameter constraints forecast

In this section we present parameter constraint forecasts for the statistics studied in Section

7.4.

Figure 7.6 shows the parameter constraint forecasts for an LSST-like survey for the WL

peak 2PCF. We present constraints for the four WL peak 2PCFs measured from WL peak

catalogues with four heights ν > 1, 2, 3 and 4, and the combination of all four catalogues. The

true cosmological parameter values used to generate the data are indicated by the black point.

The diagonal panels show the 1D marginalised probability distributions, while the remaining

panels show the marginalised 2D probability contours enclosing the 68% and 95% confidence

intervals. All confidence intervals, along with the true parameter values, are explicitly stated

in the table in the top right of the figure.

In general, as the ν threshold increases, the contour sizes start off large (ν > 1), begin to

shrink (ν > 2 and ν > 3), and become large again (ν > 4). The shape and orientation of the

contours also change significantly as the ν threshold increases. For example, in the Ωm–S8
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Figure 7.6: (Colour Online) Constraint forecasts on cosmological parameters measured from
the WL peak 2PCF. Contours are shown for 2PCFs measured from WL peak catalogues
with ν > 1 (blue), ν > 2 (orange), ν > 3 (green) and ν > 4 (red) and the combination
of all four catalogues (black). The true cosmological parameter values used to generate
the data are indicated by the black point. The diagonal panels show the 1D marginalised
probability distribution, and the remaining panels show the marginalised 2D probability
contours enclosing the 68% and 95% confidence intervals. The table in the top right shows
true parameter values (top) and the inferred parameter values for the different peak catalogues
with 68% (upper section) and 95% (lower section) confidence limits.
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plane, the ν > 3 contour is smaller than the ν > 4 contour; however, the two are orthogonal

to each other. This behaviour shows that the constraining power of the WL peak 2PCF can

be significantly improved when the 2PCFs of multiple peak catalogues are combined. Even

in the case of very large contours which fully enclose the contours from lower ν thresholds,

the presence of complementary information between the different 2PCFs is not ruled out.

This is because it depends not only on the size, shape and orientation of the contours, but

also on the correlation between the contours. This is discussed in detail in Appendix .12.

The benefit to combining multiple peak catalogues is shown by the grey contours, which are

significantly smaller than any individual contour in all cases.

We find that the ν > 2 and ν > 3 peak 2PCFs give the tightest constraints on Ωm, the

ν > 2 and 4 2PCFs both give the similar constraint on S8, ν > 2 and 3 are tightest on h

and ν > 2 gives the best constraint on w0. It is interesting to note that the constraints on

w0 are roughly nine times smaller for the combination of all catalogues compared to ν > 4

alone, indicating that a significant amount of cosmological information is contained in the

clustering of low amplitude peaks.

Fig. 7.7 shows parameter constraint forecasts for the combination of the peak 2PCFs from

eight peak catalogues with ν > 1.0, 1.5, ..., 4.5 in orange. The constraints from the peak

abundance for peaks with heights 0 < ν < 6 are shown in blue, and the combination of the

abundance and 2PCFs are shown in green. We note that when multiple probes are combined,

it is important to account for any duplicate information between the probes through the

covariance matrix of the data vector, including the cross correlation between the multiple

probes. The covariance matrix of all probes studied in this Chapter is presented in Appendix

.12 and discussed in detail therein. The orange contour shows how the parameter constraints

are improved when the 2PCFs of many more WL peak catalogues are combined: constraints

from the combined 2PCFs are much smaller than the best constraints from any individual

catalogue (cf. Fig. 7.6). Increasing the number of catalogues used in the combined case from

four to eight, improves the constraints on Ωm and S8 by roughly 30% and 20% respectively,

there is only a small improvement for h, and the w0 constraints improve by nearly a factor

of two.

As shown by the table in Fig. 7.7, the peak abundance and peak 2PCF provide similar

constraints on Ωm, however the constraints on S8 are twice as strong for the peak abundance

compared to the peak 2PCF: in the Ωm–S8 plane, the peak abundance contour is significantly

tighter than the peak 2PCF contour in the S8 direction. When the two probes are combined,
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Figure 7.7: (Colour Online) The same a Fig. 7.6 but for the combination of eight peak 2PCFs
from peak catalogues with ν > 1.0, 1.5, ..., 4.5 (orange), the peak abundance (blue), and the
combination of the two (green).
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there is an overall improvement on the Ωm and S8 constraints by a factor of two, relative to

the peak abundance alone. This leads to a good overall improvement in the Ωm–S8 plane

when the peak abundance and 2PCF are combined, as shown by the green contour.

The peak 2PCF is able to constrain both h and w0 with greater accuracy than the peak

abundance. There also appears to be some orthogonality between the abundance and 2PCF

constraints in the h–S8 and w0–Ωm planes. In the w0–h plane, the parameter constraints are

dominated by the peak 2PCF contours, while the peak abundance contours are significantly

larger than the former. This indicates that the peak 2PCF offers a great deal of comple-

mentary information to the peak abundance, and combining the two probes can significantly

improve constraints in the four dimensional parameter space studied here. The behaviour of

the constraints from peak abundance and 2PCF, especially those on h and w0, are consistent

with the observations we made above for Figs. 7.3 and 7.5.

In Fig. 7.8 we also introduce the parameter constraint forecasts for WL voids from Chapter

4, which are measured with the same methodology and specifications used in this Chapter,

to compare the constraining power of these two different probes. This is important since the

voids studied in Chapter 4, which are a promising void definition, are identified as underdense

regions in the distribution of WL peaks. This means that the properties of WL voids are likely

correlated with the number and clustering of peaks, and we need a joint analysis to reveal

the amount of complementary information contained in the two probes. The forecasts from

the WL voids (blue), making use of both their abundances and tangential shear profiles,

are compared with the WL peak forecasts (orange), which combine the peak abundance

and peak 2PCF. We note that both the void and peak contours presented here, are for the

combination of the ν > 1, 2, 3 and 4 peak catalogues (excluding the peak abundance which

does not combine multiple catalogues). This is to provide a fair comparison between the voids

and the peaks. In principle, the void contours could be measured for the eight catalogues

used for the orange peak 2PCF contours in Fig. 7.7, however this would cause our data

vector to become too large, even for our high number of SLICS realisations.

Overall, both the peaks and voids are able to measure the four cosmological parameters with

similar accuracy. The voids provide notably tighter measurements of h and w0. The void

contours are smaller than the peak contours, and follow similar degeneracy directions for

all combinations of parameters. The void and peak contours are most similar in the S8–w0

plane, and most distinct in the w0–h plane. When the peaks and voids are combined (green

contours), there is a small improvement on the Ωm, S8 and h measurements, and, there is
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Figure 7.8: (Colour Online) The same as Fig. 7.6, but for void statistics presented in Chapter
4 (blue), peak statistics (orange) and the combination of peak and void statistics (green).
Both the peak and void statistics use the combination of the ν > 1, 2, 3 and 4 catalogues.
Shear 2PCF forecasts are shown in grey.
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also a reasonable improvement on w0, indicating that the WL peak and void statistics are

complementary to each other.

As a comparison, we also include the forecast contours using the standard cosmic shear 2PCFs

(ξ+ and ξ− combined) in grey. For fair comparisons, the cosmological model dependence and

covariance matrix for these were both obtained using the same simulation data as used for the

peak and void analyses throughout this Chapter. For Ωm and h, WL peaks or WL voids (or

both of them) give similar constraints as the shear 2PCFs; however, for S8 and w0, the former

probes actually can place tighter constraints (for this survey specification), indicating again

the benefit of exploring beyond-two-point WL statistics to help maximise the information

that can be extracted. In some parameter planes, such as S8–h and h–w0, there is a clear

orthogonality between the degeneracy directions of the peak/void statistics and the shear

2PCFs.

7.6 Discussion and conclusions

We have tested the sensitivity of the WL peak statistics to the cosmological parameters Ωm,

S8, h and w0 and compared the peak 2PCF to the peak abundance. In order to achieve

this, we have trained a Gaussian Process emulator with 26 cosmologies sampled in the 4D

parameter space using a Latin hypercube, which can be used to predict the peak statistics

for arbitrary cosmologies (within the range spanned by the training cosmologies). We have

run Markov Chain Monte Carlo samplings from our mock weak lensing data to forecast the

accuracies at which these four parameters can be constrained by a future, LSST-like, lensing

survey, using the above WL peak statistics.

Using the emulators, we have studied the behaviour of the WL peak 2PCF in detail, and

made connections to the well-established peak abundance. A main feature of our peak 2PCF

analysis is that we generate a WL peak catalogue from the entire peak population by intro-

ducing a peak height (ν) threshold, below which all peaks are removed, and then vary this

threshold to generate multiple catalogues. We then study the behaviour of the WL peak

2PCF of these catalogues as this ν threshold changes.

In Marian et al. (2013), it has been shown that the WL peak 2PCF of high-amplitude peaks

provides little complementary information to the peak abundance. In this Chapter, we have

presented some additional steps that are able to further push the utility of the WL peak

2PCF. These additional steps significantly improve the overall constraining power of WL
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peaks when the abundance and 2PCFs are combined. First, we study the 2PCF of low-

amplitude (ν) peaks, and find that it contains significant cosmological information compared

to the 2PCF of high-amplitude peaks. For example, in Fig. 7.6 the constraints on w0 are

roughly four times stronger for the ν > 2 catalogue compared to the ν > 4 catalogue. Second,

we find that the 2PCFs of multiple catalogues are complementary to each other, and when

combined, the peak 2PCF can constrain Ωm with tighter accuracy than the peak abundance,

and that it is able to constrain both h and w0 with significantly greater accuracy than the

peak abundance alone. We also find that the peak abundance provides constraints that are

twice as tight on S8 than the combined peak 2PCF, indicating that in order to fully exploit the

cosmological information contained in WL peaks, both their abundance and their clustering

should be measured and combined. This is illustrated by the green contours in Fig. 7.7,

which show the total constraints from WL peaks in which the abundance is combined with

the combined 2PCF from different ν catalogues. Here, the abundance plus the clustering

forecasts are roughly twice as strong as those for either of the individual cases (orange for

2PCF and blue for abundance). When we compare the constraints from the peak abundance

plus the peak 2PCF to those from the shear 2PCF, we find that the peaks are able to

constrain Ωm, S8 and w0 with greater accuracy than the shear 2PCF, the most significant

improvement is for w0. Finally, the information required to measure the peak 2PCF is already

present when the peak abundance is measured. Therefore, the addition of the peak 2PCF to

any preexisting peak abundance analysis pipeline will require minimal modifications, making

the peak 2PCF a very promising probe.

We also include a comparison of the forecasts from WL peaks to the WL voids studied in

Chapter 4, and find that the combination of the two can only weakly improve the constraints

on Ωm, S8 and h, but can provide significantly stronger improvements on the w0 measure-

ments. The WL voids are sensitive to the N-point correlation function of peaks (White,

1979), and the improved constraints resulting from combining WL peaks and voids shows

that three and higher-order correlation functions in the peak distribution contain comple-

mentary cosmological information. WL voids are one simple way to access the information

contained in the higher order correlation functions of peaks.

We highlight that the work carried out here applies to the 4D parameter space in Fig. 7.1,

and may change if additional parameters in the ΛCDM model, such as the spectral index,

are included. Our results may also be sensitive to changes in curvature, massive neutrinos

or other sources of additional physics. For example in Chapter 5 we found that the peak

abundance is sensitive to the nDGP modified gravity model, and Liu et al. (2016b) have used



7.6. Discussion and conclusions 173

the WL peak abundance to constrain f(R) gravity.

In addition, the simulations used to construct the emulators for the different WL statistics

analysed here are limited in their number of nodes sampled with the Latin hypercube. As

the results of this Chapter suggest, future WL observations can place competitive constraints

on the various cosmological parameters, with significantly smaller contours than the current

status. As the contours keep shrinking around the best-fit model, improved emulators which

can more accurately capture the small effects induced by small variations of parameters will

be needed. In the future, it will be necessary to simulate cosmological models sampled using

a nested Latin hypercube, or nested Latin hypercubes, to refine the emulators used in this

Chapter.

Finally, in order to use the WL peak 2PCF in observations, it will be important to understand

the impact of baryonic physics. It is already established that the presence of baryons can

alter the WL peak abundance (Osato et al., 2015; Weiss et al., 2019; Coulton et al., 2019b;

Fong et al., 2019) and so it will also be necessary to test how the WL peak 2PCF is affected.
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8.1 Overview

Throughout this thesis I have shown that there is a wealth of cosmological information con-

tained within WL convergence maps. These maps correspond very closely to the underlying

distribution of dark matter, which otherwise has very few avenues to be observed directly.

WL is therefore a key probe for modern cosmology, that still remains to be fully exploited,

as the current generation of WL surveys continue to release their data. Typically, the cos-

mological information in WL maps is accessed through the shear 2PCF, or with WL peaks.

However, due to the highly non-Gaussian nature of the convergence maps, no single statistic

is able to completely capture all of the present information.

In this thesis, I have proposed a new WL statistic, WL voids, as a way to access more

of the non-Gaussian information contained within WL maps, and performed multiple tests

which allowed their utility to be evaluated. I found that WL voids are indeed a very useful

statistic, that offers advantages over voids identified in the galaxy distribution and contain

complementary information to other WL statistics, which is outlined in this Chapter.

Additionally, I also studied the properties of WL peaks beyond their abundance, which was

motivated by the following two factors. First, since the most promising method of identifying

WL voids relies on the spatial distribution of WL peaks, it is important to explore the

clustering properties of WL peaks. Second, the statistics describing WL peaks are valuable

in their own right, and so I have tested the utility of WL peaks beyond their abundance, and

shown that the clustering of WL peaks can both be modelled with simple scaling relations,

and that it contains useful cosmological information.

8.2 The properties of weak lensing voids (Chapters 2 & 3)

In Chapter 2 I have defined a new class of voids - WL voids - which correspond to extended

underdense regions of a WL convergence map. The WL voids were identified using the spatial

distribution of WL peaks, coupled with a tunnel algorithm, which constructed a Delaunay

triangulation with the WL peaks as vertices. The WL voids regions then, by definition,

enclose no WL peaks. I then presented two summary statistics for the WL voids, their

abundance, and their tangential shear profiles. I compared the lensing profiles of WL voids

to that of galaxy voids, and found that the lensing profile amplitude is significantly larger

for WL voids than for galaxy voids. This increased amplitude will in turn correspond to
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an increased SNR, which makes WL voids a promising new class of voids, competitive with

galaxy voids.

In Chapter 3 I have tested how the properties of WL voids depend on the void finder that

is used in their identification. To this end I have adapted the most commonly used galaxy

void finders for the purposes of WL voids, and measured the properties of 7 different WL

void definitions. The new WL void definitions range from the previously defined tunnels, to

local minima, to watershed WL voids. I then tested the quality of each WL void definition

based on two criteria, the extent to which the void properties change in the presence of GSN,

and the SNR of their tangential shear profiles. I found that the two criteria are somewhat

anti-correlated, where the WL void definitions most impacted by GSN also receive the largest

boost in tangential shear SNR. My conclusion was then that the tunnel algorithm offers the

best trade off between the competing effects.

8.3 The cosmological information of weak lensing voids (Chap-

ters 4 & 5)

In Chapter 4 I tested the cosmological information that can be extracted through WL voids.

To achieve this I employed cosmoSLICS, a suite of dark matter only simulations that occupy

26 distinct regions in a 4 dimensional wCDM parameter space, organised in a latin hypercube.

The WL void statistics were measured at each cosmoSLICS node, and used to train a Gaus-

sian process emulator. This emulator was then coupled with MCMC to produce likelihood

contours for a LSST-like survey. I then compared the posteriors for the WL void statistics

to the posteriors for the shear 2PCF (which is also calculated using the same methodology

as WL voids). The results showed that the WL void cosmological parameter constraints are

both tighter and complementary to those from the shear 2PCF.

In addition, in Chapter 5 I also tested the prospect for WL voids to be used to constrain

modified gravity theories. To this end I measured the WL void statistics from three dark

matter only simulations, one for ΛCDM and two for modified gravity. I then compared

the WL voids statistics in the three cases, and measure the SNR with which the WL voids

statistics can be used to distinguish between ΛCDM and the two modified gravity models. I

found that both the abundance and lensing profiles of the WL voids offer high SNR values

in this case, and that compared to galaxy voids the lensing profile SNR is twice as high for

WL voids.



8.4. The clustering of weak lensing peaks (Chapters 6 & 7) 177

8.4 The clustering of weak lensing peaks (Chapters 6 & 7)

As well as studying the properties of WL voids, I have also studied the clustering of WL

peaks. Since WL voids can be identified from the spatial peak distribution, it is important to

understand how the WL peaks cluster. In Chapter 6 I presented some simple scaling relations

for the WL peak two-point correlation function. These scaling relations are numerically

calibrated on a set of 96 dark matter only simulations, that cover distinct nodes in the Ωm-

σ8 parameter space, organised in a latin hypercube. I showed that this scaling relation is

present in both independent sets of simulations and for all regions in the Ωm-σ8 parameter

space. The numerical fits can be used analytically to predict the peak two point correlation

function with good accuracy, and provide a basis for the future development of the WL void

abundance scaling relations, which may be connected to the clustering of WL peaks.

Finally, in Chapter 7 I adopted the same methodology as in Chapter 4 to test the cosmo-

logical information that can be extracted from the WL peak 2PCF. As before, I generated

posteriors in the 4D wCDM parameter space (again for an LSST-like survey), for the peak

2PCF, as a function of peak height, and found that the clustering of low amplitude peaks

is complementary to that of the high amplitude peaks. For this reason, when the 2PCF of

multiple peak catalogues is combined, the cosmological parameter constraints become very

competitive with the WL peak abundance. When the peak 2PCF and the peak abundance

are combined, the parameter constraints are further improved, indicating that the clustering

is complementary to the abundance. It is most interesting to note that the constraints on

h and w0 are significantly tighter for the peak clustering than for the peak abundance. I

also compared the combined constraints from the peak abundance and the peak clustering to

those from the combination of the WL void abundance and lensing profiles. I found that the

constraints from the WL voids are tighter than those from the WL peaks, however when the

two are combined, the constraints continue to tighten, indicating that the peaks and voids

are also complementary to each other. Finally, I compared these results to the posteriors

from the shear 2PCF, which are the same as those presented in Chapter 4, and found that

through the addition of the peak clustering the peak constraints become tighter than those

from the shear 2PCF. In addition to this, the peaks also offer complementary degeneracy

directions to the shear 2PCF.
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8.5 Future work

Overall I have shown that it is possible to achieve significant gains through the higher or-

der WL statistics presented in this thesis. It will therefore be important to apply these

methodologies to real observational WL data, so that the improved cosmological parameter

measurements can be realised. In order to achieve this goal, further work and considerations

must be made, to take into account the differences between the simulated data used in this

thesis and the features of real observational data. In the remainder of this section I discuss

what further development is required to apply WL voids to observational data.

8.5.1 Preparing to use WL voids with observational data

The mock observational data used in the analysis within this thesis is somewhat idealised. In

order to apply the methods development here to real observational data, it will be important

to account for certain limitations in the observed data. These include the presence of masks

on the observational data, intrinsic alignments between source galaxies, and baryonic physics.

All of the convergence maps used in this thesis correspond to unobstructed patches of the

sky. In real observations however, certain regions of the WL maps will need to be masked

due to various obstructions limiting the collection of the required data, such as bright stars

in the field of view, or obstruction from the Milky Way. It will therefore be important to

adjust the methodologies with which the statistics proposed here are identified in order to

account for a mask. Typically the WL peak abundance is not significantly impacted by a

mask, since this statistic only requires the binning of WL peaks as a function of their height.

Initially it may seem that the peak 2PCF will be more severely limited by a mask, since

it depends on the spatial distribution of the peaks, which may be affected by the mask.

However, this problem can be avoided with the Landy-Szalay estimator, which estimates

the 2PCF by comparing the tracer distribution to a random distribution. As long as the

randoms match the geometry of the survey, which includes a mask, the estimator will give

an unbiased estimate of the true peak 2PCF. However, for the identification of WL voids

with the tunnel algorithm, different steps must be taken to deal with the presence of a mask.

Since the WL voids are identified through a triangulation of the WL peaks, some voids will

intersect the mask. This will then cause problems for measuring the lensing profiles in these

voids. Additionally, the mask may be concealing WL peaks, which if present, would alter the

resulting WL void distribution. It will therefore be important to test if removing voids near
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the mask boundary is sufficient to perform unbiased measurements. Therefore, masks should

be included in the mock observations to allow their impact on the WL void statistics to be

forward modelled.

Finally, all analysis carried out here has used dark matter only simulations. This neglects

the presence of baryonic physics, which can have an impact on the large scale distribution of

matter (McCarthy et al., 2017). Many tests have established that the WL peak abundance

is altered in presence of baryons (Osato et al., 2015; Weiss et al., 2019; Coulton et al.,

2019b; Fong et al., 2019) and intrinsic galaxy alignments (Harnois-Déraps et al., 2021), so

considerations must be made for their impact on WL voids and the WL peak 2PCF. Coulton

et al. (2019b) have show that WL minima are less impacted by baryonic physics than WL

peaks, since the underdense regions contain less matter by definition and so there are fewer

baryonic processes in these regions, which is a promising result suggesting that WL voids

may also be minimally impacted by baryonic physics. However, there is a corollary to this

argument, that since some WL void definitions are identified from the distribution of WL

peaks, they should be similarly impacted. Nonetheless, WL void definitions beyond the

tunnel algorithm may circumvent this issue.

8.5.2 Final remarks

In addition to making wCDM forecasts as in Chapters 4 and 7 it will also be interesting to

apply the same methodology to modified gravity, where a parameter dictating the deviation

from GR can be varied instead of w0. This will be especially interesting since Chapter 5 has

shown the potential for WL voids to test modified gravity theories. The modified gravity

parameter will have degeneracies with other cosmological parameters, so it will be important

to constrain multiple parameters at the same time in order to account for this.

It will be useful to apply other void finders to the above constraints, which may offer com-

plementary information or respond to masking, baryonic physics, and intrinsic alignments

differently.

Finally, I have shown that WL voids are a very promising void definition that offer many

advantages over galaxy voids, and that they are able to access a great deal of extra infor-

mation within WL convergence maps. I have also shown how the utility of WL peaks for

cosmological parameter constraints can be pushed past their abundance. Both the WL voids

and the improved WL peaks are forecast to be able to constrain wCDM parameters with
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higher accuracy than the standard shear 2PCF for an LSST-like survey. This makes the new

statistics presented in this thesis invaluable for the future of cosmological inference.
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.1 Correlation matrices for different void finders

In this Appendix we present the tangential shear correlation matrices for the void finders

we have studied. For simplicity we present all correlation matrices for a smoothing scale

of θs = 2.5 arcmin and for peak catalogues with ν > 2 where applicable. Fig. 1 shows the

tangential shear correlation matrices for WL voids identified in WL maps without GSN, and

Fig. 2 is the same but for WL maps with GSN included. The correlation matrix Rij is related

to the covariance matrix, covij (which is used to calculate SNR values in Eq. (3.5.1)), through

the equation,

Rij = Covij
σiσj

, (.1.1)

where i and j are radial bin indices, R is the correlation matrix, cov is the covariance matrix

and σi is the standard deviation in bin i, where the variance, σ2, is given by the diagonal

elements of the covariance matrix. The covariance matrix is calculated as

Covij = 1
N − 1

N∑
k=1

[γt(i)− γ̄t(i)][γt(j)− γ̄t(j)] , (.1.2)

where N = 192 is the number of WL maps, γt the tangential shear, and an over-bar denotes

the mean from N maps.

Fig. 1 shows the γt correlation matrices for maps without GSN. The seven panels correspond

to the seven WL void finders studied in this work, where dark colours indicate an anti-

correlation between bins and bright colours indicate a correlation between bins (as indicated

by the colour bar). In all cases, the region around the diagonal is close to unity, illustrating

that neighbouring bins are highly correlated. Of all the void finding algorithms, the ones

with the most correlated bins appear to be the two trough finders. This is due to the large

degree of overlap between neighbouring troughs as seen in Fig. 3.2, and it is this correlation

between far apart bins that produces a lower SNR for the trough algorithms relative to the

other void finders in the right panel of Fig. 3.10. Similarly, Fig. 3.2 also shows that the SVF

κ voids tend to clump together and overlap with each other, which explains why there is also

a significant correlation between different radial bins. The same happens, though to a lesser

extent, to WL minima, because there is a large number of them and so the large radius bins

(of which the radii become a substantial fraction of the inter-minimum separation) start to

overlap between neighbouring minima.

Fig. 2 is the same as Fig. 1, except that here we study void populations identified in WL

maps that include GSN. The correlation matrices are significantly more diagonal when GSN
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Figure 1: The tangential shear correlation matrices for all void finders discussed in this work,
calculated from maps with no GSN and smoothed with θs = 2.5 arcmin. For WL void finders
applied to the WL peak distribution, results are presented for peak catalogues with ν > 2.
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Figure 2: The same as Fig. 1 but for convergence maps that include GSN.
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Figure 3: Tunnels identified in three different convergence maps: physical convergence with-
out GSN (solid), physical convergence with GSN added (dashed), and GSN-only (dotted).
The tunnels are identified in peak catalogues with heights ν > 2, and using a smoothing scale
θs = 2.5 arcmin. The shaded regions around the lines indicate the one sigma standard error
bars.

is included, which shows that GSN reduces the correlation between all bins; this is partly

responsible for the increase in SNR when GSN is included as shown in the right panel of

Fig. 3.10. Since GSN does not reduce the amplitude of the tangential shear profiles, but

does reduce the covariance between different bins, the γt and Cov−1 terms in Eq. (3.5.1)

increase, yielding a larger SNR. Despite the reduction in correlation between bins from GSN,

the troughs algorithms, and to a lesser extent SVF κ, still have a considerable correlation

between bins with r & Rv, which again is due to many troughs overlapping in maps with

GSN. Interestingly, adding GSN seems to reduce the correlation between different bins more

efficiently for tunnels than for SVF peak voids. Finally we have checked and verified that

the covariance matrices presented here agree with covariance matrices calculated from a

bootstrapped version of our data set.

.2 WL voids in GSN only maps

Typically, 3D voids in the LSS are identified in galaxy distributions, where galaxies are used

as tracers for a given void finder. The void lensing signal is then extracted from lensing

measurements that are separate from the galaxy position measurements. This means that

the observational noise and systematics associated with the galaxy positions are (mostly)

independent of the noise and systematics in the lensing measurements.

In the case of WL voids, the same measurement (the WL convergence map) is used to

identify voids and to measure their lensing profiles. This means that the void identification
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process and void lensing profiles will be closely connected, and impacted by noise in similar

ways. The connection between WL void identification and the corresponding lensing profiles

can be further strengthened by the fact that each void finder yields distinct lensing profile

shapes that are determined by the definition employed to identify the voids, as shown and

discussed in Section 3.4. Taking tunnels as an example: because by definition each tunnel

contains no WL peaks and has at least three peaks on its boundary, we should expect the

convergence profile to have a peak at the tunnel radius, being negative inside and approaching

the background value far away (i.e., the same qualitative behaviour as seen in the physical

signal in Fig. 3.9), even if the peaks are identified from a pure noise map. In other words, the

WL void lensing profiles could simply be a consequence of the way 2D voids are identified

from any WL convergence or peak distribution, rather than a physical effect.

Given that observed WL convergence maps are significantly contaminated by GSN, this

means that voids identified in WL maps could potentially be due to noise, or they could

be indistinguishable from spurious voids that result from noise. It is therefore important to

understand how to distinguish between voids that are produced by physical signals in the

WL maps and spurious voids that are the result of noise. This is the primary reason why in

this paper we have tried to smooth the WL maps using filters as large as 5 arcmin, in order

to suppress the impact of GSN on the measured peak and void statistics, so that the results

from the no-GSN and GSN-added maps agree with each other. For completeness, in this

appendix we give a slightly more detailed comparison, where we show how WL void statistics

behave when these void finders are applied directly to a noise map, which is a mock WL map

which contains no physical signal whatsoever.

In order to generate a GSN-only WL map, we follow the same GSN prescription used through-

out this work. We first define a grid of pixels which matches the same angular size and reso-

lution of the WL maps used in the rest of this work, and set the value of each pixel to zero.

For each pixel we then add randomly drawn values from the Gaussian distribution described

in Section 3.2.2, and via Eq. (1.2.15).

Fig. 3 shows tunnels identified in three WL maps: without GSN (solid), with GSN (dashed)

and GSN-only (dotted). The results shown correspond to a smoothing scale, θs = 2.5 arcmin,

and are obtained using WL peaks with heights, ν > 2. The left panel shows the abundances

of the tunnels in the three map types. The GSN-only maps produce fewer tunnels, which

are typically larger than the tunnels in the physical maps. In particular, the GSN-only maps

produces fewer small voids and more large voids, when compared to the other two map types.
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This results from WL peaks clustering in the maps that contain a physical signal, and thus

many of peaks are close together and produce smaller tunnels. Whereas the GSN-only maps

have fewer peaks that by definition do not cluster, which results in larger voids.

The right panel shows the tangential shear profiles for tunnels identified in the three map

types. As shown by the dotted line, the tangential shear profiles for the GSN-only maps

remain flat at γt = 0 for most of the void interior, where departure from zero only occurs

near the void boundary at r ∼ 0.75Rv. This is due to the fact that the void interiors in

the GSN-only maps are on average not underdense, which in turn is because of the random

nature of the pure GSN map and the lack of gravity to physically evacuate matter from

the void. Furthermore, the amplitude of γt at r ' Rv is significantly lower than for the

maps that contain the physical signal. This is due to noise-only tunnels having less overdense

boundaries than their physical counterparts. This can be understood as follows. For the noise-

only maps, the three peaks which determine the tunnel boundary are overdense, but, since

different points in noise-only maps are uncorrelated, the remaining pixels along the boundary

can take any values and thus they would have a mean convergence of 0. In contrast, the

correlations present in the physical maps mean that the pixels found at the boundary of

physical tunnels are on average overdense since they are close to the overdense peaks used to

define the tunnel.

We also find that the γt profile for WL tunnels identified in a pure noise map is much more

sensitive to the smoothing scale θs used to smooth the convergence map. Although not shown

here for the sake of clarity, we have checked the cases θs = 1 and 5 arcmin respectively. In

the former case, the peak of the tangential shear profile from the pure noise map is as deep as

that from the physical WL map, whereas in the latter case, the peak of the tangential shear

profile from the pure noise map is further suppressed and becomes very weak. The same is

found for WL peak catalogues with other ν thresholds.

It is evident from these tests that the statistics used to describe WL voids in this work give

distinct results for the GSN-only maps, relative to the physical WL maps. This shows that

WL voids are sensitive to the physical information present in WL maps, even when GSN is

included.

.3 Void emulator accuracy

In order to test the accuracy of the GP emulator used to interpolate statistics between the

cosmological parameter nodes in Fig. 4.1, we perform a cross validation test, which is outlined
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Figure 4: (Colour Online) The cross validation of the emulator accuracy. One node is removed
from the training set and the emulation and simulation of the removed nodes are compared
relative to its standard error. This is repeated for each of the 26 nodes, which gives an upper
limit on the emulator accuracy. The left and right columns show results for the WL void
abundance and tangential shear profiles respectively.
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as follows. First, we remove one node from the training set of simulated data, and train the

emulator with the remaining 25 cosmologies. An emulator prediction for the missing node

is then calculated. The result is compared to the simulated version, by taking the difference

between the two and dividing it by the standard error of the simulated data for that node.

The above steps are then repeated 25 more times, by removing a different node from the

training set at each iteration, which results in measurements of the emulator accuracy at

each node. We note that the above procedure provides an upper limit for the emulator

accuracy, since the emulator accuracy increases as more training data is used, and the cross

validation measurements uses training data with one less node than the training data used

in the main analysis.

Fig. 4 shows the cross validation test performed for the WL void abundance (left column) and

the tangential shear profiles (right column). Results are shown for the catalogues with ν > 1, 2

and 3 in the top, middle and bottom rows respectively. The cross validation test at each

node is plotted in grey, with the fiducial cosmology plotted in red. We highlight the fiducial

cosmology because we use it as our mock observed data when generating likelihood contours.

This makes it the most important region of the parameter space to emulate accurately.

The figure shows that the emulator accuracy does not vary greatly as a function of the

ν threshold. We find that the emulator is able to accurately predict both the WL void

abundance and the tangential shear profiles at roughly the 1σ level, as denoted by the black

dashed lines.

Regions towards the center of the 4D parameter space will be emulated more accurately than

those at the boundary, since there is less training data for the GP emulator to train from

at the edges of the parameter space. This is what creates the large spread amongst the

grey curves in each panel, where curves towards the center of the 4D parameter space are

more accurate, as shown by the fiducial cosmology. We are currently developing a suite of

simulations to sample areas of the cosmo-SLICS parameter space more densely, which will

help to further improve the accuracy of the emulator by providing more training cosmologies

that more densely sample the parameters space through Latin hypercubes or other node

design schemes.

.4 The impact of the map smoothing scale

The analyses carried out in this work used smoothed WL convergence maps, which is required

to suppress GSN. However this introduces an additional free parameter in the analysis – the
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Figure 5: (Colour Online) Likelihood contours for the statistics presented in Table 4.1, with
WL void statistics identified in WL convergence maps smoothed over a 2 arcmin scale.
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smoothing scale applied to the maps, where we use a Gaussian smoothing of 1 arcmin in the

main body of this work. In Davies et al. (2021) we studied how varying the smoothing scale

impacts the resulting WL void statistics, and Liu et al. (2015) have shown that parameter

constraints from WL peaks can be improved when multiple smoothing scales are combined.

It is therefore useful to also show results for a different smoothing scale.

The likelihood contours for the statistics presented in Table 4.1 are shown in Fig. 5, but

for a smoothing scale of 2 arcmin. These contours behave in a similar way to the case of

1 arcmin smoothing, with tighter constraints coming from the WL void abundance compared

to the tangential shear profiles. Overall these constraints are only slightly poorer than for

the smaller smoothing scale.

It is possible to create constraints from combining multiple smoothing scales. However, for

brevity, we leave this analysis to a future work.

.5 Correlation matrix for combined void probes

In Eq. (4.2.2) the (inverted) covariance matrix of the data vector is used to calculate the

log likelihood. The diagonal elements of the matrix are the variance of each bin in the data

vector and the off diagonal elements are the covariance between all possible pairs of bins.

When combining multiple probes into a single data vector, it is important to include the

cross covariance to ensure that any correlated or duplicate information between the probes

is appropriately modelled.

As such, in Fig. 6 we present the correlation matrix for the data vector containing each of the

WL probes studied in this work, which correspond to the red likelihood contour in Fig. 4.7.

The correlation matrix allows for easier visual interpretation and is related to the covariance

matrix as follows

Rij = cov(i, j)
σiσj

(.5.1)

Where R is the correlation matrix, cov is the covariance matrix and σ is the standard devia-

tion.



.5. Correlation matrix for combined void probes 190

t
> 1

t
> 2

t
> 3

dn
dRv

> 1
dn
dRv

> 2
dn
dRv

> 3

t
>

1
t

>
2

t
>

3
dn dR

v

>
1

dn dR
v

>
2

dn dR
v

>
3

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

la
tio

n 
m

at
rix

 R
ij
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presented in this work.
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Figure 7: Correlation matrix for the peak abundance extracted from 184 100 deg2 WL maps,
where the colour-bar indicates the amplitude of Ri,j .

.6 Correlation matrices (Chapter 5)

Here we present the covariance matrices for the statistics studied in the paper. All of the

covariance matrices are calculated from the statistics extracted from the 184 100 deg2 WL

maps from the T17 simulations described in section 4.2.1, using Eq. (3.5.1). To aid inter-

pretation we have rescaled all covariance matrices to their corresponding correlation matrix

using

Ri,j = cov(i, j)
σiσj

. (.6.1)

Figs. 7, 8, and 9 show the correlation matrices for the peak abundances, void abundances,

and tangential shear profiles for peaks and voids identified in the T17 WL maps.
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Figure 8: Correlation matrices for the void abundances extracted from 184 100 deg2 WL
maps, for three peak height cuts, ν > 1 (left), ν > 2 (middle) and ν > 3 (right). The
colour-bar indicates the amplitude of Ri,j .
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Figure 9: Correlation matrices for the tangential shear profiles extracted from 184 100 deg2

WL maps, for three void catalogues with peak height cuts ν > 1 (left), ν > 2 (middle) and
ν > 3 (right). The colour-bar indicates the amplitude of Ri,j .
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Figure 10: An illustration of our procedure of partitioning an all-sky map into smaller non-
overlapping maps. We first tile the sky using a HEALPix grid with Nside = 4. This step is
shown in the top panel, with each coloured patch corresponding to a HEALPix pixel. Then,
we further extract a 10× 10 deg2 map from the centre of each HEALPix pixel. The resulting
square maps are shown as coloured patches in the bottom panel. The white space between
the patches shows that our small maps are non-overlapping. Each small square patch is then
projected on to a plane tangential to their centre, giving us a 10× 10 deg2 flat map.



.7. Partitioning an all-sky map into smaller non-overlapping maps 194

.7 Partitioning an all-sky map into smaller non-overlapping

maps

The T17 maps are all-sky maps with a HEALPix data structure, in which pixels are stored

on the surface of a sphere. To simplify our analysis, we used the flat-sky approximation and

thus we needed to partition the all-sky map into smaller, and preferably, non-overlapping

maps.

To achieve this, we capitalise on the HEALPix data structure and first define a set of coarser

HEALPix pixels with a resolution of Nside = 4, which corresponds to a pixel area of roughly

215 deg2. We then assign each of the (higher resolution) data pixels to the coarser pixel that

they are enclosed by. This is shown by the illustration on the left in Fig. 10 (using Mollweide

projection), where each coloured patch shows a course pixel. Next, for each sub region defined

by the coarse pixels, we define a (flat) plane tangential to the centre of the coarse pixels and

project the data pixels onto that plane. We then extract a square of 10×10 deg2 (centred on

the centre of the plane) from each plane giving us 184 10× 10 deg2 flat maps. The HEALPix

pixels that are projected onto the flat maps are converted into regular square pixels, where we

interpolate between HEALPix pixels for square pixels that overlap with multiple HEALPix

pixels. The benefit of this approach is that there is no overlap between any two maps as

illustrated in the right panel of 10.

We note that a HEALPix resolution of Nside = 4 actually gives 192 pixels, however due to the

irregular shapes of HEALPix pixels (which arises from the requirement that all pixels have

the same area), we find that 8 pixels have to be discarded since they cannot enclose squares

of size 10× 10 deg2.

.8 Biased 2PCF estimation for small maps

Estimation of 2PCFs is straightforward in idealised situations. The 2PCF, ξ(r), characterises

the excess probability of finding a pair of tracers in two volume elements, dVi and dVj , that

are separated by a distance r:

dPij(r) = n̄2 [1 + ξ(r)] dVidVj , (.8.1)

where n̄ represents the expected tracer number density. In N-body simulations with periodic

boundary conditions, as an example, n̄ is the known mean number density and so the excess
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probability dPij can be evaluated by counting the number of pairs that are separated by

a distance r − ∆r to r + ∆r and comparing that against n̄2. In realistic situations, n̄ is

not always known – this can for example be due to the geometry, mask, fibre collision and

redshift failure in a galaxy redshift survey, or the small map size with boundaries in our WL

peak catalogues. The uncertainty in the expected number of tracers in a given volume can

cause biased 2PCF estimations. It is known that, for examples, the Peebles & Hauser (1974)

estimator

ξPH(θ) =
(
NR

ND

)2DD(θ)
RR(θ) − 1, (.8.2)

and the Davis & Peebles (1983) estimator

ξDP(θ) = 2NR

ND

DD(θ)
DR(θ) − 1, (.8.3)

have errors that depend to the first order on the uncertainty of the expected tracer number

density. On the other hand, the Hamilton (1993) and the Landy & Szalay (1993) estimators

have errors which are second order in this uncertainty and are more commonly used. In the

above ND and NR are the numbers of data and random points, and DD, DR and RR are the

numbers of data-data, data-random and random-random pairs in bins θ ± δθ respectively.

The Landy-Szalay estimator is given by,

ξLS(θ) = 1 +
(
NR

ND

)2DD(θ)
RR(θ) −

(
NR

ND

)
DR(θ)
RR(θ) . (.8.4)

When analysing n maps, there are n different ND, DD and DR values, that is one per map

(NR and RR can be taken as constants since the same random catalogue can be used for each

map). We checked that our results are stable to a change in the number of randoms used.

Given the expression of Eq. (.8.4), there are two possible ways to calculate the mean 2PCF,

〈ξ〉, where 〈·〉 denotes the mean value over the n maps, given respectively by

〈ξLS(θ)〉1 =
〈

1 +
(
NR

ND

)2 DD

RR
−
(
NR

ND

)
DR

RR

〉
, (.8.5)

and

〈ξLS(θ)〉2 = 1 +
( 〈NR〉
〈ND〉

)2 〈DD〉
〈RR〉

−
( 〈NR〉
〈ND〉

) 〈DR〉
〈RR〉

, (.8.6)

where we have dropped the θ dependence of DD,DR and RR to lighten the notations. For

Eq. (.8.5), we calculate n 2PCFs from the n maps and take the mean value. For Eq. (.8.6), we

first calculate the mean over all maps of ND, DD and DR, and then use these mean values

to calculate the mean 2PCF. In general, these two approaches do not give identical results,
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Figure 11: Mean 2PCFs calculated using Eqs. (.8.5) (dashed) and (.8.6) (solid), for maps of
size 10× 10 deg2 (blue), 5× 5 deg2 (orange) and 3.3× 3.3 deg2 (green).

that is

〈ξLS(θ)〉1 6= 〈ξLS(θ)〉2. (.8.7)

Naively, it seems natural to calculate the mean 2PCF using Eq. (.8.5) – after all, if we only

had a single map, we would use this formula (excluding the outer 〈·〉) to estimate the 2PCF.

However, we found that this approach actually leads to biased estimates when the number of

tracers varies considerably between the different maps. This is particularly the case when the

number of peaks in a catalogue is low, and the effect is particularly strong for peaks with high

ν values, for which the number density is low, and for small maps, such as the 3.5× 3.5 deg2

ones.

To see this point, we compare these two approaches as follows. First, we split each of the

184 T17 maps, whose size is 10× 10 deg2, into four 5× 5 deg2 maps and nine 3.3× 3.3 deg2

maps, which give us in total 184, 736 and 1656 maps of the three sizes respectively. Then,

using respectively Eqs. (.8.5) and (.8.6), we calculate the mean 2PCF for the three different

maps sizes, and the results are shown in Fig. 11.

Fig. 11 clearly shows that, as the T17 maps are split into progressively smaller sections, the

mean 2PCF calculated using Eq. (.8.5) drops in amplitude, whereas using Eq. (.8.6) leads to
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a constant amplitude. The difference between the two approaches is small for the 10×10 deg2

maps and only becomes significant for the smaller maps. This implies that the bias from Eq.

(.8.5) depends on the map size, or more exactly the number of tracers used for the 2PCF

estimation. We have performed similar tests for 3D galaxy 2PCFs and found a similar bias

effect when using small box sizes. Finally, the mean 2PCFs from Eq. (.8.6) for the different

maps sizes do not line up exactly, which is due to some pairs being lost at the sub-map

boundaries as large maps are split up into smaller maps. We checked for this and found that

the inclusion of cross sub-map pairs restores the original 2PCFs.

Physically, the reason why Eq. (.8.5) leads to biased 2PCF estimations is that the number of

WL peaks per map is small and this translates into a large uncertainty in the mean tracer

number density when estimated individually for each map. Even though this uncertainty

enters the 2PCF estimation only at second order for the Landy-Szalay estimator, it can still

strongly affect the latter. In contrast, Eq. (.8.6) essentially treats the n maps as a single

(combined) one, for which the uncertainty in the expected mean peak number is small.

The biased 2PCF estimation using the Landy-Szalay estimator caused by the small tracer

number is important for this study, since the WL maps from the Z16 simulations have a map

size of 3.5 × 3.5 deg2, which is in the regime where the biasing effect is strong. As a result,

in this paper we calculate the mean 2PCF using Eq. (.8.6).

.9 2PCF Error estimates

For each of the Z16 cosmologies we used the N = 512 3.5×3.5 deg2 maps to evaluate the mean

2PCF 〈ξ〉. We estimate the standard error for 〈ξ〉 using the jackknife method, by calculating

N − 1 mean values from sequentially removing individual maps from the sample, and taking

the standard deviation of the N − 1 means from the 512 maps. However, we found the error

to be significantly smaller than expected, of roughly < 1% of 〈ξ〉 itself. On the other hand,

when repeating the same practice on 512 3.5× 3.5 deg2 maps extracted from the T17 all-sky

map, we found the standard errors were larger and more reasonable, of roughly 2-3% of the

mean 2PCF.

This discrepancy in the magnitudes of the standard errors in the two different suites of maps

is likely caused by the way in which the multiple convergence maps were generated. In the

Z16 case, the 512 maps were generated from multiple lines of sight by shifting, reorienting and

tiling a single simulation box of size 240h−1Mpc, which means that the scatter in the different
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Figure 12: The mean 2PCFs of 512 3.5× 3.5 deg2 maps extracted from the T17 all sky map
for peak catalogues with νcut ∈ [1.5,3.5]. The shaded regions show the jackknifed error bars.

maps is likely to only contain an error component representing the line-of-sight variation. In

contrast, the T17 maps were all-sky maps generated using much larger boxes with minimal

repetition of structures along the lines of sight, which means that these maps better sample

the variation due to large-scale modes. The additional source of variance in the T17 maps

can explain the increase in their measured standard error.

In order to have a more realistic estimate of the standard error associated to the Z16 maps,

we extract 512 3.5 × 3.5 deg2 maps from the T17 all-sky map and use jackknife to find the

error of the mean 2PCFs, 〈ξ〉. For illustration purposes, the resulting 〈ξ〉 and their errors for

a few values of νcut are shown in Fig. 12 as respectively lines and shaded regions.

We then take this relative error as our estimate of the standard error for the mean 2PCFs

from the Z16 maps, as a way to (approximately) include the contributions to the error from

large-scale modes.

The above estimate of the error associated to the Z16 maps is likely to be an underestimate

since the estimated error corresponds to the case when each of the 512 Z16 maps would have

been obtained from a different N-body simulation. However, this is not the case since all

the Z16 maps were obtained from the same simulation. Thus, the errors used in this paper
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Figure 13: The same as Fig. 6.8, except only the cosmological models shown as orange points
in Fig. 6.4 are plotted and the definition for ν is changed from Eq. (6.2.1) to ν = (κ−µ)/σGSN
where σGSN = 0.013 for all models.

serve only as a way to gain rough indications of the quality of our models for the WL peak

statistics, which we present as a proof of concept. In a future work, we plan to run a suite of

large simulations similar to those used by T17, for different cosmological models, to further

study the self-similar properties of the rescaled peak 2PCFs.

.10 The independence of self-similarity on the ν definition

In Eq. (6.2.1) we choose to define the SNR, ν, in terms of a cosmology-dependent rms con-

vergence, σ, which is analytically parameterised through a simple dependence on (Ωm, σ8),

as exemplified in Fig. 6.5. Besides having a readily-predictable σ, this approach has the

added benefit of allowing us to more naturally define the amplitude of WL peaks for a given

cosmology relative to its own convergence rms, bearing in mind that the wide coverage of

cosmological parameters means that the σ values can vary by a factor of a few across the Z16

maps; cf. Fig. 6.5.

One can argue that given an observational WL map, the value of σ receives contributions from

both the physical convergence rms and the GSN, and that the actual value of σ as measured

from such noisy maps is a natural choice that can be used to define ν. Such is the logic

followed in Section 6.6 where we analysed the rescaled peak 2PCFs in the GSN-added maps.
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Alternatively, one may argue that in real observations we do not necessarily know the true

cosmology, but we do understand the survey specifications well enough to know the expected

noise level. This leads to another natural way to define ν, namely by using σ ≡ σGSN. Given

this flexibility in ν definition, we would like to check that the self-similar behaviour of the

2PCFs for the resulting peak catalogues is not affected by it. This is done in Fig. 13, which

is similar to Fig. 6.8 but for a subset of cosmological models (the ones represented by the

orange symbols in Fig. 6.4), and where ν is defined as ν = (κ− µ)/σGSN with σGSN = 0.013,

which corresponds to the rms of a GSN only map smoothed with θs = 1 arcmin, is used for

all models.

We find that the cosmology-dependent description of WL peak amplitude results in a (marginal)

improvement of the self similarity of the 2PCFs for all cosmologies (shown in Fig. 6.8) com-

pared to using a σ definition that is constant across all cosmologies, which is shown in Fig. 13.

It can be seen that the self similarity of the 2PCFs worsens notably for some of the panels,

which correspond to models with more extreme (Ωm, σ8) values. This is not surprising be-

cause, as mentioned above, the models studied here vary wildly in their σ values, and by

using a constant σGSN to define ν one is essentially selecting very different peak populations

in them – in the more extreme models the peaks that end up being selected do not possess

the self-similarity (remember that this property is only present for a limited range of peak

heights). Hence, by using the cosmology dependent form of ν in Eq. (6.2.1), the 2PCF is

self similar for a larger range of cosmologies. However, if one focuses on the more realistic

(Ωm, σ8) parameters, then using a constant σGSN to define ν should not affect the potential

of the rescaled peak 2PCF as a cosmological probe.

.11 Peak emulator accuracy

In this section we present the accuracy of the emulator used for our cosmological forecasts.

In order to test the accuracy of the emulator, we employ a cross validation test, which is

outlined as follows. First, one node from the training data (simulated data) is removed,

and the emulator is then trained with the remaining 25 nodes, for a given statistic. The

emulator prediction for the removed node is then calculated, and this result is compared

to the simulated version, by taking the difference between the two and dividing it by the

standard error measured in the simulated data for that node. The above steps are repeated

25 more times, removing a different node from the training data at each iteration. This results
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Figure 14: (Colour Online) The cross validation of the WL peak abundance emulator accu-
racy. One node is removed from the training set, and the difference between the emulation
(Em) and simulation (Sim) predictions of the removed node are compared relative to the sim-
ulation standard error (σ). This process is repeated for each of the 26 nodes, giving an upper
limit on the emulator accuracy. The iteration where the node for the fiducial cosmology is
removed is shown by the blue line. Dashed lines are added at the 1σ level to help guide the
reader.

in measurements of the emulator accuracy at each node, which is an upper limit, since the

accuracy increases as more training data is used, and the cross validation measurements use

training data with one less node than the training data used in the main analysis.

Fig. 14 shows the cross validation test for WL peak abundance. The cross validation for the

fiducial cosmology is shown in blue, and the remaining nodes are shown in grey. The fiducial

cosmology is the node of most interest, as all posterior contours presented in this work reside

close to this region. The dashed lines delineate the region where the accuracy of the emulator

is within the standard error of the simulated data. The blue curve shows that, for the fiducial

cosmology, the emulator is accurate to within 1σ, as roughly 68% of the bins are within the

1σ region. The grey curves show that the accuracy is lower for the other nodes, and we find

that the accuracy decreases as we approach the edges of the cosmo-SLICS parameter space.

This is to be expected, as the emulator has less data to train from for these regions. Fig. 15 is

similar to Fig. 14, but shows the percentage accuracy of the emulator for the cross validation
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Figure 15: (Colour Online) The same as Fig. 14, but showing the percentage accuracy relative
to the simulated predictions. The dashed lines enclose the 1% region.

test. We can observe that the accuracy is within roughly 1% for ν . 3, increasing to up to

4% at ν & 5 due to the more noisy measurement for the high-ν peaks.

Fig. 16 is the same as Fig. 14, but shows the cross validation test for the WL peak 2PCF,

for peak catalogues with heights ν > 1 (top left), ν > 2 (top right), ν > 3 (bottom left)

and ν > 4 (bottom right). The figure shows that, similar to the WL peak abundance, the

emulator is accurate to within 1σ at the fiducial cosmology for the peak 2PCF for all four

catalogues. Fig. 17 is the same as Fig. 16, but shows the percentage accuracy of the peak

2PCF emulator applied in the cross-validation test. For the ν > 1 catalogue, the accuracy is

mostly within 10%, with a few bin at 20%. The accuracy is within 10% for the ν > 2 and 3

peak catalogues, and for ν > 4 the accuracy is within 10% except for the final bin.

.12 Peak covariance and peak-void cross covariance

As shown by Eq. (7.3.2) we require the (inverted) covariance matrix of the data vector in

order to produce our forecasts. Within the matrix, the diagonal elements correspond to the

variance of each of the data vector bins and the off-diagonal elements give the covariance

between all possible pairs of bins. When multiple probes are combined into a single data



.12. Peak covariance and peak-void cross covariance 203

5

0

5
(E

m
 - 

Si
m

)/ 
>  1>  1 >  2>  2

0.2 0.4 0.6 0.8
 [deg]

5

0

5

(E
m

 - 
Si

m
)/ 

>  3>  3

0.2 0.4 0.6 0.8
 [deg]

>  4>  4

Figure 16: The same as Fig. 14 but for the WL peak 2PCFs. The four panels correspond to
the WL peak 2PCFs of WL peaks with heights ν > 1 (top left), ν > 2 (top right), ν > 3
(bottom left) and ν > 4 (bottom right).
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predictions. The dashed lines enclose the 10% region.
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vector, any correlated or duplicate information between the probes is accounted for by the

cross covariance within the matrix.

In Fig. 18 we present the total correlation matrix for the all of the probes studied in this

work. This corresponds to the matrix that is used to produce the green likelihood contour in

Fig. 7.8. We present the correlation matrix instead of the covariance matrix, as it allows for

easier visual interpretation, which is expressed in terms of the covariance matrix as follows

Rij = cov(i, j)
σiσj

, (.12.1)

where R is the correlation matrix, cov is the covariance matrix and σ is the standard deviation

for a given bin.

Starting from the bottom left of the figure, the diagonal tiles enclosed by the black lines show

the correlation for the following statistics (which are labelled with the range of peak heights

used in their identification): peak abundance (0 < ν < 6), peak 2PCF (four catalogues

with thresholds ν > 1, 2, 3, 4), and WL void abundance and WL void tangential shear profiles

where the voids are identified using the same four peak catalogues. The remaining off-diagonal

terms show the cross-covariances between all possible combinations of the probes.

For the peak abundance, the figure shows that the low amplitude peaks are somewhat cor-

related with other low amplitude peaks, and a similar behaviour is present for the high

amplitude peaks, as shown by the green regions in the bottom left and top right of the peak

abundance correlation tile. There also appears to be a small amount of anti-correlation be-

tween low and high amplitude peaks, as shown by the dark regions in the top left and bottom

right of the tile.

For the diagonal peak 2PCF tiles, each bin in the 2PCF appears to be correlated with all

of the other bins. For the off-diagonal tiles between the different peak 2PCFs, there is also

a high amount of correlation, which is again expected, as the main difference between the

2PCFs is simply a change in amplitude, and all catalogues have some fraction of their tracer

population in common.

For the tiles representing the correlation between the peak 2PCFs and the WL void abun-

dances, we see some correlation between the peak 2PCFs and the small radii WL voids

(especially for high ν thresholds). This is also to be expected since the WL voids are identi-

fied from a Delaunay triangulation of the peaks, which will be sensitive to the peak clustering.

It is interesting to see that this correlation drops off as the void size increases, which may

indicate that higher-order clustering such as the three-point correlation function of WL peaks
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dictates the abundance of large voids.

In Fig. 19 we show the correlation matrix for the peak abundance combined with the eight

peak 2PCFs with ν > 1.0, 1.5, ..., 4.5. The figure shows that, for the peak 2PCF, adjacent

catalogues (similar ν thresholds) are highly correlated. This is to be expected as the tracer

populations are very similar for adjacent catalogues. The correlation reduces significantly as

the difference between the ν thresholds increases, which is again expected as this is where the

tracer populations will differ the most. The low correlation between the peak 2PCFs with

very different ν thresholds is a strong contribution to the improved constraining power from

the combination of multiple peak 2PCFs, alongside any complementary parameter degeneracy

directions.
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