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Abstract: This thesis uses a combination of observations, simulations, and dynamical

analysis to study the dark matter (DM) halo and accretion history of the Milky Way (MW).

Chapter 2 presents and applies a method to infer the mass of the MW by comparing

the dynamics of observed satellites to those in the eagle cosmological hydrodynamics

simulations. The method is robustly calibrated on mock eagle systems and then validated

on the independent auriga high-resolution simulation suite of 30 MW-like galaxies. The

method is shown to recover a galaxy’s true mass and associated uncertainties accurately.

Using ten classical satellites with 6D phase-space measurements, including updated proper

motions from the Gaia satellite, the method is applied to the MW. The mass of the MW

is estimated to be "MW
200 = 1.17+0.21

−0.15 × 1012"� (68% confidence limits). This is then

combined with recent mass estimates in the inner regions of the Galaxy to infer an NFW

halo concentration of 2MW
200 = 10.9+2.6−2.0.

Chapter 3 models the effect of baryonic contraction in DM haloes by first studying the

orbital phase-space of DM haloes in the auriga simulation suite of MW analogues. The

haloes are characterised by their spherical action distribution of the DM particles, allow-

ing a comparison between the dynamical descriptions of DM-only and hydrodynamical

simulations of the same haloes. By applying an iterative algorithm, the auriga DM haloes

are adiabatically contracted to a given baryon density profile and halo mass. Using this

algorithm, the auriga haloes are contracted to the baryon profile of the MW, inferring the

total mass profile and the dynamics of the MW’s contracted DM halo. These models allow



the derivation of updated values for the key astrophysical inputs to DM direct detection

experiments: the DM density and velocity distribution in the Solar neighbourhood.

Chapter 4 introduces a multi-component chemo-dynamical model for decomposing the

Galactic population of Globular Clusters (GCs) into bulge, disc, and stellar halo compon-

ents. The halo GCs are further split into the major Galactic accretion events, GES, Kraken,

Sequoia, Sag, and Helmi streams. The modelling approach is extensively tested using

mock GCs built using the auriga suite of hydrodynamical simulations. The method is

applied to the Galactic GCs data to infer, in a statistically robust and easily quantifiable

way, the GCs associated to each MW accretion event. The MW sample contains 170 GCs,

including previously uncategorized clusters from Gaia EDR3 observations. The number

of GCs if each accretion group is then used to infer properties, such as halo and stellar

masses, of these defunct satellites of the MW.
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CHAPTER 1
Introduction

TheMilkyWay dominates our night sky, but it is just one of incalculablymany such galaxies

in an ever-expanding Universe. Astrophysically speaking, we inhabit a fairly unremarkable

planet orbiting a fairly unremarkable star in the stellar disc of a fairly unremarkable galaxy.

What is truly remarkable is that, from our limited vantage point, we have assembled such

a detailed understanding of the wider cosmos. This knowledge is the integrated sum of

centuries of scientific progress, consisting of a few large leaps made by giants and many

smaller contributions from the wider scientific community. The work contained in this

thesis is but the latest of these labours.

1.1 The Known Universe

In the current cosmological paradigm, Lambda cold dark matter (ΛCDM), the Universe’s

energy budget is spent on three ingredients: dark energy (68.5%), dark matter (27%)

and baryons (4.5%) (Planck Collaboration et al., 2014). Dark energy, denoted L, drives

the accelerated expansion of the Universe on intergalactic scales. On the galactic scales

studied in this thesis, physical matter overcomes this effect and allows structure to form.

Dark matter (DM), the dominant mass component, is collisionless non-baryonic matter,
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hypothesised to be composed of a weakly interacting massive particle that has evaded

direct detection (Peebles, 1982). The cold nomenclature refers to its initial, non-relativistic,

velocity distribution in the primordial Universe, which still dictates the nature of structure

today. Currently, the only evidence for the existence of DM comes from its gravitational

interactions with baryonic matter (e.g. Zwicky, 1937; Rubin & Ford, 1970). As the only

visible material, baryons are relied on to infer the unseen but dominant ‘dark side’ of the

Universe, despite accounting for just a sixth of the total matter.

1.1.1 Dark Matter

DM forms the foundations of all structure in the Universe. Initially, small overdensities

of DM collapse to form small gravitationally bound clumps, known as haloes. These

clumps then grow by accreting diffuse material and merging with other DM haloes, leading

to the hierarchical formation of structure. This process is highly non-linear and beyond

analytical theory on all but the largest of scales. Instead, our understanding has been built

by collisionless N-body simulations, in which both DM and baryons are modelled as a

single dissipationless fluid. These are often referred to as ‘dark matter only’ simulations,

hereafter DMO. For a recent review of DM structure, see Zavala & Frenk (2019).

Large cosmological boxes (∼ 100 Mpc) can follow the formation of large scale structure

and the evolution of the halo mass function (Frenk et al., 1988). The bottom-up formation

of ΛCDM leaves the present-day Universe rich in small scale structure, unlike the cut-off

seen in alternative warm DM variants (e.g. White et al., 1983; Lovell, 2020). Our Galaxy

is likely surrounded by an abundance of these subhaloes and satellites (characterised by

works such as Springel et al. (2008); Gao et al. (2008); Richings et al. (2020)). These

simulations also allow the birth, evolution and internal structure of individual DM halos

to be studied, tracing its assembly history with a merger tree (see Fig. 1.1).

A halo’s density smoothly decreases into the background matter of the Universe, providing

no clear definition for its edge (Deason et al., 2020). Instead, a halo’s size is defined as the

radius within which its mean density is equal to a factor times the critical density of the
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Figure 1.1
A classic schematic representation of a merger tree from Lacey & Cole (1993).
The tree depicts the hierarchical growth of a DM halo through a series of mergers.
Time increases from top to bottom, and the width of the tree indicates halo mass.
C0 denotes the present day, and C 5 denotes the formation time, defined as the time
the halo achieved half the mass of the present-day halo.
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Universe (Cole & Lacey, 1996). This thesis uses 200 times the critical density, with the

halo radius defined as '200 and the halo mass contained within this radius denoted as "200.

An alternative definition is the virial mass of the halo, approximately the mass contained

within the radius that the virial theorem applies (equivalent to a factor of ∼ 102 times the

critical density at present-day in the Planck Collaboration et al. (2014) cosmology).

DMO haloes have been found to have spherically-averaged density profiles that are

universally well fit by a surprisingly simple form, the Navarro, Frenk & White (NFW)

profile (Navarro et al., 1996, 1997):

d (A) = dB

A
AB

(
1 + A

AB

)2 , (1.1.1)

This form is characterised by two free parameters: the scale radius, As, and the characteristic

density, dB. This profile has been found in haloes over 20 orders of magnitude of mass

and seems to be only limited by the resolution of the simulation (Wang et al., 2020b). The

steep, cuspy centre of this profile (d ∝ A−1) is a fundamental prediction of CDM, and a

memory of the DM’s phase space in the primordial Universe. Some alternative models,

such as self-interacting DM, distinguish themselves from CDM by predicting cores at the

halo’s centre (d ∝ constant).

A halo’s concentration relates its scale radius to the size of the halo (2200 = '200/As). This

quantity roughly correlates with its mass, with larger haloes having lower concentrations

(Schaller et al., 2015). However, there is considerable scatter linked to the assembly history

of the halo, which can vary significantly between haloes of similar mass (Ludlow et al.,

2013, 2014)

The origins of the NFW profile are still debated, with suggestions including a close

connection to the halo merger history or an attractor solution to entropy-driven relaxation

(e.g. Ludlow et al., 2014; Pontzen & Governato, 2013). DM haloes are, fundamentally,

composed of orbiting particles that conspire to give an approximately steady-state profile

(Zhu et al., 2016). It is this underlying dynamical system that determines the underlying

density profile, and governs how it responds to its environment and new merger events.
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1.1.2 Baryons

Galaxies form at the bottom of the gravitational potential well of DM haloes (White &

Rees, 1978). Gas falls into haloes and, unlike DM, cools through radiative processes,

allowing it to condense at the centre. Once dense and cold enough, the gas clouds fragment

and collapse to form stars. Conservation of the initial gas’s angular momentum leads to

the creation of disc galaxies (Mo et al., 1998). A small fraction of the stars explode as

supernovae, releasing heat energy and metal-enriched gas into the interstellar medium.

AGN (Active Galactic Nuclei) can form at the galactic centre and drive further baryonic

feedback, such as radiation pressure and stellar winds. This stellar feedback disrupts dense

gas, inhibiting further star formation and ejecting gas from smaller haloes that cannot

gravitationally hold onto their material.

Baryons can substantially affect the DM halo that they inhabit. By accumulating at the

centre of the halo, they deepen the galaxy’s potential well, increasing the central DMdensity

through an effect known as baryonic contraction (investigated in Chapter 3). The enhanced

potential can also affect the distribution of subhaloes surrounding the galaxy, increasing

subhalo destruction through strengthening tidal forces and effects such as disc-shocking

(e.g. D’Onghia et al., 2010; Sawala et al., 2017; Garrison-Kimmel et al., 2017; Richings

et al., 2020). If the feedback is sufficiently strong, rapid changes to the inner baryon profile

can transfer energy to the surrounding DM. This mechanism has been proposed to turn

cusps into cores in baryon dominated dwarf galaxies (Pontzen & Governato, 2012; Burger

et al., 2020).

1.1.3 Success and Tension in LCDM

ΛCDM has been undeniably successful on large scales and can consistently describe how

structures in the Universe have formed and evolved. ΛCDM simulations have been able to

reproduce the structure distribution seen in galaxy redshift surveys (Springel, 2005; York

et al., 2000; Colless et al., 2001; Rodríguez-Torres et al., 2016), and duplicated more subtle
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cosmological measurements such as anisotropy in the cosmic microwave background and

the baryon acoustic oscillations of the matter power spectrum (Komatsu et al., 2011; Cole

et al., 2005; Eisenstein et al., 2005; Collaboration et al., 2021a). While the theory has

proved remarkably resilient over the past 40 years, it has had historical challenges, with a

few tensions remaining areas of active research to this day. Generally, these are motivated

by DMO simulations and typically manifest on small scales. On these scales, baryonic

effects cannot be neglected, and consequentially their inclusion can give plausible solutions

to these tensions. For a more in-depth summary than presented here, see the recent review

by Bullock & Boylan-Kolchin (2017).

The missing satellites problem refers to the abundance of substructure predicted in DMO

simulation compared to the limited number of dwarf galaxies observed in the MW (Klypin

et al., 1999; Moore et al., 1999). Assuming that all DM haloes host stars, the MW should

be surrounded by thousands of visible subhaloes. However, it is now known that the

effects of feedback and re-ionisation effectively prevent small haloes (/ 3 × 108"�) from

forming stars (Benitez-Llambay & Frenk, 2020). With these effects considered, more

recent studies and hydrodynamical simulations now agree with predictions for the MW

observed population (e.g. Bose et al., 2018; Sawala et al., 2015).

The too-big-to-fail problem (Boylan-Kolchin et al., 2011) refines the ideas of the missing

satellites problem, focusing on the lack of massive haloes around the MW compared to

simulations. The haloes cannot be dark, as their size should prevent them from succumbing

to baryonic effects and be prevented from hosting stars; they are ‘too big to fail’. This

problem is alleviated by considering the effect of baryonic feedback slowing the growth

rate of DM haloes compared to DMO (Sawala et al., 2016), or if the central densities of

the dwarf DM haloes are lowered, such as by the presence of a DM core (Zolotov et al.,

2012),

The plane of satellites problem concerns the arrangement of the MW’s satellite galaxies,

which appear to preferentially lie in a thin plane perpendicular to the galactic disc (Lynden-

Bell, 1976; Kunkel & Demers, 1976). This positioning is made more significant by further

hints of satellite planes in other galaxies, such as Andromeda (Ibata et al., 2013) and
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Centaurus A (Tully et al., 2015; Müller et al., 2018). Whilst this configuration has been

found to occur in ΛCDM cosmological simulations, it is only present in a small fraction

of disc galaxies (∼ 1% Shao et al. 2018b). With careful treatment of the statistics, such as

considering the look-else-where effect, the tension has lessened (Cautun et al., 2015), but

it remains an interesting feature.

The core-cusp problem concerns the disputed claims of DM cores at the centre of dwarf

galaxies (Moore, 1994; Read et al., 2016; Battaglia et al., 2013; Genina et al., 2018).

If true, it has been suggested that this could be evidence of exotic self-interacting DM.

However, as already discussed, in ΛCDM strong baryonic feedback mechanisms have been

proposed to create cores (e.g. Navarro et al., 1996; Pontzen & Governato, 2012; Burger &

Zavala, 2019). This effect has been replicated in some simulations but is dependant on the

implementation of star formation and feedback (Benítez-Llambay et al., 2019).

1.2 Hydrodynamical Galaxy Simulations

Over the past two decades, the field has witnessed the rise of advanced hydrodynamical

simulations, hereafter ‘Hydro’, that are capable of modelling baryons alongside DM

(Vogelsberger et al., 2020, review). Such simulations self-consistently implement baryon

physics thought to be important in the formation of galaxies, such as gas cooling and

heating, stellar winds, chemical evolution and supernova and AGN feedback (e.g. see

Somerville & Davé, 2015). Representing an individual star through a single particle is

beyond current computational abilities; instead, star particles represent populations of stars.

Similarly, astrophysical processes that take place below resolvable scales, such as star

formation and the injection of energy into gas from baryonic feedback, must be modelled

as ‘sub-grid’ physics with their effects on resolvable scales approximated analytically.

There are two main hydrodynamical schemes to represent baryons: N-body particles using

smoothed particle hydrodynamics (SPH), or cells using adaptive mesh refinement. Current

examples of these approaches are the eagle project (Schaye et al., 2015; Crain et al., 2015),

which is run with a heavily modified gadget3 SPH code (Springel, 2005), and the Illustris
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Figure 1.2
The eagle simulation box. The colour indicates the density of structure, where
red is the most dense. As matter collapses, it forms the cosmic web; a tangle of
filaments lined with galaxies. eagle can resolve galactic structure such as stellar
discs. Credit: The eagle project (Schaye et al., 2015).
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project (Vogelsberger et al., 2014a,b; Genel et al., 2014), which uses the arepo (Springel,

2010)) moving mesh scheme. These simulations recover properties observed in the real

universe, such as the stellar mass-star formation rate relations, mass-metallicity relations,

black hole masses, and the morphology of galaxies.

Modern simulations mostly agree on large scales and integrated properties, particularly

where calibrated by observations of the real Universe. However, there are still several areas

that are unconstrained, or poorly understood from a theoretical standpoint, that leads to

some ambiguity in aspects of subgrid physics. These areas include (to name a few): the

stellar-mass to halo-mass relation at lower masses (Behroozi et al., 2019), AGN feedback

(Schaye et al., 2010; Scannapieco et al., 2012; Vogelsberger et al., 2013) and the density

threshold for star formation (Schaye, 2004; Hopkins et al., 2013). In the future, it is hoped

that further observations and theoretical progress will constrain these areas. Increasing

computational power and smarter codes continues to push resolution and simulation box

sizes up, improving what has emerged as one of the best tools to understand the Universe

(Schaller et al., 2018; Borrow et al., 2020).

1.2.1 Zoom-In Simulations

Simulating a single galaxy at high resolution (a zoom-in simulation) can reveal details

that would be obscured in a larger cosmological simulation, such as inner DM structure

and star formation in dwarf galaxies (e.g. Navarro et al., 2010; Crain et al., 2015). This

is especially enlightening if the simulated galaxy has similar properties to the MW. The

simulation can then be used to study the processes that formed our Galaxy and give an

invaluable method of testing our methodologies. However, forming a MW-like galaxy is

challenging due to the chaotic and unpredictable nature of galaxy formation.

One approach to accomplish this is to identify galaxies of interest in large cosmological

volumes (Katz &White, 1993; Tormen et al., 1997; Frenk et al., 1999; Bertschinger, 2001;

Gao et al., 2005; Hahn & Abel, 2011; Jenkins, 2013). The particles of these are traced

back to their initial conditions, which are then re-simulated at higher resolution. The
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Figure 1.3
Simulated galaxies from the auriga project (Grand et al., 2017). These are
high resolution, hydrodynamical simulations of MW-like galaxies, containing rich
Galactic structure such as discs, spirals and a stellar halo full of substructure.
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surrounding regions are re-sampled at lower resolution with massive particles to preserve

a realistic tidal field. Alternatively, initial conditions that replicate our local environment

can be carefully cultivated through "constrained realisations" (Hoffman & Ribak, 1991;

Klypin et al., 2003; Jasche & Wandelt, 2013; Gottloeber et al., 2010; Libeskind et al.,

2020).

Modern ‘zoom-in’ simulations of individual MW-like haloes include the auriga simu-

lations (Grand et al., 2017), run with arepo, and the fire simulations (Hopkins et al.,

2014), run using a moving mesh code designed for zoom-in simulations. Rather than an

individual MW-like halo, the apostle simulations (Sawala et al., 2016; Fattahi et al., 2016)

choose to re-simulate a pair of galaxies selected to reproduce Local Group properties.

Typically, the MW analogues are selected to be within the mass range expected of our

Galaxy (0.5, 2) × 1012 M�, and can include further selection criteria in an effort to find

MW-like galaxies. It is an open question how well these zoom-in simulations capture the

likely properties of the MW and its surrounding environment. In some aspects, the MW is

known to be unusual, such as its accretion history and the presence of the LMC (Evans et al.,

2020). This may lead to other statistically significant differences between the MW and

the average simulated galaxy of a comparable mass, giving rise to unappreciated biases in

studies that use them. As our knowledge of the properties of the MW improves, alongside

the resolvable details of the simulated galaxies, the criteria for what is MW-like will likely

become stricter and make MW analogues harder to find. This demand will be eased by the

increasing size and statistics of cosmological simulations, and the growing sophistication

of constrained realisations techniques. Hopefully, these continual improvements will allow

for better comparisons to the MW Galaxy.

1.2.2 Simulations used in this Thesis

eagle

The eagle simulation is a large hydrodynamic cosmological simulation (Schaye et al.,

2015; Crain et al., 2015). The main 100Mpc cubic volume provides a large sample of
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haloes with a wide range of masses and assembly histories (Evans et al., 2020). This suite

is used in Chapter 2 to build a sample of satellite dynamics, which is then compared to

observations in the MW.

The simulation uses 15043 DM particles of mass of 9.7 × 106"� and 15043 gas particles

of initial mass of 1.81 × 106"�. with the Planck cosmological parameters (Planck

Collaboration et al., 2014, see Table 9). eagle models the relevant baryonic physics

processes such as gas cooling, stochastic star formation, stellar and AGN feedback, and

the injection of metals from supernovae and stellar winds. The model was calibrated to

reproduce the present-day stellar mass function, galaxy sizes and the galaxy mass – black

hole mass relation. The friends-of-friends and subfind algorithms are used to identify

haloes and subhaloes (Davis et al., 1985; Springel et al., 2001).

auriga

auriga is a suite of high-resolution, hydrodynamical zoom-in simulations of MW-like

systems. These haloes provide an excellent way of testing dynamical methodology before

application to the real MW, building an understanding of a methods errors and limitations.

Chapter 2, Chapter 3 and Chapter 4 all use auriga for this purpose.

The haloes were selected from the 1003 Mpc3 periodic cube of the eagle project. The

selection criteria were that the haloes have masses between 1 − 2 × 1012"� and to be

relatively tidally isolated from neighboring haloes (i.e. not significantly gravitationally

interacting with other similarly sized or larger haloes. They were then re-simulated using

the N-body and moving mesh magnetohydrodynamic arepo code (Springel, 2011), using

the Planck Collaboration et al. (2014) cosmological parameters. The work in this thesis

primarily uses the level 4 resolution of 30 haloes. The simulations have a DM particle mass

of ∼ 3× 105"� and an initial gas resolution element of mass ∼ 5× 104"�; approximately

∼30 times higher resolution than eagle. auriga has been shown to reproduce many

properties of the MW and other MW-mass galaxies, such as the satellite luminosity

function (Shao et al., 2018a; Simpson et al., 2018), stellar bulge and disc structures (Grand
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Figure 1.4
An illustration of the of the structure of the Milky Way galaxy, showing a face on
and side on view of the stellar disc. Credit: European Space Agency

et al., 2017; Gómez et al., 2017a,b), and stellar halo (Grand et al., 2019; Monachesi et al.,

2019; Fattahi et al., 2019; Deason et al., 2021).

1.3 The Milky Way

The MW is a fairly typical disc galaxy (but not in every aspect, e.g. Evans et al. 2020).

Its stellar material is composed of a few distinct components. The most massive is the

stellar disc (∼ 4 − 5 × 1010"�), home to the Sun at a radius of around 8 kpc. The disc

can be further decomposed into the thin disc, containing younger, metal-rich stars on neat

circular orbits within the plane, and the thick disc, containing older, metal-poor stars with

a larger velocity dispersion. The bulge and bar lie within ∼ 2 kpc of the galactic centre and

are characterised by their old, metal-rich stellar population. Further out, the diffuse stellar

halo is a roughly spherical distribution of higher energy stars reaching ∼ 10 − 100 kpc. It

is dominated by substructure that provided the first strong evidence of hierarchical growth

(Searle & Zinn, 1978). These visible components are enveloped in our DM halo, tens of

times as massive as the stellar disc and a radius likely over 200 kpc. This thesis mainly
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focuses on the stellar and dark matter haloes, for a recent review of the entire MW, see

Bland-Hawthorn & Gerhard (2016).

The MW hosts many orbiting satellite galaxies. The 11 classical satellites (defined as

those with luminosity ! > 105 !�) range from 16 kpc (Sagittarius) out to around 250 kpc

(Leo I). Our largest satellite, the Large Magellanic Cloud, has been proposed to be massive

enough (" ∼ 1011"�) to significantly affect the Galactic potential (Gómez et al., 2015;

Peñarrubia et al., 2016; Vasiliev et al., 2021; Erkal et al., 2019), and evidence for its

influence has already been seen in the stellar halo (Erkal et al., 2021; Cunningham et al.,

2020) With recent improvements in observations, there is now a growing population of

previously undiscovered ultra-faint dwarfs (! < 105 !�). With these included, the known

satellite population is approximately ∼ 60 (Bechtol et al., 2015; Drlica-Wagner et al., 2015;

Koposov et al., 2015). In total, 120 satellites brighter than "v = 0 are expected to be

within 300 kpc (Newton et al., 2018).

As our window to the wider Universe, correctly interpreting our local environment is

central to unravelling some of the biggest mysteries of modern astrophysics and cosmology.

The apparent discrepancies with the standard LCDM model (as previously discussed),

and tests of alternative warm dark matter models, are all based on studies of small scale

structure found in the MW and local environment (e.g. Purcell & Zentner, 2012; Wang

et al., 2012; Vera-Ciro et al., 2013; Cautun et al., 2014; Kennedy et al., 2014; Lovell

et al., 2014). Furthermore, the MW provides a sensitive probe of the key mechanisms of

galaxy formation. This is made more enlightening as the behaviour of baryonic feedback

undergoes a crucial physical transition around the MW mass (e.g. Bower et al., 2017).

1.3.1 Observations

There is good reason to study our Galaxy – the MW offers the best available galactic data

set in the Universe, with kinematics, chemical abundances and ages for individual stars.

Since the start of this PhD in 2017, the volume and quality of data available has grown

tremendously. In 2018 the Gaia mission forever changed the field with the data release
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Figure 1.5
The Milky Way, as seen by Gaia early data release 3 (Gaia Collaboration et al.,
2021b). The lighter areas indicate areas with a higher density of stars. Beneath the
disc, the Large and Small Magellanic Clouds can be seen. More than 1.8 billion
stars were used by the Gaia Collaboration to make this image.

2 (DR2) catalogue, containing over 1.3 billion stars with positions and proper motions, a

considerable increase from 2 million in the previous DR1 catalogue. As a result, there

is a growing sample of MW satellites and globular clusters with full 6D phase space

information (Helmi et al., 2018b; Fritz et al., 2018; Simon, 2018; Vasiliev & Baumgardt,

2021; Baumgardt & Vasiliev, 2021).

Combined with other surveys (including apogee (Majewski et al., 2017), galah (Martell

et al., 2017), sdss (Adelman-McCarthy et al., 2007), rave (Smith et al., 2007), and Gaia-

eso (Gilmore et al., 2012),) the field of Galactic astronomy has been revolutionalised over

the past few years (Belokurov et al., 2018; Helmi et al., 2018a; Antoja et al., 2018). In

December 2020, theGaia collaboration released the early data release 3 (EDR3) catalogue,

which on average halves the proper motion uncertainties of DR2. Future releases promise

to continue these trends, driving the field forward into an era of precision Galactic science.
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Figure 1.6
A model of the Galactic potential fit to the stellar velocity curve, from Cautun et al.
(2020). The points and error bars show observational constraints. The red line
shows the velocity curve of the fitted Galactic mass distribution.
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1.3.2 Galactic Potential and Dark Matter Halo

Whilst observations can tell us an object’s position and instantaneous velocity, it is the

galactic potential that allows us to put this information into a practical dynamical context.

A galaxy’s gravitational potential is defined by its mass profile, which is itself the sum of

its constituent components. In the outer regions, the potential is dominated by the DM

halo. In the inner regions however, the baryonic components cannot be neglected, with the

gravitational force of baryon and dark matter approximately even at the solar radius.

The Galactic potential can be inferred the study of the kinematics of various dynamical

tracers. The central regions contain numerous visible tracers and constraints such as the

circular velocity curve (Eilers et al., 2019), local escape velocity (Deason et al., 2019a),

and stellar streams (Sanderson et al., 2015; Reino et al., 2020). To these, various works

have fit multi-component models, with individual mass distributions for the bulge, stellar

and gas discs, and the DM halo (McMillan, 2011; Bovy, 2015; McMillan, 2017; Cautun

et al., 2020). However, models fit to the inner regions of the MW have limited ability to

infer the total mass or outer potential of our Galaxy, as most of the DM halo’s mass is

beyond these tracers.

The total mass of the MW is arguably the single most important quantity describing our

Galaxy; dictating the galactic potential and placing the MW into cosmological context

within the general galaxy population. Before Gaia DR2, the MW mass was commonly

quoted to a factor of 2, with most "200 mass estimates ranging from 0.5 to 2.5 × 1012"�.

This considerable uncertainty is arguably the dominant error in the Galactic potential and

many other applications, such as constraining the viability of alternative warm DMmodels

(Newton et al., 2018). To infer the total mass with accuracy, and avoid errors induced by

extrapolating models from the centre, it is necessary to use tracers from the Galaxy’s outer

regions. The natural choice is the MW dwarf galaxy population of the MW; the classical

satellites are presumed complete out to the Galaxy’s '200 with relatively small errors for

their distance. In Chapter 2, the dynamics of the classical satellites are used to constrain

the MW’s total mass.
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Figure 1.7
An overview of halo star structure in (energy, angular momentum) space from
Naidu et al. (2020). The left-hand plot shows halo stars, the right-hand plot shows
proposed structure.

As the DM halo cannot be directly observed inferring its properties is intrinsically linked to

constraining the Galactic potential. It is commonly assumed that the MW’s DM halo can

be well-modelled as an NFW density profile. In our baryon-filled Galaxy, this is a mistake

as the DM halo suffers baryonic contraction, driven by the more centrally concentrated

potential of the baryonic components. (e.g. Blumenthal et al., 1986; Duffy et al., 2010;

Schaller et al., 2016). This effect has significant consequences for the mass profile of the

MW, approximately doubling the DM density in our solar neighbourhood. Failing to take

contraction into account when fitting mass models can lead to an overestimation of the

mass of the baryon components to compensate for the lower central DM density (Cautun

et al., 2020). However, the contraction effect is hard to predict because of a dependence

on the DM halo’s internal structure and the nature of the galaxy’s baryonic components

(Gnedin et al., 2004). This effect, and the consequences for the MW’s DM halo, are the

focus of Chapter 3.
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1.3.3 Assembly History and Stellar Halo

The total mass of the stellar halo is estimated to be approximately 1 − 1.5 × 109 M�, with

around two-thirds accreted material (Deason et al., 2019b; Mackereth & Bovy, 2020). The

rest of the stars are insitu, born in the MW and somehow dynamically heated out to halo

orbits. Thus, our stellar halo is a cosmic graveyard populated with the stars and globular

clusters (GCs) of destroyed dwarf galaxies. The bulk of the stellar halo is likely to have

come from a few major mergers, which have left scars on our morphology (such as the

thick disc, Bekki & Freeman 2003). In its youth, the MWwas likely bombarded by smaller

galaxies whose remains cannot be easily identified today (Lacey & Cole, 1993; Gottlöber

et al., 2001; Fakhouri & Ma, 2009).

When a satellite enters the DM halo of the MW, it begins to experience dynamical friction.

The satellite loses energy, and its orbit falls deeper and deeper into our gravitational well.

The doomed galaxy is subjected to increasingly strong tidal stripping, first shedding its

outer DM before losing its inner stars and gas as it finally breaks apart. The nature of an

accretion event is determined by the relative mass of the merging satellite. More massive

galaxies experience greater dynamical friction, falling deeper towards the Galactic centre,

and can experience a radialising effect of their orbit (Amorisco, 2017). The orbits of

smaller satellites take much longer to decay and can remain in our stellar halo over long

time periods.

Unravelling this galactic debris to infer the assembly history of the MW is a difficult chal-

lenge as ancient mergers have long since phase mixed, effectively erasing the information

in physical space. However, in the halo, the dynamical relaxation time is sufficiently long

that the materials orbits can retain information of the accretion event (Eggen et al., 1962).

Simulation-driven studies have shown that debris from the same progenitor remain on

similar orbits, preserving structure in the space of integrals of motion (Bullock & Johnston,

2005; Gómez et al., 2010).

The stars’ stellar age and chemistry can also provide further hints of a stars origin. As a

galaxy matures, its star-forming gas becomes metal-enriched, with more massive galaxies
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enriching faster. This environment is imprinted onto the star at birth, and after accretion,

gives a signature of its progenitor. By combining dynamical and chemical clues, it is

hoped that enough information is available to allow Galactic archaeologists to reconstruct

our galaxy’s past.

This task is far more straightforward for recent accretions, such as the Sagittarius dwarf

galaxy (Ibata et al., 1994), or events that stay in a stream, such as the Helmi streams

(Helmi et al., 1999). With the explosion of recent Galactic data, such as Gaia, the field has

been able to delve deeper into our Galaxy’s past Not long after the release of Gaia DR2,

evidence for an ancient merger (Gaia-Enceladus-Sausage) was identified from an excess

of radial velocity and chemical analysis. (Belokurov et al., 2018; Helmi et al., 2018a). In

hindsight, hints of this structure have been seen before, such as the break in the power-law

describing the stellar halo’s density (Deason et al., 2011).

This discovery was followed by a smaller companion accretion event Sequoia, evidence for

which centred on the analysis of several key globular clusters (GCs) (Myeong et al., 2018b,

2019; Barba et al., 2019). More recently, the population of GCs has been used to identify

another ancient Galactic merger event, the Kraken (Kruĳssen et al., 2020). Of the accreted

material, GCs have long been recognised as sensitive probes of the accretion history of the

MW (Searle & Zinn, 1978). GCs are likely more representative of smaller accretion events

of the MW’s past (Harris et al., 2015; Amorisco, 2019), and several GCs are suspected to

be the nucleus of accreted dwarf galaxies (M54, M4, l-Centuari, NGC1851). Chapter 4

looks at the history of the MW through the chemodynamics of its globular clusters.

1.4 Galactic Dynamics

Fundamentally, galaxies are composed of matter orbiting in a gravitational potential. To

understand galaxies, it is then necessary to tame the mathematics of orbital dynamics. If

successful, valuable information can be teased out from the orbits, such as an object’s

origin and eventual fate, whether it is part of a larger structure, and if so, if that structure

is in equilibrium. For a recent review of Galactic dynamics, see Binney (2013).
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Figure 1.8
In the left panel, the radius and vertical height z of a stellar orbit in a Galactic
potential. In the right, the corresponding orbital actions found by Stäckel Fudge
technique. Credit: Vasiliev (2019).
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Often the goal of such an analysis is to find integrals of motion, constant functions of the

orbit dependant on the nature of the potential that have several practical applications. As

previously discussed, accreted material typically retains some structure in IoM space, even

after phase mixing. Furthermore, the IoM describe the individual orbits and provide a

way of dynamically modelling galactic components. By Jeans’ theorem, an equilibrium

structure can be dynamically described by a distribution of IoMs, providing the orbital

blueprints for the structure (Jeans, 1915). Given a potential, the distribution function

delivers a complete description of the density profile, velocity distributions and other

dynamics. This description forms the basis of self-consistent modelling; where the orbital

distribution describes the mass distribution, the mass creates the gravitational potential,

and the potential that dictates the orbits of the original distribution.

In a spherical potential, the energy (� = �) and the angular momentum vector (R = r × v)

are conserved. As the orbit is confined to a plane normal to L, only two constants of

motion are needed to describe the distribution; the energy and the magnitude of the angular

momentum ! = |L|. If orbital distribution is isotropic, then it can be described with just

an energy distribution. This assumption offers a far simpler description of the Galaxy’s

dynamics than axisymmetry. Far out from the centre, it is reasonable to assume spherical

symmetry (although DM halos more closely resemble ellipsoids). Chapter 2 and Chapter 3

use this approximation.

In the inner regions, galactic potentials are better approximated as axisymmetric and

oblate functions due to the influence of the stellar discs. In such a potential, the orbit

explores a rosette between fixed extremums whilst the energy and z components of angular

momentum are conserved. By numerically integrating orbits in smooth, axisymmetric

galactic potentials, it can be demonstrated (for example, by Poincare surfaces of section) that

the potential admits three IoM (and are therefore integrable) (Ollongren, 1962). However,

finding the third integral of motion is challenging and only calculable for a few analytic

potentials.

Arguably the best IoM for galactic dynamics are the action integrals J. Formally, for

any integrable potential, there exists a canonical transformation between the physical
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coordinates (x, v) and the action-angle coordinates (J, \) (Arnold, 1978). The actions

J succinctly describe the orbit, and the angles \ describe the phase of the orbit whilst

increasing linearly in time with a constant frequency. Together these coordinates can

be understood as describing a higher dimensional torus. One significant advantage that

the actions have over other IoM is that they are adiabatic invariants and thus essentially

unchanged by sufficiently ‘slow’ (defined with respect to the orbital period) changes in the

potential (Binney & Tremaine, 2008).

While theoretically attractive, historically, actions have been unfeasible to calculate in

realistic galaxy potentials. However, with recent analytical and numerical breakthroughs,

such as the ‘Stäckel Fudge’, this has changed. The Stäckel potentials are a family of

separable, ellipsoidal potentials with known analytic expressions for actions. This Fudge

works by assuming the Galactic potential is well modelled locally as a Stäckel, allowing

fast computation of the actions, but does have inherent errors due to the approximation

(Binney, 2012; Sanders & Binney, 2015b). Alternatively, methods based on torus mapping

from toy potentials can compute actions to arbitrary accuracy (for non-resonant orbits), but

these methods are substantially more computationally expensive (McGill & Binney, 1990;

Sanders & Binney, 2015a). For a recent review of the numerical calculation of actions,

see Sanders & Binney (2016).

As a result of these technical advances, and the usability of dynamical packages that have

implemented these schemes, such as galpy (Bovy, 2015) or agama (Vasiliev, 2019), the

action-angle formalism has grown in popularity over the past decade. Actions (and orbital

frequencies) are now commonly used to find structure in observational data-sets and as

the base of dynamical models (Myeong et al., 2018a; Fattahi et al., 2019; Piffl et al., 2015).

This formalism is used in Chapter 3 to dynamically model the contraction DM haloes and

in Chapter 4 to identify accretion groups of globular clusters.
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1.4.1 Dynamics within Simulated Galaxies

It is often desirable to model the orbital dynamics within the simulated haloes of N-

body simulations. Typically, dynamical methods need a smooth, symmetric potential or

equivalently density profile, for which the N-body potential evaluation is unsuitable. There

are several methods to derive the required density profile (given the particles positions).

One approach is averaging the particles over spherical shells or axisymmetric bins. This

can then be fit to by analytic profiles, such as an NFW. In modern dynamical packages, such

as agama and galpy, the density profiles and potentials are expressed in basis expansions.

These expansions that allow fast evaluations and conversions between density and the

gravitational potential, while describing the profiles accurately

Not all galactic potentials are suitable to model this way, as halos frequently undergo

mergers and other violent transient events. After such an event, the halo then takes time

to relax back to pseudo-equilibrium. To quantify this, Neto et al. (2007) designed criteria

to classify if the haloes are relaxed. A halo is deemed to be relaxed if it meets all of the

following criteria:

(i) The total mass of substructure within '200 is less than 10 per cent of the total halo

mass, "200.

(ii) The distance between the centre of mass and the centre of the potential of the halo

is less than 0.07'200.

(iii) The virial ratio 2)/|* | < 1.35, where ) is the total kinetic energy and * the

gravitational potential energy of DM particles within '200.

Of the 30 level 4 auriga haloes, 13 are unrelaxed at present-day based on these criteria.

1.5 Thesis Goals and Outline

This thesis aims to further our understanding of the MW’s DM halo and accretion history

through a combination of observations, simulations and dynamical analysis. The following
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work is comprised of 3 science chapters.

Chapter 2: The Mass of the Milky Way from Satellite Dynamics

This chapter develops a method to infer the mass of a host galaxy, by comparing the

dynamics of its satellite galaxy population to a sample from the eagle simulations. To

demonstrate the accuracy of the method, it is first tested on the MW-like galaxies of

the auriga simulation suite. The method is then applied to the MW, using ten classical

satellites.

Chapter 3: The orbital phase space of contracted dark matter halos

This chapter models the baryonic contraction of DM halos described by a distribution of

actions. This distribution is effectively preserved under adiabatic contraction, allowing

DM haloes to be self-consistently contracted to any given baryon profile with the use of an

iterative algorithm. This method is first tested on auriga before it is then used to model

the MW’s contracted DM halo so as to predict the total mass profile and the dynamics.

Chapter 4: The chemo-dynamical groups of the Milky Way’s globular clusters

This chapter models the chemo-dynamical groups of a galaxy’s GC population, considering

the insitu and individual accretion groups. Thismethod is first tested on themock catalogues

made from the auriga simulations, and then applied to the MW. Once the groups of GCs

have been identified, the properties of the MW halo progenitors can be derived.

Chapter 5: Conclusions

This chapter summarises the work of the thesis and outlines areas of future work.



CHAPTER 2
The Mass of the Milky Way from Satellite Dy-

namics

2.1 Introduction

There have been many attempts to infer directly the MW mass through a variety of

methods. The total MW mass is dominated by its dark matter (DM) halo, which cannot be

observed directly. Instead, its properties must be inferred from the properties of luminous

populations, such as the luminosity function of MW satellites (mostly the Large and Small

Magellanic Clouds, e.g. Busha et al., 2011a; González et al., 2013; Cautun et al., 2014) and

the kinematics of various dynamical tracers of the Galactic halo. The dynamics of halo

tracers are mostly determined by the gravitational potential of the MW halo, and provide a

key indirect probe of the total halo mass. Examples of halo tracers used for this purpose are

satellite galaxies (e.g. Wilkinson & Evans, 1999; Watkins et al., 2010), globular clusters

(e.g. Eadie & Harris, 2016; Binney &Wong, 2017; Sohn et al., 2018; Watkins et al., 2019),

halo stars (e.g. Xue et al., 2008; Deason et al., 2012; Kafle et al., 2012, 2014), high velocity

stars (e.g. Smith et al., 2007; Piffl et al., 2014a; Fragione & Loeb, 2017; Rossi et al., 2017;

Monari et al., 2018) and stellar streams (e.g. Koposov et al., 2010; Newberg et al., 2010;
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Gibbons et al., 2014; Küpper et al., 2015; Bowden et al., 2015).

There are a variety of methods for inferring the Galactic halo mass using dynamical

tracers. A common approach is to model the tracers as distributions in equilibrium whose

parameters are determined by fitting the model to observational data (e.g. Evans et al.,

2003; Han et al., 2016). Advances in the calculation of action-angle coordinates (e.g.

Vasiliev, 2019) have led to a new generation of analytical galaxy modelling, centred around

distribution functions (DFs) in action-angle space. Examples include modelling the MW

population of globular clusters (e.g. Posti & Helmi, 2019) or individual DFs of components

such as the thick and thin disc, bulge, stellar halo and DM halo (Cole & Binney, 2017). The

recent availability of large cosmological simulation has enabled a new class of methods

based on comparing the observed properties of MW satellites to those of substructures in

cosmological simulations (e.g. Busha et al., 2011a; Patel et al., 2017).

Although over the past decades a large amount of effort has been dedicated to inferring the

Galactic halo mass, its value remains uncertain to within a factor of two, with most mass

estimates ranging from 0.5 to 2.5 × 1012"� (e.g. Wang et al., 2015, and our Fig. 2.7).

While many studies claim uncertainties smaller than this range, the analytical models upon

which they rely require several assumptions such as dynamical equilibrium and a given

shape of the density or the velocity anisotropy profiles. These assumptions can lead to

additional systematic errors, which are difficult to quantify but can be the dominant source

of error (e.g. see Yencho et al., 2006; Wang et al., 2015, 2018). This is especially true for

the MW halo whose dynamics are likely to be affected by the presence of a very massive

satellite, the Large Magellanic Cloud (Gómez et al., 2015; Peñarrubia et al., 2016; Shao

et al., 2018a). Furthermore, most methods typically estimate the mass within the inner tens

of kiloparsecs, since this is the region where most tracers (such as halo stars and globular

clusters) reside, necessitating an extrapolation to the virial radius. This extrapolation

requires additional assumptions about the radial density profile of the MW and can lead to

further systematic uncertainties.

Large-volume high-resolution cosmological simulations offer a unique test-bed for analyt-

ical mass determination methods (e.g. Han et al., 2016; Peñarrubia & Fattahi, 2017; Wang
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et al., 2017) and, importantly, enable new methods for inferring the Galactic halo mass

with a minimal set of assumptions. The simulations have the advantage of self-consistently

capturing the complexities of halo and galaxy formation, as well as the effects of halo-to-

halo variation. However, with a few exceptions, the limited mass resolution of current

simulations means that they can resolve satellite galaxies but not halo stars or globular

clusters (although see e.g. Pfeffer et al., 2018; Grand et al., 2018). This is not a major

limitation since satellite galaxies, due to their radially extended spatial distribution, are one

of the best probes of the outer MW halo. This is especially true now that the Gaia DR2

release has provided a large sample of MW satellites with full 6D phase space information

(Helmi et al., 2018b; Fritz et al., 2018; Simon, 2018).

Galactic halo mass estimates that rely on cosmological simulations are relatively recent.

Busha et al. (2011b) pioneered the approach of inferring halo properties by finding the best

match between the MW satellites and satellites of simulated haloes. The MWmass is then

determined by weighting the host haloes according to the quality of the satellite match, a

technique known as importance sampling. Busha et al. used the distance, velocity and

size of the Large and Small Magellanic Clouds (hereafter LMC and SMC) to constrain the

MW mass. The distance and velocity of satellites can vary rapidly, especially when close

to the pericentre of their orbit, so very large simulations are needed in order to find enough

counterparts to the MW system.

Patel et al. (2017) pointed out that approximately conserved quantities, such as angular

momentum, are better for identifying satellite analogues in simulations. This makes it

easier to find MW counterparts; applying the criterion to a larger number of satellites

results in a more precise mass determination (Patel et al., 2018). A further advance was

achieved by Li et al. (2017) who showed that, when scaled appropriately, the DF of satellite

energy and angular momentum becomes independent of halo mass. This scaling allows

for a more efficient use of simulation data, since any halo can be rescaled to a different

mass, and thus a better sampling of halo formation histories and halo-to-halo variation can

be achieved. This approach represents a major improvement over importance sampling

methods, in which the statistically relevant systems are those in a small mass range.
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In this Chapter we improve and extend the Li et al. (2017) mass determination method.

We start by constructing the phase-space distribution of satellite galaxies using a very

large sample of host haloes taken from the eagle (Evolution and Assembly of GaLaxies

and their Environments) galaxy formation simulation (Crain et al., 2015; Schaye et al.,

2015). We then describe and calibrate three mass inference methods based on the satellite

distributions of: i) angular momentum only, ii) energy only, and iii) a combination of both

angular momentum and energy. We test these methods by applying them to an independent

set of simulations, taken from the auriga project (Grand et al., 2017); this is a very

stringent test because of the much higher resolution and rather different galaxy formation

model implemented in auriga compared to eagle. Finally, we apply our methods to the

latest observations of the classical satellites to determine the MW halo mass; we are able

to estimate this mass with an uncertainty of only 20%.

The structure of the Chapter is as follows. Section 2.2 describes the construction of the

phase-space DFs using the eagle data. Section 2.3 describes our mass inference methods,

their calibration and validation with tests on mock systems. In Section 2.4, we apply

this method to the observed MW system and discuss our results. Finally, Section 2.5

summarises and concludes the Chapter.

2.2 Construction of the satellite distribution

We now describe how to obtain a phase space distribution of satellites that, when scaled

appropriately, is independent of host halo mass. We then introduce the MW observations,

and the simulation data that we use for calculating the phase-space distribution function

of satellite galaxies.

2.2.1 Theoretical background

We are interested in the energy and angular momentum distribution of Galactic satellites.

This can be calculated starting from the observed distance, A B, tangential velocity, EBC , and
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speed, EB, of satellite B, which we use to define the vector:

xB =
(
EB, EBt , A

B
)
. (2.2.1)

The specific energy, � , and specific angular momentum, !, of a satellite are given by:

� =
1
2
|v|2 +Q (A)

! = |r × v | = AEt,
(2.2.2)

where Q(A) is the gravitational potential at the position of the satellite. This cannot be

measured directly in observations, and to calculate it we need to assume a mass profile

for the host halo. Here, we assume that the host density profile is well approximated by

a spherically symmetric Navarro, Frenk and White profile (hereafter NFW; Navarro et al.

1996, 1997), whose gravitational potential is given by:

QNFW (A) = −
�"200
A

ln
(
1 + � A

'200

)
ln (1 + �) − �

�+1
, (2.2.3)

where � is the concentration of the halo and "200 and '200 denotes the halo mass and

radius, respectively. The mass, "200, corresponds to the mass enclosed within a sphere of

average density 200 times the critical density.

The NFW profile provides a good description of the radial density profile of relaxed haloes

in DM-only simulations. The addition of baryons leads to a contraction of the inner region

of haloes, and thus to a systematic departure from an NFW profile (e.g. Gnedin et al.,

2004). However, at large enough distances (e.g. A & 20 kpc for a halo mass of 1012 M�)

the NFW profile still provides a very good description of the mass distribution even in

galaxy formation simulations (e.g. Schaller et al., 2015; Zhu et al., 2016). In this work,

we consider only satellites relatively far from the halo centre, where the NFW function

represents a good approximation of the mass profile.

DM haloes have several self-similar properties, such as their density profiles (e.g. Navarro

et al., 1996, 1997), the substructure mass function (e.g. Wang et al., 2012; Cautun et al.,

2014) and the radial number density of subhaloes (Springel et al., 2008; Hellwing et al.,

2016). Li et al. (2017) showed that the same self-similar behaviour also holds for the
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energy and angular momentum distribution functions of subhaloes. This implies that,

when scaled accordingly, satellites around hosts of different mass follow the same energy

and angular momentum distribution. The same self-similar behaviour also holds to a good

approximation in the eagle hydrodynamic simulation (see Appendix 2.6.2).

For a self-similar halo density profile, the satellites’ positions and velocities scale with

"
1/3
200 (Li et al., 2017). A given host halo and its associated satellite system, can therefore

be scaled to a different host halo mass, "Scale
200 , as:

(
A′, E′, E′t

)
=

(
"Scale

200
"200

) 1
3

(A, E, Et) . (2.2.4)

This implies that the energy and angular momentum of satellites also scale with halo mass

through the relation �, ! ∝ "2/3
200 . Thus, we can choose characteristic �0 and !0 values

for each halo mass and use them to rescale the � and ! values of each satellite to obtain

mass independent quantities. For each halo, we define the scaled specific energy, �̃ , and

scaled specific angular momentum, !̃, as:(
�̃ , !̃

)
=

(
�

�0
,
!

!0

)
, (2.2.5)

where the characteristic �0 and !0 values correspond to the energy and angular momentum

of a circular orbit at '200 and are given by:

�0 =
�"200
'200

!0 =
√
�"200'200.

(2.2.6)

This scaling relation preserves the relaxation state, concentration and formation history of

the halo, giving scaled properties that are independent of host mass (see Appendix 2.6.2).

2.2.2 Observational data for the MW satellites

We aim to estimate the MW halo mass using the classical satellites since those have the best

proper motion measurements. The method we employ is flexible enough to incorporate the

ultrafaint dwarfs; however, the eagle simulation, which we use for calibration, does not



2.2. Construction of the satellite distribution 32

Table 2.1
Properties of the classical Galactic satellites used in this work. The last two columns
give the calculated energy and angular momentum values for each satellite. The
energy has been calculated using an NFW profile with a concentration of 8, for
a mass, "MW

200 = 1.17 × 1012"�, which corresponds to our best MW-halo mass
estimate. The distance is with respect to the Galactic Centre. The specific orbital
angular momentum, !, and specific energy, � , of the satellites are expressed in
terms of the angular momentum, !0; MW, and energy, �0; MW, of a circular orbit
at the virial radius, '200. For the mass and concentration assumed here, we have
!0; MW = 3.34 × 104 kpc km s−1 and �0; MW = 2.28 × 104km2 s−2. The errors give
the 68% confidence interval based on Monte Carlo sampling of the observational
errors (see text for details).

Satellite Distance [kpc] !/!0; MW �/�0; MW

LMC 51 ± 2 0.46+0.05
−0.05 −1.33+0.32

−0.31
SMC 64 ± 4 0.46+0.08

−0.08 −1.84+0.42
−0.37

Draco 76 ± 6 0.30+0.03
−0.03 −2.40+0.10

−0.11
Ursa Minor 76 ± 6 0.32+0.02

−0.01 −2.39+0.05
−0.05

Sculptor 86 ± 6 0.48+0.03
−0.03 −1.89+0.07

−0.07
Sextans 86 ± 4 0.67+0.06

−0.05 −1.21+0.17
−0.16

Carina 105 ± 6 0.55+0.08
−0.08 −1.86+0.19

−0.19
Fornax 147 ± 12 0.70+0.21

−0.19 −1.52+0.33
−0.30

Leo II 233 ± 14 0.96+0.30
−0.28 −1.20+0.29

−0.21
Leo I 254 ± 15 0.82+0.28

−0.26 −0.67+0.21
−0.15

resolve the ultrafaint satellites. Furthermore, we discard any satellites closer than 40 kpc

(see section 2.2.3), so we exclude the Sagittarius dwarf from our observational sample.

Sagittarius is currently at a distance of 26 kpc, undergoing strong tidal disruption by the

MW disc, and is therefore unsuitable as a tracer of the DM halo. This leaves 10 classical

satellites with adequate kinematical data (see Table 2.1).

We take satellite positions, distances and radial velocities from the McConnachie (2012)

compilation. We use the observed proper motions of the classical satellites derived from

the Gaia data release DR2 (Helmi et al., 2018b), apart from the most distant satellites, Leo

I and Leo II, for which we use the Hubble Space Telescope proper motions (Sohn et al.,

2013; Piatek et al., 2016) since these have smaller uncertainties.

To calculate the energy and angular momentum, we transform the satellite positions and

velocities from Heliocentric to Galactocentric coordinates using the procedure described

in Cautun et al. (2015). The transformation depends on the Sun’s position and velocity

for which we adopt: 3 = 8.29 ± 0.16 kpc for the distance of the Sun from the Galactic
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Centre; +circ = 239 ± 5 km s−1 for the circular velocity at the Sun’s position (McMillan,

2011); and (*,+,,) = (11.1 ± 0.8, 12.2 ± 0.5, 7.3 ± 0.4) km s−1 for the Sun’s motion

with respect to the local standard of rest, (Schönrich et al., 2010). When transforming

to Galactocentric coordinates we account for errors in the distance, radial velocity and

proper motion of each satellite, as well as in the Sun’s position and velocity, which we

model as normally distributed errors. To propagate the errors, we generate a set of 1000

Monte Carlo realizations of the MW system in heliocentric coordinates and transform each

realization to Galactocentric coordinates.

2.2.3 EAGLE simulation sample

We select our sample of host haloes and satellite populations from the reference run of the

eagle project (Crain et al., 2015). The large 100Mpc volume of the eagle simulation

provides a large sample of haloes, of a wide range of masses and assembly histories. Our

final sample consists of the following host haloes and satellites galaxies.

Selection criteria for hosts haloes:

(i) Halo mass, "200, in the range 1011.7 M� to 1012.5 M�;

(ii) relaxed systems, that is haloes for which the distance between the centre of mass

and the centre of potential is less than 0.07'200 and the total mass in substructures

is less than 10% (Neto et al., 2007).

Selection criteria of satellite galaxies:

(i) Distance from halo centre in the range 40 kpc < A′ < 300 kpc, where A′ =

A (1012 M�/"200)1/3 is the rescaled distance of the satellite corresponding to a

halo of mass 1012 M� (see equation 2.2.4); this results in a similar radial distribution

as the MW satellites if the MW halo had a mass of 1012 M�;
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Figure 2.1
The distribution, � (�̃ , !̃), of bound eagle satellites in terms of the scaled angular
momentum, !̃, and scaled energy, �̃ . The energy and angular momentum are scaled
according to equation (2.2.5) to obtain quantities that are independent of host halo
mass, "200. The colour gives the number density of satellites, with dark colours
corresponding to higher number densities (see colour bar). The two side panels
show the one dimensional distributions of the scaled energy �� (�̃) (right-hand
panel) and scaled angular momentum �! ( !̃) (top panel) of satellites.

(ii) the satellite is luminous, i.e it contains at least one star particle, which excludes dark

subhaloes.

This gives a sample of approximately ∼1, 200 host haloes and ∼14, 000 satellites. Our

mass scaling method allows us to choose haloes in a broad mass range. The restriction on

the radial distribution of satellite galaxies is chosen so that the model samples matches the

observed one and to ensure that the potential is dominated by DM. Further discussion as

to whether the MW satisfies the host criteria can be found in the conclusions section of

this Chapter.

In Fig. 2.1 we show the distribution of eagle satellites in scaled energy and angular

momentum space, (�̃ , !̃). For each satellite, we calculate the energy by assuming that
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the host halo is well described by an NFW profile individually fitted to each halo as

described in Schaller et al. (2015). This procedure is similar to how energy is calculated

for observational satellites, and thus allows for a proper comparison between theory and

observations. To obtain a continuous DF, we applied a 2D Gaussian smoothing with

dispersions Uf
!̃
and Uf

�̃
for the !̃ and �̃ directions, respectively. The symbols f

!̃
= 0.36

and f
�̃
= 0.52 denote the standard deviation of the !̃ and �̃ distributions, respectively.

The parameter U = 0.125 was chosen as a compromise so as to obtain a locally smooth

function without significantly changing the overall shape of the DF.

The distribution in (�̃ , !̃) space is not uniform and satellites are most likely to have values

around the peak of the DF, (�̃ , !̃) ≈ (−1.5, 0.5), which corresponds to the dark coloured

region in Fig. 2.1. The (�̃ , !̃) distribution is bounded on the lower right hand side

by circular orbits. Moving perpendicularly away from this boundary, the orbits become

increasingly radial. The �̃ distribution is bounded by the potential energy of the inner

radial cut, and the !̃ distribution is bounded by a circular orbit at the outer radial cut. In

our sample, approximately 1% of the satellites are unbound, i.e. � > 0, which is consistent

with previous studies (Boylan-Kolchin et al., 2013). However, we note that we do not

calculate the exact binding energy of each satellite, but only an approximate value under

the assumption that the host halo is spherically symmetric and well described by an NFW

profile (see eq. 2.2.3). While not shown in Fig. 2.1, we do keep unbound satellites in our

analysis and thus we make no explicit assumption that MW satellites, such as Leo I, are

bound. Instead, it is simply improbable that Leo I is unbound, and this is reflected in the

individual satellites mass estimates we present in Section 2.4.

There are several advantages to obtaining a composite DF that is averaged over many

host haloes instead of calculating individual distributions for each halo, as done by Li

et al. (2017). In eagle, the mass resolution limits the number of subhaloes that can be

identified in each system. As a result, the satellite population of each system represents a

poor sampling of their haloes unique DF. The total composite DF contains many possible

halo histories, and their multiplicity effectively serves as a prior probability. With further

knowledge of the MW’s assembly history, it would be possible to restrict the model sample
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to have similar assembly histories to the MW. This could reduce the effective halo scatter

and potentially result in a more accurate mass estimate. However, in this work we choose

not be too restrictive.

2.3 Method

We present three different methods for inferring the mass of the MW, each based on the

following satellite properties: i) orbital angular momentum, ii) orbital energy, and iii) both

angular momentum and energy. All three methods employ the same principles and steps.

We focus the discussion on the third method, which combines both ! and � , and which

should give the best mass constraints since it uses the largest amount of information. The

methods we use are based on the approach of Li et al. (2017), which we have modified to

work with a large sample of haloes and our mass independent DF, � (�̃ , !̃).

We are interested in determining the mass of a host halo starting from the observed position

and velocities of a set of #Sat satellites. Each satellite, B, has a set of observed phase-space

coordinates:

xB =
(
EB, EBt , A

B
)
{xB}B∈[0,#Sat] , (2.3.1)

consisting of the speed, E, the tangential velocity component, Et, and the distance, A , from

the host centre. These properties, combined with assumptions about the mass, "200, and

the density profile of the host, are sufficient to calculate the energy and angular momentum,{
�̃ B, !̃B

}���
"200

, of each satellite. Varying "200 gives a path in the (�̃ , !̃) plane for each

satellite. As a function of "200, !̃ scales as "−2/3
200 and so decreases asymptotically to zero

for increasing value of "200. The scaled energy, �̃ , has two terms that scale differently;

the kinetic term scales as "−2/3
200 , while the potential term scales as "1/3

200 . With increasing

"200, the potential term dominates and �̃ tends to −∞.

Fig. 2.2 illustrates the path of the Galactic satellites in the (�̃ , !̃) plane as we vary the

assumed mass of the MW halo. For example, as we increase the value of "200, the LMC

dwarf moves from the top part of the plot to the bottom-left corner. This is because both
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Figure 2.2
The path of the Galactic satellites in scaled energy – angular momentum space,
(�̃ , !̃), when varying the MW halo mass, "200. Each curve corresponds to a
different satellite (see legend). The filled symbols show the location corresponding
to the four values of "200 given in the legend. The energy has been calculated
using an NFW profile with a concentration of 8. The colour scheme is the same as
in Fig. 2.1, with darker colours corresponding to higher number densities.
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!̃ and �̃ decrease with increasing "200 values.

The trajectory of the satellites through the 2D plane depends on the satellites’ orbital phase.

The scaled angular momentum, !̃, varies as a function of "200 uniformly throughout the

orbit, but the rate of change of the scaled energy, �̃ , is dependent on the satellites’ current

radius. Nearer pericentre, the satellites have higher absolute values of kinetic and potential

energy components compared to those at larger distances. When increasing "200, the

scaled kinetic energy decreases while the absolute value of the scaled potential energy

increases, causing the total scaled energy, �̃ , to decrease rapidly and thus results in a more

vertical trajectory. The figure also illustrates that when the assumed "200 is very high, !̃

varies slowly and so the paths become nearly vertical.

Fig. 2.2 illustrates how the energy and angular momentum of satellites can be used to

determine the host halo mass. The DF in (�̃ , !̃) space is not uniform, and as the assumed

"200 of the host is varied, satellites move between regions of high and low number density

in this space. For example, the LMC falls in a high density region for"200 ≈ 1.4×1012 M�,

and in lower density regions for higher or lower masses. Thus, the LMC phase space

coordinates would prefer a MW halo mass of ≈ 1.4 × 1012 M�. In contrast, the Leo I path

is nearest to the maximum density for "200 ≈ 2.9 × 1012 M�, and suggests a higher MW

mass.

We now describe how each satellite can be used to obtain a likelihood for the MW halo

mass, and how to combine the mass estimates from various satellites. Our aim is to

determine the likelihood, ?("200 |xB), for the host mass given the observed xB properties

of satellite B.

The likelihood can be calculated from the �̃ distribution via

?("200 |xB) = �� (�̃)
m�̃

m"200

����
�̃=�̃B

, (2.3.2)

where the �� (�̃) term denotes the DF, while the partial derivative arises from the Jacobian

of the transformation from �̃ to host halo mass, "200. The same procedure can be used

to estimate the host mass using only the angular momentum by replacing �� (�̃) by the !̃
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distribution function, �! ( !̃), and by changing the �̃ derivative term to !̃, to obtain:

?("200 |xB) = �! ( !̃)
m!̃

m"200

����
!̃=!̃B

. (2.3.3)

This expression can be approximately extended to the 2 dimensional case (see Appendix

2.6.1) , where we use both (�̃ , !̃) to constrain the halo mass, via

?("200 |xB) = � (�̃ , !̃) "200
m�̃

m"200

m!̃

m"200

����
�̃=�̃B; !̃=!̃B

, (2.3.4)

where the additional "200 factor is needed to have the correct units. Note that all the

�̃ and !̃ terms in Eqs. (2.3.2)-(2.3.4) are evaluated at the point �̃ B ≡ �̃ (xB, "200) and

!̃B ≡ !̃ (xB, "200). For a detailed derivation of Eqs. (2.3.2)-(2.3.4), and the motivation for

the approximation, please see Appendix 2.6.1.

In practice, we actually determine the logarithm of the mass, log10("200), since the

resulting probability distribution function (PDF) in log space is closer to a Gaussian. We

determine the most likely host mass as the mass that maximizes the likelihood — the

Maximum Likelihood Estimator (MLE) mass, "MLE
200 . As the uncertainties, we take the

68% confidence limits corresponding to the interval between the 16 and 84 percentiles of

the mass PDF. Assuming that the satellites are independent tracers, we can combine the

estimates for individual satellites to obtain an overall estimate given a set of observations,

{xB}. The combined likelihood is given by:

? ("200 |{xB} ) =
#Sat∏
B=1
? ("200 |xB ) . (2.3.5)

The potential energy of satellites has a weak dependence on the host halo concentration,

which is an unknown quantity. We have tested that the 10 satellites used here cannot, by

themselves, place any meaningful constraints on the concentration of the MW halo. Thus,

we proceed to marginalize over the unknown concentration:

? ("200 |xs ) =
∫

? ("200 |xs, � ) ? (� |"200 ) d� , (2.3.6)

where ?(� |"200) denotes the distribution of concentrations for haloes of mass, "200,

found in the eagle simulation, which we took from Schaller et al. (2015). In practice, we
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evaluate ?("200 |x, �) using 15 evenly spaced values in the range � ∈ [5, 20]. We note

that the dependence on concentration is weak, so our results are not affected by the choice

of the distribution of concentrations (see Appendix 2.6.3).

2.3.1 Observational errors

While we have perfect knowledge of the phase space coordinates, {xB}, of eagle satellites,

in order to apply the method to the MW satellites we must consider the effects of

observational errors. To account for errors, we perform a set of 1000 Monte Carlo

realizations that sample the observational uncertainties (see Section 2.2.2 for a detailed

description of the procedure). This produces a Monte Carlo sample of allowed phase-space

coordinates for each satellite. We first determine the MW mass likelihood for each Monte

Carlo realization, and then we average the likelihood of all the Monte Carlo samples. In

the limit of a large number of Monte Carlo samples, this is equivalent to marginalizing

over the observational errors.

2.3.2 Method calibration using EAGLE

To provide a robust mass estimate of the MW halo, we now explore the accuracy of our

methods using tests on mock satellite systems. Since MLE estimates can be biased, we first

calibrate the inference methods using a large sample of eagle systems. Then, in Section

2.3.3, we validate the methods on an independent, higher resolution set of simulations

taken from the auriga project.

To calibrate the three mass determination methods we start by applying them to the eagle

simulations. We select the same eagle haloes as in Section 2.2.3, that is haloes of total

mass ∼1012 M�, and keep only those which contain at least 10 luminous satellites within

the distance range quoted in Section 2.2.3. There are ∼600 haloes satisfying the selection

criteria. We then apply each mass determination method to each eagle system to obtain

the MLEmass, "MLE
200 of that system. The results are shown in Fig. 2.3, where we compare

the MLE masses to the true total halo mass, "True
200 . The performance of each method
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Figure 2.3
The distributions of the ratio of MLE estimate, "MLE

200 , to the true halo mass "True
200 ,

from each of our three inference methods. The results were obtained by applying
each mass determination method to a sample of ∼ 600 systems from the eagle
simulation. The vertical dotted lines indicate the median of each distribution, which
represents the bias, 1, of each method. For subsequent results, we correct the mass
estimates by the bias of each method and we denote the corresponding mass by
"Esti

200 .
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may be quantified by the ratio, W = log10

(
"MLE

200 /"
True
200

)
, for each eagle system. The

median and scatter of the W distribution give the bias and typical uncertainty of the method,

respectively.

Fig. 2.3 shows that our three methods have only small biases compared to their dispersion.

The (�, !) and the E only methods have a slight bias with the median of the W distribution

being −0.01, while the method based on ! only has an bias of +0.02. A consistently biased

estimate is not a problem since it can easily be corrected to obtain an accurate result. The

bias-corrected mass estimate, "Esti
200 , is given by:

log10

(
"Esti

200

)
= log10

(
"MLE

200

)
− 1 . (2.3.7)

The dispersion of the W distributions in Fig. 2.3 reflects the true precision of the method,

fTrue. Mass estimates based only on the angular momentum have the largest dispersion,

fTrue = 0.15, while both � and (�, !) methods have the same precision, fTrue = 0.09.

Thus, most of the mass information is contained in the satellites’ orbital energy. Adding

angular momentum data hardly improves the mass estimates, indicating that ! does

not contain significant information about the host mass beyond the information already

contained in the satellites’ energy.

Another important point to consider is the confidence interval to be associated with each

mass measurement. One possibility is to take the dispersion of W (see Fig. 2.3), but this

suffers from the limitation of assigning the same error to all mass measurements. In

practice, the mass of some host haloes can be more precisely determined than the mass of

others, and the confidence limits do not need to be symmetrical around the MLE value

(e.g. see Fig. 2.4). Thus, the approach of assigning a single error to all measurements is

not optimal.

An alternative is to consider the error estimates of the Bayesian method. These should be

accurate, except for the effects of an assumption implicit in our method, that all satellites

are independent tracers. For example, satellites can fall in groups or filaments, which

might result in correlated energy and angular momentum amongst two or more satellite
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galaxies. For the brightest 10 satellites, the ones considered here, only a small fraction is

expected to have fallen in groups (e.g. Wetzel et al., 2015; Shao et al., 2018a) and, in any

case, interactions with other satellites and with the host halo and galaxy are expected to

decrease any phase-space correlations present at the time of accretion (e.g. Deason et al.,

2015; Shao et al., 2018b). Thus, we would generally expect the assumption of independent

tracers to be reasonable. We have checked how realistic the Bayesian error estimates are

and found them to be roughly the same as the uncertainties shown in Fig. 2.3. The same

will not hold true in future studies when the method will be applied to much larger numbers

of satellites (see discussion in Section 2.4.3).

2.3.3 Tests with the AURIGA simulations

In this section we test our mass inference methods by applying them to model galaxies

from the auriga project. auriga is a suite of high-resolution, hydrodynamical zoom-in

simulations of MW-like systems. We consider the 30 level 4 systems, which have dark

matter and gas mass resolution ∼30 times higher than eagle (see Grand et al. 2017 for

details). auriga makes for a perfect test suite since it has higher resolution, uses a different

hydrodynamics code and includes a different galaxy formation model than eagle. Thus,

by applying our inference methods to these completely independent simulations, we can

assess our methods’ accuracy and quantify any systematic biases that may have been

introduced by calibrating our methods on the eagle simulations.

For each auriga galaxy, we identify the brightest 10 satellites galaxies at a distance between

40 and 300 kpc from the halo centre. These objects represent our mock observational

sample of the MW-like satellite systems. We then apply the (�, !) mass determination

method to each of the 30 auriga systems.

Fig. 2.4 shows the ratio of estimated to true masses, as well as the associated uncertainties

for each auriga galaxy. We find that for 19 out of the 30 systems, or 63%, the estimated

mass agrees with the true value to the 68% confidence interval, approximately as expected

from the statistics. This performance is very good especially when taking into account
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Figure 2.4
Test of the energy – angular momentum halo mass inference method on 30 MW-
mass galaxies from the auriga galaxy formation simulation project. We show
the ratio between the estimated, "Esti

200 , and the true, "True
200 , halo masses for each

auriga system. Note that "Esti
200 includes the bias correction determined from

the eagle mock catalogues (see equation 2.3.7). The errorbars correspond to
the estimated 68% confidence limit. The auriga simulations have much higher
resolution and assume different galaxy formation models than eagle, and thus
provide a rigorous test of the mass inference method. Most mass estimates agree
with the true values within the 68% confidence limit, in very good agreement with
statistical expectations.
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Table 2.2
TheMWhalomass,"MW

200 (themass enclosedwithin a sphere of average density 200
times the critical density) estimated from each classical satellite (except Sagittarius),
and the combined overall result. The table gives mass estimates using: (i) only the
angular momentum, !; (ii) only the energy, �: and (iii) both � and !. We quote
68% confidence limits.

"MW
200 [1012"�]

Satellite only ! only � � and !
LMC 0.98+1.78

−0.51 1.23+0.65
−0.25 1.35+0.76

−0.28

SMC 0.98+1.84
−0.52 0.93+0.61

−0.31 1.00+0.68
−0.32

Draco 0.51+0.94
−0.26 0.4‘+0.39

−0.09 0.42+0.43
−0.08

Ursa Minor 0.56+1.03
−0.29 0.40+0.40

−0.09 0.42+0.43
−0.09

Sculptor 1.02+1.88
−0.52 0.74+0.66

−0.15 0.76+0.74
−0.14

Sextans 1.70+3.09
−0.87 1.35+1.01

−0.29 1.41+1.12
−0.28

Carina 1.29+2.34
−0.69 0.74+0.83

−0.24 0.69+1.02
−0.21

Fornax 1.86+3.63
−1.08 1.12+1.68

−0.52 1.10+1.78
−0.52

Leo II 3.02+5.63
−1.86 1.91+4.32

−1.01 2.04+3.17
−1.11

Leo I 2.40+4.61
−1.49 3.09+6.45

−1.16 2.88+3.43
−1.06

Combined 1.20+0.42
−0.27 1.10+0.21

−0.14 1.17+0.21
−0.15

that around a third of the auriga systems are unrelaxed (see Sec. 2.2.3 for relaxation

criteria). We have checked that the other two methods, using only ! and only � , are

similarly successful. This test demonstrates the accuracy of our method for determining

halo masses and confirms that our error estimates are realistic and robust.

2.4 Milky Way Mass Estimates

We now apply our mass estimation methods to data for the 10 MW satellites that satisfy

our selection criteria. We begin by obtaining the Galactic halo mass likelihood from

each satellite and corresponding uncertainties (calculated with the Monte Carlo sampling

technique described in Section 2.3.1). The PDFs of the MW halo mass, "200, obtained

from each satellite’s data using the (�, !) method are shown in Fig. 2.5; the best estimates

and associated 68% confidence intervals are given in Table 2.2.
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Figure 2.5
TheMW halo mass, "MW

200 , inferred from the energy and orbital angular momentum
of each classical satellite (except Sagittarius). The thick line shows the inferred
MW halo mass, "MW

200 = 1.17+0.21
−0.15 × 1012"� (68% confidence limit), obtained

by combining the 10 individual estimates. The inferred "MW
200 values and their

corresponding errors are given in Table 2.2.
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Figure 2.6
Comparison of the MW halo mass inferred using the three methods studied here.
The methods use the following satellite data: (i) only the angular momentum, !;
(ii) only the energy, � ; and (iii) both � and !. The mass estimates and their errors
are given in Table 2.2.

Individually, the satellites give a wide range of total masses for the MW. For example,

Ursa Minor and Draco favour a very low mass, "200 ≈ 1011.6 M�, which is because

both of them have very low total specific energies (see Table 2.1). At the other extreme,

Leo I has the highest total energy and favours a halo an order of magnitude more massive,

"200 ≈ 1012.5 M�. However, the mass estimate from any one satellite has a broad

distribution and does not provide a strong constraint on the MW mass. The true power of

the method comes from combining the mass likelihoods from each satellite; the combined

result is shown as a thick line in Fig 2.5. The combined estimate for the MW halo mass is

"MW
200 = 1.17+0.21

−0.15 × 1012"�.

Fig. 2.6 compares the Galactic halo mass determination using the three methods introduced

in this study. We find very good agreement amongst the three, with all of them having

a very large overlap (see Table 2.2 for the actual values and their uncertainties). Of the

three, the method based on angular momentum only is the most uncertain and, of the
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Figure 2.7
Comparison of our inferred MW halo mass with a selection of previous estimates.
The vertical line and the shaded region show our "200 estimate and its 68%
confidence limit. The remaining symbols show previous estimates (see legend),
with the horizontal lines corresponding to the quoted 68% confidence limits. The
results are grouped according to the methodology employed (see vertical axis).
We give the mass, "200, contained within '200 (the radius enclosing a mean
density equal to 200 times the critical density). Some of the previous estimates
were converted to "200 by assuming an NFW profile and the mean concentration
predicted for that mass.
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remaining two, the one based on energy only gives a slightly lower uncertainty. As we

saw in Fig. 2.3, adding ! data to � data does not produce an improvement in the mass

determination, which is what we find here too. In fact, the (�, !) method seems to have

slightly larger uncertainties than the �-only method; however, the difference is very small

and not statistically significant. We also find that the estimated uncertainties in the MW

mass determination are similar to the ones shown in Fig. 2.3, where we tested the methods

on the eagle simulations. As we will see in Figures 2.10 and 2.11, the uncertainties in the

mass are dominated by the small number of satellites, not by their proper motion errors.

It is important to consider possible systematics that may affect our mass determination.

For example, the LMC and SMC are believed to have fallen in recently as a pair (e.g.

Kallivayalil et al., 2013), and might not encode independent information about the MW

halo. We have checked that discarding the SMC from our analysis does not significantly

change the median estimate and leads only to a small increase in the uncertainty range. We

also know that the classical satellites are atypical in at least two respects: they currently

reside in a thin plane, with several orbiting preferentially within it, and they have a very

low velocity anisotropy. These two properties place the MW satellite system in the tail of

the LCDM expectations (e.g. see Pawlowski et al., 2014; Cautun et al., 2015; Cautun &

Frenk, 2017). The analysis described in Appendix 2.6.4 shows that the distribution of �

and ! values of the Galactic satellites is, in fact, consistent with LCDM predictions, with

no evidence for any tension.

2.4.1 Comparison to previous MWmass estimates

In Fig. 2.7 we compare our total MW halo mass estimate with a selection of results from

previous studies. This figure is an update of Figure 1 in Wang et al. (2015) and includes

recent estimates, especially those that use Gaia DR2 data. Some mass determination

methods, such as ours and those based on Local Group dynamics (e.g. Li et al., 2017;

Peñarrubia et al., 2016) and satellite dynamics (e.g. Watkins et al., 2010; Boylan-Kolchin

et al., 2013; Barber et al., 2014; Eadie et al., 2015), give the total mass directly, but many
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others, such as those using globular clusters (e.g. Posti & Helmi, 2019; Watkins et al.,

2019) or halo stars (e.g. Xue et al., 2008; Gnedin et al., 2010; Deason et al., 2012; Huang

et al., 2016), give the enclosed mass only within an inner region of the MW halo and

require an assumption about the MW halo mass profile for extrapolation to the total mass.

Despite the wide range of values quoted in the literature, our result is consistent within

1f with the majority of previous mass estimates. Our errors are significantly smaller than

those of most previous estimates and, most importantly, we have rigorously and extensively

tested our method on simulated galaxies to produce an accurate, unbiased mass estimate

with realistic uncertainties.

Our estimated value of ∼1012 M� for the MW halo mass has important implications

for the interpretation of the satellite population of our galaxy, which is often used as a

testbed for the LCDMmodel. For example, the “too-big-to-fail" problem (Boylan-Kolchin

et al., 2011), which refers to the number of massive, dense satellites in the MW halo, is

significantly alleviated. Indeed, Wang et al. (2012) showed that approximately 40% of

haloes with mass "halo ∼ 1012 M� in LCDM dark matter only simulations have three or

fewer subhaloes with +max > 30 km/s (the threshold used by Boylan-Kolchin et al. 2011 to

define massive failures). For the MW halo mass that we infer, the “too-big-to-fail problem”

is not a failure of LCDM.

An accurate estimate of the MW halo mass is also crucial in order to address properly

the missing satellites problem. The total number of subhaloes depends strongly on the

halo mass (doubling the halo mass, roughly doubles the number of subhaloes). Thus,

when appealling to baryonic physics solutions to this problem, such as the influence of

reionization and stellar feedback, an accurate estimate of the halo mass is a pre-requisite

for a realistic model. Moreover, when the halo mass is known, the number of subhaloes

may even inform us about these critical processes, such as when the epoch of reionization

occured (see e.g. Figure 1 in Bose et al. 2018), or indeed about the identity of the dark

matter (Kennedy et al., 2014; Lovell et al., 2014).
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Figure 2.8
The concentration of the MW halo inferred by combining our total mass estimate
with previous inner mass estimates. The solid thick curve shows the dark matter
(DM) mass fraction, "DM(< 20 kpc)/MDM

200 , contained within 20 kpc of the halo
centre as a function of concentration, �, for our best estimate of a total halo mass of
"DM

200 = 1.11 × 1012"�. The two horizontal lines correspond to the Posti & Helmi
(2019) and Watkins et al. (2019) inner mass estimates. The inferred concentrations
are shown by the two vertical lines, with the shaded regions corresponding to the
68% confidence ranges. we find � = 10.9+2.6−2.0 and � = 11.8+5.1−3.8 for the Posti &
Helmi and Watkins et al. inner mass estimates, respectively.

2.4.2 The concentration of the MW halo

Alongside mass, the other fundamental property of DM haloes is their concentration.

Besides being one of the key parameters of the NFW profile, the concentration encodes

crucial information about the halo’s formation history (e.g. Wechsler et al., 2002; Lu

et al., 2006; Ludlow et al., 2014) and, after halo mass, is the most important property

for determining how galaxies populate haloes (e.g. Matthee et al., 2017). Our MW halo

mass estimate does not depend on, nor constrain, the MW halo concentration. However,

when combined with mass estimates for the inner regions of the Galaxy, we can use our

mass estimate to infer the concentration of the MW halo. For this, we use inner mass
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The distribution of the DMmass fraction contained within 20 kpc of the halo centre,
"DM(< 20 kpc)/MDM

200 , for MW-sized galaxies in eagle and auriga. The red line
shows the distribution of systems from our eagle sample described in Section 2.3,
whose "200 is within 0.2 dex of our MW mass estimate. The blue histogram gives
the distribution of the 30 level 4 auriga systems described in Section 3.3. The
thick black line shows the MW’s DM mass fraction; calculated using our own MW
halo mass estimate, "DM

200 , and "
DM(< 20 kpc) from Posti & Helmi (2019)
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determinations based on the dynamics of the globular cluster population. This population

is much more radially concentrated than the satellite galaxy population, and there is a large

number of globular clusters with precise Gaia DR2 proper motion measurements (?). This

enabled Posti & Helmi (2019) and Watkins et al. (2019) to estimate the total mass enclosed

within ∼20 kpc from the Galactic Centre with high precision.

To determine the concentration we assume that the DM distribution follows the NFW

profile, which provides a very good fit to the DM density profiles in both DM-only and

hydrodynamic simulations. To determine the enclosed DM mass, we subtract the MW

baryonic mass, "baryons
MW , from the total mass measurements within both 20 kpc and '200.

We use the McMillan (2017) estimates: a stellar mass of 5.4 × 1010 M� and a gas mass of

1.2 × 1010 M�, which corresponds to "baryons
MW = 6.6 × 1010 M�.

Fig. 2.8 shows the fraction of DM mass enclosed within 20 kpc of the centre as a

function of the halo concentration; the solid lines and shaded regions indicate the inferred

concentrations and their 68% confidence ranges. The Posti & Helmi (2019) estimate gives

a mass ratio, "DM(< 20 kpc)/"DM
200 ≈ 0.12, which corresponds to a concentration of

� = 10.9+2.6−2.0 (68% confidence limits), where the errors were calculated by Monte Carlo

sampling of the uncertainties associated with the inner and total mass estimates. The same

analysis for the Watkins et al. (2019) inner mass estimate gives "DM(< 21.1 kpc)/"DM
200 ≈

0.20, and a concentration, � = 11.8+5.1−3.8. To include the Watkins et al. result in Fig. 2.8,

we rescaled their mass estimate to a fiducial distance of 20 kpc.

We find that the MW halo has a high concentration for its mass, with a most likely value

of � ∼ 10.9, which could suggest that the MW halo assembled early. The high MW halo

concentration is supported by other studies; for example, the best fit Galaxy model of

McMillan (2017) gives � = 16± 3. In the eagle simulations, the median concentration of

a ∼1012 M� halo is ∼8.2 and only ∼23% of haloes have a concentration higher than 10.9

which suggests that the MW halo is an outlier.

However, the presence of central baryonic components causes a contraction of the very

inner region of ∼1012 M� mass haloes, increasing the total mass in the inner region.

As a result, the inner region is not well described by an NFW profile, and the inferred
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concentration is biased high (e.g. Schaller et al., 2015). To overcome this limitation, in

Fig. 2.9 we compare the inner DM mass fraction of the MW to that of similar mass haloes

in the eagle and auriga simulations and find that the MW is typical of haloes in both

simulations. The systematic difference between the eagle and auriga distribution reflects

the stellar mass content of those objects: compared to abundance matching results, galactic

mass haloes in eagle have stellar masses that are too low, while equal mass haloes in

auriga have stellar masses that are too high.

2.4.3 Improving the mass estimate

In this section we discuss the limitations of our method and ways of improving the MW

mass estimate. There are two main sources of uncertainty: statistical, from the finite

number of satellites; and systematic, from halo-to-halo variation. The former can be

reduced by increasing the number of dynamical tracers and/or reducing observational

errors, but the latter cannot be reduced.

We begin by investigating the effect of observational errors on the MW halo mass determin-

ation. The main source of observational uncertainties are the proper motion measurements.

As such, we consider the effect of varying the errors, fB`U and fB`X , associated with the

two components of the proper motion. For the MW observations these errors vary from

satellite to satellite, from 0.005 mas/year for Sculptor to 0.039 mas/year for Leo II, with a

median of ∼0.018 mas/year. For simplicity, here we assume the same error for all satellites,

that is fB`U = f
B
`X
= f`, and study the effect of observational errors by varying f`. For

each f` value, we proceed by taking the current proper motions of each MW satellite and

resetting their errors to the target value of f`. Then, we generate a sample of Monte Carlo

realizations using the procedure described in Section 2.2.2 and apply the mass estimation

method.

Fig. 2.10 shows the MW halo mass estimate inferred from the (�, !) method as a function

of the size of the proper motion errors, f`. As we increase f`, we find, as expected, that

the uncertainty in the mass determination increases. However, the current proper motion
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Figure 2.10
The estimated MW halo mass, "MW

200 , as a function of the size of proper motion
errors, f`. Results are shown only for the inference method based on both �̃ and
!̃ values. The solid line gives the mass estimate while the shaded region shows
the 68% confidence interval. Larger values of f` result in more uncertain mass
estimates and also in a systematic bias with respect to the true mass. The red arrow
shows the median error for our sample of classical satellites.
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errors for the classical satellites are so small that they fall in the region where there is

hardly any dependence of the mass estimate on f`. Improving the current observational

errors will provide little improvement on the mass estimate.

More importantly, we also find a systematic shift in the estimated halomass, which increases

rapidly with the size of the proper motion errors. For example, for f` ≈ 0.35 mas/year,

the estimated mass is a factor of two too high. This comes about because large proper

motion errors bias the observed velocities high, thus leading to higher energy and angular

momentum values, which, in turn, lead to higher mass estimates. This is not a problem for

our current estimate since all the classical satellites have proper motions errors well below

0.1 mas/year, and thus lie in the region where the mass estimate is flat. However, were

we to include in the sample ultrafaint dwarf satellites, many of which have large proper

motion errors (e.g. Fritz et al., 2018), then we would need to account for the additional

bias introduced by the observational errors.

The MW is predicted to have approximately 125 satellites brighter than "+ = 0, of which

just over 50 have already been discovered (Newton et al., 2018). This means that, in

principle, many more satellites can be used to determine the MW halo mass, potentially

with a smaller uncertainty. Fig. 2.11 quantifies how the uncertainty in halo mass is reduced

as the number of satellite galaxies in the sample increases. Here, we consider the simplified

case where there are no observational errors and focus only on the variation arising from

the number of tracers, #Tracers.

Using the same sample of eagle main haloes as in Section 2.2.3, we determine the host

halo mass using the most massive #Tracers subhaloes. To obtain large enough tracer counts

in eagle, we relax the criteria and consider not only luminous satellites, but also dark

subhaloes. Many of these would be the hosts of the ultrafaint dwarfs, but eagle lacks

the resolution to populate them with stars. However, these dark substructures are well

resolved and their orbital properties are reliable. To estimate an average error for each

value of #Tracers, we calculate the dispersion in the distribution of log10("Esti
200 /"

True
200 ):

the logarithm of the ratio of estimated to true mass. To ensure accurate measures of the

average error, we require at least 100 systems that have #Tracers or more tracers; this limits
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Figure 2.11
The 1f uncertainty, flog10 " , with which we can determine the logarithm of the
halo mass as a function of the number of satellite galaxy tracers, #tracers, included
in the sample. We show the mean uncertainty for a large number of eagle haloes
whose mass was determined using the � and ! values of their most massive #tracers
satellites. The right-hand axis shows the percentage errors in "200 corresponding
to the flog10 " values. The blue line gives the results using the satellites of eagle
galaxies. The red line gives the results from idealised cases of independent satellite
tracers (see main text) and represents the statistical limit of our method. The two
grey lines show the best fitting curves using Eq. (2.4.1).
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our analysis to #tracers ≤ 72.

The blue line in Fig. 2.11 shows that the expected error in our mass estimate, flog10 " ,

decreases as the number of tracers increases. We would expect that above a certain number

of tracers, the mass determination does not improve any more because the error becomes

dominated by halo-to-halo variation and systematic effects such as correlations between

the kinematics of different satellites (see e.g. Wang et al., 2017, 2018).

To investigate these effects, we construct idealised systems by selecting #Tracers satellites

from our samples’ DF, � (�̃ , !̃), and then scale them to the mass of random host haloes

selected from our sample. This gives us a population of systems whose satellites are

perfectly described as being independently drawn from our distribution. As an additional

advantage, we are not limited to #Tracers ≤ 72, and can continue increasing #Tracers as

flog10 " asymptotes to zero (Fig. 2.11, red line). The difference between the errors in the

two samples is the error due to halo-to-halo scatter, fScatter. The dependence of the total

error, flog10 " , on #Tracers can be modelled as (cf. Li et al. 2017):

f2
log10 "

=
f2
Stat

#Tracers
+ f2

Scatter . (2.4.1)

The mass error for the true eagle satellite systems is best fitted by fStat = 0.29 and

fScatter = 0.03, while the error for the idealized systems of independent tracers is best

described by fStat = 0.24 and fScatter = 0.01. We note that a scatter error, fScatter = 0.03,

equates to an accuracy limit of around 5% and would represent the best mass measurement

of themethod in the limit of a very large number of tracers. For 10 satellite tracers we obtain

a ∼ 20% uncertainty, similar to our MWmass estimate, while the idealised mass estimates

give a slightly smaller uncertainty of ∼ 16%. The fits suggest that a ∼ 10% determination

of the MW mass is achievable by applying our method to around #tracers ≈ 60 tracers.

The accuracy of our halo mass measurement could be further improved by considering

the dependence of the satellite dynamics on the properties and assembly history of the

host halo. It is conceivable that by restricting the analysis to a subset of haloes that more

closely resembles the MW, such as haloes with a similar assembly history, the halo-to-

halo variation could be reduced, leading to an even more precise halo mass determination.
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However, at present, the largest benefit would accrue from increasing the number of tracers.

2.5 Conclusions

We have developed a method to determine the total mass of the Milky Way (MW) dark

matter (DM) halo by comparing the energy and angular momentum of MW satellites

with the respective distributions predicted in the eagle galaxy formation cosmological

simulations. When scaled appropriately by host halo mass, the energy and angular

momentum of the satellites become independent of the host halo mass (see Fig. 2.12).

Thus, we can use a large sample of eagle haloes, and associated satellites, in our estimate

of the MW halo mass. For this, we constructed the satellite distribution function in (�, !)

space from the simulations and carried out a maximum likelihood analysis to infer the

halo mass from the phase-space properties of the ten brightest satellite galaxies (excluding

the disrupting Sagittarius galaxy). Using mock samples from eagle we analysed the

performance of the method and quantified its statistical and systematic uncertainties.

A key test of our method was to apply it to estimate the masses of the DM haloes of 30

MW analogues simulated in the auriga project. These simulations have much higher

resolution and employ different baryonic physics models than eagle. They produce

realistic MW-like galaxies (Grand et al., 2017) and thus provide a rigorous and completely

independent external test of our method. We find that our method provides an unbiased

estimate of the total halo masses of the auriga galaxies, with a precision of ∼ 16%, in

very good agreement with the expectations from the eagle simulations.

Later studies (such as Erkal et al., 2019, 2021) now suggest that the LMC is now generally

excepted to be more massive (now around ∼ 1.5 × 1011 M�) than was believed at the time

of the original publishing of this work. The LMC is likely to have affected the dynamics

within the MW (such as Cunningham et al., 2020), and it is feasible that this will also

apply to the dynamics of the satellite population. Furthermore, this LMC mass suggests

that over 10% of the MW’s mass is within substructures, violating the selection criteria

in Sec 2.2.3. The potential effects and biases of such a large LMC on our methodology
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will be the subject of future studies, utilising constrained zoom-in simulations that contain

LMC analogues interacting with MW-like galaxies. We note that in this work, we find

that the maximum likelihood of our classical satellites is typical of our mock tests, and the

results of our methods using only angular momentum or energy are consistent with each

other. This suggests that, at the very least, the dynamics of our satellite population is not

significantly distinguishable from the likely norm.

Our main conclusions are:

• Applying our method to ten classical MW satellites gives an estimate for the total

mass of the MW halo of "MW
200 = 1.17+0.21

−0.15 × 1012"�. This result agrees well

with most previous estimates in the literature but with a rigorously tested accuracy

(∼15%) which is better than most other estimates.

• Combining our total DM halo mass estimate with recent estimates of the halo mass

within 20 kpc gives an inner DM mass fraction, "DM(< 20 kpc)/"DM
200 ≈ 0.12.

Assuming that the MW halo follows an NFW profile, we have inferred a Galactic

concentration, � = 10.9+2.6−2.0. This is higher than typical eagle haloes with masses

of 1012"�, which have a median concentration of 8.2, with only ∼23% of them

having concentrations of 10.9 or higher. The discrepancy likely reflects that an

NFW profile is not a good description of the inner region since the Galactic halo has

contracted due to the baryonic components. In fact, when comparing the inner DM

mass fraction of the MW against the eagle and auriga simulations, our galaxy is

typical of similar mass haloes.

• Our halo mass estimate can be improved by increasing the number of halo tracers

and/or reducing the observational uncertainties. We found that the observed proper

motions of the ten classical satellites are already so precise that further improvement

will make little difference to the halo mass estimate. Increasing the number of

satellites, on the other hand, for example by including the ∼50 currently known

satellites in the MW, would reduce the mass errors to ∼11%. Further improvements

would be possible by analysing all ∼125 satellites that are predicted to reside in the
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MW (Newton et al., 2018), which would result in a ∼8% mass uncertainty, a factor

of two improvement over our current estimate.

In summary, our MW halo mass estimate is precise and accurate and has been thoroughly

tested on realistic model galaxies and their satellite populations. Mass estimates that rely

on cosmological simulations are relatively new but the use of simulations enables a robust

and testable methodology. Indeed, the accuracy we are now able to achieve (∼ 15 − 20%;

see also Patel et al. 2018) is a significant step forward from the factor of two uncertainty

that has plagued MW mass estimates for years. This theoretical boost, coupled with the

exquisite 6 dimensional data that Gaia and complementary facilities are now providing,

brings us closer to what may be called the era of “precision” near-field cosmology —

when we can go beyond rough estimates of the MW halo mass and, instead, remove this

important degree of freedom when making use of the properties of the MW to inform

cosmological models and dark matter theories.

2.6 Appendix

2.6.1 Probability distributions

Here we give a short summary on how to calculate the PDF of one variable that is a

function of one or more variables with known PDFs. In our case, we want to know the

PDF of "200 given the distributions of either scaled angular momentum, scaled energy, or

both scaled angular momentum and energy.

The PDF, ?(D), of a variable D which is a function of G, is given by:

?(D) = ?(G)
����dGdD ���� , (2.6.1)

where ?(G) is the probability of variable G and where the derivative corresponds to the

Jacobian of the transformation. In our case, the variable D corresponds to the host halo

mass, "200, while G corresponds to either the scaled angular momentum, !̃, or the scaled
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energy, �̃ . Replacing these variables into Eq. (2.6.1), we obtain Eqs. (2.3.2) and (2.3.3),

that is:

?("200 |xB) = �� (�̃)
m�̃

m"200

����
�̃=�̃B

, (2.6.2)

?("200 |xB) = �! ( !̃)
m!̃

m"200

����
!̃=!̃B

. (2.6.3)

To constrain "200 using both �̃ and !̃ we can extend Eq. (2.6.1) to the two-dimensional

case. To do this, we approximate the two-dimensional expression by combining the two

one-dimensional cases. If the �̃ and !̃ variables would be independent then we could just

multiply the right-hand side terms of Eqs. (2.6.2) and (2.6.3). However, that is not the case,

so we need to take the joint probability, � (�̃ , !̃). Furthermore, we also need to obtain

the correct units, which we achieve by adding an extra "200 factor. Putting everything

together, we obtain Eq. (2.3.4), that is

?("200 |xB) = � (�̃ , !̃) "200
m�̃

m"200

m!̃

m"200

����
�̃=�̃B , !̃=!̃B

. (2.6.4)

Note that this result is not exact, but is supported by empirical numerical evidence. We

performed extensive tests of the three likelihoods, Eqs. (2.6.2)-(2.6.4), to find that they

give very robust estimates of the total mass of haloes. The later work of Li et al. (2020)

found an exact solution to a similar problem by transforming from the probability density

in energy – angular momentum space to position – velocity space (see paper for further

details).

2.6.2 Mass dependence of scaled energy and angular momentum

Here we test the host halo mass independence of the scaled energy and angular momentum

of satellites. We take all the luminous satellites in the eagle simulation and scale their

orbital energy and orbital angular momentum according to Eq. (2.2.5), that is ∝ "2/3
200 ,

where "200 is the host mass. The resulting distributions are shown in Fig. 2.12.

We find that, to a very good approximation, the distributions of �̃ and !̃ are indeed the

same over at least two orders of magnitude in host mass. There are a few small departures
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Figure 2.12
The dependence on host halo mass, "200, of the scaled energy, �̃ (top panel), and
scaled angular momentum, !̃ (bottom panel), of eagle satellites. The colour scale
shows the density of points, with darker colours corresponding to higher density
regions. The distribution is column normalised to each mass bin to allow easy
comparison. The solid lines show the median values as a function of "200, while
the dotted lines show the 16 and 84 percentiles of the distribution. The two vertical
lines delineate the mass range used in our analysis. The plots show that scaling the
energy and angular momentum by "−2/3

200 leads to quantities that are independent
of "200 to a very good approximation.
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Figure 2.13
The MW total mass estimate, "MW

200 , as a function of the assumed concentration
of the MW halo. The coloured lines show the mass estimates from individual
satellites and the black solid line shows the combined mass estimate. There is a
very weak dependence on concentration — this is especially true for the combined
mass estimate, which remains flat over a wide range of halo concentration.

from universality, especially for low halo masses. This could be a manifestation of the

limited resolution of eagle, which resolves only a small fraction of the brightest satellites

of 1011.2 M� haloes. However, this small departure from universality does not affect our

results since this work is based on hosts with masses in the range 1011.7 M� to 1012.5 M�,

which corresponds to the region between the two vertical lines in Fig. 2.12.

2.6.3 Dependence on concentration

In Fig. 2.13 we show how the MW halo concentration affects our mass estimate. Note that

in our method (described in Section 2.3) we marginalise over the concentration parameter.

The coloured lines show the mass estimates from individual satellites and the thick black
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line the combinedmass estimate as a function of the assumed halo concentration. In general,

the concentration makes little difference to our estimated masses — this is especially true

for the combined mass estimate, which remains flat over a wide range in halo concentration.

While not shown, we also find that the maximum likelihood values are largely independent

of the assumed concentration. Thus, the 10 classical satellites studied here cannot, on their

own, constrain the MW halo concentration. However, as we show in Section 2.4.2, we can

estimate the concentration of the MW halo by combining our total halo mass estimate with

determinations of the halo mass in the inner regions of the Galaxy.

2.6.4 Distribution of maximum likelihoods

The MW classical satellites have at least two atypical properties: (i) they are distributed on

a thin plane withmany of the satellites rotating within this plane, and (ii) the satellites have a

very low velocity anisotropy indicative of circularly biased orbits. These two characteristics

place the MW satellite system in the 5% and 2% tails of the LCDM predictions (Cautun

et al., 2015; Cautun & Frenk, 2017). This raises the concern that the satellites may also be

atypical in terms of their energy or angular momentum distributions. If so, this could lead

to biases or untrustworthy MW mass estimates using our method.

A straightforward way to test for this is to compare the maximum likelihood value for the

MW with the corresponding values for a large sample of LCDM haloes. This is shown

in Fig. 2.14, where we plot the distribution of maximum likelihood values for the eagle

and auriga mock satellite systems. We find very good agreement between the eagle and

auriga mocks and, more importantly, the value for the MW lies in the central region of

the LCDM expectation. This indicates that we can find a range of "200 values for the

Galactic halo for which the classical satellites have energy and angular momentum values

that are fully consistent with the LCDM predictions.



2.6. Appendix 66

6 4 2 0 2
log10(Maximum Likelihood)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

PD
F

MW

EAGLE
AURIGA

Figure 2.14
The distribution of maximum likelihood values for the mass determination method
based on the energy and angular momentum of satellites. We show results for a
sample of ∼2500 eagle systems and for the 30 auriga haloes which have a higher
resolution and different galaxy formation models than eagle. The downward
pointing arrow shows the maximum likelihood corresponding to the MW mass
determination, which is fully consistent with the eagle and auriga distributions.
This indicates that the MW is not an atypical system in terms of its satellites’ energy
and angular momentum, and thus we can trust our MW mass determination.



CHAPTER 3
The orbital phase space of contracted dark mat-

ter halos

3.1 Introduction

In ‘dark matter only’ simulations (DMO), it is well known that DM haloes are universally

well fit by the NFW profile. This conformity of halos in DMO simulations is broken when

baryonic physics are included in fully hydrodynamical simulations (hereafter ‘Hydro’).

Such simulations include many of the physical processes thought to be important in the

formation of galaxies, they thus have a much more complex and rich behaviour than their

DMO counterparts. In particular, gas cools and condenses at the halo centre, where it

forms stars. This results in DM halos that have higher central densities than a NFW profile,

and that are often referred to as having been “contracted”. The amount of DM contraction

depends on many factors including the mass of the central galaxy, its assembly history and

the orbital distribution of DM particles (e.g. Gnedin et al., 2004; Abadi et al., 2010; Duffy

et al., 2010; Schaller et al., 2016; Dutton et al., 2016; Artale et al., 2019; Barnes & White,

1984; Blumenthal et al., 1986).

DM halos cannot be observed directly, of course, but some of the properties of the MW
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halo can be inferred from observations of tracers of the gravitational potential. The latest

Gaia data release (DR2) (?) provides a remarkable database of full 6D phase-space

measurements of stars in the inner regions of the MW. Combined with other datasets,

such as SDSS (Abolfathi et al., 2018) and APOGEE (Majewski et al., 2017), the Gaia

data have been used to place tight constraints on the MW’s circular velocity curve (Eilers

et al., 2019) and local escape velocity (Deason et al., 2019a, e.g.), and thus have helped

constrain the total mass distribution of the MW. The simplest models of the MW assume

that the DM halo can be described as an NFW profile. Far from the Galactic Centre, this

is a reasonable assumption for the total mass profile (Callingham et al., 2019, hereafter,

Callingham19). However, to model the inner regions of our galaxy it is essential to include

the mass distributions of its baryonic components such as the thin and thick disks, the

bulge and the stellar halo (e.g. McMillan, 2011, 2017). Previous studies (e.g. Deason et al.,

2012; McMillan, 2017) have typically found a high halo concentration (∼ 11 − 12), which

is unusually large compared to the predictions for MW sized halos from cosmological

simulations (typically ∼ 8 in the eagle cosmological simulation; Schaller et al. 2016).

This could be a symptom of the neglect of the contraction of the DM halo and underlines

the importance of properly accounting for the changes in the DM distribution induced by

the baryonic distribution (e.g. see Cautun et al., 2020).

Several methods have been developed to predict the contracted DM halo profile in the

presence of baryons. The simplest are different versions of the adiabatic contraction

approximation which assumes that particle orbits are adiabatic invariants (Eggen et al.,

1962; Barnes & White, 1984). An early example of this approach Blumenthal et al. (1986)

effectively assumes that all particles are on circular orbits, a rather crude approximation

that leads to excessive compression of the orbits. This method was improved by Gnedin

et al. (2004, 2011), who modified it to take into account that DM particles are typically on

non-circular orbits. However, these improved versions neglect the fact that DM particles

have a distribution of orbits. Cautun et al. 2020, (hereafter, Cautun19) have studied the

contraction of DM density profiles in the eagle and auriga simulations and derived

an analytic prescription for the average halo contraction; their approach is unbiased and
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recovers the profiles of DM halos in hydro simulations with an accuracy of ∼ 10% that

reflects the halo-to-halo scatter.

While these methods are easy to apply, they neglect important information and provide

only limited understanding. To model the effects of contraction properly it is necessary to

consider the complex dynamics within the DM halo. While often viewed as static profiles,

halos are made up of particles moving on various orbits (Zhu et al., 2017) that conspire to

give a steady density profile. For a halo in equilibrium it follows from the Jeans theorem

that the distribution of the DM particles is solely dependent on integrals of motion (IoM),

with no dependence on phase. The halo can therefore be described as a collection of orbits

defined by IoM instead of particles. The natural choice for this description are the action

integrals [�8]8=1,2,3. One significant advantage that the actions have over other IoM is that

they are adiabatic invariants, and thus largely unchanged by sufficiently slow changes in

the potential (Binney & Tremaine, 2008).

The distribution function (DF) of DM particle actions, � (J), can be thought of as an

orbital blueprint of DM halos that may be use to calculate various halo properties, such

as the density and velocity anisotropy profiles. If the growth of the baryonic component

is a slow, adiabatic process, then the DM halo is described by the same � (J) as in the

absence of baryons, i.e. as in DMO simulations. Given this adiabatic assumption, the

differences between halos in DMO and Hydro simulations is induced solely by the deeper

gravitational potential of the baryons which are more centrally concentrated in the Hydro

than in the DMO simulations. While the halos are composed of DM particles on orbits

with the same J values, the deeper potential compresses the DM orbits to lower radii in

physical space, resulting in a higher central density in the Hydro simulations.

The extent to which the adiabatic assumption holds is unclear and depends on the timescale

on which the baryons cool and accumulate at the centre. If the cooling timescale is shorter

than the free-fall timescale, then the gas undergoes rapid cooling, a non-adiabatic process.

Alternatively, if the cooling timescale is much larger than the free-fall timescale, the growth

of the baryonic component is adiabatic. There is evidence from analytic arguments (White

& Frenk, 1991) and simulations (e.g. Correa et al., 2018) that the MW mass halos are
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in the slow cooling regime. Once the baryons have settled in the centre of the halo in

a quasi-hydrostatic state they dominate the central gravitational potential. Subsequent

violent events, such as gas blowouts, can change the inner mass profile rapidly over short

timescales, transferring energy to DM particles in the central region of halos. For halos that

host dwarf galaxies, this process could form cores in their DM distribution (e.g. Navarro

et al., 1996; Pontzen & Governato, 2012; Benítez-Llambay et al., 2019; Burger & Zavala,

2019).

To perform action angle modelling it is necessary to chose a specific DM action distri-

bution function, � (J). Typically and, in particular, for isolated DMO halos, the DF is

derived analytically, often assuming that the DM particle orbits have an isotropic velocity

distribution. Under the adiabatic assumption, these orbits can then be combined with a

given baryon potential to construct a contracted DM halo. This approach was tested by

Sellwood & McGaugh (2005) against N-body simulations that included a slowly grown

analytic baryonic component. By using simple action DFs, Sellwood & McGaugh found

that radially biased halos resist compression while isotropic distributions end up more

compressed (in agreement with the results of Gnedin et al. 2004). In the past decade there

have been significant technical advances in the numerical calculation of action angles and

in the overall modelling framework (Vasiliev, 2019). More complex action DFs, including

one that produces an approximate NFW density profile in isolation, were analytically

derived by Posti et al. (2015) and used in a series of papers of increasing complexity, in

which the MW is modelled with multiple baryon components (Piffl et al., 2015; Binney

& Piffl, 2015). In the most recent study, by Cole & Binney (2017), the DF of Posti et al.

was modified assuming a non-adibiatic, baryon driven upscattering of low action orbits,

generating a cored DM profile.

Action angle modelling of halos is frustrated by the lack of a standard NFW action distri-

bution; currently there is no well established � (J) model that has been rigorously tested

in cosmological simulations. The scatter in DM halo properties, such as concentration and

velocity anisotropy (Navarro et al., 2010), adds further complexity to the task of parama-

terising a general action DF of a DM halo. This scatter likely causes halos described by
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different DFs to undergo different amounts of contraction for a given baryonic profile; it is

therefore important to capture the variation with an accurate and flexible parametrisation

of the DF. An alternative approach is to use DFs that are directly measured in simulations,

especially given the recent increase in the resolution and number of zoom-in simulations

of MW mass halos (e.g. Fattahi et al., 2016; Sawala et al., 2016; Grand et al., 2017;

Garrison-Kimmel et al., 2017).

In this Chapter, we determine the distribution function, � (J), of DMhalos from the auriga

simulation suite. This allows us to infer accurate DM DFs and, at the same time, sample

the breadth of halo-to-halo scatter in cosmologically representative samples of MW-mass

halos. Each simulation volume has a DMO and a Hydro simulation. By comparing the

halos in one to their counterparts in the other, we can investigate the validity of the ansatz

that the formation of MW-like galaxies is an adiabatic process. To do so, we first discuss

how a halo’s density and velocity profiles can be inferred from the action DF, and then test if

the halo in the Hydro simulation (hereafter, Hydro halo) can be recovered by adiabatically

contracting the DF measured in the corresponding DMO simulation (hereafter, DMO

halo).

We illustrate the usefulness of modelling DM halos with an action DF by a few applications

targeted at our Galaxy. Our approach has implications beyond the mass profile since it

provides accurate predictions for the DM velocity distribution and its moments. Since we

use the observed baryonic component of theMW, these predictions are specific to our galaxy

and unmatched by conventional approaches. We illustrate this by predicting the density

and velocity distribution function (VDF) of DM particles in the Solar neighbourhood, key

inputs for direct DM detection experiments (Green, 2010, 2017). In the literature, the VDF

is usually given by the standard halo model (SHM), a isothermal DM mass distribution

with a Gaussian VDF; however, high-resolution N-body simulations indicate a somewhat

different VDF (Vogelsberger et al., 2009). In principle, there is a variety of possible DM

DFs, which, in turn, would result in a variety of VDFs at the Solar neighbourhood (e.g.

Mao et al., 2013). The sizeable sample of halo DFs that we can measure in the auriga

simulation suite allows us to characterise the dispersion in the predicted VDF at the Sun’s
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location, and thus quantify some of the uncertainties in direct DM detection experiments.

The structure of the Chapter is as follows. In Section 3.2 we introduce our sample of

halos and compare physical profiles and orbital distributions in the DMO and Hydro cases.

In Section 3.3, we construct individual orbits, investigate the effects of compression and

develop an iterative method for constructing and contracting physical halos. We apply

this to halos in our sample and study the effects of adiabatic contraction in general. In

Section 3.4 we contract our halo sample according to the MW baryon distribution and

present our main results, including predictions for the properties of the MW’s local DM

distribution. Finally, in Section 3.5 we summarise our main conclusions.

3.2 Simulated halos

In this Chapter we use a sample of halos from the auriga project, a halo. We primarily

use the level 4 resolution sample of 30 halos, which we label as Au1 to Au30. In our

analysis we treat the halos as being in near spherical equilibrium. The criteria of Neto

et al. (2007) identify 13 out of the 30 auriga halos as unrelaxed in either the Hydro or

the DMO simulations. These halos are included in our sample in order to investigate the

dependence and sensitivity of our analysis to departures from equilibrium. Typically, the

halos relax from the inside out, and the halo outskirts (approximately around and beyond

'200) are the least virialised and phase mixed regions. We have checked that most of

the relaxed auriga halos are reasonably spherical, especially in the inner regions. For

example, the DM particles within '200/2 are characterised by the moment of inertia with

minor-to-major axes ratio, 2/0, of 0.76+0.08
−0.03 in the DMO simulations and 0.87+0.03

−0.06 in the

Hydro simulations. The presence of baryons in the Hydro simulations systematically leads

to the formation of more spherical halos, as shown by earlier studies (e.g Abadi et al., 2010;

Prada et al., 2019; Zhu et al., 2016). Throughout this work we have checked that there are

no systematic trends that correlate with the degree of halo asphericity, which suggests that

our spherical dynamics treatment represents a reasonable approximation.

While not explicitly shown, we have performed the same analysis on the six auriga halos
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Figure 3.1
The concentrations, 2200 = '200/As, of the 30 auriga halos in the DMO and Hydro
simulations, obtained by fitting an NFW profile to the DM distribution in each case.
The points are green circles or red squares if the halos are relaxed or unrelaxed. The
contraction of the DM halos in the Hydro simulations increases their concentration
relative to the DMO case.

that were simulated at 8 times better mass resolution than the level 4 simulations considered.

While the baryon profiles can differ due to the dependence of subgrid physics on resolution

and due to stochastic effects, we find the same results as for the level 4 simulations. As

such, we have chosen to show the results obtained using the larger level 4 simulation

sample to better characterise the halo-to-halo variability.

3.2.1 Halo Properties

We fit NFW profiles to the spherically averaged DM density profile of our halos using least

squares fitting in log A within the range '200/100 < A < '200. We find that the NFW profile

provides a good fit to the DMO halos, especially the relaxed ones; however it provides a

poorer description of the DM distribution in the Hydro simulations (see also e.g. Schaller

et al., 2016; Cautun et al., 2020). Nonetheless, for completeness we calculate the best
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fitting NFW profile for the dark matter halos in the Hydro simulation as well. In this case,

because of the poor fits, the inferred scale radius and concentration can strongly depend

on the radial range used for the fitting. The resulting concentrations of the DMO and

Hydro halos are shown in Fig 3.1. The concentration of the Hydro halos is systematically

higher, indicating an increase in DM density in the inner regions. It can also be seen that

unrelaxed halos typically have slightly lower concentration, in agreement with previous

studies (Neto et al., 2007).

The effects of contraction may be seen in more detail by comparing the spherically averaged

profiles of a halo in the DMO and Hydro simulations. This is shown in Fig. 3.2, which

presents the shell mass, "Shell = 4cA2d, the velocity dispersion, f+ , and the velocity

anisotropy, V = 1 − f2
)
/f2

A (where fC and fA represent the tangential and radial velocity

dispersions respectively) for one of the relaxed halos, Au5. The DMO density is scaled by

1 − 5Baryon to subtract the cosmic baryon fraction, 5Baryon = SBaryon/SMatter. As expected,

the DMO halo density (top panel) is well fitted by the NFW form, with the best-fit NFW

profile shown by the red solid curve. The velocity dispersion (top-middle panel) of the

DMO halo peaks just inside the scale radius, which corresponds to the maximum of "Shell.

The density at each radius can be interpreted as a measure of the number of different orbits

at that radius, so the peak at the scale radius reflects the relatively higher number of orbits

that pass through this radius. The velocity anisotropy, VDMO (A), is nearly isotropic in the

centre and becomes more radially biased towards the outskirts, again in agreement with

previous studies (Tissera et al., 2010; Navarro et al., 2010). While all of our relaxed DMO

halos conform to the NFW form, we see significant scatter in their concentrations and

variations in their velocity dispersion and velocity anisotropy.

For the Hydro halo, we find a DM profile that is more centrally concentrated (orange line

in the top panel of Fig. 3.2). This is due to response of the halo to the baryonic distribution

(green line), which is much more centrally concentrated than in the DMO simulation

(in which, by construction, the “baryons” have the same profile as the DM, but with a

different normalisation). The baryons deepen the central potential, compressing the orbits

of the DM particles inwards and significantly increasing the DM density and total velocity
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Figure 3.2
An illustration of the density, velocity dispersion and velocity anisotropy profiles
of a DM halo (Auriga halo 5) shown for the DMO (dashed blue) and the Hydro
(solid orange) versions of the simulation. Compared to the DMO case, the Hydro
halo has a higher density in the central regions (top panel), along with an increased
velocity dispersion (second panel). The third panel shows only small differences
in the velocity anisotropy, V. The bottom panel shows the pseudo-phase-space
density, & (A) = d/f3, which we find is well fitted by a simple power law for both
DMO and Hydro halos. Also plotted is the contracted DMO halo (solid blue),
which was obtained by applying the method described in Sec. 3.3.1. This closely
reproduces the Hydro halo. The grey shaded region corresponds to A values below
the convergence radius of the simulation (Power et al., 2003).
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dispersion in the central regions. The velocity anisotropy, V, profile varies only slightly

between the DMO and Hydro halos, with the DMO halos typically having a slightly more

radially-biased velocity anisotropy between the scale radius and '200 (this is not the case

for the Au-5 halo shown in Fig. 3.2), but there is significant halo-to-halo scatter.

The bottom panel of Fig. 3.2 shows the so-called peudo-phase-space density,& (A) = d/f3.

Surprisingly, in DMO halos this quantity has been shown to closely follow a simple power

law, & ∝ A−@, with a theoretically predicted slope, @ ∼ 1.875 (Bertschinger, 1985), that is

consistent with our results, @ ∼ 1.84+0.04
−0.07. The origin of this relation remains unclear, and

whether it is a fundamental feature or a dynamical ‘fluke’ is debated in the literature (e.g.

Ludlow et al., 2010; Navarro et al., 2010; Ludlow et al., 2011; Arora & Williams, 2020).

We find that the Hydro halos also conform to this power law (in agreement with Tissera

et al. 2010), with similar scatter but with a shallower slope &Baryon ∼ 1.62+0.08
−0.08. We leave

this interesting observation for future work.

3.2.2 Orbital Phase Space

As we discussed in the introduction, we are interested in describing DM halos in terms

of their action distribution, � (J). This provides a complete description of the orbits

of particles in the halo, which can be used as the blueprint to reconstruct various halo

properties, as we shall see in the next section.

Wemodel halos as spherically symmetric distributions for which the gravitational potential,

Q (A), is related to the total density profile, d (A), by:

Q (A) = −4c�
(
1
A

∫ A

0
A′2d (A′) dA′ +

∫ ∞

A

A′d (A′) dA′
)
, (3.2.1)

where � is Newton’s gravitational constant. Spherical symmetry effectively reduces the

number of actions needed to describe each orbit to two as the third action is identically

zero and the orbit stays in a plane between its pericentre, Amin, and apocentre, Amax.

The two nonzero actions are the specific angular momentum, !, and the radial action, �A ,
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given by:

! = |r × v | = AEt

�r =
1
c

∫ Amax

Amin

EA (A) dA
(3.2.2)

Note that formally !I = �\ + �q, where �\ , �q correspond to the actions of the angles of the

spherical coordinate system. By assuming spherical symmetry, the reference frame can be

rotated onto the plane of the orbit such that one action is identically zero and the other is

!I.

An alternative IoM commonly used in dynamical modelling is the (specific) energy, � ,

defined as:

� =
1
2
|v|2 +Q (A) (3.2.3)

While convenient to calculate, � is not an adiabatic invariant. The energy distribution

function, � (�), is therefore expected to differ systematically between the DMO and the

Hydro simulations, whereas � (!) and � (�r) are expected to remain approximately the

same. Note that in this Chapter all distributions, �, are normalised to integrate to 1.

Here the distributions are found for each halo by selecting, from the centre outwards,

the same number of DM particles for each DMO and Hydro counterpart halo, contained

within '200 of the Hydro halo. In general, halos in the DMO and Hydro simulations are

well matched. However, the stochastic nature of galaxy formation, as well as the small

inherent numerical efffects, cause small differences in the distributions of DM particles.

On average, we find that ∼ 90% of the DM particles within '200 in the Hydro case are also

found within '200 in the DMO case. We have checked that differences in the halos’ orbital

distributions discussed in this study are not caused by unmatched DM particles between

the Hydro and DMO cases; distributions of matched particles differ by similar amounts.

To compare the distributions of different mass halos, the IoMs (of both the Hydro and

DMO halos) are rescaled to give values that are independent of the host halo mass (see

Zhu et al. 2016; Callingham et al. 2019). The actions, ! and �r, are normalised by the

characteristic angular momentum of a circular orbit at '200, !h =
√
�"200'200. The

energy is similarly normalised by this orbit’s energy, �h = �"200/'200.
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Figure 3.3
The distributions of angular momentum, !, radial action, �r, and energy, � , of
the DM particles in the Hydro and DMO simulations for an example relaxed halo,
Au5 (top subpanels). In general, we find small differences between the distribution
functions of the adiabatic invariant actions, � (!) and � (�r), in the DMO and
Hydro cases. The distribution of the non-adiabatic invariant energy, � (�), shows
larger differences. To check if these differences are systematic, the bottom subpanels
show the median (black solid line) and 68 percentiles (green shaded region) of the
difference between the DMO and Hydro distributions, J� = �DMO − �Hydro, for all
relaxed auriga halos. To compare different halos, the orbital values are scaled to
be independent of halo mass (for further details see the main text). The DM energy
distributions (bottom panel) are most affected by the presence of baryons, with
about 10% of the particles changing energy. These are mainly inner DM particles
shifting to lower energies in the deeper Hydro potential. The distributions of the
actions, ! and �r, experience smaller changes, 3% and 4% respectively.
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In Fig. 3.3 the distributions of !, �r and � for one example halo (Au-5) are shown in

the top subpanels. The lower subpanels show the difference between the distributions in

the DMO and Hydro cases, J� = �DMO − �Hydro, for all of the relaxed level 4 auriga

halos; the solid line is the median and the shaded region indicates the 68 percentiles of

the distribution. To estimate the difference between the various distributions, we calculate

the overall difference, J, which is effectively the fraction of DM particles whose IoM are

distributed differently between the Hydro and DMO cases. This is defined as:

JX =
1
2

∫ ���DMO(-) − �Hydro(-)
�� d-

≡ 1
2

∫
|J� (-) | d-, (3.2.4)

where - denotes the IoM under consideration, either !, �A or � . With this normalisation,

JX = 1 when the distributions are completely different.

The distributions � (!) (top panel) and � (�r) (middle panel) are similar to those found

in previous simulations (Pontzen & Governato, 2013). Between the DMO and Hydro

simulations there is a small, seemingly stochastic difference, in angular momentum

(J! ∼ 3%) at low !. The difference in �r is also small, J�A ∼ 4%, but systematic,

with a slight increase towards low �r for the DM particles in the Hydro case. The

energy distributions, � (�) (bottom panel), have distinct peaks and features unique to the

individual halo that are not present in the other IoM. These are remnants of a complex

merger history, with similar features in the counterpart halo. The energy distributions are

most affected by contraction with J� ∼ 10% as the deeper central potential of the Hydro

halo reduces the energy of the inner DM particles.

We saw that the �r and ! one-dimensional distributions are roughly conserved between

the Hydro and DMO simulations. But what about the joint two-dimensional � (�r, !)

distribution? Is it also conserved? This question is relevant since we find correlations

between �r and ! (as illustrated later in the top panel of Fig. 3.5). These correlations

vary between halos and potentially encode important information about the halo’s density

and velocity profiles. To find the answer, we calculate the differences in the � (�r, !)
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distributions between the DMO and Hydro cases; similarly to Eq. (3.2.4), the action

difference, J(�A ,!) , is defined as:

J(�A ,!) =
1
2

∫ ���DMO (�A , !) − �Hydro (�A , !)
�� d!d�A . (3.2.5)

For relaxed halos, J(�A ,!) ∼ 8 ± 1%. This is larger than the differences in the one-

dimensional distributions, but nonetheless it is still rather small indicating that the joint

distribution is roughly invariant too. The value of J(�A ,!) is used in the appendix 3.6.2

to study the extent to which differences in action distribution are related to differences

between the contracted DMO halos and their Hydro counterparts.

Fig. 3.4 shows the action distributions � (!) and � (�r) of our relaxed auriga halo sample.

While the individual action distributions have qualitatively similar form, differences in the

peak of the distributions suggest object-to-object scatter in the DFs, which could arise

from different halo formation histories. This is to be expected as NFW profiles fit the

majority of halos very well, but the concentration and V (A) profiles vary from halo to halo.

We leave the precise characterisation of these distributions and a potential concentration

parameterisation to future work. Here we investigate the effects of halo-to-halo variation

by calculating the contracted DM halo using multiple � (J) distributions.

3.3 Constructing the Halo from Particle Orbits

In the previous section we calculated the distribution of DM particle orbits as described

by their spherical actions distribution, � (�r, !). We now calculate the individual orbits

in physical space to find their contribution to the structure of the DM halo. We will use

this information in the next subsection where we construct the physical properties of the

DM halo, such as its density and velocity dispersion profiles, by summing over the orbital

distribution, � (�r, !). Instead of considering a particle as a point contribution to the

halo, we consider the physical contribution of its orbit sampled uniformly in phase, i.e.

we consider the contribution of the particle spread around its orbit in time. The radial

distribution of an orbit, � (A |�r, !), is defined as the proportion of time that orbit spends
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Figure 3.4
The distributions of angular momentum, !, and radial action, �r, of DM particles
in the DMO simulation for our sample of relaxed halos. The black solid line shows
the median of our sample and the green shaded region the 68 percentile and full
halo-to-halo scatter. To compare halos, ! and �r are scaled to be independent of
halo mass (for details see the main text).
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at radius A, normalised so that it integrates to unity. This is approximately:

� (A |�r, !) ≈
2

) |�r,!
1

EA (A) |�r,!
, (3.3.1)

where ) is the radial time period and EA is the radial velocity (see Han et al., 2016).

However, this is only an approximation and great care is needed at the endpoints where

EA −→ 0. For a more detailed derivation and further details please see Appendix 3.6.1. The

density can then be reconstructed by integrating over the distribution of these orbits:

d (A) = "DM

4cA2

∬
� (A |�r, !) � (�r, !) d�rd!, (3.3.2)

where "DM is the total mass of the DM halo.

When contracting a DMO halo to account for its baryon distribution, the cosmic baryon

fraction must be removed in order to obtain the correct DM halo mass. That is, the mass

of the DM halo in the DMO case is given by
(
1 − 5Baryon

)
times the total halo mass. When

constructing the halo, � (�r, !) must include all DM particles within (and orbits calculated

up to) 3'200 to ensure all significant contributions to the halo are included.

In practice, it is simpler first to construct orbits from a given (�, !) pair and a potential,

Q (A). The � (�̃ , !̃) distribution is derived from � (�r, !), given a potentialQ. This can

be evaluated numerically using the �r calculated from each (�, !) pair as:

� (�̃ , !̃) = � (�r, !)
d�A
d�

, (3.3.3)

where � (�r, !) is evaluated by interpolating the halo action distribution. We can now

rewrite Eqn. (3.3.2) in terms of the energy and angular momentum distribution to obtain

d (A) = "DM

4cA2

∬
� (A |�, !) � (�̃ , !̃) d�d! . (3.3.4)

To estimate the DM phase-space distribution we sample the (�, !) space using a grid of

5002 orbits. We find that this grid size is a good compromise between computational time

and the sufficiently high orbit density needed to recover a smooth halo profile. We have

experimented with different methods for defining the (�, !) grid and have selected the

one that gives accurate results for the smallest grid size. This is obtained by first choosing
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500 ! values, evenly spaced in the cumulative � (!) distribution. Then, for each ! bin,

We select 500 � values evenly spaced on the allowed phase space, that is in the interval

[�Circ (!) , 0]. By doing so, we neglect unbound particles, i.e. particles with positive total

energy, � > 0. However, there is only a small fraction of such particles (∼ 0.05%; see

Fig. 3.5) and, in practice, excluding them makes no difference.

We illustrate the transformation from (�r, !) space to (�, !) space in Fig. 3.5. The top panel

shows the distribution, � (�r, !), of the Au5 halo in the DMO simulation. The bottom two

panels show the distribution, � (�̃ , !̃), for the DMO and Hydro simulations respectively,

which have been calculated from the action DF shown in the top panel using the actual

gravitational potential measured in each of the two cases. The � (�̃ , !̃) distributions

are bounded on the lower right edge by circular orbits, which have the minimum energy

possible for a given angular momentum. Compared to the DMO case, the Hydro simulation

is characterised by more lower energy orbits, a manifestation of the deeper potential well

of the Hydro halo.

To gain a better understanding of how a given orbit, (�r, !), changes between the DMO and

Hydro potentials, we select 4 orbits with the same angular momentum, ! = 0.12!ℎ, and

increasing radial action, �r = [0, 400, 5000, 15000] kmkpc s−1. These orbits are shown as

colour symbols in Fig. 3.5. The lower the �r of the orbit, the larger the decrease in energy

from the DMO to the Hydro potential, as can be determined from the bottom two panels

of Fig. 3.5.

The change in energy of the orbits between the DMO and Hydro potentials is accompanied

by a pronounced change in the radial range associated with a (�r, !) orbit. This is illustrated

in Fig. 3.6, which shows the fraction of time, � (A |�r, !), that a particle on orbit (�r, !)

spends at different distances from the halo centre. The figure shows the same four orbits

highlighted in Fig. 3.5. To help interpret the plot, each orbit in Fig. 3.6 is marked with a

triangle symbol, which shows the median radial position of the orbit: a particle spends

half its orbital time at farther distances than this. Orbit 1 is circular and lies at the scale

radius of the DMO halo. With increasing �r the orbits gain radial kinetic energy and

become more radial, so their median radial position occurs further out from the circular
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Figure 3.7
Flowchart of an iterative scheme to calculate a halo density profile starting from
its action distribution, � (�r, !). The method proceeds as follows: 1) using a trial
gravitational potential for the DM,QDM, calculate the radial range, � (A |�r, !), of
each orbit, (�r, !); 2) integrate over all orbits to calculate the DM density profile,
dDM; 3) use the inferred DM density to update the DM potential,QDM; and repeat
from step 1) until convergence is achieved. If required, an additional baryon
potentialQBaryon can be added in step 1) to find a contracted halo.

radius. The orbits spend most of their time at the endpoints, i.e. pericentre and especially

apocentre (note the logarithmic y-axis), while they spend the least amount of time at the

circular radius for their given angular momentum where EA is maximal.

Adding baryons deepens the potential well and the orbits are pulled inward, leading to a

compression of the DM halo. This can be seen by comparing the DMO orbits (dashed

lines) with the Hydro ones (solid lines). The more circular orbits are compressed the most,

with fractional decreases in the median radius of orbits from 0.7 for Orbit 1 to 0.9 for

the most radial Orbit 4. This is agreement with the suggestion that radial orbits ‘resist’

compression (Sellwood & McGaugh, 2005; Gnedin et al., 2004).

3.3.1 Finding a Self-consistent Halo

Our aim is to construct a DM halo in physical space, inferring the density and velocity

profiles solely from the DM action distribution, � (�r, !). In the previous Section we
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showed that given a fixed potential,Q, we can obtain the DM density profile, dDM (A), from

the action DF by calculating the radial distribution, � (A |�r, !), of individual orbits that is

then integrated over � (�r, !) to obtain the overall radial distribution of DM particles (see

Eq. 3.3.2).

To obtain the true halo density profile we need to know the total gravitational potential,

Q, of the baryonic and DM components. The challenge arises from the fact that the DM

gravitational potential needs also to be calculated from the action distribution. Here we

describe how this can be done in a self-consistent way using an iterative approach. We

first make an initial guess for the potential which, at each iteration, is updated to a value

that is ever closer to the true potential.

Our approach is illustrated in Fig. 3.7 and proceeds as follows. First a sensible trial potential,

Q0
DM, is chosen, for example, the potential of an NFW halo of average concentration for the

target halo mass. When considering the Hydro halo, we typically choose the DM potential

from the counterpart DMO halo since this achieves faster convergence. We sum the DM

and baryon∗ potentials to obtain the total potential. The DM density is then calculated

using Eqn. (3.3.2), which, in turn, is used to determine the updated DM potential. This is

used as the input potential for the next iteration step, which is repeated until convergence is

achieved. The convergence criterion is satisfied when the change in DM density between

two iterations is small enough. This is quantified in terms of

Jtotal
d =

(
log

(
100
3

))−1 '200/3∫
'200/100

��Jd (A)�� d log A , (3.3.5)

where Jd (A) is defined as the fractional difference between two density profiles,

Jd (A) = 2
d2(A) − d1(A)
d2(A) + d1(A)

. (3.3.6)

The quantity Jtotal
d characterises the integrated difference between two density profiles

∗The baryon potential is kept fixed and is an input to the method, e.g. the potential from the stellar
distribution of an auriga halo or of the MW. The method applies to DMO simulations too, in which case
the baryon potential is obtained as the cosmic baryon fraction multiplied by the total potential measured in
the simulation. The same result is obtained if instead we take a null baryon potential and assume that the
DM constitutes 100% of the mass in the DMO simulation.
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in the inner region of the halo, that is for A ∈ [ 1
100 ,

1
3 ]'200. When running the iterative

approach without a convergence criterion, we find that Jtotal
d reaches a constant small value,

Jtotal
d ∈ [0.01, 0.005]% (the exact value varies from halo to halo). The final equilibrium

state seems to be reached inside out, with the outskirts of the halo converging somewhat

more slowly than the inner parts. Based on this, we choose to stop the iterative procedure

to determine the potential when Jtotal
d < 0.02%.

We have tested the method by applying it to relaxed auriga halos in both the DMO

and Hydro simulations. For example, we measured the � (�r, !) distribution for a DMO

halo, which was then used to recover that halo’s density profile starting from an initial

potential given by an NFW halo of average concentration for its mass. When compared

with the ‘true’ DM halo profile from the simulation we find very good agreement: the

density is typically recovered to within ∼2% within '200/2 with increasing scatter of 5%

to 10% towards the outskirts of the halo. Differences mainly arise from assuming steady

state halos in which particles are uniformly spread in phase along their orbits. However,

recently accreted material and substructures do not satisfy this assumption and can lead to

differences between the density profile measured in the simulations and that predicted by

our method.

3.3.1.1 Scaling the action distribution to halos of different masses

In this section we show how to scale our results from auriga halos to halos of arbitrary

mass. We do this within the context of our method for generating a halo from a given

� (�r, !) distribution. The goal is to take the � (�r, !) distribution measured for a halo

of total mass, " initial
200 , and rescale it so that it can be used to predict the profile of a target

halo with total mass, " target
200 . For this, we exploit the fact that DM halos, at least in DMO

simulations, are universal when scaled appropriately (for more details see the discussion

in Li et al., 2017; Callingham et al., 2019). As we saw in Fig. 3.3, the action distribution

for the DMO and Hydro simulations are very similar so we expect the universality to apply

to the action distribution not only in the DMO case, but also when including a baryonic

component.
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As we are interested in matching the total mass of a target halo with a fixed given baryonic

profile, we are only free to rescale the mass of the DM halo, not that of the baryonic

component. We define the mass scaling factor, _ = " target
200; DM/"

initial
200; DM, which is the ratio

between the DM mass enclosed within '200 for the target and initial halos, respectively.

For DMO halos, we can rescale the initial halo to the target one by rescaling the positions

and velocities by _1/3, and the energy and actions by _2/3. For Hydro halos, rescaling the

position, velocities and energy using the same procedure is not a good strategy, especially

in the inner halo regions, where the universality of halos is degraded by the presence of

baryons. However, as we discussed earlier, this is not the case for the actions, which scale

as in the DMO case.

The rescaled action is given by

�′ (�r, !) ≡ � target (�r, !) =_−4/3� initial
(
�r/_2/3, !/_2/3

)
, (3.3.7)

where � target and � initial denote the action distribution in the target and original halos

respectively, and the _−4/3 multiplication factor ensures that the new distribution integrates

to unity. We then use these new actions, �′ (�r, !), as input to the method for constructing

the halo density profile described in Section 3.3.1.

The total mass, "new
200 , of the resulting rescaled halo is close to the target mass, " target

200 , but

there can be small differences of order a few percent. These are present when baryons are

included since the baryonic distribution can either contract or expand the DM distribution

and thus introduce small variations in the total mass within '200. We account for these

small differences by applying again the rescaling method, with the actions now rescaled

by a new factor, _′ = " target
200; DM/"

new
200; DM, which is typically very close to one. Using the

new actions, we calculate again the halo density profile and its total mass, "new
200 , repeating

the procedure until convergence to the target halo mass is achieved.
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Figure 3.8
The difference in radial density profiles, Jd (A), between DM halos described
by an action distribution, � (�r, !), adiabatically contracted according to a given
baryonic profile (see main text for details) and the ‘true’ DM halos in the auriga
hydrodynamical simulations. We show the results for relaxed halos only. The black
line shows the median and the dark and light green regions indicate the 68% and
95% percentiles respectively. In the top panel we compare contracted DMO halos
with their Hydro counterparts, highlighting the effects of unadibiatic differences in
the action distributions between the DMO and Hydro simulations on the DM halo
density profile. In the middle panel we contract each DMO halo in turn to every
other Hydro halo in the relaxed sample and compare the resulting density profiles,
to additionally see the effects of halo variation. In the bottom panel we contract
each Hydro halo in turn to every other Hydro halo across the relaxed sample. This
demonstrates the scatter expected when modelling an unknown contracted halo due
to halo variation.
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3.3.2 Contracting Auriga Halos

We now apply the scheme of Section 3.3.1 to model the DM halos in auriga. The action

distributions of the DM halos, � (�r, !), as found in Section 3.2.2, are contracted to a fixed

baryon potential,QBaryon (A), taken from the corresponding counterpart halo in the Hydro

simulation.

First, we study if the � (�r, !) distribution measured in the DMO simulation can be used

to predict the DM distribution in the counterpart Hydro halo. We illustrate this for the

Au5 halo in Fig. 3.2, which shows the DM density as measured for the Hydro halo (orange

line) and the contracted DMO halo (blue line). Although there is good overall agreement

between the two, the contracted halo density profile is slightly lower than the true one as

measured in the Hydro simulation. This systematic difference is consistently seen in all the

relaxed auriga halos and is examined further in the top panel of Fig. 3.8, which shows the

fractional difference in density profiles between the contracted DMO halo and the actual

Hydro DM halo. The contracted halo systematically underpredicts the density profile by

∼ 8% over the radial range, A ∈ [1/100, 1/3]'200, while outside this range the agreement

is good. This results in "200 masses for the contracted halos that are 5± 2% lower than the

true masses. This underprediction suggests a systematic, non-adiabatic, difference between

the Hydro and DMO action distributions, as we had already encountered in Fig. 3.3.

To investigate the effects of halo-to-halo variations in action distributions, we contract each

of our relaxed DMO halos in turn according to the baryonic distribution of each relaxed

Hydro halo. When doing so, we rescale the actions of the DMO halo to the total mass

of each target Hydro halo using the procedure described in Section 3.3.1.1, ensuring the

final contracted halos have the correct "200. The fractional difference between the density

profiles of the contracted and ‘true’ halos are shown in the middle panel of Fig. 3.8. The

variation in the DM halos action distributions, � (�r, !), produces a greater scatter in the

contracted density compared to when each halo is matched with its Hydro counterpart.

The scatter is largest in the inner third of the halo beyond which the scatter is noticeably

tighter before spreading out again near the outskirts of the halo. This is likely due to
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the variation in concentration, which mainly effects the inner regions of the halo, A . As.

Alongside a greater scatter, there is again an underprediction of the contracted density

profile, which is slightly reduced by fixing the mass of the contracted halos to be equal to

that of the Hydro halos.

We can overcome this systematic difference in the predicted density profile by using the

DFs measured in the Hydro halos instead of the DMO halos, as we have done until now,

as shown in the bottom panel of Fig. 3.8. The resulting contracted DM profiles are

unbiased but they have a rather large, ∼15%, halo-to-halo variation. This shows that the

small systematic differences we have seen in the actions between the DMO and Hydro

simulations (see Section 3.2.2) have measurable effects on the DM density profiles, and that

to obtain unbiased contracted DM halos we need to use the action distribution measured

in the Hydro simulations. Thus, to obtain an unbiased model of the MW halo, we need

to use Hydro derived DFs, and, because of system-to-system variations in the DF, we can

predict the MW halo density profile only to 15% accuracy.

We have studied in more detail the most important systematic differences between the

action DFs in the DMO and Hydro simulations. The tests and the corresponding results are

presented in Appendix 3.6.2. We have found that the small, systematic difference in density

profile seen in Fig. 3.8 is predominantly driven by the suppression of �r in the Hydro halos.

In the Hydro simulations, some mechanism has caused the DM to lose radial energy in

an unadibiatic way. If the systematic decrease of radial action in the Hydro halos was

driven by baryons through either feedback or numerical baryon-DMO particle scattering

effects we would perhaps expect to see the strongest effects at the centre of the halo, where

the baryon density is highest. However, we see no evidence of a radially varying effect,

with the �r suppression being, on average, approximately the same at all radial distances

from the halo centre and at all angular momentum. Furthermore, the feedback driven

cores found in some simulations of dwarf galaxies are formed by increasing the energy

of the DM particles, not by reducing it. We leave a more thorough investigation of these

non-adiabatic effects to future work.
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3.3.3 Local DM Properties in Auriga

As we discussed in the Introduction, a strength of the halo contraction method presented

here is that it can be used to predict all DM halo properties, including the velocity

distribution. This is in contrast to most other methods (e.g. Blumenthal et al., 1986;

Gnedin et al., 2004; Cautun et al., 2020), which apply only to the halo density profile. In

this section we study how the contraction method can predict dynamical properties of the

DM halo, in particular the DM velocity distribution in the Solar neighbourhood, which

is a crucial input into DM direct detection experiments. In preparation for modelling the

MW in Section 3.4, we first study the velocity distribution function (VDF) of the relaxed

DM auriga halos. To validate our methodology, we compare the contracted DMO halos

with their Hydro counterparts. Across our sample of different size halos, we define an

auriga halo’s ‘Solar radius’ as a set fraction of its '200, 0.036'200, which was obtained

by taking the following MW values: A� = 8 kpc and 'MW
200 ≈ 222 kpc (from Callingham19,

corresponding to "MW
200 = 1.17 × 1012"�).

We illustrate how well our contraction method recovers the DM velocity distribution in the

presence of a baryonic component by studying the Au5 halo. Compared to the DMO case,

the Hydro halo has an enhanced density and especially velocity dispersion at the Solar

radius, as may be seen in Fig. 3.2, at the radial position, A ∼ 0.04'200. The contracted

DMO halo reproduces well the Hydro halo, in particular, both the velocity dispersion as

well as the velocity anisotropy parameter, V. Thus, our contraction technique reproduces

local halo properties that are averaged over many DM particles.

In Fig. 3.9 we show that the same technique also reproduces the actual DM velocity

distribution. For this, we calculate the velocity distribution of all DM particles found

within a radial distance of ±1 kpc around the Solar radius. As expected, the DM particles

in the Hydro case are characterised by higher velocities than in the DMO case. The

small irregularities in the distribution are the result of the merger history of the halo. The

action distribution of the DMO halo can be used to predict the velocity distribution of

the contracted DMO halo. This is similar to the approach taken in Sec. 3.3.1, where we
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Figure 3.9
The velocity distributions of DM particles at the Solar neighbourhood in the auriga
Halo 5, Au5. The solid orange line shows the distribution measured in the Hydro
halo, the dashed blue line the corresponding quantity in the DMO case, and the
solid blue line in the DMO halo contracted with our method to predict the Hydro
quantities. In grey we show the predictions of the Standard Halo Model (SHM),
based on the assumption of an isotropic isothermal sphere. The top panel shows
radial velocity, EA , the middle panel tangential velocity, EC , and the bottom panel
total velocity, E. The vertical red shaded region shows velocities larger than the
escape velocity of the Hydro halo. Estimates for the Solar neighbourhood DM
density, d�, and velocity anisotropy, V� are also given (see the two tables enclosed
by a thick black line in the right-hand side of the centre and bottom panel).
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modelled the density profile. To obtain the VDF, we calculate the velocity components of

each � (A |�r, !) orbit at the solar radius, and then sum over all possible orbits, � (�r, !)

(using a similar weighting to Eqn. 3.6.6). The contracted DMO halo reproduces well

the velocity distribution of the Hydro halo, with most differences between the two being

stochastic in nature. The only large difference is seen in the radial velocity, EA , distribution

(top panel), where the contracted halo is systematically below the Hydro case for EA −→ 0.

This is due to the finite number of orbits included in the reconstruction, with none being

exactly at apocentre, pericentre or on perfectly circular orbits at this radius. This effect is

small and can be reduced by including a greater number of orbits in the reconstruction.

The most popular approach in the field is to model the VDF using the Standard Halo

Model (SHM) (e.g. Evans et al., 2019). This is based on the assumption of an isotropic

isothermal sphere, and predicts a Gaussian velocity distribution with velocity dispersion,

f = Ecirc/
√

2, which is truncated at the escape velocity, Eesc. The SHM predictions for

the DMO and Hydro simulations of Au5 are shown in Fig. 3.9 as dashed and solid grey

curves, respectively. The SHM model provides a poor description of the DMO velocity

distribution, but performs much better for the Hydro halo. However, we still find important

differences between the SHM predictions and the actual Hydro halos. In particular, the

sharp truncation of the SHM VDF at Eesc is more abrupt than in the simulations and

typically leads to an overprediction of high velocity DM particles. Moreover, the SHM

assumes isotropic orbits whereas, in this halo and throughout our sample, we find a small,

but non zero anisotropy parameter at the Solar neighbourhood, VHydro
� = 0.21. Thus, the

isotropic SHM slightly underpredicts the EA and overpredicts the EC distributions.

3.4 Application to the Milky Way

We can now apply our DM halo reconstruction method to infer the structure of the DM

halo of our own galaxy. To do this we need to know: the action DF, � (�r, !), of the MW

halo; the MW baryon distribution; and the total mass, "MW
200 . The last two quantities can be

inferred from observations (e.g. Cautun et al., 2020; Wang et al., 2020a). For the � (�r, !)
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distribution, we assume that the MW is a typical LCDM halo and that its DF is similar to

that of our relaxed auriga halos. By considering the range of different DFs for the MW,

as spanned by the auriga halos, we quantify the extent to which the unknown DM action

distribution of our Galactic DM halo affects our predictions. Finally, as we saw in the

previous section, there are small systematic differences between the distributions of actions

in the DMO and Hydro simulations of MW-mass halos. Thus, to obtain predictions that

are as accurate as possible, we use the � (�r, !) DFs measured in the Hydro simulations

of the auriga suite.

We adopt the MW baryon density profile advocated by Cautun19, which we model as a

spherically symmetric distribution. Cautun19 assumed parameterised density profiles of a

thick and thin stellar disc, a stellar bulge, a cold gas ISM and an analytically contracted

NFWDM halo. Through anMCMC fitting procedure, these baryonic and DM components

were fit to the latest MW rotation curve data derived from Gaia DR2 (Eilers et al., 2019);

the data cover the radial range 5 to 25 kpc. We also use the total mass of this model,

1.08 × 1012"�, with the final mass of our halos set through the scheme in Sec.3.3.1.1.

This total mass determination is in very good agreement with other measurements based

on Gaia DR2 (see Fig. 5 in Wang et al. 2020a), such as the ones based on escape velocity

(Deason et al., 2019a; Grand et al., 2019), globular cluster dynamics (Posti & Helmi,

2019; Watkins et al., 2019), rotation curve modelling (Cautun19) and satellite dynamics

(Callingham19).

Our inferred properties of the MW DM halo are shown in Fig. 3.10. In the top panel we

see that the median of the contracted density profile closely matches that of Cautun19,

although some differences are present. This is to be expected since the Cautun et al.

results corresponds to a DM halo that, before baryon contraction, had a concentration of

9.4 , while the 17 auriga halos studied here have a wide range of concentrations before

contraction (averaging 9.7, see Fig. 3.1). Nonetheless, the Cautun et al. result lies well

within the 68 percentile scatter of our predictions, indicating good overall agreement. Not

knowing the exact � (�r, !) distribution of the MW halo results in a ∼ 14% scatter (68

percentile range) in the predicted density profile of the contracted halo, in good agreement
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Figure 3.10
From top to bottom: the MW’s density, velocity dispersion, circular velocity, and
velocity anisotropy radial profiles predicted by our halo contraction method. The
DMhalos are contracted assuming the Cautun19MWbaryonicmodel and the action
distributions, � (�r, !), from 17 relaxed halos in the auriga Hydro simulations.
The black line shows the median prediction of our method, while the dark and light
shaded regions show the 68 and 95 percentiles arising from halo-to-halo variation
in � (�r, !). The top panel also shows the Cautun19 baryonic profile (purple) and
their best fitting DM profile (red) ; the third panel shows in yellow the Eilers et al.
(2019) +circ data and in red the Cautun19 rotation curve for their best fitting MW
model. For comparison to other observational estimates of circular velocity, we
include data points from Eadie & Jurić (2019), Watkins et al. (2019), Posti & Helmi
(2019) and Callingham et al. (2019)
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with our auriga results. Our model predicts that the DM velocity dispersion is roughly

constant at around 160 km s−1 in the inner region of our Galaxy, and then decreases rapidly

towards the halo outskirts (second panel in Fig. 3.10).

In the third panel of Fig. 3.10, we compare the rotation curve predicted by our model with

the actual estimate for the MW as determined by Eilers et al. (2019). we do not fit our

model to these data, so the good agreement with observations indicates that our model

is making sensible predictions. To compare against the data, we add the rotation curves

from both the baryons and the halo. The latter is modelled as a spherically symmetric

distribution but for the baryons we need to take into account that their distribution is highly

flattened, i.e. most stars and gas are found in a disc, and that the Eilers et al. rotation curve

is measured in the plane of this disc. In the plane of the disc, the true axisymmetric profile

gives a ∼10% greater contribution to the rotation curve than the spherical profile that we

use when modelling the contraction of the DM halo.

The distribution of rotation curves across our contracted DM halos are in good agreement

with both the Eilers et al. data and the Cautun19 best fitting model. However, we see

variation in the curves when using different action DFs. This is to be expected since the

MW represents one possible realisation of � (�r, !). It is worth stressing that the median

result is not necessarily the ‘best’ model for the MW DM halo, as the MW is unlikely to

reside in a typical LCDM halo. Instead, the point to emphasise is that we would expect

the MW to lie within the range of our halo sample, i.e. within the scatter, which it clearly

does. For the data points within 30kpc, we see good agreement with the estimates by Posti

& Helmi (2019), Watkins et al. (2019) and Eadie & Jurić (2019). Further out, we find that

the Watkins et al. (2019) measurement at 40 kpc lies just outside the 1f uncertainty of

our models, and the lower total mass of Eadie & Jurić (2019) (0.7 × 1012"�) leads to a

faster drop off towards '200. Since our total mass is similar, our circular velocity curve

matches well that of Callingham19 around '200. For a more detailed discussion see Sec 6.

of Cautun19 which presents a comparison with several other Galactic probes.

While the Eilers et al. circular velocity curve data lie comfortably within the 1f range

of our distribution of contracted halos, the individual halo curves are poor fits. This
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Table 3.1
A list of MW properties in the Solar neighbourhood inferred from our DM halo
contraction model. The third and fourth column column gives the corresponding
values from Cautun19. The velocity dispersion’s and anisotropy of these columns
are not found directly in Cautun19. Instead these values, denoted by *, are
calculated by applying the SHM and SHM++ DM models to the Cautun19 MW
mass distribution (see sections 3.3.3 and 3.4.1 for further details).

Property This work Cautun19 + SHM* Cautun19 + SHM++* Units

d� 8.5+1.6−0.6 9.2 9.2 10−3"�/pc3

0.32+0.05
−0.02 0.34+0.02

−0.02 0.34+0.02
−0.02 GeV/cm3

f+,� 155+5−6 153* 153* km/s
f+A ,� 162+9−8 153* 170* km/s
f+C ,� 151+4−5 153* 142* km/s
V� 0.14+0.06

−0.03 0 (isotropic)* 0.3* –
+Circ,� 231+8−2 230 230 km/s
+Esc,� 554+12

−10 549 549 km/s
"Total

200 1.08 1.08 1.08 1012"�

"DM
200 0.97 0.97 0.97 1012"�

"
Baryons
200 0.11 0.11 0.11 1012"�

shortcoming could be overcome by using the observations to find out which � (�r, !)

distribution best describes the MW data. This can be achieved with a MCMC approach

in which we sample different action DFs and concurrently constrain the MW baryonic

distribution (e.g. similar to the approach of Cautun19). It is important to marginalise

over the MW baryonic distributions, since these are uncertain and, as Cautun19 have

shown, there is a degeneracy between the baryon content and the DM halo structure when

modelling the MW rotation curve. This approach is beyond the scope of this Chapter and

we leave it for future work.

3.4.1 MW Local DM Distribution

Having inferred the likely structure of the MW DM halo by applying the results of Sec-

tion 3.3 based on analysis of 17 auriga galactic halos, we now investigate the implications
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Figure 3.11
The DM velocity distribution at the Solar radius, A� = 8kpc, as predicted by our
halo contraction model. The velocities are with respect to the Galactic Centre. The
radial, tangential, and total velocity distributions are shown in the top, middle and
bottom panels, respectively. The median is indicated with a solid black line and
the 68 and 95 percentiles are shown in shaded green. The blue curve illustrates the
velocity distributions given by the Standard Halo Model (SHM) and the dashed red
curve shows the ‘SHM++’ variant of Evans et al. (2019), both using +Circ,� and
+Esc,� of the Cautun19 MW mass model. We also give several DM properties at
the Solar radius (see text inserts in the panels) as predicted from our model: the
local DM density, d�; the components of the velocity dispersion, f�; the velocity
anisotropy, V�; and the escape velocity, +MW

Esc,� (whose value is also shown as the
red shaded region).
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for the key astrophysical inputs to direct DM detection experiments: the density and

velocity distribution of the DM in our own solar neighbourhood.

From the DM density profile shown in the top panel of Fig. 3.10 we find that our models

predict d� = 8.5+1.3−0.6 × 10−3"�/pc3 (equivalently d� = 0.32+0.05
−0.02/GeV/cm3). This values

are in good agreement with previous estimates (see the compilation by Read, 2014). The

somewhat large uncertainties in our estimate of d� could be significantly reduced if we

were to restrict our analysis to those DFs that best fit the MW rotation curve, or individually

fit the MW baryon distribution for each DM halo as discussed at the end of the previous

section. We find a local speed escape velocity 542+11
−9 km/s, which is consistent with the

recent Gaia DR2 measurements of Deason et al. (2019a) and Grand et al. (2019).

In Fig. 3.11 we highlight the DM velocity distributions at the Solar position predicted by

our MW models. These were derived using the method described in Section 3.3.3 where,

for each model, we sum the orbits of all DM particles to find the distribution of radial,

tangential and total velocity components. The resulting VDFs have very similar forms to

those previously discussed for the Au5 halo (see Fig. 3.9) and many of the conclusions

reached for that example apply here too. In particular, we predict a small radial bias in

the velocity anisotropy, V� = 0.14+0.06
−0.03, with the radial and tangential velocity dispersions

beingfMW
+A ,� = 162+9−8km/s andfMW

+C ,� = 151+4−5km/s. These and other values are summarised

in Table 3.1, where we also compare our results to those from the recent MW mass model

of Cautun19. In this table the velocity dispersion’s and anisotropy given for Cautun et al.

and the results of applying the SHM with the parameters inferred from the Cautun et al.

MW mass model. See Sec. 3.3.3 for further details and discussion on the SHM.

The SHM is in good overall agreement with our inferred velocity distribution, although

we find large fractional deviations in the high velocity tail of the distribution, the region to

which DM direct detection experiments are most sensitive (Bozorgnia et al., 2020). The

SHMmodel assumes an isotropic velocity distribution, at odds with the value of V� ∼ 0.14

in our model. As a result, the SHM does not perform as well when compared against the

radial and tangential velocity distribution of our model.

We also give the predictions of the SHM++ model of Evans et al. (2019) in the fourth
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column of Table 3.1 and as the red dotted line in Fig. 3.11. This is a SHM model modified

to include a secondary, highly radial distribution of DM, inspired by evidence that the MW

experienced a strongly radial major merger in the past (Belokurov et al., 2018). Alongside

a normal isothermal SHM velocity distribution, a fraction of the DM, 5S ≈ 0.2, is modelled

as a highly radial component, Vmerger ≈ 0.9, as an approximation of the contribution

from the radial merger (see Evans et al. 2019 for further details). The resulting overall

distribution has a radial anisotropy of V++� = 0.3, which is more highly anisotropic than

any of our Auriga halos. While not explicitly split into separate distributions, the action

distributions of our DM halos reflect the accumulated merger history of each halo. Our

analysis of these halos suggests that, typically, DM halos are inherently likely to have

a slightly radially biased velocity distribution in the solar neighbourhood. Modelling

individual contributions to the final DM halo as separate distributions is an interesting

possibility but is beyond the scope of this Chapter, and is left to future work.

3.5 Conclusions

We have used the auriga suite of hydrodynamical simulations of Milky Way (MW)

analogues to investigate the orbital distribution of DM particles in MW-mass halos and to

study how this distribution changes when including baryonic physics in the simulations.

We have characterised the DM halos in terms of the distribution of spherical actions:

radial action, �r, and angular momentum, !. We have studied these action DFs for all

our relaxed halos and have described how the actions can be used to (re)construct the

density and velocity distribution of the simulated DM halos. This can be achieved using

an iterative method that, starting from a fixed baryonic distribution and an initial guess

for the gravitational potential, constructs a DM halo density profile. At each step in the

iteration the potential is updated from the DM mass profile obtained in the previous step

until convergence is achieved.

The actions �r and ! are useful quantities for describing DM halos since they are conserved

during adiabatic changes (i.e. on long timescales) in the gravitational potential. Many
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galaxy formation processes, although not all, are thought to be adiabatic and this suggests

that halos in dark matter only (DMO) and Hydro simulations should have similar � (�r, !)

distribution functions. This idea motivated us to investigate if indeed the action DF is

conserved in the auriga suite between the DMO simulations and the simulations that

include galaxy formation physics. We have found good agreement between the actions in

the DMO and Hydro halos, with differences at the 5−10% level. Most of these differences

are due to statistical fluctuations; however, we also find systematic variations, with �r being

lower in the Hydro halos. This difference in radial action leads to an ∼ 8% underprediction

of the DM density profile when adiabatic contraction of a DMO halo is assumed. The �r

systematic difference is the same at all radii, suggesting that it is unlikely to be caused by

effects associated with baryonic feedback which would mainly affect the central region of

a halo.

If we know the � (�r, !) actions of a halo in a DMO simulation, we can predict the density

and velocity profile of its counterpart in the hydrodynamical simulation with a precision of

∼5% (not withstanding the systematic effects discussed above). Most of the scatter is due

to stochastic effects as well as to small deviations from the steady state assumption implicit

in our method. This object-to-object scatter is a factor of two lower than for other methods,

such as that of Cautun19. However, if we do not know the exact � (�r, !) distribution, we

recover the density profiles only with ∼15% precision, with the major limitation being the

halo-to-halo scatter in the action distributions.

We have illustrated the contraction of a DMhalo in the presence of baryons by decomposing

the halo into individual orbits of DM particles. The deeper potential in the Hydro case

leads to a contraction, i.e. an inward shift, of the orbits. For a fixed orbital angular

momentum, circular orbits contract the most while highly elliptical orbits contract the least.

The DM halo is specified by the sum of all orbits as given by the � (�r, !) distribution.

This property can be used to determine both the density and velocity distribution profiles

of a halo.

We have applied our DM halo construction method to the halo of theMW. Starting from the

� (�r, !) distribution of relaxed auriga Hydro halos, in combination with the Cautun19
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stellar and gas model of the MW and the value of the MWmass of Callingham19, we have

predicted the density and velocity distribution of our galaxy’s DM halo. This resulted in 17

models for the Galactic DM halo, which span possible DM distributions given the MW’s

baryonic component. We find good consistency between our inferred DM halo density

and that inferred by Cautun19, and between the circular velocity curve predicted by our

models and the one measured from Gaia DR2 data (Eilers et al., 2019). The consistency

with the Cautun19 results provides an independent check that their DM halo contraction

model gives a good description of the Galactic DM distribution.

A major advantage of our halo (re)construction method is that it can predict the velocity

distribution of DM particles. We have tested this aspect of our method by comparing

directly against measurements of the auriga halos and found very good agreement. In

particular, our method does better than the Standard Halo Model (SHM) at reproducing

the high tail of the velocity distribution, a key input into direct DM detection experiments.

We have applied the same analysis to the MW to predict the distribution of DM particle

velocities and their components in the solar neighbourhood. Our results are in good

agreement with the literature (e.g. Evans et al., 2019), and predict that the DM particles

have a preference for radial orbits, with V� = 0.14+0.07
−0.03, and that the SHM overpredicts

the high velocity tail of the velocity distribution. Furthermore, by using multiple action

distributions, we have characterised the halo-to-halo scatter in the velocity distribution,

which is important for understanding how robust are the constraints inferred from direct

DM detection experiments.

A potential improvement to this work would be to extend the formalism to axisymmetric

models, which provide a better description of disc galaxies such as the MW. In this case,

the DM halo is described by the 3D action distribution, � (�', !I, �I), where (', I) denote

the coordinates in the plane of the disc and perpendicular to it. (For an example of

axisymmetric modelling, see Cole & Binney (2017).) As already discussed, the inner

regions of DM halos in hydrodynamical simulations are close to spherical, much more so

than in their DMO counterparts, and within this work we have found no obvious correlation

between the shape of the DM halos and the results of our contraction method. we therefore
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expect the effects of including axisymmetry to be subdominant to the effects of halo-to-halo

scatter.

Our work leaves open an important question: which baryon processes are responsible for

the systematic difference in the action distribution between the DMO and the Hydro halos?

While such effects are small, about a few percent, they produce a measurable effect on the

density profile and velocity distribution. To overcame this systematic when modelling the

MW, we have used the � (�r, !) distribution measured directly in the Hydro simulations.

It remains to be seen if the same systematic deviations between DMO and Hydro halos are

present in other simulations and if the size of the effect varies between the various subgrid

galaxy formation models implemented in different simulations.

In this work, when making predictions specifically for the MW, we employ a range of

possible action distribution functions of a MW-mass halo as predicted by the auriga

project. However, given the observations, e.g. the MW rotation curve, some distributions

are more likely than others. This raises the question of which is the best fitting � (�r, !)

distribution for the MW, which we leave for future work. To address this will require

modelling the still uncertain MW baryon mass distribution self-consistently alongside the

DM distribution, since this is degenerate when predicting the inner (. 50 kpc) rotation

curve (for details see Cautun19). Such a study is very worthwhile and timely, especially

given the wealth of Galactic data available in the current and future Gaia data releases.

The method we have presented here provides a very comprehensive tool for modelling DM

halos in the presence of baryons and, furthermore, it can easily account for cosmological

halo-to-halo variations in halo properties. In the age of precision MW astronomy it is no

longer possible to neglect the contraction of the Galactic DM halo or the diversity of DM

distributions that form a halo. Our method provides an elegant and robust approach to

incorporate these effects.
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3.6 Appendix

3.6.1 Radial distribution of orbits

Here we describe how to construct the probability distribution that a particle on a orbit

defined in terms of (�r, !) is found at radial distance, A. We denote this radial probability

distribution as � (A |�r, !). For simplicity, in the following we will work with the (�, !)

actions (and thus calculate � (A |�, !)), which, given a gravitational potential, can be

uniquely mapped to (�r, !) space and vice-versa (see main text for details).

Consider an orbit defined by (�, !) in the potentialQ (A). The velocity components at A

are defined as:
E |A =

√
2 (� −Q (A))

EC |A =!/A

EA |A =
√
E |2A − EC |2A ,

(3.6.1)

where for the radial velocity component we only consider its absolute value. A tracer on

that orbit could have either negative or positive EA depending on whether it is approaching

or receding from the halo centre. The two points where EA = 0 correspond to the peri- and

apocentre of the orbit, Amin and Amax, with particles on the orbit spanning the radial range,

Amin < A < Amax.

As described in the main text, the radial distribution of an orbit, either � (A |�, !) or

� (A |�r, !), is defined as the proportion of time an orbit spends at radial distance, A,

normalised to unity. To calculate this, we first consider the amount of time, dC, taken by a

test particle to travel from A −→ A + 3A. By Taylor expansion, we have

A + dA = A + EAdC +
1
2
¥AdC2 + >

(
dC3

)
, (3.6.2)

where ¥A denotes the radial acceleration, i.e. the second derivative of A with respect to time.

By neglecting 3C3 and higher order terms, we can solve for dC to obtain

dC =
−EA +

√
E2
A + 2¥AdA
¥A . (3.6.3)
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Away from the endpoints, E2
A � 2¥AdA for small dA . Then dC ≈ dA/EA , that is the time spent

at A is inversely proportional to the radial velocity component, as expected. As the test

particle approaches the endpoints, EA −→ 0 and the radial acceleration terms can no longer

be neglected. Then, the fraction of time spent at A, i.e. the radial distribution � (A |�, !),

can be written as

� (A |�, !) dA = 2
) |�,!

dC |A , (3.6.4)

where the factor of 2 accounts for the fact that a particle is found at the same A value twice

along its orbit, i.e. once when approaching and once when receding from the halo centre.

The normalisation factor, ) |�,! , is the radial time period, which is given by

) |�,! = 2
∫ Amax

Amin

dC |Adr. (3.6.5)

To calculate � (A |�, !) we use a radial grid with 1500 cells defined in the range [0, 3'200];

this corresponds to a grid spacing, dA = '200/500 ∼ 0.5kpc. Special treatment is required

at the endpoints of the orbit where better spatial resolution is needed to track the orbit

properly. The radial distribution and properties around 1kpc of the end points of each orbit

are then recalculated at a higher radial resolution of dA∗ = 5pc.

Averaged radial properties, such as the velocity dispersion or the velocity components, can

be evaluated at a given radius using � (A |�r, !) as a weight. Any general orbital property

depending on radius, - (A) |�A ,! , can be calculated as

〈-〉 (A) = 1
d (A)

"

4cA2

∬
- (A) |�A ,!� (A |�r, !) 3�A3! . (3.6.6)

3.6.2 Systematic Differences in Action between DMO and Hydro

Differences between DM halos, such as in the d (A), f (A) and V (A) profiles, can be

attributed to differences in their action distributions, � (�r, !). It is natural to expect

that the greater the action difference, J(�A ,!) , between our DMO and Hydro halos, the

greater the difference in the contracted DM density profile. We explore this correlation

in Fig. 3.12, which shows the integrated difference in the density profiles, Jtotal
d , between
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Figure 3.12
An exploration of the extent to which galaxy formation in the auriga suite is
an adiabatic process. The G-axis show the difference in the action distributions,
J(�A ,!) , of DM halos between the DMO and corresponding Hydro simulations. An
adiabatic process would conserve the action, i.e. J(�A ,!) = 0. The H-axis shows
the integrated difference, Jtotal

d , in the DM density profiles between the contracted
DMO halo and the Hydro halo. Each symbol represents one auriga system and
the green circle or red square indicate if the halo is relaxed or unrelaxed. (See
text for definitions and further details.) In the relaxed sample, the J(�A ,!) and Jtotal

d

quantities show only a slight correlation (0.16), suggesting a complex relationship
between differences in action distributions and differences in the final contacted
profile.
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the contracted DMO halo and the Hydro halo as a function of the difference in the action,

J(�A ,!) , between the two halos. In the relaxed halo sample, the Jtotal
d and J(�A ,!) quantities

are characterised by a small correlation of only 0.16. This suggests a complex relationship

between action distributions and the physical halo. The relaxed sample has consistent

differences of Jtotal
d ∼ 8% ± 3%, while the unrelaxed sample has a a wider scatter and a

higher median Jtotal
d ∼ 10+10

−3 % (a histogram of the results may be seen in the side panel of

Fig. 3.12).

To better understand the effect of systematic differences in the � (�r, !) distribution

between the DMO and Hydro simulations, we proceed to compare in Fig. 3.13 the radial

profiles of several halo properties. in the main text, when constructing the DM density

profile given a � (�r, !) distribution, we find the self-consistent gravitational potential

given the action distribution. However, differences in actions can lead to differences in

potentials that would further enhance differences in DM halo properties. To control for

changes in potential, the results in Fig. 3.13 are obtained by constructing the DM halos

using the same fixed potential, QHydro, measured in the Hydro simulation. This allows

a direct comparison of the orbital structure in physical space, providing insight into the

dependence of the differences in density profile on the differences in action distributions.

The potential mechanisms behind non-adiabatic effects can also be explored through the

radial dependence of the action differences.

In Fig. 3.13 we consider the fractional differences in the density and average actions as a

function of radius. In the top panel we see a ∼ 5% underprediction of the DM density when

using actions of the DMO halo compared to the Hydro. The slightly changed potential

generated with this density profile causes the density difference to grow with the iteration

to Jtotal
d ∼ 8% in the final self consistent profile. For !, we find very small systematic

differences, but nonetheless the Hydro simulations tend to have slightly higher ! values

in the very inner regions and for A ∼ 0.3'200. In contrast, the energy distribution is

characterised only by small stochastic differences.

The �r in the DMO halos is systematically higher at all radii away from the very centre

A & 0.1'200 (second panel). For a single orbit, increasing �r causes the median position
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Figure 3.13
The fractional differences in selected halo properties as a function of radial dis-
tance. We plot the difference between halo quantities calculated using the � (�r, !)
distribution measured in the DMO and in the counterpart Hydro simulation. When
reconstructing the halo properties we use the same fixed potential,QHydro, measured
in the Hydro simulation; in this way any difference in the plotted quantities are due
to variations in the action distribution between the DMO and Hydro halo, and not
to changes in the potential. We show, from top to bottom, the differences in the
radial profile of: density, average radial action, average angular momentum, average
energy, and average velocity anisotropy. The black line gives the median for our
sample of relaxed auriga halos, and the dark and light green regions the 68 and 95
percentiles, respectively. The DMO density profile, d (top panel), is systematically
lower than in the Hydro counterpart, driven by a systematic suppression of radial
action in the Hydro halo at every radius (second panel).
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of an orbit 〈A〉 |Orbit to move radially outward, and mass to move from the radial centre of

the orbit to its endpoints, as seen in Fig. 3.6. This effect across all orbits seems to drive

the difference in density profile (top panel): the density is higher in the Hydro halos at

intermediate radii, but the density is higher in the DMO halos at the centre and near '200.

The higher radial action gives more radial orbits in the DMO case, increasing VDMO (see

bottom panel of Fig. 3.13).

For a discussion of how the results shown in Fig. 3.13 can be used to understand the effects

driving the non-adiabatic change in DM actions between the auriga DMO and Hydro

simulations, we refer the reader to the last paragraph of Section 3.3.2.



CHAPTER 4
The chemo-dynamical groups of theMilkyWay’s

globular clusters

4.1 Introduction

Of the accreted material in the stellar halo, GCs have long been recognised as sensitive

probes of the accretion history of the MW (Searle & Zinn, 1978). Several GCs are

suspected to be the nucleus of accreted dwarf galaxies (M54, M4, l-Centuari, NGC1851),

directly showing where the cores of fallen progenitors come to rest. Furthermore, while

major mergers dominate the stellar halo, it has been shown that GCs are more representative

of smaller accretion events of the MW’s past (Harris et al., 2015; Amorisco, 2019). When

studying the origin of the MW’s GC system, it is necessary to identify which of the MW’s

GCs were born natively in our Galaxy (insitu GCs) and which formed in dwarf galaxies

and later accreted.

On average, in the MW, there is a rough trend of metal-poor GCs at higher radius, while

metal-rich GCs are more centrally concentrated. However, this is not enough to distinguish

populations on chemistry alone (Trujillo-Gomez et al., 2020). With precise age metallicity

data now available for many GCs, it has been discovered that the MW GCs age-metallicity
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relation (AMR) is composed of two branches: a metal-poor one characterised by halo-like

kinematics and a metal-rich branch whose GCs have centralised orbits, suggesting an

insitu origin (Forbes & Bridges, 2010; Marín-Franch et al., 2009; Leaman et al., 2013).

This behaviour can be understood using simple models, such as a leaky-box chemical

enrichment model, in which the stellar birth environment in dwarf galaxies enriches slower

than larger galaxies such as our own.

The recent explosion in Galactic data, such as those from the Gaia mission (?), APOGEE

(Majewski et al., 2017), the H3 survey (Conroy et al., 2019), and GALAH (Martell et al.,

2017) have revolutionised the field of Galactic astronomy. In particular, they have revealed

evidence of an ancient major merger, Gaia-Enceladus-Sausage (GES) (Belokurov et al.,

2018; Helmi et al., 2018a). Combined with previous discoveries such as the stellar stream

of the Sagittarius dwarf galaxy (Ibata et al., 1994) and the Helmi streams Helmi et al.

(1999) there is a wealth of known structure present in the Galactic stellar halo (Naidu et al.,

2020). Characterising the properties of the progenitors of these structures is challenging,

since they represent extended and diffuse stellar distributions. One solution is to identify

the GCs associated with these structures, since the GCs are compact and bright objects

whose properties and orbits can be measured more accurately.

There have been multiple works that have tried to associate GCs to stellar halo structures.

The Sagittarius dwarf galaxy is currently being disrupted (Ibata et al., 1994), and its

material and GCs can be found as an identifiable stream (Bellazzini et al., 2020; Antoja

et al., 2020; Law &Majewski, 2010; Peñarrubia & Petersen, 2021). The works of Myeong

et al. (2018a,c) have associated GCs to GES debris, Koppelman et al. (2019a) identified

seven GCs as part of the Helmi streams, and Myeong et al. (2018b, 2019); Barba et al.

(2019) have investigated the retrograde GCs FSR1758 and l-Centuari, which they have

speculated to be part of a new accretion event dubbed Sequoia.

A significant development has taken place with the work of Massari et al. (2019), hereafter

Massari19, that has studied a large sample of 160Galactic GCs to identify all the major GCs

groups. They have done so by defining selection boxes in energy and angular momentum

space that are based on ‘known’ accretion groups and expanding to include all likely GCs
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members. GCs leftover from this process without a clear accretion origin were divided

into a high energy group, which is likely a collection of smaller accretion events, and a

lower energy group that was thought to potentially be a signature of an ancient accretion

event. This GC grouping has been improved further by Horta et al. (2020), hereafter

Horta20, which have added APOGEE alpha element abundances for 46 inner GCs make

minor revisions.

The Low Energy group ofMassari19 is in good agreement with the Kraken event, predicted

in Kruĳssen et al. (2019b, 2020) to be the MW’s most ancient merger. This work identified

the structure by comparing the observed distribution of MW GCs with the predictions of

the EMOSAICs hydrodynamic simulations for GC formation and evolution (Pfeffer et al.,

2018; Kruĳssen et al., 2019a). This merger is probably the same as the Koala event of

Forbes (2020), hereafter Forbes20, and the Inner Galaxy System (or later Heracles) of

Horta et al. (2021).

Once the accretion groups have been identified, the number of GCs, the age-metallicity

relation and the dynamics can all give clues about the progenitor galaxy. For example, the

Massari19 results have been used by Forbes20 and Trujillo-Gomez et al. (2020) to reverse

engineer the assembly history of the MW. The GC AMR relation provides clues on the

formation time and the chemical enrichment of the progenitor dwarf (Forbes20). Using

the age metallicity spread, Kruĳssen et al. (2020) suggests that the MW has experienced

2-3 major mergers, and at least 15 mergers for GCs total. Using the dynamics of accreted

GCs, Pfeffer et al. (2020) predicts that groups with small apocentres indicate an ancient or

massive merger.

The number of GCs in a progenitor galaxy is related to its mass. For LMC-mass and more

massive galaxies, observations have revealed a linear relationship between the number and

total mass of GCs and the halo mass of the host galaxy (Forbes et al., 2018). Theoretical

models reproduce this trend (such as Boylan-Kolchin, 2017; Burkert & Forbes, 2020;

Bastian et al., 2020). However, it is unclear if this relation holds for dwarf galaxies with

stellar masses below 109 M� Observationally it is difficult to measure the halo mass of such

systems, and theoretical predictions in this range do not agree. At lower masses, analytical
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models based on hierarchical clustering predict a continuation of the linear relation between

GC mass and total halo mass (e.g. Boylan-Kolchin, 2017), while the EMOSAICs project

predicts a linear relation with stellar mass instead of halo mass (Bastian et al., 2020).

One limitation of the current GC groups is that they are defined via a rather subjective

approach, mostly by eye. This methodology raises questions if the current groupings

are statistically robust and physically relevant. Furthermore, subjective methods are very

difficult to test using mock catalogues, but this represents an essential analysis step to trust

their results (e.g. see Wu et al., 2021). Alternatively, recent work has seen the use of

clustering algorithms to find structures in the halo. (such as Ostdiek et al., 2020; Necib

et al., 2020; Koppelman et al., 2019b; Helmi et al., 2017; Myeong et al., 2018b). These

should give more objective, quantifiable results, but as noted in Naidu et al. (2020), it

can be challenging to tune these clustering methods to our astrophysical problem. A few

studies have looked at applying these techniques to GCs specifically. Examples include

using a friends-of-friends clustering algorithm to associate GCs to the Sequoia merger

(Myeong et al., 2018c) and the decomposition of GCs in the centre of our galaxy into

bulge, disc and halo components (Pérez-Villegas et al., 2019). However, we know of none

that have yet been applied to the total Galactic population of GCs.

In this paper, we develop an objective methodology combining chemo-dynamical inform-

ation to identify the likely progenitors of the full population of Galactic GCs. By fitting

models to both the dynamical distribution in action space and age-metallicity relation of

the accreted galaxy, we calculate membership probabilities for each globular cluster and

statistically link them to particular accretion events. We do so by modelling the GCs as

a combination of bulge, disc, and halo components, the latter representing the subject

of our research. The stellar halo is further decomposed into the massive merger events

that built it, such as GES, Kraken, and Sagittarius, and an ungrouped component that

represents contributions from lower mass mergers that did not contribute enough GCs be

robustly identified. This methodology is extensively tested and characterised using mock

GC catalogues built from the auriga suite of hydrodynamical simulations (Grand et al.,

2017). We apply the method to the Galactic GCs and fully account for observational errors
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to identify the most likely GCs associated to each merger event. Using this membership,

properties of the progenitor galaxies, such as halo and stellar masses, are derived.

The structure of the paper is as follows. Section 4.2 describes our chemo-dynamical

mixture model. In Section 4.3 we describe the construction of our mock globular GCs

catalogues from auriga haloes, and in Section 4.4 we apply our method to the mocks.

In Section 4.5 we apply our method to the MW and discuss the individual cluster fits,

comparing to the literature. We discuss the implications for the MW’s accretion history in

Section 4.6. Finally, Section 4.7 summarises and concludes the paper.

4.2 Multi-component model for the Galactic GC

population

We model the MW’s population of GCs as a combination of a bulge, disc, and stellar

halo components. The latter is the main focus of our work and is further split into

subgroups that correspond to all known major accretion events, such as GES and Kraken.

The decomposition is performed using an expectation-maximization algorithm using

chemo-dynamical data, that is combining age-metallicity information with orbital integrals

of motions (i.e. action space). This section presents a detailed description of the

decomposition method and its motivation.

For a general space ^, which represents a combination of metalliticy and action quantities,

each GC component is modelled as a distribution �c (X) ≡ � (^ |)2) specified in terms of

a set of model parameters, )2, whose details will be given when discussing each model

component. �c (X) is normalised to integrate to 1 over the space X. Then, the multi-

component model describing the overall population of GCs is given as the sum over each

individual component,

� (X) =
Com∑
2

,2�2 (^) , (4.2.1)

where,2 denotes the weight of component 2 and specifies the fraction of the GC population

that is contributed by each component. The total distribution, � (X), normalises to unity
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over the space, which implies that:

Com∑
2

,2 = 1 . (4.2.2)

The probability of the 8-th GC to belong to component 2, which is often referred to as the

responsibility in multi-component models, such as Gaussian mixture models, is given by

A82 =
,2�2 (^8)∑
2′,2′�2′ (^8)

≡ ?82∑
2′ ?82′

, (4.2.3)

where ^8 denotes the coordinates of the 8-th GC in the chemo-dynamical space used to

identify the different populations. For brevity, we also introduced the notation, ?82 ≡

,2�2 (^8), which gives the value of the �2 distribution at ^8 multiplied by the weight of

that component. The total log-likelihood, lnL, of the mixture model is given as:

lnL =

GCs∑
8

ln � (^8) ≡
GCs∑
8

ln

(Com∑
2′
?82′

)
, (4.2.4)

where in the right-most term the first sum is over all the GCs in the system and the second

sum is over all components of themodel. To find themaximum likelihood estimate, we need

to find the maximum of L for the set of parameters {)2} ≡ {)2=1, )2=2, ..., )2= }, where

 is the number of components and each )2 is in turn a set of multiple parameters. For

example, if we model a component as a Gaussian distribution, then )2 is the combination

of peak position along each coordinate axis in ^-space and the corresponding covariance

matrix. The maximization procedure is further complicated by the fact that the,2 weights

that appear in the ?82′ expression depend on the values of all the {)2} parameters which

makes for a very non-linear and multi-dimensional maximization procedure.

To solve this challenge, we use the expectation-maximization approach. This algorithm is

often used to efficiently fit Gaussian mixture models. As explained below, our methodology

is similar, but adapted to include relevant astrophysics such as the AMR of the component.

The algorithm represents an iterative approach of finding the maximum likelihood and has

the following steps:

(i) Initialisation:
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An initial guess is made for the responsibilities, A82. The outcome can be sensitive

to this initial choice, especially when the components are considerably overlapping.

We discuss and test this aspect in the mock test section.

(ii) Maximisation Step:

In this step, we assume that the responsibilities, A82, are known and we find the {)2}

parameters that maximize the log-likelihood, lnL, for fixed A82 values. The advantage

is that once A82 are known, maximising lnL reduces to a much simpler problem in

which the parameters of one component are independent of the parameters of the

remaining components. For component 2, lnL is maximal for the )2 values that

maximize the expression:
GCs∑
8

A82 log �2 (^8) . (4.2.5)

In the above equation each data point contributes with a weight A82, which is why A82

is called the responsibility.

(iii) Expectation Step:

The values of the responsibilities are updated using the {)2} parameters found in the

previous step.

(iv) Iteration:

Repeat the maximisation and expectation steps until lnL is converged. In practice,

we assume convergence when lnL changes between consecutive steps by less than

0.01 times the number of globular clusters.

The space X we use to identify the components of the GC population is a combination

of orbital dynamical quantities, which we denote with Y, and age-metallicity information,

which we denote with Z. We assume that the orbital quantities are uncorrelated with the

chemistry of GCs, which implies that the distribution function of each component can be

split into two independent distributions:

�2 (X) = �dyn
2 (Y) �AMR

2 (Z) (4.2.6)
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In the following, we describe how we model the distribution of dynamical quantities,

�
dyn
2 (Y), and of the age-metallicity relation, �AMR

2 (Z), where we drop the superscripts

for brevity. These functions are independent, and so can be fit by maximising their

respective likelihoods (with Eq. 4.2.5) independently.

4.2.1 Dynamical Modelling

In this work, we primarily consider a four-dimensional dynamical space consisting of the

orbital energy and the three orbital actions: the component of the angular momentum

perpendicular on the disc plane, !I, the radial action, �', and vertical action, �I. The

integrals of motions, P, completely describe the orbit, which determines the orbital energy

(for more information see Binney & Tremaine (2008)). This means that in the (�, P)

four-dimensional space the GCs lie on a three-dimensional surface. This suggest that

the energy only contains redundant information about the orbits, however tests on mock

catalogues (more on this in section 4.4) show that the combined (�, P) space leads to a

more accurate identification of GCs populations than (J) space, justifying the choice.

4.2.1.1 Accreted GCs

The accreted components are modelled as multivariate Gaussian distributions in the

_ = (�, !I, �', �I) space via

�2 (Y) = # (Y|-,�)

=
1√

(2c): |� |
exp

(
−1

2
(Y − -)) �−1 (Y − -)

)
(4.2.7)

where : = 4 is the number of dimensions of the space Y, - is the mean, and � is the

covariance matrix. The values of these parameters that maximize the total model likelihood

can be found analytically from Eq. (4.2.5) by calculating moments of the distribution.

In reality, the accreted material is unlikely to be well represented by a Gaussian distribution.

We find that due to the relatively small number of GCs, alternative ‘assumption free’
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distributions, such as density kernels, do not work effectively, and it necessary to assume

a form for the distribution. The limitations, and possible biases, of this assumption are

discussed in the conclusions section of this Chapter.

If the number of points, #points, that a multivariate Gaussian distribution is fit to is

equal to or less than : then the covariance matrix becomes degenerate with some eigen

values equalling zero, giving infinitesimal width in the corresponding principle axes. For

example, in 2-dimensional space two points will be fit as a line. For our model, in principle

all data points contribute to each component, although some points can have very low

responsibilities. On average, each component fits #points = ,2 × #total points where #total

is the total number of GCs. If the weight of the component is such that #points < : then O

tends towards being degenerate within machine precision. This causes the responsibility of

the GCs to tend to one and the fit is unable to evolve. To prevent this, after calculating the

covariance matrix we change the b: − #pointsc smallest eigen values to half of the smallest

non degenerate value. If #points drops below 1.5, we set the eigen value to be 0.05 (note

that internally the space is scaled (by the 25 − 75% range to be dimensionless). If #points

drops below 0.5, the cluster is then considered extinct, and the normalisation weight is

set to zero. We note that that the weights of the MW groups generally do not decrease

sufficiently when performing the multi-component fit to cause this issue. This process

only effects a few groups from the mock samples.

4.2.1.2 Ungrouped GCs

Some GCs cannot be attributed to any known accretion event, such as the High Energy

group in the Massari19 analysis. This could be as they fell in as small groups that do not

contain enough information to be robustly identified. Our model accounts for such GCs

which are classified as the ‘Ungrouped’ component.

The Ungrouped component is modelled as a uniform background distribution, normalised

to integrate to one over the volume, + , of the dynamical space filled by the GCs. That is

�Ung =
1
+
, (4.2.8)
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where + is calculated by SciPy’s convex hull module (Virtanen et al., 2020).

4.2.1.3 Insitu Components

In the MW, we cannot be certain if the GCs are accreted or have an insitu origin. We

therefore need to model also include models of the bulge and disc components. The

dynamics of these components are not well described by Gaussian components and instead

we model them as distribution functions in action space using implementations in agama

(Vasiliev, 2019).

When modelling the bulge and disc components in (�, J) space, we assume that the energy

distribution can be separated from the action distribution, that is:

� (�, J) = � (�) � (J) (4.2.9)

In principle, the energy distribution can be calculated numerically from the action distri-

bution. In practice, it is simpler and far less computationally expensive to fit a separate

distribution.

We find that the energy distributions of the insitu components are well described by an

isothermal sphere:

� (�) =


exp

(
(�0−�
f�

)
� > �0

0 0 ≤ � ≤ �0

, (4.2.10)

where �0 is fixed to the value of the potential at the centre of the galaxy, which for practical

purposes we take to be the energy of the lowest energy GC, and f� is a free parameter that

describes how centrally concentrated the GCs are.

We originally modelled the bulge as a double power law with cut off as introduced in Posti

et al. (2015). In practice, we have found that the fitting converges on values consistent with

the simpler exponential fit:

�Bulge (J) =
4

�3
Cut

√
3c3

exp [− (�Tot/�cut)2] (4.2.11)

where �Tot = �' + |!I | + �I and �cut is a free parameter that controls the steepness of the
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cutoff.

The disc is modelled using the quasi-iso-thermal disc, first described in Binney (2010).

This is also used to model GCs in Posti & Helmi (2019), whose assumptions we follow.

The action distribution is given as:

�Disc (J) =
OaS

2c2^f2
'
f2
I

5±,3 exp

(
−^�R
f2
'

− a�z
f2
I

)
O = exp [−'2 (!z) /'3]

5±,3 =


1 !z ≥ 0

exp
(
2S!z/f2

'

)
!z < 0

, (4.2.12)

where O describes the disc surface density and 5±,3 controls the rotation of the disc. The

circular, radial and vertical epicycle frequencies, are denoted by S, ^ and a respectively,

and are evaluated at the radius of the circular orbit '2 = '2 (�Tot) with angular momentum

�Tot = �' + |!I | + �I. The radial velocity dispersion is given as f' = f'0 exp (−'2/'f),

and the vertical velocity dispersion is fixed at constant scale-height fI =
√

2ℎ3a. The disc

is chosen to match the thick disc of Piffl et al. (2014b); with 'f = 13kpc and ℎ3 = 0.2'3 .

This leaves two free parameters; the disc scale-length '3 and the central radial dispersion

f',0.

4.2.2 Age-Metallicity Relation

We use the leaky-box chemical evolution model to describe the age-metallicity relation for

GCs, as given in Forbes (2020):

[Fe/H] = −?yield log
(
C

C 5

)
, (4.2.13)

where ?yield is a measure of how quickly the system enriches and C 5 is the formation time

of the system. Larger galaxies enrich metallicity quicker, giving a higher ?yield and steeper

evolution track. Note this is equivalent to the equation of Kruĳssen et al. (2019a), with

re-arranged and re-named constants and similar to the relation of Massari et al. (2019).

We proceed by fitting Eq. (4.2.13) to the GCs associated to each component taking into



4.2. Multi-component model for the Galactic GC population 123

account the weights, i.e. responsibilities, associated to each object. The fitted relation can

be inverted to obtain the expected age as a function of metallicity, which we denote as

Cfit ( [Fe/H]). The probability of the GCs observed age being part of the modelled relation

is then given by a normal distribution, centred on the expected age with dispersion equal

to the error in age, fC , i.e.

�AMR
2 ( [C, [Fe/H]]) = # (C |` = Cfit ( [Fe/H]) , f = fC) . (4.2.14)

For the GCs that do not have age-metallicity data, we assume that they have a constant

probability of one to be assigned to the component in the age-metallicity space. For the

Ungrouped component, we do not expect all group members to be from a single accretion

event or follow the same age-metallicity relation. The probability is then taken as a constant

value as if there was no age-metallicity data.

4.2.3 Observational Errors

To effectively model the MW it is necessary to include the statistical uncertainty from

observational errors. For this, we use the Monte Carlo sample described in Sec. 4.5.1 that

sample the uncertainties in the measured velocity and position of GCs. The Monte Carlo

samples of a single cluster are treated as independent points, with their own responsibilities

and are fit independently. When the model has converged, the final probabilities of cluster

8 is given as:

?82 = ,2

MC∑
9

�2

(
^ 9

8

)
(4.2.15)

where Xj
i is 9-th Monte Carlo realisation of the 8-th GC and the sum is over all the Monte

Carlo samples of the GC. These probabilities are then used to calculate the responsibilities

of the final results, following Eq. (4.2.3).
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4.3 Mock Catalogues of Globular Clusters

Here we use the auriga hydrodynamical simulations to build mock GCs catalogue (see

Introduction for details). We use the 30 haloes of the level 4 resolution sample, which we

label as Au1 to Au30. Of these haloes, 13 are unrelaxed at present day based on the criteria

of Neto et al. (2007). These unrelaxed haloes are poorly modelled by static, axisymmetric

potentials. As such, we restrict our subsequent analysis to the 17 relaxed haloes.

The auriga simulations do not ‘natively’ contain GCs so, to create mock GCs samples, we

assign GCs to old accreted stars similar to the work of Halbesma et al. (2020). We create

mock GCs only for the accreted component since the goal is to test the challenging part

of our methodology: how to split the stellar halo into its individual GC groups. For each

accretion event we identify the accreted stars and randomly assigned GCs to a subsample

of these stars based on the properties of the progenitor galaxy. Using this approach, we

create 1000 mock GC catalogues for every auriga halo.

To assign GCs, we select only the accreted halo stars that are older than 10 Gyrs in age, and

require them to be within within '200 of the host galaxy at present day. This is motivated

by age estimates of the MW GCs that are, with a few exceptions, older than 10 Gyrs (see

Fig. 4.8). To determine the origin of our stars, we use the same accretion catalogue of

stars as Fattahi et al. (2019). The birth place of the star is defined as the subhalo in which

it resides the first simulation snapshot after its formation. If the star is born in the main

halo, it is defined as an insitu star. If the star is born outside of the main halo, its origin

is defined to be the last subhalo it was in before the main halo. This process will classify

accreted stars to be associated with the accretion event that brought them into the main

halo. The few stars that formed from the gas of infalling satellites in the main halo are

classified as insitu.
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4.3.0.1 The GCs population

As discussed in the introduction, the relationship between the number or total mass of a

GC system and the mass of the host galaxy is actively discussed in the literature, especially

for dwarf galaxies. Here we are interested to test the multi-component analysis framework

and the exact way in which the number of GCs relates to progenitor properties is not very

relevant since it does not enter our model. To generate the mocks, we adopt the Burkert &

Forbes (2020) model in which the number of GCs is proportional to the total mass. The

mean number of GCs, #GC, for an accretion event of mass "Host is given by:

#GC =
"Host

5 × 109"�
. (4.3.1)

Using this halo mass - number of GC relation ("� − #��) we generate 1000 GCs mocks

for each accreted satellite to increase our sample statistics. For each mock, the number of

GCs will be a Poisson distribution with mean given by Eq. (4.3.1). This makes it rather

difficult to compare between each random realisation of a given accretion event, so, to

keep the analysis as clear as possible, each random realisation has an equal number of GCs

given by the mean expectation, which is rounded to the nearest integer.

Whilst the expected number of GCs from a single small accretion event (objects of mass

less than 5 × 109"�) is less than one, we estimate that on average the expected total

number of GCs from small accretion events is typically ∼5. This population of small

accretion events bring in individual, ungrouped GCs. To account for these objects, we

assign individual GCs starting from the largest ‘small’ accretion event until the expected

population is accounted for.

The resulting population of GCs in our mocks is compared to the observed Galactic GCs

in Figs. 4.1 and 4.2. The former shows that the number of accreted GCs in our mocks is

in agreement with the MW estimates. For the MW data, we take the total mass estimate

from Callingham et al. (2019) and the number of accreted GCs that we find in Sec. 4.5.

The number of GCs in the mocks grows with halo mass, as expected from observations

and theoretical models (see discussion in Sec. 4.1). The auriga mocks with total mass
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auriga mock catalogues (blue symbols) and for the MW (red star).
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∼1.2 × 1012 M� have slightly fewer GCs than the MW, but the scatter is rather large and

there are at least two systems with more GCs.

Fig. 4.2 compares the radial distribution of GCs, where the distance of the GCs in the

auriga mocks was scaled by 'MW
200 /'

auriga
200 to account for the different sizes of the auriga

systems. For this, we used 'MW
200 = 222 kpc from Callingham et al. (2019). The radial

distribution of GCs in our mocks is similar to the observed one, although the MW is

slightly more centrally concentrated in the 20 − 30 kpc region than most of our auriga

sample. This could potentially reflect that the Galactic stellar halo is mostly built from a

few massive early accretion events (e.g. Kruĳssen et al., 2019b) whose remains are mostly

found in the inner region of our galaxy.

For our mock catalogues we have chosen to only include the accreted component. In

principle, we could select insitu stars as mock GCs However, typically galaxies from the

auriga simulations have higher stellar masses for a given halo mass (Monachesi et al.,

2019). This discrepancy is lessened when only considering the accreted stellar halo.

Furthermore, the stellar discs of the galaxies are typically larger than those expected of

MW-like galaxies. This could be corrected with a selection function, but it is simpler to

omit the insitu component and focus on the accreted component.

The orbital dynamics (including the energy, pericentres, apocentres, actions, angles and

frequencies) for all stars in the main auriga halo at present day are calculated using the

agama package (Vasiliev, 2019). The potential is modelled from the I = 0 simulation

snapshot as an axisymmetric cubic spline.

4.3.0.2 Age-Metallicity Relation

Hydrodynamical simulations face difficulties in reproducing the metallicity of dwarf

galaxies and their GCs (e.g. Halbesma et al., 2020), which is potentially due to uncertainties

in stellar yield models. To mimic the observed age-metallicity relation of GCs we assign

new metallicity values to our mock GCs using the relation given in Eq. (4.2.13). For each

accretion event we first choose an age-metallicity relation, setting a formation time that
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is equal to the oldest star in that galaxy and a yield determined by the yield-stellar mass

relation described in Forbes (2020). The auriga galaxies have a somewhat high stellar

mass for their halo mass, so to mitigate this aspect we recalculate the progenitor stellar

masses using the halo mass at infall and the stellar-mass-halo-mass relation of Behroozi

et al. (2019). This gives yields more comparable with those predicted for theMW than if we

would have used the original stellar mass of auriga. To mimic observational uncertainties,

we add normally distributed 1 Gyr errors to the age estimates, which corresponds to the

average errors for the MW’s GCs.

4.4 Mock tests of the mixture model

We continue by testing our multi-component model for the GC population using our mock

catalogues. These tests were used to select the optimal dynamical quantities to identify

GC groups and to characterize the extent to which our modelling approach recovers the

true GC groups as predicted by cosmological simulations.

First consider an example of our models chemo-dynamical fit of a mock catalogue. Fig.

4.3 shows the (�, P) distribution, and Fig. 4.4 shows the AMR fits, of the six accretion

events with the largest halo masses, for the auriga 5 halo. These events are numbered

from 0 to 5 in descending order of their total mass at accretion and are the systems with

four or more GCs. The remaining GCs, i.e. from accretion events that brought three of

less objects, are labeled as ‘ungrouped’. The figure shows that the GC groups overlap

in all the three panels and that identifying the groups using just dynamical information

is not an easy task. It highlights the need for realistic mocks to test any approach that

tries to decompose the stellar halo into its various accretion components. In this fit, our

model agrees with 58/85 groups. The smaller groups at higher energy seem to be better

recovered as they are more distinct. The groups at lower energy, which includes the larger

groups, seem to overlap more.
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4.4.1 Initial Groups

One of the important choices in our multi-component analysis is the choice of starting

groups. This is the case since, as can be appreciated from Fig. 4.3, most accretion events

show considerable overlap in energy-action space. This makes it difficult to identify the true

groups since potentially the model likelihood has multiple maxima. We have experimented

extensively with different methodologies to generate the initial groups, including using

other clustering algorithms and seeding the groups with random GCs and over densities.

However, none of them returned satisfactory results.

To overcome this challenge, we have chosen to initialize the expectation-maximization

algorithm using the true GC groups as measured in the simulations. This is motivated

by our application to the Galactic data, where there is already a rough decomposition

of GCs into accretion events with the main limitation being that the boundary between

these groups is rather subjectively defined (e.g. Massari19). Our goal is to motivate a

more robust and statistically based methodology of splitting the groups rather than cuts by

eye. We tested the robustness of the initialization step in mocks by randomly assigning a

fraction of the GCs from known groups to the ungrouped category. The outcome is robust

to such changes as long as the reassigned fraction is . 20%, with the smaller groups being

the most effected. When analysing the MW sample, with known groups larger than 9, this

suggests that having a modest fraction of mislabeled GCs, does not impact strongly the

outcome.

4.4.2 Testing on Mock Samples

We now apply our method across the relaxed auriga sample, with each halo having 1000

mock realisations. To score how well the method performs across our samples, we quantify

the success of our method with the following quantities. For a fit group of population #fit,

the true group of population #true and their intersection #∩. We then define the purity %
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Figure 4.5
The true group of population #true against the fit group of population #fit for our
mock GC sample. We bin the results in #true, showing the median and 16% − 84%
range with the errors bars for the distribution of #fit. The black line shows where
the populations would be correctly recovered, #true = #fit.

and completeness � of a fit as:

% = #∩/#fit (4.4.1)

� = #∩/#true (4.4.2)

(4.4.3)

We find that the larger groups have greater spread in phase space, and tend to exist at

lower energy. This is expected; the larger groups have a higher internal velocity dispersion

before accretion and suffer from greater dynamical friction. The smaller groups tend to be

more densely distributed in phase space, and typically to exist at higher energies (unless
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The true group of population #true against the purity % and completeness� (defined
in the main text) of our fitted mock GC sample. We bin the results in #true, showing
the median and 16% − 84% range with the errors bars for the distribution of #fit.
The red line shows the median of the purity and completeness of all the fitted
groups.
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accreted at early time). These effects are driven by the mass of the accretion event, and

so correlate with the true population of the group. This appears to directly impact our

recovery of the groups.

First consider the true group population against the fit populations in Fig. 4.5. On average,

we recover the populations accurately. However, for the smaller populations (. 15), over

estimation in the groups population, matched with a underestimation bias for the larger

groups (& 20). This is particularly true for the largest merger events for each halo, which

on average we underestimate by a factor of 25%.

This trend is continued if we instead consider the purity and completeness of our fits

against the true group population in Fig. 4.6. We find that on average, despite recovering

the population of the groups, we only achieve a purity and completeness of 60%. There

is a slight trend in decreasing completeness as the group number increases. This likely

due to the merger debris increasing spread in phase space. Furthermore, as the group size

increase, the average energy decrease, where there is greater overlap of the groups.

The ungrouped component has a low average purity of around ∼ 40%, suggesting that

there exists a population of clusters that cannot be associated with the rest of their accretion

group. These are typically apart from the rest of their accreted group in phase space, where

it is difficult to identify them and so they fall into the ungrouped component.

We also used the mocks to test which dynamical spaces recover best the true GC groups,

which we identify as the space that returns the highest purity and completeness for the

identified groups. We found that the (�, P) space is best at recovering the true groupings,

performing better than P space alone, or combinations between � and angular momentum,

R, components, such as (�, R), and (�, !I, !?), where !? is the R component in the disc

plane. The (�, !I, !?) space is the one used by Massari19 to identify GCs groups.

4.5 Fitting the Galactic GCs

We now proceed to apply the multi-component model described and tested in the previous

sections to the Galactic GCs data.
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4.5.1 Observational Data

We make use of the largest Galactic GC sample to date, which consists of the 170 GCs

studied in Vasiliev & Baumgardt (2021) that have 6D phase space (i.e. position and

velocity) data. The GCs proper motions are based on the Gaia Early Data Release 3

(EDR3) and represent an improvement in precision by roughly a factor of 2 compared to

the previous Gaia Data Release 2 (DR2) measurements (Gaia Collaboration et al., 2021b).

Where available, we updated the Vasiliev & Baumgardt GC distances with those from

Baumgardt & Vasiliev (2021), which are based on a combination of Gaia EDR3, Hubble

Space Telescope, and literature data.

To transform the observations to a Galactocentric reference frame we assume a Local

Standard of Rest, LSR=232.8 km/s (McMillan, 2017), a solar radius of '� = 8.2kpc, a

a solar height of I = 0pc (assumed negligible), and a local solar motion of (*,+,,) =

(11.1, 12.24, 7.25)km/s Schönrich et al. (2010).

To calculate the dynamics of the GCs, we use the agama package (Vasiliev, 2019) and

use the McMillan (2017) potential of the MW, as implemented in agama. We calculate a

range of dynamical quantities for the analysis, including the energy, actions, and angular

momentum of the GCs’ orbits.

To account for measurement errors in the positions and velocities of GCs, we create a

Monte Carlo sample of 1000 points in observed space (i.e. radial distance and velocity,

and celestial proper motions) using the quoted measurement errors which we model as

Gaussian errors for each measured quantity. These are then transformed into positions

and velocities with respect to the Galactic Centre, and fed into agama to generate a Monte

Carlo sample of dynamical quantities. The precision of these phase-space coordinates is

typically limited by distance uncertainties.

The age-chemistry data are taken from a compilation of literature sources compiled in

Kruĳssen et al. (2019b), giving ages and [Fe/H] for 96 GCs. This values are averaged

from values derived in Forbes & Bridges (2010), VandenBerg et al. (2013), Dotter et al.

(2010), Dotter et al. (2011). We neglect measurement uncertainties in metallicity since
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they are considerably smaller than the errors in age determination. We assume that in this

data errors in metallicity are subdominant to errors in age.

4.5.2 Fitting the Milky Way

We now apply our model to the Milky Way. We performed extensive tests of the starting

groups to initialise our expectation-maximisation algorithm to ensure that we find the

best fitting model given current estimates for possible GC groups. First, we consider

several different initial groups from the literature, primarily from Massari19, Horta20

and Forbes20. We have also tried a bootstrap inspired approach, relabeling each GC as

‘ungrouped’ at a time and refitting the model to further check for a higher likelihoods

model. In general, for these small changes we find little dependence on the final groups.

The results we present in the following is for the maximum likelihood model over all these

variations in the initialization of the expectation-maximization algorithm. The final fit can

be seen in Fig. 4.7 and Fig. 4.8. The derived properties of the groups can be found in Tab.

4.2, and the cluster memberships are discussed for every component in the next subsection.

We find good general agreement with previous work, with all groups showing to be distinct

in either chemical or dynamical space. At the center of our Galaxy, we find overlap between

the two insitu components and the Kraken group in dynamical space. This is the area where

we see most change from the initial groups. To separate these groups with confidence, we

rely on the age-metallicity space for the GCs that have the data. However, the insitu and

accreted tracks overlap for old, low metallicity GCs and cannot be distinguished. In this

region we find, there is not enough information to confidently separate the groups.

We find that Sequoia and GES cannot be convincingly fit by a single group. While there is

no clear difference in the age-metallicity space, the dynamics of the two groups seem to

be distinct. The possibility that Kraken is the core of GES, is briefly discussed in Horta

et al. (2021). We agree with their conclusions that Kraken and GES are unlikely to have

the same origin. The dynamics of the two groups seem to be distinct, and Kraken has a

steeper metallicity enrichment (higher ?yield) than GES.
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We find no clear evidence of the Wukong structure as suggested in Naidu et al. (2020),

containing ESO280, NGC5024, NGC5053. When we model these GCs as a separate group

we find that the group becomes extinct as the GCs become members of the GES group.

However, we note that this group is in the regime where the number of points is less than

the dimensions of the space, and thus the groups are poorly modelled (see Sec 4.2.1.1 for

details). As such, we stress that this is not conclusive.

4.5.3 Component Fits and Membership

We now discuss the specific groups. The membership of the groups can be found in Table

4.2, whilst the individual membership probabilities is compiled in Table 4.3. We generate

a Monte Carlo sample our groups population by drawing a GCs membership based on its

membership probability. From this sample of groups, we find the expected membership

and the one sigma errors.

4.5.3.1 Insitu

We find that 56 of our GCs likely have an insitu origin, with the bulge group containing

an expected number of 33 ± 2 GCs, and the disc group contains an expected number of

23+2−1 GCs. This is comparable with Massari19 who find 36 Bulge and 26 Disc GCs and

Kruĳssen et al. (2019b) who predict 67 out of their 157 have an insitu origin.

The bulge GCs lies below an energy of −2× 105 km2/s2 and apocentres below 5 kpc. This

component does not have any significant rotation and has an AMR track that is slightly

steeper than the disc. The disc extends to high energy, but all of the GCs have Imax < 6 kpc,

an eccentricity 4 < 0.6 and circularity > 0.5. In the very centre of the galaxy the disc

overlaps with the bulge, leaving a hole in the middle of the radial distribution, with no GCs

having an apocentre < 4 kpc.

Here we list some other observations about the insitu GCs:

• We find that 10 GCs previously associated to the disc instead are probable Kraken
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members. All these GCs are without age-metallicity data or [Fe/H] < −1.5. This

highlights the overlapping nature of the insitu and lower energy components.

• VVVCL001, previously uncategorized, is a likely Bulge member, but could also

plausibly fit into the Kraken group.

• ESO93, previously uncategorized is almost certainly a member of the Disc

• Liller1 and NGC6388 are very likely to be part of the Bulge, in agreement with

Horta20.

• E3 (ESO37-1) has previously been associated with the Helmi streams (Koppelman

et al., 2019a). We find it has over a 94% prob of being a disc member, driven by its

place on the insitu AMR track (in agreement with Kruĳssen et al. 2020).

4.5.3.2 Kraken

We expect 39 ± 2 GCs in the Kraken group, a substantial increase from Massari19’s

population of 25. Compared to Massari19’s groups, there is a net 7 contribution from the

disc and 4 from the GES component. We also find that two previously uncategorized GCs,

UKS1 and Mercer5, are highly likely to be Kraken members and VVVCLOO2 and Gran1

are split between Kraken and the bulge.

Our model predicts that the Kraken groups energy is approximately normally distributed

with a mean of −2 × 105 km2/s2 and one sigma values of 0.1 × 105 km2/s2 (in shorthand,

� ∼ −(2 ± 0.1) × 105 km2/s2). This is higher than other selections in the literature, who

typically have selections below � < −2 × 105 km2/s2 (such as Massari19, Horta et al.

(2021)). Notably, our Kraken group seems to have bridged the gap seen in stars inHorta et al.

(2021) at energies −2 < �/105 km2/s2 < −1.85. Furthermore, unlike previous results,

our Kraken group has net prograde motion, with !I distributed as ∼ 340 ± 250 kpc km/s.

This prograde bias possibly indicates some disc GCs have been included in the group.

For GCs without metallicity, or those that have lowmetallicity where the insitu and accreted

branches overlap, we have found distinguishing their origin to be difficult. In the future
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further chemistry information will hopefully allow us to distinguish better the accreted and

insitu components at low energy.

4.5.3.3 Sagitarius

Our Sagitarius group contains an expected population of 9+1−0 GCs. Due to recent accretion

and tidal stripping its material is an easily identifiable stream. This allows 7 GCs to be

identified with a higher degree of certainty as being associated to the Sagittarius dwarf:

Terzan7, Arp2, Terzan8, Pal12, NGC5824, Whiting1 and M54 (NGC6715), which is

believed to be the nucleus of Sagittarius. (Bellazzini et al., 2020; Antoja et al., 2020;

Law & Majewski, 2010; Peñarrubia & Petersen, 2021). We find that these GCs have a

near certain membership. We also find that two new GCs, Munoz1 and Kim3, also have

over 90% probability of membership. These high probabilities are driven by a high group

density in dynamical space and a distinct age-metallicity branch.

Several other GCs have been tentatively linked to Sagitarius in the literature, but we find

no other likely members. Compared to the literature, we find:

• Pal2, has been proposed to lie on the trailing arm of the stream (Bellazzini et al.,

2020; Law & Majewski, 2010). However we find that it has a 82% probability of

being a ungrouped and 13% of being associated with Sequoia

• NGC2419 is commonly linked to Sagitarius (Antoja et al., 2020; Bellazzini et al.,

2020; Peñarrubia & Petersen, 2021). but find that it is almost certainly ungrouped.

Its orbit is more radial than the average more vertical Sagitarius orbit.

• NGC5634 and NGC5053 have been proposed as lying on ancient wraps of the stream

Bellazzini et al. (2020). We find that they are not likely members (in agreement with

Law & Majewski (2010)); they are a near certain member of the Helmi group.

• AM4 was attributed to Sagittarius by Forbes20 based on chemistry as at the time

AM4 did not have Gaia kinmatics (for this reason Massari19 did not assign the

cluster to a group). We find that as a prograde cluster its orbit is incompatible with
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the Sagittarius orbit. Instead, we find that it is a likely member of Sequoia, but has a

15% chance of being ungrouped.

• Before Koposov 1 and 2 (Ko1,Ko2) had radial velocities, Paust et al. (2014) suggested

that they could plausibly lie on the Sagittarius stream. Improved observations by

Vasiliev & Baumgardt (2021) have placed Ko1 as a likely member, but Ko2 not. We

find that Ko1 is evenly split between Sagittarius and ungrouped, but confirm that

Ko2 is almost certainly ungrouped.

4.5.3.4 Gaia-Enceladus-Sausage (GES)

Our analysis infers 25+1−2 GCs in the GES structure, in good agreement with Massari19 (25)

and Forbes20 (28). The GES group is consistent with no net rotation and is distributed as

�/105 km2/s2 ∼ −1.5±0.2. This approximately agrees with previous literature selections:

−1.75 < �/105 km2/s2 < −1.3 in Horta et al. (2021) , and −1.86 < �/105 km2/s2 < −0.9

in Massari19. Massari19 also notes that the apocentres are mostly below 25 kpc in good

agreement with Deason et al. (2018). We also find that our GES GCs apocentres are

between 10kpc and 20kpc.

• The previously uncategorised clusters Ryu879 (RLGC2) and Pfleiderer are likely to

be members of GES, but also could be associated with Kraken. BH140 is a near

certain GES cluster

• In contrast toMyeong et al. (2019), we infer that NGC4147, NGC6584 andNGC6981

(M72) are part of the Helmi Streams and NGC7006, Pal15 and NGC5694 are

associated to Sequoia.

• 4 GCs that have been previously associated with GES are now primarily associated

with the Kraken structure (NGC4833, NGC6284, Djorg1 and Terzan10).

• l-Centuari is almost certainly a GES cluster, in agreement with a tentative categor-

ization by Massari19, who found it ambiguous between GES and Sequoia. This
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cluster has been claimed to be the nucleus of Sequoia by Myeong et al. (2019), and

is discussed more in the Sequoia section.

• Pal2 is likely to be ungrouped, despite being linked to GES by Massari19 and

Forbes20. We find it is at higher energy (−1.1 × 105 km2/s2) than the rest of the

GES group.

4.5.3.5 Sequoia

We predict 9+1−0 members in the Sequoia group, comparable to the 7 attributed in Myeong

et al. (2019) and Massari19, and the 9 in Forbes20.

We find that the group has a slim distribution in energy space �/105 km2/s2 ∼ −1±0.1 and

a wide prograde distribution in angular momentum space !I/ kpc km/s ∼ −1400 ± 900.

The is noticeably smaller than other selections in the literature, such as Myeong et al.

(2019) (and used in Massari19) selection of −1.5 < �/105 km2/s2 < −0.7 and −3700 <

!I kpc km/s < −850. The distribution in �I and �' is very broad, stretching across the

space.

FSR1758 was characterized in Barba et al. (2019), and gave the name to the Sequoia

structure in Myeong et al. (2019). We find that FSR1758 has a 30% of being associated

with Sequoia, with a 60% of being associated with GES. This is primarily driven by

its position at lower energy than the rest of Sequoia. This finding is in agreement with

Romero-Colmenares et al. (2021), who have suggested that FSR1758 belongs to GES.

l-Centuari is another cluster that has been previously attributed as a key Sequoia member.

We find it has a near certain GES membership. Due to its peculiar chemistry, l-Centuari

has long been identified as the nucleus of a dwarf galaxy (Bekki& Freeman, 2003), believed

to be of mass on the order of ∼ 1010"� (Valcarce & Catelan, 2011). Forbes20 andMyeong

et al. (2019) believed this to be Sequoia, based on its retrograde orbit. As noted in Myeong

et al. (2018b), l-Centuari could have sank to lower energy due to dynamical friction.

As briefly discussed in the Sagitarius section, the AM4 cluster has before been tentatively

been linked to Sagitarius, but we find it is likely a Sequoia member. If true, it is the
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youngest Sequoia member with a age of ∼9 Gyr, ∼ 2 Gyr younger than the rest of the group.

its position in energy-action space is unusual for Sequoia; while at the centre of the angular

momentum distribution, it has negligible radial action and is primarily on a vertical orbit,

in agreement with Sagitarius. We flag this cluster as a potential outlier.

4.5.3.6 Helmi Streams

We infer 14 ± 1 GCs in the Helmi streams group. Koppelman et al. (2019a) identifies

7 GC members, (NGC4590, NGC5272 NGC5904, NGC5024, NGC5053, NGC5634,

NGC6981). We find that these are very likely members. Our Helmi stream structure has

a slim energy distribution �/105 km2/s2 ∼ −1.2 ± 0.08, and wide angular momentum

distribution !I/ kpc km/s ∼ 700 ± 700. This is in approximate agreement with the rest of

the literature (Koppelman et al., 2019a; Massari et al., 2019; Naidu et al., 2020).

• We find that the previously uncategorized cluster Bliss1 is likely a Helmi member.

• NGC6441 is almost certainly a member of the Disc and not a Helmi Stream or

Kraken member as suggested by Massari19.

• NGC4147 is not part of GES or SGR as it has been previously claimed Myeong et al.

(2019); Forbes & Bridges (2010), but instead it is very likely to be a Helmi stream

member.

4.5.3.7 Ungrouped

We find 16+2−0 GCs that are ungrouped, or do not fall into the other accretion groups. This

is collection of GCs from different low mass dwarfs that have otherwise not left significant

stellar material to be identified. In their equivalent High Energy group Massari19 (and

Forbes20) identify 11 members. We find 4 new GCs (Ryu059, Ko2, Segue3 and Laevens3)

that are highly likely to be ungrouped, while Ko1 is evenly split between Ungrouped and

Sagitarius. We find no obvious subgroups in these GCs. These GCs are all at high energy

apart from Pal1.
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Table 4.2
Properties of the Galactic GC accretion groups. The second column gives the
expected number of GCs, including one sigma errors, as inferred by our chemo-
dynamical model. From this, using the halo mass - number of GCs relation of
Burkert & Forbes (2020) we find likely halo mass of the accretion event, including
one sigma errors (third column). The halo mass is used to further infer the stellar
mass (fourth column) from the stellar mass - halo mass relation of Behroozi et al.
(2019).

Accretion Event Number of GCs log10 Mhalo log10 M★

Gaia-En-Sa 25+1−2 11.08+0.60
−0.60 8.67+1.13

−1.17

Helmi 15+1−1 10.86+0.51
−0.51 8.25+0.98

−0.99

Kraken 39+2−2 11.28+0.68
−0.68 9.06+1.21

−1.33

Sagitarius 9+1−0 10.66+0.42
−0.42 7.84+0.83

−0.83

Seqouia 9+1−0 10.65+0.42
−0.42 7.83+0.83

−0.83

Bulge 33+2−2 - -
Disc 23+2−2 - -
Ungrouped 16+2−0 - -

Pal1 has previously been linked to the Disc (Massari19 and GES Forbes20, but instead we

find that it has a very high probability of being ungrouped (in agreement with Kruĳssen

et al. 2020). it is on circular orbit compatible with the outskirts of the disc, but is young

and high [Fe/H] similar to the young Sagittarius GCs Whiting1 and Terzan7. Other hints

from its chemistry supports this accreted claim (Sakari et al., 2011). Naidu et al. (2020)

identifies Pal1 with a newly identified Aleph structure due to chemo-dynamical similarities.

Cluster NGC2419 has been previously associated with Sagitarius, but we find it is highly

likely to have different accretion origin and we associated it to the ungrouped component.

4.6 Inferring the Properties of Accreted Galaxies

With the likely populations of our groups found, we now use the "� − #�� relation (Eq.

4.3.1) to estimate the mass of our accreted dwarf galaxies. We also include the theoretical

uncertainties in this relation (fNgc), given in figure 2 of Burkert & Forbes (2020) as



4.6. Inferring the Properties of Accreted Galaxies 148

fNgc/#GC ≈ (#GC/2)−1/2. To find the halo mass, this error is included in the errors in

our expected population numbers. These results are given as probability density functions

(PDFs) in Fig. 4.9. Then, using the estimated halo masses (including the uncertainties) we

infer the stellar masses using the zero redshift stellar mass - halo mass relation of Behroozi

et al. (2019) (see Fig. 4.10. The median and 68% confidence limits of these results are

summarised in Table 4.2.

We note that this methodology has significant caveats and limitations, as discussed in

Kruĳssen et al. (2019b). We do not include any redshift dependence in the "� − #��

relation, assuming that this is sufficiently flat. The errors assumed on this relation are

theoretical, and they and the relation are debated extensively in the literature.

In general, we find good agreement with the literature. Our Kraken group is larger than

Massari19 and Forbes20, with a log stellar mass of 9.06+1.21
−1.33, but the uncertainties are

significant. This is in agreement better with Horta et al. (2021), who estimated a log stellar

mass of 8.7, approximately twice the stellar mass of Gaia-En-Sa.

Recent work has claimed to find an additional 20 plausible GCs in the body of Sagittarius

(Minniti et al., 2021a,b). With our analysis, this would suggest a log halo mass of ∼ 11.16.

This matches well with work by Bland-Hawthorn & Tepper-García (2021), who suggest

that the that suggests that the infall mass of Sagittarius has been understimated, due to

rapid tidal stripping, and is actually comparable to the LMC with halo mass of ∼ 1011"�.

4.6.1 Phase Mixing

When groups of GCs are accreted they are initially clumped in their orbital phases. Over

time, the differences in orbital frequencies cause the phases to mix, losing information.

The time taken for the group to phase mix can be simply estimated as 2c over the spread

in the orbital frequencies of the cluster, giving a simple lower bound on the accretion time

of a phase mixed group. However, we find that in practice this mixing time is typically

under 1 Gyr and is not very constraining.
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Figure 4.9
The PDFs of the mass of our accreted galaxies, derived from their probable
populations of GCs using the halo mass to number of GC relation of Burkert &
Forbes (2020). This includes uncertainties from grouping the clusters, and the
theoretical uncertainties from the relation.
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Figure 4.10
The PDFs of the stellar mass of our accreted galaxies. These were calculate by
assuming the redshift zero stellar mass to halo mass relation of Behroozi et al.
(2019) to transform the halo mass PDFs of Fig. 4.9.
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We define two statistical tests to study if our GCs groups are phase mixed. If we find the

groups are not phase mixed, this could indicate recent accretion or dynamical information

contained in the phase distribution. This could also suggests selection effects or a

cluster being categorized in the incorrect group. We can also test if the distributions are

axisymmetric, such as by testing that q, the angle in the plane of the disc, is also uniformly

distributed with a Kuiper test. Similar to the more commonly used KS test, the Kuiper test

can be used to quantify if the cumulative of two distributions are statistically compatible,

but is particularly suited to testing distributions of modular variables as the statistic is

invariant under cyclic transformations to the random variable (Kuiper, 1960).

If the group is phase mixed then I, EI and E' should be evenly distributed between positive

and negative values. Using a binomial test on the distribution of each quantity, we can

assign p-values which are then combined using the Fisher method to give a final p-value

for the hypothesis that a given group is phase mixed. This test is independent of potential.

We also consider tests based on the angles of the action angle coordinates,
[
\', \q, \I

]
,

which do depend on the assumed MW potential. If the groups are phase mixed, then the

angles should be uniformly distributed in the [0, 2c] interval. As a uniform distribution

modulo 2c, we test this hypothesis using a Kuiper’s test. The p-values can be calculated

for every angle and then combined via the Fisher method. By remapping the \' and \I

angles a finer test of the potential can be achieved (see appendix 4.8.1 for details).

GES, Kraken, Sequoia are all consistent with being phase mixed, with no detectable

structure in action angles or evidence against axisymmetry. This is consistent with the

components being ancient accretions. We also find that as a component, our Ungrouped

GCs are consistent with the hypothesis. Sagitarius is not consistent with being phase

mixed, with a p-value ∼ 0.001. This is to be expected, as it is recently accreted. We

estimate it to phase mix in 5 − 6 Gyrs.

We find that the Helmi streams distribution of GCs in I have a p-value of 0.04, with 11/15

GCs are at positive height above the disc. Kepley et al. (2007) find a bimodal distribution

in EI of Helmi stars, splitting the selected stars into a positive and negative moving groups.

This was thought to be a selection effect of our local neighbourhood seeing multiple tidal
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wraps; stars on a vertical orbit necessarily have high EI near the plane that we observe.

The asymmetry of the moving groups is discussed in Koppelman et al. (2019a), and used

to estimate the accretion time 6-9 Gyrs ago. However, we would expect the GCs to be

complete and not subject to selection effects like the stars. This is weak evidence of

structure persisting in phase space.

We expect the insitu components to be completely phase mixed. Both the disc and bulge

individually and together are consistent with our binomial tests. However, both components

distribution of remapped vertical angle are incompatible with uniformity, with p-values

below 0.01. This indicates that there are too many near the maximum height of their

orbit above the plane. This could suggest that the disc potential that we use (McMillan,

2017) is too heavy, making it seem like orbits are closer to their maximum. We note that

recent potentials such as Cautun et al. (2020) have lighter discs, which we would anticipate

alleviating this tension. Alternatively, we could have an incomplete sample, with GCs in

the plane not being observed.

We find both insitu components are not consistent with being axisymmetric, with p-values

of 0.004 for the disc 0.04 for the bulge, and 0.004 for the combined sample. This is

consistent with an overabundance of GCs on the near side of the Galactic Centre. Binning

the GCs into quarter slices with the Sun at q = 0, we find that our 55 insitu clusters are

angular distributed as: 23 GCs in −c/4 < q ≤ c/4, 10 GCs in c/4 < q ≤ 3c/4, 14 GCs

in −3c/4 < q ≤ −c/4, 8 GCs in q ≤ −3c/4, 3c/4 < q. In the grouping of Massari19, out

of the 62 insitu clusters 30 GCs exist in −c/4 < q < c/4, with the rest evenly distributed.

These results suggests either incomplete observations, with on the order 30 missing insitu

clusters, or this suggests otherwise undiscovered structure in the GCs identified as insitu.

4.7 Conclusions

We have introduced a multi-component model for the population of GCs that splits into

three individual components: bulge, disc, and stellar halo. The latter component is

further decomposed into the large accretion events that build the Galactic stellar halo. The
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identification of the various components has been performed in a chemo-dynamical space,

where we combine GC information on the age-metallicity relation with orbital energy, � ,

and action, P. The aim of our study has been to obtain an objective and statistically robust

identification of accreted GCs groups. These have been modelled as multivariate Gaussian

distributions in (�, P) space that follow the age-metallicity relation proposed by Forbes

(2020).

We have extensively tested our methodology using GCs catalogues built using the auriga

suite of zoom-in simulations of MW-like galaxies. The mocks roughly reproduce the

number, radial distribution, and, by construction, the age-metallicity relation of GCs in

our galaxy, which makes them ideal samples to test our multi-component model. Our

approach recovers the correct number of GCs associated with each merger event on average,

however, the associated GCs are not always the true objects brought by that merger even.

This corresponds to a mean purity and completeness of ∼60%. The low completeness and

purity values are due to the large overlap between various accretion events, which makes

it difficult to associate unequivocally most GCs to a single accretion group.

We then have applied this methodology to Galactic GCs observations, accounting for

measurement errors. The result is a decomposition of the GC population into: bulge, disc,

GES, Kraken, Sagittarius, Sequoia, and Helmi groups, with 16 left-over GCs that follow a

uniform background distribution likely consisting of many smaller accretion events that do

not contain enough members to be robustly identified. The resulting populations of GCs

have been combined with the halo to GCs number relation of Burkert & Forbes (2020) to

infer the progenitor halo mass for each accretion event. Then, the halo masses combined

with the stellar to halo mass relation of Behroozi et al. (2019) have been used to infer

the progenitor stellar masses. We also have discussed the degree of phase mixing of the

various GCs groups and their likely infall time into our galaxy.

The age-chemistry could in principle be expanded to include more detailed models of

chemical evolution. The obvious choice for this would be to include the U abundances,

following the work of Horta et al. (2020). This could be crucial in determining the insitu

and Kraken groups. However, this is information is currently only available for a small
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subset of GCs, which limits the viability of effective fitting and useful constraints from the

GCs alone. Our methodology could be expanded to use more information about the GCs.

In the dynamical transformation from position and velocity space to orbital constants we

have neglected the phase of the orbits; we have considered what orbits the GCs are on but

not where on those orbits they are. For the most recent infalling objects, we would expect

the GCs to be close together in phase, corresponding to being on similar orbits and close

together in physical space. Combined with frequency analysis, it may be possible to find

more information in orbital phase space.

The methodology could be extended to include stellar halo stars. Our methodologies

automated and statistical nature are well placed to handle the increasing numbers, as well

as the much higher observational errors. Increasing the number of dynamic tracers by

several orders of magnitude will allow for a much stronger inference of the MW’s accretion

history.

A limitation of this work is in assuming a Gaussian distribution for the accreted GCs in

space. Due to the limited number of GCs in every accretion group, we find it necessary

to make some assumptions to allow any kind of fitting. With more points, we hope that a

density based algorithms that does not require a distribution to be assumed will be possible.

The areas most effected by this assumption in (�, J) space are likely the distributions on

more circular orbits, particularly where the distribution is extended in energy space (due

to the nature of the energy - angular momentum boundary). Notable GCs in these regions

include Omega Centauri and FSR1758. Further work is needed to explore the biases in

these regions.

This work has developed a methodology to combine the available dynamical and chemical

information, in a statistically robust manner. A crucial part of this work has been the

mock tests, where we have highlighted the difficulties of this important problem. In the

face of considerable uncertainties due to the messy nature of accretion, we believe that

this philosophy represents an improvement on previous work. In the future, with further

development and the availability of more information, this will allow for much stronger

inference of the MW’s accretion history.
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4.8 Appendix

4.8.1 Phases as a Potential Probe

The angle \' is at pericenter at 0, apocenter at c and back at apocenter at 2c. Consider

the mapping:

\̃' =


\' \' < c

2c − \' \' > c

(4.8.1)

\̃' is then uniformly distributed on [0, c], and near pericenter at 0, and near apocenter

at c, regardless of the sign of E'. If the we see a bias of over abundance of orbits near

pericenter, it can be seen as evidence that the potential is too weak and vice versa.

The angle \I is at I = 0 with EI > 0 at 0, I = Imax at c/2, I = 0 with EI < 0 at c, I = −Imax

at 3c/2, and back at I = 0 at 2c. Consider the mapping:

\̃I1 =


\I \I < c

2c − \I \̃I1 > c

\̃I =


\̃I1 \̃I1 < c/2

c − \̃I1 \̃I1 > c/2

(4.8.2)

\̃I is then uniformly distributed on [0, c/2], and near the center of the plane at 0, and near

Imax at c/2. If the we see a bias of over abundance of orbits near I<0G it can be seen as

evidence that the potential in z is too strong.
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Table 4.3
The membership probability of individual GCs, as found by our chemo-dynamical
model. We give the most likely group and probability of each cluster, and the second
most probable alternate group. We also give the groupings from the literature were
possible: M19 corresponds to Massari et al. (2019), F20 corresponds to Forbes
(2020), and H20 corresponds to Horta et al. (2020).

Name Alternative Main Group Prob Alt Group Alt Prob M19 F20 H20
NGC6535 - Bulge 1.00 - - Kraken/Seq Seq -
Djorg2 ESO456 Bulge 1.00 - - Bulge - -
NGC6388 - Bulge 0.99 Disc 0.01 Bulge - Seq/Bulge
NGC6380 Ton1 Bulge 0.99 Disc 0.01 Bulge - Bulge
Terzan6 HP5 Bulge 0.99 Disc 0.01 Bulge - -
Terzan2 HP3 Bulge 0.99 Disc 0.01 Bulge - Bulge
Liller1 - Bulge 0.99 Disc 0.01 - - Ungr
NGC6440 - Bulge 0.98 Disc 0.02 Bulge - -
NGC6642 - Bulge 0.98 Disc 0.02 Bulge - -
NGC6401 - Bulge 0.98 Disc 0.02 Kraken Kraken -
NGC6325 - Bulge 0.96 Disc 0.02 Bulge - -
NGC6638 - Bulge 0.96 Disc 0.04 Bulge - -
Terzan5 11 Bulge 0.95 Disc 0.05 Bulge - -
Pal6 - Bulge 0.94 Kraken 0.03 Kraken - Kraken
Terzan9 - Bulge 0.94 Disc 0.06 Bulge - -
1636-283 ESO452 Bulge 0.94 Disc 0.06 Bulge - -
NGC6528 - Bulge 0.94 Disc 0.06 Bulge - -
NGC6624 - Bulge 0.93 Disc 0.07 Bulge - -
NGC6558 - Bulge 0.92 Disc 0.08 Bulge - -
HP1 BH229 Bulge 0.91 Disc 0.09 Bulge - Bulge
Terzan4 HP4 Bulge 0.91 Disc 0.09 Bulge - -
NGC6453 - Bulge 0.89 Disc 0.10 Kraken Kraken -
NGC6266 M62 Bulge 0.88 Disc 0.12 Bulge - -
NGC6355 - Bulge 0.87 Kraken 0.11 Bulge - -
NGC6626 M28 Bulge 0.86 Disc 0.14 Bulge - -
NGC6652 - Bulge 0.85 Disc 0.15 Bulge - -
NGC6522 - Bulge 0.83 Disc 0.17 Bulge - Bulge
Terzan1 HP2 Bulge 0.81 Disc 0.19 Bulge - -
NGC6293 - Bulge 0.76 Kraken 0.22 Bulge - -
NGC6342 - Bulge 0.76 Disc 0.24 Bulge - -
NGC6304 - Bulge 0.76 Disc 0.24 Bulge - -
NGC6637 M69 Bulge 0.75 Disc 0.25 Bulge - -
VVVCL001 - Bulge 0.63 Kraken 0.36 - - -
NGC6517 - Bulge 0.60 Kraken 0.32 Kraken Kraken -
NGC6540 Djorg Bulge 0.53 Disc 0.47 Bulge - Bulge
NGC5927 - Disc 1.00 - - Disc - -
NGC6838 M71 Disc 1.00 - - Disc - Disc
NGC6352 - Disc 1.00 - - Disc - -
NGC6362 - Disc 1.00 - - Disc - -
NGC6496 - Disc 1.00 - - Disc - -
NGC104 47Tuc Disc 1.00 - - Disc - Disc
NGC6366 - Disc 1.00 - - Disc - -
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Name Alternative Main Group Prob Alt Group Alt Prob M19 F20 H20
ESO93 - Disc 1.00 - - - - -
BH176 - Disc 1.00 - - Disc - -
NGC6441 - Disc 0.99 - - Kraken - Kraken
NGC6218 M12 Disc 0.99 Kraken 0.01 Disc - Disc
Pal10 - Disc 0.98 GEn 0.02 Disc - Disc
Lynga7 BH184 Disc 0.97 Bulge 0.02 Disc - -
NGC6144 - Disc 0.95 Bulge 0.05 Kraken Kraken -
E3 - Disc 0.94 Ungr 0.06 Helmi/? - -
NGC6171 M107 Disc 0.93 Bulge 0.07 Bulge - Bulge
NGC6723 - Disc 0.81 Bulge 0.19 Bulge - Bulge
NGC6717 Pal9 Disc 0.77 Bulge 0.23 Bulge - -
NGC6256 - Disc 0.68 Bulge 0.32 Kraken Kraken -
IC1276 Pal7 Disc 0.64 Kraken 0.28 Disc - -
NGC6205 M13 GEn 1.00 - - GEn GEn GEn
NGC362 - GEn 1.00 - - GEn GEn GEn
NGC6779 M56 GEn 1.00 - - GEn GEn -
NGC6341 M92 GEn 1.00 - - GEn GEn GEn
NGC2298 - GEn 1.00 - - GEn GEn -
NGC7089 M2 GEn 1.00 - - GEn GEn GEn
NGC1851 - GEn 1.00 - - GEn GEn GEn
NGC7099 M30 GEn 1.00 - - GEn GEn -
NGC2808 - GEn 1.00 - - GEn GEn GEn
NGC5286 - GEn 1.00 - - GEn GEn -
ESO-SC06 ESO280 GEn 1.00 - - GEn - -
NGC1261 - GEn 1.00 - - GEn GEn -
NGC288 - GEn 1.00 - - GEn GEn GEn
NGC6864 M75 GEn 1.00 - - GEn GEn -
NGC5897 - GEn 1.00 - - GEn GEn -
NGC5139 oCen GEn 1.00 - - GEn/Seq Seq -
NGC7078 M15 GEn 0.99 Disc 0.01 Disc - Disc
NGC6656 M22 GEn 0.96 Disc 0.04 Disc - Disc
NGC6235 - GEn 0.95 Kraken 0.05 GEn GEn -
BH140 - GEn 0.95 Disc 0.04 - - -
Ryu879 RLGC2 GEn 0.93 Kraken 0.06 - - -
NGC6426 - GEn 0.80 Helmi 0.20 Ungr Ungr -
Pal11 - GEn 0.74 Disc 0.25 Disc - -
IC1257 - GEn 0.60 Helmi 0.39 GEn GEn -
Pfleiderer - GEn 0.55 Kraken 0.27 - - -
NGC5904 M5 Helmi 1.00 - - Helmi/GEn Helmi GEn/Helmi
NGC4147 - Helmi 1.00 - - GEn GEn -
NGC5634 - Helmi 1.00 - - Helmi/GEn Helmi -
NGC5053 - Helmi 1.00 - - Helmi Helmi Helmi
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Name Alternative Main Group Prob Alt Group Alt Prob M19 F20 H20
Pal5 - Helmi 1.00 - - Helmi/? Helmi Helmi
NGC5272 M3 Helmi 1.00 - - Helmi Helmi Helmi
NGC7492 - Helmi 1.00 - - GEn GEn -
NGC5024 M53 Helmi 1.00 - - Helmi Helmi Helmi
NGC6229 - Helmi 1.00 - - GEn GEn GEn
NGC4590 M68 Helmi 1.00 - - Helmi Helmi Helmi
NGC6981 M72 Helmi 1.00 - - Helmi Helmi -
Rup106 - Helmi 0.95 Ungr 0.05 Helmi/? Helmi -
NGC6584 - Helmi 0.93 GEn 0.07 Ungr Ungr -
Bliss1 - Helmi 0.88 Ungr 0.11 - - -
NGC1904 M79 Helmi 0.63 GEn 0.37 GEn GEn GEn
NGC6254 M10 Kraken 1.00 - - Kraken Kraken Kraken
NGC6712 - Kraken 1.00 - - Kraken Kraken -
NGC6544 - Kraken 1.00 - - Kraken Kraken Kraken
NGC6287 - Kraken 1.00 - - Kraken Kraken -
NGC6681 M70 Kraken 1.00 - - Kraken Kraken -
NGC6809 M55 Kraken 1.00 - - Kraken Kraken Kraken
NGC5986 - Kraken 1.00 - - Kraken Kraken -
NGC5946 - Kraken 1.00 - - Kraken Kraken -
NGC4833 - Kraken 1.00 - - GEn GEn -
NGC6541 - Kraken 1.00 - - Kraken Kraken -
Terzan10 - Kraken 1.00 - - GEn GEn -
NGC6121 M4 Kraken 0.99 Bulge 0.01 Kraken - Kraken
NGC6752 - Kraken 0.99 GEn 0.01 Disc - Disc
NGC6402 M14 Kraken 0.99 Bulge 0.01 Kraken Kraken -
UKS1 - Kraken 0.98 GEn 0.01 - - -
NGC6760 - Kraken 0.98 Disc 0.02 Disc - Disc
NGC6397 - Kraken 0.98 Disc 0.01 Disc - Disc
FSR1735 - Kraken 0.98 Disc 0.01 Kraken Kraken -
NGC6749 - Kraken 0.98 Disc 0.02 Disc - -
NGC6139 - Kraken 0.98 Disc 0.01 Kraken Kraken -
Mercer5 - Kraken 0.98 Disc 0.02 - - -
NGC6316 - Kraken 0.98 Bulge 0.01 Bulge - -
NGC6284 - Kraken 0.97 GEn 0.03 GEn GEn -
Pal8 - Kraken 0.97 Disc 0.02 Disc - -
NGC6539 - Kraken 0.97 Disc 0.03 Bulge - Bulge
Terzan3 - Kraken 0.96 Disc 0.04 Disc - -
Ton2 Pismis26 Kraken 0.96 Disc 0.04 Kraken Kraken -
FSR1716 - Kraken 0.96 Disc 0.04 Disc - -
Terzan12 - Kraken 0.94 Disc 0.05 Disc - -
Djorg1 - Kraken 0.93 GEn 0.06 GEn GEn -
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Name Alternative Main Group Prob Alt Group Alt Prob M19 F20 H20
NGC4372 - Kraken 0.92 GEn 0.05 Disc - -
NGC6273 M19 Kraken 0.91 Bulge 0.09 Kraken Kraken -
BH261 AL3 Kraken 0.88 Disc 0.11 Bulge - -
NGC6569 - Kraken 0.85 Disc 0.13 Bulge - -
NGC6553 - Kraken 0.83 Disc 0.17 Bulge - Bulge
NGC6333 M9 Kraken 0.80 GEn 0.20 Kraken Kraken -
NGC6356 - Kraken 0.78 GEn 0.22 Disc - -
NGC6093 M80 Kraken 0.66 Disc 0.29 Kraken Kraken -
VVVCL002 - Kraken 0.52 Bulge 0.41 - - -
Gran1 - Kraken 0.47 Bulge 0.46 - - -
Terzan8 - Sag 1.00 - - Sag Sag -
NGC6715 M54 Sag 1.00 - - Sag Sag -
Arp2 - Sag 1.00 - - Sag Sag -
Terzan7 - Sag 1.00 - - Sag Sag -
Pal12 - Sag 1.00 - - Sag Sag -
Whiting1 - Sag 1.00 - - Sag Sag -
NGC5824 - Sag 0.99 - - Sag Sag -
Munoz1 - Sag 0.97 Ungr 0.03 - - -
Kim3 - Sag 0.92 Ungr 0.07 - - -
NGC5466 - Seq 1.00 - - Seq Seq Seq
NGC6101 - Seq 1.00 - - Seq/GEn Seq -
NGC3201 - Seq 1.00 - - Seq/GEn Seq Seq
NGC7006 - Seq 1.00 - - Seq Seq -
IC4499 - Seq 1.00 - - Seq Seq -
Pal13 - Seq 0.99 Ungr 0.01 Seq Seq -
NGC5694 - Seq 0.98 Ungr 0.02 Ungr Ungr -
Pal15 - Seq 0.96 Ungr 0.04 GEn/? GEn -
AM4 - Seq 0.84 Ungr 0.15 - Sag -
Ryu059 RLGC1 Ungr 1.00 - - - - -
Ko2 - Ungr 1.00 - - - - -
NGC6934 - Ungr 1.00 - - Ungr Ungr -
Crater - Ungr 1.00 - - Ungr Ungr -
Pal3 - Ungr 1.00 - - Ungr Ungr -
Pyxis - Ungr 1.00 - - Ungr Ungr -
Pal14 - Ungr 1.00 - - Ungr Ungr -
AM1 - Ungr 1.00 - - Ungr Ungr -
Eridanus - Ungr 1.00 - - Ungr Ungr -
Pal1 - Ungr 1.00 - - Disc GEn -
Segue3 - Ungr 1.00 - - - - -
Pal4 - Ungr 1.00 - - Ungr Ungr -
NGC2419 - Ungr 0.98 Seq 0.02 Sag Sag -
Laevens3 - Ungr 0.94 Seq 0.06 - - -

Name Alternative Main Group Prob Alt Group Alt Prob M19 F20 H20
Pal2 - Ungr 0.82 Seq 0.13 GEn GEn -
FSR1758 - Ungr 0.63 Seq 0.29 Seq Seq -
Ko1 - Ungr 0.53 Sag 0.47 - - -



CHAPTER 5
Conclusions

This thesis has developed several dynamical methods to infer properties of the MW,

focusing on its DM halo and accretion history. A crucial part of this process has been

the use of simulations of MW-like galaxies. Through study, these galaxies have provided

excellent sources of inspiration, and provide an invaluable testbed for methodologies.

Combined with the latest observations of the MW, this approach has proven to be very

effective, allowing progress on several significant, longstanding problems in astrophysics.

Chapter 2 presented and applied a method to infer the mass of the MilkyWay by comparing

the dynamics of observed satellites to the theoretical predictions for the energy and angular

momentum distributions of orbits from the eagle cosmological hydrodynamics simula-

tions. This research estimated the mass of theMilkyWay to be"MW
200 = 1.17+0.21

−0.15×1012"�

(68% confidence limits), approximately ∼ 20% accuracy. This result is a substantial im-

provement on pre-Gaia estimates, where the total mass was only known to a factor of

two (see Fig. 2.7). Previous studies have struggled to understand systematic effects in

their methodology, leading to an underestimate of errors. This challenge was overcome by

rigorously testing the method on the MW-like galaxies of the auriga project, thus demon-

strating its accuracy. This research developed a technique that produced a robust, precise

MW mass estimate that remains competitive with later post-Gaia mass measurements (see
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Fig. 2.7).

Chapter 3 studied the effect of baryonic contraction in dark matter haloes in the auriga

simulation suite. Describing the haloes by their spherical action distribution, an iterative

algorithm was developed to adiabatically contract auriga DM halos to a given baryon

mass profile. With the correct action distribution, the density profiles of the DM halos

is recovered to within a few percent. In general, halos are recovered to around 15% due

to halo-to-halo variation such as concentration. This technique was used to model the

contracted DM halo of theMW, inferring the total mass profile and the dynamics of the DM

halo. The DM velocity distributions are encoded in the model DM halo’s orbital structure,

offering a substantial improvement on simpler models, such as the ‘Standard Halo Model’,

that particle physicists commonly assume (see Fig. 3.11). This methodology shows

promising potential as a way to model our MWs contracted DM halo while considering

the effects of cosmological variation in DM halos.

Chapter 4 developed an objective methodology combining chemo-dynamical information

to identify the likely progenitors of the entire population of Galactic GCs. By fitting

models to both the dynamical distribution in action space and age-metallicity relation of

the accreted galaxy, the membership probabilities for each globular cluster were calculated,

allowing them to be statistically linked to particular accretion events. This data was then

used to infer properties of the progenitors of the MW’s stellar halo, such as the halo and

stellar masses. This method was first tested on the mock catalogues made from the auriga

simulations before being applied to the MW, including previously categorised clusters

from Gaia EDR3. This showed that reliably identifying the groupings of GCs as very

challenging, as consequence of the complex nature of accretion and the large degree of

overlap between groups in the phase space. The objective statistical nature of this method,

combining chemistry and dynamics whilst including observational errors, is arguably

a substantial improvement on previous work in the literature. In the future, to make

more confident predictions, more observational information, such as further chemistry

information, are needed.
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5.1 Future Work

The field is now entering the era of precision near-field cosmology. The next Gaia data

releases are already on the horizon and promise to push the boundaries of our knowledge

further still. To make full use of the dynamics found in this exquisite data, it will be

necessary to reduce the uncertainty introduced from the (unknown) Galactic potential,

which is becoming comparable to those from observational errors.

5.1.1 The Mass Profile of the Milky Way

There is still significant uncertainty in the potential and the radial profile or shape of the

dark matter matter distribution has not yet been robustly constrained. To reduce uncertainty

in the inner density profile, the satellite-based methodology of Chapter 2 can be extended

to include inner tracers, such as GCs and halo stars. In addition, a more robust inference

on the total mass can be made by using ultra-faint satellites, for which observational

incompleteness is a critical aspect that needs to be accounted for. By increasing the

numbers of dynamical tracers, the precision can be pushed towards 10% (see Fig. 2.11).

In recent years, it has been shown that the LMC has significantly perturbed the MW

(Cunningham et al., 2020). To overcome this and other systematic errors, it is of the

utmost importance to test any inference techniques on simulations of MW-like galaxies

that replicate our local environment, such as those from the new magpie project (Shao et

al. in prep).

5.1.2 The Core of the MW

A fundamental prediction of CDM is the steep, cuspy central density profiles of DM halos.

A cored DM halo would have implications for cosmology (the core-cusp problem) and

change the inner structure of our Galaxy, implying ∼ 5 times less DM density at the solar

radius than cuspy models. Cole & Binney (2017) claims to find evidence supporting a DM
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core at the centre of theMW itself by constructing an elaborate multi-component dynamical

model of our Galaxy. The DM halo, stellar discs and bulge are modelled as a collection

of orbits, described by analytically postulated distributions of orbital actions. However,

it is unclear how well this idealistic modelling survives the inherent non-equilibrium of

realistic galaxies or if the analytically postulated action distributions capture the correct

dynamics.

This controversial result can be tested by applying the dynamical methodology used to a

variety of MW-like zoom-in simulations, including those with different galaxy formation

models andDMcosmologies from the auriga and apostle projects. This is an extension of

thework ofChapter 3 to study the stellar components of the galaxy; characterising numerical

components analytically and comparing them to the proposed analytic distributions. The

final model has applications beyond the core-cusp problem; giving DM and baryonic mass

profiles for the MW, the total gravitational potential and robustly inferring the dynamics

that govern the structures of the MW. This includes the velocity distribution of DM in our

local solar neighbourhood. Such an approach will connect the latest analytical techniques

with simulations and presents a unique opportunity to probe the structure of the MW and

the nature of DM.

5.1.3 The Accretion History of the Stellar Halo

A natural development of the work of Chapter 4 is to extend it to include stellar halo stars.

Increasing the number of dynamic tracers by several orders of magnitude will allow for a

much stronger inference of the MW’s accretion history. However, this also increases the

complexity of the problem. Furthermore, individual stars have much higher observational

errors than globular clusters, requiring a robust statistical approach. Fortunately, these

are perfect conditions for an algorithmic method to excel. The technique can be tested

and calibrated on galaxy simulations and Gaia mocks, which include observational errors

equivalent to EDR3 and future data releases and potentially developed improved models

for the chemo-dynamical distribution of the debris of satellite galaxies. This study will
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develop a holistic method to probabilistically infer the accretion history of our MW from

remnants in the stellar halo.

5.2 Concluding Remarks

Since the start of this PhD, the field of Galactic science has developed significantly and

it is the author’s good fortune that the duration of this work fell in this prosperous time.

Piece by piece, we are assembling an understanding of our own Galaxy and its history. In

turn, this is bringing us closer to understanding the wider Universe. Driving this success

has been a combination of advancing observations, analytical tools and simulations, as this

thesis has demonstrated. As these areas continue to advance, new avenues of discovery

will open, and further progress will be made. Future prospects have never looked better.



All we have to decide is what to do with the time that is given us.

— J.R.R. Tolkien
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