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Abstract 

The neuromuscular junction (NMJ) is a specialised structure that acts as a chemical 

synapse between a motor neuron terminal and muscle fiber end plate. It allows transfer 

of neural signals resulting in muscular contraction. Although extensively studied, the 

NMJ still requires investigation, as much remains unknown regarding molecular 

physiology of the junction in health and in disease. This is in part a result of the 

challenges faced studying the NMJ in animals and lack of good in vitro models. 

 

This project describes the development of a novel co-culture system enabling the 

potential for the development of neuromuscular junctions in vitro. Neurons derived 

from pluripotent stem cells and an established myoblast lineage were used to produce a 

robust and reproducible co-culture model whereby neurons and muscle cells developed 

interactions possessing key characteristics of NMJs. Physiologically relevant structures 

including terminal boutons and points of co-localisation were observed and 

subsequently characterised in the model. At these points of co-localisation, 

acetylcholine receptor clustering and nuclei accumulation was evident. Evidence 

suggests that certain fundamental aspects of NMJ formation have recapitulated in vitro. 

Building on these observations, preliminary evidence of muscle cell contraction was 

observed after pharmacological manipulation of cultures. Other developmental aspects 

were also apparent, including neurite competition at the myotube surface. 

 

In addition, this project investigated the role of Rho A and ROCK signaling during the 

differentiation of the neurons and myotubes.  These molecules are involved in actin 

cytoskeleton dynamics, but their involvement at the NMJ is poorly understood. This 

project provides evidence that ROCK-inhibition enhances the growth conditions of 

neurons and muscle cells whereby C2C12 myotube differentiation and neurite 

outgrowth was significantly enhanced. Combined, these data provide the potential to 

increase functional NMJ synapses per unit area, which could prove invaluable in the 

research of NMJ formation and the evaluation of drugs acting at these synapses. 
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1.0 Introduction 
 

1.1 Developmental biology of the central nervous system  

During early embryogenesis, the three organized germ layers begin to form: the 

mesoderm, ectoderm and endoderm.1 These three tissue layers are the fundamental 

foundation of all of the tissues in the body.  

 

1.1.1 Neural tube formation  

The central nervous system, which is comprised of the brain and the spinal cord, is 

derived from one of the three organized germ layers during early embryogenesis; in 

particular, this specific outer germ layer, termed the ectoderm, is responsible for giving 

rise to the central nervous system as well as the epidermis. A function of the nervous 

system is to collect and process sensory information from the peripheral nervous 

system in order to coordinate appropriate motor responses.  

 

Formation of the brain and spinal cord begins as a level plate of neuroepithelial cells 

which later fold to form a neural tube during neurulation. Changes in the shape and 

distribution of cells at specific locations along the plate allows for tissue bending until 

closure of the tube. This tube then separates from the overlying ectoderm, followed by 

specialization of cells to become neural and glial cell precursors.214 Primary and 

secondary neurulation lead to the formation of the neural tube in the developing 

embryo.1
 

In primary neurulation, the cells surrounding the neural plate cause the 

surrounding cells to proliferate and invaginate before these are pinched off to form a 

hollow tube. Following this, during secondary neurulation, the neural tube arises from a 

cord of cells that sinks and cavitates in the embryo.  

 

Signaling and expression of certain transcription factors during development of the 

ectoderm is responsible for the acquisition of coherent neuronal phenotypes.2 The 
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ectoderm is responsible for three major processes: formation of the neural plate (which 

later gives rise to the neural tube and thus, the central nervous system), formation of 

the epidermis, and formation of the neural crest.3 These three ectodermal regions 

become physically and functionally distinct from one another throughout primary and 

secondary neurulation, during which stage the embryo is termed a neurula. This 

specification is primarily achieved through finely tuned gradients of signaling activity.3  

 

Over recent years, neural tube patterning has been the core of many investigations, 

elucidating the patterning process along its two major axis: anterior-posterior and 

dorsal-ventral.4, 5 The first patterning process is the anterior-posterior patterning, which 

is then followed by dorso-ventral patterning. The exact position of cell within the neural 

tube determines its fate – defined by the unique signaling gradient specific to that exact 

location within the neural tube. These signals determine cell fate through activation and 

repression of transcriptional genes and regulators, ultimately controlling the 

transcriptional profile of the cell, and thus cell function.5 Expression profiles consist of 

overlapping and unique combinations of regulations within a given area, generating 

discrete populations with a specific cell fate. 6 

 

The dorsal side of the neural tube gives rise to the neural crest cells – a group of cells 

that relocate upon closure of the neural tube, whereas the ventral portion of the neural 

tube gives rise to cells of an epidermal fate.7 The cells of the neural plate are subject to 

Sox transcription factors that activate genes involved in the specification of cells to be 

neural plate, whilst simultaneously inhibiting BMP transcription and signaling.8 Inductive 

signals that act on the neural tube can also arise in surrounding tissues, for example 

from mesodermal or endodermal tissue. 
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1.1.2 Dorso-ventral patterning during vertebrate neurulation 

demarcates the developing central nervous system. 

A process of neural patterning allows for cell fate determination in the developing 

nervous system. With regard to the dorsal-ventral axis, a neural cell fate determination 

occurs during and after neural tube closure based upon two different signaling 

pathways and their respective expression gradients (Figure 1.1.2). These signaling 

pathways, namely the Sonic Hedgehog (Shh) and bone morphogenetic protein (BMP) 

signaling pathways emanate from two opposing signaling centers.9 

 

During gastrulation, those cells that reside closest to the ventral part of the ectoderm 

are subject to sonic hedgehog signaling from the notochord, which promotes a neural 

fate.9
 

These signals have an inhibitory effect on BMPs. Sonic hedgehog inhibits 

expression of homeodomain transcription factor Pax7, and the gradient of Shh regulates 

expression of another homeodomain transcription factor, Pax6, in progenitor cells, 

influencing the phenotype of the developing neurons.10  

 

Conversely, in the ventral portion of the ectoderm, the cells are not subject to these 

inhibitory signals and thus acquire an epidermal fate as a result of BMP and Wnt 

signaling.11 In the spinal cord, the most ventral cells are those of the floor plate. 

Adjacent to these floor plate cells are the motor neurons. The signaling determining cell 

fate arises from the notochord, a structure which itself is also induced through sonic 

hedgehog signaling factors.12 The initial induction of the floor plate is contact-

dependent whereas motor- neuron induction is non-contact dependent.12 
This is due to 

the fact sonic hedgehog exists as a membrane bound protein and as a soluble secreted 

factor involved in motor neuron differentiation.13 As a ventralising factor, Sonic 

hedgehog functions by inducing or repressing the expression of transcription factors 

within the nucleus of developing cells.14  
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In the neural tube for example, Pax3 and Pax7, as well as Msx1 and Msx2 are inhibited 

whereas nkx2.1 and nkx2.2 are up-regulated by Shh, thus impacting neural fate. 15 

Conversely, the most dorsal cells are those of the roof plate, with the adjacent cells 

being of a sensory neuron phenotype. The epidermis immediately adjacent to the neural 

plate produces signaling capable of inducing cell differentiation of both roof plate and 

neural crest cells. BMP induces a signaling cascade. Sonic hedgehog not only acts as an 

inducer of a ventral phenotype, but also aids in specifying neurons of a motor 

phenotype.16 

 

Changes in the expression of patterning genes are essential for the identity and function 

of the cells the ectoderm gives rise to. Dorsoventral patterning thus influences the 

pluripotency and differential state of cells.17 Retinoic acid contributes to both 

dorsoventral and anteroposterior patterning of the neural plate along with Wnts and 

fibroblast growth factors.18 The relative quantities of morphogens such as RA, Shh and 

BMP in the developing neural tube give rise to specific cell types that develop from 

Figure 1.1.2: Dorso-ventral patterning in specification of the neural tube. The neural 
tube is influenced by two key signalling centres, including Shh from the notochord and BMP’s (BMP4 
and BMP7) from the overlying ectoderm. Neurons of the spinal cord are subjected to a gradient of 
these paracrine factors, determining their cell fate. 
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resident stem cells.18 Therefore, fully understanding the signaling pathways activated by 

such morphogens, can help elucidate the mechanisms behind neural differentiation of 

stem cells and can be used in vitro to generate populations of cells.  

 

1.1.3 Retinoic acid in development of the central nervous system  

Retinoic acid (RA) is a metabolic derivative of Vitamin A. There are many important 

signaling molecules involved in nervous system development including RA. It is an 

important signaling molecule during embryonic development with a plethora of effects 

in vivo; these include influencing neural tube development and patterning of the 

nervous system, contributing to both antero-posterior and dorsoventral patterning of 

the neural plate and neural tube as well as neuronal differentiation.19  

 

Retinoic acid cannot be synthesized by the mammalian body, and thus requires 

obtainment through diet. RA is stored as retinoids in the liver as well as the lungs, bone 

marrow, and kidneys until required. At this point, retinoids are transported by retinol 

bound to retinol-binding protein 4 (RBP4), which is then taken up by target cells through 

membrane receptors RBP4 and STRAT6.20 Here, in the cytosol, retinol binds retinol-

binding protein 1 (RBP1), resulting in its metabolisation into all-trans retinoic acid 

(ATRA). RA can then act in autocrine or paracrine fashion.  

In autocrine signaling, the mechanism of action of RA is dependent on specific nuclear 

ligand-activated transcription factors consisting of a heterodimer comprising the RA- 

receptor (RAR), and the retinoic-X-receptor (RXR) – see Figure 1.1.3. These receptors 

bind a DNA-sequence termed the retinoic acid response element (RARE).21 As a result of 

ligand-receptor binding, induction of expression of over 500 genes can occur, changing 

the identity of the cell and thus influencing differentiation.21 Following activation of 

transcription, ATRA exits the nucleus, where it is catabolized by CYP26 enzymes.22 
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In antero-posterior patterning, retinoic acid induces posterior hindbrain and anterior 

spinal cord organization.23 In the absence of RA signaling, hindbrain formation is 

perturbed as well as spinal cord formation, emphasizing its importance in antero-

posterior patterning.24 
Studies into the absence of retinoic acid during embryonal 

development also demonstrate its importance in dorso-ventral patterning.25 
Along with 

the Shh and BMP gradients in the developing central nervous system, retinoic acid is 

involved in induction of a subset of ventral interneurons as well as the specification of 

motor neuron subtypes. RA induces induction of a neuronal phenotype through 

inductive expression of transcription factors (NFkB, SOX1 and SOX6), structural proteins, 

cell surface receptors, as well as signaling proteins.16 
Additionally, RA has a suppressive 

role in signaling pathways through inducing expression of Dkk-1, an inhibitor of the Wnt 

signaling pathway, resulting in neuronal differentiation.16  

 

Consequently, RA has been in many in vitro investigation involving stem cells, utilizing its 

Figure 1.1.3: Retinoic acid autocrine signalling mechanism.  Retinol binding protein 4 (RBP4) 
transports retinol to cells where they enter via a specific transmembrane receptor – STRA6. Retinol 
becomes bound to RBP1, where it is metabolised to Ral and then to RA by specific enzymes Retinaldehyde 
dehydrogenases before it moves into the nucleus. Inside, it binds retinoic acid receptors (RXRs), which then 
form a heterodimer that binds to retinoic-acid response element (RARE) on DNA. This results in the 
transcription of target genes. 
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ability to induce a neural phenotype. RA has been used in neurogenesis studies using 

both embryonic stem cells and embryonal carcinoma cells as a patterning and neuronal 

inducing factor.26, 27 In the case of nerve regeneration in the central nervous system, it 

has been proven that RA is capable of inducing neurite outgrowth and thus can mediate 

production of differentiated neurons.28 

 

1.1.4 Neuritogenesis  

The function of the nervous system is dependent upon the complex neurite circuitry 

that comprises it. Despite the heterogeneity of neuronal phenotypes in the developing 

nervous system, they all develop in a similar step-wise, dynamic process. First, budding 

occurs, followed by neurite extension, followed by axon/dendrite maturation.28 During 

the neuritogenesis stage, the process by which cytoskeletal processes called neurites 

extend from the cell body of the developing neuron, occurs in three distinct stages: 

neurite induction; formation of primary neurites; followed by axon/dendritic 

polarization.29 
Neurites extend from the cell body of the developing neuron, directed 

from the distal tip, otherwise known as the growth cone, leading to the formation of a 

mature axon. This process requires neuronal cell polarity and is strongly influenced by 

biochemical and extracellular components, particularly extracellular matrix proteins. 

This extension involves cellular movement and migration, which itself critically depends 

on membrane turnover, actin reorganization, adhesion molecules and cytoskeletal 

dynamics.30 
 

 

In vitro studies have elucidated the influence of these extracellular influences, along 

with signaling cascades such as WNT signaling on neuritogenesis. Extracellular matrix 

proteins heavily influencing neuritogenesis include tenascins, collagen, laminin, and Slit 

proteins.31 
These molecules have extensive influence on the growth and migration of 

neurites; the signaling emitted by the extracellular environment can be of a positive, 

negative or guiding in nature. Early morphology and orientation of neurites is regulated 
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by HB-GAM (heparin-binding growth-associated molecule), as well as adhesive 

glycoproteins and glycosaminoglycans.29 Soluble molecules are also involved in early 

neuronal differentiation – including fibroblast growth factors, FGF2 and FGF7, insulin 

like growth factor (IGF), and neutrophins.29  

 

The neutrophin family, including nerve growth factor (NFG), brain-derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin 4 (NT-4), interact with specific 

receptors including tropomyosin-related kinase and p75 receptors.29 
This causes 

activation TRk receptors, triggering intracellular signaling cascades that ultimately result 

in growth and survival of neurites.29 
Cell adhesion molecules drive precise axonal path 

finding and targeting during neuritogenesis, including N-cadherin, L1 and NCAM.32 

Studies have shown that there is heterophilic interaction between L1 and axonin-1 

during the process of targeting involved in neurite outgrowth.33
 

 

Neurite outgrowth also entails the activity of the tyrosine kinase receptor function of 

FGFR. Studies showing FGFR knockout demonstrate that neuritogenesis ceases and thus 

FGFR is required in this process.34 
The signaling cascade triggered upon FGFR activation 

involves Ca2+ 
and MAP-kinase whereby Ca2+ 

is essential for growth cone assembly.33 
This 

calcium dependent signaling is known to activate calmodulin kinase II (CAMKII) and 

growth-associated protein-4 (GAP-3), which are required for neuritogenesis.33  

 

1.1.4.1 Actin cytoskeleton mobility  

For neurite extension to occur, actin reorganisation is essential for driving 

morphological change of the neurite. Investigation into actin turnover rates showed that 

this influences the basis of neurite outgrowth or quiescence.35 Neurite extension occurs 

when actin remodelling occurs within the neuronal cell body, producing filopodia or 

lamellipodia that function as the growth cone in neurite extension.36 The growth cone at 

the distal tip has abundant actin fibrils. This actin framework has intrinsic adhesion 

function necessary for growth cone extension and thus extension of the neurite. This 
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actin framework undergoes polymerisation at the leading edge and depolymerisation at 

the lagging end, a process that drives neurite projection.35
 

 

The process of actin polymerisation and depolymerisation is regulated by actin-binding 

proteins; these proteins control the nucleation as well as the distribution of actin within 

the neuron.38 Actin filaments polymerise from existing filaments resulting in a branched 

framework of actin, a phenomenon believed to involve the evolutionarily conserved 

Arp2/3 branched nucleator complex. Arp2/3 nucleates polymerization of these new 

axon filaments and requires nucleation promoting factors including members of the 

WASP family. Specifically, N-WASP binds Arp2/3, resulting in conformational changes 

allowing the complex to bind to existing actin filaments and initiating new actin filament 

outgrowth.37 VEGF has recently been postulated to mediate activation and 

colocalisation of cofilin and Arp2/3 to the actin cytoskeleton.37 However, controversial 

evidence remains for the exact role of the complex in neurite extension. Proteins 

involved in microtubule stabilization, for example, MAP1B as well as destabilizing 

proteins including stathmin-like-2 are involved in actin motility and thus neurite 

outgrowth. MAP1B is also involved in microtubule nucleation.38 

 

1.1.4.2 Rho / ROCK signalling and neurite outgrowth 

Although much remains unknown regarding the intracellular dynamics of the neurite 

during neuritogenesis, certain pathways pivotal to the actin dynamics have been 

elucidated. Once such actin-regulating pathway of particular importance is the Rho A / 

ROCK signaling pathway. Actin polymerisation and depolymerisation is a process that is 

dependent upon Rho GTPases and thus the Rho signaling pathway.39 The Rho family of 

proteins are low molecular weight guanine nucleotide binding proteins, including Rho A, 
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Rac1 and Cdc42, all of which are involved in neurite outgrowth and guidance.40 Through 

loss- and gain- of function experiments, it was found that Rho A and downstream 

effector, ROCK, are involved in negative regulation of the initial sprouting stages of 

neuritogenesis.41 

 

It is thought that a membrane receptor becomes activated, resulting in the transmission 

of signals via guanine-activating-proteins (GAPs) to effector proteins.40 Activation of the 

Rho signaling pathway is shown to negatively affect neurite outgrowth by affecting actin 

stability.42 During neurite inhibition and retraction, a growth-discouraging signal is 

conveyed by a series of intracellular events. This occurs following an intracellular 

signaling cascade whereby it is believed that Rac and downstream effector Wasp are 

Figure 1.1.4.2:  Rho A signall ing in neurite protrusion and neurite inhibition.  Extracellular signals 
result in the activation of Rho GTPases including Cdc42 and Rac and inhibition of Rho A. Activation of 
downstream molecules Arp2/3 and WASP, with downstream effector ROCK inhibited results in 
instability of actin microtubules, membrane breaching and neurite outgrowth. Upon Rho A activation, 
the opposite occurs, with subsequent promotion membrane stability and neurite inhibition. 
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deactivated, as well as Cdc42 and its downstream effector complex Arp2/3, whilst Rho A 

and downstream effector ROCK are activated.35 This intracellular cascade results in actin 

stability and inhibition of membrane breaching. As such, studies have shown that 

constitutive or increases expression of RhoA is responsible for neurite arrest and 

retraction.43 Conversely, when a growth favoring stimuli is encountered, a different 

intracellular signaling cascade is initiated. Instead, RhoA and downstream effector ROCK 

are inhibited, whereas Rac and Cdc42 are activated, along with their respective 

effectors.35 Ultimately, this causes instability of the actin network at the leading edge of 

the neurite, allowing for membrane breaching and neurite extension through 

microtubule penetration of the membrane. Through exploitation of the aforementioned 

intracellular events, some studies of neurite outgrowth have investigated the potential 

of certain molecules to enhance neurite outgrowth in vitro. C3 transferase, an inhibitor 

of RhoA has commonly been used to increase neurite outgrowth from neural stem 

cells.44 

 

1.1.4.3 Neurite path-finding during neurite outgrowth 
As already mentioned, the ECM plays a crucial role in the neurite outgrowth process, 

through providing points of adhesion, neurite growth cues, as well as a favorable 

environment for the growing neurite.45 Integrin receptors located on the developing 

growth cone have been postulated to be involved in the transmission of ECM cues to 

the developing neurite. ECM components, including laminin, collagens, tenascins, 

fibronectin among many others, creating a heterogeneous mixture consisting of 

proteoglycans and glycoproteins that provide a scaffold supporting cellular adhesion.45 

Laminins represent the most commonly studied ECM component, and are thought to be 

one of the strongest promoters of neurite growth and is therefore found in abundance 

in the nervous system, especially during development.46 These heterotrimeric proteins 

consist five α, three β, and three γ chains have been identified, giving rise to the many 

different laminin isoforms.47 Furthermore, specific integrins propagate the effects of 

each laminin isoform.48 Tenascins are oligomeric glycoproteins that can have inhibitors 
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or promoting influences on neurite outgrowth.49 Specifically, FN-II domain is thought to 

be adhesion promoting.49 

 

1.2 Mesoderm development and myogenesis  

The mesoderm is also one of the three germ layers produced following gastrulation. It is 

responsible for the generation of many organs and systems in the mammalian body, 

including the musculoskeletal tissues. The mesoderm is divided into four sections as a 

result of patterning events: the axial mesoderm (notochord), lateral-mesoderm 

(cardiac), paraxial mesoderm (somites), and the extraembryonic mesoderm, each giving 

rise to different cell types and tissues.50 

 

On either side of the notochord, lies paraxial mesoderm, otherwise called the somatic 

mesoderm.51 The tissues that emanate from this region will be located at the back of 

the organism. The cells of the somatic mesoderm form somites, blocks of mesodermal 

cells that produce muscle as well as connective tissues of the back. These somatic tissue 

blocks are initially pseudo-stratified epithelial progenitors, but as they mature, they 

receive specific signals from the notochord, neural tube, lateral-mesoderm and 

ectoderm.52 

 

1.2.1 Mesoderm patterning  

The mesoderm is also specified by signaling gradients, similar to that of the ectoderm. 

The mesodermal subdivisions are believed to be patterned through mediolateral 

patterning – from the centre to the side - through increasing concentrations of bone-

morphogenetic-proteins.51 Elucidation of this BMP signaling using chick embryos has 

revealed that the more central areas of the mesoderm express less BMP4 than the more 

lateral mesoderm.53 As well as this, by changing the expression levels of BMP within the 

mesoderm, it is possible to alter the phenotypic profile of the resulting cells produced.54 

It is believed that BMP expression affects Fox expression, as different Fox transcription 

factors are expressed in different regions of the mesoderm. For example, Foxc1 and 
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Foxc2 are found to be expressed in paraxial mesoderm, whereas Fox1 expression can be 

observed in extraembryonic and lateral mesoderm areas.55 

 

1.2.1.1 Paraxial mesoderm 

Paraxial mesoderm specification appears to be the result of Noggin antagonisation of 

BMPs, which is synthesized in the presomitic mesoderm.56 The formation of somites 

within the paraxial mesoderm occurs along an anterior-posterior axis.56 This is 

determined by numerous signaling gradients including Notch/Wnt signaling, FGF and 

retinoic acid signaling.57 Notch/Wnt signaling in particular, is important for determining 

positional identity of somite formation. 

 

Somites divide into three compartments: schlerotome, myotomes and 

dermamyotomes. The schleratome is responsible for formation of vertebrae and the 

cartilage of the ribcage, the myotome is responsible for producing muscle of the back, 

and the dermamyotome is responsible for skeletal musculature progenitor cells.52 

 

Paired homeobox genes, (Pax genes) are a highly conserved set of genes containing a 

DNA-binding domain termed a paired domain (PD).58 Pax genes comprise a family of 

genes pivotal to specification and maintenance of progenitor cells.52 Pax3 and Pax7 are 

expressed in somitic cells, and are involved in the specification of muscle progenitors.59 

Pax3 in particular is expressed in dorsal cells of the neural tube, where it has been 

shown through mutation studies to be involved in the regulation of hepatocyte-growth 

factor, ultimately playing a role in muscle progenitor migration to the limb bud during 

myogenesis.60 Pax3 is also involved in the direct activation of Myf5 and FoxC2. The 

function of Pax3 largely depends on the presence of two highly conserved DNA binding 

domains.60 
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1.2.1.2 Myotome development 

The skeletal muscle mass found in the vertebrate body emanates from the 

demamyotome.61 The Myotome resides laterally of the dermamyotome. Skeletal muscle 

forms from progenitor cells that originate in dermamyotome, later emigrating to the 

limb bud, where they proliferate and lead to differentiation through expression of 

myogenic determination factors.62 

 

Induction of the myotome in the somite occurs at two distinct areas of the somite. 

The hypaxial myotome is patterned through BMP4 and Wnt7a signaling from the 

overlying ectoderm.63 In the medial myotome, factors of the neural tube such as Wnt1 

and Wnt3a act upon the cells as well as low levels of Shh from the floor plate of the 

neural tube and the notochord.63 

 

Migrating neural crest cells appear to affect the development of the myotome. These 

delta-expressing neural crest cells migrate and make contact with primaxial mesoderm 

cells, aiding in the expression of myogenic regulatory factors.59 Moreover, the migrating 

cells secrete neuregulins, neuregulin-1 in particular, which is involved in myoblast 

phenotype maintenance.64 

 

1.2.1.3 Genetic network in muscle differentiation 

This multistep process is controlled by muscle specific transcriptional regulators 

involved in cell fate determination, as well as external signals that pair the process of 

myogenic differentiation to the development and growth of the mammal. 

 

At the molecular level, the major transcriptional determinants of muscle differentiation 

are myogenic regulatory factors (MRFs – often referred to as bHLH proteins), including 

Myf5, myogenin, MyoD and myogenic regulatory factor-4 (MRF4).65 These myogenic 

regulatory factors are basic helix-loop-helix transcription factor family members 

involved in the proliferative, precursor cell irreversible cell cycle arrest and withdrawal, 
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and muscle specific gene activation, ultimately resulting in production of a muscle 

phenotype. These MRF proteins form heterodimers with ubiquitously expressed E 

proteins. Following this, they bind specific DNA sequences termed an E-box (CANNTG), 

which is found in the promoter sequence of almost all muscle regulatory protein 

genes.66 

 

The importance and potency of the MRF family has been demonstrated in in vitro 

studies whereby induction of their expression in non-myogenic fibroblastic cell lines is 

enough to induce differentiation into myoblastic cell types.67 Each MRF is responsible 

for the activation of other MRF family members, and thus a powerful positive feedback 

mechanism exists, allowing for a defined sequence of expression.68 Genetic studies 

involving mice have shown that Myf-5 and MyoD are expressed in the proliferating, 

undifferentiated cell, thus shown to be involved in muscle progenitor specification. (m) 

Interestingly, MRF4 is expressed in both proliferative and differentiated cell stages. 

Conversely, myogenin expression can be observed in differentiated cell types.69 It 

appears that MyoD is responsible for the direct activation of the muscle-specific-

creatine-phospho-kinase gene, as well as acting as a positive activator of itself.70  

 

As well as MRF’s, the MADs-box myocyte enhancer-binding factors, part of the MEF2 

family, are involved in myogenic determination.71 The function of the MRF family is 

dependent upon this second family of proteins – the myocyte enhancer factor-2 

proteins (MEF2).72 These proteins are indispensible for muscle differentiation, although 

lack the ability to induce differentiation by themselves, unlike the MRF family.66 They 

are also found in other tissue types, and are therefore not exclusive to skeletal muscle. 

MRFs and MEF2 transcription factors interact, forming a complex and hence synergistic 

regulation of transcription in myogenesis.73 The myogenic program activated by the two 

families is very tightly tuned, through activation and repression of each other’s 

transcription.73 For example, MyoD is involved in the expression of MEF2c, and 

myogenin is involved in activation of MEF2 expression; therefore these two families of 
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proteins function combinatorially in the differential process.74 MyoD is also involved in 

the negative regulation of expression of myoblastic genes, and studies show that for 

differentiation to occur, MyoD function switches from a repressor to an activator.59 

MRFs are secreted by myoblasts, progenitor cells committed to a muscle lineage. 

 

1.2.2 Myosin heavy chain expression 

Myosin heavy chain (MHC) is a motor protein of skeletal muscle thick filaments, 

constituting part of their contractile apparatus.75 Myosin heavy chains are alpha-helical 

rods consisting of an N-terminal head domain and a C-terminal tail, two of which form a 

coiled-coil dimer, holding the chains together. The protruding head binds to actin on the 

thin filament, and is responsible for actin-based, ATP-dependent motility of skeletal 

muscle contraction as a result of conformational changes.76 

 

Although there exists slight variation between different isoforms, myosin heavy chain is 

expressed late in myogenesis.77 In vitro muscle differentiation studies using C2C12 

myoblasts, a murine cell line, have showed that MHC expression, generally, increases 

significantly around day 4 of differentiation; this is late on in the differentiation phase, 

as mature myotubes can be observed around day 5 of differentiation.77 Quantification 

saw a rise of MHC as a percentage of total cellular protein content from 2.62% in 

dividing myoblasts, increasing to 6.37% in early myotubes.78 

 

Much remains unknown about the regulated expression of each MHC isoform. In vitro 

and In vivo studies have suggested that many cellular processes are involved, some of 

which occurring at the myoblast stage, but mostly in microtubule stage.79, 80 In the 

mammalian muscle however, extrinsic factors are also involved; these include hormone 

levels, and local innervation.81 It is not yet known if expression of myogenic regulatory 

factors, as discussed in the previous section, are involved in MHC expression. 
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1.2.3 Myoblasts and myotubes in forming muscle 

Muscles consist of cells that work as a unit, rather than individual cells like that of the 

rest of the body. These units consist of cytoskeletal systems comprising microfilaments, 

intermediate filaments, and microtubules. These three cytoskeletal components are 

required for muscle cell viability and shortening to develop force during contraction.82 

 

The dramatic morphological change during myogenesis is largely a result of actin 

remodeling and reorganization; during which, mononucleate myoblasts migrate, align, 

perform target recognition, and fuse their membranes - forming a single, continuous, 

multinucleate cell.83 

 

1.2.3.1 Myoblast cell cycle arrest 

Before myoblast fusion occurs, the myoblasts irreversibly withdraw from the cell cycle 

to become post-mitotic, a process involving Shh signaling.82 During this, cell cycle 

inhibitor p21 expression is increased, and is pinpointed to be involved in the coupling of 

cell cycle withdrawal and initiation of myogenic differentiation; this increase in p21 

correlates with decreased cyclin-dependent kinase activity, a molecule crucial in cell 

Figure 1.2.3: Mononucleate myoblasts fuse and elongate to form long, multinucleated 
myotubes. Myoblasts exist as mononucleate single cells. Upon initiation of differentiation, myoblasts 
withdraw from the cell cycle and initiate their myogenic process. These cells align into rows and fuse their 
membranes, and elongate longitudinally, eventually becoming long, multinucleate myotubes. Nuclei 
distribute along the length of the myotube. The process of differentiation is illustrated here using murine 
C2C12 cell line. 
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cycle regulation.84 Furthermore, the upregulated p21 is known to be involved in 

protecting differentiated cells against apoptosis, and thus differentiated myotubes 

exhibit decreased propensity for undergoing apoptosis. 82 

 

1.2.3.2 Myoblast adhesion and alignment 

Following exiting the cell cycle, proteins are secreted by myoblasts into the extracellular 

matrix (ECM), including fibronectin. Here, fibronectin acts as a substratum for adhesion, 

and binding occurs through alpha-5-beta-1 integrin, a pivotal ECM receptor.253 In 

particular, in vitro studies demonstrate that fibronectin is required for attachment of 

myoblasts to collagen.252 This fibronectin secretion can be visualized microscopically, 

where fibronectin fibrillar networks extend into ‘footprints’ at abutting surfaces of 

myoblasts.  

 

Next, the myoblasts align in a linear array. This step involves glycoproteins, including 

cadherins – calcium dependent cell adhesion molecules (CAM) involved in the formation 

of cell-cell junctions.85 Only myoblasts are able to fuse with each other, and prior to 

stimulation of fusion, the cytoplasm is reorganized before actin reorganization begins.85 

 

1.2.3.3 Myoblast fusion 

The stimulating this fusion process is unknown, but it is known that calcium influx is 

essential.86 Upon stimulation, calcium transporters are activated, including A23187 – 

these transport calcium ions into the myoblasts.85 Many molecules are involved in this 

process, including transcription factors, membrane proteins and secreted molecules.87 

Much of the molecular biology behind myoblast fusion however, remains unknown.  

 

Matrix metalloproteinases (MMPs) are a group of enzymes that selectively digest ECM 

components.88 They have been subject of in vitro studies – whereby they have been 

shown to be implicated in myoblast migration and fusion.89 MMP-1 for example, is 

upregulated in the myoblast before migration, and C2C12 myoblasts treated with MMP-
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1 exhibit increased migrational capacity.89 Investigation into MMP involvement in fusion 

events suggests that they may function to eliminate ECM components between 

potential fusing myoblasts.89 Meltrins are a group of MMPs, and recent reports outline 

the involvement of meltrin-α, meltrin-β and meltrin-γ in myoblast fusion.90 

 

Studies have shown that phosphatidylserine is involved in this fusion process.91 It is 

found to be transiently expressed at the cell surface of skeletal myoblasts as well as at 

cell-cell junctions, but its mechanism of action remains unknown. Phosphatidylserine 

function was shown to be facilitated by proteins including Stabilin-2 (Stab-2), a type-I 

protein transmembrane receptor that is expressed by myoblasts during myogenesis.91 

Stab-2 is regulated by calcineurin signaling, and is proven to be pivotal to membrane 

fusion in mutation studies whereby stab-2 deficiency results in formation of small, thin 

myotubes, and few nuclei as a result of reduced phosphatidylserine-dependent fusion.91 

Conversely, through forced increased Stab2 expression, myotubes form with an 

increased cross-sectional area as a result of increased myoblast fusion.91 

 

The actin reorganization and myoblast fusion process is tightly regulated, ensuring 

fusion occurs in a linear arrangement parallel with the long axis of the cell, rather than 

forming spherical masses.92 During this alignment process, non-muscle-myosin-II 

interacts with actin at the periphery of the myoblast, potentially being involved in the 

elongation process.93 Interestingly, it was found that myoblasts still maintain ability to 

move during the fusion process.94 Stress-fibre like actin bundles can be observed in 

these mobile myoblasts, but this phenotypic characteristic is lost upon cessation of 

locomotion.95  

 

Myoblast fusion to form myotubes concludes with sealing of the membranes to become 

one. Proteins involved in this final step include myoferlin and dysferlin, and is similar to 

that of a resealing membrane following neurotransmitter release at the neuromuscular 
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junction.96  Cells lacking myoferlin in murine studies fail to fuse and large myotubes are 

lacking.96 

 

1.2.3.4 Myotube maturation 

Once fused and entering a state of maturation, myotubes begin to secrete paracrine 

factors that aid in their maturation. Interleukin-4 (IL4), is one such paracrine factor – a 

complex glycoprotein that is involved in the migration of myoblasts to mature 

myotubes.97 Concomitant with this, is the appearance of the type II IL4 receptor, found 

to be expressed on myoblasts around 72hours into differentiation.97 Data suggests the 

involvement of IL4 in recruiting myoblasts with pre-fused myotubes to form larger, 

mature myotubes. Fitting with this, upon addition of an IL4 blocking antibody, myotubes 

formed appeared thinner and had less nuclei.97 

 

Conversely, other molecules are involved in the negative regulation of myotubes. 

Myostatin for example, as a member of the transforming growth factor-β (TGF- β) 

family, is involved in controlling myoblast number, and restricting myoblast proliferation 

and differentiation.98 Myostatin is responsible for inhibiting growth of the muscle fibre 

when it reaches normal size.98 

 

1.2.4 RhoA/ROCK signaling in myotube formation 

Rho signaling plays a very important role during myogenesis. Members of the Rho family 

of small GTPases - RhoA, RAC1 and Cdc42, proteins involved in actin cytoskeleton 

regulation – are also found to be involved in migration of myoblasts, cell cycle 

progression, as well as transcriptional profile expression of myogenic regulatory genes.99 

RhoA is involved in the activation of serum-response factors crucial for myoD and alpha-

actin expression, thus involved in the promotion of gene expression pivotal to 

myogenesis.100 
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Conversely, Rac1 and Cdc4 have been identified as negative regulators of myogenesis.101  

Studies into the levels of Rho A and downstream effector ROCK at different time-points 

in the myogenic differentiation process reveal that levels and the activity of Rho A are 

down regulated in myoblasts undergoing differentiation and that a fine-tuned 

regulation is pivotal. Rho A is required at the onset of myogenesis and functions as a 

positive regulator of induction.102 However, forced expression of Rho A in quail 

myocytes results in altered muscle-specific protein expression and disruption of cell 

fusion.98 Findings indicate that Rho A and ROCK function independently in myoblasts, 

and that ROCK may receive signaling input from Raf-1 kinase, rather than Rho A only.98 

Other studies support this finding, proving that Rho A has to be down regulated in order 

for myoblast fusion to occur; elucidation of the mechanisms underpinning this reveal 

that Rho A GTPase activity regulates M-cadherin activity, and as previously mentioned in 

section 1.2.2.4, cadherins are involved in the fusion process.102 M-cadherin in particular, 

is abundantly expressed in myoblasts as they begin their fusion process.103 Where a 

form of constitutively expressed Rho A (RhoAV14) is found in myoblasts, fusion is 

completely inhibited; findings show that M-cadherin levels are significantly increased, 

but not other molecules crucial for myoblast fusion such as N-cadherin, suggesting the 

importance of both a tightly tuned Rho A signaling cascade and cadherins in fusion.102 

Furthermore, Rho A mediates ubiquitination and degradation of M-cadherin, a process 

involving a lysosomal-dependent pathway.104 

 

Interestingly, recent studies have investigated the effect of ROCK inhibitor, Y-27632, on 

myotube formation from myoblasts; Conclusive results were obtained showing ROCK 

inhibition significantly enhanced myoblast fusion in vitro, postulating this a causative 

effect of nuclear accumulation of FKHR, a direct substrate of ROCK.100, 105 Thus, results 

concur RhoA/ROCK down regulation an essential aspect of myoblast fusion and as a 

result, terminal myogenesis.  
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1.2.5 Nuclei number and distribution in myotubes 

Muscle fibers and myotubes, as previously mentioned, are large cells formed by the 

fusion of smaller cells, and thus are more of a unit than a cell. They differ in shape, and 

size to other mammalian cells, which are usually more spherical and mononucleate. It is 

not surprising then, that the myotube requires the functional capacity of multiple nuclei 

– to provide the transcriptional output and DNA necessary to maintain such a large cell 

volume viable.106 This way, mRNA and synthesized proteins do not have to travel far to 

their destination.107 One study into the distribution of nuclei within myotubes of 40 

different mammalian species found them to be distributed in an orderly manner in 

order to minimize any potential transport issues.107 Furthermore, although previous 

Figure 1.2.4:  Hypothesized involvement of  Rho A and ROCK signaling in myogenesis. 
Upon activation of Rho A and downstream effector ROCK, myoblast phenotype is promoted and 
maintained. Conversely, when Rho A/ROCK are inhibited, differentiation is promoted, although exact 
signaling mechanisms remain unclear. 
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literature has suggested that nuclei in myotubes are of a ‘random’ distribution, the 

aforementioned study found a significant difference in positions of nuclei from those 

that would be expected if they were of a random distribution.107 Therefore, even though 

nuclei appear distributed evenly throughout myotubes, it is not of a random 

organization, instead, of intrinsic design.  

 

Multiple nuclei migration events occur during myotube development, a phenomenon 

unveiled through time-lapse evidence, showing the migration of nuclei to the centre-

point of a myotube following fusion of myoblasts - a process termed centration. 

Following this, nuclei spread out along the length of the myotube – a process termed 

spreading.108 Improper nuclei positioning results in altered muscle function, potentially 

contributing to the pathophysiology of certain skeletal muscle disorders, including 

centronuclear myopathies.109 This nuclear migration process is not well understood; it is 

thought to be modulated by myotubules, motor proteins and a dynein/dynactin protein 

complex, a process regulated by Cdc42, Par3 as well as Par6.109 Following maturation of 

myotubes into myofibers or during muscle regeneration, nuclei migrate again from the 

centre to the periphery of the myotube through a N-Wasp-dependent mechanism.108 

 

1.2.6 Acetylcholine receptor distribution in myotubes 

Acetylcholine receptors (AChRs), ligand gated ion channels that consist of binding site 

receptors for acetylcholine (ACh) as well as ion binding domains required to initiate a 

response, and thus usually defined by their function as a mediator of an 

electrophysiological response. The acetylcholine receptor consists of four subunits: 

α,β,γ, and δ, each of which encoded by a separate gene. These genes are activated 

during the myogenic program, beginning at the point of myoblast cell cycle 

withdrawal.110 

 

Although usually found clustered in high concentrations at the neuromuscular junction, 

as will later be described, they also exist extrasynaptically, and can be found in skeletal 
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muscle fibres, where they are thought to play a role in the myogenic process. They can 

be found distributed at a low density across myotube surfaces prior to innervation.111 

The exact function of acetylcholine receptor existence during myotube formation is not 

yet understood, although several hypotheses exist.  

 

Terminal differentiation involves the fusion of myoblasts in myotubes, and studies 

suggest that the presence of acetylcholine receptors favor myotube fusion (a25). One 

paper suggests the function of acetylcholine receptors in the developing myotube as a 

method of contributing to myotube survival – especially in the absence of nerve 

activity.112 Spontaneous contraction is a phenomenon that can be observed in many 

developing myoblast cell lines, and this ability is attributed to the presence of 

acetylcholine receptors in the developing myotubes. One study in particular outlines 

evidence showing the presence of ChAT, and Ach-lc in developing myotubes derived 

from a murine cell line; these are crucial for the spontaneous contraction observed 

during myotube formation, and hypothesise this as a way of keeping uninnvervated 

myotubes alive.113 Another laboratory found the presence of acetylcholine receptors to 

be linked to myotube size in vitro.114 

 

1.2.7 Skeletal muscle innervation 

Innervation represents the final step in myogenesis in which motor neuron and skeletal 

muscle interact and form junctions, termed neuromuscular junctions.  

 

1.3 The neuromuscular junction 

Synapses between motor neurons and skeletal muscle are essential relay stations 

critical for coordination of information. The chemical synapse found here is called the 

neuromuscular junction (NMJ).115 For simplicity, as seen in Figure 1.3, the 

neuromuscular junction can be split into three areas: the presynaptic terminal, the 

synaptic cleft, and the postsynaptic terminal. At the presynaptic terminal, the motor 

axon divides into numerous branches ending in a bouton that synapses with the surface 
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of a muscle fiber, the postsynaptic terminal. In between these two structures, exists the 

synaptic cleft – the gap. The post-synaptic membrane, also termed the end-plate, 

consists of active zones whereby a high density of nicotinic acetylcholine receptors 

reside. 

 

A brief summary of transmission at the neuromuscular junction involves depolarization 

of the presynaptic membrane, causing opening of voltage-gated calcium ion channels in 

the membrane, allowing an influx of Ca2+ into the presynaptic bouton. This calcium 

binds to synaptic vesicles, which contain the neurotransmitter acetylcholine, causing 

them to fuse with the presynaptic membrane, later exocytosing their contents into the 

synaptic cleft. This acetylcholine then diffuses across the synaptic cleft to ligand-gated 

ion channels containing acetylcholine receptors found on the post-synaptic membrane, 

where it binds, causing them to open, and allowing an influx of sodium into the 

postsynaptic terminal. This causes depolarization, which leads to depolarization and an 

end-plate potential, and consequent muscle contraction. Choline acetyltransferase 

(ChAT) is an enzyme involved in the synthesis of the neurotransmitter acetylcholine at 

these cholinergic junctions, catalyzing the movement of an acetyl group from acetyl-coA 

to choline.116 Another enzyme, acetylcholinesterase (AChE), is the enzyme responsible 

for the breakdown of acetylcholine in the synaptic cleft in order to terminate synaptic 

transmission. The resulting compounds, choline and acetyl-coA can then be transported 

back into the pre-synaptic nerve terminal, where they can be recycled. 

 

At rest, in the absence of neural depolarization, multiple small end-plate potentials are 

spontaneously evoked at the postsynaptic membrane; these are called miniature end-

plate potentials (MEPPs).117 These are a result of small quantal releases of ACh from the 

presynaptic membrane. To fulfill the complex task of transmission, the neuromuscular 

junction is well equipped with specialized cells and surfaces, as well as an abundance of 

specialized proteins, and all occurrences are under extreme regulation. 
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1.3.1 The presynaptic nerve terminal is a specialized structure 

The motor bouton terminal is a structure specialized for neurotransmitter synthesis, 

release, incorporation, synaptic vesicle docking, neurotransmitter reuptake, as well as 

ion transport; thus, the crucial starting events mediating neurotransmission at the NMJ 

are mediated by this nerve terminal. All of the aforementioned processes are energy 

demanding. Consequently, a large population of mitochondria exists in the presynaptic 

terminal, supplying the energy in the form of ATP to fuel these processes.118 

Figure 1.3:  The neuromuscular  junction consists of a presynaptic  neuron terminal,  a 
synaptic  cleft,  and a post-synaptic muscle membrane. A brief overview of signal transduction 
includes (1) depolarization of the terminal nerve. (2) Ca2+ voltage-gated ion channels open. (3) Influx of 
Ca2+ into presynaptic bouton stimulates synaptic vesicle movement and docking. (4) Synaptic vesicles 
containing neurotransmitter dock and exocytose acetylcholine into synaptic cleft. (5) Acetylcholine binds 
ligand gated ion channels containing acetylcholine receptors, causing them to open. (6) Sodium enters 
post-synaptic terminal, leading to depolarization and subsequent muscle contraction. (7) Acetylcholine is 
broken down by acetylcholinesterase. 
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This is a demyelinated part of the motor nerve axon, and it itself contains cholinergic, 

nicotinic receptors that function to increase the quantal output of neurotransmitter 

through binding of acetylcholine.117 The docking, fusion and exocytosis of synaptic 

vesicles containing the neurotransmitter are extremely complex processes, and a lot 

remains to be elucidated. Most of the recent elucidation emanates from in vitro models 

as in vivo counterpart systems are difficult to access and study.119  

 

1.3.1.1 SNARE proteins 

A family of membrane-associated proteins called soluble N-ethyl-maleimide-sensitive 

factor attachment protein receptor’s, or SNAREs are involved in the trafficking, docking, 

and fusion of vesicle docking at the presynaptic membrane of the NMJ and therefore 

neurotransmitter release. Both synaptic vesicle protein and calcium channel migration 

Figure 1.3.1.1 SNARE proteins are involved in the trafficking,  docking,  fusion and 
exocytosis of synaptic  vesicles at the NMJ.   A SNARE protein complex exists pivotal to the 
release of acetylcholine into the synaptic cleft. Synaptobrevin, Synaptotagmin, SNAP-25, and 
Syntaxin are some of the key snares involved in the docking and fusion of the synaptic vesicle to 
the presynaptic membrane. 
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to the presynaptic active zone is required for neurotransmitter release.120 

 

SNARE proteins were originally divided into V-SNARE (vesicle) or T-SNARE (target) 

proteins where V-SNARE proteins were found incorporated into target vesicles and T-

SNARES found at the nerve terminal membrane. It was postulated that T-SNARES form 

sub-complexes that act as a guidance cue for V-SNAREs, resulting in a trans-SNARE 

complex/SNAREpin.254 During formation of a trans-SNARE complex, a four-helix bundle 

consisting of four SNARE motifs is formed, bringing together opposing membranes, 

catalysing fusion. Post-fusion, the complex is denoted as cis-SNARE complex and is 

disassembled by catalyst proteins including SNAP, resulting in recycled components that 

can form a new SNARE complex. It was also hypothesised that a SNARE protein 

possesses the capacity to participate in several SNARE complexes simultaneously, thus 

gaining the ability to control numerous membrane fusion events.254 Furthermore, 

tethering factors influence formation of the SNARE complex.  

 

More recently, SNARE’s were classified as R- and Q- SNAREs, with R- being similar to V-

SNAREs and Q- as T-SNAREs but are not confined to specific locations like previously 

thought. Instead, it was found that R-SNARES and Q-SNAREs contribute argenine (R) 

residues and glutamine (Q) residues to the SNARE complex respectively and are 

therefore characterised accordingly. A SNARE complex consists of one R-SNARE motif 

along with three Q-SNARE motifs.254 R-SNAREs include synaptotagmin and Q-SNARE’s 

include syntaxin and SNAP25. 
 

Three vital SNARE proteins in particular, neuronal Synaptobrevin-2 (VAMP-2), Syntaxin 

1A and SNAP-25 protein sub-family, are involved in these docking events which 

ultimately result in the release of acetylcholine into the synaptic cleft.121 Located in the 

plasma membrane, they are activated upon Ca2+ influx, forming a trans-SNARE complex 

prior to calcium activation. Furthermore, synaptotagmin-1 has also been shown to be 

involved in vesicle fusion with the membrane.122 Certain Ca2+ receptor subtypes also 
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interact with SNARE proteins at the active zone.123 Overall, they aid in ensuring synaptic 

transmission occurs in a matter of milliseconds.  

  

1.3.2 The synaptic cleft 

The synaptic cleft at this neuromuscular junction approximates 50nm.124 
The cleft 

between the bouton and endplate is made up of a collagenous basement membrane.125 

The synaptic cleft contains basal lamina, a structure that provides structural support as 

well as binding sites for molecular binding, including agrin and AChE.126 In in vitro co-

culture models, the basal lamina can be observed to develop around the time of bouton 

maturation and AChR clustering in NMJ formation.127 Thus, AChE positional identity is 

defined and controlled by the basal lamina. 

 

1.2.3 Post-synaptic membrane specializations 

Early investigation of the developing post-synaptic terminal was often performed using 

lower order species, including amphibians such as Xenopus embryos. This was due to 

the difficulty of studying human junctions in vivo. These species provide systems with 

advantages such as quick formation and muscle cells that are singly innervated. 

However, they can lack the complex structure observed in the human NMJ, including 

active zones and presence of a basal lamina. Structure of the post-synaptic membrane 

varies significantly in all invertebrates.255 For example, junction terminals in amphibians 

such as frogs are significantly larger than human, as the human NMJ was found to be 

amongst the smallest of all vertebrates studied. However, there is a huge increase in 

post-synaptic folding from frog to human. It is postulated that quantal content is 

inversely related to membrane folding, and that the increased folding in the human 

post-synaptic membrane amplifies quantal action, compensating for smaller 

terminals.255 

 

At the post-synaptic membrane at the NMJ contains a large population of the 

neurotransmitter ACh receptors, associated with a plethora of extracellular proteins, 
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cytoplasmic proteins, as well as transmembrane proteins.128 The post-synaptic 

membrane does not exist as an independent structure; instead, it receives signaling 

from both the synaptic cleft and the presynaptic membrane – signaling that modulates 

its morphology, size and composition. Before discussing structures and occurrences 

crucial for post-synaptic function, it is important to look at neuromuscular junction 

development. 

 

1.4 Development of neuromuscular junctions 

Formation of the neuromuscular junction is a complex process whereby coordinated 

interactions between a terminal nerve axon and muscle form specific subcellular 

specializations; a process that is also mediated by Schwann cells.129 As muscle tissue 

develops in the embryo, as does the nervous system. Motor neuron axons extend and 

form a nerve-terminal at the muscle sarcolemma. This terminal initially branches and 

makes contact with the muscle fibre at several different locations. Thus, in early 

development, each muscle fibre is innervated by numerous neurons; however, upon 

maturation, elimination occurs for all but one nerve terminal axon, in a process referred 

to as axonal competition and synapse elimination.130 The molecular pathways 

underpinning this process require further elucidation. Distal to proximal retraction of 

eliminated neurites can be observed in vivo, whereby a ‘retraction bulb’ is formed.130 

Axon retraction is not asynchronous for fibers of the same muscle, but occurs at 

different time-points during development. It is known to be an activity-dependent 

process, postulated to be modulated by acetylcholine.131 Studies using nerve blockers 

have shown competition can be eliminated through blocking NMJ activity.132 Molecular 

modulators of these events are thought to include thrombin, a serine protease, and 

serine-threonine protein-kinase-A (PKA).130 

 

Synaptogenesis, the process by which a synapse develops between the two cell types, 

occurs. During this process, the presynaptic terminal is involved in the organization and 

distribution of post-synaptic constituents, which then interact with components of the 
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developing basal lamina. During the first stages of neuromuscular junction formation, 

specialized proteins present along the entire muscle before being redistributed and 

condensed at the contact site between the motor neuron and muscle fiber. This 

differential distribution of proteins is a result of selective expression of transcriptional 

genes from the nuclei located proximally to the developing synapse.133 
The synapses are 

then stabilized through recruitment of cytoskeletal elements.  

 

Following maturation of the neuromuscular junction, the junctional length increases.134 

As the NMJ matures, morphology of the post-synaptic membrane is altered. First, an 

indentation can be observed, whereby a ‘gutter’ like shape appears in the muscle 

membrane, which is to be the synaptic cleft. Following this, the membrane invaginates, 

forming junctional folds around the nerve terminal, increasing the surface area of the 

post-synaptic end plate.134 Post-natal maturations of the NMJ also serve to increase the 

efficiency of motor neurons, post-synaptic apparatus, and ultimately transmission at 

this junction. Unnecessary apparatus are eliminated from both pre- and post-synaptic 

terminals.135 Remodeling of the adult NMJ also occurs as a result of altered activity. 

Extended periods of activity enables remodeling, resulting in size and morphology. 

Exercise for example, has been shown to modulate increases in junctional area, and 

increased dispersion of AchRs at the motor end-plate.136 

 

1.4.1 Acetylcholine receptor (AChR) accumulation  

A morphological characteristic of the NMJ is the clustering of acetylcholine receptors 

that can be found at the post-synaptic terminal, immediately beneath the motor nerve 

terminal. Electron microscopy revealed that AchR density at these post-junctional folds 

in excess of 200,000 per μm.137 As previously discussed, some post-synaptic apparatus 

can synthesized by myotubes aneurally, including acetylcholine receptors. However, 

positional identity and phenotypic characteristics of AChRs synthesized before NMJ 

formation are not the same as those found at the NMJ; for example, there is no 

clustering and studies suggest altered subunit composition.138 
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The acetylcholine clustering event itself requires elucidation, and was initially postulated 

to occur in one of two ways: either through motor induction, or aneaurally and 

recognized by the ingrowing axon.138 Evidence was put forward backing both ideas, and 

data suggests that the developmental biology of the NMJ may be subject to interspecies 

variation.139 For example, clustering of acetylcholine receptors appears to occur 

aneurally in some mammals, but this is not the case in humans.140 However, where 

aneural clustering does occur, they appear to differ in positional identity and 

morphology, often appearing less ‘pretzel like’ than NMJ clusters, thought to be a result 

of synapse shape due to the invaginated membrane.141 Evidence for clustering at the 

human NMJ being a neural dependent process exists and includes the fact that AChR 

synthesis is increases upon NMJ maturation.142 The process of clustering and increased 

AChR synthesis appears to be contemptuous with the axonal competition phase of 

synapse elimination previously discussed.130 Initially, micro-clusters of receptors form 

and aggregate, become more rigid and integrate into the myotube membrane, forming 

a plaque.134 Other morphological and molecular events occur during maturation of the 

NMJ; these include: an increase in junctional length, and increased AChR plaque 

density.134 

 

1.4.1.1 The agrin-MuSk-raspyn-AchR pathway in AChR accumulation 

Denervation experiments suggest that the synaptic basal membrane may participate in 

an instructive role in synaptic generation.143 In an attempt to identify molecules 

involved in AChR clustering, the argin-MuSK-raspyn pathway was sought out. Strong 

evidence exists both in vivo and in vitro for the involvement of the aforementioned 

molecules in AChR clustering and up-regulation of their synthesis.144Agrin, a heparin 

proteoglycan, it is not only thought to be a structural component of the basal 

membrane, but also an inducing factor of AchR clustering at the end-plate through 

tryrosine phosphorylation of the AChR beta-subunits.145 
As well as this, agrin promotes 

anchoring of the receptors to the post-synaptic cytoskeleton.146 
Agrin is a molecule 
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synthesized by motor neurons, which is capable of migrating down axons to a nerve 

terminal, where it is secreted into the synaptic cleft of the NMJ, where it binds to the 

basal lamina.147 It has since been found that agrin is not only involved in the 

accumulatuion of AChRs at the NMJ, but is also involved in organization of other post-

synaptic components, and in vivo mice studies show impaired post-synaptic 

differentiation in the absence of agrin.148 Experiments using agrin-knockout mice have 

shown that AChR clustering still occurs, however the clusters are distributed randomly 

on the muscle surface rather than at the active zones, suggesting agrin is pivotal to the 

specific clustering of AChRs during neuromuscular junction formation. Muscle fibers and 

Schwann cells have also been shown to possess the ability to produce agrin, although 

this is 1000-fold less effective at inducing AchR clustering than neuronal agrin alongside 

MusK.149, 121 
 

 

Figure 1.4.1.1:   Hypothesized organization of Agrin-Musk-Raspyn-AChR complex that 
forms at the developing neuromuscular junction. AChRs are clustered at the NMJ, anchored 
through raspyn. Upstream of raspyn lies MuSk, part of the Agrin receptor complex, along with LRP4. 
APC is also thought to be involved, and is induced through Agrin. 
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Agrin, along with MuSK and Raspyn are essential components necessary for the 

aggregation of AChRs.
 
MuSK, a tyrosine kinase receptor, is thought to be part of the 

Agrin receptor complex.150 Important evidence showing MuSK-deficient mice lacked 

post-synaptic differentiation, but maintained the ability to transcribe and form AChRs 

provided evidence for them being part of the agrin receptors.151 Downstream of MuSK 

lies raspyn, a pivotal, intracellular, membrane-associated-cytoplasmic protein involved 

in post-synaptic differentiation. Raspyn can be found at the NMJ, appearing at 

approximately the same time as AChR clusters, as found in both in vitro and in vivo 

experimentation.152, 153 Nevertheless, the mechanism underpinning raspyn co-

localisation with AChRs remains unclear.  

 

Furthermore, agrin regulates the function of raspyn. Raspyn interacts directly with 

alpha-actinin and beta-catenin, which are involved in actin polymerisation. Actin 

regulates the function of raspyn and is also hypothesised to stabilise this unstable 

protein by promoting its binding to Hsp90B, a heat shock protein, thus preventing it 

being degraded within the synapse.154
 

 

Recent investigation into the function of the well-known transcription factor Nuclear 

Factor κB (NF-κB) has revealed its involvement in the regulation of raspyn.138 NF-κB is 

composed of homodimers or heterodimers of its constituent subunits, and is under tight 

regulation by inhibitor κB (IκB), an inhibitor that prevents it from becoming active until 

phosphorylation by IκB kinase, ultimately leading to transcriptional regulation.138 It was 

found that upregulation of Nf-κB promoted aggregation of AchR in vitro in C2C12 

myotubes, whereas inhibition of Nf-κB attenuated this. Following on from this, it was 

then found that this transcription factor is an essential component in regulation of the 

Nf-κB subunit RelA/P65, where elimination of this subunit results in decreased AChR 

clustering.138 

 

Lrp4, a low-density lipoprotein receptor expressed specifically in myotubes at the site of 
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the neuromuscular junction, has also been hypothesised to be involved in formation of 

the neuromuscular junction as knockout studies in mice show that Lrp4 deficient mice 

lack the ability to form neuromuscular junctions.151 
Further studies into the role of Lrp4 

in NMJ formation provide evidence for Lrp4 being an agrin-co-receptor, thus forming 

part of the AChR agrin-receptor complex. It is thought that Lrp4 binds to neural agrin 

and is required for induced Musk activation, and thus AChR clustering.151 
However, the 

mechanism by which Lrp4 aids in Musk activation remains uncertain. Another protein 

thought to be involved in AChR clustering is APC, which itself is also induced by agrin. 

APC is a key component in regulating cell migration and cell polarity and functions by 

binding to actin filaments/microtubules.156 
APC has been shown to be involved in the 

Wnt signalling pathway that regulates the cytoplasmic levels of beta-catenin156 
 

 

In conclusion, neural-derived agrin is pivotal in triggering differentiation and function of 

the post-synaptic membrane during neuromuscular junction formation through 

activating MusK and inducing co-aggregation of raspyn with AchRs on the post-synaptic 

end-plate. However, further research is required to elucidate the downstream signalling 

pathways of MusK and whether this signaling pathway cross-talks with the Wnt/beta-

catenin signalling pathway during synapse formation. 157  

 

1.4.1.2 ARIA in AChR accumulation 

As discussed, clustering of receptor proteins is involved in acetylcholine receptor 

accumulation. However, other factors are also involved, such as the selective 

transcription of AChR genes by nuclei specific to the synapse. ARIA is a secreted isoform 

of neureguin-1 and is secreted by motor neurons into the synaptic cleft.159 ARIA is a 

growth factor that binds ErbB tyrosine kinase receptors on the myotube surface, found 

to be concentrated at the active site of the NMJ.158 This led to the hypothesis that ARIA 

and agrin work in a coordinated motor secreted fasion – agrin being involved in the 

physical accumulation of AChR’s and ARIA activating the transcription of AChRs in the 
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local region.160, 127 In vitro findings show that ARIA increased mRNA for ACHR subunits, 

although subunit composition varies between species.161, 162 

 

1.2.3.2 Nuclei accumulation  

The positional identity of nuclei within cells of the same type can usually be found to be 

the same or similar, strongly suggesting that signaling cues exist that direct the 

migration and ‘homing’ of these nuclei. However, little remains clear about the 

molecules responsible for anchoring nuclei in place in vertebrate skeletal muscle. 

 

Nuclei can be found within a skeletal myotube at a relevantly even distribution; 

however, upon innervation and thus formation of the NMJ, clustering of nuclei at the 

myotube post-synaptic surface becomes apparent.163 Specifically, these nuclei usually 

exist in clusters of between 2 and 6 nuclei anchored directly beneath the post-synaptic 

end plate membrane. These nuclei become functionally specialized, and in vitro studies 

have found them to be involved in transcriptional regulation of proteins required at the 

NMJ.134 These nuclei, often termed ‘fundamental nuclei’ are characteristically found to 

contain hypertrophied nucleoli, and chromatin appears clear.164 Fundamental nuclei are 

involved in active transcription of AChR genes. Neuromuscular junctions and myotubes 

devoid of this nuclei clustering have been found to be mature and viable, suggesting 

nuclear aggregation is not essential for myotube maintenance at the NMJ once 

mature.165 

 

1.4 Investigating the neuromuscular junction.  

The neuromuscular junction, although a well-understood synapse compared to other 

synapses, still requires extensive analysis and elucidation. Knowledge of the NMJ has 

indeed significantly expanded over the past couple of decades, and it not only proves 

useful for morphological, physiological and pathophysiological studies of the NMJ, but 

the data obtained serves as a prototype for other synapses. However, much remains 

unknown with regards to molecular physiology and NMJ-specific diseases. As such, 
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modeling the NMJ is of significant importance to understanding the mechanisms 

underlying such pathologies.   

 

1.4.1 Diseases involving neuromuscular junctions  

Diseases of the neuromuscular junction comprise a broad range of disorders that can be 

classified into antibody-mediated, toxic, metabolic or congenital categories.166, 167 Much 

of the pathophysiology behind these diseases remains unknown, and therefore creating 

a model of the NMJ is paramount to finding treatments to the aforementioned diseases. 

 

These diseases involving antibodies, genetic mutations or toxins interfere with the 

functional capacity of the neuromuscular junction, consequently affecting signal 

transmission to muscles. Disorders affecting these junctions result in varying degrees of 

muscle weakness due to reduced/inhibited end-plate potential as a result of structural 

changes, usually at the pre-synaptic terminal.168 

  

One of the most common neuromuscular junction disorders is myasthenia gravis, a 

condition whereby an autoimmune attack of NMJ proteins leads to antagonistic effect 

the action of acetylcholine, by destruction of the receptor, or by completely removing 

the receptors from the postsynaptic membrane. These autoimmune antibodies have 

been found to target AchR, MusK as well as skeletal muscle proteins involved in 

neuromuscular transmission.169 

 

Lambert-Eaton syndrome is another common autoimmune neuromuscular junction 

disorder. This disease is characterized by reduced acetylcholine release into the synaptic 

cleft from the presynaptic nerve terminal. This disease, which usually presents with 

proximal weakness of the lower limbs which then travels in a cranial-caudal direction is 

caused by autoimmune antibodies directed towards P/Q-type voltage-gated calcium ion 

channels.170 
These antibodies impede with the calcium-dependent process of 

acetylcholine release, and hence reduce contractile ability.  
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As well as autoimmune interference of the neuromuscular junction, some diseases are 

the result of neurotoxins. For example, botulism is a disease caused by one of seven 

bacterial etoxins produced by Clostridium botulinum. This toxin enters cholinergic nerve 

terminals through binding to gangliosides, synaptotagmin or the synaptic vesicle protein 

SV2 (typically inside synaptic vesicles).171 
Following this, upon acetylcholine vesicle 

recycling, the toxin entraps itself inside the vesicle, before forming a pore that allows 

the toxin to bind to SNARE complex proteins, ultimately leading to insufficient 

acetylcholine release.171 

 

On the other hand, some disorders result in excessive depolarisation and 

neurotransmission, causing muscle fasciculations, for example neuromyotonia (also 

known as Isaacs syndrome).172 This condition, which often presents with involuntary 

muscle twitching and cramps, is of an autoimmune aetiology. The autoimmune 

antibodies leading to the pathophysiology of neuromyotonia target voltage-gated, their 

detailed, thorough elucidation and potential therapies are hindered by reproducibility of 

the true in vivo environment of such structures.172 Therefore, a robust, functional model 

of neuromuscular junctions duplicating the neuromuscular junctions would be 

extremely valuable in furthering knowledge of these structures, and their related 

pathologies. This is especially the case in the aforementioned diseases, in which 

particular intracellular/extracellular proteins of the neuromuscular junction are targeted 

by toxins or autoantibodies.  

 

1.4.2 Modeling the NMJ: In vitro vs. in vivo. 

In order to study the physiology and pathologies of neuromuscular junctions, many in 

vivo systems have been developed, including mouse diaphragm or Drosophila 

abdomen.173, 174, 175 
However, these in vivo systems come with disadvantages including 

short-lived experimental time frames and difficulty in manipulation techniques. To 

overcome these complications, in vitro co-culture of motor neurons with myoblasts 



39 
 

model systems have been generated. Early studies involving these co-culture systems 

found the formation of immature, thin myofibers and as a result, do not provide a 

robust model for studying the structure in a physiological or functional capacity.176 
As 

well as this, many models, although they appear to be forming neuromuscular junctions 

that truly recapitulate features of their in vivo environment, have not been studied to 

the extent that may be required to prove this.121, 176, 177 
Moreover, model systems 

whereby specialized structures including pre-synaptic and post-synaptic elements of 

vertebrate neuromuscular junctions are analyzed rather than the basic components will 

prove advantageous in obtaining a purer sample of true neuromuscular junctions. It can 

be found that most of the current models are analyzed through exploitation of 

components such as AChRs, but these merely indicate the presence of a neuromuscular 

junction rather than providing concrete evidence.177 
Therefore, an in vitro co-culture 

system whereby components such as MusK, LRP4 and raspyn are identified will be more 

standardized, reliable model that could also prove more appropriate for studying 

pathologies and potential treatments that target these specific proteins.  

 

In vitro modeling of neuromuscular junctions provides a compelling model that can be 

used in a plethora of applications including studying signal computation, studying their 

structure, as well as modeling diseases. If an in vitro neuromuscular junction model that 

recapitulates those in the vertebrate central nervous system can be developed, then the 

aforementioned diseases can be studied in greater depth, which will allow for greater 

capacity to develop potential therapies. The development of new experimental models 

of functional neuromuscular junctions that recapitulate the in vivo environment during 

embryogenesis will provide a useful tool for pharmacological analysis. This will allow a 

platform for studying neuromuscular junction disorders, as well as regenerative 

medicines/therapies to be tested.  

 

There exist many other advantages of in vitro models compared to in vivo. For example, 

by replicating the NMJ in an in vitro model, one is able to contribute to the reduction of 
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animals used in scientific research, which not only proves more ethical, but eliminates 

sample to sample variation. As well as this, in vitro models can often be used for larger 

scale experiments as they tend to be easily reproducible, with less regulation 

surrounding them and less limited by restrictions as they are more ethical. Results 

obtained from animal studies are often extrapolated and applied to human 

neuromuscular junctions, and this is a source of inaccuracy due to biological differences 

between animals and humans. 

 

1.4.2.1 In vitro co-culture modeling of the NMJ 

Synaptic transmission relies on communication between cellular constituents, thus a 

large scientific advance and effort on trying to mimic in vivo environment to elucidate 

mechanisms of transmission by creating an in vitro model of neuromuscular junctions. 

Currently, a plethora of models exist; none of these models are perfect however, all 

existing with their own advantages and limitations.  

 

Most successful in vitro systems consist of a co-culture of a skeletal muscle cell line co-

cultured with neural derivatives, whereby myotubes are formed and apparent 

interactions form between the two cell types.175 This In vitro modeling has allowed for 

scientists to observe acetylcholine receptor clustering in greater detail, in the presence 

of laminin, and without.178, 179 Elucidation of transmission at the NMJ has been made 

possible, as well as the biology underlying the formation of such a specialized synapse. 

For example, the idea that MuSK is required for NMJ formation and stability, as part of 

the agrin-MuSK-raspyn complex has only been allowed through in vitro verification.180 

 

1.4.2.1.1 Homologous vs. heterologous co-culture models 

The efficiency of the co-culture model often lies in the cell types used. Significant 

variation lies in the origin of the skeletal muscle and neurons and thus has an impact on 

not only NMJ formation, but also its similarity to the human NMJ. Homologous co-

culture systems have been described, and although contain two human cell lines, 
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making them more ‘applicable’ to human biology, are often hindered by their own 

limitations, including requirement of a primary human tissue, lack of identifiable 

structures, and the requirement of difficult surface modificational procedures prior to 

co-culture.181 Many heterologous co-culture systems have also been outlined whereby 

neural and muscle cells originate from different species – often containing one mouse or 

rat cell line.175 These co-culture systems remain the most widely used systems. For 

example, the murine C2C12 myoblast cell line is used in a plethora of studies, including 

both myogenesis studies as well as NMJ and will be discussed below (section 1.4.2.1.2). 

Particular studies involving human skeletal muscles have found the presence of 

immature myotubes, often lacking mature myofiber structure, and thus a murine 

skeletal myofiber showing enhanced levels of differentiation and mature myofibers 

structure, can be more appropriate for comparison to the human in vivo NMJ.182 Using a 

heterologous co-culture also allows the opportunity to differentiate between pre-

synaptic structures and post-synaptic structures, which prove indispensable in 

developmental studies. This is because, when the motor neural component is derived, 

for example from human stem cells, and the muscle from mouse myoblasts, species-

specific antibodies and protein analogues can be used to exploit proteins and antigens 

from different species. 

 

As for the neural component of co-culture models, many approaches have been tried. 

These commonly include, embryonic mouse or rat spinal cords or spinal stem cells.193, 184 

Other methods of co-culture involve the use of neural derivatives differentiated 

embryonic stem cells.181 

 

1.4.2.1.2 C2C12 cell line in co-culture models 

The C2C12 myoblast line is a cell line derived from murine skeletal muscle. This 

immortalized cell line is commonly used in myogenesis studies as well as co-culture 

systems as it readily differentiates into myotubes in low serum conditions.194, 187 Upon 

differentiation, the mononucleate myoblasts form long, multinucleated myotubules 
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with relatively little spontaneous contraction; because the C2C12 derived myotubules 

tend to lack the ability to spontaneously contract, it is possible to predict the presence 

of a functional neuromuscular junction when contraction occurs in the presence of 

neurons, which can then be investigated further.188  

 

This cell line has particular characteristics that make it different from human skeletal 

muscle, but many of these characteristics can be utilized opportunistically for specific 

areas of research.189 For example, as previously mentioned, MuSK is a protein required 

for neuromuscular junction formation and stability, and is found in significantly higher 

levels in the C2C12 cell line than in human muscle.190 However, this higher expression 

level has been utilized in studies looking at the function of MuSK in acetylcholine 

receptor clustering. In vitro co-culture studies were in fact used to isolate MuSK.191 

Another protein found to be markedly increased in co-cultures consisting of C2C12 

myotubes as opposed to human skeletal muscle is acetylcholine esterase (AChE); again, 

this phenomenon has been utilized for neurotransmitter breakdown and recycling 

studies.208 Moreover, in in vitro co-cultures involving C2C12 cells have been used to 

elucidate post-synaptic differentiation.193 

 

1.4.2.1.3 In vitro co-culture models involving derivatives of pluripotent 

stem cells 

For the neural aspect of establishing a co-culture, embryonic stem cells are often used. 

Embryonic stem cells (ES) are cells obtained from the embryo during early 

embryogenesis capable of unlimited proliferation and differentiation.193 These 

embryonic stem cells, due to their pluripotency, can be easily directed down a neural
 

lineage before co-culturing with muscle.181 

 

Scientists found that some cancers often contain the same broad range of differentiated 

cell types as the tissue they arise in, which led to the idea that this aberrant proliferation 
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and differentiation during oncogenesis is similar to that of stem cell proliferation and 

differentiation.196 
Teratocarcinomas are a subset of germ cell tumours that are highly 

malignant and contain a disorganized array of somatic and extraembryonic cells within 

bundles of embryonal carcinoma cells. The embryonal cells are the pluripotent cells of 

the tumour that propel proliferation and differentiation. Once extracted, it was found 

that these EC cells express characteristic surface antigens such as SSEA3, SSEA4, TRA-1-

60, TRA-1-81 and GCTM2.194 
Furthermore, similar to ES, EC cells express OCT4, which 

can be found to be down-regulation upon differentiation, thus providing a caricature of 

ES cells.203  

 

These embryonal carcinoma cells provide an experimental system to study the 

molecular mechanisms surrounding human embryonic development. Moreover, they 

are considered to be the neoplastic counterpart of embryonic stem cells.194 EC cells are 

adaptable, easier to maintain and proliferate faster, making them easier to culture in 

the long-run. Embryonic stem cells require culturing in the presence of embryonic 

feeder cells in order to maintain their pluripotency whereas many EC cell lines can be 

cultured without feeders.194 Furthermore, suboptimal culture conditions can result in 

spontaneous differentiation of embryonic stem cells, which leads to an impure 

population of cells containing unwanted cell types. As a result, a cell population, which 

is more restricted and easier to maintain in culture, is advantageous.  

 

Considerable variation exists among the EC cell lines available, each with differing 

strengths and weaknesses depending on the lineage of interest in a particular area of 

research.196 The differential capacity of EC cells compared to ES cells tends to be more 

restricted. This however, can be beneficial for certain experiments as it provides an 

easier, more manageable experimental alternative to embryonic stem cells. They are 

therefore cheaper and more robust as there is less spontaneous differentiation.169 
Thus, 

EC cells make an ideal candidate for the neural component of co-culture, as they are 

easily differentiated into motor neurons and easy to maintain.198 
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1.2.3.1.3.1 NTERA2.cl.SP12 cell line  

The isolation of particular EC clonal cell lines has provided a useful model for studying 

neurogenesis and neuromuscular junction formation. Neural differentiation studies 

often involve the use of the cell line N-TERA2 to study the mechanisms of neuronal 

development.198, 199, 200, 201, 202, 206 This is advantageous to studying neurogenesis during 

embryonal development, as it is a human-derived cell line, and is thus more useful in 

elucidating mechanisms pertinent to that of human embryogenesis as well as being 

more applicable to medicinal investigation.  

 

Through immunomagnetic sorting and single cell isolation techniques of SSEA-3 

expressing cells within TERA-2 cultures, a cell line expressing high pluripotency markers 

which, upon differentiation with retinoic acid, undergo down-regulation of these 

markers to become mature, electrophysiologically active neurons.203, 242 This cell line 

appears to show greater efficiency in differentiating in comparison to other TERA-2 cell 

lines such as TERA2.cl.D1.200 
Therefore, this cell line is a more robust, reliable model for 

neural differentiation studies.  

 

The TERA2.cl.SP12 cell line can be manipulated, through exposure to retinoic acid, down 

a neural differentiation route to form spheroid cultures, or neurospheres.192, 201 
This 

neurosphere culture method overcomes many of the limitations of neuritogenesis in 

standard monolayer culture systems, including difficulty in visualization and 

quantification.204 
This is because the neurites that radiate from the central aggregate 

core, with no apparent overlapping, which can be problematic in monolayer cultures.204 

 

1.5 Conclusions 

In conclusion, neuromuscular junction development is an important process and 

primarily involves the development of two different cellular systems, which interact to 

form chemical synapses. Over the past decade, considerable attention has been focused 
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on developing in vivo and in vitro models of forming motor neurons as well as 

neuromuscular junctions.181, 205 However, much of this research has focused on ES-

derived neurons in the co-culture models. Here, we aim to further previous research 

and develop a robust, well-defined, co-culture model using the EC cell line 

TERA2.cl.SP12 to derive neurospheres that can then be co-cultured with C2C12 

myotubes. Previous work at Durham University involved the co-culturing of C2C12 

myoblasts with TERA2.cl.SP12 neurons in monolayers.206 Although functional 

neuromuscular junctions formed, we believe that a co-culture involving neurospheres 

will allow a less complicated and more quantifiable, novel model system. This should 

allow for more reliable analysis of the neuromuscular junctions, including more reliable 

quantification of potential contractile events.  

 

After development of neuromuscular junctions through employment of this co-culture 

system, we then look to develop methods of enrichment, identification, and/or 

purification of neurons and neuromuscular junctions when co-cultured with 

TERA2.cl.SP12 derived neurospheres. Once a robust experimental design has been 

established, it should be possible to carry out pharmacological manipulation of 

cholinergic NMJs to test their functional capacity.  

 

1.5.1 Cell lines used  
 

The TERA2.cl.SP12 cell line will be used to provide a robust model of neurite outgrowth 

that can be co- cultured with C2C12 myoblasts. As previously mentioned, the 

TERA2.cl.SP12 line can be manipulation to commit to neural differentiation through 

formation of neurospheres.201, 204 The C2C12 myoblast line is a cell line derived from 

murine skeletal muscle. This immortalized cell line is commonly used in myogenesis 

studies as well as co-culture systems as it readily differentiates into myotubules in low 

serum conditions.77, 184 Upon differentiation, the myoblasts form long, multinucleated 

myotubules with relatively little spontaneous contraction; because the C2C12 derived 
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myotubules tend to lack the ability to spontaneously contract, it is possible to predict 

the presence of a functional neuromuscular junction when contraction occurs in the 

presence of neurons, which can then be investigated further. 

 

1.6 Hypothesis, aims and objectives  
 

1.6.1 Project hypothesis 

We hypothesised that co-culturing neurons derived from TERA2.cl.SP12 pluripotent 

stem cells with a proven C2C12 myoblast lineage, neuromuscular junctions will form in 

vitro. This will allow anatomical and functional characterisation to be carried out. In 

addition, we hypothesised that co-culture conditions can be enhanced through 

manipulation of a signalling pathway common to both cell types. 

 

1.6.2 Project aims 

 To investigate the development of neuromuscular junctions in vitro after 

designing a novel, quantifiable co-culture system. 

 To investigate the functionality of the co-culture system using a pharmacological 

approach. 

 

1.6.3 Objectives 

 Develop human neurons from TERA2.cl.SP12 stem cells through exposure to 

retinoids. 

 Develop mammalian skeletal muscle from C2C12 myoblasts and characterize the 

differentiation process. 

 Co-culture human neurons and mammalian skeletal muscle and characterize 

findings. 

 Develop and characterize a novel, robust and reproducible, in vitro model of 

neuromuscular junction formation. 



47 
 

 Investigate the effects of ROCK-signaling on the co-culture system developed 

 Manipulate the co-culture system pharmacologically to test functionality of 

neuromuscular junctions. 
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2.0 Materials and methods 
Scientific techniques and experiments used throughout the project allowed the 

development and investigation of neuromuscular junction formation, ranging from 

advanced cell culture techniques to advanced microscopy. This chapter describes 

experimental procedures as well as equipment used in obtaining the results discussed. 

 

2.1 Cell culture 

 

2.1.1 Cell line maintenance 

 

2.1.1.1 TERA2.cl.SP12 

Embryonal carcinoma cells are derived from teratocarcinomas, germ-line tumours. 

These cells closely resemble embryonic stem cells and can therefore be used as models 

for stem cell differentiation. The embryonic carcinoma cell line TERA2.cl.SP12 is an early 

passage sub-cell line of the TERA2 line that was isolated through immunomagnetic 

sorting and single cell isolation techniques based on expression of pluripotency marker 

SSEA-3.203 This TERA2.cl.SP12 cell line in particular, displays high levels of ES cell marker 

expression in undifferentiated state, followed by reduced levels of pluripotency markers 

and an increase in differentiation markers upon exposure to differential factors.194, 203, 

The cell line is particularly useful for neural differentiation studies as it exhibits a 

propensity to produce neural derivatives when exposed to retinoic acid.198, 202, 211 As an 

embryonal carcinoma cell line, TERA2.cl.SP12 does not require feeder cells, but instead 

culturing at high confluence maintains pluripotency potential.203 

 

2.1.1.1.1 Revival and Cryopreservation 

Upon revival, the cells were rapidly transferred from -140 °C storage into a 37 °C water-

bath to permit thawing. Immediately after thawing, the cells were then added to 9 mL 

maintenance media consisting of 10% foetal bovine serum (Thermofisher Scientific, 
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Massachusetts, USA) supplemented DMEM (ThermoFisher Scientific), 2mM L-glutamine 

(ThermoFisher Scientific) and 20 active units of penicillin and streptomycin 

(ThermoFisher Scientific), which was then centrifuged to obtain a cell pellet at 1000rpm 

for 3 minutes. The supernatant was then aspirated away allowing the cell pellet to be 

re-suspended in 10 mL maintenance medium before being transferred into a 25cm2 BD 

Falcon culture flask (BD Falcon, Erembodegem, Belgium). This flask was incubated at 37 

°C, 5% CO2
 in a humidified environment until fully confluent, at which point the cells 

were passaged into a 75cm2 culture flask (BD Falcon) at a 1:1 ratio. Subsequent cells 

were maintained at high confluence to avoid loss of pluripotency.  

 

For cryopreservation, confluent T75cm2 flasks were trypsinised using 0.25% Trypsin 

EDTA (ThermoFisher Scientific) before centrifugation at 1000rpm for 3 minutes. 

Subsequent aspiration of the supernatant allowed for cells to be re-suspended in 10 mL 

heat treated FBS (ThermoFisher Scientific) supplemented with 10% dimethyl sulfoxide 

(DMSO, Sigma-Aldrich, Dorset, UK). This cell suspension was further aliquoted into 10 

cryovials (ThermoFisher Scientific), each to contain a final volume of 1 mL of the cell 

suspension. Cryovials were then frozen down at a rate of -1 °C per minute at -80 °C; 

following which, cell stocks were transferred for storage at -150 °C. 

 

2.1.1.1.2 Maintenance 

The pluripotent stem cell TERA2.cl.SP12 line was maintained in Dulbecco’s modified 

Eagle’s medium supplemented with 10% heat-treated FBS, 2mM L-glutamine and 20 

active units of Penicillin and Streptomycin. The cells were maintained at 37 degrees 

Celsius at a carbon dioxide concentration of 5%. In order to retain the pluripotent 

potential of the stem cells, they were kept at high confluence (above 70%) in 75cm2 BD 

falcon flasks and passaged whenever they reached 100% confluence, approximately 

every 3-4 days (see Figure 2.1.1.1.2). 
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Upon reaching full confluence in the 75cm2 flasks (Panel C -Figure 2.1.1.1.2), cells were 

passaged to ensure pluripotency by splitting them in a 1:3 ratio. Media was aspirated 

from the flask before washing in 3ml sterile PBS. Following this, cells were mechanically 

dislodged from the flask using sterile acid-washed glass beads (ThermoFisher Scientific). 

The dislodged cells were then divided three-way and seeded into a further three 75cm2 

culture flasks and maintenance media was topped up to 20ml. 

 

2.1.1.2 C2C12 myoblasts 

The C2C12 myoblast line (ATCC, Middlesex, UK) is a cell line derived from murine 

skeletal muscle. This immortalized cell line provides a robust, reliable model of in vitro 

skeletal muscle differentiation and is thus readily used in proliferation and 

differentiation studies as well as co-culture systems.175, 200, 207 C2C12 myoblasts readily 

proliferate in high-serum conditions. Upon differentiation however, the myoblasts 

undergo G2 phase cell cycle withdrawal, activation of muscle specific genes, before 

fusing to form long, multinucleated myotubules with relatively little spontaneous 

contraction.69 Because the C2C12 derived myotubules tend to lack the ability to 

spontaneously contract, it is possible to predict the presence of a functional 

neuromuscular junction when contraction occurs in the presence of neurons, which can 

then be investigated further.  

 

Figure 2.1.1.1.2:  TERA2.cl.SP12 cell population at low (A),  medium (B)  and high (C) 
confluence. Phase contrast micrographs show the embryonal carcinoma line at different stages during the 
cell maintenance process. Cells should be maintained at high confluence to maintain pluripotentcy. Scale 
bars = 100 μm 
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2.1.1.2.1 Revival and Cryopreservation 

C2C12 myoblasts were revived following the same method outlined for TERA2.cl.SP12 

cells (refer to section 2.1.2.1.1), although they were revived directly into a T175cm2 

culture flask (Greiner Bio-One, Gloucestershire, UK). 

 

For cryopreservation, approximately 60% confluent T175cm2 flasks were trypsinised and 

the resultant cell suspension was centrifuged and then resuspended in 6 mL freezing 

media. Freezing media consisted of maintenance media supplemented with 5% DMSO. 1 

cell suspension was added to a cryovial and frozen down. 

  

2.1.1.2.2 Maintenance 

Mouse C2C12 myoblasts were maintained in DMEM supplemented with 10% fetal 

bovine serum, as well as 2mM L-glutamine and 20 active units of Penicillin and 

Streptomycin at 37 °C, 5% CO2 in a humidified environment. Myoblasts were maintained 

around 40-50% confluent to avoid spontaneous differentiation, and thus maintenance 

of the myoblast population. To passage the cells, maintenance media was aspirated 

from the flasks before washing in approximately 4 mL PBS. 3mL of 0.25% Trypsin EDTA 

was then added to the flask and incubated for 3-4 minutes at 37 °C.  

 

Trypsin was then neutralised through addition of 7 mL maintenance media before 

transferring the cell suspension into a 15 mL Falcon tube (Greiner Bio-One) for 

centrifugation at 1000rpm for 3 minutes. A viable cell count was then performed using a 

trypan blue (Sigma-Aldrich) exclusion assay using a haemocytometer and then the cells 

were seeded into T175cm2’s at a density of 0.5million per T175cm2. Maintenance media 

was then topped up to achieve a total volume of 25 mL. 
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2.1.2 Neuron production from stem cells 

TERA2.cl.SP12 stem cells were maintained as outlined in section 2.1.2.1.2. In 

preparation for neural differentiation, confluent T75 culture flasks were trypsinised with 

0.25% trypsin/2mM EDTA for 3 minutes before addition of 7 mL fresh maintenance 

media to the flask in order to neutralise the trypsin. This resulting cell suspension was 

then pipetted into a 15 mL Falcon tube and centrifuged before removal of the 

supernatant and resuspension in 5mL maintenance media. Using a trypan blue exclusion 

assay, cell number was counted and 0.5 x 106 cells were seeded into a fresh T75 culture 

flask. Maintenance media was then topped up to achieve a total volume of 20 mL.  

 

2.1.2.1 Neuron production through natural retinoid and dissociation 

culture 

For induction of differentiation from TERA2.cl.SP12 stem cells using natural retinoid 

compound all-trans-retinoid-acid (ATRA; Sigma-Aldrich). 20 μL of 20 mM ATRA was 

added to the induction media to achieve a final concentration of 20 μM. Differentiation 

media was changed every 3-4 days for 21 days. 

 

Figure 2.1.2.2.2:  C2C12 myoblasts at low (A),  medium (B),  and high (C) confluence. Phase 
contrast images show the myoblasts at different stages in the maintenance process. Cells are to be 
maintained around 40-50% confluent, as shown in B to maintain myoblastic population. Scale bars = 25 μm 
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2.1.2.2 Neuron production through synthetic retinoid and dissociation 

culture 

For neural differentiation of stem cells using synthetic retinoid EC23 (Reprocell Europe), 

20 μL of 0.01 mM of EC23 was added to the induction media to achieve a final 

concentration of 0.01 μM. Differentiation media was changed every 3-4 days for 21 

days. 

 

Following 21 days differentiation through exposure to retinoic acid, all cultures were 

dissociated using 3 mL 0.25% trypsin/2 mM EDTA for 10 minutes at room temperature 

(RT). Subsequent neutralisation was carried out through addition of 7 mL maintenance 

media and then centrifugation to obtain a cell pellet that was then resuspended in 4 mL 

maintenance media. Cell suspensions were then split 1:4 and seeded into fresh T75 

tissue culture dishes containing 20 mL maintenance media, without retinoids for 3-4 

days. To enhance neural derivatives within culture, mitotic inhibitors were included in 

maintenance media: 1 μM cytosine arabinoside (Sigma-Aldrich), 10 μM uridine (Sigma-

Aldrich), and 10 μM 5’fluoro 2’deoxyuridine (Sigma-Aldrich). 

 

Following this, the culture flasks were exposed to a light trypsinisation using 0.1% 

trypsin/EDTA for 2 minutes; for this, a 2.5X dilution of 0.25% trypsin/2 mM EDTA was 

carried out in versene (ThermoFisher Scientific). This trypsinisation allows cells that are 

loosely attached to the surface (predominantly neurons) to be mechanically dislodged 

through three-five lateral, sharp blows to the side of the culture flask, whilst other more 

adherent cells remain attached. These displaced cells are immediately neutralised using 

maintenance media and collected in a 15 mL Falcon, centrifuged, and counted using a 

trypan blue exclusion assay. Cells are then seeded at a density of 2 x 105 /cm in 12-well 

or 48-well plates (Greiner Bio-One) for monoculture or co-culture studies. 

 

More purified cultures of neurons were obtained through addition of resulting cell 

suspension back into a fresh T75 culture flask containing 20 mL maintenance media and 
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mitotic inhibitors, repeating the 3-4 day culture period before a further light 

trypsinisation. 

 

2.1.3 Neurosphere formation 

Maintenance media was removed from confluent T75 tissue culture flasks of 

TERA2.cl.SP12 stem cells and then they were washed in 3 mL sterile PBS. They were 

then trypsinised using 3 mL 0.25% trypsin/EDTA and counted using a haemocytometer 

to count viable cells after a trypan blue exclusion assay in which 10 μL of cell suspension 

was diluted with 10 μl of trypan blue. Following this, the cells were seeded into 90mm, 

sterile, untreated biological Petri dishes (ThermoFisher Scientific) at a density of 1.5 x 

106 per Petri dish. Maintenance media was topped up to 20 mL and incubated at 37 °C, 

5% CO2 in a humidified environment for 24 hours to promote aggregation of cells. 

 

Following this 24-hour incubation period to allow the cells to aggregate, the synthetic 

retinoid compound, EC23 was added to the Petri dishes at a final concentration of 0.01 

μM. To achieve this, 20 μL of a 0.01 mM EC23 stock was added to the existing 20 mL 

maintenance medium in the Petri dish, thus constituting the differentiation medium for 

neurosphere formation. These Petri dishes were cultured for 21 days at 37 °C, 5% CO2 in 

a humidified environment, with a media change every 3-4 days. To change the 

Figure 2.1.4: The Key stages involved in neurite outgrowth for  both 2D monoculture and co-
culture studies.  After revival of the TERA2.cl.SP12 cell line (A), cell population is expanded and passaged 
where necessary (B), maintaining populations at high confluence. Cells are then seeded into Petri dishes, where 
they are allowed to aggregate for 24 hours (C) prior to addition of synthetic retinoid EC23 to direct aggregates 
down a neural lineage (D). After 21 days, mature neurospheres can be extracted from the media and added into 
plates foe neurite outgrowth/co-culture studies (E). 
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differentiation medium, the cell suspension was transferred into a 50 mL Falcon tube 

and then left for 5 minutes, allowing the cells to settle to the bottom. Once settled at 

the bottom of the tube, the old differentiation medium was aspirated off before 

addition of 20mL of fresh differentiation medium to re-suspend the cell sediment. This 

new cell suspension was then directly seeded into a new 90mm untreated, biological 

Petri dish. After 21 days, the aggregates had formed mature neurospheres. See Figure 

2.1.4. 

 

2.1.4 Induction of neurite outgrowth from neurospheres 

 

2.1.4.1 Coating of culture plates for neurite outgrowth 

500 μL coating solution consisting of 1 mgmL-1 Laminin from Engelberth-Holm-Swarm 

murine sarcoma membrane (Sigma-Aldrich) as well as 500 μL of 1 mgmL-1 poly-D-lysine 

(Sigma-Aldrich) (produced through addition of poly-D-lysine powder to 49mL Ca2+ and 

Mg2+ free PBS and 1mL phosphate buffered saline was added to each well of a 12-well 

tissue culture plate or 150μL to each well of a 48-well plate. These plates were sealed 

using parafilm (ThermoFisher Scientific) and incubated overnight at room temperature. 

Following overnight incubation, the coating solution was aspirated off and each well was 

washed 3 times with sterile PBS ready for seeding of neurospheres. 

 

2.1.4.2 Induction of neurite outgrowth 

Once mature neurospheres had been obtained after 21 days of TERA2.cl.SP12 culture in 

differentiation medium, individual neurospheres were seeded onto pre-coated 12-well 

and 48-well plates for 2D neurite outgrowth studies. To do this, neurospheres and 

differentiation medium were removed from the Petri dish with a 25mL pipette (Greiner 

Bio One, Gloucester, UK) before being passed through a 100μm cell strainer (BD Falcon), 

allowing the neurospheres to be separated from the differentiation medium as well as 

removing any single cells and cellular debris. The cell strainer was then backwashed 
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using fresh maintenance media into a new 90mm untreated, biological Petri dish. 300 μL 

maintenance media as added to each well per 12-well plates and 150μL to each well in 

the 48-well culture plates. This maintenance media consisted DMEM, 10% FBS, 2 mM L-

glutamine, 20 active units of penicillin and streptomycin supplemented with the 

following mitotic inhibitors: 1 μM cytosine arabinose (Sigma-Aldrich), 10 μM 5-fluoro 

2’deoxyuridine (Sigma-Aldrich) and 10 μM uridine (Sigma-Aldrich). A 200 μL pipette was 

then used to extract 20 μL of the media containing 1-2 neurospheres and adding them 

to each well. These plates were then incubated at 37 °C, 5% CO2 in a humidified 

environment for 10 days. 

 

2.1.4.3 The effect of ROCK signaling on neurite outgrowth 

In order to investigate and enhance neurite outgrowth from neurospheres, a selective 

ROCK inhibitor, Y-27632 (TOCRIS Bioscience, Abingdon, UK) was added to the culture 

medium. For this, Y-27632 was added to the culture medium at the 10-day neurite 

outgrowth stage at a final concentration of 10 μM. 

 

 

2.1.5 Myotube formation 

C2C12 myoblasts were seeded into 12-well plates for differentiation studies prior to 

immunofluorescence analysis and co-culture. Cells were seeded at a density of 8 x 103 

cells per well of a 12 well plate containing 3 mL maintenance media. This maintenance 

media was changed every 2 days until the cells reached approximately 90% confluent, at 

which point maintenance media was changed to differentiation media to induce 

differentiation of myoblasts into myotubes. Differentiation media consisted of DMEM 

supplemented with 2% horse serum (Sigma-Aldrich), 2mM L-glutamine and 100mg/ml 

Penicillin and Streptomycin. Mitotic inhibitors, 1 μM cytosine arabinose, 10 μM 5-fluor 

2’deoxyuridine and 10 μM uridine, can also be included in the differentiation media to 

prevent the cell population becoming over-confluent in culture. 
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2.1.5.1 The effect of ROCK signaling on myotube formation 

To investigate the effect of ROCK signaling on myotube formation, ROCK inhibitor Y-

27632 was added to differentiation media at a final concentration of 10 μM. This 

differentiation media was changed every 2 days until mature myotubes were formed 

around day 5. 

 

2.1.6 Neuron-myotube co-culture 

For co-culture, 12-well plates were coated with substrate growth coating as outlined in 

section 2.1.5.1 24 hours prior to addition of C2C12 myoblasts. Mature myotubes were 

formed from C2C12 myoblasts as described in 2.1.6. Neurons produced from 

TERA2.cl.SP12 stem cells (as described in section 2.1.3) were seeded on top of mature 

myotubes in 12 well plates at a density of approximately 2.0 x 105 cells/cm2 per well. 3 

mL of culture media was added to each well and a half-media change was carefully 

performed daily, making sure the base of the well was not disturbed. Culture media 

consisted of 10% FBS supplemented DMEM, 2mM L-glutamine and 

Penicillin/Streptomycin along with mitotic inhibitors: 1 μM cytosine arabinose, 10 μM 5-

fluor 2’deoxyuridine and 10 μM uridine. After 10 days, cultures were fixed using 4% 

paraformaldehyde for later analysis. 

  

 

 

 

 

 

 

2.1.7 Neurosphere-myotube co-culture 

Glass coverslips (ThermoFisher Scientific) were added to 12 well plates before coating as 

outlined in section 2.1.5.1.  

 

Figure 2.1.7: Schematic showing the neuron-myotube co-culture set up.  Neurons (red) can be seeded in 
monolayers on top of mature myotubes (green) and co-cultured to allow potential interactions to form between 
the cell types. 
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Mammalian myotubes were again produced from C2C12 myoblasts as outlined in 

section 2.1.6. After neurospheres were cultures (refer to section 2.1.4), neurospheres 

were washed with maintenance media by pipetting neurosphere cell suspension 

through a 100 μm cell strainer (Sigma-Aldrich) into a 50 mL falcon tube. The cell strainer 

was then backwashed using maintenance media into a fresh sterile, biological 90mm 

Petri dish. Differentiation media was removed from the 12-well plate containing mature 

myotubes and replaced with 3 mL co-culture media, consisting of DMEM, 2mM L-

glutamine, Penicillin/Streptomycin, and mitotic inhibitors 1 μM cytosine arabinose, 10 

μM 5-fluor 2’deoxyuridine and 10 μM uridine. Subsequent addition of neurospheres on 

top of the mature myotubes was performed by pipetting 20 μL of the freshly washed 

neurosphere media containing approximately 3 neurospheres from the Petri dish into 

each well of the 12 well plate. A half media change was carried out every other day for 

10 days until the co-culture was ready for fixation and/or analysis. This co-culture setup 

is illustrated in Figure 2.1.8. 

 

 

 

 

 

2.1.7.1 Introduction of ROCK inhibitor Y-27632 into co-culture system 

In order to investigate the effects of ROCK signalling on the co-culture system, the ROCK 

inhibitor Y-27632 was incorporated into the co-culture media (outlined in the previous 

section) at a final concentration of 10 μM. This co-culture system required a half-media 

Figure 2.1.8: Schematic showing the neurosphere-myotube co-culture set up.  Neurites radiate from the 
neurosphere (red) seeded on top of mature myotubes (green), allowing potential interactions to form 
between the two cell types. 
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change daily whereby 1.5 mL of media from each well of the 12 well plate was removed 

and discarded using a P1000 pipette, followed by addition of 1.5 mL fresh co-culture 

media. 

 

2.1.7.2 Addition of Acetylcholine to the co-culture system 

To investigate the functional capacity of the neurosphere co-culture system, non-

selective AChR agonist acetycholine chloride (Sigma-Aldrich) was introduced into the co-

culture system after 10 days of co-culture, at a final concentration of 0.01 μM. Cultures 

were immediately visualized using phase-contrast microscopy and any movement 

imaged/videoed. As a negative control, acetylcholine was added to 10-day old mature 

myotube monocultures at a final concentration of 0.01 μM.  

 

2.2 Analytical techniques 

 

2.2.1 Fixation of samples 

For fixation of samples in the 12 and 48 well plates, remaining media from each well 

was aspirated before washing in 1 mL PBS. Fixing solution – 4% PFA was then added to 

each well (2 mL to 12-well and 500 μL to 48-well plates). For studies involving 

neurospheres, fixing solution was left for one hour to allow penetration of the 

neurosphere mass. For studies on C2C12 derived cells or monolayers of neurons, the 

fixing solution was left for 20 minutes. This fixing solution was then aspirated off before 

washing 3 times in 1 mL PBS. Plates were then stored in PBS prior to 

immunofluorescence analysis. 

 

2.2.2 Immunofluorescence staining 

Subsequent to fixation, coverslips/wells were exposed to 0.1% Triton-X100 

(ThermoFisher Scientific) in PBS for 10 minutes in order to permeabilise cells. After 

removal of permeabilisation solution, blocking buffer consisting of 0.01 % Tween 
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(Sigma-Aldrich), 1% neonatal goat serum (NGS, Sigma-Aldrich) in PBS for 1 hour, on ice. 

Primary antibody was then added and allowed to incubate for 1 hour whilst slowly 

rocking. Following its removal, primary antibody was washed off by performing 3 

consecutive 10-minute washes in blocking buffer, directly followed by the addition of 

fluorescent secondary antibodies along with Hoerchst 33342 (Thermofisher) to 

counterstain nuclei. After 1-hour incubation with secondary antibodies, samples were 

subjected to 3 further 10-minute washes in blocking buffer and stored in PBS before 

analysis or mounting of coverslips. 

 

All antibodies were diluted in blocking buffer, a summary of which can be found in 

section 2.2.5 

 

2.2.3 Phalloidin staining of F-actin 

F-actin filaments were stained using phalloidin-FITC stain (Cytoskeleton Inc., DENVER, 

USA). The protocol for actin staining varied depending on the type of culture being 

stained, as outlined below.  

 

2.2.3.1 Phalloidin staining of F-actin in monoculture 

For phalloidin-FITC staining of F-actin in monocultures of C2C12 cells, cell cultures were 

fixed (see section 2.2.1) and stored in PBS. PBS was then removed and cultures were 

permeabilized for 5 minutes using 0.1% Triton-X100. Following this, permeabilisation 

buffer was pipetted off and cultures were washed in PBS for 30 seconds. A phalloidin-

FITC stock solution was prepared consisting of 3.5 μL per 500 μL PBS and 300 μL of this 

solution was added to each well of a 12-well plate. Once added, the plate was incubated 

at room temperature, in darkness for 30 minutes. Cultures then underwent three 

consecutive 30-second washes in PBS. To counterstain nuclei in the monoculture, 

Hoescht 33342 was added for 5 minutes (1:1000 dilution). Cultures were then rinsed 

and washed in PBS before storing in PBS or mounting. 
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2.2.3.2 Phalloidin staining of F-actin in co-culture 

In co-culture involving two cell types, for example neurons and C2C12 cells, 

immunocytochemistry was carried out and therefore the phalloidin-FITC stain was 

integrated into the protocol outlined in section 2.2.2. phalloidin-FITC was integrated 

into the secondary antibody solution with blocking buffer and incubated for 1 hour 

alongside the Hoescht 33342 stain to counterstain nuclei. 

 

2.2.4 alpha-bungarotoxin staining 

To visualise acetylcholine receptors, alpha-bungarotoxin (Invitrogen, California, USA) 

stain was used. Alpha bungarotoxin is a 74-amino acid peptide that is extracted from the 

venom of Bungarus multicinctu. It binds to the alpha-subunit of acetylcholine receptors 

with high affinity, and thus, when conjugated to an Alexafluor molecule, is of extreme 

use in the identification and visualisation of nicotinic acetylcholine receptors in muscle 

and at neuromuscular junctions. 

 

2.2.4.1 Staining in monoculture 

In monoculture studies, cultures were permeabilized using 0.1% Triton-X100 for 10 

minutes, followed by a 30 second wash in PBS. Alpha-bungarotoxin was diluted in PBS 

(1:400), and 300 μL of this solution was added to each well of a 12 well plate. Following 

removal of the alpha-bungarotoxin stain, cultures were washed for 30 seconds in PBS 

three times. Hoescht 3342 was then added to counterstain nuclei for 5 minutes, 

followed by a final PBS wash. 

 

2.2.4.2 Staining in co-culture 

For co-culture staining, alpha-bungarotoxin staining was incorporated into the 

secondary antibody solution involved in immunofluorescent staining and staining 

occurred as outlined in section 2.2.2. Thus, cultures were incubated for 1 hour with the 

stain alongside the hoescht 33342 nuclei stain. 
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2.2.5 Summary of antibodies and stained used in analysis 

 

  

 

 

 

 

 

 

 

 

Target Supplier Product code Host species Dilution 

B-III-tubulin Cambridge bioscience 3525-100  Rabbit 1:600 

Myosin heavy chain R&D system MAB4470 Mouse 1:500 

Antibody Supplier Dilution Host Product code 

Alexafluor anti-rabbit 488 Thermofisher 1:600  Goat A-11034  

 

Alexafluor anti-rabbit 594 Thermofisher 1:600 Goat AB-2556547 

 

Alexafluor anti-mouse 594 Thermofisher 1:600 Goat A-21203  

 

Name Target Supplier Product code Dilution Emission 

Wavelength 

Acti-stain 

phalloidin-FITC 

Actin Cytoskeleton PHDG1 
 

3.5 μL / 1mL 

solution 

488 

Hoechst 33342  

 

Nuclei Thermofisher H3570  

 

1:1000  

Alpha-

bungarotoxin 

Alexafluor 

Aceylcholine 

receptor 

Thermofisher  B13423 

 

1:400  594 

Table 2.2.5-1 – Summary of primary antibodies used in immunofluorescence. All of the primary antibodies used in 
immunofluorescence analysis of 2D samples; their respective supplier, product code and species in which they were obtained 
from are also listed. All of the antibodies were diluted in blocking buffer. 

Table 2.2.5-2 – Summary of secondary antibodies used in immunofluorescence. All of the secondary antibodies used in 
immunofluorescence analysis of 2D samples; their respective supplier, product code and species in which they were obtained 
from are also listed. All of the antibodies were diluted in blocking buffer at the dilutions listed above. 

Table 2.2.5-3 – Summary of stains used in fluorescence analysis of cultures. All stains have listed suppliers, product codes, the 
dilution used, and their emission wavelength. 
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2.2.6 ImageJ analysis of neurite outgrowth 

In order to quantify neurite outgrowth, neurosphere cultures were stained as previously 

outlined, using the pan-neuronal marker TUJ1, which immunofluorescently stains 

neurites, whether they are in monolayer culture or in neurosphere culture. Digital 

images of the staining were obtained using the confocal microscope, then opened in 

Software package designed for image analysis – ImageJ (imagej.nih.gov). A scale was 

then set in the software, representative to the size of the image loaded. To do this, 

using the line tool, a line was traced over the existing scale bar on the image, followed 

by Analyse > Set Scale. A scale box then appeared, allowing the size of the scale bar to 

be inputted in μm.  

 

 

 

 

 

Figure 2.2.6: Neurite quantification was performed using ImageJ. To quantify neurite length and 
neurite density, a grid was overlayed over neurosphere images. Boxes containing edges of the neurosphere 
where neurites protrude were numbered accordingly. Then, using a random number generator, 3 numbers were 
obtained and the neurites within the boxes were traced using the freehand line tool (shown here) and measured.  
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To set up a random sampling method of neurite quantification, and to avoid bias of 

neurites quantified, a grid was over-laid on the image and boxes where neurites 

protruded were numbered appropriately. Then, using a random number generator 

(random.org), three random numbers were acquired, and the neurites within boxes 

with the corresponding number were measured (see Figure 2.2.6). 

 

The ‘Freehand Line’ tool was then selected, and used to trace out neurites from central-

most part, outwards. Following this, by clicking Analyze then measure, and Analyze then 

Draw, it was possible to measure the length of each neurite in μm, and to draw on the 

image which ones had been measured. Consequently, a table was produced containing 

a number assigned to each neurite measured, and its respective length. This raw data 

was then extracted and quantified to give neurite length, and neurite density per 

neurosphere. This method of neurite quantification was used throughout the project 

when neurites required quantification, and has previously been shown to be as efficient 

as quantifying all individual neurites.204 

 

2.2.7 ImageJ analysis of myotube number 

To quantify myotube number in monoculture, myotubes were differentiated from 

C2C12 myoblasts as previously outlined, and images were taken daily following 

switching of media to differentiation media. Cultures were imaged using the 40X 

objective lens on the phase-contrast microscope. These images were then imported into 

Image J software for image analysis, where a scale bar of appropriate length was added. 

The line tool was used to draw on any myotubes measuring longer than 120 μm, and the 

draw function (D) was used to keep track by permanently marking them. This 

quantification method was based on findings that mature C2C12 myotubes average a 

length between 130 μm and 520 μm.240 Therefore, following this quantification method, 

myotube number herein refers to myotube number per 40X field of view (approximately 

210 μm x 170 μm) 
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2.2.8 MHC quantification  

In order to quantify expression of MHC in mature myotubes using ImageJ, confocal 

microscope images obtained using the x20 lens were used. In these, F-actin of myotubes 

were stained green with phalloidin-FITC, nuclei counterstained blue with Hoechst, and 

MHC stained red with an anti-MHC antibody. Images were imported into the ImageJ 

software, and appropriate scale bars added. Myotubes measuring longer than 125 μm 

were first counted and using the draw function (D), were marked for easy identification. 

Marked myotubes that expressed MHC (red) were then counted, and quantified as an 

expression of total myotubes present in each 20x image. For ease of identification of 

MHC expressing myotubes, Zen Blue software was used to split the colour channels, 

which allowed red only to be observed and compared to total myotubes. 

 

2.3 Microscopy 

Different microscopy techniques were employed throughout this project. 

 

2.3.1 Phase contrast microscopy 

Live cells were imaged/recorded using the Leica DFC 310FX with digital camera DMI 

3000B. Objective lenses x10, x20, and x40 were used. 

 

2.3.2 Confocal microscopy 

Confocal images were obtained on the Zeiss 880 confocal laser-scanning microscope 

with airyscan. The x10 EC Plan Neo DC I, x20 Plan Apochromat DIC II, x40 EC Plan Neo 

DIC II, and x63 Plan Apochromat DIC II lenses were used. Zeiss Zen software was used to 

capture images, tile-scans and Z-stacks.  

 

2.4 Statistical analysis 

Graphpad Prism v6 was used for all statistical tests performed on data sets. Relevant 

statistical tests including Student’s T-test and One-way ANOVA were performed. 
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Significance is represented in data shown using stars, where * = p ≤ 0.05; **  = p ≤ 0.01; 

*** = p ≤ 0.001 and **** = p ≤ 0.0001. 
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3.0 Results 
 

3.1 Generation of human neurons from TERA2.cl.SP12 stem cells  

Stem cells were cultured as outlined in section 2.1.1.1 and maintained at a high 

confluence to ensure pluripotent phenotype was maintained. This high confluence 

enables cell-cell contact between the stem cells is ensured, facilitating important 

crosstalk and signalling between cells, including Notch signalling. Human neurons were 

then generated from TERA2.cl.SP12 stem cells through various methods, using both 

natural and synthetic retinoids to direct the stem cells down a neural lineage. 

 

3.1.1 Differentiating human neurons from stem cells through 

exposure to retinoids 

Monolayers of human neurons were produced through exposing TERA2.cl.SP12 to 

natural retinoid, 10μM ATRA or synthetic retinoid, 0.01 μM EC23. The stem cells are 

extremely sensitive to retinoids, and form neurites in culture upon exposure. This 

method utilises the propensity of the embryonal carcinoma cell line to produce neural 

derivatives of a low-adhesive nature.200 Any contaminating cells not of a neural lineage 

tend to be more adhesive, thus an increased purity of neurons can be obtained through 

repeated light trypsinisation to remove neural cells and transferring to a new culture 

flask.200 

 

Upon treatment with either retinoid, stem cells lost their typical stem-cell morphological 

appearance, adopting a more neural-like phenotype. During this process the stem cells, 

which existed as rounded mononucleate clustered cells, lost their characteristic stem 

cell phenotype as they differentiated. Differentiating neural cells initially produced a 

protrusion at the leading edge of the cell, later elongating and maturing to become a 

neurite. Differentiated neurons were collected from the flasks in which they were 
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cultured with EC23 or ATRA, and seeded onto laminin and poly-D-lysine coated 12-well 

plates, and subsequently cultured for 5 days. 

 

Immunofluorescence visualisation was achieved by staining cultures after fixation with 

pan-neuronal marker, TUJ-1, and nuclear counterstain, Hoechst. Neurons appeared 

larger than the cells from which they were differentiated, and more homogenous. 

Contaminating cells were observed in the background, shown by the positive nuclear 

staining (Figure 3.1.1). There were no apparent differences between the neurons 

produced through ATRA exposure, compared to EC23, although full neuron counts were 

not performed, and cells were seeded at the same density in both cases. Mitotic 

inhibitors were included in the culture medium to prevent further proliferation of any 

contaminating cells. Contaminating cells were obvious in culture (circled, Figure 3.1.1). 

 

3.1.2 Formation of neurospheres from stem cells through synthetic 

retinoid exposure 

Another approach to neurite outgrowth can be performed through generation of 

spheroid cultures from TERA2.cl.SP12 stem cells. Confluent TERA2.cl.SP12 stem cell 

cultures (Figure 3.1.2, Panel A) are dissociated and seeded into Petri dishes, where they 

are allowed to adhere for 24 hours to form stem cell spheroids (Figure 3.1.2, Panel B). At 

which point, they are cultured in the presence of synthetic retinoid EC23 for 21 days, 

promoting acquisition of a neural lineage.          
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Figure 3.1.1: TERA2.cl.SP12 stem cells can be differentiated into human neurons through exposure to 
retinoids using cell  dissociative culture method. Neurons differentiated from stem cells using natural retinoid ATRA (left) 
or synthetic retinoid EC23 (right) were seeded into laminin and poly-D-lysine coated 2D culture plates for 5 days before fixation 
and immunofluorescence analysis. Confocal images show Tuj1 (green) stained neurites (N) and Hoechst (blue) stained nuclei. 
Contaminating cells are also present (C). Bottom panel is higher magnification than upper panel. Negative control not shown. Scale 
bars = 100 μm. 
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3.1.3 Neurite outgrowth from neurospheres 

Neurospheres appeared in suspension culture as masses of aggregated cells (Panel A, 

Figure 3.1.2). Once seeded onto laminin and Poly-D-Lysine coated plates, neurites began 

to protrude radially from the central mass of cell (Figure 3.1.2, C+D). Growth cones can 

be identified at the distal tip of axons (Figure 3.1.2, labelled GC).  

 

Immunocytochemistry was performed on neurospheres after 10 days of neurite 

outgrowth cultures (Figure 3.1.3), whereby neurites were stained with pan-neuronal 

marker TUJ-1 (green) and nuclei were counterstained with Hoechst (blue). This staining 

approach allowed projecting neurites to be visualised clearly, but also highlighted cell 

migration from the central mass of perikarya (Figure 3.1.3, circled). 

Immunocytochemical analysis also allowed more accurate visualisation of neurites as 

thinner axons could be missed when using phase-contrast microscopy. Higher 

magnification images of growth cones were also obtained, showing the characteristic 

shape found at the distal tip (Figure 3.1.3, labelled GC) 
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 Figure 3.1.2: TERA2.cl.SP12 stem cel ls can be cultured to form neurospheres capable of producing neurites through 

retinoic acid exposure. Confluent stem cells (A) were dissociated from culture flasks, seeded into Petri  dishes  and allowed 
to adhere for 24 hours before addition of synthet ic retinoid, EC23. They were then cultured for 21 days. Following this,  
neurospheres  were seeded into laminin and poly-D-lysine coated plates along with maintenance media supplemented with 
mitotic inhibitors: 1  μM cytosine arabinose, 10 μM 5-f luor 2’deoxyuridine and 10 μM uridine (B).  Neurite outgrowth was 
allowed to occur for 10 days;  during which,  neurites project outwards from the central mass  of  nuclei (C+D). Growth 
cones can be observed at the leading tip of  the axon ( labelled,  GC).  Scale bars A and D = 100 μm, B and C = 200 μm.  
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3.1.4 Enhancing neurite outgrowth from neurospheres through ROCK 

inhibition by Y-27632 

Once reproducible neurite outgrowth from TERA2.cl.SP12 neurospheres was achieved, 

the involvement of Rho A signalling pathway in neurite outgrowth was investigated. 

Neurite extension is a process reliant on actin remodelling; a mechanism involving a 

culmination of Rac and Cdc42 activation and inhibition of RhoA and ROCK signalling. 

Previous models of neurite outgrowth have included inhibitors of ROCK when culturing 

to enhance the process of neurite outgrowth. 198, 204 Of particular interest is the action of 

ROCK inhibitor Y-27632, and was therefore included in the culture media to enhance 

outgrowth. 

 

The ROCK inhibitor Y-27632 was added to the culture medium at a final concentration of 

10 μM for the 10 day neurite-outgrowth phase. This appeared to significantly increase 

neurite outgrowth from neurospheres compared to those cultured without ROCK 

inhibitor (see figure 3.1.4-1). Neurites (TUJ-1 positive - green) appeared to be 

significantly greater in number in cultures treated with Y-27632. As well as this, the 

ROCK inhibitor appeared to reduce the number of non-neuronal cells migrating from the 

central cellular mass. Migrating cells appeared to saturate areas surrounding neurites in 

the untreated control, but the Y-27632 treated cultures appeared to be free of these 

migrating cells and are subsequently much tidier than untreated cultures. The neurites 

in the Y-27632 treated cultures were very dense and formed a ‘brush-like’ border 

radiating outwards from the central mass of cells. Y-27632 treated neurites also 

appeared longer in comparison to untreated cultures. 
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Figure 3.1.3: Neurites radiate outwards from the central  mass of  cells  of  the neurosphere. Immunofluorescence analysis 
of neurite outgrowth al lows clear observation of  neurites  radiating outwards from the central,  spherical  mass of nuclei 
(A+B),  with neurites stained green (TUJ1)  and nuclei stained blue (Hoechst).  Growth cones can be clearly  identi fied at  the 
leading edge of  the neurites (C -  labelled, GC). Contaminating cells can also be observed surrounding the neurosphere 
(circled in  A) . Scale bars A and B = 500 μm, C = 100 μm.  
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Analysis was performed to quantify the effect of Y-27632 treatment on neurite 

outgrowth (Figure 3.1.4-2). Both neurite length and neurite density were quantified 

using the method described in section 2.2.6. Quantification revealed that the 

aforementioned parameters, neurite length and neurite density, were increased by 

ROCK inhibitor Y-27632 (Panel B). Neurite length was significantly increased (p < 

0.0001). Neurites averaged a length of 350 μM in Y-27632 treated cultures compared to 

the average of 290 μM in the untreated control. Furthermore, neurite density was also 

significantly increased (p < 0.01). Neurite density, on average, was more than doubled 

by treatment with the ROCK inhibitor. 

 

3.2 Production of myotubes from mammalian C2C12 myoblasts  

C2C12 myoblasts were used to examine the developmental and functional biology of 

mammalian skeletal muscle in vitro as a target for neurite interaction. 

 

3.2.1 Differentiating C2C12 myoblasts into myotubes 

C2C12 myotubes, a cell line derived from mice, were maintained as described in 2.1.1.2. 

To induce differentiation of C2C12 myoblasts into myotubes, a media switch involving 

the replacement of the culture medium to a differentiation media containing 2% horse 

serum was performed. This differentiation process was initiated upon withdrawal of the 

cells from the cell cycle at the G2 stage and proliferation ceases. Following this, a 

multistep process was observed, during which mononucleate myoblasts (Figure 3.2.1 - 

Panel 1 - A) migrated towards one another (B), aligned (C), fused (D), and elongated (E) 

to form multinucleate myotubes.  

 

From the point of the aforementioned media switch, differentiation occurred over a 

period of 4-5 days to form mature myotubes, as shown in Panel 2, Figure 3.2.1. In this 

figure, myoblasts/myotubes were stained green with an actin stain, phalloidin, which 

specifically stains F-actin. Nuclei were stained  
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Figure 3.1.4-1: The effect  of  RhoA/ROCK signal ling on neurite outgrowth from TERA2.cl.SP12 neurospheres.  ROCK 
inhibitor Y-27632, when included in neurite outgrowth media at a f inal  concentration of 10 μM, appeared to enhance 
neurite length, neurite density,  as wel l  as decrease cellular migration from neurospheres after  10 days  of neurite 
outgrowth (B-E). Neurites, stained green (TUJ1)  appear to be signif icantly more densely populated than the control  (A), 
radiating from the central aggregation of  nuclei (blue). No contaminating cel ls were observed in ROCK treated cultures. 
Scale bars: 250 μm 
 

A B C 

D E 
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Figure 3.1.4-2: Neurite outgrowth from TERA2.cl.SP12 neurospheres is enhanced in vitro through ROCK inhibitor  Y-
27632.  Quantif ication of  neurite outgrowth in FBS and ROCK inhibitor Y-27632 shows that both neurite outgrowth,  and 
neurite density are increased signif icantly through ROCK inhibition (panel 2) . Control  neurospheres (A+B)  are shown in the 
left hand side of  panel  1, and Y-27632 treated neurospheres (C+D) shown right.  Nuclei  are highlighted in blue (Hoechst),  
and neurites  in green (TUJ1). Scale bars = 100 μm. Graphs represent data ± SEM. Negative control not shown. ** = p < 
0.01,  **** = p < 0.0001. N = 3. 

A C 

B D 

1 2 
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blue with Hoechst. The media change was performed when myoblasts reached 

approximately 70-80% confluent, at which point the myotubes were randomly 

distributed in culture. The mononucleate myoblasts existed as structures of an overall 

similar average size to one another, but shape varied. During the first two days of 

differentiation (Figure 3.2.1, Panel 1) myoblasts migrated within the culture, migrating 

towards each other. Following this migration, myoblasts arranged themselves linearly, 

whereby the long axis of the cells lined up before fusion occurred. Some fusion became 

evident at day 2 of differentiation, once migration and alignment had occurred, 

although myotubes within culture could be seen to differentiate at slightly different 

rates.  

 

At day 3 of differentiation, this fusion process was very apparent, and myotubes began 

to appear as linear, ordered structures rather than a disorganised array of cell bodies. By 

day 4, myotubes were easily identifiable in culture with few existing myoblasts. These 

remaining myoblasts fused to form mature myotubes by day 5, at which point, 

myotubes appeared as long, thin, structures containing multiple nuclei. Myotubes 

formed running near parallel to one another, emanating and terminating in roughly the 

same direction, however, overlapping of myotubes was evident.  

 

3.2.2 Quantification of the differentiation process 

The differentiation and formation of C2C12 myotubes from myoblasts was quantified 

using methods outlined in Section 2.2.7. This method of quantification briefly comprised 

using the number of mature myotubes per area as an estimate of the differentiation 

status of the culture during each day of differentiation. Three random areas of culture 

were imaged using the 40X objective lens on the phase contrast microscope, an area 

spanning approximately 210 x 170 μm. Following this, myotubes that appeared as 

continuous tubular structures measuring over 125 μm were counted as mature 

myotubes (see Figure 3.2.2 - A). This method was found to be more appropriate than 
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Figure 3.2.1: C2C12 myoblasts fuse and elongate to form multinucleate myotubes upon serum withdrawal. Panel  1 
shows (A)  a single myoblast prior to differentiation, which then migrates towards other myoblasts (B) upon entering 
di fferentiation process.  These myoblasts  al ign (C) ,  and fuse (D)  to form maturing myotubes (E). Immunofluorescence 
analysis in Panel  2  shows C2C12 myotube dif ferentiation showing the process of myoblast  al ignment, fusion and 
elongation, resulting in  the formation of multinucleate myotubes. The F-actin cytoskeleton is  stained with phal loidin 
(green), and nuclei  are stained with Hoechst (blue). 2)  shows quantification of myotube dif ferentiation, through 
increasing mature myonumber per day.  Scale bars = 50 μm.  
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measuring other morphological components of the myotubes such as myotube 

diameter, as the diameter of each individual myotube varied significantly from one 

another, and within themselves at different points along their length (demonstrated in 

B, double ended arrows – Figure 3.2.2). 

 

Using this method of quantification, the number of mature myotubes increased per day 

over the 5-day differentiation period. By day 5, nearly all structures appeared as long, 

thin, mature myotubes, with virtually no proliferating myoblast remaining. During the 

first two days of differentiation, no mature myotubes were present in culture (C – Figure 

3.2.2). However, from days 3-5, the number of myotubes significantly increased from 

approximately 4 per area in day 3, to 14 at day 5 per area. As previously mentioned, the 

diameter of these mature myotubes varied significantly (Figure 3.2.2, arrows), as did the 

overall length of the myotubes. The number of mature myotubes present in culture 

roughly doubled per day after day 2 until nearly all remaining myoblasts were 

incorporated into an existing myotube. 

 

3.2.3 Assessing contractile apparatus of myotubes 

Another approach to assess the formation and functionality of C2C12 myotubes was to 

examine their contractile apparatus. Myosin heavy chain (MHC) is a motor protein 

component of mammalian skeletal muscle thick filaments. These filaments propagate 

contraction through conformational changes and their resulting dynamics on actin 

filaments. Myosin heavy chain is expressed in mature myotubes and was used as a 

marker of the myotube.181 

 

Figure 3.2.3, panel 1 shows immunofluorescent analysis of C2C12 myotubes during the 

differentiation period, from day one of differentiation (Figure 3.2.3, panel 1 - D1) up to 

day five (Figure 3.2.3, panel 1 - D5). Fixed cultures were stained red with an anti-MHC 

antibody, to stain for the contractile myosin heavy chain proteins within the myotubes 

present. MHC expression clearly increased  
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Figure 3.2.2: Quantification of C2C12 myotubes per day during differentiat ion. Phase contrast images were taken 
using the 40X optical lens (A and B) to allow observation and counting of myotube number per day in culture after 
switching from maintenance media to differentiation media. Myotube number increased per day (C)  and is  an 
eff icient method of  quantifying the differentiation process,  as myotube length and diameter are subject to 
significant variation between cultures (see double ended arrows,  B)  Graphs represent data ± SD. ** = p < 0.01, *** = 
p < 0.001,   **** = p < 0.0001. Scale bars A and B = 50 μM.  
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per day of differentiation, starting with no visible staining on the first day of 

differentiation, to abundant staining at day 5. This closely correlated with the number of 

mature myotubes present at each day of differentiation, as outlined in Section 3.2.2; as 

myoblasts fused to form myotubes from approximately day 3 onwards, the MHC 

expression became more evident. By day 5, most myotubes imaged stained positively 

for MHC, suggesting the presence of fully matured myotubes.  

 

MHC was clearly expressed during the later stages of myotube differentiation rather 

than early stages. Panel 2, Figure 3.2.3 shows quantification of MHC expression during 

C2C12 differentiation, performed as outlined in Section 2.2.8. Here, MHC expression 

was shown as a percentage of tubular structures present per area. This shows that there 

was no myosin heavy chain, or undetectable levels during the first day of differentiation. 

Following this, percentage expression increased from day 2 through to day 5, with a 

significant MHC expression increase evident between day 3 and day 4, correlating with 

the fusion and maturation of myotubes. This expression then increased from 

approximately 50% at day 4 to above 90% after 5 days of differentiation, suggesting that 

nearly all structures present in culture were mature myotubes, consistent with previous 

results. The differences in expression between day 3 and 4, and day 4 and 5 were 

statistically significant (p < 0.0001). 

 

3.2.4 Enhancement of myogenic differentiation through ROCK 

inhibition by Y-27632 

To investigate the role of Rho A /ROCK signalling through ROCK inhibition on C2C12 

differentiation and thus myogenesis, the selective ROCK inhibitor Y-27632 was included 

in the differentiation medium for C2C12 myoblasts at a final concentration of 10 μM, 

and differentiation was allowed to proceed for 5 days as standard. Results were 

compared to control cultures, which contained normal differentiation media, with no 

ROCK inhibitor. The results in Figure 3.2.4 show C2C12 myoblasts differentiating into  
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Figure 3.2.3: Myosin heavy chain (MHC) expression increases during C2C12 differentiation. Myosin heavy chain (MHC) 
expression increases as the myoblasts form mature myotubes. Myoblasts fuse and elongate to form multinucleate myotubes 
around day 5.  During this  differentiation process, MHC expression (red)  increases as myotubes become equipped with contracti le 
proteins. Scale bars:  100 μm. Panel 2 shows quantitative analysis of  MHC expression as a percentage of mature myotubes found 
on each day of  the dif ferentiation process.  Graphs represent data ± SD. ** = p < 0.01,  *** = p < 0.001,   **** = p < 0.0001. N=3.  
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myotubes during the 5-day differentiation period in the presence of Y-27632, the 

selective ROCK inhibitor. The data suggest that through inhibition of ROCK signaling, the 

differentiation of myotubes appears to be further enhanced. Although cultures 

appeared morphologically comparable after the first day of differentiation (Panel 1, 

Figure 3.4.4 – D1), myotubes were evident in the cultures treated with Y-27632 on day 2 

(Panel 1, Figure 3.4.4 – D2), as identified by the white arrows. Compared to the visibly 

disordered myoblasts at D2 in the control, lacking any obvious arrangement, the treated 

cultures appeared more orderly. Where myoblasts remained between the forming 

myotubes, they appeared more orderly than the control counterpart, with myoblasts 

appearing to be more aligned than sporadically organized. By day 3, Y-27632 treated 

myotubes appeared as conspicuous, tubular structures, similar to the myotubes at days 

4 or 5 of differentiation in untreated samples.  

 

Quantification of the effect of ROCK inhibitor Y-27632 on C2C12 differentiation was 

performed as outlined in Section 2.2.7. This quantification revealed myogenic 

differentiation of the C2C12 cell line was increased through ROCK inhibition (panel 2, 

Figure 3.2.4). This increased differentiation was especially apparent at day 2, where 

approximately 7 myotubes were present per field of view in treated cultures, compared 

to almost none in untreated cultures. Myotube numbers increased per day after day 2, 

plateauing at day 4 as most myoblasts were incorporated into myotubes. Nonetheless, 

myotube number was significantly increased per day compared to the untreated 

controls.  Final myotube number was also increased in treated cultures, suggesting an 

involvement of ROCK in stimulating myoblast fusion. 

 

3.2.4.1 Effect of ROCK inhibition on Myosin Heavy Chain expression 

In order to further quantify the effect of the selective ROCK inhibitor Y-27632 on C2C12 

differentiation, a marker of terminal phenotypic differentiation was used to stain 

myotubes – myosin heavy chain (MHC). Although only a small quantity, myosin heavy 

chain was identified in cultures fixed and stained with red anti-MHC after one day of  
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Figure 3.2.4: ROCK inhibitor  Y-27632 appears to enhance differentiation of  C2C12 myoblasts. ROCK inhibitor Y-27632,  when 
included in differentiation media at a f inal concentration of  10 μM, appears to enhance the differentiation of  C2C12 mononucleate 
myoblasts into multinucleate myotubes.  Phase contrast images show this differentiation, which occurs over 5 days.  By day 5, 
mature myotubes can be observed. Morphological differences in dif ferentiation appear around day 2 (D2), and day 3 (D3), where 
myotubes begin to appear ( indicated by arrows) in the Y-27632 differentiated cultures, but  cannot be observed under normal 
differential  conditions.  Scale bars = 100 μm. Panel  2 shows quantif ication of  mature myotubes per day between the two 
conditions. Graphs represent  data ± SD.  ** = p < 0.01,  *** = p < 0.001,  **** = p < 0.0001. N=3.  
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 Figure 3.2.4.1: ROCK inhibitor  Y-27632 appears to enhance differentiation of  C2C12 myoblasts.  ROCK inhibitor Y-27632,  when 
included in differentiation media at a f inal  concentration of  10 μM, appears to enhance the differentiation of  C2C12 mononucleate 
myoblasts into multinucleate myotubes.  Phase contrast images show this differentiation, which occurs over 5 days.  By day 5, 
mature myotubes can be observed. Morphological differences in differentiation appear around day 2 (D2) , and day 3 (D3), where 
myotubes begin to appear ( indicated by arrows) in the Y-27632 differentiated cultures, but  cannot be observed under normal 
differential  conditions.  Scale bars = 200 μm. Panel  2 shows quantif ication of  mature myotubes per day between the two 
conditions. Graphs represent  data ± SD.  ** = p < 0.01,  *** = p < 0.001,  **** = p < 0.0001. N=3.  
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Figure 3.2.4.1-2: MHC expression increased earlier in differentiation process when myoblasts are differentiated with ROCK inhibitor. 
Myosin heavy chain (MHC)  expression is enhanced earlier on in the differentiation process of  C2C12 myotubes,  as highl ighted by the 
confocal  images here in red. Scale bars = 200 μm  
.  
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differentiation (panel 1, Figure 3.2.4.1). Myosin heavy chain expression then increased 

at each day of differentiation, with abundant positive staining appearing at day 4 and 

day 5. 

 

Quantitative analysis of MHC expression was then performed by assessing percentage of 

mature myotubular structures present in culture expressing MHC per area (panel 2, 

Figure 3.2.4.1). MHC expression, although partially expressed by approximately 20% of 

myotubes at day 2, notably increased between day 2 and day 3 of differentiation. 

Following this, expression increased to almost 100% of myotubes by day 5 in cultures 

treated with ROCK inhibitor Y-27632. This expression plateaued after day 3, although 

still increasing. Increasing expression is statistically significant throughout the full 5 day 

differentiation process.  

 

When comparing myosin heavy chain expression between cultures treated with ROCK 

inhibitor Y-27632 to untreated controls, the effect of ROCK inhibition became truly 

apparent. In Figure 3.2.4.1-2, myotubes stained red with anti-MHC appeared earlier, and 

were more abundant in cultures treated with Y-27632. In the untreated control, next to 

no expression was observed in cultures differentiated for 1 and 2 days, but myosin 

heavy chain was detectable in the treated cultures of the same time periods. The largest 

difference in expression became apparent at day 3 and day 4 of differentiation, whereby 

expression was evident in many myotubes in treated cultures by day 3, but scarce in 

untreated.  

 

3.2.5 The effect of mitotic inhibitors on myotubes 

Mitotic inhibitors are often used in cell culture during the differentiation period. 

Proliferation and differentiation are two independent processes of developmental 

biology. In order for C2C12 myoblasts to differentiate into myotubes, they must first exit 

the cell cycle and thus cease proliferation. Mitotic inhibitors can be used in monoculture 

or co-culture of certain cell types to aid this cell-cycle arrest to direct the cells down a 
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differentiation programme.185 C2C12 cell culture however, involves the withdrawal of 

maintenance media with its immediate replacement by differentiation media consisting 

of low-serum conditions. These low-serum conditions aim to starve the cells of 

nutrients, ultimately forcing them to withdraw from the cell cycle. 

 

The effect of three well-studied mitotic inhibitors on C2C12 differentiation was 

investigated. Common mitotic inhibitors used in cell culture include uridine, 5’fluoro 

2’deoxyuridine and cytosine arabinose, exploiting their ability to interfere with DNA 

synthesis, thus facilitating cell cycle arrest. 5’fluoro 2’deoxyuridine for example, in its 

active cellular form, is a potent inhibitor of the enzyme thymidylate synthase, which 

ultimately decreases the availability for thymidylate required for DNA synthesis.249 

Cytosine arabinose is a mitotic inhibitor that interferes with DNA synthesis during S 

phase cell cycle in its intracellular active triphosphate form.250 

 

Mitotic inhibitors uridine, 5’floro 2’deoxyuridine, and cytosine arabinose were included 

in the differentiation media each at final concentrations of 1 μM cytosine arabinose, 

10 μM 5-fluor 2’deoxyuridine and 10 μM uridine, respectively. They were not 

however, included in maintenance media either before or after the differentiation 

period for the C2C12 cells. As a result, their presence had no apparent effect on 

differentiation or the resulting viability of myotubes as the myoblasts have already 

withdrawn from the cell cycle upon initiation of differentiation – the point at which they 

were included in the media. They may however, stop any remaining undifferentiated 

myoblasts in culture from proliferating, resulting in the cultures becoming over-

confluent. (Data not shown)  

 

3.2.6 Maintaining mature myotubes in vitro  

C2C12 myoblasts were maintained in maintenance media consisting of DMEM 

supplemented with 10% FBS, penicillin, streptomycin and L-glutamine as outlined in 

Section 2.1.1.2. To initiate differentiation of myoblasts into myotubes, maintenance 
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media was removed and replaced with differentiation media, consisting of DMEM 

supplemented with 2% horse serum in the place of FBS, along with aforementioned 

supplements. However, once differentiation has occurred during the 5-day 

differentiation period, it was found that mature myotubes could not be maintained in 

their differentiation media beyond the 5 day differentiation period for longer than a day 

or two. Instead, the cultures started to undergo cell death. 

 

To overcome this, mature, fully differentiated cultures of myotubes (Figure 3.2.6 – D5) 

were then switched back to the maintenance media, in which they could be maintained 

longer term with regular media changes, approximately every 2-3 days. Phase contrast 

images 5 days after this switch back to maintenance media (Figure 3.2.6-M5) showed 

myotubes still appeared fully viable and morphologically identical to D5 cultures. After 

10 days of maintaining myotubes in maintenance media post-differentiation (Figure 

3.2.6 - M10), myotubes still remained viable in culture. Small circular, vacuole-like 

structures (Figure 3.2.6 - arrow) were observed in approximately 5% of myotubes within 

the cultures, but the myotubes did not undergo cell death, nor did the vacuoles appear 

to migrate. Myotubes were maintained as long as 20 days post-differentiation, 

concluding that myotubes containing the vacuoles remained viable. 

 

The same method of maintaining mature myotubes was performed on myotubes 

differentiated with ROCK inhibitor Y-27632, where the differentiation media was 

replaced with ROCK inhibitor and horse serum free media post-differentiation. This 

enabled myotubes to be maintained long-term.  

 

3.2.7 Acetylcholine receptor distribution in mature myotubes 

Acetylcholine receptors, AChRs, are ligand gated ion channels that comprise 

acetylcholine binding site receptors. They bind to the neurotransmitter acetylcholine in 

their junctional form, located at the neuromuscular junction. However, they can be 
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found outside of the area of the neuromuscular junction across myotubes, prior to 

innervation.209  

 

To investigate acetylcholine receptor presence, distribution and localisation in the 

differentiating C2C12 myoblasts/myotubes, a marker of the receptors, alpha-

bungarotoxin (α-BTX) was used. α-BTX is a component found in the snake venom of the 

Bungaris multicinctus.210 A type of neurotoxin, it competitively, as well as irreversibly 

binds to acetylcholine receptors; ergo, in its fluorophore, antibody form, can be used to 

visualise acetylcholine presence and distribution in cells. 

 

C2C12 myoblasts/myotubes were immunocytochemically stained using α-BTX at 

different stages of differentiation (Figure 3.2.7). The F-actin of cells were stained green 

with phalloidin, staining their actin cytoskeleton, along with co-stain hoechst to stain 

their nuclei. α-BTX was included to stain AChRs red. No positive α-BTX stain was 

observed at day 1 of differentiation (Figure 3.2.7 – D1 lower panel). However at day 3, 

very minute positive staining emerged (Figure 3.2.7 – D3. See arrows). This positive 

staining manifests as red dots randomly distributed along the length of the myotubes. 

This became more apparent by day 5 (Figure 3.2.7 – D5, arrows), at which point 

myotubes exhibit slightly more positive staining, therefore indicating the presence of a 

higher quantity of AChRs along their length. These results show that acetylcholine 

receptors are present in C2C12 myotubes, although not expressed in earlier stages of 

their differentiation. These receptors however, are difficult to visualise due to their 

small size and unclustered nature. 
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 Figure 3.2.6:  C2C12 myotubes can be maintained in vitro following differentiation.  Phase contrast images show mature C2C12 
myotubes at day 5 of  differentiation (D5) in differentiation media, 5 days after switching the myotubes back to maintenance media 
(M5), and 10 days after the switch back (M5). Myotubes remain alive and viable, with no apparent cell  death occurring.  Ci rcular 
vacuoles  appear to accumulate in a couple of  myotubes per 12 well  plate (arrow), but did not appear to affect the viabil ity of  the 
myotubes. Scale bars  = 100 μm.  
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Figure 3.2.7: Acetylcholine receptors are randomly distributed along C2C12 myotubes aneurally.  Myotubes at day 1 (D1), day 3 
(D3), and day 5 (D5) of  different iation were analysed using immunocytochemistry to show the F-actin cytoskeleton (phal loidin: 
green),  nuclei  (Hoechst:  blue), and acetylchol ine receptors (α-bungarotoxin: red) at  each time point in the differentiation process 
of C2C12 myotubes.  Arrows depict posit ive staining of acetylcholine receptors.  Scale bars: 50 μm. 
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3.3 Development of a novel co-culture system for the production 

of neuromuscular junctions 

To develop an in vitro co-culture system aimed at producing neuromuscular junctions, 

TERA2.cl.SP12 stem cells were used to generate human neurons and C2C12 myoblasts 

were used to form skeletal muscle.  

 

3.3.1 Co-culturing dissociated neurons in monolayers on mature 

myotubes 

A co-culture method initially developed within the Przyborski laboratory at Durham 

University was repeated with modifications, outlined in Section 2.1.6.206 In brief, two 

separate neuronal cultures were generated from TERA2.cl.SP12 stem cells using the 

different retinoid compounds, ATRA (a natural retinoid) and EC23 (a synthetic retinoid). 

ATRA, a naturally occurring form of retinoic acid, was used to induce neural derivatives 

from the stem cells. EC23, a synthetic retinoid, was used separately to also induce the 

formation of neural derivatives. Following a 3-week exposure period, neuro-epithelial 

rosettes formed, with neurons filling gaps between epithelial-like non-neuronal 

‘contaminating’ cells. 

 

A light trypsinisation was then performed, as neural cells produced in culture are less 

adherent than the aforementioned contaminating cells. Resulting supernatant was then 

collected and seeded into a new flask for 5 days, before a second trypsinisation was 

performed to obtain neuron-pure populations of neurons (>95%). Dissociated neurons 

were then seeded on top of mature myotubes and cultured for 5 days – hereby termed 

the ‘dissociation co-culture’ method. This method of co-culture produces single neurons 

that are then seeded on top of pre-differentiated myotubes, allowing potential 

interactions to develop. 

 



94 
 

Subsequent to this 5-day co-culture period, samples were fixed and immunofluorescent 

analysis was performed. The co-cultures were used to identify any potential interactions 

formed between the two cell types, as well as structures expected to be present if 

neuromuscular junction formation occurred. To confirm the neural identity of cells 

produced through the dissociation culture method, a pan-neuronal marker – TUJ1, was 

used to stain neural cells red (Figure 3.3.1). Neurons derived from TERA2.cl.SP12 stem 

cells stain strongly for TUJ1 and can be easily identified against the myotubes, which 

were stained green with phalloidin, an F-actin stain. Nuclei were counterstained blue 

with nuclear stain Hoechst. 

 

Differentiated neurons appear as long thin axonal extensions projecting away from the 

cell body. Growth cones can also be observed at the leading edge of the axon (Figure 

3.3.1 – labelled GC). Myotubes appear tubular and of a linear orientation alongside one 

another. Neurites and myotubes remain viable in co-culture, with co-localisation and 

potential interactions appearing to form between the two cell types. Neurons grow and 

‘interweave’ with myotubes, rather than existing as monolayers on top of the myotubes. 

Neuron terminals co-localise with myotubes, suggesting that myotubes may secrete 

chemotactic factors, influencing the growth and direction of axonal growth dynamics. 

 

3.3.2 Co-culturing neurospheres with myotubes 

A novel co—culture method was developed utilising the ability of TERA2.cl.SP12 stem 

cells to form neurosphere structures when allowed to aggregate in culture.204 This 

method (described in Section 2.1.7) briefly involved seeding stem cells into Petri dishes, 

allowing them to adhere for 24 hours before addition of synthetic retinoid EC23 to form 

neurospheres. After 21 days maturation in culture, neurospheres were seeded onto 

mature myotubes and co-cultured for 10 days (Figure 3.3.2-1). 
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Figure 3.3.1 Neuron endings co-localise with myotubes in co-culture when neurons differentiated from TERA2.cl .SP12 are co-
cultured with mature C2C12 myotubes for  5 days. Neurons are seeded on top of  myotubes at a density of  250,000 per well  of a 
12 wel l  plate, and left to co-culture for 5 days.  Immunocytochemical analysis shows neurons (TUJ1: red) co-local ise with F-actin 
of myotubes (phalloidin:  green). Nuclei are stained with Hoechst  (blue). Scale bars: 100 μm  
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This method of directing stem cells down a neural lineage resulted in the formation of 

cellular aggregates, from which neurites projected radially when seeded on top of 

myotubes in co-culture (Figure 3.3.2-1 - A). After 10 days of co-culture, cultures were 

fixed and analysed through immunocytochemistry to reveal cell-specific structures and 

areas of co-localisation. Myotubes were stained green with an F-actin stain phalloidin, 

whilst neurons stained red using pan-neuronal marker TUJ1, and nuclei stained blue 

with Hoechst. This co-culture model allowed an easily identifiable, plentiful supply of 

neurons, observed radiating outwards from the central neurosphere and terminating at 

the myotube surfaces. Neurites project from the neurosphere over the full 

circumference of the neurosphere, and the contrasting colours makes each cell type 

easily identifiable in the immunofluorescent analysis. This novel co-culture method 

provides a robust, reproducible method for observing areas of co-localisation between 

neurite and myotube. Small quantities of cellular migration away from the central mass 

of perikarya was occasionally observed in Figure 3.3.2-1 - C, but this is confined and 

rare. 

 

Neurites within the co-culture appeared to extend along the mature myotubes. Most 

neurite endings were observed at a myotube surface (Figure 3.3.2-2). At higher 

magnifications of confocal microscopy, close interactions were noticeable between the 

two cell types. At higher magnifications, growth cones can were clearly identified at the 

leading edge of the neurite (Figure 3.3.2-2 - labelled GC). These neurites extended 

towards the myotubes shown centre in Figure 3.3.2-2 - B, where the growth cones 

appeared to make contact with the myotube above nuclei. The growth cone and 

myotube co-localisation suggest chemotactic factors are secreted by the myotube, 

involved in axonal growth and guidance. Another example of this co-localisation 

between neurite ending and myotube is shown clearly in Figure 3.3.2-2 - C, where the 

axonal terminal runs parallel and appears to be fusing with the side of the myotube, 

adjacent to the nucleus. 
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Figure 3.3.2-1: TERA2.cl.SP12 derived neurospheres can be co-cultured with mature C2C12 myotubes for 10 days.  Phase-
contrast  image (A)  shows the set up on day one of co-culture, whereby neurospheres  are seeded on top of mature myotubes in  
12-well  plates.  Immunocytochemistry shows that neurites, stained red (TUJ1),  project outwards from central mass of  cell s, 
towards green stained F-actin of myotubes (phal loidin). Scale bars: 500 μm  
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Figure 3.3.2-2: Neuron terminals co-localise with myotubes showing evidence of sites of  contact in neurosphere-myotube co-
cultures. After 10 days of co-culture between TERA2.cl.SP12 derived neurospheres and C2C12 myotubes,  co-localisation and 
potential interactions between the two cel l  types can be observed. Here,  using immunocytochemistry, neurites are stained red 
(TUJ1), F-actin of  myotubes green (phalloidin), and nuclei  blue (Hoechst).  Scale bars:  A = 100 μm, B + C = 50 μm  
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Figure 3.3.2-3: Some neurite branching can be observed in co-culture as well as more than one neurite contacting particular 
myotubes. After 10 days  of co-culture between TERA2.cl.SP12 derived neurospheres and C2C12 myotubes,  some neurites  branch into 
two or three neurites (Circled.  A,  B and C. TUJ-1 – Red).  As well  as this, more than neuri te appears to make contact with some 
myotubes (phal loidin stained F-actin – Green), suggesting neuri te el imination/competition was occurring (D).  Scale bars:  A+B = 100 
μm ,  C+D = 50 μm  
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Unlike in monoculture, in which neurites project radially, in co-culture, growing   

neurites follow a more perturbed pathway, implicated by the morphological and 

chemotactic influences of the myotube. Nevertheless, the culture methods developed 

herein provide an opportunity whereby structures are easier to locate and analyse than 

previous approaches used.  

 

Many neurites were observed to branch/fork, forming more than neurite terminal from 

one neurite stem (Figure 3.3.2-3 – circled). As well as this, some myotubes had more 

than one neurite terminal bouton appearing to make contact with their surface, 

suggesting more than one interaction and potential neuromuscular junction was 

forming.  

 

3.3.3 Enhancement of neurite outgrowth in co-culture through ROCK 

inhibition by Y-27632 

As previously established, neuritogenesis as well as myogenesis can be enhanced 

through inhibiting Rho A/ROCK signalling through ROCK inhibitor Y-27632. Results 

showed that neurite outgrowth was increased from TERA2.cl.SP12 derived neurons in 

monoculture. As well as this, differentiation of C2C12 myoblasts is increased through 

ROCK inhibition in monoculture. Therefore, the effect of Y-27632 was investigated in the 

co-culture system as it has potential to increase neurite outgrowth within co-culture, 

creating a novel, reliable co-culture model system. To investigate this, Y-27632 was 

included in the differentiation medium at a final concentration of 10 μM, in the 10-day 

co-culture period. Neurite outgrowth (TUJ1 - red) from neurospheres appeared to be 

enhanced compared to the untreated control (Figure 3.3.3-1). A greater number of TUJ1 

positive neurites visibly radiated from the neurosphere towards the mature myotubes 

(F-actin – green). Neurites also appeared longer than those in monoculture, yet still 

extended to co-localise with myotubes at their leading edge (Figure 3.3.3-1 - C). Higher 

magnifications of neurite outgrowth in co-culture revealed neurite density would 

appear to be significantly increased in areas (Figure 3.3.3-1 - D). Another observation is 
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that there appears to be less cellular migration from the central neurosphere, a 

phenomenon found to be notably significant in monoculture, although not quantified 

here.28, 204 Results suggest that inhibition of ROCK through Y-27632 does not interfere 

with growth cone formation or co-localization between the neurites and myotubes, as 

both are very much apparent in all cultures examined. 

 

Quantification of neurite outgrowth in this novel co-culture set up involving 

neurospheres and C2C12 myotubes treated with Y-27632 revealed that neurite length 

as well as neurite density are significantly increased in co-culture (Figure 3.3.3-2). 

Quantification of neurites in co-culture were then compared to neurites in monoculture 

in both untreated (no ROCK inhibitor) and treated (ROCK inhibitor) conditions (Figure 

3.3.3-3). This data suggests that ROCK inhibitor had a stronger effect in monoculture, 

although neurite outgrowth in co-culture was still enhanced through treatment with 

ROCK-inhibitor. Neurites were significantly longer and denser in treated monocultures 

compared to treated co-cultures.  
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Figure 3.3.3-1: ROCK inhibitor appears to enhance neurite outgrowth in co-culture. Immunofluorescence shows neurites, stained with Tuj1 
(red)  appear longer and denser in  co-cultured containing 10 μM Y-27632 compared to the control ,  which contains  control  co-culture media, as 
previously outlined. Nuclei  are stained with Hoechst (blue)  and F-actin cytoskeleton of  myotubes are stained with phalloidin (green).   Scale bars: 
D = A+ B + C = 500 μm 100 μm.  
  
 

C D 

Figure 3.3.3-2 –Neurite outgrowth is enhanced in co-culture through ROCK inhibition using 10 μM Y-27632.  Quantif ication of 
neurite outgrowth from TERA2.cl .SP12 neurospheres after 10 days co-culture with C2C12 myotubes shows that selective ROCK 
inhibi tor Y-27632 increases both neurite length and neurite density. Neurites (Red –TUJ1) are significantly longer and denser 
after treatment with ROCK-inhibitor (panel  B -  Treated)  compared to those in co-cultured without Y-27632 (Untreated).   Scale 
bar = 100 μm. Graphs represent data ± SEM. * = p < 0.05,  **** = p < 0.0001. N=3. 
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Figure 3.3.3-3: ROCK inhibitor Y-27632 enhances both neurite outgrowth and neurite density in monoculture as well  as co-
culture, although not as effectively in co-culture. Quantification of neurite outgrowth and neurite density (Panel 2) between monoculture 
and co-culture shows that ROCK inhibitor Y-27632 has more pronounced effect in monoculture. Neurites (TUJ1 – Green) are significantly longer and 
denser in treated monoculture (A+B) compared to treated co-cultures (C+D). Lower migrographs B and D show higher magnification of neurites, but 
are different neurospheres to those shown in A and C. MU = Mono-culture untreated; MT = Mono-culture Treated; CU = Co-culture Untreated; CT = 
Co-culture Treated. Scale bars: top row = 200 μm bottom row = 100 μm Graphs represent data ± SEM. * = p < 0.05, **** = p < 0.0001. N=3. 
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3.3.4 Identification of neuromuscular junctions in co-culture 

Neuromuscular junctions, the chemical synapses that form between motor nerve 

terminals and skeletal muscle fibers, facilitate the progression of an action potential to 

the muscle so that it can be converted into mechanical energy, resulting in muscle 

contraction. To examine whether these specialised synapses form in the novel co-

culture system developed herein, several techniques were employed including further 

immunofluorescent analysis of synapse specific structures as well as a functional assay 

to provide both morphological, physiological and functional evidence for the presence 

of neuromuscular junctions.  

 

3.3.4.1 Fundamental nuclei accumulation 

In the absence of neurons, nuclei were found at a relevantly even distribution along the 

length of skeletal muscle myotubes. Upon innervation by a neuron however, several 

nuclei cluster at myotube post-synaptic surface at the point of innervation during 

development of the neuromuscular junction.157 This characteristic accumulation of 

‘fundamental nuclei’ serves functionally specialised role in development and maturation 

of the NMJ itself. 

 

In each of the co-culture models used in this study: dissociative neuron co-culture, 

neurosphere co-culture and enhanced neurosphere co-culture; fundamental nuclei 

accumulation can be observed at points of co-localisation, where an interaction 

between the neuron and myotube is thought to occur (Figure 3.3.4.1). Using 

immunofluorescent analysis, Figure 3.3.4.1 – A shows nuclei accumulation in a 

dissociation neuron culture. It was observed that neurons (TUJ-1 – red) extend 

longitudinally almost parallel to the C2C12 myotubes before making contact. At these 

points of contact (Figure 3.3.4.1 - circled), between 2-6 nuclei had accumulated and 

were positioned together, suggesting the presence of a neuromuscular junction at these 

locations. 
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In the neurosphere co-culture (Figure 3.3.4.1 – B+C), it was easier and less time 

consuming to identify neurite terminals at the myotube surface. The neurites (TUJ1 –

red), radiated from the neurosphere and grew towards the myotubes (F-actin – green), 

where interactions between the two cell types were observed. Figure 3.3.4.1, B and C 

show clear examples of nuclear accumulation at points where the neurite terminal 

makes contact with the myotube surface. The results of a cellular response elicited by 

the neurite contacting the myotube are shown, whereby 4-5 nuclei have migrated and 

accumulated, indicating the formation of a neuromuscular junction at these points. A 

terminal bouton-like structure is especially apparent in Panel C (Figure 3.3.4.1) at the 

point of co-localisation, which is typical of the presynaptic terminal. 

 

Nuclear accumulation also occurred in the enhanced neurosphere-myotube model, 

where the ROCK inhibitor Y-27632 was used to enhance neurite outgrowth in the co-

culture – see D (Figure 3.3.4.1). Many neurites were seen to be radiating from the 

neurosphere. Circled is a point of contact between neurite and myotube. In this 

particular interaction, 6 nuclei have accumulated below the membrane surface, again 

suggesting formation of a neuromuscular junction through eliciting a cellular response 

to the point of contact. 

 

3.3.4.2 Acetylcholine receptor accumulation 

There exist many synapse-specific structures expressed exclusively at the 

neuromuscular junction, some at the presynaptic nerve terminal, some within the 

synaptic cleft between the synapse, and others at the post-synaptic terminal (see Figure 

3.3.4.2-1). At the post-synaptic terminal of a neuromuscular junction, acetylcholine 

receptor accumulation is characteristic at the post-junctional folds, and pivotal to 

neuromuscular junction functionality.156 As previously discussed, acetylcholine 

receptors are expressed in mature C2C12 myotubes, but are found relatively evenly 

distributed along the length of myotubes in the absence of neural contact. 
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Figure 3.3.4.1: Neuron terminals co-localise with myotubes at points where nuclei  aggregation in myotubes i s evident,  a key 
feature of  neuromuscular junctions.  Nuclei  accumulation (Hoechst – blue) in all  three types of  co-culture is evident: co-
culture of dissociative neurons and mature myotubes, co-culture of  neurospheres and myotubes, as  well  as  co-cultures 
treated with 10 μM ROCK inhibitor Y-27632. Neurites (TUJ1 - red) appear to contact myotubes at these points.  Myotubes are 
stained green with phal loidin. Scale bars:  A, B and C = 50 μm, D = 250 μm  
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To detect whether acetylcholine receptor clusters were present in the neurosphere-

myotube co-culture model at points of interaction, acetylcholine receptor stain α-

Bungarotoxin was used to stain co-cultures alongside TUJ1 (red - neurites), F-actin 

(green – myotubes), and Hoechst (blue – nuclei). Positive patches of α-Bungarotoxin 

staining were observed at the myotube surface, in association with the neurite 

terminals in the co-culture system (Figure 3.3.4.2-1). Higher magnification fluorescence 

microscopy allowed the bouton-like structure at the nerve terminal (red) contacting the 

myotube surface (green) to be imaged more clearly (Figure 3.3.4.2 - A). A Z-stack image 

was taken, producing a cross-sectional 3D-like reconstruction of the cellular architecture 

at the point of co-localisation (Figure 3.3.4.2 - Arrow). This indicated that the neuron 

bouton terminal makes contact with the myotube, and the two structures appeared to 

be fused together. α-Bungarotoxin (yellow) positive staining was observed in Figure 

3.3.4.2 - B, where positive staining suggested the presence of acetylcholine receptor 

clustering. This clustering adopted the typical ‘pretzel-like’ shape, characteristic of that 

at neuromuscular junctions.141 

 

In Figure 3.3.4.2 – panel C, both A and B have been merged to show all staining in the 

same field. From this, it is evident that the bouton co-localises with acetylcholine 

receptor clusters on myotube surface. This receptor clustering provides additional 

evidence to suggest the presence of neuromuscular junctions.  

 

Further cultures were double stained using α-Bungarotoxin (yellow) and TUJ1 (green) 

only (Figure 3.3.4.2-2). This is because α-Bungarotoxin is an Alexa Fluor 594 conjugated 

antibody (far red), which has an excitation wavelength that overlaps slightly with the red 

secondary antibody used to stain neurites red with TUJ1. Although microscope settings 

were changed to avoid this as far as possible, a double-stain emitting the red antibody, 

and instead using green (TUJ1) and far red (α-Bungarotoxin - changed to yellow here for 

visualisation purposes) was carried out to eliminate any doubts regarding overlapping  
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Figure 3.3.4.2-1 Positive α-bungarotoxin staining depicts  acetylcholine receptor clustering at points of  co-localization 
between neuron terminal and myotube in co-culture. After 10 days of  co-culture between TERA2.cl.SP12 derived 
neurospheres and C2C12 myotubes,  co-localisation occured between the two cel l  types.  Z-stack analysis (arrow) shows 
contact, and α-bungarotoxin staining (yellow) shows acetylcholine receptor clustering at these points of  contact between 
neuron terminal  (red:  TUJ1) and myotube (green:  phalloidin). Scale bars: 50 μm.  
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emission spectrums. Using this double stain approach of neurosphere-myotube co-

culture, a neurite extending with a growth cone at the tip was identified (Panel A - 

Figure 3.3.4.2-2). In Figure 3.3.4.2-2 - panel B, positive α-Bungarotoxin staining is shown 

(+), with positive receptor clustering apparent. Once merged (Panel C - Figure 3.3.4.2-2), 

it is evident that the neurite is extending towards the acetylcholine receptor cluster, 

which was assumed to be the myotube surface edge (Figure 3.3.4.2-2 - circled), 

although not stained. 

 

Dissociation neuron-myotube co-cultures were stained after 5 days of co-culture using 

the same immunofluorescent techniques discussed above. Figure 3.3.4.2-3 shows triple 

staining, where a dissociative neuron (TUJ1 – red) winds around and then extends along 

the length of a myotube (F-actin – green), and where a bouton-like structure can be 

observed at the terminal. This terminal bouton is easier observed in Figure 3.3.4.2-3 - B, 

where only the neurite is portrayed at a slightly higher magnification. In Figure 3.3.4.2-3  

- C, α-Bungarotoxin (yellow) of the same area is shown.  A very distinct positive staining 

occurs showing acetylcholine receptor clustering is present. When combined (Figure 

3.3.4.2-3 - D), we see that this acetylcholine clustering occurs at the nerve terminal on 

the myotube surface, where the bouton makes contact. Again, this clustering is of 

expected shape, size, and location, providing anatomical evidence supporting the 

formation of neuromuscular junctions. 

 

Further immunofluorescence analysis of dissociative neuron-myotube co-cultures to 

emit any potential excitation spectrum overlap between fluorophores was also carried 

out (as completed for the neurosphere-myotube co-cultures). Figure 3.3.4.2-4 shows 

that positive acetylcholine receptor staining using α-Bungarotoxin was present at the 

area on the myotube (not stained) where the nerve terminal bouton makes contact. 
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Figure 3.3.4.2-2 –  Double staining of  points of  co-localisation between neuron terminal  and myotube reveal  positive 
acetylchol ine receptor clustering at post-synaptic membrane. α-bungarotoxin staining (yellow) shows acetylcholine receptor 
clustering at these points of  contact between neuron terminal  (green:  TUJ1) and myotube (unstained) in neurosphere-
myotube co-cultures after 10 days.  Scale bars:  50 μm. 
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Figure 3.3.4.2-4 –  Alpha-bungarotoxin positive staining at  points of co-localisation.  Double staining (TUJ1: green and alpha-
bungarotoxin,  yel low) staining was performed to eliminate any emission spectrum overlap between the colours. The images show 
that alpha-bungarotoxin positive patches appear at the nerve terminal,  on the post-synaptic membrane.  Scale bars = 25 μm.  
 

Figure 3.3.4.2-3:  Positive α-bungarotoxin staining depicts acetylcholine receptor clustering at points of  co-localization between 
neuron terminal and myotube in co-culture between dissociative TERA2.cl.SP12 derived neurons and mature myotubes.  After 5  
days of co-culture between TERA2.cl.SP12 derived neurons and C2C12 myotubes,  co-localisation occurred between the two cell  
types.  Z-stack analysis (arrow) showed contact,  and α-bungarotoxin staining (yellow) shows acetylcholine receptor clustering at 
these points of  contact between neuron terminal bouton (TB; red:  TUJ1)  and myotube (green:  phal loidin). Merged image (C) clearly  
showed clustering occurs at the point  of contact. Scale bars: A = 100 μm, B, C and D = 50 μm.  
 
  
.  
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3.3.4.3 Functional evidence of NMJ formation 

After 10 days of co-culture, non-selective AChR agonist acetylcholine was added to co-

culture media at a final concentration of 0.01 μM. Immediately following this, phase 

contrast microscopy was employed to assess results of this pharmacological 

manipulation of co-cultures. As a negative control, 10 day old mature myotube 

monocultures were also subjected to the same acetylcholine concentration. No 

contraction was observed in the myotube monocultures after addition of acetylcholine. 

However, preliminary evidence of contraction was observed in co-cultures. Images and 

videos were captured using the 40x objective lens of the phase-contrast microscope. 

Figure 3.3.4.3 shows an example where a neurite and myotube twitch was observed 

after acetylcholine supplementation. Images were captured from the video, allowing 

Image J analysis. A grid was overlaid on the view before contraction, herein termed 

resting (Figure 3.3.4.3 - A), and after movement, to be called contraction (Figure 3.3.4.3 

- B). This grid allowed movement to be visualised more clearly, and arrows were added 

to points of specific interest on the image – making evidence of movement more clear. 

Myotube movement was not obvious enough for any quantification to be carried out, 

and so quantification was only performed on neurite length, as this structure is 

pronounced in the video. Neurite length appeared to reduce by 25% during contraction.  
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Figure 3.3.4.3: Preliminary evidence of contraction was observed in co-culture following addition of acetylchol ine. Phase contrast microscopy was 
used to image/video co-cultures following addition of  0.01 μM acetylchol ine to co-culture medium. These images are taken from a video 
representing a point before (A)  and during (B) contraction,  where B was captured 0.07 seconds after A.  A grid was overlaid for  ease of identification 
of  smal l-scale movement in  the culture.  Arrows identify boxes in  which neurite movement is  obvious when compared against each other.  The 
neurosphere is labelled in the bottom left  corner,  and the myotubes to which neurites  are attached are label led M.  
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4.0 Discussion 
 

The overall aim of this project was to use human pluripotent stem cells and an 

established myoblast lineage to produce a unique, robust, and reproducible co-culture 

model of neuromuscular junction formation. In order to do this, the project was split 

into three, equally important sections: first, we developed human neurons from human 

embryonal carcinoma TERA2.cl.SP12 stem cells through retinoid exposure. Second, 

mammalian skeletal muscle was developed from C2C12 myoblasts. Third, a co-culture 

system was designed and optimised between the aforementioned cell types, before 

investigating the formation of neuromuscular junctions. Through separating the project 

into its prerequisite developmental steps, we were able to characterize, and optimise 

the differentiation and resulting cell types, ultimately allowing for a co-culture model we 

have shown to be superior in certain elements to those already in existence. 

Investigation into molecular signalling pathways common to both neurite outgrowth 

and myogenesis was employed, allowing utilisation of mutual signalling mechanisms 

that benefit the co-culture design. 

 

The in vitro neuromuscular junction model discussed herein, has many potential 

research and experimental advantages compared to existing co-culture models, as will 

be discussed; these are of broad interest, ranging from potential therapeutic drug 

screening to academic research, including investigation of signalling mechanisms and 

the developmental anatomy of the neuromuscular junction. 

 

4.1 Producing human neurons from pluripotent stem cells 
 

4.1.1 Dissociation culture of human neurons  

It is well accepted within literature that retinoic acid is a pivotal signalling molecule 

during embryonic patterning and embryonic development. In particular, it is a key 
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regulator of neural tube development and a contributor to both antero-posterior and 

dorsoventral patterning.19,20,21 Consequently, many in vitro studies have used retinoic 

acid as a morphogen for producing neural derivatives from embryonic stem cells and 

embryonal carcinoma cells.192, 203, 211, 242 Previous work in the laboratory has also 

demonstrated that retinoic acid can act as a morphogen, directing embryonal carcinoma 

stem cells, TERA2.cl.SP12 to produce neural derivatives.200 The dissociative culture 

method followed, successfully utilised the ability of retinoic acid to produce neurons in 

monolayers.  

 

Previous work has shown that retinoic acid induces its effects on EC cells within 24 

hours, at which point, EC cells begin to lose their markers of pluripotent stem cells 

(SSEA-3, TRA-1-60).198 It was also shown that neuroepithelial rosettes formed from EC 

cells in culture with retinoic acid for 2 weeks represent neural-tube like structures, 

similar to that of ES neural differentiation.198 In this study, neuroepithelial rosettes were 

observed after 3 weeks of culture alongside 10 μM retinoic acid, indicating that 

differentiation was progressing. Neurons removed from these rosettes were dissociated 

and plated for immunocytochemistry, which concludes their neural phenotype through 

positive staining with neuronal marker – TUJ1. Retinoic acid in its natural form however, 

is of limited practicality due to its rapid degradation in light and heat.212 Consequently, a 

stable, synthetic retinoid EC23 was also used as a morphogen in the dissociative culture 

method of producing neurons.204 Neurons produced using synthetic retinoid EC23 

culminate in the same neural morphology as observed in RA cultures. Neurons stain 

positively for TUJ1, and form monolayers when cultured on Poly-D-lysine and laminin 

coated dishes. Neurons are produced when exposed to EC23 at a significantly lower 

concentration, 0.01 μM as opposed to 10 μM ATRA. Using EC23 as a morphogen 

however provides a more reproducible and reliable model, due to its stability and 

increased potency. 
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Neurons produced through this dissociative culture method, although stain positively 

for TUJ-1, are difficult to access and pinpoint particular locations of neurons. Due to 

their dissociative nature, once plated, they settle anywhere on the plate and their 

neurites readily intertwine with one another, making quantitative analysis not only 

time-consuming but extremely difficult, with varying neurite length. Contaminating cells 

can also be observed in culture with both retinoid compounds, a normal phenomenon 

often described in literature.206, 207, 213  To identify glial contaminants, a glial marker such 

as myelin and GFAP could have been employed.216 Nonetheless, neurons can be 

cultured for long periods of time using this method of dissociative neural culture, – with 

increasing purity of neural cultures with repeated trypsinisation steps.242 

  

4.1.2 Neurosphere formation for neurite outgrowth 

To overcome some of the limitations of the dissociative culture method discussed 

above, such as difficulty identifying and analysing neurons, a model of neurite 

outgrowth developed by Dr Kirsty Goncalves within Durham University was then used 

for investigating neurite outgrowth.28, 204 This model produced neurospheres from 

TERA2.cl.SP12 embryonal carcinoma stem cells, from which neurites radiated out from 

the central mass when plated on laminin and Poly-D-Lysine coated culture plates. These 

human neurons can be visualised under phase-contrast microscopy, as this 

methodology allows an easier identification process of the neurons, since they project 

outwards from a neurosphere – a structure visible to the naked eye. As well as this, all 

neurons stain positively during immunocytochemical analysis for neuronal marker TUJ-

1, suggesting terminal differentiation. Cultures do, however, contain contaminating cells 

like that of the dissociative neuron cell culture. Another advantage of this model is its 

use for quantification; with all neurites radiating from a central core, counting and 

measuring is uncomplicated, making it of significant value to studies investigating 

neurite inhibition of pharmaceutical enhancement of neurite outgrowth.  
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This culture technique proves simple in comparison to neural differentiation from 

embryonic stem cells as a result of the TERA2.cl.SP12 embryonal carcinoma cells having 

a more restricted developmental biology, and having a high propensity for producing 

neural derivatives.200, 194 Conversely, embryonic stem cells have been used in earlier 

studies, involving those of mammalian development, have been used to production of 

neurons.217 The methodology, however, is technically challenging, with requirements of 

conditioned medias, and are not amenable to up-scaling to meet the neural tissue.192 

Aggregate cultures have also been described from embryonic stem cells, but the EC-

neurosphere protocol used here shares many of the important features, whilst 

eliminating difficult protocols and feeder cells required to produce an abundance of 

neural material in a robust, reproducible manner.218 

 

4.1.2.1 ROCK Inhibition enhances neurite outgrowth from neurospheres 

Neurite outgrowth from the TERA2.cl.SP12 neurosphere model can be significantly 

enhanced in length and density through inhibition of ROCK, a downstream effector 

protein in Rho-signalling. The data collected here fits with previous investigation, 

showing a selective inhibitor of ROCK, Y-27632, successfully enhanced the actin cycling 

during neurite outgrowth.219 This enhancement in neurite outgrowth is a result of Rac1 

and Cdc42, two molecules in the actin dynamics of the neurite that promote membrane 

breaching at the leading edge, which are inhibited through the mechanisms of Rho A 

and ROCK mediated signalling.220 Neurite density is increased, but resulting neurites still 

do not tend to overlap one another, resulting in an enhanced, yet readily quantifiable 

model. 

 

Another clear observation was the inhibition of migrating or contaminating cells 

surrounding the neurosphere after 10 days of neurite outgrowth, which is observed in 

nearly all untreated cultures. These results also align with previous data using the same 

neurosphere model, suggesting that the actin remodelling mechanisms affected by 

ROCK inhibition inhibit cell migration from the central mass neurosphere mass.204 Rho A 
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is believed to be implicated in contraction and retraction of the actin dynamics of a cell 

during cellular migration, including that of squamous cancer carcinoma cells.221, 222 

However, the involvement of ROCK in cellular migration is yet to be identified. 

Consequently, the reduction in contaminating non-neuronal cells enhances the purity of 

neuronal culture.  

 

The neurosphere model is hereby proven useful for investigation of signalling 

mechanisms involved in neurite outgrowth in development. This is of value to studying 

pathology of particular diseases in which neurite outgrowth is impaired, such as 

Alzheimer’s and Parkinson’s disease.204  

 

4.2 Producing mammalian muscle from C2C12 myoblasts 

It is known that skeletal muscle of the vertebrate embryo is derived from the paraxial 

mesoderm – part of the mesodermal tissue. The paraxial mesoderm is specified as a 

result of signalling gradients, specifically Noggin antagonisation of BMPs.56 This results in 

the formation of somites within the paraxial mesoderm, structures containing a 

Myotome compartment, from which the skeletal muscle mass of the vertebrate body 

emanates.56 The multistep process controlling muscle differentiation is governed by 

transcription regulators of cell fate determination, coupled with external signals 

influencing myogenic differentiation. These transcriptional regulators have recently 

been identified, but the exact function of them all, and interaction between them is yet 

to be fully elucidated.223 The murine C2C12 myoblast cell line used to investigate 

myogenesis is a well-studied cell line proven to express same myogenic regulatory 

factors of skeletal muscle in vivo.65 Thus, the cell line proves an extremely useful, 

practical tool for studying developmental biology and its associated mechanisms.  

 

The dramatic morphological change during myogenesis, whereby small mononucleate 

myoblasts migrate, align, fuse, and elongate to form myotubes is also a well-

documented process.224  The data obtained through this study using the C2C12 cell line 
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fits previous data, with additional quantification of myotube number per day during the 

differentiation process, which is not described in current literature. Myotube number 

increases significantly per day, as expected, with mature myotubes obtained after 5 

days of differentiation. 

 

Myogenic regulatory factors (MRFs), are the transcriptional determinants of muscle 

differentiation, and include MyoD, Myf5, MRF-4, and myogenin. Each MRF becomes 

activated and expressed in a time-dependent manner, with positive and negative-

feedback existing between them, with literature originally linking myogenin to late-

stage differentiation in C2C12 differentiation.84 This however, has recently been 

contradicted, with recent evidence showing myogenin is transiently expressed earlier 

than originally thought in the myogenic process, and down-regulation can result in 

reversal of differentiation.84, 225 Instead, we looked at quantifying a more accurate 

terminal marker of differentiation in C2C12 tubes – Myosin Heavy Chain (MHC), a 

muscle-specific contractile protein whose expression is induced by MRF’s during 

terminal differentiation of myotubes.224 The data obtained shows myosin heavy chain 

expression increased during the process of C2C12 differentiation, with most cells 

expressing after the 5 days, indicative of mature myotubes. This data simulates that 

found in other studies, although a different method of quantification was used.225 In 

another study quantifying MHC expression in C2C12 myotubes for example, fusion index 

was used, which looks at the number of nuclei present in myotubes in comparison to 

the total number of nuclei present in a field.225 However, upon entering the 

differentiation process, the myotubes, although in monolayers, elongate around one 

another and so nuclei result in different planes that cannot all be visualised in the same 

field during immunocytochemical analysis. Accordingly, we found it more appropriate to 

quantify number of myotubes by number per area as they are strongly actin positive, or 

in the case of MHC expression, percentage expression of total myotubes present in a 

given field. 
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In the undifferentiated myoblast, only one nucleus was observed, positively staining for 

Hoescht. These nuclei contained numerous, prominent nuclei, as described in previous 

studies involving C2C12 myoblasts.232 Once differentiated, the morphological 

characteristics of the aneural myotubes was as expected, with no acetylcholine receptor 

clustering or nuclei accumulation in mature myotubes – two characteristics of 

neuromuscular junction formation. Instead, the myotubes were multinucleate, with 

nuclei being of what appeared to be a random distribution, and acetylcholine receptors 

were also randomly distributed. Although the nuclei appeared of random distribution, 

one previous study found a significant difference between actual nuclei position and 

that of a random distribution, suggesting an intrinsic design.165 On the other hand, AChR 

expression is comparable to that of human skeletal muscle, whereas other animals can 

be found to have significantly higher expression levels of the receptors.233 It is possible 

to argue therefore that this murine cell model is a useful model for imitation of human 

skeletal muscle, but more reproducible. 

 

Although well characterized and documented within the literature, C2C12 myotube 

cultures have a tendency to undergo apoptosis after late stage differentiation has 

occurred.227, 228 Only a few studies have been able to maintain the myotubes for up to 

10 days in culture, but the rate of differentiation was significantly slower, taking up to 8 

days, rather than the 5 days reported herein.224 In this study we also optimized the 

standard protocol allowing for cultures that can be maintained in vitro long-term. This is 

of significant value, allowing many experiments to be run in parallel with one another, 

whilst acting as a negative control to anything added. However, structures of a vacuole-

like appearance were observed in a number myotubes, although not many. Despite this, 

cells remained viable and no apoptosis occurred. Further investigation into this could be 

of value. It may be that they are not vacuoles, but in fact membrane blebbing, which has 

been reported previously in some models involving C2C12 myotubes.224 One study in 

particular that documented the membrane blebbing hypothesized the blebbing was 

indicative of primordial cell contraction.224 Also observed in some cultures of mature 
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C2C12 myotubes were structures that are of a significantly wider diameter than the 

other cells. These giant cells, again, remain viable in culture the same as the other cells, 

and may only be a product of earlier differentiating cells, or myotubes better able to 

store nutrients. This phenomenon has also been reported in another study, but 

elucidation of the cause is yet to occur.224 

 

4.2.1 ROCK inhibition enhances C2C12 differentiation 

As previously mentioned, Rho A signalling activity is pivotal to the actin dynamics of 

many cells. Unsurprisingly, Rho ATPases including Rho A, RAC1 and Cdc42 have been 

hypothesised to be implicated in myoblast migration, progression of the cell cycle, as 

well as expression of regulatory factors.101 Another study has also shown that 

inactivation of ROCK, a downstream effector protein in Rho signaling, is crucial for 

myoblast fusion during the differentiation process.100 Rho activity can be found to be 

increased in proliferating cells, and forced expression in cells can result in a disruption of 

cellular fusion.100 Further elucidation of the mechanisms underpinning this reveal Rho A-

GTPase is implicated in M-Cadherin activity, a protein involved in myoblast fusion.103 

More specifically, Rho A mediates ubiquitination and degradation of M-caderin.103 

Therefore, by introducing an inhibitor of ROCK into culture, C2C12 differentiation can be 

enhanced. Results obtained herein supply more evidence to ROCK as an inhibitory 

molecule in myoblast fusion and the differentiation pathway as ROCK inhibitor, Y-27632, 

increases the rate of differentiation. By introducing 10 µM Y-27632 into culture, 

inhibition of M-Cadherin may be blocked, allowing the actin cytoskeleton to elongate. 

However, a more in depth analysis of actin dynamics would need to be carried out, 

particularly into FKHR in the nucleus, a direct substrate of ROCK.  

 

A similar effect was noted in myosin heavy chain expression, which significantly 

increased in cultures treated with the ROCK inhibitor. This also indicates that myotubes 

mature earlier in the differentiation process, compared to the untreated cultures, 

proving Rho A/ROCK involvement in C2C12 differentiation. Although previous in vitro 
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C2C12 models have provided evidence for, and quantified increased differentiation 

through ROCK inhibition, none to our knowledge have quantified the effects on MHC 

expression levels and myotube maturation. 

 

4.3 Modelling the Neuromuscular Junction in vitro 

Several current in vitro models of neuromuscular junctions currently exist, each with 

their own advantages and disadvantages. Among the limitations found within these 

models are: biological differences to a human system; intricate and tricky culture 

conditions; and underdeveloped synaptic structures.  

 

In this study, we investigated the potential of the previously discussed stem cell derived 

neurons form functional synapses with C2C12 myotubes, and their potential to induce 

contractile events. The TERA2.cl.SP12 stem cell lineage exhibits high potency for 

producing neural derivatives in the presence of either natural retinoid or synthetic 

retinoid compounds. These neural cells have previously been used in co-cultures, and 

are proven in their ability to form interactions. 204, 206 Previous investigation using these 

two cell types resulted in an in vitro co-culture model of neuromuscular junction 

formation, with functional and anatomical evidence showing the presence of a 

neuromuscular synapse between the two cell types.206 In this previous work, neurons 

were seeded as a monolayer on top of developing C2C12 myotubes206. This approach 

was repeated in the initial stages of the current investigation, and this was when 

limitations within the co-culture system were observed. For example, as with any type 

of neural monolayer co-culture model, neurite-myotube interactions can be difficult to 

locate, and thus examine. Neurons produced by this technique also vary in length, which 

may also be indicative of different maturity levels, resulting in co-cultures that lack 

efficient and accurate quantification. This proves impractical to neurite growth analysis, 

studying the formation of the neuromuscular junction, and subsequent pharmacological 

manipulation. We also altered the protocol to culture neurons with mature myotubes 

rather than myoblasts.  
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In this study, we identified neural terminal bouton-myotube co-localisation points and 

upon investigation, anatomical evidence suggests the presence of neuromuscular 

junctions at these points of interaction.  

 

To enhance the co-culture model to overcome some of their limitations, we developed a 

model utilising the ability of TERA2.cl.SP12 stem cells to form spheroid neurospheres 

that differentiate and undergo neurite outgrowth. Neurospheres were seeded onto fully 

differentiated, mature myotubes and allowed to co-culture for 10 days. During this 

period, we observed neurites projecting radially from the central core of neural cell 

mass. As anticipated, many points of co-localisation were observed between neurite 

growth cone/terminal bouton and myotube surface.  This model system, through 

immunocytochemical analysis, allows for easy visualisation of different cellular 

structures, and as many neurites project from one central neurosphere, many 

neurites/connections can be analysed in a short space of time. The neurites produced in 

the co-culture radiate in an altered morphometric path compared to those in neurite 

outgrowth from neurospheres in monoculture, suggesting the system as a useful model 

for studying neurite guidance and docking. Neurospheres in monoculture require plating 

on laminin coated surfaces in order for neurite outgrowth to occur, since laminin is 

prominent extracellular matrix constituent pivotal to axon growth, through formation of 

complexing with integrin receptors that transmit signalling cues to the actin 

cytoskeleton, leading to neurite protrusion.237 However, in the co-culture system 

designed here, co-culture conditions do not require being plated on a laminin coated 

surface as C2C12 myotubes are sufficient to support neurite and guidance. It is known 

that laminin constitutes the sheath overlying muscle, consisting of subunits alpha, beta 

and gamma. The beta-1 chain is involved in aiding neurite terminal formation, while 

alpha-laminin chain is involved in post-synaptic patterning. Laminin is essential for not 

only neurite growth but also neuromuscular junction formation, as it is involved in 

synaptic cleft modelling.237 C2C12 cells are known to express many laminin isoforms.251 
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The model therefore stands as a suitable model for investigating mechanisms 

underpinning this.  

 

After the 10 day co-culture period, numerous points of co-localisation can be observed 

between neurite terminal and the myotube surface. The positively staining neurites 

(TUJ1) end in a bouton-like structure, indicative of a presynaptic nerve terminal at the 

neuromuscular junction. The developmental biology of synapse formation observed 

throughout our studies matches that observed in vivo. 

 

 It has been revealed that during synaptogenesis, neurite terminals initially branch and 

make contact with a muscle fibre at several different locations.230 In our model we see 

numerous neural branches making contact with a myotube, or myotubes. Initially, this 

suggested that the neuromuscular junctions formed in the co-culture system were of 

varying levels of maturity, or the presence of immature junctions being produced in the 

timeframe of the experiment. However, early in development, a plethora of motor 

neuron branches emanate from one axon originating at the spinal cord, resulting in 

muscle fibers initially being connected or innervated by numerous neurons.230 Following 

this, all but one neurite is eliminated in a process of synapse competition and 

elimination.231 This occurs in both the peripheral and central nervous system, both 

during embryogenesis and shortly after birth. It is hypothesised that this process is 

involved in adapting a newborn to their environment.231 

 

This axon retraction is not asynchronous for fibres of the same muscle and occurs at 

different time-points during development. It can be emphasised here once again that 

the neurosphere design of the co-culture allows many neurites to be observed in a small 

area, and provides a system where numerous axons innervating a single myotube is 

more likely to occur, making the model valuable to investigate this process and specific 

molecules of interest. 
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In myotubes that are not in contact with neurons, nuclei exist in an approximately even 

distribution along the fibre. At many of the points of co-localisation between neurite 

terminal bouton and myotube, nuclei accumulation was clearly observed. Nuclei 

accumulation is characteristic at the neuromuscular junction, in which clusters of 

between 2 and 6 nuclei locate beneath the membrane, providing signalling cues and 

transcriptional profiling of proteins at the developing synapse.133, 232 Our co-culture 

model provides further evidence that signalling cues are created by neural element 

inducing nuclei homing at developing NMJ, as nuclei clustering is not observed until a 

neural element is introduced into culture. Although apparent at many points of co-

localisation, providing anatomical evidence for the presence of a neuromuscular 

junction, nuclei clustering was not observed at all sites of potential interaction. 

Literature suggests that this could be a result of the maturity of the synapse; one study 

in particular shows that myotubes at neuromuscular junctions devoid of fundamental 

nuclei clustering can still be viable and mature as nuclei may not be required for synapse 

maintenance once fully functional.165 This may be because nuclei are involved in the 

initial transcriptional regulation of proteins involved in the formation of the 

neuromuscular junction, and once expressed, the locality of the nuclei is no longer 

required. For example, nuclei located proximally to developing synapse exhibit 

increased AChR transcription during synaptogenesis, which is then downregulated once 

a mature synapse is formed.163 

 

However, much remains unclear about nuclear migration, docking, or their 

specialisation at the synapse. Syne-1 is a molecule of recent interest, a protein found 

abundantly in the nuclear envelope of myonuclei.163 It would prove useful to investigate 

the levels of Syne-1 in nuclei in our co-culture system, and to investigate whether levels 

transiently increase at the point of docking, followed by a decline, causing ‘undocking’ 

of nuclei at the NMJ. Another paper outlines the idea that initially in synapse formation, 

resident AChRs accumulate and localise at the postsynaptic membrane prior to 

fundamental nuclei recruitment, postulating the idea that AChR accumulation is 
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involved or a pre-requisite to this process, before upregulation of AchR transcription by 

the nuclei once docked.225 Consequently, the co-culture model could be useful to 

investigate the effect of neural input on myogenesis in vitro. 

 

It is well documented that specialised proteins appear along the length of a muscle fibre 

that cluster during innervation.165 In the opening stages of our investigation, we showed 

that C2C12 myotubes possess acetylcholine receptors, distributed somewhat randomly 

along the surface of mature myotubes. Upon innervation, these acetylcholine receptors 

migrate, and are anchored directly beneath the motor nerve terminal. Alpha-

bungarotoxin staining was employed to visualise any acetylcholine receptor clustering at 

the points of co-localisation between neurite terminal and myotube in our co-culture 

staining. Positive staining indicated clustering at many of these sites, suggesting 

acetylcholine receptor clusters and thus post-synaptic modifications. This acetylcholine 

receptor clustering does not occur aneurally in humans, and occurs only upon 

innervation and around the same time as axon competition.234 Accordingly, the model is 

potentially useful to study human development. A plethora of evidence is now available 

showing the Agrin-MUSK-raspyn receptor mediated pathways to be involved in the 

upregulation and synthesis of AChR’s at the developing synapse; during which, agrin, 

which is synthesised by motor neurons, promotes anchoring of receptors.143, 144, 145 As a 

result of this, to further elucidate and confirm neuromuscular junction formation, 

immunocytochemical investigation into the presence of agrin and MusK would be useful 

to confirm their structural presence, whilst also further consolidating the motor 

phenotype of the neural element. 

 

To further confirm positive acetylcholine receptor cluster staining, a double stain of co-

cultures was performed to eliminate any interference between emission spectrums 

between the wavelengths of the stains used. In the initial triple co-culture stain, where 

we used a red stain (neurites – TUJ1), a green stain (myotubes – F-actin), and a far-red 

stain (AChRs - alpha-bungarotoxin), there may be speculation of the red and the far red 
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stains overlapping. Therefore, by using a double stain consisting of a green stain for 

neurites and the far red for acetylcholine receptors, we eliminated any uncertainty. 

Although myotubes were not stained, we can confirm that the positional identity of the 

clusters was at the neurite terminal, on the myotube surface. We hypothesised that this 

was induced through neural signals as AChR clusters did not appear on uninnervated 

myotubes.  

 

Anatomical evidence suggested the presence of neuromuscular junctions in our co-

culture model. Subsequently, a functional assay was performed to test ability of 

neuromuscular junction to elicit a response in the form of contractile movement. As 

already mentioned, previous work has been carried out co-culturing the two cell types 

being used in our model, and contraction was observed in co-cultures following 

pharmacological manipulation.206 In this previous study, contractile events were 

counted in co-culture after addition of agonist compounds acetylcholine (Ach), 

carbachol, nicotine and muscarine (Figure 5.3.11206). Antagonists including curare, and 

atropine were subsequently added to block contraction, providing functional evidence 

for neuromuscular junctions in vitro. From the figure, we can see that acetylcholine 

elicited the strongest response as more contraction was observed in acetylcholine 

treated cultures (B) compared to carbachol (A).206 Furthermore, all agonists tested 

excluding acetylcholine resulted in contraction of C2C12 myotubes in the absence of 

neurons, whereas acetylcholine produced no contraction in monoculture. Thus, as a 

result of limited experimental time-frame, we chose to only examine the effect of 

acetylcholine on our co-culture system. 

 

We supplemented the media of mature myotubes in monoculture with a range of 

acetylcholine concentrations to see if any contraction could be observed aneurally. No 

spontaneous contraction was observed before addition of the AchR agonist, nor did we 

observe any after addition at any of the concentrations. This may indicate that although 

acetylcholine receptors are present before neural stimulation distributed p along C2C12 
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myotubes, they are not present or organised in large enough quantities to elicit a 

contractile response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial evidence of contraction was observed in culture after addition of 10 μM 

acetylcholine. No antagonists were added however following stimulation with 

acetylcholine. An alternative method of antagonising a neuromuscular junction is to 

block the function of acetylcholinesterase, the molecule found in the neuromuscular 

Taken From Pan, C., 2007.  
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junction synaptic cleft, responsible for the hydrolysis of acetylcholine to acetate and 

choline. Without functioning acetylcholinesterase, acetylcholine itself has been proven 

to be an effective blockade for contraction.40, 41, 235 To conclude, additional investigation 

using pharmacological manipulation for functional assessment of our co-culture system 

would be beneficial to provide conclusive data. Furthermore preliminary evidence of 

myotube contraction using acetylcholine suggests the presence of functional 

neuromuscular junctions appears a result of neural stimulation rather than a myotube 

response, as no contraction was observed in myotube monocultures under the same 

conditions. 

 

After in depth morphological and functional characterisation of the co-culture model, 

the model was further enhanced through introduction of selective ROCK inhibitor, Y-

27632 into the culture media. Data throughout this investigation has showed the 

potential of Y-27632 to enhance differentiation of cell types dependent upon actin 

remodelling. Firstly, we applied ROCK-inhibitor Y-27632 to our neurosphere model to 

enhance neurite outgrowth, as ROCK, the downstream effector protein of Rho A has 

been shown to be involved in neurite inhibition. By inhibiting ROCK, activation of Rho 

GTPases Rac and Cdc42 within the neurite occurs, resulting in membrane instability at 

the leading edge of the neurite, allowing for membrane protrusion and extension. 

Following on from this, we investigated the effect of the ROCK inhibitor on the C2C12 

cell line, using the same concentration of Y-27632 that we used to investigate its effect 

on neurite outgrowth. Our results matched, if not improved on the literature, where Rac 

and Cdc42 are postulated to be essential for myoblast fusion during myogenesis, 

meanwhile Rho A is downregulated at the onset of differentiation.109, 237 As a result of 

the aforementioned results and literature, we aimed to enhance differentiation of both 

cell types within our co-culture system to improve efficiency and resulting model, with 

the aim of increasing junctional complexes formed per model. 
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The data acquired from co-culture models whereby ROCK was inhibited are extremely 

promising, with significantly enhanced neurite outgrowth occurring. This enhanced 

neurite outgrowth increases the potential for an increased quantity neuromuscular 

junctions to form per model, since neurite density is increased. Not only this, but our 

enhanced co-culture model provides an exciting, unique opportunity to study the effect 

of ROCK inhibition on the neuromuscular junctions formed in vitro. Several co-culture 

studies using C2C12 myotubes as the skeletal muscle component for modelling the 

neuromuscular junction have reported immature, thin myotubes.238 By inhibiting ROCK 

in the co-culture model presented here, this limitation can be overcome, as myotube 

differentiation is enhanced, and mature myotubes are obtained. 

 

Recent scientific advancements have identified the Rho family of small guanosine 

triphosphatases, specifically Rac and Cdc42 as molecules involved in Agrin-induced 

acetylcholine receptor clustering. (49) Musk, the postsynaptic receptor tyrosine kinase 

for Agrin, also requires the activity of Rac and Cdc42 following Agrin activation. (48) 

MUSK is essential not only in the developmental biology of a neuromuscular junction, 

but also for their maintenance. Cdc12 has also been subject of attention following 

identification of its involvement in nuclear migration in myotubes, a characteristic 

anatomical response elicited in response to neural stimulation. Therefore, it cannot be 

emphasised how invaluable ROCK inhibition may prove to the future of in vitro models 

of neuromuscular junction formation, as inhibition of ROCK favours activation of Rac 

and Cdc42, molecules whose importance is only beginning to be elucidated in the 

formation and maintenance of these synapses, meanwhile aiding differentiation of both 

the neural and skeletal muscle components of the model.  

 

This enhanced co-culture model, with enhanced neurite outgrowth in co-culture could 

provide a model better suited for high-throughput pharmacological screening or 

quantification. It also provides a proven platform for assessing signalling pathways, and 

is amenable to alterations, proven here by altered Rho signalling. All anatomical 
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characteristics of neuromuscular junctions previously investigated in the model were 

also identified in the enhanced co-culture model, including terminal presynaptic bouton 

formation, acetylcholine receptor clustering on the post-synaptic membrane, and nuclei 

accumulation at the peripheral myotube membrane, proximal to the synapse. 

 

The model could also prove useful for studying pathology at the junction. Many 

pathological conditions involve the neuromuscular junction, including autoimmune as 

well as toxin-mediated conditions, including myasthenia gravis and botulism, 

respectively. However, we will focus particularly on Amyotrophic lateral sclerosis (ALS) 

and spinal muscular atrophy (SMA) and their relevance to the in vitro model we have 

developed. Spinal muscular atrophy, the most common genetic cause of infant death, 

occurs as a result of mutations in the Survival Motor Neuron 1 (SMN1) gene. Within the 

past few years, emerging evidence has shown that an upregulation of Rho A and ROCK 

and their involvement in cytoskeletal regulation as key contributors to the pathology of 

this disease.239 As a result, recent pharmaceutical research included ROCK inhibitors 

including Y-27632.239 Motor neurons are the primary tissue affected but due to the 

nature of motor neurons and their connection to skeletal muscle at the neuromuscular 

junction, thus the implication of an altered Rho A and ROCK cascade is more than likely 

to be more significant than currently understood; the evidence gathered in this research 

shows that ROCK inhibition has significant impacts on cell types undergoing 

differentiation or actin remodelling, and therefore will prove a very useful model for 

studying not just diseases of the neuromuscular junction, but motor neuron diseases in 

addition.239  

 

Moreover, ROCK inhibitor Y-27632 has showed promising results in animal amyotrophic 

lateral sclerosis models, improving motor function.240 ALS is characterised by muscle 

weakness emanating from motor neuron degeneration. As a result, the co-culture 

model described herein could provide more ethical, fully controllable conditions for 

pharmaceutical development and study of pathology. Furthermore, the embryonal 
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carcinoma cell line used here has previously been used to investigate neurite inhibition 

in neurodegenerative disease, including Parkinsons.28, 204 

 

4.4 Conclusions 

Before developing a co-culture system allowing for formation of neuromuscular 

junctions, we first developed and enhanced differentiation of the two cell types to be 

used. First, we differentiated C2C12 myoblasts into myotubes, a commonly used cell line 

in this kind of investigation. The C2C12 cell line can be readily differentiated easily, 

through low serum conditions, providing efficient and easy means of obtaining mature 

myotubes that express contractile apparatus, proven to be capable of contraction.241 

The myotubes differentiated as expected, lacking spontaneous contraction whilst 

possessing contractile apparatus, and expressed acetylcholine receptors distributed 

diffusely rather than in clusters. Meanwhile, nuclei are evenly distributed in the un-

innervated myotube. We then enhanced differentiation by altering signalling 

mechanisms within the cell through introduction of a ROCK-inhibitor. All results 

obtained suggested the cell line as a good model system that will allow functional 

analysis of any neuromuscular junctions obtained.  

 

Neurons were obtained from a neurosphere model from which neurites radiate 

outwards in culture.298 The neurons from the TERA2.cl.SP12 cell line have been proven 

to be electrophysiological active, an capable of forming synapses with muscle in co-

culture.235, 206 The embryonal carcinoma cell line provides an advantageous method of 

obtaining neurites compared to embryonic stem cells, as easier differentiation 

protocols, no requirement for feeder layers/extensive, complex culture systems, and 

can readily be directed down a neural lineage. Neurite outgrowth can be enhanced 

through ROCK inhibition, which favours actin remodelling at the protruding edge of the 

neurite.  
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Following this, we developed a novel, unique, co-culture system by amalgamating both 

methods of differentiation into a co-culture system involving seeding the neurospheres 

onto mature myotubes. Anatomical characterisation of our co-culture model showed 

the presence of presynaptic and post-synaptic structures conducive to a functional 

cholinergic synapse. Preliminary functional evidence was obtained suggesting fully 

functional cholinergic synapse formation. Furthering on from this, the model was then 

enhanced by exploiting Rho A/ROCK signalling, which was proven to enhance 

differentiation of both cell types in monoculture. Enhanced neurite outgrowth was 

obtained, and it can be postulated that more neuromuscular junctions are formed per 

model as a result, also further work is required to investigate this hypothesis. To our 

knowledge, this stands as the first co-culture system that has an added element of Rho 

signalling manipulation, one that benefits all cell types in the co-culture. We also believe 

we present the first findings of nuclei clustering at the synapse in a co-culture involving 

the C2C12 cell line, and through simple modification of existing protocol, supply a co-

culture method allowing myotubes to be maintained in culture for extended periods of 

time, this longevity is advantageous for pharmacological studies.  

 

Although a heterogeneous co-culture system, results can be extrapolated to the human 

neuromuscular junction, although inaccuracy in biological differences will exist. The 

validity of any model to recapitulate in vivo conditions largely lies in the cell types used. 

Many homogenous co-culture systems are hindered by their requirement of primary 

human tissue, and thus large scale production of these systems is unethical, costly and 

unrealistic. Instead, we provide an advanced, robust and reproducible co-culture model 

using reliable cell lines that eliminates sample variation whilst reducing animal use, as 

well as providing a unique and exciting opportunity to investigate mechanisms 

underpinning the development, biology and pathology of the neuromuscular junction. 

The model provides a platform for easy identification of structures present, with 

potentially high-throughput neuromuscular junction formation that may provide useful 
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for pharmacological testing and quantification, whilst being responsive to signalling 

alterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Future Directions 

The data outlined in this thesis provides a foundation for formation and study of in vitro 

neuromuscular junctions. Whilst conclusions can be made from the data, but additional 

investigation is required to provide unequivocal evidence, and to further build on the 

work presented herein. Due to the time constrains of the current project, additional 

further work has been suggested. 

 

To begin with, the phenotype of the type of neurons produced was unconfirmed in our 

neurosphere neurite outgrowth and our co-culture model. Although we provide 

evidence for neuromuscular junction formation between neurites and skeletal muscle, 

this does not necessarily suggest the presence of motor neurons, and we cannot assume 

Figure 4.4: Terminal neuron bouton contacting myotube surface where nuclei accumulation is evident.  
The neuron (red,)  immunofluorescently labelled with TUJ-1, appears to contact the 
myotube (green)  at a point where nuclei (blue) accumulation has  occurred. The 
myotube surface appears sl ightly raised at the point of contact. Myotube stained with 
phalloidin and nuclei  counterstained with hoechst. Scale bar = 15 μm 
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the motor phenotypic purity of each culture. To identify motor neurons in both 

monoculture and co-culture, motor neuron specific markers including Lim3, Isl-3, HB-9 

and ChAT should be investigated.234 Nevertheless, previous work involving the stem cell 

line used to produce neurons throughout our studies has previously been shown to be 

capable of producing motor neurons.206 It is well documented that Sonic hedgehog (Shh) 

is involved in dorso-ventral patterning of the vertebrate nervous system during 

embryogenesis. Here, Shh influences the fate of developing neurons, directing 

differential fate towards a motor phenotype.9, 10, 244 This, along with many other studies 

which have included Shh in their differentiation media, suggests that further work 

should to include Shh in neurosphere differentiation protocol.206, 245, 246 Previous work 

involving the two cell types used in co-culture have previously been differentiated using 

a protocol involving the use of Shh, and results showed increased contraction observed 

in co-cultures.206 It can be hypothesised that this will increase motor neuron phenotype, 

and thus neuromuscular junctions formed per model in co-culture, which could easily be 

quantified.  

 

To provide further evidence for neuromuscular junction presence in our in vitro co-

culture model, additional synapse specific structures could be examined. These could 

include SNARE proteins, including synaptotagmins, or Agrin, Musk, or raspyn – proteins 

essential in neuromuscular junction formation, specifically acetylcholine receptor 

clustering.123 Acetylcholinesterase, the enzyme involved in acetylcholine breakdown 

within the synaptic cleft, is also another protein that would act as a strong indicator of 

neuromuscular junction formation. Other methods of microscopy could be employed to 

examine the anatomical structure at the neuromuscular junctions formed within our 

system. TEM for example, can be used to observe the ultrastructure at the neurite 

terminal bouton and skeletal muscle, allowing further evidence for presynaptic and 

postsynaptic structures to be obtained. Specifically, we would expect to observe nuclei 

clustering and abundant golgi-apparatus residing close to the synapse in both cell types. 

Golgi apparatus complexes are known to be located abundantly around especially 
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fundamental nuclei of the myotube, where they are involved in acetylcholine receptor 

synthesis and insertion into the post-synaptic active sites.247 Pharmacological 

manipulation of co-cultures only provided preliminary evidence of functional cholinergic 

synapses, thus further work using additional agonists as well as antagonists would prove 

to be useful. 

 

To further our characterisation of the effect of ROCK inhibition on neuromuscular 

junction formation in vitro, junctional complexes formed per model should be 

quantified and compared between untreated and ROCK inhibitor treated co-cultures as 

a method of evaluating the potential of ROCK inhibition on enhancing neuromuscular 

junction formation. Unfortunately, due to the time-dependent circumstances, we were 

unable to investigate if neuromuscular junctions were formed earlier in co-culture as a 

result of ROCK inhibition, something which could be easily elucidated and quantified 

through time-lapse studies. As well as this, as ROCK inhibition is sufficient to enhance 

actin remodelling, our co-culture system could be used to investigate the involvement of 

Rho GTPases in acetylcholine receptor clustering at the neuromuscular junction, as well 

as the migration of other synapse specific proteins. 
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