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Abstract

I characterize asset prices in general equilibrium with risky pro-
duction. I develop a macroeconomic model that generalizes the
framework of Cox, Ingersoll and Ross (1985a) to include elas-
tic labor supply and production with multiple constant elastic-
ity of substitution technologies. I solve for the time- and state-
dependent equilibrium of the model using a novel deep neural
network technique to approximate optimal policy rules. The cal-
ibrated model produces empirically-plausible risk-free rates, eq-
uity risk premia, and volatility surfaces from deep microfoun-
dations and reasonable parameter values for uncertainty in pro-
duction. The numerical solution procedure is far more flexible
than standard methods and reveals previously-unknown features
of equilibrium behavior and asset prices.

My model leads to a novel understanding of aggregate fluc-
tuations. I find that technological shocks are not sufficient to
generate aggregate fluctuations. Instead, I locate their origin in
shocks to the yield of productive factors within individual produc-
tion processes. Recovery from an adverse shock involves complex
adjustments to the quantity and allocation of productive factors
which bring the economy to a different equilibrium state than the
one prevailing prior to the shock. We explain why such behav-
iors cannot be observed in standard macroeconomic models, and
discuss their consequences for economic policy.
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Chapter 1

Introduction: The State of
Macro-Finance

Few economic phenomena command as much practical and professional at-

tention as the movements of financial asset prices. As an increasing share of

the world’s growing wealth comes to be held in the form of financial assets, a

sound understanding of financial asset price movements becomes ever more

important.1

The capitalist order rests on a belief that the outcomes of competitive

markets produce the greatest possible welfare for society, and most reward

those individuals contributing the most to that welfare. With financial as-

set prices seemingly decoupling from everyday economic experience in these

first decades of the twenty-first century, the time is ripe for a critical re-

examination of how asset prices are determined in general equilibrium, and

to ask whether large-scale developments in asset prices over the past decades

are consistent with an Arrow-Debreu conception of the economy as an essen-

tially competitive, stable, and allocatively-efficient process.

What counts as an explanation of asset price movements has undergone

considerable refinement within the discipline of financial economics. The

Copernican revolution ushered in by Markowitz’s (1952) portfolio theory

and the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner

(1965), and Mossin (1966) framed financial market equilibrium as a set of re-

1Piketty (2014) charts the ‘metamorphoses’ of capital from agricultural land and public
debt to shares and real estate.

1



2 CHAPTER 1. INTRODUCTION

lationships that must prevail among asset prices to rule out the possibility of

riskless gains, or arbitrage. To define equilibrium asset prices in this way was

no small advance, and indeed, the majority of financial professionals can do

their work competently using nothing more than the principle of no-arbitrage

pricing.

But for modern economists, no-arbitrage conditions are not a complete

explanation. Economists seek a causal explanation that connects movements

in economic quantities to financial asset price movements. Though a long

tradition of research traces movements in asset prices back to developments

in the aggregate ‘real’ economy, such as the interwar studies of Keynes and

Schumpeter and the seminal general equilibrium models of Arrow and De-

breu, more recently such research has developed into a distinct sub-field of

macroeconomics known as macro-finance, which “studies the relationship

between asset prices and economic fluctuations.”2 (Cochrane 2017: 945)

The purpose of this thesis is to advance and critically examine the dis-

cipline of macro-finance by (1) developing a paradigm for the joint equilib-

rium of the economy and financial markets that emphasizes risks intrinsic to

production processes, and (2) introducing an innovative numerical solution

method that permits such models to be analyzed in the absence of analyti-

cal solutions. The basis of the paradigm is provided by the continuous-time

general equilibrium model of Cox, Ingersoll and Ross (1985a). Solutions are

found by adapting a deep learning-based method introduced by Han and

E (2016) and further developed by Han, Jentzen and E (2018) to find the

optimal dynamic policy responses under uncertainty that characterize equi-

librium in the model.

1.1 Consumption Risk and Asset Prices

Because the opportunity cost of any investment is measured in terms of

foregone consumption, fluctuations in asset prices must be traceable in large

2I am indebted to Cochrane’s (2008, 2017) surveys of the literature in charting a nar-
rative for the development of macro-finance. I use his work as a foil throughout this thesis
owing to his leadership in the field.
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part to variations in the utility of consumption. Cochrane (2005) shows how

much of asset pricing theory can be unified by the concept of the stochastic

discount factor, a ratio of marginal utilities of consumption that falls out of a

consumer’s intertemporal optimization problem in a natural way. A typical

specification of the stochastic discount factor in consumption-based models

is

mt+k = βk
U ′(Ct+k)

U ′(Ct)
(1.1)

where U is a utility function, β is a subjective discount factor, t is the time

period at which valuations are obtained, and k indicates how far in the

future a payout on investment is to be received. The existence of a risk-free

rate, risk premia, the efficient frontier for portfolios, and many other central

concepts in finance may all be deduced from the variability of consumption

and the covariance of consumption with asset payoffs using the stochastic

discount factor. Indeed, the consumption-based approach to asset pricing

theory maintains that marginal utilities of consumption are the sole variables

of importance in valuing different asset payoffs.

From the perspective of the stochastic discount factor, the development

of macro-finance may be seen as a process of grounding fluctuations in con-

sumption and their valuation by a representative agent ever more rigorously

in economic theory. Lucas (1978) was the first to focus attention on intertem-

poral tradeoffs in marginal utility via the consumption Euler equation, from

which the stochastic discount factor may be derived. However it was Breeden

(1979) who first modeled the intertemporal consumption decision in an ex-

plicit equilibrium model he called the consumption-based capital asset pricing

model (CCAPM).

Breeden’s CCAPM provides a powerful explanation of how risk premia

are determined in equilibrium. Risk premia account for returns on investment

in excess of the risk-free rate, and all risk premia may be decomposed into

the product of a quantity of risk and a price for holding risk. In Breeden’s

model, the relevant quantities of risk are the variance of consumption and

covariances of payoffs with respect to consumption. The price of risk, or the

amount an investor is compensated to hold a unit of consumption risk in
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equilibrium, is determined by the investor’s degree of risk aversion, which is

a feature of the utility function.

Breeden (1979) makes two assumptions that were decisive for subsequent

work in consumption-based asset pricing. First, Breeden assumes that con-

sumption is the only argument in agents’ utility functions, while allowing

that the representative agent in the CCAPM may aggregate heterogeneous

preferences for consumption risk. By stipulating the sufficiency of consump-

tion risk in determining asset prices, Breeden focused research on the spec-

ification of preferences over different consumption streams, while flagging

aggregation and heterogeneity as important issues for theoretical and econo-

metric analysis of asset prices. Second, Breeden’s model leaves asset markets

incomplete. Because the set of available securities does not provide exposure

to all dimensions of consumption risk, not all risks to consumption are trade-

able in asset markets.3 Thus a second stream of research motivated by the

consumption-based theory focuses on expansions of risk premia prompted by

agents’ ‘hedging demands’ for those assets that let them offset non-tradeable

risks to consumption, however incompletely.

Empirical testing of the CCAPM got off to a rocky start. Hansen and

Singleton (1982, 1983, 1984) estimated and tested the consumption Euler

equation, in some of the first studies applying Hansen’s generalized method

of moments (GMM) techniques. Their tests using aggregate consumption

time series and constant relative risk aversion (CRRA) preferences rejected

the consumption-based model.

Mehra and Prescott (1985) pioneered an alternative approach in which

consumption time series are generated by simulating a calibrated equilibrium

model. Unlike Hansen and Singleton, who estimate preference parameters

from data, Mehra and Prescott set the parameters of their model with refer-

ence to a benchmark real business cycle (RBC) model and solve for the equity

risk premium implied by the model for a range of values for the coefficient

of relative risk aversion. Their efforts framed the famous ‘equity premium

puzzle,’ based on the observation that the historical level of the equity risk

3Economists frequently employ the jargon of ‘spanning’ basis sets from linear algebra
to say the above using the shorthand ‘consumption risk is not spanned by asset markets.’
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premium could not be reconciled with reasonable values for the degree of

relative risk aversion in a model which, in their view, otherwise does a good

job of capturing the dynamic behavior of the aggregate economy. We will

have more to say about Mehra and Prescott’s approach below.

Later developments in a ‘first generation’ of studies reviewed by Bree-

den, Litzenberg and Jia (2015a) refined the measurement of consumption

risk while working within the class of time-additive utility functions with

CRRA preferences. Improvements in the measurement of consumption risk

have been achieved by Hansen and Singleton (1983), Cox, Roll and Ross

(1986), Littau and Ludvigson (2001a, b), Parker and Julliard (2005), and

Jagannathan and Wang (2007). At the same time a more disaggregated un-

derstanding of consumption risk led to refinements in the measurement of

risk aversion. The studies of Mankiw and Zeldes (1991), Heaton and Lucas

(1992), and Brav, Constantinides and Geczy (2002) show how disaggregat-

ing the consumption of subpopulations results in more volatile consumption

streams for those with more exposure to equities, and therefore more reason-

able measurements of risk aversion for individuals who actually hold equities.

Consumption-based asset pricing research emphasizing market incomplete-

ness is surveyed by Kocherlakota (1996) and Campbell (2003).

However focus would quickly shift away from market incompleteness to

the specification of preferences over consumption streams. The ‘second gen-

eration’ of empirical work on the CCAPM surveyed by Breeden, Litzen-

berger and Jia (2015b) takes a critical look at the first generation’s use of

time-additive, CRRA utility functions. By reformulating the utility func-

tion to incorporate habituated levels of consumption or recursive valuations

of consumption researchers have posited preferences over the time path of

consumption.

The models of Constantinides (1990) and Campbell and Cochrane (1999)

posit that consumers value consumption streams relative to internal and

external consumption habits, respectively.4 A typical specification of prefer-

4Habits are internal if they are personal to the agent, and external if they are based
on aggregate consumption. The latter is more tractable mathematically and empirically.
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ences with a habituated level of consumption is

U(Ct, Ct−1, . . . , Ct−k) =
(Ct − CH)1−γ

1− γ
(1.2)

where CH is the habituated level and γ is the local coefficient of relative risk

aversion. The habituated level CH is often defined by distributed lags of past

consumption, i.e., CH = f(Ct−1, . . . , Ct−k), eliminating time separability in

the utility function. Its presence in the utility function makes the represen-

tative agent value consumption in the neighborhood of CH like they would

value near-zero consumption in a utility function without habits, allowing

lower values of γ to be compatible with extreme levels of local risk aversion

and the equity risk premium.

Following early work by Kreps and Porteus (1978), the recursive util-

ity formulations of Epstein and Zin (1989) and Weil (1989) decouple risk

aversion from the elasticity of intertemporal substitution. A typical speci-

fication of recursive preferences defines a constant-elasticity-of-substitution

aggregate of current consumption and expected future consumption, while

confining relative risk aversion to expected future consumption alone. Thus

for a coefficient of relative risk aversion γ, a subjective discount factor β,

and an elasticity of intertemporal substitution σ, define ρ = σ−1
σ

and write

preferences recursively as

Ut =
(

(1− β)Cρ
t + βE

[
Uγ
t+1

] ρ
γ

)1/ρ

(1.3)

Recursive utility allows investors not only to prefer less uncertainty about

consumption to more via the parameter γ, but also to prefer earlier reso-

lutions of uncertainty to later resolutions via the elasticity of intertemporal

substitution σ. Like utility functions with habituated levels of consumption,

recursive utility functions also allow lower coefficients of relative risk aver-

sion to be compatible with the equity risk premium for observed levels of

consumption risk.

The more recent generation of empirical work has also led to further im-

provements in measurements of consumption risk. Lettau and Ludvigson
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(2001a, b) condition consumption risks on the level of wealth, showing that

aversion to consumption risk increases as wealth declines. In addition to

applying Epstein-Zin/Weil preferences, Bansal and Yaron (2004) show the

importance of persistence in the consumption process and time variation in

the volatility of consumption. And Santos and Veronesi (2006) show time

variation more generally in the risk characteristics of assets, leading to sig-

nificant time variation in the equity risk premium.

Some interesting contributions by Eraker and Shaliastovich (2008) and

Eraker (2008) connect a consumption-based foundation to the empirically-

important class of exponential affine models for contingent claims prices. The

class of exponential affine models potentially encompasses pricing implica-

tions for any asset with a term structure, which helps to push the boundaries

of the consumption-based research program beyond the puzzle of the equity

risk premium which had dominated earlier work.

Despite the empirical tenacity of the CCAPM and the intuitive role con-

sumption risk plays in the determination of risk premia and asset prices, the

CCAPM falls short as a deep, causal explanation of dynamic risk premia. A

deep explanation must trace consumption risk to its origins in the produc-

tive capacity of the economy. To follow the consumption-based asset pricing

research program in modeling production as an ‘endowment process’ gift-

ing random levels of consumption to the economy is question-begging, and

tweaking the preferences of a representative agent to dislike the output of the

endowment process just enough to match the data is an unsatisfying strat-

egy for ‘explaining’ asset prices. Inasmuch as the consumption-based theory

hangs on the specification of the utility function, its empirical content is

slim: a specification for the habituation process CH or a value for the elas-

ticity of intertemporal substitution σ that is not rejected by the data, given

a tolerable constant of relative risk aversion γ. Perhaps more fundamentally,

the consumption-based theory with time-dependent preferences gives us a

subjective explanation of intertemporal substitution, rather than describing

rates of intertemporal substitution as quantities determined by the behavior

of optimizing agents in equilibrium.
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1.2 Asset Prices and Production

Two alternative streams in the macro-finance literature aim to connect the

determination of asset prices to the productive capacity of the economy.

The first stream attempts to remove consumption decisions and preferences

from the determination of asset prices all together, while the second stream

models asset prices in a general equilibrium with endogenous production and

consumption.

1.2.1 Production-based asset pricing models

Production-based models of asset pricing focus on the decisions of a repre-

sentative profit-maximizing firm rather than a representative consumer. For

the profit-maximizing firm the fundamental intertemporal tradeoff is that

between producing output today and investing in partially-finished goods

and productive capacity that will yield output in the future. The fundamen-

tal economic risk faced by firms is the risk of shortfalls in current output

when resources are invested in expanding future production. Expected ex-

cess returns on physical investment compensate producers for risking current

output. Returns on physical investment are linked to financial investment

returns via Tobin’s q theory of capital market equilibrium (Tobin 1969).

A stochastic discount factor may be derived for production-based models

in analogy with (1.1). The stochastic discount factor of the consumption-

based theory is the product of a subjective discount factor and a ratio of

marginal utilities. The expected marginal utility of future consumption di-

vided by the marginal utility of current consumption gives the marginal rate

of substitution between current and future consumption. One can view the

marginal rate of substitution as a ratio of prices for dated consumption. In

the production-based theory the marginal rate of substitution is replaced by

the marginal rate of transformation, the ratio of expected future and cur-

rent marginal values of output to the firm. These marginal values may also

be expressed as a ratio of prices. Cochrane (1991) accordingly formulates a
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production-based stochastic discount factor of the form

mt+k = ρk
Qt+k

Qt

(1.4)

where Qt+k = P (st+k)/ρt+kπ(st+k|st) is the price of a unit of output delivered

in a state st+k that follows st. The firm adjusts its production to equate its

marginal cost of production to these contingent claims prices, which give the

marginal benefit of production.5

The representative firm’s first-order conditions imply an equilibrium re-

turn on physical investment which might be expected to explain returns on

investments in equities. Cochrane (1991) develops a series of expected in-

vestment returns from aggregate data on gross investment and finds that ex

post investment returns and stock returns are highly correlated, among other

encouraging correspondences. If the investment decisions of a representative

firm with a single production technology can reproduce aggregate stock re-

turns, then we might surmise that multiple representative firms with multiple

production technologies could be the basis of a multi-factor explanation for

the cross-section of equity returns.6

Cochrane (1996) pursues a production-based explanation of the cross-

section of equity returns using time series for gross residential and non-

residential investment. He derives an expression for the expected return on

physical investment with unknown sector-specific parameters for the marginal

product of capital, the depreciation rate, and the cost of adjustment to new

investment. The stochastic discount factor that prices the cross-section of eq-

uity returns is no longer expressed as a ratio of contingent output prices, but

as a linear combination of the expected returns on physical investment. Using

four selected decile portfolios, a proxy for the risk-free rate, and two instru-

ments, Cochrane (1996) derives moment restrictions and jointly estimates the

unknown parameters for the sector-specific production technologies and the

5Belo (2010), following Cochrane (1993), provides an alternative formulation in terms
of productivity levels.

6Studies of ‘the cross-section of equity returns’ put asset pricing theories to the test
by requiring them to explain returns on multiple portfolios simultaneously, as opposed to
studies that seek to explain the movements of an aggregate index of equity prices.
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stochastic discount factor by GMM.7 Cochrane’s strategy thus wagers that

time series on physical investment and well-chosen moment conditions can

use stock returns to provide insight into the structure of production, while

simultaneously leveraging producers’ optimality conditions to parameterize

a stochastic discount factor for the cross-section of equity returns.

Regrettably, Cochrane’s empirical strategy did not live up to the ambi-

tions that motivated it. The selected equity return series and instruments

were not sufficient to identify even three unknown parameters in the speci-

fication of production technology, so Cochrane fixes depreciation rates and

adjustment costs, leaving the marginal products of capital free. The latter

are well-estimated, but a long-run average marginal product of capital for a

sector does not tell us much about production. Indeed, Cochrane (1996) tests

an alternative specification in which production technology is completely sup-

pressed. Expected returns on physical investment are replaced with physical

investment growth rates computed directly from the data, i.e., without ref-

erence to optimality conditions or a functional form for production. When

production is suppressed, growth rates in investment actually do a better job

of explaining the cross-section of equity returns. These results suggest that

either (a) the linear form chosen for the stochastic discount factor makes

poor use of the information contained in the physical investment return se-

ries, or (b) the sectoral investment return series absorb no information from

the partial equilibrium theory of production beyond the information already

present in the volume of investment.

The results of Cochrane (1996) boosted appreciation for GMM as an

econometric methodology for testing asset pricing models, but dealt the

production-based asset pricing theory a blow from which it hasn’t really

recovered. Li, Vassalou and Xing (2006) improve a bit on Cochrane’s stochas-

tic discount factor specification using a different sectoral disaggregation of

investment growth rates, but further work in this direction isn’t particu-

larly informative; after all, why should residential investment by households

(Cochrane) or investment by non-corporate business (Li, Vassalou and Xing)

have anything to do with the returns on investment expected by the corporate

7The term premium and the dividend-price ratio are used as instruments.
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business sector that actually issues publicly-traded equity? The careful study

of Liu, Whited and Zhang (2009) shows that the cross-section of stock returns

is consistent with the ‘investment Euler equation’ of a profit-maximizing firm

and the q theory of investment. However they find, like Cochrane (1996),

that equity returns provide little insight into the structure of production.

Liu, Whited and Zhang use accounting data to determine the stock of cap-

ital, investment, output, depreciation, capital structure, effective tax rates

and interest costs at the firm level, a strategy that is difficult to make op-

erational at the macroeconomic level. Belo (2010) formulates a model with

state-contingent production plans and estimates two parameters in an ag-

gregate production function: the elasticity of substitution across states, and

the sensitivity of production to a common productivity factor. His estimates

of both parameters are often statistically indistinguishable from the neutral

value of unity, and when differences from unity are statistically significant,

they are not economically significant.

Under these circumstances it is not clear what equity returns can tell us

about the structure of production, or what a better understanding of pro-

duction would tell us about the structure of asset price risks. Nevertheless,

dismissing production as an important source of risk would be unwise. I

agree with Cochrane (2008: 290) that “If we want to link asset prices to

macroeconomics, consumption seems like a weak link,” particularly when

cyclical movements in output, investment, and employment dwarf the placid

wanderings of aggregate consumption. Instead of the ‘either-or’ choice be-

tween consumption- and production-based theories, a ‘both-and’ approach

employing consumer choice in a dynamic general equilibrium with explicit

production might capture the best of both approaches.

The production-based theory also shows the limits of what econometric

studies of asset prices can tell us about the structure of production and

its role in determining risk premia. If production is to be specified in a

model of asset prices, unknown parameters will have to be calibrated or

fixed on the basis of prior empirical investigations. With the turn toward

general equilibrium theories of asset pricing our primary tools of inquiry

are calibrated macroeconomic models, solved numerically and simulated to
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reveal the model’s implications for asset pricing.

1.2.2 Asset pricing in general equilibrium

A paradigmatic example of a general equilibrium asset pricing model is Jer-

mann (1998). In general equilibrium the first-order conditions of the pro-

ducer and the consumer interact to determine equilibrium. Like Mehra and

Prescott (1985), Jermann takes an RBC model as his starting point, based

on the belief that the RBC model does reasonably well in accounting for the

essential features of business cycles. In place of the Lucas (1978) model used

by Mehra and Prescott, Jermann starts from the model of King, Plosser, and

Rebelo (1988a, 1988b, 2002), which includes an explicit model of production.

Jermann was not the first to investigate whether the equity risk premium

puzzle might arise from the absence of production in the Lucas (1978) and

Mehra and Prescott (1985) models. Earlier efforts by Danthine, Donald-

son and Mehra (1992) and Rouwenhorst (1995) found that introducing pro-

duction only aggravated the equity premium puzzle, because the ability to

control production through investment decisions gives risk-averse households

another lever with which they might smooth their consumption. Accordingly,

Jermann (1998) employs a concave adjustment cost for investment in a nod

to the Q theory literature. The adjustment cost penalizes large changes in

investment with output losses.

Jermann’s modifications to Mehra and Prescott (1985) are not confined to

the production side of the economy. In place of CRRA preferences he uses a

simplified version of the habit formation preference specification of Campbell

and Cochrane (1999).8 Jermann thus allows time-inseparable preferences

and investment decisions to interact in reconciling the equity risk premium

with low levels of aggregate consumption volatility. And consistent with the

consumption-based asset pricing literature – but unlike King, Plosser and

Rebelo (1988a, 1988b) – the representative agent in Jermann’s model values

only consumption and supplies his labor inelastically.9

8He cites the 1995 NBER working paper version.
9The elastic supply of labor in the King, Plosser and Rebelo model is arguably its most

important feature. We will return to this point in Chapter 4.
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Jermann (1998) sets the labor share in production, the rate of depre-

ciation, the trend rate of growth, and the parameters of the process gen-

erating total factor productivity shocks with reference to the classic RBC

literature, while fixing the local coefficient of relative risk aversion at 5. He

then calibrates the remaining parameters of the model – the habit forma-

tion coefficient, capital adjustment costs, the subjective discount factor and

shock persistence – to match the mean risk-free rate, the mean equity risk

premium, and the ratios of consumption and investment growth volatilities

to the volatility of output growth. Asset prices are calculated using the

lognormal approximations of Campbell (1986). The log-linearized model is

solved using the steady-state perturbation method of King, Plosser and Re-

belo (1988a, 1988b, 2002).

Jermann finds he can match his target variables quite closely with his

calibration; thus his model reproduces the mean risk-free rate and the mean

equity risk premium almost exactly. Accordingly Jermann’s model allows

him to investigate the relative contributions made by preferences and invest-

ment frictions to determining the equity risk premium. He finds that neither

is sufficient on its own. Habit formation alone fails because agents adjust pro-

duction rapidly, as in Danthine, Donaldson and Mehra (1992) and Rouwen-

horst (1995). Adjustment frictions alone produce an equity risk premium

an order of magnitude smaller than the data. Jermann also uses impulse

responses to gain insight into the causal origins of the equity risk premium.

Decomposing the equity risk premium into payout uncertainty and valua-

tion uncertainty, he finds that capital adjustment costs make dividends more

procyclical, generating larger premia for payout uncertainty.

All in all, it must be said that Jermann (1998) makes a significant theoreti-

cal and methodological advance. He married key insights of the consumption-

and production-based approaches in a general equilibrium model, showing

that both aspects can interact to explain the equity risk premium and achieve

a reasonable value for the risk-free rate. He also showed how asset pricing

consequences could be read off of a calibrated model that had been solved

with standard numerical techniques.

These achievements launched a new literature on asset pricing in gen-
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eral equilibrium.10 Two especially interesting examples are Kung (2015) and

Chen (2016). Kung (2015) studies the equilibrium term structure of interest

rates and time-varying risk premia in a stochastic endogenous growth model.

Chen (2016) incorporates time-to-build and time-to-produce delays into a

general equilibrium model with recursive preferences. His model demon-

strates the role of inventories in smoothing consumption risk, and reconciles

the model’s implications with the tendency for asset price movements to lead

quantity movements in the data. Overall, Chen’s model reproduces the level

and volatility of the equity risk premium, and produces a low risk-free rate.

For all its virtues, however, Chen’s paper suffers from the problems that

plague much of the equilibrium asset pricing literature: an excessive focus

on TFP shocks, a proliferation of ‘frictions’ to amplify minimal production

risk, a dependence on non-standard utility to match asset pricing facts, and a

reliance on essentially deterministic numerical solutions centered on a steady

state.

1.3 A Preliminary Appraisal

Where do we stand after 50 years of effort to provide causal explanations of

asset price movements in terms of macroeconomic aggregates?

There can be no doubt that the consumption-based approach to asset

pricing dominates empirical macro-finance. The consumption Euler equa-

tion and the stochastic discount factor it implies are the fundamental lenses

through which asset pricing theories are understood and tested. They fo-

cus attention on preferences and consumption, framing the empirical study

of asset pricing in terms of consumption risk and a small set of unknown

parameters. This narrow framing gives the consumption-based approach its

power and accounts for its empirical successes. At the same time, the par-

simony of the consumption-based approach restricts its potential empirical

10See Boldin, Christiano and Fisher (2001), Jermann (2010, 2013), Gomes, Kogan and
Zhang (2003), Zhang (2005), Kaltenbrunner and Lochstoer (2010), and Croce (2014).
Extensions of the general equilibrium approach that aim to explain the cross section of
equity returns like Berk, Green and Naik (1999), Gomes, Kogan and Zhang (2003), Zhang
(2005), and Gala (2006) introduce multiple production processes.
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content and weakens it as a source of causal explanations for asset price

movements. The behavioral component of such models has far more to do

with agents’ valuations of different outcomes than agents’ actions to estab-

lish equilibrium. To say that holders of financial claims must be compensated

more for certain risks to consumption because they particularly dislike those

risks is deeply unsatisfying, and it strains credulity to think that all risks of

interest in equilibrium are mediated exclusively through consumption.

Production-based approaches are an important corrective, highlighting

the risk-taking and profit-maximizing behavior of firms and the uncertainty

of the investment process as a source of risk. Yet the production-based

approach has few empirical successes to its name. Though changes in gross

physical investment have considerable power in explaining the cross-section of

equity returns, the production-based approach has not delivered a clear story

that establishes a causal link between investment flows and equity returns

via the optimizing decisions of producers.

Unifying the two approaches in a general equilibrium theory of asset pric-

ing has an almost-inevitable, Goldilocks-like feeling to it – a path that unites

the empirical success and intuitive appeal of the consumption-based liter-

ature with the groundedness of the production-based approach. Surely an

understanding of asset pricing in some kind of general equilibrium marks

the way forward for macro-finance. But the current practice of general equi-

librium modeling in macro-finance leaves much to be desired, and contains

theoretical and methodological obstacles to further progress. These obstacles

stem, in my view, from the strong framing of the problems of macro-finance in

terms of the now-classical equity risk premium puzzle of Mehra and Prescott

(1985).

The equity risk premium puzzle is classically a matter of reconciling a

‘big’ equity risk premium with surprisingly ‘small’ aggregate risk, where ag-

gregate risk is defined as the volatility of consumption. The puzzle is not

a recalcitrant feature that appears in a variety of macroeconomic models;

rather, it arises in a very particular context: the model of Lucas (1978) and

subsequent developments in real business cycle (RBC) theory. According to

Mehra (2012: 396), the equity risk premium puzzle
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arises because quantitative predictions of the [RBC] theory [for

the equity risk premium] are an order of magnitude different from

what has been historically documented. The puzzle cannot be

dismissed lightly, given that much of our economic intuition is

based on the very class of models that fall short so dramatically

when confronted with financial data. It underscores the failure of

paradigms central to financial and economic modeling to capture

the characteristic that appears to make stocks comparatively so

risky. Hence the viability of using [RBC] models for any quanti-

tative assessment, say, to gauge the welfare implications of alter-

native stabilization policies, is thrown open to question.

Though the equity risk premium puzzle threatens a radical destabilization of

the RBC theory, responses to the puzzle have been fairly conservative. The

class of RBC models has most certainly not been dislodged by the puzzle as

a preferred source of economic intuition.11 Nor is economic intuition the only

matter at stake. Economists have overwhelmingly built their protocols for

solving and evaluating numerical models of the economy on RBC foundations.

That the further elaboration of asset pricing theory in general equilibrium

has been defined by comparatively slight modifications to a tenacious RBC

paradigm should shock no one. A major modification would be a heavy lift.

Upon making the transition from partial equilibrium to general equi-

librium modeling, the proving ground for a theory shifts from econometric

modeling and specification testing to simulations and/or impulse responses

obtained from a calibrated numerical model. The relationship between the

model and empirical data becomes more difficult to establish, and leans

heavily on the hypothesis of ‘rational expectations’ that dissolves the dis-

tinction between historical performance and expected future results. New

methodological problems arise: how to obtain a numerical solution, how to

parameterize the model, and how to study the properties of the model effec-

tively. The handling of these methodological questions is so closely bound up

with the development of RBC theory that we might well speak of an RBC

11We accept Mehra’s assessment for purposes of argument; I do not mean to assert that
RBC models command universal assent.
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methodology that dominates general equilibrium research in macro-finance.

The early work of Kydland and Prescott (1982) and King, Plosser and Re-

belo (1988a, 1988b) laid the groundwork for how numerical macroeconomic

models are calibrated, solved, validated against empirical data and studied

every bit as much as they made signal advances in the development of RBC

theory.

Before finding the numerical solution of a macroeconomic model one char-

acterizes the equilibrium analytically through the first-order conditions and

constraints of the model, and then expressing the equilibrium as an approxi-

mately linear function of log-deviations from the model’s steady state (Uhlig

1999).12 The need for an analytical starting point puts a premium on models

for which such solutions may be found. RBC models offer analytical tractabil-

ity, at the expense of several simplifications. In our view two of those simpli-

fications are crucial. First, the use of a single aggregate production function

eliminates questions of allocation from the analysis of equilibrium, prevent-

ing switches in processes and technologies from playing any role. Secondly,

RBC models concentrate risk into total factor productivity fluctuations, a

deus ex machina that forestalls further inquiry into phenomena that might

actually explain fluctuations in output.

The conventional numerical methods employed to solve general equilib-

rium models further mask the risks that ought to be the primary object of

study in macro-finance. Cochrane (2008: 300) writes:

I remain a bit worried about the approximations in general equi-

librium model solutions. Most papers solve their models by mak-

ing a linear-quadratic approximation about a non-stochastic steady

state. But the central fact of life that makes financial economics

interesting is that risk premia are not at all second order. The

equity premium of 8 percent is much larger than the interest rate

of 1 percent. Thinking of risk as a ‘second-order’ effect, expand-

ing around a 1 percent interest rate in a perfect foresight model,

seems very dangerous.

12I review standard numerical solution methods for general equilibrium models more
fully in Chapter 3.
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When a model is built to have globally stable dynamics and initialized in a

steady state equilibrium, potential economic reactions to a shock are severely

constrained. One suspects that the numerical methods used effectively bound

the risks that can be generated and analyzed in general equilibrium models,

as well as the range of behavioral responses that might be expected.

The rise of the RBC methodology as the central paradigm in macro-

finance coincided with the submergence of the intertemporal portfolio theory

of Merton (1973) that first got macro-finance going. Formulated in the lan-

guage of continuous time stochastic processes and dynamic programming,

the portfolio theory approach reached a highly developed form as a basis for

macro-financial equilibrium in Breeden’s (1979) CCAPM. Portfolio theory

models make the choice of allocation a defining feature of equilibrium, and

analyze aggregate risk in terms of a shifting investment opportunity set de-

fined by any number of stochastic state variables. As we pointed out above,

these aspects of the portfolio theory approach were not subsumed by the

RBC approach so much as suppressed by it.

However the intertemporal portfolio theory approach to general equilib-

rium failed to develop robust solution methods. Few analytical solutions

followed Merton’s initial breakthroughs for a fixed investment opportunity

set, and little progress was made with numerical solution methods. As a

result, the field has generally left the portfolio approach behind. “Dynamic

incomplete-market portfolio theory is hard,” and “widely ignored in practice,

though it has been around for half a century,” writes Cochrane (2014: 4-5).

“Institutions, endowments, wealthy individuals, and regulators struggle to

use even the discipline of mean-variance analysis in place of name-based buck-

ets, let alone to implement Mertonian state-variable hedging.” Intertemporal

portfolio theory would appear to have poor prospects as a basis for general

equilibrium theory when even those with the greatest pecuniary interest in

getting it right have given up trying to implement it.13

Yet it seems to me that the equity risk premium persists as a ‘puzzle’

for macro-finance mainly because the methodological choices that cause the

13We undertake a more detailed review of research on the intertemporal portfolio prob-
lem in Chapter 3.
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puzzle to arise are so rarely called into question. Restricted to a steady

state with a lonely, benignly stochastic total factor productivity shock as the

sole source of uncertainty, there is really very little opportunity for risk to

play a meaningful role in general equilibrium asset pricing models. We have

swept all of the ‘state variables’ that determine investment opportunities and

generate interesting patterns of risk in Merton (1973) and Breeden (1979)

under the rug, and for no good reason.

Progress will not be made in macro-finance by adding new frictions to

RBC models until the steady-state distibutions of risk-free rates and equity

risk premiums match those of the data. Instead, we should be asking whether

an alternative to the RBC methodology might provide a more compelling

basis for research in macro-finance.

1.4 An Alternative Paradigm

In my view the way forward is for macro-finance to return to its roots in

dynamic portfolio theory, highlighting the choice of allocations as a central

feature of equilibrium and explicitly modeling changes in the set of produc-

tion possibilities. At the same time a general equilibrium model of asset

prices should go beyond the analysis of investment embodied in dynamic

portfolio theory to model the level and allocation of labor effort. In a model

with labor and capital, changes in the state variables of Merton (1973) and

Breeden (1979) affect not just returns on investment, but the set of multifac-

tor production possibilities. Under such a construct, causal explanations of

asset price fluctuations proceed from changes in the production opportunity

set, to time- and state-dependent decisions made by optimizing agents about

the level and allocation of productive resources among multiple production

technologies, and ultimately to the configuration of risk-free rates and risk

premia entailed by agents’ optimizing behavior.

The uncertain production yields and unnamed state variables of dynamic

portfolio theory are ideal vehicles for re-introducing the aggregate economic

risk that is so clearly missing in Mehra and Prescott (1985). Whereas the

basic RBC framework concentrates aggregate risk into relatively small to-
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tal factor productivity shocks, a framework grounded in dynamic portfolio

theory models output as a fundamentally uncertain process and allows the

distribution of output to depend on the stochastic state of the economy. We

need a theory that names those state variables and connects them in intelli-

gible ways to production and consumption. Only then will we have a useful

framework in which to study the dynamics of economic risk and the means

by which it is diversified, distributed, and held inside and outside of market

institutions.14 We need to discover how risk fluctuates in response to intelli-

gible shocks and what governs the dynamics of risk premia in general equi-

librium. And then we may well find ourselves asking how it is possible that

market expectations converge around a relatively narrow set of outcomes,

rather than puzzling over why a civilization ostensibly gifted with virtually

assured consumption demands so much return on equity investments. My

goal is not to resolve the equity risk premium puzzle. I expect to turn it on

its head.

The purpose and primary contributions of this thesis are to (a) propose,

(b) elucidate, and (c) exemplify an alternative paradigm for macro-finance,

motivated by the view that current general equilibrium approaches to macro-

finance do not – and cannot – deal adequately with production risks or the

actions taken by economic agents to manage those risks. The theoretical

component of the alternative paradigm replaces the RBC framework with a

generalization of the production-based stochastic control model of Cox, In-

gersoll and Ross (1985a) (hereafter CIR85a). The methodological component

of the alternative paradigm replaces standard DSGE numerical procedures

with a novel solution procedure that finds time- and state-dependent op-

timal controls via deep learning, building on the methods of Han and E

(2016) and Han, Jentzen and E (2018). The use of CIR85a as a point of

departure serves to return the general equilibrium theory of asset pricing to

14Browning, Hansen, and Heckman (1999) criticize general equilibrium modeling on the
grounds that it is insufficiently sensitive to heterogeneity and risk-sharing on the household
or consumption side of the ledger. Campbell’s (2018) research program picks up this
gauntlet, showing how risk is managed by financial decision making within households.
What I am suggesting is, in a sense, a version of this critique that emphasizes heterogeneity
and risk management on the production side of the economy.
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its roots in portfolio theory, and to focus attention on risk dynamics in a

complete markets setting. The solution procedure based on deep learning

allows us to obtain genuinely stochastic time- and state-dependent solutions

in a high-dimensional setting, in stark contrast to the time-invariant and

non-stochastic solution methods typically employed in general equilibrium

analysis.

1.4.1 General equilibrium with risky production

We take CIR85a as our point of departure because we view it as the apotheo-

sis of dynamic portfolio theory. Whereas Merton (1973) and Breeden (1979)

made significant advances in describing investment allocations and consump-

tion decisions in general equilibrium, they did so in an incomplete markets

setting with an exogenous risk-free rate. CIR85a goes beyond Merton and

Breeden by introducing a complete set of contingent claims and showing how

the risk-free rate, the equity risk premium, contingent claims prices and ex-

pected excess returns on contingent claims are all determined in equilibrium.

CIR85a unifies asset pricing theory in a general equilibrium setting, albeit at

the cost of an explicit solution for optimizing behavior in equilibrium, which

is left implicit in their model.

CIR85a models production as a disaggregated set of N stochastic pro-

cesses whose outputs depend in an unspecified way on the evolution of K

exogenous stochastic state variables. An endogenous state variable, wealth,

accumulates returns on investment in the N processes. Agents choose how

much to consume from each increment of wealth, and how to allocate their

accumulated wealth among production processes. CIR85a thus models the

allocation decision faced by a representative agent in the presence of funda-

mental uncertainty.15 The resulting state-contingent allocation of productive

effort may be interpreted as a structural representation of the reduced-form

aggregate marginal rate of transformation proposed by Cochrane (1993), Jer-

mann (2010), and Belo (2010) for the production-based pricing kernel.

15The tension between methodological individualism and the representative agent and
social planner interpretations of stochastic control problems is discussed in Chapter 2.



22 CHAPTER 1. INTRODUCTION

Dynamic portfolio problems are formulated over a finite time horizon to

contrast the benefits of time-varying allocations with the static allocations

implied by standard portfolio theory. CIR85a adopts this finite-horizon for-

mulation, leading to a dynamic notion of equilibrium that may be contrasted

with the familiar steady-state solutions favored by economists. Optimal con-

sumption and allocation behaviors vary over time, as well as over different

states of the economy. The state- and time-dependent CIR85a equilibrium

entails state- and time-dependent asset prices à la Arrow and Debreu that

are expected to prevail over the finite time horizon, based on the informa-

tion available to agents at the beginning of the time horizon. Accordingly

we interpret equilibrium in the CIR85a model as a set of forward-looking,

state-dependent dynamic plans.

General equilibrium consequences for asset prices are summarized com-

pactly in CIR85a by the equilibrium risk-free rate r, the equity risk pre-

mium φW/W , and a vector of risk premia φY associated with the economic

state variables.16 Genuine financial objects thus emerge from the equilibrium

model, and may be combined in a modular way to compute values for con-

tingent claims using formulas familiar to financial engineers and researchers

in empirical asset pricing. A ready set of correspondences between model

outputs and asset pricing formulas means that a variety of observable con-

sequences can be generated for any candidate specification of the economy.

In principle, the asset-pricing consequences of CIR85a have the potential to

shift the proving-ground of macroeconomic models from aggregate time series

to panels of contingent claim prices traded in financial markets.17

Risks associated with the economic state variables are assumed to be

tradeable in complete markets for contingent claims. Some may see the as-

sumption of complete markets as a step backwards from the ‘more general’

16The equity risk premium may be further disaggregated into multiple factors charac-
terizing the cross-section of equity returns.

17Though a full pursuit of this point is beyond the scope of the present study, we
speculate that enlarging the set of observable consequences in this way may eventually
enable identification of macroeconomic model structures and parameters, a hitherto elusive
goal for the discipline (see, e.g., David Romer 2016). We further note that is exceedingly
difficult to sustain the rational expectations hypothesis in a setting where agents’ plans
are expected to change at every date.
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setting of incomplete markets. We disagree. The fiction of complete mar-

kets for contingent claims provides us with a set of objects representing the

economic risks faced by society. The fact of incomplete markets invites us

to think hard about where those risks reside when they cannot be traded

away.18

To make the CIR85a framework suitable for use as a paradigm theory for

macro-finance, we generalize the model to incorporate labor supply and allo-

cation decisions. The generalized model allows agents to control the supply

and allocation of all productive resources to the set of available production

technologies. Macro-finance models rarely consider elastic labor supply to be

an important feature of equilibrium, though it has important consequences

for general equilibrium and risk aversion. Using a stochastic generalization of

a constant elasticity of substitution production function, we model output as

a function of labor and capital inputs subject to factor-augmenting technical

progress. Our generalized model of production thus incorporates uncertain-

ties about input quality and technical progress that are mostly ignored in

the RBC paradigm.

1.4.2 Numerical solutions by deep learning

If we plan to set up an analytically-intractable model as our paradigm case,

we had better have a good numerical solution method. To this end we draw

on deep learning methods.

Solving a dynamic economic model amounts to searching for functions

that describe the responses of an optimizing agent to the state of the econ-

omy. Within the field of applied mathematics, deep learning is increasingly

appreciated as a technology for general-purpose function approximation. The

neural networks employed in deep learning have been proven to be universal

function approximators (Hornik, et al. 1989, Cybenko 1989). Accordingly

deep learning methods are seeing an expanding range of application in scien-

tific computing wherever the solution of a problem is function, especially in

the numerical analysis and solution of nonlinear partial differential equations

18See Staum (2008) for a (somewhat dated) survey of research on incomplete markets.



24 CHAPTER 1. INTRODUCTION

that define the solution of stochastic control problems.19

Our deep learning-based solution method permits a direct attack on the

equilibrium of a complex economic model specified in terms of stochastic dif-

ferential equations. It finds dynamic, state-dependent solutions to stochastic

control problems over the entire state space. It does not require lineariza-

tions, approximations, or knowledge of a steady state. It treats risk by

simulating the entire range of outcomes inherent in the specification of the

model. It is also sufficiently scalable to solve problems with tens or hundreds

of state variables. To my knowledge this thesis is the first application of such

methods within the fields of economics and finance.

The application of a novel method to obtain a numerical solution of the

CIR 1985a model represents a significant advance for the field of macro-

finance. Standard solution methods truly pale in comparison. Instead of a

deterministic steady-state solution rendered ‘stochastic’ by a small pertur-

bation or a small-scale discrete approximation, numerical solution by deep

learning methods uncovers a set of genuinely state-dependent functions that

characterize equilibrium in the presence of actual risk. In the context of

CIR85a, these capabilities permit exploration of the deep structure of a gen-

eral equilibrium that includes financial markets. Whereas CIR85a analyzes

the first-order conditions of an implicit solution, and CIR85b obtains an ex-

plicit solution under very restrictive specializations, our numerical methods

allow explicit solutions to be obtained under quite general conditions. In par-

ticular we can see exactly how consumption and investment decisions depend

on state variables, given a specification of the latter and of their influence on

production.

We can also simulate equilibrium dynamics for the economy and asset

prices in response to specific shocks. Our menu of shocks expands from

the earlier, monolithic aggregate TFP shock to encompass all production

processes and all state variables. Disaggregating risk in this way makes

our modeling framework rich enough, in principle, to explain facts about

19See, for example, Sirignano and Spiliopoulos (2018), Al-Aridi et al (2018), Beck, E,
and Jentzen (2019), Raissi, Perdikaris, and Karniadakis (2019), Hure (2019), and Wu and
Xiu (2020).
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the cross-section of returns. In addition this disaggregation of risk permits

economists to be more specific about where disturbances to the economy

originate and allows for heterogeneity in the exposure of production processes

to ultimate sources of risk.

1.4.3 Benefits

In sum, this thesis makes an alternative methodology for studying ‘the re-

lationship between asset prices and economic fluctuations’ ready for use,

supplying a benchmark theoretical framework and tools for the numerical

analysis of model solutions. We call this alternative paradigm ‘continuous-

time macro-finance.’ Our alternative paradigm offers several benefits:

• Our model focuses attention on the risks of production. The process

of production is disaggregated into multiple technologies. Agents con-

trol production through multiple decisions covering consumption, labor

supply, and the allocation of capital and labor to alternative produc-

tion technologies. Models are thus distinguished by how they specify

aggregate production risk.

• We provide a general solution procedure that is scalable to large num-

bers of production processes and economic state variables. Indeed,

on its own, the deep learning solution procedure is the most general

method available to solve dynamic portfolio problems with state vari-

able risks, a problem on which financial economists have long struggled

to make progress (see Cochrane 2014 and references therein).

• Analytical work goes into formulating the model, but little is required

to solve the model. One does not have to find first-order conditions,

solve for a steady state, or linearize the model. Once the model is

formulated as a system of stochastic differential equation, it can be

solved.

• The lack of pre-solution analysis also means that the numerical solu-

tions we provide are mostly free of artificial constraints, apart from
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errors introduced by time discretization and Monte Carlo simulation.

Errors from linear approximations and Taylor expansions in the neigh-

borhood of the steady-state solution are not present.

I provide a proof of concept, a ‘sandbox’ for trying out different causal

explanations that lead from production risks to asset prices in an environment

of optimizing agents. Causal inferences come from trying out counterfactual

scenarios in impulse response analyses, seeing how asset prices change in

response to production risk. My overall theme is to bring a much richer

specification of aggregate risk into the foreground of macro-finance. I see

the results as contributions to a theory of risk-bearing, to echo the title of

Arrow’s (1970) book.

Inevitably many questions will remain concerning the specification of the

benchmark model. My overarching contribution is to provide an environment

in which such questions may be asked and answered. I would like to see this

thesis become the starting point for a continuous-time macro-finance research

program.

1.5 Outline of the Thesis

We begin with a careful exposition, derivation and reinterpretation of the

CIR85a model in Chapter 2. I situate the model in the context of the dy-

namic portfolio theory of Merton’s ICAPM and Breeden’s CCAPM, and show

how an implicit solution is obtained for the stochastic control problem. Then

I derive the implications of the model for asset pricing, including the equilib-

rium risk-free rate, the equity risk premium, and the equilibrium prices and

risk premia for contingent claims. I emphasize the origins of aggregate risk in

production, the determination of the risk-free rate from objective conditions,

and the implications of the model for the cross-section of equity returns,

which were largely passed over by the authors. In addition I will supply

new proofs, probe some assumptions, and highlight a number of potential

extensions.

Chapter 3 shows how to solve CIR models numerically. I present the
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deep learning-based method and demonstrate its use in obtaining a solution

of CIR85a. I specify the economic state variables, calibrate the model to

historical levels for output and consumption, specify a set of production pro-

cesses, and obtain a solution. I study the dynamic equilibrium of the CIR85a

economy and dynamic equilibrium responses to exogenous shocks. The nu-

merical solution and profiles of the optimal control decisions discovered by

the deep neural network permit an explicit discussion of consumption and

investment allocation decisions in CIR85a that were left implicit in CIR85a

and CIR85b, and which do not otherwise exist in the literature. I compare

and contrast my modeling approach and numerical procedure with standard

numerical solution methods for DSGE models.

Chapter 4 generalizes the CIR85a model to include production with cap-

ital and elastically-supplied labor, making it ready for use as a paradigm

theory comparable to RBC models in scope and complexity. The model

incorporates multiple production processes with constant elasticity of substi-

tution technology. Labor and capital are treated symmetrically by imagining

labor as human capital that offers an uncertain yield in a particular produc-

tion process. As a result of uncertainty concerning the yields of productive

factors in each process, the output of each production process is uncertain.

Additional uncertainty comes from the evolving state of technology, which

has factor-augmenting and factor-neutral components.

I show in Chapter 4 that a calibrated continuous-time model with la-

bor and capital does an excellent job of reproducing many characteristics of

economic reality, including output, investment, consumption and labor force

participation rates. Its consequences for asset prices are more exciting. My

calibrated model produces reasonably-sized risk-free rates, equity risk pre-

mia, and option volatility smiles. Using an impulse response analysis, I show

how movements in the equity risk premium depend on the technological char-

acteristics of production and optimizing decisions undertaken by economic

agents. In particular I show that movements in the equity risk premium can

be decomposed into an ‘income effect’ driven by labor supply decisions and

a ‘substitution effect’ driven by the need to reallocate productive resources

among production processes.
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The solution of my model in Chapter 4 suggests that fluctuations in

TFP are insufficient to explain aggregate fluctuations in output and con-

sumption. Instead, my model implies that aggregate fluctuations arise from

breakdowns in the yield of capital within intensively-utilized production pro-

cesses. Chapter 4 thus offers an alternative explanation of the business cycle,

while showing that ‘idiosyncratic’ risks may play an underappreciated role

in determining the equity risk premium.

Chapter 5 summarizes the characteristic features of the continuous-time

macro-finance paradigm and collects a number of roads not traveled in the

previous chapters as frontiers for future research. Following a discussion of

the new paradigm’s limitations and weaknesses, I conclude by drawing out

some implications of my modeling for economic policy.



Chapter 2

Production and Asset Prices in

Continuous Time: A

Portfolio-Theoretic Foundation

for Macro-Finance

I believe Steve [Ross] understood, better than anybody else in

his generation, the intuition of the financial market equilibrium...

– Jonathan Berk (2018: 71)

In this chapter we present the general equilibrium model of CIR85a. Our

exposition makes the thesis self-contained and presents results we will refer

to repeatedly in later chapters. However I do not merely rehearse the results

of the original article. Most of the results in CIR85a are presented tersely.

Patiently unpacking those results serves multiple purposes.

First, we obtain methodological guidance for the developments that fol-

low. Stochastic calculus and control theory are not so familiar in macroe-

conomics that we can begin deriving results without further comment, and

some familiarity with these methods helps to motivate our later chapters.

Second, the methods of proof employed by CIR85a help to build intuition

about macro-financial equilibrium. One of the most remarkable aspects of

CIR85a is the authors’ ability to wring a steady stream of results from an

29
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implicit solution. We revisit the main results, supplying more straightfor-

ward and explicit proofs. At the same time, our review highlights the gulf

between the possibilities afforded by analytical and numerical solution meth-

ods, and just how much structure is missing from equilibrium for want of a

full solution.

A third purpose is to re-interpret the central results. Interpretation high-

lights the original contributions of CIR85a, while putting them into dialogue

with the literature surveyed in the Introduction. We give particular atten-

tion to the interpretation of the risk-free rate and the equity risk premium.

The latter is hardly discussed in the original, which was primarily focused

on deriving prices for contingent claims on the risk-free rate.

Finally, as we are elevating CIR85a to the status of a paradigmatic the-

ory, we believe some amount of appreciation is also in order. To this end we

situate the model in the context of earlier work on intertemporal equilibrium

between consumption and portfolio investment by Samuelson and Merton,

showing what CIR85a take from these formulations and where they go be-

yond these formidable first efforts. In addition we emphasize the aspects of

CIR85a that make it a genuinely production-based theory, showing how all

of the risks for which investors demand compensation may be traced to phe-

nomena that generate fluctuations in output. In this sense we believe CIR85a

supplies a deep causal foundation for asset pricing and macro-finance that is

merely implicit in consumption-based theories. Our exposition of the model

provides additional opportunities to develop this theme and others from the

Introduction.

We begin with an exposition of the intertemporal portfolio problem, which

provides historical and mathematical motivation for the CIR85a model. From

there, we present the primitive assumptions of CIR85a and characterize equi-

librium, giving particular attention to the risks of production and the ability

to reallocate risk with the aid of contingent claims. Careful derivations of

the equilibrium risk-free rate, equilibrium risk premia, and the master valua-

tion equation for derivatives follow, with some signposting of junctures where

closed-form results are necessarily replaced by numerical approximations in

more complex versions of the model.
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2.1 Intertemporal Equilibrium

The roots of CIR85a lie in the intertemporal portfolio theory of Robert

C. Merton (1969, 1971, 1973a).1 Merton formulated the problem of con-

suming and investing over time as a stochastic optimal control problem,

bringing to bear the continuous-time mathematics of stochastic differential

equations. In Merton (1971) he was able to claim that the intertemporal

consumption-investment problem with fixed investment opportunities was

essentially solved for the hyperbolic absolute risk aversion (HARA) class of

utility functions, which includes constant absolute risk aversion (CARA) and

constant relative risk aversion (CRRA) utility functions as special cases.

However it was in Merton (1973a) that Merton glimpsed the potential of

his intertemporal portfolio theory to provide the basis of a general equilibrium

theory connecting financial markets to the real economy. The problem of an

individual trading current consumption for savings could be transposed into

the problem of a representative agent trading current consumption for invest-

ment in a set of production technologies.2 The menu of production technolo-

gies available to investors comprises the investment opportunity set, which

evolves over time in response to exogenous movements in state variables. Ac-

cordingly the representative agent conditions his behavior on the state of the

economy. Returns on investment add to the representative agent’s wealth,

which may then be allocated among production technologies according to the

expected development of the investment opportunity set.

The intertemporal capital asset pricing model (ICAPM) Merton derived

is not only a milestone for portfolio theory, but also a road not traveled for

the development of dynamic general equilibrium models. This unexploited

1Samuelson (1969) made an important early contribution as well, but acknowledged
Merton had tackled the problem at a greater level of generality.

2The representative agent interpretation of control theory solutions has an equivalent
interpretation of a social planner seeking to maximize social welfare. Wherever one says
‘the agent chooses’ one could also say something like ‘society chooses.’ We adopt the
representative agent interpretation throughout, while noting the ambiguity. To avoid
getting bogged down in methodological issues, we could adopt an attitude similar to
potential theory where the agents under study act as if they are solving an optimization
problem, just as particles in a system act as if they are trying to minimize an energy
functional.
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potential of portfolio theory as a basis for general equilibrium motivates our

interest in CIR85a as the foundation of a core theory for macro-finance. The

difficulty of obtaining solutions is the Achilles heel of intertemporal portfolio

theory, however. In each of his papers Merton acknowledges the restrictions

he must embrace in order to obtain an analytical solution to the intertemporal

portfolio problem. Perhaps most importantly, Merton was not able to obtain

a solution to the intertemporal equilibrium portfolio problem when the state

variables are not constant. After Merton, researchers have struggled even to

obtain numerical solutions to the intertemporal portfolio problem when the

investment opportunity set changes over time in a predictable way.3

By contrast, CIR85a shows how much can be learned from an implicit

solution of the intertemporal general equilibrium problem. CIR85a implic-

itly solves for an equilibrium with a full complement of state variables and

changes in the investment opportunity set. The generality offered by CIR85a

in defining the evolution of the economy’s production possibilities is another

unexploited source of portfolio theory’s potential as core theory for macro-

finance.

Then CIR85a adds two subtle but brilliant nuances to the picture of

macro-financial equilibrium. First, they show that the dynamics of pro-

duction and the investment opportunity set determine the risk-free rate en-

dogenously. Though Merton (1973a) had recognized that the risk-free rate

would be instantaneous in his model, Merton’s risk-free rate is still exogenous.

CIR85a further recognized that no net investment takes place at the risk-free

rate in equilibrium.4 Thus the investment allocation problem faced by society

concerns only the allocation of capital among risky assets. Merton’s solutions

assume a residual positive allocation to a risk-free asset, begging the question

of net social investment in a risk-free asset and leaving an important feature

of equilibrium mysterious.

Second, CIR85a integrated contingent claims as vehicles to transfer the

risk of changes in the investment opportunity set. A set of contingent claims

whose values fluctuate with changes in the investment opportunity set is

3Cochrane (2014) offers a brief review of the relevant literature.
4Both Merton (1973a) and CIR85a are moneyless economies.
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therefore essential to a complete-markets characterization of general macro-

financial equilibrium.5 Excess returns on contingent claims are determined

in equilibrium, as are the risk-neutral values of a wide class of contingent

claims encompassing futures, forwards, and options.6

Forgoing the possibility of a closed-form solution allowed CIR85a to ad-

umbrate several crucial aspects of macro-financial equilibrium, as I will now

show. Then in Chapter 3 I will solve the CIR85a model numerically, making

the implicit solution explicit and demonstrating the power of the CIR85a

framework with a concrete state process specification.

2.1.1 Risky production from capital

Following Merton (1973a), CIR85a embeds the portfolio problem in a model

of general equilibrium by connecting consumption opportunities to capital

allocations, investment returns and the economy’s production technology.

Returns on investment depend, in turn, on a set of variables describing the

state of the economy. Uncertainty about production yields (output) and the

state of the economy creates risks for current and future consumption. As

a result, agents must be compensated for holding risky assets, and the risk

premiums they demand are a function of production risk.

The specification given by CIR85a for the state variables defining the

investment opportunity set is completely general, requiring only that the

state variables follow a multidimensional Itô process. The state variables

are not named or given a particular interpretation, leaving the researcher

5Assuming complete markets as a theoretical device is different from the empirical
claim that markets are complete. We shall take pains to point out this distinction at other
junctures below.

6A risk-neutral valuation of a contingent claim F is obtained by setting the drift of
its stochastic differential dF equal to r, where r is the instantaneous risk-free rate. The
transformation is justified on economic grounds by observing that contingent claims pay-
offs may be synthesized through continuous trading of a zero-cost replicating portfolio
in a frictionless market. In the absence of arbitrage, a portfolio with no net investment
should earn the risk-free rate of return. Mathematically, risk-neutral valuation changes
the probability measure used by agents to evaluate the risks of uncertain outcomes. We
shall see that this change of measure incorporates features of the agent’s utility function,
and that the difference between the physical and risk-neutral drifts is accounted for by
equilibrium risk premiums.
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free to specify the variables defining the state of the economy as desired.

The specification of production processes will depend on the definition of the

state variables. In the next chapter we will work through a concrete example

which shows that the production and state variable processes may not be

separately identifiable.

We begin by enumerating the sources of production risk in the economy.

We define a Brownian motion dZt of length N +K, where N is the number

of production processes employed in the economy, and K is the number

of economic state variables. All of the stochastic differential equations in

CIR85a are defined with respect to this Brownian motion and thus exposed

to the same sources of uncertainty.7

Wealth, production, and state variables

The fundamental quantity in CIR85a is a vector η recording the amounts of

capital invested in each of the economy’s N production processes.8 Given

total wealth W and a vector of allocations ai, i = 1, . . . , N , with 0 ≤ ai ≤ 1

and
∑

i ai = 1, the vector of investments η is defined by ηi = aiW . The

vector η therefore describes the allocation of society’s wealth among available

productive processes.

The capital stock is the sole factor of production in CIR85a. The rate of

production is the yield of the capital stock, which is given in continuous time

by the differential of η. Each individual ηi evolves according to a geometric

Brownian motion

dηi = αi(Y, t)ηidt+ ηigi(Y, t)dZt = αi(Y, t)aiWdt+ aiWgi(Y, t)dZt (2.1)

where αi(Y, t) is the expected rate of return on investment in process i and

gi(Y, t) is a row vector of length N + K describing the dependence of the

return on process i on each of the N + K sources of uncertainty in the

7However one should bear in mind that the exposure of each process to many of the
N +K sources of uncertainty will be zero.

8In the model, capital is anything that can yield output in the future and accumulate
as wealth.



2.1. INTERTEMPORAL EQUILIBRIUM 35

economy.9 Realized rates of return depend on particular realizations of dZt,

which we might denote dZt(ω). The variance of dηi over multiple paths ω is

therefore determined by ηigi(Y, t).
10

The expected rates of return on investment may be stacked in an N -vector

α(Y, t) and the row vectors gi(Y, t) stacked to form the N × (N +K) matrix

G(Y, t). In this case the joint dynamics for returns on investment may be

written

dη(t) = Iηα(Y, t)dt+ IηG(Y, t)dZt (2.2)

where Iη is an N × N diagonal matrix in which each entry is the amount

reinvested in process i, ηi = aiW .

Expected production yields α(Y, t) and their variability G(Y, t) depend on

a K-vector of exogenous variables Y that describe the state of the economy.

As we pointed out above, the number and character of the state variables is

undefined. Each state variable follows the diffusion process

dYi(t) = µi(Y, t)dt+ si(Y, t)dZt (2.3)

Again µi(Y, t) is the drift term, possibly time- and state-dependent, and

si(Y, t) is a row vector of length N + K. Stacking drift and diffusion terms,

the K-dimensional state vector follows the process

dY (t) = µ(Y, t)dt+ S(Y, t)dZt (2.4)

Though the state variables and the dependence of production processes on

the state variables are as yet undefined, we may nevertheless interpret the

9Here and throughout, differential forms such as (2.1) are to be understood to mean
the integral equation

ηi(t) = ηi(0) +

∫ t

0

µi(Y (s), s)ds+

∫ t

0

σi(Y (s), s)dWs

for a time interval [0, t] where µi and σi are the drift and diffusion terms for the process
followed by ηi, and the second integral is the Itô integral over a Brownian motion dWt.
The integral representation reminds us that the differential forms are really accumulation
processes for the left-hand side variable.

10We omit the standard measure-theoretic incantations about ω.
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model as generating a stochastic set of production (investment) opportunities

characterized by α(Y, t) and G(Y, t) from state variables following a general

Itô process. While the processes for the states and production are both

conditionally normal, the unconditional distribution of investment returns

can assume quite general forms.11

Aggregate risk

The outer product GG′ is an N×N covariance matrix describing the risk and

dependence structure of the investment returns, or the aggregate production

risk that is inherent in the current production opportunity set. Similarly, a

K ×K covariance matrix SS ′ may be formed from the K × (N +K) matrix

S(Y, t) that summarizes the aggregate risk from uncertainty about the future

state of the economy. Covariances between investment returns and state

variables are given by the N ×K matrix GS ′, which may be understood as

the risk to current output of adverse changes in the investment opportunity

set.

Production risk is scaled by a chosen investment allocation a and the

amount of wealth W . If we append the matrix S to the scaled matrix a′GW ,

aggregate economic risk is given by12

[
a′GG′aW 2 a′GS ′W

SG′aW SS ′

]
(2.5)

We must bear in mind that the risk matrix above suppresses the dependence

of G and S on the state variables Y .

The matrix (2.5) distinguishes the treatment of risk in portfolio theory

models from the stochastic component of a typical real business cycle (RBC)

model. The risk matrix provides a complete accounting of the economy’s

exposure to N +K sources of uncertainty, whereas RBC models reduce un-

certainty to technology and taste shocks. Its candid treatment of macroeco-

nomic risk is another attractive feature of CIR85a as core theory. Merton

11In fact, the risk profile of production in CIR85a may be viewed as a structural coun-
terpart to Engle’s (2008) dynamic conditional correlations approach.

12This is the definition of Σ in CIR85a: 380.
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(1973a) and Breeden (1979) employ similarly general assumptions for aggre-

gate risk, but do not consider whether the risk of changes in the investment

opportunity set can be shared within the economy.13 The equilibria of Mer-

ton and Breeden are incomplete-markets equilibria with unspanned risks.14

Contingent claims

By introducing contingent claims markets, CIR85a are the first to define

equilibrium with changing investment opportunities in a setting of complete

markets. Contingent claims allow agents to adjust their risk exposures by

exchanging claims on current output for state-contingent future claims. And

in perhaps their most formidable achievement, CIR85a further show that the

values of contingent claims are determined in equilibrium.15

A contingent claim i is defined by its payout profile δi(Y, t) and its eco-

nomic risk exposure, given by the N +K vector hi(Y, t). Its price F i evolves

according to the stochastic differential equation

dF i = (F iβi(Y, t)− δi(Y, t))dt+ F ihi(Y, t)dZt (2.6)

where βi(Y, t) is the expected rate of return. A contingent claim thus allows

an agent to obtain an expected rate of return βi(Y, t) in exchange for holding

the risk exposure defined by hi(Y, t) and payouts δi(Y, t).

Contingent claims are in zero net supply in equilibrium: there must be

a long for every short. Therefore if we define an aggregate allocation vector

b for contingent claims allocations, it must be the case that bi = 0 for all

i. However no obvious constraint exists on the number of contingent claims

that may circulate in the economy, because payouts and risk exposures may

13Breeden (1979) appeared in print six years before CIR85a, but early versions of CIR85a
and CIR85b were in circulation well before 1985. Breeden (1979) cites a 1977 draft.

14In other words, state-variable risks only enter the returns of tradeable securities
through a′GS′W , which may be equal to zero if the state variables are static. If the
state variables evolve over time and the basis of a′GS′W is not also a basis for SS′, then
some state-variable risks are unspanned by the universe of tradeable securities.

15“Although Arrow and Debreu first derived the concept of state prices, it was Steve
[Ross] who first understood their importance in actually pricing financial assets.” (Berk
2018: 73)
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be defined in any number of ways. If we were to stack the vectors hi(Y, t)

to form a matrix H, the resulting matrix could have any number of rows.

So rather than enumerate a specific set of contingent claims, CIR85a seeks a

‘basis set’ of contingent claims that spans whatever risks in the economy are

not already spanned by other arrangements. If a basis set of claims can be

characterized, then any other desired contingent payoffs can be synthesized

by combining contingent claims in the basis set.

A bit of reflection on (2.5) helps to fix the dimension of the basis set and

the definition of H. In equilibrium wealth is fully invested, so the economy

must hold a′GG′aW 2 and 2a′GS ′W . Both G and S depend on Y . Accord-

ingly all opportunities to hedge the risk of production must entail exposure

to Y , the risk of which is captured in SS ′, a square matrix of dimension K.

Hence the basis set of contingent claims must also have dimension K. Thus

without loss of generality we can stack K linearly independent row vectors

hi(Y, t) to obtain a K × (N +K) matrix H, which may be identified with S.

Contingent claims pricing furnishes another window into the state vari-

ables Y . One is free to specify Y in a way that is most convenient to represent

a given set of contingent claims. In applications, Y can capture spot prices

and convenience yields for commodities, low- and high-frequency components

of the term structure, or stochastic volatilities, among other examples.

2.1.2 Evolution of wealth and the control problem

As investment and consumption decisions are made over time, their conse-

quences are accumulated in the level of wealth. Accordingly, wealth is an

endogenous state variable for the economy.

The stochastic process followed by wealth is a geometric Brownian motion



2.1. INTERTEMPORAL EQUILIBRIUM 39

given by

dW = W

[
N∑
i=1

ai(αi − r) +
K∑
i=1

bi(βi − r) + r − C

W

]
dt

+W

[
N∑
i=1

ai

(
N+K∑
j=1

gijdZj

)
+

K∑
i=1

bi

(
N+K∑
j=1

hijdZj

)]

= Wµ(W )dt+W
N+K∑
i=1

qi(W )dZi,t

(2.7)

The drift of the wealth accumulation process is comprised of four components:

(1) the returns on invested capital in excess of the risk-free rate r from (2.1),

(2) returns on contingent claims in excess of the risk-free rate per (2.6),

(3) returns on risk-free lending, and (4) the rate at which gross investment

returns are currently consumed, C. In equilibrium all wealth is invested

in production so long as αi(Y, t) > r for at least one i; hence
∑

i ai = 1.

Contingent claims are in zero net supply, so
∑

i bi = 0 and bi = 0 for all i.

Accordingly we can pull out r

−r1aW − r1bW + rW = 0

to see that r makes no net contribution to the drift. Evidently a more

compact representation of the drift of (2.7) is[
N∑
i=1

αiaiW − C

]
dt (2.8)

or the expected gross return on investment given current allocations, net of

current consumption.

CIR85a interpret r as a risk-free rate at which agents may borrow and

lend unlimited amounts. Under this interpretation, returns on capital αi and

returns on contingent claims βi may be decomposed into the risk-free rate

r and expected excess returns αi − r and βi − r that compensate investors

for holding risk. Incorporating r in the wealth evolution does not affect the

dynamics of the economy, but it allows CIR85a to deduce expressions for the
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risk-free rate and excess expected returns in equilibrium.

The diffusion term in (2.7) is given by two terms in dZj, reflecting how

risk exposures from production and contingent claims, respectively, generate

uncertainty about future levels of wealth. Once again, because
∑

i bi = 0

in equilibrium, only the uncertainty generated by production will influence

the evolution of aggregate wealth. Thus each production process contributes

aiWgidZ to the diffusion term, and a more compact expression of the equi-

librium wealth evolution process is simply

dW =
N∑
i=1

dηi − Cdt (2.9)

or gross output minus consumption.

CIR85a formulate the determination of equilibrium as a stochastic control

problem. We may interpret the problem as a computation undertaken by a

representative agent or a social planner. Under the fairly strong assumption

that agents agree about the structure and state of the economy, and there-

fore share common expectations concerning the evolution of the economy,

the resulting equilibrium may be interpreted as a market outcome achieved

by rational individuals without coordination, in which the wealth evolution

equation is the budget constraint faced by a representative agent.16 For the

remainder of the investigation we adopt the representative agent interpreta-

tion.

An optimizing representative agent controls the evolution of their wealth

by choosing how much to consume (C), how to allocate investment among

N opportunities (a), and which set of contingent claims (b) to hold. Choices

are evaluated according to the cumulative utility they generate over the finite

planning horizon. Define the class of value functions K as

K(ν(t),W (t), Y (t), t) = EW,Y,t

∫ T

t

U(ν(s), Y (s), s)ds (2.10)

16In particular, homogeneous expectations are needed to enforce the equilibrium con-
dition bi = 0 for all i, so heterogeneous expectations likely explain trade in contingent
claims. We reserve questions about heterogeneous expectations for future work.
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The class of value functions K defines the utility of applying the control

sequence ν(t) when the history of the economy is described by W (t) and Y (t).

The function ν(t) that indexes the functions in the class K is an admissible

feedback control, meaning a choice of investment and consumption at time t

that uses only information available at time t and maintains a non-negative

level of wealth from t to T . The expectation operator EW,Y,t denotes the

expectation conditional on the initial values of wealth Wt, the state variables

Yt and other information available at time t. Note that while the value

functions K are functions of the endogenous state variable W (t), utility U

is assumed not to depend on wealth. In principle, U may depend on any of

the controls, the value of the state variables and time, but in what follows

we assume, following CIR85a, that U depends on consumption alone and is

time-separable.

The differential generator of K ∈ K associated with the control sequence

ν(t), Lν(t)K, is

Lν(t)K = µ(W )WKW +
K∑
i=1

µiKYi +
1

2
W 2KWW

N+K∑
j=1

qj(W )

+
K∑
i=1

WKWYi

N+K∑
j=1

qj(W )sij +
1

2

K∑
i=1

K∑
j=1

KYiYj

N+K∑
k=1

siksjk

(2.11)

where µi is the drift of the ith state variable and the sij are the sensitivities

of the ith state variable to source of uncertainty j, as given in (2.3), the

terms µ(W ) and qj(W ) are defined by (2.7), and the subscripts on K denote

partial derivatives with respect to the subscripted variables.17

If J(W,Y, t) is the member ofK that solves the Hamilton=Jacobi-Bellman

(HJB) equation

max
ν∈V

[Lν(t)J + U(ν, Y, t)] + Jt = 0 (2.12)

17The differential generator may be seen as a device for applying Itô’s lemma to a
function of W and Y while holding t and ν(t) fixed.
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with boundary conditions

J(0, Y, t) = EY,t

∫ T

t

U(0, Y (s), s)ds

J(W,Y, T ) = 0

(2.13)

then the HJB equation is a martingale for an optimal control ν̂ and J(W,Y, t) =

K(ν̂,W, Y, t), subject to technical conditions given in CIR85a. Thus the op-

timal control ν̂ is the admissible feedback control that makes the drift of the

HJB equation zero. Note also that the second boundary condition in (2.13)

implies that wealth is depleted over the horizon T − t. In what follows, we

refer to the optimal value function J as the indirect utility function for the

representative agent.

2.1.3 First-order conditions and equilibrium

No constructive analytical procedure exists for finding the indirect utility

function. An analytical solution may be found by making an inspired guess

for the form of J , and applying an appropriate verification theorem to con-

firm the guess is correct.18 CIR85a do not follow this path and neither will I.

Instead, CIR85a study the properties of a solution using the first-order con-

ditions of the HJB equation. Though they do not obtain an explicit solution

for a, b and C, CIR85a are able to derive expressions for the risk-free rate,

risk premia and contingent claims prices in terms of implicit solutions for a,

b, and C.

Expand (2.12) using (2.7) and (2.11) to write the HJB equation as[
N∑
i=1

aiW (αi − r) +
K∑
i=1

biW (βi − r) + rW − C

]
JW + µ′JY

+
1

2
W 2JWW (a′GG′a+ 2a′GH ′b+ b′HH ′b)

+ (a′GS ′ + b′HS ′)WJWY +
1

2
SS ′JY Y + U(C, t) + Jt = 0

(2.14)

18See, for example, Rogers (2013) and Oksendal and Sulem (2019). Merton (1969, 1971)
obtains closed-form solutions by this method.
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The expressions JWY and JY Y mean a K-vector of mixed partial derivatives
∂2J

∂W∂Yi
and a K × K Hessian matrix ∂2J

∂Yi∂Yj
, respectively. Similarly, JY is a

K-vector of partial derivatives ∂J
∂Yi

, while JW and JWW are scalar first and

second derivatives of J with respect to wealth. The expansions in the JWW ,

JWY and JY Y terms follow from recognizing that qj(W ) becomes a′G + b′H

under summation, while sij becomes S. Dependence of α, G, H, and S on

Y and t has been suppressed, but should be borne in mind.

Differentiating the HJB equation with respect to the controls a, b and C

yields the first-order conditions

ψa = [α− r1]WJW + [GG′a+GH ′b]W 2JWW +GS ′WJWY ≤ 0

ψb = [β − r1]WJW + [HG′a+HH ′b]W 2JWW +HS ′WJWY = 0

ψC = UC − JW ≤ 0

(2.15)

In the first two expressions 1 is a conforming vector of ones. To ensure the

non-negativity of consumption and investment allocations ai, the comple-

mentary slackness conditions CψC = 0 and a′ψa = 0 are also first-order con-

ditions of optimality.19 The non-negativity constraint on investment reflects

the impossibility of being ‘short’ a physical production process.20 Contingent

claims holdings are not subject to a sign restriction, which can be interpreted

as allowing unlimited short sales.

Note that the terms of the Bellman equation that depend entirely on the

state process, as well as the time derivative of the value function, drop out

19These conditions differentiate interior solutions with a > 0 and ψa = 0 (respectively,
C > 0 and ψC = 0) from solutions on the boundary with one or more ai = 0 (C = 0).
Hardening the conditions to equalities rules out solutions on the boundary, requiring an
interior solution.

20If each element of η were to accumulate independently as ηi(t + dt) = ηi(t) +
ai
∑
i dηi(t + dt), the non-negativity constraint could be interpreted as an irreversibil-

ity condition, a possibility we take up in Chapter 4. As a further extension to such a
model we might entertain the possibility of disinvestment from (liquidation of) a produc-
tive process, what Brunnermeier and Sannikov (2017) term ‘technological illiquidity’. In
this case the values −1 ≤ ai < 0 would be admissible. Assuming a process-specific recov-
ery rate ρi, disinvestment would increase the drift of the wealth equation by ρiaiW for
all ai with −1 ≤ ai < 0, subject to an additional constraint aitWt + ηi,t−1 ≥ 0, meaning
that the amount of disinvestment may not exceed the amount originally invested in the
process.
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of the analysis. The state process is exogenous and therefore uncontrollable.

In addition the time derivative Jt must be zero because J is a martingale for

an optimal control sequence.

The first-order conditions must hold for all values of W , Y , and t. As

a result, the derivatives of the indirect utility function JW , JWW and JWY

should also be read as functions of W , Y and t. Mathematically, the ‘local’

quality of the indirect utility function’s slope (JW ) and curvature (JWW and

JWY ) induces state-dependence in the derivatives that form the market prices

of risk, as we shall see below.

In equilibrium, wealth is fully invested and contingent claims are in zero

net supply. Accordingly
∑

i ai = 1 and bi = 0, i = 1, . . . , K in equilibrium.

The first-order conditions therefore simplify to

ψa = [α− r1]WJW +GG′aW 2JWW +GS ′WJWY ≤ 0

ψb = [β − r1]WJW +HG′aW 2JWW +HS ′WJWY = 0

ψC = UC − JW ≤ 0

(2.16)

while the complementary slackness conditions remain unchanged.21

Our next task is to deduce the endogenous risk-free rate r and the endoge-

nous rate of return on contingent claims β consistent with equilibrium. As

noted above, CIR85a does not derive an explicit solution for the value func-

tion J or an optimal control policy. Instead, they proceed with the analysis

of an implicit solution a∗(W,Y, t), b∗(W,Y, t), C∗(W,Y, t).22 We now show

how expressions r and β may be deduced from the implicit solution.

21It may not be obvious why bi = 0 for the representative agent as well as the economy
as a whole. If all agents hold the same allocation a they have the same exposure to pro-
duction risk and the risk of changes in the investment opportunity set. Further, because
they have identical utility functions, all agents are equally averse to the risks they bear in
equilibrium. Under these conditions, any contingent claim desired would not be supplied,
and any contingent claim offered would not be demanded. Thus equilibrium in the contin-
gent claims market is a no-trade equilibrium. Demand for contingent claims arises either
because agents are heterogeneous or because an obstacle to the equilibrium allocation ex-
ists, e.g., when an agent must hold a certain component of production risk. We believe
this aspect of the complete markets equilibrium is worthy of further investigation.

22To unclutter the notation we dispense with the stars in the sequel. It should be clear
from the context that we intend optimal quantities.
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2.2 The Equilibrium Risk-Free Rate

It is so common for stochastic control problems and dynamic economic mod-

els to include a discount factor in the value function that the absence of a

discount factor from the CIR85a formulation may be surprising. However no

discount factor is needed to ensure integrability in a finite-horizon problem,

and in one of their central results, CIR85a show that intertemporal rates

of substitution and the risk-free rate are determined in equilibrium even in

the absence of a subjective discount factor. Time preference is an objective

quantity – a price given in equilibrium – rather than a subjective measure of

impatience. Accordingly the risk-free rate of CIR85a more closely resembles

Wicksell’s natural rate of interest than Fisher’s rate of time preference or the

Austrian agio.

Consider the first-order conditions on investment. Using (2.16), the com-

plementary slackness condition on reinvestment reads

a′ψa = a′ [α− r1]WJW + a′GG′aW 2JWW + a′GS ′WJWY = 0

Rearranging and dividing through by WJW , we immediately have

r = a′α + a′GG′aW

(
JWW

JW

)
+ a′GS ′

(
JWY

JW

)
= a′α− a′GG′aW

(
−JWW

JW

)
− a′GS ′

(
−JWY

JW

) (2.17)

because a′1 =
∑

i ai = 1 in equilibrium. We assume JW > 0 and JWW < 0

by concavity. Thus −JWW

JW
is a positive number. The terms −JWY

JW
can have

either sign.

When J is a function giving the utility of wealth, expressions of the form

−JWW

JW
are known as Arrow-Pratt absolute risk aversion functions. (Pratt

1964, Arrow 1971) The ratios measure the extra compensation a risk-averse

individual must be paid to take a risky gamble. Because we assume that our

agent’s utility function is representative, all agents in the economy share the

same degree of risk aversion, and −JWW

JW
and −JWY

JW
may be interpreted as the

market prices of risk prevailing at a given level of social wealth. (Ingersoll
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1987: 37-39)

Write the variance of a variableX as σ2(X) and the covariance of two vari-

ables X and Y as σ(X, Y ). Observing from (2.5) that σ2(W ) = a′GG′aW 2

and σ(W,Y ) = a′GS ′W , we obtain the alternative expression

r = a′α− σ2(W )

W

(
−JWW

JW

)
−

K∑
i=1

σ(W,Yi)

W

(
−JWYi

JW

)
(2.18)

for the risk-free rate of interest.

2.2.1 Interpreting the risk-free rate

Thus we have an expression for r composed of three terms. The first, a′α,

is the expected rate of return on optimally-invested wealth. The second is

the variance of wealth relative to its level, multiplied by the market price of

risk for wealth. The third is a sum of state variable covariances with respect

to wealth, relative to the level of wealth, and multiplied by a state variable-

specific market price of risk. The variance of wealth must be non-negative,

and its price is positive. The expected rate of return on optimally-invested

wealth must also be positive, or investment would be wealth-destroying. The

covariance terms and their prices are unrestricted in sign.

Analysis of (2.17) and (2.18) shows that the second and third terms defin-

ing r ‘de-risk’ the expected rate of return on investment over all sources of

risk in the economy, at prices determined by the degree of risk aversion ex-

hibited by the representative agent. The de-risking adjustments transform

the drift of the investment process under the physical measure, defined by

α(Y, t), to a drift under the risk-neutral measure defined by r(W,Y, t). On

these grounds, r is a rate of return that may be identified with the risk-free

rate of interest. The risk-free rate defined by the model is not risk-free in the

sense of being exogenous, constant, or invariant to the state of the economy,

leading to a known return over a certain holding period. Rather, r is the

risk-neutral drift that instantaneously defines equilibrium contingent claims

prices, as we will show below.

The derivation provides some insight into the dynamics of the risk-free
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rate. Holding the expected rate of return on the productive processes and

the covariance terms fixed, risk-free rates fall when the volatility of wealth in-

creases or when the market price of risk for wealth increases. Falling risk-free

rates reflect a decline in the incentive required for investors to hold risk-free

claims when they are less enthusiastic about their investment opportunities.

Now consider the covariance terms. State variables influence the risk-

free rate according to their covariance with wealth. A state variable Yi that

increases when wealth decreases has a negative covariance with wealth and

provides a kind of insurance against adverse outcomes. For such a state

variable Yi, JWYi > 0 and −JWYi

JW
< 0; that is, the market price of risk is neg-

ative because a risk-averse investor would pay for the opportunity to receive

payouts connected to Yi, rather than demanding additional compensation.

Therefore the net contribution of Yi to the risk-free rate, σ(W,Yi)
(
−JWYi

JW

)
is to lower the rate. State variables that vary positively with wealth will have

positive covariances and positive market prices of risk, so they, too, will tend

to lower the risk-free rate. Accordingly the expected rate of return a′α is

reduced by K + 1 positive increments defined by the endogenous and exoge-

nous state variables W and Y , respectively, to reach the certainty-equivalent

return r.

Building on an observation of Breeden (1979), changes in the risk-free

rate may also be connected to changes in optimal consumption plans. By

the first-order conditions (2.16) we have JW = UC for an interior solution,

an equality known as the envelope condition. For an optimal consumption

plan C = C(W,Y, t), application of the chain rule gives JWW = UCCCW and

JWY = UCCCY . Substituting into (2.18), the expression for the risk-free rate

becomes

r = a′α− CWσ
2(W )

W

(
−UCC
UC

)
−

K∑
i=1

CYiσ(W,Yi)

W

(
−UCC
UC

)
(2.19)

The substitution shows that even if the numeraire is changed from the

marginal indirect utility of wealth to the marginal utility of consumption,

yielding market prices of risk −UCC/UC , quantities of risk are still defined
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by the state variables, scaled by the derivatives of consumption with respect

to W and Y . The quantities of risk will not, in general, be reducible to

variances and covariances with respect to consumption, showing that the

consumption-based theory does not encompass CIR85a.

Further insight into the risk-free rate comes from rewriting the comple-

mentary slackness condition a′ψa = 0 and applying duality theory from non-

linear programming. Observe in (2.16) that the term rWJW may be pulled

out to the right-hand side of ψa, leaving all of the decision variables on the

right-hand side. Accordingly we can consider the dual of (2.16) in which

λ = rWJW is varied, thereby relaxing the constraint ψa. Substituting λ into

a′ψa gives

a′αWJW + a′GG′aW 2JWW + a′GS ′WJWY ≤ λ

Once again, a′λ1 = λ when wealth is fully invested. Now put γ = αWJW +

GS ′WJWY andD = 1
2
GG′W 2JWW . The condition a′ψa now has the quadratic

form

a′γ + a′Da

When this expression is maximized subject to a′1 = 1 and a ≥ 0, a solves

a portfolio optimization problem in the form of a quadratic program, as in

Markowitz (1952). The λ we have defined is the difference between a′γ +

a′Da and its optimum. Hence λ is a slack variable, the shadow price of an

additional unit of investment when capital is optimally invested.

The risk-free rate of CIR85a is not the risk-free rate of Merton (1973a)

or Breeden (1979). Though Merton and Breeden alike acknowledge the in-

stantaneous quality of the risk-free rate, both authors treat it as exogenous,

while CIR85a shows that it is endogenous. Merton and Breeden also tend to

identify r with the return on a specific short-term investment in, e.g., Trea-

sury bills, rather than recognizing it as a certainty-equivalent return that

depends on economic risk.

The risk-free rate of CIR85a is not the risk-free rate of neoclassical or neo-

Keynesian macroeconomics, either. In the neo-Keynesian view, the risk-free

rate is undetermined in the economy and must be set by the authorities.23

23See, for example, Gali (2015)
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CIR85a shows that the risk-free rate set by the authorities need not coincide

with the equilibrium risk-free rate, which is determined by the state of the

economy. In the neoclassical view the dynamics of the risk-free rate are

determined by the subjective rate of time preference and the supply and

demand for funds in a perfect capital market. CIR85a acknowledges the

connection between the interest rate and the capital market by identifying

the risk-free rate with the shadow price of capital, but goes further by tying

the dynamics of the risk-free rate to quantities of risk, prices of risk, and the

level of wealth–that is, to phenomena that can be read off from asset prices.24

2.2.2 The market rate of return

Reversing the argument for the risk-free rate of return in (2.17) and (2.18)

shows that the expected rate of return on the market is equal to the risk-free

rate plus K + 1 risk premia. CIR85a is ultimately interested in the theory of

the term structure elaborated in CIR85b, so CIR85a passes over discussion

of the market rate.25 Yet CIR85a includes a set of important consequences

for equity markets. In order to bridge the gap between CIR85a and the

macro-finance literature, we devote some space to CIR85a’s equity market

implications here.

Since a describes the optimal allocation of capital, a′α may be interpreted

as a capitalization-weighted index of individual process returns. Inverting the

derivation of the risk-free rate in (2.18) gives a decomposition of the market

rate of return into the risk-free rate and K + 1 premiums for risk:

a′α = r +
σ2(W )

W

(
−JWW

JW

)
+

K∑
i=1

σ(W,Yi)

W

(
−JWYi

JW

)
(2.20)

One can sum the K + 1 premiums to obtain a single ‘market risk premium.’

In this case–which we might term the CAPM case–the market risk premium

compensates investors for the variance of wealth arising from current pro-

24We intend to pursue the consequences of these observations for monetary policy in
future work.

25CIR85a: 363n1 indicates the paper is “an extended version of the first half of an earlier
working paper titled “A Theory of the Term Structure of Interest Rates.””
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duction and for changes in the investment opportunity set. Alternatively,

one may leave the K + 1 premiums disaggregated and treat each one as a

distinct risk factor, as in the arbitrage portfolio theory of Ross (1976).

Studies of the cross-section of equity returns rarely attempt to interpret

risk premiums in terms of state variables per CIR85a. Fama and French

(1996: 76-77) interpret their three-factor model in terms of the APT, and

conjecture that their value factor may be related to “relative distress” while

emphasizing that they “have not identified the two state variables of special

hedging concern to investors that lead to three-factor asset pricing.” Their

reference to two rather than three state variables suggests that they identify

the market factor with the wealth variable. However Fama and French also

allow for irrationality and data problems as potential alternative explanations

for the empirical success of the three-factor model.

Further rearrangement of (2.20) shows precisely the sense in which CIR85a

is a production-based theory of asset pricing. Recall from (2.2) that produc-

tion (output) is given by dη, the yield on capital employed in all available

production processes. We know from (2.5) that GG′ = σ2(dη)W 2 is the vari-

ance of output, and GS ′ = σ(dη, dY )W captures the covariance of output

with the state of the economy. In addition, η = aW . Hence the expression

(2.20) may be rewritten

α = r1 +
σ2(dη)η

W 2

(
−JWW

JW

)
+
σ(dη, dY )

W

(
−JWY

JW

)
For an investment equal to one unit of wealth, W = 1, this simplifies to

α = r1 + σ2(dη)η

(
−JWW

JW

)
+ σ(dη, dY )

(
−JWY

JW

)
(2.21)

In (2.21) it is clear that investors are compensated for the variance of output

and its covariance with the state variables. The amount of compensation

they demand per unit of production risk is determined by the indirect utility

of consumption, defined over a space of wealth and investment opportunities.
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In the case of a single process we have

αi = r(W,Y, t) + ηigi(Y, t)gi(Y, t)
′
(
−JWW

JW

)
+ ηi

K∑
j=1

gi(Y, t)sj(Y, t)
′
(
−JWYi

JW

) (2.22)

which shows that, given a choice of basis for Y , investors’ valuations of claims

on each production process will be determined by the N + K dimensional

vector gi(Y, t), which specifies how output varies not only with respect to the

state of the economy, but also the intrinsic uncertainty of production and

covariances of this intrinsic uncertainty across production processes. These

latter sources of risk tend to be overlooked in studies of the cross section of

equity returns.

2.3 Contingent Claims Valuation

Now let us consider contingent claims valuation. Our proofs will take a some-

what different itinerary than CIR85a in order to focus attention on the risk

premia φW and φY . Our analysis shows that φW and φY are sufficient statis-

tics that summarize the asset-pricing consequences of the CIR85a model,

when used in conjunction with the risk-free rate r, optimal controls a and C,

and the system dynamics {µ(Y ), S(Y ), α(Y ), G(Y )}.

2.3.1 Contingent claims risk premia

Because all risk in the economy is captured by variations in the endogenous

state variable W and in the exogenous state variables Y , we can determine

all of the risk premia for the economy by considering the joint dynamics of

the processes for W and Y .

The partitioned covariance matrix has the form (2.5), where σ2(W ) =

a′GG′aW 2 is a scalar, a′GS ′W = σ(W,Y ) = (SG′aW )′ is a 1 × K row

vector, and SS ′ = σ2(Y ) is a K × K matrix. The market prices of risk

associated with the disturbance matrix are collected in the (1 + K)-vector
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(−JWW

JW
), (−JWY

JW
)′
]′

.26 Multiplying the two gives our solution for the risk

premia that prevail in equilibrium27:[
φW

φY

]
=

[
a′GG′aW 2 a′GS ′W

SG′aW SS ′

][
−JWW

JW

−JWY

JW

]

=

[
a′GG′aW 2(−JWW

JW
) + a′GS ′W (−JWY

JW
)

SG′aW (−JWW

JW
) + SS ′(−JWY

JW
)

]

=

[
σ2(W )(−JWW

JW
) + σ(W,Y )(−JWY

JW
)

σ(W,Y )′(−JWW

JW
) + σ2(Y )(−JWY

JW
)

] (2.23)

The scalar φW divided by W is the market risk premium that appears

in (2.20). It reduces the rate of return on investment under the physical

measure to the risk-neutral rate of return, as shown in (2.17) and (2.18).

Thus the risk-free rate is equal to a′α− φW/W .

The K-vector φY expresses risk premia for each of the K state variables

in terms of the same K+1 variables as φW . The vector φY may be expanded

as follows:
σ(W,Y1)

...

σ(W,YK)

(−JWW

JW

)
+


σ2(Y1) · · · σ(Y1, YK)

. . .

σ(Y1, YK) · · · σ2(YK)



−JWY1

JW
...

−JWYK

JW

 (2.24)

In this form, the state variable risk premiums are clearly determined by the

covariances of each Yi with W and Y .

Now return to the first-order conditions of (2.16). Rearranging the second

equation to solve for β, we obtain

β = r1 +HG′aW

(
−JWW

JW

)
+HS ′

(
−JWY

JW

)
(2.25)

Comparing this expression with (2.23), it is clear that β = r1 + φY when

H = S, as we claimed above.

26This is the definition of χ given at CIR85a: 380.
27Together with Σ defined in (2.5), χ defines Arrow-Debreu state prices, a connection

further discussed in Section 4 of CIR85a.
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Now consider a specific contingent claim F . The sensitivity of F to W

and Y is determined by the contractual terms of F and measured by the

derivatives FW and FY . The market risk premia for W and Y are given by

φW and φY . Hence the expected rate of return on F is rF + φWFW + φ′Y FY .

But we have already claimed in (2.6) that the rate of return on a contingent

claim is βF . Thus:

βF = rF + φWFW + φ′Y FY (2.26)

This is Theorem 2 of CIR85a. It is also clear that βi is the expected rate of

return on an asset that varies one-for-one with state variable Yi. Similarly,

φYi is the expected excess rate of return on such an asset.28

We have unearthed two important results. First, a set of contingent claims

is complete if it spans the space of state-variable risks. As a result we can

set H = S without loss of generality. Second, we have derived equilibrium

risk premia φY for state-variable risks and constructed contingent claims for

which β is the vector of expected excess returns.

The correspondence of φY to observable quantities depends on (1) the

particular contingent claims basis employed, as well as (2) the existence of

markets for particular contingent claims. In the foregoing we chose the basis

H = S because it was the simplest way to span the space of state variable

risks. However there are many ways to specify S. In addition, an arbitrary

invariant transformation of H (call it H∗) will also span S.29 For example,

S may be measured in terms of productivity, while H∗ might be measured

in terms of commodity prices and economic indices. If H∗ spans S, then

contingent claims written on commodity prices and economic indices can

serve to make state variable risks tradeable. In this case, we would need a

mapping S → H∗ to transform φY to φH∗ for the sake of observation.

The second condition on observability concerns the existence of markets,

and may be seen as a restriction on potential transformations S → H∗.

One does well to choose a basis that aligns with contingent claims that are

actually traded. At the same time, any H∗ used for empirical testing will

28CIR85a: 375 write “φYj
is the expected excess return on a security constructed so

that its value is always equal to Yj”, which assumes the initial values are equal as well.
29For example, multiplication by an invertible matrix and translation by a vector.
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entail a residue of risks φYi that are partially spanned or unspanned, because

markets are unlikely to be dynamically complete in practice.

Some care in interpreting φY is therefore warranted. The risks priced

by φY are inherent in the structure of production and must be borne by

someone. Some of the risks in φY may be transferred in contingent claims

markets defined in terms of arbitrary observable variables. The extent of the

risk transfer will be defined by the projection of the observable variables on

the economic state variables. Empirical studies of contingent claims prices

(e.g., Dai and Singleton (2000) and Casassus and Collin-Dufresne (2005))

show how this indeterminacy of basis may be handled through the choice of

canonical forms and careful specification analysis.

2.3.2 Master valuation equation

In equilibrium contingent claim values are functions of the state variables,

F (W,Y, t). Because F (W,Y, t) is a stochastic variable, one can use Itô’s

formula to write its drift as

1

2
σ2(W )FWW + σ(W,Y )FWY +

1

2
σ2(Y )FY Y

+ [µW − φW ]FW + [µ′Y − φ′Y ]FY + Ft

The means multiplying FW and FY have been decomposed into the physical

drifts of the state variables µW and µ′Y and adjustments for risk premia

φW and φ′Y . Accordingly we have translated the drifts of W and Y from

the physical measure to the risk-neutral measure. Under the risk-neutral

measure, the drift of F must be equal to the risk-free rate r, minus any

payouts given by δ(W,Y, t). Thus we have the equality

1

2
σ2(W )FWW + σ(W,Y )FWY +

1

2
σ2(Y )FY Y + [µW − φW ]FW

+ [µ′Y − φ′Y ]FY + Ft = r − δ(W,Y, t)

The terms σ2(W ), σ(W,Y ), and σ2(Y ) are defined by the joint covariance

matrix (2.5). We have calculated the risk premia φW and φY in (2.23) above.
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Since µY is undetermined, it remains to recall from (2.8) that

µW = a′αW − C

Substituting in for σ2(W ), σ(W,Y ), σ2(Y ), µW , φW and φY results in the

master valuation equation for contingent claims (CIR85a Theorem 3):

1

2
a′GG′aW 2FWW + a′GS ′WFWY +

1

2
SS ′FY Y

+

[
a′αW − a′GG′aW 2

(
−JWW

JW

)
− a′GS ′W

(
−JWY

JW

)
− C

]
FW

+

[
µ′Y −

(
SG′aW

(
−JWW

JW

)
+ SS ′

(
−JWY

JW

))′]
FY

+ Ft − r(W,Y, t) + δ(W,Y, t) = 0

(2.27)

In this form one recognizes the first three terms multiplying FW as rW .

The solution of the valuation equation depends on a boundary condition

describing the terminal value of the contingent claim.

2.3.3 Specific contingent claims

The master valuation equation shows explicitly how risk-neutrality is ob-

tained in equilibrium. When pricing contingent claims one replaces the drift

of state variables under the physical measure µ with their risk-neutral coun-

terparts. Theorem 3 shows that the adjustment to achieve the risk-neutral

drift is a linear combination of risk aversion coefficients (a feature of the in-

direct utility function) and a set of sufficient statistics for risk (a feature of

production risk) in equilibrium. The terms in this adjustment are exactly

the terms defining the expected excess returns in Theorem 2.

The price F (W,Y, t) of any contingent claim must satisfy the master val-

uation PDE. Specializing the equation to the price of a particular contingent

claim is achieved through the following:

1. Terms of the contingent claim contract. Because contingent claim pay-

offs are usually defined with respect to a subset of the economic state

variables, the derivatives FW , FYi , FWW , FW,Yi , and FYi,Yj will pick out a
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subset of terms, while setting many others to zero. Nonzero derivatives

are specific to the contract, as is the time- and state-dependent payout

policy δ(W,Y, t). The contract will also specify any initial, boundary,

and terminal conditions to be satisfied by the partial differential equa-

tion.

2. Equilibrium conditions. Equilibrium instantaneously defines the risk-

free rate r(W,Y, t) and optimal consumption policy C(W,Y, t). The

variance σ2(W ) and covariances σ(W,Yi) depend indirectly on opti-

mal investment policy a(W,Y, t), as indicated in the definitions above,

as does the risk-free rate. Likewise the coefficients of risk aversion

−JWW/JW and −JWY /JW are determined at the optimum.

3. The structure of economic risk. Finally the covariances σ(Yi, Yj) are

given by SS ′, with S = S(Y, t). Note that these terms were not present

in the formula for the interest rate, where only the covariances of the

states with wealth were priced.

It is clear that a number of familiar asset-pricing models are embedded in

the master valuation equation, from the Black-Scholes-Merton PDE (Black

and Scholes 1973, Merton 1973b) to the default-free term structure model

of CIR85b to the class of exponential-affine models (Duffie and Kan 1996,

Schwartz 1997, Duffie 2001).

2.4 Conclusions

We have shown how the model of CIR85a determines the risk-free rate and

a complete set of risk premia in general equilibrium as a function of the

production opportunity set, an optimal allocation of capital, and an optimal

consumption plan. In particular we have emphasized how CIR85a obtains

prices for all risks in the economy by completing the financial market struc-

ture with contingent claims.

Production is the origin of risk in general equilibrium. Production risk

comes from uncertainty about output under current production arrange-
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ments, as well as the risk that future production possibilities may be inferior

to those available today. The price of risk is reckoned in terms an indirect

utility function defined in production opportunity space; for a given set of

production opportunities, risks may be computed in consumption space as

well. Though prices of risk depend on the properties of investor risk aversion

and the subjective disutility of changing consumption plans, the objective,

structural risk faced by all investors originates in the structure of production.

CIR85a gives an accounting of risk premia in an environment of complete

financial markets as the financial correlate of macroeconomic equilibrium.

Accordingly it orients a search for economic risk that amounts to an un-

packing of the equity risk premium and risk premia for contingent claims.

Furthermore, the model allows economic risk to take a far more general form

than the shocks to autoregressive total factor productivity used as a sum-

mary statistic for risk in real business cycle models. Regardless of whether

the additional risks contemplated in CIR85a are transferable through empir-

ical contingent claims markets, the existence of such risks cannot easily be

ignored and we should be concerned with who holds such risks in equilibrium.

We may also say that CIR85a reveals that the investment opportunity

set is treated as a static quantity in real business cycle models, reinforcing

our suspicion that the equity risk premium ‘puzzle’ is an artifact of a model

with too little structural risk.

In the next chapter we show how CIR85a may be solved numerically,

affording a more complete characterization of macro-financial equilibrium in

the model.
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Chapter 3

A Deep-Learning Solution

Procedure for Continuous-Time

Macro-Finance Models

CIR85a formulates general equilibrium as a stochastic control problem. The

Hamilton-Jacobi-Bellman (HJB) equation (2.14) with boundary conditions

(2.13) summarizes the problem to be solved. Given an HJB equation, there

are two established plans of attack to obtain an explicit solution to the

stochastic control problem.

The first plan of attack yields an analytical solution: Guess the form of

the value function J , and then verify that it is a solution by taking partial

derivatives and checking other conditions. Merton (1969, 1971) solves the

intertemporal consumption-investment problem with constant state variables

and CRRA/HARA utility by this method. In some cases, the form of J can

be determined up to one or more unknown functions of time. Using the

method of undetermined coefficients, one can obtain a system of ordinary

differential equations (ODEs) that must be satisfied simultaneously by the

value function. The solution obtained is analytical, but numerical methods

must be used nevertheless because the solution to the system of ODEs is

usually inscrutable in closed form. Kim and Omberg (1996), Sangvinatsos

and Wachter (2005), and Liu (2007) follow this latter approach.

59
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When analytical solutions are not forthcoming, the second plan of attack

is to treat the HJB equation as a nonlinear partial differential equation (PDE)

to be solved with standard numerical PDE methods: that is, to find an ap-

proximation of J numerically. Upon discretizing W , Y , and t, the problem

of finding J can be reduced to linear algebra using finite difference approx-

imations for the unknown partial derivatives and a suitable time-stepping

procedure, for example. Brennan, Schwartz and Lagnado (1997) and Bar-

beris (2000) solve the intertemporal consumption-investment problem using

numerical PDE methods.

Neither of the above approaches qualifies as a general-purpose solution

method for the consumption-investment problem with time-varying invest-

ment opportunities. The most advanced analytical solution method of which

we are aware, that of Liu (2007), is staked to a particular choice of utility

function and return dynamics, and does not satisfy the CIR85a constraints

on the investment allocation vector. Liu (2007) does not present a numer-

ical implementation of his solution, and it is not clear how the properties

of a solution might be analyzed. PDE methods, on the other hand, quickly

run into a ‘curse of dimensionality’ as the state vector Y increases in size.

Brennan, Schwartz and Lagnado (1997) deal with the K = 1 case, as does

Barberis (2000). Even for K = 2 standard numerical PDE methods become

challenging, to say nothing of problems with very large K.

In this chapter we introduce a general numerical procedure to calculate

the solution to the intertemporal consumption-investment problem. The pro-

cedure, based on that of Han and E (2016), employs deep learning methods

to approximate the functions that solve the optimal control problem. Deep

learning methods have attracted a great deal of interest among applied math-

ematicians as a means for obtaining numerical solutions to nonlinear PDEs in

very high-dimensional settings, and in other applications where the solution

to a problem is a function.

Deep learning uses neural networks to approximate functions. Mathe-

matically, a neural network is a linear transformation of the input passed

through a nonlinear ‘activation function.’ Layering neural networks on top

of one another and daisy-chaining the outputs makes the network ‘deep’ and
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aids in finding the optimal approximation efficiently. Optimal parameters

are found for all layers of the network via stochastic gradient descent. The

gradient descent is ‘stochastic’ because gradients are calculated from a small

sample of points in the support of the function. Each sample from the sup-

port allows the parameters of the network to adapt incrementally toward a

solution. The optimizer takes a small step in the direction of the gradient for

the sampled points, where the step size is controlled by a specified ‘learning

rate’ parameter. Gradients are calculated for the multi-layer network via

backpropagation, a fast numerical implementation of the chain rule.

By replacing a linear algebra problem with an optimization problem, deep

learning subverts the curse of dimensionality that stands in the way of nu-

merical PDE solutions. Han and E (2016) demonstrate the basic approach in

a stochastic control setting, while Han, Jentzen and E (2018) show that deep

learning can be used to solve a wide class of PDE problems in 100 dimensions

or more. To our knowledge, the implementation we present in this chapter is

the first application of Han and E’s deep learning-based method in the field

of macroeconomics and finance.

We claim that the deep learning method presented here is superior to the

DSGE methods used to obtain numerical solutions in macroeconomic mod-

els. It is quite general, allowing components of the CIR85a construct–utility

functions, state dynamics, production specifications–to be swapped in and

out at will. It characterizes equilibrium without requiring any knowledge

about a steady-state solution, and permits the study of equilibrium through

impulse responses. The model need not be linearized or localized. Perhaps

most importantly, it does not require the economy to be in a steady state

at any point of the analysis. Unchaining the solution from the steady state

relaxes the notion of intertemporal equilibrium in an attractive way, while

eliminating the numerical errors introduced by perturbation methods. While

non-steady state solutions may also be computed for finite-horizon problems

via dynamic programming methods, the deep learning approach presented

here is both easier and more scalable. Backward recursions and discretiza-

tions of the state space are not necessary. One simulates the dynamics of the

economy forward to create the data used by the neural network to learn the
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optimal control laws.

Cochrane (2014: 5) derides the dynamic portfolio theory enterprise, writ-

ing “calculating partial derivatives of unknown value functions is hard and,

more importantly, nebulous. People sensibly distrust model-dependent black

boxes.” Though Cochrane has portfolio management applications in mind

rather than general equilibrium analysis, I respectfully disagree. Deep learn-

ing makes it easy to differentiate the value function, and our implementation

opens the ‘black box,’ making the specification of the economy, preferences,

constraints and controls completely modular. We also show how optimal

controls discovered by the neural networks can be profiled to facilitate in-

terpretation. The advances in numerical methods presented here support a

fresh look at the CIR85a portfolio-theoretic formulation of the consumption-

investment problem as an equilibrium construct competitive with the real

business cycle (RBC) and New Keynesian paradigms.

Our task is to compute an equilibrium of the CIR85a model. As noted

in Chapter 2, CIR85a were able to derive many properties of a general equi-

librium by working with the first-order conditions of an implicit solution.

In this chapter we discover further properties of the CIR85a equilibrium by

computing numerical solutions for a(W,Y, t), the optimal dynamic allocation

of capital, and C(W,Y, t), the optimal consumption path. Similarly, we com-

pute the risk-free rate r(W,Y, t) and risk premia φW and φY numerically to

summarize the model’s implications for asset pricing. Given these quantities,

we compute expected rates of return for equities and contingent claims.

To obtain a numerical solution we must specify the CIR85a economy more

concretely than their abstract formulation of N+K Ito processes for produc-

tion and the state of the economy, respectively. CIR85b provides a simple

specification of the economy with log utility and production returns defined

by a constant scaling of the state vector. Under these restrictions, CIR85b

derive equilibrium bond prices. Studies of the risk-free term structure em-

ploying the bond pricing model of CIR85b thus provide inference on the state

processes of a CIR85a economy, subject to the restrictions of CIR85b. We

use the estimates of Chen and Scott (2003) to parameterize the state pro-

cesses with K = 3 and set production yields to be a constant multiple of the
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state, while relaxing the assumption on utility to a power utility form. With

our chosen parameters, we obtain reasonable values for macroeconomic and

financial summary statistics.

The contributions of this chapter are substantial:

First, I introduce a novel numerical method to the fields of macroeco-

nomics and finance, making it ready for applications and employing it to

solve a problem of fundamental theoretical and practical importance.

Second, I provide a roadmap for specifying and calibrating a CIR85a econ-

omy. I develop a more extensive CIR85b economy with multiple production

processes and state variables, and calibrate it using well-grounded empirical

estimates. Though simple, the exemplar presented here provides a useful

template for the specification and calibration of more elaborate models.

Third, I compute equilibrium numerically outside of a steady state and

study its properties using impulse responses and numerical profiles of the

optimal controls. Impulse responses are a preferred method for analyzing

the properties of dynamic economic models and integrating them into our

solution framework allows for continuity and dialogue with the literature.

Control profiles illustrate the dependence of equilibrium policy responses on

the economic state variables, making the function approximation found by

the neural network less of a black box.

Fourth, the solution I compute permits exploration of the CIR85a equi-

librium at a level that has so far been mathematically inaccessible. The

original CIR85a model left equilibrium investment allocations and consump-

tion as implicit features of equilibrium. Here they are brought out explicitly,

showing how responses on the production side of the economy support an

optimal consumption profile and generate asset price movements.

Fifth, I compare the results of the solved model to those generated by the

incumbent RBC/DSGE paradigm. My alternative solution procedure offers

several advantages. Most importantly, this chapter demonstrates the useful-

ness of our numerical solution method as a means of unburdening macroeco-

nomic analysis of a particularly unfortunate implicit assumption about the

economy–namely the assumption that the economy remains in the neigh-

borhood of a steady state and, if disturbed, will return to the steady state
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asymptotically. Our numerical tools provide another reason to banish the

dogma of the economy’s dynamic stability for good.

3.1 Computing Equilibrium in CIR Models

We seek to compute an equilibrium (a, C, r, φW , φY ), where a(W,Y, t) and

C(W,Y, t) are optimal control policies for investment and consumption, r

is the equilibrium risk-free interest rate, and (φW , φY ) are the risk premia

that determine the equilibrium rates of return for contingent claims given

a contingent claims basis, as discussed in Chapter 2. For a finite-horizon

problem, the optimal control policies will be time-dependent, in general,

leading to non-trivial time paths for r, φW and φY . Further, if we have more

than N = 1 productive processes and K = 1 state variables, the optimal

control policies will be high-dimensional from a computational perspective.

In cases where one cannot guess and verify a solution to the stochastic

control problem, solutions must be found numerically. Standard numerical

methods for the solution of partial differential equations (e.g., LeVeque 2007)

may be used when the number of state variables is relatively small. And in

infinite-horizon problems with time-invariant policies, approximate dynamic

programming (Bertsekas 2017) may be brought to bear to obtain the value

function and/or the policy function, which we have been calling the indirect

utility function and controls, respectively.1 But existing numerical methods

tend to require a great deal of problem-specific customization, and for very

high dimensional problems such methods quickly become intractable due to

the familiar curse of dimensionality.

Our overall strategy for computing equilibrium is based on Han and E

(2016), which combines stochastic simulation with deep learning to create a

powerful numerical tool that can be used effectively in very high dimensional

settings.2 In addition to its applications in pattern recognition, predictive

1Incidentally these are also the methods taught to economists by Ljundqvist and Sar-
gent (2018).

2Han, Jentzen and E (2018) extends the method and provides code which has become
the starting point for our own. However their reformulation of the control problem in
terms of backward stochastic differential equations introduces additional complications
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modeling, and natural language processing, deep learning is beginning to

be appreciated within the field of applied mathematics as a technology for

general-purpose function approximation. Deep learning is seeing an expand-

ing range of application in scientific computing, especially in the numerical

analysis and solution of partial differential equations.3

Deep learning algorithms generally require prodigious volumes of data to

form a useful inference about a function. Here, the ‘data’ for training the

neural network are obtained by simulating a discretized version of the state

evolution process until the training process appears to achieve an optimum.

Inference proceeds surprisingly quickly. Whereas applications of deep learn-

ing in data science learn a function mapping from a set of covariates to a

target variable directly from the data with no other guidance, the structure

imposed by the specification of the economy allows the neural network to

converge to an optimum with relatively few simulations of the underlying

processes. Achievement of an optimum is detected by monitoring the cumu-

lative utility realized over the chosen time horizon. A lack of improvement

in utility for a long sequence of training runs suggests that an optimum has

been located.4

Time-dependence in the control functions is captured by approximating

the control functions at each of the discretized time steps. The ability to

solve for optimal policies at multiple time steps makes the imposition of a

steady state unnecessary. On the other hand, the finite-horizon formulation

of the CIR economy resembles an optimal resource depletion problem (e.g.,

Pindyck 1978). In the absence of a utility for final wealth, an optimal path for

wealth will always terminate at zero. Mindful of this mathematical artifact,

which would take us too far afield. It is sufficient to think of the problem as a matter of
learning the optimal response from repeated simulations of the system.

3See, for example, Sirignano and Spiliopoulos (2018), Al-Aridi et al (2018), Beck, E,
and Jentzen (2019), Raissi, Perdikaris, and Karniadakis (2019), Hure (2019), and Wu and
Xiu (2020).

4One can do no better than this criterion when solving a nonlinear optimization problem
numerically. The optimum found may be local rather than global. We mitigate the risk of
finding a local solution that is not globally optimal by using a convex objective, choosing
initial values for the neural network parameters that imply an interior solution, and using
a conservative learning rate to avoid overshooting and oscillatory behavior. Each of these
choices is consistent with best practices in deep learning.
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we solve the model for a long time horizon and analyze its consequences for

a shorter initial interval.5

The method of Han and E (2016) has some resemblance to the techniques

known as neuro-dynamic programming or deep reinforcement learning, which

also employ the nonlinear function approximation powers of neural networks

to solve stochastic control problems.6 The approach of Han and E (2016)

is simpler, however. It allows the problem to be solved forward over the

entire horizon rather than solving backward, step by step, using dynamic

programming recursions, as in neuro-dynamic programming. In addition it

makes direct handling of the value function unnecessary. State and control

constraints are also far easier to specify and impose.7

3.1.1 Overview of the computational strategy

We are now ready to present an overview of the computational strategy.

Before training begins, several features of the model are specified:

1. Choose a time horizon T and discretize it into increments ∆t.8

2. Define the functions µ(Y ) and S(Y ) for the state processes (2.3) and

functions α(Y ) and G(Y ) for the production processes (2.1).

3. Set initial values for the state variables W0, η0, and Y0.9

5One can tie the network weights across time steps to find a time-invariant policy, if
desired. In this form our problem becomes a mean-field control problem (Bensoussan,
Frehse and Yam 2013). Deep reinforcement learning has also been employed for infinite
horizon problems in which time-independent controls are sought.

6See Bertsekas (2017) on neurodynamic programming and Sutton and Barto (2018) on
deep reinforcement learning.

7The constraints imposed in the models studied here are enforced by choices of acti-
vation functions in the output layer of the neural networks, as we explain below. Other
constraints may be handled by adding terms to the objective function that penalize vio-
lations of each constraint. The analytical approaches to constrained optimization of Za-
riphopoulou (1994) and Sethi (1997), for example, will promote appreciation for straight-
forward numerical methods.

8As with all methods using time-discretization, one must take care that the step size is
not so large that convergence is lost, nor so small that computation is excessively expensive.

9Strictly speaking the states W and Y are sufficient to describe the system, as indicated
by the arguments to the equilibrium variables. However for reasons explained below, we
believe it is convenient to include the output vector dη in the states.
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4. Initialize the parameters defining the deep neural network.

Following standard practice in deep learning, we repeat our training pro-

cedure over a large number of ‘epochs’ until no further improvement of the

objective function is evident. A preview of the procedure for a single epoch

is as follows:

1. Simulate paths of the exogenous variables for the time horizon T .

(a) Draw M samples of the Brownian motion dZt.

(b) Simulate M realizations of Yt from Yt−1 using the discretized SDE

for the state evolution.

2. Learn the optimal controls for each time step from 1 to T :

(a) Using a deep feedforward neural network for each control, learn a

mapping from the states to the controls a(W,Y, t) and C(W,Y, t),

where M realizations of Wt−1, ηt−1, and Yt play the role of training

data.10

(b) Determine ηt and Wt using a and C.

3. Evaluate the solution found and perform feasibility checks. Compute

u(Ct) for the entire time horizon. Check for any violations of constraints

on a, C, or W . If they are violated, compute appropriate penalty terms.

Form the loss function from the utility function and the constraint

penalties.

4. Update the parameters. Compute the gradient of the value function

with respect to the unknown parameters defining the neural networks.

Take a step in the direction of the gradient according to a chosen learn-

ing rate.

Running this optimization to completion will yield an approximation to

the optimal control policies, i.e., functions â∗(W,Y, ti) and Ĉ∗(W,Y, ti) for

i = 1, . . . , T that obey all stated feasibility conditions and maximize the

given utility function.11

10There is no need to learn b because it is equal to zero as a condition of equilibrium.
11We know b∗(W,Y, t) = 0 a priori.
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Recalling the definition for J∗(W,Y, t) given in (2.10), the indirect utility

functions may be approximated using

EW,Y,t

∫ T

t

U(a(s), C(s), Y (s), s)ds ≈

1

M

M∑
j=1

T∑
i=t

Uij(ai(ti), Ci(ti),Wj(ti), Yj(ti))

(3.1)

That is, for a given utility function, Ĵ∗ may be found by averaging total

utility over many realizations of the state variables W and Y .

The calculations sketched above yield optimal controls and a numerical

solution for the dynamic equilibrium of the system. Additional work is then

needed to compute the equilibrium risk-free rate r and the risk premia φW

and φY . The remaining features of the equilibrium can then be found by

numerically differentiating Ĵ∗ in a neighborhood of the optimum and per-

forming calculations using the state and control processes:

1. State-contingent, time-dependent market prices of risk −JWW/JW and

−JWY /JW may be calculated by numerically differentiating Ĵ∗ at each

time step.

2. Ex ante variances and covariances may be computed from the system

specification or, if necessary, estimated by sampling W and Y at the

initial time step. Risk premia φW and φY are the product of these risk

statistics and the market prices of risk, as given in (2.23).

3. The equilibrium interest rate r can then be calculated using the closed-

form expression (2.17), or numerically, using (2.18).

At this point computation of the equilibrium is complete.

We may then wish to undertake the further computations to enhance our

understanding of the equilibrium. We consider impulse responses, profiles

of the optimal controls learned by the neural network, and contingent claim

prices consistent with equilibrium.

Dynamic economic models are often analyzed in terms of their responses

to a shock, which is a straightforward exercise in a DSGE model or an esti-
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mated vector autoregression. One can compute the equivalent of an impulse

response in the present model by comparing the the trajectory of the system

with dZt = 0 for all t to the trajectory of the system for a pre-specified vector

process dZt. For example, one could set dZ0,i = −1 for some variable i and

all other values to zero to examine the impact of a one-standard deviation

adverse shock to the chosen variable. The result is not an expansion around

a steady state but a comparison of two dynamically optimal responses.

The control function mappings learned by the deep neural network are not

readily interpretable in terms of the network parameters. Nevertheless, we

might want to understand the control response to different values of the states

to evaluate the economic plausibility of the solutions learned by the neural

networks. The controls are mappings from a multivariate state space to

scalars. To visualize the mappings, we can compute graphical profiles of the

controls, successively isolating each variable in the state space. Specifically,

we allow one of the state variables to vary while fixing the other variables at

their mean value. This yields a series of two-dimensional plots showing how

each control responds to variation in each state variable, ceteris paribus.

Finally, we may wish to calculate the values of some fundamental con-

tingent claims at each time step within our horizon. If some risk factors are

identified as prices, interest rates, and volatilities, one can calculate equi-

librium values of bond yields, forwards, futures and/or options. These cal-

culations would show, in a fairly precise way, what sort of financial market

developments accompany equilibrium in the real economy. In our calibration

we compute long-run equilibrium yield curves as a check on our state process

specification and as an aid in scaling output yields to empirically reasonable

levels..

This completes our overview of the computational procedure. We now

turn to the details of the stochastic simulation and deep learning procedures

we glossed over previously.
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3.1.2 Discretizing the state evolution

Fix a time step ∆t ≈ dt that breaks the time horizon T into sub-intervals

indexed by m. Using this time step, we wish to discretize the stochastic

differential equations that define the state evolutions.

For a vector-valued stochastic differential equation of the form

dX = µ(X, t)dt+ σ(X, t)dZ

the Euler-Marayama discretization for the k-th element of X is given by

(Kloeden and Platen 1999: 340-341)

Xk
m+1 = Xk

m + µk(Xm,m)∆t+
∑
j

σk,j(Xm,m)∆Zj

where ∆Zj is the j-th component of a draw from the N (0,∆t) distribution12

and σk is a vector of the k-th variable’s exposures to all sources of uncertainty.

Thus for a vector of means µ and a covariance matrix σ we have

Xm+1 = Xm + µ(Xm,m)∆t+ σ(Xm,m)∆Z

The Euler-Marayama discretization provides strong convergence of order

0.5 and weak convergence of order 1. Strong convergence of order 0.5 means

that the error of pathwise statistics will decline with the square root of M .

Weak convergence of order 1 means that the error of averages will decline

with M . For our purposes, we are interested in the order of weak conver-

gence, since this will determine the Monte Carlo error in the computation of

J∗. Other discretization schemes like the Milstein scheme and Runge-Kutta-

like methods exist that achieve higher orders of strong and weak convergence

(Higham 2001, Kloeden and Platen 1999). We leave an analysis of the ben-

efits afforded by these alternatives to future research.

When computing the evolution of wealth we need not include terms for

the risk-free rate and contingent claims. Recalling (2.7) and imposing the

12To be completely clear, the standard deviation is
√

∆t.
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equilibrium conditions, β and r drop out of the wealth evolution equation:

dW = W

[
N∑
i=1

aiαi −
C

W

]
dt+W

N∑
i=1

ai

(
N+K∑
j=1

gijdZj

)
(3.2)

Indeed, the characterization of interest rates and contingent claim returns

in CIR85a stems almost entirely from the authors’ clever discovery of two

ways to add zero to the wealth evolution equation. Under the definition of

equilibrium, neither term affects the state evolution. Accordingly neither β

nor r can be determined directly from solution of the control problem, as we

explained previously.

3.1.3 Learning optimal controls

Deep learning refers to a set of methods developed for learning functions

from data using neural networks (Goodfellow, Bengio, and Courville 2016).

For an input vector x ∈ RN , a neural network computes y = g(Ax + b),

where A and b are an M × N matrix and an M -vector, respectively, and g

is a nonlinear activation function such as the logistic sigmoid function or the

rectified linear unit (reLU). Deep neural networks compose several layers of

such calculations, with the output of one layer becoming the input vector for

the next layer. Writing

f(x; θ) = gN (AN (...g2 (A2g1(A1x+ b1) + b2) ...) + bN) (3.3)

for activation functions g1, . . . , gN exhibits the function approximation strat-

egy of deep neural networks in a formal way. If we write the original input

vector as x0 and intermediate outputs as xi = gi(Aixi−1+bi), the calculations

producing x1 through xN−1 occur in the ‘hidden’ layers of the deep neural

network. The calculation yielding xN is done by the ‘output’ layer.

Neural networks have long been recognized as universal approximators for

functions. Cybenko (1989) showed that a neural network can approximate

any Borel-measurable function, while Hornik et al (1989) showed that deep

feedforward neural networks have the same approximation property. The
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latter result is of interest because deep neural networks are more readily

optimized and admit more parsimonious representations than single-layer

networks (Liang and Srikant 2017).

More recently mathematicians have begun to formalize the convergence

of deep neural network approximations using tools in functional analysis.

Rigorous definitions of the spaces of functions represented by specific neural

network architectures and the norms in which those representations converge

to target functions have enabled some theoretical convergence bounds to be

established. For example, E, Ma and Wu (2019) define a compositional func-

tion space corresponding to the representation (3.3) and establish a theoret-

ical rate at which the deep neural network converges to a target function. In

addition, they derive an upper bound on the Rademacher complexity of the

function space, suggesting that target functions may be efficiently estimated.

The theoretical results on convergence of deep neural networks for wide

classes of practically-useful functions have been borne out by simulation stud-

ies in which the target function is known analytically. Han and E (2016) solve

two stochastic optimal control problems using deep neural networks. They

show that the control function approximation learned in the neural network

solution to the optimal portfolio liquidation problem of Bertsimas and Lo

(1998) converges quickly to its theoretical value, while the optimal liquida-

tion cost simultaneously converges to its known value. Their neural network

solution to the energy storage-allocation problem of Jiang and Powell (2015)

improves on the solution found by approximate dynamic programming meth-

ods. Favorable results have also been demonstrated for very large-scale prob-

lems. Han, Jentzen and E (2018) solve a linear-quadratic-Gaussian stochastic

control problem in 100 dimensions with a relative approximation error of only

0.17 percent.13

These simulation studies and theoretical results give us good reason to

be confident that deep neural networks can efficiently approximate optimal

controls in stochastic settings of very high dimension, and we can therefore

expect that a(W, η, Y, t) and C(W, η, Y, t) can be well-represented by a deep

neural network.

13As noted previously, we use their code as the starting point for our own.
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In solving for the optimal controls we are seeking mappings

a(W,dη, Y, t) : RN+K+1 → RN

and

C(W,dη, Y, t) : RN+K+1 → R

for each t = 1, . . . , T that satisfy all feasibility constraints and maximize

utility. Here we see that the advantage of including dη in the state vector

is to allow the dimension of the input vector for a to be larger than the

dimension of the output vector. The extra input variables may ‘over-identify’

the mapping a, ensuring that the neural network matrices are full rank and

introducing more information that can be useful in computing the optimal

mapping.

I treat a and C as two separate mappings to N - and 1-dimensional out-

puts, respectively. The deep neural network is implemented with 2 hidden

layers of dimension 60, with rectified linear unit (reLU) activation functions

in between the hidden layers.14 We implement batch normalization between

network layers because it has been shown to improve the efficiency of training.

(Ioffe and Szegedy 2015)

The ability to impose economically-motivated constraints on candidate

optimal controls with well-chosen activation functions is a useful feature of

our deep learning strategy. The ‘softmax’ activation function is used to

impose the constraints on a. For an N × 1 vector argument x,

softmax(x)i =
exi∑N
j=1 e

xj

By construction, the vector of outputs from the last hidden layer will be

mapped to the interval [0, 1], and the results will sum to one, satisfying the

non-negativity and unit-sum constraints assumed of the investment alloca-

tions. For the consumption subnetwork I model the consumption-wealth

ratio, C/W , rather than the level of consumption. Whereas consumption

14The reLU activation is given by gi(Aixi−1 + bi) = max[0, Aixi−1 + bi].
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can take any positive value, the consumption-wealth ratio must fall in the

interval [0, 1]. To impose this constraint on the values of C/W we apply a

sigmoid (logit) activation function to the subnetwork associated with the con-

trol. The level of consumption is immediately recovered after multiplying by

wealth. Thus at each time step ti the neural network furnishes approximate

optimal policies â(W,Y, ti) and Ĉ(W,Y, ti) that satisfy our non-negativity

and summation constraints.

We now show how the neural network is embedded in the discretized

problem for training. The following comprises the training steps for one

batch of N simulated time series of length T . Let the initial levels of wealth

W0, production η0, and the economic state variables Y0 be given, and set

t = 1:

1. Draw ∆Z ≈ dZ from a N (0,
√

∆t) distribution, where ∆t is the time

step, and compute Yt+1 using the discretized SDE:

Yi,t+1 = Yi,t + µi(Yt, t)∆t+ si(Yt, t)∆Z

Because they are exogenous quantities, both ∆Z and Y may be calcu-

lated for all time steps at the outset.

2. Then for each time step t = 1, . . . , T :

(a) Compute the return on investment for each process dηi,t+1:

dηi,t+1 = αi(Yt+1, y)ηi,t∆t+ ηi,tgi(Yt+1, t)∆Z

(b) Compute optimal policies ât and Ĉt:

ât = Na (Yt+1, dηt+1,Wt|Θa)

Ĉt = NC (Yt+1, dηt+1,Wt|ΘC)

where Nj denotes the function approximation achieved by the

neural network and Θj = {A1j, . . . , Alj, b1j, . . . , blj} denotes the

parameters of a neural network with l layers, per (3.3).
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(c) Capture the influence of the controls on future values of the state

variables. Compute Wt+1 from (3.2):

Wt+1 = Wt +
N∑
i=1

dηi,t+1 − Ĉt

and set ηt+1 based on the investment decision:

ηt+1 = âtWt

3. Compute the loss function L and the gradient LΘ, where Θ = {Θa,ΘC}.

We elaborate on the final step below.

3.1.4 Loss function and optimization

Training the neural network refers to the task of finding the parameter set

Θ that minimizes a specified loss function. In other words, training a neural

network involves solving a numerical optimization problem. An optimal pa-

rameter set Θ∗ defines the approximately optimal mappings â(W,Y, t) and

Ĉ(W,Y, t).

Deep neural networks find

Θ∗ = arg min
Θ
L [y, f(x,Θ)] (3.4)

using an optimization algorithm, where x are the inputs, y are the targets,

f(x,Θ) are the outputs and L is a specified loss function. For example,

a one-layer network with a linear activation function and loss function L =
1
N

∑
i(yi−f(xi,Θ))2 is equivalent to standard linear regression by the method

of least squares.

Optimization algorithms for deep neural networks are based on the no-

tion of stochastic gradient descent.15 The ‘stochastic’ part refers to using a

15See Bengio, Courville, and Goodfellow (2016) for a rigorous treatment.
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random subset of the training data to evaluate the loss function.16 Gradients

are then calculated for each of the parameters using backpropagation, an

efficient algorithm for computing derivatives across all layers of the neural

network using a numerical chain rule. As in deterministic gradient descent al-

gorithms, parameters are updated in the direction of descent. The optimizer

takes partial steps in the direction of the stochastic gradient controlled by a

parameter known as the learning rate. Like Han, Jentzen and E (2018) I use

the Adam optimization method implemented in TensorFlow, which allows

the learning rate to adapt dynamically.

Given an optimization procedure, training is driven by the specification

of the loss function, which the optimizer attempts to minimize. Since we are

maximizing the indirect utility function, the negative of the indirect utility

function appears in the loss function. We use a power utility specification

U(Ct) =
(Ct + 1)γ

γ
(3.5)

to ensure that outcomes in our model are driven by the production side of

the economy. However nothing prevents us from using a more complicated

specification that is not separable in time, such as a utility function with

external habit formation. The indirect utility function is evaluated using

the history Ĉ(W,Y, t), t = 1, . . . , T . For time-additive utility functions,

utility could be calculated at each time step. Utility functions that are non-

separable in time will take the entire history of consumption as input. In

Chapter 4 we expand the utility function to include labor supply.

We can also include penalty terms in the loss function to enforce con-

straints on states and controls. Penalty terms should add large increments

to the loss function when constraints are violated. Because we have already

implemented constraints on the investment allocations and consumption via

the activation functions in the neural network’s output layer, explicit con-

straints are not needed for the present implementation.17

16One will get slightly different results from run to run for different draws of the data
used in the stochastic simulation. I set a random seed for reproducibility.

17For appropriate initial values W0 and reasonable parameter values the odds of wealth
going to zero should be small in any event.
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We note the importance of keeping utility functions and penalty functions

separate in the implementation. Market prices of risk are derivatives of

the utility function, while derivatives of the loss function are needed for

optimization.

3.2 Specification and Calibration

In this section we develop a specification for a CIR economy, giving concrete

forms to the abstract state and production processes (2.1) and (2.3). We also

describe the parameterization of the model with a combination of estimates

from the empirical literature and calibration to observable outcomes.

Economists typically parameterize their models in two subgroups (Dawkins,

Srinivasan and Whalley 2001). It is not uncommon for the majority of pa-

rameters in the first subgroup to be set with reference to other literature.

The parameter settings of a well-studied model may be taken over directly.

In other cases one refers to empirical studies that estimate the parameters of

interest. The estimates employed must have a reasonable chance of being in-

variant to the form of the model or the prevailing policy environment, which

is to say, ‘structural.’ More practically, estimates are ideally drawn from

an econometric model capturing most of the variables under study in the

numerical model. When estimates are taken from microeconometric studies

further reconciliations may be needed to convert the estimates into compat-

ible macroeconomic parameters (Browning, Hansen and Heckman 1999).

The second subgroup of parameters that are not set on the basis of lit-

erature are then ‘calibrated.’ A strong interpretation of calibration chooses

the remaining parameters so that the moments of time series simulated from

the model match moments of empirical aggregate time series as closely as

possible. Under this interpretation calibration closely resembles estimation

by the simulated method of moments (see, e.g., Adda and Cooper 2003) or

indirect inference more generally.

A weaker sense in which researchers calibrate their models is to choose

the remaining subgroup of parameters so the predictions of their models

match the levels of certain target variables, similar to the sense in which
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one calibrates a Celsius thermometer to read 0 in freezing water and 100

in boiling water (Dawkins, Srinivasan and Whalley 2001). In this case one

views calibration as an exercise in setting the model at a reasonable starting

point from which the quantitative consequences of shocks in policy changes

can be analyzed in an approximate sense. The model is not taken to have

generated any observable data series. Instead, the model is set up in a way

that its qualitative predictions may be analyzed on a relative scale.

In this study we adopt the weaker sense of calibration for two reasons.

First, embedding the deep learning problem in a structural estimation of

model parameters would significantly raise the level of computational com-

plexity while raising questions about estimators, convergence and inference

that would take us too far afield of our proof-of-concept exercise.18 Second,

we are not sure which data ought to be used to estimate the model param-

eters. Our model does not imply steady-state distributions for its objects

whose moments might be matched to the long-run moments of aggregate

time series. Instead, the model is forward-looking, describing a dynamic

plan that is time-consistent but subject to change as uncertainty about the

state of the economy is resolved. Large panels of contingent claims prices

may private a suitable empirical basis for estimating our model, but the

restrictions entailed for the specification of the state vector are non-trivial

(Dai and Singleton 2000, Casassus and Collin-Dufresne 2005). Like the issues

raised by estimation, we view the choice of a suitable empirical basis and the

formulation of compatible state process specifications as hairy problems in

need of separate study, and thus outside of our current scope.

In the present chapter we rely on the results of an econometric study of

the term structure of risk-free interest rates based on a multifactor imple-

mentation of the CIR85b bond pricing model. In the next chapter we will

draw estimates from multiple sources in the applied literature for an extended

version of the present model. We calibrate the remaining free parameters in

order to broadly match levels of output, consumption, savings, and interest

rates consistent with recent experience.

18For some examples of the technical questions involved, see Chernozhukov et al. 2018
and Kaji, Manresa and Pouliot 2020.
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3.2.1 Parameterization of the state process

Though we are not aware of calibrated examples of CIR economies, the litera-

ture does contain estimates of CIR state processes derived from studies of the

term structure of risk-free interest rates in the United States. CIR85b derives

equilibrium risk-free bond prices under the assumptions of logarithmic utility

and production that is a scale multiple of the state vector. When econome-

tricians estimate the parameters of the latent state process underlying the

CIR85b pricing model, they are obtaining estimates of the state vector for

the CIR85a economy under these restrictions. Under identification restric-

tions and the further assumption that the prices of US Treasury securities

fully incorporate risks to production, the state processes that best fit the

term structure are the best estimate of the state of the CIR85a economy for

a chosen dimension K.

Reliable estimates of a multivariate state vector for the CIR economy are

available from the careful study of Chen and Scott (2003) (hereafter, ‘CS’).

CS use a Kalman filtering methodology to obtain quasi-maximum likelihood

estimates of the latent CIR state vector from weekly and monthly panels

of Treasury yields.19 CS assume the state vector consists of K independent

Feller processes of the form

dYi(t) = κi (θi − Yi(t)) dt+ σi
√
Yi(t)dZi i = 1, . . . , K

The Feller process exhibits mean reversion in the drift term and a state-

dependent scaling of the diffusion term. The speed of reversion to the un-

conditional mean of the state θ is controlled by the parameter κ. The state

Yi is prevented from taking non-positive values so long as 2κθ ≥ σ2.

CS produce estimates for K ∈ {1, 2, 3}. Estimates of the state vector with

K = 3 based on weekly data are reproduced in Table 3.1. One can solve for

the half-life of deviations from the mean by solving e−κt = 0.5 for t. The CS

19CS use the canonical Shiller-McCullough dataset. Their estimates are quasi-maximum
likelihood because the normal distributions used in the Kalman filter are only approxima-
tions to the state variable distributions, which are known (per CIR1985b) to be non-central
chi-square distributions.
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estimates suggest deviations of the state components from their means have

half-lives of roughly 0.5, 40, and 20 years, respectively. While comparisons

of the weekly estimates to the monthly CS estimates (not reproduced) and

failures of the parameter restrictions indicate the parameters for the second

and third components are not precisely estimated, it is clear that the state

of the economy is driven by one relatively high-frequency process and two

low-frequency processes.

We present the state evolution in system form to connect the parameters

in Table 3.1 explicitly to the functions µ(Y ) and S(Y ):

dY1

dY2

dY3

 =


0.062539

0.000043

0.000113

−
1.4298 0 0

0 0.01694 0

0 0 0.04960


Y1

Y2

Y3


 dt

+


0 0 0.1604 0 0

0 0 0 0.1054 0

0 0 0 0 0.0496




0 0 0 0 0

0 0 0 0 0

0 0
√
Y1 0 0

0 0 0
√
Y2 0

0 0 0 0
√
Y3




dZt

= (KΘ−KYt) dt+ S(Y )dZt

= µ(Y )dt+ S(Y )dZt
(3.6)

In the numerical implementation we define an explicit reflecting boundary

for the state vector to ensure positivity because the estimates for Y2 and Y3

do not satisfy the required parameter restriction.

The most complete estimate for the state vector with K = 3 is the es-

timate containing the maximum number of nonzero parameters that can be

identified from the data. Dai and Singleton (2000) call such models ‘max-

imal’ models. The CS estimates for K = 3 are not maximal because they

restrict K to be diagonal in (3.6). Dai and Singleton (2000) show that the

off-diagonal elements of K may also be identified, in principle, and propose a

simulated method of moments (SMM) estimator to estimate the additional
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Parameter i = 1 i = 2 i = 3

κ 1.4298 0.01694 0.03510
θ 0.04374 0.002530 0.003209
σ 0.16049 0.1054 0.04960

Table 3.1: Values for CIR state processes estimated by Chen and Scott (2003)

parameters consistently.20 CS choose not to implement the SMM estimator

because it is computationally expensive relative to quasi-maximum likelihood

in the Kalman filter/state space model. Duffee and Stanton (2012) subse-

quently found that the small-sample performance of the SMM estimator is

unacceptable even for simple term structure models, while the Kalman filter

performs well in quasi-maximum likelihood settings. We are not aware of any

multifactor CIR bond price estimates that have been obtained by SMM, or

which otherwise estimate a maximal K. The large likelihoods and small pric-

ing errors achieved by CS suggest that the issue is not practically significant,

in any case.

3.2.2 Parameterization of the production processes

Solving for the bond yields implied by the state processes using the multifac-

tor pricing formula of CIR1985b shows that the three components measured

by CS correspond to the familiar level (i = 1), slope (i = 3) and curvature

(i = 2) components of the yield curve, respectively. One generally takes the

level of the yield curve to signal the overall scarcity of capital in the economy,

incentivizing agents to divert consumption to capital formation. Movements

in the slope of the yield curve are associated with fluctuations in the busi-

ness cycle, with an inverted yield curve serving as a hallmark of a recession.

These interpretations of the state components are useful for designing the

exposures of the production processes to the state vector.

When the state variables are at their unconditional means, summing the

yield contributions from each of the state components results in a bond yield

20Dai and Singleton (2000) do not furnish estimates of a three factor CIR model.
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of roughly 5 percent. We can reproduce this yield by designing a production

process with

αi(Y ) =
[
1 1 1

]
Yt

and gi(Y ) = 0. In other words, the bond pricing model establishes the

scale of the production processes relative to the state process. Clearly any

rescaling of the state process can be compensated by an offsetting rescaling

of the production processes.

In CIR85b the expected returns on production αi(Y, t) are scale multiples

of the state process. What multiple is appropriate in this context? One is

tempted to define αi(Y, t) to be roughly 10 percent per annum for consistency

with returns on equity.21 By the same rationale one might choose gi(Y, t) to

match equity market volatilities.

Neither decision would be correct. The function αi(Y, t) is not only the

expected rate of return on capital in CIR85a, but also what determines the

expected level of output relative to the capital stock. These statistics are

equivalent in CIR85a because capital is the only factor of production, quite

unlike production in reality. As a result, we can choose αi(Y, t) to replicate

either expected rates of return on capital or the expected level of output

relative to wealth. We opt for the latter because expected rates of return in

the capital-only economy of CIR85a should not be expected to match rates of

return in the economy of our experience, in which labor makes the dominant

contribution to production.

A wealth to GDP ratio of 4 corresponds to an output-wealth ratio of 0.25,

significantly larger than the 10 percent rule of thumb for returns on equity.

With bond yields at roughly 5 percent with αi(Y, t) = 1, we need a scaling

factor of about 5 to set production in reasonable proportion to wealth.

To avoid over-complicating our proof of concept, we set N = 2 and define

21Let us stipulate for purposes of discussion that the equilibrium level of the risk-free
rate is about 2 percent and the equity risk premium is about 8 percent, so the long-run
average return on equities is about 10 percent.
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the joint dynamics of the production processes as follows:

[
dη1

dη2

]
=

[0

0

]
+

[
5 5 5.1

5 5 4.9

]Y1

Y2

Y3


[η1 0

0 η2

]
dt

+

[
η1 0

0 η2

][
0.02 0 0 0 0

0 0.005 0 0 0

]
dZt

= α(Y )dt+G(Y )dZt

(3.7)

If both production processes had the same expected returns and volatilities,

any allocation decision would be optimal. The processes have to be different,

but not in a way that yields a corner solution to the allocation problem. Thus

we define Process 1 to be more exposed to Y3 than Process 2, increasing

its expected return because Y3 > 0. We handicap this superior expected

return with a larger volatility of output to maintain a meaningful tradeoff

to be resolved by the equilibrium allocation of capital between Process 1

and Process 2. The chosen volatilities keep the output-wealth ratio within

reasonable bounds for any feasible allocation. The absence of covariance

terms between the yield disturbances treats all shocks to expected production

levels that do not originate in the state process as idiosyncratic.

3.2.3 Initialization

Initial values must be chosen for wealth, the allocation of capital, and the

state variables. We start the state variables at their unconditional means

given by θ and set the initial allocation of capital equally across the two

production processes. We will see that this initial allocation is revised sub-

stantially. Though the economy will be in equilibrium during each time step,

we do not expect the economy to converge to a steady state, and indeed there

is nothing in the model or the solution method to force convergence.

Because the utility function exhibits constant relative risk aversion and

the production processes have the constant-returns-to-scale property, the
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level of wealth does not matter per se for the solution. Wealth simply needs

to be set to a large enough level that consumption takes values away from

the origin throughout the period. We set W0 = 4000 and η1 = η2 = 2000.

As we mentioned previously, CIR bond prices entail a coefficient of rela-

tive risk aversion γ → 1 because they are based on logarithmic utility. We

set γ = 0.5. It will be clear that the choice of square-root utility is benign for

our implementation. Again, differences between the CIR85a model structure

and the structure of other macro models prevent easy comparisons of param-

eter values to other values used in the literature. Even ‘structural’ parameter

estimates are not portable from one model structure to another.22

3.3 Solution of the Model

Solving the model entails training the weights of a deep neural network to ob-

tain an approximation to the state- and time-dependent functions a(W,Y, t)

and C(W,Y, t) that define equilibrium. Training data is obtained by sim-

ulating the discretized stochastic differential equations (3.6) and (3.7) that

define the model dynamics. We simulate 800 batches of 64 trials each to ob-

tain a total of 51,200 training data paths. Each path extends for an horizon

of 5 years divided into 60 time steps (monthly resolution). The number of

paths and the length of the time step both appear adequate for the model

to converge quickly to a well-behaved solution.23

Neural networks are defined for each of the control functions at each time

step. The neural networks consist of two hidden layers of 60 neurons each

and an output layer, with batch normalizations preceding each layer. The

output layer for the allocation function has dimension N = 2, while the

22Much of the literature follows Mehra and Prescott (1985) in using the utility function
U(Ct) = C1−γ

t /(1 − γ) with values of γ between 0 and 10, which yield negative cardinal
utility values for γ > 1. While the derivatives will have the required signs, we need our
utility function to be positive for the optimization to be intelligible.

23Solution of the model is reasonably fast. I solve the model on a laptop with 12 CPU
cores and 32 GB memory. Initializing the computational graph entails some overhead
and consumes about a minute of run time. Afterwards each batch run takes roughly one-
quarter of one second. Total run time is about 4 minutes 15 seconds. Post-processing to
compute equilibrium, control profiles, and impulse responses takes another 1-2 minutes.
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output layer for the consumption function has dimension 1. There are no

connections between network weights across time steps or controls. In all

there are 530,820 trainable parameters available to approximate the optimal

control functions.24

In a finite-horizon model with consumable capital it will be optimal for

agents to consume all capital by the end of the horizon. The CIR model is

comparable to an optimal resource depletion model in this respect. Behaviors

and outcomes in the early time steps are thus far more interesting than those

toward the end of the horizon, where consumption and wealth both go to

zero. I plot outcomes for the first 12 time steps, corresponding to one year

in model time.

The indirect utility function is defined in (2.10) as the expectation, con-

ditional on W , Y and t, of the integral of direct utility over the horizon

T − t. Summing utilities for each simulated path and averaging the sums

over a batch of simulations per (3.1) produces a Monte Carlo estimate of the

required integral. Convergence of the model to optimal values is indicated by

steady increase of the indirect utility function to a plateau. Increasing the

number of runs beyond what is required to reach this plateau is not advised,

because the model–like any neural network–is prone to overfitting to noise in

the simulations beyond that point.

Once the optimum has been found in the training phase, I analyze equi-

librium in the model by simulating a new batch of 500 paths. The final

simulation provides data for which equilibrium quantities may be computed

using the optimal control solutions found during the training phase. Market

prices of risk are computed by differentiating the indirect utility function

numerically. We use the TensorFlow gradient tape utility to calculate JW ,

JWW , and JWY at the optimum.

We have three goals for our numerical analysis of the calibrated model.

First, we wish to characterize the elements of the CIR85a equilibrium that

remained implicit in the original article. We are interested in (a) the dimen-

24Any econometrician will recoil in horror at the profligate over-parameterization of
neural networks. This is the nature of the beast. Our task is not to identify each of these
parameters, but to determine them enough to obtain a suitable approximation to a policy
function–even if the parameter set producing that approximation is not unique.
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sionless ratios of output and consumption to wealth; (b) how the path of

optimal investment allocations combines heterogeneity, uncertainty, and risk

aversion to generate state-dependent output profiles, and (c) the numerical

values of r, φW , and φY , as they summarize the asset pricing implications

of the model.25 Exposing the optimal control strategies and their depen-

dence on the state of the economy also permits us to assess the economic

plausibility of the solution learned by the neural networks.

Second, we want to undertake impulse response analyses to understand

how equilibrium performance changes relative to a baseline system state.

The impulse response analyses aid in developing causal explanations that

lead from changes in the conditions of production to changes in asset prices.

Third and more generally, we want to show that the CIR model and

our neural network-based solution procedure furnish a cogent alternative

paradigm for macro-financial modeling and deliver an analysis that is compet-

itive with that of the RBC/DSGE paradigm. We believe the best argument

for the alternative paradigm is to put its results on display. Our proof of

concept will show the time- and state-dependent results for equilibrium and

comparative dynamics in impulse responses that are generally inaccessible in

numerical models of the aggregate economy.

3.3.1 Equilibrium and control profiles

In this section we present and analyze the equilibrium solutions a(W,Y, t)

and C(W,Y, t). Besides characterizing the equilibrium, we would like to

convince ourselves that the policy functions learned by the neural networks

are economically reasonable. To that end we present results on the levels of

output and consumption relative to wealth, and profile the dependence of

the policy functions on the state of the economy. Following our discussion of

equilibrium behavior, we work out the consequences for asset prices.

We begin by looking at the equilibrium allocation between the two pro-

duction processes. Because N = 2 and a2 = 1 − a1 it suffices to look at a1,

25Scale-free quantities are reported because the scale of wealth is arbitrary, as indicated
above. Output is the sum of dηi for all i. Consumption is determined by the optimal
control.
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Figure 3.1: Allocation to production process 1 (a1) in equilibrium.

Figure 3.2: Sensitivity of a1 to Y3.

the allocation to Process 1. Figure 3.1 shows that all capital is allocated to

Process 1 at t = 1 and nearly all at t = 2. However from t = 3 forward

the allocation of capital to Process 1 depends on the configuration of W and

Y . The bounds given at the 25th and 75th percentiles of 3.1 suggest that
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Figure 3.3: Equilibrium output-wealth ratio.

the optimal allocation can vary quite a bit with the state of the economy.

Because we know that the production processes differ in their exposure to

Y3, we expect that the sensitivity of a1 to Y3 will shed further light on the

state-dependence of the allocation decision.

Figure 3.2 shows how the equilibrium allocation to process 1 reacts to

Y3, with Y3 varying on the horizontal axis and the allocation to process 1

on the vertical axis. For purposes of the computations, the values of W , Y1

and Y2 are fixed at their mean values from the simulation. The profile of the

process 1 allocation is examined at six evenly-spaced time steps from t = 2 to

t = 12, represented by the colors blue, orange, green, red, purple, and brown,

respectively. We noted previously that the allocation goes almost completely

to process 1 at t = 2; hence we see the blue dots clustered near 1.0 for all

values of Y3. The orange dots at t = 4 show that the allocation to process

1 depends on more than the value of Y3, as no clear relationship between

a1 and Y3 is evident. However at t = 6 and t = 10 a sigmoid relationship

between the value of Y3 and a1 emerges. At these times Figure 3.1 shows

that less uncertainty prevails concerning the optimal allocation.

The dynamic allocation of capital to the two production processes serves
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Figure 3.4: Equilibrium consumption-wealth ratio.

Figure 3.5: Sensitivity of equilibrium consumption to Y1.

to stabilize the level of output and lower the risk of consumption. Figure

3.3 shows that the average ratio of output to wealth remains close to the

target value of 25 percent we used when calibrating the model, though the

actual ratio varies a great deal between the first and third quartiles of the
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simulated outcome distribution. Wealth to output ratios between 3 and 5

are consistent with the central tendency of our calibrated model.

The wide dispersion of outcomes for output should be contrasted with the

tight distribution of the consumption-wealth ratio in Figure 3.4. Following

an initial decision to reinvest all output, the consumption-wealth ratio rises

and stabilizes within the 10 to 13 percent range. The difference between the

consumption-wealth and output-wealth ratios implies that the reinvestment

(savings) rate for the economy can reach one-half to two-thirds of output

in the first year of the horizon studied. Such behavior is consistent with

capital accumulation in early periods to support production and consumption

through the end of the model horizon.

In Figure 3.5 we plot the level of consumption on the vertical axis against

the value of Y1 on the horizontal axis, similar to Figure 3.2. State variable Y1

is the variable on which the level of output most strongly depends because

its unconditional mean is an order of magnitude larger than those of Y2 and

Y3. Based on the bond pricing formulas of CIR85b we interpreted Y1 as the

risk factor that determines the level of the yield curve. Figure 3.5 shows the

representative agent’s willingness to reduce consumption when the level of

the yield curve is higher, as one would expect. However we would like to

understand how consumption reacts to the conditions of production which

underlie the determination of the yield curve and the optimal consumption

decision alike.

The dependence of consumption on Y1 is actually more subtle than it

appears. Larger realizations of Y1 coincide with more current-period out-

put for any choice of allocation. If larger realizations of Y1 were transitory,

the representative agent would do well to consume the output windfall in

the current period, because the rise in current output would imply nothing

about output in subsequent periods. But because Y1 follows a Feller process,

an elevation of Y1 above its unconditional mean value will persist; for the

parameter values in our calibration, the half-life of the decay is roughly 6

months. The representative agent knows the structure of the economy and

takes the forecastability of Y1 into account when making optimal plans. Thus

the representative agent recognizes from the above-average realization of Y1
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that output will be elevated for several future periods as well. The repre-

sentative agent knows he will be better off if he reinvests more output in

production and consumes less in the current period because higher levels of

consumption will be possible in the future. The profiles in Figure 3.5 show

that the representative agent reinvests (saves) more for larger realizations of

Y1. Given that process 1 has a higher expected rate of return than process

2, it is unsurprising that the profile of a1 versus Y1 (not shown) reveals that

allocations to process 1 depend positively on Y1.26

Transitioning from a discussion of consumption sensitivities in terms of

the yield curve to a discussion in terms of output illustrates the ground-

ing of CIR85a and CIR85b as a production-based model of financial market

equilibrium. Though Y1 is interpretable in terms of the yield curve, its in-

fluence stems from its impact on production. Refining our explanation of

the optimal consumption policy to a genuinely causal explanation in terms

of production demonstrates that interest rates are not the prime mover in

general equilibrium. Higher expected returns on production are reflected in

higher interest rates, which serve as an elegant signal to agents that reducing

current consumption is optimal.

Having characterized the optimal policies a(W,Y, t) and C(W,Y, t), we

now proceed to analyze the consequences of equilibrium behavior for asset

prices. The risk-free rate r and risk premiums φW/W and φY that prevail

in equilibrium may be computed as functions of a and C. Figure 3.6 shows

that the risk-free rate closely tracks the output-wealth ratio. Because we saw

in (2.20) that the risk-free rate is the expected return on production minus

the equity risk premium, Figure 3.6 suggests that the equity risk premium

φW/W must be quite small for this economy and the calibrated parameter

values.

Figure 3.7 confirms our intuition. The equilibrium equity risk premium

φW peaks at a median of 1 percent in period t = 2 and remains between 0

and 1 percent in most simulated scenarios thereafter. A very low equity risk

premium indicates the volatility of wealth is small, and varies little with the

state vector. The conditional volatilities of the state variables in (3.6) that

26Our framework thus reproduces the intuition of Campbell and Viceira (1999).
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Figure 3.6: Equilibrium risk-free rate r.

Figure 3.7: Equilibrium equity risk premium φW/W .

define S and the volatilities of output in (3.7) that define G are both small,

so the minimal risk premium is unsurprising. If we were to increase them

in an effort to calibrate to the equity risk premium, the volatility of output

would expand further beyond the already wide range seen in Figure 3.3, and
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Figure 3.8: Equilibrium contingent-claim risk premium φY1 .

we would still be left with a risk-free rate in the mid- to high double digits.

The spike in the equity risk premium at t = 2 corresponds to the surge

of initial investment implied by Figure 3.4. The spike recedes afterwards as

investment and consumption return to stable levels. We see the same pattern

of a quickly-reversed spike at t = 2 in Figure 3.8, which plots φY1 . Based on

(2.26), we reasoned that φY1 was the equilibrium compensation demanded

for taking on an extra unit of exposure to a claim on future consumption

that varies one-for-one with Y1. The required compensation is small except

for t = 2. Output already depends heavily on the value of Y1, and the value

of Y1 at t = 2 will largely determine the levels of output and consumption

enjoyed after t = 2. Because the representative agent is already so exposed to

the value of Y1 at t = 2, additional exposure to Y1 at this time would further

increase the variance of consumption outcomes. That a representative agent

would require significant compensation for additional Y1 risk at this time is

unsurprising.

Note that the risk premium attached to Y1 is 6-7x larger than the equity

risk premium. The equity risk premium is so much smaller because it reflects

the ability of the representative agent to mitigate his exposure by adjusting
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Figure 3.9: Response of C/W to a negative one-standard deviation Y1 shock.

consumption and changing investment allocations to the less-volatile Process

2. By design, there is no way to mitigate the risk of a contingent claim on

Y1.

3.3.2 Impulse responses

Impulse response analysis generates additional insight into the dynamics of

the model and helps to trace causal pathways from the N+K economic risks

in the model to output and asset prices via changes in equilibrium allocations

and consumption. In this section we analyze the CIR85a equilibrium by

studying impulse responses for Y1 and Y3. We shock Y1 because it is the

state variable to which output is most sensitive. We use a one-standard

deviation negative shock, where the standard deviation is given in Table 3.1.

It is obvious that a negative shock to Y1 at t = 0 entails a decline in out-

put relative to the baseline. Optimizing agents may compensate the decline

in production by changing production process allocations and their rate of

consumption. As we saw in the previous section, changes in allocation help to

dampen the effect of changes in output for consumption. However Figure 3.9
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Figure 3.10: Response of φW to a negative one-standard deviation Y1 shock.

shows that revisions to allocations cannot completely offset the consumption

risk created by a shock to Y1. The consumption-wealth ratio fluctuates by

-0.08 percent to 0.04 percent relative to the baseline ratio shown in Figure

3.4.27 Is this a big change?

Figure 3.10 shows that the additional volatility in consumption is econom-

ically meaningful. The equity risk premium φW increases by three percentage

points at t = 2 and nearly one percentage point in t = 7− 9. These are large

changes relative to the baseline values shown in Figure 3.7. The shock to Y1

means that expected output at t = 0 is 5× 0.16049 ≈ 0.8 percentage points

lower relative to wealth than in the baseline scenario. This is not a small

difference. A decline of 0.8 percentage points is about 3.2 percent of total

output.

A negative 3.2 percent deviation of output from trend usually indicates

a recession. In recessions risk premiums increase, causing asset prices to fall

until their expected rates of return are sufficient to induce investors to hold

them. The increase of three percentage points seen in Figure 3.10 amounts

27Technically the difference is relative to the mean rather than the median shown in
Figure 3.4, but the practical difference between the two is small.



96 CHAPTER 3. SOLVING MODELS WITH DEEP LEARNING

to a quadrupling of the baseline risk premium from one to four percent per

annum. Because κ1 is large we can expect the majority of the effect to

dissipate after 12 months as shown in the figure.

Our impulse responses do not follow the usual pattern of smooth decay

from an initial peak. The second and third rises in the equity risk premium

shown in Figure 3.10 are not preceded by symmetric declines that would

suggest an oscillatory return to equilibrium.28 In fact these delayed responses

correspond to significant increases in the equilibrium allocation to Process

1 in t = 6 − 9 and t = 11 relative to the baseline scenario (not shown).

A negative shock to Y1 has the deferred effect of motivating agents to take

on more risk in the future. After the effect of the shock dissipates, the

representative agent increases investment in Process 1, which is riskier, but

has a higher expected return.

This simple example shows how our impulse response analysis differs from

the typical analysis obtained by expansion around a steady state. Our anal-

ysis shows the comparative dynamics of two scenarios where equilibrium

behavior is allowed to adjust to the complete dynamic profile of the shock.

The response we model is not constrained by assumptions about dynamic

stability. Thus the reaction to a shock we model is far richer than what a

simple eigenvalue analysis would permit.

3.3.3 Comparison to DSGE methods

We have provided a stochastic simulation of a calibrated benchmark model

and analyzed the consequences of an impulse response for consumption, in-

vestment allocations, and risk premiums. The model and its numerical so-

lution allow for some useful initial comparisons to be made to the canonical

RBC/DSGE approach. What do we gain from employing this new method-

ology?

DSGE models are typically solved by perturbation methods or stochastic

dynamic programming methods. Per Judd (1998: 447), “The basic idea of

28In a dynamically-stable model such behavior is indicative of a complex-conjugate pair
of eigenvalues in the steady-state transition matrix.
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[perturbation or] asymptotic methods is to formulate a general problem, find

a particular case that has a known solution, and then use that particular

case and its solution as a starting point for computing approximate solu-

tions to nearby problems. ... Economists have often used special version of

perturbation techniques, such as ... linearizing around a steady state.”

The popularity of perturbation methods is attributable in large part to

the emergence of Dynare as the numerical software platform of choice for

solving DSGE models.29 Dynare has found wide application in the solution

of RBC and New Keynesian models alike (Miao 2014, Torres 2015, Costa

2016). The latest version of the Dynare model documentation (November

2020) indicates “the main algorithm for solving stochastic models relies on

a Taylor approximation, up to third order, of the expectation functions.”

(Adjemian et al, 2020: 51) Upon referring to the technical documentation,

we find the solution method is “...essentially a variation on the methods

presented by ... Uhlig (1999).” (Villemot 2011: 1)

Uhlig (1999) describes a “general procedure” for solving a DSGE model:

1. “Find the necessary equations characterizing the equilibrium, i.e., con-

straints, first-order conditions, etc. ...

2. Pick parameters and find the steady state(s)...

3. Log-linearize the necessary equations characterizing the equilibrium

of the system to make the equations approximately linear in the log-

deviations from the steady state...

4. Solve for the recursive equilibrium law of motion...

5. Analyze the solution via impulse-response analysis....”

29Miao (2014: xvii-xviii) writes, “In earlier years it was quite cumbersome to numerically
solve dynamic stochastic general equilibrium (DSGE) models. Students and researchers
found it hard to replicate numerical results in published papers. This changed in the 1990s.
Researchers finally developed efficient numerical methods to solve medium- to large-scale
DSGE models.... These methods were made popular with the launch of Dynare in the late
1990s. Dynare is a software platform for handling a wide class of economic models, and
in particular, DSGE models and overlapping generations (OLG) models.”
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Uhlig (1999) emphasizes the continuity of his approach with methods previ-

ously used to solve RBC models, such as those of King, Plosser and Rebelo

(1988a, 1988b, 2002).30

RBC/DSGE methods are widely used in macro-finance. Jermann (1998)

uses a perturbation method combined with lognormal pricing approxima-

tions. More recently, perturbation methods have become the tool of choice

for the solution of consumption-based models with long-run risks (Chen,

Cosimano and Himonas 2014, Pohl, Schmedders and Willms 2018). The log-

linearization and perturbation technique of Campbell and Shiller (1988) has

become so ubiquitous that “it is difficult to find studies that do not rely on

the Campbell-Shiller approach–it has become the standard method for solv-

ing asset pricing models with long-run risk.” (Pohl, Schmedders and Willms

2018: 1062).

Perturbation methods do not model stochastic processes per se. Instead,

perturbation methods analyze stochastic shocks using a Taylor series ex-

pansion around a deterministic solution, relying on an early result in con-

trol theory demonstrating the equivalence between regular perturbations and

stochastic perturbations (Judd 1998: 471-74). In RBC models the stochastic

variable of primary interest is total factor productivity, which is taken to be

autoregressive with little volatility.31

Dynamic stochastic programming is a popular alternative to perturbation

methods (Adda and Cooper 2003). Such methods start from the dynamic

programming approach, where a time-invariant optimal policy function is

iteratively (Ljundqvist and Sargent 2018). A stochastic solution is found

by discretizing the state space and modeling state transitions with an ap-

proximating matrix (Kushner and Dupuis 2002). Upon embedding the state

transitions in the iterative search for the policy function, one finds an optimal

state-dependent policy function.

Neither perturbation methods nor dynamic stochastic programming meth-

ods admit a dynamic equilibrium. Perturbation methods begin from a steady

30Though King, Plosser and Rebelo (2002) looks like an anachronism, the technical
appendix had long been in circulation among researchers in working paper form prior to
publication (2002: 111).

31See, for example, Mehra and Prescott (1985).
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state and generate a time-invariant optimal policy. Dynamic stochastic pro-

gramming finds a time-invariant optimal policy because the notion of con-

vergence applied to dynamic programming solutions is the convergence of an

operator that maintains a fixed point in equilibrium. Both methods are thus

premissed on a ‘tight’ notion of equilibrium in which changes in the state of

the economy are short-lived.

Further, both methods face severe limitations on their ability to represent

the stochastic elements of an economic model. Perturbation methods do not

characterize state-dependent optimal policies. They model stochastic distur-

bances as local displacements around the equilibrium of a linearized model.

In order for the perturbation representation to be valid, the disturbances

must be small and immaterial: small enough to remain within the radius

of convergence of the Taylor expansion and the neighborhood for which the

linearization is a good approximation; and immaterial in that the distur-

bance does not change the optimal policy in a discontinuous way. Stochastic

dynamic programming methods find state-dependent controls, but require a

discretization of the state space and representation of the state dynamics as

a matrix. The discretization introduces a source of numerical error, while the

matrix representation requires the state dynamics to be stationary. It is ques-

tionable whether either numerical approach can represent risk adequately for

studies of asset pricing in equilibrium.

Our numerical solution method compares favorably with DSGE methods

by representing multi-dimensional risks faithfully and solving for time- and

state-dependent optimal policies. The method does not require a steady state

as a basis for the solution of the model and no linearizations are necessary. We

have devised a framework in which the behavior of the economy recognizes

and responds to risk in a genuine way.

In our example, we have been able to specify the risks at the heart of the

production process in a fairly intricate way. We have many factors at our dis-

posal relative to the monolithic total factor productivity at the heart of the

RBC model, and we have the freedom to link the factors according to theo-

retical motivations. Risk is present in the model due to the variability of the

investment opportunity set, the impact of changes in the investment opportu-
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nity set on expected returns from production, and the independent variability

of output in each production process. The portfolio-theoretic framework of

CIR85a, combined with our solution method, opens the door to a careful

disaggregation of economic risk.

By introducing a simple form of heterogeneity into our model’s treatment

of production, we have been able to appreciate the economic impact of time-

and state-dependent control. We see that investment allocations change in

response to shocks, dynamically responding to the impact of the shock. We

also see that dynamic consumption decisions reflect the predictable com-

ponent of long-run equilibrium investment opportunities: agents save more

when output is currently high, because elevated returns on investment can

be expected over the near term. Such adaptations are inconceivable within

the RBC framework due to its rudimentary description of technology, homo-

geneous aggregate production and time-invariant decision rules.

Thus the key innovation of our methodology is its ability to relax the

intertemporal equilibrium concept from the steady state concept at the heart

of the RBC/DSGE methodology to a true dynamic equilibrium concept.

The ability to analyze the dynamic response of the economy and financial

asset prices to disturbances outside of a steady state is, in my view, a huge

advantage. The weaker sense of intertemporal equilibrium allows for adaptive

dynamic behavior that has no feasible way of entering the RBC/DSGE or

dynamic programming models typically used in macro-finance. Moreover, by

solving our model over a finite horizon with time-dependent controls, we have

been able to set aside questions about dynamic stability. Indeed, so long as

non-stationary processes do not cause numerical values to explode within the

horizon of the model, an absence of stationarity poses no problems for our

model.

In our model setting, intertemporal equilibrium entails a planned se-

quence of optimal behaviors over a given planning horizon. Agents formulate

their plans based on their knowledge of the laws governing the system and

the initial values of wealth, the distribution of capital among productive pro-

cesses, and the state variables. The stochastic nature of the problem means

that agents formulate their plans pathwise: For each trajectory that the state
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variables can take, there is an optimal plan for investment and consumption

corresponding to that trajectory. But because uncertainty about state vari-

ables cannot be resolved at the outset, intertemporal equilibrium does not

imply a single production and consumption plan. Accordingly our notion

of equilibrium is one in which risk is essential and irreducible. It is hard

to see why any other construct would be preferred for analyzing financial

phenomena.

3.4 Conclusions

In this chapter we have implemented a flexible, scalable methodology based

on deep neural networks to solve for general equilibrium in a fully stochastic

setting. We regard our results as a first proof of concept for a solved macroe-

conomic model with genuine financial objects. This is a major contribution

and advance for macro-finance.

The methodology provides a fast, reliable solution for equilibrium includ-

ing time-dependent control. Time-dependent control allows for equilibrium

solutions outside of a steady state, relaxing the notion of equilibrium needed

to implement dynamic economic models. Delivering a methodology to solve

dynamic models outside of a steady state makes a dynamic equilibrium anal-

ysis accessible numerically, and this, too, amounts to a significant contribu-

tion.

We are able to obtain insight into the time-dependent control solution of

a CIR economy and analyze responses to shocks from any position in the evo-

lution of the economy. We saw that the approximate solutions found by the

neural networks are economically reasonable and quite flexible. Control deci-

sions were also seen to reflect predictability in returns: consumption declined

in response to a positive output shock because it implied elevated returns to

investment in future periods. In an impulse response analysis, we saw that

adjustments on the production side of the economy serve to mitigate output,

wealth, and consumption volatility, while driving fluctuations in the equity

risk premium. Moreover, we saw that dynamic adjustments in behavior con-

tinued well beyond the period of the initial shock. Each of these features
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is likely to be misinterpreted or missed all together by consumption-based

asset pricing models because endowment economies cannot generate such

fluctuations, and by DSGE methods because dynamic responses to shocks

are bounded apriori.

Our proof of concept already provides compelling reasons to bury the

DSGE methodology. Optimal behavior is constrained in the DSGE frame-

work because it cannot vary over time or depend on the state of the economy.

And dynamic responses to shocks in the DSGE methodology are constrained

by an apriori imposition of dynamic stability on equilibrium. Under such

onerous limitations on behavior, it is difficult for risks to materialize on the

scale observed in financial markets, and there are no means by which the

economy may transform itself over time through investment.

Our enthusiasm for the potential of the numerical method does not yet

extend to our specification of the economy, however. The stylized character

of the CIR85a model presented challenges for calibration and the interpre-

tation of our numerical results. The all-capital economy of CIR85a achieves

a defensible wealth to output ratio of 4 when the expected rate of return on

capital is 25 percent. Our simulations divide this return into a risk-free rate

of 24 percent and an equity risk premium of 1 percent. The small equity

risk premium reflects the stabilization of output, wealth, and consumption

that may be achieved through changes in consumption and the equilibrium

allocation, while the large risk-free rate reflects capital’s status as the sole

limiting factor in production. Though the baseline equity risk premium is

small, a negative shock to the economy’s primary risk factor produces a sig-

nificant increase in the equity risk premium, consistent with the behavior

of asset prices in a recession, but likely far too large in scale. The present

model’s limited ability to reproduce stylized facts is a drawback.

At the same time it is not obvious that the results of the stylized CIR econ-

omy ought to match empirical risk-free rates and equity risk premiums. We

need to integrate labor into the process of production to decouple output from

returns on capital. Thus we reserve judgment on CIR85a’s predictions for

asset prices until labor can be incorporated in the model. A labor-augmented

CIR economy will furnish a more reliable basis for comparison to the facts.
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Defining such an economy is the task of our next chapter.
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Chapter 4

A Continuous-Time

Macro-Finance Model with

Labor and Capital

4.1 Introduction

A primary reason we chose CIR85a as our point of departure for an equilib-

rium asset pricing model was its conception of production as the ultimate

source of risk determining asset prices. In contrast to consumption-based

asset pricing models that treat production as an exogenous ‘endowment pro-

cess’, CIR85a makes production an endogenous, controlled process within

the economy.

Even so, the treatment of production in CIR85a is highly stylized and,

as we saw in Chapter 3, largely unspecified. As the model stands, the al-

location of capital to production processes is the sole production decision

available to agents. Consumption and capital accumulation decisions are

completely coupled, and all productive resources are continuously deployed

to maximize output. And because capital is the only factor of production,

seemingly extraordinary returns on capital are required to generate output-

and consumption-wealth ratios of an empirically reasonable size. Such an

economy generates summary statistics for asset pricing that are difficult to

105
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interpret and bear little resemblance to their empirical counterparts.

One then concludes that the CIR85a model is not yet fit for purpose as

the hard core of a theoretical macro-finance paradigm. We would go further

and suggest that the absence of labor from production stands in the way of

comparing the predictions of CIR85a with macroeconomic data. Moreover

the absence of labor from production makes comparisons with competing

general equilibrium models difficult. Accordingly, the purpose of this chapter

is to expand and enrich the model of production in CIR85a to include labor as

a second factor of production. The result is a rich general equilibrium model

with risky multifactor production that accounts for the main stylized facts

of economics and asset pricing in a realistic and dynamic macroeconomic

setting.

4.1.1 Multifactor production with risk

The production side of an RBC model is defined by an aggregate production

function combining known quantities of capital and labor. Risk arises in the

form of shocks to total factor productivity (TFP) that depress output from

its steady-state level. We believe that the treatment of production in RBC

models is deficient in several ways, particularly with regard to its handling

of risk, and suspect that the equity risk premium puzzle that arises in RBC

models may be attributed to its inattention to uncertainty in production.

Our model therefore departs from the treatment of production in the RBC

paradigm in several ways.

First, we treat labor and capital symmetrically as known ‘stock’ inputs

that yield uncertain flows when employed in a production process. The

incongruous combination of a stock of capital with a flow of labor effort

in aggregate production functions precipitated the famous Cambridge con-

troversies about the measurement of capital and the existence of aggregate

production functions.1 We propose to avoid this incongruity by treating la-

bor as a stock of human capital. The representative agent devotes known

1For a retrospective, see Cohen and Harcourt (2003) and the subsequent comments
by Pasinetti, Fisher, Felipe, McCombie, and Greenfield (with responses by Cohen and
Harcourt) in the Fall 2003 issue of the Journal of Economic Perspectives.
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quantities of human and non-human capital to production. Their yields in a

process of production are uncertain, however, because these productive fac-

tors are imperfectly matched to any one production technology, and because

their usefulness in any process depends on the ability of entrepreneurs and

managers to deploy them effectively in changing economic conditions.2 We

model the uncertain yields of labor and capital as Itô processes, in a direct

generalization of the CIR85a capital yield process. The factor yield processes

enter a deterministic production function, whose output is found using the

multivariate version of Itô’s lemma. The result is an Itô process representing

an uncertain flow of output from production.

Second, we abandon the standard Cobb-Douglas production function in

favor of production with a constant elasticity of substitution (CES) between

capital and labor. The Cobb-Douglas specification assumes a unit elasticity

of substitution between labor and capital, which forces marginal rates of

substitution between capital and labor to evolve linearly as the capital-labor

ratio changes. Empirical evidence suggests that elasticities of substitution

in actual production processes are significantly less than unity, so marginal

rates of substitution are convex with respect to the capital-labor ratio. In

any case, it seems unwise to assume away limitations on the substitutability

of labor and capital in a theory concerned with the risks of constructing,

allocating and owning capital.

Third, we consider factor-augmenting technical progress in addition to

the total factor productivity (TFP) contemplated by the Cobb-Douglas pro-

duction function. Technological improvements may be embodied in factors,

in contrast to disembodied total factor productivity operating at the level of

the production process. Our handling of technical progress allows technology

to affect factor endowments by making a unit of capital or labor function as if

it were more than one unit.3 Uncertainty about the rate of factor-augmenting

2For a classic treatment of the management of uncertain factor yields in production by
entrepreneurs and professional managers, see Knight (1921). Entrepreneurial and man-
agerial behavior are not modeled separately and may be regarded as part of the human
capital aggregate at the disposal of the representative agent. Future work might profitably
revisit this simplification.

3The augmented factors can be viewed as factors in efficiency-equivalent units.
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technical progress creates uncertainty about the effective stock of labor and

capital being allocated to production. Agents decide on allocations of phys-

ical stocks of human and non-human capital, but the effective stocks used

in production are determined by an exogenous stochastic process describing

the state of technology. The factor supply uncertainty created by technology

is then amplified by factor yield uncertainty. We model technical progress as

a system of three independent state variables corresponding to TFP, capital

productivity, and labor productivity.4 The three state variables scale out-

put, capital input and labor input, respectively, in each production process.

Shocks to the state variables are propagated to all production processes in

proportion to their relative rates of technology adoption.

Fourth, we disaggregate production into multiple process technologies

that each have the properties enumerated above. Disaggregating production

allows agents to make decisions about the allocation of labor and capital

among production technologies.5 The other non-standard elements of our

model of production ensure that agents take uncertain factor yields, limita-

tions on factor substitutability and uneven changes in technical progress into

account when making allocation decisions. An aggregate production func-

tion, by contrast, leaves no room for decisions about allocation to impact

asset prices.

The model of production at the core of our model thus disaggregates

production into multiple stochastic processes distinguished by rates of tech-

nology adoption, capital shares, elasticities of factor substitution, and distri-

butions of yields on labor and capital inputs. Our specification of the pro-

duction process is more flexible than the standard RBC specification, which

sets the elasticity of substitution to unity and restricts technical progress to

improvements in total factor productivity (TFP). More generally, our model

captures risks inherent in making inputs ready for production, where RBC

4In the growth theory literature the variables correspond to Hicks-neutral, Solow-
neutral, and Harrod-neutral technological change.

5Allocations among productive process may be interpreted as movements of resources
between sectors characterized by sectoral-level production functions, or as changes in the
intensity of use for different aggregate production technologies. Though our discussion
below inclines to the interpretation in terms of sectors, the technology-switching interpre-
tation is equivalent and may be preferred by some readers.
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models only consider risks to the output from production. At the same time,

our approach remains true to and expands on the central insights of CIR85a

by accounting for uncertainty in production and highlighting factor allocation

decisions as a primary feature of equilibrium behavior.

4.1.2 Elastic labor supply

Equilibrium asset pricing models in the RBC tradition either ignore labor

(e.g., Mehra and Prescott 1985) or incorporate labor, but assume that it

is supplied inelastically (e.g., Jermann 1998). Under either treatment of

labor, the utility of the representative agent is defined over consumption

alone. When consumption is the only argument in the utility function, very

high levels of global or local relative risk aversion are needed to reconcile

the low volatility of aggregate consumption with the level of the equity risk

premium.6

Elsewhere in the RBC tradition – and in economic theory more generally

– it is commonly recognized that individuals value consumption and leisure,

leading to a disutility for labor effort and an elastic supply of labor. In a

canonical result, King, Plosser and Rebelo (1988a, 1988b) find that varia-

tions in labor supply are necessary to generate realistic business cycles in

concert with serially-correlated technology shocks and the dynamics of capi-

tal accumulation.

Elastic labor supply impacts the analysis of risk aversion. Agents who are

free to vary their labor supply are less risk-averse because they can increase

their labor effort and ‘work their way out of’ an adverse outcome. Chetty

(2006) shows that empirical evidence on the responsiveness of work effort to

changes in wages can be used to set an absolute upper bound of 2 for the

coefficient of relative risk aversion in a time-separable utility function, while

a tighter bound of 1 is defensible under reasonable assumptions about the

complementarity of consumption and leisure. Such results are manifestly at

odds with double- and even triple-digit estimates from asset pricing stud-

6Mehra and Prescott (1985) set risk aversion globally in a CRRA utility function.
Jermann (1998) uses a habit-formation specification that makes risk aversion a local feature
vis-a-vis the habituated level of consumption.
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ies, as well as “the 1 to 10 range” deemed plausible for the coefficient of

relative risk aversion in consumption-based asset pricing models (Breeden,

Litzenberger and Jia 2019a: 69).

Thus it is surprising that elastic labor supply is largely absent from stud-

ies of the equity risk premium. An early survey of the equity risk premium

‘puzzle’ by Kocherlakota (1996) reviews many innovations in functional forms

for the utility of consumption and devotes ample attention to market incom-

pleteness, but does not once mention labor supply. A more recent 100-page

survey of research on the CCAPM by Breeden, Litzenberger and Jia (2019a,

b) contains but a single mention of labor supply in a quotation from Parker

and Julliard (2005), in which the authors suggest that changes in labor sup-

ply will be absorbed into ‘ultimate’ consumption risk, eliminating the need

to model them separately.

Nevertheless, empirical data and RBC models agree that variations in

labor supply are an essential part of the economy’s dynamic response to

shocks. A model with elastic labor supply allows agents to respond to shocks

by choosing among feasible configurations of consumption and labor effort.

The models of Mehra and Prescott (1985) and Jermann (1998), by contrast,

only allow agents to change their level of investment. For want of additional

decision variables, models like Jermann (1998) and Chen (2016) must intro-

duce frictions for the investment process and nonstandard utility functions

in order to reconcile production risk to asset prices.

In our model we endow our representative agent with a utility function in

which consumption and leisure are non-separable. A complete dynamic equi-

librium thus consists of a set of paths for the supply of labor, the allocation

of labor to multiple processes, the allocation of capital to multiple processes,

and the level of consumption. Elastic labor supply works in concert with

risky production to generate a rich set of asset pricing consequences that

have been largely ignored.7 Labor supply decisions are another mechanism

that couples equilibrium asset prices to the conditions of production, and

studying the connection sheds new light on the relationship between labor

and asset prices.

7An honorable exception is Kung (2015).
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In the literature on asset pricing, fluctuations in labor income have long

been treated as a partial equilibrium problem to be solved through trans-

actions in asset markets. The permanent income model of Friedman (1957)

posits that individuals will smooth disturbances to their income through

capital market transactions, introducing a ‘hedging motive’ for equity mar-

ket participation. Subsequent literature has emphasized the consequences of

non-insurable labor income for asset prices. Heaton and Lucas (1992) argue

that interruptions in labor income increase individual consumption volatility

enough relative to aggregate consumption volatility to rationalize the equity

risk premium, while Lettau and Ludvigson (2001a) note that negative devi-

ations of aggregate labor income from their long-run values predict increases

in the equity risk premium.

In contrast to this line of research, our model treats labor income as an

endogenous feature of a general equilibrium with complete markets. Rather

than choosing investment allocations in response to the characteristics of a

stream of labor income, agents choose their labor effort and investment allo-

cations jointly in response to the state and structure of the economy. Labor

income is not just a problem for the representative agent to solve with capital

market transactions, but also a means for the representative agent to solve

problems with the structure of capital. One can just as easily attribute a

hedging motive to the labor supply decision in a general equilibrium model.

Thus in our model, neither labor income hedging demands nor incomplete

markets play a role in explaining the equity risk premium. Both are remov-

able artifacts of modeling decisions made in earlier literature.

4.1.3 Challenges to the asset-pricing literature

The consumption-based asset pricing literature has long contended that it is

not necessary to model production when studying asset prices. For example,

Breeden (1979: 269) claims

it is not necessary to explicitly examine firms’ production de-

cisions and the supply of asset shares, provided that the as-

sumptions made are consistent with optimal behavior of firms



112 CHAPTER 4. MULTIFACTOR PRODUCTION WITH RISK

in a general equilibrium model. To be consistent with general

equilibrium, prices must be recognized to be endogenously deter-

mined. ... The model presented is consistent with endogenously-

determined prices if, as assumed, all random shocks to the econ-

omy are captured as elements of the state vector.

When all random shocks to the economy are included in the state vector,

incomes, output and technology may all be represented by Itô processes that

depend on the state of the economy, and indeed we will work out these Itô

processes below. Furthermore, we have seen in (2.19) that the risks relevant

to asset pricing can be represented in terms of consumption risk and the

agent’s degree of aversion to consumption risk, so long as consumption risk

is defined with respect to all state variables.

But for a model to have non-trivial empirical content, the processes for

output, technology and incomes must be determined more precisely than

saying they are Itô processes dependent on a suitably rich state. As Hansen

(1987: 239) writes,

Competitive equilibrium models of asset prices and aggregate

fluctuations have little empirical content without a set of aux-

iliary restrictions on tastes, technology, and the interaction be-

tween observable and unobservable forcing variables. For this

reason, explicit modeling of the hypothesized estimation environ-

ment is essential. Only in this way can we hope to interpret the

time series evidence. ... Analyzing the empirical implications of

[suitably-restricted] models also will be facilitated by calculating

the stochastic equilibria even if such calculations are numerically

intensive. For this reason, the study of stochastic models of asset

prices with computable equilibria will continue to be an impor-

tant avenue of research.

We could not agree more.8 In our reading, the consumption-based asset

pricing literature has long pursued restrictions on tastes at the expense of

8Admittedly our purpose is different from Hansen’s. Whereas Hansen (1987) is mo-
tivating research into different forms of market incompleteness, we propose to study the
consequences of restricting production processes.
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restrictions on observable and unobservable forcing variables that determine

production possibilities and output. While restrictions on tastes may be

informative about the psychology of a representative consumer, equilibrium

models of asset prices only have empirical economic content to the extent

that the risks inherent in capital formation are specified, and decisions about

the deployment and allocation of resources in production are part of the

definition of equilibrium.

We confront the ‘production-skepticism’ of the asset pricing literature in

two ways. First, our choice of CES production functions defines a non-linear

technology that is not easily subsumed into the kind of linear endowment

process routinely employed in the consumption-based asset pricing literature.

There is no good theoretical or empirical reason to insist that asset prices are

determined as if technology is linear. At the same time, the CES production

function allows us to consider the consequences of factor-augmenting techni-

cal change, which enjoys pride of place in the growth literature but plays no

discernible role in asset pricing.

Second, we condition the representative agent’s level of risk aversion on

his (variable) labor effort. Our decision to incorporate elastic labor supply

distances us from the asset pricing literature, while–perhaps paradoxically–

bringing us closer to the RBC tradition. As in RBC models, agents vary their

equilibrium labor supply in response to external shocks, but we go beyond

RBC models by disaggregating production and expanding the set of shocks

to which agents may react. We divide shocks into factor yield shocks and

technology shocks. Shocks to factor yields represent unexpected outcomes for

the yield of labor or capital in a particular production process, while shocks

to technology affect output, capital productivity, or labor productivity in all

processes. The entire class of factor yield shocks is absent from the asset

pricing literature, while the study of technological shocks is often limited to

TFP.

On the one hand, our model is constructed to create an economy in

which production is too important to be ignored. On the other hand, our

model illustrates just how many features of the aggregate economy must be

suppressed in order to generate an ‘equity risk premium puzzle.’ The Mehra-
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Prescott model is an oversimplification if one wishes to explain asset prices.

Upon recognizing the risks of production and endowing our representative

agent with micro-founded levels of risk aversion and labor supply elasticity,

we obtain an economy with low risk-free rates and a reasonably-sized equity

risk premium. In our calibrated economy there is no equity risk premium

puzzle. At the same time, we do not proffer our model as a ‘solution’ to the

equity risk premium puzzle, because we are not concerned with shoring up

the foundations of the RBC paradigm. We believe a more radical theoretical

and methodological response to the puzzle is long overdue, and offer our

continuous-time model as an example of the direction in which future model-

building might go.

We do not contend that our model is the final word on the aggregate

economy merely because it has plausible asset pricing consequences. Nor

do we claim that the equity risk premium is definitively explained by our

model. While our model incorporates a wider-than-usual menu of risks, we

have chosen parameter values that make some risks small, while employing

simplifications that eliminate other risks.

Instead, we propose an inverted puzzle. The classical equity risk premium

puzzle asks why the equity risk premium is so big given that the volatility

of consumption is so small. Our model throws an entirely different question

into focus: In a dynamic economy characterized by pervasive uncertainty,

why is the equity risk premium so small?

4.1.4 Plan of the chapter

The next section modifies the baseline CIR85a model of Chapter 2 to in-

corporate labor and multifactor production. The labor supply decision is

introduced along with a new utility function in which labor supply and con-

sumption decisions are non-separable. We define stochastic yield processes

for capital and labor, and then derive the stochastic process followed by out-

put for a general production function. After showing how factor-neutral and

factor-augmenting technical progress enter the general output process, we

specify the production function and calculate its derivatives. The model is
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completed by defining the distribution of income and modifying the CIR85a

asset pricing equations to incorporate the risks of multifactor production.

Section 3 implements a two-step parameterization procedure for the model.

We begin with a review of the empirical literature which permits us to fix

parameters for the production processes, the evolution of the state of tech-

nology, and the utility function. The undetermined factor yield parameters

are then calibrated with the goal of matching several dimensionless quantities

describing output, consumption, labor effort and asset prices.

The model is solved in Section 4 using the deep learning technique of

Chapter 3. We verify that the character of equilibrium is consistent with

the targets used in calibration and study the dynamic behaviors produc-

ing the equilibrium. We then study the impulse responses of the model to

understand the relative importance of different shocks and agents’ dynamic

responses to them. In particular, we examine changes in the equity risk pre-

mium in response to shocks as a means of studying the origins of aggregate

fluctuations. Our model suggests that aggregate fluctuations arise not from

technological shocks to aggregate output, but from shocks to the yield of in-

puts in particular production processes. Thus we offer a new explanation of

the business cycle that is consistent with the stylized facts of asset pricing.

Further, we show that dynamic responses to shocks are far more nuanced

than the smooth returns to equilibrium fabricated by perturbation methods.

Section 5 concludes.

4.2 Production with Capital and Labor

Before we transplant a multifactor production function into our model we

must consider where to make the incision in CIR85a. We take the scalpel to

the wealth accumulation process, which endogenously determines the state

variable W for any admissible control sequence.

We begin by rewriting the accumulation process (2.7) slightly to motivate
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our development:

dW = W

[
N∑
i=1

ai

(
αidt+

N+K∑
j=1

gijdZj

)]

+W

[
N∑
i=1

bi

(
βidt+

N+K∑
j=1

hijdZj

)]
− Cdt

(4.1)

In CIR85a, the first term on the right-hand side of (4.1) is the sum of the

yields on capital, weighted by the capital allocation, while the second term

is the return on a portfolio of contingent claims. We can rewrite the wealth

evolution as follows:

dW =
N∑
i=1

dηi +W

[
N∑
i=1

bi

(
βidt+

N+K∑
j=1

hijdZj

)]
− Cdt (4.2)

where we recall that dηi = αi(aiW )dt + (aiW )gidZt = αi(ηi)dt + (ηi)gidZt

for all processes i. In CIR85a, dηi is the output of process i. The key to the

further development of our model is to determine an expression for dηi when

production involves capital and labor.

4.2.1 Labor supply and factor input processes

Our first task is to develop a model for labor input. We define labor input as

the yield on human capital and construct the yield on labor in direct analogy

with the yield on physical capital.

Let H̄ be a fixed endowment of human capital. We introduce a new con-

trol function SL(W,Y, t) mapping to the interval [0, 1]. The supply of labor is

controlled by SL, which may be interpreted in our representative agent model

as a combination of the relative number of hours worked (the intensive mar-

gin) and the labor force participation rate (the extensive margin). Therefore

the amount of human capital available for production is H = SL(W,Y, t)H̄.

Labor is supplied elastically and its supply is determined jointly with

consumption decisions. Following Cantone et al. (2015) we use a time-
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separable specification of the utility function9 in which consumption and

labor supply are non-separable arguments:

U (C, SL) =
1

γ

[
(C + 1)1−ψ (1− SL)ψ

]γ
(4.3)

Here, γ is the coefficient of relative risk aversion and ψ is the Frisch elasticity

of labor supply.

The total amount of labor supplied to the market H is allocated to N

production processes by the control vector aL, with
∑N

i=1 a
L
i = 1 and 0 ≤

aLi ≤ 1 for all i.10 The amount of human capital supplied to process i is

ηLi = aLi H = aLi SLH̄. Thus the amount of labor supplied to each production

process is the result of two decisions by the representative agent: how much

to work (SL), and how to allocate effort among multiple activities (aL).

Extending the analogy with non-human capital, we define the yield of

human capital supplied to process i as

dηLi = αLi (Y, t)ηLi dt+ ηLi g
L
i (Y, t)dZt (4.4)

The yield of non-human capital supplied to process i follows the law (2.1) as

before and is now denoted with superscripts K

dηKi = αKi (Y, t)ηKi dt+ ηKi g
K
i (Y, t)dZt (4.5)

where ηKi = aKi W as in CIR85a.

We have defined 2N factor yield processes that determine the output

yielded by N production processes. To allow disturbances to labor input

yields dηLi to vary independently of capital input yields dηKi for each i, we

extend dZt to become a 2N +K-dimensional Brownian motion. Conforming

gKi and gLi to this definition makes them row vectors of length 2N +K.11

9Cantone et al. (2015) incorporate preference shocks and external habit formation
in consumption, while treating St as a fixed parameter. By contrast, we suppress habit
formation, dispense with preference shocks, endogenize SL, and reparameterize slightly.

10The summability condition fixes the scale of SL, while the positivity condition reflects
natural constraints or, if you like, the inability to borrow and lend labor effort.

11Describing the inputs to production as stochastic factor yields is sufficiently hetero-
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4.2.2 Output processes

Production is defined by a function F that decomposes into N production

functions of similar form:

F
(
dηK1 , . . . , dη

K
N , dη

L
1 , . . . , dη

L
N

)
=

N∑
i=1

F i
(
dηKi , dη

L
i

)
(4.6)

Because ηKi and ηLi are defined by diffusions, the production yield of F is given

by its stochastic differential, which may be found using the multivariate form

of Itô’s lemma (Baldi 2017: 236-7). Let the derivatives of F i with respect to

labor and capital be written F i
L and F i

K , respectively. Per Itô’s lemma, the

stochastic differential of F is

dF =

[
Ft +

1

2

N∑
i=1

F i
KKg

KK
i +

N∑
i=1

F i
KLg

KL
i +

1

2

N∑
i=1

F i
LLg

LL
i

]
dt

+
N∑
i=1

F i
Kdη

K
i +

N∑
i=1

F i
Ldη

L
i

=

[
Ft +

N∑
i=1

(
1

2
F i
KKg

KK
i + F i

KLg
KL
i +

1

2
F i
LLg

LL
i

)]
dt

+
N∑
i=1

(
F i
Kdη

K
i + F i

Ldη
L
i

)
(4.7)

where gKKi = (ηKi )2gKi g
K′
i , gKLi = (ηKi η

L
i )gKi g

L′
i , and gLLi = (ηLi )2gLi g

L′
i . The

second equality emphasizes that the processes remain separable.

dox to warrant further comment. In configuring a production process, an entrepreneur
contracts with a known number of workers and finances a supply of capital. However the
entrepreneur does not know how much labor the workers will yield until they are hired
and enter the workplace. In the workplace, workers labor more or less purposefully and
coordinate their efforts with their colleagues and the available capital more or less effec-
tively. Similarly, the entrepreneur does not entirely realize what his capital resources will
yield until they are employed in a larger design. Accordingly we believe it is enlightening
to treat inputs to production as uncertain quantities. As in CIR85a, we allow these un-
certainties to be partly inherent in the production process (the first 2N elements of dZt)
and partly determined by the state of the economy (the last K elements of dZt).
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Thus let us concentrate on the contribution from a single process i:(
1

2
F i
KKg

KK
i + F i

KLg
KL
i +

1

2
F i
LLg

LL
i

)
dt+ F i

Kdη
K
i + F i

Ldη
L
i (4.8)

Expanding dηKi and dηLi we obtain

F i
Kdη

K
i + F i

Ldη
L
i =(

F i
Kα

K
i (Y, t)ηKi + F i

Lα
L
i (Y, t)ηLi

)
dt

+
(
FK
i η

K
i g

K
i (Y, t) + FL

i η
L
i g

L
i (Y, t)

)
dZt

(4.9)

Substituting (4.9) into (4.8), the contribution from each process i to dF is(
F i
Kα

K
i η

K
i + F i

Lα
L
i η

L
i +

1

2
F i
KKg

KK
i + F i

KLg
KL
i +

1

2
F i
LLg

LL
i

)
dt

+
(
F i
Kη

K
i g

K
i + F i

Lη
L
i g

L
i

)
dZt

(4.10)

which shows that production with Itô process inputs is again an Itô process.

We can simplify (4.10) by imposing some additional structure on gKi and

gLi . Let dZt be ordered so that the first N elements are shocks to capital

yields, the next N elements are shocks to labor yields and the last K ele-

ments are shocks to the state variables. If we assume that shocks to input

factor yields are independent of shocks to other factor yields as well as inde-

pendent of shocks to the state variables, the row vectors gKi and gLi may be

summarized by single non-zero entries σKi and σLi , respectively. In economic

terms, we assume that variations in the yield of a factor in a production pro-

cess are specific to that input and process, so that a failure of labor to yield

its expected product in process i does not spill over to the yield of capital in

process i or to the yields of labor in processes j 6= i.12

Under these simplifying assumptions, the matrix obtained by stacking the

row vectors gKi and gLi reduces to a diagonal matrix of dimension 2N × 2N

with a 2N ×K matrix of zeros appended on the right. Now gKKi = (ηKi σ
K
i )2,

12In our view the first of these assumptions is potentially the most controversial. If a
firm marshals its human resources poorly its capital resources are likely to underperform,
and vice versa. We proceed under the assumption of independence in light of our ignorance
concerning more fundamental quantities such as the conditional means of the factor yields.
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gKLi = 0 and gLLi = (ηLi σ
L
i )2 for each process i, and the contribution from

process i to dF is(
F i
Kα

K
i η

K
i + F i

Lα
L
i η

L
i +

1

2
F i
KK(ηKi σ

K
i )2 +

1

2
F i
LL(ηLi σ

L
i )2

)
dt

+ F i
Kη

K
i σ

K
i dZ

K
it + F i

Lη
L
i σ

L
i dZ

L
N+i,t

(4.11)

where the extra scripting on the diffusions emphasizes that the relevant ele-

ments of dZt are to be found at positions i and N + i.

4.2.3 Technological change

Recall that the expressions αi, σ
K
i and σLi that define the factor yield pro-

cesses (4.4) and (4.5) are functions of the state vector Y .13 The functions

αi(Y ) and σi(Y ) are the points at which the state of the economy influences

production possibilities.

We define Y as the state of technology. Setting K = 3, we define Y1 as

the state of total factor productivity, Y2 as the state of capital-augmenting

technical change, and Y3 as the state of labor-augmenting technical change.

In the literature on economic growth, the three dimensions of Y are known

as Hicks-neutral, Solow-neutral, and Harrod-neutral technical progress.

Producers will vary in their ability to incorporate technical progress into

their methods of production; some will adopt technologies at an above-

average pace, while others will lag in adoption or find new developments

ill-suited to their operations. We define a process-specific scaling coefficient

δi =
[
δi1 δi2 δi3

]
which adapts the state of technology in the economy to the

state of technology in a particular process.

Let the capital and labor yield processes have base yields of πKi and πLi ,

13Per the previous section, the vector-valued function gi(Y ) simplifies to the scalar-
valued functions σKi (Y ) and σLi (Y ).
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respectively, and define14

αKi (Y ) = πKi δ
i
2Y2

αLi (Y ) = πLi δ
i
3Y3

(4.12)

The drifts of the factor yield processes are

αKi (Y )ηKi = πKi δ
i
2Y2η

K
i = πKi

(
δi2Y2η

K
i

)
= πKi Ki (4.13)

and

αLi (Y )ηLi = πLi δ
i
3Y3η

L
i = πLi

(
δi3Y3η

L
i

)
= πLi Li (4.14)

where Ki = δi2Y2η
K
i and Li = δi3Y3η

L
i are the efficiency-equivalent inputs of

capital and labor used in process i. Technical progress captured by Y2 and

Y3 is factor-augmenting: ηKi and ηLi are scaled in the production function

to behave like more capital and labor input, respectively. We assume yield

volatilities are unaffected by the state of technology, so uncertainty about

technical progress affects only expected factor yields, and the functions σKi

and σLi reduce to constants.

Applying (4.13) and (4.14), the contribution of process i to output is now

given by

δi1Y1

(
F i
Kπ

K
i Ki + F i

Lπ
L
i Li +

1

2
F i
KK(Kiσ

K
i )2 +

1

2
F i
LL(Liσ

L
i )2

)
dt

+ F i
KKiσ

K
i dZ

K
it + F i

LLiσ
L
i dZ

L
N+i,t

(4.15)

Total factor productivity Y1 now appears in the drift term, raising the output

of the process proportionately according to the process-specific scaling factor

δi1.

14We use expressions δijYj to unclutter the notation. More precisely, the adjustments

are given by Yjt exp ((δij − δj)t), which scale the compounded growth rate δj of Yj to give
a process-specific growth rate.
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4.2.4 The production function

It remains to specify F i and its derivatives in (4.15). Any twice-differentiable

deterministic function of capital and labor will do. We use the Constant

Elasticity of Substitution form (Arrow et al, 1961):

F i(Ki, Li; βi, σi) = [βKρ
i + (1− β)Lρi ]

1/ρ (4.16)

The capital share β controls the relative weights of physical and human

capital yield used in the production process.

The parameter ρ ∈ (−∞, 1] is calculated from the elasticity of substitu-

tion parameter σ ∈ [0,∞) as

ρ =
σ − 1

σ

In the completely inelastic case, σ goes to zero, sending ρ to negative infinity.

The CES production function reduces to the Leontief form in which K and

L are perfect complements. Conversely, in the completely elastic case, σ

goes to infinity, ρ approaches 1, and K and L are perfect substitutes. In the

Cobb-Douglas case, σ = 1.

Non-constant returns to scale may be entertained by replacing the outer

exponent with ν/ρ, where ν > 1 implies increasing returns to scale and

ν < 1 gives decreasing returns. We leave this possibility aside since we are

not currently concerned with matters of industrial organization, competition

or the life cycle of individual firms.

The parameters βi and σi are a convenient way to introduce heterogeneity

into our model, along with the process-specific technology adoption coeffi-

cients δi. Production processes may be distinguished by their capital shares,

their elasticities of substitution, and their relative rate of technology adop-

tion.

The CES production function makes output a genuinely nonlinear func-

tion of the inputs. The cost of nonlinearity is a loss of tidy analytical results

for the first-order conditions of the HJB equation.

However we like nonlinearity for four reasons. First, a nonlinear pro-
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duction function is not easily subsumed into a mere endowment process. If

production were a linear transformation of state variables following a lin-

ear process, we would again have a linear process that could be treated as

primitive.

Second, a nonlinear production process showcases the power and flexibil-

ity of our solution procedure. We don’t need tidy first-order conditions to

solve the model. And whereas standard methods would solve a log-linearized

approximation to the nonlinear model in the neighborhood of a steady state,

we can let the nonlinearity stand while solving for a dynamic equilibrium.

A third benefit is the flexibility of the CES specification with factor-

augmenting technical change. The CES production function can account

for imperfect substitution between factors, while factor-specific technology

shocks provide another pathway besides TFP through which changes in the

state of technology can affect output.

Finally, the CES specification has proved its mettle in macroeconomic

models. Cantore et al (2015) show that the choice of a CES aggregate pro-

duction function has a material impact on business cycle analysis in DSGE

models. They estimate a variant of the Smets and Wouters (2007) DSGE

model that replaces Cobb-Douglas production with CES production. Their

results indicate that the CES variant with an aggregate elasticity of sub-

stitution well below 1 outperforms the Cobb-Douglas version significantly.

Cantore et al (2015: 149) strikingly conclude “we should dismiss once and

for all the use of [Cobb-Douglas production functions] for business cycle anal-

ysis.”

For the multivariate Itô’s lemma we need the derivatives of the CES

production function (Sato 1967). The first derivatives of the CES production

function are:

FK = β

(
F

K

)1−ρ

FL = (1− β)

(
F

L

)1−ρ
(4.17)

and the second derivatives are:

FKK =
1− ρ
F

F 2
K

(
1− F

KFK

)
FLL =

1− ρ
F

F 2
L

(
1− F

LFL

)
(4.18)
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The cross-derivative FKL = 1−ρ
F
FKFL does not appear in our specification

but may be needed in a more general model that allows factor yield shocks

to be correlated within processes.

For specified {βi, σi} the flow of output may now be found by substituting

F i and its derivatives into the evolution of dF i in (4.15).

4.2.5 Incomes, expected returns and risk premia

In CIR85a the distribution of income is trivial because capital is the only

factor of production. Capital ‘earns’ the expected gross rate of return on all

production processes, weighted by the allocation of capital, a′α. The gross

return is comprised of the risk-free rate and a risk premium that we have

been calling the equity risk premium. The equity risk premium is the inner

product of K + 1 market prices of risk and K + 1 covariances of wealth with

{W,Y }. Netting the equity risk premium from the gross rate of return leaves

the risk-free rate as a residual.

Introducing labor requires defining how the proceeds of production are

divided among labor and capital. In competitive equilibrium each factor

earns its marginal product.15 Hence the expected gross rate of return on

capital conditional on the state of technology is

rK =
1

W

N∑
i=1

δi1Y1

(
F i
Kπ

i
KKi +

1

2
F i
KK(Kiσ

K
i )2

)
(4.19)

while the conditional expected gross rate of return on human capital is

rH =
1

H

N∑
i=1

δi1Y1

(
F i
Lπ

i
LLi +

1

2
F i
LL(Liσ

L
i )2

)
(4.20)

Actual rates of return include the terms FK
i Kiσ

K
i dZi,t and FL

i Liσ
L
i dZN+i,t,

15We could depart from competitive equilibrium by defining process-specific ‘appro-
priation shares’ that transfer the product of one factor to the income of another, or by
integrating Y out to obtain unconditional expectations and introducing a margin of safety
for the income paid to labor. For now we explore the conditional competitive benchmark
for simplicity and comparability with the literature, and because the income distribution
is not our primary concern.
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respectively. Note that the rate of return on human capital depends (through

Li) on the optimal allocation of human capital to productive processes, in

exact analogy with the rate of return on non-human capital. We normalize

by H because wages are only paid to those who are in the labor force.

Aggregate economic risk is still given by (2.5), and the equilibrium market

risk premium and state variable risk premia maintain the form[
φW

φY

]
=

[
σ2(W ) σ(W,Y )

σ(W,Y )′ σ2(Y )

][
−JWW

JW

−JWY

JW

]
(4.21)

as in (2.23). Because we hold H̄ fixed, W is still the only endogenous state

variable, and the accounting for the equity risk premium in our model with

labor remains the same as in CIR85a. If we had defined an accumulation

process for H̄ and an aggregate of social wealth W0 = H̄+W , we would have

a new numeraire for risk and our system of risk premia would become

φHφW
φY

 =

 σ2(H̄) σ(H̄,W ) σ(H̄, Y )

σ(H̄,W ) σ2(W ) σ(W,Y )

σ(H̄, Y )′ σ(W,Y )′ σ2(Y )



−JHW0

JW0

−JWW0

JW0

−JYW0

JW0

 (4.22)

where φH is the excess rate of return in equilibrium to holding an additional

increment of human capital. In this case, one would arguably net φH/H from

the gross rate of return on labor to obtain a risk-free rate of return on human

capital, analogous to an unskilled wage rate. The equity risk premium would

also pick up a contribution from the covariance of aggregate wealth with

aggregate human capital. However we do not pursue this possibility further

here.

Returning to the system (4.21), recall that computation of the equity

risk premium in CIR85a was simplified by having closed form expressions for

σ2(W ) = GG′ and σ(W,Y ) = GS ′, given in (2.17). We can obtain closed

forms once again by breaking a and G into labor- and capital-specific pieces.

The state covariance matrix σ2(Y ) = SS ′ remains unchanged.

Based on the simplifications we made in (4.11), define the N × (2N +K)
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capital yield covariance matrix GK as
F 1
Kσ

K
1 0 0 0 0 · · · 0

. . . . . .
...

...

0 FN
K σ

K
N 0 0 0 · · · 0

 (4.23)

and define the labor yield covariance matrix GL analogously as
0 0 F 1

Lσ
L
1 0 0 · · · 0

. . . . . .
...

...

0 0 0 F 1
Lσ

L
N 0 · · · 0

 (4.24)

The terms a′GG′aW 2 and a′GS ′W in (2.17) become

σ2(W ) = a′KGKG
′
KaKW

2 + a′LGLG
′
LaLS

2
LH̄

2 (4.25)

and

σ(W,Y ) = a′KGKS
′W + a′LGLS

′SLH̄ (4.26)

respectively. Accordingly we obtain the following expression for the equity

risk premium:

φW/W =
[
a′KGKG

′
KaKW

2 + a′LGLG
′
LaLS

2
LH̄

2
](
− JWW

WJW

)
+
[
a′KGKS

′W + a′LGLS
′SLH̄

](
− JWYi

WJW

) (4.27)

Subtracting the equity risk premium from the expected gross rate of return

on capital yields the risk-free rate as a residual once again. The computation

of σ2(Y ) is unchanged, but contingent claims risk premia will be affected by

the modification to σ(W,Y ) in (4.26).

In the dynamic equilibrium of our multifactor model, the equity risk pre-

mium (4.27) evolves in response to the endogenous accumulation of wealth,

endogenous labor supply decisions, and endogenous factor allocation deci-

sions.16 The levels of relative risk aversion that determine the market prices

16A potential extension of our model in which the stock of human capital accumulates
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of risk are based on a utility function in which consumption and labor supply

are non-separable. Our model has far more levers than consumption-based

models to explain the level and variability of the equity risk premium, and

our study of the model’s impulse responses below will aid in understanding

how each feature of dynamic equilibrium mediates the response of the equity

risk premium to factor yield and technology shocks.

4.3 Parameterization and Calibration

The model contains several free parameters, which I determine in two steps.

(Dawkins, Srinivasan and Whalley 2001) In the first step, I collect empirical

estimates for the unknown parameters of the production functions, the state

evolution equation, and the utility function. In the second step, I calibrate

the few parameters that remain undetermined with reference to a set of target

values based on data for the US economy. The parameterization obtained

grounds the model in empirical evidence and ‘centers’ the outputs of the

model to create a reasonable baseline from which the properties of the solved

model may be studied.

4.3.1 Parameters determined by empirical studies

Some recent studies have developed estimates of production functions and

rates of technical change at the sector and industry levels. Estimated elas-

ticities of substitution are available from Young (2013), estimated factor

shares from Valentinyi and Herrendorf (2008), and calculated rates of tech-

nical progress from Jorgenson, Ho and Stiroh (2005, hereafter JHS).

Young (2013) estimates constant elasticities of substitution at the indus-

try level. Young’s industry-level production function estimates show that

σi < 1 for most of the 35 industries he studies. His estimates of σi become

more stable and robust when aggregated into sectors. We adopt Young’s

(2013: Table 9) generalized instrumental variables estimates for the elastic-

and economic risk is given by (4.22) is left as a possibility for further research.
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ity of substitution.17

Valentinyi and Herrendorf (2008: Table 1) measure capital income shares

at the sector level, using data from government statistical agencies. Using

duality theory, income shares correspond to the shares βi in optimal produc-

tion plans. The authors find important differences in capital shares across

sectors that are decomposable into intensities of use for land, structures, and

equipment.

Rates of technical change δji are measured at the industry level by JHS

(2005: Table 7.2), who construct constant quality aggregates of capital, la-

bor, and intermediate inputs to study the impact of technological change on

gross output at the industry level. JHS find that most technical progress for

most industries is embodied in intermediate inputs and improvements in the

quality of labor and capital. Disembodied improvements in TFP contribute

comparatively little to growth, though important exceptions exist in certain

industries like software and computing equipment.18 The quantity of capital

in our model properly encompasses capital and intermediate input, owing to

the consumability of the capital good. Hence we combine the contribution

from intermediate input with improvements in capital quality to obtain an

estimate of technical progress embodied in capital. Similarly, the productive

processes we model are best understood as producing gross output rather

than value added.

Production process specifications

Due to the mix of sector- and industry-level estimates available from the

above studies, we define each of our production processes at the industry

level, where the industry is a member of a selected sector. We use industry-

17Young’s GMM estimates produce the same ordering of elasticities across sectors.
Young also provides industry-level estimates of factor augmentation (2013: Tables 8A,
8B, 8C) that are conditioned on the CES functional form. They are poorly estimated,
however, and not easily aggregated to the sector level.

18Other studies decomposing industry-level gross output (Bartelsman and Beaulieu
2004, Gullickson and Harper 2002, and Bosworth and Triplett 2003) highlight the im-
portance of the disaggregated approach and find significant heterogeneity in TFP across
industries. Further comparisons are difficult due to differences in the underlying data and
variations in the measurement of labor input.
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Parameter Value Sector/Industry/Concept Source
β1 0.5400 Agriculture VH (2008)
σ1 0.6000 Agriculture Young (2013)
δ1

1 0.0190 Agriculture JHS (2005)
δ1

2 0.0045 Agriculture JHS (2005)
δ1

3 0.0014 Agriculture JHS (2005)
β2 0.4000 Manufactured consumption VH (2008)
σ2 0.4600 Manufacturing Young (2013)
δ2

1 0.0045 Fabricated metal JHS (2005)
δ2

2 0.0124 Fabricated metal JHS (2005)
δ2

3 0.0011 Fabricated metal JHS (2005)
β3 0.3400 Services VH (2008)
σ3 0.6800 Services Young (2013)
δ3

1 -0.0026 Professional services JHS (2005)
δ3

2 0.0188 Professional services JHS (2005)
δ3

3 0.0027 Professional services JHS (2005)
β4 0.3400 Services VH (2008)
σ4 0.6800 Services Young (2013)
δ4

1 -0.0001 Other services JHS (2005)
δ4

2 0.0176 Other services JHS (2005)
δ4

3 0.0022 Other services JHS (2005)
δ1 0.0021 41-industry median JHS (2005)
δ2 0.0130 41-industry median JHS (2005)
δ3 0.0011 41-industry median JHS (2005)

σ(δ1) 0.0010 41-industry median Based on JHS (2005)
σ(δ2) 0.0060 41-industry median Based on JHS (2005)
σ(δ3) 0.0005 41-industry median Based on JHS (2005)
γ 0.7100 Relative risk aversion Chetty (2006)
ψ 0.3500 Elasticity of labor supply Cantone et al (2015)

Table 4.1: Parameters determined with reference to empirical studies. The
first four blocks determine the production functions. The fifth block de-
termines the state process. The final block determines the utility function.
Sources: VH (2008) = Valentinyi and Herrendorf (2008: Table 1), Young
(2013) = Table 9, GIV estimates (rounded), JHS (2005) = Jorgenson, Ho
and Stiroh (2005: Table 7.2).

level estimates for productivity growth rates and sector-level estimates for

capital shares and elasticities of substitution. Our goal is to define a set

of production processes with heterogeneous frontiers and exposures to the
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evolution of technology.

We set N = 4. Process 1 is modeled on the agriculture industry, which co-

incides with the agriculture sector. Agricultural production is characterized

by a relatively large capital share due to its intensive use of land, elevated

rates of total factor productivity growth and relatively small contributions

to growth from intermediate inputs.

Process 2 is modeled on the capital-intensive fabricated metal industry,

an example selected from the manufacturing sector. Due to the specialized

and energy-intensive tasks performed by capital equipment, the elasticity

of substitution within the manufacturing sector is the lowest of the four

production processes we define.

Processes 3 and 4 correspond to the professional and non-professional

service industries, respectively, within an overarching services sector. The

services sector is characterized by a larger labor share (smaller capital share)

and high rates of factor-augmenting productivity growth, partially offset by

slowly-declining total factor productivity. Somewhat surprisingly, the sub-

stitutability of capital for labor in the services sector is greatest among the

examples we study.

Our parameter choices for the production functions are consistent with

other literature. Leon-Ledesma et al (2010: 1344) use an aggregate capital

share β = 0.4, but find that values of 0.3 and 0.6 are also consistent with

their qualitative conclusions. Cantone et al. (2015) estimate σ far below 1 for

an aggregate CES production function, while Koesler and Schymura (2015)

estimate substitution elasticities between 0 and 1 for most sectors, leading

them to reject Leontief and Cobb-Douglas production specifications alike.

Our choices for technical progress parameters are more difficult to assess

by comparison with other studies. We are not aware of studies that match

JHS in scope and granularity. The JHS results are broadly consistent with

the earlier study of Jorgenson, Gollop and Fraumeni (1987), in that both

support the view that technical progress is predominantly embodied in fac-

tors. Though we are convinced the findings of JHS are sound, we would not

expect that all economists would agree that TFP plays a relatively minor

role in the evolution of technical progress.
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Specification for the state of technology

The rates of technical progress that define the state of technology in our

model are re-scaled within each production process. Indeed, if we were pre-

pared to treat technical progress as a deterministic time trend, we could

dispense all together with specifying a state process for the economy. How-

ever technical progress is not assured, so we would like to treat it as a random

variable. Fixing the rates of technical progress for the economy at large is

useful because it lets us choose their volatilities intelligently. We choose

volatilities to assign a small probability (less than 5 percent) to negative

rates of technical progress.

Accordingly we use the JHS median estimates to define the process fol-

lowed by the state of technology as follows:dY1

dY2

dY3

 =

0.0021Y1

0.0130Y2

0.0011Y3

 dt+

0.001 0 0

0 0.006 0

0 0 0.0005

 dZY
t (4.28)

We assume that the processes are independent, and set the volatilities large

enough to permit the process increments to be negative with meaningful

probability.19

Note that productivity shocks will not be persistent under our specifica-

tion, in a departure from the benchmark RBC specification. In our model

the dynamic impact of productivity shocks will be determined entirely by

changes in time path of wealth accumulation. Like the RBC specification,

however, shocks to any of the productivity variables will be perfectly corre-

lated in the cross-section – that is, across production processes.

Utility function

Our utility function (4.3) contains two unknown parameters. Following Can-

tone et al. (2015) we set the elasticity of labor supply ψ = 0.35. Our chosen

value is well-supported by other research. Chetty (2012) establishes a range

19We are not aware of reliable time series for factor augmenting technical change that
would permit more precise specification of the state covariance matrix.
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of 0.33 to 0.47 for the Frisch elasticity based on microdata estimates, with

the low end of the range occurring when the elasticity of intertemporal sub-

stitution is zero, a useful benchmark for our time-separable specification.

Reichling and Whalen (2012) cull Frisch elasticities ranging from 0.27 to

0.53 from a review of the microeconomic literature, with a central estimate

of 0.40.

As discussed in the Introduction, relatively small coefficients of relative

risk aversion are compatible with elastically-supplied labor. We set γ = 0.71

based on the average of labor supply-based estimates presented in Chetty

(2006). It bears repeating that our choice of γ is two orders of magnitude

smaller than the equivalent levels of local risk aversion implied by other

equilibrium asset pricing models.

The parameters in the model determined with reference to the above em-

pirical studies are collected in Table 4.1. The sources and concepts pertaining

to each are listed alongside for ease of reference.

4.3.2 Calibrated parameters and targets

We have conceptualized the inputs to production as the stochastic yields of

labor or capital. As economists do not typically think of productive factors

in this way, the empirical literature provides little guidance on reasonable

values. Thus we make the simplifying assumption that {πKi , πLi , σKi , σLi } are

equal for all four production processes, and calibrate their values by targeting

selected aggregate values which we now describe.

In Chapter 3 we analyzed the macroeconomic consequences of the CIR85a

model in terms of dimensionless output/wealth and consumption/wealth ra-

tios. We would like to do the same here. In order to bound these ratios with

empirical data, we refer to data on fixed assets, gross output, and personal

consumption expenditure for the United States compiled by the Bureau of

Economic Analysis (BEA).

We measure wealth using the current-cost stock of fixed assets and con-

sumer durable goods.20 At the end of 2019 the total value of fixed assets

20Available at https://fred.stlouisfed.org/series/K1WTOTL1ES000.
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Concept Lower bound Upper bound Source
Fixed assets and consumer durables 7.00× 1016 8.49× 1016 US BEA
Gross output, private industry 3.36× 1016 3.40× 1016 US BEA
Personal consumption expenditure 1.45× 1016 1.48× 1016 US BEA
Output/wealth ratio 0.396 0.486 US BEA
Consumption/wealth ratio 0.171 0.211 US BEA
Labor force participation rate 0.620 0.680 US BLS
Risk-free rate 0.000 0.030 Consensus
Equity risk premium 0.040 0.080 Consensus

Table 4.2: Targets for macroeconomic aggregate values.

and durable goods was 70.74 trillion USD. We round this down to set our

lower bound estimate of wealth at 70 trillion. The upper bound allows for

wealth to be 20 percent greater than the measured stock of fixed assets and

consumer durable goods, as the value of intangible assets is not included in

the BEA data.

Flows are measured at the middle and the end of 2019 for comparability

with the year-end total of wealth. The gross output of private industry was

33.632 trillion USD in 2019Q2 and 34.052 trillion USD in 2019Q4.21 For the

same quarters personal consumption expenditure was 14.5 trillion USD and

14.8 trillion USD, respectively.22 Based on these data we establish a range

of 39.6 percent to 48.6 percent for the output-wealth ratio and 17.1 percent

to 21.1 percent for the consumption-wealth ratio.

The United States Bureau of Labor Statistics (BLS) tracks labor force

participation rates for the working-age population.23 Since 1970 the labor

force participation rate has ranged between 59.8 percent and 67.3 percent.

The participation rate climbed steadily upward from 1970 to 1990. During

the two decades from 1990 to 2010 it hovered between 65.5 and 67.5 percent

before declining over the next decade to roughly 63 percent. Thus we adopt

62 to 68 percent as a reasonable range for the share of labor supplied.

As the risk-free rate and the equity risk premium are not observable

21Available at https://fred.stlouisfed.org/series/GOPI.
22Available at https://fred.stlouisfed.org/series/PCE.
23Available at https://fred.stlouisfed.org/series/CIVPART.
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Parameter Value
πKi 0.40
πLi 0.30
σKi 0.05
σLi 0.02

Table 4.3: Calibrated values for factor yield process parameters.

per se we rely on other scholars’ judgment about reasonable levels for the

equilibrium risk-free rate and the equity risk premium. Bansal and Yaron

(2004) set out to explain an equity risk premium of 6 percent and a “low”

risk-free rate. Barro (2007) ballparks the equity risk premium at 4 to 6

percent and the risk-free rate at 1 to 2 percent. Cochrane (2008) pegs the

risk-free rate at 1 percent and the equity risk premium at 8 percent. We

adopt a range of 0 to 3 percent for the targeted risk-free rate, and 4 to 8

percent for the equity risk premium.24

Our target values are summarized in Table 4.2. We calibrated the re-

maining parameters in Table 4.3 with the goal of reproducing values within

the targeted ranges in Table 4.2. The parameters in Table 4.3 are chosen

heuristically rather than through a systematic search to minimize distances

between targeted values and actual outcomes. Given the symmetry between

labor and capital in our model, the values for labor and capital could well

be swapped. However we believe that a higher but more uncertain yield for

capital reflects labor’s relatively flexible use in production, as well as the

tendency for the remuneration of labor to vary within a narrower range than

that of capital.

4.4 Solution of the Model

The model is solved using the deep learning-based methodology introduced

in Chapter 3. Initially we have a given level of wealth W0, a fixed labor

24But see the survey of investment manager opinion by Hammond and Leibowitz (2011)
developed under the aegis of the CFA Institute, which produced a range of estimates for
the equity risk premium from 0 to 7 percent and much disagreement about its stability
over time.
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supply H̄0, and the allocations {ηKi,0, ηLi,0}Ni=1 = {aKi,0W0, a
L
i,0H}Ni=1.

We set W0 = 4000 and H̄0 = 8000 on the intuition that the aggregates

capitalize a 1:2 ratio of factor incomes. Because we evaluate rates of return

and ratios of output and consumption relative to wealth the absolute levels of

W and H̄ do not matter for the results, just their sizes relative to each other.

Capital and labor are assumed uniformly distributed across all processes

initially. All of the state variables are started at Yi = 1. We consider the

first year of a five-year time horizon. The number of post-solution simulations

is reduced from 500 to 200 to save on computing time.

The model estimation procedure now proceeds as follows:

1. Draw ∆Z ≈ dZ from a N (0,
√

∆t) distribution, where ∆t is the time

step, and compute Yt+1 using the discretized SDE:

Yi,t+1 = Yi,t + µi(Yt)∆t+ si(Yt)∆Z

2. Then for each time step t = 1, . . . , T :

(a) Compute output for each process dηi,t+1:

dηi,t+1 = dF i(ηKi,t, η
L
i,t, Yt+1)

(b) Compute optimal policies âKt , âLt , Ĉt, and Ŝt:

âKt = NaK (Yt+1, dηt+1,Wt|ΘaK)

âLt = NaL (Yt+1, dηt+1,Wt|ΘaL)

Ĉt = NC (Yt+1, dηt+1,Wt|ΘC)

Ŝt = NS (Yt+1, dηt+1,Wt|ΘS)

where Nj denotes the function approximation achieved by the neu-

ral network and Θj the parameters of the neural network.

(c) Capture the influence of optimal policies on future values of the
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state variables. Compute Wt+1 from the wealth evolution:

Wt+1 = Wt +
N∑
i=1

dηi,t+1 − Ĉt

set ηKt+1 based on the physical capital investment decision:

ηKi,t+1 = âKi (t)Wt

and set ηLt+1 based on the human capital investment and labor

supply decisions:

ηLi,t+1 = âLi (t)ŜtH̄

3. Compute the loss function L and the gradient LΘ.

The output calculation in step 2(a) refers to the calculation in (4.15)

above using a selected production function (4.16), the technological depen-

dencies α(Y ), and process-specific sensitivities to factor yield and technology

shocks. Step 2(b) introduces the two new controls. The allocation decision

now splits into separate decisions âKt and âLt regarding capital and labor, and

an aggregate labor supply decision Ŝt also appears. Notice that the controls

are once again conditioned on a set of variables that is somewhat larger than

necessary because they include the current level of output. The new controls

produce an additional allocation calculation in step 2(c). Thus step 2(c) de-

termines the level of aggregate wealth and the physical supplies of capital

and labor available to each production process at the next time step.25

In the following sections we study the equilibrium of the model, impulse

responses to factor yield shocks, and impulse responses to technology shocks.

4.4.1 Dynamic equilibrium

In our model, a dynamic equilibrium consists of time-paths for capital allo-

cations aKi , labor allocations aLi , labor supply SL and consumption C. The

25The efficiency equivalent capital and labor available to each production process are
determined by the state evolution, while their yields are subject to technology and factor
yield shocks.
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time-paths are forward-looking plans made at t = 0 for the five-year horizon

of our model, on the basis of contemporaneous information. In this section we

examine the optimal control decisions that constitute equilibrium behavior,

as well as the output-wealth ratios, risk-free rates and equity risk premiums

that prevail in equilibrium.

Changes in equilibrium behavior and outcomes are driven by the evolu-

tion of technical progress. As time evolves, TFP, capital productivity and

labor productivity grow from their starting values according to (4.28). Un-

certainty concerning the rate of technical progress generates a distribution of

potential states of technology. The state of technology shifts the drift terms

of the production process yields in (4.15). Uncertainty about the yields of

labor and capital in each process interact with uncertainty about the state of

technology to generate distributions of output for each process. Our state-

dependent equilibrium is defined over this distribution of states, outputs, and

the corresponding levels of wealth.

We plot 25th-, 50th- and 75th-percentile outcomes for each feature of

equilibrium over the first 12 months of our analysis horizon. The results

from our model simulations may thus be read in two dimensions: the hori-

zontal dimension captures time dependence in the equilibrium solution, while

the vertical dimension captures dependence on the state of technology and

the volatility of factor yields. Wide inter-quartile ranges in the figures in-

dicate that the solution is highly state-dependent, while the location of the

median within the inter-quartile range signals symmetry or skewness in the

distribution of outcomes. In this way we seek to summarize the stochastic

aspect of the dynamic equilibrium elegantly.

Figure 4.1 shows the evolution of capital and labor allocations to the

four processes. The processes are ordered from top to bottom, with capital

allocations on the left and labor allocations on the right.

Looking across rows, we first notice that capital and labor inputs tend to

move together, though comparisons of the vertical axes show that the factors

do not move in lock-step. Because the elasticities of substitution are well

below unity for all four processes, weak complementarities between capital

and labor exist and allocations to capital and labor follow similar time-paths
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Figure 4.1: Evolution of equilibrium allocations aK (left) and aL (right)
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in each process.

Comparing column-wise, we see that the relative proportions of capital

and labor follow the ordering of the capital shares βi. Agriculture (process

1) has the largest capital share, followed by manufacturing (2) and services

(3 and 4). Accordingly the allocation of labor is large relative to capital

in agriculture, comparable in size for manufacturing, and small relative to

capital in services.

Overall, we see that capital and labor are re-allocated from agriculture

and manufacturing to professional and non-professional services, accomplish-

ing a transformation of the economy in 12 months that required generations

in historical time. We suspect that this apparent tendency of time to run in

fast-forward is a general property of our model, arising from the represen-

tative agent’s knowledge of the state process and technology adoption rates

δi. In reality, the evolution and uptake of technical progress are some of the

most difficult aspects of the economy to discern. The speeds of reallocation

observed also highlight the difference between our frictionless model and the

practical difficulties of reallocating labor and capital across sectors in prac-

tice. For example, Davis, Haltiwanger and Schuh (1997) show the majority

of labor flows occur within rather than across industries.

Nevertheless it stands that the shifting allocations of our model fol-

low technical progress. Whereas RBC models generally constrain technical

progress to be Hicks-neutral, our model lets the pattern of technical progress

vary across production processes. Hicks-neutral technical program dominates

in Process 1 only; in the remaining processes technical change is overwhelm-

ingly biased towards capital. Resources flow into those sectors where the

efficiency of capital is most improved by technical change. Where capital

goes, labor follows.

In addition we notice that uncertainty in the optimal allocation decisions

expands and shrinks at the same time across processes. Very low degrees of

uncertainty at t = 2, 3, 5, 8 alternate with periods of significant uncertainty

at t = 1, 4, 9, 10, 11. Profiles of the allocation control decisions against the

state variables (not shown) indicate that allocations do not depend in any

obvious way on variations in the state of technology. The allocation decision
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may vary based on shocks to factor yields, depend in a complex way on the

state of technology, or some combination of these possibilities.

The strong reallocation of resources across sectors may be a sign that

we have set the volatility of technical progress too low, or that we have

ignored important correlations between the primary dimensions of technical

progress. Time-series data on rates of technical progress are difficult to come

by, and we are not aware of any time series of technical progress based on

adequate quantity indices for labor and capital.26 Latitude clearly exists

for experimentation with different specifications of risk for the evolution of

technical progress.

Figure 4.2 shows the equilibrium ratio of output to wealth, the ratio of

consumption to wealth, and the share of available labor supplied by house-

holds. The top panel shows the ratio of output to wealth beginning at 53

percent, falling to 45 percent and then stabilizing at roughly 40 percent. The

interquartile range of about 6-8 percent is fairly tight. Much of the interquar-

tile range falls within our target range for the output-wealth ratio in Table

4.2. We could rationalize more of the distribution of output-wealth ratios

implied by our model output by adopting a larger upper bound for the value

of wealth.

The second panel of Figure 4.2 shows the consumption-wealth ratio has

a central tendency of roughly 20 percent, stabilizing in a range of 18 to 24

percent. These results accord fairly weall with the range of 17 to 21 percent

targeted by our calibration in Table 4.2. The interquartile range of the

state-dependent consumption-wealth ratio is much narrower than that of the

output-wealth ratio, suggesting that additions to the capital stock are more

volatile than consumption in our model.

The value of SL, which we interpret as a combination of labor force par-

ticipation and the number of hours worked, appears in the third panel of

Figure 4.2. Equilibrium labor supply is centered around 70 percent with the

interquartile range taking values between 64 and 74 percent for the twelve-

26The United States Bureau of Labor Statistics furnishes annual estimates of multifactor
productivity. Comparison with JHS reveals the estimates to be unreliable, overestimating
the rate of TFP growth and underestimating growth in capital productivity.
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Figure 4.2: Evolution of equilibrium output/wealth ratio (top), consump-
tion/wealth ratio (middle), and labor supply (bottom).
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month horizon presented, versus our target of 62 to 68 percent in Table 4.2.

Though the values we obtain are somewhat high, they are not unrealistic.

Our results compare favorably with those of Cantore et al (2015), who obtain

a posterior mean estimate of 53.4 percent. It is also clear from our results

that labor supply is quite variable in dynamic equilibrium, suggesting that

steady-state restrictions on labor supply may mask meaningful variations in

equilibrium behavior.

Figure 4.2 gives us confidence that the calibrated parameter values in

Table 4.3 yield results that are consistent with aggregate economic outcomes.

In equilibrium the model does a reasonably good job of reproducing the level

of gross output relative to wealth, the division between consumption and

reinvestment, and the labor force participation rate during the first year of

our five-year modeling horizon.

We gain further confidence from the predictions for the risk-free rate and

the equity risk premium shown in Figure 4.3. Our equilibrium risk-free rate

fluctuates in the central scenario from 2 to 6 percent per annum, while the

equity risk premium ranges between 3 to 6 percentage points. Both are

mean-reverting, volatile, and uncertain.27

Most studies in the literature obtain numerical solutions by perturbation

methods. Because perturbation solutions are fundamentally deterministic,

only the mean of the distribution is available for analysis. We need to consider

the mean of the distributions in Figure 4.3 to obtain an apples-to-apples

comparison to other results.28 In our genuinely dynamic, stochastic solution,

we notice considerable variance and skewness in the risk-free rate and the

equity risk premium. Downward skew in the distribution of risk-free rates

suggests that the mean scenario in our model is below the median, likely in

the 1 to 3 percent range. Conversely the upward skew in the distribution

of the equity risk premium implies a mean value above the median, taking

values between 4 and 8 percent. Upon comparing means to means, our results

27We varied the parameter values in Table 4.3 to examine the sensitivity of our results to
our chosen values. While certain configurations could impact our model’s predictions for
the targeted variables in Table 4.2, the qualitative predictions of the model were consistent
with those discussed below.

28We consider the winsorized mean of the values in the interquartile range.
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Figure 4.3: Evolution of equilibrium risk-free rate and equity risk premium.

are very much in line with other scholars’ judgment about reasonable levels

for the equilibrium risk-free rate and the equity risk premium.

Our results are all the more remarkable considering we have obtained

them using a simple time-additive utility function and a coefficient of relative

risk aversion below one, and without imposing a steady state.

Let us return to the uncertainty surrounding the risk-free rate and the

equity risk premium. We emphasize that the distributions in Figure 4.3

are cross-sectional distributions across states, rather the moments of a time
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series distribution. Researchers tend to compare the time-series variances

of the risk-free rate and the equity risk premium to empirical time series, in

part because they lack access to the cross-sectional distributions. The cross-

sectional distributions are comparable to the volatility surfaces obtained from

panels of options prices, however, suggesting that comparisons to empirical

time series may be inapposite.

The cross-sectional variance of the risk-free rate and equity risk premium

distributions is large, while the skewness of the distributions we obtain is

consistent with the option volatility ‘smile.’ The lower panel of Figure 4.3

shows that more probability is attached to larger equity risk premiums than

smaller ones, which implies that the downside risk of equity prices is greater

than the upside risk.29 As a result, we would expect the Black-Scholes implied

volatilities of out-of-the-money puts to be larger than those for in-the-money

puts, a state of affairs that is commonly observed in the options markets.

Because we know that risk aversion plays a relatively minor role in our model,

our results suggest the nature of production risk and optimizing behavior play

an under-appreciated role in generating the volatility smile.

The risk-free rate, on the other hand, exhibits a negative skew. Nega-

tive skewness is a feature of the non-central chi-square distribution for the

risk-free rate derived in CIR85b for a simple linear technology. Our model

preserves this feature of the CIR85b risk-free rate process, while also allowing

the risk-free rate to take negative values with substantial probability. Since

our model is developed entirely in terms of real quantities, the risk-free rate

is the real risk-free rate.30

Thus with our chosen parameter values we achieve a low risk-free rate and

a reasonably-sized equity risk premium, both in line with received wisdom

concerning their long-run levels. The cross-sectional variance and skewness

of the risk-free rate and the equity risk premium, each of which reflect fun-

damental uncertainty about asset prices, appear to be consistent with the

cross-section of equity options prices.

29Recall that prices move inversely to risk premia.
30This observation has far-reaching consequences for the conduct of monetary policy,

which we reserve for future research.
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Below, we will undertake an impulse response analysis to better under-

stand the drivers of the equity risk premium in our model. The analysis

shows that the equity risk premium reflects capital yield risk within individ-

ual processes more so than productivity risk affecting all processes. Shocks

to labor and capital yields have far more material effects on equilibrium and

asset prices than shocks to productivity.

4.4.2 Responses to factor yield shocks

Because the disturbance vector in our model now has 2N+K = 11 terms the

number of impulse responses that can be studied in the model can quickly

become unwieldy, forcing us to be selective in presenting results. In this

section we study impulse responses for shocks to factor yields comprising the

first 2N disturbances, starting with a careful analysis of a single factor yield

and progressing to an analysis of the equity risk premium in terms of all

factor yields. The next section studies impulse responses for shocks to the

state of technology in the last K disturbances.

Changes in equilibrium behavior

We begin by studying a negative one-standard deviation shock to the yield of

capital in process 1. Figure 4.4 shows the response of output, consumption,

and labor supply. while Figure 4.5 shows the response of capital and labor

allocations.

In Figure 4.4 consumption falls by more than output, and then quickly

recovers and stabilizes at its baseline level. The drop in consumption permits

greater investment in capital, to be carried into t = 2. The supply of labor

then surges in t = 3 after falling slightly. Thus in three periods the optimal

response to a shortfall in the yield of capital is to call forth greater supplies

of productive factors. By increasing investment and labor effort, the level of

output, wealth and consumption is quickly stabilized.

Figure 4.5 shows that changes in labor and capital allocation decisions

are small relative to the changes in investment and labor supply. Apart from

a delayed response in t = 10, 11, allocation decisions are little disturbed. The
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Figure 4.4: Response of output/wealth ratio (top), consumption/wealth ratio
(middle), and labor supply (bottom) to capital yield shock in process 1.
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Figure 4.5: Response of aK and aL to capital yield shock in process 1.
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optimal policy response to the shortfall in capital yield is not to rearrange

investment or labor effort, but to supply more of it.

The pattern is responses is similar across processes, but the size of the

response varies widely. Shocks to the yield of labor and capital in process 3

cause labor supply to increase by 2 percentage points and lead to large but

temporary reallocations of capital and labor to processes 1, 2, and 4. Shocks

to labor and capital yields in process 2 produce responses similar to the scale

of process 3, while shocks to yields in process 4 produce small responses

comparable to those seen in Figures 4.4 and 4.5.

Why do factor yield shocks in processes 2 and 3 produce such large re-

sponses, versus the relatively small responses to factor yield shocks in pro-

cesses 1 and 4? Recall from (4.15) that the contribution of capital yield to

the conditional variance of output in process i is F i
KKiσ

K
i , while labor con-

tributes F i
LLiσ

L
i . In our calibration we have set σKi and σLi equal across all

processes. Accordingly differences in the magnitude of a reaction to a shock

must be driven by differences in the marginal productivity of capital and

labor (F i
K and F i

L) at the chosen levels of resource allocation (Ki and Li).

In equilibrium the chosen levels of resource allocation set marginal factor

products equal to their compensation. In our model, compensation is given

by the expected returns given in (4.19) and (4.20). We conjecture that the

magnitude of response to the shock is driven by the curvature terms FKK

and FLL that appear in (4.19) and (4.20). which are 2-3 times larger (more

negative) for processes 2 and 3 at the equilibrium allocations than for process

4, and an order of magnitude larger than for process 1.31 The rate at which

the marginal products of labor and capital are changing is greater at the

equilibrium allocation for processes 2 and 3, so a shortfall in output requires

a larger adjustment to the equilibrium allocation. This occurs because allo-

cation decisions are the primary mechanism our model has to conform factor

incomes to productivity.

Equilibrium allocations return to their baseline levels because they are

determined by technical progress, not factor yields. The complexion of tech-

31The calculation uses the parameter values in Table 4.1 and the initial allocations in
Figure 4.1.
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nological change appears to furnish a dynamic stability path in our model.

Resources will inevitably flow to those uses that are most favored by techno-

logical change.

Impact on the equity risk premium

Having traced the dynamics of the equilibrium response to factor yield shocks,

we now want to study the effect of factor yield shocks on the equity risk pre-

mium. Figure 4.6 considers the impulse response of the equity risk premium

to shocks in each of the factor yield inputs. The rows of the figure correspond

to processes 1 to 4, while the columns represent the capital yield and labor

yield, respectively.

In the dynamic equilibrium of our multifactor model, the equity risk pre-

mium (4.27) evolves in response to the accumulation of wealth, labor supply

decisions, and factor allocation decisions. The levels of relative risk aversion

that determine the market prices of risk are determined by the properties of

the utility function at given levels of consumption and labor supply.

Figure 4.6 shows that shocks to capital yields in processes 2 and 3 produce

an immediate increase (t = 2, 3) in the equity risk premium of close to 200

basis points and 50 basis points, respectively. This immediate increase in

the equity risk premium is consistent with the increase in labor supply and

curtailment of consumption needed to stabilize output, as shown in Figure

4.4. Accordingly we believe the initial spike is determined by changes in the

market price of risk.

A second, delayed increase (t = 6−10) is evident in Figure 4.6 for shocks

to the capital yield in all processes, ranging from 50 to 150 basis points.

By this time consumption and labor supply have returned to their baseline

levels, so we believe market prices of risk have also returned to normal.

Instead, changes at this time scale are more likely to be driven by changes in

equilibrium factor allocations prompted by the evolution of technology, and

differences in the path of wealth relative to its baseline.32

32Increases in the productivity of capital relative to labor will increase the effective
capital-labor ratio, leading to increases in the marginal rate of substitution of capital for
labor along a convex frontier. The same pattern of factor-augmenting technical change in
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Figure 4.6: Response of equity risk premium to capital (left) and labor yield
(right) shocks in processes 1 through 4 (top to bottom).

a Cobb-Douglas production function would overstate the rate of increase in the marginal
rate of substitution.
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Though allocations of capital and labor have also returned to their base-

line levels as of t = 6, a second change in equilibrium allocations is evident

from t = 6 to t = 10 in Figure 4.5. Process 1 experiences the shock, but

resources are moved away from process 3 and into processes 1, 2, and 4,

unwinding movements of resources into process 3 that occurred at t = 4.

The second spike in risk premiums occurs at t = 6. We believe this is an

indication that there is too much capital and labor employed in process 3.

Asset prices fall until t = 10, when the movement of resources out of process

3 is complete.33

Therefore we discern two effects in the response of the equity risk premium

to factor yield impulses, similar to income and substitution effects. The first

response is driven by utility losses arising from increased labor effort and

reduced consumption. The second response arises from distortions in the

allocation of productive resources.

Our explanation goes deeper than the decomposition into ‘payout uncer-

tainty’ and ‘valuation’ effects by Jermann (1998: 267-9), as we tie valuation

effects to elastic labor supply and payout uncertainty to production risks

arising during the reallocation of resources.

4.4.3 Response to technology shocks

In contrast to the large and meaningful equilibrium responses to factor yield

shocks, equilibrium responses to technology shocks are fairly tame. After

sifting a few dozen plots of impulse responses, we present the most significant

in Figure 4.7. We see that the equity risk premium actually falls by about

40 basis points after an adverse shock to capital productivity.

The relative size of the responses of the equity risk premium to factor yield

shocks and productivity shocks is unexpected. Aren’t factor yield shocks

‘idiosyncratic risks’ that do little to determine asset prices, while productivity

shocks are ‘systematic risks’ because they impact all production?

Our model challenges us to rethink the facile systematic-idiosyncratic

33Shocks to labor yield in processes 1 through 3 tend to reduce the equity risk premium
after a delay, an effect for which we lack a straightforward explanation.
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Figure 4.7: Response of equity risk premium to capital productivity shock.

risk classification of the CAPM, which is predicated on the importance of a

monolithic ‘market risk factor.’ The expression we have derived for the equity

risk premium in (4.27) makes it clear that the equity risk premium depends

not only on the variables that comprise the state of technology, but also on

individual risks to production (captured in the matrices GK and GL), labor

supply decisions, and resource allocation decisions. The ‘market risk factor’

is the aggregate of all individual risks, so process-specific risks affect the

equity risk premium. Granted, each production process accounts for about

a quarter of all output in our model. In the real world, where production

is far more finely divided, we would expect individual factor yield shocks to

matter less. Nevertheless, some production processes do come to encompass

a great deal of economic activity–technology startups at the beginning of the

century, housing construction and mortgage finance in the 2000s–and adverse

outcomes in these sectors can have a systemic effect on asset prices.

Indeed, we could go further and say that our model offers an alternative

explanation for aggregate fluctuations. In contrast to the RBC literature,

which emphasizes shocks to technology that affect aggregate output, our

model shows that aggregate fluctuations can be generated by shocks to the

yields of inputs to individual production processes. The sudden collapse of a

factor’s yield in a significant production process generates large movements in
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output and asset prices consistent with a recession. Unless shocks to technical

progress are much larger, more correlated or more persistent than what we

have modeled here, they are not sufficient to generate meaningful aggregate

fluctuations because the evolution of technology influences allocations, not

supplies of productive factors.

We have also seen that the equity risk premium responds to increased

investment and labor supply prompted by shortfalls of resources, as well as to

inefficient allocations of resources. In our model, adverse shocks to the state

of technology do not create such conditions. A lower rate of technological

improvement at t = 0 reduces output relative to baseline, but does so far

less than a shortfall in the yields of capital and labor. And because rates

of technology adoption are perfectly correlated across sectors in our model,

an adverse shock to the state of technology has minimal consequences for

resource allocation. The expected output of all processes falls simultaneously

and proportionately.

Shocks to technology may be thought of as perturbations of the dynamically-

stable path associated with the most efficient allocation of resources. The

response to technological shocks is therefore of second order relative to factor

yield shocks. Where factor yield shocks change optimal plans for resource

supply, technological shocks change allocation decisions. In a different model

with allocation frictions, these second-order considerations may be promoted

to the first order.

Our model may understate the risks to technological progress. The vari-

ances and covariances of our state transition matrix may be too small, and

it is unlikely that the impacts of adverse shocks to technology are perfectly

correlated across production processes. A more refined understanding of

technological risks and the relative sizes of state and production yield risks

may shift explanations of the equity risk premium away from what devel-

opments in individual production processes to developments in the state of

technology.34

34Certainly there is room to refine and operationalize our understanding of what is
meant by technological shocks. Romer (2016) calls TFP “phlogiston” to underscore the
mysteriousness of what is actually meant by a negative TFP shock.
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4.5 Conclusions

In this chapter we have derived, calibrated and solved a model of risky multi-

factor production. The model has labor and capital entering a constant elas-

ticity of substitution production process, with multifactor technical change

and elastic labor supply. The representative agent has a rich set of choices

available to formulate an optimal response to dynamic and uncertain eco-

nomic conditions. The presence of labor in our model and the match of

our modeling outcomes to fundamental stylized facts about both asset prices

and the more general economy represent substantial improvements over the

CIR85a baseline.

We solve for dynamic equilibrium in our model and study its impulse

responses. With our calibrated parameter values, the match between the

equilibrium of the model and macro-financial reality is quite good. Our

model produces reasonably-sized risk-free rates and equity risk premiums,

along with realistic levels for gross output, consumption, savings and labor

supply.

Our model suggests an alternative explanation for aggregate fluctuations.

We saw that the sudden collapse of capital yields in an intensively-utilized

production process can generate significant responses in output, consump-

tion, labor supply and resource allocation when technical progress evolves

with relatively little volatility. Conversely, aggregate shocks in TFP and

factor-augmenting technical progress produced small responses with signs

opposite to those expected. We believe this explanation of aggregate fluc-

tuations is more tangible and provides a more intelligible basis for policy

response than fluctuations in disembodied technical know-how.

Instead of driving aggregate fluctuations, the evolution of technical progress

in our model serves to steer the optimal allocation of resources. Our model

displays the consequences of capital-biased technical progress proceeding

at different rates in multiple production processes. Non-neutral technical

change dominates factor-neutral changes in TFP. Capital allocations follow

technical progress, and labor follows capital due to weak complementarities

between the factors. The equity risk premium remains elevated during these
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resource movements, reflecting elevated exposure to changes in the invest-

ment opportunity set. Thus we conjecture that ‘uneven’ growth leads to

higher expected excess returns on equity as the factor bias creates increased

uncertainty about the optimal factor allocation. In a representative scenario

of an open economy undergoing rapid technical change with a bias toward

capital, expected returns on capital will be high, which is to say that the

cost of capital for new investment will be elevated.

We have achieved our results by augmenting the treatment of produc-

tion relative to models cast in the RBC and consumption-based asset pricing

molds. In place of an aggregate Cobb-Douglas production function we disag-

gregate production into multiple CES processes with uncertain factor yields

and non-neutral technological change. We allow labor supply to be deter-

mined in equilibrium, providing a new means by which behavior can respond

to adverse shocks. Solving for a dynamic equilibrium without imposing a

steady state, we find that reasonable risk-free rates and equity risk premia

may be generated with a coefficient of relative risk aversion below one and

other parameter values that are well-supported by empirical research.

We believe these results present three substantial challenges to RBC mod-

els and the consumption-based asset pricing paradigm. First, we have shown

that the equity risk premium can be generated by a time-separable utility

function with a reasonable degree of risk aversion. Neither habit-formation

preferences nor recursive Epstein-Zin-Weil preferences are necessary to ‘solve’

the equity risk premium puzzle. Their lack of necessity weighs strongly in

favor of eliminating time-dependent preferences from models. As Stigler and

Becker (1977) argued decades ago, one should be skeptical about elaborate

preference specifications offered as resolutions to economic problems. Com-

plex utility functions try to ‘naturalize’ a problem that has obvious origins,

while threatening useful properties like aggregation, time-consistency and in-

variance to scale. We find it more convincing to explain the origins of the

equity risk premium in terms of production decisions than to construct an

argument about why people dislike the time series properties of aggregate

consumption so much. We replace a litany of preoccupations with the time

path of consumption with a theory of dynamic allocation based on the time-
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paths for technology and the marginal products of capital and labor. RBC

models can’t see this because all time paths lead back to the same steady

state.

Second, the blindness of the consumption-based paradigm to the disu-

tility of labor effort is simply unsupportable. Instead of supplementing a

simple utility function with a preference for leisure, the consumption-based

paradigm has spun a theory based on subjective elasticities of intertempo-

ral substitution. Further, ignoring labor supply has meant that much time

has been spent on pseudo-problems concerning the hedging of outside labor

income with assets in incomplete markets. Including labor supply in a gen-

eral equilibrium theory resolves the equity risk premium puzzle and dissolves

problems created by ‘exogenous’ labor incomes in a single stroke.

Third, we show that TFP is nearly useless as a basis for the explanation

of aggregate fluctuations, which implies that production cannot be reduced

to an endowment process in general equilibrium models. Once one breaks

the habit of measuring ‘Solow residuals’ with poorly-constructed capital and

labor aggregates, one sees that TFP growth rates are too small to matter

very much. And as a theoretical matter, it is difficult to see why output

should suddenly fall because of a ‘TFP shock’. We treated technical change

sympathetically and showed it has meaningful consequences for the dynamic

allocation of resources. However technical change was not sufficient to gener-

ate aggregate fluctuations. In our model, shocks to the yield of inputs drive

aggregate fluctuations, especially when the shock occurs in an intensively-

utilized process. Such shocks are more intelligible and better aligned with

recent experience. When a stock of capital is suddenly poorly-aligned with

market demand – like the redundant assets of internet firms in the dot-com

boom or the automated underwriting and mortgage securitization operations

of the housing boom – its usefulness in producing valuable output collapses

suddenly and unceremoniously.

On a methodological level, augmenting the CIR85a construct to include

labor completes the “proof of concept” for our proposed macro-finance paradigm

shift. The expanded theory furnishes a laboratory that displays the advan-

tages of our new numerical solution method, and in which the explicit model-
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ing of the production side pays clear dividends. We see how important state-

and time-dependent solutions are for characterizing dynamic equilibrium and

studying the response of the economy to shocks. More importantly, we have

shown that our model reproduces a range of macroeconomic and financial

market stylized facts without using an elaborate specification of utility. And

where we have made changes to the utility function, we found that elas-

tic labor supply lets reasonable levels of constant relative risk aversion be

consistent with low risk free rates and an empirically plausible equity risk

premium. In our view, modifications of the utility function along the lines

proposed here are far more tangible, testable and compelling than the tired

and overstretched Epstein-Zin-Weil orthodoxy.
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Chapter 5

General Conclusions: A

Paradigm for Macro-Finance

We have delivered a proof-of-concept for a new paradigm in macro-finance.

We have demonstrated a flexible numerical solution procedure for macroeco-

nomic models that solves models formulated as systems of nonlinear stochas-

tic differential equations. We developed a benchmark general equilibrium

model with risky multifactor production, solved it using our numerical meth-

ods, and showed the calibrated model can reproduce the risk-free rate and

the equity risk premium when the vast majority of the model parameters are

pinned down to values estimated in the empirical literature.

The methodological changes we proposed bore fruit. We have expanded

the empirical content of macro-finance beyond the theory of the consumer

by freeing it from the treatment of production in real business cycle (RBC)

models. A model has empirical content not because it has been proven

true, but because it leads to propositions that are falsifiable on the basis

of experience. We have put forward several new testable statements about

general equilibrium and the relationship between production and asset prices.

We make new conjectures about the micro-foundations of asset prices in

a theory of multifactor production and proffer a competing conception of

aggregate fluctuations. Challenging the RBC theory inevitably leads to a

differentiated understanding of real business cycles.
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At the same time, a proof-of-concept is only that. Our understanding of

the proposed methodology and its empirical content remain to be developed

by working through extensions, examining the robustness of our conclusions,

and discovering ways to confront the predictions of the model with empirical

evidence. We have signposted many opportunities to extend the model in

previous chapters, and return to catalog them in this section. Our method-

ology also has limitations and faces many open questions. Some of the most

pressing methodological, theoretical and empirical questions are sketched be-

low.

A thesis concerned with methodology is inevitably abstract. Thus I

wish to conclude by connecting the insights afforded by our model to some

thoughts on economic policy. Our view of the business cycle is sufficiently

different from the standard RBC theory that some challenges to the orthodox

‘supply-side’ vision of economic policy are in order.

5.1 Contributions to the Literature

We make three primary contributions to the literature. The first is method-

ological. We provide a numerical solution procedure for macroeconomic mod-

els formulated as systems of stochastic differential equations in continuous

time. Our solution procedure characterizes a dynamic state-dependent equi-

librium that is inaccessible with standard numerical methods.

The second is theoretical. We provide a benchmark continuous-time gen-

eral equilibrium model that connects production, consumption and asset

prices. Our model highlights decisions about the supply and allocation of

productive resources and lets asset prices be determined as known functions

of equilibrium behavior.

The third is empirical. The results of our calibrated model suggest a new

explanation for aggregate fluctuations, more commonly known as the business

cycle. Our calibrated model implies that aggregate shocks to technology are

insufficient to explain the business cycle. Instead, we offer shocks to factor

yields within particular production processes as a more tangible and plausible

explanation of aggregate fluctuations.
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5.1.1 Dynamic numerical equilibrium

In the Introduction we pointed out two ways in which the numerical meth-

ods that constitute the workhorse DSGE methodology may be constrain-

ing macroeconomic modeling. First, we noted that DSGE modeling puts a

premium on models for which the steady state may be determined analyti-

cally. Second, we suggested that linearization and perturbations calculated

by Taylor expansion around the steady state might disfigure the very risks

that stochastic models are intended to capture. More to the point, one won-

ders how DSGE methods can be advertised as ‘dynamic’ when they assume

a steady-state equilibrium and ‘stochastic’ when deterministic perturbations

around a steady state are expected to capture all of the state-dependent

features of the model.

In place of DSGE methods we have put forward a powerful numerical

solution procedure that actually characterizes a dynamic, state-dependent

equilibrium. The procedure works directly with the model in the form of a

system of nonlinear stochastic differential equations. No pre-solution analysis

or linearization is necessary. Optimal policies are learned by deep neural

networks based on stochastic simulations of the economy over a finite horizon.

Thus we trade large, distortionary errors from linearization and local Taylor

expansions for relatively benign Monte Carlo error. Our solution procedure

is supplemented with an impulse response analysis that enables a study of

true comparative dynamics.

Dropping the steady-state restriction from the solution of a macroeco-

nomic model is a big deal. DSGE methods permit a growing economy, but

by anchoring the economy to steady-state growth they prevent the economy

from evolving in any real sense. That the economy an agent encounters after

a shock would not look exactly like it did before the shock is inconceiv-

able within the DSGE toolkit. Our numerical method allows the production

possibilities of the economy to change over time. Without changing pro-

duction possibilities one cannot adequately capture risk premia in general

equilibrium, as Merton (1971, 1973) and Breeden (1979) and CIR85a have

shown. Steady-state equilibrium entails static allocations of resources, while
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in dynamic equilibrium, dynamic allocations and risks of changing produc-

tion possibilities go hand in hand. Now that a choice of methods exists,

it is hard to see why one would continue to work with DSGE methods in

macro-finance.

When behaviors are not constrained to a steady state, variations in be-

havior through time can improve outcomes relative to a time-independent

strategy – indeed, this is the observation that first motivated study of the

intertemporal portfolio problem. For our specification of the economy in

Chapter 4, our solution method allows changes in labor effort, resource al-

location, and consumption to become part of the character of equilibrium.

Our solution method also shows that responses to shocks are far more com-

plex than the smooth returns to the steady state fabricated by perturbation

methods. Responses to a shock may occur in multiple waves, and the dy-

namic equilibrium of the economy that prevails at the end of those responses

need not correspond to the economy that existed when the shock occurred.

It is also a big deal that our solution is actually stochastic. The simula-

tions underlying the solution procedure explore the entire state space of the

model. There is no need to impose stationarity on the dynamics of the model

or to discretize the state space. As a result, the equilibrium behaviors we dis-

cover in our solution method characterize dated, state-dependent asset prices,

à la Arrow and Debreu. We obtain a full distribution of forward-looking as-

set prices under the risk-neutral measure – that is, the model generates all

of the data one would need to generate theoretical prices of futures, options

and other derivative securities. This seems a vast improvement over simu-

lating the moments of the risk-free rate and the equity risk premium from a

steady-state model solution.

Finally, though we have been concerned with the deficiencies of DSGE

methods, we should not forget that our numerical solution method provides

a general strategy for solving the dynamic portfolio problem when asset re-

turns depend on state variables in a predictable way. The problem has long

stumped the financial economics profession, as pointed out by Cochrane

(2014). It may fairly be said that the current state of the art is still de-

fined by the single state-variable model of Campbell and Viceira (1999). Our
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method is far more general, scalable and powerful, and we look forward to

exploring the potential advantages of a dynamic asset allocation strategy

with our new tool.

5.1.2 Equilibrium with risky production

While our challenge to DSGE methods eliminates many of the numerical ob-

stacles to a macro-financial analysis of risk, better numerical methods alone

cannot remedy a lack of risk in the assumptions of the standard RBC model.

In the RBC framework production is subject to only one risk: the risk that

output suddenly declines due to a total factor productivity (TFP) shock,

leaving households with less investable output at their desired level of con-

sumption.

We identified CIR85a as a promising alternative to the RBC framework

because it connects asset prices to the risks of production, as we showed

in Chapter 2. There was already much to like about CIR85a, including

its ability to characterize the risk-free rate, the equity risk premium, and

contingent claims risk premia within a consistent equilibrium framework, as

well as its emphasis on resource allocation decisions as a primary determinant

of equilibrium. In Chapter 3 we addressed the absence of a procedure in

CIR85a to obtain an explicit solution of the model. But it remained for us to

remedy two theoretical deficiencies in Chapter 4: the absence of labor, and

the relatively abstract treatment given to the production process.

Thus in chapter 4 we introduce labor as the stochastic yield of human

capital, paralleling the treatment of physical capital in CIR85a. The repre-

sentative agent supplies his endowment of human capital elastically, choosing

how much to work before deciding how to allocate his labor effort across mul-

tiple processes of production. By giving the representative agent the ability

to control his labor supply, we were able to lower the representative agent’s

coefficient of relative risk aversion to levels that are consistent with empirical

evidence, but unheard-of in the post-Mehra and Prescott (1985) literature

on macro-finance. The elastic supply of labor provides another link between

asset prices and production in general equilibrium.
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Following the introduction of labor, we develop a model of multifac-

tor production in which the stochastic yields of labor and capital produce

stochastic outputs according to a production function with a constant elas-

ticity of substitution between labor and capital. Both inputs and outputs are

characterized as Itô processes, emphasizing that production is subject to in-

put and output risk. Then we introduced technology in a way that amplified

the risks on both sides of production. The risk of shortfalls in input yield is

amplified by variations in capital- and labor-augmenting technical progress,

while risks to output yield are amplified by variations in TFP. Finally, we

disaggregated production into multiple processes to make decisions about the

allocation of labor and capital a central feature of general equilibrium.

Like CIR85a, our general equilibrium model characterizes the risk-free

rate, the equity risk premium, and the expected excess returns on contingent

claims as functions of equilibrium behavior. Our extended model goes be-

yond CIR85a by grounding asset prices in a theory of multifactor production.

We show that risk premia can be represented in equilibrium as a function

of marginal factor productivities and their rates of change, process-specific

factor yield risks, equilibrium allocations of capital and labor, and the supply

of labor. The corresponding market prices of risk incorporate preferences for

leisure as well as consumption. The model thus provides micro-foundations

for asset prices in terms of equilibrium production decisions. We believe our

micro-foundations for risk premia and rates are far richer and more com-

pelling than the time-inseparable preference specifications that have been

emphasized in the macro-finance literature.

By emphasizing allocation decisions, our general equilibrium construct

can bring macroeconomics into closer contact with research on economic

dynamism (Davis, Haltiwanger and Schuh 1996, Davis, Faberman and Halti-

wanger 2006, Hsieh and Klenow 2009, Decker et al., 2014) and macroeco-

nomic restructuring (Hopenhayn 1992, Caballero 2007). In addition, our

disaggregated specification of production addresses concerns about the exis-

tence of aggregate production functions (Fisher 2005) and provides an avenue

for research on industrial organization and firm-level productivity growth

(Syverson 2011) to inform macroeconomic analysis.
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5.1.3 Aggregate fluctuations

The empirical content of our modeling effort consists of the predictions our

model makes for responses to adverse shocks in general equilibrium. In short,

our challenge to the RBC/DSGE paradigm leads to a different narrative

about the origins of business cycles and the dynamics of economic recovery

following a recession.

We diverge from the standard RBC theory based on our views on the rel-

ative importance of technology shocks and what we call factor yield shocks.

We rely on the work of Jorgenson, Ho and Stiroh (2005), which shows that

increases in gross output at the industry level are mostly attributable to

increases in inputs of labor, capital and intermediate goods. Accounting

for the quantity and heterogeneity of inputs (an exercise in index number

construction) shows that the residual growth attributable to technological

improvement is relatively small. In particular the rate of TFP growth is an

order of magnitude smaller than what is estimated by reduced-form growth

accounting methods. On this basis, we are confident that rates of technolog-

ical change are small and exert a bias in favor of capital use. We also believe

that the volatilities of underlying technological variables are small because it

would be odd for years of technological progress to alternate frequently with

years of technological regress.

The calibration of our model to risk-free rates, the equity risk premium,

the output-wealth ratio, the consumption-wealth ratio, and the labor force

participation rate suggests that expected yields from capital and labor are

far larger and more volatile than rates of technological progress. When we

compare factor yield shocks to technological shocks in the impulse responses

of Chapter 4, we find that only the former are sufficient to generate aggregate

fluctuations. Shocks to technology produce comparatively benign responses,

changing dynamic equilibrium paths but doing little harm to consumption.

We trace reactions to a negative capital yield shock within a single produc-

tion process; in all other production processes, capital continues to provide

services as expected. The process-specific shock to the yield of capital pre-

cipitated a complex response. Initially, agents find themselves unexpectedly
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short of capital resources. Agents increase their labor supply and reduce

consumption, thereby increasing investment. These efforts to bring a greater

supply of productive resources online generate an ‘income’ effect that pushes

the equity risk premium higher. The income effect arises because the tem-

porary combination of lower consumption and increased labor effort raises

market prices of risk.

The capital yield shock does not disturb the evolution of technology,

which continues to change the production possibilities available to the econ-

omy as it recovers from the shock. The evolution of technology thus implies

a set of dynamic equilibrium paths for the economy, which in turn imply

equilibrium allocations of resources. Once agents have increased their en-

dowment of capital and returned to desired levels of labor effort, they find

that a different dynamic equilibrium path is optimal. Thus a reallocation of

labor effort and capital follows the initial response. The equity risk premium

rises again, producing a ‘substitution’ effect. The substitution effect recog-

nizes the prevailing uncertainty about optimal allocations and the risk that

further changes in production possibilities may occur.

We hasten to acknowledge the difference between empirical content and

empirical verification; our model’s prediction of such effects is not sufficient to

conclude that this is the way the world works. However we believe our anal-

ysis is eminently plausible, and far more satisfying – indeed, more economic

– than frankly psychological explanations that rely on consumption falling

below a habituated level, or uncertainty about consumption being resolved

later than agents would prefer. We return to the predictions of our model in

the final section of this chapter, where we consider how policy interventions

may help or hinder the economy’s dynamic response to a recession.

5.2 Roads Not Taken: Potential Extensions

In developing a proof of concept for our proposed paradigm, we have con-

sistently made modeling decisions that favor simplicity and fidelity to the

CIR85a framework. These decisions have left us with a long list of possibili-

ties for further development of our paradigm.
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5.2.1 Production risk

Though we have emphasized the importance of production risk for equilib-

rium asset prices, the representation of production risk we chose in Chapter

4 was fairly limited. We assumed that disturbances to factor yields were not

correlated with different factor yields in the same process, with the same

factor yield in different processes, or with the state of technology.1 A more

general model of production risk would accommodate wider possibilities of

dependence between factor yields and the state of the economy.

In addition, while we allowed factor productivities and TFP to evolve

over time, we treated the production technology itself as essentially fixed.

One could allow various elements of the production function to vary over

time, such as the factor weights, the elasticity of substitution and returns

to scale. Letting these aspects of the production function vary over time

would introduce new possibilities for modeling the evolution of technology

and market structure. If these properties of the production function were

defined by the state of the economy, production would become subject to

additional risks.

We held the endowment of human capital fixed in Chapter 4 to avoid

dealing with the complication of a second endogenous state variable. As

our most valuable endowment, human capital deserves a deeper treatment

comparable to the treatment of physical capital. Human capital could ac-

cumulate as a function of experience via past employment or as a function

of education via a specialized production process, and depreciate with time

or unemployment. Agents would be obliged to manage their human capital

endowment much as they manage their wealth. They would undertake activ-

ities that add to their human capital without producing current output, and

possibly take on sub-optimal employment to limit losses from depreciation.

Risks to the accumulation of human capital would also contribute to equity

and contingent claims risk premia.

In any reasonable treatment human capital would not be fungible with

1We are speaking only of the disturbances. Expected factor yields depend on the state
of technology.
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physical capital. Accordingly the possibility of accumulating human capital

would require dealing with heterogeneity more deeply than we have thus far.

5.2.2 Heterogeneity

Like CIR85a, our model features a single good that may be consumed or

reinvested as capital or an intermediate good. Corresponding to this single

good is a single endowment of wealth that changes endogenously with the

state of the economy. Endogenous changes are the result of the optimizing

behavior of a single representative agent.

Working with one good is a convenience. Distinguishing capital goods

and intermediate inputs could have far-reaching consequences. With two

or three goods that are neither fungible in production nor fungible in con-

sumption, separate production and allocation decisions would attend to each

good. Demand for final output would generate derived demands for capital

and intermediate goods.2 Capital and intermediate goods would accumulate

as separate stores of wealth.

We could pursue these distinctions further, allowing capital and inter-

mediate goods to accumulate separately for each production process. In

Chapter 2 we considered an extension to irreversible investment in which

capital would accumulate independently in each production process. In this

case, the capital allocation decision made by the representative agent would

concern additions to the stock of capital in each process from current output,

while previously-invested capital would remain in place. We could also allow

past investment to be reversible at a cost. The representative agent would

be able to choose disinvestment amounts for existing processes, but recover

only a fraction of the amount disinvested. In a similar way, one could let

endowments of human capital accumulate within each production process

and reverse at a cost.

2Some modifications to the production function are necessary to floor the levels of
capital and intermediate good input. Experimentation with a multi-good model showed
that agents will choose to produce consumption goods exclusively with labor if given the
chance. With the exception of the Leontief specification, standard production functions
do not prohibit such corner solutions.
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Yet another helpful disaggregation would extend the menu of productive

inputs beyond labor and capital to include renewable and depletable re-

sources. Including renewable and depletable resources would introduce new

constraints into the economy from the population dynamics of renewable

resources and the sharply rising costs of accelerated resource depletion.

Our model also relies on a representative agent to control and deploy all

of the resources of the economy based on his knowledge of the structure of

production and the law of motion followed by the state vector. It is hardly

a surprise that economists sometimes slip and call him a social planner. We

could disaggregate our representative agent into heterogeneous agents along

two dimensions. In either case we would confront multiple optimizations,

questions about sequencing, and a need for some kind of social choice function

that aggregates heterogeneous preferences.

First, we could have different agents control different resources – a repre-

sentative rentier and a representative laborer, for example, who earn incomes

from capital and labor, respectively. Different income sources would motivate

investigations into the distribution of income. We defined the income dis-

tribution in Chapter 4 according to intuition about competitive equilibrium,

but we pointed out that this is by no means the only solution. Entrepreneurs

could further de-risk workers from income fluctuations, or shifts in bargaining

power could be allowed to influence the division of income.

Second, we could allow agents to have different opinions about the struc-

ture of production and the law of motion followed by the state of the economy.

Heterogeneous expectations are especially challenging to handle in our model

because forward-looking expectations essentially generate the dynamic equi-

librium. Agents with different views about the structure of the economy

would formulate different equilibrium plans. We would expect some core of

feasible plans to emerge, among which there may be no determinate choice.

However the existence of heterogeneous expectations would motivate contin-

gent claims trading in equilibrium. The representative agent formulation of

CIR85a ensures that holdings of contingent claims are collectively and indi-

vidually zero, which is a somewhat disappointing outcome in a model which

otherwise motivates the economic function of contingent claims admirably.
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The presence of multiple goods, irreversible investment, and heteroge-

neous agents may counteract the rapid changes in equilibrium allocations

that make time seem to run in fast-forward in our model. We would prefer

to see ‘frictions’ emerge from structural choices like those sketched above,

rather than being bolted on as artificial costs in the model of production or

arbitrary penalties built into the optimization process.

5.2.3 Structural estimation

We base the empirical predictions of our model on a calibration exercise. The

calibration could be made more rigorous – or eliminated all together – by

turning it into a structural estimation exercise.

We can imagine an estimation method for our model that follows the

method of simulated moments. Start with a set of initial values for the pa-

rameters to be estimated. In Chapter 4, these are the parameters describing

the yields of the capital and labor inputs. Solve the dynamic model – learn

the parameters of the neural networks describing optimal policy – given these

initial parameter values. Then simulate the model and calculate moments of

the model output over some horizon. In Chapter 4 these are the predicted

mean values for the output-wealth ratio, the consumption-wealth ratio, the

labor force participation rate, the risk-free rate, and the equity risk premium.

Perturb all of the input parameters to calculate a gradient, and then take a

step in the direction of the empirical moments chosen as targets – i.e., the

actual means of the series being predicted. Repeat until convergence. The

process would be computationally expensive, but not obscenely so. It is not

unusual for structural estimations to require days of computer time.

But even with a feasible estimation method, several problems remain.

One must choose data that match the concepts of the model, and if inferences

are desired, one must understand the properties of the chosen estimator and

formulate appropriate specification tests. Leaving difficult questions about

inference aside for now, let us consider the choice of data and the related

problem of identification.

The optimal policies in our model are forward-looking plans as of an
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initial date, and the macroeconomic outcomes predicted by the model are

forward-looking expectations based on those plans. As time moves forward,

initial conditions change and agents adjust their plans and expectations. If

this is the process generating the empirical data, there is no reason why the

simulated time-series moments of the expectations generated by the model at

any point in time should match the moments of realized outcomes recorded in

empirical time series, especially in a dynamic equilibrium. Instead, it seems

that we should be comparing the cross-sectional moments of the expectations

generated by the model to the moments of risk-neutral distributions implied

by contingent claims prices in financial markets. Thus we should not expect

a well-estimated model to explain historical aggregate time series.3 Rather,

it will explain the macroeconomic expectations embedded in current asset

prices. Thus a consequence of our proposed shift in paradigm may shift

the empirical basis of macro-finance from quarterly time series to quoted

derivatives prices.

Identification becomes a serious problem as the number of parameters

to be estimated grows. In addition to substantial data and pre-processing

requirements, one must pin down maximal representations for the state vector

and the production processes. In Chapter 3 we referred to the work of Dai and

Singleton (2000), who first got financial economists talking about maximal

representations. Dai and Singleton worked out the maximum number of free

parameters one could have in a three-factor CIR85b model for the discount

curve and still identify the model. Similar analysis would be in order for any

specification of the production and state evolution processes.

5.2.4 Extensions to include money and banking

The general absence of institutions from our model forces it to be a model

of real business cycles, albeit one that is at odds with the RBC theory and

methodology. We view the absence of money and credit from our model as

lacunae of the same order as the absence of labor in CIR85a. The economy

3Still, it may behoove us to use historical time series for some applications as a means
of obtaining results that are comparable to the extant literature.
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we live in is a monetary economy with credit. For all the insight our model

affords, it is not nearly enough to establish conclusively that business cycles

are, always and everywhere, non-monetary phenomena.

Our model determines a real risk-free interest rate in equilibrium. Upon

introducing a monetary authority, we would have a nominal risk-free interest

rate which ought to equal the real interest rate. Gaps produce inflation.

Such a setup disturbs the usual causal ordering running through the Fisher

equation from nominal rates to inflation to real rates, though it is consistent

with the monetary theory of Wicksell (1935).4

The monetary authority is constrained by its connections to the govern-

ment and the banking system, each of which needs to be modeled. The gov-

ernment determines a budget deficit exogenously, which entails time paths for

net transfers and outstanding government debt. The banking system maxi-

mizes its output by controlling the size of its lending, subject to constraints

on liquidity and capital adequacy. Lending allows the supply of capital to

be elastic; investment in capital need not be preceded by saving of output in

kind. At the same time lending creates an asset that allows agents to carry

output through time without loss. It may be the case that precautionary

demands for such an asset exist. The behavior of the banking system adds

yet another facet of heterogeneity to the model.

We can imagine the monetary authority learning a ‘reaction function’ to

the government’s finances, the state of the banking system, and the state

of the economy, subject to a given mandate. Neural networks may discover

more complicated policy rules suitable for a complex economy, which could

hold obvious interest for the design of monetary policy.

The primary goal of elaborating a monetary version of our model would

be to study the effect of monetary shocks. Monetary shocks may originate

in the banking sector, as banks engage in a lending boom or reverse course

in a crisis of confidence. They may originate in the government, with an

unexpected change in the dynamics of the deficit. And they may originate

with the behavior of the monetary authority, due to uncertainty about the

state of the economy or the behavior of actors in other sectors. How such

4Much more so than the ‘neo-Wicksellian’ theory of Woodford (2003).
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shocks propagate through the economy and affect the real economy and asset

prices are questions of fundamental interest.5

With the advent of quantitative easing as a tool of monetary policy, the

analysis of actions by the monetary authority extends beyond the correspon-

dence between the policy rate and the equilibrium interest rate to the condi-

tions of balance in the markets for contingent claims. Our CIR-based setting

provides a framework in which such policies may be analyzed. Quantitative

easing allows for the mass transfer of contingent claims from private agents

to the monetary authority in exchange for an infusion of wealth. Given an

intervention of this kind, agents are free to choose different paths of con-

sumption, labor supply and factor allocation than those which would prevail

otherwise. The changes in plans afforded by quantitative easing lead, in

turn, to the repricing of equities and contingent claims via (2.20) and (2.27)

and their extensions in Chapter 4. At the moment, however, we have not

characterized equilibrium in the economy with b(W,Y, t) 6= 0. To do so, we

would have to define specific contingent claims in the basis of our model, and

set bounds on the values that may be taken by elements of b, which may be

endogenous.

5.2.5 Jumps

Our modeling has assumed that the state of the economy follows a continuous

multidimensional diffusion process. How might our results change in the

presence of jumps?

It would be fairly straightforward to simulate jumps according to a com-

pound Poisson process, for instance, while the simulation of wider classes of

Lévy processes is considerably more challenging. Some care would be needed

due to the possibility of observing multiple jumps within a discrete time

interval. Thus we believe we could continue using our deep learning-based

solution method when the state of the economy follows a jump-diffusion pro-

cess, following suitable modifications to the SDE simulation strategy.

5The approach we imagine is quite different than the intermediary or liquidity-based
theory of asset pricing elaborated by He and Krishnamurthy (2013, 2019) and Brunner-
meier and Sannikov (2014, 2016, 2017).
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But what sort of solution is likely to be found for our stochastic control

problem in the presence of jumps in the state? In Chapter 4 we saw that

the evolution of the state vector traced out a dynamic equilibrium path for

factor allocations, labor effort and consumption. Gaussian disturbances to

the state vector generated a zone of uncertainty around the optimal policies

characterizing the dynamic equilibrium path, reflecting the representative

agent’s ability to adjust behavior for different realizations of uncertainty in

the economy. In the presence of jumps this zone of uncertainty would expand.

The memoryless property of the compound Poisson process implies that the

agent must be ready at all times for additional jumps, regardless of which

jumps have been realized.

Particular interest attaches to the case in which jumps are asymmetric.

The representative agent must be particularly on guard against jumps that

may suddenly reduce wealth. Given the choice between production processes

with equal Sharpe ratios but different downward jump risks conditional on

the state vector, the agent will allocate more productive factors to the pro-

cess with lower jump risk. Thus we expect exposures to jump risks to ‘tilt’

factor allocations relative to the diffusion benchmark such that the agent is

able to carry out his plans with a low probability of exhausting his wealth.

Accordingly we anticipate that incorporating jumps into our modeling frame-

work would only reinforce our conviction that RBC/DSGE models arrive at

unreliable predictions for asset prices, while suppressing important dynamic

equilibrium behaviors.

However in the presence of jumps we face the fundamental difficulty of

defining an appropriate contingent claims basis to maintain complete mar-

kets. It is a challenging task to define the aggregate risk of the economy in

this setting, and to work out the consequences for the equity risk premium,

contingent claims risk premia, and contingent claims pricing. Such an inves-

tigation would provide a useful structural interpretation for recent work in

derivatives pricing, and may shed light on the fraught question of choosing an

appropriate change of measure (Cont and Tankov 2004, Eberlein and Kallsen

2019).
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5.3 Limitations and Open Questions

As we speculate about the many open possibilities for extending our paradigm,

it is important not to lose sight of its limitations. Indeed, many of the ex-

tensions suggested above could be construed as limitations arising from the

specification of production, collapsed distinctions between goods and agents,

and the institution-less set up of the economy. Our reflections on structural

estimation have also pointed to questions about the relevant empirical basis

for testing the predictions of our model.

5.3.1 Methodological limitations

The introduction of a novel numerical method is likely to be met with suspi-

cion and distrust. We have attempted to assuage concerns about the relia-

bility of our method by following sound mathematical practice, showing that

the numerical solutions we obtain are consistent with economic intuition,

and profiling the policies learned by the neural network. Nevertheless, much

more investigation is needed to provide a completely rigorous defense of our

solution method.

Our solution method allows more complicated models to be solved be-

cause one need not obtain the first-order conditions of the model analytically.

Though we see this as a virtue, it may raise questions about whether the econ-

omy is operating in an equilibrium state, as well as whether the equilibrium

behaviors learned by the model are indeed optimal. We also define opti-

mality by maximizing a measure of cardinal utility, whereas economists are

more comfortable with the existence of ordinal utilities, and the properties

of workhorse utility functions are more often justified on ordinal grounds.

The reliability of the solutions we obtain depends in the first instance

on the soundness of our calibration method. In our discussion of structural

estimation above, we mentioned an open question concerning the choice of

data to be targeted. Calibrating to the volatility surface for options on the

S&P 500, for instance, is considerably more challenging than matching the

mean and variance of quarterly aggregate data. Our calibration is also con-

ditioned, implicitly, on an array of estimates gathered from the empirical
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literature. While we believe these estimates are sensible and reliable, that

does not necessarily mean that they can be treated as ‘structural’ in a model

of this form, and changes in these parameter values may require large changes

in calibrated parameter values. We expect that further experimentation with

the modeling framework will help to clarify best practice principles for cali-

bration so they reach a level of shared acceptance comparable to calibrations

of RBC and neo-Keynesian models.

Solving the model also involves choosing several ‘hyperparameters’ that

have purely mathematical importance. In our solution method, choices about

the length of the analysis horizon and its division into periods (the time-step)

are likely to be the most consequential decisions for analysis, much as they

are in the numerical solution of time-dependent partial differential equations.

Choices about the number of layers and neurons to include in the neural

network architecture may also be important. Research in deep learning shows

that optimal neural network architectures can be very problem-specific, and

the manner in which neural network approximations converge to a correct

functional solution is an open research problem.6

Questions about hyperparameters are best resolved by the study of con-

vergence in controlled settings. In a problem with a known solution, one

can calculate the error of a numerical solution for a chosen hyperparameter

configuration, and examine whether errors behave predictably when varying

hyperparameters. For example, errors may usually be expected to decline as

the time-step is shortened, and the order of convergence for the errors may

be estimated from a plot of the errors against the number of steps. Analyses

like this give the modeler confidence that the choice of hyperparameters will

lead to a solution in which numerical errors have been controlled suitably.

As a means of getting a tighter grip on the numerical properties of our

solution framework, it may be useful to recast some workhorse macroeco-

nomic models in our continuous-time framework. For models with known

analytical solutions, we can quantify numerical errors, examine convergence

6The universal approximation properties of neural networks are much like the central
limit theorem. Just as the central limit theorem can’t tell you how an estimator will
perform in finite samples, the mere fact that neural networks are universal approximators
does not tell you whether a chosen architecture is adequate to model a particular function.
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rates and obtain hyperparameter settings that are compatible with known

results for the optimal policies and the character of equilibrium. We can also

verify that the solutions our numerical methods obtain for such models are

qualitatively consistent with analytical solutions.

DSGE solutions of workhorse models would provide another useful basis of

comparison. A battery of numerical solutions using DSGE and deep learning

techniques would help to quantify the benefits of trading off log-linearization

and Taylor approximation errors for Monte Carlo error. More substantively,

we would achieve a deeper appreciation of the differences between steady

state and dynamic equilibrium solutions. Discovering how dynamic equi-

librium behavior departs from behavior in the steady state, and how the

response to shocks in dynamic equilibrium contrasts with the responses pre-

dicted by perturbation methods will provide a more detailed accounting of

the distortions introduced by DSGE analysis.

5.3.2 Theoretical limitations

On the theoretical side, our model employs objects that are not typically

encountered in macroeconomic analysis. Labor and capital inputs are not

frequently described in terms of stochastic yields. The apparent strangeness

of the factor yields in our model may leave one with the feeling that we have

traded one mysterious construct – shocks to total factor productivity – for an

equally mysterious construct. It is also not clear what data one might use to

obtain reasonable estimates of the expectation and variance of factor yields

in empirical production processes.7 In Chapter 4 we chose parameter values

that were consistent with reasonable scales of output and consumption, but

these points of reference are not sufficient to determine parameter values

precisely.

Our model has also become fairly complex. For all its problems, there is

something appealing about the plunging-your-head-into-cold-water austerity

of the basic RBC model. The model is waiting for you around every corner,

ready to refer each of your questions back to the same set of assumptions.

7Variations in utilization rates and variable compensation come to mind.
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Everything that seems to be missing is already there. The RBC model is a

zen koan to be repeated to quiet the mind of the working economist. It invites

us to meditate on the fundamental truth: there are sudden, persistent drops

in output that define business cycles. Let’s not worry about why drops in

output happen; let’s see how rational people react to them. Our formulation

lacks this austerity. A generation raised on social media may not have the

patience for it.

Though we see the indeterminacy of the state vector as a virtue, others

may view it as a liability. Many years of research on dynamic asset pricing

have produced little consensus about the number or identity of latent state

vectors in even a market as simple as that for Treasury debt.8 Pinning down

state vectors is important to work out observable consequences of the model

for derivative prices, as well as for developing a basic consensus about model

specifications.

5.3.3 Empirical limitations

Turning to the data, we face the problem of confronting an empirical basis

of historical outcomes aggregated over individuals and time with objects in

our model that represent forward-looking expectations. If we were willing to

collapse the distinction between history and expectations beloved of ‘rational

expectations’ theories, our only task would be to match the moments of

historical time series with those obtained from simulations of our model,

perhaps with time aggregation or averaging over states. But a ‘solution’ of

this kind would only serve to destroy the dynamic, forward-looking, state-

dependent character of equilibrium in our model, which we view as one of its

chief merits.

The cost of maintaining the character of our model is losing contact with

the established terms of debate in the asset pricing literature. As in any

conflict of paradigms, it is not clear that decisions about the truth of one

paradigm can be settled using the testing procedures of another. But this

observation does not relieve us of the responsibility to put our results in

8See, for example, Rudebusch (2010) and Duffee (2013).
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closer dialogue with the consumption-based literature, or the responsibil-

ity to identify new protocols for testing the predictions of our model. We

have suggested at several points in this thesis that panels of asset prices –

interest rate term structures, the risk-neutral measures implicit in options

prices, etc. – may furnish the best testing ground for the implications of our

model. Condensing these phenomena to a short list of crucial stylized facts

would potentially go a long way in clarifying expectations for the empirical

performance of our model.

One way in which we might reconcile the predictions of our model to the

literature is to replicate some econometric studies using simulations from our

model as ‘data’. The empirical predictions of our model would be far more

convincing if they could be shown to account for well-known phenomena doc-

umented in the empirical literature. To show that the relationship between

consumption and risk premia in our model looks a lot like the relationship in

a model with time-dependent preferences, for example, would reinforce our

claims about the model’s ability to explain asset price movements.

5.4 Implications for Economic Policy

We conclude by considering the implications of our analysis for economic

policy, contrasting them with the ‘supply-side’ orthodoxy.

Neither our model nor the standard RBC model contains anything that

looks like an economic institution. In both settings, the economy recovers

from a shock without the intervention of policy. Alternative economic policies

are only analyzable in terms of their consistency with the economy’s return to

equilibrium. Policy either helps or hinders recovery, but is not constitutive of

the recovery. This is the view of economic policy our model affords, whether

or not we endorse it as a philosophical matter.9

We are concerned with shocks that generate aggregate fluctuations, i.e.,

the business cycle. In the standard RBC model, aggregate fluctuations orig-

inate from negative, persistent shocks to total factor productivity. Recovery

9Spoiler: We believe institutions matter.
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occurs as the supply of labor responds to the shock, declining first and then

climbing above its steady-state level. Through this lens, policy fails when it

gets in the way of the ‘supply-side’ response to the shock in the labor mar-

ket. Unemployment insurance is an object of particular ire, as it allows for

increased consumption without increased labor effort. For adherents of the

RBC view, supporting workers with unemployment insurance only deepens

recessions and prolongs recoveries.

Our model reproduces the labor market implications of the RBC model,

while locating the origins of aggregate fluctuations in particular production

processes and showing additional responses relating to the allocation of labor

and capital. When a negative shock to capital’s yield in production occurs,

the dynamic equilibrium path of labor supply is to fall slightly and then

temporarily increase above its baseline level.

Our model decouples the origin of the business cycle from technology.

Following the initial capital yield shock, technological change continues apace

and its factor biases change the relative desirability of alternative production

processes. Accordingly optimal resource allocations continue to change while

the economy is recovering from the capital yield shock. Economic policy

should support the migration of resources out of adversely affected sectors.

As a result, a desire to keep workers in jobs does not necessarily mean keeping

them in their current positions.

The optimal response to a capital yield shock also includes an increase in

investment (reduced consumption). Policy makers often fret that transfers

made in recessions will be saved rather than spent. Our model suggests

that we should want people to do exactly that, with two important caveats.

First, saving in our model entails new capital formation rather than the

accumulation of bank balances or the purchase of shares, which are claims to

returns on existing capital. Political discussions of ‘investment’ often confuse

the former with the latter. Second, newly-formed capital should not be

deployed according to existing allocations. Just as optimal labor allocations

continue to evolve according to technical change, optimal capital allocations

will change, too.

Thus, in a recession, the economic policy response must resist the temp-
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tation to ‘bail out’ or support badly-impacted industries. While no politician

wants to openly advocate bankruptcy, a more positive way to support the

reallocation of capital and labor in a recession would be to support the for-

mation of new ventures. Policymakers should not pick winners and losers but

try, for a time, to relax obstacles in the way of business and capital forma-

tion. Our analysis of asset prices reproduces the stylized fact that expected

excess returns to capital are elevated during recessions. If economic policy

were to support entrepreneurs and owners of capital during the recovery from

a recession, that support would arguably produce windfall profits. A levy on

those profits once recovery is underway would not be unseemly.

Monetary policy is particularly prone to reinforce the existing configura-

tion of capital in a recession. Central banks lend against security, as do com-

mercial banks. Accordingly supportive monetary policy is likely to support

commercial bank loans secured against assets in place at existing firms at the

expense of unsecured loans and new loans secured against newly-acquired as-

sets. Some support for unsecured lending that supports hiring and overtime

payments may be a better idea than the classic Lombard Street discounting

of good collateral, though we freely admit that making such an arrangement

operational is fraught with unsolved problems.

Though these tentative conclusions are open to criticism, the policy lessons

suggested here highlight the need for greater attention to the composition of

the capital stock in ‘supply-side’ thinking, and underscore the differences be-

tween prescriptions based on a dynamic equilibrium theory and those predi-

cated on a return to a steady state. In a dynamic economy, economic policy

must take pains to avoid distorting the allocation of resources by resisting

the urge to favor incumbents and particular sectors of activity.

We expect that continued development of our paradigm to refine the core

theory and model the activity of economic institutions will reveal further in-

sights about the origins of aggregate fluctuations and the conduct of economic

policy.
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