
Durham E-Theses

Addressing Scalability and Performance for

Community Detection and Clustering in Complex

Graphs

BRENNAN, JOHN,DAVID,PATRICK

How to cite:

BRENNAN, JOHN,DAVID,PATRICK (2021) Addressing Scalability and Performance for Community

Detection and Clustering in Complex Graphs, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/14104/

Use policy

This work is licensed under a Creative Commons Attribution Share Alike 3.0 (CC
BY-SA)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14104/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://etheses.dur.ac.uk

Addressing Scalability and

Performance for Community

Detection and Clustering in

Complex Graphs

John Brennan

A Thesis presented for the degree of

Doctor of Philosophy

Innovative Computing Group

Department of Computer Science

University of Durham

England

October 2020

Dedicated to
Leanne - the one who always puts up with me.

Addressing Scalability and Performance for

Community Detection and Clustering in Complex

Graphs

John David Patrick Brennan

Submitted for the degree of Doctor of Philosophy

August, 2021

Abstract

Graphs are increasingly being used to provide structured representations of data as

they are able to well encapsulate complex relationships within the data. This has

led to the development of an abundance of graph centric analysis methods. These

methods are used across many academic and industrial domains and aim to extract

structural and spacial information from the topology of a graph.

Current approaches for identifying community memberships and clusters within

complex networks often rely on a global view of a graph, normally requiring the

entire graph to be held in memory. With the ever-growing size of graph datasets,

processing this global view in memory is becoming increasingly difficult. In addition

there are currently gaps in the existing literature related to community classifica-

tion, identification and measurements of similarity without maintaining an expensive

global view of the graph.

iv

This work aims to address some of these issues through a number of approaches.

These include an investigation into finding optimal ways of comparing the simi-

larity between graphs as well as identification of optimal way of identifying sub-

graphs, with common features, within a larger graph or, more simply, Community

Detection. Development of ideal strategies for reducing computational and memory

requirements of graph processing is also a major contribution of this work.

Declaration

The work in this thesis is based on research carried out at the Durham University

Department of Computer Science, England. No part of this thesis has been submit-

ted elsewhere for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text.

Copyright © 2021 by John Brennan.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

Acknowledgements

I would like to thank my supervisory team including Dr Boguslaw Obara, Dr Stephen

McGough and Professor Georgios Theodoropoulos for their guidance through each

stage of the process.

This thesis would not have been possible without the unending support of my

wife (Mrs Leanne Brennan), my parents (Mrs Jacqueline Brennan and Mr James

Brennan) and the rest of my family. Thank you all for always being there to support

me.

I would also like to acknowledge, the various forms, of invaluable help and sup-

port I received have from my colleagues at Durham University throughout my stud-

ies - Dr Ibad Kureshi, Dr Stephen Bonner, Dr Amir Atapour-Abarghouei, Dr Philip

Jackson, and Dr Chas Nelson.

Finally, I would like to thank the Engineering and Physical Sciences Council,

UK for providing funding for this research (EP/M020576/1).

vi

Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 2

1.2 Overview . 2

1.3 Aims . 3

1.4 Thesis Structure . 4

1.5 Research Contribution . 4

1.6 Publications . 5

2 Background and Related Work 8

2.1 Problem Domain . 8

2.2 Network Science . 9

2.3 Network Metrics . 12

2.3.1 Global Features . 14

2.3.2 Node Level Features . 15

2.4 Classic Community Detection Algorithms 17

2.4.1 Bipartitions . 17

vii

Contents viii

2.4.2 Cliques . 17

2.4.3 Modularity-based communities 18

2.4.4 Label propagation . 18

2.4.5 Fluid Communities . 19

2.5 Clustering Approaches . 19

2.5.1 Spacial Clustering . 20

2.5.2 Node Classification . 21

2.6 Neural Network Approaches . 22

2.6.1 Graph Convolutional Networks 22

2.6.2 Inductive Representation Learning 23

2.6.3 Graph Attention Networks . 23

2.7 Reduced-Precision Neural Networks 24

2.8 Summary . 25

3 Network Construction 26

3.1 Implementation . 28

3.2 Architecture . 31

3.3 Objectives . 31

3.4 Quality control . 33

3.5 Availability . 33

3.5.1 Operating systems supported 33

3.5.2 Programming language . 33

3.5.3 Dependencies . 34

3.6 Reuse potential . 34

3.7 Summary . 35

4 Embeddings and Spacial Clustering 36

4.1 Introduction . 37

Contents ix

4.2 Generating Graph Fingerprints . 39

4.2.1 Global Features . 39

4.2.2 Node Level Features . 40

4.2.3 Feature Creation . 40

4.3 Clustering of Graphs . 41

4.3.1 K-means++ . 41

4.3.2 Hierarchical Clustering . 43

4.3.3 t-SNE . 43

4.4 Experimental Data . 45

4.4.1 Barabási-Albert Model (BA) 45

4.4.2 Erdős-Rényi Model (ER) . 46

4.4.3 Forest Fire Model (FF) . 46

4.4.4 Watts-Strogatz Small World Model (WS) 47

4.4.5 Data Generation . 47

4.5 Results . 48

4.5.1 Experimental Setup . 49

4.5.2 Hierarchical Clustering (HC) 49

4.5.3 K-means++ (KM) . 51

4.5.4 t-SNE . 52

4.6 Conclusion . 53

5 Using Neural Networks to Identify Communities 55

5.1 Introduction . 55

5.2 Ego-nets . 56

5.3 Method . 57

5.3.1 Graph Convolutional Networks 57

5.3.2 GraphSAGE . 58

Contents x

5.3.3 Graph Attention Networks . 59

5.4 Experimental Setup . 60

5.4.1 Datasets . 60

5.4.2 Experimental Environment . 60

5.4.3 Experiments . 61

5.5 Results . 61

5.6 Conclusion . 69

6 Half-Precision in Graph Convolutional Neural Networks 70

6.1 Motivation . 73

6.2 Methodology . 75

6.2.1 Graph Convolutions . 75

6.2.2 Graph Convolutional Auto-Encoders 77

6.2.3 Reduced Precision Changes 77

6.3 Experimental Setup . 78

6.3.1 Datasets . 78

6.3.2 Experimental Environment . 79

6.3.3 Experiments . 79

6.4 Experimental Results . 81

6.4.1 Assessing Model Predictive Performance 83

6.4.2 Run-Time and Memory Usage Analysis 85

6.5 Conclusion . 106

7 Conclusions and Future Work 108

7.1 Conclusions . 108

7.1.1 Objective 1 - Development of a simple mechanism for ingesting

graph data from its many forms. 108

Contents xi

7.1.2 Objective 2 - An investigation of the optimal ways for com-

paring the similarity between graphs. 109

7.1.3 Objective 3 - Exploration of the optimal ways for identifying

sub-graphs with common features within a larger graph. . . . 109

7.1.4 Objective 4 - An evaluation of whether it is possible to reduce

the amount of computing resources needed for processing large

graphs. 110

7.2 Future Work . 112

References 113

List of Figures

2.1 Simple Network . 11

3.1 Diagram depicting a representation of SemNetCon’s OWL Network

Ontology . 29

3.2 Diagram of SemNetCon’s GUI . 30

3.3 SemNetCon Overview . 32

4.1 Comparative Results . 50

4.2 Hierarchical Clustering Dendrogram (Ward Algorithm) 50

4.3 K-means Clustering . 51

4.4 t-SNE Clustering . 52

4.5 t-SNE by Generation Method . 54

5.1 Validation accuracy by number of hops 64

5.2 Distribution of egonet sizes by number of hops 65

5.3 Best Hyperparameters . 66

6.1 Correlation of predictive performance values on the Cora dataset for

the GCN and GAE models using the V100. 82

6.2 Correlation of run-time experiment on the GCN and GAE models

using the V100. 87

6.3 GCN total training time versus increases in graph size. 88

6.4 Speed up of the various opt levels versus O0 for the GCN approach. . 90

xii

List of Figures xiii

6.5 GAE total training time versus increases in graph size. 92

6.6 A truncated view of the GAE results for the V100. 94

6.7 Speed up of the various opt levels versus O0 for the GAE approach. . 95

6.8 Maximum amount of GPU memory consumed during the training

process across all cards for the GCN model. 97

6.9 GAE max memory usage versus increases in graph size. 99

6.10 Total training time as the model size is increased for the GCN model. 101

6.11 Speed up of the various opt levels versus O0 for the GCN approach.

Results presented using the large graph size that was able to complete

with all model sizes. 102

6.12 Total training time as the model size is increased for the GAE model. 104

6.13 Speed up of the various opt levels versus O0 for the GAE approach

as model size increases. 105

List of Tables

2.1 Node Level Features . 16

3.1 SemNetCon: Software Dependencies 34

4.1 Algorithms and parameters used to generate datasets 48

5.1 Hyperparameter Search Space . 61

5.2 Validation Accuracy for Varying Ego-Net Size 62

5.3 Best Hyperparameters . 67

5.4 Hyperparameter Search Stats . 68

6.1 Model and synthetic data parameter ranges. 80

6.2 Comparison of the GCN classification results on the Cora dataset us-

ing vertex features across GPUs and optimisation levels. All elements

indicate the difference ∆ between the values from Ox and O0. 84

6.3 Comparison of GAE edge prediction results on the Cora dataset using

vertex features across GPUs and optimisation levels. All elements

indicate the difference ∆ between the values from Ox and O0. 85

xiv

Chapter 1

Introduction

Clustering, the grouping of objects which share similar characteristics, and identi-

fication of communities within complex graph structures has been heavily studied

for many years. However, in recent years, the level of digitisation (conversion of

material from the real world to a digital format) has increased by many orders of

magnitude, leading to a greater prevalence of both data and data formats. This

increased interaction and data gathering across services, such as social media and

e-commerce providers, has produced enormous datasets that can no longer be eas-

ily processed as they are far too large to fit within the memory of a single system

(McCune et al., 2015). By definition, data gathered from these sources is a network,

usually represented as graphs. These graphs consist of vertices depicting individuals

and edges representing relationships between said individuals. Additional features

are generally associated with the vertices and are sometimes applied to edges. Fur-

thermore, as these networks have grown in size and complexity, it has become more

difficult to interpret exactly which features, or a combination thereof, represent any

particular type of relationship between vertices.

This chapter will primarily focus on the aims of this thesis and provide an intro-

duction into the field of Network Science.

1

1.1. Motivation 2

1.1 Motivation

One of the greatest challenges often seen in various areas of computing is scalability

– the ability of a system to cope at different scales. Large and complex datasets

usually require significant computational resources for processing and analysis and as

the size and complexity of the data increases, special measures need to be considered

to ensure scalability. This issue is particularly prevalent when dealing with graphs.

Within both academia and industry, graphs have been widely used to provide a

structure for encapsulating complex relationships present within data (Milenković

et al., 2008). This has led to the development of a large number of graph specific

analysis methods (Berkhin, 2006). These methods are used across a wide range of

applications and aim to extract structural and spacial information from the topology

of a graph.

Existing approaches (Berlingerio et al., 2012), (Koutra et al., 2011), commonly

used for determining clusters and community memberships often rely on a global

view of the graph. With the ever-growing size of these datasets, holding this global

view in memory is becoming increasingly difficult (Papadopoulos et al., 2012). There

are still large knowledge gaps in existing work related to determining clusters or

community membership, without maintaining an expensive global view of the data.

Likewise, in how to efficiently capture relationships or similarity without maintaining

this expensive global view of the data.

1.2 Overview

Current approaches to determining the memberships of clusters based on the nodes

and edges within networks rely on simplistic models, such as undirected graphs, of

the systems that they represent (Yano & Wadayama, 2011). Although there are

many algorithms for network analysis, currently the underlying data these tech-

1.3. Aims 3

niques are applied to is incomplete. An example of this is observed in situations

where undirected or weighted graphs are used to represent complex networks. When

constructing network models from raw data (ingestion), much of the data is dis-

carded or only considered in a very superficial way. Weighted networks, where some

value of importance is given to each edge, are a prime example of this as all inter-

connections can only be represented by a weight representing some global network

factor. This means that criticality studies are generally flawed as the connections

between network components have no context and there is no way to follow a class of

edges with common attributes through a network. Network analysis could be greatly

improved with the inclusion of attributes for nodes and edges. This would allow the

contextual analysis of network structures, considering multiple inter-node relation-

ships, which would enable greater confidence in studies of criticality regarding not

only nodes but the interconnecting edges.

1.3 Aims

The overall aim of this work is the development of advanced techniques for identi-

fying similarities between graphs and common patterns within a graph, primarily

utilising machine learning.

In order to achieve this, the following avenues were explored:

• Objective 1 - Development of a simple mechanism for ingesting graph data

from its many forms. To address this SemNetConn was developed, as discussed

in Chapter 3.

• Objective 2 - An investigation of the optimal ways for comparing the similarity

between graphs, evaluated in Chapter 4.

• Objective 3 - Chapter 5 covers an exploration of the optimal ways for identi-

1.4. Thesis Structure 4

fying sub-graphs with common features within a larger graph or, more simply,

Community Detection.

• Objective 4 - Given that graph analysis of any kind often comes with inten-

sive computational and memory requirements, an evaluation of whether it is

possible to reduce the amount of computing resources needed for processing

large graphs is highly important. This is discussed in Chapter 6.

1.4 Thesis Structure

A background to Network Science is presented in Chapter 2 along with the core

related work for this thesis. The issue of how to construct graphs from a disparate

range of input sources is discussed in Chapter 3, including a discussion of the de-

veloped tool SemNetCon, which is designed to ingest graph descriptions provided

in various formats and export them in standard formats required for machine learn-

ing. Chapter 4 presents work on how a representation of a graph (known as an

embedding) can be easily constructed along with how this embedding can be used

for clustering graphs. Additionally, techniques for using neural networks to identify

communities within a graph are presented in Chapter 5. The computational and

memory costs of using deep learning on graphs can be very high – especially as graph

size increases – hence an evaluation of the use of mixed-precision computations to

reduce this is presented in Chapter 6. Overall conclusions and a discussion of the

possible directions for future work are presented in Chapter 7.

1.5 Research Contribution

The work and contributions outlined in this thesis will focus on four primary areas.

1. To develop an intuitive method for the construction of uniform graph datasets

1.6. Publications 5

from a range of sources.

2. To develop and evaluate methods for scalable comparison of graph structures.

3. To develop and evaluate methods for scalable machine learning methods for

identification of communities within graph structures.

4. An evaluation of the benefits of mixed-precision neural networks.

1.6 Publications

The following works have been published or are under review and have been com-

pleted during the course of study for this work:

• John Brennan, Stephen Bonner, Amir Atapour-Abarghouei, Philip T Jack-

son, Boguslaw Obara and Andrew Stephen McGough. Not Half Bad: Explor-

ing Half-Precision in Graph Convolutional Neural Networks. Under review

in the Fourth IEEE International Workshop on Benchmarking, Performance

Tuning and Optimization for Big Data Applications (BPOD), 2020.

• John Brennan, Stephen Bonner, Georgios Theodoropoulos, Andrew Stephen

McGough, and Boguslaw Obara. Semantic Enabled Python Tool For The Con-

struction of Complex Networks From Disperse Data Sources (SemNetCon).

Under review in the Journal of Open Research Software, (2020).

• Stephen Bonner, John Brennan, Ibad Kureshi, Andrew Stephen McGough,

and Georgios Theodoropoulos. Efficient Comparison of Massive Graphs through

the Use of ‘Graph Fingerprints’. In the KDD Workshop on Mining and Learn-

ing with Graphs (MLG), 2016.

• Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi,

and Andrew Stephen McGough. GFP-X: A Parallel Approach to Massive

1.6. Publications 6

Graph Comparison using SPARK. In the IEEE International Conference on

Big Data, pages 3298–3307, 2016.

• Stephen Bonner, Amir Atapour-Abarghouei, Philip T Jackson, John Bren-

nan, Ibad Kureshi, Georgios Theodoropoulos, Andrew Stephen McGough,

and Boguslaw Obara. Temporal neighbourhood aggregation: Predicting Fu-

ture Links in Temporal Graphs via Recurrent Variational Graph Convolutions.

In the IEEE International Conference on Big Data, 2019.

• Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos,

Andrew Stephen McGough, and Boguslaw Obara. Exploring the Semantic

Content of Unsupervised Graph Embeddings: An Empirical Study. In Data

Science and Engineering, 4(3):269–289, 2018.

• Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos,

Andrew Stephen McGough, and Boguslaw Obara. Temporal Graph Offset

Reconstruction: Towards Temporally Robust Graph Representation Learning.

In the IEEE International Conference on Big Data, pages3737–3746. IEEE,

2018.

• Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen Mc-

Gough. Predicting the Computational Cost of Deep Learning Models. In the

IEEE International Conference on Big Data, pages 3873–3882. IEEE, 2018.

• Andrew Stephen McGough, Matthew Forshaw, John Brennan, Noura Al

Moubayed, Stephen Bonner. Using Machine Learning to Reduce the Energy

Wasted in Volunteer Computing Environments. In the Ninth International

Green and Sustainable Computing Conference (IGSC), 2018.

• Stephen Bonner, Ibad Kureshi, John Brennan, and Georgios Theodoropou-

los. Exploring the Evolution of Big Data Technologies. In Software Architec-

1.6. Publications 7

ture for Big Data and the Cloud, pages 253–283. Elsevier, 2017.

• Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos,

Andrew Stephen McGough, and Boguslaw Obara. Evaluating the Quality

of Graph Embeddings via Topological Feature Reconstruction. In the IEEE

International Conference on Big Data, pages2691–2700. IEEE, 2017.

• Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi,

and Andrew StephenMcGough. Deep Topology Classification: A New Ap-

proach for Massive Graph Classification. In the IEEE International Conference

on Big Data, pages 3290–3297. IEEE, 2017.

• Stephen Bonner, Andrew Stephen McGough, Ibad Kureshi, John Brennan,

Georgios Theodoropoulos, Laura Moss, David Corsar, and Grigoris Antoniou.

Data Quality Assessment and Anomaly Detection via Map/Reduce and Linked

Data: A Case Study in the Medical Domain. In the IEEE International Con-

ference on Big Data, pages 737–746. IEEE, 2015.

Chapter 2

Background and Related Work

2.1 Problem Domain

This thesis aims to investigate the development of algorithms, methodologies, and

modelling strategies to reliably and efficiently identify similarities between graphs

and the nodes within them. This problem is of particular interest as it is becoming

increasingly difficult to process internet scale datasets, such as the Facebook social

graph, to identify communities or community membership. This will require robust

modelling of complex networks and reliable algorithms for the determination of

which nodes and edges within a network have relationships that are not immediately

observable.

Graphs, which represent a number of entities (referred to as vertices or nodes –

without loss of generality the term node will be used in this thesis) and the links

between these entities (referred to as edges or links – without loss of generality

these will henceforth be referred to as edges), have become an indispensable tool

for analysis of data across many disciplines including social sciences, security and

medicine. A graph G = (V,E) is defined as a set of nodes V , with a corresponding

set of edges E. E is composed of unordered tuples (u, v) where u, v ∈ V . Their

8

2.2. Network Science 9

ability to represent the links between different entities makes them a more natural

representation for tasks such as registering relationships between different entities

(edge prediction) than other data representation formats.

While one might use unordered tuples to represent the edges of a given graph, a

graph could potentially contain ordered tuples, where an edge can only be traversed

in one direction. Thus it is possible to move on the edge from u to v but not along

the edge from v to u – here it is said that (u, v) 6= (v, u). In the case of ordered

tuples, it is said that the edges are directed, conversely, for unordered tuples the

edges are undirected and represented as (u, v)⇔ (v, u).

2.2 Network Science

The basis of network science is fundamentally grounded in graph theory. Graph

theory began with Leonhard Euler’s solution to the Seven Bridges of Kõnigsberg

problem (Euler, 1741). The problem was to determine a path which would cross

each of the seven bridges separating the four landmasses within the city once, and

only once. Euler’s solution was to take a simple topological approach to the problem

which along with his solution gave rise to modern graph theory (Biggs et al., 1976).

The order of a graph, defined as the number of nodes, is represented by |G|.

Within a graph edges can be considered as directed or undirected. That is to say

where an edge is directed the ‘flow’, of whatever property is represented by the

edge, can only travel in one direction. Conversely an undirected edge is considered

to be a bi-directional connection (Bollob’as, 1998). Graphs are generally studied

in terms of paths. The path P is given by the form V (P) = {xo, x1,, xn} ∈ V

which represents a set of edges forming a path between x0 and xn (Bollob’as, 1998).

Graph theory also allows for the existence of hypergraphs. A hypergraph occurs

when there exists hyperedges, which are defined as a set of edges which can connect

2.2. Network Science 10

any number of nodes together. Hyperedges could be used to represent product

flows within a business supply network, for example, n businesses connected to each

other by virtue of being intermediaries, in the supply chain, for a common product

(Newman, 2003). Hyperedges are essentially defined paths within a network that

have a fixed route based on node function.

Network science takes the graph theory paradigm as a basis and becomes a

broad-ranging field which utilises a number of theories and methods from many dis-

ciplines. The foundation of this field is built upon graph theory, but is extended

with the implementation of theories from mathematics, statistical mechanics, data

mining and information visualisation, statistical analysis and sociology (Foltz et al.,

2005). Brandes et al. (2013) state that network science is “exploding” and is a field

which penetrates a broad range of traditional disciplines.

Networks exist everywhere in modern life. These can take many forms, such as:

natural networks, infrastructure networks, socioeconomic networks, network deci-

sion or control systems. Networks fall into two categories natural and engineered.

Natural networks are those that occur spontaneously and can potentially contain

agents that act selfishly or myopically, such that these agents may behave in a way

that is detrimental to the overall network. These types of networks are usually

studied in terms of computational modelling, developmental and predictive analysis

in order to explain certain phenomena or to gain other insights. Engineered net-

works are those which are artificially made and can contain agents, that also have

the potential for myopic behaviour but this is unlikely in a well-designed system,

programmed with objective-based behaviour.

Engineered networks are usually considered in terms of design. How should the

nodes within the network be programmed/designed to behave in order to achieve a

specific goal? The goal could be anything within the realm of the network function,

2.2. Network Science 11

1

2

3

4

Figure 2.1: Simple Network

such as achieving suitable quality of service within a computer network, be it a

dynamic (subject to a sequence of modifications) or a static environment. However

in reality this distinction is not so clearly defined and the designed behaviour of

engineered networks can be influenced by the actions of unpredictable agents, such

as human users within a computer network. Also a network that originally evolved

as natural could be influenced or controlled by an engineered component. Such as a

social network provider suggesting ‘friendships’, based on user analysis, which may

never have occurred naturally (Strogatz, 2001).

In order to analyse any kind of network quantitatively mathematical models

need to be constructed. One way of doing this is by utilising an adjacency matrix.

Consider a network G which consists of n nodes labelled 1 to n. Using Figure 2.1

as an example, an edge list can be generated to describe the network. This example

has n = 4 nodes and an edge set of (1,2),(1,4),(2,3),(3,4). A better way to represent

this edge list is as an adjacency matrix A with elements Aij, where Aij denotes the

number of vertices between nodes i and j, described as:

Aij =

1 if at least one edge exists between nodes i and j,

0 otherwise.

(2.2.1)

This enables the construction of:

2.3. Network Metrics 12

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2.2)

to fully describe the current example in a mathematical model which will form,

in general, a sparse matrix. Note that this example is an undirected network and

therefore the matrix is symmetric along the leading diagonal. This would not be

the case for a directed network as adjacency would only exist in the direction of

travel. Adjacency matrices can also be used to represent multi-edge and weighted

networks by expanding the number of values available for Aij beyond the simple

binary system.

2.3 Network Metrics

Here within is a brief overview of the most commonly used measures and metrics

for network analysis taken from the work by Newman (2010):

• Degree Centrality is the measure of node degree as an integer value for the

number of edges connected to it. This concept is extended slightly in directed

networks and is divided into in-degree and out-degree.

• Eigenvector Centrality adds a weighting to degree centrality based on the

centrality of the node neighbours. With the aim to better identify influential

nodes within the network.

• Closeness Centrality is a measurement of the mean distance between a node

and all other nodes in the graph. If multiple paths exist between two nodes

this method will only consider the shortest, or geodesic, path.

2.3. Network Metrics 13

• Betweenness Centrality measures the degree to which a node lies on paths,

or hyperedges, between other nodes. This can be used to find the important

intermediary nodes within a network.

• Groups of Nodes describe distinct communities of nodes. This is highly

important in the analysis of social networks.

• Transitivity is particularly useful to social networks, it helps to facilitate

inference of extended friendships. It relies on the mathematical notion that a

relation “⊕” is said to be transitive. For example if a ⊕ b and b ⊕ c, then it

is implied that a ⊕ c.

• Similarity is how similar one node is to others within the network, there are

however a great many methods of specifying similarity including structural

properties or values of other metrics such as centrality.

• Components. If a graph is fully connected i.e. it has, at least, one edge con-

necting every pair of nodes, then it only has a single component. Where some

connections are absent each disjoint sub-graph is considered a component.

• The Small World Effect the measurement of the observed phenomena that

within large natural networks the shortest path between two nodes is, on

average, extremely small relative to the size of the network.

• Degree Distributions is one of the most commonly used network proper-

ties and describes the frequency distribution of node degrees. This can be

used to demonstrate whether networks follow power-law or scale-free distribu-

tions, allowing a determination of whether the network is random or has some

underlying structure (Barabási & Bonabeau, 2003).

2.3. Network Metrics 14

2.3.1 Global Features

Here, those graph features that are considered to be global will be outlined. A global

feature is a summary statistic for an entire graph, generally derived from a sum or

mean of some localised feature.

• Graph Order - Defined as: |V |.

• Number of Edges - Defined as: |E|.

• Number of Triangles - The number of triangles, α, for a given graph is

the number distinct sub-graphs which consist of three nodes and three edges

where each node has a total degree of two, ignoring any edges that connect to

a node outside the sub-graph.

• Global Clustering Coefficient - This is a measure of how connected the

graph is overall. A triplet is a set of three connected nodes that can either

be a triangle or, if not fully connected, a potential triangle, the total number

of triplets is given by β. A measure of how interconnected a graph is can be

computed as: gc = 3(α/β), this gives a measure of how interconnected a graph

is.

• Maximum Total Degree Value - This represents the total number of edges

the most connected node in the graph has to other nodes, irrespective of

direction.

• Connected Components - This is the total number of components within

the graph. A component is defined as a set of nodes, or sub-graph, where

any selected pair of nodes can be connected through a set of edges within the

component, but will not have a path to any node in another component.

2.3. Network Metrics 15

2.3.2 Node Level Features

The aim of Chapter 4 is to identify the subtle differences between graph topology.

In order to achieve this a number of features are evaluated for each node within the

graph. Through experimentation, it has been determined that the following seven

feature metrics give the best balance between structural sensitivity and computa-

tional complexity. For each of the six node features detailed in Table 2.1, a value is

evaluated for each v ∈ V .

2.3. Network Metrics 16

T
ab

le
2.

1:
N

o
d
e

L
ev

el
F

ea
tu

re
s

F
e
a
tu

re
N

a
m

e
C

o
m

m
e
n
t

L
a
b

e
l

E
q
u
a
ti

o
n

S
o
u
rc

e

E
ig

e
n
v
e
ct

o
r

C
e
n
tr

a
li
ty

λ
is

th
e

la
rg

es
t

ei
ge

n
va

lu
e,
A

is
th

e
gr

ap
h

ad
ja

ce
n
cy

m
at

ri
x

an
d
x

is
th

e
ei

ge
n
ve

ct
or

ce
n
tr

al
it

y.

A
x

A
x

=
λ
x
.

(B
o
n
a
ci
ch
,

2
0
0
7
)

P
a
g
e
R

a
n

k
S
co

re
N

is
th

e
n
u
m

b
er

of
n
o
d
es

,
Γ
−

(v
)

is
th

e
se

t
of

in
co

m
in

g

n
ei

gh
b

ou
rs

of
v
,
d

+
(u

)
is

th
e

ou
t-

d
eg

re
e

of
u

an
d
d

is

a
d
am

p
in

g
fa

ct
or

(0
.8

5
fo

r
th

is
w

or
k
).

P
R

(v
)
P
R

(v
)

=
1
−
d

N
+
d
∑

u
∈

Γ
−

(v
)

P
R

(u
)

d
+

(u
)

(P
a
g
e
et

a
l.
,

1
9
9
8
)

T
o
ta

l
D

e
g
re

e
S
u
m

of
th

e
in

&
ou

t
d
eg

re
e

of
n
o
d
e
v
.

td
v

td
v

=
Γ
−

(v
)

+
d

+
(v

)
(B

o
n
n
er

et

a
l.
,
2
0
1
6
)

T
w

o
-H

o
p

A
w

a
y

N
e
ig

h
b

o
u
rs

N
(v

)
is

ea
ch

n
o
d
e

in
ci

d
en

t
on

n
o
d
e
v
.

th
v

th
v

=
1

|N
(v

)|
∑ ∀j∈

N
(v

)
d

+
(j

)
(B

er
li
n
g
er
io

et
a
l.
,
2
0
1
2
)

L
o
ca

l
C

lu
st

e
ri

n
g

S
co

re

Φ
is

th
e

n
u
m

b
er

of
p
ai

rs
of
v
′ s

n
ei

gh
b

ou
rs

w
h
ic

h
ar

e

th
em

se
lv

es
co

n
n
ec

te
d
.

c v
c v

=
2
Φ

d
+

(v
)(
d
+

(v
)−

1
)

(W
a
tt
s

&

S
tr
o
g
a
tz
,

1
9
9
8
)

A
v
g

N
e
ig

h
b

o
u
r

C
lu

st
e
ri

n
g

c j
is

th
e

lo
ca

l
cl

u
st

er
in

g
sc

or
e.

n
c v

n
c v

=
1

|N
(v

)|
∑ ∀j∈

N
(v

)
c j

(B
er
li
n
g
er
io

et
a
l.
,
2
0
1
2
)

2.4. Classic Community Detection Algorithms 17

2.4 Classic Community Detection Algorithms

General overview - Communities are simply groups of elements in a network where

members are more likely to interact with each other than with elements outside the

group. In some small networks, communities are easy to spot visually. For others,

you need complex calculations to help tease out the community lines.

2.4.1 Bipartitions

The Kernighan–Lin algorithm (Kernighan & Lin, 1970) is a heuristic graph parti-

tioning method. For input, the algorithm accepts an undirected graph G = (V,E)

where V is a finite set of vertices and E is a set of edges, with optional weights W

for each edge in E. This algorithm aims to split V into two disconnected sets, A and

B, of, ideally, equal size. In the case where G is weighted the algorithm attempts

to minimise T =
∑
W (b), where b is the set of edges that cross the boundary of

A and B. Where the graph is un-weighted T =| E(b) | is minimised instead, with

| E(b) | being the count of edges that cross the boundary. The algorithm iteratively

improves the partitioning by greedily pairing vertices with A with vertices from B

such that the move between partitions will improve the balance of the partitions.

After this step further pairs are chosen in order to best minimise T . The complexity

of this algorithm can be described by O(n2 log n), for a graph with n vertices.

2.4.2 Cliques

Within graph theory, a clique C is described as C ⊂ V taken from an un-directed

graph G = (V,E). Cliques can be further categorised into the following categories.

A maximal clique is a clique in which further adjacent vertices can not be added

without that clique becoming wholly a subset of a larger clique. The maximum

clique of a graph G is the singular clique in a graph which has the largest number

2.4. Classic Community Detection Algorithms 18

of vertices. A k-Clique is a clique consisting of k vertices contained within a fully-

connected sub-graph (Palla et al., 2005). Finding cliques within a graph is a non-

trivial problem, indeed, the process of finding all cliques within a graph has been

proven to be NP-Complete (Karp, 1972).

2.4.3 Modularity-based communities

The Clauset-Newman-Moore (Clauset et al., 2004) algorithm is a bottom-up hier-

archical approach that attempts to identify communities within graphs using fast

greedy modularity maximisation and is an extension of the work by (Clauset et al.,

2004). Greedy modularity maximisation begins with each vertex v in the graph G

having singular membership of its own community. Following this, pairs of commu-

nities that represent the greatest sum of modularity are joined in an iterative process

until no further joins exist that meet the condition. Modularity Q is defined as the

proportion of edges that fall within a subgraph minus the assumed proportion if all

edges were distributed at random. More formally this can be represented as:

Q =
n∑

c=1

[
Lc

m
−
(
kc
2m

)2
]
, (2.4.3)

where c is a community, the number of edges is represented by m, the count

of intra-community links for community c is Lc and the sum of all vertex degrees

within c is kc.

2.4.4 Label propagation

The asynchronous label propagation algorithm proposed by (Raghavan et al., 2007)

is able to isolate communities in near-linear time. It is a probabilistic method and

the communities that are found may vary on different executions of the algorithm.

The algorithm proceeds as follows. After initialising each vertex v with an exclusive

2.5. Clustering Approaches 19

community C, the algorithm repeatedly sets the community of a vertex to be the

community that has the highest incidence among the neighbours of the vertex cur-

rently being considered. The algorithm finishes when every vertex has been labelled

according to the community membership of its peers. As each vertex is updated

without consideration of other vertex updates the algorithm can be considered as

asynchronous and is well suited to parallelisation.

2.4.5 Fluid Communities

Another asynchronous method for community detection has been proposed by (Parés

et al., 2018). The authors of this paper present the fluid communities algorithm that

is based on the concept of fluid dynamics. Where vertices interacting within in an

environment, or graph, expand and exert force on one another. The algorithm uses

a random initialisation, assigning each vertex a community from an initial set of k

communities. The algorithm then iterates in a similar fashion to label propagation

in that community membership is assigned based on neighbourhood membership.

However, there is a further condition in this approach in that total community

density must always remain at 1. The density with respect to a graph, or sub-graph,

is defined as D = |E|
|V | . When any vertex moves between communities all densities of

all affected communities are updated immediately. The algorithm completed when

during a single iteration no vertices change community membership.

2.5 Clustering Approaches

Graph Clustering (GC) is a sub-set of graph theory concerned with finding sets

of nodes, within the same graph, that share some form of ‘community’ (Schaeffer,

2007). There are many methods for GC, some notable examples are as follows:

The Modularity method, proposed by Newman (2004), is a system for assigning

2.5. Clustering Approaches 20

weights to nodes/edges based on some implementation-specific criteria. Shiokawa

et al. (2013) demonstrate a fast modularity based approach (SFA) to this problem

where the density of edges is used to evaluate what cluster a node belongs to.

SFA is considered to be the current state of the art approach for modularity based

clustering having the ability process web-scale graphs in O(|E|− cn|V |) time, where

c is the clustering coefficient and n is the number of neighbours for each adjacent

node. Saltz et al. (2015) use a distributed Weighted Community Clustering (WCC)

approach which is derived from the number and distribution of triangles within a

graph, where a triangle is a set of three nodes where each node has a degree of two

ignoring any edges that leave the set. WCC based approached have been shown

to provide clusters that are more densely connected than those using modularity

based approaches Prat-Pérez et al. (2012). Using these methods to group distinctly

separate graphs would not be possible as they do not consider cluster similarity.

2.5.1 Spacial Clustering

Spacial clustering (SC) algorithms are predominately considered to belong to one of

two groups, Hierarchical clustering and Partitional clustering (Berkhin, 2006).

Hierarchical clustering : algorithms are either Divisive (bottom-up) or Agglom-

erative (top-down) Tan et al. (2005). Divisive algorithms initially treat each node

as a single cluster and then iteratively merges pairs of clusters until all clusters have

been merged into a single cluster that contains every node. Throughout this process

information of each merge is maintained so an entire hierarchy can be constructed.

Agglomerative clustering begins with a single cluster that contains every node and

then splits clusters recursively until each individual node is considered a single clus-

ter. Within Divisive and Agglomerative algorithms the decision of which clusters to

merge or split is determined by calculating an appropriate distance metric for each

pair of nodes within a cluster and selecting the most favourable outcome, which will

2.5. Clustering Approaches 21

be a minimum or a maximum for a merge or split respectively (Ding & He, 2002).

While any distance metric is valid, Euclidean distance is one of the most commonly

used (Madhulatha, 2012).

Partitional clustering : algorithms typically determine all clusters at once but

can also be Divisive, as in hierarchical clustering. These generally use the same

metrics that are employed by hierarchical. However, in this case, the nodes are

separated into a collection of non-overlapping subsets, where each node is a member

of exactly one subset. Conversely to hierarchical methods, each of these subsets

have no defined relationship to one another (Tan et al., 2005).

2.5.2 Node Classification

Li et al. (2011) propose a topological and label feature-based approach as a com-

putationally efficient method for classification. The limitations of this method are

that it has a very narrow domain focus and is dependent on graph databases. Addi-

tionally some graph features, such as eccentricity (the maximum distance between

a node to all other nodes) and shortest path (the smallest path from given source to

any other node) are computationally expensive. Therefore this approach does not

scale well when considering very large graphs, such as those considered in this work.

A boosting based multi-graph classification framework has been proposed by

Shun et al. (2016). Boosting aims to sort multiple sub-graphs into ‘bags’, each

of which has been manually assigned a static label or class. The evaluation and

labelling of sub-graphs on a very large dataset is a non-trivial task. The authors

claim to mitigate this factor by making correlations between such things as keywords,

similar to those found in scientific publication networks. However, this mitigation

requires a level of domain-specific knowledge, something that is not present in syn-

thetic graphs, and the overhead required to evaluate many sub-graphs limits the

scaleability of the boosting approach.

2.6. Neural Network Approaches 22

2.6 Neural Network Approaches

In the field of Deep Learning, supervised learning is probably the most studied and

understood (Goodfellow et al., 2016). In supervised learning, the datasets contain

labels which help guide the model in the learning process. In the field of graph

analysis, these labels are often present at the vertex level and contain, for example,

the meta-data of a user in a graph representation of a social network.

2.6.1 Graph Convolutional Networks

Possibly the most heavily researched area of supervised graph embeddings is that

of Graph Convolutional Neural Networks (GCNs) (Bruna et al., 2013), both spec-

tral (Defferrard et al., 2016) and spatial (Niepert et al., 2016) approaches. These

approaches use a sliding window filter over an entire graph. This approach is sim-

ilar to the approach used in Convolutional Neural Networks (CNN)s (Goodfellow

et al., 2016) from the computer vision field. The primary difference being that the

neighbourhood of a node represents the sliding window as opposed to adjacent pix-

els. Current GCN approaches are supervised and require that nodes are labelled.

This precondition has two notable drawbacks. First, any dataset used for training

must have fully labelled nodes in order for it to be used. Second, any embeddings

generated using this approach are unlikely to generalise to other datasets meaning

re-training would be needed if inference were to be required on a node from a dif-

ferent network.

2.6. Neural Network Approaches 23

2.6.2 Inductive Representation Learning

Before the GraphSAGE (Hamilton et al., 2017a) approach was presented, most node

embedding models were based on spectral decomposition and matrix factorisation

methods. The GraphSAGE authors argue that this is a problem because these

methods are transductive and such methods do not perform well when being tested

on unseen data. Such that the entire graph needs to be visible for training and if any

additional nodes are added the whole thing will need to be re-trained. GraphSAGE

is capable of generating embeddings for a previously unseen node, without requiring

retraining of the model. In order to achieve this GraphSAGE learns aggregation

functions, using information from neighbouring nodes, that can be applied to a

new node, given its features and neighbourhood are present. This is referred to as

inductive representation learning. The baseline GraphSAGE neighbourhood method

is to use nearest neighbours with arbitrary additions/deletions to achieve consistent

input size for the aggregation input. The types of aggregation function presented in

the paper for use with GraphSAGE are; Mean, Long Short Term Memory (LSTM)

and Max Pooling.

2.6.3 Graph Attention Networks

Veličković et al. (2018) presented the concept of a Graph Attention Network (GAT).

GATs use the spatial information related to a vertex in order to learn an embedding

which can be used for classification. This use of spatial information is what differen-

tiates this method from GCNs which use a spectral approach, directly analogous to

CNNs used in image processing. GATs use stacked attention layers which are able

to attend over the features of their neighbours. This implicitly allows each node in

a neighbourhood to have different weights without the need for any further matrix

operations and without prior knowledge of the entire graph structure.

2.7. Reduced-Precision Neural Networks 24

2.7 Reduced-Precision Neural Networks

With the growing popularity of deep neural networks and hence the increasing focus

on training and inference efficiency, the use of reduced precision has received signif-

icant attention within the existing literature (Ginsburg et al., 2017; Micikevicius et

al., 2018; Gupta et al., 2015; Hubara et al., 2017; Courbariaux et al., 2015; N. Wang

et al., 2018). For instance, there have been attempts to binarise model weights

and activations while gradient calculations are kept within the full-precision format

(Hubara et al., 2017). In (Rastegari et al., 2016), even gradients are binarised along

with all other tensors in order to improve training and inference efficiency in terms of

both memory usage and run-time. However, despite their impressive computational

efficiency, such approaches always lead to significant losses in accuracy with larger

model architectures.

To resolve the issue of accuracy loss, the majority of the recent work has shifted

towards using at least 16 bits for data and gradient computation. The approach

proposed by Micikevicius et al. (2018) uses a 16-bit floating-point format accumu-

lating results into 32-bit arrays and ensures gradients with a small magnitude are

preserved via loss-scaling. Accuracy is also maintained in (Das et al., 2018; Köster

et al., 2017) using a custom format with a 16-bit mantissa and a shared exponent to

train large neural networks. Despite their promising performance, such approaches

keep a 32-bit copy of the model weights to enable precise weight updates and partial

products are accumulated in a 32-bit format.

For N. Wang et al. (2018), 8-bit floating-point numbers are used for both the

numerical representation of the data and all the computations required for the op-

erations involved in the forward and backward passes of the model. The approach

outlined in by Mellempudi et al. (2019) enhances the use of 8-bit floating-point rep-

resentation by compensating for the reduced subnormal range of 8-bit floating-point

2.8. Summary 25

representation for improved error propagation leading to better model accuracy.

It is important to note, however, that the use of any reduced-precision approach,

such as those reviewed above, heavily depends on model size, input data modality

and the nature of the task. Extensive exploration and benchmarking of various

reduced-precision methodologies have been carried out for Convolutional Neural

Networks and Transformer models for computer vision and natural language pro-

cessing tasks (Micikevicius et al., 2018; Kuchaiev et al., 2018), whilst the use of

neural networks for graph-based applications is not yet fully investigated. Conse-

quently this work provides a detailed study of the use of mixed-precision operations

using specialised hardware for graph convolutional neural networks.

2.8 Summary

This section has laid the foundation of graph theory and network science upon

which this thesis will build. The concepts of global and node level features have

been described with examples of such observations given. Also included here is a

discussion of the approaches that have been most commonly used for community

detection, including clustering and those methods adopted due to the emergence

widespread neural network use. The following section will present the Semantic

Network Constructor application for the creation of network datasets from disparate

data sources.

Chapter 3

Network Construction

Network science is an interdisciplinary field which enables the studying of detailed

real-world phenomena by viewing them as a series of connected components within

a complex system. There are numerous examples of systems from across the spectra

of scientific disciplines which are composed of individual elements linked together in

some manner (Newman, 2010). Some examples of networks include the Internet -

the emergent phenomena created by the global interconnection of computer systems,

and human societies - the linking of humans via social interaction.

The field of network science can be defined as the study of the collection, man-

agement, analysis, interpretation, and presentation of relational data (Brandes et

al., 2013). Networks are often constructed from real-world datasets and are a series

of nodes, with pairs of nodes connected together via an edge. These edges can be

undirected, to create what is known as a ‘simple network’, or directed edges, with

implied direction between two nodes creating a ‘directed network’. Additionally, two

nodes can be connected via multiple edges, or an edge can connect a node to itself,

creating a self-loop. Edges can have weights, often in the form of a numeric value.

According to (Barrat et al., 2004), these networks are known as weighted networks

and are used to embed a greater quantity of information within the structure of

26

Chapter 3. Network Construction 27

a network. A weighted edge could, for example, represent the strength of a social

connection between two people (nodes).

In addition to weights, other information can be included within the network in

the form of attributes. These attributes can be attached to nodes, edges or even

the overall graph itself and can embed a greater level of the context within the

network. Network science uses concepts from graph theory to provide a mathemat-

ical basis from which to work, as such, the term graph and network are often used

interchangeably (including in this thesis).

Networks are created from a disparate range of data sources from across the var-

ious academic disciplines. However, currently, there exists no tool which can convert

the diverse set of possible source graph representation formats into a standard net-

work file format. Several such standardised network formats exist and are designed

to make networks portable between various software packages which can be used to

study and visualise them. The lack of a standardised conversion tool for network

construction means that users are often required to create their own custom file

parsers before running any network analysis algorithms.

The creation of networks from disparate data sources is a complex problem, as in ad-

dition to extracting the vertex and edge information, users need to be able to attach

numerous custom attributes to these elements. It is possible that each of these items

of information will be stored in different files and potentially in different formats. To

combat this problem, the Semantic Enabled Python Tool For The Construction Of

Complex Networks From Disperse Data Sources (SemNetCon) application has been

developed. SemNetCon streamlines the process of creating a complex network from

a range of possible data sources and allows the inclusion of an unlimited number

of custom attributes. SemNetCon is seamlessly able to construct a single network,

including associated attributes, even if they are stored across a range of physical files

and file formats. For example, a file describing the edges, stored as a CSV, could

3.1. Implementation 28

be used to construct the base network, whilst a file containing node names, stored

in JSON, could be used to attach a custom attribute to each node. As far as the

author is aware, SemNetCon is the first software that implements this functionality.

3.1 Implementation

SemNetCon uses technologies from the semantic web stack to provide a structured

description of features within the source dataset which enables easy conversion into

a number of network file formats. The semantic web is a framework initially devel-

oped for metadata allowing contextual data to be embedded into a dataset, enabling

a deeper understanding of the underlying data (Berners-Lee et al., 2001). The se-

mantic web stack is implemented as a series of layers, the most important being

the Resource Description Framework (RDF) (W3C, 2016a), SPARQL Protocol and

RDF Query Language (SPARQL) (W3C, 2016b) and the Web Ontology Language

(OWL) (Antoniou & Harmelen, 2008). As part of SemNetCon, a new OWL ontol-

ogy has been created to describe the components required to create a network from

a range of possible data sources. Figure 3.1 shows an overview of the ontology. This

ontology can be used to create a custom RDF file for a given dataset, describing

everything required for SemNetCon to convert the data into a standardised network

file format.

In terms of end-user functionality, SemNetCon allows via the use of a graphical

user interface (GUI), a user to answer a small number of questions about the content

of their source dataset. A screen-capture of the SemNetCon’s GUI can be seen in

figure 3.2. Further details and examples of how to utilise the GUI are given in

the readme located in the project’s repository 1. With this information, and the

1https://github.com/grossular/SemNetCon

3.1. Implementation 29

Figure 3.1: Diagram depicting a representation of SemNetCon’s OWL Network

Ontology

metadata structure provided by the OWL ontology, an RDF description of the data

can be constructed. This description is structured and consistent across all datasets.

The RDF for each piece of data can be considered as a logical funnel for SemNetCon

parser functions as they now only need to extract very specific features. This enables

the use of very generic file parsers where previously, potentially non-reusable, data

specific parsers would have needed to be developed. Once the graph structure has

been completed the resulting object is written back to disk in a standardised network

format selected by the user. Currently supported output formats are; GML (Himsolt

& Passau, 1996), GraphML (Eiglsperger et al., 2013), adjacency list (Blandford et

al., 2004), multi-line adjacency list (Blandford et al., 2004) and Pajek (Batagelj &

Mrvar, 2002).

SemNetCon currently has support for four input file formats; JSON, CSV, XML

3.1. Implementation 30

Figure 3.2: Diagram of SemNetCon’s GUI

and Excel. The code has been written in such a way that users can easily implement

an additional file parser for their required data format. End users are not required

to create the required RDF by hand, instead, they are able to make use of the GUI.

This allows the user to describe the features in their files which they would like to be

represented as vertices, edges and attributes. The tool will then create the network

and allow the users to save the generated RDF file to disk so that it can be used

at a later date, bypassing the requirement for further invocation of the graphical

tool. Overall SemNetCon is primarily designed to be used through the graphical

interface, although users are able to use the command line interface if they already

have a valid RDF file describing their data.

3.2. Architecture 31

3.2 Architecture

SemNetCon is implemented in Python 2.7 and utilises many commonly available

Python packages to provide efficient and portable file parsing and semantic web

processing. For the semantic web components, such as RDF parsing, the rdflib

package is used. The GUI is constructed using the Tkinter python package, this was

chosen for portability. The software is implemented as three main Python classes,

FileParser, NetworkConstructor and RdfBuildGUI. The core class for the end-

user is the RdfBuildGUI which is used to launch an instance of the GUI. When

interacting with the GUI, users are asked a series of questions about the dataset

they are transforming into a network. The GUI then constructs a custom RDF file

for the particular dataset, which is expressed against the OWL ontology. The GUI

then calls the NetworkConstructor class, passing to it the created RDF file. This

class utilises SPARQL to query the passed RDF object and extract the encoded

information. Depending upon the file type of the data source, the relevant parser

is then called from the FileParser class. The parser can then use the information

passed to it to parse the data source and use the relevant features to construct the

nodes, edges and their attributes required for the final network, as shown in Figure

3.3.

3.3 Objectives

SemNetCon has been designed to allow end-users to easily convert a given data

source into a range of possible common network formats. In addition to this, it has

been designed so that it can be extended by the research community to support new

features and file formats. For example, if a new source data format is required, a user

can simply create the required parsing method and place it in the FileParser class.

Further details of how to expand the SemNetCon codebase are given in readme of

3.3. Objectives 32

Figure 3.3: SemNetCon Overview

the code repository. The core objectives of the SemNetCon project are as follows:

• Create a formal ontology representing a generic graph structure using OWL.

• Generate a custom RDF file by describing the raw data to be converted into

a network against the ontology.

• Leverage the RDF to enable generic parsers to construct topological represen-

tations of the data.

• Create a GUI to simplify the creation of the RDF for end users.

• Allow for easy expansion of the underlying OWL ontology and the list of file

parsers so the tool can be applicable in a wide range of fields.

3.4. Quality control 33

3.4 Quality control

Development and testing has been performed on OSX and various Linux distribu-

tions. Tutorials and sample datasets are provided with the source and are available

on the main GitHub repository. The functionality of the software has been exten-

sively tested using network datasets with known quantities from the Stanford Large

Network Dataset Collection (Leskovec & Krevl, 2014), checking results for accuracy

to ensure that a valid graph object has been created. SemNetCon is currently being

utilised within the author’s research group for the preparation of network datasets

for analysis via machine learning. SemNetCon is proving to be very useful in cre-

ating a codebase for network analysis which can convert a large number of datasets

from a selection of common file formats.

3.5 Availability

SemNetCon is available from https://github.com/grossular/SemNetCon.

3.5.1 Operating systems supported

SemNetCon has been designed and tested on various UNIX like platforms, specifi-

cally Mac OS X and Linux. As such it should work on any modern OS X version or

Linux distribution. SemNetCon has been explicitly tested on the following platforms

- Ubuntu 14.04, Fedora 22, CentOS 7 and OSX 10.11.

3.5.2 Programming language

SemNetCon is built using Python 2.7 and has not been tested on older versions of

the Python 2 branch.

3.6. Reuse potential 34

3.5.3 Dependencies

SemNetCon has the following dependencies, all of which are available via the python

package manager pip -

Package Name Min Required Version

NetworkX 1.10

jq 0.1.5

jsonpath rw 1.4.0

lxml 3.4.4

rdflib 4.2.1

SPARQLWrapper 1.7.4

xlrd 0.9.4

Table 3.1: SemNetCon: Software Dependencies

3.6 Reuse potential

The analysis of complex networks is widely employed in many disciplines of science

to map and measure relationships and flows between people, groups, organisations,

computers, organic cells, and other connected entities. This software has been de-

veloped to allow researchers to construct useful network representations quickly and

efficiently. The software had been developed to be modular, allowing it to be ex-

tended to read and process further file formats not considered by the author. This

software can be useful across all domains where there is a requirement for construct-

ing graph structures from non-graph native file formats.

3.7. Summary 35

3.7 Summary

This section has presented the first contribution of this thesis, SemNetCon. This

open-source tool provides a simple interface allowing network information to be

extracted from disparate data sources and stored in a choice of standard graph data

formats. The rationale and implementation of this tool has been discussed here

along with details of the architecture. Fundamentally, SemNetCon allows for easy

construction, use and sharing of graph datasets. The following chapter will discuss

how these datasets can be used to identify groups within the individual data points

using feature extraction and spacial clustering.

Chapter 4

Embeddings and Spacial

Clustering

The problem of categorising massive graphs accurately and efficiently by clustering

them into their different types – be they social, biological, or technological – is an

area of great interest within the field of complex network science.

Accurately clustering multiple massive graphs is computationally very expensive,

and scales badly as the graph size, or the number of graphs, increases. This is

because many problems involving graph traversal are NP-Complete. However, if it

is possible traverse the graph in a linear manner to construct a feature set which

can be evaluated through a single walk of a graph, it will be possible to create a

simple proxy for the graph which is easier to analyse and scales linearly with the

size of the graph.

In this work, a method is proposed for the clustering of complex networks,

through the analysis of their Graph FingerPrint (GFP) feature vectors using spacial

clustering algorithms. This method allows for the efficient clustering of massive,

unlabelled, graphs. Three clustering algorithms are considered: Ward’s hierarchical

method, K-means++ and t-SNE. Graphs generated using the SNAP software pack-

36

4.1. Introduction 37

age are used to evaluate the method. The t-SNE, spacial clustering, algorithm, is

shown to be most effective at accurately identifying clusters even when considering

graphs generated using algorithms designed to produce random graphs. Overall the

GFP + t-SNE approach demonstrates 99% accuracy with very high stability.

4.1 Introduction

The Analysis of complex networks is widely employed in many disciplines to measure

relationships and flows between people, organisations, computers or organic cells for

purposes such as community (M. Wang et al., 2015) or anomaly (Akoglu et al., 2015)

detection. These networks are difficult to understand and analyse either at system

or unit level while maintaining the relationships that exist within them, often due

to inherent interdependencies between components within the network (McCune et

al., 2015).

The primary question addressed here is one of similarity, can topological features

alone be used to determine if two graphs are of the same ‘type’. It is possible to

consider two distinct graphs have enough in common that they both belong to

some shared class of graph, such as a shared generation method or similar social

communities. There are multiple definitions of similarity when considering graphs

(Berlingerio et al., 2012) (Koutra et al., 2011). These approaches can be separated

into two groups, those which require labelled data, where each data point has some

sort of meaningful ‘label’ associated with it, and those that do not. The work

presented in this work falls into the latter category, using topological features alone

as a basis for comparison in order to group graphs with comparable structures

using Spacial Clustering (SC). SC considers objects within an n dimensional space,

grouping objects which the algorithm considers similar into classes.

Another clustering approach often used in graph analysis is Graph Clustering

4.1. Introduction 38

(GC). GC methods are concerned with identifying sub-graphs based upon relation-

ships between individual nodes or discovery of common node features.

GC approaches rely on being able to touch the entire graph in order to determine

[dis]similarity between sets of nodes. Something which is becoming increasingly

difficult as web-scale graphs continue to grow. Many GC algorithms leverage random

walks or sampling operations to minimise computational complexity (Shun et al.,

2016). A random walk of length N is performed on a graph by first selecting a

starting point Vi. From this point, a neighbour is randomly selected and ‘walked’

to and some form of metrics are gathered, a neighbour of this new node is then

randomly selected to ‘walk’ to and this process is continued for N iterations.

Sampling is used where a graph is considered too large to be fully touched.

Therefore a representative set of samples for the graph are derived. Using these

methods to group distinctly separate graphs would not be possible as they give no

consideration of cluster similarity.

In this work the author presents an approach to identify large complex network

types by applying clustering methods to Graph FingerPrint (GFP) (Bonner et al.,

2016) vectors. GFP components have been selected to produce meaningful metrics

while minimising computation and memory footprint by gathering all information

in a single traversal of each graph. This vector can be considered as an illustrative

representation of a graph that, while still highly dimensional, can be analysed using

unsupervised learning methods. The clustering methods evaluated are: Hierarchical;

using the Ward method (Ward, 1963), K-means++ (Arthur & Vassilvitskii, 2007)

and t-SNE (Van Der Maaten & Hinton, 2008). Using these methods it is possible

group graphs into classes in order to identify which of these share common traits thus

allowing the identification of a previously unseen graph. As far as the author has

been able to determine there has been no prior work in the area of using unsupervised

machine learning to identify the class of a graph from a given set of graph features.

4.2. Generating Graph Fingerprints 39

SC, discussed in Section 2.5.1 is ideal for this work as each GFP provides a multi-

dimensional spacial data point for each graph considered. The rest of the chapter is

broken down as follows: Section 4.2 details the generation of Graph FingerPrints,

Section 4.3 presents an overview of the spacial clustering algorithms used, Section 4.4

details the experimental data, Section 4.5 presents empirical results and in Section

4.6 conclusions are presented.

4.2 Generating Graph Fingerprints

The proposed approach for the clustering of graphs uses a Graph FingerPrint (GFP)

embedding. This takes a high dimensional graph object and reduces the complexity

down to a fixed-length vector. The GFP achieves this by extracting node-level

and global features from a given graph, allowing it to capture both the macro and

localised topological features.

A greater exploration of the features used in this clustering work can be found

in (Bonner et al., 2016). Additional, or replacement, features can be used with this

approach if required. Further investigations of features used in creating GFPs can

be found in (Schaeffer, 2007) (Xu, 2005).

4.2.1 Global Features

The GFP method extracts multiple global features from a graph. These features

were chosen to give a good overall representation of the graph structure, whilst

also being computationally efficient. A total of six global features are evaluated for

the GFP vector. These features were; graph order, number of edges, number of

triangles, global clustering coefficient, maximum, total degree value and connected

components. Each of these metrics are explained in Section 2.3.1.

4.2. Generating Graph Fingerprints 40

4.2.2 Node Level Features

In order to make the GFP approach sensitive to subtle differences in graph topol-

ogy, a number of features are evaluated for each node within the graph. Through

experimentation, it has been determined that the following seven feature metrics

give the best balance between structural sensitivity and computational complexity.

For each of the seven node features detailed in Table 2.1, a value is evaluated for

each v ∈ V . These features are further explored in Section 2.3.2.

4.2.3 Feature Creation

The matrix, V Fm,n, where m = |V |, contains all the node feature scores as defined

in Section 2.3.2 respectively, and n = |F | (F is the vector of features for each node):

V Fm,n =

f1,1 · · · f1,n

f2,1 · · · f2,n

...
. . .

...

fm,1 · · · fm,n

(4.2.1)

To create the graph fingerprint, it is required to reduce the dimensionality of the

matrix down to a more compact vector. This is achieved by taking a series of

metrics for each of the columns in the matrix. The metrics chosen are median

x̄1, mean Mo1, standard deviation σ1, variance σ2
1, skewness Skew[x]1, kurtosis

Kurt[x]1, minimum value x(1)n and maximum value x(n)n. These are frequently

used and well understood methods to capture the numerical variation within a range

of values. These are concatenated into a single vector along with the global features

described in Section 2.3.1. After this has been completed, the feature vector −→ag1 for

graph G can be created as:

4.3. Clustering of Graphs 41

−→ag1 = (x̄1,Mo1, σ1, σ
2
1, Skew[x]1, Kurt[x]1, x(1)1, x(n)1

, ..., x̄n,Mon, σn, σ
2
n, Skew[x]n, Kurt[x]n, x(1)n, x(n)n).

(4.2.2)

4.3 Clustering of Graphs

Spacial Clustering considers objects within an n dimensional space, grouping objects

which the algorithm considers similar into classes. This allows us to leverage the

GFP as a single multidimensional data point that can be grouped with similar

points, allowing a determination of a class for a graph. For the purposes of this

work, the ground truth class of a graph is the method, including parameters, used

to generate it. The following clustering algorithms were evaluated during this work:

4.3.1 K-means++

The K-means algorithm clusters data by trying to separate n data points, that are

members of the set X into k clusters C1...Ck of equal variance while minimising the

inertia J , which is the distances between data points and their cluster centre for

each cluster. This algorithm requires that the number of clusters (k) be specified.

It scales well to large numbers of data points and has been used across a broad

range of applications in many different disciplines such as document classification

and image segmentation. The most popular K-means variant, known as Lloyd’s

algorithm (Lloyd, 1982), has a squared error function given by:

J =
k∑

j=1

n∑
i=1

(||xji − cj||2). (4.3.3)

Where n is the number of data points, cj is the centroid for cluster j and (||x(j)
i −cj||2)

is the Euclidean distance between the ith sample in cluster j, xji and cj. Each

cluster centroid is initially randomly selected and each data point is assigned to an

appropriate c based on closest centre according to the Euclidean distance function.

4.3. Clustering of Graphs 42

The position of cj is then recalculated to c′j based on the mean value of all points,

i, assigned to it:

c′j =
1

|cj|

ci∑
i=1

x
(j)
i , (4.3.4)

Once each c′j has been calculated, the distance between each data point and the

new obtained cluster centres is calculated and the data points are assigned to their

closest c′j. If no data points were reassigned then the algorithm finishes.

Lloyd’s algorithm has an average complexity of O(kni), where i is the number

of iterations. This can be improved when more consideration is given to the ini-

tial placement of centroids. K-means++ (Arthur & Vassilvitskii, 2007) randomly

initialises the first centroid and then initialises all other cj to be collocated with a

chosen xi. Each point is selected by using weighted probability distribution where a

point xi is chosen with probability proportional to the squared distance between xi

and the nearest decided centroid. This leads to vastly improved results, and com-

plexity of O(log k) - Competitive with the optimal K-means (Arthur & Vassilvitskii,

2007).

K-means does not work well for high dimensional data (Jolliffe et al., 2011), due

to the curse of dimensionality (Wilcox, 1961) that states, as the number of dimen-

sions grow data becomes more sparse. Therefore the amount of data required to

give a statistically significant result often grows exponentially with the dimension-

ality. This problem can be mitigated by first performing some function on the data

to compress the number of dimensions that are present. One of the most popular

forms of which is Principal Component Analysis (PCA). PCA is a linear dimension-

ality reduction method that provides a low dimensional vector representation of a

given high-dimensional observation (Tipping & Bishop, 1999) (Jolliffe, n.d.). This is

achieved through using statistical analysis to identify the amount of variance within

each dimension. The algorithm identifies the dimension with the highest variance

and rotates the feature space such that this is the first dimension. It then identifies

4.3. Clustering of Graphs 43

the dimension with the next largest variance and rotates the feature space such that

this is the second dimension. This continues until all dimensions have been eval-

uated. Once the data is ordered in this fashion the algorithm can ‘safely’ discard

some of the higher-order dimensions with low variance.

4.3.2 Hierarchical Clustering

The Hierarchical Clustering (Müllner, 2011) method aims to minimise the total

within-cluster variance, which is the sum of all pairwise distances within a cluster

used as a measure of compactness. While any valid distance metric can be used

Euclidean distance is the most common. This is achieved by initially defining a

set of clusters, called a forest, that are not yet included in the hierarchy. At each

iteration the pair of clusters, s and t, that have the lowest sum of inter-cluster

variance are found. These clusters are then merged into a new cluster u. At this

point u is added to the forest, while removing s and t. The algorithm finishes when

a single cluster remains in the forest, which becomes the root of the hierarchy. Using

Ward’s minimum variance method (Ward, 1963) pairwise distances are calculated

at each iteration by:

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2, (4.3.5)

where d(u, v) is the inter-cluster distance, v is an unused cluster in the forest and

T = |v|+ |s|+ |t| and | ∗ | is the number of points in the set. The general hierarchical

clustering method used in this work has a complexity ofO(n2 log n) (Zhao & Karypis,

2002).

4.3.3 t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) (Van Der Maaten & Hin-

ton, 2008) is an optimisation of Stochastic Neighbour Embedding (SNE) (Hinton &

4.3. Clustering of Graphs 44

Roweis, 2002). The aim of the SNE based approaches is to capture the structure

of high dimensional data and create a low, usually two, dimensional ‘map’ which

maintains as much of the significant structure from the original data as possible.

This is achieved by first converting Euclidean pairwise distances of the original data

into conditional probabilities, pj|i indicating the probability that datapoint i would

pick datapoint j as its neighbour, in order to represent similarities. Given n data

points {x1, ..., xn} the probability that xi would be a neighbour of xj is based on a

probability density function under a Gaussian, centred at xi. The variance of the

Gaussian for each datapoint is evaluated based on the ideal number of neighbours.

The low-dimensional map is initially populated with n data points, {y1, ..., yn}, with

random coordinates. From the low-dimensional map another set of conditional prob-

abilities, qj|i, for every pair of data points is calculated, however, these have a fixed

variance value of 1√
2
. A gradient descent algorithm is then used to redistribute points

y1, ..., yn by minimising the sum of the Kullback-Leibler (KL) divergence (Kullback

& Leibler, 1951) over all data points in pj|i and qj|i such that the difference between

pj|i and qj|i is minimised.

SNE has two significant shortcomings, the KL divergence is difficult to optimise

and the ‘crowding problem’ where moderately distant data points are ‘crowded’

into a relatively small area of the map. t-SNE proposes solutions to these issues. In

order to better optimise the KL minimisation the conditional probabilities pj|i and

qj|i are replaced with joint probabilities pji and qji which produces a simpler form

of the gradient in the decent function meaning it is less computationally intensive.

The crowding problem is addressed by using a Student t-distribution in place of

the Gaussian distribution, with a single degree of freedom in qji. This type of

heavy-tailed distribution approaches an inverse square law for large distances in the

map, meaning the map can scale without impacting the joint probabilities allowing

moderately distant points to be better separated within a larger space.

4.4. Experimental Data 45

4.4 Experimental Data

In order to evaluate the effectiveness of the proposed approach, experimental data

is required that has known similarities. This is not something that occurs naturally

in large quantities, therefore it was decided that the most appropriate approach was

to use synthetically generated graphs. The experimental data was created with a

number of graph generation algorithms, using multiple parameters, using the SNAP

3.0 C++ system for analysis and manipulation of large networks (Leskovec & Sosič,

2016).

4.4.1 Barabási-Albert Model (BA)

The Barabási-Albert model (Barabási & Albert, 1999) can generate scale-free net-

works, identifies by the presence of few nodes with a very high degree and an overall

power-law degree distribution, that are often seen in natural and man-made net-

works, including the Internet, citation networks, and some social networks (Barabási

et al., 2000). The algorithm starts with n0 nodes, the links between which are cho-

sen arbitrarily. At each iteration i a new node is added, with n(≤ n0) edges that

connect to nodes already in the network. The probability pi that an edge is formed

between the new node and node ni is dependant on degree ki of node ni as:

pi =
ki∑
k kj

, (4.4.6)

where
∑

k kj is the total degree of the entire network. After i iterations the model

generates a network with N = i + n0 nodes and E = n0 + ni edges. Within the

SNAP implementation of this model the graph is initialised as a single pair of nodes,

n0 = 2, with one edge connecting them.

4.4. Experimental Data 46

4.4.2 Erdős-Rényi Model (ER)

The Erdős-Rényi model, one of the oldest models for random graph generation,

(Erdős & Renyi, 1984) it produces a graph using a fixed node set with a fixed

number of edges. Given user-specified values for nodes n and edges m the graph

G(n,m) is constructed. All edges are chosen uniformly randomly from the set of all

possible edges.

4.4.3 Forest Fire Model (FF)

The Forest Fire model (Leskovec et al., 2007) requires three input parameters: The

number of desired nodes n, a Forward burning probability Pf and a backward burn-

ing ratio Pb. Using these parameters an initial graph is constructed which consists

of a single node, then for each additional node ni that joins the graph the following

steps are repeated:

1. ni selects another node nj uniformly at random, from the set of existing nodes,

and forms an edge to it.

2. A random number x that is geometrically distributed with the forward burn

probability mean Pf/(1 − Pf) and a random number y that is geometrically

distributed with the backwards ratio mean PfPb/(1− PfPb) are evaluated. x

out-edges and y in-edges for nj are selected, the corresponding nodes of which

encompass the set v1...vx.

3. ni forms edges to each node in v1...vx and then repeats step 2 for each node

in the set.

4.4. Experimental Data 47

As the process continues, nodes cannot be ‘burned’ a second time, preventing the

algorithm entering an infinite loop.

4.4.4 Watts-Strogatz Small World Model (WS)

The creation of a Watts-Strogatz (Watts & Strogatz, 1998) small-world random

graph has two basic steps. Initially, a ring lattice is constructed by arranging n nodes

in a circle and connecting each node to its neighbours nn ‘hops’ away. Subsequently,

each edge in the graph is rewired, such that the edge will move to a different,

randomly selected, destination node with k nearest neighbours, based on probability

β. The rewired edge cannot be a duplicate or self-loop. Following the initial step,

the graph represents a perfect ring lattice. As β → 1 the graph becomes more

random as a greater proportion of the edges are rewired.

4.4.5 Data Generation

Table 4.1 presents the generated data, including the parameters used to generate

each set of graphs. Where N is the number of nodes the algorithm needs to generate

and E is the number of required edges. β is the edge probability used in the Watts-

Strogatz Small World Model. k is the average degree used in the Barabási-Albert

and Watts-Strogatz Small World models. Pf and Pb are the forward and backwards

burn probabilities used the the Forest Fire Model. A value of − denotes that the

parameter is not used for a particular method. A single set represents 50 graphs,

all generated with an identical method and parameters.

4.5. Results 48

Set Model N E β k Pf Pb

1 ER 100000 100000 - - - -

2 ER 100000 200000 - - - -

3 ER 100000 300000 - - - -

4 ER 100000 400000 - - - -

5 ER 100000 500000 - - - -

6 BA 100000 - - 1 - -

7 BA 100000 - - 2 - -

8 BA 100000 - - 3 - -

9 BA 100000 - - 4 - -

10 BA 100000 - - 5 - -

11 WS 100000 - 0.1 4 - -

12 WS 100000 - 0.3 4 - -

13 WS 100000 - 0.5 4 - -

14 WS 100000 - 0.7 4 - -

15 WS 100000 - 0.9 4 - -

16 FF 100000 - - - 0.1 0.15

17 FF 100000 - - - 0.15 0.2

18 FF 100000 - - - 0.2 0.25

19 FF 100000 - - - 0.25 0.3

20 FF 100000 - - - 0.3 0.35

Table 4.1: Algorithms and parameters used to generate datasets

4.5 Results

Each of the clustering methods considered in this work will be evaluated on two

metrics of good clustering, accuracy and stability (Schaeffer, 2007), along with time

4.5. Results 49

taken to evaluate results, where each algorithm is given the entire set of GFPs to

cluster. The intention is to identify an accurate algorithm for clustering which can

be performed in ‘reasonable’ time.

Accuracy : An algorithm will be considered as accurate if it can successfully group

together the Graph FingerPrints (GFP)s, described in Section 4.2, of graphs that

are generated using the same generation method and identical parameters. Such

that accuracy is reported as the percentage of identically generated graphs that are

assigned to the largest single cluster.

Stability : An algorithm will be considered as stable if it shows consistent results

over 100 runs of the entire algorithm. The value of 100 was chosen in order to give

acceptable statistical precision (Carling & Meng, 2015) of the results.

4.5.1 Experimental Setup

All the experiments presented in this work were performed on a system with 2 ×

10C 2.3GHz Intel Xeon E5-2650 v3, 64GB RAM, CentOS 7.2, GCC 4.8.5, Boost

1.56, Python 2.7.5, Graph-Tool 2.8 and R 3.3.1. A summary of the datasets used

can be seen in Table 4.1, for each of which the relevant parameters are discussed in

Section 4.4.

4.5.2 Hierarchical Clustering (HC)

Multiple distance calculation methods were evaluated for this clustering algorithm,

these were: Ward, single, complete, average, mcquitty, median and centroid (Müllner,

2011), all using an underlying Agglomerative (top-down) method. Overall hierar-

chical clustering was not very accurate for correctly identifying clusters, with all

accuracy values being under 35%, performing only slightly better than K-means.

Therefore only the most promising results provided by the Ward method are re-

4.5. Results 50

0

25

50

75

100

H
C
K
M
t-S

N
E

A
cc

u
ra

cy
(%

)

0

25

50

75

100

H
C
K
M
t-S

N
E

Method

S
ta

b
il
it

y
(%

)

0

2

4

6

H
C

K
M
t-S

N
E

E
x
ec

u
ti

on
T

im
e

(s
ec

)

Figure 4.1: Comparative Results

x

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Figure 4.2: Hierarchical Clustering Dendrogram (Ward Algorithm)

ported here. The dendrogram shown in Figure 4.1 depicts how each cluster is de-

fined by drawing a ‘U‘ link between the children of a non-singleton cluster and their

parent. The top of the ‘U‘ indicates the point at which a cluster merges, while the

legs of the link show which clusters were merged. The length of each leg represents

the euclidean distance between the child clusters. Further the colours represent the

4.5. Results 51

cluster number to which an entity was deemed to belong. Hierarchical clustering

provided the most stable results, shown in Figure 4.1, demonstrating no difference in

output over multiple iterations. Overall results showed that this approach was only

able to correctly group similar datasets with an accuracy of 34%. This is largely

attributed to the reliance of this method on Euclidean distance values, which are not

ideally suited to high dimensional data. Figure 4.2 is a dendrogram representation

of the result, showing a tree of branches and leaves, with colouring representing the

clusters assigned by the algorithm. A branch is any intersection of a tree that has

child nodes and a leaf has no children. This shows the algorithm fails to accurately

cluster the data. Branches have an unbalanced number of leaves when they should

fall into even groupings, denoting the desired cluster assignments.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Figure 4.3: K-means Clustering

4.5.3 K-means++ (KM)

Although it may be assumed that K-means would provide reasonable clustering of

the GFP data, this was found not to hold. The assumption was based around two

factors: Using Principal Component Analysis to reduce the dimensionality of the

4.5. Results 52

data and that due to the nature of the data the value of k is already known and

does not need to be discovered. Figure 4.1 shows K-means is by far the fastest

algorithm delivering an average runtime of ≈ 0.1 seconds which is five times faster

than the next fastest approach. However, it can be seen from the accuracy and

stability reported in Figure 4.3 that kMeans struggles to cluster properly. Some

groups have multiple centres while others share one. K-means only managed to

correctly cluster, on average, 30% of the data, with the best performance of 39%.

K-means also demonstrates a high degree of variation in the produced results, over

multiple runs, providing a very unstable solution to the clustering problem. This

is primarily because K-means is significantly impacted by the initial placement of

cluster centres, meaning centres can get caught in a local minimum of a group that

should be members of another cluster.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

Figure 4.4: t-SNE Clustering

4.5.4 t-SNE

Clustering GFP data using the t-SNE method provided significantly better results

than the other methods considered. The overall accuracy of 99% was observed, with

4.6. Conclusion 53

only 10 data points showing a normalised distance of greater than 0.07 from the

other points within the cluster. Each of these data points was a member of data

set #6, in Table 4.1. This is because using the SNAP implementation of the BA

Model with k = 1 is capable of producing graphs where the production of highly

connected hubs is heavily dissuaded. Therefore the degree distribution of these

graphs tends to be closer to those observed with the ER model than a power-law

distribution. Figure 4.1 shows that even though t-SNE is the slowest approach, over

a number of iterations t-SNE shows good stability, consistently producing accurate

results with only minor variations in intra-cluster distances. The overall results can

be seen in Figure 4.4. Each cluster, with the exception of set #6, is shown to be

clearly defined within an easily identifiable space with minimal outliers. The t-SNE

method is also capable of differentiating between graphs generated with the same

algorithm but different parameters. Figure 4.5 shows the clustering achieved for

each generation method when attempting to identify differing parameters within a

common method. The clear separation of the clusters shows that GFP + t-SNE is

sensitive to the relatively minor topological differences between graphs of a similar

class.

4.6 Conclusion

In this work it has been demonstrated that using GFP along with t-SNE clustering is

a good method for identifying graph classes, with an accuracy of 99% and excellent

repeatability. While traditional methods, such as Hierarchical Clustering and K-

Means++, have been shown, in the results presented here, to be inaccurate, the

t-SNE algorithm demonstrated a significant ability to cluster the high dimensional

data of the GFP. This provides an efficient method for classifying very large and

complex graphs. GFP + t-SNE delivers an accurate and stable solution that, while

4.6. Conclusion 54

●

●

●
●●●

●

●

●●

●
●

●
●

●

●●●
●●

●

●
●●

●
●●

●
●
●

●
●●

●
●●●●

●●●
●

●●●
●

●●●
●

●

●●

●

●●●
● ●

●

●
●●●

●

●
●●●●●

●

●

●

●●
●●

●
●

●●

●

●

●
●

●

●

●

●●●

●
●

●

●

●●●

●

●

●
●

●
●

●●

●

●●
●●●

●●

●

●

●

●

●●

●

●●
●

●●
●
●
●

●●

●
●
●

●●●
●●

●
●
●
●
●●

●
●●●

●

●
●

●

●●

●

●

●●

●●

●

●

●
●

●
●

● ●
●●

●

●
●

●●
●

●
●●●●

●●●

●

●
●●

●
● ●
●●

●
●

●
●

●

●

●

●
●

●●●

●
●●

●●

●

●●●
●

●
●●●

●

●
● ●

●
●

●
●

●●● ●●●
●

●●● ●●
●● ●●

●

●●

●

●

● ● ● ● ●1 2 3 4 5

(a) ER

●

●

●●

● ●●●
●●●

●●
●

●
●

● ●

●
●●

●
●

●
●

●
●

●●

●
●

●●
●●

● ●

●
●

●
●

●

●

●

●

●

●●
●

●

●●
●●●●

●●
●●●

●

●
●●

●
●

●

●
●

●
●

●
●

●
●

●●

●

●●
●

●●

● ●

●

●
●●
●

●
●

●
●

●●
●

●
●

●●●●
●

●

●
●
●

●
●

●●

●

●

●
●●●
●

●
●
●

●

●

●

●

●
●●

●
●●●
●

●●●

●
●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●●

●

●●

●●
●

●

●

●●

●
●●●●●
●

●
●●

●

● ●
●
●

●
●

●

●

●

●
●

●●
● ●

●●

●

●
●●●

●●
●

●

●●●●
●●

●●●
●

●

●
●

●●

●

●●

●
●

●
●

●●

● ● ● ● ●6 7 8 9 10

(b) BA

●
●

●

●
●

●

●●●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●
●●●

●●
●

●

●●
●

●●
●●

●●

●
●

●
●

●

●●

●

●
●

●

●

●●
●●

●
●●

●
●

●
●●

●

●

●

●

●

●
●

●●

●●
●
●

●

●

●

●●

●
●

●

●

●●

●

●●●
●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●●●
●

●●●
●

●

●●
●

●
●

●
●●

●●

●

●

●
● ●●

●
●●●●

●
●

●

●●

●
●

●●

● ●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●●

●

●●
●●

●●

●

●
●

●●
●

●

●

●
●

●●
●

●
●

● ●

●
●

●
●

●
● ●

●●●● ●
●
●● ●●●

●
●●
●●●●

●
●

●
●●

●
●
●●

●
●

●●
●●

● ● ● ● ●11 12 13 14 15

(c) WS

●
●●

●

●

●
●●

●
●

●
●

●

●

●

●●●
●●

●

●● ●

●
●

●

●
●
●

● ●

●

●
●

●
●●

●

●

●●●

●

●
●

●

●

●

●

●●●●
●

●
●

● ●
●

●●
●●● ●

●
● ●

●●
●●●

● ●
● ●● ● ●

●

●
●

●●
● ●

●
●● ● ●●

●●
●

●●●

●

●

● ● ●

●

●●

●

●●

●

● ●

●

● ●●
●

●

●

●
●

●

●

●●

●

●
● ●

●
●

● ●

●

●

●

●
● ●

●
●

●
●●

●

●

●●

●●
●●

●●●
● ●●
●

●
●

●
●

●
●●●

●
● ●●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●●
●●●

●
●

●●
●● ● ●

●●●
●

● ●● ● ●
●

● ●● ●●●●● ●
●● ● ●
● ●●

● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●●

● ● ● ● ●16 17 18 19 20

(d) FF

Figure 4.5: t-SNE by Generation Method

it is significantly slower than other methods, provides useful results in a timely

manner.

Chapter 5

Using Neural Networks to Identify

Communities

5.1 Introduction

The identification of communities within graph structures has been heavily stud-

ied for many years. However, in recent years the levels of digital interaction have

increased by many orders of magnitude. This interaction, with services such as

Facebook and LinkedIn, has produced datasets that can no longer be easily anal-

ysed as they are far too large to fit into system memory. These social networks are

usually represented as graphs, consisting of vertices depicting individuals and edges

depicting relationships. Additional features are generally associated with the nodes

and are rarely applied to edges. Furthermore, as these networks have grown in size

and complexity is has become more difficult to interpret exactly which features, or a

combination thereof, represent the membership of a node in a particular community.

Detecting communities within these structures is very important in many fields

to enable understanding and extraction of information from these complex systems.

55

5.2. Ego-nets 56

A number of strategies have been developed using Neural Networks in order to gain

a better understanding of these complex inter-node relationships. These are dis-

cussed in Section 2.6.

5.2 Ego-nets

Large graphs have issues fitting into typically limited GPU memory. A possible

approach to mitigate this problem is the use of ego-nets. Splitting a graph up into

individual ego-nets allows us to batch the training and then the only bound for the

graphs that can be learnt on is7 the amount of available disk space. Ego-nets are

the subgraphs which consist of the connections directly related to the ‘ego’ node.

The size of an ego-net is directly affected by the number of hops being considered.

An ego-net of one-hop will consist of the ego vertex and all the vertices that can be

reached with a maximum path length of one.

Given a variable number of hops h an ego-net, egonet, can be defined as egoneth ⊂

G where:

egoneth = {noden | shortest path(ego node, noden) <= h} (5.2.1)

Ego-nets can be easily constructed from an edge list without relying on random

walks. This means there is no requirement to construct a graph structure in memory

in order to determine the membership of ego-nets. This process is described in

Algorithm 1 where node set is a function that takes a list of edges, represented as

pairs of nodes, and returns a set of all unique nodes contained within the list of

pairs.

5.3. Method 57

Algorithm 1: Ego-net Construction

Input: G(V,E), h

Result: All ego-nets of size h in G

for ego node in V do

node list→ ∅;

for i in range(h) do

if node list ≡ ∅ then

Add ego node to node list;

end

curr edges = {Ei,j | i ∈ node list or j ∈ node list};

node list = node set(curr edges) ∪ node list

end

Save curr edges to disk

end

5.3 Method

As this work was concerned with correctly identifying the community membership

of a node, only real-world datasets were used for evaluation during this work. These

benchmark datasets are: Cora, Citeseer and Pubmed. Performance of the baseline

approaches were compared with the ego-net approach. The only addition required

to allow ego-nets to be used with these approaches was to add the ability to support

batches. The rest of this section gives a brief overview of each architecture used in

this work.

5.3.1 Graph Convolutional Networks

A Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is a Convolutional

Neural Network (CNN) which operates on graphs. A GCN takes a graph G repre-

5.3. Method 58

sented as Â and an initial node level feature matrix X as input and computes a new

matrix of node level features H = GCN(Â,X) . The operation performed by each

layer of a GCN is described as follows. (Kipf & Welling, 2017):

GCN (l)(H(l), Â) = σr(ÂH(l−1)W(l)) , (5.3.2)

where H(l−1) is the features from the previous layer, l is the current layer and H(l−1)

are the weights for the previous layer. W(l) are the learnable weights for the current

layer. σr is the non-linear ReLU activation function f(x) = max(0, x) where x is

the input value.

5.3.2 GraphSAGE

Inductive Representation Learning networks, also known as GraphSAGE (Hamilton

et al., 2017a) in an inductive framework for generating vertex embeddings from

features that can be further used for classification. A GraphSAGE model takes a

graph G represented as Â and a matrix H = GraphSAGE(Â,X) of vertex features

as input. Each layer of a GraphSAGE model has two steps aggregate and update

described as follows. The aggregate step:

av = f(hu | u ∈ N(v)), (5.3.3)

where av in the aggregated representation for vertex v, hu is the embedding h for

all vertices u in the immediate neighbourhood of v N(v). The update step:

hv = f(av, hv − 1), (5.3.4)

where hv is the updated representation for vertex v and hv − 1 is the representation

from the previous iteration. In both of these steps f can be any differentiable

function but a simple mean function is used by default.

5.3. Method 59

5.3.3 Graph Attention Networks

A Graph Attention Network (GAT) Veličković et al. (2018) uses spacial information

to learn vertex embeddings. The input to a GAT network is the same as that

described for GCNs above. A GAT performs four distinct operations in each layer.

z
(l)
i = W(l)h

(l)
i , (5.3.5)

e
(l)
ij = LeakyReLU(~a(l)T (z

(l)
i ++z

(l)
j)), (5.3.6)

α
(l)
ij =

exp(e
(l)
ij)∑

k∈N (i) exp(e
(l)
ik)

, (5.3.7)

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij z

(l)
j

 . (5.3.8)

Equation 5.3.5 describes a linear transformation of the previous layer embedding

h
(l)
i where W(l) is the learnable weight matrix and i is the current node. Equation

5.3.6 shows the computation of a pair-wise attention score between two neighbours

(i, j). Initially, the z embeddings of the two vertices are concatenated, denoted by

++, then the dot product of the result and a learnable weight vector ~a(l) is taken and

then a LeakyReLU activation function f(x) = max(0, 0.01x) where x is the input

value is applied. Equation 5.3.7 is a softmax activation providing normalisation

across the attention scores on each vertices incoming edges. Finally in equation

5.3.8, the representations of neighbours are aggregated together and scaled by the

attention scores. This operation is analogous to how a GCN operates using the same

ReLU activation function σ.

5.4. Experimental Setup 60

5.4 Experimental Setup

5.4.1 Datasets

The data used for the experiments in this work are all real-world graphs, in the form

of the popular benchmark Cora, Pubmed and Citeseer (Yang et al., 2016) datasets.

• The Cora dataset is a publication citation network that consists of 2078 ver-

tices with 5429 edges, labelled by publication class.

• The Pubmed dataset is a publication citation network, taken from the Pubmed

database, that consists of 19,717 vertices with 44,338 edges, labelled by the

type of diabetes that they pertain to.

• The Citeseer dataset is a machine learning focussed citation network that

consists of 3327 vertices with 4732 edges. Each vertex is a representation

of a single paper from the citation network, labelled by the area of machine

learning that the paper focusses on.

Each of these have been used for vertex classification and link prediction in the

original GCN (Kipf & Welling, 2017) and GAE (Kipf & Welling, 2016) papers, so

were an ideal choice for assessing any predictive performance changes due to the use

of sub-graphs.

5.4.2 Experimental Environment

All the experiments presented in this work were performed on a system with an

8 core 3.4GHz i7-6700, 32GB RAM, NVIDIA GeForce GTX 1080 Ti, Arch Linux

4.20.13, GCC 8.3, Python 3.7.

5.5. Results 61

5.4.3 Experiments

As a precursor to any experimental evaluation all ego-nets were constructed and

saved to disk. Using the method outlined in Algorithm 1 each of the graphs were

split into individual ego-net graphs over the range of [1..6]. These ego-nets were

then analysed for distribution of sizes across each dataset. With the ego-nets con-

structed. Initial experiments are run in order to compare the performance of the

ego-net approach with the baseline approaches. From this initial comparison, the

best performing ego-net size is selected for further comparison. A hyperparame-

ter search is performed for both the baseline approaches and the best performing

hop-size, using the parameters outlined in Table 5.1, and further comparisons are

drawn. For each parameter defined in Table 5.1 a search was performed across each

of the values defined within the value range set for a total of 23, 760, 000 possible

parameter combinations.

Parameter Value Range

Batch Size {1, 2, 4, 8, 16, 32, 64, 128}.

Learning Rate {x | 0.0005 < x < 0.0999 ≡ 0 mod 0.001}.

Weight Decay {x | 5× 10−6 < x < 1× 10−3 ≡ 0 mod 0.00001}.

Dropout {x | 0 < x < 0.99 ≡ 0 mod 0.01}.

Optimiser {Adam, SGD, RMSprop}

Table 5.1: Hyperparameter Search Space

5.5 Results

This section presents the results of the experiments outlined in section 5.4, evaluating

the performance of the ego-net based approach against the baseline approaches.

5.5. Results 62

Table 5.2 shows initial comparison, across all ego-net sizes, to the baseline mod-

els. It can be seen here that the ego-net approach outperforms the baseline in almost

all cases. The outliers from this trend are the SageNet baseline on the Cora dataset

and the GatNet baseline on the Citeseer dataset. It is also worth noting the obser-

vation that an ego-net that has a size of 2 hops shows the best performance 50% of

the time.

Network Dataset 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6 Hop Baseline

SageNet

Cora 64.2 69.2 66.8 60.6 58.2 56.2 69.6

Citeseer 53.2 55.8 55.2 55.4 48.2 52.2 44.4

Pubmed 73.4 73.4 76.6 63.0 64.6 59.4 69.8

GatNet

Cora 57.8 65.8 62.8 63.6 66.8 55.6 58.4

Citeseer 50.2 56.4 51.8 58.4 49.6 51.0 64.4

Pubmed 74.4 76.6 76.4 70.2 68.0 65.6 70.8

GcnNet

Cora 69.0 74.8 71.0 68.6 64.6 56.2 40.6

Citeseer 54.0 56.2 55.8 59.2 56.6 55.0 53.2

Pubmed 74.6 76.2 79.6 75.6 68.0 59.0 66.8

Table 5.2: Validation Accuracy for Varying Ego-Net Size

As shown in Figure 5.1 while the baseline approach often outperforms the ego-net

approach, this can take a much larger number of epochs. The proposed approach

provides a good level of accuracy after very few epochs compared to the baseline.

Figure 5.1(a) shows that while the baseline always outperforms the ego-net approach

given > 100 epochs the ego-net approach is able to produce a reasonable level of

accuracy after only ≈ 10 epochs. That picture becomes much less clear in Figure

5.1(b) where the baseline approach never quite manages to outperform the pro-

posed method. The ego-net approach still makes rapid gains on accuracy but the

corresponding baseline approach never manages to beat this value, even after 300

epochs. This situation becomes even worse for the baseline in Figure 5.1(c) where

5.5. Results 63

the largest dataset in this work is considered. In this instance, the baseline is out-

performed across almost all ego-net sizes with only the GatNet baseline managing

a higher accuracy than the three ego-net runs using the largest ego-net sizes.

5.5. Results 64

0 100 200 300

0.2

0.4

0.6
Va

lid
at

io
n

Ac
cu

ra
cy

GatNet

#Hops
1
2
3
4
5
6
Baseline

0 100 200 300

GcnNet

0 100 200 300
Epoch

SageNet

(a) Citeseer

0 100 200 300

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

GatNet

#Hops
1
2
3
4
5
6
Baseline

0 100 200 300

GcnNet

0 100 200 300
Epoch

SageNet

(b) Cora

0 100 200 300
0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

GatNet

#Hops
1
2
3
4
5
6
Baseline

0 100 200 300

GcnNet

0 100 200 300
Epoch

SageNet

(c) Pubmed

Figure 5.1: Validation accuracy by number of hops

Figure 5.2 shows the distribution of ego-net sizes across each hop size. It can

5.5. Results 65

be seen that greater hop sizes quickly increase the overall ego-net size to the point

where a large proportion of the overall graph in present in each ego-net. Given this

and the results from Table 5.2, 2 hops was selected as the fixed ego-net size for

further comparison.

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

cora

0 50 100 150
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

pubmed

(a) 1 Hop

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

cora

0 500 1000 1500 2000
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03
1.e+04

pubmed

(b) 2 Hop

1.e+00
1.e+01
1.e+02
1.e+03

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03

cora

0 2000 4000 6000
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03

pubmed

(c) 3 Hop

1.e+00
1.e+01
1.e+02
1.e+03

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03

cora

0 5000 10000 15000
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03

pubmed

(d) 4 Hop

1.e+00
1.e+01
1.e+02
1.e+03

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03

cora

0 5000 10000 15000
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03

pubmed

(e) 5 Hop

1.e+00
1.e+01
1.e+02
1.e+03

co
un

t

citeseer

1.e+00
1.e+01
1.e+02
1.e+03

cora

0 5000 10000 15000 20000
Ego-Net Size

1.e+00
1.e+01
1.e+02
1.e+03

pubmed

(f) 6 Hop

Figure 5.2: Distribution of egonet sizes by number of hops

Once the 2 hop ego-net had been selected as the most appropriate size for fur-

ther consideration a hyperparameter search was performed across the hyperparam-

eter ranges detailed in Table 5.1. Where Learning Rate (LR), Weight Decay (WD),

Dropout and Accuracy are all within the ranges originally outlined in Table 5.1.

Figure 5.3 compares the baseline to a 2 hop ego-net approach with tuned hyper-

parameters. From this, it can be repeatedly observed that the ego-net approach

5.5. Results 66

gains good accuracy very early on while the baseline takes much longer to achieve

these values. It can also be seen that after an extended number of epochs the only

baseline methods that outperform the ego-net approach are GatNet on the Citeseer

dataset and SageNet on the Pubmed dataset.

0.2
0.4
0.6
0.8

Va
lid

at
io

n
Ac

cu
ra

cy

citeseer
GatNet

Model
Ego
Baseline

citeseer
GcnNet

citeseer
SageNet

0.2
0.4
0.6
0.8

cora
GatNet

cora
GcnNet

cora
SageNet

0 50 100 150

0.2
0.4
0.6
0.8

pubmed
GatNet

0 50 100 150

pubmed
GcnNet

0 50 100 150
Epoch

pubmed
SageNet

Figure 5.3: Best Hyperparameters

Table 5.3 shows the best hyperparameters that were found for each model. It

is interesting to note that parameters that work well for the baseline would be

unsuitable for the ego-net based approach.

Table 5.4 shows the min, max, mean, median and standard deviation of accu-

racy across all hyperparameters used for a given model. This shows that the ego-net

approach is often outperformed in terms of pure accuracy. Such as in the citeseer

GatNet example where the minimum and maximum accuracy for the ego-net ap-

proach figures were 0.074 and 0.158 below that of the baseline approach. However,

the ego-net approach demonstrates better stability across multiple hyperparame-

ters. This can be identified using the same example mentioned previously where for

the ego-net result for standard deviation is 0.014 lower than the baseline. Given

this reduction in standard deviation it can be inferred that any hyperparameter

5.5. Results 67

Dataset Model LR WD Dropout Accuracy

cora SageNet 6.95e-02 4.55e-04 5.80e-01 7.26e-01

cora GatNet 1.39e-02 4.65e-04 2.90e-01 7.32e-01

cora GcnNet 1.68e-02 7.25e-04 2.70e-01 7.38e-01

citeseer SageNet 9.72e-02 8.35e-04 8.00e-02 5.98e-01

citeseer GatNet 8.91e-02 6.15e-04 1.00e-01 5.82e-01

citeseer GcnNet 5.40e-03 7.05e-04 2.10e-01 6.04e-01

pubmed SageNet 1.58e-02 2.15e-04 1.00e-02 7.46e-01

pubmed GatNet 2.49e-02 5.75e-04 4.50e-01 7.70e-01

pubmed GcnNet 9.72e-02 2.65e-04 2.70e-01 7.92e-01

cora SageNetBaseline 4.11e-02 7.65e-04 5.80e-01 8.04e-01

cora GatNetBaseline 6.73e-02 3.55e-04 7.50e-01 7.62e-01

cora GcnNetBaseline 4.20e-02 4.95e-04 5.70e-01 7.96e-01

citeseer SageNetBaseline 7.99e-02 9.75e-04 2.40e-01 7.10e-01

citeseer GatNetBaseline 5.22e-02 3.75e-04 7.70e-01 7.40e-01

citeseer GcnNetBaseline 9.75e-02 2.50e-05 3.10e-01 7.20e-01

pubmed SageNetBaseline 9.08e-02 9.55e-04 7.10e-01 8.08e-01

pubmed GatNetBaseline 7.80e-03 3.75e-04 4.40e-01 8.06e-01

pubmed GcnNetBaseline 4.66e-02 8.95e-04 8.10e-01 8.08e-01

Table 5.3: Best Hyperparameters

5.5. Results 68

Dataset Model Accuracy

count min max mean median std

citeseer GatNet 18 1.00e-01 5.82e-01 4.05e-01 4.77e-01 1.62e-01

citeseer GatNetBaseline 15 1.74e-01 7.40e-01 5.70e-01 6.38e-01 1.76e-01

citeseer GcnNet 10 2.18e-01 6.04e-01 5.22e-01 5.79e-01 1.24e-01

citeseer GcnNetBaseline 19 1.42e-01 7.20e-01 5.66e-01 6.72e-01 1.92e-01

citeseer SageNet 22 6.80e-02 5.98e-01 4.66e-01 5.57e-01 1.61e-01

citeseer SageNetBaseline 16 1.48e-01 7.10e-01 5.56e-01 6.12e-01 1.84e-01

cora GatNet 17 1.74e-01 7.32e-01 4.72e-01 4.70e-01 2.20e-01

cora GatNetBaseline 16 1.18e-01 7.62e-01 5.63e-01 6.24e-01 2.17e-01

cora GcnNet 9 1.04e-01 7.38e-01 4.31e-01 5.32e-01 2.43e-01

cora GcnNetBaseline 17 4.12e-01 7.96e-01 6.14e-01 5.84e-01 1.40e-01

cora SageNet 24 1.62e-01 7.26e-01 5.13e-01 5.77e-01 1.89e-01

cora SageNetBaseline 17 2.08e-01 8.04e-01 6.61e-01 7.32e-01 1.72e-01

pubmed GatNet 14 2.04e-01 7.70e-01 5.90e-01 6.82e-01 1.85e-01

pubmed GatNetBaseline 20 2.14e-01 8.06e-01 6.36e-01 7.70e-01 1.85e-01

pubmed GcnNet 23 3.54e-01 7.92e-01 5.50e-01 4.62e-01 1.51e-01

pubmed GcnNetBaseline 17 1.96e-01 8.08e-01 6.02e-01 5.54e-01 1.89e-01

pubmed SageNet 13 4.18e-01 7.46e-01 6.08e-01 6.46e-01 1.12e-01

pubmed SageNetBaseline 13 2.08e-01 8.08e-01 5.43e-01 5.24e-01 1.73e-01

Table 5.4: Hyperparameter Search Stats

5.6. Conclusion 69

optimisation technique applied to the ego-net method should identify reasonable

parameters using less computational resource than the baseline approach.

5.6 Conclusion

Overall, the approach presented in this chapter requires fewer epochs of training

to get to a decent level of predictive performance, however the baseline approaches

will eventual overtake it if allowed to train for extended periods of time. The lower

epoch requirement is likely because when using the ego-net approach, the model is

exposed to nodes and their structures multiple times per epoch. When using the

baseline approach, the algorithm takes entire graph adjacency matrix as input for

each epoch and operates on each node within that matrix. When using the ego-net

approach, each input is a subgraph of the ego and its neighbours meaning that for a

given graph, if node a is directly adjacent to node b, node a will appear in the ego-net

for node b and vice versa. This subsampling is also the reason why peak accuracy is

affected. As the model sees the same node multiple times but with slightly varying

structure as those nodes outside the ego-net have been removed. This leads to a

minor loss of information which is detrimental to the overall accuracy.

However, the ego-net approach is much better in the use of GPU memory – the

primary goal of this work. All the baseline approaches require the whole graph to be

loaded into memory where this approach only requires visibility of a single ego-net at

a time. This means that much larger graphs can be processed within the constraints

of GPU memory. Of course, as the ego-nets are precomputed beforehand and saved

to disk, this approach also has the effect of requiring more disk storage but this is a

much less precious resource than GPU memory.

Chapter 6

Half-Precision in Graph

Convolutional Neural Networks

As in many other fields, deep learning is helping to revolutionise the area of graph

analytics. Historically, graphs have been analysed through kernel-based meth-

ods (Kriege et al., 2020), however, recent advances in the area of Graph Convo-

lutional Networks (GCN) have shown great promise for improved results. Although

other approaches towards graph analysis have subsequently been developed, these

have yet to diminish the need for GCNs (Shchur et al., 2018). A GCN layer is a

learnable non-linear function of the vertex features from the previous layer (rep-

resented as a matrix) and the adjacency matrix1 for the graph. As such, GCNs

are almost entirely constructed from matrix operations and hence well amenable to

GPU programming.

One of the main drawbacks to the use of GCNs is the memory footprint. Unlike

other forms of Deep Learning where only a subset of the data ever needs to be

processed at any given point in time, a GCN operates on the entire adjacency

1An adjacency matrix A is an n by n matrix, where n is the number of vertices in the graph.

[a, b] = 1 indicates an edge between vertices a and b.

70

Chapter 6. Half-Precision in Graph Convolutional Neural Networks 71

matrix – i.e. the entire graph – at each step. This limits the size of the graph which

may be operated upon. This is compounded by the fact that most GCN functions

comprise of a number of matrices of commensurate size to the adjacency matrix.

The use of reduced-precision computation, most often combining half and full

precision floating-point values, has been demonstrated to be beneficial within other

areas of deep learning, significantly reducing memory requirements and training time

and improving performance (Micikevicius et al., 2018; Das et al., 2018; Kuchaiev et

al., 2018). As memory requirements are the biggest limitation to GCNs, applying

reduced-precision computations would seem an obvious line of attack in order to

process larger and more complex graphs.

Recent advances in GPU technology have lead to the introduction of Tensor

Cores, which enable dynamic adaptation of mixed-precision floating-point computa-

tions. These allow for acceleration of Deep Learning and, according to NVIDIA, can

provide up to ten times speed up (NVIDIA Tensor Cores: Unprecedented Accelera-

tion for HPC and AI , n.d.). This, again, could be most useful when training larger

GCNs. In this work, four levels of optimisation are implemented, with respect to the

operation precision levels used in the forward and backward passes of the network,

on two types of GCNs – a standard GCN and a Graph Convolutional Auto-Encoder

(GAE) – in order to evaluate the advantages and disadvantages of each optimisation

level. Experiments range from using no optimisation (full precision for all operation)

through to everything performed and stored in half-precision. In order to make use

of the Tensor Cores, certain model parameters, including input size, need to be di-

visible by 8 due to hardware and software restrictions in the NVIDIA Tensor Core

implementation (NVIDIA Tensor Cores: Unprecedented Acceleration for HPC and

AI , n.d.). Therefore, the results are evaluated both with and without padding the

data to be a multiple of 8. As a result, certain benchmark datasets used in the ex-

periments need to be padded to meet this condition, thus the results are evaluated

Chapter 6. Half-Precision in Graph Convolutional Neural Networks 72

both with and without padding.

Based on prior literature which used reduced precision in deep learning, such

as computer vision and natural language processing, one would Näıvely assume

that learning-based graph analysis tasks would see reduced memory requirements,

faster training times and perhaps even improved performance – with the desire

that memory reduction would be the most significant. As such, these are set as

the hypotheses for this work and design the experiments accordingly to evaluate the

validity of each point. Experiments are thus performed using two types of GCN with

four optimisation levels on two datasets. The real-world Cora2 dataset is used, and

to allow the scaling of graphs to specific sizes, synthetic graphs are also generated

using the Barabási-Albert Model (Barabási et al., 2000).

In short, this research attempts to answer the following important questions with

respect to the effects of reduced-precision operations and Tensor Cores on graph-

based neural networks:

• Run-Time - Will using reduced-precision operations and Tensor Cores lead to

more efficient training time for graph convolutional neural networks?

• Memory Usage - Will using reduced-precision operations and Tensor Cores

lead to reduced memory requirement for graph convolutional neural networks?

• Predictive Performance - Will using reduced-precision operations and Tensor

Cores lead to an improvement, degradation or no significant change in the

predictive performance of graph convolutional neural networks?

To the best of the author’s knowledge, this is the first work to conduct a com-

prehensive analysis of the effects of reduced precision on graph convolutional neu-

2https://relational.fit.cvut.cz/dataset/CORA

6.1. Motivation 73

ral networks. The source code for this work is available at https://github.com/

grossular/half-precision-gcn.

6.1 Motivation

With the introduction of Tensor Cores, first featured in the Volta GPU microarchi-

tecture developed by NVIDIA (NVIDIA Volta: The Tensor Core GPU Architecture

designed to Bring AI to Every Industry , n.d.), improved deep learning performance

was made possible compared to the conventional CUDA cores. Tensor Cores are

meant to enable mixed-precision computing (combining features from both half and

full-precision operations), dynamically adapting calculations to accelerate through-

put while preserving the accuracy of all calculations. It has been claimed that this

technology can provide up to 10× speed ups for training across a variety of workloads

(NVIDIA Tensor Cores: Unprecedented Acceleration for HPC and AI , n.d.).

To take advantage of the capabilities of Tensor Cores, workloads must use mixed-

precision computations. Deep learning training procedures traditionally use the full-

precision (FP32) format but with the growing demands for larger datasets and thus

network architectures, intensive compute and memory requirements make stable

model training expensive or even intractable at times. Using half-precision (e.g.

FP16) can address the issues of memory bandwidth and computation time. However,

the FP16 format has a narrower dynamic range than FP32 and its use can lead to

significant loss of accuracy to the point of making successful training impossible. To

address this issue, mixed-precision operations are introduced to enable maintaining

accuracy standards while taking advantage of reduced computation and memory

bandwidth at the same time.

It is important to note that using mixed-precision operations is not the only

requirement for using Tensor Cores and certain other conditions must also be met.

6.1. Motivation 74

The use of Tensor Cores is predicated on certain layer parameters (e.g. batch size,

input size, output size, number of channels) being divisible by 8. This requirement

is based on how data is stored and accessed in memory (NVIDIA Deep Learning

Performance, 2020). Tensor Cores primarily optimise GEMM (General Matrix Mul-

tiplications), a fundamental building block for many operations in neural networks,

such as fully-connected layers, recurrent layers (e.g. RNN, LSTM, GRU) and con-

volutional layers. The use of Tensor Cores via mixed-precision operation has been

extensively investigated for various tasks and data modalities, such as computer

vision and natural language processing (Micikevicius et al., 2018; Kuchaiev et al.,

2018). However, the important area of graph analysis has thus far been neglected in

the existing literature. In this work, the capabilities and limitations of Tensor Cores

and mixed-precision training of graph convolutional neural networks are explored.

The applicability of Automatic Mixed Precision (AMP) on two commonly-used

graph network architectures (GCN and GAE) is investigated. NVIDIA Apex (NVIDIA

Apex: Tools for Easy Mixed-Precision Training in PyTorch, n.d.) enables AMP via

PyTorch (Paszke et al., 2019) – providing the primary framework for the exper-

iments. Apex AMP provides the opportunity to easily experiment with different

levels of precision, by selecting an “optimisation level”. Four default AMP modes

(optimisation levels) are provided, briefly described in the following:

O0: Enables full-precision FP32 training. Neural network weights and their

corresponding operations are FP32. As this makes no modifications it can be used

to establish a baseline for the experiments.

O1: The most commonly-used AMP mode, places each operation into one of

two lists: a whitelist for all Tensor Core-friendly operations (e.g. GEMM and con-

volutions), and a blacklist for all others (e.g. non-linear operations, normalisations).

Whitelist operations are performed in FP16 and blacklist in FP32. Dynamic loss

scaling is also important, as activation gradient values during FP16 training need to

6.2. Methodology 75

be scaled to preserve values that could otherwise be lost to zero.

O2: (“Almost-FP16 Mixed Precision”), casts the model weights to FP16 but

maintains a set of FP32 master weights. The input data that is fed through the

network is cast to FP16 but the optimiser acts directly on the FP32 weights. Dy-

namic loss scaling is implemented as in O1. O1 and O2 are essentially different

implementations of mixed precision and their performance will depend on the type

of data and the operations involved in the network architecture.

O3: Enables full FP16 across all operations and as such does not achieve the

stability of O1 and O2 and will lead to a loss of accuracy. Similar to O0, this mode

is primarily used to provide a baseline for the evaluation of other levels.

These experiments will enable an accurate and detailed analysis of the effects

of mixed-precision on GCNs in terms of model performance, memory footprint and

run-time.

6.2 Methodology

The primary objective of this work is to investigate how graph-specific neural models

are affected by the use of reduced-precision operations. In order to achieve this,

experiments are run on real and synthetic graphs, over all the available optimisation

levels, on hardware equipped both with and without Tensor Cores. In the remainder

of this section, a brief overview of the neural network architectures used in this work

is given, before detailing the changes made for this study.

6.2.1 Graph Convolutions

Here, the basics of Graph Convolutional Networks (GCN) (Kipf & Welling, 2017),

as introduced in Section 5.3.1, and the details how they may be affected by the move

to reduced precision are explored. GCNs can be thought of differentiable functions

6.2. Methodology 76

for aggregating feature representations from the neighbourhood of a given vertex

(Hamilton et al., 2017b). For initial input, a GCN-based model takes the normalised

adjacency matrix Â representing a graph G, and a matrix of initial vertex level

features X, and computes a new matrix of vertex level features H = GCN(Â,X).

Whilst X can be initialized with pre-computed vertex features, it is common to

initialize it with one-hot feature vectors when no prior knowledge is available (in

which case X is the identity matrix I). Each layer in a GCN performs the following

operation (Kipf & Welling, 2017):

GCN (l)(H(l), Â) = σr(ÂH(l−1)W(l)) , (6.2.1)

where l is the number of the current layer, W(l) denotes the weight matrix of that

layer, and H(l−1) refers to the features computed at the previous layer or is equal to

X at l = 0.

A GCN function can be considered as performing a weighted average of the

neighbourhood features for each vertex in the graph. Stacking multiple GCN layers

has the effect of increasing the number of hops from which a vertex-level representa-

tion can aggregate information – a three-layer GCN will aggregate information from

three-hops within the graph to create each representation.

One interesting thing to consider is the dimensionality of the matrices involved

in the GCN operation in Equation 6.2.1:

• The adjacency matrix, A, is of size Nv × Nv, where Nv = |V | is the number

of vertices in the graph.

• The input features matrix, X, is of size Nv × Fv, where Fv is the number of

features for each vertex. Where no vertex features are present and the identity

matrix I is used, the dimensionality would again be Nv ×Nv.

• The parameter matrix, W, is of size Fv × d, where d is the number of units in

6.2. Methodology 77

that layer.

One thing to note is that the number of model parameters is closely tied to the

size of the input features and that the resulting output from each layer in a GCN is

bound by the number of vertices, in contrast to computer vision models.

6.2.2 Graph Convolutional Auto-Encoders

GCNs are trained via supervised learning, where labels are provided for a specific

task – commonly vertex classification (Hamilton et al., 2017b; Kipf & Welling, 2017).

However, extensions have been made to allow for convolutional auto-encoders for

graph datasets, called Graph Auto Encoders (GAE) (Kipf & Welling, 2016). Auto-

encoders are a type of unsupervised neural network which compressed the input

data to a low-dimensional space, and then reconstructs the original data from the

learned representation. This is commonly performed in order to use the resulting

embeddings for the task of link prediction (Kipf & Welling, 2016; Bonner et al.,

2019; Bonner, Brennan, et al., 2018).

Here, a non-probabilistic version of the GAE is considered, where the goal is to

learn a low-dimensional representation of A from G, via an encoding from a GCN

Z = GCN(A,X), such that it can be used to accurately reconstruct the graph

via a product between Z and its transpose passed through an element-wise logistic

function σ:

A′ = σ(ZZT). (6.2.2)

6.2.3 Reduced Precision Changes

For the models used in this work, the overall architecture from the prior works (Kipf

& Welling, 2017, 2016) is replicated. However, some changes were required to ensure

6.3. Experimental Setup 78

suitability for processing using reduced precision. In order to take advantage of the

Tensor Cores, available on Volta and subsequent NVIDIA GPU architectures, some

padding of the input graph is required under certain conditions. This is because

Tensor Cores are only activated when specific matrices involved in operations for

the forward and backward passed are divisible by 8, for FP16 matrices, or 16, for

INT8 matrices (NVIDIA Deep Learning Performance, 2020). Due to this, in the

experiments presented, where an input matrix is observed to be indivisible by 8

it is padded with zeroes to make it adhere to this condition so that Tensor Cores

could be fully utilised. This padding can be thought of as additional vertices added

to the graph with no edges to its self of other vertices. These added vertices are

removed before the loss computation is performed. An experimental evaluation of

this is presented in Section 6.4 to assess if this process has any negative impact

of predictive performance. Additionally, due to current limitations in PyTorch3,

all tensors needed to be cast to dense matrices in order to be able to use reduced

precision modes.

6.3 Experimental Setup

6.3.1 Datasets

These experiments use two primary datasets: the real-world benchmark Cora dataset

(Yang et al., 2016) and a synthetic dataset using the well-known Barabási-Albert

Model graph generation model (Barabási et al., 2000). The Cora dataset has been

used for vertex classification and link prediction in the original GCN (Kipf & Welling,

2017) and GAE (Kipf & Welling, 2016) papers, so was the ideal choice for assessing

any predictive performance changes due to the reduced precision. For observing run

3https://github.com/pytorch/pytorch/issues/41069

6.3. Experimental Setup 79

time and memory-related metrics, synthetics Barabási-Albert graphs where used

as they reflect the scale-free nature of many empirical graphs and allowed us to

precisely control the number of vertices in the input graph (Barabási et al., 2000).

6.3.2 Experimental Environment

The performance of the models was measured on three different computer systems,

with three different generations of NVIDIA GPU (Pascal, Volta and Turing). The

V100 (Volta) and Titan RTX (Turing) both are equipped with Tensor cores, whilst

the P100 (Pascal) has no dedicated 16-bit hardware. The three test system are as

follows:

• Pascal System - NVIDIA Tesla P100 GPU (16GB), Intel(R) Xeon(R) CPU

E5-2690 v4 @ 2.60GHz, 128GB RAM, with Ubuntu 16.04, Python 3.7, CUDA

10.1, CuDNN v7.6 and PyTorch 1.1.

• Turing System - NVIDIA Titan RTX GPU (24GB), Intel(R) i9-9820X, 64GB

RAM, with Arch 5.7.9, Python 3.8, CUDA 10.2, CuDNN v7.6 and PyTorch

1.1.

• Volta System - NVIDIA Tesla V100 GPU (16GB), Intel(R) Xeon(R) CPU

E5-2690 v4 @ 2.60GHz, 128GB RAM, with Ubuntu 16.04, Python 3.7, CUDA

10.1, CuDNN v7.6 and PyTorch 1.1.

6.3.3 Experiments

Two distinct sets of experiments are performed: firstly, measure any impact on the

ability of the models to make predictions accurately. Secondly, assess the affect of

half-precision on run-time and total GPU memory consumed.

For the predictive performance experiments, semi-supervised classification accu-

racy for the GCN, and Area Under the precision-recall Curve (AUC) and Average

6.3. Experimental Setup 80

Parameter Value Range

Opt Level O0, 01, 02, 03

Use Features False, True

Model Size 16, 32, 64, 128, 256, 512, 1024, 2048

Num Vertices {x | 2048 ≤ x ≤ 215 ≡ 0 mod 1024}.

Table 6.1: Model and synthetic data parameter ranges.

Precision (AP) for the link prediction task are measured. These are the performance

metrics used to measure the performance of the models when they were introduced

(Kipf & Welling, 2017, 2016). The model architecture and primary hyperparameters

are fixed and were also taken from the original work and were kept constant across

all GPUs, padding use and optimisation levels.

The run time performance results are taken using synthetic graphs so that the size

can easily be controlled. This means that all graph sizes are divisible by 8, meaning

no padding is required. For these experiments, models were trained using the various

parameters detailed in Table 6.1 and measured both the memory consumption and

the total training time. Each combination of parameters from Table 6.1 was repeated

five times, each repeat with a different random seed.

6.4. Experimental Results 81

6.4 Experimental Results

In this section, results of the experimental evaluation as discussed in Section 6.3 are

presented. This begins with an assessment of the effects of mixed-precision training

on the predictive performance of semi-supervised classification and link prediction.

Then, the change in both run-time and the maximum memory consumed on the

GPU is measured as the number of vertices in the input graph and the model size

is increased for the various levels of reduced-precision optimisation.

6.4. Experimental Results 82

pa
dd

in
g

fe
at

ur
es

to
ta

l_t
im

e

ro
c_

sc
or

e

ap
_s

co
re

m
ax

_m
em O0 O1 O2 O3

padding

features

total_time

roc_score

ap_score

max_mem

O0

O1

O2

O3

0.5

0.0

0.5

(a) GAE

pa
dd

in
g

fe
at

ur
es

to
ta

l_t
im

e

ac
c_

te
st

m
ax

_m
em O0 O1 O2 O3

padding

features

total_time

acc_test

max_mem

O0

O1

O2

O3

0.5

0.0

0.5

(b) GCN

Figure 6.1: Correlation of predictive performance values on the Cora dataset for the

GCN and GAE models using the V100.

6.4. Experimental Results 83

6.4.1 Assessing Model Predictive Performance

The first task here is to evaluate how predictive performance is affected by the move

to reduced precision on the benchmark Cora dataset (Yang et al., 2016). To give a

global view of the relationship between the variables, Figure 6.1 presents the corre-

lation matrices for both the GCN and GAE approaches on the V100 GPU. It should

be noted that very similar results were observed for all cards. The results demon-

strating the performance of the various cards for the GCN model, with and without

the use of padding, are presented in Table 6.2. The results in this table measure the

classification accuracy on a holdout test set and are presented as the difference, ∆,

to the normal full-precision mode, O0. It can be seen that the classification result

deviates only very slightly, by a maximum of 0.5%, across all cards for opt levels

O1 and O2 – meaning that both of these mixed-precision training modes can be

used without adversely affecting predictive performance. However as expected, the

use of O3, complete 16-bit mode, causes a significant drop in accuracy of ≈ 64%

across all GPUs tested. The results also show that the padding applied to the graph

has no significant impact on model accuracy as the maximum difference in accuracy

between the use and the exclusion of padding is 1%.

6.4. Experimental Results 84

GPU Opt Level
∆ Accuracy

w/ Padding w/o Padding

V100

O1 + 0.005 - 0.005

O2 + 0.005 - 0.003

O3 - 0.642 - 0.648

Titan RTX

O1 + 0.001 + 0.002

O2 + 0.003 + 0.004

O3 - 0.647 - 0.646

P100

O1 + 0.002 - 0.001

O2 + 0.004 0

O3 - 0.642 - 0.637

Table 6.2: Comparison of the GCN classification results on the Cora dataset using

vertex features across GPUs and optimisation levels. All elements indicate the

difference ∆ between the values from Ox and O0.

6.4. Experimental Results 85

GPU Opt Level
w/ Padding w/o Padding

∆ AUC ∆ AP ∆ AUC ∆ AP

V100

O1 - 0.005 - 0.006 + 0.001 - 0.005

O2 0 0 + 0.001 0

O3 - 0.277 - 0.195 - 0.276 - 0.194

Titan RTX

O1 - 0.005 - 0.007 - 0.005 - 0.006

O2 0 0 0 0

O3 - 0.277 - 0.195 - 0.276 - 0.194

P100

O1 - 0.005 - 0.007 - 0.005 - 0.006

O2 0 0 0 0

O3 - 0.277 - 0.195 - 0.276 - 0.194

Table 6.3: Comparison of GAE edge prediction results on the Cora dataset using

vertex features across GPUs and optimisation levels. All elements indicate the

difference ∆ between the values from Ox and O0.

The results for the task of link prediction using the GAE model are presented

in Table 6.3. The results largely conform to those presented for the GCN, with the

use of O1 and O2 having no significant impact on predictive performance versus the

full precision baseline, and O3 causing significant degradation. Again, it can be seen

that the use of padding does not impact performance.

6.4.2 Run-Time and Memory Usage Analysis

This section presents the results measuring how run-time and memory usage change

as both the size of the input Barabási-Albert graph and the model size are altered.

For all results in this section, unless otherwise stated, the identity matrix of the

6.4. Experimental Results 86

graph is used as the input features. Additionally, the figures are presented as the

mean over five model seeds and either all model sizes, for the case of the graph size

plots, or all graph sizes, for the case of the model size plots. Error bars are presented

as the standard deviation of these.

To give an overview of how the various factors are related, Figure 6.2 presents

a correlation matrix for the run-time experiments for both the GCN and GAE

models running on the V100 GPU. Some unsurprising observations can be made

across both model types, for example, the positive correlation between the model

size and the total training time, ≈ 0.5 for GAE and ≈ 0.25 for GCN. However,

some perhaps unexpected ones also arise - there is a clear positive correlation, for

the GCN approach, of ≈ 0.25 between the training run being killed because of an

Out Of Memory (OOM) error and the use of opt level O1.

Measuring Run-Time and Memory Usage Versus Graph Size

6.4. Experimental Results 87

m
od

el
_s

ize

nu
m

_v
er

tic
es

fe
at

ur
es

to
ta

l_t
im

e

m
ax

_m
em OO

M O0 O1 O2 O3

model_size

num_vertices

features

total_time

max_mem

OOM

O0

O1

O2

O3

0.50
0.25

0.00
0.25
0.50
0.75

(a) GAE

m
od

el
_s

ize

nu
m

_v
er

tic
es

fe
at

ur
es

to
ta

l_t
im

e

m
ax

_m
em OO

M O0 O1 O2 O3
model_size

num_vertices

features

total_time

max_mem

OOM

O0

O1

O2

O3

0.50

0.25

0.00

0.25

0.50

(b) GCN

Figure 6.2: Correlation of run-time experiment on the GCN and GAE models using

the V100.

6.4. Experimental Results 88

0 10000 20000 30000 40000 50000
Number of Vertices

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

5000 10000150002000025000300003500040000
Number of Vertices

0

50

100

150

200

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

5000 10000150002000025000300003500040000
Number of Vertices

0

50

100

150

200

250

300

350

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.3: GCN total training time versus increases in graph size.

6.4. Experimental Results 89

Now the focus shifts to measuring how the run-time and memory usage are

affected as the number of vertices in the input training graph is changed. Figure

6.3 demonstrates how the run-time of the GCN model responds as the number of

vertices in the input graph is increased. Firstly, by comparing between the two

cards with Tensor Cores (Figures 6.3a and 6.3b) and the one without dedicated 16-

bit hardware (Figure 6.3c), the effect at opt levels O1-O3 is immediately obvious,

with respect to the observed total training time and variation across multiple runs.

The P100 results in Figure 6.3c show the opt level to have almost no impact on the

training time, whereas the other cards show a clear decrease in run-time whenever a

16-bit mode is enabled. One interesting observation is that the standard deviation

(error bar) of each point is much lower for the 16-bit opt levels. As each point is

presented as the mean over seeds and all the model sizes for that graph size, this

would indicate that opt levels O1-O3 are less sensitive to model size when compared

to the graph size. This will be investigated further in the next section when changes

with respect to model size are studied. Perhaps the most surprising result is that

opt level O0, the full 32-bit training model, can scale to larger graph sizes than the

other levels. This mode was able to process graphs of up to 50k vertices where the

other modes never successfully processed an input with more than 42.5k vertices.

This is of note as intuitively one would expect that the reduced-precision modes

would use less memory, and thus to scale to a larger input dataset size – however,

this is clearly not the case. Further evidence of this will be presented when memory

usage is considered.

6.4. Experimental Results 90

0 10000 20000 30000 40000
Number of Vertices

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

5000 10000 15000 20000 25000 30000 35000
Number of Vertices

1

2

3

4

5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

5000 10000 15000 20000 25000 30000 35000
Number of Vertices

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Figure 6.4: Speed up of the various opt levels versus O0 for the GCN approach.

6.4. Experimental Results 91

To further investigate how various opt levels affect performance relative to the

baseline of full-precision, the speed up of all opt levels relative to O0 for the GCN

approach in Figure 6.4 are presented. The figure highlights how mixed-precision can

offer large speed-ups for graph-based neural models, with the proviso that the GPU

has dedicated hardware support for the operations. It can be seen that the best

speed up figures are provided by opt levels O2 and O3, achieving maximum figures

of ≈ 3.5 and ≈ 3 for the Titan RTX and the V100 respectively. However, opt level

O1 trails behind these figures and also has a lower maximum number of vertices,

as evidenced by the absence of data along the x-axis for this opt level. Figure 6.4c

demonstrates that using mixed precision when the GPU is lacking the 16-bit specific

hardware can actually result in a worse run-time overall, as illustrated by the speed

up value of below 1 across all opt levels.

6.4. Experimental Results 92

5000 10000 15000 20000
Number of Vertices

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Vertices

0

20

40

60

80

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0

20

40

60

80

100

120

140

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.5: GAE total training time versus increases in graph size.

6.4. Experimental Results 93

It is important to highlight how the GAE model is affected by the various opti-

misation levels, with Figure 6.5 showing the change in total training time versus the

input graph size. It can again be seen in Figure 6.5c that using a mixed-precision

training mode offers no run-time benefit if the GPU lacks dedicated hardware sup-

port. However, one clear trend is that, when compared to the GCN model, the

GAE does not show the same level of decrease in run-time when mixed-precision

training is utilised. This is demonstrated by opt level O0 being much closer to the

mixed-precision modes, although it is still significantly higher. Another continuing

trend, however, is the much lower run-time variance over model sizes for the mixed-

precision approaches. To investigate at what graph size the mixed-precision modes

start to outperform the baseline, a truncated view of the GAE results for the V100

is presented in Figure 6.6a. The figure shows that at a graph size of 1,000 vertices,

opt levels O2 and O3 start to outperform O0, with O1 also outperforming it when

a count of 1,500 vertices is reached.

6.4. Experimental Results 94

0 500 1000 1500 2000 2500 3000
Number of Vertices

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Total Time

0 500 1000 1500 2000 2500 3000
Number of Vertices

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) Mem Usage

Figure 6.6: A truncated view of the GAE results for the V100.

6.4. Experimental Results 95

5000 10000 15000 20000
Number of Vertices

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 1000012000140001600018000
Number of Vertices

0.5

1.0

1.5

2.0

2.5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0.6

0.7

0.8

0.9

1.0

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Figure 6.7: Speed up of the various opt levels versus O0 for the GAE approach.

6.4. Experimental Results 96

Figure 6.7 highlights the speed up from using mixed-precision modes with the

GAE model. It shows that the speed-up is on average less than what was shown

with the GCN approach. This is most likely due to the much more complex graph

reconstruction loss function required by the GAE approach, as this may not benefit

much from the use of reduced precision. Another interesting trend in the figure is

that the speed-up is much more consistent across graph sizes, with the average speed

up being almost identical from 4,000 to 18,000 vertices.

These experiments also include an analysis of how the change in the input graph

size affects the maximum memory consumed on the GPU during the training pro-

cess, with results across the three GPUs being presented in Figure 6.8. There is

one clear and perhaps unintuitive result demonstrated across all cards - using a

reduced-precision mode of any kind results in more memory usage when compared

to full precision for a given graph size. The result explains the earlier observa-

tion that using a reduced-precision mode means that a smaller total graph size can

run when compared to opt level O0 – they were running out of available memory

sooner. It is interesting to note that the results are highly consistent across all

cards, demonstrating that even when offering no performance benefit on the P100,

the reduced-precision modes O1-O2 are still consuming the additional memory.

6.4. Experimental Results 97

0 10000 20000 30000 40000 50000
Number of Vertices

0

5

10

15

20

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(a) Titan RTX

5000 10000 15000 20000 25000 30000 35000 40000
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) V100

5000 10000 15000 20000 25000 30000 35000 40000
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.8: Maximum amount of GPU memory consumed during the training pro-

cess across all cards for the GCN model.

6.4. Experimental Results 98

Figure 6.9 highlights how the maximum memory required for the various opt

levels changes with respect to the number of vertices in the input graph. The figure

highlights how, as was true for the run-time, the mixed-precision opt levels are much

closer together with respect to the baseline here. It also re-emphasises how similar

the pattern of memory usage is across the various cards – even on the P100 GPU. To

analyse at what point the memory usage of the mixed-precision approaches starts to

increase, Figure 6.6b presents a truncated view of the memory usage for the V100

GPU. The figure shows by a graph size of 1,000 vertices, opt level O1 is starting to

demonstrate more memory usage than the other optimisation levels.

6.4. Experimental Results 99

5000 10000 15000 20000
Number of Vertices

0

5

10

15

20

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(a) Titan RTX

2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Vertices

0

2

4

6

8

10

12

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(b) V100

2500 5000 7500 10000 12500 15000 17500
Number of Vertices

0

2

4

6

8

10

12

14

To
ta

l G
PU

 M
em

or
y

Us
ag

e
(G

B)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.9: GAE max memory usage versus increases in graph size.

6.4. Experimental Results 100

Measuring Run-Time and Memory Usage Versus Model Size

Results demonstrating how the performance and memory consumption is affected

by the model size are presented here. Figure 6.10 shows the increases in model sizes

against the total training time. Conforming to the trend established earlier, not

using reduced precision results in large increases in run-time as larger model sizes

are used. Conversely, any use of reduced precision means that the run-time is largely

unaffected by increases in the number of model parameters – a very interesting

observation. Figure 6.11 demonstrates the speed up of the various reduced-precision

optimisation levels against the full-precision baseline. The figure shows that the

potential speed up by using reduced precision continues to increase as large model

sizes are used, indeed the speed-up has not plateaued even with the largest size used.

This suggests that further experiments could be run to determine at what point the

speed up no longer increases.

6.4. Experimental Results 101

102 103

Model Filter Size (Log)

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

102 103

Model Filter Size (Log)

0

50

100

150

200

250

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

102 103

Model Filter Size (Log)

0

50

100

150

200

250

300

350

400

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.10: Total training time as the model size is increased for the GCN model.

6.4. Experimental Results 102

102 103

Model Size

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

102 103

Model Size

1

2

3

4

5

6

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

102 103

Model Size

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Figure 6.11: Speed up of the various opt levels versus O0 for the GCN approach.

Results presented using the large graph size that was able to complete with all model

sizes.

6.4. Experimental Results 103

Figure 6.12 illustrates how various GPUs scale across model sizes in the GAE

approach. The overall trend is similar to that of the GCN approach, with the full-

precision mode demonstrating a large and sharp increase in run-time as larger model

sizes are reached. However, one key difference is the larger variance displayed at

each point, meaning the run-time for the GAE approach is more sensitive to the

input graph size. Figure 6.13 shows the speed up versus the full-precision baseline

for all cards. Two interesting trends can be observed from the figure: firstly, the

difference in speed up between the various optimisation levels is reduced here versus

the GCN results, secondly the speed up is overall less for a given model size than

was shown for the GCN result. These results suggest that, due to the complex graph

reconstruction method used for the model optimisation, GAE type models are more

sensitive to the input graph size than the overall model complexity.

6.4. Experimental Results 104

102 103

Model Filter Size (Log)

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(a) Titan RTX

102 103

Model Filter Size (Log)

0

20

40

60

80

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(b) V100

102 103

Model Filter Size (Log)

0

20

40

60

80

100

120

140

160

To
ta

l T
ra

in
in

g
Ti

m
e

(S
)

opt_level
O0
O1
O2
O3

(c) P100

Figure 6.12: Total training time as the model size is increased for the GAE model.

6.4. Experimental Results 105

102 103

Model Size

1.0

1.5

2.0

2.5

3.0

Sp
ee

d
up

opt_level
O1
O2
O3

(a) Titan RTX

102 103

Model Size

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
up

opt_level
O1
O2
O3

(b) V100

102 103

Model Size

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Sp
ee

d
up

opt_level
O1
O2
O3

(c) P100

Figure 6.13: Speed up of the various opt levels versus O0 for the GAE approach as

model size increases.

6.5. Conclusion 106

6.5 Conclusion

This chapter provides a clear and detailed analysis of the impact of using reduced-

precision computation and specialised GPU hardware designed for such operations

on graph-based neural networks. Tensor Cores, introduced in modern NVIDIA GPU

architectures, are capable of enabling mixed-precision operations by dynamically

adapting calculations to accelerate throughput while preserving accuracy. While

the effects of these improvements have been thoroughly explored in various facets of

machine learning, such as computer vision and natural language processing, defini-

tive literature on graph convolutional neural networks, which could theoretically

benefit from reduced precision and Tensor Cores, is sparse. In this vein, compre-

hensive experiments are performed to evaluate the effects of using mixed-precision

training on the predictive performance of both the semi-supervised classification and

link prediction tasks in graph neural networks. The change in both run-time and

the maximum memory consumed on the GPU is also measured as the number of

vertices in the input graph and the model size is increased for the various levels

of reduced-precision optimisation. As expected, the experiments demonstrate that

using reduced-precision optimisation modes, taking advantage of Tensor Cores, re-

duce run-time for all models training by a significant margin. This points to the

great advantage that reduced-precision and Tensor Cores can provide, considering

certain layer parameters are divisible by 8. As for memory usage, the experiments

indicate an adverse impact of using automatic mixed precision on graph convolu-

tional networks. Using mixed-precision (O1,O2) increases memory usage compared

to using full-precision (O0) or half-precision (O3) operations. In terms of the pre-

dictive performance of the models, it is observed that using complete half-precision

(O3) fully hampers the learning process and unsurprisingly leads to a total model

collapse in terms of accuracy, as shown in Table 6.2 and Table 6.3. Using mixed-

6.5. Conclusion 107

precision (O1,O2) indicates no significant change in performance compared to the

full-precision mode (O0).

While this work has been primarily focused on NVIDIA Apex enabling automatic

mixed-precision via PyTorch, other frameworks and libraries making use of various

other forms of reduced precision need to be fully investigated, which would be an

interesting trajectory for future work.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The use of graphs to provide a structured representation of data encompassing com-

plex relationships is of interest across a range of domains. It has been demonstrated

that many of the analysis methods used for extracting structural and spacial infor-

mation from graphs struggle to scale well.

The remainder of this chapter will be presented as sections covering each of the

original research objectives presented in Section 1.3.

7.1.1 Objective 1 - Development of a simple mechanism for

ingesting graph data from its many forms.

The first piece of work described in this thesis, discussed in Chapter 3 describes Sem-

NetCon. Providing an intuitive tool allowing network information to be extracted

from disparate data sources and stored in a choice of data formats. This piece of

work, which has been made available to the wider community via GitHub publish-

ing as open source, has provided a simple mechanism for ingesting graph data from

many different source formats. SemNetCon allows enables automatic construction

108

7.1. Conclusions 109

of graph datasets in a way that was not previously possible.

7.1.2 Objective 2 - An investigation of the optimal ways for

comparing the similarity between graphs.

In Chapter 4 an investigation into how the comparison of similarity between graphs

is conducted. The work presented in this chapter has demonstrated that the use

of dimensionality reduction and clustering on derived graph fingerprints is an ap-

propriate method for identifying similarity between graphs, providing a scalable

comparison of graph structures. Delivering an overall accuracy of 99%, the graph

fingerprint and t-SNE approach shows a significant improvement over traditional

methods and provides an efficient method for clustering very large and complex

graphs. While it is noted that this method has a significantly higher runtime than

comparable methods, results are provided in a timely manner with more useful re-

sults than other methods. While t-SNE is very good at clustering data it does not

actually classify the clusters. Further work in this area would be beneficial to extend

the t-SNE algorithm to allow for the identification of cluster membership for each

group.

7.1.3 Objective 3 - Exploration of the optimal ways for

identifying sub-graphs with common features within

a larger graph.

Further, Chapter 5 of this work has presented an exploration of the optimal ways for

identifying sub-graphs with common features within a larger graph or, more simply,

Community Detection. This has demonstrated that ego-nets extracted from graphs

can de used to improve the scalability of graph focussed machine learning models.

The presented method removes the need to store an entire graph in GPU memory

7.1. Conclusions 110

(which significantly reduces the size of graphs which can be handled), instead only

requiring that a much smaller sub-graph, in the form of an ego-net, is available for

each forward pass of the model. This means that any size of a graph can be processed

on a GPU. It was also demonstrated that the use of an ego-net based approach

performed favourably, in terms of accuracy, generally learning in far fewer epochs

and producing similar final results to the baseline methods. The primary limitation

of the approach presented here is the need to save every ego-net to disk. This could

potentially be mitigated by constructing ego-nets as they are required, however,

this is yet to be investigated. This work fulfils the original research objective of

developing and evaluating methods for scalable machine learning methods for the

identification of communities within graph structures.

7.1.4 Objective 4 - An evaluation of whether it is possible

to reduce the amount of computing resources needed

for processing large graphs.

Finally, in order to evaluate whether it is possible to reduce the amount of computing

resources needed for processing large graphs, as discussed in Chapter 6. This work

has provided an extensive analysis of the impact of using reduced-precision com-

putation, leveraging specialised hardware in the form of Tensor cores. While this

approach has been thoroughly evaluated in other domains, almost no work exists

with respect to graph convolutional neural networks. The effects of reduced-precision

training was evaluated at both vertex-level classification and link prediction tasks.

It was demonstrated that using reduced-precision optimisation modes, taking ad-

vantage of Tensor Cores, was able reduce the training run-time for all approaches

by a significant margin, generally providing a speed up value greater than 3. How-

ever, it was found that this approach is not without drawbacks. Experimentation

7.1. Conclusions 111

shows an adverse impact of using automatic mixed precision on graph convolutional

neural networks. Mixed-precision has a higher memory consumption compared to

full-precision or half-precision, due to duplicate matrices being held in memory. Re-

garding predictive performance it is observed that half-precision does not perform

well but full-precision and mixed-precision provide very similar results.

7.2. Future Work 112

7.2 Future Work

Whilst the work presented in this thesis has been successful in achieving the original

research objectives, there is clear scope for future work to be undertaken.

1. A natural extension of the work presented in Chapter 4, taken together with

the work in Chapter 5 is to investigate the use of ego-net derived fingerprints.

Using this type of embedding at an ego-net level should allow for efficient

community classification that generalises across graphs from different domains.

2. The work in Chapter 6 demonstrated that mixed-precision computation with

graph neural networks yielded increased memory usage and much faster run-

time while maintaining predictive accuracy. The use of an ego-net based ap-

proach in this context could mitigate the memory impact and allow mixed-

precision to be used on much larger graphs than is currently possible.

3. A worthwhile extension to all the work presented here would be to investigate

datasets beyond the citation networks used. Additional datasets from the

Open Graph Benchmark 1 could provide a mechanism for a broader evaluation

for this work.

1https://ogb.stanford.edu/

References

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph-based Anomaly Detection and

Description: A Survey. Data Mining and Knowledge Discovery , 626-688.

Antoniou, G., & Harmelen, F. V. (2008). A semantic web primer, 2nd edition

(cooperative information systems) (2nd ed.). The MIT Press.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seed-

ing. In Proceedings of the eighteenth annual acm-siam symposium on discrete

algorithms (pp. 1027—-1035). Society for Industrial and Applied Mathemat-

ics.

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks.

Science (New York, N.Y.), 286 (5439), 509–12.

Barabási, A. L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of ran-

dom networks: the topology of the world-wide web. Physica A: Statistical

Mechanics and its Applications , 281 (1), 69–77.

Barabási, A. L., & Bonabeau, E. (2003). Scale-free networks. Scientific Ameri-

can(May), 50–59.

Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The ar-

chitecture of complex weighted networks. Proceedings of the National Academy

of Sciences of the United States of America, 101 (11), 3747–3752.

Batagelj, V., & Mrvar, A. (2002). Pajek - Analysis and Visualization of Large

Networks. Lecture Notes in Computer Science, 2265 , 477+.

113

References 114

Berkhin, P. (2006). A Survey of Clustering Data Mining Techniques. In Grouping

multidimensional data (pp. 25–71). Berlin/Heidelberg: Springer-Verlag.

Berlingerio, M., Koutra, D., Eliassi-Rad, T., & Falousos, C. (2012). NetSimile: A

Scalable Approach to Size-Independent Network Similarity. CoRR.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific

American, 284 (5), 34–43.

Biggs, N., Lloyd, E. K., & Wilson, R. J. (1976). Graph Theory, 1736-1936. Oxford:

Oxford University Press.

Blandford, D. K., Blelloch, G. E., & Kash, I. A. (2004). An experimental analysis

of a compact graph representation. Workshop on Algorithms Engineering and

Experiments (ALENEX), 106.

Bollob’as, B. (1998). Modern Graph Theory. New York, New York, USA: Springer

Science & Business Media.

Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Net-

works , 29 (4), 555–564.

Bonner, S., Atapour-Abarghouei, A., Jackson, P. T., Brennan, J., Kureshi, I.,

Theodoropoulos, G., . . . Obara, B. (2019). Temporal neighbourhood ag-

gregation: Predicting future links in temporal graphs via recurrent variational

graph convolutions. In 2019 IEEE international conference on big data (pp.

5336–5345).

Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., & McGough, A. S. (2016).

Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fin-

gerprints’. In Twelfth workshop on mining and learning with graphs (MLG)

workshop at kdd’16. ACM.

Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A. S., & Obara,

B. (2017). Evaluating the quality of graph embeddings via topological feature

reconstruction. In IEEE international conference on big data (pp. 2691–2700).

References 115

Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A. S., & Obara,

B. (2018). Temporal graph offset reconstruction: Towards temporally robust

graph representation learning. In 2018 IEEE international conference on big

data (pp. 3737–3746).

Bonner, S., Brennan, J., Theodoropoulos, G., Kureshi, I., & McGough, A. S. (2016).

GFP-X: A parallel approach to massive graph comparison using SPARK. In

2016 IEEE international conference on big data (big data) (p. 3298-3307).

Bonner, S., Brennan, J., Theodoropoulos, G., Kureshi, I., & McGough, A. S. (2017).

Deep topology classification: A new approach for massive graph classification.

Proceedings - 2016 IEEE International Conference on Big Data, Big Data

2016 , 3290–3297.

Bonner, S., Kureshi, I., Brennan, J., & Theodoropoulos, G. (2017). Chapter 14.

exploring the evolution of big data technologies. In I. Mistrik, R. Bahsoon,

N. Ali, M. Heisel, & B. Maxim (Eds.), Software architecture for big data and

the cloud (p. 253-283). Boston: Morgan Kaufmann.

Bonner, S., Kureshi, I., Brennan, J., Theodoropoulos, G., Mcgough, A. S., & Obara,

B. (2018). Exploring the semantic content of unsupervised graph embeddings:

An empirical study. Data Science and Engineering , 4 (3), 269-289.

Bonner, S., Mcgough, A. S., Kureshi, I., Brennan, J., Theodoropoulos, G., Moss,

L., . . . Antoniou, G. (2015). Data quality assessment and anomaly detection

via map / reduce and linked data: A case study in the medical domain. In

2015 IEEE international conference on big data (Big Data) (p. 737-746).

Brandes, U., Robins, G., McCranie, A., & Wasserman, S. (2013). What is network

science? Network Science, 1 (01), 1–15.

Brennan, J., Bonner, S., Atapour-Abarghouei, A., Jackson, P. T., Obara, B., &

McGough, A. S. (2020). Not half bad: Exploring half-precision in graph

convolutional neural networks. In 2020 IEEE international conference on big

References 116

data (Big Data). IEEE.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013).

In Spectral Networks and Locally Connected Networks on Graphs.

Carling, K., & Meng, X. (2015). Confidence in heuristic solutions? Journal of

Global Optimization, 63 , 381-399.

Clauset, A., Newman, M., & Moore, C. (2004). Finding community structure in

very large networks. Physical Review E , 70 (6), 1–6.

Courbariaux, M., Bengio, Y., & David, J.-P. (2015). Training deep neural networks

with low precision multiplications. In International conference on learning

representations, (ICLR).

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D., Avancha, S., Banerjee, K.,

. . . Pirogov, V. O. (2018). Mixed precision training of convolutional neural

networks using integer operations. In International conference on learning

representations (ICLR).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. In Proceedings of

the 30th international conference on neural information processing systems

NeurIPS.

Ding, C., & He, X. H. X. (2002). Cluster merging and splitting in hierarchical

clustering algorithms. 2002 IEEE International Conference on Data Mining,

2002. Proceedings., 1–8.

Eiglsperger, M., Brandes, U., Lerner, J., & Pich, C. (2013). Graph Markup Language

(GraphML). Handbook of Graph Drawing and Visualization, 517–541.

Erdős, P., & Renyi, A. (1984). The Evolution of Random Graphs. Transactions of

the American Mathematical Society , 286 (1), 257.

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, 8 , 128–140.

References 117

Foltz, P. W., Lavoie, N., & Oberbreckling, Robert J Rosenstein, M. B. (2005).

Network science. Washington, D.C.: The National Acedemies Press.

Ginsburg, B., Nikolaev, S., & Micikevicius, P. (2017). Training of deep networks

with half precision float. In Nvidia gpu tech conf.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

(http://www.deeplearningbook.org)

Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learn-

ing with limited numerical precision. In International conference on machine

learning (pp. 1737–1746).

Hamilton, W., Ying, Z., & Leskovec, J. (2017a). Inductive representation learning on

large graphs. In Advances in neural information processing systems (Vol. 30,

pp. 1–19). Curran Associates, Inc.

Hamilton, W., Ying, Z., & Leskovec, J. (2017b). Inductive representation learning

on large graphs. In Advances in neural information processing systems (pp.

1024–1034).

Himsolt, M., & Passau, U. (1996). GML : A portable Graph File Format. Syntax ,

1–11.

Hinton, G. E., & Roweis, S. T. (2002). Stochastic neighbor embedding. Advances

in neural information processing systems , 833–840.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quan-

tized neural networks: Training neural networks with low precision weights and

activations. The Journal of Machine Learning Research, 18 (1), 6869–6898.

Jolliffe, I. (n.d.). Principal Component Analysis. In Wiley statsref: Statistics

reference online. Chichester, UK: John Wiley & Sons, Ltd.

Jolliffe, I., Pelleg, D., Pelleg, D., Moore, A. W., Moore, A. W., Ward, J. H., . . . Cai,

Z. (2011). Modern hierarchical, agglomerative clustering algorithms. IEEE

Transactions on Cybernetics , 45 (3), 430–443.

References 118

Justus, D., Brennan, J., Bonner, S., & Mcgough, A. S. (2018). Predicting the

computational cost of deep learning models. In IEEE international conference

on big data (p. 3873-3882).

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller,

J. W. Thatcher, & J. D. Bohlinger (Eds.), Complexity of computer computa-

tions (pp. 85–103). Boston, MA: Springer US.

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning

graphs. The Bell System Technical Journal , 49 (2), 291-307.

Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. NIPS Workshop

on Bayesian Deep Learning .

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph con-

volutional networks. In International conference on learning representations

(ICLR).

Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., . . . Rao,

N. (2017). Flexpoint: An adaptive numerical format for efficient training of

deep neural networks. In Adv Neural Inf Process Syst (pp. 1742–1752).

Koutra, D., Parikh, A., Ramdas, A., & Xiang, J. (2011). Algorithms for Graph

Similarity and Subgraph Matching. In Proc. ecol. inference conf 17.

Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels.

Applied Network Science, 5 , 1-42.

Kuchaiev, O., Ginsburg, B., Gitman, I., Lavrukhin, V., Li, J., Nguyen, H., . . . Mi-

cikevicius, P. (2018). Mixed-precision training for NLP and speech recognition

with OpenSeq2Seq. arXiv:1805.10387 .

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics , 22 (1), 79–86.

Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification

and shrinking diameters. ACM Transactions on Knowledge Discovery from

References 119

Data, 1 (1), 2–43.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford Large Network Dataset

Collection. Retrieved from http://snap.stanford.edu/data (Accessed

June 12, 2017)

Leskovec, J., & Sosič, R. (2016). SNAP. ACM Transactions on Intelligent Systems

and Technology , 8 (1), 1–20.

Li, G., Semerci, M., & Yener, B. (2011). Graph Classification via Topological and

Label Attributes. MLG .

Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on

Information Theory , 28 (2), 129–137.

Madhulatha, T. (2012). An overview on clustering methods. Journal Of Engineer-

ing , 2 (4), 719–725.

McCune, R. R., Weninger, T., & Madey, G. (2015). Thinking Like a Vertex: a

Survey of Vertex-Centric Frameworks for Distributed Graph Processing. ACM

Comput. Surv., 46556 .

Mcgough, A. S., Forshaw, M., Brennan, J., Al Moubayed, N., & Bonner, S. (2018).

Using machine learning to reduce the energy wasted in volunteer computing

environments. In 2018 ninth international green and sustainable computing

conference (IGSC) (p. 1-8).

Mellempudi, N., Srinivasan, S., Das, D., & Kaul, B. (2019). Mixed precision train-

ing with 8-bit floating point. In Relational representation learning workshop,

NeurIPS.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., . . . Wu,

H. (2018). Mixed precision training. In International conference on learning

representations (ICLR).

Milenković, T., Lai, J., & Przulj, N. (2008). GraphCrunch: a tool for large network

analyses. BMC bioinformatics , 9 , 70.

References 120

Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms.

CoRR.

Newman, M. E. J. (2003). The structure and function of complex networks. Dia-

logues in clinical neuroscience, 45 , 167–256.

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in

networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ,

69 (6 2), 1–5. doi: 10.1103/PhysRevE.69.066133

Newman, M. E. J. (2010). Networks An Introduction. Oxford: Oxford University

Press.

Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning Convolutional Neural

Networks for Graphs. ICML.

NVIDIA Apex: Tools for easy mixed-precision training in PyTorch. (n.d.).

https://developer.nvidia.com/blog/apex-pytorch-easy-mixed-precision-

training/. (Accessed August 15, 2020)

NVIDIA deep learning performance. (2020).

https://docs.nvidia.com/deeplearning/performance/. (Accessed August

15, 2020)

NVIDIA Tensor Cores: Unprecedented acceleration for HPC and AI. (n.d.).

https://www.nvidia.com/en-us/data-center/tensor-cores/. (Accessed August

15, 2020)

NVIDIA Volta: The Tensor Core GPU architecture designed to bring AI to ev-

ery industry. (n.d.). https://www.nvidia.com/en-us/data-center/volta-gpu-

architecture/. (Accessed August 15, 2020)

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). Technical report, Stanford

Digital Library Technologies Project. Stanford InfoLab.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlap-

ping community structure of complex networks in nature and society. Nature,

References 121

435 (7043), 814–818.

Papadopoulos, S., Kompatsiaris, Y., Vakali, A., & Spyridonos, P. (2012). Com-

munity detection in social media performance and application considerations.

Data Mining and Knowledge Discovery , 24 (3), 515–554.

Parés, F., Gasulla, D. G., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J., . . .

Suzumura, T. (2018). Fluid communities: A competitive, scalable and di-

verse community detection algorithm. In C. Cherifi, H. Cherifi, M. Karsai, &

M. Musolesi (Eds.), Complex networks & their applications vi (pp. 229–240).

Cham: Springer International Publishing.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . others

(2019). PyTorch: An imperative style, high-performance deep learning library.

In Advances in neural information processing systems (pp. 8026–8037).

Prat-Pérez, A., Dominguez-Sal, D., Brunat, J. M., & Larriba-Pey, J.-L. (2012).

Shaping communities out of triangles. Proceedings of the 21st ACM inter-

national conference on Information and knowledge management - CIKM ’12 ,

1677.

Raghavan, N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect

community structures in large-scale networks. Physical review. E, Statistical,

nonlinear, and soft matter physics , 76 , 036106.

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-Net: Ima-

geNet classification using binary convolutional neural networks. In European

conference on computer vision (pp. 525–542).

Saltz, M., Prat-Pérez, A., & Dominguez-Sal, D. (2015). Distributed community

detection with the WCC metric. In Proceedings of the 24th international

conference on world wide web companion, WWW (pp. 1095–1100). ACM.

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review , 1 (1), 27–64.

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of

References 122

graph neural network evaluation. Relational Representation Learning Work-

shop, NeurIPS .

Shiokawa, H., Fujiwara, Y., & Onizuka, M. (2013). Fast Algorithm for Modularity-

Based Graph Clustering. Proceeding of the Twenty-Seventh Conference on

Artificial Intelligence, 1170–1176.

Shun, J., Roosta-Khorasani, F., Fountoulakis, K., & Mahoney, M. W. (2016). Par-

allel local graph clustering. Proc. VLDB Endow..

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410 (6825), 268–276.

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Chap 8 : Cluster Analysis: Basic

Concepts and Algorithms. Introduction to Data Mining , Chapter 8.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic Principal Component Analy-

sis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

61 (3), 611–622.

Van Der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-dimensional

data using t-sne. Journal of Machine Learning Research, 9 , 2579–2605.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).

Graph Attention Networks. International Conference on Learning Represen-

tations (ICLR).

W3C. (2016a). Resource description framework (RDF). Retrieved from https://

www.w3.org/RDF/ (Accessed March 4, 2016)

W3C. (2016b). SPARQL Query Language for RDF. Retrieved from http://www

.w3.org/TR/rdf-sparql-query/ (Accessed March 4, 2016)

Wang, M., Wang, C., Yu, J. X., & Zhang, J. (2015). Community Detection in So-

cial Networks : An In-depth Benchmarking Study with a Procedure-Oriented

Framework. Proceedings of the VLDB Endowment , 998–1009.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., & Gopalakrishnan, K. (2018). Training

deep neural networks with 8-bit floating point numbers. In Adv Neural Inf

References 123

Process Syst (pp. 7675–7684).

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58 (301), 236–244.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ net-

works. Nature, 393 (6684), 440–442.

Wilcox, R. H. (1961). Adaptive control processes — A guided tour. Naval Research

Logistics Quarterly , 8 (3), 315–316.

Xu, R. (2005). Survey of clustering algorithms for MANET. IEEE Transactions on

Neural Networks , 16 (3), 645–678.

Yang, Z., Cohen, W., & Salakhudinov, R. (2016). Revisiting semi-supervised learn-

ing with graph embeddings. In International conference on machine learning

(pp. 40–48).

Yano, A., & Wadayama, T. (2011). Probabilistic Analysis of the Network Reliability

Problem on a Random Graph Ensemble.

Zhao, Y., & Karypis, G. (2002). Evaluation of hierarchical clustering algorithms for

document datasets. In Proceedings of the eleventh international conference on

information and knowledge management - cikm ’02 (p. 515). New York, New

York, USA: ACM Press.

