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Abstract

Eigensystem structure plays the key role in principal component analysis

(PCA). However, the application of it in high-frequency datasets is notice-

ably thin, especially for derivatives pricing. In my thesis, I will present the

predictive power of eigenvalue/eigenvector analysis in several financial mar-

kets. Performance of prediction based on eigenvalue/eigenvector structure

shows the result that this methodology is reliable compared with traditional

methodology.

To verify the performance of eigensystem analysis in derivatives pricing, I

select one of the most important financial markets: the foreign exchange(FX)

option market as datasets. The traditional pricing models for FX options

are highly reliant on historical data, which leads to the dilemma that for

those contracts with less liquidity investors find it difficult to provide reliable

guidance on price. I will present a brand-new model based on eigensystem

analysis to provide accurate guidance for option pricing, especially in cases

where the underlying asset is considered to be an illiquid currency pair. The

importance of eigenvalues and eigenvectors structure in asset pricing will be

explored in this thesis. The empirical study covers FX option contracts across

deltas and maturities. The performance of eigensystem model are compared

with other widely used models, results indicate that traditional models are

outperformed in all selected underlying assets, maturities and deltas.

In addition, I perform analysis of machine learning performance based on the



FX market’s empirical asset pricing problem. I demonstrate the advantage of

machine learning in promoting the predictive power of eigensystem based on

multiple predictors from the OTC market. Black-Scholes implied volatility is

used as predictors for the eigenvalue error between market and our innovative

eigensystem. I identify the regression tree algorithm’s predictive gain with

empirical study across contracts. The effect of currency pairs is numerical

and sorted to generate an overview for global FX market structure.

I also implement eigenstructure analysis based on the S&P500 market. I

discover the convergence of first principal component explanatory power. In

order to generate the statistical summary for trend of principal components,

I raise a set of measurements and thresholds to describe eigenvalue and eigen-

vector structure in market portfolios.



Declaration

I, Xiao Liang, hereby declare that this is entirely my own work unless refer-

enced to the contrary in the text. No part of this thesis has previously been

submitted else where for any other degree or qualification in this or any other

university.



To my parents, for always loving and supporting me.



Acknowledgements

I would like to extend my deep gratitude to all those who have offered me

help and support in the process of my studies at Durham University.

First of all, my profound gratitude goes to my supervisor Professor Julian

Williams, for his support during my doctoral studies. He has always given

me great instruction and encouragements through the process of confirming

research topics, improving my skills in all aspects such as finance, mathe-

matics and programming. He was always positive when I faced difficulties.

This thesis would not have been possible without the help from Professor

Julian Williams, I would never forget the days we spent together in Durham

University Business School and the Institute of Hazard Risk and Resilience.

Many thanks to my second supervisor Professor Dennis Philip for his encour-

agement, guidance and help. His knowledge improve my thesis significantly

and expand my research. I always remember the day we met when I was given

the chance to come to Durham as a Ph.D student.

I would like also to thanks Julian Cook and Fenics Software. Inc., BGC Part-

ners. They provided funding for my research and the chance to work together

with their talented engineers in New York. Julian Cook always provide valu-

able advise from the aspect of real market. I appreciate the patience and

suggestions.

I would like to thank my colleagues Dr Jing Nie, Dr Yang Zhang, Eleftheria

Vavadaki, Xiangyu Wu, Yaodong Liu and Dr XiaoXiao Ma, for their great



support and encouragement. Especially Dr Handing Sun, my best friend in

Durham, his attitude towards research and incredible talent always encour-

aged me to become a better person.

Thanks to Johann Sebastian Bach, Marcus Tullius Cicero, Liang Shih-Chiu

and Inoue Takehiko, you let me travel without moving feet.

Last but not least, I would like to thank my parents for their love and support.

You are always the most important persons in my life. You show me the way

of being a nice man.



Contents

Contents i

List of Figures v

Nomenclature vii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Thesis topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Background on the foreign exchange options market . . . . . . . . 4

1.1.3 Market Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Option quotation style . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4.1 At-the-money . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4.2 Butterfly . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4.3 Risk reversal . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.5 Special Volatility Surface . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.6 Implied volatility and Realized volatility . . . . . . . . . . . . . . 18

1.1.7 Volatility surface for illiquid currency pair . . . . . . . . . . . . . 20

1.1.8 Machine learning adjustment . . . . . . . . . . . . . . . . . . . . 23

1.1.9 Equity eigenstructure analysis . . . . . . . . . . . . . . . . . . . . 25

1.1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



2 Eigenvalue Model 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Prior work on FXOs and FX options . . . . . . . . . . . . . . . . . . . . 30

2.3 Contribution of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 A General Model of FX rates and FX Correlations . . . . . . . . . . . . . 36

2.4.1 The GARCH Model of Correlated FX Returns . . . . . . . . . . . 41

2.4.2 FX Leg Journeys . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Black-Scholes Implied volatility Surface and Correlation Surface . 47

2.4.4 The Impact of Jumps . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.5 Correlation Coefficient Matrix . . . . . . . . . . . . . . . . . . . . 52

2.5 Preliminary Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.2 Eigen Model Prediction Summary . . . . . . . . . . . . . . . . . . 57

2.6.3 Diebold-Mariano Test Summary . . . . . . . . . . . . . . . . . . . 60

2.7 Diebold-Mariano Test Summary (by Currency) . . . . . . . . . . . . . . . 65

2.7.1 Eigen and GARCH Model Simulation . . . . . . . . . . . . . . . . 67

2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Eigenvalue Model Machine Learning Adjustment 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Main Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 History of Machine Learning . . . . . . . . . . . . . . . . . . . . . 73

3.1.3 Why Apply Machine Learning in the Foreign Exchange Options

Market? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Contribution of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 77



3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Minimum Eigen Value Error and Implied Volatility . . . . . . . . 79

3.4.2 Regression Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Performance Evaluation and Variable Importance . . . . . . . . . 84

3.5 Empirical Study of FX options . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.2 Minimum Eigen Value Error Improvement . . . . . . . . . . . . . 86

3.5.3 Accuracy Level Improvement . . . . . . . . . . . . . . . . . . . . 92

3.5.3.1 Results by Delta . . . . . . . . . . . . . . . . . . . . . . 92

3.5.3.2 Results By Maturities . . . . . . . . . . . . . . . . . . . 94

3.5.4 R2
oos Performance Improvement . . . . . . . . . . . . . . . . . . . 95

3.5.4.1 Results By Delta . . . . . . . . . . . . . . . . . . . . . . 96

3.5.4.2 Results By Maturity . . . . . . . . . . . . . . . . . . . . 98

3.5.5 Predictor Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Eigenvalue Analysis Based on S&P500 113

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Portfolio Composition . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.2 Statement of contribution . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Contribution of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.2 Eigenvalue Simulation . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.3 Historical weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.4 Eigenvalue analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.5 Eigenvector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 131



4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Conclusions 138

5.1 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

References 140

Appendix A 146

Appendix B 161

Appendix C 191



List of Figures

1.1 FX nominal Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Option price versus strike price . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Implied volatility versus strike price . . . . . . . . . . . . . . . . . . . . . 11

1.4 Call delta versus strike price . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Implied volatility versus Delta . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Nominal Amount of Illiquid FX option . . . . . . . . . . . . . . . . . . . 21

1.7 Leg Journey for selected Currencies based on USD . . . . . . . . . . . . . 23

2.1 Market Quote versus GARCH Estimation . . . . . . . . . . . . . . . . . 44

2.2 Strategies in Option Volatility Surface . . . . . . . . . . . . . . . . . . . 51

2.3 1 Year Maturity USDSAR Option Volatility Surface . . . . . . . . . . . . 52

2.4 Minimum eigenvalue versus market data: AUDCAD atm . . . . . . . . . 54

2.5 Accuracy level of interval forecast by eigen model . . . . . . . . . . . . . 58

2.6 Simulation: GARCH and eigen model forecasts for CADSEK . . . . . . . 68

3.1 Implied Volatility and Eigen Value Error . . . . . . . . . . . . . . . . . . 81

3.2 Regression Tree Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 EURHUF 1M ATM Minimum Eigen Error . . . . . . . . . . . . . . . . . 87

3.4 EURHUF 1M Call10 Minimum Eigen Error . . . . . . . . . . . . . . . . 88

3.5 EURHUF 1M Call25 Minimum Eigen Error . . . . . . . . . . . . . . . . 89

v



3.6 EURHUF 1M Put10 Minimum Eigen Error . . . . . . . . . . . . . . . . . 90

3.7 EURHUF 1M Put25 Minimum Eigen Error . . . . . . . . . . . . . . . . . 91

3.8 R2
oos Improvement By Delta . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.9 R2
oos Improvement By Maturity . . . . . . . . . . . . . . . . . . . . . . . 100

3.10 Predictor Importance By GBPUSD . . . . . . . . . . . . . . . . . . . . . 101

3.11 Predictor Importance By USDJPY . . . . . . . . . . . . . . . . . . . . . 102

3.12 Variable Importance: GBPUSD . . . . . . . . . . . . . . . . . . . . . . . 105

3.13 Variable Importance : EURUSD . . . . . . . . . . . . . . . . . . . . . . . 105

3.14 Variable Importance : AUDUSD . . . . . . . . . . . . . . . . . . . . . . . 106

3.15 Variable Importance : USDSGD . . . . . . . . . . . . . . . . . . . . . . . 106

3.16 Variable Importance : USDJPY . . . . . . . . . . . . . . . . . . . . . . . 107

3.17 Variable Importance : USDCHF . . . . . . . . . . . . . . . . . . . . . . . 107

3.18 Variable Importance : USDCAD . . . . . . . . . . . . . . . . . . . . . . . 108

3.19 Variable Importance : NZDUSD . . . . . . . . . . . . . . . . . . . . . . . 108

3.20 Key Predictors Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1 principal component proportion by matrix Scale, H = 1, 15 . . . . . . . 121

4.2 principal component proportion by matrix Scale, H = 51, 201 . . . . . . 122

4.3 principal component proportion by H, Scale = 20, 50 . . . . . . . . . . . 123

4.4 principal component proportion by H, Scale = 200, 500 . . . . . . . . . . 124

4.5 Spearman rank correlation simulation . . . . . . . . . . . . . . . . . . . . 128

4.6 Spearman rank correlation from 1996 to 2000 . . . . . . . . . . . . . . . 129

4.7 The largest eigenvalue for S&P 500 portfolio at 31th Jan 2015,∆τ= 5 minutes130

4.8 Mean 1st eigenvalue when ∆τ= 5 minutes . . . . . . . . . . . . . . . . . 131

4.9 Percentage of the Total Variation Explained by Principal Components . . 132

4.10 θ in 22-OCT-2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.11 Matrix Dimension For Two critical point: 0.1 and 0.05 . . . . . . . . . . 135



4.12 Critical points distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Minimum eigenvalue versus market data: AUDCAD put10 . . . . . . . . 162

5.2 Minimum eigenvalue versus market data: AUDCAD put25 . . . . . . . . 163

5.3 Minimum eigenvalue versus market data: AUDCAD call10 . . . . . . . . 164

5.4 Minimum eigenvalue versus market data: AUDCAD call25 . . . . . . . . 165

5.5 Minimum eigenvalue versus market data: CHFJPY atm . . . . . . . . . . 166

5.6 Minimum eigenvalue versus market data: CHFJPY put10 . . . . . . . . . 167

5.7 Minimum eigenvalue versus market data: CHFJPY put25 . . . . . . . . . 168

5.8 Minimum eigenvalue versus market data:CHFJPY call10 . . . . . . . . . 169

5.9 Minimum eigenvalue versus market data: CHFJPY call25 . . . . . . . . . 170

5.10 Minimum eigenvalue versus market data: EURGBP atm . . . . . . . . . 171

5.11 Minimum eigenvalue versus market data: EURGBP put10 . . . . . . . . 172

5.12 Minimum eigenvalue versus market data: EURGBP put25 . . . . . . . . 173

5.13 Minimum eigenvalue versus market data: EURGBP put10 . . . . . . . . 174

5.14 Minimum eigenvalue versus market data: EURGBP put25 . . . . . . . . 175



Nomenclature

Abbreviations

ACP Autoregressive conditional Poisson
AD Affine diffusion model
AJD Affine jump diffusion model
ASTSV Affine stochastic term structure with stochastic volatility
ATM At-the-money
BS Black-Scholes
BF Butterfly
BIS Bank for International Settlements
BV Bipower variation
c.d.f Cumulative density function
CF Characteristic function
CIR Cox-Ingersoll-Ross process
FX Foreign exchange
GARCH The generalized autoregressive conditional heteroskedasticity
GMM Generalized method of moments
GMT Greenwich mean time
HN Heston-Nandi
IMF International Monetary Fund
LSV Local stochastic volatility
ME Mean error
MGF Moment generating function
MLE Maximum likelihood estimation
NDF Non-deliverable forward
ODE Ordinery differencial equation
OTC Over-the-counter
OTM Out-of-the-money
ON Over night
p.d.f Probability density function
RMSE Root mean squared error

viii



RR Risk reversal
RV Realized volatility
SW Spot week
TP Tripower quarticity
1W/M/Y One week/month/year tenor

Non-greeks Conventions

W (t) Wiener process at time t
Z(t) pure Poisson jump process at time t
Yi(t) state vector for economy i at time t
ξi discount rate
αi expected rates of changes
B State vector in Affine Jump Diffusion Model
K Option Strike Price
T Option Maturity
C(.) Call Option price
Vij(t) Spot variance
Sij(t) Spot rate
∆BS Black-Scholes Delta
qi interest rate of currency i
λ arrival rate of jump
η risk premium on stochastic volatility component
µ jump size in Poisson jump process
σh volatility coefficient in jump diffusion model θ long run mean
κ mean reversion rate
ϕ Parameter vector of interest movement
ϕMKT Parameter vector of jump-diffusion model under data-generating measurement
ϕ Parameter vector of jump-diffusion model under risk neutral measurement
σBS Implied volatility
ri interest rate for currency i in Black-Scholes model
Xij Spot rate of currency pair ij
Yij Log of spot rate of currency pair ij
Ψij Characteristic Function of currency pair ij
Rij(t) Log increment of spot rate of ij at time t
µij Mean of currency pair ij log return
ρij,ik Correlation coefficient between currency pair ij and ik
C Variance-Covariance matrix
R Implied correlation matrix
V (t, T,∆) matrix of eigenvector as a function of T − t and BS Delta ∆
Λ(t, T,∆) diagonal matrix of eigenvalues as a function of T − t and BS Delta ∆



Greeks Conventions

τ Tenor
Ψ(·) Characteristic function
σ Volatility
∆ Black-Scholes implied delta
µ Drift
θ Parameter vector
$ Call/put option indicator
η Increment

Currencies

AUD Australian dollar
BRL Brazilian real
CAD Canadian dollar
CHF Swiss franc
CLP Chilean peso
CNY Chinese Yuan Renminbi
COP Colombian peso
CZK Czech koruna
DKK Danish krone
EUR European euro
GBP Pound sterling
HKD Hong Kong dollar
HUF Hungarian forint
IDR Indonesian rupiah
ILS Israeli new shekel
INR Indian rupee
JPY Japanese yen
KRW South Korean won
MXN Mexican peso
MYR Malaysian ringgit
NOK Norwegian krone
NZD New Zealand dollar
PHP Philippine peso
PLN Polish zloty
SEK Swedish krona
SGD Singapore dollar
THB Thai baht
TRY Turkish lira
TWD New Taiwan dollar



USD United States dollar
ZAR South African rand
XAG Gold
XAU Silver



Chapter 1

Introduction

1.1 Introduction

Decomposing a positive definite matrix via eigen-decomposition is one of the most com-

mon quantitative methods in finance. Typically, but not always, this matrix is the co-

variance of returns from asset prices. However,

This collection of research essays looks at a set of applications within the area of

derivatives pricing and portfolio management. My first application addresses the complex

issue of pricing foreign exchange (FX) derivatives and in particular foreign exchange

options. Typically, FX options are looked at in terms of small triangles and these are

used to fill gaps using parametric models. I extend the use of functional correlation

analysis (where the correlation matrix varies continuously as a matrix function) to look

at large scale sets of cross currency options. Using this approach I can price infrequently

traded options as a function of the collection of options on a broad basket of other

currency pairs. Uncertainty can be reduced to a single correlation guided and bounded

by the eigen decomposition.

My second application is to portfolio management. Here I extend existing work to

look at the stability of the eigenvector of the largest eigenvalue of the realized covariance

1



matrix. In contrast to the FX options case, where the eigenvalue and vector pairs are

deterministic functionals, here the matrix is stochastic. I use simulation evidence to

illustrate the stability of the portfolio structure and answer a series of missing questions

from the principal component literature.

1.1.1 Thesis topic

Correlation and covariance matrix decomposition via eigensystems generates a set of

eigenvalues and eigenvectors, used in a number of statistical methods. Eigenvalue anal-

ysis plays a key role in a wide range of fields from mathematics to telecommunication

engineering. For finance and economic research, Principal Component Analysis(PCA)

and Factor Analysis(FA) are known to reduce the data dimension by summarizing and

selecting a smaller number of factors while retaining the major variation of the data set.

Eigenvalue analysis has been tested and proved be a reliable method for low-frequency

data. But with the improvement of computer science and financial technology, it is

necessary to verify the eigenvalue and eigenvector structure across high frequency dataset.

My thesis will look at two novel applications and develop the mathematical preliminaries

and statistical artefacts to solve a number of difficult asset pricing problems.

First I look at derivatives and in particular the difficult pricing problem of constructing

volatility/co-volatility matrices for large cross-sections of currency options. The unique

difficulty of this problem is that the space of the eigensystem is now itself a Hilbert

space that is a function of the option delta. This is the currency option version of the

classic option smile. As the currency market is one of the largest financial markets, it is

important to price the options precisely.

For currencies with a high level of liquidity, there is sufficient data for investors to

follow and analyse in this fast-changing market. But when there are a large number of

currency pairs, some options may not have sufficient transactions to construct an implied

2



volatility smile. I can use eigen decomposition of actively traded pairs to narrow down

the bounds on the un-traded pairs implied volatility smile. I will then define a metric

to determine the correct point estimate for the correct eigenvalue. In addition to that,

machine learning will be used to forecast and predict the missing prices.

Second, I will look at eigen decomposition of the realized variance covariance matrix.

S&P 500 stocks will be taken as an empirical dataset. I will go through equities covariance

matrix to explore the eigenvalue/eigenvector structure. With the high-frequency data in

the equity market, I will show the convergence critical point for the principal components.

A set of thresholds and measurements are presented to illustrate the eigensystem structure

and provide guidance for portfolio management.

Unlike the FX derivative OTC market, the S&P 500 has sufficient tick data to make it

possible for us to check the effect of different data steps and provide an estimation window

to eigenvalue structure. An overview is presented to generate the principal components

structure, I will generate the constant characteristic across time series and other factors

(estimation period and steps between data).

High frequency data, especially tick-by-tick data either from the FX options market

or equity market, is known to be noisy and hard to call directly. This thesis tries to

eliminate the influence of noisy data in two ways: 1) the data are carefully cleaned based

on a specific algorithm 2) Monte-Carlo method is implemented for the simulation, which

aim to create an ideal market pricing method to identify the accurate level of eigen

decomposition.

The remainder of the chapter is organized as follows. I firstly present some essential

background on the FX options and equity markets. Then I look back at the develop-

ment of financial technology such as machine learning algorithms and the Monte-Carlo

methods.

3



Figure 1.1: FX nominal Amount
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Note: This figure presents the notional amount outstanding(in USD trillions) of FX option market,

including gold, reported by BIS from 1998 to 2020. BIS categorizes option contracts into liquid

currency pairs and illiquid pairs based on the underlying asset.

1.1.2 Background on the foreign exchange options market

The foreign exchange options market is known as one of the most active and important

over-the-counter(OTC) derivatives market. According to data published by the Bank for

International Settlements(BIS), the overall FX option market nominal amount was $ 5.13

trillion.In the first half year of 2020, the market volume had increased to $ 12.1 trillion.

The FX option is a financial tool to hedge the FX rate risk and it shares similar

characteristics with options on other types of underlying assets, such as equity options.

But it also forms its unique trading properties to fit its underlying asset. The first feature

of FX related derivatives trading is that it involves a currency pair in the trading, which
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means there is a potential need to measure and take two currencies into consideration.

Investors need to pay attention not only to the policy and trends within a certain country,

as two or even more sets of factors need to be measured. For example the adjusted option

pricing model for FX would require two risk free rate from corresponding countries. After

the trading, which currency is used to pay the premium is another point need to be pre-

determined.

A second characteristic of the FX option as distinct from the equity option is the quo-

tation style. This is also caused mainly by the fact that currency is traded as underlying

asset in contracts. For the equity option, the volatility surface is quoted by plotting op-

tion premium versus strike price, normally with both of them measured in USD. However

in the FX option market, options are quoted by implied volatility surface derived from

the Black-Scholes model, meanwhile the moneyness of options is presented by the delta,

the sensitivity of the option price to underlying asset price. Further information on this

will be given in the following chapters.

Another important feature is that FX options trading is significantly affected by the

underlying spot liquidity. As global dominating spot, in 2020 86.8% of FX options were

trading on USD. Further more, the other leg currency in addition to USD is mainly traded

between six spot: EUR, JPY, GBP, CHF CAD and SEK. Fig. 1.1 presents the FX option

market volume time series. It can be concluded that all six spots(EUR, JPY, GBP, CHF,

CAD and SEK) with high-level liquidity took more than half of the whole market. In

2000, the amount of illiquid FX options was $ 0.73 trillion, taking 25.3%. This market

rose to $ 5.23 trillion in 2020, with the proportion of illiquid option rising to 44%.

In addition, Table 1.1 reports the the nominal amount outstanding of OTC FX options

market by currency for the last twenty years(2000-2020). From the table we can see that

USD related trading was constantly higher than 80%, taking the major part in the whole

market. EUR and JPY are considered to be two global spots providing sufficient liquidity
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Table 1.1: OTC FX option notional amounts outstanding by currency (in trillion USD)

Total USD EUR JPY GBP CHF CAD SEK Other
2000 2.89 2.5 0.97 0.92 0.34 0.18 0.11 0.03 0.73
2002 3.69 3.16 1.77 1.21 0.35 0.21 0.12 0.12 0.46
2004 7 6.22 2.75 2.43 0.68 0.31 0.22 0.12 1.27
2006 11.03 8.82 4.26 4.15 0.93 0.64 0.33 0.12 2.81
2008 12.8 10.01 5.28 4.85 0.68 0.98 0.21 0.12 3.46
2010 11.07 8.87 3.79 3.54 0.8 1.01 0.27 0.12 3.75
2012 11.26 8.71 3.85 3.6 0.58 0.65 0.3 0.09 4.74
2014 15.33 13.6 4.38 3.95 0.88 0.97 0.4 0.1 6.37
2016 11.53 10.38 3.33 2.83 0.8 0.39 0.33 0.21 4.79
2018 11.84 10.34 3.67 2.49 1.13 0.37 0.33 0.1 5.24
2020 11.82 10.26 3.71 2.62 0.73 0.46 0.55 0.08 5.23

Notes: This table presents the notional amounts outstanding of OTC FX option market by currency
for the twenty years from 2000 to 2020, reported by BIS. Notional amounts are quoted in trillion USD.

for the derivative market not only option contracts. GBP,CHF CAD and SEK, as the

currencies of dominant regional economies, are also traded at high frequency for risk

management and investment.

But with the advancement of developing countries, market participants have been

investing more into options trading on these illiquid spots. Investors used to trade these

spots with USD and then transfer among themselves, now they require direct trades

between two illiquid countries in order to reduce the transaction cost and risk. However,

due to the limitation of low liquidity, there is little historical data for investors to refer.

This has led to the problem in option markets where there is a large spread in the

distribution of quotation for options on illiquid currency pairs.

In practice in the options market, pricing models such as Black-Scholes normally

can not provide an ideal fair price for contracts by themselves. Investors improve the

model performance in two ways: firstly, additional data called ’local factors’ are used

for adjustment; Secondly, historical data can be used for calibration. Calibration is

a widely used process in correcting pricing error, which normally requires a continuous

historical quote. The reason why calibration is important is that in most cases the pricing
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model can provide a relative rational movement and trend for the price changes, but in a

sharply floating option market, the level of price is hard to directly calculate from model.

Participants will collect the aim historical data from market, normally the window period

is between seven days and two weeks, then the calculation result from the model will be

corrected by moving the level to the historical level.

By calibration and re-calibration, investors can generate acceptable predictions for a

market quote in most cases. But as mentioned above, for illiquid currency pairs, there

is insufficient data to calibrate with. So for these contracts, the key question is how to

generate a relatively reliable model without historical data supplementation. A rapidly

increasing number of industry institutions are eager to obtain a model for pricing these

unexplored options markets.

The first section of this thesis presents a model based on the analysis of the market’s

eigen value structure to derive these ’missing values’ for the options market. We have

a deep insight into the implied volatility, correlation and covariance matrix, promote

a model which does not rely on the historical market quotes. Then I implement the

model for a wide range of data to verify model performance. The practical section covers

different contract types, from contracts that are relatively stable and for which it is easier

to forecast at-the-money option, to deep out-of-money contracts. The eigen analysis based

model shows a constant outstanding accuracy level for all contracts.

1.1.3 Market Conventions

Because currency is viewed as a commodity in the FX market, there are two kinds of

quotation styles generated naturally: domestic currency per foreign currency or foreign

currency per domestic currency. Further, the definition of ’domestic currency’ in FX

trading can be ambiguous because both counterparts will think of themselves as domestic

investors. In order to evade these conflicts, there are a number of market conventions
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to quote the currency pairs, regardless of the nationality of investors. The US dollar, as

the most important leg currency in the FX market, is always defined as foreign currency,

except for trading with EUR, GBP, AUD, NZD.

In addition to quotation, settlement for FX option is another point that needs to be

mentioned. For most currency pairs, option contracts follow the ’T+2’ settlement rule.

This settlement rule means that the payment of a certain contract is made two days later

than the date when the transaction is agreed. These two days take the holidays and

non-trading days into consideration for both domestic and foreign countries. There are

some exceptions ’T+1’ settlement for certain currency pairs, eg. EURTRY, EURRUB,

CADTRY, CADRUB and TRYRUB. These specific settlements introduce more risk into

the trading for both counterparts.

1.1.4 Option quotation style

The FX options market quote contracts in a way that is significantly different to the

equity option market. Table 1.2 reports quotes cross maturities and strategies on 19

October 2018 for option trading on EURUSD. It can be concluded from the table that

the FX options market participants quote contract by Black-Scholes implied volatility

instead of price. For each trade the actual price for both counterparts requires further

calculation.

Because the FX market quotes Black-Scholes implied volatility, the contracts’ strike

price is replaced by one of the Greeks, delta. The European volatility surface for OTC

FX option market is formed by five key deltas: 10/25 delta for put and call option and

at-the-money delta. The steps to get the volatility surface are as follows:

1) Collect Black-Scholes implied volatility for at-the-money contracts.

2) Collect quotes for four key strategies: 10/25 delta risk reversal and 10/25 delta

butterfly.
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Table 1.2: Volatility surface of EURUSD on October 19th, 2018

ATM 25D RR 25D BF 10DRR 10DBF

1D 4.340/5.630 -1.135/-0.235 -0.170/0.470 -1.910/-0.365 -0.110/0.920
1W 6.925/7.525 -1.075/-0.655 -0.005/0.295 -1.845/-1.125 0.155/0.635
1M 7.000/7.200 -0.980/-0.840 0.095/0.195 -1.680/-1.440 0.310/0.470
6M 7.455/7.655 -1.315/-1.175 0.240/0.340 -2.310/-2.070 0.775/0.866
1Y 7.605/7.805 -1.340/-1.200 0.300/0.400 -2.385/-2.145 1.020/1.180
18M 7.825/8.035 -1.230/-1.080 0.300/0.405 -2.180/-1.930 1.015/1.185
2Y 7.940/8.165 -1.175/-1.020 0.305/0.415 -2.090/-1.820 1.065/1.245

Note: This table presents volatility surface data of EURUSD on 19 October, 2018. It includes the
volatility bid (left) and ask (right) quotes with tenor from one day up to two years. Reported by
Bloomberg.

3) Derive the quotes for 10/25 put and call option with known implied volatility.

Fig. 1.2 to Fig. 1.5 show the process for transferring standard market quote (price

versus strike price) to FX derivative quote style. Fig. 1.2 presents a normal volatility

smirk; Fig. 1.3 generates a ’volatility smile’ with strike price K on x-axis. Then Fig. 1.4

reveals the fact that for a certain strike price, I would have an ’opposite’ delta for call

option and put option. Fig. 1.5 generates a volatility surface in the format of the FX

options market, the implied volatility is quoted versus call delta.

The details for risk reversal, butterfly and at-the-money will be introduced later. Mar-

ket participants taking any positions(bid or ask) in this market can compare the price

with volatility surface. The reason why the FX options market chose Black-Scholes im-

plied volatility as quotes for all contracts is closely related to the fact that the underlying

asset is a currency pair. If the actual price was taken, counterparts would find it confusing

to make any comparison across this global market. Black-Scholes implied volatility act as

a device to generate a normalized price for all participants. Risk reversals and butterflies

provide information on the shape of the volatility surface by describing skewness and

kurtosis level.

In practical study, the volatility surface is completed based on these key deltas’ quotes,
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Figure 1.2: Option price versus strike price
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Note: This table presents option price versus strike price. Put price is generated via put-call parity.
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Figure 1.3: Implied volatility versus strike price
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Note: This table presents the change of implied volatility versus strike price. Implied volatility is derived
by making Black-Scholes model’s calculation result equal to market quote.
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Figure 1.4: Call delta versus strike price
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Note: This table presents changes of call delta versus strike price. In FX market, options are widely
used for hedging, it is important to transfer the strike price to delta for hedge.
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Figure 1.5: Implied volatility versus Delta
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Note: This table presents implied volatility versus call delta. This is the volatility surface used in FX
option market instead of ’option price versus strike price’.
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then an approach such as SABR or Vanna-Volga will be implemented to complete the

surface. The quotes for contracts located in the gap between 10-25-atm deltas also provide

important liquidity for the market, and methods to forecast the prices for these contracts

are well established with a reliable accuracy level. One of the puzzles in the FX options

market is how to price the contracts with delta lower than 10 delta. Firstly, the historical

data for these deltas are rare, and secondly nonsensical negative implied volatility can be

generated using traditional methodology.

In order to better understand FX options, It is necessary to discuss the delta used in

option trading. Delta is the first order derivative of the option price with respect to the

changes in the underlying asset. So, depending on the quotation format, the delta will

be slightly different. Generally speaking, the only point that needs to be noted here is

the difference caused by counterpart valuation adjustment.

For domestic investors in FX option trading, when the premium is exchanged in

domestic currency, I will consider the premium itself as risk free and that no more risk is

involved to the investor’s portfolio. In this circumstance no adjustment needs to be made.

But for foreign investors who will take foreign currency as the premium, the premium is

not risk free and will contribute an extra risk. So the delta will be adjusted for this extra

risk.

In practice, whether one adjusts the premium or not leads to different types of delta.

In cases where the premium is risk free, the delta is called percentage delta. Meanwhile

if the premium is risk free itself, I will implement the pips delta directly. The premium

format is fixed for the most part; for example US dollar is accepted as premium currency

for most contracts trading on developing currencies versus USD.

Although market participants rely on volatility surface to provide guidance for the

comparison of and guidance on investments, normally in FX options institutions seldom

directly transform quotes for a certain delta. Instead, they will describe the Black-Scholes
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implied volatility for a specific strategy(risk reversal or butterfly). In the following I will

denote the implied volatility as σ(∆) where ∆ ∈ 10, 25, 50 present the implied volatility

for contracts and their corresponding delta. The strategy widely used will be denoted as

ÃT for at-the-money, B̃F for butterfly and R̃R for risk reversal.

1.1.4.1 At-the-money

At-the-money, denoted as ÃT , provides the largest liquidity to the option market. In

most cases, at-the-money refers to the volatility(ÃT ) and its corresponding strike K(ÃT ),

which can be used to construct a straddle where the volatility is eliminated:

∆c(K(ÃT ), ÃT ) + ∆p(K(ÃT ), ÃT ) = 0 (1.1)

where ∆c(·) denotes the delta for call option and ∆p(·) denotes the delta for put option.

FX option market participants normally buy at-the money by this straddle, the purest

way to buy the volatility at the middle of strikes.

In addition to the at-the-money given above, there is another at-the-money definition.

In this special case, at-the-money could be interpolated as forward price:

K(ÃT ) ≡ F (t, T ) (1.2)

This convention is used only for currency where USD is against a currency from the Latin

American emerging market.

1.1.4.2 Butterfly

Butterfly is a confusing concept in industry and academia. The term ’butterfly’ in market

quotation refers to a single approximated volatility premium, which if added to the at-the-

money volatility can be used to price a market strangle that longs out-of-the-money put
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and call option at the same delta level. Generally speaking, OTC FX option quotation for

market strangles are butterfly for 10 and 25 delta respectively. But in practice, volatility

surface is usually heavily smirked, so the 2-vol butterfly can diverge substantially from

the 1-vol butterfly strangle.

Most academic literature reviews the butterfly in 2-vol butterfly, which is considered

to be a description of the volatility surface that contains more information. The 2-vol

butterfly is defined as the premium of the average of 25/10-delta call and 25/10-delta put

over the at-the-money volatility:

˜BF25/10−2vol = (σc(25/10) + σp(25/10))/2− ÃT . (1.3)

In contrast with the academic definition and quotation style, the market participants

in the FX options market turn to use the 1-vol butterfly as approximation. Because strike

price could be back derived from 25/10 delta, the 1-vol butterfly is expressed as:

∆p(Kp(B̃F 25−1vol, ÃT + B̃F 25−1vol) = −0.25 (1.4)

∆c(Kc(B̃F 25−1vol, ÃT + B̃F 25−1vol) = 0.25 (1.5)

It is clear from the equation that 1-vol butterfly is back-derived from option price and

this is the actual definition which FX options trading institutions refer to ’butterfly’.

Compared with 2-vol butterfly, although the 2-vol butterfly follows the definition, I still

need to transfer the quotes between two methods. For a volatility surface which is not

greatly skewed, there is no significant difference between the two kinds of butterflies,

but as mentioned above, the FX options surface is described as a special surface with

a high level of skewness. This can lead to significant differences between academia and

industry’s values for a set of chosen contracts.
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1.1.4.3 Risk reversal

Risk reversal is used to describe the anticipated skewness of volatility surface by tenor.

It is relatively straight forward to calculate as the difference in volatility of call and put

options with the same delta. The 10-delta risk reversal(R̃R10) is computed as follows:

R̃R10 = σc(10)− σp(10) (1.6)

25-delta risk reversal follows the same rule.

1.1.5 Special Volatility Surface

Volatility surface is a concept that arises in option market. Formally, volatility surface

is a plot of the implied volatility versus strike price for a set of option contracts for a

given maturity. In practical study, options whose strike price differs from underlying

asset price command higher price, which lead to a ’smile’ type plot, so volatility surface

is also known as ’volatility smile’.

The particular format of volatility surface show slight difference with the underlying

asset. For stock option, the volatility surface is in the normal format with implied volatil-

ity versus strike price. FX options, due to the quotation style, have a special volatility

surface in practical.

We can conclude from the quotation style for strategies(atm,butterfly and risk rever-

sal) that OTC FX options market participants focus on the Black-Scholes implied volatil-

ity but not actual price, and the description for strike price is also replaced by delta. This

quotation method might confuse new investors at the very beginning compared with the

straightforward price quotation style, but it makes the information exchange and deal

more efficient in this special market.

Implied volatility quotation allows market participants to ignore the spot rate prob-
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lem in negotiating. The price for all currencies is ’normalized’ and put into a unique

measurement. All participants are discussing delta and volatility, but not price. This

will make it easier for both domestic and foreign investors to communicate and make

deals. The actual price would need to be calculated respectively for both sides only after

the agreement and when they transfer the premium.

In addition to the convenience in terms of communication, another advantage of this

quotation style comes from the background of OTC FX options market participants.

Many of the investors in this market are financial institutions rather than single investors,

and the aim of these institutions is constructing delta-hedged, gamma-hedged or vega-

hedged portfolio but not to simply buy or sell an option. The risk and delta are directly

quoted in this quotation style, so the portfolio management is straight forward for these

investors.

1.1.6 Implied volatility and Realized volatility

As discussed in the previous section, implied volatility is the normalized price to some

extent,which is closely related to option trading for all kinds of underlying assets. So

implied volatility is a forward-looking information filtration; the market participants’

forecasting and opinion on an underlying asset’s future trend is presented in the implied

volatility. Compared with realized volatility estimated from historical data, the implied

volatility is more sensitive to market news, and the fluctuation is more significant.

Firstly, the average level of implied volatility is significantly higher than realized

volatility in a long enough window period, because implied volatility contains not only

the historical risk but also the unknown future risk. Secondly, implied volatility reaction

to market changes is consistently more sharp than realized volatility. Realized volatility,

as the back-looking estimation of risk, although adjusted by giving more weight to recent

data in some method, still can not present market participants’ behavior in as timely a
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way as implied volatility.

The point that needs to be noted is that although implied and realized volatility come

from different estimated/calculated procedures, have different reactions and levels to the

market, they still share the same trend in time series. It is worth viewing one of them

as the predictor/variable for the prediction of the other. Several studies focus on the

predictive power of implied/realized volatility on realized/volatility, and in most cases

the predictive power is identified to be significant.

Due to the fluctuation of implied volatility, it is extremely difficult to predict it based

on the traditional pricing methodology, such as the Heston-Nandi model. So in practical

investments, the price of the option is highly reliant on the historical data. Institutions

will use historical data to do calibration/re-calibration.

While the trend and movement of model calculated is considered to be rational and

relatively reliable for most FX options contracts, the main problem is how to adjust

these calculated results to the market level. The calibration procedure is straightfor-

ward: firstly, market participants obtain calculated results from their chosen methodol-

ogy. These results are expected to be far away from the market quote. Then historical

data from the most recent window period(normally set to be two to four weeks) are col-

lected, and the calculated results will be adjusted to move the level to market quotes.

’Re-calibration’ involves re-running the calibration, and is the most widely used method-

ology to get a relatively accurate price(implied volatility) for options contracts.

In situations where there are insufficient data to calibrate with, it is hard for investors

to price the options contracts. This is exactly what is happening for FX options based on

illiquid currencies. Many of these are emerging currencies, and the only foreign currency

in options contracts is the US dollar. For direct trading between two illiquid currencies

one would go into a wilderness where there is no historical data for investors to calibrate

with. In the past investors would give up the direct trading and chose the US dollar as a
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leg currency for constructing a portfolio. But with the development of emerging countries,

these ’illiquid’ currencies options are growing to form a market which can not be neglected.

Market participants need a solution based on a non-calibration environment.

1.1.7 Volatility surface for illiquid currency pair

Building a volatility surface from market quotes is straightforward and easily done with

sufficient data provided. As mentioned in the previous sections, there are five important

quotes(two butterflies, two risk reversals, and at-the-money contract) over a set of deltas.

With the combination of these quotes, the volatility surface is easily recovered. Some

data vendors such as Bloomberg and Thomson Reuters provide a bid/ask price for every

single tick of these key quotes. For the delta outside 10-call and 10-put, a structural model

such as one/two factor Heston or other local stochastic volatility models could provide

rational guidance. The deltas inside this range are also interpolated by methodology such

as Vanna-Volga or SABR, and the volatility surface is smoothed based on five key quotes.

The key problem for volatility surface is how to generate accurate predictions over key

quotes. The traditional method of calibration, as discussed above, is useless for illiquid

currency pairs, therefore I turn to seek the information from the FX options market but

not micro factors. As one of the largest and most liquid financial markets, the contracts

provide liquidity to make the system stable, which indicates that the eigen value structure

for a set of selected currency pairs can generate forecast-able movement. ’Illiquid’ does

not mean corresponding leg currencies are rarely traded in the FX options market - on

the contrary, the amount of these currency pairs has increased to a level that can not

be ignored. Fig. 1.6 presents the trend for illiquid currency nominal amount from 1998.

It can be concluded from the figure that although the 2001 and 2008 financial crises

momentarily stopped the increment, the market scale increased sharply to $7 trillions

after 2010. Option trading based on one of the illiquid currencies and a global currency
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Figure 1.6: Nominal Amount of Illiquid FX option
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Note: The graph presents the notional amount (in USD trillions) of FX option trading on illiquid

underlying asset, reported by BIS from 1998 to 2020.

(such as US dollar, Euro and Japanese Yen) has a high level of liquidity. In addition to

the combination of emerging-global pairs, the contracts for these currencies mainly focus

on the emerging currency and its regional trading partners, for example Argentina and

Chile. Option contracts for cross-region emerging currency pairs are extremely rare in all

financial institutions.

Based on the background discussed, the volatility surface is hard to forecast, especially

the deep out-of-money delta such as 10-call and 10-put. This leads to a vicious circle

that with no historical data to refer and calibrate with, market participants give up the

direct trading between two emerging currencies, finally resulting in a forbidden zone for

FX investment. Our study provides a methodology to skip the traditional re-calibration
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procedure and generate price guidance

Traditional methodology in option pricing focuses on micro factors, e.g. interest rate,

forward price and underlying volatility. This thesis aims to take the whole FX option

into consideration, instead of only paying attention to the currency and its corresponding

country.I build a leg currency set containing 6-10 related currency pairs and organize a

co-variance matrix, with eigen decomposition made towards it.

In my study, I construct a process called ’leg currency journey’, in which all related

option information is organized into a single matrix. The illiquid currency pair’s implied

volatility is viewed as a ’missing value’ in the system, and the eigen value structure is used

to back-derive the missing value. The key point here is how to control the freedom level

of the incomplete matrix, arrangement of leg currency journey and covariance matrix

limit the currency amount involved. Fig. 1.7 presents an example of leg journey between

several liquid currencies (GBP, EUR,AUD, NZD, AUD and CHF). Different choices of

’journey path’ are shown in the figure. For any currency pair, there is a set of contracts

with different maturities and delta. The leg journey provides the background to construct

a covariance matrix for the purpose of implementing eigensystem analysis.

In contrast to option trading with strategies and market straddle, our methodology

organizes the matrix by delta. For all deltas (10/25 put/call delta and at-the-money

contract), I have a set of leg currency journeys’ implied volatility filtration to complete

the system. The advantage is that I could directly generate the volatility surface and

make comparison through deltas. No further transformation is required; the mislead

between 1-vol butterfly and 2-vol butterfly can be perfectly avoided in our methodology.

Further more, I apply technology such as simulation and machine learning in our

study to improve the forecast ability for FX options traded on illiquid currency pairs. I

firstly give a brief introduction to the implementation of machine learning in financial

realm.
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Figure 1.7: Leg Journey for selected Currencies based on USD
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Note: This figure presents an example of possible leg journey among a set of selected currency

pairs(with USD).

1.1.8 Machine learning adjustment

The fundamental goal of pricing is to understand and measure the risk premia. Quoted

by implied volatility, FX options contracts are made to manage the risk. Even for options

trades on liquid currency pairs where expected price is well observed, it is still required to

explain the behavior and economic factors behind. But implied volatility is widely known

to be difficult to measure: firstly the market quotes are noisy, not all of the quotes are

rational as some are made by algorithm to check the spread, and it is quite common to

detect irrational bid/ask prices in tick history. Secondly, market efficiency makes implied

volatility return to be dominated by unpredictable market news, which make the prices

unforeseeable to some extent.

My study uses machine learning to capture factors that might have been neglected

in previous literature. Before we go into detail about the implementation of machine

learning in the FX option market, it is necessary to introduce this popular concept.The
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definition of machine learning is context-specific. In academic study of finance, the term

of ’machine learning’ is usually used to describe a set of high dimensional models used

for predictions which enjoy the advantage of searching out the most effective factors in a

vast amount of variables.

Compared with traditional economical models, the high-dimensional nature of ma-

chine learning promote the ability to find the key factors from unknown variables. The

nature of leg journey methodology decides that there are rare fixed factors, and all vari-

ables need to be specified to present the connection between chosen illiquid currency pairs

and the FX option market. Underlying asset, strategy, maturity and even the number

of factors are different across over 1400 contracts, so it would be exhausting to value the

parameters and unfeasible to implement in practice.

The nature of machine learning makes it possible to find neglected connections behind

the intricate FX market. In my study, I firstly generate an implied volatility prediction

based on leg journey and corresponding implied covariance matrix, then I organized a

set of related FX option prices as factors for machine learning. The advantages of using

machine learning are significant in a number of respects:

1) Although eigenvalue analysis has led to an accurate forecast for missing foreign

exchange options, there are still slight differences between calculation result and market

value, especially for those currency pairs with a relatively ’short leg journey’.

2) In our case, machine learning directly takes known implied volatility into the model

as adjustments;this information increases the information filtration for the currency leg

journey. More extensive historical data is used in our model.

3) There are huge amounts of derivatives traded based on foreign exchange, but it

is still relatively straight forward to recognize key factors/variables in empirical study.

Global currencies with high levels of liquidity are naturally considered to be the factors

in our study.
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To conclude, I will present the impact of factors based on the foreign exchange market

to explode the relationship between currency pairs. In previous literature, researchers

mainly focus on impact caused by regional effect or from trading partners. I would show

a broader point of view for this unpredictable market.

1.1.9 Equity eigenstructure analysis

Another practice of eigenstructure analysis is in the equity market. I organize the S&P500

equity historical data from 1996 to 2020 as dataset to generate the eigenvalue/eigenvector

distribution. In previous study, scale of portfolio is normally limited to around 100, the

distribution of eigenvalue is not significant. I expand the scale by constructing covariance

matrix with one of the largest markets: S&P500 equities. the rule of eigenvalue are

explored in my practice: the eigenvalue will converge when the scale of portfolio is large

enough.

Eigenvalue analysis provides guidance on the portfolio constructing. I will show the

simulation result to compare the eigenvalues between market and ideal circumstance,

bounds are presented for market portfolio. In practice, there are two noted findings:

1) the largest eigenvalue are converged when the scale of portfolio is larger than 200 2)

measurement and threshold for ’convergence’ is defined in my study.

I aim to discover and discuss the implementation of eigenvalue structure analysis in

equity market. I pay more attention to eigenvalue distribution in equity study more

compared with FX option. The simulation results and bounds will also presented. Time

series study cover the historical data from 1996 to 2020 and focus mainly on the trend of

eigenvalues after 2015.
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1.1.10 Conclusion

In my thesis, I focus on the eigenstructure analysis and implications in different circum-

stances. Firstly I raise a model to provide pricing guidance for FX option contracts.

Compared with traditional models, an eigenvalue-based model reduces the dependency

on historical data. For illiquid option contracts with few historical data to calibrate with,

my model provides a reliable price guidance. Eigen models try to integrate information

from option contracts all over the world and derive the ’missing’ price for those illiquid

contracts. The accuracy level is verified to outperform the traditional historical data-

based model. In practice, I will use historical FX option data as the data set. The

information of FX option data is recorded in Appendix A Table 5.2.

In order to improve the performance of the eigen model, I implement machine learning

to reduce the error between calculation result and market quote. The algorithm I select

is the regression tree, and results indicate that machine learning improves the prediction

performance in all respects. In addition to prediction, I numerical importance level of

currency pairs’ by machine learning.

I focus not only on the FX options market, but also pay attention to the equity market.

In the equity market, I focus on the convergence of the first principal component. I

selected S&P500 as the empirical dataset for our study( details are recorded in Appendix

A Table 5.1). In my empirical study, I expand the scale of covariance to 500 to check

the trend of the explanation power of the first principal component. With the increment

of portfolio scale, convergence of the first component is significant. I set methodology to

set the threshold to distinguish the stable process from turbulent process of eigenvalue.

To conclude, I focus on the eigenstructure of market equities. The idea arose from

different aspects of financial markets for which eigenvalue analysis can provide guidance

for both pricing and knowledge of portfolio management. The rest of the chapters are

organized as follows: in Chapter2 I introduce the eigenvalue analysis, and in Chapter3 I
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provide the machine learning solution for the FX market. Then in Chapter4, I introduce

the implementation of eigenvalue analysis in equity market. The last chapter forms the

conclusion for the thesis.
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Chapter 2

Eigenvalue Model

2.1 Introduction

Foreign exchange option (FXO) markets are notoriously difficult to calibrate. Highly

liquid markets such as the dollar versus the currencies of the other G7 countries have

specific rules of thumb to generate implied volatility smiles. However, a large number

of currency pairs (including many versus the dollar) do not have any quotes for FXOs,

and this is the subject of interest for this chapter. That many currency pairs do not

have FXO quotes is something of a puzzle. Unlike equities which have high degrees of

freedom relative to their underlying factor structure currency dynamics- under both the

physical and risk neutral measures- must be consistent to eliminate triangular arbitrage

opportunities.

Hence, with a number of traded quotes delivering the market price of contingent

securities, if the average correlation between exchange rates is relatively high (say above

50%) then the portfolio of exchange rates has very few valid exchange rate volatilities to

preserve positive semi definiteness of the conditional variance covariance matrix describing

the individual and joint second moments of exchange rates. Interestingly, there is a

discrepancy between the practitioner pricing of FXOs, which are apparently priced under
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a Geometric Brownian Motion (GBM), but are actually priced under a Brownian Semi-

Martingale (BSM), which has a far richer set of dynamics. I will illustrate how the BSM

instantiates itself in the pricing curves for FXOs and then extend the current standard

set of models to a richer framework of pricing models.

In this chapter I outline a global consumption economy with Cox et al. [1985] type

nominal interest rates and equivalent zero coupon bond securities. I then derive the equi-

librium exchange rate dynamics in the presence of time homogenous jumps and stochastic

volatility. I will show that once risk neutral dynamics are derived the bounds on FXO

pricing for un-quoted currency pairs are quite tight, particularly when considering a large

number of alternate leg currencies; that is extending beyond triangular arbitrage into a

case where more leg pairs are possibly paths from one numéraires to another.

My main contribution in this chapter is to develop a multi-currency economy whereby

the spot price dynamics adjust as a Poisson point process relative to the prevailing eco-

nomic conditions. For an N -numéraires (floating currencies, gold and silver) set up, to

my knowledge this is the first model of its type. I then solve the model for a set of

contingent claims that complete the market and translate this equilibrium economy into

a transformed Black-Scholes setting in keeping with the standard quoting approach of

FXO markets.

I then implement an eigenfunction approach which presumes that the delta portfolio

returns (the return on a portfolio of spot and options contracts with a specific target

delta) are correlated by an at least positive semi-definite matrix, hence by building a set

of options prices, I can determine the upper and lower bounds on currency correlations

when a suitable leg currency pair is absent.

My eigenfunction approach generates a European implied correlation surface and

solves a mini-max analysis of the smallest eigenvalue of the implied correlation matrix.

As the number of leg currencies increases the size of the pricing bounds on missing cur-
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rency pairs decreases and this rate of decrease is proportional to the average correlation

across the vector of numéraires.

In this chapter, I will firstly present basic assumptions I made towards underlying

assets: a Cox-Ingersoll interest rate for both domestic and foreign interest rates and

jump-diffusion model for spot process. Then the conception of FX leg journey will be

introduced, I will present how to derive implied correlation matrices from leg journey and

FX implied volatility.

Based on the characteristic of positive definite matrix, investors can derive any missing

element in corresponding implied correlation matrix. In the eigen model, the illiquid

option contracts’ implied volatility are set as ’missing element’ in the implied correlation

matrices. In the empirical study, I access over 1700 FX vanilla contracts to apply the

predictive power of the model, calculation results are compared with the market quote.

Empirical section presents the performance of eigen model from two aspects: market

quote as benchmark to estimate the predictive power of the model and the comparison

with widely-used parametric model.

The rest of chapter is organized as following: Section 2.2 gives a general literature

review of the prior work in the foreign exchange option market. Section 2.4 presents the

jump-diffusion option pricing model and a brief introduction to the eigenvalue analysis for

implied correlation matrix. Section 2.6 gives data information in this study.Section 2.8

gives summary and conclusion to the method.

2.2 Prior work on FXOs and FX options

Since Garman and Kohlhagen [1983] adapted the the Black and Scholes [1973] pricing

model of contingent securities for foreign exchange options there has been a strong push

to generate option pricing surfaces to value hedging and speculation on exchange rate

volatility. In particular, there has been a separation of the option implied structure
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of the FX market and analysis and forecasting of real and nominal exchange rates via

some form of regression analysis, see for instance Hansen and Hodrick [1980] for an early

example, using forward nominal exchange rates.

All starting points for an FXO pricing model must begin with a particular parity

assumption. Typically, practitioner models utilize covered interest parities as opposed to

real exchange rate models favoured in the macroeconomic forecasting literature. Garman

and Kohlhagen [1983] provide the base model for FXOs and this is typically the model

that is used by practitioners for quoting FXOs. This is a Black-Scholes type pricing

model, with the driven driven by a non-stochastic difference in riskless deposit rates be-

tween two numéraires, for instance two currencies or a currency and a commodity such

as a precious metal (typically gold and silver, presumed to exhibit non-stochastic for-

ward curves in line with US deposit rates). For empirical implementation the theoretical

riskless timed deposit accounts are replaced by quoted time deposits, hence in the pure

Black-Scholes universe arbitrage is presumed to follow a Rubinstein [1976] style approach,

with rebalancing always relative to a fixed point to point interest rate, as opposed to a

continuously dynamic rebalancing in the pure Black-Scholes PDE framework. For an ex-

act FXO PDE approach in a Black-Scholes universe, see [Chapter 9 of Shreve, 2004] for a

full description. As it turns out in both cases the one factor asset pricing model yields the

same solution, however, certain different assumptions are needed and this has relevance

to my implementation later on. Some ad-hoc adjustments, in model, have been proposed

an example of which is the Bossens et al. [2010] approach that uses the sensitivity of the

Black-Scholes valuation to changes in spot and volatility to adjust prices to compensate,

hence describing the implied volatility curve typically observed in most option markets,

FXO or otherwise.

First, [Chapter 9 of Shreve, 2004] posits a case where three representative assets

are available for domestic and overseas investments: two money market and one risky
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‘stock’. Each asset is within the Black-Scholes framework (GBM, frictionless rebalancing)

and can be dynamically swapped by changing numéraire. Each asset is valued under its

own risk neutral measure, versus a money market account, with the domestic money

market account being fixed to unity in its own numéraire. In each case the domestic

and overseas money market accounts are both pure martingale processes. Hence, one can

either stick to a domestic money market account, exchange to the overseas account or

invest in a risky asset. [Chapter 9 of Shreve, 2004] illustrates that the resulting pricing

model for call options on exchange rates, when the stock process is a GBM is equivalent

to the Garman and Kohlhagen [1983] pricing under the Rubinstein [1976] timed account

conditions. When specifying my general BSM model I will need to switch between these

two pricing frameworks to derive a closed form price, both under a no-arbitrage and

equivalent risk neutral pricing framework.1

Most standard models of economies do not presume fixed interest rates, but that

the money-market account is subject to random shocks; see for instance, the classic

equilibrium model of Vasicek [1977] or in a mean reverting framework Cox et al. [1985].

Indeed, for my re-implementation of a jump diffusion for multiple currencies I will presume

that the underlying economy has a Cox et al. [1985] style consumption framework with

mean reverting technology shocks. This forms the base risk neutral measure driving

the domestic and overseas money markets. Timed deposit accounts are therefore the

integrated expectations of the forward spot rate path under a one-dimensional mean

reverting stochastic process. This might seem restrictive, but for the purposes of pricing

FXOs, I am interested in the difference in the term structure and not modelling both

individually, hence this is technically a two-factor model of the difference in the term

structures and not two one-factor models of individual exchange rates (although I can

take initial values from these models).

1That is by writing down a no-arbitrage, delta neutral, price, there must be an equivalent risk neutral
measure, or by writing down equivalent risk neutral dynamics, there must be an arbitrage free price.
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Modern option pricing utilizes a rich class of BSM models, most of which include

some form of point process to complement the continuous diffusion dynamics. These

models can be applied to both free float and pegged currencies. See Yu [2007] for an

example of a point process being used to model a peg break shock. Hull and White

[1987] and Heston [1993a] propose early examples of stochastic volatility type models for

stock and bond option pricing, whilst Bates [2000] incorporated simple diffusive jumps

into an index option pricing model to explain the change in the pricing structure of

the US equity options market after the 1987 stock market crash. More recent work by

Da Fonseca et al. [2014] has extended the continuous component of stochastic volatility

to a multivariate case using Wishart volatility models. However, these models do not

contain jumps and closed form solutions are somewhat difficult, given the computational

nature of a Wishart characteristic function.

One-dimensional models of jump diffusions are common; see Duffie et al. [2000] for

the definitive review. While Bates [2000] offers arguably the simplest model of a jump

diffusion, Pan [2002] provides a set of dynamics for index options that are most applicable

to the FXO case. It is along these lines (Cox et al. [1985] type dynamics of the numéraire

and jumps in the mean equation only) that my benchmark model is created. In my

case jump compensation is designed to mimic the friction of interventions (such as pegs)

forcing the exchange rate away from its natural point. Hence a jump, is a jump-to-adjust

and this is a useful interpretation for pure pegs such as the US dollar versus Saudi Arabia

and China.

Estimating jump diffusions from spot data is inherently difficult. Singleton [2001],

Duffie and Glynn [2004] Ait-Sahalia et al. [2008] and Aı̈t-Sahalia et al. [2015] provide a

variety of frameworks for parameterizing the physical process from spot data. However,

the majority of option models are specified in close form and then calibrated to observed

quotes. My approach is a halfway house. I presume that market quotes are not available
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for certain pairs and it is then necessary to combine calibration from cross option pairs

and estimation from spot data to complete the set of available options.

More recent work by Du et al. [2017] has postulated an equilibrium global economy

with multiple numéraires whereby a deviation from the covered interest parity (and hence

from the domestic and overseas risk neutral measures) are persistent, resulting from a

variety of frictions. Their model encapsulates this premium and calibration suggests that

pegs and spot market frictions are the most prominent source of systematic deviations

from the nominal parity conditions.

In the two numéraires case the parity conditions are relatively straightforward to

model. However, in a case where more than two numéraires exist, leg currencies must

satisfy both the mean and variance conditions to be fully arbitrage free; that is, one

cannot synthetically create a position in two leg currency transactions that replicates the

cross (Dollar-Yen, Yen-Pound versus Dollar-Pound, for instance), that yields both an ex-

pected forward rate and a volatility inconsistent with the direct transaction. For instance,

consider a dynamically rebalanced portfolio of ‘stock’ and options in two exchange rates

with identical ‘inner’ pair, (e.g. Dollar-Yen and Yen-Pound). If the position replicates

a position directly in the ‘outer’ pair (e.g. Dollar-Pound) then the two portfolios should

track exactly, in terms of mean and variance. One can then resolve from the outer pair a

factor (referred to as an implied correlation) that ensures that the leg exchange rate dy-

namics (e.g. Dollar-Yen and Yen-Pound correlations) are consistent with the outer’ pair.

This consistency should be maintained for both delta neutral positions and positions with

partial hedging exposure.

Other than specification and times series forecasting, (see Campa and Chang [1998])

there is little specific academic research across a wide range of currencies in this area/

Ballotta et al. [2017] is one such study, and this case looks at a very narrow interpretation

of the at-the-money straddle correlation versus the implied correlation (under the physical
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measure) estimated from the relative spot price dynamics. Interestingly, there are no

current research papers that look beyond triangular arbitrage arguments and I will show

that there is considerable value to analysing broader numbers of currency pairs in this

type of framework.

2.3 Contribution of the Chapter

In this chapter, I aim to provide a brand new methodology for the pricing of FX options

with illiquid currency underlying asset. The model is based on the eigen decomposition

of implied correlation matrix. As a widely used conception in FX option market, implied

correlation comes from the implied volatility of pre-determined currency triangle.

In previous study of FX option pricing, traditional parametric models need sufficient

historical data to calibrate with. In practical, they will use very last data to make

adjustment for parameters, this process is known as ’recalibration’. For liquid and widely

traded currency pairs, recalibration greatly improve the performance of the model, but

for those illiquid contracts there is insufficient historical data to do the calibration.

Lack of data for illiquid FX option contracts reduces the predictive power of pricing

models, which increases the difficulty of relative derivatives’ trade. The Eigen model

raised in this chapter overcomes this disadvantage and provides a reliable pricing method

for illiquid contracts. In this chapter, I test the performance of the eigen model with

more than 1800 contracts over different currency pairs, deltas and maturities. The results

indicate that the eigen model’s predictive power is consistent across underlying assets.

The performance of the eigen model shows slight difference between deltas and matu-

rities. At-the-money contracts show the highest level of predictive power and the accurate

level decrease with the increment of delta to the volatility surface wings. For maturity,

the eigen model generates the best performance for short maturities from 1M to 6M.

This model provides a guidance of these illiquid FX option contracts for investors.
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With the development of these corresponding countries, there is increasing requirement for

the direct derivatives’ trades between these currencies. As mentioned above, parametric

models’ performance are limited without sufficient historical data, but the eigen model

could work without historical data. The data required in my model are just a well-

structured leg journey and the implied volatility of related contracts.

In the rest sections of this chapter, I would introduce the basic assumptions towards

FX market, the introduction of leg journey and practical performance of eigen model in

the market.

2.4 A General Model of FX rates and FX Correla-

tions

I consider a global economy with well-defined i ∈ {1, . . . , N} numéraires for well-defined

component economies. For each component economy I presume a Cox-Ingersoll-Ross

type consumptions economy, see Cox et al. [1985] in continuous time with a single rep-

resentative consumer with a logarithmic utility function exp(−ξit) lnCi(t), where ξi is a

discount rate. Each economy has a vector of capital stock (technology and commodity

stock valuations) positions Yi(t) with a corresponding vector of expected rates of changes

in capital stock αi and covariance matrix SiS
′
i. I presume that the Mi length vector of

capital stock is a vector of independent Ornstein-Uhlenbeck processes as follows:

dYi(t) = (ξiYi(t) + ζi)dt+ diag[νi]
√
Yi(t)dw̃

i(t)

where the first two moments of dYi(t) are given by ãsi andGiG
′
i respectively. Setting ãi =

ãiYi(t), GiG
′
i = ΩiYi(t) andGiS

′
i = ΣiYi(t), where ãi, Ωi and Σi are arbitrary constants,

the classic result of the CIR model is that when consumption is chosen to maximize
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Et[
∫ T
t
U(C(s), Y (s), s)ds], the equilibrium interest rate under logarithmic utility is given

in closed form by:

qi(Yi(t)) =
1′Ωiãi − 1

1′Ωi1
(2.1)

where 1 is a unit vector of length Mi, essentially solving the classic consumption min-

imization problem in continuous time. From this construct the nominal interest rate

dynamics for the ith numéraires is a one-dimensional square root diffusion model of the

following form:

dqi(t) =

(
1′Ωiãi − 1

1′Ωi1

)′
(ξiYi(t) + ζi)dt+

(
1′Ωiãi − 1

1′Ωi1

)′√
νiν ′iYi(t)dW

i(t) (2.2)

dqi = κi(θi − qi)dt+ σi
√
qidW

i(t) (2.3)

where dWi(t) is the combination of the vector Weiner process w̃i(t). Now let i, j ∈

{1, . . . , N} be an index of our numéraires and Sij(t) be the exchange rate of the ith

‘domestic’ numéraire to the jth at time t. Let qi(t) and qj(t) be the nominal short rate

for {i, j} numéraire pair, with the CIR type dynamics:

dqi = κi(θi − qi)dt+ σi
√
qidW

i(t) (2.4)

dqj = κj(θj − qj)dt+ σj
√
qjdW

j(t) (2.5)

by replacing the terms of (2.2) with their scalar parametric equivalents. Collecting pa-

rameters I denote ϕq = (ϕ′qi , ϕ
′
qj

)′ with ϕqi = (κi, θi, σi)
′ and ϕqj = (κj, θj, σj)

′.

The dynamics of the spot exchange rate for the delivery of one unit of currency i for

a given amount Sij(t) of currency j, referred to as the the ijth currency pair is given by

37



the following jump diffusion model:

dSij(t) =(qi(t)− qj(t) + ηVij(t) + λVij(t)(µ− µ∗))Sij(t)dt+√
Vij(t)qi(t)W

ij(t) + dZ(t)− µSij(t)λVij(t)dt (2.6)

with spot variance given by

dVij(t) = κh(θh − Vij(t))dt+ σh

√
Vij(t)dW

h(t) (2.7)

where η is the risk premium on the stochastic volatility component, Vij(t), which is

presumed to be a square root diffusion in keeping with Heston [1993b]. λ is the arrival rate

of jumps from a pure jump process Z(t), with mean jump size µ and jump compensator

µ∗. Jumps are presumed to arrive with intensive λ, the arrival following Pan [2002] is as

follows, let Uτ∗ ∼ N(µij,J , σ
2
ij,J) be a normally distributed random variable. The relative

jump size is given by 1 +µ = E[exp(Uτ∗)] = exp(µJ + 0.5σ2
J), with the change in the spot

FX rate after a jump at τ ∗ is given by Sij(τ
+) = Sij(τ

−)exp(Uτ∗), where τ− is the instant

prior to the jump, τ+ is the instant after the jump. Besides parameters in ϕq, the rest of

the parameters are collected as ϑMKT
ij = (η, µ, λ, µ∗, κh, θh, σh)

′
ij.

I now set out an arbitrage free economy, whereby the volatility and jump processes

are risk neutralized, such that nominal bond prices denoted in each numéraires are semi-

martingales in frictionless exchange. Under the martingale measure Q, I will assume that

both the domestic and foreign exchange rate qi(t) and qj(t) have some joint distribution

under Q and the data generating measure P and hence clear the market (this is a standard

assumption).

Hence the jump and volatility terms are compensated, such that a synthetic portfolio

of floating rate accounts borrowing continuously at qi(t) and financing a position in qj(t),

have an expected payoff identical to Sij(t), with risk neutral variance identical to the
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observed physical variance generated from the law of motion defined in (Eq. (2.6)) and

(Eq. (2.7)). Deriving the law of motion for the equivalent risk neutral dynamics is known

as risk neutralization. The standard approach for this type of model is given in Pan

[2002] but several others can generate the same result, with and without jumps. See

Bates [1996] for another example for equity indices.

The pure-jump process ZQ(t) distribution is identical to the data generating measure.

The dynamics of (Sij(t), Vij(t)) are as follows:

dSij(t) =[qi(t)− qj(t)]Sij(t)dt+
√
Vij(t)Sij(t)dW

ij
Q +

dZQ(t)− µ∗Sij(t)λVij(t)dt (2.8)

where spot variance is given by:

dVij(t) = [κh(θ̄ − Vij(t)) + ηθVij(t)]dt+ σh

√
Vij(t)(ρijdW

h
Q) +

√
1− ρ2

ijdW
ij
Q , (2.9)

for a one-dimensional volatility process, such that Vij(t) is t : R+ → R+. In this set up

ρij to capture the correlation between spot price Sij(t) and the spot continuous variance

Vij(t) of the exchange rate. Besides parameters in ϕq, I denote the rest of the parameters

as ϑQij = (λ, µ, ρ, κh, θ̄, σh, µ
∗)′ij. To simplify the notation, in the following sections I omit

the dependency of Sij on ϕq.

The solution of a spot rate characteristic function is quite tractable and simply ag-

gregates the characteristic functions for each of the processes driving the specific terms

of the stochastic differential equation.Starting from:

Ψ(c, Vij(t), qi, qj, T − t, ϑQij) = EQt [e−
∫ T
t qsds − ec ln(ST )] (2.10)
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the characteristic function can be written as an exponential-affine function:

Ψ(c, Bij(t), T − t, ϑQij) = exp(α + βBij(t)) (2.11)

where β = (βx, βqj , βqi , βθh)′ and imposing qj as the foreign currency interest rate and qi

denote domestic currency interest rate. The β is coefficient set, such that as βc = c the

remaining CIR type components of the characteristic function for β is the sum of the

individual stochastic factors of the

βqj =
2c(1− e−γqj (T−t))

2γqj − (γqj − κqj)(1− e
−γqj (T−t))

(2.12)

βqi =
2(1− c)(1− e−γqi (T−t))

2γqi − (γqi − κqi)(1− e−γqi (T−t))
(2.13)

βθh =
c2(1− e−γθh (T−t))

2γθh − (γθh − κθh)(1− e−γθh (T−t))
(2.14)

and α is defined as:

α =− κqd q̄d
σ2
qd

((γqd − κqd)(T − t) + 2 ln(1− γqd − κqd
2γqd

(1− e−γqd (T−t))))+

−
κqf q̄f

σ2
qf

((γqf − κqf )(T − t) + 2 ln(1−
γqf − κqf

2γqf
(1− e−γqf (T−t))))+

− κθθ̄

σ2
θ

((γθ − κθ)(T − t) + 2 ln(1− γθ − κθ
2γθ

(1− e−γθ(T−t))))+

λs(T − t)(exp(cµJ) +
c2σ2

J

2
)− 1) (2.15)

where γqd =
√
κ2
qd

+ 2σ2
qd
c, γqf =

√
κ2
qf

+ 2σ2
qf

(1− c), and γθ =
√
κ2
θ − c2σ2

θ . For a given

strike Kij(t), let kij(t) = Kij(t)/Sij(t, ϑ
Q) as the moneyness of currency Sij at time t, the

FX call option price can be shown as:

C(c, Bij(t), T − t, kij(t), ϑQij) = P 1
ij(c, Bij(t), t, T, ϑ

Q
ij)− kij(t)P 2

ij(c, Bij(t), t, T, ϑ
Q
ij) (2.16)
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where

P 1
ij(c, Bij(t), t, T, ϑ

Q
ij) =

Ψ(1, Bij(t), t, T, ϑ
Q
ij)

2
− 1

π

∫ ∞
0

Im(Ψ(1− c, Bij(t), t, T, ϑ
Q
ij))e

c ln(kt)

c
dc

(2.17)

P 2
ij(c, Bij(t), t, T, ϑ

Q
ij) =

Ψ(0, Bij(t), t, T, ϑ
Q
ij)

2
− 1

π

∫ ∞
0

Im(Ψ(0− c, Bij(t), t, T, ϑ
Q
ij))e

c ln(kt)

c
dc

(2.18)

where s is the imaginary part of the complex number. Combining (2.12)-(2.16), we can

see that there is a volatility skew relative to moneyness ratio kij(t) under risk neutral

measure with affine jump-diffusion model, when the velocity of mean reversion in the

volatility equation is small and when the mean jump size is large.

2.4.1 The GARCH Model of Correlated FX Returns

I will use the GARCH model as a benchmark in later sections to identify the improvement

made by the eigen model. Setting R(t+η) = ln(S(t+η)/S(t)),our GARCH model begins

with the GARCH type volatility:

R(t+ η) =rd(t)− rf (t) + λshs(t+ η) +
√
hs(t+ η)z(t+ η), (2.19)

hs(t+ η) =ωs + βshs(t) + αs(z(t)− γs
√
hs(t))

2, (2.20)

where hs(t) presents the variance process in spot and z(t) iid 0, η. It is worth mentioning

that the unconditional expectation E[hs(t + η)] = (αs + ωs)/(1 − βs − αsγ2
s ). For other

parameters, βs determines the persistence in corresponding spot variance; αs and γs are

the principal parameters that determine the kurtosis and skewness in implied volatility

surface. λs determines the feedback in spot variance to the mean return.

Because FX spot markets involve investors holding derivatives based on different cur-
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rencies and different measurements of the probability of the asset price movements, it

is necessary to derive the risk-neutral formula for the FX market to avoid arbitrage for

domestic and foreign investors. From a domestic investor’s point of view, the risk-neutral

FX process is given by :

R(t+ η) =rd(t)− rf (t)− 1/2hs(t+ η) +
√
hs(t+ η)z∗(t+ η), (2.21)

hs(t+ η) =ωs + βshs(t) + as(z
∗(t)− γ∗s

√
hs(t))

2, (2.22)

with risk neutral innovations z∗ = z(t)+(λs+1/2)
√
hs(t) and parameter γ∗s = γs+λs+1/2.

Denoting x(t) = lnS(t) as the natural logarithm of the spot FX price at time t.

Letf ∗(φ) denote the conditional generating function of logarithm price under domestic

risk neutral measure and assume the MGF(moment generating function) takes the log-

linear GARCH(1,1) form, then the MGF is in the following form:

f(φ) =E∗[eφx(T )] = exp(φx(t) + A(t;T, φ) +Bd(t;T, φ)rd(t)−Bf (t;T, φ)rf (t)+ (2.23)

+ Cd(t;T, φ)hd(t+ η)− Cf (t;T, φ)hf (t+ η) + Cs(t;T, φ)hs(t+ η)).

where d,f and s denote the parameters for domestic risk-free rate, foreign risk-free rate

and spot price respectively. The recursive terms can be evaluated as follows:

A(t;T, φ) =A(t+ η;T, φ) +Bd(t+ η;T, φ)µ0d −Bf (t+ η;T, φ)µ0f+ (2.24)

+ Cd(t+ η;T, φ)ωd − Cf (t+ η;T, φ)ωf + Cs(t+ η;T, φ)ωs+

− 1

2
ln(1− 2Cs(t+ η;T, φ)αs)−

1

2
ln(1− 2Cd(t+ η;T, φ)αd)+

+
1

2
ln(1− 2Cf (t+ 1;T, φ)αf )

Bk(t;T, φ) = Bk(t+ η;T, φ)µ1k + φ, k ∈ f, d, (2.25)
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Ck(t;T, φ) =Ck(t+ η;T, φ)βk +Bk(t+ η;T, φ)λk + γkBk(t+ η;T, φ)+ (2.26)

− 1

2
γ2
k +

(Bk(t+ η;T, φ)− γk)2

2(1− 2Ck(t+ η;T, φ)αk)
, k ∈ f, d

Cs(t;T, φ) = Cs(t+ η;T, φ)βs −
1

2
φ+ γ∗sφ−

1

2
γ∗2s +

(φ− γ∗s )2

2(1− 2Cs(t+ η;T, φ)αs)
(2.27)

With the known standard boundary conditions for domestic/foreign spot deposit rate, I

could derive the MGF and then the option price:

E∗t [max(S(T )−K), 0] =f ∗(1)(
1

2
+

1

π

∫ ∞
0

R[
K−iφf ∗(iφ+ 1)

iφf ∗(1)
]dφ)+ (2.28)

−K(
1

2
+

1

π

∫ ∞
0

R[
K−iφf ∗(iφ)

iφ
]dφ).

Denoting Dd(τ) as the domestic discounting factor, and from τ = T − t then I can write

the value of option as the present value today of expectation. The call option price for

an FX option under risk neutral measure is given by the following:

Pc =Dd(τ)E∗t [max(S(T )−K), 0] (2.29)

=Dd(τ)f ∗(1)(
1

2
+

1

π

∫ ∞
0

R[
K−iφf ∗(iφ+ 1)

iφf ∗(1)
]dφ)+

−K(
1

2
+

1

π

∫ ∞
0

R[
K−iφf ∗(iφ)

iφ
]dφ).

Fig. 2.1 shows the comparison between market quote and GARCH estimation for

volatility surface based on USDSAR 1 year maturity option. I can conclude from the

figure that the error between estimation and market quote is dependent on delta. For at-

the-money, the GARCH type affine model could provide a relatively reliable estimation
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Figure 2.1: Market Quote versus GARCH Estimation
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Note: This figure presents the USDSAR 1Y volatility surface from market quote and GARCH

estimation on MAY 1,2018 respectively. GARCH parameters are estimated from spot process back to

2000, reported by TRTH.

for BS implied volatility with error less than 0.5. But for deep out-of-money contracts

(put10 and call10), the error is increased to a level higher than 1. Market participants

set threshold 1 as the criterion for prediction, so the GARCH type model is believed not

to be reliable enough for these on-wings contracts. In our eigenvalue model based on leg

journey, I will show the consistency of predictive power across volatility surface.

2.4.2 FX Leg Journeys

Let k be another numéraire with exchange rates Sik(t, ϑ
Q
ik) and Skj(t, ϑ

Q
kj) respectively.

Triangular arbitrage imposes that for some future date T > t, Et[Sik(T, ϑQik)Skj(T, ϑ
Q
kj)] =
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Et[Sij(T, ϑQij)]. I can extend the triangular arbitrage arrangement to further legs, whereby

if km for m ∈ {1, . . . ,M} is a list of currency pairs then,

Et

[(
Sik1(T, ϑ

Q
ik1

)
M−1∏
n=1

Sknkn+1(T, ϑ
Q
knkn+1

)SkM j(T, ϑ
Q
kM j

)

)(
Sij(T, ϑ

Q
ij)
)−1
]

= 1 (2.30)

That is, the time t expectation will be that at time T an instant journey over M leg

currencies from currency i to j, should be equivalent to a direct journey from i to j of

a single unit of i. Furthermore, let Rij(t, T, ϑ
Q
ij) = logSij(T, ϑ

Q
ij) − logSij(t, ϑ

Q
ij), be the

natural logarithm of the difference in exchange rates from time t to T . Rewriting (2.30)

I can define the following expected return on a multi-leg position instigated at at T as

follows:

Et

[
Rik1(t, T, ϑ

Q
ik1

) +
M−1∑
n=1

Rknkn+1j(t, T, ϑ
Q
knkn+1

) +RkM j(t, T, ϑ
Q
kM j

)−Rij(t, T, ϑ
Q
ij)

]
= 0

(2.31)

Et

[
Rik1(t, T, ϑ

Q
ik1

) +
M−1∑
n=1

Rknkn+1j(t, T, ϑ
Q
knkn+1

) +RkM j(t, T, ϑ
Q
kM j

)

]
= Et

[
Rij(t, T, ϑ

Q
ij)
]

(2.32)

Similarly, let vart

[
Rik1(t, T, ϑ

Q
ik1

)
]

= Et
[
(Rik1(t, T, ϑ

Q
ik1

)− Et
[
Rik1(t, T, ϑ

Q
ik1

)
]
)2
]
, be the

expected variance of of a position instigated at T , the variance from directly exchanging

numéraire i to numéraire j or transitioning from i to j via M intermediates should be

the same, hence setting:

covt

[
Rik(t, T, ϑ

Q
ik), Rkj(t, T, ϑ

Q
kj)
]

= −r̃ik,kj
√

vart

[
Rik(t, T, ϑ

Q
ik)
]

vart

[
Rkj(t, T, ϑ

Q
kj)
]

(2.33)
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finally I can define a positive definite matrix of terminal covariation from t to T ,

C̃(t, T, ϑQ) =


vart

[
Rik1(t, T, ϑ

Q
ik1

)
]

. . . covt

[
Rik1(t, T, ϑ

Q
ik1

), RkM j(t, T, ϑ
Q
kM j

)
]

...
. . .

...

covt

[
Rik1(t, T, ϑ

Q
ik1

), RkM j(t, T, ϑ
Q
kM j

)
]

. . . vart

[
RkM j(t, T, ϑ

Q
kM j

)
]

 (2.34)

for a given pair of numéraires i and j, the variance of the direct exchange rate will be such

that vart

[
Rij(t, T, ϑ

Q
ij)
]

= 1′C̃(t, T, ϑQ)1, where 1 is an M + 1 length unit vector. For

the tenor T − t, for an option portfolio to be consistent, in a mean-variance framework,

hence requires the volatility under the risk neutral measure for the portfolio of direct and

cross exchanges rates must be consistent.

Consider a currency list km for m ∈ {1, . . . ,M} priced by currency i under neutral

measure (Q). For any n ∈ m the dynamics of currency pairs are shown as :

dSikn(t, ϑQikn) =[qi − qkn ]Sikn(t, ϑQikn)dt+
√
ViknSikn(t, ϑQikn)dW ikn(t)+

dZQ(t)− µ∗Sikn(t, ϑQikn)λVikndt (2.35)

With the moment generating function shown of time conditional-t transform of RT in

equation (7), the expectation of currency rate is:

µikm(t, T, ϑQikm) = Rikm(T − t)e0·Rikm . (2.36)

Following (2.30), the multi-leg expected return from t to T can be verified to be constant:

Et[µik1(t, T, ϑ
Q
ik1

) +
M−1∑
n=1

µikn(t, T, ϑQikn) + µkM j(t, T, ϑ
Q
kM j

)] = µij(t, T, ϑ
Q
ij) (2.37)

the variances of currency rates are shown as:

vart

[
Rik1(t, T, ϑ

Q
ik1

)
]

= Re[Ψ
′′
(0;Vik1 , qi, qk1 , T − t, ϑ

Q
ik1

)]. (2.38)
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Let ρij,jk(t, T ) denote the correlation between Sij and Sjk for period t, T ,M ≥ 3, we

can see that the variance will be:

vart

[
Rk1kM (t, T, ϑQk1kM )

]
=

M−1∑
n=1

vart

[
Rknkn+1(t, T, ϑ

Q
knkn+1

)
]

+ (2.39)

2
M−1∑
n=2

M−1∑
j<n

ρknkn+1,kjkj+1
(t, T )×

(
vart

[
Rknkn+1(t, T, ϑ

Q
knkn+1

)
]

vart

[
Rkjkj+1

(t, T, ϑQkjkj+1
)
])1/2

,

with mean and volatility shown to be consistent over time range [t, T ], the currency

exchange is verified to be consistent in the same tenor.

2.4.3 Black-Scholes Implied volatility Surface and Correlation

Surface

The Black-Scholes model makes the assumption that the option price is related to un-

derlying asset price, underlying volatility, strike price, time to maturity and interest rate.

The advantage of the Black-Scholes model is that the parameters are all easy to get

from market except for volatility. The Black-Scholes model assumes that volatility is

constant through the life of the option, which is obviously not true for the real mar-

ket. For this reason participants raise the idea of implied volatility: the volatility value

makes the Black-Scholes model calculation result equal the real market option price:

CMKT (t, ϑQ) = CBS(t).

Let ri(t, T ) and rj(t, T ) denote the returns on a riskless timed deposit account in

numéraires i and j respectively over t to T . Hence ri(t, T ) = Et[
∫ T
t
qi(t)dt]. The Garman

and Kohlhagen [1983] modified Black-Scholes price for foreign exchange call option price
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is given as follows:

CBS
ij (t, T ) =Sij(t, ϑ

Q
ij)e

−rj(T−t) 1
2
(1 + Erf(

ln(Sij(t,ϑ
Q
ij)/Kij)+(ri−rj+σBS/2)(T−t)

σBS
√
T

))+

−Kije
−ri(T−t) 1

2
(1 + Erf(

ln(Sij(t,ϑ
Q
ij)/Kij)−(ri−rj+σBS/2)(T−t)

σBS
√
T−t )) (2.40)

where Erf(·) is the standard error function. It is useful to think of this as a pricing

transform rather than having some fundamental connection to the underlying statistical

properties of the asset price process. Indeed, the price quotes in the OTC-FXO tend to

be delivered in terms of the Black-Scholes volatility and the Black-Scholes delta. The

curiosity is that the Black-Scholes delta is a function of volatility and strike, whereas the

volatility is treated as an exogenous function of strike. Set

∆BS(σBS, Kij, t, T, ri, rj) = 1 + Erf(
ln(Sij(t,ϑ

Q
ij)/Kij)−(ri−rj+σBS/2)(T−t)

σBS
√
T−t ) (2.41)

Notice that I specify this in error function terms to illustrate that this is a functional

decomposition of the call price and not an equilibrium model. The simplest way to think

about the FXO quoting convention is that the Black-Scholes delta is a way of stating a

proportional strike price and the volatility is an actual price.

As such, for a European volatility surface, market participants tend to use the implied

volatility corresponding to ∆BS instead of to strike price Kij, which is solved for at a later

point in the pricing calculation. With the market price shown by (Eq. (2.16)), implied

volatility can be derived from the equation:

CMKT (c, Bij(t, T ), t, T, ϑQ, K) = CBS
ij (t, T,∆BS) (2.42)

The time t is considered as 0, which indicates that for both real market and Black-Scholes

model I consider the process between [0, T ]. (Eq. (2.40)) leads to the ’Black-Scholes
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variance’ (σBS(t, T,∆BS))2. Let covBSij,ik(t, T,∆
BS) denotes the covariance of spot pair ij

and ik from Black-Scholes at period [t, T ] and Delta ∆BS, combined (Eq. (2.33)) with

the result shown by :

covBSij,ik(t, T,∆
BS) = rBSij,ik(t)

√
(σBSij (t, T,∆BS))2 · (σBSik (t, T,∆BS))2. (2.43)

The covariance matrix C then is shown as:

C(t, T,∆BS) =


(σBSik1 (t, T,∆BS))2 . . . covBSik1,kM j(t, T,∆

BS)

...
. . .

...

covBSik1,kM j(t, T,∆
BS) . . . (σBSkM j(t, T,∆

BS))2

 (2.44)

Let R(t, T,∆BS) denote the equivalent implied correlation matrix for Delta ∆BS for the

tenor T −t, this matrix is computed using the conventional normalization R(t, T,∆BS) =

diag[diag[C]−1/2] ·C · diag[diag[C]−1/2] with the following structure:

R(t, T,∆BS) =


ρBSik1,ik1(t, T,∆

BS) . . . ρBSik1,kM j(t, T,∆
BS)

...
. . .

...

ρBSik1,kM j(t, T,∆
BS) . . . ρBSkM j,kM j(t, T,∆

BS)

 (2.45)

Unfortunately, the European volatility surface is not normally quoted directly in the FXO

market, with participants preferring to use quotes from strategies that capture the struc-

ture of the implied volatility surface.. The frequently used strategy pairs are : 25∆BS and

10∆BS risk reversal (RR) and butterfly (BF). Let σBSATM(t, T ) denote the implied volatil-

ity of at-the-money Delta’s volatility, and σBSC (t, T,∆BS) and σBSP (t, T,∆BS) denote the

corresponding Delta’s Black-Scholes call and put options’ implied volatility respectively.
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Then the volatilities of risk reversal and 2-vol butterfly can be expressed as:

σBSRR(t, T,∆BS) = σBSC (t, T,∆BS)− σBSP (t, T,∆BS) (2.46)

σBS2volBF (t, T,∆BS) =
σBSC (t, T,∆BS) + σBSP (t, T,∆BS)

2
− σBSATM(t, T ) (2.47)

Traders usually use 1-vol butterfly (market strangle) instead of 2-vol butterfly. The

process of deriving 1-vol butterfly is firstly solving the following equation:

CBS(KC
∆BS , σ

BS
1volSTG) + PBS(KP

∆BS , σ
BS
1volSTG) =

CBS(KC
∆BS , σ

BS(KC
∆BS)) + PBS(KP

∆BS , σ
BS(KP

∆BS)) (2.48)

Where KC
∆BS and KP

∆BS denote call and put strike price at Delta ∆BS respectively. Solving

(2.48) to recover the σBS1volSTG that solves for the equivalent strangle position to the 2-

vol butterlfy. Hence, the 1-vol butterfly for Delta ∆BS,denoted by σBS1volBF (t, T,∆BS) =

σBS1volSTG − σBSATM .

The ∆BS is normally set to be 10∆BS and 25∆BS for quoting. A risk reversal consists

of a long position in call option and a short position in put option for certain Delta. The

butterfly consists of several trading options: two short positions in at-the-money option,

one long position for call and put options for a certain Delta. Figure 2.2 illustrates the 1

year maturity USDSAR volatility surface (Black-Scholes implied volatility on the ordinate

axis) with respect to Delta (the abscissa values) as an example, the 10∆BS and 25∆BS

risk reversals and 2-vol butterflies are sketched against the surface for illustration.

2.4.4 The Impact of Jumps

Stochastic volatility and jumps have a substantial impact on the structure of the European

implied volatility surface. Fig. 2.3 takes the example of the calibrated USDSAR volatility

surface and adjusts two key parameters, ceteris paribus. The black curve is the baseline for
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Figure 2.2: Strategies in Option Volatility Surface
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Note: This figure presents widely used trading strategy(Risk Reversal and Butterfly) from implied
volatility surface. Most of contracts are traded in these 5 given strategies.

the calibrated model. First, I increase the volatility of volatility by 5% (the dashed line)

and we can see that this steepens the parts of the curve further from the ‘at-the-money’

straddle, but decreases the volatility in a neighbourhood near the the at-the-money point.

Second, I increase only the jump intensity parameter by 5%; this is the dotted line. Here,

we can see that the curve is vertically displaced upward, but the shift is a decreasing

ratio as we move from being at the money. This would be in contrast to a 5% shift in

long-run continuous volatility which would shift the whole curve by a fixed ratio vertically

upwards.
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Figure 2.3: 1 Year Maturity USDSAR Option Volatility Surface
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Note: This figure presents The impact of jump parameters to estimation volatility surface. Solid line
indicate the benchmark result from model, dot line indicate result with higher level variance of variance
while keep other parameters fixed. Dash line is the result with higher level of jump variance while other
parameters same as benchmark.

2.4.5 Correlation Coefficient Matrix

Constructing the implied volatility surface through method above require accurate predic-

tive value of correlation coefficient ρBSij,ik(t, T,∆
BS). In the following sections, for for all the

Delta and implied correlation are derived from Black-Scholes model, refer ρBSij,ik(t, T,∆
BS)

as ρij,ik(t, T,∆).

As shown by (2.36) and (2.38), the exchange rate Sik is stable compared wth ex-

change process from Sij andSjk. In practice, imagine a bunch of currencies kn where

n ∈ {1, . . . ,M − 1}, all denominated by unique currency i. Correlation coefficient is not

directly observed on the market because the variance is not observable. The sections

above provide implied correlation as the proxy for true correlation coefficient. Using the

square of implied volatility as the variance of certain currency pairs at time t and ∆, the
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implied correlation in currency triangle can be shown as:

ρik1,ik2(t, T,∆) =
(σBSk1k2(t, T,∆))2 − (σBSik1 (t, T,∆))2 − (σBSik2 (t, T,∆))2

2σBSik1 (t, T,∆)σBSik2 (t, T,∆)
(2.49)

k1 and k2 are named as ’denominated currency’ while i is the denominating currency in

the currency triangle. For the list of denominated currency kn : n ∈ {1, . . . ,M}, the

correlation coefficient matrix is then defined as:

R(t, T,∆) =


ρik1,ik1(t, T,∆) . . . ρik1,kM j(t, T,∆)

...
. . .

...

ρik1,kM j(t, T,∆) . . . ρkM j,kM j(t, T,∆)

 . (2.50)

The characterization of a positive definite matrix imposes bounds on the pointwise

entry of elements of the correlation matrix to ensure that the eigenvalues of the resulting

matrix are always positive. By substituting the missing coefficient with a value from -1

to 1, we can get a temporary correlation R̂(t, T,∆). Hence I now have the following

structure:

R̂(t, T,∆) = V (t, T,∆) · Λ(t, T,∆) · V (t, T,∆)′ (2.51)

where V (t, T,∆) is (M×M) matrix, each column is an eigenvector. Λ(t, T,∆) is (M×M)

diagonal matrix whose diagonal elements are corresponding eigenvalues. Functionally, the

bound requires that min(diag[Λ(t, T,∆)]) > 0, all substituted values that do not make

the matrix meet the condition will be abandoned. The smallest and largest values that

make the correlation matrix meet all positive eigenvalues condition are marked as the

bounds for the missing correlation coefficient.

The missing correlation coefficient’s bounds will become narrower with the increasing

numbers of denominated currencies involved (denoted as M). In Fig. 2.4. I randomly

select AUDCAD as underlyiny asset and generate the minimum eigenvalues with different
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Figure 2.4: Minimum eigenvalue versus market data: AUDCAD atm
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unknown element in implied correlation matrix. Red cross is the real market quote as benchmark.

Data is reported by TRTH.
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numbers of leg currencies. For the plot, I have a red cross to indicate the market implied

correlation and corresponding eigenvalue for different leg currency numbers. I can con-

clude from the figure that with the increment of leg currency amount, the performance

of the model is improved in two aspects: 1) the bound provided by making minimum

eigenvalue zero is narrowed 2) the difference between maximized minimum eigenvalue

and market quote (indicated by red cross) is reduced. I can conclude from the trend that

length of leg journey is critical to eigensystem analysis, with 7-10 currency pairs involved,

the predictive power of eigen model will be greatly improved. More figures could be find

in Appendix.

2.5 Preliminary Data Analysis

For the implied correlation calculation, a currency pair triangle is required with one

denominating currency, and two denominated currencies. For the purpose of testing the

performance of this method, the currency triangle will consist of pairs for which the option

between two denominated currencies is actually trading on the market. With known real

market data as a benchmark, the experiment can manually delete a correlation coefficient

ρik1,ik2 each time, using the eigenvalue method to invert calculating correlation. For

testing, it is necessary to make sure the correlation coefficient has no missing element;

the maximum correlation scale currently with the constraint of no missing element is

8 × 8. The leg currencies included in our analysis are: GBP, USD, EUR, CHF, AUD,

JPY, CAD, SEK and NOK.

The correlation coefficient calculation uses 1 month maturity option data from TRTH.

The data used in this test is the end-of-day data for 2017. The volatilities for five different

deltas are used for currency pair: delta 10 put, delta 25 put, at the money, delta 25 call

and delta 10 call.
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2.6 Empirical Results

Section 2.6 lays out our main empirical results for the predictive power of the eigen

model. I summarize the results and compare the eigen model with the widely used

GARCH model. I firstly introduce the GARCH type model used as the benchmark then

implement the Diebold-Mariano test to investigate how consistently the eigen model

outperforms the GARCH model through maturity, delta and currency pairs.

2.6.1 Data Description

To assess the accuracy of the eigen model across different deltas and maturities, I imple-

ment the eigen model based on data from the options market from Jun 2014 to Sep 2018.

There are two data sources: TRTH provides the tick history and bloomberg provides the

end of day data. My empirical study covers 1725 FX option contracts across deltas and

maturities.

For each implied volatility surface, I quote five key points: put/call with 10/25 delta

and at-the money price. All deltas are derived from butterfly and risk reversal strategies

for corresponding deltas and maturities, the process is recorded in previous section. For

term structure, I cover 6 widely-traded maturities: 1M, 2M, 3M, 6M, 1Y and 2Y. Al-

though there are some even longer maturity such as 10Y for JPY, these six are the key

indices in term structure.

Bid and ask price are collected separately, then mid price is taken into calculation.

Cases where only bid or ask price is available are ignored in my study. All mentioned

data in later section of this chapter are mid price of the trade.

To conclude, 1725 time series are used as a data set in our empirical study. 1408

of them(81.62%) are inside the bounds provided by the eigen model, meanwhile 914 of

them(52.99%) have less than 1% error with eigen model point forecasts.
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Table 2.1: Eigen model forecasting accurate level summary (in per-
centage)

Count Interval Forecast Point Forecast
Strategy

’put10’ 345 0.6724 0.4128
’put25’ 345 0.8439 0.5054
’atm’ 345 0.9438 0.6494
’call25’ 345 0.8159 0.5589
’call10’ 345 0.8066 0.5185

Maturity
’1M’ 330 0.7885 0.5516
’1Y’ 270 0.5631 0.3528
’2M’ 330 0.8784 0.5815
’2Y’ 265 0.8559 0.5012
’3M’ 265 0.9113 0.5808
’6M’ 265 0.8985 0.5908

Notes: This table reports the overall eigen model forecasting accurate level.
Result are reported delta and maturity respectively. ’Count’ column report
amount of corresponding delta/maturity. ’Interval Forecast’ column report
the accuracy of market price fall into eigen model bounds. ’Point Forecast’
column report ratio of forecasts where error is less than 1(%).

2.6.2 Eigen Model Prediction Summary

In Table 2.1, I report the eigen model’s forecasting summary by delta/maturity. For

all five chosen deltas, accuracy of interval forecast range from 67.24% to 94.38%, with

at-the-money option forecasting generating the highest accuracy level of 94.38%. With

the extension of the Delta to the edge of surface, the forecast accuracy level gradually de-

creases to 67.24% and 80.66% for put10 and call10 respectively. At-the-money options are

believed to be the most rational contracts in options trading; prices of at-the-money op-

tions are concentrated in a narrow distribution, which reduces the error made by choosing

end-of-day price. Deep away-from-the-money options are not as rational as at-the-money

contracts, as prices are largely affected by investors’ personal expectations in relation to

underlying assets. The wide distribution of the away-from-the-money option price makes

both forecasting and comparison inaccurate; results indicate that put option prices are

more sensitive to the delta affection.

Fig. 2.5 reports the negative skewness of the eigen model interval forecast where
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Figure 2.5: Accuracy level of interval forecast by eigen model
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Note: This figure presents the amount of accurate time series. I consider the average difference between

model estimation and market quote lower than 1 as ’accurate time series’. All data reported by TRTH

with frequency of end of day.

58



the number of forecasts are all the same at 345. Degree of accuracy for at-the-money

interval forecast is 313, and the accuracy declines with delta especially for put option.

The accuracy jumps from 280 to 223 when delta changes from 25 to 10 for put option;

meanwhile the difference is 3 for call option. At-the-money is the key contract which

determines the price level of the option; the eigen model’s superior forecast performance

provides solid backup for the accuracy of volatility surface forecasts.

Maturity is considered to be the other important factor influencing predictive power.

The eigen model generates the best forecasting performance for 3-month maturity, as

91.13% of market prices are inside eigen bounds. The middle term, defined as the range

from 2-month to 6-month, shows promising forecasting accuracy of around 90%, but for

short-term(1 month) and long-term(1 year) maturity, the eigen model fails to fully capture

the market price. For all 270 1-month options across deltas, 152 time series are in the

eigen bounds, which is obviously less than other maturities. This deficiency comes mainly

from investors’ diverse expectations towards the underlying process for both short-term

and long-term,especially 1-year, maturity.

In addition to interval forecast summary, Table 2.1 also reports the point forecast

accuracy in the third column. In terms of delta, the at-the-money option generates the

highest accuracy at 64.94%. Point forecast shows the same trend along volatility surface

as interval forecasts, the accuracy decreases with the extending of deltas, with put10

having the lowest accuracy at 41.28%. In terms of maturity, although middle-term still

outperforms short-/long- term in our study, there are slight difference compared with

interval forecasts. Firstly, 6-month is the most accurate maturity for eigen model point

forecasts but not 3-month in interval forecast. Secondly, the point forecast difference

between 1-month maturity and middle-term maturity is not as significant as interval

forecasts; 1 month maturity presents a relatively better performance in point forecast.

The difference between point forecast accuracy degree for maturity is obviously smaller
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than it is for interval forecast; point forecast is shown to be less affected than interval

forecast in terms of maturity. For 1-month maturity options, point forecast results should

carry more weight in forecasting the level of volatility surface.

2.6.3 Diebold-Mariano Test Summary

The eigen model is compared to the widely used GARCH model that is used as a bench-

mark. The Diebold-Mariano test is used to assess whether the eigen model outperforms

the GARCH model in a statistically significant sense through deltas/maturities. The null

hypothesis is that the GARCH model outperforms the eigen model.

The Diebold-Mariano(DM) test provides a comparison between two forecasting mod-

els. The test statistics DM is asymptotically N(0,1) distributed, so the DM statistic can

give the confidence interval of one model outperforming the other. Negative statistic

indicates that eigen value model has a higher possibility of outperforming the GARCH

model. Three dataset(eigen model, GARCH model, market price) from Oct 2015 to Sep

2018 are used for the test.

In our case, two time series models are available for forecasting the option price. The

Diebold-Mariano test provides a comparison between two time series models. Firstly I

define the loss function as eit = ŷt − yt, i = 1, 2. The loss associated with forecast i is

assumed to be a function of the forecast error, eit and is denoted by g(eit). g()̇ is a loss

function, that is a function such that g(eit) 1)is never negative 2)increases in size as the

errors become larger in magnitude. With known loss functions of both models, I denote

dt = e1t − e2t, then I have

DM =
d̄√

[y0 + 2
∑h−1

k=1 yk]/n
(2.52)

where d̄ = 1
n

∑n
t=1 dt and yk = 1

n

∑n
t=k+1(dt− d̄)(dt−k− d̄). DM follows a standard normal
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Table 2.2: Overall Diebold-Mariano test performance for eigen model
and GARCH model (in percentage)

Count Eigen GARCH Similar
Strategy

’p10’ 332 0.8313 0.1415 0.0271
’p25’ 332 0.8915 0.0813 0.0271
’atm’ 332 0.9337 0.0451 0.0210
’c25’ 332 0.8765 0.1114 0.0120
’c10’ 332 0.8614 0.1234 0.0150

Maturity
’1M’ 320 0.9250 0.0656 0.0093
’1Y’ 260 0.6423 0.3153 0.0423
’2M’ 320 0.9406 0.0437 0.0156
’2Y’ 250 0.8920 0.0840 0.0240
’3M’ 255 0.9254 0.0588 0.0156
’6M’ 255 0.9254 0.0549 0.0196

Notes: This table presents the overall Diebold-Mariano test summary for eigen
model and GARCH model. ’Count’ column report amount of corresponding
delta/maturity. ’Eigen’ column reports the ratio of eigen model outperforming
GARCH model in DM test. ’GARCH’ column reports the ratio of GARCH
model outperforming eigen model in DM tests. ’Similar’ column reports the
ratio of two models do not present significant difference. Results are shown by
corresponding delta/maturity.

distribution:DM ∈ N(0, 1), so by the DM statistic I can conclude which models perform

better in forecasting. A DM statistic lower than 0 indicates that the first model has a

higher possibility to outperform the second model.

The GARCH parameters are estimated by spot process from 1997 to 2018. A model is

defined as outperforming the other with 95% confidence level. Critical statistics are -1.96

and 1.96 for eigen model and GARCH model respectively in our case. There are 1660

option price time series with different currency pairs, deltas and maturities; the eigen

model is verified to outperform the GARCH model in 1459 tests(87.89%). Meanwhile,

in 186(11.27%) tests the GARCH model performed better than the eigen model. For the

remaining 14 tests(0.84%) there was no significant difference between the two models for

corresponding time series.

Table 2.2 reports the DM test summary by listing the ratio of two models outper-

forming the other by delta and maturity. In the case of at-the-money delta, the eigen
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model show the highest ratio with 93.37% (310/332) of eigen model forecasts in this delta

verified to perform better than the GARCH model. The effect of away-from-the-money is

also shown by the DM test summary, with the forecast accuracy decreasing in the away-

from-the-money option. The eigen model shows lowest lead in the put10 option, where

the 83.13%(276/332) eigen model forecast outperforms the GARCH model. The DM

test difference between put10 option and at-the-money is not as significant as the point

forecast comparison, which indicates that the forecasting performance of both models is

affected by delta.

Consistently with the forecast accuracy summary, the eigen model has the largest

advantage in middle term maturity. In all 320 DM tests for the 2-month maturity option,

the eigen model outperformed the GARCH model in 301 cases, which generated the

highest outperforming ratio of 94.06%. The worst performance of the eigen model is the 1-

year maturity, where the GARCH model outperforming ratio was 31.53%. I can conclude

that compared with the sharp decrease in the 1-year maturity predictive power of the

eigen model, the GARCH model was as strongly affected. GARCH model forecasting for

1-year maturity is worth taking into consideration for adjusting eigen model forecasting.

In order to assess the graphical affection to two models’ performance, I separated the

option price process according to continent. Table 2.3 reports the DM test summary by

maturity and delta combination for European countries. I also report the minimum and

maximum DM statistic to show the confidence level of the test. The European economic

area, having the most successful regional integration, provides sufficient liquid FX option

trades within the continent where the amount of currency pairs for certain strategy ranges

from 12 to 18. 1- and 2-month maturity options are the contracts with the highest level

of liquidity; 18 different currency options are traded with each other. For the two liquid

maturities, as shown in Table 2.2, the eigen model outperforms the GARCH model for

most strategies. Call option with 25 delta generates the best performance for eigen
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Table 2.3: Diebold-Mariano test performance for eigen model and GARCH model
(Europe)

Europe
Count Eigen GARCH Similar Max Min

p10 1M 18 0.7222 0.2778 0.0000 16.5219 -26.9926
p25 1M 18 0.7222 0.2778 0.0000 12.3349 -26.3993
atm 1M 18 0.8889 0.1111 0.0000 8.9472 -21.8198
c25 1M 18 0.9444 0.0556 0.0000 7.7845 -47.8155
c10 1M 18 0.8889 0.0556 0.0556 10.3045 -52.1315
p10 1Y 13 0.3077 0.6154 0.0769 25.4486 -19.4848
p25 1Y 13 0.6154 0.1538 0.2308 5.0622 -16.1851
atm 1Y 13 0.9231 0.0000 0.0769 -1.7943 -27.7167
c25 1Y 13 0.3077 0.6923 0.0000 226.3842 -34.8987
c10 1Y 13 0.0769 0.8462 0.0769 228.6671 -19.1670
p10 2M 18 0.7778 0.2222 0.0000 16.5498 -36.4356
p25 2M 18 0.8333 0.1667 0.0000 10.0830 -32.7695
atm 2M 18 0.8889 0.0556 0.0556 3.9961 -25.2440
c25 2M 18 0.9444 0.0556 0.0000 2.9341 -104.9686
c10 2M 18 0.8889 0.0556 0.0556 7.5845 -103.0454
p10 2Y 12 0.2500 0.5000 0.2500 21.4690 -22.6433
p25 2Y 12 0.7500 0.2500 0.0000 10.0274 -40.6065
atm 2Y 12 0.7500 0.1667 0.0833 17.6115 -37.9599
c25 2Y 12 0.9167 0.0000 0.0833 -1.9151 -118.6174
c10 2Y 12 1.0000 0.0000 0.0000 -4.3108 -114.1984
p10 3M 13 0.6923 0.3077 0.0000 17.3839 -33.8814
p25 3M 13 0.7692 0.1538 0.0769 8.2441 -32.7944
atm 3M 13 0.8462 0.0000 0.1538 1.1868 -27.9034
c25 3M 13 0.9231 0.0000 0.0769 -0.5854 -108.0858
c10 3M 13 0.9231 0.0769 0.0000 5.2464 -99.8500
p10 6M 13 0.6923 0.3077 0.0000 17.6768 -32.1492
p25 6M 13 0.7692 0.1538 0.0769 8.4480 -34.0209
atm 6M 13 0.8462 0.0769 0.0769 1.9788 -31.6372
c25 6M 13 0.9231 0.0000 0.0769 -1.4065 -117.5965
c10 6M 13 0.9231 0.0769 0.0000 4.4637 -119.7842

Notes: This table presents the Diebold-Mariano test summary for eigen model and GARCH
model performance in European countries. Deltas and Maturities are separated. The ’Count’
column reports the amount of corresponding delta/maturity. The ’Eigen’ column reports the
ratio of eigen model outperforming GARCH model in DM test. ’GARCH’ column reports the
ratio of GARCH model outperforming eigen model in DM tests. ’Similar’ column reports the
ratio of two models do not show significant difference. ’Max’ column provides max Diebold-
Mariano statistic for corresponding strategy. ’Min’ column provides min Diebold-Mariano
statistic for corresponding strategy.
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value in both maturities; in 94.44%(17/18) of DM tests the eigen model outperforms the

GARCH. At-the-money options are tested to be stable across maturities; the eigen model

is verified to be a better choice in 75 cases out of 87(86.21%). The at-the-money option

with 1-year maturity shows particularly high accuracy, with 12 out of 13 counts in the

eigen model in this strategy outperforming the GARCH model. I discussed the eigen

model’s weak forecasting performance in the previous section, but I can conclude from

the European DM table that the eigen model still holds obvious advantages for at-the-

money contracts. The relatively low accuracy of the eigen model in 1-year maturity is

mainly caused by the wing, especially call options.

In addition to the European summary table, I also tested the DM test summary

by currency in a supplementary document. Outlines of the findings are as follows: 1)

Currency liquidity is not a factor that affects the performance of eigen model forecasting.

2) As with the trend shown by the European continent table, at-the-money with 1-

year maturity still performs well compared with the GARCH model. Maturity ffect is

significant in deep away-from-the-money contracts. 3) In all single currency, eigen model

is a better choice in option price forecasting. The differences between currencies are not

significant.

To conclude, in this section I compare the performance of GARCH-type model and

eigen model over a wide range of FX options. The GARCH-type model is one of the most

popular parametric model in FX market, in my research I use historical data back to 1996

for the parameters estimating. It is clear from the result that eigen model outperform

the well-estimated parametric model in almost all deltas and maturities.

The limitation of this chapter is that I only test the GARCH-type model performance

as benchmark, market participants may work with other parametric models. More studies

and comparisons will provide a much clearer picture of the eigen model predictive power.

So in this chapter, the most reliable indicator for eigen model is the calculation error
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from market bench.

2.7 Diebold-Mariano Test Summary (by Currency)

In order to get a precise comparison between the predictive power of the eigen and

GARCH models, I list DM summary details by currency in this supplementary document

from Table 5.3 to Table 5.17 in Appendix B. For each table, the ’Count’ column reports

the number of time series taken into comparison for the strategy in question. EUR

and CHF are the currencies with the highest level of liquidity; there are 13-15 time

series for each delta and maturity combination. The eigen model is considered to be a

better choice for both currencies, especially with the middle-term strategy. The eigen

model beats GARCH in 199 middle maturities out of 205(97.07%) for CHF, and 173 out

of 200(86.50%) for EUR. At a fixed maturity, the at-the-money option shows the best

performance across delta, for 1-month, 2-month, 3-month, 6-month maturity and 1-year

maturity of CHF, the eigen model outperforms the GARCH model in all tested currency

pairs.

I aim to provide a pricing model for the currency pairs which are not currently traded

in the options market, so it is necessary to pay particular attention to the currencies

with low levels of liquidity in our study. There are only 2 recorded options for HUF,

MXN and ZAR. For MXN and ZAR, the eigen model is verified to be better for all 60

strategies; even the max DM statistics are much smaller than -1.96. HUF is also shown

to be better forecast by the eigen model in 45 time series out of 60(75.00%). The eigen

model is verified to outperform in all at-the-money options in particular. To conclude,

the accuracy levels are stable across currency pairs, and liquidity of the underlying does

not affect the predictive power of the eigen model. The Implementation of the eigen

model will involve huge amounts of illiquid currency, and the stable performance in our

study proves that it is reliable in application.
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Secondly, as shown in the main document, the interval predictive power of the eigen

model jumps to 64.23% for 1-year maturity, which is significantly lower than other ma-

turities. With DM summary by currency, it is possible to gain a deep insight into the

performance of the 1-year maturity option. As shown in the liquidity effect summary

above, all at-the-money options are considered to be better predicted by the eigen model

for illiquid currencies(HUF, MXN and ZAR). The relatively bad predictive power for

1-year maturity is mainly caused by the deep away-from-the-money option, so I can

conclude from the currency summary that at-the-money is well predicted by the eigen

model. For high liquidity currencies such as AUD,EUR and CHF, the winning rates of the

eigen model for 1-year at-the-money are 90.00%(9/10),100%(14/14),and 100%(14/14). In

other words, the eigen model is not affected by maturity when it is used to forecast at-

the-money contracts, but the effect is obvious for the wings. For call option deltas 10

and 25, DKK,NOK and CAD with 1-year maturity, the eigen model is beaten by the

GARCH model in all related currency pairs. For other currencies, the winning rate of the

eigen model is just around 50%. The GARCH model shows an advantage in describing

the shape of the volatility surface for 1-year maturity, but the eigen model still performs

better in providing an accurate forecast of at-the-money contracts and determining level

of volatility surface.

Thirdly, there is not a single currency for which GARCH model is an overall better

choice in forecasting. As shown in all 15 currencies listed, the eigen model takes a

higher winning rate. For particular currencies like MXN and ZAR, the eigen model is

better across all maturities and deltas. The currency for which the two models have the

closest performance is DKK, where tje eigen model is better in 129 time series out of

151(85.43%) and the GARCH model is better in 22(14.57%). Compared with the overall

statistic where eigen value beats GARCH in 87.89% DM tests, I can conclude that the

eigen model performance does not vary greatly with the currency.
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To conclude, the eigen model is considered to be the obvious better choice for fore-

casting compared with the GARCH model. The underlying currency does not greatly

influence the accuracy level of the eigen model; it provides stable and accurate forecasts

for all currency pairs in the market. Deep away-from-money options with 1-year maturity

are the only weak point of the eigen model, and most of the inaccurate forecasts come

from these special strategies. But with reliable and accurate forecasts for 1-year at-the-

money options, investors can still get the level of implied volatility, but more information

is required to assess the shape of the volatility surface.

2.7.1 Eigen and GARCH Model Simulation

To assess the performance of the eigen model without effect from data selection, I imple-

ment a simulation based on GARCH parameters estimated from historical spot process.

To generate the simulated spot process, firstly I randomly choose ten currencies versus

USD (GBP, EUR, CHF, AUD, SEK, CAD, JPY, DKK, NZD and NOK in this simula-

tion) and their cross currency pairs, then estimated GARCH parameters from historical

spot process respectively. I generate a new set of spot process and option prices from esti-

mated parameters, where option price is considered to be the ’fair price’ used for the eigen

model. In empirical study, ’fair price’ is hard to obtain due to the wide distribution of

market price. But in the simulation, I directly calculate it from parameters; this process

eliminates the quote error and increases the eigen model’s predictive power. Meanwhile

in order to repeat the process GARCH model works, I estimate GARCH parameters from

simulated spot process. For each turn of simulation, a new bunch of ’simulated parame-

ters’ is estimated from changing spot process. I use simulated parameters to derive the

option price by using the GARCH model and compare the result with the eigen model

result. By following the given steps, I simulate how the GARCH model derives volatility

surface from the pre-estimated parameters. The error and irrational price are eliminated,

67



Figure 2.6: Simulation: GARCH and eigen model forecasts for CADSEK
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Note: This figure presents hte simulation for CADSEK. Dash-point lines indicate the bounds of 95%

simulated results for CADSEK FX option contracts by GARCH model, meanwhile dash lines indicate

the eigen model calculation results and solid line indicate the market quote. Parameters of GARCH

model are estimated by spot process from 2000 to 2018, reported by TRTH.

and both models generate ideal forecasts in simulation.

Fig. 2.6 shows the 2000 times simulation result for two models. The x-axis is the

moneyness ratio for the option and y-axis is the implied volatility. So-called ’Market

data’ in the figure is the option data directly calculated from the original parameters;

’eigen model’ plot reports the point forecast made by the eigen model along the moneyness

ratio. ’Simulation distribution’ give the interval forecast made by the GARCH model,

where the darker zone indicates a lower percentile to the median.

I can conclude from the figure that the eigen model has a high level of accuracy across

moneyness ratio. For deep away-from-the-money options, simulated eigen model point
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forecast does not show a significant difference compared with at-the-money option, and

still shows a high level of accuracy for volatility surface wings.

It is obvious from the simulation result that the eigen model is stable and extremely

accurate for point forecast, but the interval forecast made by the GARCH model captures

the ’market data’ at only a 95% percentile. The high percentile indicates that GARCH

is not a stable forecast model in the option pricing process; the forecasts of GARCH

need to be adjusted and recalibrated with known market data. But for the market where

there are not enough data to recalibrate with, such as the illiquid aim market of the eigen

model, the model GARCH does not show convincing predictive power.

2.8 Concluding Remarks

In this chapter I have proposed a method for placing bounds on a volatility surface

when direct market quotes are not available. I utilize the triangular arbitrage condition

versus multiple leg currencies to define delta hedged portfolios of multiple currency legs

and then use eigendecomposition to determine the bounds of the unknown pair. I then

compare the synthetic quotes from this analysis with actual market data in a preliminary

study. My objective is to evaluate the optimal trade-off between numbers of leg currencies

and tightness of bounds. My final analysis will be an econometric evaluation when the

observed implied correlation matrix is measured with pointwise error. In this case the

observed matrix might not be positive definite, whereas the underlying, true matrix, is

at least positive semi definite by construction. In this case reconditioning the stochastic

matrix might be necessary to attain a new set of bounds. The effect is increasingly likely,

as one increases the number of leg currencies in the matrix.

In the empirical section, I firstly show the accuracy level of the eigen model for

interval forecast and point interval. In both cases the eigen model shows superior high

predictive power. At-the-money option, as the most important indicator of volatility
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surface, is perfectly forecasted by the eigen model; meanwhile it also generates a high

level of accuracy for volatility surface wings across maturity. I also compare the eigen

model with the widely used GARCH model by Diebold-Mariano test. The results show

that for over 88% of strategies, eigen model is a significantly better choice for forecasting.

The superior performance of the eigen model is not affected by currency pair, maturity or

delta, the advantage is consistent across all strategies. In order to test the performance

of both models in an ideal situation, I implement a simulation where the spot process is

generated according to existing parameters. After eliminating the error made by irrational

investors and improper quotes, the eigen model shows perfect forecasts for the market

data.

To conclude, this paper provides a brand-new forecast model with a high accuracy

level. Compared with the traditional GARCH model, the eigen model does not require

market data to recalibrate with, and it is reliable for a wide range of currencies, espe-

cially for at-the-money and middle term contracts. Investors can use it to determine the

volatility surface and guide investment.
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Chapter 3

Eigenvalue Model Machine Learning

Adjustment

3.1 Introduction

Following on from the eigensystem model described in the previous chapter, I will now

conduct a machine learning exercise to improve the out of sample performance of the

model. Machine learning also provides a way to rank the effect of predictors of the

optimal location of the missing correlations in the viable set of eigenvalues about the

maximal minimum eigenvalue.

3.1.1 Main Purpose

The primary contributions are two-fold. First, machine learning improves the eigen

model’s predictive accuracy in measuring risk premia of the foreign exchange options

market. Risk premia are noisy to measure in options market; even if the underlying asset

price process is perfectly observed, risk premia are still dominated by unforeseeable news

and investors’ behavior.
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My study verifies that by taking related currency pairs’ option trading information

into consideration, the predictive power is significantly improved in two respects. The

first is the direct overall predictive accuracy compared with original model. The machine

learning adjusted eigen model generates an overall point forecast accuracy level of 68.27%

versus the original result of 54.72%; the improvement mainly comes from the most notori-

ous contracts: deep out-of-money options. I then introduce the out-of-sample R2 to verify

the promotion from the machine learning method. All results are shown separately by

maturities and deltas to follow the format in the original model. Empirical performance

indicates that machine learning provides a robust improvement across all different types

of contracts and especially in those notorious contracts: deep out-of-money and mid-term

maturity.

Second, I discover the relative important variables in the foreign exchange market

by ranking them according to a notion of variable importance. The eigen model aims

to calculate the missing implied volatility in the market by involving information for

all related currency pairs; I can identify the importance of currency pairs involved by

controlling the input variables. The study helps investors gain deeper understanding of

covariates in foreign exchange market compared with traditional studies. The hidden

relationships between currency pairs are explored and quantified through our model,

which provides innovative ideas in investigating the currency market.

In this chapter, I will firstly introduce the basic conception of machine learning algo-

rithms and its application in a financial context. I aim to combine the machine learning

with my eigen model and improve the predictive power in FX option markets. In em-

pirical study, regression tree is selected as the adjustment for raw eigen model, which is

considered to be the best performance machine learning algorithm in forecasting.

As same as the raw eigen model, I use market quote as benchmark in the empirical

study to test the forecast accuracy of eigen model with machine learning adjustment. In
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order to present the improvement by regression tree, I will also compare the predictive

power with raw eigen model by maturities and deltas.

Another question raised in the empirical study is that which currency pair is the

most important predictor to other contracts’ pricing. In the last section of this chapter,

I will introduce the process to numerical the predictors’ impact to other contracts by

calculating Roos reduction.

3.1.2 History of Machine Learning

The term ’Machine Learning’ was identified by IBM computer scientist Arthur Samuel

in 1959 as a subsection of artificial intelligence. The first implementation of machine

learning was a computer game called ’checkers-playing’ which could learn as it ran. With

the development of related theories, a rift gradually emerged between AI and machine

learning. Some scientists were interested in making machines learn from data by them-

selves, while others placed emphasis on the logical approach. In the 1960s, the research

focused on inductive logic programming; machine learning was considered as a separate

field in computer science and was abandoned.

Although several implements such as MADELINE(a neural network method which

was used to predict the echo on phone lines) achieved great success in the 1970s, there

was not much progress in the machine learning field. One of the most important reasons

was that participants tended to save instructions and data in a single memory, which

restricted the volume of data and made it harder for machine learning based methods

to gain an advantage. Things changed in the 1980s when inspired by the way neurons

work, John Hopfield raised a network with bidirectional lines in 1982, which is commonly

known as the Hopfield Network. This innovative ideal emphasized the importance of data

and information. Back propagation and other widely used machine learning algorithms

were invented at around the same time. A remarkable milestone in machine learning
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history was the invention of the IBM computer Deep Blue, which beat the world chess

champion. The potential of machine learning has been highly valued by both academia

and industry since then.

In the 21st century, especially since the 2010s, almost all leading businesses have

realized that machine learning will increase calculation potential. Many projects such

as DeepFace(by Facebook), DeepMind(by Google) and AmazonMachineLearningPlat-

form(by Amazon) have been established. These projects, whether open source or not,

greatly promote research in related fields. In order to move beyond the limits of com-

putational power, the major task of implementing machine learning has advanced from

CPUs to GPUs.

With the explosive growth in machine learning related research, financial researchers

and industrial investors a re paying more attention to the implement of this new technique

in forecasting the rapidly changing market.

3.1.3 Why Apply Machine Learning in the Foreign Exchange

Options Market?

There are several aspects of my study that make it perfectly suitable for analysis with

machine learning methods:

1)Investors are eager to explore reasons behind difference in prices across option con-

tracts. As mentioned in the introduction section above, risk premia are still a puzzle to

some extent, especially in the options market. The options market is sensitive to the

movement of underlying asset and related derivative contracts. As an algorithm designed

for prediction tasks, machine learning is perfectly suited to the problem of pricing risk

premia.

2)In my original model, the foreign exchange market is connected through the currency

journey. The information for all related currency pairs is sufficiently organized to forecast
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the price of missing contracts. The nature of currency markets decides that currency pairs

have different weights in valuing a specific option. Dominant international currencies, eg.

GBP,JPY,EUR, can play a major part in some pricing processes, meanwhile regional

trading partnerships can be a core factor in currency pairs such as AUD and NZD. By

applying machine learning, I can have a deep insight into how a certain options price is

influenced by currency pairs in the leg journey.

3)My eigen model study covers more than 1500 different contracts. For any missing

target option price, the factors involved could be different; the number of leg currencies

range from three to ten. It is unrealistic to get a fixed formula to make adjustment

for minimum eigen value error. Machine learning provides an methodology to make a

improvement.

3.2 Literature

The application of machine learning is relatively thin in terms of asset pricing, but with

the development of both technology and hardware, machine learning methods have ap-

peared in the asset pricing literature. Rapach et al. [2013] used lagged returns as pre-

dictors to forecast the global equity market returns; the innovative lasso algorithm was

implemented. Neural-networks as the most well-known machine learning technology, were

first mentioned by Hutchinson et al. [1994]. This technology was also applied to the back-

ground of options pricing(Yao et al. [2000]). One of the most central question in financial

study, ’ risk premium measurement’ was explained from the aspect of machine learning

to some extent, when Gu et al. [2020a] tried to separate the risk into systematic risk

compensation, idiosyncratic risk compensation and mispricing from a machine learning

approach.

Recently, machine learning methods have been used to predict stock returns. Green

et al. [2013] point out 330 predictive signals from previous literatures or drafts for stock
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level prediction,Harvey and Liu [2015] studied the cross section of equity returns based

on the bootstrap procedure; 316 factors were tested and their impact on equity return

verified. Green et al. [2017] used macroeconomic variables to predict the return level of

whole US market. Machine learning algorithm development provided the opportunity to

apply tests across these high-dimensional problems. In addition to singe equity profit,

Welch and Goyal [2008] analysed 20 variables for aggregate market return, comparing

the in-sample and out-of-sample performance in a window period of 30 years.

Kelly et al. [2017a] and Giglio and Xiu [2019] applied machine learning to reduce di-

mension and to test factor pricing models. Freyberger et al. [2020] and Kozak et al. [2017]

used shrinkage methods to approximate the stochastic discount factor for expected re-

turns. In early implementations of machine learning, neural-networks were the most com-

monly used algorithm(Hinton et al. [2006],Sirignano et al. [2016]). The neural-network is

also applied in portfolio management by Heaton et al. [2018].

Tree-regression was applied by Khandani et al. [2010] for credit default possibility es-

timation. Butaru et al. [2016] also implemented the regression tree in a risk management

study of the credit card industryl; consumer tradeline, credit bureau and macroeconomic

variables were considered as predictors. Moritz and Zimmermann [2016] used this algo-

rithm for portfolio ranking. The major benefit of the regression tree is the interpretability;

the regression tree methodology provides a combination of speed and good out-of-sample

performance. Dietterich [2000] argued that the out-of-sample performance of the regres-

sion tree is lower than bagging algorithm in high noise settings, but the results indicate

that the performance is case-dependent; tree decision and bagging algorithm are verified

to be extremely similar in low noise setting studies. Campbell and Thompson [2008] com-

pared the prediction from regression tree with the historical average return and verified

the economical meaning for mean-variance investors.

In addition to the simple regression tree, boosting is a way to combine multiple over-
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simplified trees and make them become a ’strong learner’. Schapire [1990] and Freund

[1995] first described the idea of boosting to improve the performance of weak trees.

Friedman et al. [2000] and Friedman [2001] expanded the boosting methodology and

derived the gradient boosted regression tree.

A major negative point of machine learning is that it provides little help in under-

standing the economic mechanisms behind data; the improvement in prediction is only

measurement. But in a recent study, Kelly et al. [2017b] add structure and introduce

the machine learning algorithm subject to economic structure. By implementing instru-

mented principal component analysis they check the relationship between known latent

factors for unobservable dynamic loading, and point out five factors that outperform

existing economic variables. Feng et al. [2020] provide a new path to verify the value

of factors. These studies help combining the data science technology with mechanisms

analysis, providing a numerical way to make a selection between variables.

To conclude, the literature on the implementation of machine learning in financial

study is rapidly expanding with the development of technology. But current applications

mainly focus on the equity market and macro factors analysis.

3.3 Contribution of the Chapter

In this chapter, I further extend the raw eigen model with machine learning adjustment.

As same as the raw model, this updated model also aims to provide accurate pricing

methodology for illiquid currency pairs’ option trading.

In the raw eigen model, the predictive power show significant difference between deltas.

In practical investment, market participants ask for a accurate volatility surface to guide

the trading and risk hedging, so deep away-from-money contracts are also important

to them. These deep away-from-money contracts are harder to predict compared with

at-the-money contracts. In raw eigen model’s practical study, the eigen error between
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maximized minimum eigen value and market quote matrix lead to the price error between

calculation result and market quote, which indicate the fact that FX option market does

not always follow assumption ’market tend to make itself the most stable’.

In order to eliminate the eigen error, I implement machine learning algorithm in this

chapter. Implied volatility of FX options involved in the leg journey are considered as

predictors in machine learning application, the eigen error is set to be aim variable. By

taking advantage of related implied volatility level, regression tree provides a proper

methodology to forecast the bias of minimum eigen value from idea assumption.

Practical results suggest that machine learning algorithm improve the forecast perfor-

mance of eigen model significantly, especially those relative poor performance contracts

in raw eigen model. Overall predictive power of eigen model rise 15% percent to 65%,

prediction accuracy level difference between deltas are greatly reduced. Now the guidance

for away-from-money contracts are more reliable.

The other outcome of machine learning application in this chapter is that I numerical

the cross-country effect in FX option trading. I select 8 widely-traded global currency

pair’s option implied volatility as predictors and test the effect of them to other currency

pairs. The empirical study provide a guidance for the investors in FX investment: which

is the most effective currency pair need to be noticed in this market. This study provides

a solution to this question from aspect of machine learning.

In the further study, the study could be further improved from two aspects: firstly,

more machine learning algorithm can be applied to test the performance; secondly, the

cross-country effect can be explained by many economic factors, I can connect it with

the result from machine learning algorithm- a pure data-oriented outcome.
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3.4 Methodology

This section firstly describes the reason why I want to apply machine learning in the

eigen model. The specific regression tree algorithm is then introduced, and in the third

part I introduce the method of ranking predictors.

3.4.1 Minimum Eigen Value Error and Implied Volatility

In the original eigen model, I assume the market tends to maximize the minimum eigen

value. Empirical study indicates that there is a slight difference between the calculated

eigen model’s minimum eigen value and the benchmark. The spread between eigen value

leads to the error in implied volatility. More formally, the process can be written as:

σ̂(∆BS, t, T, Si,j) = Φ(λ̂,∆BS, t, T, S(i,M1)...(Mk,j)) (3.1)

λ̂ = λ̃oem + εSi,j (3.2)

where σ̂ is the benchmark option implied volatility, Φ(·) is the eigen model, λ̂ is the min-

imum eigen value for benchmark matrix, λ̃oem is the minimum eigen value from original

eigen model,εSi,j is the error I try to forecast by applying machine learning.

The aim of machine learning is to capture the ε from known currency journey infor-

mation. The variables in machine learning are set to the option implied volatility for all

currency involved in Φ(·) versus USD.

A number of aspects of the implied volatility of options make them ideal to be pre-

dictors in machine learning:

1) FX options, as derivatives traded OTC, are mainly traded by institution to avoid

the risk caused by holding a foreign asset. In order to lock the risk, the institution

tends to trade a series of contracts contain a variety of underlying currency pairs. This
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characteristic of the FX options market increases the covariance of derivatives’ prices; the

movement of implied volatility is significantly influenced by the related currency pairs.

Meanwhile, as one of the key factors in the FX market, USD is widely traded with other

currencies. The data of these USD option contracts are continuous in time series for

almost all maturities.

2)ε generates a high correlationship with the option’s implied volatility. I can conclude

from Fig. 3.1 that implied volatility of the two options(CHFUSD and HUFUSD) shared

a similar movement in the windows period. For the time series before 2020, both options’

implied volatilities are stable, and eigen value error remains at a relatively low level.

Considering the complex background since 2020, especially after March, FX options’

implied volatility jumped to a high level, meanwhile the error also generates an abnormal

spike. Co-movement is observed across contracts. In the figure I only show the time-series

for two related options.

In empirical study, I assess all currencies involved in the eigen model’s currency jour-

ney versus USD. The scale of the market implied correlation matrix is dependent on the

amount of currency in the leg journey for a chosen currency pair, so the amount of scale

is also floating from three to ten. For different contracts, the machine learning model

need to be re-trained. The model is built based on the regression tree method.

3.4.2 Regression Tree

The decision tree is widely used in machine learning. It involves building a ’tree-like’

model starting from observations and leading to target value, with the aim of forecasting

the value based on input variables. It is known as a nonparametric supervised learning

method used for both classification and regression tasks. Classification trees are deci-

sion trees where the target variable takes a discrete set of values; those where the target

variable takes continuous values are regression trees. Compared with linear models, the
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Figure 3.1: Implied Volatility and Eigen Value Error

01-Apr-2019 01-Jul-2019 01-Oct-2019 01-Jan-2020 01-Apr-2020 01-Jul-2020

6

7

8

9

10

11

12

13

14

15

Date

im
p

li
ed

vo
la

ti
li

ty

1

2

3

4

5

6

M
in

im
u

m
E

ig
en

E
rr

o
r

CHF
HUF

Eigen Error

Note: This figure presents the CHFUSD 1M, HUF 1M implied volatility and eigen error from Apr,

2019 to JUL, 2020 reported by TRTH. Eigen error indicate the difference between raw eigen model and

market quote.
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Figure 3.2: Regression Tree Example

Note: The figure presents a regression tree(left) and its representation(right) in the space of two

characteristics (USDCHF implied volatility and USDCHF implied volatility). The terminal nodes of

the tree are in red, blue and yellow respectively. The sample is divided into three categories.

regression tree is an attractive approach for incorporating multi-way predictor interac-

tions. As a fully nonparametric method, the regression tree follows a basic logic of ’finding

groups of observations with similar characteristics’.

Fig. 3.2 shows an example with two predictors:USDCHF implied volatility and USD-

HUF implied volatility. The left panel describes how the tree assigns each observation to

a category based on its predictors. In the very beginning, observations are separated by

USDCHF implied volatility; those above the breakpoint of 14 are assigned to category

1. Those with a lower level of implied volatility are then sorted by USDHUF implied

volatility. Observations with a lower level of implied volatility than 8 are assigned to

category 2, while those with a higher implied volatility than 8 go into category 3. In the

end, forecasts for observations in a certain category are simply defined as average of the

outcome variables’ value in that that category.

Formally, a regression tree τ , with K categories, and depth of L, should be as follows:

g(zi,t; θ,K, L) =
K∑
k=1

θk1zi,t∈Ck(L) (3.3)
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where zi,t is the predictor vector with i equities. g()̇ is the flexible function for corre-

sponding predictors. Ck(L) is one of the K categories. θk is set to the mean of samples

within the category.

To grow a regression tree, the main goal is to find the category that best discriminate

among the potential outcomes. The method of split categories aim to minimize the

forecast error at the start of each branch. At each new level l, I also need to maximize

the discrepancy among average outcomes in each ’leaves’. But there is loss associated with

the forecast error, which is called ’impurity’, which describes similarity of observations

on either side of the split. The trade off between impurity, forecast error and tree level

L is the tricky part of tree growing.

Normally the basic regression tree growing algorithm is followed:

1) Start with a single node containing all points. Calculate RSS.

2) Search over all binary splits of variables for the one which reduces RSS as much

as possible. If the largest decrease in RSS is less than pre-determined threshold δ or the

resulting node contains less than q points, stop searching. Otherwise, take the split and

create two new nodes.

3)In each new node, go back to step 1.

More formally, the process should be: C1(0) denotes the range of all elements, Cl(d)

denote the l − th node of depth d. For level d from 1 to L, I need to update the node

based on Cl(d− 1). For i ∈ Cl(d− 1), l = 1, . . . , 2d−1, I follow the giving steps:

i) For predictors set j = 1, 2, . . . , P ,set threshold level α, define a split as s = (j, α)

and divide Cl(d− 1) into Cleft and Cright:

Cleft(s) = {zj < α} ∩ Cl(d− 1); (3.4)

and

Cright(s) = {zj > α} ∩ Cl(d− 1); (3.5)

83



ii) Define the impurity function. In my study I choose the most popular impurity

formula for each branch of the tree:

Γ(C,Cleft, Cright) =
| Cleft |
C

H(Cleft) +
| Cleft |
C

H(Cleft) (3.6)

where

H(C) =
1

| C |
∑
zi,t∈C

(ri,t+1 − θ)2, (3.7)

and θ = 1
|C|
∑

zi,t∈C ri,t + 1, | C | denotes the number of observations in set C.

iii)Choose the optimal split

s∗ = argmin
s

Γ(C(s), Cleft(s), Cright(s)). (3.8)

iv)Update nodes:

C2l−1(d)← Cleft(s
∗), C2l(d)← Cright(s

∗) (3.9)

The output of regression tree is given by :

g(zi,t; θ, L) =
2L∑
k=1

θk1{zi,t ∈ Ck(L)}, (3.10)

where θk = 1
|Ck(L)|

∑
zi,t∈Ck(L) ri,t+1.

3.4.3 Performance Evaluation and Variable Importance

To assess the predictive power of the machine learning adjusted eigen model for individual

foreign exchange markets, firstly I simply compare the forecasts with market benchmark.

Error threshold 1(%) is set to distinguish accurate and inaccurate forecasts, which is a

widely accepted error tolerance level in the options market. In addition to accuracy level,
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I calculate the out-of-sample R2:

Roos = 1−
∑

(i,t)∈τoos(ri,t+1 − r̂i,t+1)2∑
(i,t)∈τoos r

2
i,t+1

, (3.11)

where τoos indicates that the performance evaluation will only be assessed on testing a

subsample; these data will not be involved in the model estimation procedure.

In the empirical study, I also aim to identify the covariates that influence the pricing

procedure while controlling for other predictors in the eigen model. For individual con-

tracts, I rank the predictors according to a notion of variable importance. The notion of

importance I use the reduction in panel predictive R2
oos by setting all values of variable

i to zero,while other variables remain fixed. The approach is also shown by Gu et al.

[2020b].

In previous studies, cross-currency effects are studied based on several different as-

pects(currency liquidity, trading volume and geographical). The studies normally focus

on a limited number of currency pairs, which makes it computationally infeasible to apply

the adjustment for a wide range of contracts. The regression tree, as a fully nonpara-

metric machine learning algorithm, can provide guidance on the cross-currency effect and

reveal the hidden covariates in foreign exchange option markets.

The reason I select regression tree as algorithm in this chapter is that it is verified to

be the best ML algorithm in prediction by Gu et al. [2020b]. But it is still worth trying

algorithms mentioned in literature review. With more algorithm tested and incorporated

with raw eigen model, the predictive power of eigen model maybe improved.

The cross-country effect study provides the machine learning methodology for this

realm. This methodology overcome the short come of pre-determined predictors, the

predictors number is improved. In my study, I select eight widely traded global currencies,

but investors and researchers can add more currency pair data into the predictors.
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3.5 Empirical Study of FX options

3.5.1 Dataset Description

I obtain daily individual option contract implied volatility from foreign exchange options.

FX option is traded by OTC market, contracts do not share a unique start date. I collect

all FX option from their individual start date until May 2020. The deltas I select are

five key points on volatility surface: put/call options with delta 10/25 and at-the-money

contracts. These five points are used for constructing volatility surface and obtain the

highest level of liquidity. For maturity, I select 1-month, 2-month, 3-month, 6-month,

1-year and 2-year contracts as our dataset, which are also the high liquidity derivatives

in market. Although several currencies have extreme long maturity contracts(eg. 10-year

contract for USDJPY), they do not generate meaningful results. Because market can not

provides corresponding option in the procedure of currency journey in eigen model. So

in the selection of contracts, liquidity is a key factor.

The number of contracts in our sample is 1870 across volatility surface and term

structure (FX options information is listed in Appendix A). Three folds of data are

included in this section. The first is obtained benchmark from FX option market. The

second is the forecasts from original eigen model. The last part is the forecasts after

machine learning adjustment.

3.5.2 Minimum Eigen Value Error Improvement

In this section, I will present the effect of machine learning on minimum eigen error. The

currency pair I choose as example is the EURHUF one month contract. The reason I

chose this as an example is that EURHUF is difficult to forecast. As a kind of illiquid

currency, the trading with HUF in FX option is rare. The currencies involved in its leg

journey are USDHUF, EURUSD USDCHF and CHFHUF, and the limited number of
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Figure 3.3: EURHUF 1M ATM Minimum Eigen Error
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Note: This figure presents the adjustment made by machine learning algorithm. Solid line indicate the

market implied correlation matrix’s minimum eigen value, dash-point line indicate the original eigen

model’s calculation and dash line indicate the result after machine learning adjustment.
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Figure 3.4: EURHUF 1M Call10 Minimum Eigen Error
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Figure 3.5: EURHUF 1M Call25 Minimum Eigen Error
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Figure 3.6: EURHUF 1M Put10 Minimum Eigen Error
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Figure 3.7: EURHUF 1M Put25 Minimum Eigen Error
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currencies makes it hard to construct a proper implied correlation matrix for EURHUF.

As shown in the previous section, error between prediction and market value reduces with

the increment of leg currency amount.

In the raw eigen model, it is hard to get a precise minimum eigen value for EURHUF.

The error leads to a bias in constructing implied correlation matrix, and finally the implied

volatility is far away from the benchmark. In order to improve the forecast performance,

I chose several predictors to reduce the minimum eigen value error between original eigen

model result and benchmark.

Currency pairs in leg journeys are naturally considered as variables in machine learn-

ing, but for the illiquid currency HUF it is not enough to use only these variables. Con-

sidering the strong effect of EUR in European countries’ trading, I take EURGBP, EUR-

CAD, EURJPY and EURNOK option implied volatility as extra predictors. These extra

predictors are either global currencies or currencies of important regional economies.

Fig. 3.3 to Fig. 3.7 present the machine learning promotion for the eigenvalue model

across deltas. The results show that even for deep out-of-money contracts, machine

learning reduce the error to a acceptable level. In later sections, I will show the promotion

across all currency pairs, maturities and deltas.

3.5.3 Accuracy Level Improvement

3.5.3.1 Results by Delta

In Table 3.1, I report raw model and machine learning adjusted model’s over all predictive

power by delta. I can conclude from the table that for all deltas, machine learning improve

the predictive power. As with the raw model, at-the-money contracts generate the highest

accuracy level; 79.69% results from adjusted model are considered to be accurate in the

market. Deep away-from-the-money contracts’ forecast accuracy gradually reduces to

57.78% for put10 and 59.73% for call10 respectively.
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Table 3.1: Eigen model forecasting accurate level summary by
delta (in percentage)

Raw Result Machine Learning Result
count Mean Predictive Power Mean Predictive Power

put10 374 0.4343 0.5778
put25 374 0.5123 0.7118
atm 374 0.6664 0.7969
call25 374 0.5910 0.7299
call10 374 0.5324 0.5973

Notes: This table presents the overall forecasting accurate level by
delta. ’Raw Result’ panel report information of raw eigen model. ’Ma-
chine Learning Result’ panel report information of eigen model after
machine learning adjustment. For each panel, ’Count’ column report
amount of time series for corresponding delta. ’Mean Predictive Power’
column report ratio of forecasts where error is less than 1(%).

For at-the-money contracts, because the raw model already generates relatively strong

predictive power, the improvement is not as significant as deltas on wings; the accuracy

level rises from 66.64% to 79.69%. The machine learning algorithm greatly improves the

pricing performance for away-from-the-money contracts, which are considered to be the

most difficult to price in market trading. Call option with 10 delta predictive power rises

from 53.24% to 59.73%.

In addition to the overall predictive power, market participants also pay attention

to model performance across time series. In Table 3.2 I report the number of ’accurate

time series by deltas. A contract is considered to be accurately predicted when the

historical mean error is lower than 1(%). It can be concluded from the table that at-the-

money contracts across currency pairs and maturities have the highest number of accurate

predicted time series. 313 out of 374 at-the-money contracts are predicted; meanwhile,

with the growth of delta to the volatility surface wings, the number of accurate contracts

is reduced to 224. The result is consistent with Table 3.1, where the point forecast results

are reported.

The machine learning result’s adjustment in minimum eigen error greatly improves the

performance of the eigen model for different contracts. 106 more contracts are accurately
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Table 3.2: Eigen model forecasting accurate contracts summary
by delta

Raw Model Result Machine Learning Result
count Accurate Contract Amount Accurate Contract Amount

put10 374 176 191
put25 374 281 288
atm 374 291 313
call25 374 284 311
call10 374 189 224

Notes: This table presents the overall forecasting accurate level by delta.
The ‘Raw Result’ panel reports information from the raw eigen model.
The ‘Machine Learning Result’ panel reports information from the eigen
model after machine learning adjustment. For each panel, the ‘Count’
column reports number of time series for corresponding delta. The ‘Mean
Predictive Power’ column reports ratio of forecasts where error is less than
1(%).

predicted by regression tree algorithm compared with the raw eigen model, especially for

out-of-the-money contracts.

To conclude, machine learning algorithm adjustments improve the performance of the

eigen model in all deltas. The predictive power is improved by training a regression tree

and predicting the possible minimum eigen value error from implied volatility level. The

improvement is more significant for the delta on volatility surface wings the relatively

low-performance contracts in the raw model. With the involvement of the regression tree

training set, the gap between at-the-money contract and deep out-of-money contracts is

greatly reduced, and the eigen model could provide a more reliable forecast for the whole

volatility surface.

3.5.3.2 Results By Maturities

As another important factor in option pricing, I report the effect of machine learning

algorithm by maturities.Table 3.3 records the mean predictive power. I can conclude

from Table 3.3 that the machine learning adjusted eigen model generates relatively strong

predictive power for short term contracts. 71.40% calculation results of 1-month maturity

have less than 1 error with market data; meanwhile with the increment of maturity, the
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Table 3.3: Eigen model forecasting accurate level summary
by maturity (in percentage)

Raw Model Result Machine Learning Result
count Mean Predictive Power Mean Predictive Power

1M 305 0.5910 0.7140
2M 305 0.6167 0.7184
3M 315 0.6023 0.6967
6M 315 0.6191 0.6765
1Y 315 0.4182 0.6435
2Y 315 0.5412 0.6493

Notes: This table presents the overall forecasting accurate level
by maturity. ’Raw Result’ panel report information of raw eigen
model. ’Machine Learning Result’ panel report information of
eigen model after machine learning adjustment. For each panel,
’Count’ column report amount of time series for corresponding
maturity. ’Mean Predictive Power’ column report ratio of fore-
casts where error is less than 1(%).

predictive power gradually reduces to 64.93%.

As shown in the delta section, machine learning improves the relatively low perfor-

mance group considerably. The improvement for 1-year contract, which is known as the

most difficult contract to forecast, is 22.53%. The accuracy level for 1-year contract is the

same as other long term maturities. After the adjustment, the performance of the eigen

model for all maturities is around or higher than 65%. The adjusted model is expected

to be more stable across time series.

Table 3.4 reports the increment of accurate contracts amount. I can conclude from the

table that for all contract maturities adjustment increases their performance. Especially

for 1-year maturity contracts, 60 more contracts are considered to be well predicted

after the adjustment. The difference between most well predicted and poorly predicted

contracts is reduced from 101 to only 42.

3.5.4 R2
oos Performance Improvement

In addition to answering most critical question: to what extent the model could be trusted

as a reliable model for forecasting implied volatility, R2
oos provides a deeper insight into
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Table 3.4: Eigen model forecasting accurate contracts
summary by maturity

Raw Model Result Machine Learning Result
count Accurate Series Accurate Series

1M 305 239 240
2M 305 227 235
3M 315 218 231
6M 315 206 218
1Y 315 138 198
2Y 315 193 205

Notes: This table presents the overall forecasting accurate
level by maturity. ’Raw Result’ panel report information of
raw eigen model. ’Machine Learning Result’ panel report in-
formation of eigen model after machine learning adjustment.
For each panel, ’Count’ column report amount of time series
for corresponding maturity. ’Mean Predictive Power’ column
report ratio of forecasts where error is less than 1(%).

Table 3.5: Eigen model forecasting R2
oos summary by delta

Delta Raw Eigen Model R2
oos Machine Learning AdjustedR2

oos

put10 0.9330 0.9363
put25 0.9471 0.9517
atm 0.9448 0.9548
call25 0.9191 0.9427
call10 0.8697 0.9029

Notes: This table presents the aggregate level of R2
oos by delta.

’Raw Result’ panel report information of raw eigen model. ’Ma-
chine Learning Adjusted’ panel report information of eigen model
after machine learning adjustment. For each panel, the data
presents the R2 for all results in out-of-sample dataset in corre-
sponding delta.

the performance for individual points among time series.

3.5.4.1 Results By Delta

Table 3.5 reports the R2
oos for both original eigen model and results after regression

tree adjustment. The forecast performance of model evaluated by R2 generates a slight

difference from the accuracy level in the previous section. As shown by Table 3.2, at-

the-money contracts have the highest accuracy level. For out-of-sample R2
oos, put option

with delta 25 generates the best performance 0.9471 in raw eigen model, meanwhile at-

the-money contracts is also well predicted with R2
oos at 0.9448. Deep out-of-money call
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Figure 3.8: R2
oos Improvement By Delta
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Note: This figure presents the out of sample R square improvement made by machine learning

algorithm by delta. Data reported by TRTH from 1996 to 2020.

option are the hardest contracts to predict, which is consistent in both measurements,

0.8697 and 0.9191 R2
oos are far behind other prediction performance.

But the benefit of machine learning is significant for these contracts with relatively low

performance. Call option with 10 delta, the extreme contracts on the volatility surface,

raise sharply to the R2
oos level at 0.9029. For the other relevant call option, delta 25, the

performance surpasses that of put10 contracts. The outcomes of machine learning are

presented visually in Fig. 3.8. Machine learning adjustment reinforces the relatively weak

predictive power of the raw eigen model in call options on volatility wings.

The slight difference of predictive power measured by two methods: accuracy level and

R2
oos arises for two main reasons: 1) The dataset chosen. Decided by the model-estimation
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Table 3.6: Eigen model forecasting R2
oos summary by

maturity

Delta Raw Eigen Model R Machine Learning Adjusted R
1M 0.9490 0.9502
2M 0.9529 0.9543
3M 0.9210 0.9436
6M 0.9096 0.9434
1Y 0.9062 0.9392
2Y 0.8965 0.8999

Notes: This table presents the aggregate level of R2
oos by Ma-

turity. ’Raw Result’ panel report information of raw eigen
model. ’Machine Learning Adjusted’ panel report informa-
tion of eigen model after machine learning adjustment. For
each panel, the data presents the R2 for all results in out-of-
sample dataset in corresponding delta.

process and out-of-sample set, the outcome with machine learning adjustment covers the

relatively close window period from 2015-2020. Meanwhile the original method’s forecast

performance contains part of the previous benchmark. 2) As explained in section 3.2,

in evaluating accuracy level I set a threshold value of 1(%). The value is identified to

be reliable for investors’ using in empirical study. R2
oos, as statistic index, gives a deeper

insight into individual points’ performance among time series; outliers have a higher effect

on the outcome compared with the accuracy level test in the previous section.

3.5.4.2 Results By Maturity

Table 3.6 reports the forecast performance by maturities, for both original eigen model

and machine learning adjusted model. I can conclude from the table that for those with

a good performance in the raw eigen model, the promotion from machine learning is

not as significant as for contracts with a relatively low performance. For two short-term

contacts, 1-month and 2-month, the R2
oos rise from 0.9490 and 0.9529 to 0.9502 and 0.9543

respectively. But for mid term option, 3-month to 1-year, machine learning helps with a

sharp increase in predictive power.

The R2
oos increment is shown in Fig. 3.9. Middle term contracts benefit the most from
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machine learning. The outcome follows our assumption: the regression trees promote

the eigen model by incorporating option information on related currency pairs; middle-

term contracts are the options most sensitive to market movement. The unforeseen jump

in a certain option’s implied volatility spreads quickly through market and influences

investors’ behavior in many aspects.

For short-term options (1-month and 2-month) the comparison indicates that they

have already effectively used market information, as the predictors do not provide as

high a promotion as they provide in middle-term options. Long-term options (2-year)

are a specific type of contract; the movements in the market do not influence investors’

choice in a long-term future. To have a better adjustment for long term FX options, it

can be useful to have macroeconomic indicators as predictors.

3.5.5 Predictor Rank

I now investigate the relative importance of individual variables for the performance of

promoting forecast ability. Firstly, I select the currency pair with highest level of liquidity

described in previous sections as variables. Then for each aim currency’s option price, I

calculate the reduction in R2
oos from setting all values of a given predictor to zero with

in training sample and take the average value as importance measure for each variable.

Variable importance within an individual training set are normalized to sum to one in

order to give them relative importance.

Fig. 3.10 and Fig. 3.11 report overall rankings of variables for all aim option con-

tracts from two aspects of data: GBPUSD and USDJPY. The reason I select these two

is that they are the most important verified predictors in our study; the average nor-

malized importance are absolute higher than other predictors. For each table, row name

reports the machine learning aim currency pair, and column names indicate the variables

used for corresponding aim currency pair. The color gradient within each column shows
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Figure 3.9: R2
oos Improvement By Maturity
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Note: This figure presents the out of sample R square improvement made by machine learning

algorithm by delta. Data reported by TRTH from 1996 to 2020.

the currency-pair-specific ranking of variables from least to most important(lightest to

darkest). The result is also summarized in Table 3.7.

Fig. 3.12 to Fig. 3.19 report the numerical importance level of all predictors. For each

predictor, I list ten aim currency pairs where the corresponding predictor has the highest

level of importance. Fig. 3.10 and Fig. 3.11 demonstrate that the machine learning out-

comes are in close agreement regarding the common sense. The option is highly affected

by the prices of underlying currency versus USD, which indicates that investors take

USD-related option price as an important reference in pricing. For example USDCAD is

not tested to be a dominant global currency in our empirical study, but for the option

trading related with CAD(CADCHF, CADJPY, CADNOK, CADSEK and CADSGD) it
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Figure 3.10: Predictor Importance By GBPUSD

Note: Ranking of predictors by GBPUSD . Rows correspond to individual aim currency pair’s option

machine learning procedure. Columns correspond to chosen predictors and color gradients within each

column indicate the most influential dark green) to least influential (yellow) predictors.
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Figure 3.11: Predictor Importance By USDJPY

Note: Ranking of predictors by USDJPY. Rows correspond to individual aim currency pair’s option

machine learning procedure. Columns correspond to chosen predictors and color gradients within each

column indicate the most influential dark green) to least influential (yellow) predictors.
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is tested to be the most important factor in four of them; the normalized predictor ranges

from 0.1719 to 0.2307. For other currency pairs, the implied volatility of the option with

USD is verified to be important predictors, which indicate that USD-related currency

pairs provide important information for options trading.

The second outcome of the study is exploring the ’global dominant currency’ from a

new perspective. By calculating the relative importance factors, I can get numerical infor-

mation on how and to what extent a currency influences other currency pairs. GBPUSD

and USDJPY are verified to be the top two variables in the options market. The global

influences of GBPUSD and USDJPY are verified from two perspectives: i) the average

numerical importance for GBPUSD and USDJPY rank in the top two among all selected

predictors(GBP:0.1556, JPY:0.1371) ii) For any aim currency pairs’ option, I consider

the top 2 predictors as ’key predictors’; GBPUSD are key predictors in 20 currency pairs

and USDJPY is key 14 times, which is the most frequent among all 8 factors.

The third finding is the regional effect, which is clearly explored in machine learning.

As shown by numerical variable importance in Table 3.7, NZDUSD influences AUD trad-

ing with a variety of option prices versus currencies such as AUDHKD, AUDJPY; the

effect from NZDUSD is even higher than global currency pairs. Meanwhile the numerical

importance of NZDUSD is not significant for other currencies. The regional factor is

mentioned in the previous literature as a result of trading and geographical effects; it is

verified in our study by the machine learning algorithm. In addition, machine learning

provides a numerical way to compare regional effect with global currency.

Fig. 3.20 presents key predictor frequency of all chosen predictors. We can conclude

from the figure, as in the results from Fig. 3.12 to Fig. 3.19, that GBP and JPY are verified

to be the ’global currency’ in foreign exchange markets: GBPUSD is key predictor in 20

currency pairs, meanwhile USDJPY is key 14 times. The effect of GBPUSD and USDJPY

is widely spread across almost all of FX options trading.
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Table 3.7: Predictor Importance Table Summary

GBPUSD USDJPY USDCHF USDCAD NZDUSD AUDUSD EURUSD USDSGD
AUDCAD 0.1126 0.1980 0.1557 0.0994 0.0432 0.1016 0.1367 0.1529
AUDCHF 0.1140 0.2253 0.1175 0.0919 0.1129 0.1531 0.0684 0.1169
AUDHKD 0.1868 0.0927 0.0444 0.0000 0.2359 0.1332 0.1639 0.0604
AUDJPY 0.1163 0.1093 0.1244 0.1080 0.2040 0.0606 0.0962 0.1812
AUDNOK 0.1660 0.0921 0.1005 0.1299 0.0849 0.1251 0.0875 0.0000
AUDNZD 0.0890 0.1362 0.1169 0.1746 0.2069 0.1099 0.1010 0.0655
AUDSEK 0.1738 0.1473 0.1233 0.0926 0.0585 0.1693 0.0683 0.0000
AUDSGD 0.1343 0.1109 0.1363 0.1283 0.1224 0.1306 0.1526 0.0846
CADCHF 0.1425 0.1747 0.1436 0.0748 0.0692 0.1008 0.1833 0.1111
CADJPY 0.1651 0.1382 0.1047 0.1757 0.1124 0.0724 0.0900 0.1414
CADNOK 0.1283 0.1200 0.1346 0.1759 0.0960 0.1196 0.1274 0.0000
CADSEK 0.1266 0.1176 0.1416 0.1719 0.0401 0.1043 0.1009 0.0000
CADSGD 0.1214 0.1137 0.1472 0.2307 0.0635 0.1173 0.0593 0.1468
CHFHKD 0.1103 0.0745 0.1696 0.0000 0.0838 0.1230 0.0665 0.2137
CHFJPY 0.2014 0.0796 0.1324 0.1792 0.0698 0.1516 0.0872 0.0988
CHFNOK 0.0994 0.1618 0.1488 0.1195 0.1198 0.0704 0.0629 0.0000
CHFSEK 0.1836 0.1553 0.0794 0.0969 0.0813 0.0585 0.0810 0.0000
CHFSGD 0.1653 0.1232 0.1904 0.1582 0.1148 0.1282 0.0627 0.0572
EURAUD 0.1207 0.1256 0.1217 0.1236 0.1277 0.1087 0.1467 0.1253
EURCAD 0.1082 0.0871 0.2254 0.0711 0.0982 0.0894 0.1974 0.1232
EURCHF 0.1245 0.1110 0.1029 0.1273 0.1392 0.1993 0.0782 0.1175
EURGBP 0.1211 0.0813 0.1494 0.1133 0.1094 0.1059 0.1837 0.1360
EURHKD 0.2849 0.0903 0.0708 0.0000 0.1407 0.0421 0.1092 0.1322
EURJPY 0.1742 0.1081 0.1639 0.2043 0.0748 0.0739 0.0842 0.1166
EURNOK 0.0724 0.1911 0.0907 0.0903 0.0933 0.1251 0.0364 0.0000
EURNZD 0.2161 0.1217 0.1613 0.1212 0.0802 0.0610 0.1019 0.1364
EURSEK 0.0620 0.1813 0.0916 0.1128 0.1408 0.0663 0.1818 0.0000
EURSGD 0.1337 0.1761 0.1422 0.0838 0.1363 0.0719 0.0745 0.1816
GBPAUD 0.1193 0.1394 0.0953 0.1493 0.1319 0.1234 0.1255 0.1159
GBPCAD 0.1607 0.1648 0.1590 0.1396 0.0885 0.0752 0.1180 0.0943
GBPCHF 0.2268 0.2221 0.0946 0.1025 0.0787 0.0895 0.0860 0.0998
GBPHKD 0.2199 0.1066 0.1828 0.0000 0.0148 0.0635 0.1132 0.1231
GBPJPY 0.2555 0.1693 0.0948 0.0721 0.1304 0.0765 0.0830 0.1184
GBPNOK 0.1694 0.1679 0.1293 0.1265 0.1656 0.0435 0.0496 0.0000
GBPNZD 0.2282 0.2267 0.1502 0.0917 0.1199 0.0590 0.0389 0.0853
GBPSEK 0.1541 0.0952 0.0850 0.2235 0.1128 0.1314 0.0365 0.0000
GBPSGD 0.2584 0.1211 0.1149 0.1395 0.1202 0.1067 0.0576 0.0818
HKDJPY 0.1998 0.2080 0.1436 0.0000 0.0975 0.0487 0.1280 0.1176
HKDSGD 0.1622 0.0804 0.0892 0.0000 0.1089 0.1078 0.0573 0.2886

Note: Rankings of widely trading eight currency pairs. Rows correspond to individual aim currency

pair’s option machine learning procedure. Columns correspond to chosen predictors. Column rank

follow the average importance for correspond predictors.
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Figure 3.12: Variable Importance: GBPUSD
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Figure 3.13: Variable Importance : EURUSD
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Figure 3.14: Variable Importance : AUDUSD
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Figure 3.15: Variable Importance : USDSGD
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Figure 3.16: Variable Importance : USDJPY
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Figure 3.17: Variable Importance : USDCHF
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Figure 3.18: Variable Importance : USDCAD
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Figure 3.19: Variable Importance : NZDUSD
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Figure 3.20: Key Predictors Frequency
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Note: This figure presents frequency of key predictors for each currency. All deltas and maturities are

taken into consideration. Data are reported by TRTH from 1996 to 2020.

For other regional predictors, they play a key role in the option 1) if the predictor is

involved as participant and 2) in trading of a highly related country. USDCHF is verified

to be a key predictor in 12 aim options; in addition to options with CHF, its effect is

mainly shown in HUF and EUR related options. For NZDUSD, the regional effect is

more significant, but the effect is limited in the NZD and AUD options.

The price of the option is a joint work of global indicators(GBP JPY) and powerful

regional currencies. The algorithm behind it can be explained by the trading and currency

liquidity. The proper use of related currency information will enable the pricing procedure

to be more precise.
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3.6 Concluding Remarks

To conclude, although the raw eigensystem is verified to be a reliable model to pro-

vide guidance for option pricing, especially for contracts with illiquid currency pairs

as underlying assets, there are still slight errors between estimation and market quote

from the aspect of minimum eigenvalue. By setting implied volatility of ’global currency

pairs’ based options as predictors, I apply the regression tree machine learning method

to predict the eigenvalue error and cooperate this error estimation to improve the raw

eigensystem model’s prediction performance. Further, I test the predictors’ importance

level to rank global currencies and check their effect on option contracts, I verify the

impact of GBPUSD and USDJPY on almost all FX option trades and the regional effect

of other dominating currency pairs.

To verify the effect of the machine learning algorithm in reducing minimum eigenvalue

error, I select FX option market quote as the data set to implement both raw eigenvalue

model and machine learning adjusted based on raw model. I select option daily quotes

from their individual start date until May 2020; delta and maturity are the same as

for the raw eigenvalue model in Chapter 2. The window periods of contracts are case-

dependent. For each aim contract with corresponding underlying assets, maturity and

delta, I organize a ’currency journey’ to derive the correlation matrix. The improvement

of the results from using the machine learning algorithm is measured by comparison with

the raw eigen model.

Results indicate that the promotion of machine learning implementation is consis-

tent across maturities and deltas, especially for those with relatively low performance

contracts. For the raw eigensystem model, put/call 10 delta contracts are the lowest

performing contracts, and these deep away-from-money deltas are the contracts where

machine learning improves the performance most significantly. With regard to maturity,

1-year contracts are hard to predict due to the effect of both long-term and short-term
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variables, but machine learning also improves the predictive power to a similar level as

other maturities. Generally speaking, implementing machine learning makes sure the

performance after adjustment is consistent across volatility surface and maturities, which

gives more reliable guidance to market participants.

In addition to point forecasting accuracy level, I also test the Roos to provide a deeper

insight into the improvement from machine learning. The Roos improvement verifies the

conclusion from point forecast: the improvement made by machine learning is more sig-

nificant for those weak strategies in raw eigensystem estimation,as the differences between

forecast accuracy level after machine learning adjustment is less than they are in the raw

model. The machine learning adjustment makes the predictive power more consistent

across deltas and maturities.

With the help of the regression tree method, I also numerical the importance of eight

selected currency pairs(GBPUSD, USDJPY, USDCHF, USDCAD, NZDUSD, AUDUSD,

EURUSD and USDSGD) to other option contracts. These currency pairs are involved

in most of the currency journeys, which provides a chance to check their effect on our

aim currencies. Cross-currency effect is an important question in the study of global

markets, especially in derivatives trading such as option and forward, but previous studies

usually focused on several countries with either geographical connection or significant

trading partnerships. The global impact and the comparison between global currency

and regional effect is hardly measured, so this chapter fill this gap. By setting currency

pairs as predictors and checking their effects on options trading all over the world, I can

obtain indicators for domestic and foreign investors.

I can generate from a set of results that the domestic currency with USD is always

the important predictor in option trading. In addition to USD, GBP and JPY are two

currencies with considerable impact on other contracts. The regional effect is verified in

our study, as the currency of the foreign country closest in distance is tested to be an
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important predictor in option pricing. My study verifies that the option pricing is case-

dependent by underlying asset and provides a rank of predictors for market participants.

In further research, more machine learning algorithms could be considered. Although

the regression tree is verified to be the most reliable algorithm for prediction, it is still

worth trying to compare the performance between different methodologies. In my study,

I use selected currency pairs as predictors, but more variables could be taken into consid-

eration. More studies on the regional effect of currency pairs on each other would prove

interesting; trading volume between nations and government policies might provide a

deep insight into such an effect.

To conclude, the regression tree method raises the predictive power of the eigensystem

model to a new level, filling the gap between maturities and deltas. It also helps point

out the variables that need to be noted in options trading from the perspective of cross-

currencies.
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Chapter 4

Eigenvalue Analysis Based on

S&P500

My third application of eigensystem analysis focuses on the construction of portfolios of

stocks in the cross section. Previously I looked at the eigendecomposition of a positive

definite matrix of the following form:

C(x) = V (x)D(x)V ′(x)

where C(x) is a positive definite matrix, V (x) is a columnwise matrix of eigenvec-

tors, such that V (x) = [vi(x)]Ni=1 and D(x) is a diagonal matrix of the form D(x) =

diag(d(x)) where d(x) is a vector function of some state variable x.

In these prior cases our interest focused on the smallest element of the vector d(x),

the smallest eigenvalue and the domain for which it was greater than zero and hence

preserving the positive definiteness if C(x) and it’s corresponding correlation matrix

C(x) = R(x)◦
√
d(x)

√
d′(x), where ◦ is the element-by-element product of two identical

matrices.

The work in this chapter extends, via simulation the results found in Dovonon et al.
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[2021], which look specifically at the eigenvalue structure d(x) when C(x) is either the

spot or integrated covariance matrix directly estimated from high-frequency returns. My

interest is in extending the results on the sport and integrated covariance matrix to specific

columns of V (x), most specifically v1(x), the eigenvector of the largest eigenvalue d1(x).

Because the results I am interested in are mostly in terms of N → ∞, I shift from

foreign exchange options to studying asset classes with larger cross sections, in this case

equity returns.

4.1 Background

Following from my previous work I set out the following vector Brownian Semi Martingale

in Grigelionis form:

dx(t) = µ(x)dt+ σ(x, t)dw(t) + Jumps

where Jumps is an affine jump process, of the usual form following Dovonon et al. [2021].

It is important to note that our interest lies not specifically in Σ(x, t), but C(x, t) ≈∫ T
0
σ(x, s)σ′(x, s)ds. For all of the following analysis, the vector x is always ordered by

the magnitude of the elements of f v(x) from largest to smallest.

4.1.1 Portfolio Composition

Let h be a fixed integer always smaller than the dimension N . Such that for a matrix

decomposition of the form C(x, t) = LL+ diag[e], with L being of dimension N ×h and

e being an N length non-zero vector. I should note that L and e have set properties for

a given sequence of spot covariance matrices of the time horizon t to T . As T − t → 0

the measurement of the integrated covariance converges on the spot variance-covariance

matrix.
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The canonical results of Chamberlain [1983] posit an unlimited set of assets whereby

N →∞, under this rule the limit of the estimated root d̂1/N →d d1/N → λ1, when the

number of assets increases and the largest eigenvalue converges on a constant. That is as

the dimension increases the quotient of the largest eigenvalue by the dimension converges

to a constant.

The confluence of results between the theoretical arguments in Chamberlain [1983]

and the results of Dovonon et al. [2021], Chen et al. [2019] focus on the composition of

the portfolio formed by using the eigenvector d$(x, t) = v1(x, t)′dx.

4.1.2 Statement of contribution

In a similar way as with the question posed in Chapter’s 2 and 3, this research contribution

seeks to ask: how many assets are sufficient to construct a portfolio that approximates

the asymptotic portfolio as N → ∞? Let v
[J ]
1 (x, t) denote the first J elements of the

largest eigenvector of C(x, t). Hence v
[N ]
1 (x, t) = v1(x, t).

For a portfolio with weights v1(x, t), when N → ∞, at what dimension J does the

portfolio v
[J ]
1 (x, t)′dx[J ] → v1(x, t)′dx. Finding this out allows me to answer an important

unanswered question from the literature on extracting Principal Components from cross

sections of stocks, which is: what dimension is the correct one to use when conducting an

empirical principal component study on high-frequency data?

The literature is quite sparse on this topic. For instance Chen et al. [2019] use 70 to

100 stocks to build portfolios. Dovonon et al. [2021] use exactly 100 from a potential set

of 500 assets to construct approximate factors of a cross section of larger stocks.

I will use the data set of Dovonon et al. [2021] and combine this with simulation

evidence to illustrate that the dimension N plays an important role in the standardized

results from previous studies on the degree of tracking of a portfolio. My results indicate

that for a standard collection of stocks such as the S&P 500, the minimum number of
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stocks to include is around 50. Once the number of assets in the cross section exceeds

200, the scaling indicates that further additional assets no longer significantly changes the

structure of d$[200](x, t) = v
[200]
1 (x, t)[200]′dx. The remainder of this chapter introduces

the empirical study and explains the simulation conditions. I then outline the key results

and illustrate the decay in the variation in the eigenvector with respect to dimension. I

then apply my analysis to equity data and re-evaluate the results of Dovonon et al. [2021]

and Chen et al. [2019] in light of my findings. I show that while both studies are robust,

there are significant trade-offs to be made in terms of the choice of N and the sample

frequency T − t.

In this chapter, I will firstly show the simulate the first eigen value movement with

the increment of portfolio dimension. Simulation aim to provide the eigen value trend in

ideal situation. Then empirical study based on S&P500 equity data from 1996 to 2020

are presented. The largest eigen value structure are listed versus portfolio dimension and

time series.

Convergence of the first principal component is defined in this chapter, I use vector

angel between corresponding eigen vectors as the indicator. In order to have a deeper

insight in to principal component structure, I set two thresholds for eigen vector angels.

Rest of this chapter is organized as follows: firstly I will present the simulation pro-

cess, then S&P500 data is introduced for empirical research. Then the critical point of

convergence is discussed, a distribution of convergence portfolio dimension is presented

in the last section of this chapter.

4.2 Contribution of the Chapter

In this chapter, I aim to find the minimum asset number to apply the principal component

analysis. Although PCA is a widely used analysis methodology in financial study, the

minimum asset number required in high-frequency data is still a puzzle. I use S&P500
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constituents market data back to 1998 as empirical data set.

The key finding in this chapter is the convergence of the first principal component. In

empirical study, I estimate the variance-covariance matrix monthly. For certain window

period, I check the normalized largest eigen value movement versus matrix dimension.

The convergence is significant and consistent across time series.

Convergence of the first principal component indicate that adding more assets into

portfolio provides no more information. This result provides the guidance for PCA in

high-frequency data, a portfolio with 150-250 assets is enough to describe S&P500 market.

4.3 Empirical study

In the empirical study, I focus on the eigenvalue/vectors structure for a high-frequency

S&P 500 equity data set (stock tickers are listed in Table 5.1 in Appendix A. By increasing

the scale of variance matrix, I aim to test the critical point where the eigen structure turns

to stable, and does not fluctuate with market information. The sections are organized as

follows: data selection and cleaning procedures are introduced, then I generate eigenvalue

structure based on data set after cleaning. In the final section, I present the eigenvectior

convergence process.

4.3.1 Dataset description

As the largest and most liquid equity market, S&P 500 provides sufficient data to imple-

ment the eigenvalue analysis over time. In order to show a continuous time series of egien

vector/eigenvalues, the data period need to be carefully selected. Data providers such as

Bloomberg and Thomson Reuters have historical data back to 1998 for S&P 500 equities.

In a twenty two year window period, a large number of stocks have been delisted, so it is

important to find a relatively stable period to apply eigenvectior structure analysis.
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In practical study, I would consider that an equity scale larger than 300 is sufficient

to speculate the convergence of eigenvector/values, which is identified in the practical

study. The window period I selected for empirical study ranges from 2015 to 2020. There

are over 450 equities with high-frequency tick historical data for the given period.

Data cleaning takes place as follows:

1) Remove values that are five times higher than weighted mean value. I would

consider these irrational data as incorrect inputs by the data providers. The eigenvector

analysis relies on the realized co-variance matrix and taking abnormal high/low data into

the model will greatly influence the result.

2) I select five minutes frequency to evaluate realized correlation. Five minutes fre-

quency is widely used in a wide range of studies, and is verified to provide a reliable

estimation of correlation. I also show results with fifteen minutes estimation for part

of data, it can be derived that the difference between five and fifteen minutes are slight

enough to be ignored. As for window period, one-week and one-month is both tested, the

result will be shown in empirical study.

3) All equities are ranked by trading frequency. I aim to find the equities that provide

the highest degree of price informativeness, and construct the portfolio based on these

stocks. With the increment of covariance matrix, I would add less liquid equity into

portfolio. Threshold is pre-determined to detect if the equity is rarely traded in a certain

window period(1-week or 1-month).

To conclude, the priority in selecting equities is decided by two rules: firstly I evaluate

the frequency in the window period; equity with higher levels of liquidity enjoys a higher

rank in our portfolio. 2) For every re-estimation circulation(weekly or monthly), a slight

adjustment will be made to eliminate the equities delisted or non-traded.

118



4.3.2 Eigenvalue Simulation

As noted above, my study aims to provide guidance on the eigenvalue structure for a large

empirical dataset, in this case high-frequency returns on a large cross section of equities.

Prior literature sets the portfolio dimension to between 90 and 50, in my study I present

the convergence of principal components and in particular the eigenvector weights for

scaling the dimension of the cross section up to 500 or more.

Before moving on to the empirical results, I firstly apply the simulation for eigenvalue

structure. I have a set of factors to simulate the complex market environment:

Ht = [H0
t , H

1
t , H

2
t . . . H

n
t ]

, the factors amount n is changed with simulation turns.

For each amount of Ht, I generate a new set of factors and loading, the time series

are generated by :

St = HtFt + εt (4.1)

Ft are generated data loading to construct time series. εt is the stochastic error with no

correlation to each other. All the data mentioned follow normal distribution. St is the

matrix containing the simulated equity price process.

The simulation is organized according to the following steps: 1) For any fixed amount

of Ht, I apply 1000 turns of simulation. In a turn of simulation, I generate a data set by

4.1.To meet the requirement of full rank and simulate high frequency trading background,

thet is set to 10000. This is the frequency much higher than the 1-week or 1-month market

data (the window period I use for actual market data).

2) Then for generated dataset St, I select a different dimension of equities to construct

our portfolio, the minimum scale I set is 20 and the maximum is 500. For each selected

portfolio, I implement the eigenstructure analysis to collect normalized eigenvalues and
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eigenvectors.

3) Increasing Ht by 1, then go back to step1.

As such, I aim to verify eigenstructure under different numbers of potential factors. In

my study, the H range is from 1 to 500 to simulate different complexities in the underlying

factor structure for the market. For each factor set, I generate thousands of data sets as

simulated ’market data’ and select different numbers of ‘equities’ from the market data

to construct portfolios for eigenstructure analysis, the number of equities in a portfolio

ranges from 20 to 500.

Fig. 4.1 and Fig. 4.2 report several key points for H(1,15,51,201). I plot the percentage

of the total variation explained by the first principal components versus portfolio scale.

For all five critical points I select from 1 to 201. The explanatory power of the first

principal component will gradually decrease with the increment of matrix dimension.

For example, when H is fixed to 1, the proportion falls sharply to a level lower than 6

when the matrix dimension is larger than 100. With the increment of H, the proportion

of the first principal component is increasing, the convergence is consistent over all H.

I can generate from figures that when the matrix scale is larger than 150, there is little

movement in the explanatory power of the first principal component.

I also check the impact of H on the proportion in Fig. 4.3 and Fig. 4.4. For each

subplot, I fix the scale of portfolio and plot the proportion versus the number of underlying

factors, H. The plots indicate that the principal component explanatory power shows the

same trend: it increases with the H factors. It also shows convergence when the factor

amount reaches the threshold of around 250. Another interesting thing the plot shows is

that with the increment of matrix scale, the 95% distribution is narrowed; the simulation

is considered to be more precise.

To conclude, I can derive from Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 that the

convergence of eigenvalue is significant from both aspects. So the questions are: 1) is the
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Figure 4.1: principal component proportion by matrix Scale, H = 1, 15
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Note: This figure presents the simulation distribution for corresponding H. The bound selected is chosen
by 95% confidence interval, median is used to show the point forecast.
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Figure 4.2: principal component proportion by matrix Scale, H = 51, 201
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Note: This figure presents the simulation distribution for corresponding H. The bound selected is chosen
by 95% confidence interval, median is used to show the point forecast.
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Figure 4.3: principal component proportion by H, Scale = 20, 50
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Note: This figure presents the simulation distribution for corresponding matrix scale. The bound selected
is chosen by 95% confidence interval, median is used to show the point forecast.
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Figure 4.4: principal component proportion by H, Scale = 200, 500
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Note: This figure presents the simulation distribution for corresponding matrix scale. The bound selected
is chosen by 95% confidence interval, median is used to show the point forecast.
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Table 4.1: Top ten long equity list from Apr.1996 to Mar.2020

Date 18-Apr-1996 24-Jan-2002 17-Jul-2008 12-Feb-2015 05-Mar-2020
Rank1 WFCN BRKbN DISCBO AVGOO DISCBO
Rank2 IBMN MMMN GOOGO SRCLO CTASO
Rank3 UTXN TXTN BRKbN ALXNO VRSNO
Rank4 CCIN ETNN MAN SIALO CMEO
Rank5 PGN IBMN QCOMO AMGNO AMZNO
Rank6 MON ACSN ALXNO WBAO PCARO
Rank7 BACN DOWN URBNO NTRSO NTRSO
Rank8 MSFTO CSCN SPLSO ISRGO ISRGO
Rank9 ALTRO CRMN CMCSAO XRAYO MNSTO
Rank10 YHOOO FLIRO CINFO PDCOO FFIVO

Notes: this table presents the top ten long equity ticker for corresponding time.
The window period for matrix is one week, the frequency is 5 minutes for all
estimations. Data are reported by TRTH from 1996 to 2020.

convergence also significant in the empirical dataset or does it only occur in simulation

study? and 2) how to set a proper measurement for convergence, how to define and

predict the threshold for this convergence. To answer these questions, I use S&P500

equity market historical data to implement the eigenstructure analysis mentioned in the

previous section.

4.3.3 Historical weight

By implementing eigenvectors analysis to S&P500 historical data from 1996 to 2020, I

derive a set of asset weights. The weights are re-estimated weekly, I select five weeks from

historical data to present the changes of assets weight over time. Table 4.1 and Table 4.2

show the top 10 stocks for long and short respectively.

In the long stock list Table 4.1 , software/internet companies(IBM, Microsoft,Altair

and Yahoo) make up a large portion of the top ten in 1996. Finance(Wells Fargo and

Bank of America) is another important company sector in the 1990s. In top 10 compa-

nies for 2002, IBM is the only computer science company left. The trend has shifted to

manufacturing. The highest weighted company(Berkshire Hathaway) comes from finan-

cial services sector, but the rest of the companies mainly belong to manufacturing which
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Table 4.2: Top ten short equity list from Apr.1996 to Mar.2020

Date 18-Apr-1996 24-Jan-2002 17-Jul-2008 12-Feb-2015 05-Mar-2020
Rank1 TSCOO PSXN DGN FTRN CHKN
Rank2 GRMNO TEGN ADTN WINN JCPN
Rank3 TRIPO ADTN PSXN ODPN NEN
Rank4 NTAPO MAN MJNN GTN DNRN
Rank5 BBTN DPSN TRIPO MUN SWNN
Rank6 CRMN CBGN CFNN AMDN ODPN
Rank7 GMCRO MSN MMIN HASN AKSN
Rank8 HANSO TRIPO MNKN ADIN NBRN
Rank9 FISVO FTRN MNSTO NVLSO RRCN
Rank10 NTRSO MMIN KMIN BEAMN QEPN

Notes: this table presents the top ten short equity ticker for corresponding time.
The window period for matrix is one week, the frequency is 5 minutes for all
estimations.

cover electronic, machine, chemical and so on. With the development of technology, there

is a significant trend that the top stocks feature high tech companies(Google/Alphabet,

MasterCard, and Qualcomm). In 2015 and 2020, retails and e-commerce companies’

stocks are considered as good quality assets.

These trends are significantly presented in our results, with the investors’ interest

moving from the internet in the late 1990s to manufacturing. Then new companies based

on cloud, big data and artificial intelligence are highly ranked after the 2010s. These

stocks take the highest level of weight in different periods.

In the short list in Table 4.2, the differences between periods are not as significant

as for the long list. But the sectors of companies in the short list are similar to those

in the long list over time: financial service companies(Truist Financial, Northern Trust

etc.) retailers(Tesco, ODP corporation etc.) are listed in different periods. A unique

characteristics of short list is that energy corporations(oil, gas, and electronic ) appeared

in all periods.

Fig. 4.6 presents the historical Spearman rank correlation coefficient from 1996 to

2020. The window period is the same as the historical weight estimation, coefficients are
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re-estimated and recorded weekly. Estimations follow the traditional definition:

ρsp =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

(4.2)

By implementing rank correlation coefficient estimation, I aim to find the stability of

the selected portfolio. The Spearman rank correlation coefficient ranges from -1 to 1; a

coefficient around 0 indicates that there is little or no relationship between two vectors.

Fig. 4.5 presents the simulation results of Spearman rank correlation of a corresponding

amount of factors. In my simulation I select factors up to 500, the figure shows that

the distribution of rank correlation coefficient is narrower with the increment of factors.

When the scale of H is lower than 20, the correlation coefficient nearly covers all pos-

sible outcomes from -1 to 1, which indicates that there exists the possibility of perfect

correlation. With the increase of factors, the rank correlation between series is turning

to relatively weak. The 95% distribution bound is converged to around 0.4 for a dataset

with 500 factors.

Fig. 4.6 presents the time series of rank correlation coefficient from 1996 to 2020.

Historical coefficients gather around 0, which generates the fact that the equity portfolio

is quite unstable, investors need to change the assets in the portfolio to keep high levels

of return. But we can still find that the correlation coefficients are time-dependent, the

market presents a constant high correlation in several periods: early 1996, 2006, 2008

and early 2020. For other periods such as 2017-2019, the correlation coefficients fluctuate

around zero.

4.3.4 Eigenvalue analysis

In this section I introduce the eigenvalue structure based on an empirical data set from

the S&P 500 from 2015 to 2020. I focus on the convergence phenomenon of eigenvalue,

especially the largest eigenvalue, with the increment of covariance matrix, which indicates
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Figure 4.5: Spearman rank correlation simulation
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Note: This figure presents the simulated Spearman correlation coefficients bounds for corresponding H.

The bound selected is chosen by 95% confidence interval.

the number of stocks taken into consideration.

Fig. 4.7 presents the trend of largest eigenvalue for co-variance matrix corresponding

to the increment of matrix scale. I can conclude from the figure that the largest eigenvalue

has its peak value when the matrix scale is set to 20. It gradually decrease before the

matrix scale reaches 180, which indicate 180 stocks with the highest level of liquidity are

taken into calculation. After the decline in fluctuation, the observed eigenvalue increases

slightly and converges to a relatively stable value. The critical point for when the largest

eigenvalue begin to converge is the key point to decide if the portfolio has begun to

stabilize.

With ∆τ = 5 minutes, Fig. 4.7 generates the result that the weekly-estimation and
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Figure 4.6: Spearman rank correlation from 1996 to 2000
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Note: This figure presents the Spearman correlation coefficient for S&P500 market from 1998 to 2020.

Correlation coefficients are updated weekly, the frequency is 5 minutes for all estimations.

monthly-estimation show a unique trend and share a similar critical point. Although the

level of the two eigenvalues is not the same, it is obvious from the figure that both of

them begin their convergence at 180 matrix scale, then flatten after 300.

I apply the analysis through the window period. Generally speaking, the level of

eigenvalue structure is time-dependent, as shown by Fig. 4.7, normalized eigenvalue range

from 0.302 to 0.405 and get a relative stable value around 0.31 when co-variance matrix

scale is large enough. The distribution of eigenvalue structure would change with time,

but the trend is uniform in many respects: the first eigenvalue would be high for a small

set of equities, then the value would rapidly reduce to a relatively low level and remain

stable around this level.
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Figure 4.7: The largest eigenvalue for S&P 500 portfolio at 31th Jan 2015,∆τ= 5 minutes
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Note:This figure presents the average normalized largest eigen value versus the matrix dimension, two
estimation window periods are set: weekly and monthly. All data come from the TRTH at 31th Jan
2015, data frequency is fixed to every 5 minutes.

Fig. 4.8 reports the average of the first eigenvalue over time. I can conclude from the

figure that the mean level of 1st eigenvalue could be as low as 0.04 and the peak value

could reach 0.53. The weekly-estimation eigenvalue structure shows the same movement

trend as the monthly-estimation value, although it fluctuate significantly more compared

with the monthly-estimation result. The synergy movement of two estimation period

results are consistent in two respects: firstly for a chosen date, the two first eigenvalues

show the same trend corresponding to portfolio dimension. Secondly the average values

are consistent over time.

In addition to the largest eigenvalue structure, I generate the percentages of total

variation explained by principal components corresponding to the first four eigenvalues in

Fig. 4.9. The scale of matrix is time-dependent; I follow the rule to ensure the chosen scale
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Figure 4.8: Mean 1st eigenvalue when ∆τ= 5 minutes
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Note:This figure presents the average normalized largest eigen value over time series., two estimation
window periods are set: weekly and monthly. All data come from the TRTH from Jan 2015 to Apr 2020.

has been converged and keep constant to a stable level. The measurement is introduced

in a later section. I conclude from the figure that the first principal fluctuates sharply,

but 2nd-4th principal keep at a relatively stable level over time. The difference between

2nd-4th principal components is not as significant as between 1st principal component

and others.

4.3.5 Eigenvector Analysis

In this section, I introduce the definition for ’critical point’ to measure the convergence

of eigenvalue structure. Before moving to the empirical results, I firstly generate how

I define the ’convergence procedure’. To better understand the eigenvalue structure, I
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Figure 4.9: Percentage of the Total Variation Explained by Principal Components
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Note:This figure presents the percentage of variation explained by the principal components correspond-
ing to the 1st-4th eigenvalues of S&P 500 during January 2015 - April 2020.

would derive it from aspects of the eigenvector.

θ = cos−1(
vt ·
∑n vtail

n

‖ vt ‖· ‖
∑n vtail‖

n

) (4.3)

Where vt indicates the eigenvector correspond to first principal eigenvalue for the co-

variance matrix scale t. vtail indicates the eigenvector when co-variance matrix scale

reach its limit. Such as for a dataset contains 450 equities, I would select the the matrix

scale from 440 to 450.

Angle θ is used to determine if the eigenvalue structure is beginning to converge.Fig. 4.10

presents an example for θ: weekly- and monthly estimation, θ rapidly reduces to a low

level. I can conclude from figure that compared with weekly-estimation eigenvectior an-
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gle, the monthly-estimation results are smoother with a lower level of volatility. This

characteristic is consistent over time series.

I define two thresholds : 0.05 and 0.1; the angle smaller than these thresholds is

considered to be ’stable’ for corresponding eigenvalue.In Fig. 4.11, I present the matrix

scale over time for both critical points. I can conclude from thefigure that although both

dimensions fluctuate with time, they share a similar trend. When θ critical point is set

to be 0.05, the matrix scale ranges from 50 to 262. Meanwhile for 0.1, the matrix scale

could be as low as 20 to be considered stable, the max scale for this critical point is 191.

Fig. 4.12 shows the statistical distribution for both critical points. I can conclude

from the figure that when I set the threshold to 0.05, a relatively high standard, the peak

number of equities is around 170. Although the scale distribution ranges from 20 to 270,

most of the time series are considered to enter into a stable process when the matrix

scale is promoted to 150-200. When I set the threshold to 0.1, the distribution of critical

point is narrower compared with 0.05 threshold. Most eigenstructures are considered to

be stable when the matrix scale is between 20 and 60, the peak dimensions are between

30 and 40. Only small number of matrix scale exceed 100.

4.4 Conclusion

In this chapter, I have focused on the eigenvalue and eigenvector structure. Previous

literature noted the phenomenon of first principal component convergence, but due to

the limit of the data set scale, the eigenvalue trend over time series was not suspected. I

select the equity market as the empirical data set in this study, S&P500 historical data

back to the 1990s was collected and cleaned to drive the time series for eigenvalue and

eigenvector structure.

I verify that the effects of window period and data frequency in principal component

performance are not significant enough to sway the conclusion. Window periods of co-
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Figure 4.10: θ in 22-OCT-2015
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Note: This figure presents the θ follow 4.3 at 22-OTC-2015. The eigenvector selected correspond to first
principal component.
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Figure 4.11: Matrix Dimension For Two critical point: 0.1 and 0.05
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Note: This figure presents the critical dimension for the largest eigen value convergence over time series
from Jan 2015 to Apr 2020. The data are collected from TRTH.

variance matrix used are one week and one month. Compared with weekly estimated

co-variance matrix, the eigenvalue structures of monthly estimated co-variance matrix

are smoother.

I use angle of eigenvector as the measurement to decide if eigenvalue is stable. The

angle θ lower than the pre-determined critical point is considered to be in ’stable’ process,

I select two different critical points for θ to generate the statistical summary: 0.1 and

0.05. I generate from the summary that the eigenvalue structure will fluctuate slightly

when it firstly reduces to the threshold 0.1, but when it reduces to levels lower than 0.05,

the principal component will become extreme stable after that point.

Our empirical study organizes massive high-frequency time series from S$P500 his-
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Figure 4.12: Critical points distribution
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Note: This figure presents the scale distribution for critical point. Bar height indicates the frequency of
matrix scale for certain portfolio scale, x-axis show the corresponding amount of equities in co-variance
matrix.

136



torical data. The matrix scale is increased to more than 400 equities, which allows us

to observe the trend of eigenvalue. For each selected date, I firstly sort the stock by

liquidity level, then gradually increase the number of equities taken into the co-variance

matrix construction. The distribution of the matrix scale indicates that the critical point

of scale gather from 30 to 50 when the threshold is 0.1 and gathers from 150-200 when

the threshold is set to 0.05.

In addition to the empirical study, I also apply Monte Carlo method to simulate the

eigenvalue structure under idea market assumption. I define two dimensions to verify

the consistent of eigenvalue and eigenvector convergence behavior: 1) determine factors

of equity time series 2) the matrix scale. Result verify that the simulation summary

follow the empirical study in both matrix scale distribution and the trend of eigenvalue.

Simulation and empirical co-variance matrix converge their principal component at a

similar scale.

Further study could focus on the structure of other principal components. I could

generate from the previous study that, although as not significant as the first principal

analysis, 2nd-4th eigenvalue also show a unique trend across time series. In my thesis, I

use the eigenvectors’ angle as measurement to decide if the eigenvalue is converged, more

measurement methodologies could be raised to make the procedure clearer.

To conclude, this study focuses on the structure of principal components, I expand

the data set from relatively small (around 100 equities) to larger than 400 in our study.

The percentage of total variation explained by principal components is tested over time

series and it is tested to be stable when the equity amount reaches threshold. This study

has provided a deep insight into the principal component structure analysis and aim to

provide guidance to portfolio management.
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Chapter 5

Conclusions

5.1 Summary and remarks

This thesis provides an extensive analysis of the use of eigensystems and eigenfunctions

in finance. Eigenfunctions within specific closed sets, such as those that constrain bounds

on specific eigenvalues (such as the smallest being positive) provide useful guidance for

consistent pricing in options and derivatives markets. Analysis of the random variation

of eigenvalues and largest eigenvectors provides insight into the stochastic structure of

large cross sections of equities.

In both cases the problem is quite similar, answering the question how many redundant

assets are needed to correctly price the object of interest? In FX this is the number of

leg currencies to narrow down the bounds for the implied correlation function against

delta (hence the eigenfunction constraining the smallest eigenvalue to preserve positive

definiteness). In contrast for equity the largest eigenvalue and the vector space provide

an answer to an important question, for approximate factors extracted from asset returns

how many assets should we include to extract the factor structure? This is a question

which has not been addressed in the core literature on the topic.

Supplementing the primary objectives is a series of diagnostic tests and applications
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of machine learning to deliver better predictions. In FX the eigensystem analysis shrinks

the forecasting problem for the entire strike price and maturity surface to a single time

series, bounded by the eigenvalue limits from the leg currencies. Through a combination

of simulation and empirical data analysis the equity analysis again provides a low bound

on the number of assets needed to be included, using the stability of the eigenvector of the

largest eigenvalue as a guide. I show using rank correlations of the weightings of assets

that the resulting portfolio is quite volatile for substantial periods, indicating that careful

attention is needed when conducting studies on realized principal components. This sheds

new light on the varying results from the literature on realized principal components and

suggests that a lot of variation is driven by the asset dimension choice.

5.2 Further Research

This thesis can be improved in many respects. For the FX market, the predictive power

is not consistent over currency pairs, such as HUF, and it is hard to provide accurate

predictions for their option trading. Due to the limitation of currency pairs amount in

leg journey, the error between minimum eigenvalue and market quote is hard to predict,

which lead to a further spread between calculated implied volatility and market quote.

For machine learning, it is worth importing more methodologies to compare with the

regression tree. Although the regression tree is verified by the literature to be the most

reliable methodology in prediction, it would provide more support to our prediction if

more methods could be imported.
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Appendix A

Table 5.1: Stock Ticker List

Ticker Start Date EndDate Number of Quotes Ticker Start Date EndDate Number of Quotes
AAPL O 02-Jan-1996 09-Apr-2020 3,669,526 ALXN O 28-Feb-1996 09-Apr-2020 2,145,565
AA N 02-Jan-1996 09-Apr-2020 2,221,518 AMAT O 02-Jan-1996 09-Apr-2020 2,821,397
ABBV N 02-Jan-2013 09-Apr-2020 712,387 AMD N 02-Jan-1996 09-Apr-2020 1,912,969
ABC N 30-Aug-2001 09-Apr-2020 1,807,644 AME N 02-Jan-1996 09-Apr-2020 1,889,937
ABT N 02-Jan-1996 09-Apr-2020 2,268,216 AMGN O 02-Jan-1996 09-Apr-2020 2,758,504
ACE N 02-Jan-1996 14-Jan-2016 1,441,181 AMG N 21-Nov-1997 09-Apr-2020 1,879,610
ACN N 03-Jan-1996 09-Apr-2020 1,896,081 AMP N 02-Jan-1996 09-Apr-2020 1,593,161
ACS N 02-Jan-1996 05-Feb-2010 947,814 AMT N 02-Jan-1996 09-Apr-2020 1,946,736
ACT N 24-Jan-2013 09-Apr-2020 261,264 AMZN O 15-May-1997 09-Apr-2020 3,193,488
ADBE O 02-Jan-1996 09-Apr-2020 2,618,703 ANF N 26-Sep-1996 09-Apr-2020 2,067,576
ADI N 02-Jan-1996 09-Apr-2020 1,585,531 ANR N 19-Mar-1997 17-Jul-2015 1,118,753
ADM N 02-Jan-1996 09-Apr-2020 2,143,481 ANTM N 03-Dec-2014 09-Apr-2020 524,012
ADP O 21-Oct-2008 09-Apr-2020 1,381,458 AN N 02-Jan-1996 09-Apr-2020 2,110,813
ADSK O 01-May-1996 09-Apr-2020 2,403,810 AON N 01-Dec-2009 09-Apr-2020 1,014,779
ADS N 08-Jun-2001 09-Apr-2020 1,721,158 APA N 02-Jan-1996 09-Apr-2020 2,144,448
ADT N 02-Jan-1996 09-Apr-2020 600,834 APC N 02-Jan-1996 08-Aug-2019 2,053,934
AEE N 02-Jan-1998 09-Apr-2020 2,017,015 APD N 02-Jan-1996 09-Apr-2020 2,124,120
AEP N 02-Jan-1996 09-Apr-2020 2,152,151 APH N 02-Jan-1996 09-Apr-2020 1,915,150
AES N 16-Oct-1996 09-Apr-2020 2,095,153 APOL O 02-Jan-1996 01-Feb-2017 1,946,639
AET N 02-Jan-1996 28-Nov-2018 2,036,869 ARG N 02-Jan-1996 23-May-2016 1,522,112
AFL N 02-Jan-1996 09-Apr-2020 2,114,566 ATI N 02-Jan-1996 09-Apr-2020 2,098,614
AGN N 02-Jan-1996 09-Apr-2020 2,077,095 AVB N 05-Jun-1998 09-Apr-2020 1,859,245
AIG N 02-Jan-1996 09-Apr-2020 2,257,675 AVGO O 27-Sep-2000 09-Apr-2020 1,327,634
AIV N 02-Jan-1996 09-Apr-2020 1,894,877 AVP N 02-Jan-1996 03-Jan-2020 2,164,158
AIZ N 02-Jan-1996 09-Apr-2020 1,638,713 AVY N 02-Jan-1996 09-Apr-2020 2,084,055
AKAM O 29-Oct-1999 09-Apr-2020 2,304,276 AXP N 02-Jan-1996 09-Apr-2020 2,280,966
AKS N 02-Jan-1996 13-Mar-2020 1,952,840 AYE N 01-Oct-1997 25-Feb-2011 1,097,592
ALLE N 02-Dec-2013 09-Apr-2020 617,439 AZO N 02-Jan-1996 09-Apr-2020 2,060,039
ALL N 02-Jan-1996 09-Apr-2020 2,244,917 A N 23-May-1996 09-Apr-2020 2,040,477
ALTR O 02-Jan-1996 09-Apr-2020 2,345,175 BAC N 02-Jan-1996 09-Apr-2020 2,309,659

Notes: this table presents the ticker list used in S&P500 equity study. The ’Ticker’
column shows the ticker for equity. The ’Start Date’ column shows the first
recorded date for trades in database of my study. The ’End Date’ column shows
the last recorded date for trades in database of my study. The ’Number of Quotes’
column shows the number of trades in my database for corresponding equity.
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Table 5.1: Stock Ticker List

Ticker Start Date EndDate Number of Quotes Ticker Start Date EndDate Number of Quotes
BAX N 02-Jan-1996 09-Apr-2020 2,171,172 CLF N 02-Jan-1996 09-Apr-2020 1,839,530
BA N 02-Jan-1996 09-Apr-2020 2,274,856 CLX N 02-Jan-1996 09-Apr-2020 2,171,045
BBBY O 02-Jan-1996 09-Apr-2020 2,459,181 CL N 02-Jan-1996 09-Apr-2020 2,231,253
BBT N 02-Jan-1996 06-Dec-2019 1,987,627 CMA N 02-Jan-1996 09-Apr-2020 2,144,472
BBY N 02-Jan-1996 09-Apr-2020 2,190,650 CMCSA O 02-Jan-1996 09-Apr-2020 2,428,563
BCR N 02-Jan-1996 29-Dec-2017 1,813,253 CME O 14-Jul-2008 09-Apr-2020 1,371,192
BDK N 02-Jan-1996 12-Mar-2010 1,105,923 CMG N 26-Jan-2006 09-Apr-2020 1,367,851
BDX N 02-Jan-1996 09-Apr-2020 2,134,359 CMI N 08-Sep-1997 09-Apr-2020 1,628,658
BEAM N 04-Oct-2011 09-Apr-2020 251,240 CMS N 02-Jan-1996 09-Apr-2020 2,041,274
BEN N 02-Jan-1996 09-Apr-2020 2,121,540 CNP N 01-Oct-2002 09-Apr-2020 1,708,266
BFb N 02-Jan-1996 09-Apr-2020 1,982,935 CNX N 30-Apr-1999 09-Apr-2020 1,836,060
BHI N 02-Jan-1996 03-Jul-2017 1,949,428 COF N 02-Jan-1996 09-Apr-2020 2,126,940
BIG N 18-Aug-2006 09-Apr-2020 1,333,212 COG N 02-Jan-1996 09-Apr-2020 1,882,393
BIIB O 13-Nov-2003 09-Apr-2020 2,013,304 COH N 05-Oct-2000 30-Oct-2017 1,587,334
BJS N 02-Jan-1996 28-Apr-2010 1,162,251 COL N 02-Jan-1996 26-Nov-2018 1,931,153
BK N 02-Jan-1996 09-Apr-2020 2,211,943 COP N 19-Nov-1996 09-Apr-2020 1,760,202
BLK N 02-Jan-1996 09-Apr-2020 1,781,945 COST O 06-Feb-1997 09-Apr-2020 2,529,781
BLL N 02-Jan-1996 09-Apr-2020 2,019,069 COV N 14-Mar-2001 26-Jan-2015 800,622
BMC O 26-Oct-2009 10-Sep-2013 480,119 CPB N 02-Jan-1996 09-Apr-2020 2,187,649
BMS N 02-Jan-1996 11-Jun-2019 1,938,625 CPWR O 02-Jan-1996 15-Dec-2014 1,782,873
BMY N 02-Jan-1996 09-Apr-2020 2,294,662 CRM N 02-Jan-1996 09-Apr-2020 1,566,365
BRCM O 17-Apr-1998 29-Jan-2016 2,104,917 CSCO O 03-Jan-1996 09-Apr-2020 3,224,065
BRKb N 09-May-1996 09-Apr-2020 1,693,073 CSC N 02-Jan-1996 31-Mar-2017 1,899,394
BSX N 02-Jan-1996 09-Apr-2020 2,188,840 CSX N 02-Jan-1996 09-Apr-2020 1,926,547
BTU N 22-May-2001 09-Apr-2020 1,675,096 CTAS O 02-Jan-1996 09-Apr-2020 2,315,710
BWA N 02-Jan-1996 09-Apr-2020 1,961,159 CTL N 02-Jan-1996 09-Apr-2020 2,072,991
BXP N 18-Jun-1997 09-Apr-2020 1,888,179 CTSH O 19-Jun-1998 09-Apr-2020 2,229,101
CAG N 02-Jan-1996 09-Apr-2020 2,180,497 CTXS O 02-Jan-1996 09-Apr-2020 2,535,043
CAH N 02-Jan-1996 09-Apr-2020 2,143,968 CVC N 07-Dec-1999 21-Jun-2016 1,549,302
CAM N 02-Jan-1996 01-Apr-2016 1,674,898 CVG N 13-Aug-1998 05-Oct-2018 1,826,766
CAT N 02-Jan-1996 09-Apr-2020 2,250,247 CVH N 03-Apr-1998 06-May-2013 1,128,300
CA O 28-Apr-2008 05-Nov-2018 1,240,887 CVS N 16-Oct-1996 09-Apr-2020 2,153,645
CBE N 02-Jan-1996 30-Nov-2012 1,374,414 CVX N 10-Oct-2001 09-Apr-2020 1,807,457
CBG N 07-Nov-1997 19-Mar-2018 1,368,851 C N 02-Jan-1996 09-Apr-2020 2,271,779
CBS N 02-Jan-1996 04-Dec-2019 1,567,657 DAL N 02-Jan-1996 09-Apr-2020 2,075,944
CB N 02-Jan-1996 09-Apr-2020 2,175,400 DD N 02-Jan-1996 09-Apr-2020 2,132,829
CCE N 02-Jan-1996 06-Nov-2018 1,942,843 DELL O 02-Jan-1996 29-Oct-2013 2,015,701
CCI N 02-Jan-1996 09-Apr-2020 2,023,245 DE N 02-Jan-1996 09-Apr-2020 2,187,527
CCL N 02-Jan-1996 09-Apr-2020 2,147,111 DFS N 02-Jan-1996 09-Apr-2020 1,608,753
CEG N 03-May-1999 12-Mar-2012 1,164,994 DF N 02-Jan-1996 12-Nov-2019 1,938,649
CELG O 02-Jan-1996 20-Nov-2019 2,409,271 DGX N 14-Jan-1997 09-Apr-2020 1,952,166
CEPH O 03-Jan-1996 14-Oct-2011 1,341,735 DG N 02-Jan-1996 09-Apr-2020 1,848,020
CERN O 02-Jan-1996 09-Apr-2020 2,287,061 DHI N 02-Jan-1996 09-Apr-2020 1,978,307
CFN N 09-Feb-1996 17-Mar-2015 685,796 DHR N 02-Jan-1996 09-Apr-2020 2,066,197
CF N 02-Jan-1996 09-Apr-2020 1,924,500 DISCA O 21-Jul-2005 09-Apr-2020 1,707,163
CHK N 02-Jan-1996 09-Apr-2020 1,974,371 DISCB O 21-Jul-2005 09-Apr-2020 825,438
CHRW O 15-Oct-1997 09-Apr-2020 2,143,100 DIS N 02-Jan-1996 09-Apr-2020 2,296,810
CIEN N 23-Dec-2013 09-Apr-2020 617,016 DLPH N 17-Nov-2011 09-Apr-2020 814,834
CINF O 02-Jan-1996 09-Apr-2020 2,184,680 DLTR O 02-Jan-1996 09-Apr-2020 2,333,572
CI N 02-Jan-1996 09-Apr-2020 2,199,521 DNB N 02-Jan-1996 08-Feb-2019 1,878,981
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Table 5.1: Stock Ticker List

Ticker Start Date EndDate Number of Quotes Ticker Start Date EndDate Number of Quotes
DNR N 08-May-1997 09-Apr-2020 1,789,199 FIS N 01-Feb-2006 09-Apr-2020 1,388,771
DOV N 02-Jan-1996 09-Apr-2020 2,105,004 FITB O 02-Jan-1996 09-Apr-2020 2,375,099
DOW N 02-Jan-1996 09-Apr-2020 2,076,036 FLIR O 02-Jan-1996 09-Apr-2020 2,069,682
DO N 02-Jan-1996 09-Apr-2020 2,147,971 FLR N 02-Jan-1996 09-Apr-2020 2,088,430
DPS N 17-Jul-1998 09-Jul-2018 998,388 FLS N 23-Jul-1997 09-Apr-2020 1,880,938
DRI N 02-Jan-1996 09-Apr-2020 2,059,474 FMC N 02-Jan-1996 09-Apr-2020 2,057,789
DTE N 02-Jan-1996 09-Apr-2020 2,096,381 FOSL O 02-Jan-1996 09-Apr-2020 2,084,197
DTV O 03-Dec-2007 24-Jul-2015 920,482 FOXA O 01-Jul-2013 09-Apr-2020 795,548
DUK N 02-Jan-1996 09-Apr-2020 2,179,894 FPL N 02-Jan-1996 09-Apr-2020 1,526,980
DVA N 09-Oct-2000 09-Apr-2020 1,815,901 FRX N 08-Oct-1999 30-Jun-2014 1,390,588
DVN N 13-Oct-2004 09-Apr-2020 1,519,726 FSLR O 17-Nov-2006 09-Apr-2020 1,773,622
DV N 02-Jan-1996 23-May-2017 1,645,741 FTI N 14-Jun-2001 09-Apr-2020 1,766,695
DYN N 07-Jul-1998 09-Apr-2018 1,716,591 FTR N 02-Jan-1996 09-Apr-2020 574,603
D N 02-Jan-1996 09-Apr-2020 2,135,979 F N 03-Jan-1996 09-Apr-2020 2,231,903
EA O 20-Dec-2011 09-Apr-2020 1,040,832 GAS N 02-Jan-1996 30-Jun-2016 1,642,536
EBAY O 02-Jan-1996 09-Apr-2020 2,783,791 GCI N 02-Jan-1996 09-Apr-2020 2,180,581
ECL N 02-Jan-1996 09-Apr-2020 2,062,930 GD N 02-Jan-1996 09-Apr-2020 2,130,823
ED N 02-Jan-1996 09-Apr-2020 2,140,587 GENZ O 02-Jan-1996 08-Apr-2011 1,376,583
EFX N 02-Jan-1996 09-Apr-2020 2,067,271 GE N 02-Jan-1996 09-Apr-2020 2,325,726
EIX N 05-Feb-1996 09-Apr-2020 2,109,407 GGP N 02-Jan-1996 28-Aug-2018 1,627,547
EL N 02-Jan-1996 09-Apr-2020 2,031,938 GILD O 02-Jan-1996 09-Apr-2020 2,638,467
EMC N 02-Jan-1996 06-Sep-2016 1,903,910 GIS N 02-Jan-1996 09-Apr-2020 2,166,899
EMN N 02-Jan-1996 09-Apr-2020 2,125,874 GLW N 02-Jan-1996 09-Apr-2020 2,205,813
EMR N 03-Jan-1996 09-Apr-2020 2,217,214 GMCR O 02-Jan-1996 03-Mar-2016 1,419,045
EOG N 02-Jan-1996 09-Apr-2020 2,048,174 GME N 03-Jan-1996 09-Apr-2020 1,732,877
EP N 31-Dec-2001 24-May-2012 1,012,625 GM N 03-Jan-1996 09-Apr-2020 2,109,282
EQR N 03-Jan-1996 09-Apr-2020 1,978,649 GNW N 25-May-2004 09-Apr-2020 1,547,212
EQT N 02-Jan-1996 09-Apr-2020 1,925,753 GOOGL O 03-Apr-2014 09-Apr-2020 961,708
ERTS O 02-Jan-1996 19-Dec-2011 1,522,287 GOOG O 18-Aug-2004 09-Apr-2020 2,420,334
ESRX O 02-Jan-1996 20-Dec-2018 2,211,830 GPC N 02-Jan-1996 09-Apr-2020 2,082,753
ESS N 03-Jan-1996 09-Apr-2020 1,794,719 GPS N 02-Jan-1996 09-Apr-2020 2,213,385
ESV N 02-Jan-1996 30-Jul-2019 2,101,464 GRMN O 02-Jan-1996 09-Apr-2020 2,036,438
ES N 15-Nov-2007 09-Apr-2020 1,028,230 GR N 02-Jan-1996 26-Jul-2012 1,325,039
ETFC O 27-Dec-2006 09-Apr-2020 1,566,814 GS N 04-May-1999 09-Apr-2020 2,004,379
ETN N 02-Jan-1996 09-Apr-2020 2,091,651 GT N 02-Jan-1996 09-Apr-2020 1,662,446
ETR N 02-Jan-1996 09-Apr-2020 2,093,237 GWW N 02-Jan-1996 09-Apr-2020 2,060,499
EW N 03-Apr-2000 09-Apr-2020 1,826,973 HAL N 02-Jan-1996 09-Apr-2020 2,271,199
EXC N 02-Jan-1996 09-Apr-2020 1,917,471 HANS O 02-Jan-1996 06-Jan-2012 931,805
EXPD O 03-Jan-1996 09-Apr-2020 2,193,606 HAR N 02-Jan-1996 10-Mar-2017 1,620,588
EXPE O 10-Nov-1999 09-Apr-2020 2,034,736 HAS N 23-Jun-1999 09-Apr-2020 1,187,549
FAST O 02-Jan-1996 09-Apr-2020 2,259,506 HBAN O 02-Jan-1996 09-Apr-2020 2,234,148
FB O 18-May-2012 09-Apr-2020 1,455,790 HCBK O 02-Jan-1996 30-Oct-2015 1,491,786
FCX N 02-Jan-1996 09-Apr-2020 2,092,799 HCN N 02-Jan-1996 27-Feb-2018 1,660,846
FDO N 02-Jan-1996 06-Jul-2015 1,573,720 HCP N 02-Jan-1996 04-Nov-2019 1,878,390
FDX N 02-Jan-1996 09-Apr-2020 2,178,218 HD N 02-Jan-1996 09-Apr-2020 2,271,196
FE N 10-Nov-1997 09-Apr-2020 2,040,899 HES N 09-May-2006 09-Apr-2020 1,366,377
FFIV O 04-Jun-1999 09-Apr-2020 2,289,549 HIG N 02-Jan-1996 09-Apr-2020 2,171,192
FHN N 21-Apr-2004 09-Apr-2020 1,564,114 HNZ N 02-Jan-1996 07-Jun-2013 1,522,589
FII N 14-May-1998 31-Jan-2020 1,861,654 HOG N 15-Aug-2006 09-Apr-2020 1,338,192
FISV O 02-Jan-1996 09-Apr-2020 2,363,549 HON N 02-Jan-1996 09-Apr-2020 2,200,455
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HOT N 02-Jan-1996 23-Sep-2016 1,678,450 KSS N 02-Jan-1996 09-Apr-2020 2,133,149
HPQ N 06-May-2002 09-Apr-2020 1,755,199 KSU N 02-Jan-1996 09-Apr-2020 2,025,538
HP N 02-Jan-1996 09-Apr-2020 2,076,917 K N 02-Jan-1996 09-Apr-2020 2,162,828
HRB N 02-Jan-1996 09-Apr-2020 2,106,876 LB N 02-Dec-2013 09-Apr-2020 622,066
HRL N 02-Jan-1996 09-Apr-2020 1,952,920 LEG N 02-Jan-1996 09-Apr-2020 2,021,440
HRS N 02-Jan-1996 28-Jun-2019 1,987,621 LEN N 02-Jan-1996 09-Apr-2020 2,002,687
HSP N 25-May-2000 03-Sep-2015 1,357,020 LH N 02-Jan-1996 09-Apr-2020 1,940,136
HST N 18-Apr-2006 09-Apr-2020 1,371,924 LIFE O 02-Jan-1996 09-Apr-2020 1,098,997
HSY N 02-Jan-1996 09-Apr-2020 2,139,033 LLL N 19-May-1998 28-Jun-2019 1,848,569
HUM N 02-Jan-1996 09-Apr-2020 2,082,803 LLTC O 02-Jan-1996 10-Mar-2017 2,161,769
IBM N 02-Jan-1996 09-Apr-2020 2,298,859 LLY N 02-Jan-1996 09-Apr-2020 2,310,786
ICE N 16-Nov-2005 09-Apr-2020 1,404,895 LMT N 02-Jan-1996 09-Apr-2020 2,202,793
IFF N 02-Jan-1996 09-Apr-2020 2,091,009 LM N 02-Jan-1996 09-Apr-2020 1,999,676
IGT N 02-Jan-1996 09-Apr-2020 2,049,894 LNC N 02-Jan-1996 09-Apr-2020 2,150,317
INTC O 03-Jan-1996 09-Apr-2020 3,259,077 LOW N 02-Jan-1996 09-Apr-2020 2,184,577
INTU O 02-Jan-1996 09-Apr-2020 2,511,024 LO N 10-Jun-2008 12-Jun-2015 687,618
IPG N 02-Jan-1996 09-Apr-2020 2,142,489 LRCX O 02-Jan-1996 09-Apr-2020 2,537,020
IP N 02-Jan-1996 09-Apr-2020 2,266,209 LSI N 02-Jan-1996 09-Apr-2020 1,895,872
IRM N 26-Apr-1999 09-Apr-2020 1,831,510 LTD N 02-Jan-1996 29-Nov-2013 1,525,757
IR N 02-Jan-1996 09-Apr-2020 2,161,653 LUK N 02-Jan-1996 23-May-2018 1,677,733
ISRG O 13-Jun-2000 09-Apr-2020 1,960,366 LUV N 02-Jan-1996 09-Apr-2020 2,209,479
ITT N 02-Jan-1996 09-Apr-2020 1,964,119 LVLT N 20-Oct-2011 01-Nov-2017 590,527
ITW N 02-Jan-1996 09-Apr-2020 2,168,574 LXK N 02-Jan-1996 29-Nov-2016 1,786,175
IVZ N 24-May-2007 09-Apr-2020 1,261,434 LYB N 14-Oct-2010 09-Apr-2020 928,822
JAVA O 27-Aug-2007 26-Jan-2010 277,271 L N 02-Jan-1996 09-Apr-2020 1,669,718
JBL N 05-May-1998 09-Apr-2020 2,053,368 MAC N 02-Jan-1996 09-Apr-2020 1,849,187
JCI N 02-Jan-1996 09-Apr-2020 2,112,705 MAR N 02-Jan-1996 09-Apr-2020 1,655,981
JCP N 02-Jan-1996 09-Apr-2020 2,185,135 MAS N 02-Jan-1996 09-Apr-2020 2,147,133
JDSU O 06-Jul-1999 03-Aug-2015 1,898,220 MAT O 28-Sep-2009 09-Apr-2020 1,290,404
JEC N 02-Jan-1996 09-Dec-2019 1,916,851 MA N 02-Jan-1996 09-Apr-2020 1,378,698
JNJ N 02-Jan-1996 09-Apr-2020 2,296,920 MBI N 02-Jan-1996 09-Apr-2020 2,120,931
JNPR N 29-Oct-2009 09-Apr-2020 1,024,662 MCD N 02-Jan-1996 09-Apr-2020 2,250,045
JNS N 02-Jan-1996 26-May-2017 1,424,064 MCHP O 02-Jan-1996 09-Apr-2020 2,439,960
JOYG O 01-Aug-2001 05-Dec-2011 1,056,235 MCK N 02-Jan-1996 09-Apr-2020 2,110,387
JOY N 06-Dec-2011 05-Apr-2017 521,891 MCO N 23-May-1996 09-Apr-2020 1,870,824
JPM N 02-Jan-1996 09-Apr-2020 2,267,853 MDLZ O 02-Oct-2012 09-Apr-2020 974,535
JWN N 10-Jun-1999 09-Apr-2020 1,950,631 MDP N 02-Jan-1996 09-Apr-2020 1,945,280
KBH N 02-Jan-1996 09-Apr-2020 2,048,350 MDT N 02-Jan-1996 09-Apr-2020 2,238,390
KEY N 02-Jan-1996 09-Apr-2020 2,167,379 MEE N 02-Jan-1996 01-Jun-2011 962,804
KFT N 13-Jun-2001 25-Jun-2012 1,063,160 MET N 23-Sep-1997 09-Apr-2020 1,913,739
KG N 23-May-2000 28-Feb-2011 1,013,006 MFE N 01-Jul-2004 28-Feb-2011 651,845
KIM N 02-Jan-1996 09-Apr-2020 1,886,252 MHFI N 14-May-2013 27-Apr-2016 289,262
KLAC O 02-Jan-1996 09-Apr-2020 2,633,101 MHK N 16-Dec-1997 09-Apr-2020 1,908,025
KMB N 02-Jan-1996 09-Apr-2020 2,228,730 MHP N 03-Jan-1996 13-May-2013 1,442,341
KMI N 08-Oct-1999 09-Apr-2020 1,545,872 MHS N 20-Aug-2003 30-Mar-2012 840,997
KMX N 04-Feb-1997 09-Apr-2020 1,851,269 MIL N 02-Jan-1996 12-Feb-2016 1,356,647
KORS N 15-Dec-2011 31-Dec-2018 687,523 MI N 02-Jan-1996 05-Jul-2011 1,107,732
KO N 02-Jan-1996 09-Apr-2020 2,290,887 MJN N 17-Jan-2002 15-Jun-2017 903,622
KRFT O 02-Oct-2012 02-Jul-2015 322,867 MKC N 25-May-1999 09-Apr-2020 1,879,911
KR N 03-Jan-1996 09-Apr-2020 2,151,941 MLM N 02-Jan-1996 09-Apr-2020 1,946,616
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MMC N 02-Jan-1996 09-Apr-2020 2,180,988 ODP N 02-Jan-1996 09-Apr-2020 1,760,912
MMI N 02-Jan-1996 09-Apr-2020 726,650 OI N 03-Jan-1996 09-Apr-2020 2,002,438
MMM N 02-Jan-1996 09-Apr-2020 2,236,930 OKE N 02-Jan-1996 09-Apr-2020 1,983,066
MNK N 08-Feb-1999 09-Apr-2020 664,365 OMC N 02-Jan-1996 09-Apr-2020 2,125,336
MNST O 01-May-2003 09-Apr-2020 1,605,548 ORCL N 15-Jul-2013 09-Apr-2020 660,786
MOLX O 02-Jan-1996 09-Dec-2013 1,570,855 ORLY O 02-Jan-1996 09-Apr-2020 2,148,506
MON N 10-Dec-1997 07-Jun-2018 1,657,348 OXY N 02-Jan-1996 09-Apr-2020 2,174,665
MOS N 25-Oct-2004 09-Apr-2020 1,508,979 PAYX O 02-Jan-1996 09-Apr-2020 2,449,028
MO N 02-Jan-1996 09-Apr-2020 2,323,517 PBCT O 02-Jan-1996 09-Apr-2020 1,975,144
MPC N 01-Jul-2011 09-Apr-2020 859,484 PBG N 31-Mar-1999 26-Feb-2010 929,642
MRK N 02-Jan-1996 09-Apr-2020 2,292,172 PBI N 02-Jan-1996 09-Apr-2020 2,154,627
MRO N 02-Jan-1996 09-Apr-2020 2,160,427 PCAR O 03-Jan-1996 09-Apr-2020 2,356,138
MSFT O 02-Jan-1996 09-Apr-2020 3,309,159 PCG N 02-Jan-1996 09-Apr-2020 2,128,396
MSI N 04-Jan-2011 09-Apr-2020 906,893 PCLN O 30-Mar-1999 26-Feb-2018 2,112,002
MS N 02-Jan-1996 09-Apr-2020 1,447,941 PCL N 02-Jan-1996 19-Feb-2016 1,543,526
MTB N 19-Sep-1996 09-Apr-2020 1,886,130 PCP N 02-Jan-1996 29-Jan-2016 1,546,273
MUR N 02-Jan-1996 09-Apr-2020 2,001,979 PCS N 02-Jan-1996 30-Apr-2013 1,084,949
MU N 02-Jan-1996 09-Apr-2020 1,487,777 PDCO O 02-Jan-1996 09-Apr-2020 2,137,652
MWV N 30-Jan-2002 01-Jul-2015 1,301,478 PEG N 02-Jan-1996 09-Apr-2020 2,123,829
MWW N 10-Nov-2008 01-Nov-2016 781,287 PEP N 02-Jan-1996 09-Apr-2020 2,228,345
MYL O 29-Dec-2008 09-Apr-2020 1,436,118 PETM O 02-Jan-1996 11-Mar-2015 1,632,708
M N 01-Jun-2007 09-Apr-2020 1,262,010 PFE N 02-Jan-1996 09-Apr-2020 2,328,477
NAVI O 22-Oct-1999 09-Apr-2020 1,193,194 PFG N 02-Jan-1996 09-Apr-2020 1,789,089
NBL N 02-Jan-1996 09-Apr-2020 2,044,903 PGR N 02-Jan-1996 09-Apr-2020 2,121,030
NBR N 03-Nov-2005 09-Apr-2020 1,414,483 PG N 02-Jan-1996 09-Apr-2020 2,314,239
NDAQ O 10-Feb-2005 09-Apr-2020 1,704,069 PHM N 02-Jan-1996 09-Apr-2020 2,042,253
NEE N 23-Jun-2010 09-Apr-2020 961,305 PH N 02-Jan-1996 09-Apr-2020 2,107,013
NEM N 03-Jan-1996 09-Apr-2020 2,211,055 PKI N 26-Oct-1999 09-Apr-2020 1,933,481
NE N 29-Mar-1996 09-Apr-2020 2,165,382 PLD N 02-Jul-1998 09-Apr-2020 1,875,169
NFLX O 23-May-2002 09-Apr-2020 2,392,224 PLL N 02-Jan-1996 11-Nov-2019 1,605,514
NFX N 02-Jan-1996 13-Feb-2019 1,832,255 PM N 31-Mar-2008 09-Apr-2020 1,181,089
NI N 02-Jan-1996 09-Apr-2020 2,020,446 PNC N 02-Jan-1996 09-Apr-2020 2,197,949
NKE N 02-Jan-1996 09-Apr-2020 2,224,473 PNR N 04-Mar-1996 09-Apr-2020 1,949,350
NLSN N 26-Jan-2011 09-Apr-2020 897,829 PNW N 02-Jan-1996 09-Apr-2020 2,019,549
NOC N 02-Jan-1996 09-Apr-2020 2,094,598 POM N 02-Jan-1996 24-Mar-2016 1,602,116
NOVL O 02-Jan-1996 27-Apr-2011 1,349,640 PPG N 02-Jan-1996 09-Apr-2020 2,167,029
NOV N 02-Jan-1996 09-Apr-2020 1,573,503 PPL N 02-Jan-1996 09-Apr-2020 2,067,127
NRG N 31-May-2000 09-Apr-2020 1,672,350 PRGO N 06-Jun-2013 09-Apr-2020 668,722
NSC N 02-Jan-1996 09-Apr-2020 2,175,649 PRU N 13-Dec-2001 09-Apr-2020 1,782,469
NSM N 02-Jan-1996 31-Jul-2018 1,996,944 PSA N 02-Jan-1996 09-Apr-2020 1,888,269
NTAP O 02-Jan-1996 09-Apr-2020 2,487,241 PSX N 02-Jan-1996 09-Apr-2020 803,084
NTRS O 02-Jan-1996 09-Apr-2020 2,332,169 PTV N 05-Nov-1999 16-Nov-2010 976,124
NUE N 02-Jan-1996 09-Apr-2020 2,135,579 PVH N 02-Jan-1996 09-Apr-2020 1,807,982
NU N 02-Jan-1996 18-Feb-2015 1,448,773 PWR N 12-Feb-1998 09-Apr-2020 1,868,736
NVDA O 22-Jan-1999 09-Apr-2020 2,684,496 PXD N 08-Aug-1997 09-Apr-2020 1,950,527
NVLS O 02-Jan-1996 24-Jul-2017 1,809,544 PX N 02-Jan-1996 30-Oct-2018 1,990,693
NWL N 02-Jan-1996 09-Apr-2020 2,131,328 QCOM O 02-Jan-1996 09-Apr-2020 2,849,469
NWSA O 29-Dec-2008 09-Apr-2020 1,263,345 QEP N 01-Jul-2010 09-Apr-2020 957,557
NYT N 25-Sep-1997 09-Apr-2020 2,041,906 QLGC O 03-Jan-1996 16-Aug-2016 2,001,183
NYX N 08-Mar-2006 12-Nov-2013 754,846 Q N 03-Jan-2000 14-Nov-2017 1,515,869
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RAI N 02-Aug-2004 25-Jul-2017 1,272,362 SYMC O 02-Jan-1996 04-Nov-2019 2,399,193
RCL N 02-Jan-1996 09-Apr-2020 1,976,250 SYY N 02-Jan-1996 09-Apr-2020 2,148,710
RDC N 02-Jan-1996 11-Apr-2019 2,076,304 S N 02-Jan-1996 01-Apr-2020 2,204,212
REGN O 02-Jan-1996 09-Apr-2020 2,087,151 TAP N 23-Apr-1996 09-Apr-2020 1,593,289
RF N 03-May-2002 09-Apr-2020 1,749,826 TDC N 01-Oct-2007 09-Apr-2020 1,225,942
RHI N 02-Jan-1996 09-Apr-2020 2,035,511 TEG N 24-Feb-1997 29-Jun-2015 831,809
RHT N 18-Nov-2002 09-Jul-2019 1,312,607 TEL N 02-Jan-1996 09-Apr-2020 1,260,966
RIG N 02-Jan-1996 09-Apr-2020 2,180,099 TER N 02-Jan-1996 09-Apr-2020 2,193,190
RL N 02-Jan-1996 09-Apr-2020 1,902,044 TE N 02-Jan-1996 30-Jun-2016 1,673,046
ROK N 02-Jan-1996 09-Apr-2020 2,150,278 TGT N 31-Jan-2000 09-Apr-2020 1,956,846
ROP N 01-Nov-1996 09-Apr-2020 1,862,049 THC N 02-Jan-1996 09-Apr-2020 2,141,146
ROST O 02-Jan-1996 09-Apr-2020 2,319,058 TIE N 16-Jul-1998 07-Jan-2013 971,804
RRC N 26-Aug-1998 09-Apr-2020 1,748,909 TIF N 02-Jan-1996 09-Apr-2020 2,070,864
RRD O 05-Aug-2009 19-Aug-2016 787,510 TJX N 02-Jan-1996 09-Apr-2020 2,135,203
RSG N 02-Jul-1998 09-Apr-2020 1,932,858 TLAB O 02-Jan-1996 03-Dec-2013 1,771,722
RTN N 02-Jan-1996 03-Apr-2020 1,930,725 TMK N 02-Jan-1996 08-Aug-2019 2,007,666
R N 02-Jan-1996 09-Apr-2020 2,019,734 TMO N 02-Jan-1996 09-Apr-2020 2,106,333
SAI N 02-Jan-1996 27-Sep-2013 821,032 TRIP O 02-Jan-1996 09-Apr-2020 1,017,153
SBUX O 02-Jan-1996 09-Apr-2020 2,680,668 TROW O 02-Jan-1996 09-Apr-2020 2,278,480
SCG N 02-Jan-1996 31-Dec-2018 1,857,179 TRV N 02-Jan-1996 09-Apr-2020 1,492,936
SCHW N 05-Mar-2010 09-Apr-2020 991,593 TSCO O 02-Jan-1996 09-Apr-2020 2,079,629
SEE N 02-Jan-1996 09-Apr-2020 2,050,409 TSN N 17-Oct-1997 09-Apr-2020 1,950,834
SE N 08-Mar-1996 09-Apr-2020 1,722,290 TSO N 02-Jan-1996 31-Jul-2017 1,637,192
SHLD O 28-Mar-2005 23-Oct-2018 1,552,837 TSS N 03-Jan-1996 17-Sep-2019 1,772,421
SHW N 03-Jan-1996 09-Apr-2020 2,099,741 TWC N 01-Mar-2007 17-May-2016 900,725
SIAL O 03-Jan-1996 18-Nov-2015 1,744,630 TWX N 03-Jan-1996 14-Jun-2018 1,821,187
SII N 02-Jan-1996 27-Aug-2010 1,205,460 TXN N 02-Jan-1996 09-Apr-2020 1,668,418
SJM N 29-Aug-2000 09-Apr-2020 1,773,704 TXT N 02-Jan-1996 09-Apr-2020 2,151,982
SLB N 02-Jan-1996 09-Apr-2020 2,271,445 TYC N 02-Jan-1996 02-Sep-2016 1,860,870
SLE N 02-Jan-1996 28-Jun-2012 1,439,969 T N 03-Jan-1996 09-Apr-2020 2,255,745
SNA N 02-Jan-1996 09-Apr-2020 1,994,519 UA N 02-Jan-1996 09-Apr-2020 1,305,754
SNDK O 02-Jan-1996 12-May-2016 2,043,724 UHS N 02-Jan-1996 09-Apr-2020 1,953,488
SNI N 01-Jul-2008 14-Mar-2016 752,499 UNH N 02-Jan-1996 09-Apr-2020 2,189,587
SO N 02-Jan-1996 09-Apr-2020 2,179,579 UNM N 02-Jan-1996 09-Apr-2020 2,133,439
SPG N 02-Jan-1996 09-Apr-2020 1,982,000 UNP N 02-Jan-1996 09-Apr-2020 2,158,248
SPLS O 02-Jan-1996 12-Sep-2017 2,140,893 UPS N 10-Nov-1999 09-Apr-2020 1,951,671
SRCL O 23-Aug-1996 09-Apr-2020 2,074,532 URBN O 03-Jan-1996 09-Apr-2020 2,109,211
SRE N 29-Jun-1998 09-Apr-2020 2,012,253 URI N 18-Dec-1997 09-Apr-2020 1,905,870
STI N 02-Jan-1996 06-Dec-2019 2,140,876 USB N 04-Aug-1997 09-Apr-2020 2,124,485
STJ N 02-Dec-1996 04-Jan-2017 1,749,978 UTX N 02-Jan-1996 02-Apr-2020 2,232,005
STR N 02-Jan-1996 16-Sep-2016 1,614,366 VAR N 02-Jan-1996 09-Apr-2020 1,980,031
STT N 02-Jan-1996 09-Apr-2020 2,150,837 VFC N 03-Jan-1996 09-Apr-2020 2,086,784
STX O 16-Sep-2008 09-Apr-2020 1,412,496 VIAB O 01-Dec-2011 04-Dec-2019 944,616
STZ N 20-Sep-2000 09-Apr-2020 1,835,118 VLO N 02-Jan-1996 09-Apr-2020 2,006,094
SUN N 02-Jan-1996 09-Apr-2020 1,843,540 VMC N 02-Jan-1996 09-Apr-2020 1,999,038
SVU N 02-Jan-1996 22-Oct-2018 1,907,957 VNO N 02-Jan-1996 09-Apr-2020 1,890,700
SWK N 02-Jan-1996 09-Apr-2020 2,052,025 VRSN O 30-Jan-1998 09-Apr-2020 2,447,514
SWN N 02-Jan-1996 09-Apr-2020 1,798,725 VRTX O 02-Jan-1996 09-Apr-2020 2,333,086
SWY N 02-Jan-1996 29-Jan-2015 1,654,047 VTR N 01-May-1998 09-Apr-2020 1,814,627
SYK N 25-Jul-1997 09-Apr-2020 2,004,851 VZ N 03-Jul-2000 09-Apr-2020 1,926,918
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V N 02-Jan-1996 09-Apr-2020 1,687,854 WYNN O 25-Oct-2002 09-Apr-2020 2,048,467
WAG N 02-Jan-1996 30-Dec-2014 1,687,283 WYN N 21-May-1996 31-May-2018 1,243,807
WAT N 02-Jan-1996 09-Apr-2020 2,012,484 WY N 02-Jan-1996 09-Apr-2020 2,190,983
WBA O 31-Dec-2014 09-Apr-2020 699,263 XEC N 01-Oct-2002 09-Apr-2020 1,671,344
WDC N 02-Jan-1996 09-Apr-2020 1,509,382 XEL N 02-Jan-1996 09-Apr-2020 1,892,938
WEC N 02-Jan-1996 09-Apr-2020 2,008,516 XLNX O 02-Jan-1996 09-Apr-2020 2,671,151
WFC N 02-Jan-1996 09-Apr-2020 2,257,351 XL N 02-Jan-1996 12-Sep-2018 1,837,282
WFMI O 02-Jan-1996 05-May-2011 1,235,929 XOM N 01-Dec-1999 09-Apr-2020 1,980,937
WFM O 06-May-2011 28-Aug-2017 789,154 XRAY O 02-Jan-1996 09-Apr-2020 2,166,171
WFR N 02-Jan-1996 31-May-2013 1,205,154 XRX N 02-Jan-1996 09-Apr-2020 2,265,252
WHR N 02-Jan-1996 09-Apr-2020 2,127,939 XTO N 02-Jan-1996 25-Jun-2010 997,655
WIN N 02-Jan-1996 05-Mar-2019 983,338 XYL N 01-Nov-2011 09-Apr-2020 823,287
WLP N 02-Jan-1996 02-Dec-2014 1,540,070 X N 02-Jan-1996 09-Apr-2020 2,129,784
WMB N 02-Jan-1996 09-Apr-2020 2,183,170 YHOO O 12-Apr-1996 16-Jun-2017 2,558,951
WMT N 02-Jan-1996 09-Apr-2020 2,257,067 YUM N 07-Oct-1997 09-Apr-2020 2,060,980
WM N 09-Dec-1998 09-Apr-2020 1,966,129 ZION O 02-Jan-1996 09-Apr-2020 2,232,899
WPI N 18-Sep-1997 23-Jan-2013 1,332,685 ZMH N 07-Aug-2001 26-Jun-2015 1,338,825
WPX N 03-Jan-2012 09-Apr-2020 810,182 ZTS N 01-Feb-2013 09-Apr-2020 702,710
WU N 02-Oct-2006 09-Apr-2020 1,325,573
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AUDCAD 1D 15-Jun-2017 08-May-2020 1,524,960 AUDSEK 6M 02-Jan-2015 08-May-2020 2,813,760
AUDCAD 1M 02-Jan-2015 08-May-2020 2,813,760 AUDSEK 9M 15-Jun-2017 08-May-2020 1,524,960
AUDCAD 2M 02-Jan-2015 08-May-2020 2,813,760 AUDSEK 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDCAD 3M 02-Jan-2015 08-May-2020 2,813,760 AUDSEK 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDCAD 6M 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 1D 15-Jun-2017 08-May-2020 1,524,960
AUDCAD 9M 15-Jun-2017 08-May-2020 1,524,960 AUDSGD 1M 02-Jan-2015 08-May-2020 2,813,760
AUDCAD 1Y 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 2M 02-Jan-2015 08-May-2020 2,813,760
AUDCAD 2Y 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 3M 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 1D 15-Jun-2017 08-May-2020 1,524,960 AUDSGD 6M 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 1M 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 9M 15-Jun-2017 08-May-2020 1,524,960
AUDCHF 2M 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 3M 02-Jan-2015 08-May-2020 2,813,760 AUDSGD 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 6M 02-Jan-2015 08-May-2020 2,813,760 AUDUSD 1D 15-Jun-2017 08-May-2020 1,524,960
AUDCHF 9M 15-Jun-2017 08-May-2020 1,524,960 AUDUSD 1M 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 1Y 02-Jan-2015 08-May-2020 2,813,760 AUDUSD 2M 02-Jan-2015 08-May-2020 2,813,760
AUDCHF 2Y 02-Jan-2015 08-May-2020 2,813,760 AUDUSD 3M 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 1D 15-Jun-2017 08-May-2020 1,524,960 AUDUSD 6M 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 1M 02-Jan-2015 08-May-2020 2,813,760 AUDUSD 9M 15-Jun-2017 08-May-2020 1,524,960
AUDDKK 2M 02-Jan-2015 08-May-2020 2,813,760 AUDUSD 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 3M 05-Jan-2015 08-May-2020 2,809,440 AUDUSD 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 6M 02-Jan-2015 08-May-2020 2,813,760 CADCHF 1D 15-Jun-2017 08-May-2020 1,524,960
AUDDKK 9M 15-Jun-2017 08-May-2020 1,524,960 CADCHF 1M 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 1Y 02-Jan-2015 08-May-2020 2,813,760 CADCHF 2M 02-Jan-2015 08-May-2020 2,813,760
AUDDKK 2Y 02-Jan-2015 08-May-2020 2,813,760 CADCHF 3M 02-Jan-2015 08-May-2020 2,813,760
AUDHKD 1D 15-Jun-2017 08-May-2020 1,524,960 CADCHF 6M 02-Jan-2015 08-May-2020 2,813,760
AUDHKD 1M 02-Jan-2015 08-May-2020 2,813,760 CADCHF 9M 15-Jun-2017 08-May-2020 1,524,960
AUDHKD 2M 02-Jan-2015 08-May-2020 2,813,760 CADCHF 1Y 05-Jan-2015 08-May-2020 2,809,440
AUDHKD 3M 02-Jan-2015 08-May-2020 2,813,760 CADCHF 2Y 05-Jan-2015 08-May-2020 2,809,440
AUDHKD 6M 02-Jan-2015 08-May-2020 2,813,760 CADDKK 1D 15-Jun-2017 08-May-2020 1,524,960
AUDHKD 9M 15-Jun-2017 08-May-2020 1,524,960 CADDKK 1M 02-Jan-2015 08-May-2020 2,813,760
AUDHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 CADDKK 2M 02-Jan-2015 08-May-2020 2,813,760
AUDHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 CADDKK 3M 05-Jan-2015 08-May-2020 2,809,440
AUDJPY 1D 15-Jun-2017 08-May-2020 1,524,960 CADDKK 6M 02-Jan-2015 08-May-2020 2,813,760
AUDJPY 1M 02-Jan-2015 08-May-2020 2,813,760 CADDKK 9M 15-Jun-2017 08-May-2020 1,524,960
AUDJPY 2M 02-Jan-2015 08-May-2020 2,813,760 CADDKK 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDJPY 3M 02-Jan-2015 08-May-2020 2,813,760 CADDKK 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDJPY 6M 02-Jan-2015 08-May-2020 2,813,760 CADJPY 1D 15-Jun-2017 08-May-2020 1,524,960
AUDJPY 9M 15-Jun-2017 08-May-2020 1,524,960 CADJPY 1M 02-Jan-2015 08-May-2020 2,813,760
AUDJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 CADJPY 2M 02-Jan-2015 08-May-2020 2,813,760
AUDJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 CADJPY 3M 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 1D 15-Jun-2017 08-May-2020 1,524,960 CADJPY 6M 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 1M 02-Jan-2015 08-May-2020 2,813,760 CADJPY 9M 15-Jun-2017 08-May-2020 1,524,960
AUDNOK 2M 02-Jan-2015 08-May-2020 2,813,760 CADJPY 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 3M 02-Jan-2015 08-May-2020 2,813,760 CADJPY 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 6M 02-Jan-2015 08-May-2020 2,813,760 CADNOK 1D 15-Jun-2017 08-May-2020 1,524,960
AUDNOK 9M 15-Jun-2017 08-May-2020 1,524,960 CADNOK 1M 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 1Y 02-Jan-2015 08-May-2020 2,813,760 CADNOK 2M 02-Jan-2015 08-May-2020 2,813,760
AUDNOK 2Y 02-Jan-2015 08-May-2020 2,813,760 CADNOK 3M 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 1D 15-Jun-2017 08-May-2020 1,524,960 CADNOK 6M 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 1M 05-Jan-2015 08-May-2020 2,809,440 CADNOK 9M 15-Jun-2017 08-May-2020 1,524,960
AUDNZD 2M 06-Jan-2015 08-May-2020 2,808,000 CADNOK 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 3M 06-Jan-2015 08-May-2020 2,808,000 CADNOK 2Y 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 6M 02-Jan-2015 08-May-2020 2,813,760 CADSEK 1D 15-Jun-2017 08-May-2020 1,524,960
AUDNZD 9M 15-Jun-2017 06-May-2020 1,522,080 CADSEK 1M 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 1Y 02-Jan-2015 08-May-2020 2,813,760 CADSEK 2M 02-Jan-2015 08-May-2020 2,813,760
AUDNZD 2Y 02-Jan-2015 08-May-2020 2,813,760 CADSEK 3M 02-Jan-2015 08-May-2020 2,813,760
AUDSEK 1D 15-Jun-2017 08-May-2020 1,524,960 CADSEK 6M 02-Jan-2015 08-May-2020 2,813,760
AUDSEK 1M 02-Jan-2015 08-May-2020 2,813,760 CADSEK 9M 15-Jun-2017 08-May-2020 1,524,960
AUDSEK 2M 02-Jan-2015 08-May-2020 2,813,760 CADSEK 1Y 02-Jan-2015 08-May-2020 2,813,760
AUDSEK 3M 02-Jan-2015 08-May-2020 2,813,760 CADSEK 2Y 02-Jan-2015 08-May-2020 2,813,760

Notes: this table presents the ticker list used in the foreign exchange study. The
’Currency’ column shows the underlying asset. The ’Maturity’ column shows the
contract maturity for corresponding currency. The ’Start Date’ column shows the
first recorded date for trades in database of my study. The ’End Date’ column
shows the last recorded date for trades in database of my study. The ’Number
of Quotes’ column shows the number of trades in my database for corresponding
contract.
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Table 5.2: Option Ticker List

Currency Maturity StartDate EndDate Number of Quotes Currency Maturity StartDate EndDate Number of Quotes
CADSGD 1D 15-Jun-2017 08-May-2020 1,524,960 CHFZAR 1D 15-Jun-2017 08-May-2020 1,524,960
CADSGD 1M 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 1M 02-Jan-2015 08-May-2020 2,813,760
CADSGD 2M 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 2M 02-Jan-2015 08-May-2020 2,813,760
CADSGD 3M 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 3M 02-Jan-2015 08-May-2020 2,813,760
CADSGD 6M 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 6M 02-Jan-2015 08-May-2020 2,813,760
CADSGD 9M 15-Jun-2017 08-May-2020 1,524,960 CHFZAR 9M 15-Jun-2017 08-May-2020 1,524,960
CADSGD 1Y 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 1Y 02-Jan-2015 08-May-2020 2,813,760
CADSGD 2Y 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 2Y 15-Jun-2017 08-May-2020 1,524,960
CHFDKK 1D 15-Jun-2017 08-May-2020 1,524,960 CNHSGD 3M 08-Jun-2018 10-Jan-2019 312,480
CHFDKK 1M 02-Jan-2015 08-May-2020 2,813,760 CNHSGD 6M 08-Jun-2018 10-Jan-2019 312,480
CHFDKK 2M 02-Jan-2015 08-May-2020 2,813,760 CNHSGD 9M 08-Jun-2018 10-Jan-2019 312,480
CHFDKK 3M 02-Jan-2015 08-May-2020 2,813,760 CNHSGD 1Y 08-Jun-2018 10-Jan-2019 312,480
CHFDKK 6M 02-Jan-2015 08-May-2020 2,813,760 CNHSGD 2Y 08-Jun-2018 10-Jan-2019 312,480
CHFDKK 9M 15-Jun-2017 08-May-2020 1,524,960 CHFZAR 9M 15-Jun-2017 08-May-2020 1,524,960
CHFDKK 1Y 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 1Y 02-Jan-2015 08-May-2020 2,813,760
CHFDKK 2Y 02-Jan-2015 08-May-2020 2,813,760 CHFZAR 2Y 15-Jun-2017 08-May-2020 1,524,960
CHFHKD 1D 15-Jun-2017 10-Jan-2019 828,000 DKKJPY 1D 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 1M 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 1M 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 2M 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 2M 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 3M 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 3M 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 6M 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 6M 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 9M 15-Jun-2017 28-Apr-2020 1,510,560 DKKJPY 9M 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 1Y 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 1Y 07-Jul-2017 08-May-2020 1,493,280
CHFHKD 2Y 02-Jan-2015 28-Apr-2020 2,799,360 DKKJPY 2Y 07-Jul-2017 08-May-2020 1,493,280
CHFHUF 1D 15-Jun-2017 08-May-2020 1,524,960 DKKNOK 1M 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 1M 02-Jan-2015 08-May-2020 2,813,760 DKKNOK 2M 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 2M 02-Jan-2015 08-May-2020 2,813,760 DKKNOK 3M 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 3M 02-Jan-2015 08-May-2020 2,813,760 DKKNOK 6M 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 6M 05-Jan-2015 08-May-2020 2,809,440 DKKNOK 9M 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 9M 15-Jun-2017 08-May-2020 1,524,960 DKKNOK 1Y 02-Jan-2015 21-Jul-2016 816,480
CHFHUF 1Y 02-Jan-2015 08-May-2020 2,813,760 DKKJPY 1Y 07-Jul-2017 08-May-2020 1,493,280
CHFHUF 2Y 02-Jan-2015 08-May-2020 2,813,760 DKKJPY 2Y 07-Jul-2017 08-May-2020 1,493,280
CHFJPY 1D 15-Jun-2017 08-May-2020 1,524,960 DKKSEK 1M 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 1M 02-Jan-2015 08-May-2020 2,813,760 DKKSEK 2M 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 2M 02-Jan-2015 08-May-2020 2,813,760 DKKSEK 3M 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 3M 02-Jan-2015 08-May-2020 2,813,760 DKKSEK 6M 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 6M 02-Jan-2015 08-May-2020 2,813,760 DKKSEK 9M 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 9M 15-Jun-2017 08-May-2020 1,524,960 DKKSEK 1Y 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 DKKSEK 2Y 02-Jan-2015 22-Jul-2016 817,920
CHFJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 DKKJPY 2Y 07-Jul-2017 08-May-2020 1,493,280
CHFMXN 1D 15-Jun-2017 08-May-2020 1,524,960 EURAUD 1D 15-Jun-2017 08-May-2020 1,524,960
CHFMXN 1M 02-Jan-2015 08-May-2020 2,813,760 EURAUD 1M 02-Jan-2015 08-May-2020 2,813,760
CHFMXN 2M 02-Jan-2015 08-May-2020 2,813,760 EURAUD 2M 02-Jan-2015 08-May-2020 2,813,760
CHFMXN 3M 02-Jan-2015 08-May-2020 2,813,760 EURAUD 3M 02-Jan-2015 08-May-2020 2,813,760
CHFMXN 6M 02-Jan-2015 08-May-2020 2,813,760 EURAUD 6M 02-Jan-2015 08-May-2020 2,813,760
CHFMXN 9M 15-Jun-2017 08-May-2020 1,524,960 EURAUD 9M 15-Jun-2017 08-May-2020 1,524,960
CHFMXN 1Y 02-Jan-2015 08-May-2020 2,813,760 EURAUD 1Y 02-Jan-2015 08-May-2020 2,813,760
CHFMXN 2Y 02-Jan-2015 08-May-2020 2,813,760 EURAUD 2Y 02-Jan-2015 08-May-2020 2,813,760
CHFNOK 1D 15-Jun-2017 08-May-2020 1,524,960 EURBRL 1D 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 1M 02-Jan-2015 08-May-2020 2,813,760 EURBRL 1M 02-Jan-2015 08-May-2020 2,813,760
CHFNOK 2M 02-Jan-2015 08-May-2020 2,813,760 EURBRL 2M 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 3M 02-Jan-2015 08-May-2020 2,813,760 EURBRL 3M 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 6M 02-Jan-2015 08-May-2020 2,813,760 EURBRL 6M 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 9M 15-Jun-2017 08-May-2020 1,524,960 EURBRL 9M 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 1Y 02-Jan-2015 08-May-2020 2,813,760 EURBRL 1Y 15-Jun-2017 08-May-2020 1,524,960
CHFNOK 2Y 02-Jan-2015 08-May-2020 2,813,760 EURBRL 2Y 15-Jun-2017 08-May-2020 1,524,960
CHFPLN 1D 15-Jun-2017 08-May-2020 1,524,960 EURCAD 1D 15-Jun-2017 08-May-2020 1,524,960
CHFPLN 1M 02-Jan-2015 08-May-2020 2,813,760 EURCAD 1M 02-Jan-2015 08-May-2020 2,813,760
CHFPLN 2M 02-Jan-2015 08-May-2020 2,813,760 EURCAD 2M 02-Jan-2015 08-May-2020 2,813,760
CHFPLN 3M 02-Jan-2015 08-May-2020 2,813,760 EURCAD 3M 02-Jan-2015 08-May-2020 2,813,760
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Table 5.2: Option Ticker List

Currency Maturity StartDate EndDate Number of Quotes Currency Maturity StartDate EndDate Number of Quotes
CHFPLN 6M 02-Jan-2015 08-May-2020 2,813,760 EURCAD 6M 02-Jan-2015 08-May-2020 2,813,760
CHFPLN 9M 15-Jun-2017 08-May-2020 1,524,960 EURCAD 9M 15-Jun-2017 08-May-2020 1,524,960
CHFPLN 1Y 02-Jan-2015 08-May-2020 2,813,760 EURCAD 1Y 02-Jan-2015 08-May-2020 2,813,760
CHFPLN 2Y 02-Jan-2015 08-May-2020 2,813,760 EURCAD 2Y 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 1D 15-Jun-2017 08-May-2020 1,524,960 EURCHF 1D 15-Jun-2017 08-May-2020 1,524,960
CHFSEK 1M 02-Jan-2015 08-May-2020 2,813,760 EURCHF 1M 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 2M 02-Jan-2015 08-May-2020 2,813,760 EURCHF 2M 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 3M 02-Jan-2015 08-May-2020 2,813,760 EURCHF 3M 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 6M 02-Jan-2015 08-May-2020 2,813,760 EURCHF 6M 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 9M 15-Jun-2017 08-May-2020 1,524,960 EURCHF 9M 15-Jun-2017 08-May-2020 1,524,960
CHFSEK 1Y 02-Jan-2015 08-May-2020 2,813,760 EURCHF 1Y 02-Jan-2015 08-May-2020 2,813,760
CHFSEK 2Y 02-Jan-2015 08-May-2020 2,813,760 EURCHF 2Y 02-Jan-2015 08-May-2020 2,813,760
CHFSGD 1D 15-Jun-2017 08-May-2020 1,524,960 EURCNH 1D 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 1M 02-Jan-2015 08-May-2020 2,813,760 EURCNH 1M 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 2M 02-Jan-2015 08-May-2020 2,813,760 EURCNH 2M 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 3M 02-Jan-2015 08-May-2020 2,813,760 EURCNH 3M 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 6M 02-Jan-2015 08-May-2020 2,813,760 EURCNH 6M 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 9M 15-Jun-2017 08-May-2020 1,524,960 EURCNH 9M 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 1Y 05-Jan-2015 08-May-2020 2,809,440 EURCNH 1Y 08-Jun-2018 08-May-2020 1,009,440
CHFSGD 2Y 02-Jan-2015 08-May-2020 2,813,760 EURCNH 2Y 08-Jun-2018 08-May-2020 1,009,440
EURCNY 1D 15-Jun-2017 08-May-2020 1,524,960 EURMXN 1D 15-Jun-2017 08-May-2020 1,524,960
EURCNY 1M 02-Jan-2015 08-May-2020 2,813,760 EURMXN 1M 02-Jan-2015 08-May-2020 2,813,760
EURCNY 2M 02-Jan-2015 08-May-2020 2,813,760 EURMXN 2M 02-Jan-2015 08-May-2020 2,813,760
EURCNY 3M 02-Jan-2015 08-May-2020 2,813,760 EURMXN 3M 02-Jan-2015 08-May-2020 2,813,760
EURCNY 6M 02-Jan-2015 08-May-2020 2,813,760 EURMXN 6M 02-Jan-2015 08-May-2020 2,813,760
EURCNY 9M 15-Jun-2017 08-May-2020 1,524,960 EURMXN 9M 15-Jun-2017 08-May-2020 1,524,960
EURCNY 1Y 02-Jan-2015 07-May-2020 2,812,320 EURMXN 1Y 02-Jan-2015 08-May-2020 2,813,760
EURCNY 2Y 02-Jan-2015 08-May-2020 2,813,760 EURMXN 2Y 02-Jan-2015 08-May-2020 2,813,760
EURCZK 1D 15-Jun-2017 08-May-2020 1,524,960 EURNOK 1D 15-Jun-2017 08-May-2020 1,524,960
EURCZK 1M 02-Jan-2015 08-May-2020 2,813,760 EURNOK 1M 02-Jan-2015 08-May-2020 2,813,760
EURCZK 2M 02-Jan-2015 08-May-2020 2,813,760 EURNOK 2M 02-Jan-2015 08-May-2020 2,813,760
EURCZK 3M 02-Jan-2015 08-May-2020 2,813,760 EURNOK 3M 02-Jan-2015 08-May-2020 2,813,760
EURCZK 6M 02-Jan-2015 08-May-2020 2,813,760 EURNOK 6M 02-Jan-2015 08-May-2020 2,813,760
EURCZK 9M 15-Jun-2017 08-May-2020 1,524,960 EURNOK 9M 15-Jun-2017 08-May-2020 1,524,960
EURCZK 1Y 15-Jun-2017 08-May-2020 1,524,960 EURNOK 1Y 02-Jan-2015 08-May-2020 2,813,760
EURCZK 2Y 02-Jan-2015 08-May-2020 2,813,760 EURNOK 2Y 02-Jan-2015 08-May-2020 2,813,760
EURDKK 1D 07-Jul-2017 08-May-2020 1,493,280 EURNZD 1D 15-Jun-2017 08-May-2020 1,524,960
EURDKK 1M 07-Jul-2017 08-May-2020 1,493,280 EURNZD 1M 02-Jan-2015 08-May-2020 2,813,760
EURDKK 2M 07-Jul-2017 08-May-2020 1,493,280 EURNZD 2M 02-Jan-2015 08-May-2020 2,813,760
EURDKK 3M 07-Jul-2017 08-May-2020 1,493,280 EURNZD 3M 02-Jan-2015 08-May-2020 2,813,760
EURDKK 6M 07-Jul-2017 08-May-2020 1,493,280 EURNZD 6M 02-Jan-2015 08-May-2020 2,813,760
EURDKK 9M 07-Jul-2017 08-May-2020 1,493,280 EURNZD 9M 15-Jun-2017 08-May-2020 1,524,960
EURDKK 1Y 07-Jul-2017 08-May-2020 1,493,280 EURNZD 1Y 02-Jan-2015 08-May-2020 2,813,760
EURDKK 2Y 07-Jul-2017 08-May-2020 1,493,280 EURNZD 2Y 02-Jan-2015 08-May-2020 2,813,760
EURGBP 1D 15-Jun-2017 08-May-2020 1,524,960 EURPLN 1D 15-Jun-2017 08-May-2020 1,524,960
EURGBP 1M 02-Jan-2015 08-May-2020 2,813,760 EURPLN 1M 02-Jan-2015 08-May-2020 2,813,760
EURGBP 2M 02-Jan-2015 08-May-2020 2,813,760 EURPLN 2M 02-Jan-2015 08-May-2020 2,813,760
EURGBP 3M 02-Jan-2015 08-May-2020 2,813,760 EURPLN 3M 02-Jan-2015 08-May-2020 2,813,760
EURGBP 6M 02-Jan-2015 08-May-2020 2,813,760 EURPLN 6M 02-Jan-2015 08-May-2020 2,813,760
EURGBP 9M 15-Jun-2017 08-May-2020 1,524,960 EURPLN 9M 15-Jun-2017 08-May-2020 1,524,960
EURGBP 1Y 02-Jan-2015 08-May-2020 2,813,760 EURPLN 1Y 02-Jan-2015 08-May-2020 2,813,760
EURGBP 2Y 02-Jan-2015 08-May-2020 2,813,760 EURPLN 2Y 02-Jan-2015 08-May-2020 2,813,760
EURHKD 1D 15-Jun-2017 08-May-2020 1,524,960 EURSEK 1D 15-Jun-2017 08-May-2020 1,524,960
EURHKD 1M 02-Jan-2015 08-May-2020 2,813,760 EURSEK 1M 02-Jan-2015 08-May-2020 2,813,760
EURHKD 2M 02-Jan-2015 08-May-2020 2,813,760 EURSEK 2M 02-Jan-2015 08-May-2020 2,813,760
EURHKD 3M 02-Jan-2015 08-May-2020 2,813,760 EURSEK 3M 02-Jan-2015 08-May-2020 2,813,760
EURHKD 6M 02-Jan-2015 08-May-2020 2,813,760 EURSEK 6M 02-Jan-2015 08-May-2020 2,813,760
EURHKD 9M 15-Jun-2017 08-May-2020 1,524,960 EURSEK 9M 15-Jun-2017 08-May-2020 1,524,960
EURHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 EURSEK 1Y 02-Jan-2015 08-May-2020 2,813,760
EURHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 EURSEK 2Y 02-Jan-2015 08-May-2020 2,813,760
EURHUF 1D 15-Jun-2017 08-May-2020 1,524,960 EURSGD 1D 15-Jun-2017 08-May-2020 1,524,960
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Currency Maturity StartDate EndDate Number of Quotes Currency Maturity StartDate EndDate Number of Quotes
EURHUF 1M 02-Jan-2015 08-May-2020 2,813,760 EURSGD 1M 02-Jan-2015 08-May-2020 2,813,760
EURHUF 2M 02-Jan-2015 08-May-2020 2,813,760 EURSGD 2M 02-Jan-2015 08-May-2020 2,813,760
EURHUF 3M 02-Jan-2015 08-May-2020 2,813,760 EURSGD 3M 02-Jan-2015 08-May-2020 2,813,760
EURHUF 6M 02-Jan-2015 08-May-2020 2,813,760 EURSGD 6M 02-Jan-2015 08-May-2020 2,813,760
EURHUF 9M 15-Jun-2017 08-May-2020 1,524,960 EURSGD 9M 15-Jun-2017 08-May-2020 1,524,960
EURHUF 1Y 02-Jan-2015 08-May-2020 2,813,760 EURSGD 1Y 02-Jan-2015 08-May-2020 2,813,760
EURHUF 2Y 02-Jan-2015 08-May-2020 2,813,760 EURSGD 2Y 02-Jan-2015 08-May-2020 2,813,760
EURILS 1D 15-Jun-2017 08-May-2020 1,524,960 EURTRY 1D 15-Jun-2017 08-May-2020 1,524,960
EURILS 1M 02-Jan-2015 08-May-2020 2,813,760 EURTRY 1M 02-Jan-2015 08-May-2020 2,813,760
EURILS 2M 02-Jan-2015 08-May-2020 2,813,760 EURTRY 2M 02-Jan-2015 08-May-2020 2,813,760
EURILS 3M 02-Jan-2015 08-May-2020 2,813,760 EURTRY 3M 02-Jan-2015 08-May-2020 2,813,760
EURILS 6M 02-Jan-2015 08-May-2020 2,813,760 EURTRY 6M 02-Jan-2015 08-May-2020 2,813,760
EURILS 9M 15-Jun-2017 08-May-2020 1,524,960 EURTRY 9M 15-Jun-2017 08-May-2020 1,524,960
EURILS 1Y 02-Jan-2015 08-May-2020 2,813,760 EURTRY 1Y 02-Jan-2015 08-May-2020 2,813,760
EURILS 2Y 02-Jan-2015 08-May-2020 2,813,760 EURTRY 2Y 02-Jan-2015 08-May-2020 2,813,760
EURINR 1D 11-Mar-2020 08-May-2020 84,960 EURUSD 1D 15-Jun-2017 08-May-2020 1,524,960
EURINR 1M 11-Mar-2020 08-May-2020 84,960 EURUSD 1M 02-Jan-2015 08-May-2020 2,813,760
EURINR 2M 11-Mar-2020 08-May-2020 84,960 EURUSD 2M 02-Jan-2015 08-May-2020 2,813,760
EURINR 3M 11-Mar-2020 08-May-2020 84,960 EURUSD 3M 02-Jan-2015 08-May-2020 2,813,760
EURINR 6M 11-Mar-2020 08-May-2020 84,960 EURUSD 6M 02-Jan-2015 08-May-2020 2,813,760
EURINR 9M 11-Mar-2020 08-May-2020 84,960 EURUSD 9M 15-Jun-2017 08-May-2020 1,524,960
EURINR 1Y 11-Mar-2020 08-May-2020 84,960 EURUSD 1Y 02-Jan-2015 08-May-2020 2,813,760
EURINR 2Y 11-Mar-2020 08-May-2020 84,960 EURUSD 2Y 02-Jan-2015 08-May-2020 2,813,760
EURJPY 1D 15-Jun-2017 08-May-2020 1,524,960 EURZAR 1D 15-Jun-2017 08-May-2020 1,524,960
EURJPY 1M 02-Jan-2015 08-May-2020 2,813,760 EURZAR 1M 02-Jan-2015 08-May-2020 2,813,760
EURJPY 2M 02-Jan-2015 08-May-2020 2,813,760 EURZAR 2M 02-Jan-2015 08-May-2020 2,813,760
EURJPY 3M 02-Jan-2015 08-May-2020 2,813,760 EURZAR 3M 02-Jan-2015 08-May-2020 2,813,760
EURJPY 6M 02-Jan-2015 08-May-2020 2,813,760 EURZAR 6M 02-Jan-2015 08-May-2020 2,813,760
EURJPY 9M 15-Jun-2017 08-May-2020 1,524,960 EURZAR 9M 15-Jun-2017 08-May-2020 1,524,960
EURJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 EURZAR 1Y 02-Jan-2015 08-May-2020 2,813,760
EURJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 EURZAR 2Y 02-Jan-2015 08-May-2020 2,813,760
EURKRW 1D 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 1D 15-Jun-2017 08-May-2020 1,524,960
EURKRW 1M 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 1M 02-Jan-2015 08-May-2020 2,813,760
EURKRW 2M 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 2M 02-Jan-2015 08-May-2020 2,813,760
EURKRW 3M 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 3M 02-Jan-2015 08-May-2020 2,813,760
EURKRW 6M 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 6M 02-Jan-2015 08-May-2020 2,813,760
EURKRW 9M 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 9M 15-Jun-2017 08-May-2020 1,524,960
EURKRW 1Y 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 1Y 02-Jan-2015 08-May-2020 2,813,760
EURKRW 2Y 03-Jul-2018 10-Jan-2019 276,480 GBPAUD 2Y 15-Jun-2017 08-May-2020 1,524,960
GBPCAD 1D 15-Jun-2017 08-May-2020 1,524,960 HKDJPY 1D 15-Jun-2017 08-May-2020 1,524,960
GBPCAD 1M 02-Jan-2015 08-May-2020 2,813,760 HKDJPY 1M 02-Jan-2015 08-May-2020 2,813,760
GBPCAD 2M 02-Jan-2015 08-May-2020 2,813,760 HKDJPY 2M 02-Jan-2015 08-May-2020 2,813,760
GBPCAD 3M 02-Jan-2015 08-May-2020 2,813,760 HKDJPY 3M 02-Jan-2015 08-May-2020 2,813,760
GBPCAD 6M 02-Jan-2015 08-May-2020 2,813,760 HKDJPY 6M 02-Jan-2015 08-May-2020 2,813,760
GBPCAD 9M 15-Jun-2017 08-May-2020 1,524,960 HKDJPY 9M 15-Jun-2017 08-May-2020 1,524,960
GBPCAD 1Y 07-Jan-2015 08-May-2020 2,806,560 HKDJPY 1Y 02-Jan-2015 08-May-2020 2,813,760
GBPCAD 2Y 02-Jan-2015 08-May-2020 2,813,760 HKDJPY 2Y 02-Jan-2015 08-May-2020 2,813,760
GBPCHF 1D 15-Jun-2017 08-May-2020 1,524,960 HKDSGD 1D 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 1M 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 1M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 2M 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 2M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 3M 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 3M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 6M 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 6M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 9M 15-Jun-2017 08-May-2020 1,524,960 HKDSGD 9M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 1Y 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 1Y 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 2Y 02-Jan-2015 08-May-2020 2,813,760 HKDSGD 2Y 08-Jun-2018 08-May-2020 1,009,440
GBPDKK 1M 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 1D 08-Jun-2018 08-May-2020 1,009,440
GBPDKK 2M 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 1M 08-Jun-2018 08-May-2020 1,009,440
GBPDKK 3M 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 2M 08-Jun-2018 08-May-2020 1,009,440
GBPDKK 6M 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 3M 08-Jun-2018 08-May-2020 1,009,440
GBPDKK 1Y 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 6M 08-Jun-2018 08-May-2020 1,009,440
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GBPDKK 2Y 02-Jan-2015 21-Jul-2016 816,480 IDRJPY 9M 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 1Y 02-Jan-2015 08-May-2020 2,813,760 IDRJPY 1Y 08-Jun-2018 08-May-2020 1,009,440
GBPCHF 2Y 02-Jan-2015 08-May-2020 2,813,760 IDRJPY 2Y 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 1D 15-Jun-2017 08-May-2020 1,524,960 JPYKRW 1D 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 1M 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 1M 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 2M 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 2M 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 3M 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 3M 20-Jun-2018 08-May-2020 992,160
GBPHKD 6M 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 6M 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 9M 15-Jun-2017 08-May-2020 1,524,960 JPYKRW 9M 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 1Y 08-Jun-2018 08-May-2020 1,009,440
GBPHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 JPYKRW 2Y 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 1D 15-Jun-2017 08-May-2020 1,524,960 JPYTWD 1D 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 1M 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 1M 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 2M 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 2M 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 3M 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 3M 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 6M 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 6M 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 9M 15-Jun-2017 08-May-2020 1,524,960 JPYTWD 9M 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 1Y 08-Jun-2018 08-May-2020 1,009,440
GBPJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 JPYTWD 2Y 08-Jun-2018 06-Apr-2020 963,360
GBPNOK 1D 15-Jun-2017 08-May-2020 1,524,960 KRWJPY 1D 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 1M 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 1M 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 2M 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 2M 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 3M 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 3M 20-Jun-2018 08-May-2020 992,160
GBPNOK 6M 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 6M 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 9M 15-Jun-2017 08-May-2020 1,524,960 KRWJPY 9M 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 1Y 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 1Y 08-Jun-2018 08-May-2020 1,009,440
GBPNOK 2Y 02-Jan-2015 08-May-2020 2,813,760 KRWJPY 2Y 08-Jun-2018 08-May-2020 1,009,440
GBPNZD 1D 15-Jun-2017 08-May-2020 1,524,960 MXNJPY 1D 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 1M 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 1M 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 2M 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 2M 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 3M 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 3M 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 6M 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 6M 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 9M 15-Jun-2017 08-May-2020 1,524,960 MXNJPY 9M 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 1Y 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 1Y 08-Jun-2018 10-Jan-2019 312,480
GBPNZD 2Y 02-Jan-2015 08-May-2020 2,813,760 MXNJPY 2Y 08-Jun-2018 10-Jan-2019 312,480
GBPSEK 1D 15-Jun-2017 08-May-2020 1,524,960 NOKJPY 1D 15-Jun-2017 08-May-2020 1,524,960
GBPSEK 1M 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 1M 02-Jan-2015 08-May-2020 2,813,760
GBPSEK 2M 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 2M 02-Jan-2015 08-May-2020 2,813,760
GBPSEK 3M 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 3M 02-Jan-2015 08-May-2020 2,813,760
GBPSEK 6M 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 6M 02-Jan-2015 08-May-2020 2,813,760
GBPSEK 9M 15-Jun-2017 08-May-2020 1,524,960 NOKJPY 9M 15-Jun-2017 08-May-2020 1,524,960
GBPSEK 1Y 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 1Y 02-Jan-2015 08-May-2020 2,813,760
GBPSEK 2Y 02-Jan-2015 08-May-2020 2,813,760 NOKJPY 2Y 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 1D 15-Jun-2017 08-May-2020 1,524,960 NOKSEK 1D 15-Jun-2017 08-May-2020 1,524,960
GBPSGD 1M 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 1M 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 2M 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 2M 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 3M 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 3M 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 6M 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 6M 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 9M 15-Jun-2017 08-May-2020 1,524,960 NOKSEK 9M 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 1Y 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 1Y 02-Jan-2015 08-May-2020 2,813,760
GBPSGD 2Y 02-Jan-2015 08-May-2020 2,813,760 NOKSEK 2Y 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 1D 15-Jun-2017 08-May-2020 1,524,960 NZDCAD 1D 15-Jun-2017 08-May-2020 1,524,960
GBPUSD 1M 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 1M 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 2M 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 2M 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 3M 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 3M 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 6M 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 6M 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 9M 15-Jun-2017 08-May-2020 1,524,960 NZDCAD 9M 15-Jun-2017 08-May-2020 1,524,960
GBPUSD 1Y 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 1Y 02-Jan-2015 08-May-2020 2,813,760
GBPUSD 2Y 02-Jan-2015 08-May-2020 2,813,760 NZDCAD 2Y 02-Jan-2015 08-May-2020 2,813,760
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NZDCHF 1D 15-Jun-2017 08-May-2020 1,524,960 SGDJPY 1D 15-Jun-2017 08-May-2020 1,524,960
NZDCHF 1M 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 1M 02-Jan-2015 08-May-2020 2,813,760
NZDCHF 2M 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 2M 02-Jan-2015 08-May-2020 2,813,760
NZDCHF 3M 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 3M 02-Jan-2015 08-May-2020 2,813,760
NZDCHF 6M 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 6M 02-Jan-2015 08-May-2020 2,813,760
NZDCHF 9M 15-Jun-2017 08-May-2020 1,524,960 SGDJPY 9M 15-Jun-2017 08-May-2020 1,524,960
NZDCHF 1Y 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 1Y 02-Jan-2015 08-May-2020 2,813,760
NZDCHF 2Y 02-Jan-2015 08-May-2020 2,813,760 SGDJPY 2Y 02-Jan-2015 08-May-2020 2,813,760
NZDHKD 1D 15-Jun-2017 08-May-2020 1,524,960 SGDMYR 1D 19-Jun-2018 08-May-2020 993,600
NZDHKD 1M 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 1M 19-Jun-2018 08-May-2020 993,600
NZDHKD 2M 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 2M 19-Jun-2018 08-May-2020 993,600
NZDHKD 3M 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 3M 19-Jun-2018 08-May-2020 993,600
NZDHKD 6M 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 6M 19-Jun-2018 08-May-2020 993,600
NZDHKD 9M 15-Jun-2017 08-May-2020 1,524,960 SGDMYR 9M 19-Jun-2018 08-May-2020 993,600
NZDHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 1Y 19-Jun-2018 08-May-2020 993,600
NZDHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 SGDMYR 2Y 19-Jun-2018 08-May-2020 993,600
NZDJPY 1D 15-Jun-2017 08-May-2020 1,524,960 USDBRL 1D 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 1M 02-Jan-2015 08-May-2020 2,813,760 USDBRL 1M 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 2M 02-Jan-2015 08-May-2020 2,813,760 USDBRL 2M 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 3M 02-Jan-2015 08-May-2020 2,813,760 USDBRL 3M 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 6M 02-Jan-2015 08-May-2020 2,813,760 USDBRL 6M 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 9M 15-Jun-2017 08-May-2020 1,524,960 USDBRL 9M 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 USDBRL 1Y 15-Jun-2017 08-May-2020 1,524,960
NZDJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 USDBRL 2Y 15-Jun-2017 08-May-2020 1,524,960
NZDNOK 1D 15-Jun-2017 08-May-2020 1,524,960 USDCAD 1D 15-Jun-2017 08-May-2020 1,524,960
NZDNOK 1M 02-Jan-2015 08-May-2020 2,813,760 USDCAD 1M 02-Jan-2015 08-May-2020 2,813,760
NZDNOK 2M 02-Jan-2015 08-May-2020 2,813,760 USDCAD 2M 02-Jan-2015 08-May-2020 2,813,760
NZDNOK 3M 02-Jan-2015 08-May-2020 2,813,760 USDCAD 3M 02-Jan-2015 08-May-2020 2,813,760
NZDNOK 6M 02-Jan-2015 08-May-2020 2,813,760 USDCAD 6M 02-Jan-2015 08-May-2020 2,813,760
NZDNOK 9M 15-Jun-2017 08-May-2020 1,524,960 USDCAD 9M 15-Jun-2017 08-May-2020 1,524,960
NZDNOK 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCAD 1Y 02-Jan-2015 08-May-2020 2,813,760
NZDNOK 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCAD 2Y 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 1D 15-Jun-2017 08-May-2020 1,524,960 USDCHF 1D 15-Jun-2017 08-May-2020 1,524,960
NZDSEK 1M 02-Jan-2015 08-May-2020 2,813,760 USDCHF 1M 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 2M 02-Jan-2015 08-May-2020 2,813,760 USDCHF 2M 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 3M 02-Jan-2015 08-May-2020 2,813,760 USDCHF 3M 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 6M 02-Jan-2015 08-May-2020 2,813,760 USDCHF 6M 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 9M 15-Jun-2017 08-May-2020 1,524,960 USDCHF 9M 15-Jun-2017 08-May-2020 1,524,960
NZDSEK 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCHF 1Y 02-Jan-2015 08-May-2020 2,813,760
NZDSEK 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCHF 2Y 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 1D 15-Jun-2017 08-May-2020 1,524,960 USDCLP 1D 15-Jun-2017 08-May-2020 1,524,960
NZDSGD 1M 02-Jan-2015 08-May-2020 2,813,760 USDCLP 1M 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 2M 02-Jan-2015 08-May-2020 2,813,760 USDCLP 2M 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 3M 02-Jan-2015 07-May-2020 2,812,320 USDCLP 3M 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 6M 02-Jan-2015 08-May-2020 2,813,760 USDCLP 6M 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 9M 15-Jun-2017 08-May-2020 1,524,960 USDCLP 9M 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCLP 1Y 02-Jan-2015 08-May-2020 2,813,760
NZDSGD 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCLP 2Y 15-Jun-2017 08-May-2020 1,524,960
NZDUSD 1D 15-Jun-2017 08-May-2020 1,524,960 USDCNH 1D 15-Jun-2017 08-May-2020 1,524,960
NZDUSD 1M 02-Jan-2015 08-May-2020 2,813,760 USDCNH 1M 02-Jan-2015 08-May-2020 2,813,760
NZDUSD 2M 02-Jan-2015 08-May-2020 2,813,760 USDCNH 2M 02-Jan-2015 08-May-2020 2,813,760
NZDUSD 3M 02-Jan-2015 08-May-2020 2,813,760 USDCNH 3M 02-Jan-2015 08-May-2020 2,813,760
NZDUSD 6M 02-Jan-2015 08-May-2020 2,813,760 USDCNH 6M 02-Jan-2015 08-May-2020 2,813,760
NZDUSD 9M 15-Jun-2017 08-May-2020 1,524,960 USDCNH 9M 15-Jun-2017 08-May-2020 1,524,960
NZDUSD 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCNH 1Y 02-Jan-2015 08-May-2020 2,813,760
NZDUSD 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCNH 2Y 02-Jan-2015 08-May-2020 2,813,760
SEKJPY 1D 15-Jun-2017 08-May-2020 1,524,960 USDCNY 1D 15-Jun-2017 08-May-2020 1,524,960
SEKJPY 1M 02-Jan-2015 08-May-2020 2,813,760 USDCNY 1M 02-Jan-2015 08-May-2020 2,813,760
SEKJPY 2M 02-Jan-2015 08-May-2020 2,813,760 USDCNY 2M 02-Jan-2015 08-May-2020 2,813,760
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SEKJPY 3M 02-Jan-2015 08-May-2020 2,813,760 USDCNY 3M 02-Jan-2015 08-May-2020 2,813,760
SEKJPY 6M 02-Jan-2015 08-May-2020 2,813,760 USDCNY 6M 02-Jan-2015 08-May-2020 2,813,760
SEKJPY 9M 15-Jun-2017 08-May-2020 1,524,960 USDCNY 9M 15-Jun-2017 08-May-2020 1,524,960
SEKJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCNY 1Y 02-Jan-2015 08-May-2020 2,813,760
SEKJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCNY 2Y 02-Jan-2015 08-May-2020 2,813,760
SGDCNH 3M 08-Jun-2018 10-Jan-2019 312,480 USDCOP 1D 15-Jun-2017 08-May-2020 1,524,960
SGDCNH 6M 08-Jun-2018 10-Jan-2019 312,480 USDCOP 1M 15-Jun-2017 08-May-2020 1,524,960
SGDCNH 9M 08-Jun-2018 10-Jan-2019 312,480 USDCOP 2M 15-Jun-2017 08-May-2020 1,524,960
SGDCNH 1Y 08-Jun-2018 10-Jan-2019 312,480 USDCOP 3M 15-Jun-2017 08-May-2020 1,524,960
SGDCNH 2Y 08-Jun-2018 10-Jan-2019 312,480 USDCOP 6M 15-Jun-2017 08-May-2020 1,524,960
SEKJPY 9M 15-Jun-2017 08-May-2020 1,524,960 USDCOP 9M 15-Jun-2017 08-May-2020 1,524,960
SEKJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCOP 1Y 15-Jun-2017 08-May-2020 1,524,960
SEKJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCOP 2Y 15-Jun-2017 08-May-2020 1,524,960
SGDHKD 1D 15-Jun-2017 08-May-2020 1,524,960 USDCZK 1D 15-Jun-2017 08-May-2020 1,524,960
SGDHKD 1M 02-Jan-2015 08-May-2020 2,813,760 USDCZK 1M 02-Jan-2015 08-May-2020 2,813,760
SGDHKD 2M 02-Jan-2015 08-May-2020 2,813,760 USDCZK 2M 02-Jan-2015 07-May-2020 2,812,320
SGDHKD 3M 02-Jan-2015 08-May-2020 2,813,760 USDCZK 3M 02-Jan-2015 08-May-2020 2,813,760
SGDHKD 6M 02-Jan-2015 08-May-2020 2,813,760 USDCZK 6M 02-Jan-2015 08-May-2020 2,813,760
SGDHKD 9M 15-Jun-2017 08-May-2020 1,524,960 USDCZK 9M 15-Jun-2017 08-May-2020 1,524,960
SGDHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 USDCZK 1Y 15-Jun-2017 08-May-2020 1,524,960
SGDHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 USDCZK 2Y 02-Jan-2015 08-May-2020 2,813,760
USDDKK 1D 15-Jun-2017 08-May-2020 1,524,960 USDNOK 1D 15-Jun-2017 08-May-2020 1,524,960
USDDKK 1M 02-Jan-2015 08-May-2020 2,813,760 USDNOK 1M 02-Jan-2015 08-May-2020 2,813,760
USDDKK 2M 02-Jan-2015 08-May-2020 2,813,760 USDNOK 2M 02-Jan-2015 08-May-2020 2,813,760
USDDKK 3M 02-Jan-2015 08-May-2020 2,813,760 USDNOK 3M 02-Jan-2015 08-May-2020 2,813,760
USDDKK 6M 02-Jan-2015 08-May-2020 2,813,760 USDNOK 6M 02-Jan-2015 08-May-2020 2,813,760
USDDKK 9M 02-Jan-2015 08-May-2020 2,813,760 USDNOK 9M 02-Jan-2015 08-May-2020 2,813,760
USDDKK 1Y 02-Jan-2015 08-May-2020 2,813,760 USDNOK 1Y 02-Jan-2015 08-May-2020 2,813,760
USDDKK 2Y 02-Jan-2015 08-May-2020 2,813,760 USDNOK 2Y 02-Jan-2015 08-May-2020 2,813,760
USDHKD 1D 15-Jun-2017 08-May-2020 1,524,960 USDPHP 1D 29-Jun-2018 08-May-2020 979,200
USDHKD 1M 05-Jan-2015 08-May-2020 2,809,440 USDPHP 1M 08-Jun-2018 08-May-2020 1,009,440
USDHKD 2M 02-Jan-2015 08-May-2020 2,813,760 USDPHP 2M 29-Jun-2018 08-May-2020 979,200
USDHKD 3M 02-Jan-2015 08-May-2020 2,813,760 USDPHP 3M 29-Jun-2018 08-May-2020 979,200
USDHKD 6M 02-Jan-2015 08-May-2020 2,813,760 USDPHP 6M 29-Jun-2018 08-May-2020 979,200
USDHKD 9M 15-Jun-2017 08-May-2020 1,524,960 USDPHP 9M 29-Jun-2018 08-May-2020 979,200
USDHKD 1Y 02-Jan-2015 08-May-2020 2,813,760 USDPHP 1Y 08-Jun-2018 08-May-2020 1,009,440
USDHKD 2Y 02-Jan-2015 08-May-2020 2,813,760 USDPHP 2Y 08-Jun-2018 08-May-2020 1,009,440
USDHUF 1D 15-Jun-2017 08-May-2020 1,524,960 USDPLN 1D 15-Jun-2017 08-May-2020 1,524,960
USDHUF 1M 02-Jan-2015 08-May-2020 2,813,760 USDPLN 1M 02-Jan-2015 08-May-2020 2,813,760
USDHUF 2M 02-Jan-2015 08-May-2020 2,813,760 USDPLN 2M 02-Jan-2015 08-May-2020 2,813,760
USDHUF 3M 02-Jan-2015 08-May-2020 2,813,760 USDPLN 3M 02-Jan-2015 08-May-2020 2,813,760
USDHUF 6M 02-Jan-2015 08-May-2020 2,813,760 USDPLN 6M 02-Jan-2015 08-May-2020 2,813,760
USDHUF 9M 15-Jun-2017 08-May-2020 1,524,960 USDPLN 9M 15-Jun-2017 08-May-2020 1,524,960
USDHUF 1Y 02-Jan-2015 08-May-2020 2,813,760 USDPLN 1Y 02-Jan-2015 08-May-2020 2,813,760
USDHUF 2Y 02-Jan-2015 08-May-2020 2,813,760 USDPLN 2Y 02-Jan-2015 08-May-2020 2,813,760
USDIDR 1D 15-Jun-2017 08-May-2020 1,524,960 USDSEK 1D 15-Jun-2017 08-May-2020 1,524,960
USDIDR 1M 02-Jan-2015 08-May-2020 2,813,760 USDSEK 1M 02-Jan-2015 08-May-2020 2,813,760
USDIDR 2M 02-Jan-2015 08-May-2020 2,813,760 USDSEK 2M 02-Jan-2015 08-May-2020 2,813,760
USDIDR 3M 02-Jan-2015 08-May-2020 2,813,760 USDSEK 3M 02-Jan-2015 08-May-2020 2,813,760
USDIDR 6M 02-Jan-2015 08-May-2020 2,813,760 USDSEK 6M 02-Jan-2015 08-May-2020 2,813,760
USDIDR 9M 15-Jun-2017 08-May-2020 1,524,960 USDSEK 9M 02-Jan-2015 08-May-2020 2,813,760
USDIDR 1Y 02-Jan-2015 08-May-2020 2,813,760 USDSEK 1Y 02-Jan-2015 08-May-2020 2,813,760
USDIDR 2Y 15-Jun-2017 08-May-2020 1,524,960 USDSEK 2Y 15-Jun-2017 08-May-2020 1,524,960
USDILS 1D 15-Jun-2017 08-May-2020 1,524,960 USDSGD 1D 15-Jun-2017 08-May-2020 1,524,960
USDILS 1M 02-Jan-2015 08-May-2020 2,813,760 USDSGD 1M 02-Jan-2015 08-May-2020 2,813,760
USDILS 2M 02-Jan-2015 08-May-2020 2,813,760 USDSGD 2M 02-Jan-2015 08-May-2020 2,813,760
USDILS 3M 02-Jan-2015 08-May-2020 2,813,760 USDSGD 3M 02-Jan-2015 08-May-2020 2,813,760
USDILS 6M 02-Jan-2015 08-May-2020 2,813,760 USDSGD 6M 02-Jan-2015 08-May-2020 2,813,760
USDILS 9M 15-Jun-2017 08-May-2020 1,524,960 USDSGD 9M 15-Jun-2017 08-May-2020 1,524,960
USDILS 1Y 02-Jan-2015 08-May-2020 2,813,760 USDSGD 1Y 02-Jan-2015 08-May-2020 2,813,760
USDILS 2Y 02-Jan-2015 08-May-2020 2,813,760 USDSGD 2Y 02-Jan-2015 08-May-2020 2,813,760
USDINR 1D 19-Jun-2017 08-May-2020 1,519,200 USDTHB 1D 15-Jun-2017 08-May-2020 1,524,960
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Table 5.2: Option Ticker List

Currency Maturity StartDate EndDate Number of Quotes Currency Maturity StartDate EndDate Number of Quotes
USDINR 1M 02-Jan-2015 08-May-2020 2,813,760 USDTHB 1M 02-Jan-2015 08-May-2020 2,813,760
USDINR 2M 02-Jan-2015 08-May-2020 2,813,760 USDTHB 2M 02-Jan-2015 08-May-2020 2,813,760
USDINR 3M 02-Jan-2015 08-May-2020 2,813,760 USDTHB 3M 02-Jan-2015 08-May-2020 2,813,760
USDINR 6M 02-Jan-2015 08-May-2020 2,813,760 USDTHB 6M 02-Jan-2015 08-May-2020 2,813,760
USDINR 9M 15-Jun-2017 08-May-2020 1,524,960 USDTHB 9M 15-Jun-2017 08-May-2020 1,524,960
USDINR 1Y 15-Jun-2017 08-May-2020 1,524,960 USDTHB 1Y 02-Jan-2015 08-May-2020 2,813,760
USDINR 2Y 02-Jan-2015 08-May-2020 2,813,760 USDTHB 2Y 05-Jan-2015 08-May-2020 2,809,440
USDJPY 1D 15-Jun-2017 08-May-2020 1,524,960 USDTRY 1D 15-Jun-2017 08-May-2020 1,524,960
USDJPY 1M 02-Jan-2015 08-May-2020 2,813,760 USDTRY 1M 02-Jan-2015 08-May-2020 2,813,760
USDJPY 2M 02-Jan-2015 08-May-2020 2,813,760 USDTRY 2M 02-Jan-2015 08-May-2020 2,813,760
USDJPY 3M 02-Jan-2015 08-May-2020 2,813,760 USDTRY 3M 02-Jan-2015 08-May-2020 2,813,760
USDJPY 6M 02-Jan-2015 08-May-2020 2,813,760 USDTRY 6M 02-Jan-2015 08-May-2020 2,813,760
USDJPY 9M 15-Jun-2017 08-May-2020 1,524,960 USDTRY 9M 15-Jun-2017 08-May-2020 1,524,960
USDJPY 1Y 02-Jan-2015 08-May-2020 2,813,760 USDTRY 1Y 02-Jan-2015 08-May-2020 2,813,760
USDJPY 2Y 02-Jan-2015 08-May-2020 2,813,760 USDTRY 2Y 02-Jan-2015 08-May-2020 2,813,760
USDKRW 1D 15-Jun-2017 08-May-2020 1,524,960 USDTWD 1D 15-Jun-2017 08-May-2020 1,524,960
USDKRW 1M 02-Jan-2015 08-May-2020 2,813,760 USDTWD 1M 02-Jan-2015 08-May-2020 2,813,760
USDKRW 2M 02-Jan-2015 08-May-2020 2,813,760 USDTWD 2M 02-Jan-2015 08-May-2020 2,813,760
USDKRW 3M 02-Jan-2015 08-May-2020 2,813,760 USDTWD 3M 02-Jan-2015 08-May-2020 2,813,760
USDKRW 6M 02-Jan-2015 08-May-2020 2,813,760 USDTWD 6M 02-Jan-2015 08-May-2020 2,813,760
USDKRW 9M 15-Jun-2017 08-May-2020 1,524,960 USDTWD 9M 15-Jun-2017 08-May-2020 1,524,960
USDKRW 1Y 02-Jan-2015 08-May-2020 2,813,760 USDTWD 1Y 02-Jan-2015 08-May-2020 2,813,760
USDKRW 2Y 15-Jun-2017 08-May-2020 1,524,960 USDTWD 2Y 02-Jan-2015 08-May-2020 2,813,760
USDMXN 1D 15-Jun-2017 08-May-2020 1,524,960 USDZAR 1D 15-Jun-2017 08-May-2020 1,524,960
USDMXN 1M 02-Jan-2015 08-May-2020 2,813,760 USDZAR 1M 02-Jan-2015 08-May-2020 2,813,760
USDMXN 2M 02-Jan-2015 08-May-2020 2,813,760 USDZAR 2M 02-Jan-2015 08-May-2020 2,813,760
USDMXN 3M 02-Jan-2015 08-May-2020 2,813,760 USDZAR 3M 02-Jan-2015 08-May-2020 2,813,760
USDMXN 6M 02-Jan-2015 08-May-2020 2,813,760 USDZAR 6M 02-Jan-2015 08-May-2020 2,813,760
USDMXN 9M 15-Jun-2017 08-May-2020 1,524,960 USDZAR 9M 15-Jun-2017 08-May-2020 1,524,960
USDMXN 1Y 02-Jan-2015 08-May-2020 2,813,760 USDZAR 1Y 02-Jan-2015 08-May-2020 2,813,760
USDMXN 2Y 02-Jan-2015 08-May-2020 2,813,760 USDZAR 2Y 02-Jan-2015 08-May-2020 2,813,760
USDMYR 1D 15-Jun-2017 08-May-2020 1,524,960 XAGUSD 1D 15-Jun-2017 08-May-2020 1,524,960
USDMYR 1M 02-Jan-2015 08-May-2020 2,813,760 XAGUSD 1M 02-Jan-2015 08-May-2020 2,813,760
USDMYR 2M 02-Jan-2015 08-May-2020 2,813,760 XAGUSD 2M 02-Jan-2015 08-May-2020 2,813,760
USDMYR 3M 02-Jan-2015 08-May-2020 2,813,760 XAGUSD 3M 02-Jan-2015 08-May-2020 2,813,760
USDMYR 6M 02-Jan-2015 08-May-2020 2,813,760 XAGUSD 6M 02-Jan-2015 08-May-2020 2,813,760
USDMYR 9M 15-Jun-2017 08-May-2020 1,524,960 XAGUSD 9M 02-Jan-2015 08-May-2020 2,813,760
USDMYR 1Y 02-Jan-2015 08-May-2020 2,813,760 XAGUSD 1Y 02-Jan-2015 08-May-2020 2,813,760
USDMYR 2Y 15-Jun-2017 08-May-2020 1,524,960 XAGUSD 2Y 02-Jan-2015 08-May-2020 2,813,760
XAUUSD 1D 15-Jun-2017 08-May-2020 1,524,960 XAUUSD 6M 02-Jan-2015 08-May-2020 2,813,760
XAUUSD 1M 02-Jan-2015 08-May-2020 2,813,760 XAUUSD 9M 02-Jan-2015 08-May-2020 2,813,760
XAUUSD 2M 02-Jan-2015 08-May-2020 2,813,760 XAUUSD 1Y 02-Jan-2015 08-May-2020 2,813,760
XAUUSD 3M 02-Jan-2015 08-May-2020 2,813,760 XAUUSD 2Y 02-Jan-2015 08-May-2020 2,813,760
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Figure 5.1: Minimum eigenvalue versus market data: AUDCAD put10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Correlation Coefficient

M
in

im
u

m
E

ig
en

va
lu

e

AUDCADput10

3 currencies
4 currencies
5 currencies
6 currencies
7 currencies
8 currencies

162



Figure 5.2: Minimum eigenvalue versus market data: AUDCAD put25
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Figure 5.3: Minimum eigenvalue versus market data: AUDCAD call10
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Figure 5.4: Minimum eigenvalue versus market data: AUDCAD call25
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Figure 5.5: Minimum eigenvalue versus market data: CHFJPY atm
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Figure 5.6: Minimum eigenvalue versus market data: CHFJPY put10
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Figure 5.7: Minimum eigenvalue versus market data: CHFJPY put25

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Correlation Coefficient

M
in

im
u

m
E

ig
en

va
lu

e

CHFJPYput25

3 currencies
4 currencies
5 currencies
6 currencies
7 currencies
8 currencies

168



Figure 5.8: Minimum eigenvalue versus market data:CHFJPY call10
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Figure 5.9: Minimum eigenvalue versus market data: CHFJPY call25
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Figure 5.10: Minimum eigenvalue versus market data: EURGBP atm
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Figure 5.11: Minimum eigenvalue versus market data: EURGBP put10
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Figure 5.12: Minimum eigenvalue versus market data: EURGBP put25
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Figure 5.13: Minimum eigenvalue versus market data: EURGBP put10
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Figure 5.14: Minimum eigenvalue versus market data: EURGBP put25
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Table 5.3: DM statistic of AUD

AUD
Count Eigen GARCH Similar Max Min

p10 1M 11 0.8182 0.0909 0.0909 18.2294 -30.6205
p25 1M 11 0.9091 0.0909 0.0000 18.6378 -28.5866
atm 1M 11 0.9091 0.0909 0.0000 3.9040 -18.9252
c25 1M 11 0.9091 0.0909 0.0000 23.3820 -53.4192
c10 1M 11 0.9091 0.0909 0.0000 24.4042 -56.4495
p10 1Y 10 0.8000 0.2000 0.0000 33.0361 -19.0071
p25 1Y 10 0.8000 0.2000 0.0000 29.6469 -16.3134
atm 1Y 10 0.9000 0.1000 0.0000 22.1387 -16.9485
c25 1Y 10 0.4000 0.6000 0.0000 21.6595 -9.6022
c10 1Y 10 0.4000 0.6000 0.0000 23.1520 -9.5685
p10 2M 11 0.8182 0.1818 0.0000 12.3093 -34.6361
p25 2M 11 0.9091 0.0000 0.0909 1.7227 -31.5431
atm 2M 11 0.9091 0.0909 0.0000 6.0789 -20.9103
c25 2M 11 1.0000 0.0000 0.0000 -22.0452 -60.1846
c10 2M 11 1.0000 0.0000 0.0000 -21.9920 -63.3258
p10 2Y 10 0.8000 0.2000 0.0000 50.8070 -23.5446
p25 2Y 10 0.8000 0.2000 0.0000 48.4055 -33.4990
atm 2Y 10 0.9000 0.1000 0.0000 38.5949 -23.9586
c25 2Y 10 0.9000 0.1000 0.0000 10.2190 -64.2200
c10 2Y 10 0.9000 0.1000 0.0000 23.5116 -45.6603
p10 3M 10 0.8000 0.2000 0.0000 42.3141 -35.4867
p25 3M 10 0.8000 0.2000 0.0000 32.7108 -36.4696
atm 3M 10 0.9000 0.1000 0.0000 21.3948 -21.6456
c25 3M 10 0.9000 0.1000 0.0000 3.7533 -60.1739
c10 3M 10 0.9000 0.1000 0.0000 10.3187 -66.9004
p10 6M 10 0.8000 0.1000 0.1000 62.2352 -34.4791
p25 6M 10 0.8000 0.2000 0.0000 50.3425 -44.5909
atm 6M 10 0.9000 0.1000 0.0000 23.6354 -22.4302
c25 6M 10 0.9000 0.1000 0.0000 9.6663 -65.1257
c10 6M 10 0.9000 0.1000 0.0000 17.0660 -70.4651

Notes: This table presents the Diebold-Mariano test summary for eigen model and GARCH model
performance in European countries. Deltas and Maturities are separated. ’Count’ column report
amount of corresponding delta/maturity. The ’Eigen’ column reports the ratio of eigen model out-
performing GARCH model in DM test. The ’GARCH’ column reports the ratio of GARCH model
outperforming eigen model in DM tests. The ’Similar’ column reports the ratio of two models do
not present significant difference. The ’Max’ column provides max Diebold-Mariano statistic for
corresponding strategy. The ’Min’ column provides min Diebold-Mariano statistic for corresponding
strategy.
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Table 5.4: DM statistic of CAD

CAD
Count Eigen GARCH Similar Max Min

p10 1M 10 0.9000 0.1000 0.0000 18.2294 -29.5053
p25 1M 10 0.9000 0.1000 0.0000 18.6378 -28.8176
atm 1M 10 1.0000 0.0000 0.0000 -2.8731 -19.3781
c25 1M 10 0.9000 0.1000 0.0000 23.3820 -69.4086
c10 1M 10 0.9000 0.1000 0.0000 24.4042 -75.2249
p10 1Y 9 0.7778 0.2222 0.0000 9.1251 -34.2080
p25 1Y 9 0.7778 0.1111 0.1111 3.8784 -32.6344
atm 1Y 9 1.0000 0.0000 0.0000 -3.1629 -24.0592
c25 1Y 9 0.0000 0.8889 0.1111 22.7859 -1.1500
c10 1Y 9 0.0000 0.8889 0.1111 31.9683 -0.5686
p10 2M 10 0.9000 0.1000 0.0000 3.1780 -33.3516
p25 2M 10 0.9000 0.0000 0.1000 1.7227 -30.3624
atm 2M 10 1.0000 0.0000 0.0000 -7.1119 -22.2537
c25 2M 10 1.0000 0.0000 0.0000 -29.8788 -71.0102
c10 2M 10 1.0000 0.0000 0.0000 -28.2558 -80.1015
p10 2Y 9 0.8889 0.1111 0.0000 9.9381 -53.7598
p25 2Y 9 0.8889 0.1111 0.0000 6.5557 -42.9838
atm 2Y 9 1.0000 0.0000 0.0000 -4.3726 -22.6098
c25 2Y 9 1.0000 0.0000 0.0000 -23.3123 -107.7967
c10 2Y 9 1.0000 0.0000 0.0000 -14.1693 -135.3757
p10 3M 9 0.8889 0.1111 0.0000 3.6505 -33.0891
p25 3M 9 0.8889 0.1111 0.0000 3.0891 -34.1116
atm 3M 9 1.0000 0.0000 0.0000 -6.2252 -23.2795
c25 3M 9 1.0000 0.0000 0.0000 -30.1983 -73.1755
c10 3M 9 1.0000 0.0000 0.0000 -24.6828 -83.7153
p10 6M 9 0.8889 0.0000 0.1111 0.2449 -36.1528
p25 6M 9 0.8889 0.1111 0.0000 3.0525 -37.9996
atm 6M 9 1.0000 0.0000 0.0000 -4.6976 -24.0055
c25 6M 9 1.0000 0.0000 0.0000 -31.0399 -76.1640
c10 6M 9 1.0000 0.0000 0.0000 -24.1586 -88.4647
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Table 5.5: DM statistic of CHF

CHF
Count Eigen GARCH Similar Max Min

p10 1M 15 0.9333 0.0667 0.0000 6.7314 -29.1511
p25 1M 15 0.9333 0.0667 0.0000 4.4995 -21.7177
atm 1M 15 1.0000 0.0000 0.0000 -11.7295 -33.9460
c25 1M 15 1.0000 0.0000 0.0000 -4.1788 -52.4873
c10 1M 15 1.0000 0.0000 0.0000 -4.2040 -44.7699
p10 1Y 14 0.6429 0.2857 0.0714 13.0086 -296.1665
p25 1Y 14 0.8571 0.0714 0.0714 3.9915 -224.7012
atm 1Y 14 1.0000 0.0000 0.0000 -11.1723 -6884.5212
c25 1Y 14 0.5714 0.4286 0.0000 204.6191 -229.7451
c10 1Y 14 0.3571 0.5714 0.0714 190.4506 -318.7011
p10 2M 15 0.9333 0.0667 0.0000 4.7315 -27.7732
p25 2M 15 0.9333 0.0667 0.0000 3.7557 -21.5918
atm 2M 15 1.0000 0.0000 0.0000 -11.2113 -34.4652
c25 2M 15 1.0000 0.0000 0.0000 -14.6171 -53.1467
c10 2M 15 1.0000 0.0000 0.0000 -14.5599 -55.7931
p10 2Y 13 0.5385 0.2308 0.2308 7.0177 -21.5834
p25 2Y 13 0.9231 0.0769 0.0000 2.8713 -25.1596
atm 2Y 13 1.0000 0.0000 0.0000 -9.6281 -24.4899
c25 2Y 13 1.0000 0.0000 0.0000 -14.9733 -83.5110
c10 2Y 13 1.0000 0.0000 0.0000 -7.4305 -85.5667
p10 3M 13 0.9231 0.0769 0.0000 5.0725 -28.4463
p25 3M 13 0.9231 0.0769 0.0000 3.9950 -21.9804
atm 3M 13 1.0000 0.0000 0.0000 -10.7450 -35.2838
c25 3M 13 1.0000 0.0000 0.0000 -15.2078 -46.7379
c10 3M 13 1.0000 0.0000 0.0000 -15.1203 -61.5365
p10 6M 13 0.9231 0.0769 0.0000 4.5352 -274.8602
p25 6M 13 0.9231 0.0769 0.0000 5.1170 -211.5120
atm 6M 13 1.0000 0.0000 0.0000 -11.6008 -3848.0014
c25 6M 13 1.0000 0.0000 0.0000 -15.6066 -202.3363
c10 6M 13 1.0000 0.0000 0.0000 -15.6579 -293.6030

178



Table 5.6: DM statistic of DKK

DKK
Count Eigen GARCH Similar Max Min

p10 1M 6 0.6667 0.3333 0.0000 6.7314 -29.5053
p25 1M 6 0.6667 0.3333 0.0000 4.4995 -28.8176
atm 1M 6 0.8333 0.1667 0.0000 2.0347 -14.7638
c25 1M 6 1.0000 0.0000 0.0000 -4.1788 -69.4086
c10 1M 6 1.0000 0.0000 0.0000 -4.2040 -75.2249
p10 1Y 5 0.8000 0.2000 0.0000 4.3500 -34.2080
p25 1Y 5 0.6000 0.2000 0.2000 3.9915 -29.2354
atm 1Y 5 0.8000 0.0000 0.2000 -1.7943 -27.1125
c25 1Y 5 0.0000 1.0000 0.0000 226.3842 15.0806
c10 1Y 5 0.0000 1.0000 0.0000 228.6671 18.2777
p10 2M 6 0.8333 0.1667 0.0000 4.7315 -36.4356
p25 2M 6 0.8333 0.1667 0.0000 3.7557 -32.7695
atm 2M 6 0.8333 0.0000 0.1667 1.4991 -16.8310
c25 2M 6 1.0000 0.0000 0.0000 -16.8131 -104.9686
c10 2M 6 1.0000 0.0000 0.0000 -21.6443 -103.0454
p10 2Y 4 0.7500 0.2500 0.0000 6.0771 -53.7598
p25 2Y 4 0.7500 0.2500 0.0000 2.8713 -42.3919
atm 2Y 4 0.7500 0.2500 0.0000 17.6115 -10.7207
c25 2Y 4 1.0000 0.0000 0.0000 -43.7092 -118.6174
c10 2Y 4 1.0000 0.0000 0.0000 -45.6603 -135.3757
p10 3M 5 0.8000 0.2000 0.0000 5.0725 -33.8814
p25 3M 5 0.8000 0.2000 0.0000 3.9950 -30.7564
atm 3M 5 0.8000 0.0000 0.2000 0.3895 -18.9971
c25 3M 5 1.0000 0.0000 0.0000 -24.5892 -108.0858
c10 3M 5 1.0000 0.0000 0.0000 -32.4429 -99.8500
p10 6M 5 0.8000 0.2000 0.0000 4.5352 -32.8712
p25 6M 5 0.8000 0.2000 0.0000 5.1170 -32.1848
atm 6M 5 0.8000 0.0000 0.2000 -1.3130 -23.0889
c25 6M 5 1.0000 0.0000 0.0000 -37.2711 -117.5965
c10 6M 5 1.0000 0.0000 0.0000 -47.1952 -119.7842
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Table 5.7: DM statistic of EUR

EUR
Count Eigen GARCH Similar Max Min

p10 1M 14 0.7857 0.2143 0.0000 16.5219 -26.8282
p25 1M 14 0.7857 0.2143 0.0000 12.3349 -31.6937
atm 1M 14 0.9286 0.0714 0.0000 8.9472 -39.3868
c25 1M 14 0.9286 0.0714 0.0000 7.7845 -48.4671
c10 1M 14 0.8571 0.0714 0.0714 10.3045 -43.9540
p10 1Y 13 0.6923 0.3077 0.0000 25.4486 -227.6371
p25 1Y 13 0.8462 0.0769 0.0769 5.0622 -236.1357
atm 1Y 13 1.0000 0.0000 0.0000 -3.1629 -8390.2853
c25 1Y 13 0.5385 0.4615 0.0000 27.6876 -239.4677
c10 1Y 13 0.5385 0.4615 0.0000 21.7169 -285.0797
p10 2M 14 0.7857 0.2143 0.0000 16.5498 -29.5885
p25 2M 14 0.8571 0.1429 0.0000 10.0830 -38.0599
atm 2M 14 0.9286 0.0714 0.0000 3.9961 -43.4816
c25 2M 14 0.9286 0.0714 0.0000 2.9341 -59.7588
c10 2M 14 0.8571 0.0714 0.0714 7.5845 -54.8172
p10 2Y 13 0.5385 0.3846 0.0769 21.4690 -238.3610
p25 2Y 13 0.8462 0.1538 0.0000 10.0274 -227.9619
atm 2Y 13 0.8462 0.0769 0.0769 5.6602 -6680.2448
c25 2Y 13 0.9231 0.0000 0.0769 -1.9151 -137.3422
c10 2Y 13 1.0000 0.0000 0.0000 -4.3108 -191.2037
p10 3M 13 0.6923 0.3077 0.0000 17.3839 -190.7252
p25 3M 13 0.8462 0.0769 0.0769 8.2441 -211.4651
atm 3M 13 0.9231 0.0000 0.0769 1.1868 -2552.0749
c25 3M 13 0.9231 0.0000 0.0769 -0.5854 -210.2047
c10 3M 13 0.9231 0.0769 0.0000 5.2464 -245.7514
p10 6M 13 0.6923 0.3077 0.0000 17.6768 -192.6914
p25 6M 13 0.8462 0.0769 0.0769 8.4480 -223.1722
atm 6M 13 0.9231 0.0769 0.0000 1.9788 -4502.3086
c25 6M 13 0.9231 0.0000 0.0769 -1.4065 -221.9277
c10 6M 13 0.9231 0.0769 0.0000 4.4637 -266.8076
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Table 5.8: DM statistic of HKD

HKD
Count Eigen GARCH Similar Max Min

p10 1M 7 0.8571 0.0000 0.1429 -0.3379 -28.9432
p25 1M 7 0.8571 0.1429 0.0000 2.9423 -31.6937
atm 1M 7 0.8571 0.1429 0.0000 6.2366 -18.5061
c25 1M 7 1.0000 0.0000 0.0000 -19.7004 -67.3236
c10 1M 7 1.0000 0.0000 0.0000 -20.5042 -51.6861
p10 1Y 5 1.0000 0.0000 0.0000 -5.1039 -17.6337
p25 1Y 5 1.0000 0.0000 0.0000 -4.2648 -18.4343
atm 1Y 5 0.8000 0.2000 0.0000 27.6925 -26.4096
c25 1Y 5 1.0000 0.0000 0.0000 -9.3385 -49.6491
c10 1Y 5 0.8000 0.0000 0.2000 -1.2495 -29.5102
p10 2M 7 1.0000 0.0000 0.0000 -2.8197 -29.5885
p25 2M 7 0.8571 0.0000 0.1429 0.9947 -38.0599
atm 2M 7 0.8571 0.1429 0.0000 6.2392 -19.8409
c25 2M 7 1.0000 0.0000 0.0000 -18.7184 -55.0104
c10 2M 7 1.0000 0.0000 0.0000 -18.6320 -63.3258
p10 2Y 5 0.8000 0.2000 0.0000 7.0177 -27.2766
p25 2Y 5 1.0000 0.0000 0.0000 -10.4007 -18.5741
atm 2Y 5 0.8000 0.2000 0.0000 24.3935 -21.8503
c25 2Y 5 1.0000 0.0000 0.0000 -12.5702 -83.5110
c10 2Y 5 1.0000 0.0000 0.0000 -13.2483 -38.2942
p10 3M 4 1.0000 0.0000 0.0000 -13.1922 -31.0737
p25 3M 4 1.0000 0.0000 0.0000 -12.5004 -35.1699
atm 3M 4 1.0000 0.0000 0.0000 -6.5738 -25.8603
c25 3M 4 1.0000 0.0000 0.0000 -11.6490 -51.8846
c10 3M 4 1.0000 0.0000 0.0000 -11.1476 -66.9004
p10 6M 4 1.0000 0.0000 0.0000 -16.0991 -34.4791
p25 6M 4 1.0000 0.0000 0.0000 -14.0986 -38.5545
atm 6M 4 1.0000 0.0000 0.0000 -7.5398 -40.2538
c25 6M 4 1.0000 0.0000 0.0000 -14.3382 -65.1257
c10 6M 4 1.0000 0.0000 0.0000 -12.7448 -67.6831
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Table 5.9: DM statistic of HUF

HUF
Count Eigen GARCH Similar Max Min

p10 1M 2 0.5000 0.5000 0.0000 16.5219 -13.0171
p25 1M 2 0.5000 0.5000 0.0000 5.0221 -12.7034
atm 1M 2 1.0000 0.0000 0.0000 -4.6390 -14.9916
c25 1M 2 1.0000 0.0000 0.0000 -3.6609 -15.1998
c10 1M 2 0.5000 0.0000 0.5000 -0.2666 -14.8773
p10 1Y 2 0.0000 1.0000 0.0000 25.4486 13.0086
p25 1Y 2 1.0000 0.0000 0.0000 -6.6376 -16.1851
atm 1Y 2 1.0000 0.0000 0.0000 -10.0836 -19.1509
c25 1Y 2 1.0000 0.0000 0.0000 -6.3959 -34.8987
c10 1Y 2 0.0000 1.0000 0.0000 19.7571 18.4245
p10 2M 2 0.5000 0.5000 0.0000 15.2330 -13.5269
p25 2M 2 0.5000 0.5000 0.0000 2.6734 -13.0620
atm 2M 2 1.0000 0.0000 0.0000 -7.8526 -15.6161
c25 2M 2 1.0000 0.0000 0.0000 -4.9789 -14.6442
c10 2M 2 0.5000 0.0000 0.5000 -1.5705 -14.5599
p10 2Y 2 0.5000 0.5000 0.0000 21.4690 -12.8732
p25 2Y 2 1.0000 0.0000 0.0000 -2.8934 -15.5541
atm 2Y 2 1.0000 0.0000 0.0000 -12.9173 -24.4899
c25 2Y 2 1.0000 0.0000 0.0000 -16.5330 -31.5384
c10 2Y 2 1.0000 0.0000 0.0000 -7.4305 -21.7613
p10 3M 2 0.5000 0.5000 0.0000 14.9605 -14.9184
p25 3M 2 0.5000 0.0000 0.5000 1.0016 -13.9023
atm 3M 2 1.0000 0.0000 0.0000 -9.9193 -17.1983
c25 3M 2 1.0000 0.0000 0.0000 -7.1963 -15.2078
c10 3M 2 1.0000 0.0000 0.0000 -4.5516 -15.1203
p10 6M 2 0.5000 0.5000 0.0000 15.2650 -15.7124
p25 6M 2 0.5000 0.0000 0.5000 -1.5073 -14.6123
atm 6M 2 1.0000 0.0000 0.0000 -12.4708 -19.8917
c25 6M 2 1.0000 0.0000 0.0000 -13.8001 -15.6892
c10 6M 2 1.0000 0.0000 0.0000 -13.4655 -15.6579
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Table 5.10: DM statistic of JPY

JPY
Count Eigen GARCH Similar Max Min

p10 1M 10 1.0000 0.0000 0.0000 -9.4526 -28.9432
p25 1M 10 1.0000 0.0000 0.0000 -9.8135 -27.7085
atm 1M 10 1.0000 0.0000 0.0000 -10.4868 -16.2791
c25 1M 10 1.0000 0.0000 0.0000 -23.4524 -56.2945
c10 1M 10 1.0000 0.0000 0.0000 -32.0813 -54.3505
p10 1Y 8 1.0000 0.0000 0.0000 -5.5215 -33.1486
p25 1Y 8 1.0000 0.0000 0.0000 -8.0022 -39.4705
atm 1Y 8 1.0000 0.0000 0.0000 -11.3983 -24.2970
c25 1Y 8 0.2500 0.7500 0.0000 17.2953 -43.2870
c10 1Y 8 0.2500 0.7500 0.0000 19.4179 -65.4266
p10 2M 10 1.0000 0.0000 0.0000 -11.3351 -28.2756
p25 2M 10 1.0000 0.0000 0.0000 -13.0823 -33.1929
atm 2M 10 1.0000 0.0000 0.0000 -13.4549 -20.0938
c25 2M 10 1.0000 0.0000 0.0000 -29.3425 -59.7588
c10 2M 10 1.0000 0.0000 0.0000 -37.7449 -76.1977
p10 2Y 8 0.8750 0.0000 0.1250 -0.0010 -30.7686
p25 2Y 8 1.0000 0.0000 0.0000 -9.9269 -45.7838
atm 2Y 8 1.0000 0.0000 0.0000 -14.3755 -22.2126
c25 2Y 8 1.0000 0.0000 0.0000 -38.7292 -103.4898
c10 2Y 8 1.0000 0.0000 0.0000 -38.8979 -127.9406
p10 3M 8 1.0000 0.0000 0.0000 -10.9305 -28.3817
p25 3M 8 1.0000 0.0000 0.0000 -13.6435 -22.4003
atm 3M 8 1.0000 0.0000 0.0000 -15.3642 -22.5637
c25 3M 8 1.0000 0.0000 0.0000 -31.0754 -72.6189
c10 3M 8 1.0000 0.0000 0.0000 -45.8785 -82.6625
p10 6M 8 1.0000 0.0000 0.0000 -7.6812 -36.0108
p25 6M 8 1.0000 0.0000 0.0000 -13.8275 -29.2672
atm 6M 8 1.0000 0.0000 0.0000 -17.0100 -24.2879
c25 6M 8 1.0000 0.0000 0.0000 -33.9206 -91.5836
c10 6M 8 1.0000 0.0000 0.0000 -53.6227 -107.4420
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Table 5.11: DM statistic of MXN

MXN
Count Eigen GARCH Similar Max Min

p10 1M 2 1.0000 0.0000 0.0000 -13.6784 -17.5267
p25 1M 2 1.0000 0.0000 0.0000 -14.3721 -17.5698
atm 1M 2 1.0000 0.0000 0.0000 -9.5718 -17.8434
c25 1M 2 1.0000 0.0000 0.0000 -27.1090 -52.4873
c10 1M 2 1.0000 0.0000 0.0000 -26.0623 -35.7629
p10 1Y 2 1.0000 0.0000 0.0000 -14.5573 -22.4152
p25 1Y 2 1.0000 0.0000 0.0000 -16.4942 -26.0675
atm 1Y 2 1.0000 0.0000 0.0000 -10.1562 -21.6513
c25 1Y 2 1.0000 0.0000 0.0000 -29.8439 -31.4369
c10 1Y 2 1.0000 0.0000 0.0000 -29.3032 -33.1386
p10 2M 2 1.0000 0.0000 0.0000 -13.3032 -18.0575
p25 2M 2 1.0000 0.0000 0.0000 -13.9831 -18.8394
atm 2M 2 1.0000 0.0000 0.0000 -12.0346 -19.7571
c25 2M 2 1.0000 0.0000 0.0000 -27.2047 -53.1467
c10 2M 2 1.0000 0.0000 0.0000 -26.1917 -33.6412
p10 2Y 2 1.0000 0.0000 0.0000 -16.3072 -26.6507
p25 2Y 2 1.0000 0.0000 0.0000 -19.6141 -28.4553
atm 2Y 2 1.0000 0.0000 0.0000 -13.5995 -17.8957
c25 2Y 2 1.0000 0.0000 0.0000 -29.4403 -30.0264
c10 2Y 2 1.0000 0.0000 0.0000 -28.9665 -32.7945
p10 3M 2 1.0000 0.0000 0.0000 -13.8239 -17.5336
p25 3M 2 1.0000 0.0000 0.0000 -14.4460 -18.2663
atm 3M 2 1.0000 0.0000 0.0000 -10.7877 -20.9295
c25 3M 2 1.0000 0.0000 0.0000 -26.9537 -46.7379
c10 3M 2 1.0000 0.0000 0.0000 -26.9691 -31.4229
p10 6M 2 1.0000 0.0000 0.0000 -14.6735 -18.1488
p25 6M 2 1.0000 0.0000 0.0000 -15.7407 -19.9520
atm 6M 2 1.0000 0.0000 0.0000 -10.2745 -25.7358
c25 6M 2 1.0000 0.0000 0.0000 -28.5884 -32.5174
c10 6M 2 1.0000 0.0000 0.0000 -28.3694 -31.0709
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Table 5.12: DM statistic of NOK

NOK
Count Eigen GARCH Similar Max Min

p10 1M 9 1.0000 0.0000 0.0000 -3.4071 -26.9926
p25 1M 9 1.0000 0.0000 0.0000 -12.0444 -26.3993
atm 1M 9 1.0000 0.0000 0.0000 -10.1365 -20.0418
c25 1M 9 1.0000 0.0000 0.0000 -23.8210 -50.9365
c10 1M 9 1.0000 0.0000 0.0000 -23.2784 -53.7121
p10 1Y 8 0.5000 0.3750 0.1250 5.0604 -18.8637
p25 1Y 8 0.6250 0.0000 0.3750 0.7239 -20.2117
atm 1Y 8 1.0000 0.0000 0.0000 -4.5367 -27.1125
c25 1Y 8 0.0000 1.0000 0.0000 129.1794 12.9341
c10 1Y 8 0.0000 1.0000 0.0000 127.9944 9.6072
p10 2M 9 1.0000 0.0000 0.0000 -8.9402 -36.4356
p25 2M 9 1.0000 0.0000 0.0000 -14.4256 -32.7695
atm 2M 9 1.0000 0.0000 0.0000 -11.5879 -25.2440
c25 2M 9 1.0000 0.0000 0.0000 -31.7832 -71.6719
c10 2M 9 1.0000 0.0000 0.0000 -29.6320 -72.6100
p10 2Y 7 0.5714 0.1429 0.2857 4.8741 -30.7686
p25 2Y 7 1.0000 0.0000 0.0000 -12.7793 -40.6065
atm 2Y 7 1.0000 0.0000 0.0000 -11.6764 -37.9599
c25 2Y 7 1.0000 0.0000 0.0000 -29.2050 -91.5547
c10 2Y 7 1.0000 0.0000 0.0000 -26.6438 -99.6952
p10 3M 8 1.0000 0.0000 0.0000 -11.7346 -33.8814
p25 3M 8 1.0000 0.0000 0.0000 -14.8797 -32.7944
atm 3M 8 1.0000 0.0000 0.0000 -11.9942 -27.9034
c25 3M 8 1.0000 0.0000 0.0000 -31.2752 -69.2927
c10 3M 8 1.0000 0.0000 0.0000 -28.9112 -81.4955
p10 6M 8 1.0000 0.0000 0.0000 -7.1495 -32.1492
p25 6M 8 1.0000 0.0000 0.0000 -14.9140 -35.4839
atm 6M 8 1.0000 0.0000 0.0000 -11.7536 -31.6372
c25 6M 8 1.0000 0.0000 0.0000 -30.9521 -70.3608
c10 6M 8 1.0000 0.0000 0.0000 -28.2652 -102.3565
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Table 5.13: DM statistic of NZD

NZD
Count Eigen GARCH Similar Max Min

p10 1M 10 0.8000 0.0000 0.2000 1.1893 -25.4062
p25 1M 10 0.9000 0.1000 0.0000 2.9423 -24.4555
atm 1M 10 0.8000 0.2000 0.0000 6.2366 -14.0262
c25 1M 10 1.0000 0.0000 0.0000 -19.6580 -50.9812
c10 1M 10 1.0000 0.0000 0.0000 -20.5042 -48.4528
p10 1Y 9 0.7778 0.2222 0.0000 33.0361 -15.9456
p25 1Y 9 0.7778 0.1111 0.1111 29.6469 -21.8507
atm 1Y 9 0.7778 0.2222 0.0000 27.6925 -18.8978
c25 1Y 9 0.2222 0.7778 0.0000 22.7859 -24.5429
c10 1Y 9 0.3333 0.6667 0.0000 25.2141 -34.0439
p10 2M 10 0.8000 0.1000 0.1000 12.3093 -33.3516
p25 2M 10 0.9000 0.0000 0.1000 0.9947 -30.3624
atm 2M 10 0.8000 0.2000 0.0000 6.2392 -17.2506
c25 2M 10 1.0000 0.0000 0.0000 -23.2996 -59.0178
c10 2M 10 1.0000 0.0000 0.0000 -3.3392 -51.5189
p10 2Y 9 0.7778 0.2222 0.0000 50.8070 -29.6234
p25 2Y 9 0.8889 0.1111 0.0000 48.4055 -42.9838
atm 2Y 9 0.7778 0.2222 0.0000 38.5949 -19.0021
c25 2Y 9 0.8889 0.1111 0.0000 10.2190 -67.7749
c10 2Y 9 0.8889 0.1111 0.0000 23.5116 -101.8494
p10 3M 9 0.7778 0.2222 0.0000 42.3141 -33.0891
p25 3M 9 0.8889 0.1111 0.0000 32.7108 -31.6674
atm 3M 9 0.8889 0.1111 0.0000 21.3948 -19.3330
c25 3M 9 0.8889 0.1111 0.0000 3.7533 -58.4228
c10 3M 9 0.8889 0.1111 0.0000 10.3187 -60.5544
p10 6M 9 0.7778 0.2222 0.0000 62.2352 -36.2897
p25 6M 9 0.8889 0.1111 0.0000 50.3425 -37.9452
atm 6M 9 0.8889 0.1111 0.0000 23.6354 -19.7670
c25 6M 9 0.8889 0.1111 0.0000 9.6663 -69.0351
c10 6M 9 0.8889 0.1111 0.0000 17.0660 -68.5679
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Table 5.14: DM statistic of PLN

PLN
Count Eigen GARCH Similar Max Min

p10 1M 2 0.5000 0.5000 0.0000 15.7237 -13.4000
p25 1M 2 0.5000 0.5000 0.0000 12.3349 -13.2524
atm 1M 2 0.5000 0.5000 0.0000 8.9472 -15.3271
c25 1M 2 0.5000 0.5000 0.0000 7.7845 -14.0573
c10 1M 2 0.5000 0.5000 0.0000 10.3045 -15.1918
p10 1Y 2 0.5000 0.5000 0.0000 13.6135 -19.4848
p25 1Y 2 1.0000 0.0000 0.0000 -5.5587 -5.5949
atm 1Y 2 1.0000 0.0000 0.0000 -10.5875 -16.3335
c25 1Y 2 1.0000 0.0000 0.0000 -3.9474 -31.6957
c10 1Y 2 0.5000 0.0000 0.5000 -0.4845 -19.1670
p10 2M 2 0.5000 0.5000 0.0000 16.5498 -13.7867
p25 2M 2 0.5000 0.5000 0.0000 10.0830 -13.6357
atm 2M 2 0.5000 0.5000 0.0000 3.9961 -16.0216
c25 2M 2 0.5000 0.5000 0.0000 2.9341 -14.6171
c10 2M 2 0.5000 0.5000 0.0000 7.5845 -16.6015
p10 2Y 2 0.5000 0.5000 0.0000 15.7199 -15.8174
p25 2Y 2 0.5000 0.5000 0.0000 10.0274 -15.6955
atm 2Y 2 0.5000 0.5000 0.0000 5.6602 -19.8080
c25 2Y 2 0.5000 0.0000 0.5000 -1.9151 -14.9733
c10 2Y 2 1.0000 0.0000 0.0000 -4.3108 -11.9215
p10 3M 2 0.5000 0.5000 0.0000 17.3839 -14.4341
p25 3M 2 0.5000 0.5000 0.0000 8.2441 -14.0630
atm 3M 2 0.5000 0.0000 0.5000 1.1868 -17.0884
c25 3M 2 0.5000 0.0000 0.5000 -0.5854 -15.4240
c10 3M 2 0.5000 0.5000 0.0000 5.2464 -18.6088
p10 6M 2 0.5000 0.5000 0.0000 17.6768 -15.3223
p25 6M 2 0.5000 0.5000 0.0000 8.4480 -14.7586
atm 6M 2 0.5000 0.5000 0.0000 1.9788 -18.4838
c25 6M 2 0.5000 0.0000 0.5000 -1.4065 -15.6066
c10 6M 2 0.5000 0.5000 0.0000 4.4637 -17.7700
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Table 5.15: DM statistic of SEK

SEK
Count Eigen GARCH Similar Max Min

p10 1M 9 0.7778 0.2222 0.0000 8.3220 -30.6205
p25 1M 9 0.7778 0.2222 0.0000 3.7249 -28.5866
atm 1M 9 0.8889 0.1111 0.0000 2.0347 -18.2102
c25 1M 9 1.0000 0.0000 0.0000 -8.1051 -53.4192
c10 1M 9 1.0000 0.0000 0.0000 -7.9267 -54.3505
p10 1Y 8 0.6250 0.3750 0.0000 13.2385 -19.0071
p25 1Y 8 0.6250 0.1250 0.2500 5.0622 -21.8497
atm 1Y 8 0.8750 0.0000 0.1250 -1.7943 -27.7167
c25 1Y 8 0.0000 1.0000 0.0000 226.3842 8.4763
c10 1Y 8 0.0000 1.0000 0.0000 228.6671 9.3257
p10 2M 9 0.8889 0.1111 0.0000 3.6946 -34.6361
p25 2M 9 1.0000 0.0000 0.0000 -12.6023 -32.5446
atm 2M 9 0.8889 0.0000 0.1111 1.4991 -21.2803
c25 2M 9 1.0000 0.0000 0.0000 -22.4779 -104.9686
c10 2M 9 1.0000 0.0000 0.0000 -22.0311 -103.0454
p10 2Y 8 0.6250 0.2500 0.1250 13.4423 -25.1645
p25 2Y 8 0.8750 0.1250 0.0000 4.3776 -40.6065
atm 2Y 8 0.7500 0.1250 0.1250 17.6115 -24.3830
c25 2Y 8 1.0000 0.0000 0.0000 -27.6203 -118.6174
c10 2Y 8 1.0000 0.0000 0.0000 -27.3842 -127.9406
p10 3M 8 0.8750 0.1250 0.0000 8.0535 -35.4867
p25 3M 8 1.0000 0.0000 0.0000 -12.7961 -36.4696
atm 3M 8 0.8750 0.0000 0.1250 0.3895 -25.0295
c25 3M 8 1.0000 0.0000 0.0000 -22.2276 -108.0858
c10 3M 8 1.0000 0.0000 0.0000 -22.8286 -99.8500
p10 6M 8 0.8750 0.1250 0.0000 10.5291 -32.2403
p25 6M 8 1.0000 0.0000 0.0000 -12.7382 -44.5909
atm 6M 8 0.8750 0.0000 0.1250 -1.3130 -28.1438
c25 6M 8 1.0000 0.0000 0.0000 -23.0572 -117.5965
c10 6M 8 1.0000 0.0000 0.0000 -26.2164 -119.7842
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Table 5.16: DM statistic of SGD

SGD
Count Eigen GARCH Similar Max Min

p10 1M 8 1.0000 0.0000 0.0000 -10.2778 -21.3421
p25 1M 8 1.0000 0.0000 0.0000 -12.8229 -31.5667
atm 1M 8 1.0000 0.0000 0.0000 -9.6956 -18.5061
c25 1M 8 1.0000 0.0000 0.0000 -13.4663 -67.3236
c10 1M 8 1.0000 0.0000 0.0000 -13.5583 -49.9229
p10 1Y 7 1.0000 0.0000 0.0000 -5.1039 -33.2334
p25 1Y 7 1.0000 0.0000 0.0000 -10.3568 -39.4705
atm 1Y 7 1.0000 0.0000 0.0000 -13.2807 -26.4096
c25 1Y 7 0.5714 0.2857 0.1429 8.4109 -43.2870
c10 1Y 7 0.2857 0.4286 0.2857 9.4285 -65.4266
p10 2M 8 0.8750 0.0000 0.1250 -1.3621 -29.1019
p25 2M 8 1.0000 0.0000 0.0000 -11.9645 -31.4412
atm 2M 8 1.0000 0.0000 0.0000 -12.9880 -21.2558
c25 2M 8 1.0000 0.0000 0.0000 -15.1804 -55.8784
c10 2M 8 1.0000 0.0000 0.0000 -3.3392 -61.3744
p10 2Y 7 1.0000 0.0000 0.0000 -4.2243 -32.6278
p25 2Y 7 1.0000 0.0000 0.0000 -13.7023 -42.4682
atm 2Y 7 1.0000 0.0000 0.0000 -10.4288 -21.9973
c25 2Y 7 1.0000 0.0000 0.0000 -12.5702 -103.4898
c10 2Y 7 1.0000 0.0000 0.0000 -13.2483 -74.8874
p10 3M 7 1.0000 0.0000 0.0000 -11.7814 -30.9951
p25 3M 7 1.0000 0.0000 0.0000 -11.7919 -32.1336
atm 3M 7 1.0000 0.0000 0.0000 -14.4269 -25.8603
c25 3M 7 1.0000 0.0000 0.0000 -11.6490 -63.6259
c10 3M 7 1.0000 0.0000 0.0000 -11.1476 -64.4302
p10 6M 7 1.0000 0.0000 0.0000 -11.4564 -36.2897
p25 6M 7 1.0000 0.0000 0.0000 -13.1273 -37.9996
atm 6M 7 1.0000 0.0000 0.0000 -16.4002 -40.2538
c25 6M 7 1.0000 0.0000 0.0000 -14.3382 -72.4900
c10 6M 7 1.0000 0.0000 0.0000 -12.7448 -68.3568
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Table 5.17: DM statistic of ZAR

ZAR
Count Eigen GARCH Similar Max Min

p10 1M 2 1.0000 0.0000 0.0000 -23.0150 -29.1511
p25 1M 2 1.0000 0.0000 0.0000 -21.7177 -22.5944
atm 1M 2 1.0000 0.0000 0.0000 -33.9460 -39.3868
c25 1M 2 1.0000 0.0000 0.0000 -15.8693 -16.3059
c10 1M 2 1.0000 0.0000 0.0000 -16.7566 -18.0977
p10 1Y 2 1.0000 0.0000 0.0000 -227.6371 -296.1665
p25 1Y 2 1.0000 0.0000 0.0000 -224.7012 -236.1357
atm 1Y 2 1.0000 0.0000 0.0000 -6884.5212 -8390.2853
c25 1Y 2 1.0000 0.0000 0.0000 -229.7451 -239.4677
c10 1Y 2 1.0000 0.0000 0.0000 -285.0797 -318.7011
p10 2M 2 1.0000 0.0000 0.0000 -24.1169 -27.7732
p25 2M 2 1.0000 0.0000 0.0000 -21.5918 -23.5674
atm 2M 2 1.0000 0.0000 0.0000 -34.4652 -43.4816
c25 2M 2 1.0000 0.0000 0.0000 -16.0948 -16.9935
c10 2M 2 1.0000 0.0000 0.0000 -17.6566 -18.0330
p10 2Y 1 1.0000 0.0000 0.0000 -238.3610 -238.3610
p25 2Y 1 1.0000 0.0000 0.0000 -227.9619 -227.9619
atm 2Y 1 1.0000 0.0000 0.0000 -6680.2448 -6680.2448
c25 2Y 1 1.0000 0.0000 0.0000 -137.3422 -137.3422
c10 2Y 1 1.0000 0.0000 0.0000 -191.2037 -191.2037
p10 3M 2 1.0000 0.0000 0.0000 -28.4463 -190.7252
p25 3M 2 1.0000 0.0000 0.0000 -21.9804 -211.4651
atm 3M 2 1.0000 0.0000 0.0000 -35.2838 -2552.0749
c25 3M 2 1.0000 0.0000 0.0000 -16.3438 -210.2047
c10 3M 2 1.0000 0.0000 0.0000 -18.2423 -245.7514
p10 6M 2 1.0000 0.0000 0.0000 -192.6914 -274.8602
p25 6M 2 1.0000 0.0000 0.0000 -211.5120 -223.1722
atm 6M 2 1.0000 0.0000 0.0000 -3848.0014 -4502.3086
c25 6M 2 1.0000 0.0000 0.0000 -202.3363 -221.9277
c10 6M 2 1.0000 0.0000 0.0000 -266.8076 -293.6030
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Appendix C

Listing 5.1: Delta Calculator

function Delta =

DeltaCalculator(Volatility,SpotPrice,StrikePrice,RateD,RateF,...

TsTd,ToTe,DeltaType,Type,pipsPer)

if pipsPer

d1 = (log(SpotPrice./StrikePrice)+(RateD-RateF).*TsTd+...

0.5.*(Volatility.^2).*ToTe)./(Volatility.*sqrt(ToTe));

if DeltaType

Delta = Type.*normcdf(Type.*d1,0,1).*exp(-RateF.*TsTd);

else

Delta = Type.*normcdf(Type.*d1,0,1);

end

else

ForwardPrice = SpotPrice.*exp((RateD-RateF).*TsTd);

d2 = (log(SpotPrice./StrikePrice)+(RateD-RateF).*TsTd-...

0.5.*(Volatility.^2).*ToTe)./(Volatility.*sqrt(ToTe));

if DeltaType

Delta =

Type.*normcdf(Type.*d2,0,1).*exp(-RateD.*TsTd).*(StrikePrice./SpotPrice);
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else

Delta = Type.*normcdf(Type.*d2,0,1).*(StrikePrice./ForwardPrice);

end

end

Where Volatility is implied volatility, SpotPrice/Strike Price is the market quote and cor-

responding strike. RateD/RateF indicate annual domestic/foreign interest rate. DeltaType

should be set to 1 for spot or 0 for forward respectively. PipsPer should beset to 1 for

pips or 0 for percentage. Type is 1 for call option and -1 for put option. With given

input argument, the output provide corresponding Delta for certain strike price.

Listing 5.2: Black Scholes Option Price Calculator

function V=FX_Option_Price_BS(vol,S,K,r,q,t,te,ts,td,type)

T1 = (1 + te - ts)./365;

T2 = (1 + td - t)./365;

T3 = (1 + td - t)./365;

r = r.*365;

q = q.*365;

d1 = (log(S./K) + (r - q).*(T1) + 0.5.*vol.^2.*(T2))./(vol.*sqrt(T3));

d2 = (log(S./K) + (r - q).*(T1) - 0.5.*vol.^2.*(T2))./(vol.*sqrt(T3));

N1 = normcdf(type.*d1);

N2 = normcdf(type.*d2);

PVS = S.*exp(-q.*T1);

PVK = K.*exp(-r.*T1);
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P1 = type.*PVS;

P2 = type.*PVK;

V = P1.*N1 - P2.*N2;

Where S is spot rate, K is strike price, r is domestic deposit rate meanwhile q is overseas

deposit rate. ts is the time to spot, te is the time to expiry. td is the time to deposit and

V is the value of the options. In this piece of code, I provide the formula of typical Black

Scholes model for FX option.

Listing 5.3: Affine Jump Diffusion Option Price

function [C,P,vol_C,vol_P]=AffineJumpDiffusionOptionPrice(theta,rT,qT,S,K,T)

K = reshape(K,[],1);

M = length(K);

C = zeros(M,1);

%X = 1i.*((exp(linspace(0,6,10000))-1)+realmin)’;

EP = 3000;% end point

NP = 2000;% Number of points this should normally be higher than EP so we

have the fractionals

X = linspace(sqrt(eps),EP,NP);

c = X.*1i;

%F1 = AJ_CF1(theta,S,r,q,T,t);

F1 = JumpCGF1(S,theta,T);

MGF_N1 = Jump_CGF(c+1,theta,S,T);%AJ_CF(theta,X+1,S,r,q,T,t);

MGF_N2 = Jump_CGF(c,theta,S,T);%AJ_CF(theta,X,S,r,q,T,t);

Dr = exp(-rT.*T);

for i=1:M
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%Y1 = AJ_N1(F1,MGF_N1,X,K(i));

Y1 = real(((K(i).^(-c)).*MGF_N1)./(c.*F1));

Y2 = real(((K(i).^(-c)).*MGF_N2)./(c));

N1 = cumtrapz(X,Y1);

N2 = cumtrapz(X,Y2);

P1=(0.5 + (1./pi).*N1);

P2=(0.5 + (1./pi).*N2);

%average the end points

P1 = nanmedian(P1(NP-30:NP));

P2 = nanmedian(P2(NP-30:NP));

C(i,1) = Dr.*(F1.*P1 - K(i).*P2); % call price

end

%C = smooth(C,20);% add a five point smoother to the price.

P = C - S.*exp(-qT.*T) + K.*Dr; % put price

r = rT./365;

q = qT./365;

T = T.*365;

t = 1;

C(C<0) = eps;

P(P<0) = eps;

[vol_C]=optionImpliedVolatilityFX(repmat(S,M,1),K,C,repmat(t,M,1),...

repmat(t,M,1),repmat(T,M,1),repmat(T,M,1),repmat(r,M,1),...

repmat(q,M,1),ones(M,1));

[vol_P]=optionImpliedVolatilityFX(repmat(S,M,1),K,P,repmat(t,M,1),...

repmat(t,M,1),repmat(T,M,1),repmat(T,M,1),repmat(r,M,1),...

repmat(q,M,1),-1.*ones(M,1));
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end

Theta is a vector of parameters of the form theta = [thetaV thetaJ thetar thetaq]; rT and

qT are the discount rate from t to T; should be in terms of log(1 + Yield), where Yield

is a discrete APR. for domestic and overseas S is the spot exchange rate K is a vector of

strike prices T is a tenor in fractions of a year. This function calculates the option price

for the affine-jump model

Listing 5.4: Get 1-vol Butterfly

function

[sigmaBF]=solveOneVolButterfly(Volatility_C,Volatility_P,pivotDelta,SpotPrice,...

StrikePrice,RateD,RateF,TsTd,ToTe,DeltaType,pipsPer,r,q,t,T)

flag = 1;

k = 1;

lb = 0.02;

ub = 1;

sigmaBF = NaN;

while flag == 1

sigmaIn = linspace(lb,ub,10);

err =

oneVolButterflyObjective(sigmaIn,Volatility_C,Volatility_P,pivotDelta,...

SpotPrice,StrikePrice,RateD,RateF,TsTd,ToTe,DeltaType,pipsPer,r,q,t,T);

[Il,Iu,exact]=zeroCrossing(err);

gapErr = abs(sum(err([Il Iu]))./2);

k = k+1;

if exact

sigmaBF = sigmaIn(Il);
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flag = 0;

end

if gapErr(1) >= 1e-6

lb = sigmaIn(Il);

ub = sigmaIn(Iu);

end

if gapErr(1) < 1e-6

sigmaBF = 0.5.*(sigmaIn(Il) + sigmaIn(Iu));

flag = 0;

end

if k>20

sigmaBF = 0.5.*(sigmaIn(Il) + sigmaIn(Iu));

flag = 0;

end

end

This function aim to transfer 2-vol-butterfly to 1-vol-butterfly. Input arguments are listed

as follows: TsTd/ToTe- spot to delivery/today to expiry as fraction of year. t/T- num-

ber of days to maturity; RateD/RateF- annual domestic/foreign interest rate; r/q- daily

domestic/foreign interest rate; pipsPer- ’pips’ or ’per’; DeltaType- ’spot’ or ’forward’;

pivotDelta- 0.1 or 0.25 for BF10 or BF25.

Listing 5.5: Estimate Implied correlation Matrix

function

SinglePair(pair,ccyList,maturity,matPath,scList,alist,opath,deli,method)

leg = ’USD’;

%remove aim pair and add them into head and tail of list
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ccy1 = pair(1:3);

ccy2 = pair(4:6);

ind1 = find(ismember(ccyList,ccy1)==1);

ind2 = find(ismember(ccyList,ccy2)==1);

ccyList([ind1,ind2])=[];

ccyList = [ccy1;ccyList;ccy2];

%get the correct name of currency pair by list

pairList = cell(length(ccyList),1);

for k = 1:length(ccyList)

ccyU = ccyList{k};

if sum(ismember(scList,ccyU))

pairList{k,1} = [ccyU,leg];

else

pairList{k,1} = [leg,ccyU];

end

end

%get the str for aim correlation matrix;

strMatrix = list2matrix(pairList,maturity,alist);

%corMatrix could be empty

[corMatrix,A,data1,data2,data3] = str2data(strMatrix,maturity,matPath,deli);

% load(’corMatrix.mat’)

%get calculation result for the eigenvalue

if ~isempty(corMatrix)

[rlb,rmax,rub,rmkt,eigenResult,eigCorData] = cor2vol(corMatrix,method);

geteigCorDataFile(eigenResult,eigCorData,pair,length(pairList));

% aimpair = strMatrix{1,length(strMatrix)}(end);

%

cor2iv(rlb,rmax,rub,rmkt,data1,data2,data3,A,aimpair,maturity,opath,eigenResult);
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end

This function aim to organize implied correlation matrix from implied volatility. Input

argurments are listed as follows: ’ccyList’ is a matrix in str format, which contains the

currency pairs’ name in the leg journey. ’matPath’ and ’opath’ are folder path for market

data and output data respectively. ’method’ is ’end of day’ or ’intraday’ for the calcula-

tion of end of day and high frequency intraday respectively.

Listing 5.6: Get Missing Correlation Bound

function [Rlb,Rub,rlb,rub,rmax,Emax,eigenCor]=findCorrelationBounds(R,tin)

ind = find(isnan(R));

R(isinf(R)) = 1;

rvec = linspace(-1,1,ceil(1./tin));

% first identify feasibility, can we find a correlation that returns a PD

% matrix, find candidate bounds

Ri = R;

PD = NaN(length(rvec),1);

for i=1:length(rvec)

Ri(ind) = rvec(i);

x = eig(Ri);

ii = find(x<0);

if isempty(ii)

PD(i) = 1;

end

lbnd(i) = min(x);

condition(i,1) = cond(Ri);

lambda(i,1) = max(eig(Ri));
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end

II = find(lbnd>0);

[Emax,mind] = max(lbnd);

eigenCor = [rvec’,lbnd’];

%lbnd is the vector record minimum eigen value, find the largest of it.

rmax = rvec(mind);

if ~isempty(II)

rlb = rvec(II(1));

rub = rvec(II(end));

Rlb(ind) = rlb;

Rub(ind) = rub;

[~,ind_rho] = min(condition(II));

try

rlb = rvec(1,ind_rho-50);

catch

rlb = rvec(1,1);

end

try

rub = rvec(1,ind_rho+50);

catch

rub = rvec(1,end);

end

rmax = (rlb+rub)/2;

[~,ind_rho] = max(lbnd);

rho_max = rvec(1,ind_rho);

else

[~,ind_rho] = max(lbnd);
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rho_max = rvec(1,ind_rho);

end

Rlb = R;

Rub = R;

Rmax = R;

Rmax(ind) = rmax;

This function provide the algorithm to check the eigenvalue structure. With known cor-

relation matrix R, the aim missing correlation coefficient is in the top right corner (the

last column of first row and last row of first column). Keep fill the missing element in

matrix with values range from -1 to 1 and check the matrix’s minimum eigenvalue, two

kinds of the data are recorded: 1)the implied correlation coefficient make minimum eigen-

value equal to zero, which provide bounds for missing element. 2) the coefficient make

minimum eigenvalue maximized, which indicate the most stable market and is assumed

to be the point forecast of our model.

Listing 5.7: Regression Tree

function [trainedModel, validationRMSE] = trainRegressionModel(trainingData)

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’});

predictorNames = {’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_1;

isCategoricalPredictor = [false, false];

% Train a regression model

% This code specifies all the model options and trains the model.

regressionTree = fitrtree(...
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predictors, ...

response, ...

’MinLeafSize’, 4, ...

’Surrogate’, ’off’);

% Create the result struct with predict function

predictorExtractionFcn = @(x) array2table(x, ’VariableNames’, predictorNames);

treePredictFcn = @(x) predict(regressionTree, x);

trainedModel.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedModel.RegressionTree = regressionTree;

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

% Convert input to table

inputTable = array2table(trainingData, ’VariableNames’, {’column_1’,

’column_2’, ’column_3’});

predictorNames = {’column_2’, ’column_3’};

predictors = inputTable(:, predictorNames);

response = inputTable.column_1;

isCategoricalPredictor = [false, false];

% Perform cross-validation

partitionedModel = crossval(trainedModel.RegressionTree, ’KFold’, 5);

% Compute validation predictions

validationPredictions = kfoldPredict(partitionedModel);

% Compute validation RMSE

validationRMSE = sqrt(kfoldLoss(partitionedModel, ’LossFun’, ’mse’));

This script returns a trained regression model and its’ RMSE. The model provide a
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well-trained regression tree to review and predict with new data. For input argument,

trainingData is the training data set. For output, trainedModel is a struct containing

the trained regression model. The struct contains multiple fields with information about

the model; trainedModel.predictFcn is the function to make predictions on new data;

validationRMSE is a double variable containing RMSE.

Listing 5.8: Roos Calculator

function data = analysisSingleMaturity(data,nameFile)

lengthInd = size(data,1);

for k =1:lengthInd

dataU = data(k,:);

market = dataU{1,3};

cal = dataU{1,2};

for kk =2:6

marketU = market(:,kk);

calU = cal(:,kk);

windowsInd = floor(length(calU)./3);

mktWindows = marketU(end-windowsInd:end,1);

calWindows = calU(end-windowsInd:end,1);

rUp = sum((calWindows-mktWindows).^2);

rBot = sum(mktWindows.^2);

rOos(1,kk-1) = 1-rUp./rBot;

end

data{k,4} = rOos;

end

for k =2:lengthInd
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oosAll = data{1,4};

oosU = data{k,4};

ooUdiff = abs(oosU-oosAll);

data{k,5} = ooUdiff;

data{k,6} = sum(ooUdiff);

end

This script provides the methodology to value R2
oos measurement(For a single maturity

from 1 month to 2 year). For input argument, data contains the out-of-sample for both

market quote and calculation result, all five key deltas are recorded(put delta10, put

delta25, at-the-money, call delta 25, call delta10). For output, data contains the out-of-

sample R2
oos for all deltas and its change by making a selected predictors equal to zero.

Listing 5.9: Equity Eigen Structure Main

load(’dateRange.mat’)

pth = ’D:\ChapterThree\AllMat\’;

cd(pth);

stockList = dir();

stockList(1:2) = [];

stockName = extractfield(stockList,’name’);

DataMatrix = [];

n=1;

for k =1:length(stockName)

load([pth,stockName{k}]);

dateU = floor(data(:,1));

[after,ind1,ind2]= intersect(dateU,dateTested);

if ~isempty(after)
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DataMatrix(:,n) = interpStock(dateTested,data);

NameMatrix(:,n) = cellstr(stockName{k});

n=n+1;

end

end

% %

Data.stockData = DataMatrix;

Data.name = NameMatrix;

Data.Date = dateTested;

save(’stockInfo.mat’,’Data’);

load(’stockInfo.mat’);

DataMatrix = Data.stockData;

dateTested = Data.Date;

weekendInfo = sum(Data.stockData,2);

ind = find(weekendInfo==0);

DataMatrix(ind,:) =[];

dateTested(ind) = [];

singleInfo = zeros(size(DataMatrix,2),1);

for k =1:size(DataMatrix,2)

singleInfo(k) = length(find(DataMatrix(:,k)~=0));

end

[~,ind] = sort(singleInfo,’descend’);

DataMatrixSorted = DataMatrix(:,ind);

stockSorted = Data.name(ind);

lambda = [];

n=1;
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for k =20:size(DataMatrixSorted,2)

matrixU = DataMatrixSorted(end-100:end,1:k);

zeroInd = sum(matrixU);

if isempty(find(zeroInd==0))

lambda(n) = singleMatrixTest(matrixU);

n=n+1;

end

end

This script provides the main function for covariance matrix of equities. There is a folder

contains tick data for all equities’ in S&P500 index from 1996 to 2020. In this function,

the final outcome is a structure with interpreted matrix with equity names and date

cover. All equities are sorted by trading volume, the data clean process is also presented

in this script.

Listing 5.10: Equity Eigen Structure Simulation

load(’TimeSeriesEigen.mat’);

data = Data.weekly{1,3};

R = diff(data);

S = cov(R);

Shat = nearestSPD(S);

Q = chol(Shat);

for i = 1:10000

tic

U = randn(size(R));

Rstar = U*Q;

n=1;
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for k =20:size(Rstar,2)

matrixU = Rstar(:,1:k);

zeroInd = sum(matrixU);

if isempty(find(zeroInd==0))

[lambda{n,1},lambda{n,3},lambda{n,2}] = singleMatrixTest(matrixU);

n=n+1;

end

end

test{1,1} = 735972;

test{1,2} = lambda;

test{1,3} = matrixU;

simC(:,i)= simulationTurn(test);

toc

end

This script provides the simulation testbench for covariance matrix of equities. The

original market data is used as seed for the simulation, the number of iteration is fixed

to 10,000 for this testbench. The outcome of simulation is recorded in variable ’lambda’,

first element is the normalized eigenvector, second element is the matrix size and the

third element is the covariance matrix.
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