
Durham E-Theses

Smoothed Bootstrap Methods for Right-Censored Data

and Bivariate Data

AL-LUHAYB, ASAMH,SALEH,M

How to cite:

AL-LUHAYB, ASAMH,SALEH,M (2021) Smoothed Bootstrap Methods for Right-Censored Data and

Bivariate Data, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/14096/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14096/
 http://etheses.dur.ac.uk/14096/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Smoothed Bootstrap Methods for

Right-Censored Data and Bivariate Data

Asamh Saleh Muhammad Al-Luhayb

A Thesis presented for the degree of

Doctor of Philosophy

Statistics and Probability

Department of Mathematical Sciences

University of Durham

England

June 2021



Dedicated to

My parents

for all their unlimited supports and prayers

My wife Abeer and daughter Mohra

who make my life convivial

My siblings

for their believes and wishes

My friends

for encouraging and believing



Smoothed Bootstrap Methods for Right-Censored

Data and Bivariate Data

Asamh Saleh Muhammad Al-Luhayb

Submitted for the degree of Doctor of Philosophy

June 2021

Abstract

This thesis introduces a smoothed bootstrap method for univariate right-censored

data and investigates this bootstrap method for the coverage probability and sur-

vival function inferences through simulations. The bootstrap method relies on the

right-censoring A(n) assumption, which was proposed by Coolen and Yan [21]. This

assumption allows sampling from the whole data range and avoids the complication

in computation that occurs due to ties and right-censored observations which often

occur in the samples created by Efron’s bootstrap method [31]. The performance

of the proposed bootstrap method is studied on finite and infinite data ranges, and

compared to the performance of Efron’s bootstrap method through simulations. It

is found that the smoothed bootstrap method mostly outperforms Efron’s bootstrap

method, in particular when the sample size is small. Also, the smoothed bootstrap

method and Efron’s bootstrap method are compared through simulations to com-

pute the actual Type 1 error rates of quartiles tests and two sample medians test.

For bivariate data, three smoothed bootstrap methods are introduced. Two

of them are based on the generalization of Nonparametric Predictive Inference for

random quantities (X, Y ) with copulas, proposed by Coolen-Maturi et al. [22] and

Muhammad et al. [65]. The third one is by using uniform kernels. These smoothed

bootstrap methods are compared to Efron’s bootstrap method [33] through simula-

tions. It is found that the smoothed bootstrap methods mostly outperform Efron’s

bootstrap method in terms of the coverage probabilities for Pearson correlation and

the means of T1 = X + Y and T2 = XY 2 when the data distribution is symmetric.
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Also, these bootstrap methods are compared to compute the Type 1 error rates

of the Pearson and Kendall correlation tests to provide insight into the methods’

performances. For the Pearson correlation test, the smoothed bootstrap methods

mostly perform better than Efron’s method, but Efron’s method provides better

results for the Kendall correlation test.
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Chapter 1

Introduction

1.1 Overview

Measuring the uncertainty of a sample estimate is central to statistical inference. In

a simple situation, it is possible to assume a probability model and make inferences,

but with a complicated problem this may be difficult and the results can mislead

if model assumptions are not suitable. To avoid this obstacle, Efron [30] used the

power of computer to develop a bootstrap method, which relies on few assumptions,

but with more computations. This method has been widely used due to its simplicity

and potential to provide good approximate results to the sample estimates.

In 1979, Efron [30] proposed the standard bootstrap for real data to measure the

accuracy of statistical estimates. The method relies on sampling with replacement

from the original data set to create the bootstrap samples. In 1981, he generalized

his method for right-censored data [31]. He assumed the empirical distribution on

the original data set, which puts a probability mass 1
n

at each data point, whether it

is an event or censored observation. The bootstrap samples are created by sampling

with replacement from the original sample, then he used the Kaplan-Meier estimator

for inferences based on each bootstrap sample [31, 53].

For bivariate data, he described a bootstrap technique which is close to the

standard bootstrap method [33]. He assumed the data distribution is empirical, so

that each pair is sampled with probability 1
n
. To create the bootstrap samples, he

sampled pairs with replacement from the original sample. This bootstrap method

1



1.1. Overview 2

is used to estimate the standard error of the Pearson correlation in [33].

Banks [5] developed a smoothed bootstrap method for univariate real-valued data

by linear interpolation between the observed points. The method requires that the

underlying distribution is continuous with finite support and no ties. This bootstrap

method starts with ordering the observed data points, then partitioning the sample

space into n+1 intervals by the original observations, and putting mass 1
n+1

at each

interval. To create one bootstrap sample, n intervals are sampled with replacement,

then from each chosen interval, one observation is drawn uniformly. This method

allows sampling from the whole data range, and ties occur with probability zero in

the bootstrap samples.

Dolker et al. [28] and Lee and Rodgers [58] showed that Efron’s bootstrap method

has problems when the sample size is small. The method restricts the process to

sampling with replacement from the original data set, so bootstrap samples often in-

clude ties. In this situation, it may become harder to make inference based on those

bootstrap samples; assumptions are needed to break the ties. Also, the method does

not provide good results for small data sets as explained in [14, 28, 58]. These draw-

backs motivate the development of smoothed bootstrap methods for right-censored

data and bivariate data to avoid ties and obtain better results in terms of the cov-

erage probability and testing.

This thesis presents smoothed bootstrap methods for right-censored data and

bivariate data to quantify the uncertainty of sample estimates. The proposed boot-

strap methods will be compared to Efron’s methods in terms of the coverage proba-

bility through simulations. They are also compared in computing the Type 1 error

rates of some statistical tests.

This chapter introduces some bootstrap methods from the literature. Section

1.2 presents Efron’s bootstrap methods for real-valued data, right-censored data

and bivariate data. In Section 1.3, Banks’ bootstrap method is described with its

generalization on the whole real line and the positive real line. Section 1.4 provides

an introduction to nonparametric predictive inference and Section 1.5 provides the

outline of this thesis.
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1.2 Efron’s bootstrap methods

The standard bootstrap method, presented by Efron [30], is a technique to quantify

the uncertainty of sample estimates. It has been widely used in applied statistics as

it relies on few mathematical assumptions and its application is straightforward with

statistical software [34]. Suppose that there is a random sample from an unknown

distribution. In the literature, traditional statistical methods are mostly based on

an assumed model to make inferences reflecting the whole population from which

the data sample was drawn. In real world applications, it may be difficult to choose

a suitable model and hence powerful statistical methods for inference without an

assumed underlying model are of great practical use [26]. The bootstrap method,

which is based on the empirical distribution, has become one of the most used

statistical methods [30]. In this section, we describe Efron’s bootstrap methods

for real-valued data, right-censored data and bivariate data, where the methods for

right-censored data and bivariate data are particularly used in Chapters 2 and 3,

respectively.

1.2.1 Efron’s bootstrap method for real-valued data

Efron [30] presents the standard version of bootstrap method, which is a resampling

technique from the original data set. It is used to specify the accuracy of a sample

estimate, e.g. estimating the standard error or the percentile confidence interval of

a sample mean. This bootstrap method used the empirical distribution to measure

the uncertainty, but it requires a lot of computations. From the original data set,

B bootstrap samples are created by resampling, then find the function of interest

in each bootstrap sample. The empirical distribution for the B resulting values can

be considered as a proxy distribution for the sample statistic. It is advised that the

number of B should be large, e.g. B = 1000.

There are many references describing the bootstrap method along with examples

and applications, e.g. Berrar [8], Davison and Hinkley [26] and Efron and Tibshirani

[34], and the idea of bootstrap has been used for a variety of statistical inferences.

For example, Rosenkranz [72] used the bootstrap to estimate the bias of treatment
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effect estimators. Mandel and Betensky [60] derive simultaneous confidence intervals

for several parameters based on the percentile bootstrap approach. Davison and

Hinkley [26] and Efron and Tibshirani [34] used it to provide a bootstrap estimate

of standard error and a bootstrap confidence interval for a statistic. They also used

the bootstrap method for testing and regression problems. Davison and Hinkley [26]

provided R codes to put this method into practice.

Suppose that x1, x2, . . . , xn are observations corresponding to independent and

identically distributed random variables X1, X2, . . . , Xn, and F is a continuous dis-

tribution defined on a sample space ℵ. Let θ(F ) be a function of interest, e.g. the

mean or median, which can be estimated by θ̂ = θ(F̂ ), where F̂ is the empirical

distribution function putting mass 1
n

at each value xi,

F̂ (x) =
1

n

n∑
i=1

I(xi ≤ x) (1.1)

where I(xi ≤ x) is the indicator function which is 1 if xi ≤ x and 0 otherwise.

The bootstrap procedure uses the empirical distribution function F̂ of the orig-

inal data set to be a proxy for the unknown distribution F , so each observation

is assigned probability 1
n
. Hence, the algorithm of Efron’s bootstrap is as follows

[30, 31]:

(i) Construct the empirical cumulative distribution function F̂ using Equation

(1.1).

(ii) Draw B random samples of size n with replacement from the original data set.

(iii) Compute the statistic of interest for each bootstrap sample. This leads to θ̂∗1,

θ̂∗2, . . . , θ̂∗B. Then the empirical distribution of θ̂∗1, θ̂∗2, . . . , θ̂∗B can be used

to approximate the sampling distribution of θ(F ).

To provide a bootstrap estimate of standard error σ̂boot for the sample statistic θ̂,

we compute the standard deviation of θ̂∗1, θ̂∗2, . . . , θ̂∗B by

σ̂boot =

√∑B
j=1(θ̂

∗j)2 − (
∑B

j=1 θ̂
∗j)2/B

B − 1
(1.2)

For estimating a standard error, Efron and Tibshirani [34] determined B to be in

the range 25− 200.
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1.2.2 Efron’s bootstrap method for right-censored data

Right-censored data often occurs in reliability and medical applications because of

many reasons. For example, if a study is ended while some individuals do not

experience the event of interest. These observations will be considered as right-

censored times. The only fact we know about right-censored observations is that

these observations do not experience the event at given times [56, 69]. A medical

example for right-censored data can be the results for a clinical trial of a drug 6-

mercaptopurine versus a placebo in 42 children with acute leukemia reported by

Freireich et al. [38]. Patients were followed until the disease returned. Some of

them had not experienced the disease until the end of study, so these observations

were considered as right-censored observations. Also, some patients were missed to

follow for any reason during the study with known that they had not experienced

the leukemia again, so those patients were considered right-censored observations as

well.

In 1981, Efron [31] presented a bootstrap method for right-censored data by sam-

pling with replacement from the original data set, similar to his original bootstrap

method explained in Subsection 1.2.1. It assigns probability 1
n

to each observation,

regardless of whether it is an observed event time or a right-censored observation.

Suppose that (X1, D1), (X2, D2), . . . , (Xn, Dn) are independent and identically

distributed random variables, with interest in the random quantities Xi, drawn from

a distribution F . Di represents the censoring status, where it takes 0 for censored

time and 1 for event time. Note that we do not need to introduce notation for

an assumed distribution for the censoring random quantities Di as we restrict the

attention explicitly to characteristics of the distribution F . Let (x1, d1), (x2, d2), . . . ,

(xn, dn) denote the corresponding observations. The pair (xi, di), for i = 1, 2, . . . , n,

is the form for right-censored data where xi is the ith observation and di = 1 if xi

is uncensored, and di = 0 if xi is censored. Let θ(F ) be the functional of interest,

which can be estimated through θ(F̂ ). Efron’s bootstrap method for right-censored

data is described as follows [31]:

(i) From the original sample, which has n observations, a simple random sample
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with size n is drawn with replacement. The bootstrap sample is denoted by

D∗ = {(x∗1, d∗1), (x∗2, d∗2), . . . , (x∗n, d∗n)}.

(ii) Calculate the function of interest θ̂∗ = θ̂(D∗) based on the Kaplan-Meier esti-

mator [53].

(iii) Repeat (i) and (ii) B times, and this leads to have θ̂∗1, θ̂∗2, . . . , θ̂∗B.

It should be noted that this bootstrap method often leads to include ties and right-

censored observations in the bootstrap samples. This can cause complications when

the sample size is small and the censoring proportion is high.

1.2.3 Efron’s bootstrap method for bivariate data

In 1986, Efron and Tibshirani [33] presented a bootstrap method for bivariate data

with a description of the bootstrap estimate of the standard error for the Pearson

correlation in an American law school data set. Efron’s bootstrap method for bivari-

ate data is quite similar to the standard Efron’s bootstrap method explained in [30].

The empirical distribution is assumed for the original data set, so each observation

is assigned probability 1
n
. This technique is used for regression models [32] and dif-

ferent measures of statistical accuracy [33]. For more explanations and applications,

see the book by Efron and Tibshirani [34]. However, Lee and Rodgers [58] showed

that the method performs poorly for Pearson correlation test in comparison to their

univariate sampling bootstrap method, in particular when the sample size is small.

To describe the method, suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent

and identically distributed random variables following an unknown probability dis-

tribution F with a sample space ℵ. Let (x1, y1), (x2, y2), . . . , (xn, yn) denote the

observed data and θ(F ) be the function of interest, which can be estimated through

θ(F̂ ), where F̂ is the empirical distribution. Efron’s procedure for bivariate data is

as follows [33]:

(i) From the original sample, which has n observations, a simple random sample

with size n is drawn with replacement. The bootstrap sample is denoted by

D∗ = {(x∗1, y∗1), (x∗2, y
∗
2), . . . , (x∗n, y

∗
n)}.
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(ii) Calculate the function of interest θ̂∗ = θ̂(D∗).

(iii) Repeat (i) and (ii) B times to obtain θ̂∗1, θ̂∗2, . . . , θ̂∗B.

In the literature, many references present tips and guidance for the number of

bootstrap replications B depending on the function of interest. To estimate the

standard error, it is mostly sufficient to set B = 50, but for confidence intervals and

hypotheses tests, B should be at least 1000 for well results [34]. Some researchers

use larger numbers, but this causes long computation time. In this thesis, we set

B = 1000 for our use not only because we think it is suitable for our purposes,

but also this number is widely used in the literature for confidence intervals and

hypotheses tests.

1.3 Banks’ bootstrap method for real-valued data

As described in Subsection 1.2.1, Efron’s method [30] restricts the bootstrap sam-

pling process to re-sampling with replacement from the original data set, so no

observation can be outside the range of the original data set, and also ties can occur

in the Efron’s bootstrap samples, which can lead to a complication in computation

and poor results in the sense of statistical accuracy when the sample size is small.

Banks [5] presented an alternative smoothed bootstrap method for real-valued data

to avoid such problems and improve the estimation results. The method allows to

sample from the whole data range, but it requires the underlying distribution to be

continuous with known limited support.

Suppose that x1, x2, . . . , xn are observations corresponding to independent and

identically distributed random variables X1, X2, . . . , Xn, and F is a continuous dis-

tribution on [a, b]. Banks’ bootstrap method [5] orders the observations and creates

n + 1 intervals partitioning the sample space, where each interval is assigned prob-

ability 1
n+1

. Banks’ procedure is described as follows:

(i) The observations x(0) < x(1) < . . . < x(n) < x(n+1) lead to n+ 1 open intervals

(x(i), x(i+1)), where i = 0, 1, 2, . . . , n, x(0) = a and x(n+1) = b.

(ii) Sample one interval with probability 1/(n+ 1).
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(iii) Sample one observation uniformly from this chosen interval.

(iv) Repeat steps (ii) and (iii) n times to derive one Banks’ bootstrap sample.

(v) Calculate the function of interest θ̂∗.

(vi) Perform steps (ii)-(v) B times in order to obtain B Banks’ bootstrap samples

along with their corresponding functions of interest.

Banks [5] used simulation studies to compare his method to other bootstrap

competitors by the chi-squared goodness of fit test. He concluded that his approach

outperforms Efron’s method in terms of the coverage accuracy for the mean, median

and variance, in particular when the sample size is small. However, the smoothed

bootstrap method requires a limited compact support and this is not usually the

case in real applications.

Suppose that the data is defined on the whole real line (−∞,∞). Based on

Banks’ bootstrap technique, it is known that the first and last intervals, (−∞, x(1))

and (x(n),∞), are both with probability 1
n+1

, but it is difficult to sample uniformly

from these intervals during the bootstrap procedure. For these unlimited intervals,

Binhimd and Coolen [11] assumed the tails of a Normal distribution, where the

parameters µ and σ are set equal to

µ =
x(1) + x(n)

2

σ =
x(n) − µ

Φ−1( n
n+1

)

(1.3)

where Φ is the standard Normal cumulative distribution function.

When either one of the unlimited intervals are chosen during the bootstrap pro-

cedure, an observation is sampled from N(µ, σ2) and this sampled observation is

accepted for (x(n),∞) if it is greater than x(n). For the interval (−∞, x(1)), we sam-

ple an observation from N(µ, σ2) and the sampled observation is accepted if it is less

than the observation x(1).

If the data is supported on (0,∞), Binhimd and Coolen [11] assumed the tail of

an Exponential distribution for the last interval (x(n),∞) with the rate parameter

λ set equal to
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λ =
ln(n+ 1)

x(n)
(1.4)

where the last interval (x(n),∞) is set with probability 1
n+1

.

1.4 Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) is a statistical method that makes in-

ferences on a future observation based on a past sample of size n by using Hill’s

assumption A(n) [49, 50, 51]. NPI produces lower and upper probabilities for the

next future observation Xn+1, denoted by P (Xn+1) and P (Xn+1), respectively, where

0 ≤ P (Xn+1) ≤ P (Xn+1) ≤ 1. It is a method using imprecise probability [20], and it

has been used in many statistical applications for inference on a future observation

based on past data observations. For more details see Section 7.6 in the book by

Augustin et al. [4].

Hill [49] introduced the assumption A(n) to present predictive probabilities for one

future observation Xn+1 with no prior information about an underlying distribution.

Suppose that x1, x2, . . . , xn are the observed data corresponding to the continuous

and exchangeable real-valued random quantities X1, X2, . . . , Xn. Let x(1) < x(2) <

. . . < x(n) be the ordered observations and, for ease of notation, define x(0) = −∞

(x(0) = 0 if we have lifetime data) and x(n+1) = +∞. For one future observation

Xn+1, the assumption A(n) is

P (Xn+1 ∈ Ii) =
1

n+ 1
(1.5)

where Ii = (x(i), x(i+1)), and i = 0, 1, 2, . . . , n. If there are ties, a very small value

can be added to one observed point to break the ties. This way to break the ties

has been widely used in the literature [50].

Based on the assumption A(n), NPI is a frequentist statistical technique [3, 17,

18], and the inferences based on Hill’s assumption A(n) are nonparametric and pre-

dictive. The assumption A(n) is considered as a suitable technique if there is no

knowledge about the random quantity of interest. NPI is sufficient to provide im-

precise probability for any event A, but not if we are interested in precise probabil-

ities. NPI produces lower and upper probabilities, which are considered in interval
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probability theory [18, 84]. NPI based on the A(n) assumption provides a strong con-

sistency property in the frequentist theory of statistics [20, 84], and the results based

on NPI will be never contradicted to the ones based on the empirical probabilities

[57].

In NPI, the lower and upper probabilities are the maximum lower bound and the

minimum upper bound for the precise probability for A, respectively. The precise

probability for A, P (A), is a special case of imprecise probability, and this is when

the lower and upper probabilities are equal, P (A) = P (A). The NPI lower and

upper probabilities for Xn+1 ∈ B, where B ⊆ R, can be calculated by [10]

P (Xn+1 ∈ B) =
1

n+ 1

n∑
i=0

I(Ii ⊆ B) (1.6)

P (Xn+1 ∈ B) =
1

n+ 1

n∑
i=0

I(Ii ∩B 6= ∅) (1.7)

where I(.) is the indicator function. For the lower probability, we sum up all prob-

ability masses assigned to intervals which are completely within the set B, and the

upper probability is equal to the summation of the probability masses assigned to

intervals which intersect with the set B; so all Ii such that Ii ∩B 6= φ.

For data containing right-censored observations, NPI is generalized based on the

generalization of A(n) introduced by Coolen and Yan [21]. This generalization is

known as the right-censoring A(n) assumption, rc-A(n). The assumption provides

a probability distribution for next future observation based on n observed data

points including u event times and v right-censored times. It creates n+ 1 intervals

dividing the sample space and each interval is assigned a certain probability mass

defined by mass function value for next future observation within each interval. The

rc-A(n) assumption can present predictive probabilities for next future observation

based on a past sample with no knowledge about the underlying distribution. This

assumption is used for survival function inferences [2] and for imprecise reliability

[83]. It is also used to provide the age replacement of technical units by Coolen-

Schrijner and Coolen [24].

Coolen-Maturi et al. [22] and Muhammad et al. [65] generalized the NPI tech-

nique for bivariate data with parametric and nonparametric copulas. These gener-

alizations use the NPI method for the variables X and Y separately, and then take
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the dependence structure into account by parametric and nonparametric copulas.

Muhammad [64] applied the generalized methods using data from the literature, and

their performances were investigated through simulation studies [22, 65]. Muham-

mad et al. [66] used the parametric generalization of NPI for combining bivariate

diagnostic test.

In many applications, NPI has been used due to its simplicity to implement and

relying on few assumptions with good performance. NPI has been introduced for

different data, see e.g. for real data [3], Bernoulli data [16], and ordinal data [35].

It is also used for right-censored data [21]. For statistical inference and decision

support, NPI has been widely considered, see e.g. accuracy of diagnostic tests [23,

36], precedence testing for two groups [25], acceptance sampling [19] and sequential

acceptance problems [37]. In Chapter 3, we will use the generalizations of NPI

proposed by Muhammad [64] to introduce smoothed bootstrap methods for bivariate

data.

1.5 Outline of thesis

In this thesis, we propose different versions of bootstrap for two different data types.

For right-censored data, we introduce a generalization of Banks’ bootstrap method

by using the right-censoring A(n) assumption introduced by Coolen and Yan [21],

where this assumption is presented in Section 2.2. For bivariate data, three smoothed

bootstrap methods are proposed based on the semi-parametric and nonparametric

predictive methods, introduced by Coolen-Maturi et al. [22] and Muhammad et al.

[65], and a uniform kernel assigned to each observed point. The third proposed

method uses a uniform kernel around each observation without any further restric-

tion on the spread of the probability mass within that kernel. All assumptions that

we used to provide smoothed bootstrap methods for bivariate data are introduced

in Chapter 3. We use these proposed bootstrap methods for different statistical

inferences in the perspective of estimation.

Chapter 2 introduces the smoothed bootstrap method for right-censored data.

It is then compared to Efron’s method through simulation studies in three different
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scenarios with different data supports. The smoothed bootstrap method is described

with both finite and infinite intervals. In these comparisons, we use the technique

Banks’ proposed in [5]. We also provide a brief comparison of our approach and the

well-known Kaplan-Meier estimator of the survival function through two examples

from the literature. This is followed by a comparison between our smoothed boot-

strap method and an alternative smoothed bootstrap technique through simulations

in terms of the coverage probability for the survival function.

Some results of this chapter were presented in the papers ”Generalizing Banks’

smoothed bootstrap method for right-censored data” and ”Smoothed bootstrap for

survival function inference”, which are published in the proceedings of the 29th

European Safety and Reliability Conference (ESREL 2019) and the International

Conference on Information and Digital Technologies (IDT 2019) [1, 2], respectively.

In Chapter 3, parametric and nonparametric copulas in combination with NPI

are described and these combinations are used to provide smoothed bootstrap meth-

ods for bivariate data. These combinations were proposed in [22, 65] to generalize

NPI for bivariate data. Another smoothed bootstrap method is introduced by the

uniform kernels. These proposed methods are compared to Efron’s method through

simulation studies. In those comparisons, different settings of sample sizes and de-

pendence levels between the variables are considered.

Chapter 4 shows how the bootstrap methods, presented in Chapters 2 and 3, can

be used as alternative methods for testing hypotheses. For right-censored data, the

smoothed bootstrap and Efron’s method are used to compute the Type 1 error rates

of quartiles hypothesis tests and two sample medians test. The smoothed bootstrap

methods for bivariate data and Efron’s bootstrap are used to compute the Type 1

error rates of Pearson and Kendall correlation tests. In Chapter 5, we point out some

remarks and conclusions. In the appendix, there are extra simulation results and

we have included the R commands that have been used for the smoothed bootstrap

methods. The calculations in this thesis were performed using the statistical software

R version 3.6.1.



Chapter 2

A smoothed bootstrap method for

right-censored data

2.1 Introduction

In 1981, Efron [31] introduced the bootstrap method for right-censored data. This

bootstrap method is simple and straightforward for calculating some measures of

statistical accuracy. However, it performs poorly when the sample size is small and

the censoring proportion is large in the original sample. It also causes some issues,

e.g. ties and censored observation in the bootstrap samples.

This chapter introduces a smoothed bootstrap method based on the right-censoring

A(n) assumption, which was proposed by Coolen and Yan [21]. Arguably, the ad-

vantages of the smoothed bootstrap method are threefold. First, this bootstrap

method can avoid ties and right-censored observations in the bootstrap samples and

this eases the calculations. Secondly, the proposed bootstrap method is easy to

apply. Finally, simulation studies support the general superiority of the smoothed

bootstrap method.

This chapter is organized as follows. Section 2.2 presents the right-censoring

A(n) assumption. Section 2.3 presents the smoothed bootstrap method for right-

censored data. In Section 2.4, the smoothed bootstrap approach is compared to

Efron’s bootstrap method for right-censored data through simulation studies. In

Section 2.5, we fit an Exponential distribution to each interval, then sample from

13
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the fitted distributions. We provide a brief comparison of our approach and the well-

known Kaplan-Meier estimator of the survival function in Section 2.6. We compare

the smoothed bootstrap method to an alternative smoothed bootstrap method in

Section 2.7. The final section provides some concluding remarks.

2.2 The right-censoring A(n) assumption

The assumption A(n), which was proposed by Hill [49, 50], is defined as the observ-

able random quantities X1, X2, . . . , Xn are exchangeable and ties have probability

zero. The probability that next future observation Xn+1 falls in the open interval

(x(j), x(j+1)) is 1/(n + 1), for all j = 0, 1, 2, . . . , n, where x(0) = −∞ (or x(0) = 0 if

the random quantities are non-negative), and x(n+1) = +∞.

Berliner and Hill [7] used the A(n) assumption for right-censored data. They order

the event time observations and denote them by 0 < t(1) < t(2) < . . . < t(u), where

0 ≤ u ≤ n. Then, they assign a specific probability for the next future observation

Xn+1 to be between any two ordered event times (t(u), t(u+1)) only. They only used

the event observations to create the intervals; not using the precise right-censored

observations. Coolen and Yan [21] generalized the A(n) assumption for right-censored

data, denoted by rc-A(n). They use all event and censored observations to create

n+1 intervals partitioning the sample space. They specify a probability for Xn+1 to

be between any two consecutive event times and between any censored observation

and its following event time. This generalization leads to divide the support into

n + 1 intervals while Berliner and Hill [7] create only u + 1 intervals, where u ≤ n.

The rc-A(n) assumption presented by Coolen and Yan [21] will be used to generalize

Banks’ bootstrap method for right-censored data.

The rc-A(n) assumption provides a partially specified predictive probability dis-

tribution for a future observation, and it is expressed through M -function values [21],

which are basic probability assignments following the general theory introduced by

Shafer [76]. A partial specification of a probability distribution for a real-valued ran-

dom quantity X can be provided through probability masses assigned to intervals

without any further restriction on the spread of the probability mass within each



2.3. A smoothed bootstrap method 15

interval. A probability mass assigned to an interval (a, b) is denoted by MX(a, b),

and referred to as M -function value for X on (a, b). These M -function values are

within [0, 1] and they sum up to one over all intervals considered [21].

In order to introduce the rc-A(n) assumption, further notation is needed. The

information is assumed to be from exchangeable non-negative real-valued random

quantities X1, X2, . . . , Xn. Assume that the observations include u event times and

v right-censoring times. The event times are denoted by 0 < t(1) < t(2) < . . . < t(u),

where 0 ≤ u ≤ n. The right-censoring times are denoted by 0 < c(1) < c(2) < . . . <

c(v), where v = n − u. Let Ii = (t(i), t(i+1)), for 0 ≤ i ≤ u, and denote the ordered

right-censoring times within Ii by ci1 < ci2 < . . . < cili , where li is the number of

right-censored observations in Ii. The data range is divided into n + 1 intervals,

which are (t(i), t(i+1)) and (cik, t(i+1)), where 1 ≤ k ≤ li, t(0) = 0 and t(u+1) = +∞ (or

t(u+1) = b if the support is known to be [0, b]).

The rc-A(n) assumption [21] can be defined as the probability distribution for a

non-negative random quantity Xn+1, on the basis of data including u event times

and v right-censoring times, is partially specified by the following M -function values:

MXn+1(t(i), t(i+1)) =
1

n+ 1

∏
{r:c(r)<t(i)}

ñc(r) + 1

ñc(r)
(2.1)

MXn+1(c
i
k, t(i+1)) =

1

(n+ 1)ñcik

∏
{r:c(r)<cik}

ñc(r) + 1

ñc(r)
(2.2)

where ñc(r) is the number of individuals remaining at risk (still alive) just before

time c(r) plus one, and ñcik is the number of individuals remaining at risk just before

time cik plus one.

2.3 A smoothed bootstrap method

In applying Banks’ bootstrap method for a real-valued data set with a limited data

range, as described in Section 1.3, the method randomly selects one of the intervals

in the partition created by the data, then samples one observation uniformly from

the chosen interval. For the whole real line or the positive real line, Binhimd and
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Coolen [11] assumed distribution tails for the unbounded intervals and sampled ob-

servations from the tails for those intervals. The assumption Banks’ used to smooth

the bootstrap method is related to the assumption A(n), which was proposed by Hill

[49, 50]. They both divide the sample space into n+ 1 intervals, and each interval is

assigned probability 1/(n+ 1). Hence, it is possible to generalize Banks’ bootstrap

method for right-censored data based on the rc-A(n) assumption. However, before

generalizing Banks’ bootstrap method for right-censored data, it is important to

recall that the aims of this smoothed bootstrap method are to learn about uncer-

tainty in estimation of a population characteristic θ and to avoid the complication

in computation that occurs due to ties and censored observations.

Suppose that there are n observations including u event times and v right-

censored times. We first order the observations, then create n + 1 intervals and

derive the M -function values as given by Equations (2.1) and (2.2). We present the

smoothed bootstrap (SB) algorithm for right-censored data in the following steps,

the R codes are provided in Appendix B.1:

(i) Create n+1 intervals based on the n observed data points of the form (t(i), t(i+1))

and (cik, t(i+1)) where i = 0, 1, . . . , u ≤ n and 1 ≤ k ≤ li.

(ii) Compute the M -function values for the n+ 1 intervals.

(iii) Sample with replacement n intervals with the assignment probabilities, then

sample one observation uniformly from each chosen interval to obtain a smoothed

bootstrap sample of size n.

(iv) Calculate the function of interest, θ̂∗.

(v) Perform steps (iii) to (iv)B times. This leads toB smoothed bootstrap samples

with their corresponding functions of interest.

If the support of the random quantities is (0,∞), it is possible to have one or more

intervals in the form of (x(i),∞) during the smoothed bootstrap technique, where

x(i) is either an observed event or a right-censored time. For such cases, Binhimd

and Coolen [11] suggested to fit Exponential distributions to the tail intervals, such
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that the probability masses for such intervals are the same as the assigned M -

function values. Following this approach, we assume an Exponential distribution

for any interval of the form (x(i),∞) with the rate parameter for the Exponential

distribution set at

λ(i) =
− ln

(
MXn+1(x(i),∞)

)
x(i)

(2.3)

where MXn+1(x(i),∞) can be calculated by either Equation (2.1) or (2.2) depending

on the observation x(i), which is either an observed event or a right-censored time.

The process of the smoothed bootstrap method has advantages over Efron’s

method. As described before, Efron’s bootstrap restricts to sampling with replace-

ment from the original data set and this often leads the bootstrap samples to contain

ties and right-censored observations. When the censoring proportion is large in the

original sample, Efron’s bootstrap samples may include only censored observations

and this causes an obstacle for inference. In contrast, the smoothed bootstrap

method allows to sample from the whole data range, and ties occur in the bootstrap

samples with probability zero. Also, the bootstrap samples consist only of event

time observations, so they do not contain any right-censored observations. These

advantages of the smoothed bootstrap method ease the computations for inference.

2.4 Comparison with Efron’s method

In the literature, the primary requirement for confidence regions is that nominal

coverage probability be close to the actual coverage probability [5]. This has mo-

tivated many simulations with accuracy at certain confidence levels, e.g. 0.90, 0.95

and 0.99. However, Banks [5] investigated the global measure of coverage accuracy

to show the best bootstrap method with starting point in coverage. He creates 20

confidence regions with nominal coverage probability 0.05 by

CRL(i) =
(
q(αi+1

2
), q(αi2 )

)
(2.4)

CRR(i) =
(
q(1−αi

2
), q(1−αi+1

2
)

)
(2.5)

where i = 1, 2, . . . , 10, αi+1 = αi − 0.10, α1 = 1 and q(z) is the zth quantile of

functional values, so CRL(i) are the confidence regions presenting the left tail of
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the global measure of coverage accuracy, and CRR(i) are the confidence regions

presenting the right tail of the global measure of coverage accuracy.

He also creates 10 confidence regions with nominal coverage probability 0.10 by

CR(i) =
(
q(αi+1

2
), q(αi2 )

)
∪
(
q(1−αi

2
), q(1−αi+1

2
)

)
(2.6)

where CR(i) = CRL(i) ∪ CRR(i) for i = 1, 2, . . . , 10.

In both divisions, the confidence regions are used to see whether they have equal

coverage probabilities for a specific function of interest. Then Banks [5] used the chi-

square goodness of fit test to measure the discrepancy in coverage probability. He

compared his bootstrap method to other bootstrap techniques, e.g. Efron’s method

[30], Rubin’s Bayesian bootstrap [73] and smoothed Rubin’s bootstrap [5], and con-

sidered the best method is the one having the lowest χ2 value among all values.

In other words, the lowest discrepancy between the nominal and actual coverage

probability for a true specific statistic is provided by the method whose χ2 value

is lowest among all methods. We here intend to generalize the comparison with

right-censored data.

To establish a right-censored data set, we first generate n observations from

one distribution, which are referred to by {t1, t2, . . . , tn}, and n observations from

another distribution, which are denoted by {c1, c2, . . . , cn}. Then, we define the

right-censored data set by

xi = min(ti, ci), for i = 1, 2, . . . , n (2.7)

di =

 1 if xi = ti (uncensored)

0 if xi = ci (censored)
(2.8)

where xi is the time and di is the censored indicator.

Three different scenarios are considered to compare the smoothed bootstrap

method to Efron’s method by using Banks’ comparison strategy. For the first sce-

nario, we use the Beta distribution with two shape parameters α and β to generate

event times and we use the uniform distribution with two parameters a and b to

generate right-censored observations, where their density functions are as follows

f1(t) =
tα−1(1− t)β−1

β(α, β)
; t ∈ [0, 1] (2.9)
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g1(c) =


1

b− a
; c ∈ [a, b]

0 ; otherwise
(2.10)

The data range of uniform distribution will be determined based on a predefined

censoring proportion and this will be discussed in Subsection 2.4.1. Note that the

data range for the first scenario is finite.

For the second scenario, we use the Weibull distribution with shape parameter α

and scale parameter β to create event times, and the Exponential distribution with

rate parameter λ to create right-censored observations with the following density

functions

f2(t) =

 α
β
( t
β
)α−1 exp(−( t

β
)α) ; t ≥ 0

0 ; t < 0
(2.11)

g2(c) = λ exp(−λc); c ∈ [0,∞) (2.12)

For the third scenario, we will use the standard log-normal distribution to gener-

ate event times and Weibull(α, β) to generate right-censored observations with the

following density functions

f3(t) =
1

t
√

2π
exp(−(ln(t))2

2
); t ∈ (0,∞) (2.13)

g3(c) =

 α
β
( c
β
)α−1 exp(−( c

β
)α) ; c ≥ 0

0 ; c < 0
(2.14)

It is important to note that the data range in the second and third scenarios is

(0,∞). Therefore, we will use different tails’ assumptions for the last intervals when

we apply the smoothed bootstrap method.

2.4.1 First scenario: finite support

To compare the smoothed bootstrap method to Efron’s method for the case of finite

support, we create right-censored data sets from the distributions used in the first

scenario. These generated data sets can be set with a fixed censoring proportion p by

determining the two parameters of the uniform distribution [85], where the censoring

proportion p is important to be fixed to eliminate its impact on the performances

of the bootstrap methods. We first fix the parameters of the Beta distribution and
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the parameter a of the uniform distribution, then use the following formula to get

the parameter b of the uniform distribution. In the following simulations, we set the

Beta distribution parameters α = 1.2 and β = 3.2. We also define the censoring

proportion p = 0.15 and the parameter a of the uniform distribution is equal to 0.

p =

∫ 1

0

(
x− a
b− a

)

(
xα−1(1− x)β−1

Beta(α, β)

)
dx; Beta(α, β) =

Γ(α)Γ(β)

Γ(α + β)

p =
α

(b− a)× (α + β)
− a

(b− a)

(2.15)

=⇒ b =

(
α

α+β
+ pa− a

)
p

=
( 1.2
1.2+3.2

)

0.15
= 1.82 (2.16)

We generate N = 1000 data sets with sample size n = 6. Then, the smoothed

bootstrap method and Efron’s method are applied to each data set B = 1000 times.

We compute the medians of the bootstrap samples, then we compute the 10 and

20 confidence regions by Equations (2.4), (2.5) and (2.6). We then discover which

confidence regions include the true median, the median of Beta distribution. We

repeat this procedure in all N = 1000 generated data sets in order to see the actual

coverage probabilities for the true median in the 10 and 20 confidence regions. The

actual coverage probabilities for the true median in the 10 and 20 confidence regions

are outlined in Tables 2.1 and 2.2, respectively.

With Efron’s bootstrap procedure, the samples often include some right-censored

observations, so we use the Kaplan-Meier estimator in order to compute their corre-

sponding medians by finding a time t, so that Ŝ(t) = 0.50. It is wished to get 1000

bootstrap samples’ medians, but unfortunately we do not find the corresponding

medians for some bootstrap samples because the censoring rates in those bootstrap

samples are large. In this case, we have considered three options. The first one is

just neglecting all the not applicable medians, so the 10 and 20 confidence regions

are based on a number of medians which can be less than 1000. This option is re-

ferred to by E(1). The second option is applying Efron’s suggestion at each bootstrap

sample whose median is not found by the Kaplan-Meier estimator. He suggested

that the median is assumed to be the maximum event time of that bootstrap sample

[29]. This option is referred to by E(2). Finally, we apply an Exponential tail with

rate parameter λ̂∗ = − ln(Ŝ(tmax))/tmax, where tmax is the maximum event time of
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CR(i) SB E(1) E(2) E(3)

1 0.121 0.024 0.025 0.025

2 0.129 0.131 0.129 0.131

3 0.109 0.107 0.115 0.110

4 0.120 0.166 0.155 0.163

5 0.088 0.109 0.119 0.110

6 0.106 0.095 0.090 0.095

7 0.106 0.012 0.014 0.012

8 0.083 0.118 0.118 0.117

9 0.070 0.103 0.105 0.107

10 0.068 0.135 0.130 0.130

Table 2.1: The actual coverage probabilities for the median Q2 = 0.236, in the 10

confidence regions, where n = 6.

method SB E(1) E(2) E(3)

i CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i)

1 0.056 0.065 0.012 0.012 0.009 0.016 0.009 0.016

2 0.068 0.061 0.056 0.075 0.059 0.070 0.054 0.077

3 0.056 0.053 0.062 0.045 0.065 0.050 0.065 0.045

4 0.061 0.059 0.076 0.090 0.068 0.087 0.073 0.090

5 0.049 0.039 0.059 0.050 0.065 0.054 0.060 0.050

6 0.049 0.057 0.064 0.031 0.059 0.031 0.064 0.031

7 0.054 0.052 0.002 0.010 0.004 0.010 0.003 0.009

8 0.048 0.035 0.048 0.070 0.048 0.070 0.047 0.070

9 0.039 0.031 0.053 0.050 0.056 0.049 0.055 0.052

10 0.046 0.022 0.070 0.065 0.064 0.066 0.067 0.063

Table 2.2: The actual coverage probabilities for the median Q2 = 0.236, in the 20

confidence regions, where n = 6.
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10 CR 20 CR

Trial SB E(1) E(2) E(3) SB E(1) E(2) E(3)

1 41.92 205.50 188.22 197.62 53.12 231.48 210.56 228.08

2 42.50 202.80 184.96 193.66 56.32 228.56 204.56 221.20

3 35.00 205.64 187.32 197.04 50.52 233.76 212.20 228.92

4 30.40 187.40 168.88 176.14 46.36 216.68 191.92 209.68

5 33.64 178.98 166.46 171.96 53.12 208.16 189.68 202.52

6 32.68 188.20 174.96 179.68 53.08 211.12 194.08 202.56

7 36.92 192.74 177.18 181.52 54.84 215.56 198.44 205.20

8 46.08 188.32 174.14 176.50 57.16 210.56 194.76 198.04

9 43.98 192.62 180.00 179.58 55.12 217.20 200.24 204.16

10 42.04 195.98 183.28 183.78 58.12 215.36 199.56 203.00

Table 2.3: The chi-squared values obtained from coverage probabilities for Q2 =

0.236 where n = 6 and B = 1000.

the bootstrap sample. Thereby the corresponding median, Xmed, can be found by,

Xmed = − ln(0.50)/λ̂∗. This suggestion is presented in [13], we denote it by E(3). In

the last two cases, we can assure that the 10 and 20 confidence regions are based on

1000 bootstrap samples’ medians.

Tables 2.1 and 2.2 present the results of these simulations. They show the

superiority of the smoothed bootstrap method in making the coverage probabilities

in each of the 10 and 20 confidence regions close to 0.100 and 0.050, respectively.

In contrast, Efron’s bootstrap method, with the three options for the method E(1),

E(2) and E(3), leads to the coverage probabilities far from the nominal sizes 0.100

and 0.050, respectively, in most confidence regions. As a result, the discrepancy

between the estimated and nominal coverage probabilities is very high. To get the

observed statistics of the chi-square test of goodness of fit, we multiply the coverage

probabilities in Tables 2.1 and 2.2 by 1000 due to N = 1000. Hence, the discrepancy

between the actual and nominal coverage probabilities at distinct confidence levels

based on the two bootstrap methods can be assessed via the χ2-test. The resulting

χ2 values are outlined in the first row of Table 2.3.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 45.34 207.84 186.38 196.36 55.24 231.48 206.48 223.04

NA — 8628 0 0 — 8628 0 0

ABS — 493 493 493 — 493 493 493

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 22.08 167.86 162.66 158.46 25.76 182.08 179.80 175.08

NA — 2332 0 0 — 2332 0 0

ABS — 1 1 1 — 1 1 1

P-value 0.009 0.000 0.000 0.000 0.137 0.000 0.000 0.000

20 χ2 8.32 58.46 59.44 59.44 20.20 73.64 75.04 75.04

NA — 98 0 0 — 98 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.502 0.000 0.000 0.000 0.383 0.000 0.000 0.000

40 χ2 8.96 6.44 6.44 6.44 12.48 18.12 18.12 18.12

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.441 0.695 0.695 0.695 0.864 0.514 0.514 0.514

100 χ2 6.94 3.66 3.66 3.66 16.52 10.80 10.80 10.80

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.643 0.932 0.932 0.932 0.622 0.930 0.930 0.930

Table 2.4: The chi-squared values for Q2 = 0.236, and their P-values with the

corresponding NA and ABS numbers.

Now, we consider the other two quartiles (Q1 and Q3) to evaluate the bootstrap

methods. We compute the chi-squared goodness of fit values gained from the cov-

erage probabilities of both bootstrap methods for the quartiles at different sample

sizes n. They will be presented with increasing sample sizes and N = 1000 simu-

lations as we did before to show the performance of the methods. The number of

simulations is set equal to N = 1000 because we think it is suitable for our purpose.

We repeat simulations for the case of N = 1000 several times with different seeds

and they give nearly identical outcomes as illustrated in Table 2.3. We consider a

variety of sample sizes to explore whether there is an influence of sample size on

the chi-squared values or not. This helps us to observe how the bootstrap methods
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perform as the sample size increases.

In Table 2.4, the chi-squared values obtained from the coverage probabilities for

the true median based on the two bootstrap procedures are shown. When n = 6, 10

and 20, the generalization of Banks’ bootstrap method performs a better coverage

accuracy. It makes the discrepancy between the nominal and estimated coverage

probabilities lower than Efron’s method does and this is apparent from having lower

chi-squared values. Both bootstrap methods distribute the actual coverage prob-

abilities good over the 10 and 20 confidence regions when n increases to 40 and

100, but Efron’s method is mostly better because it provides lower chi-squared val-

ues. With large sample sizes, the empirical distribution can be a good proxy model

for the underlying distribution, so that Efron’s method performs well. By observ-

ing the patterns of chi-squared values in both confidence region divisions when the

sample size increases, the corresponding χ2 values to Efron’s bootstrap method go

down. For the corresponding χ2 values to the smoothed bootstrap method, there

is no pattern. The three options, E(1), E(2) and E(3), give the same χ2 values when

n = 40, 100 because we find the corresponding median to each bootstrap sample by

the Kaplan-Meier estimator.

The number NA, in Table 2.4, indicates the number of Efron bootstrap samples

whose medians are not found because there is no time satisfying Ŝ(t) = 0.50 in

these bootstrap samples, so we use methods E(2) and E(3). Also, The number ABS

means the number of Efron bootstrap samples that are including only right-censored

observations, no events, so we replace those samples by other Efron bootstrap sam-

ples at least including one event time in each. The numbers NA and ABS are out

of 1, 000, 000; they go down when the sample size increases as shown in Table 2.4.

These measures with the smoothed bootstrap method are not applicable because

the method generates bootstrap samples including only event time observations.

Table 2.5 shows the chi-squared values obtained from the coverage probabilities

for the first quartile. The SB method performs better at all different sample sizes

with only one exception when n = 100 and the confidence level divided into 20

confidence regions. The differences between the corresponding chi-squared values of

the smoothed procedure and Efron’s method decrease as the sample size increases.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 29.92 934.14 933.96 921.52 97.00 2366.84 2373.40 2355.72

NA — 1998 0 0 — 1998 0 0

ABS — 493 493 493 — 493 493 493

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 22.20 876.66 875.62 875.62 57.40 1857.84 1855.64 1855.64

NA — 104 0 0 — 104 0 0

ABS — 1 1 1 — 1 1 1

P-value 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 11.70 45.98 45.98 45.98 27.44 286.68 286.68 286.68

NA — 1 0 0 — 1 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.231 0.000 0.000 0.000 0.095 0.000 0.000 0.000

40 χ2 11.60 78.76 78.76 78.76 22.48 162.32 162.32 162.32

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.237 0.000 0.000 0.000 0.261 0.000 0.000 0.000

100 χ2 9.24 14.98 14.98 14.98 28.48 27.52 27.52 27.52

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.415 0.091 0.091 0.091 0.075 0.093 0.093 0.093

Table 2.5: The chi-squared values for Q1 = 0.117, and their P-values with the

corresponding NA and ABS numbers.

When n = 6, the smoothed bootstrap’s χ2 values are 29.92 for 10 confidence regions,

and 97.00 for 20 confidence regions, while the values corresponding to Efron’s method

with the three options are equal to 934.14, 933.96 and 921.52 for 10 confidence

regions, and 2366.84, 2373.40 and 2355.72 for 20 confidence regions, respectively.

When n = 100, the corresponding χ2 values for the SB method are 9.24 for 10

confidence regions, and 28.48 for 20 confidence regions, and for Efron’s bootstrap

with its three options the values are 14.98 for 10 confidence regions, and 27.52 for 20

confidence regions. This means that Efron’s procedure works well when the sample

size gets large. The three options, E(1), E(2) and E(3), applied for calculating the

first quartile lead to the same χ2 values when the sample sizes are n = 20, 40, 100.

This is because we get a time t, so that Ŝ(t) = 0.75 in most bootstrap samples.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 157.04 751.88 678.06 557.32 211.40 1640.24 1628.72 1335.80

NA — 52306 0 0 — 52306 0 0

ABS — 493 493 493 — 493 493 493

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 40.58 108.58 99.38 76.08 62.80 277.60 262.68 211.36

NA — 26739 0 0 — 26739 0 0

ABS — 1 1 1 — 1 1 1

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 3.78 13.08 12.24 11.54 13.88 58.52 57.2 56.44

NA — 5141 0 0 — 5141 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.925 0.159 0.200 0.241 0.791 0.000 0.000 0.000

40 χ2 6.78 17.20 17.20 17.20 29.20 32.92 32.92 32.92

NA — 113 0 0 — 113 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.660 0.046 0.046 0.046 0.063 0.025 0.025 0.025

100 χ2 12.48 11.74 11.74 11.74 45.56 44.16 44.16 44.16

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.188 0.228 0.228 0.228 0.001 0.001 0.001 0.001

Table 2.6: The chi-squared values for Q3 = 0.396, and their P-values with the

corresponding NA and ABS numbers.

Table 2.6 presents the outcomes of chi-squared values obtained from the actual

coverage probabilities for the true third quartile. The smoothed bootstrap approach

provides a better accuracy when n = 6, 10, 20, 40 than Efron’s method does in

both divisions. In other words, the SB technique leads to coverage probabilities

closer to the desired nominal sizes than Efron’s method does. When n = 100,

Efron’s method provides a better accuracy for the 10 and 20 confidence regions, but

differences are small because the corresponding chi-squared values for both bootstrap

methods are very close. When n = 40, 100, the corresponding χ2 values to the three

options of Efron’s method are equal because we get a time t met the condition

Ŝ(t) = 0.25 in most bootstrap samples. The NA numbers in the Efron bootstrap

samples decrease as the sample size increases. When n = 6, 10, 20, 40, 100, the NA
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number is 52306, 26739, 5141, 113, 0, respectively.

To illustrate the performances of the two bootstrap methods for the true quartiles

when the censoring proportion is increased, we set p = 0.30 while keeping the Beta

distribution parameters α = 1.2 and β = 3.2 as before. We also fixed the parameter

a of the uniform distribution as 0. By using Equation (2.16), the parameter b is

equal to 0.91. These values are used in the simulation studies to investigate how

the two bootstrap methods perform in terms of the coverage probabilities for the

true quartiles. The simulation results are provided in Appendix A.1, and they show

that the smoothed bootstrap method mostly outperforms Efron’s method for all

quartiles, in particular when the sample size is small or medium. Efron’s method

with a large censoring proportion performs poorly except when the sample size is

large.

2.4.2 Second scenario: infinite support

In Subsection 2.4.1, we compared the two bootstrap methods for the case of finite

support. When applying the SB method, we sample one observation uniformly

from each chosen interval. Those intervals are limited, so it is easy to sample one

observation uniformly. If the support is infinite, [0,∞), we will have one or more

intervals of the form (x(i),∞), so it will be impossible to draw one observation

uniformly from such intervals. To overcome this issue, we need a further assumption

for such intervals. BinHimd [10] assumed Exponential tail(s) for the last interval(s),

and this assumption will be applied in the following simulations.

Let us first create a right-censored data set from infinite supported distribu-

tions. We generate n observations from each distribution of the second scenario,

where Ti ∼Weibull(α,β) and Ci ∼Exponential(λ). Then, we can define the right-

censored data set through Equations (2.7) and (2.8). We can predefine the censoring

proportion, p, in the data sets in order to determine the parameter of the Exponen-

tial distribution [85]. We first fix the parameters α and β, then we use the following

formula to get the parameter λ.

p =

∫ ∞
0

(1− exp(−λx))
α

β
(
x

β
)α−1 exp(−(x/β)α) dx (2.17)
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It is hard to get a closed form expression for this integral, so we solve it numer-

ically using the R software. Let us set α = 1.5, β = 1, and p = 0.15, then λ will be

approximately equal to 0.187. These fixed parameters will be used in the following

simulations to generate data sets including right-censored observations with different

sample sizes to compare the two bootstrap methods. We use the same comparison

method as used in Subsection 2.4.1.

Tables 2.7 and 2.8 present the estimated coverage probabilities for the median of

Weibull(α = 1.5,β = 1), Q2 = 0.7832, in the 10 and 20 confidence regions based on

the smoothed bootstrap method, SB, and Efron’s bootstrap with its three options

E(1), E(2) and E(3) when n = 6. The SB method illustrates its superiority in assigning

the coverage probabilities in each of the 10 confidence regions close to 0.100 and 0.050

in each of the 20 confidence regions. In contrast, Efron’s bootstrap method with

the three options, E(1), E(2) and E(3), leads the coverage probabilities far from the

nominal level 0.100 in most of the 10 confidence regions and far from 0.050 in most

of the 20 confidence regions. As a result, the discrepancy between the estimated

and nominal coverage probabilities for Efron’s bootstrap method will be very high.

The resulting chi-squared values are given in the first row of Table 2.9, and it is

obvious that the SB method shows its superiority to Efron’s method in achieving

the smaller discrepancy between the nominal and actual coverage probabilities at

all confidence levels.

Table 2.9 shows the chi-squared values obtained from the coverage probabilities

for the median. When n = 6, 10, 20, 40 and the number of confidence regions is

10, the generalization of Banks’ bootstrap has a better coverage accuracy, and it

makes the discrepancy between the nominal and estimated coverage probabilities

lower than Efron’s method does. The SB technique is still performing well when

n = 100, but Efron’s method is better. This could be due to the influence of the

Exponential tail(s) assumed for the end interval(s) when the SB method is applied.

When n = 100 and the number of confidence regions increases to 20, the SB method

provides a better coverage accuracy. From this result, the SB method has a better

accuracy when the confidence level is divided into more cells. By observing the χ2

values as the sample size increases, the ones of Efron’s bootstrap decrease while there
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CR(i) SB E(1) E(2) E(3)

1 0.115 0.026 0.027 0.028

2 0.106 0.119 0.118 0.120

3 0.118 0.125 0.125 0.123

4 0.100 0.130 0.130 0.128

5 0.087 0.090 0.093 0.095

6 0.101 0.100 0.098 0.099

7 0.102 0.012 0.015 0.014

8 0.091 0.109 0.110 0.109

9 0.093 0.145 0.143 0.143

10 0.087 0.144 0.141 0.141

Table 2.7: The actual coverage probabilities for Q2 = 0.7832, in the 10 confidence

regions.

method SB E(1) E(2) E(3)

i CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i)

1 0.059 0.056 0.009 0.017 0.010 0.017 0.012 0.016

2 0.049 0.057 0.035 0.084 0.035 0.083 0.034 0.086

3 0.057 0.061 0.063 0.062 0.062 0.063 0.061 0.062

4 0.058 0.042 0.066 0.064 0.064 0.066 0.065 0.063

5 0.044 0.043 0.054 0.036 0.059 0.034 0.057 0.038

6 0.065 0.036 0.072 0.028 0.069 0.029 0.072 0.027

7 0.068 0.034 0.004 0.008 0.006 0.009 0.006 0.008

8 0.056 0.035 0.054 0.055 0.055 0.055 0.053 0.056

9 0.054 0.039 0.086 0.059 0.084 0.059 0.083 0.060

10 0.048 0.039 0.086 0.058 0.083 0.058 0.086 0.055

Table 2.8: The actual coverage probabilities for Q2 = 0.7832, in the 20 confidence

regions.

is no pattern with the smoothed bootstrap method’s chi-squared values. The reason

of missing a pattern with the SB method is the sampling process, where we sample

uniformly from the limited intervals, and we use the Exponential tail(s) assumed for
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 10.58 192.48 180.86 179.30 41.48 255.08 239.28 245.44

NA — 5968 0 0 — 5968 0 0

ABS — 699 699 699 — 699 699 699

P-value 0.306 0.000 0.000 0.000 0.002 0.000 0.000 0.000

10 χ2 6.74 115.10 113.94 117.18 14.12 165.36 161.68 165.20

NA — 981 0 0 — 981 0 0

ABS — 14 14 14 — 14 14 14

P-value 0.664 0.000 0.000 0.000 0.777 0.000 0.000 0.000

20 χ2 13.36 33.40 33.40 33.40 34.52 88.72 88.72 88.12

NA — 106 0 0 — 106 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.147 0.000 0.000 0.000 0.016 0.000 0.000 0.000

40 χ2 16.10 17.76 17.76 17.76 31.48 33.24 33.24 33.24

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.065 0.038 0.038 0.038 0.036 0.023 0.023 0.023

100 χ2 12.40 6.56 6.56 6.56 24.48 26.16 26.16 26.16

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.192 0.683 0.683 0.683 0.178 0.126 0.126 0.126

Table 2.9: The chi-squared values for Q2 = 0.7832, and their P-values with the NA

and ABS numbers.

the end interval(s) to sample from. The three options, E(1), E(2) and E(3), give the

same χ2 values when the sample sizes are 40 and 100 because the median exists for

each bootstrap sample.

For the first quartile, the SB method has a better accuracy of all different sample

sizes considered as shown in Table 2.10. The differences between the corresponding

chi-squared values of the smoothed procedure and Efron’s method decrease as the

sample size increases in both divisions of confidence level. For example when n = 6

and the number of confidence regions is 10, the SB method’s chi-squared value is

36.28 while Efron’s method with the three options are equal to 959.10, 955.56, and

955.56, respectively. With the largest sample size considered, n = 100, the χ2 value
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 36.28 959.10 955.56 955.56 96.04 2171.16 2159.92 2159.72

NA — 2051 0 0 — 2051 0 0

ABS — 699 699 699 — 699 699 699

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 14.48 756.78 752.94 756.78 60.48 1406.24 1404.48 1406.24

NA — 124 0 0 — 124 0 0

ABS — 14 14 14 — 14 14 14

P-value 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 15.58 73.26 73.26 73.26 43.08 343.96 343.96 343.96

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.076 0.000 0.000 0.000 0.001 0.000 0.000 0.000

40 χ2 7.48 98.82 98.82 98.82 22.08 147.52 147.52 147.52

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.587 0.000 0.000 0.000 0.280 0.000 0.000 0.000

100 χ2 7.30 13.04 13.04 13.04 23.52 30.88 30.88 30.88

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.606 0.161 0.161 0.161 0.215 0.042 0.042 0.042

Table 2.10: The chi-squared values for Q1 = 0.4358, and their P-values with NA

and ABS numbers.

of the SB method is 7.30 while those of Efron’s method with its three options are

equal to 13.04. This illustrates that Efron’s procedure works better when the sample

size gets large, as was also shown in Table 2.5 for finite support. The three options,

E(1), E(2) and E(3), applied for calculating the first quartiles lead to the same χ2

values when the sample sizes are n = 20, 40, and 100. This is because we get a time

t, so that Ŝ(t) = 0.75 in each bootstrap sample. The NA number as shown in this

table decreases as the sample size increases. The NA number is 2051 and 124 for

n = 6 and 10, respectively, while there is no NA values for n = 20, 40, and 100.

Each Efron’s bootstrap sample has a higher chance to have at least one event time

observation when the sample size gets larger. The ABS number is 699 and 14 for

n = 6 and 10, respectively, and it is 0 for n = 20, 40 and 100.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 23.70 689.00 618.70 549.36 54.96 1323.96 1271.80 1114.52

NA — 32959 0 0 — 32959 0 0

ABS — 699 699 699 — 699 699 699

P-value 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 25.50 110.32 109.88 112.62 50.92 181.80 194.68 183.24

NA — 15032 0 0 — 15032 0 0

ABS — 14 14 14 — 14 14 14

P-value 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 12.20 10.82 10.24 10.56 23.76 25.80 27.36 27.56

NA — 3019 0 0 — 3019 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.202 0.288 0.331 0.307 0.206 0.136 0.097 0.092

40 χ2 11.12 11.26 11.26 11.26 22.64 21.16 21.16 21.16

NA — 96 0 0 — 96 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.268 0.258 0.258 0.258 0.254 0.328 0.328 0.328

100 χ2 12.68 8.76 8.76 8.76 26.24 25.64 25.64 25.64

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.178 0.460 0.460 0.460 0.124 0.141 0.141 0.141

Table 2.11: The chi-squared values for Q3 = 1.2433, and their P-values with the

NA and ABS numbers.

Table 2.11 outlines the chi-squared values conducted from the coverage prob-

abilities for the third quartile. The SB method provides a better accuracy when

n = 6, 10 and 40 than Efron’s method does in the division of 10 confidence regions.

This means that the discrepancy between nominal and estimated coverage probabil-

ities are lower with the SB method. When n = 20 and 100, it distributes the actual

coverage probability equally over the 10 confidence regions, but Efron’s method is

better. Also Efron’s method is better when n = 40 and 100 and the global measure

of coverage accuracy is divided into 20 segments. At these sample sizes, the χ2 val-

ues corresponding to the three options E(1), E(2), E(3) of Efron’s method are equal

because we find the corresponding third quartiles for most bootstrap samples. As

the sample size increases, the chi-squared values of Efron’s method generally decline,
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which was also the case of the first and second quartiles in Tables 2.9 and 2.10.

One may want to investigate how the two bootstrap methods perform for different

quantiles. Therefore, we repeat the same procedure of comparisons as we did before,

but for quantiles 0.10 and 0.90. We use the same seeds and the same parameter

values of the generating data sets used for the second scenario, where the censoring

proportion is equal to 0.15. The summary of the chi-squared values obtained from

the estimated coverage probabilities for q0.10 and q0.90 is presented in Appendix A.2.

During simulations, some practical notes have been observed, so it is good to

present them in order to give a close view for the two bootstrap methods’ perfor-

mances. The first note is that Efron’s bootstrap method samples from the original

data set, so it is possible for the bootstrap samples to include right-censored ob-

servations and ties. Also in some cases, this method generates some samples that

include only right-censored observations, so they must be replaced by other boot-

strap samples that include at least one event time. In contrast, the generalization

of Banks’ bootstrap generates samples that contain only events and ties are with

probability zero because the method allows to sample from the whole data range.

Secondly, the Kaplan-Meier estimator is used in Efron’s bootstrap samples to com-

pute the functions of interest, but we sometimes cannot find those functions due to

the large proportion of censoring, so we have used the modifying assumptions E(1),

E(2) and E(3). Thirdly, due to the process of sampling for the SB method, there

is no pattern for the corresponding chi-squared values as the sample size increases.

Finally, when the sample size is large, Efron’s method mostly performs better than

the SB method because the empirical distribution fits the data well.

In the following subsection, we shall use Weibull tails for the last intervals and

compare this to the Exponential tails to investigate if this may lead to lower chi-

squared values.

2.4.3 Third scenario: infinite support

In Subsection 2.4.2, we assumed Exponential tails for the infinite intervals of the

SB method, and we conducted comparisons with Efron’s bootstrap method through

simulations to study their performances in terms of the coverage probabilities for
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the quartiles. We found that the smoothed bootstrap achieved better coverage

probabilities, in particular when the sample size is small or medium, but in some

cases when n is large, Efron’s method performs better. We next assume Weibull

tails instead to investigate whether this may lead to better coverage probabilities

for the same functions of interest.

In the following simulation studies, we assume a standard log-normal distribution

for event times and the Weibull(α = 3, β = 3.7) distribution for right-censored

observations, where the censoring proportion in the generating data sets is set equal

to p = 0.15. To fit Weibull tails for the last intervals of the smoothed bootstrap

method, we assume that each generating data set is from a Weibull distribution

with shape parameter α∗ and scale parameter β∗, and then we get the maximum

likelihood estimates for α∗ and β∗ through Equation (2.18), which is presented in

[56, 70].

L =
n∏
i=1

(f(xi;α
∗, β∗))di (S(xi;α

∗, β∗))1−di (2.18)

where f(.) is the probability density function of a Weibull distribution, and S(.) is

the survival function of a Weibull distribution. di = 0 if xi is a censored observation,

and di = 1 if xi is an event time.

After estimating the parameters α∗ and β∗, we only keep the estimated shape

parameter, α̂∗, and use it for the last intervals, and neglect the estimated scale

parameter, β̂∗. We do that to have the same shape for all tails assumed for the last

intervals, but with different scales depending on the corresponding MXn+1(x(i),∞)

values assigned to the end intervals. We assume the tail of Weibull(α̂∗, β(i)) for any

interval in the form of (x(i),∞), with scale parameter β(i) obtained by the following

formula

β(i) =
x(i)(

− ln(MXn+1(x(i),∞))
)1/α̂∗ (2.19)

Hence, we use the fitted Weibull tail for the interval (x(i),∞) if it is chosen during

the smoothed bootstrap. This new assumption for the tail intervals is referred to

by SBw, and we refer to the method with Exponential tails by SB as before.

Table 2.12 presents the chi-squared values obtained from the actual coverage

probabilities for Q1 = 0.509 on the base of using the smoothed bootstrap with its
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10 CR 20 CR

n measures SB SBw E(1) E(2) E(3) SB SBw E(1) E(2) E(3)

6 χ2 24.06 24.38 962.34 946.68 974.80 109.68 110.20 2509.36 2460.76 2539.16

NA — — 5841 0 0 — — 5841 0 0

ABS — — 1207 1207 1207 — — 1207 1207 1207

P-value 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 9.04 9.04 917.08 917.62 912.78 67.20 67.20 2286.88 2270.72 2287.48

NA — — 2437 0 0 — — 2437 0 0

ABS — — 145 145 145 — — 145 145 145

P-value 0.434 0.434 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 14.80 14.80 64.08 64.08 64.08 45.84 45.84 154.84 154.84 154.84

NA — — 11 0 0 — — 11 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.097 0.097 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

40 χ2 19.04 19.04 25.98 25.98 25.98 39.96 39.96 59.12 59.12 59.12

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.025 0.025 0.002 0.002 0.002 0.003 0.003 0.000 0.000 0.000

100 χ2 9.06 9.06 5.84 5.84 5.84 37.60 37.60 27.56 27.56 27.56

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.432 0.432 0.756 0.756 0.756 0.007 0.007 0.092 0.092 0.092

Table 2.12: The chi-squared values for Q1 = 0.509, and their P-values with the NA

and ABS numbers.

two assumptions for the tail intervals, SB and SBw, and Efron’s method with its

three modifications, E(1), E(2) and E(3). A very slight difference occurs between the

χ2 values corresponding to SB and SBw when the sample size is 6 in both divisions of

the confidence regions. Both SB and SBw provide the same χ2 values when n = 10,

20, 40 and 100 in both divisions of the global measure of coverage accuracy. This

is because the first quartile is located far from the tail interval(s), so the estimated

coverage probabilities are not very much affected by the two distributions’ tails.

Efron’s bootstrap approach performs better coverage probabilities only when the

sample size is 100 in both divisions of the confidence regions.

From the estimated coverage probabilities for Q2 = 1, Table 2.13 presents the χ2
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10 CR 20 CR

n measures SB SBw E(1) E(2) E(3) SB SBw E(1) E(2) E(3)

6 χ2 26.10 26.84 791.26 746.94 936.34 46.28 47.72 879.16 844.68 991.00

NA — — 50287 0 0 — — 50287 0 0

ABS — — 1207 1207 1207 — — 1207 1207 1207

P-value 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 8.88 9.36 116.74 108.60 113.76 26.68 27.48 139.08 140.28 146.12

NA — — 19858 0 0 — — 19858 0 0

ABS — — 145 145 145 — — 145 145 145

P-value 0.448 0.405 0.000 0.000 0.000 0.112 0.094 0.000 0.000 0.000

20 χ2 6.80 6.80 104.44 103.54 107.36 13.32 13.32 135.44 138.48 144.28

NA — — 2854 0 0 — — 2854 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.658 0.658 0.000 0.000 0.000 0.822 0.822 0.000 0.000 0.000

40 χ2 4.62 4.62 42.76 42.76 42.76 12.04 12.04 57.84 57.84 57.84

NA — — 18 0 0 — — 18 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.866 0.866 0.000 0.000 0.000 0.884 0.884 0.000 0.000 0.000

100 χ2 5.96 5.96 12.02 12.02 12.02 12.88 12.88 17.08 17.08 17.08

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.744 0.744 0.212 0.212 0.212 0.845 0.845 0.584 0.584 0.584

Table 2.13: The chi-squared values for Q2 = 1, and their P-values with the NA and

ABS numbers.

values of the smoothed bootstrap and Efron’s method. When the sample sizes are 6

and 10, SB and SBw provide about the same χ2 values, and they provide identical χ2

values when n = 20, 40 and 100 in both divisions of the confidence regions. These

results occur due to two reasons. First, increasing the sample size increases the

number of intervals, n+ 1, partitioning the sample space and the number of infinite

intervals is few in comparison to the number of finite intervals. Secondly, the median

location is not close to the tail region. Therefore, the coverage probabilities are very

slightly influenced by the two tails assumptions, and this is obvious by looking up

the corresponding χ2 values. The smoothed bootstrap with both assumptions for

the tail intervals are much better than Efron’s method with its three modifications
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10 CR 20 CR

n measures SB SBw E(1) E(2) E(3) SB SBw E(1) E(2) E(3)

6 χ2 22.44 52.52 1670.96 1516.50 352.86 83.92 185.60 3478.60 3684.96 1100.52

NA — — 218705 0 0 — — 218705 0 0

ABS — — 1207 1207 1207 — — 1207 1207 1207

P-value 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 24.04 26.68 532.76 590.16 181.30 71.28 77.84 1380.88 1706.72 647.64

NA — — 153425 0 0 — — 153425 0 0

ABS — — 145 145 145 — — 145 145 145

P-value 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 10.84 8.62 29.80 39.32 28.86 26.40 23.72 140.28 177.36 99.56

NA — — 79850 0 0 — — 79850 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.287 0.473 0.000 0.000 0.001 0.119 0.207 0.000 0.000 0.000

40 χ2 10.02 9.98 10.08 17.74 19.74 33.28 33.40 56.60 50.72 47.48

NA — — 29450 0 0 — — 29450 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.349 0.352 0.344 0.038 0.020 0.022 0.022 0.000 0.000 0.000

100 χ2 11.94 11.94 5.10 6.24 6.24 27.68 27.68 23.92 24.36 24.36

NA — — 2356 0 0 — — 2356 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.217 0.217 0.826 0.716 0.716 0.090 0.090 0.199 0.183 0.183

Table 2.14: The chi-squared values for Q3 = 1.963, and their P-values with the NA

and ABS numbers.

in terms of making the discrepancy between the estimated and nominal coverage

probabilities for the true median small, particularly when n = 6, 10, 20 and 40.

This is true for both divisions of the confidence regions.

In Table 2.14, we compute the χ2 values for the third quartile, Q3 = 1.963. When

n = 6, the smoothed bootstrap method provides very distinct χ2 values depending

on whether we use Exponential or Weibull tails for the end intervals in both divisions

of the confidence regions. When the number of confidence regions is 10, the χ2 value

with the Exponential assumption is 22.44 while it is 52.52 when we assume Weibull

tails. The corresponding χ2 value of the SB method is 83.92, and the one of SBw is

185.60 for the case of 20 confidence regions. These huge differences between the χ2

values occur because Weibull tails are pulled in, so they do not cover the true third
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quartile. In other words, the tails of Weibull distribution are more likely to be as

normal tails because the shape parameters, α̂∗, are greater than 1. As the sample size

increases to 10, 20 and 40, the differences between the χ2 values get smaller in both

divisions of the confidence regions. When n = 100, the χ2 values of the SB and SBw

methods are identical in both divisions of the confidence regions. Efron’s bootstrap

technique with its three modifications provides better coverage probabilities than

the smoothed bootstrap at this sample size, but the smoothed bootstrap method

with the two tails assumptions performs better at the other different sample sizes.

The Exponential and Weibull assumptions for the end intervals generally lead

to identical results for the three quartiles, in particular when n is large. For a

variety of sample sizes, the Weibull assumption provides about the same χ2 values

as Exponential tails, which is obvious from Tables 2.12, 2.13 and 2.14. However,

when the sample size is small and the function of interest is Q3, which is located in

or close to the tail part, it is very much better to assume Exponential tails because

they are most likely to cover the function of interest. One example for this exception

can be presented from Table 2.14. When n = 6, the corresponding χ2 values to SB

are 22.44 and 83.92 while the SBw’s χ2 values are 52.52 and 185.60 with the 10

and 20 confidence regions, respectively. Assuming Exponential tails consumes less

calculation time; the SBw method needs approximately 47% more computational

time than the SB procedure. Therefore, the overall conclusion is that the smoothed

bootstrap method with Exponential tails assumption is better than with the Weibull

assumption.

2.5 Smoothing using Exponential distributions

In the previous section, when applying the SB method, one observation is sampled

uniformly from each interval. We now assume an Exponential tail for each interval

regardless whether it is finite or not, then we sample observations from these tails.

This assumptions is investigated to show whether it helps to provide lower chi-

squared values or not. For each interval, we assume an Exponential distribution with

rate parameter λ(i) or λik depending on the form of interval, whether it is (t(i), t(i+1))
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or (cik, t(i+1)), where i = 0, 1, . . . , u ≤ n, 1 ≤ k ≤ li and the rate parameters can be

computed by Equations (2.20) and (2.21).

Xn+1 ∼ Exp(λ(i)) : MXn+1(t(i), t(i+1)) = exp(−λ(i)t(i))− exp(−λ(i)t(i+1)) (2.20)

Xn+1 ∼ Exp(λik) : MXn+1(cik, t(i+1)) = exp(−λikcik)− exp(−λikt(i+1)) (2.21)

Then we sample from the assumed tails within the bounds of the corresponding

intervals. Equations (2.20) and (2.21) are hard to be in simple forms for λ(i) and

λik, but it is possible to calculate the rates numerically by R program with nleqslv

package [45].

For the following simulations, we repeat the same comparisons as in Subsection

2.4.1, but we perform the simulation using this new assumption, which is referred to

by SBexp. Recall that we assume the Beta distribution with α = 1.2 and β = 3.2 for

event time observations, and the uniform distribution with a = 0 and b = 1.82, for

right-censored observations. The censoring proportion in the generating data sets is

set equal to 0.15.

Table 2.15 reports the chi-squared values obtained from the coverage probabilities

for the first quartile Q1 based on the two assumptions of sampling for the smoothed

bootstrap method and Efron’s method with its three options. When the sample

size is small, n = 6, 10, a clear difference is observed between the corresponding

chi-squared values of the two ways of sampling for the smoothed bootstrap method,

SBexp and SB. As a consequence of increasing the sample size, the difference between

the chi-squared values decreases, and they are nearly identical when n gets large.

This is of course because the intervals’ lengths become shorter as the sample size in-

creases, so the two assumptions of sampling lead to the same results. The smoothed

bootstrap method with its two modifications provides better accuracy than Efron’s

method in all cases except when n = 100 and the division includes 20 confidence

regions.

Table 2.16 lists the chi-squared values for the second quartile Q2 based on the

two bootstrap methods with their related modifications. For the corresponding

options to the smoothed bootstrap method, a small difference occurs between their

corresponding chi-squared values when the sample size is small, then the difference
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10 CR 20 CR

n measures SBexp SB E(1) E(2) E(3) SBexp SB E(1) E(2) E(3)

6 χ2 34.90 27.44 936.00 931.78 919.72 96.24 98.12 2370.80 2375.96 2358.80

NA — — 2324 0 0 — — 2324 0 0

ABS — — 623 623 623 — — 623 623 623

P-value 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 13.72 20.82 898.34 897.22 897.22 52.80 62.60 1919.40 1917.04 1917.04

NA — — 127 0 0 — — 127 0 0

ABS — — 1 1 1 — — 1 1 1

P-value 0.133 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 14.16 14.22 46.26 46.26 46.26 32.24 32.40 287.36 287.36 287.36

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.117 0.115 0.000 0.000 0.000 0.029 0.028 0.000 0.000 0.000

40 χ2 8.14 8.30 70.12 70.12 70.12 18.52 18.24 158.44 158.44 158.44

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.520 0.504 0.000 0.000 0.000 0.488 0.506 0.000 0.000 0.000

100 χ2 11.80 11.36 13.58 13.58 13.58 29.68 30.32 26.28 26.28 26.28

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.225 0.252 0.138 0.138 0.138 0.056 0.048 0.123 0.123 0.123

Table 2.15: The chi-squared values for Q1 = 0.117, and their P-values with the

corresponding the NA and ABS numbers.

almost disappears for large n. In other words, the two ways of sampling applied

on the smoothed bootstrap method provide about the same coverage probabilities

when the sample size is large, so as a result they have similar chi-squared values. In

this table, it is clear that the SB and SBexp methods are better in terms of defining

the coverage probabilities for the median when n = 6, 10 and 20, and they provide

good coverage probabilities when n = 40 and 100. However, Efron’s method mostly

provides better outcomes for large n.

Table 2.17 presents the chi-squared values obtained from the coverage probabil-

ities for the third quartile Q3 based on the smoothed bootstrap method with the

two sampling techniques and Efron’s method with its three options. The SB and
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10 CR 20 CR

n measures SBexp SB E(1) E(2) E(3) SBexp SB E(1) E(2) E(3)

6 χ2 45.48 42.80 204.42 186.96 196.40 55.60 54.08 230.56 209.76 226.96

NA — — 9407 0 0 — — 9407 0 0

ABS — — 623 623 623 — — 623 623 623

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 20.82 24.02 159.46 152.62 151.80 26.84 29.60 174.72 168.84 167.28

NA — — 2490 0 0 — — 2490 0 0

ABS — — 1 1 1 — — 1 1 1

P-value 0.013 0.004 0.000 0.000 0.000 0.108 0.057 0.000 0.000 0.000

20 χ2 6.08 6.12 56.86 57.88 57.88 17.76 15.36 72.36 73.72 73.72

NA — — 96 0 0 — — 96 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.732 0.728 0.000 0.000 0.000 ”0.539 ” 0.699 0.000 0.000 0.000

40 χ2 10.74 10.84 6.26 6.26 6.26 14.68 14.92 16.28 16.28 16.28

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.294 0.287 0.714 0.714 0.714 0.743 0.728 0.639 0.639 0.639

100 χ2 9.98 9.86 6.48 6.48 6.48 19.56 19.88 13.40 13.40 13.40

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.352 0.362 0.691 0.691 0.691 0.421 0.402 0.817 0.817 0.817

Table 2.16: The chi-squared values for Q2 = 0.236, and their P-values with the

corresponding the NA and ABS numbers.

SBexp methods provide about the same chi-squared results in all cases while the op-

tions of Efron’s method have different outcomes when the sample size is small, and

they provide identical results when n gets large due to having corresponding third

quartile to almost all bootstrap samples, the NA number is zero or close to zero.

Both smoothed bootstrap methods are better in defining the coverage probabilities

in the 10 and 20 confidence regions when n = 6, 10, 20 and 40, but Efron’s method

is better at the sample size 100 in both divisions of the confidence regions. This

is because the empirical distribution fits the data well, and as a consequence, we

obtain smaller chi-squared values than those of the SB and SBexp methods. From

Tables 2.15, 2.16 and 2.17, it seems that the SB and SBexp methods provide about
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10 CR 20 CR

n measures SBexp SB E(1) E(2) E(3) SBexp SB E(1) E(2) E(3)

6 χ2 150.04 148.04 712.70 648.10 533.68 207.28 199.20 1583.12 1586.80 1295.72

NA — — 53422 0 0 — — 53422 0 0

ABS — — 623 623 623 — — 623 623 623

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 40.90 41.34 101.66 91.66 67.40 69 63.88 268.44 251.96 199.84

NA — — 26855 0 0 — — 26855 0 0

ABS — — 1 1 1 — — 1 1 1

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 5.26 4.70 14.46 14.34 13.50 17.60 16.72 54.00 52.20 51.24

NA — — 5027 0 0 — — 5027 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.811 0.860 0.107 0.111 0.141 0.549 0.609 0.000 0.000 0.000

40 χ2 10.82 10.44 19.14 19.14 19.14 32.28 30.88 39.04 39.04 39.04

NA — — 111 0 0 — — 111 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.288 0.316 0.024 0.024 0.024 0.029 0.042 0.004 0.004 0.004

100 χ2 12.58 12.58 9.74 9.74 9.74 41.32 41.24 37.60 37.60 37.60

NA — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0

P-value 0.183 0.183 0.372 0.372 0.372 0.002 0.002 0.007 0.007 0.007

Table 2.17: The chi-squared values for Q3 = 0.396, and their P-values with the

corresponding the NA and ABS numbers.

the same results.

2.6 Estimates for the survival function

The interest of analyzing survival data arises in many important and interesting

applications related to medicine, engineering, economics and biology. The Kaplan-

Meier (KM) estimator [53] has been widely used for inferences on the survival func-

tion. In this section, the proposed smoothed bootstrap method is used to estimate

the survival function, and the results are compared to the KM estimates. Point-

wise bootstrap confidence intervals for the survival function are also derived. The

presentation is based on two data sets from the literature [6, 81].
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Interval M -function

(0,2) 0.0909

(2,4) 0.0909

(4,14) 0.0909

(14,24) 0.0909

(21+,24) 0.0130

(24,27) 0.1039

(27,33) 0.1039

(33,51) 0.1039

(51,∞) 0.1039

(60+,∞) 0.0519

(72+,∞) 0.1558

Table 2.18: The M -function values for the 11 intervals created by Bartholomew’s

data set.

Example 2.6.1 A lifetime data set for 10 pieces of equipment was provided by

Bartholomew [6]; the collected data points are 2, 4, 14, 21+, 24, 27, 33, 51, 60+, 72+,

where the + sign indicates a right-censored observation. We want to estimate the

lifetime distribution of the equipment by the smoothed bootstrap method, as pre-

sented in Section 2.3. Table 2.18 shows the 11 intervals and corresponding M -

function values, according to Equations (2.1) and (2.2), for the SB method.

We create B = 1000 bootstrap samples of size n = 10, and derive the empirical

survival function of each sample. This leads to 1000 empirical survival functions, so

there are 1000 survival function estimates at each time t. We take the averages of

these estimates at times t = 0, 1, 2, 3, . . . , 100 to show the estimated survival curve,

and consider these resulting values as the bootstrap estimate Ŝ∗boot(t) at those times

t. Figure 2.1 presented the estimated survival function.

Figure 2.1 shows the estimated survival function based on the SB method (orange

line) and the Kaplan-Meier estimator (black step function). It is obvious that the

survival function estimate by our proposed bootstrap method is smoother than the

Kaplan-Meier estimate because the latter only decreases at the 7 observed event
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Figure 2.1: The survival curves for Bartholomew’s data set based on the smoothed

bootstrap method with its 90% bootstrap quantile confidence intervals, and the KM

estimate.

times. At each observed event time, the smoothed bootstrap estimate is greater

than the Kaplan-Meier estimate, and the smoothed bootstrap estimate crosses the

Kaplan-Meier estimate between each two observed event times. The two green

lines present the 90% confidence intervals for the survival function based on the

SB method at times t = 0, 1, 2, 3, . . . , 100. These are derived by taking the 50th

and 950th ordered values of the 1000 empirical survival functions resulting from the

application of the SB method. At each value of t, the method provides Ŝ∗(50)(t) and

Ŝ∗(950)(t), where the former is the lower bound and the latter is the upper bound

for the confidence interval. These bounds of the bootstrap confidence intervals

are actually step functions because each empirical survival function based on a SB

sample, at any time t, can be equal to only one of the 11 values 0, 0.1, . . . , 0.9, 1.

Example 2.6.2 To study the performances of the KM estimator and the smoothed

bootstrap method with large sample size, we use the lung cancer data, which was

provided by Therneau [81] and it is available in the survival package in R. This data

contains the survival times for 138 patients in days since the cancer was detected. In
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Figure 2.2: The survival curves for lung cancer data based on the smoothed boot-

strap method with its 90% quantile confidence intervals, and the KM estimator.

this data set, the censoring proportion is 0.188, and there are 17 tied observations.

These ties are broken by adding a small value to some of the tied observations in

order to apply our smoothed bootstrap method. It is possible to deal with the ties

in several ways [41], but this is not discussed further in this thesis because we think

the resulting inferences are almost identical. The influence of the ways that ties

are dealt with is left as a future work. Effectively, if one has a tie between two or

more observed event times, this time value has a positive probability to be chosen

for the bootstrap samples. If there is a tie between an observed event time and

a right-censored observation, then we assume that the censored time has occurred

fractionally later than the event time. If we get ties between multiple right-censored

times, this does not really affect the method.

Figure 2.2 presents the estimated survival function for the lung cancer data based

on the smoothed bootstrap method and the Kaplan-Meier estimate. Because the

samples size is large and we have many event times, these two estimates are nearly

identical. The two green lines indicate the 90% quantile confidence intervals for

the survival function at each time t, which are narrower in this example than the
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confidence intervals in Example 2.6.1, due to the larger sample size. It should be

noted that these bounds are still step functions, but of course the steps are quite

small, so the functions are quite smooth.

It is apparent that the SB method provides a smoother survival function estimate

than the Kaplan-Meier estimate as the KM curve only decreases at the observed

event times, and this is obvious when the sample size is small. The bounds of the

bootstrap confidence intervals are actually step functions, because each empirical

survival function at any time t can be equal to only one of n+ 1 values. When the

sample size is large with many observed event times, the estimates based on the two

methods are nearly identical as appeared in Example 2.6.2.

To obtain smoothed pointwise confidence intervals for the survival function, we

can use the linear and log-transformed confidence intervals as presented by Borgan

and Liestøl [12] and Klein and Moeschberger [54], which for confidence level 100(1−

2α)%, have the property that the true survival function at time t falls in the interval

with approximate confidence 100(1− 2α)%. We will study the performance of such

confidence bounds based on our smoothed bootstrap method through simulations in

Section 2.7. The 100(1−2α)% linear pointwise confidence interval can be calculated

by (
Ŝ(t)∓ Z(1−2α) × SD(Ŝ(t))

)
(2.22)

and the 100(1−2α)% log-transformed pointwise confidence interval can be calculated

by (
(Ŝ(t))

1
θ , (Ŝ(t))θ

)
(2.23)

where θ = exp(
Z(1−2α)×SD(Ŝ(t))

Ŝ(t)×ln(Ŝ(t)) ) and Z(1−2α) is the (1−2α) percentile of the standard

normal distribution. SD(Ŝ(t)) is the standard deviation of the estimated survival

function, where the estimate can be either based on the smoothed bootstrap method

or the Kaplan-Meier estimate. If specified lower bound becomes negative or the

upper bound exceeds 1, we restrict these intervals to be in [0, 1]. Note that the linear

confidence interval is symmetric about the survival function estimate as long as the

specified bounds are inside the interval [0, 1], but the log-transformed confidence

interval is not symmetric about the survival function estimate.

To construct either one of the smoothed pointwise confidence intervals for a
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Figure 2.3: The estimated survival functions for the equipment data based on the

smoothed bootstrap method and the KM estimator with their 90% linear confidence

intervals.

survival function at time t, the standard deviation of the survival function estimate

at time t should be computed first. For the survival function estimate based on

the smoothed bootstrap at time t, Ŝ∗boot(t), the standard deviation can be calculated

by Equation (1.2), with θ̂∗j replaced by Ŝ∗j(t). For the Kaplan-Meier estimate,

this is provided by the well-known Greenwood’s formula [42, 53]. Then Equations

(2.22) and (2.23) can be used to derive the linear and the log-transformed confidence

intervals for both estimation methods discussed here. Next we revisit Examples 2.6.1

and 2.6.2 to show the smoothed confidence intervals.

For the data of Example 2.6.1, Figure 2.3 presents the smoothed bootstrap

and the Kaplan-Meier estimates of the survival function, together with their corre-

sponding 90% linear confidence intervals. The smoothed bootstrap method provides

smooth confidence interval bounds for the survival function, and this is contrary to

the confidence intervals’ bounds based on the KM estimate. This is due to the fact

that the KM estimate drops only at the event times, and this leads to the confidence

intervals’ bounds being step functions. The confidence intervals are mostly of simi-
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Figure 2.4: The estimated survival functions for the equipment data based on the

smoothed bootstrap method and the KM estimator with their 90% log-transformed

confidence intervals.

lar width, however for values of t beyond the largest observation, the Kaplan-Meier

estimate and its confidence interval remain constant while the smoothed bootstrap

estimate decreases and its confidence interval becomes more narrow.

The log-transformed confidence interval is better than the linear confidence in-

terval in the sense of coverage accuracy [12], in particular when the confidence level

is high; for example 0.90 or 0.95. Figure 2.4 presents the 90% log-transformed confi-

dence interval for the survival function based on the same estimates used to present

the 90% linear confidence interval in Figure 2.3. It is clear that the confidence inter-

val bounds based on the Kaplan-Meier estimate are step functions with steps only at

the observed event times, and this is contrary to the bounds based on the smoothed

bootstrap estimate, which are more smooth. Both confidence intervals, whether they

are based on the SB method or the KM estimator, have similar pattern, and this

can be seen in Figures 2.3 and 2.4. The main difference is that the symmetry is not

observed with the log-transformed confidence interval around the survival function

while the linear confidence interval is symmetric as presented in Figure 2.3 (except
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Figure 2.5: The survival curves for the lung cancer data based on the smoothed

bootstrap method and the KM estimator with their 90% linear confidence intervals.
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Figure 2.6: The survival curves for the lung cancer data based on the smoothed

bootstrap method and the KM estimator with their 90% log-transformed confidence

intervals.
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in the tails due to the logical restriction to the interval [0, 1]). We can conclude that

these two pointwise confidence intervals can have smooth bounds when using the

smoothed bootstrap estimate of the survival function, which is intuitively attractive.

Of course, due to the small sample size in this data set, the Kaplan-Meier estimate

and the smoothed bootstrap estimate for the survival function are quite different,

and this leads to have quite different confidence intervals. Detailed investigation of

the performance of these bounds in terms of coverage of the real underlying survival

function is studied in the next section.

For the data in Example 2.6.2, Figures 2.5 and 2.6 present the linear and log-

transformed confidence intervals, respectively, for the survival function estimated by

the smoothed bootstrap method and the Kaplan-Meier estimator. In Figure 2.2, we

observed that the survival function estimates by the two methods are quite similar,

and Figures 2.5 and 2.6 show that the corresponding confidence intervals are very

similar as well. The confidence intervals based on the smoothed bootstrap method

and the KM estimator are nearly identical. From this situation, it is possible to

conclude that for large sample size with many observed event times, both methods

are likely to provide about the same outcomes, and this is particularly useful because

of the well-known excellent large sample properties of the Kaplan-Meier estimator

[54], which therefore also seem to hold for the SB method.

2.7 A smoothed Kaplan-Meier bootstrap method

The bootstrap method for right-censored data, presented by Efron [31], has been

widely used in the literature for survival inferences, see e.g. [43, 63]. Bilker and Wang

[9] used the bootstrap method to obtain confidence bands for the bootstrap estimate

of the survival curve, and Heller and Venkatraman [47] used it for testing. This

bootstrap method is easy to implement, but it does not perform well if the sample

size is small due to the ties and censored observations occurring in the bootstrap

samples [63]. Therefore, one can consider a new alternative smoothed bootstrap

method which basically relies on the Kaplan-Meier estimator. In this section, we

present the alternative bootstrap method and compare it to our smoothed bootstrap
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method through simulation studies.

The alternative method is based on the Kaplan-Meier estimate, and the method

is referred to by SBa. Suppose that there are n observations including u events

and v = n − u right-censored observations with no ties. The n observations are

ordered, then based on the event data points, u+ 1 intervals of the form (t(i),t(i+1))

are created, where 0 ≤ i ≤ u and t(0) = 0 and t(u+1) = ∞. Each interval of the

form (t(i),t(i+1)) is specified with probability P(i), where the probability P(i) can be

calculated by

P(i) = P(t(i) < t ≤ t(i+1)) = Ŝ(t(i))− Ŝ(t(i+1)) (2.24)

where Ŝ(t(i)) and Ŝ(t(i+1)) are the KM estimates for the survival functions at fixed

times t(i) and t(i+1), respectively.

For clarity, we present this alternative bootstrap algorithm for right-censored

data in the following steps:

(i) Order the data set, and add the end points of the possible data range, t(0) = 0

and t(u+1) = +∞ (or t(u+1) = b in case of finite support is [0, b]), so we have

t(0) < t(1) < . . . < t(u) < t(u+1).

(ii) Create u+ 1 intervals among the n observations of the data set on the form of

(t(i), t(i+1)), i = 0, . . . , u.

(iii) Compute the P(i) probabilities by Equation (2.24) for the u+ 1 intervals.

(iv) Sample with replacement n intervals with the assignment probabilities, then

draw one observation from each chosen interval to obtain one bootstrap sample

of size n. If the interval is finite, we sample uniformly; otherwise, we use a

fitted Exponential tail for sampling as describe is Section 2.3.

(v) Use the bootstrap sample to calculate the empirical survival function at a fixed

time t, Ŝ∗(t).

(vi) Repeat steps (iv) and (v) B times in order to have B survival function values

at a fixed time t.
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It is important to note that if the last observation of the original data set is an

event time, then Ŝ(t(u)) = 0. This causes that the last interval (t(u),t(u+1)) will never

be selected during the alternative bootstrap procedure because P(u)= 0. If this case

occurs, the SBa method performs poorly for the survival function at time t being

greater than t(u) because the estimated survival function at that time t is zero in all

bootstrap samples. If we have right-censored observation(s) after t(u), then we fit

an Exponential tail with rate parameter λ∗ for the end interval [13], with λ∗ set of

λ̂∗ =
− ln(Ŝ(t(u)))

t(u)
(2.25)

Then we sample an observation greater than t(u) for the last interval. Note that ties

and censored observations can occur with probability zero in the bootstrap samples.

In the following simulation studies, we use Weibull(α = 1.5, β = 1) to generate

the event time observations, and we use Exponential distribution with rate param-

eter λ = 0.187 to generate the right-censored observations, where the censoring

proportion in the generating data sets is 0.15. We investigate the performances of

the quantile, linear and log-transformed pointwise confidence intervals with 90% con-

fidence level in combination with the smoothed bootstrap method and the smoothed

Kaplan-Meier bootstrap method to find the estimated coverage proportions for the

true survival function at 19 distinct fixed times, as listed in the first column in Ta-

bles 2.19, 2.20 and 2.21. These 19 values of t are equally spaced quantiles of the

underlying distribution, so this allows to discover which bootstrap method performs

better in terms of the coverage proportions for the survival function at different

locations.

Next, N = 1000 data sets with sample size n are generated. Then, each bootstrap

method is applied B = 1000 times on each generated data set. We then derive the

empirical survival function corresponding to each bootstrap sample, and this leads

to 1000 empirical survival functions. We compute the average and the standard

deviation of the 1000 survival function estimates at each value of t to conduct the

90% linear and log-transformed confidence intervals by Equations (2.22) and (2.23).

Also, we compute the 90% quantile confidence interval [Ŝ∗(50)(t), Ŝ
∗
(950)(t)]. We count

which confidence intervals include the true survival function at each value of t. We

repeat this procedure for all 1000 generated data sets in order to observe the actual
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n = 6 10 20 40 100

t S(t) SB SBa SB SBa SB SBa SB SBa SB SBa

0.138 0.95 0.998 0.994 0.985 0.978 0.993 0.991 0.988 0.986 0.896 0.899

0.223 0.90 0.979 0.954 0.995 0.988 0.918 0.895 0.948 0.944 0.884 0.895

0.298 0.85 0.938 0.877 0.967 0.942 0.894 0.883 0.943 0.942 0.879 0.882

0.368 0.80 0.972 0.956 0.923 0.872 0.890 0.871 0.947 0.936 0.911 0.916

0.436 0.75 0.965 0.913 0.908 0.885 0.886 0.858 0.937 0.932 0.879 0.883

0.503 0.70 0.936 0.855 0.947 0.928 0.930 0.918 0.888 0.890 0.869 0.865

0.570 0.65 0.886 0.881 0.899 0.856 0.872 0.842 0.916 0.909 0.876 0.879

0.639 0.60 0.909 0.857 0.943 0.902 0.925 0.906 0.876 0.873 0.868 0.869

0.710 0.55 0.913 0.819 0.896 0.838 0.870 0.831 0.906 0.897 0.887 0.890

0.783 0.50 0.956 0.897 0.954 0.892 0.879 0.830 0.873 0.862 0.874 0.881

0.861 0.45 0.900 0.821 0.904 0.826 0.880 0.825 0.905 0.885 0.902 0.897

0.943 0.40 0.923 0.772 0.938 0.876 0.878 0.832 0.874 0.844 0.878 0.873

1.033 0.35 0.897 0.691 0.901 0.800 0.918 0.892 0.908 0.899 0.900 0.903

1.132 0.30 0.902 0.765 0.945 0.854 0.880 0.801 0.879 0.859 0.904 0.898

1.243 0.25 0.930 0.694 0.899 0.762 0.868 0.774 0.902 0.883 0.902 0.880

1.373 0.20 0.935 0.601 0.894 0.686 0.877 0.729 0.905 0.865 0.899 0.891

1.533 0.15 0.905 0.552 0.916 0.665 0.937 0.815 0.913 0.835 0.908 0.885

1.744 0.10 0.943 0.422 0.930 0.503 0.896 0.619 0.926 0.818 0.909 0.868

2.078 0.05 0.967 0.230 0.955 0.357 0.925 0.459 0.900 0.617 0.863 0.720

Table 2.19: The actual coverage proportions for the true survival function at each

value of t in the 90% quantile confidence intervals based on the two smoothed boot-

strap methods.

coverage proportions for the true survival function at each value of t in the three

pointwise confidence intervals based on the two smoothed bootstrap methods.

Table 2.19 shows the simulation results for the true survival function at each

value of t in the 90% quantile confidence intervals based on the smoothed boot-

strap method and the smoothed Kaplan-Meier bootstrap method, SBa. The SB

method performs better than the SBa method for the true survival functions at

almost all values of t, in particular when the sample size is small. At most values
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n = 6 10 20 40 100

t S(t) SB SBa SB SBa SB SBa SB SBa SB SBa

0.138 0.95 0.998 0.989 0.992 0.985 0.985 0.981 0.954 0.952 0.908 0.903

0.223 0.90 0.987 0.970 0.988 0.973 0.938 0.943 0.905 0.902 0.894 0.897

0.298 0.85 0.981 0.945 0.962 0.951 0.905 0.895 0.898 0.897 0.881 0.881

0.368 0.80 0.969 0.930 0.922 0.922 0.889 0.892 0.898 0.894 0.890 0.886

0.436 0.75 0.955 0.908 0.898 0.872 0.886 0.876 0.909 0.901 0.884 0.888

0.503 0.70 0.935 0.878 0.895 0.862 0.878 0.860 0.891 0.881 0.872 0.863

0.570 0.65 0.911 0.848 0.888 0.852 0.881 0.858 0.882 0.870 0.879 0.877

0.639 0.60 0.895 0.837 0.880 0.846 0.869 0.855 0.880 0.867 0.867 0.871

0.710 0.55 0.913 0.827 0.890 0.827 0.865 0.849 0.873 0.860 0.891 0.892

0.783 0.50 0.918 0.803 0.882 0.837 0.881 0.852 0.866 0.851 0.881 0.875

0.861 0.45 0.910 0.789 0.894 0.812 0.862 0.844 0.861 0.841 0.873 0.871

0.943 0.40 0.899 0.762 0.901 0.796 0.872 0.841 0.876 0.851 0.872 0.864

1.033 0.35 0.906 0.733 0.894 0.791 0.878 0.827 0.882 0.863 0.889 0.868

1.132 0.30 0.919 0.719 0.897 0.771 0.875 0.827 0.881 0.842 0.889 0.870

1.243 0.25 0.926 0.670 0.889 0.740 0.869 0.790 0.870 0.828 0.883 0.863

1.373 0.20 0.936 0.615 0.895 0.716 0.882 0.758 0.860 0.808 0.880 0.855

1.533 0.15 0.950 0.534 0.913 0.654 0.874 0.712 0.868 0.788 0.882 0.860

1.744 0.10 0.955 0.413 0.935 0.544 0.900 0.671 0.882 0.753 0.881 0.830

2.078 0.05 0.974 0.242 0.965 0.361 0.950 0.490 0.914 0.657 0.871 0.743

Table 2.20: The actual coverage proportions for the true survival function at each

value of t in the 90% linear confidence intervals based on the two smoothed bootstrap

methods.

of t, the SB method provides over-coverage. As the sample size increases, the dis-

crepancy between the simulation results and the nominal size 0.90 at all values of

t decreases. For the true survival functions at the values of t located in the tail

region, 2.078, 1.744, 1.533, 1.373, 1.243, the SBa method performs poorly while the

SB method shows its advantage in making the discrepancy between the simulation

results and the nominal size 0.90 small, particularly for sample sizes 6, 10 and 20.

The results based on the SBa method are improved when the sample size gets large,
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and this is apparent when n = 40 and 100.

Table 2.20 reports the actual coverage proportions for the true survival function

at each value of t in the 90% linear confidence intervals based on the two smoothed

bootstrap methods. The SB method provides better actual coverage proportions for

the true survival functions at almost all values of t and for different sample sizes.

For sample sizes 6 and 10, it provides over-coverage at most values of t, particularly

at small and large values of t. When the sample size gets larger, the discrepancies

between the actual coverage proportions and the nominal size 0.90 decrease at all

values of t. The SBa method performs poorly when the sample size is small, it

gets better when n increases. It does not provide a good performance to define the

actual coverage proportions for the true survival functions at values of t located in

the tail region. For example, when t = 2.078, the actual coverage proportions based

on the SBa method are 0.242, 0.361, 0.490, 0.657, 0.743 when n = 6, 10, 20, 40, 100,

respectively. This is because this method provides only one Exponential tail if we

have censored observation(s) after t(u). Also, if the greatest observation of a gener-

ating data set is event, then (t(u),t(u+1)) will never be chosen during the alternative

procedure because P(u) = 0. Therefore, the estimated survival function at any time

t ≥ t(u) is zero.

Table 2.21 presents the actual coverage proportions for the true survival function

at each value of t in the 90% log-transformed confidence intervals based on the

smoothed bootstrap method and the smoothed Kaplan-Meier bootstrap method.

The SB method performs better in defining the actual coverage proportions for the

true survival functions at all different sample sizes n. In the 90% log-transformed

confidence intervals based on the SB method, over-coverage occurs at most values

of t for n = 6, 10, 20, but there is under-coverage at most values of t for n =

40, 100. The log-transformed confidence intervals based on the SBa method provide

good results for the true survival functions, contrary to the quantile and linear

confidence intervals, in particular when the sample size is small. At small values of

t, for example t = 0.138, 0.223, the alternative bootstrap method does not provide

good coverage proportions when n = 6, 10. As the sample size increases, both

smoothed bootstrap methods decrease the discrepancies between the actual coverage
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n = 6 10 20 40 100

t S(t) SB SBa SB SBa SB SBa SB SBa SB SBa

0.138 0.95 0.919 0.836 0.891 0.863 0.913 0.899 0.924 0.909 0.921 0.917

0.223 0.90 0.922 0.854 0.910 0.877 0.906 0.876 0.925 0.915 0.910 0.907

0.298 0.85 0.936 0.867 0.931 0.877 0.912 0.889 0.914 0.897 0.907 0.900

0.368 0.80 0.941 0.868 0.931 0.876 0.918 0.894 0.918 0.906 0.891 0.884

0.436 0.75 0.945 0.858 0.930 0.876 0.914 0.873 0.909 0.898 0.904 0.897

0.503 0.70 0.941 0.860 0.937 0.869 0.907 0.874 0.904 0.887 0.872 0.869

0.570 0.65 0.948 0.850 0.932 0.869 0.905 0.866 0.899 0.887 0.883 0.876

0.639 0.60 0.952 0.859 0.931 0.863 0.909 0.875 0.891 0.873 0.885 0.881

0.710 0.55 0.968 0.880 0.933 0.861 0.895 0.872 0.884 0.868 0.893 0.888

0.783 0.50 0.973 0.880 0.933 0.868 0.904 0.867 0.881 0.867 0.887 0.883

0.861 0.45 0.972 0.889 0.943 0.855 0.903 0.868 0.882 0.860 0.882 0.879

0.943 0.40 0.969 0.908 0.933 0.860 0.902 0.870 0.892 0.870 0.878 0.871

1.033 0.35 0.973 0.937 0.933 0.870 0.894 0.865 0.890 0.878 0.891 0.879

1.132 0.30 0.985 0.988 0.934 0.882 0.900 0.859 0.899 0.857 0.892 0.881

1.243 0.25 0.982 0.991 0.940 0.921 0.896 0.844 0.876 0.854 0.887 0.867

1.373 0.20 0.974 0.987 0.943 0.970 0.899 0.839 0.868 0.836 0.886 0.871

1.533 0.15 0.972 0.983 0.933 0.965 0.901 0.900 0.879 0.834 0.890 0.870

1.744 0.10 0.954 0.973 0.931 0.962 0.914 0.964 0.888 0.879 0.884 0.858

2.078 0.05 0.936 0.969 0.917 0.950 0.906 0.951 0.895 0.960 0.876 0.847

Table 2.21: The actual coverage proportions for the true survival function at each

value of t in the 90% log-transformed confidence intervals based on the two smoothed

bootstrap methods.

proportions and the nominal size 0.90 for the true survival functions.

In this section, we introduced the SBa method to be as an alternative smoothed

bootstrap method, and to compare its performance to the SB method through sim-

ulations. We found that the smoothed bootstrap method mostly performs better

than the alternative bootstrap method in terms of the actual coverage proportions

for the true survival functions at different values of t due to two reasons. The first

one is that the SB method divides the support into n + 1 intervals while the al-
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ternative method divides the support into u + 1 intervals, where u ≤ n. Secondly,

with the smoothed bootstrap method, we apply Exponential tail(s) for the last in-

terval(s). In contrast to the alternative smoothed bootstrap method, we assume one

Exponential tail for (t(u),∞) in case we have censored observation(s) after t(u). The

last interval, (t(u),∞), will never be chosen during the alternative procedure if the

largest observation is event because P(u) = 0, and this causes that the estimated

survival function at any time t ≥ t(u) is zero.

2.8 Concluding remarks

This chapter introduced a generalization of Banks’ bootstrap method for right-

censored data [1, 2] based on the rc-A(n) assumption [21]. This method can be used

for inferences with high accuracy as illustrated through simulations. We compared

it to Efron’s method in terms of the coverage accuracy for the quartiles through

simulations to investigate its performance.

Efron’s bootstrap method for right-censored data restricts the process to sam-

pling with replacement from the original data set. This method often leads to some

issues such as right-censored observations and ties in bootstrap samples, especially

when the sample size is small. The smoothed bootstrap method overcomes these

issues by sampling from the whole data range using the rc-A(n) assumption.

Based on the simulations, the smoothed bootstrap method performs well with

a low discrepancy between the nominal and actual coverage probabilities for the

quartiles, in particular when the sample size is small. This is because the method

has more variation in sampling, so that the percentile bootstrap confidence intervals

are wider than the ones based on Efron’s method. Efron’s bootstrap method provides

good accuracy when the sample size is large, but collecting a large data set is not

always feasible in real applications, e.g. in early stage clinical trials, the sample size

is mostly small, but important decisions must be made as explained in [38, 67, 75].

For such situations, it may be beneficial to use the smoothed bootstrap method

rather than Efron’s bootstrap method.

In running R codes, applying the smoothed bootstrap method takes approxi-
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mately 15% longer than Efron’s method. This may be due to computing the M -

function values for each generated data set, sampling uniformly from the bounded

intervals and getting observations from fitted Exponential tails to be accepted for

the end interval(s).

When the support is unlimited, we assumed Exponential tail(s) for the final

interval(s) in the smoothed bootstrap method, and this assumption affects the χ2

value, in particular when the sample size is large. Therefore, we investigated another

way to fit the tail based on the whole data. We used the Weibull distribution, but

assuming the Weibull tail(s) for the end interval(s) has a small impact. In many

cases, the smoothed bootstrap method with Weibull tail(s) for the end interval(s)

led to about the same χ2 values as the SB method with Exponential tail(s). When

the sample size is small and the function of interest is located in or close to the tail

region, it is better to assume Exponential tail(s) because they are able to cover the

last quantiles, so that we are likely to obtain a smaller χ2 value. The smoothed

bootstrap method with Weibull tail(s) takes approximately 47% longer time than

the SB procedure due to estimation of the Weibull shape parameter.

To investigate the smoothed bootstrap method in defining the actual coverage

proportions for the true survival functions in the quantile, linear and log-transformed

confidence intervals, it was compared to the smoothed Kaplan-Meier bootstrap

method, SBa. The smoothed bootstrap method mostly performed better simula-

tion results in all three pointwise confidence intervals especially when the sample

size is small. Also, the smoothed bootstrap method is much better in the estimated

coverage proportions for the true survival functions located in the tail region because

we assumed an Exponential tail for each infinite interval. In applying the smoothed

Kaplan-Meier bootstrap method, the last interval will not be selected unless we

have right-censored observation(s) greater than the largest event time. Moreover,

one Exponential tail would be assumed for the last interval if and only if we get

right-censored observation(s) being greater than the largest event time.



Chapter 3

Smoothed bootstrap methods for

bivariate data

3.1 Introduction

In 1986, Efron and Tibshirani [33] presented the bootstrap method for bivariate

data. It is similar to the standard bootstrap method for univariate data, which

creates the bootstrap samples by sampling with replacement from the original data

set. It is simple and straightforward to measure the uncertainty of sample estimate.

However, Efron’s bootstrap provides poor results when the sample size is small.

This motivates to introduce new smoothed bootstrap methods for bivariate data.

For univariate data, there are some smoothed bootstrap methods proposed based

on kernels and linear interpolation, histospline smoothing, to obtain more accuracy

in estimations; see Banks [5], De Angelis and Young [27], Hall [44], Silverman and

Young [78], Young [87] for more details. Those methods have not been yet general-

ized for multivariate situation due to their complexity in application perhaps. The

only method widely used in the literature for multivariate data is Efron’s method,

which uses the empirical distribution that assigns probability 1
n

to each data point

[33].

This chapter introduces three smoothed bootstrap methods for bivariate data.

First, two bootstrap methods are based on the methodologies presented by Coolen-

Maturi et al. [22] and Muhammad et al. [65]. They use both a parametric and a

59
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nonparametric copula model in combination with NPI to provide a partial distri-

bution for one future bivariate observation. Based on each distribution, we present

a smoothed bootstrap method. The two smoothed bootstrap methods rely on di-

viding the sample space into (n + 1)2 blocks based on the original data set, where

n is the sample size. From the blocks, n blocks are sampled with replacement and

with the assignment probabilities, which are computed based on the two predictive

methods introduced by Coolen-Maturi et al. [22] and Muhammad et al. [65], then

one bivariate observation is sampled uniformly from each selected block. A third

smoothed bootstrap method is proposed based on assigning individual box kernels

to the original data set. To study the proposed methods’ performances, we compare

them to Efron’s bootstrap for bivariate data through simulations. We follow the

similar procedure for comparison as in Chapter 2.

This chapter is organized as follows: Section 3.2 presents an overview of the com-

bination of NPI with parametric and nonparametric copulas for bivariate data [64].

Section 3.3 introduces two smoothed bootstrap methods based on these methods.

We present the third smoothed bootstrap method in Section 3.4, which is based

on box kernels assigned to the original observations, and it will be referred to by

the smoothed Efron’s bootstrap. One example from the literature is presented in

Section 3.5 to illustrate applications of the proposed smoothed bootstrap methods

and Efron’s method. Comparisons between the proposed smoothed bootstrap meth-

ods and Efron’s bootstrap method for bivariate data are presented in Section 3.6.

Section 3.7 presents concluding remarks of this chapter.

3.2 NPI combined with copulas

Copula is a well-known concept introduced by Sklar [79] to model dependence be-

tween random variables and construct multivariate distributions. This concept has

been widely used in many applications because it allows to formalize the dependence

between random variables separately from their marginal distributions. In the lit-

erature, many copula models have been presented and most of them are symmetric,

see [15, 52, 68, 86] for more details. A copula model is symmetric if the variables
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X and Y are exchangeable in a copula, C(FX(x), FY (y)) = C(FY (y), FX(x)), where

FX(x) and FY (y) are the cumulative distribution functions of X and Y , respectively,

and C(., .) is the cumulative distribution function of the copula.

Muhammad [64] introduced two methods to provide a partially specified predic-

tive distribution for one future bivariate observation. Those two methods are based

on parametric and nonparametric copulas in combination with nonparametric pre-

dictive inference (NPI). Both methods consist of two parts. They apply NPI for

the marginals in the first part, then a copula is assumed in the second part. For

the semi-parametric predictive method, a parametric copula is assumed in the sec-

ond part, but for the nonparametric predictive method, the bivariate nonparametric

kernel-based copula is used in the second part.

To present the two predictive methods, we follow notation and definitions from

Muhammad [64]. Suppose that there are n bivariate real-valued observations (xi, yi),

for i = 1, 2, . . . , n, corresponding to n exchangeable bivariate random quantities

with no ties. The observations of the marginals are ordered and denoted by xi

and yj for simplicity. Therefore, we have x1 < x2 < . . . < xi < . . . < xn and

y1 < y2 < . . . < yj < . . . < yn. The assumption A(n) is used for the marginals, so we

have

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(3.1)

for i, j = 1, 2, . . . , n + 1, where x0 = ax, y0 = ay, xn+1 = bx and yn+1 = by if the

support is limited; and x0 = −∞, y0 = −∞, xn+1 = +∞ and yn+1 = +∞ if the

sample space is R2.

To link this part to the second part of the proposed methods, where the de-

pendence structure in the data is taken into account, Muhammad [64] introduced

a natural transformation of the random variables individually by letting X̃n+1 and

Ỹn+1 denote transformed versions of the random quantities Xn+1 and Yn+1, respec-

tively, such that

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj)) ⇐⇒(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)

) (3.2)

for i, j = 1, 2, . . . , n+ 1.



3.2. NPI combined with copulas 62

1
n+1

2
n+1

. . . 1

1
n+1

2
n+1

...

1

X̃

Ỹ

Figure 3.1: Presentation of the transformed space.

The A(n) assumptions for the marginals after the transformation are

P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
)

)
= P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1
(3.3)

P

(
Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)

)
= P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(3.4)

This transformation leads us from the real space R2 to [0, 1]2, where [0, 1]2 is

divided into (n+ 1)2 equal-sized blocks by the n observed bivariate observations as

shown in Figure 3.1. It should be noted that uniform marginal distributions have

been discretized on [0, 1]2.

3.2.1 The semi-parametric predictive method

After using the NPI approach for the marginals in the first step, a parametric copula

is assumed [64] and the copula parameter is estimated. It is possible to estimate

the copula parameter by using the transformed data, where the observed pairs are

replaced by (
rxi

n+ 1
,
ryi

n+ 1
), where rxi is the rank of the observation xi among the

x-observations, and ryi is the rank of the observation yi among the y-observations.
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It is obvious that the NPI approach assumed on the marginals is now combined

with the estimated copula to provide a partially specified predictive distribution for

one future bivariate observation. Each of the (n + 1)2 squares dividing the sample

space is assigned a specific probability by the following formula

hij(θ̂) = P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|θ̂
)

(3.5)

for i, j = 1, 2, . . . , n+1, where P (.|θ̂) represents the assumed copula-based probabil-

ity for the transformed data based on the original data and the assumed copula with

estimated parameter θ̂. Each value of hij is between 0 and 1, and
∑n

i=1 hij =
1

n+ 1

for all j ∈ {1, 2, . . . , n + 1} and
∑n

j=1 hij =
1

n+ 1
for all i ∈ {1, 2, . . . , n + 1}. Of

course,
∑

i,j hij = 1.

To estimate the parameter of a copula model, many procedures have been pre-

sented in the literature, see [39, 40, 55] for more details. For the semi-parametric

predictive method, we consider two estimation methods, which are widely used in

the literature. The first one is pseudo maximum likelihood estimation (MLE), where

the log pseudo likelihood function is [39]

`∗(θ) =
n∑
i=1

ln

(
cθ(

rxi
n+ 1

,
ryi

n+ 1
)

)
(3.6)

where cθ(u, v) =
∂2

∂u∂v
Cθ(u, v), and Cθ(u, v) is the cumulative distribution function

of a parametric copula. The pseudo maximum likelihood estimator is the value θ̂

that maximizes `∗.

The second estimation technique is the inversion of Kendall’s tau (Itau), where

the Kendall’s tau formula and its population version in terms of the copula are [39]

τn =
4

n(n− 1)
Pn − 1 and τ(Cθ) = −1 + 4

∫ 1

0

∫ 1

0

Cθ(u, v) dCθ(u, v) (3.7)

where Pn is the number of concordant pairs in the sample, and τn is the sample

Kendall’s correlation. The Itau estimator is the value θ̂ resulting from solving the

equation τn = τ(Cθ). The two estimation methods can be easily implemented by

the R package VineCopula [74].

The studies by Genest et al. [40] and Kojadinovic and Yan [55] suggest that the

pseudo maximum likelihood estimation is the best choice in terms of mean square
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error to estimate the copula parameter when the sample size is greater than 100 or

τn ≥ 0.4, where τn is the Kendall’s correlation. Otherwise, the inversion of Kendall’s

tau procedure provides more precise estimates.

3.2.2 The nonparametric predictive method

For this method, we first use the NPI approach for the marginals, and then do

the transformation as described before. This is the first step of this nonparametric

predictive method, which is as the first step in Subsection 3.2.1. In the second step

for the nonparametric predictive method, a kernel smoothing copula is assumed and

an estimated probability density function ĉ can be defined as [64]:

ĉ(x, y) =
1

nbXbY

n∑
i=1

K

(
x− FX(X̃i)

bX
,
y − FY (Ỹi)

bY

)
(3.8)

where K : R2 → R is a bivariate kernel function, bX , bY > 0 are the bandwidths or

the smoothing parameter, FX(X̃i) = rix
n+1

and FY (Ỹi) =
riy
n+1

.

Now, the NPI approach, which is assumed for the marginals, can easily be com-

bined with this nonparametric kernel-based copula to take the dependence into

account. K(., .) in Equation (3.8) can be any kernel function. Some kernel func-

tions, e.g. Gaussian, Epanechnikov or Uniform, are available in the R package np

[46]. Now we can find the hij values assigned to the (n+ 1)2 blocks by the following

equation

hij(ĉ) = P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|ĉ
)

(3.9)

where i, j = 1, 2, ..., n + 1 and P (.|ĉ) represents the nonparametric kernel-based

copula probability with estimated kernel density function, ĉ. Note that the hij values

must satisfy the three conditions presented after Equation (3.5) in Subsection 3.2.1.

The choice of bandwidths bX and bY is crucial for implementation. In the uni-

variate data situation, the normal reference rule-of-thumb has been widely used

in the literature. It works well if the underlying distribution is close to a normal

distribution [77]. This bandwidth [77] is given by

bZ = 1.06 σ̂Z n
− 1

5 (3.10)
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where σ̂Z is the standard deviation of the variable Z, and n is the sample size.

Silverman [77] stated that Equation (3.10) can be improved for long-tailed, skew

and bi-modal distributions by

bZ = 0.90 ÂZ n
− 1

5 (3.11)

where ÂZ = min(σ̂Z ,
IQR(Z)
1.349

). IQR(Z) is the interquartile of Z, and the 1.349 value

is the interquartile of the standard normal distribution.

Li and Racine [59] generalized the normal reference rule-of-thumb for multivari-

ate data as follows

bi = 1.06 σ̂i n
− 1

4+q (3.12)

where i = 1, 2, . . . , q, q is the number of variables, σ̂i is the estimated standard

deviation of ith variable, and n is the sample size.

Henderson and Parmeter [48] derived a general formula of the normal reference

rule-of thumb bandwidths for q variables, vth-order kernel density and rth derivative

estimator by using an approximation form of the mean integrated squared error as

follows

bi = CS σ̂i n
− 1

2v+q (3.13)

where CS = ( 4
2+q

)(
1

4+q
), i = 1, 2, . . . , q, q is the number of variables, v is the vth-order

kernel density, which is defined as the order of the first non-zero moment. σ̂i is the

standard deviation of ith variable, and n is the sample size.

For the nonparametric predictive method, Muhammad [64] used the following

equation

bZ = 1.06 ÂZ n
− 1

4 (3.14)

where ÂZ = min
(
σ̂Z ,

IQR(Z)
1.349

)
, and n is the sample size.

Muhammad [64] used Equation (3.14) as the normal reference rule-of-thumb

bandwidths, but for our use, we replace n−
1
4 by n−1 to have smaller bandwidths,

and this change leads to better results in terms of the coverage probability.
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3.3 Smoothed bootstrap based on NPI with cop-

ulas

In this section, we present the smoothed bootstrap methods for bivariate data by

using the semi-parametric and nonparametric predictive methods. These smoothed

bootstrap methods are proposed to learn about uncertainty in estimation of a popu-

lation characteristic θ and to avoid the issue of ties, which often occurs with Efron’s

bootstrap method for bivariate data. We refer to the smoothed bootstrap methods

by SBSP and SBNP, respectively. Suppose that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are

independent and identically distributed random variables, where X ∼ F , Y ∼ G

and F and G represent unknown probability distributions defined on a sample space

ℵ×ξ. Let (x1, y1), (x2, y2), . . . , (xn, yn) denote the observed data and let θ(F ) be the

functional of interest. Based on the n data points, the predictive methods construct

(n + 1)2 squares dividing the sample space, and their probabilities hij are specified

via either Equation (3.5) or (3.9) [64]. For clarity, we describe the smoothed boot-

strap algorithms for bivariate data in the following steps, the R codes are provided

in Appendixes B.2 and B.3:

(i) Apply one of the introduced predictive methods to the observed data to con-

struct (n+ 1)2 squares with their estimated probabilities ĥij.

(ii) Sample with replacement n squares with the assignment probabilities, then

sample one bivariate observation uniformly from each selected square to obtain

a smoothed bootstrap sample of size n.

(iii) Calculate the function of interest, θ̂∗.

(iv) Perform steps (ii) and (iii) B times in order to have B resulting values of the

function of interest.

When the proposed bootstrap methods are applied for the case of finite support,

all blocks partitioning the sample space are finite, so that it is easy to sample one

bivariate observation uniformly from those blocks. However in an infinite support
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situation, we will have blocks unlimited from either one or two sides, so it is im-

possible to draw one observation uniformly. To resolve this complicated issue, we

will use the idea introduced by BinHimd [10] for the end intervals when the data

is univariate, but here it will be generalized for bivariate data situation. If a block

that is not limited from the left or right side, which the block’s x-axis is (−∞, x1)

or (xn,+∞), is sampled during the smoothed bootstrap, we will use normal distri-

bution tails, where the normal distribution’s parameters µ and σ can be estimated

by Equations (1.3).

Then we get a value less than x1 from the left tail for (−∞, x1), and greater than

xn from the right tail for (xn,+∞). The x observation sampled from either tail of

the normal distribution will be considered as the x value of the bivariate future

observation. In case a block is not limited from the lower or upper bound, which

means the block’s y-axis is (−∞, y1) or (yn,+∞), we apply the same assumption,

but in terms of Y , then the y observation sampled from either tail of the normal

distribution will be consider as the y value of the bivariate future observation.

3.4 Smoothed Efron’s bootstrap

For Efron’s bootstrap method, the empirical distribution is used, so the bootstrap

method samples are created by sampling observations with replacement from the

original data set. In this section, we want to relax this assumption and introduce

an alternative smoothed bootstrap method for bivariate data. This can be done

by creating a block centered each observation. After creating blocks around the

observed data points, the alternative bootstrap method samples blocks with re-

placement, then one bivariate observation is sampled uniformly from each selected

block. For each point in the original data set, we assign a block with size bX × bY ,

where the observed point is located in the center of its corresponding block. Those

blocks could be overlapping due to their size and the distances among their centers.

This alternative bootstrap method provides some smoothness to avoid the issue of

ties, and it can be considered as applying a uniform kernel, where each point in-

side any individual kernel has the same probability regardless of the distance from
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Figure 3.2: The kernels assigned to the observed values.

the center. Suppose that there are n bivariate real-valued observations (xi, yi), for

i = 1, 2, . . . , n, corresponding to n bivariate random quantities defined on a data

space (ax, bx) × (ay, by). Thus, n equal-sized blocks are made and assigned to the

observations, as shown in Figure 3.2 for n = 4, where bX and bY are computed by

Equation (3.14). This smoothed version of Efron’s bootstrap, SEB, can be described

in the following steps, the R codes are provided in Appendix B.4:

(i) Create the blocks around the observed points.

(ii) Sample n blocks with replacement, where each block is set with probability 1
n
.

(iii) From each chosen block, sample one bivariate observation uniformly.

(iv) Calculate the function of interest, θ̂∗.

(v) Perform steps (ii), (iii) and (iv) B times in order to have B bootstrap estimates

of the function θ∗.
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In the following section, one example is presented using a data set from the

literature to illustrate the proposed smoothed bootstrap methods along with Efron’s

bootstrap method for bivariate data.

3.5 Body Mass Index example

A data set for 30 eleven-year-old girls attending Heaton Middle School in Bradford is

collected [64] and it is presented in Table 3.1 and Figure 3.3. This data set presents

the heights (m) and weights (kg) of these girls. The observed Pearson, Kendall and

Spearman correlations for these 30 observations are 0.742, 0.631, 0.807, respectively.

Suppose that one is interested in estimating the average of the body mass index

BMI and the standard error of BMI along with the 90% quantile confidence interval

for BMI. In this section, we illustrate how to use the proposed smoothed bootstrap

methods and Efron’s method for bivariate data to estimate BMI, SE(BMI) and the

90% quantile confidence interval. We expect that the methods will provide nearly

identical results because the sample size is not small and it seems there is a roughly

linear relationship between the variables as shown in Figure 3.3. The sample mean

of the body mass index BMI is equal to 17.11, where BMI is calculated by

BMI =
Weight (kg)

[Height (m)]2
(3.15)

We create 1000 bootstrap samples of size n = 30 based on each bootstrap

method, and derive the mean of BMI of each bootstrap sample. This leads to

1000 resulting values of BMI. The bootstrap estimate for BMI can be computed by

taking the average of the 1000 resulting values. To estimate the standard error of

BMI, we use Equation (1.2). For the 90% quantile confidence interval, we take the

50th and 950th ordered values of the 1000 resulting values. The estimated results

based on each bootstrap method are presented in Table 3.2.

Table 3.2 shows the estimated results for BMI, SE(BMI) and the 90% confidence

interval for BMI based on the proposed smoothed bootstrap methods and Efron’s

method for bivariate data. All bootstrap methods provide nearly identical results

for the mean of BMI. However, the smoothed bootstrap method based on the non-

parametric predictive method, SBNP, has larger estimate for the standard error of
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Height (m) Weight (kg) BMI Height (m) Weight (kg) BMI

1.35 26 14.27 1.33 31 17.53

1.46 33 15.48 1.49 34 15.31

1.53 55 23.50 1.41 32 16.10

1.54 50 21.08 1.64 47 17.47

1.39 32 16.56 1.46 37 17.36

1.31 25 14.57 1.49 46 20.72

1.49 44 19.82 1.47 36 16.66

1.37 31 16.52 1.52 47 20.34

1.43 36 17.60 1.40 33 16.84

1.46 35 16.42 1.43 42 20.54

1.41 28 14.08 1.48 32 14.61

1.36 28 15.14 1.49 32 14.41

1.54 36 15.18 1.41 29 14.59

1.51 48 21.05 1.37 34 18.11

1.55 36 14.98 1.35 30 16.46

Table 3.1: The heights (m), weights (kg) and BMI of 30 eleven-year-old girls.
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Figure 3.3: Heights (m) and corresponding weights (kg) values of 30 eleven-year-old

girls.
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Method BMI SE(BMI) 90% confidence interval

SBSP 17.10 0.479 (16.35, 17.87)

SBNP 17.23 0.591 (16.31, 18.25)

Efron 17.11 0.455 (16.41, 17.90)

SEB 17.08 0.446 (16.36, 17.83)

Table 3.2: The bootstrap estimates for BMI, SE(BMI) and the 90% confidence

interval for BMI based on each bootstrap method.

BMI and wider 90% confidence interval. This could be because the method provides

more variation in distributing the probabilities hij over the (n+ 1)2 blocks. In con-

trast, Efron’s method and the SEB method provide smaller estimates for SE(BMI)

and shorter confidence intervals. These results are expected because we have less

variation in sampling when applying these bootstrap methods in comparison to the

SBSP and SBNP methods. Overall, the methods provided about the same esti-

mates, as we had expected, due to the large sample size and there is a roughly

linear relationship between the variables.

3.6 Comparison with Efron’s method

To compare the smoothed bootstrap methods, proposed in Sections 3.3 and 3.4, and

Efron’s bootstrap method for bivariate data, we use the same comparison technique

as in Chapter 2. The null hypothesis proposes that the coverage probabilities are

equally distributed over the 10 confidence regions; each confidence region or cell is

with nominal size 0.10. The test is set as follows

H0 : The coverage probabilities are equally distributed over the 10 cells.

H1 : At least one coverage probability is not equal.
(3.16)

We use the chi-squared goodness of fit test with significance level 0.05, the 95th

percentile of the chi-squared distribution with 9 degrees of freedom is equal to 16.92.

If we obtain a chi-squared value less than 16.92, we fail to reject the null hypothesis

and conclude that the actual coverage probabilities could be equally distributed over

the 10 confidence regions. We use the over (under) lines for larger chi-squared values
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to indicate the over (under) coverage proportions in the first confidence regions.

In this section we consider two different scenarios to compare the bootstrap

methods for bivariate data. Each scenario is created from a specific copula family,

where the variables are both following the Uniform distribution with ax = ay = 0

and bx = by = 1. For the first scenario, we generate data sets from the Normal

copula model with different levels of dependence modelled by Kendall’s tau, τ , and

different sample sizes. We expect that the smoothed bootstrap based on the semi-

parametric predictive method, SBSP, will provide better results than those of the

other methods in this scenario because we generate data sets from the same copula

family we assume for the analysis.

For the second scenario, data sets are generated from Gumbel copula model with

different values of τ and n as well. In this scenario, we assume Normal copula when

we apply the semi-parametric predictive method. It will be a nice comparison to

show the performance of SBSP method when the model used to generate the data

sets is different from the model we assume for the analysis. For this smoothed

bootstrap method, we will use the pseudo MLE method [39] when τ ≥ 0.4 to

estimate the copula parameter θ; otherwise we use the inversion of Kendall’s tau. For

the smoothed bootstrap method based on the nonparametric predictive technique,

we use the Normal kernel as a kernel type and the bandwidths are computed by

Equation (3.14), but we replace n−
1
4 by n−1 for better results. This is implemented

in R by the package np [46].

3.6.1 First scenario: Normal copula model

To compare the proposed bootstrap methods for bivariate data with a finite support,

we generate N = 1000 data sets from the Normal copula family with uniform mar-

gins. Then for each generated data set, we apply each bootstrap method B = 1000

times. We compute the estimate for the function of interest based on each boot-

strap sample, then we define the 10 confidence regions by Equation (2.6). We then

compute the proportions of confidence regions which include the true function of

interest. We repeat this procedure for all N = 1000 generated data sets in order to

observe the actual coverage proportions for the true function of interest in the 10
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confidence regions. Based on the results, we compute the corresponding chi-squared

value for each bootstrap method. We consider sample sizes n = 10, 50, 100, and dif-

ferent functions of interest. We investigate the actual coverage proportions for the

Pearson (r), Kendall (τ) and Spearman (rs) correlations. For the two variables X

and Y , we investigate the actual coverage proportions for the mean of T1 = X + Y ,

denoted by T1 and the mean of T2 = XY 2, denoted by T2. Tables 3.3 to 3.7 outline

the chi-squared values obtained from the coverage probabilities for r, τ , rs, T1 and

T2, respectively, based on each bootstrap method.

For the Pearson correlation r, Table 3.3 shows the chi-squared values conducted

from the coverage proportions based on the bootstrap methods. It is important to

recall that the over (under) lines are used for larger chi-squared values to indicate

the over (under) coverage proportions in the first confidence regions. When n = 10,

the SBSP, SBNP and SEB methods provide under-coverage proportions when τ =

−0.25, 0 and 0.25, and over-coverage proportions if τ = −0.75 and 0.75. However,

Efron’s bootstrap method always provides under-coverage proportions regardless of

the dependence level. At this sample size, the SBNP method provides the smallest

chi-squared value at most values of τ . For large sample sizes, all methods perform

well, but the SEB method is the best. The results are shown in Figure 3.4. From

this plot, where it is easy to observe that the best method not rejecting H0 is the

SBNP method, followed by the SEB method. These two methods lead to not reject

H0 in 16 and 15 cases, respectively, out of 21 cases.

Table 3.4 presents the chi-squared values for Kendall’s correlation τ . This func-

tion of interest relies on the concordance of data, and the proposed bootstrap meth-

ods affect the rank not only through the probabilities assigned for blocks, but also

because we sample uniformly from the chosen blocks during the bootstrap proce-

dures. This can be seen when the dependence level is high, in particular when we

use the SEB method. At large sample sizes, the SBSP and SBNP methods provide

small chi-squared values in most dependence level cases. The SBSP method per-

forms well because we assume the Normal copula in the semi-parametric method

and the same parametric family is used to generate the data sets. These results are

expected and rational as we mentioned before in the introduction of this section.
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n = 10 50 100

τ θ r SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 -0.92 29.98 54.34 91.22 79.36 12.32 7.32 14.96 13.06 16.82 12.08 9.82 4.16

-0.50 -0.7071 -0.69 15.04 11.06 70.16 14.58 9.28 15.70 7.66 6.18 7.32 7.34 6.62 10.32

-0.25 -0.3827 -0.37 27.92 24.16 48.90 30.98 7.46 12.02 9.48 4.40 20.20 4.82 10.24 3.46

0 0 0 24.52 35.54 56.84 34.62 8.18 6.50 14.48 6.86 11.72 11.44 11.92 7.82

0.25 0.3827 0.37 43.18 20.44 37.86 24.90 8.96 8.04 9.94 5.96 17.56 10.62 26.24 15.98

0.50 0.7071 0.69 8.00 4.82 80.84 24.94 7.28 9.64 13.54 5.26 21.22 11.04 4.78 11.14

0.75 0.9239 0.92 126.20 65.24 116.46 64.38 17.32 7.72 25.62 14.86 24.88 11.92 5.76 11.64

Table 3.3: The chi-squared values obtained from the coverage proportions for the

true Pearson correlation r.
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Figure 3.4: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Pearson

correlation r based on each bootstrap.
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n = 10 50 100

τ θ SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 261.68 65.06 70.50 63.92 5.96 14.08 19.08 69.00 6.60 13.50 16.26 86.06

-0.50 -0.7071 53.06 52.00 18.70 104.02 8.14 7.56 3.60 9.20 3.10 10.26 10.08 6.66

-0.25 -0.3827 8.78 21.00 12.70 32.22 7.66 5.08 5.76 3.98 14.90 17.18 18.30 11.60

0 0 17.98 14.54 33.54 21.74 8.34 3.78 12.28 6.14 8.58 15.82 9.62 14.90

0.25 0.3827 18.60 16.38 6.86 28.68 11.12 8.86 9.58 9.92 19.92 13.98 16.72 13.18

0.50 0.7071 5.44 71.66 24.74 103.40 16.94 6.94 8.40 8.98 11.28 8.32 10.44 10.12

0.75 0.9239 259.48 92.50 149.00 73.92 23.72 24.94 11.38 20.02 19.76 10.20 12.18 46.66

Table 3.4: The chi-squared values obtained from the coverage proportions for the

true Kendall correlation τ .
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Figure 3.5: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Kendall

correlation τ based on each bootstrap.
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From Figure 3.5, it is obvious that the SBNP method and Efron’s bootstrap method

are the best methods providing small chi-squared values, where both methods lead

to not reject H0 14 times, with H0 rejected 7 times due to over coverage proportions

occurring in the first confidence regions.

In Table 3.5, we list the chi-squared values obtained from the coverage pro-

portions for Spearman’s correlation rs. For this kind of correlation, the difference

between the ranks of the x and y observations is the base to compute the correlation

between variables, and this can be influenced by the blocks’ probabilities and the

uniform sampling from blocks in the smoothed bootstrap methods. When τ = −0.75

and 0.75, the SEB method is always the worst method amongst all applied methods

due to having the largest chi-squared values, but it provides good results if τ is

small. The SBSP and SBNP methods along with Efron’s method mostly provide

small chi-squared values, but Efron’s method is better, in particular when the sam-

ple size is large. To have a better view of the methods’ performances, we visualize

the results in Figure 3.6. From this figure, where it is clear that the best method

not rejecting H0 is Efron’s method, as out of 21 different cases, it leads to not reject

H0 17 times, then the second best method is SBNP; it leads to not reject H0 16

times.

Tables 3.6 and 3.7 present the chi-squared values obtained from the coverage

proportions for the means of T1 and T2, respectively. All smoothed bootstrap meth-

ods distribute the coverage proportions for both functions T1 and T2 over the 10

cells better than Efron’s method does at most dependence levels when n = 10. At

this sample size, Efron’s method provides under-coverage proportions for all values

of τ . When the sample size increases to 50 and 100, Efron’s method accomplishes

good coverage proportions for both functions, regardless of the value of τ . This

mostly leads to not reject H0, but the smoothed bootstrap methods perform better

at these sample sizes. Figures 3.7 and 3.8 present the number of times that H0 is not

rejected, and the number of times that H0 is rejected due to the over- and under-

coverage proportions. It is clear that the SBSP and SBNP methods are the best in

the sense of providing small chi-squared values for T1; they both lead to not reject

H0 17 times in the 21 settings. For T2, the SBSP and SBNP methods accomplish
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n = 10 50 100

τ θ rs SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 -0.92 125.18 140.32 137.38 410.24 4.46 22.26 10.02 142.30 14.38 8.38 7.86 94.86

-0.50 -0.7071 -0.69 39.38 34.02 38.24 69.18 7.12 7.72 6.70 9.40 11.66 8.38 9.18 9.80

-0.25 -0.3827 -0.37 10.82 10.52 5.80 27.80 6.84 6.88 8.12 6.34 15.06 8.18 10.66 7.00

0 0 0 17.58 15.46 14.72 18.64 11.74 3.12 7.34 11.62 7.48 6.98 6.98 15.96

0.25 0.3827 0.37 20.04 8.64 6.26 19.84 5.50 15.04 15.92 20.32 13.70 12.38 13.36 12.00

0.50 0.7071 0.69 35.92 51.54 39.00 70.34 13.40 4.18 9.34 14.08 16.90 12.48 3.58 9.70

0.75 0.9239 0.92 89.14 116.40 147.30 445.88 30.48 11.70 3.60 82.30 33.88 12.52 4.58 63.20

Table 3.5: The chi-squared values obtained from the coverage proportions for the

true Spearman correlation rs.
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Figure 3.6: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Spearman

correlation rs based on each bootstrap.
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n = 10 50 100

τ θ T1 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 1 85.86 131.72 47.60 8.16 9.08 9.68 11.30 4.76 12.40 15.44 13.92 7.64

-0.50 -0.7071 1 24.44 23.84 47.12 17.10 8.54 5.88 10.14 5.26 10.80 12.48 18.02 11.46

-0.25 -0.3827 1 13.90 18.16 39.96 28.14 7.32 7.04 12.88 7.54 7.94 16.00 28.02 20.72

0 0 1 15.76 11.24 40.04 28.26 10.92 4.08 10.82 11.20 12.46 17.32 19.04 16.56

0.25 0.3827 1 8.90 8.56 41.94 33.04 20.10 7.10 17.98 15.20 14.22 4.60 10.44 17.68

0.50 0.7071 1 18.10 10.76 37.50 29.56 10.12 5.38 6.90 9.72 7.42 12.28 9.80 10.42

0.75 0.9239 1 9.72 9.74 36.48 31.62 13.28 6.60 7.08 6.58 13.38 9.12 13.48 13.00

Table 3.6: The chi-squared values obtained from the coverage proportions for the

true T1.
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Figure 3.7: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for T1 based

on each bootstrap.
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n = 10 50 100

τ θ T2 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 0.090 49.10 49.72 46.28 5.42 26.02 8.08 17.86 14.64 7.70 8.66 9.60 3.52

-0.50 -0.7071 0.109 13.28 8.52 98.94 44.70 7.12 11.88 10.44 9.04 6.12 8.56 7.70 3.66

-0.25 -0.3827 0.136 18.46 17.26 91.22 75.34 12.46 8.64 10.64 19.38 4.26 15.18 16.08 6.14

0 0 0.167 10.04 17.02 110.96 87.78 1.80 4.94 7.56 12.14 4.54 15.62 21.80 13.76

0.25 0.3827 0.197 8.12 19.06 87.32 73.42 12.22 10.30 5.14 14.94 11.62 21.78 17.76 15.14

0.50 0.7071 0.224 19.04 11.40 71.12 61.26 14.68 5.94 8.80 11.34 2.90 17.94 4.40 16.56

0.75 0.9239 0.243 15.30 15.74 42.60 36.12 16.54 9.76 8.98 18.94 6.04 9.50 5.92 12.28

Table 3.7: The chi-squared values obtained from the coverage proportions for the

true T2.
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Figure 3.8: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for T2 based

on each bootstrap.
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Function SBSP SBNP Efron SEB

r 2 (0,1,1) 8 (6,0,2) 3 (3,0,0) 8 (7,1,0)

τ 6 (6,0,0) 6 (6,0,0) 4 (3,1,0) 5 (3,2,0)

rs 5 (2,3,0) 5 (4,1,0) 9 (9,0,0) 3 (3,0,0)

T1 6 (6,0,0) 9 (9,0,0) 0 (0,0,0) 6 (5,0,1)

T2 9 (9,0,0) 6 (5,0,1) 3 (3,0,0) 3 (3,0,0)

Table 3.8: The summary of scores for the bootstrap methods in the five functions

of interest along with the number of chi-squared values of each score that are based

on equal, over- and under- coverage proportions, (#Equal, #Over, #Under).

good accuracy in most cases, but the SBSP method is better. The latest one does

not reject H0 in 17 cases while the SBNP method does not reject H0 in 15 cases

only.

To compare the methods in each setting, we give 1 for the method providing the

lowest chi-squared value among all values, regardless whether that value is based on

equal, over or under coverage probabilities, and we give 0 to the other methods. For

example in Table 3.3, the corresponding chi-squared values to the SBSP, SBNP and

SEB methods are 29.98, 54.34 and 79.36, respectively, while Efron’s value is 91.22

when n = 10 and τ = −0.75. In this case, we count 1 for the SBSP method because

its chi-squared value is the lowest value among all. We count the times that each

method gives lowest chi-squared values in comparison to those of the other methods

on each function of interest, and the summary of Tables 3.3 to 3.7 is presented in

Table 3.8. As indicated in this table, each score is assigned with three numbers

written within a parenthesis. These numbers indicate how many chi-squared values

of that score are based on equal, over- and under- coverage proportions, (#Equal,

#Over, #Under), respectively. For the Pearson’s correlation r, the SBNP and SEB

methods get the best scores; they both score 8, but the SEB method is better than

the SBNP method because it provides small chi-squared values 7 times while the

SBNP method provides only 6. For the Kendall’s correlation τ , the SBSP and SBNP

methods provide the best score, 6, and the SEB method is the second best with score

5. For the Spearman’s correlation rs, Efron’s method has the highest score, 9, and
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all of them are based on equal coverage proportions. The SBNP method is the

second best with score 5, and 4 out of 5 are not rejecting H0. For the mean of T1,

the SBNP method performs best, followed by the SBSP method. For the mean of

T2, the SBSP method is the winner with score 9, and the second best method is the

SBNP method with score 6, and 5 out of 6 are not rejecting H0.

3.6.2 Second scenario: Gumbel copula model

In this subsection, we generate data sets from the Gumbel copula model, where

the variables are both following Uniform(0,1). For the SBSP method, we assume

the Normal copula in order to compute the probabilities ĥij by Equation (3.5). We

want to investigate the performance of this proposed bootstrap method when the

copula model used to generate the data is different to the one we assume for the

semi-parametric predictive method. Note that both copula models used here are

symmetric, and their density functions at three different dependence levels τ are

presented in Figure 3.9.

We compare the proposed methods to Efron’s bootstrap method through simu-

lations. Tables 3.9 to 3.13 present the chi-squared values for r, τ, rs and the means

of T1 and T2, and the results are visualized in Figures 3.10 to 3.14, respectively. The

best method not rejecting H0 when the Pearson correlation r is considered is the

SBNP method; it provides 10 small chi-squared values out of 12 settings as shown

in Figure 3.10. For the correlation of τ , Figure 3.11 shows that the SBNP method

and Efron’s bootstrap both do not reject H0 at 8 cases, and they also both reject H0

4 times due to the over-coverage proportions in the first confidence regions. For the

Spearman correlation rs, Efron’s method continues to provide the best results as

shown in Figure 3.12. In 9 cases, we obtain small chi-squared values, and the results

corresponding to the 3 other cases are large due to over-coverage. Figures 3.13 and

3.14 indicate that the SBSP method is the best one to not reject H0. For each of

T1 and T2, it provides small chi-squared values 10 times. For these two statistics,

the actual coverage rates based on the SEB and Efron’s methods are always under-

coverage when n = 10, then as n increases to 50 and 100, they both accomplish

good values in most settings.
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(f) τ = 0.75, Normal copula

Figure 3.9: Density functions of Gumbel and Normal copulas with uniform margins

when τ = 0.25, 0.50 and 0.75.
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n = 10 50 100

τ θ r SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0 28.50 9.84 31.42 17.36 6.00 7.98 13.40 9.08 7.80 8.80 7.10 5.68

0.25 1.3333 0.36 23.72 19.10 33.02 18.96 16.86 14.52 13.08 7.88 14.12 6.28 9.86 5.32

0.50 2 0.68 12.26 8.12 68.14 25.66 25.24 10.28 21.92 7.58 19.40 6.96 7.64 7.86

0.75 4 0.92 16.58 41.54 116.02 60.10 33.00 16.82 12.90 35.94 22.66 15.32 9.60 59.52

Table 3.9: The chi-squared values obtained from the coverage proportions for the

true Pearson correlation r.
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Figure 3.10: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Pearson

correlation r based on each bootstrap.
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n = 10 50 100

τ θ SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 14.40 30.58 41.98 26.98 6.84 4.78 10.32 8.10 12.84 12.28 5.66 11.46

0.25 1.3333 31.68 43.54 30.44 62.58 18.74 13.46 12.88 12.88 17.52 4.14 3.18 3.40

0.50 2 26.34 52.60 36.94 98.36 29.18 8.06 9.74 8.92 17.02 11.22 3.14 4.98

0.75 4 303.20 58.60 85.00 49.04 28.76 15.72 13.16 33.10 18.90 10.16 9.86 49.56

Table 3.10: The chi-squared values obtained from the coverage proportions for the

true Kendall correlation τ .
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Figure 3.11: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Kendall

correlation τ based on each bootstrap.
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n = 10 50 100

τ θ rs SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0.00 27.70 13.38 15.38 21.02 10.30 13.10 11.70 7.78 9.20 15.48 16.20 6.86

0.25 1.3333 0.36 23.76 23.48 20.86 36.52 19.74 5.74 11.26 9.58 13.42 7.56 12.16 15.94

0.50 2 0.68 42.74 44.46 29.50 69.06 18.92 5.18 7.04 6.82 16.28 5.70 5.72 7.94

0.75 4 0.92 123.14 112.48 105.14 398.76 18.00 25.68 10.70 266.32 12.02 22.94 15.02 248.46

Table 3.11: The chi-squared values obtained from the coverage proportions for the

true Spearman correlation rs.
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Figure 3.12: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for Spearman

correlation rs based on each bootstrap.
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n = 10 50 100

τ θ T1 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 1 13.46 8.68 48.98 42.68 12.86 10.42 5.44 2.58 5.16 12.96 9.34 10.50

0.25 1.3333 1 13.46 11.88 33.98 33.18 13.28 17.16 14.62 14.88 19.56 7.90 16.96 13.88

0.50 2 1 7.94 13.38 35.64 28.92 6.26 3.72 6.54 6.56 12.64 8.50 14.64 17.16

0.75 4 1 20.86 22.52 24.82 27.12 7.60 8.52 8.70 12.14 13.56 21.94 17.02 12.22

Table 3.12: The chi-squared values obtained from the coverage proportions for the

function T1.
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Figure 3.13: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for T1 based

on each bootstrap.
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n = 10 50 100

τ θ T2 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0.167 8.46 18.20 110.82 104.00 9.36 9.54 7.40 4.96 8.54 6.80 9.30 10.00

0.25 1.3333 0.199 5.24 26.44 109.44 99.06 12.04 12.00 12.14 13.18 34.80 14.78 16.64 17.72

0.50 2 0.225 11.70 24.08 83.70 68.78 5.76 6.12 8.30 11.80 23.40 17.14 20.18 21.70

0.75 4 0.243 15.02 18.26 78.00 54.00 5.66 10.48 10.90 6.86 10.18 12.76 12.34 9.56

Table 3.13: The chi-squared values obtained from the coverage proportions for the

function T2.
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Figure 3.14: The number of times that H0 is not rejected, and the number of times

that H0 is rejected due to the over- and under- coverage proportions for T2 based

on each bootstrap.
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Function SBSP SBNP Efron SEB

r 2 (2,0,0) 3 (3,0,0) 2 (2,0,0) 5 (4,0,1)

τ 2 (1,0,1) 2 (2,0,0) 7 (6,1,0) 2 (1,1,0)

rs 1 (1,0,0) 5 (5,0,0) 4 (1,3,0) 2 (2,0,0)

T1 5 (4,1,0) 5 (5,0,0) 0 (0,0,0) 2 (2,0,0)

T2 6 (6,0,0) 4 (3,0,1) 0 (0,0,0) 2 (2,0,0)

Table 3.14: The summary of scores for the bootstrap methods on the five functions

of interest along with the number of chi-squared values of each score that are based

on equal, over- and under- coverage proportions, (#Equal, #Over, #Under).

The summary of scores for each bootstrap method providing the lowest chi-

squared values on each function of interest is presented in Table 3.14. For the

Pearson’s correlation r, the SEB method provides a lower chi-squared value than

those of the other methods 5 times. Efron’s method accomplishes lowest values in 7

cases for the Kendall’s correlation τ , and in 6 cases, H0 is not rejected. The SBNP

method is the winer for the Spearman’s correlation rs and T1; it scores 5 for these

functions, and all values in these cases do not support rejection H0. The SBSP

method is a distant second when we consider T1, and it is a distant first for T2.

These simulation studies have led to some important insights. First, for r, τ and

rs, the SEB method mostly provides large chi-squared values when there is high

dependence between variables. These large values occur because we observed under-

coverage proportions in the first cells usually. Based on the simulation results, it is

advised to use small bandwidths for the SEB method when τ > 0.50 or τ < −0.50

in order to improve the results. For clarity, we repeat the simulations for the second

scenario, but with different bandwidth sizes. We use Equation (3.14) for large

bandwidths, and replace n−
1
4 by n−1 to make small bandwidths. This change in

the bandwidths leads to less variability in sampling during the bootstrap procedure.

The simulation results are presented in Table 3.15, and it is clear that the small

bandwidths mostly lead to better results.

Secondly, for the semi-parametric predictive method, it is better to use the Itau

estimation technique to estimate the copula parameter θ, in particular when τ ≤ 0.4.
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n = 10 50 100

Bandwidth small (n−1) large (n−
1
4 ) small (n−1) large (n−

1
4 ) small (n−1) large (n−

1
4 )

r = 0.92 85.10 60.10 19.84 35.94 11.30 59.52

τ = 0.75 91.18 49.04 12.52 33.10 9.20 49.56

rs = 0.92 15.22 398.76 25.76 266.32 18.20 248.46

Table 3.15: The chi-squared values obtained from the coverage proportions for r, τ

and rs using the SEB method with two sizes of bandwidths, where the copula

parameter θ = 4.

n = 10 50 100

Function SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

r = 0.89 37.54 4341.90 249.22 15.70 425.88 154.50 33.40 13.48 1488.24 34.22 19.36 12.44

τ = 0.75 210.52 5701.30 34.54 64.18 70.46 297.40 8.54 6.34 42.84 11.58 9.80 18.66

rs = 0.91 185.64 7369.40 87.42 19.40 37.02 142.04 7.04 11.44 31.12 7.42 8.94 10.34

T1 = 6.00 27.14 47.86 50.04 44.28 12.56 5.54 6.80 5.60 7.68 10.62 12.62 13.94

T2 = 58.63 89.92 236.22 183.74 174.48 18.52 17.40 12.68 10.28 10.20 3.40 7.60 20.28

Table 3.16: The chi-squared values obtained from the coverage proportions for the

true functions of interest, where the copula parameter θ = 6.

The Itau estimation technique helps the SBSP method to provide better accuracy

in terms of defining the actual coverage proportions for some functions of interest.

Thirdly, the purpose of assuming Normal copula in the second step of the semi-

parametric predictive method is that this copula can model negative and positive

correlations. Lastly, the SBSP and SBNP methods do not work well for the corre-

lations r, τ and rs when the data distribution is asymmetric, and this will be shown

in the next simulations.

We generate N = 1000 data sets from the Clayton copula, where X follows

Normal(µ = 1, σ = 1) and Y follows Normal(µ = 5, σ = 3). The data distribution

is asymmetric as can be seen from Figure 3.15. We apply the bootstrap methods

B = 1000 times for each generated data set and the simulation results are presented

in Table 3.16. For the Pearson’s, Kendall’s and Spearman’s correlations, the SBSP

and SBNP methods provide poor outcomes in terms of the coverage proportions.

As n increases, the SBSP method performs poorly, but the results of the SBNP
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x y

z

Figure 3.15: The empirical function of Clayton copula, where X∼Normal(µ=1,σ=1)

and Y∼Normal(µ=5,σ=3), τ = 0.75 and θ = 6.

n = 10 50 100

Function SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

T1 = 0.58 48.33 32.10 52.56 42.72 12.42 13.42 7.62 8.74 3.80 11.52 11.40 6.70

T2 = 0.01 68.81 61.10 436.24 442.42 12.96 10.98 10.64 16.66 85.84 12.50 9.60 5.26

Table 3.17: The chi-squared values for the averages of T1 and T2, where X ∼

Uniform(0, 1) and Y = (X − 0.5)2.

method are improved. For the functions T1 and T2 when n = 10, they provide large

chi-squared values due to the under-coverage proportions in the first cells; for larger

n, results are better. However, all bootstrap methods provide good results when

n = 50 and 100.

To investigate the performances of the bootstrap methods in different scenarios

to the ones before, we consider two relationships between X and Y . For a uniformly

distributed random variable X, we set Y first as Y = (X − 0.5)2 and second as

Y = (X − 0.5)2 + ε, where ε ∼ Normal(µ = 0, σ = 0.02). The shape of quadratic

relationship is as shown in Figure 3.16. In this investigation, we take the means of
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n = 10 50 100

Function SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

T1 = 0.5833 5.02 7.56 73.36 75.72 6.58 7.84 7.20 17.78 7.12 4.60 8.28 9.30

T2 = 0.0064 410.28 286.08 526.46 524.34 186.16 20.42 40.74 44.58 182.60 16.10 11.88 15.36

Table 3.18: The chi-squared values for the averages of T1 and T2; X ∼ Uniform(0, 1)

and Y = (X − 0.5)2 + ε, where ε ∼ Normal(0, 0.02).

x y
z

Figure 3.16: The empirical function of quadratic distribution, where

X ∼Uniform(0,1) and Y = (X − 0.5)2.

T1 = X + Y and T2 = XY 2 into account only, and their corresponding chi-squared

values are presented in Tables 3.17 and 3.18. For T1 in the first case without the

epsilon random term, the SBSP and SBNP methods lead to over-coverage propor-

tions in the first cells when n = 10, contrary to Efron’s bootstrap and the SEB

method; they both lead to under-coverage. As n increases to 50 and 100, all meth-

ods fail to reject H0. In the second case where Y = (X − 0.5)2 + ε, the SBSP and

SBNP methods provide small chi-squared values for the same function at all differ-

ent sample sizes. However, Efron’s bootstrap and the SEB method provide large
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values when n = 10, and the results are improved as n increases. For T2 in both

simulation studies, all methods provide large chi-squared values when the sample

size is small, and as n increases to 50 and 100, the results are improved except the

ones of SBSP. The SBSP method continues providing large values as n gets large

due to the under-coverage proportions occur in the first cells.

3.7 Concluding remarks

In this chapter, we introduced three smoothed bootstrap methods for bivariate data

based on the semi-parametric and nonparametric predictive methods and uniform

kernels. We compared these to Efron’s method through simulation studies, comput-

ing the coverage proportions for the Pearson, Kendall and Spearman correlations

along with the means of T1 and T2, where T1 = X + Y and T2 = XY 2. The

comparisons were conducted with different dependence levels τ and n = 10, 50 and

100.

Efron’s bootstrap method for bivariate data is sampling with replacement from

the original data set, so this method often leads to include ties to the bootstrap

samples especially when the sample size is small. The smoothed bootstrap methods

using the semi-parametric and nonparametric predictive methods overcome this issue

as they lead to more variation in sampling. Also, the bootstrap method based on

uniform kernels leads to more variation in sampling, so the complication of ties is

avoided.

Through the simulation studies when the data distribution is symmetric, the

SBNP method mostly outperforms the other methods when we consider the Pear-

son’s correlation r, and Efron’s method mostly performs better for Kendall τ and

Spearman rs correlations. For T1 and T2, the smoothed bootstrap methods based

on the semi-parametric and nonparametric predictive methods mostly provide the

lowest discrepancies between the nominal and observed coverage proportions, in

particular when the sample size is small. When the data distribution is not sym-

metric, it is advised to use either the smoothed Efron’s bootstrap or the original

Efron’s method because they lead to perform well. In case Kendall τ is very large,
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it is advised to use either Efron’s method or the smoothed Efron’s method with

small bandwidths to make inferences for r, τ and rs. From the simulations, it seems

that the smoothed bootstrap methods mostly perform better than Efron’s method

for any function of interest in case there is no relationship between the variables

and the sample size is small. Also, if the variables show such a linear relationship

with randomness, the smoothed bootstrap methods can lead to better results in

comparison to those of Efron’s method.

In running R codes, applying the SBSP method takes approximately four times

as long as Efron’s procedure. This is mainly because of fitting the Normal copula

on each generated data set to compute the probabilities hij, sampling uniformly

from the bounded blocks and getting observations from the fitted normal tails to

be accepted for the end blocks. For the SBNP and SEB methods, their calculation

times are approximately equal to the time corresponding to Efron’s method.



Chapter 4

Hypothesis tests using smoothed

bootstrap methods

4.1 Introduction

For testing statistical hypotheses, the classical statistical methods have been widely

used in the literature, and they are considered as the standard methods although

their assumptions are often not met if the observed data set is complicated. To

avoid the mathematical assumptions, Efron and Tibshirani [33], and Rasmussen [71]

and Strube [80] used the standard bootstrap method to test statistical hypotheses.

This bootstrap method is easy to implement with good approximation results, but

it requires a lot of computations. This motivates to use the proposed smoothed

bootstrap methods for testing of statistical hypotheses and to compare the results

to those of Efron’s method. Tests based on both right-censored data and bivariate

data will be considered in this chapter.

In Chapter 2, the smoothed bootstrap method for right-censored data was com-

pared to Efron’s method in terms of the coverage probability, and it was also used

to estimate the survival function. In this chapter, we want to use the bootstrap

methods to compute the Type 1 error rate for a proposed null hypothesis with sig-

nificance level 2α. This can be done by the 100(1 − 2α)% bootstrap confidence

intervals. Based on the bootstrap methods, the achieved significance level is used

to test whether the two samples have equal median or not, and compute the Type 1

94
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error rate. The evaluations of power and Type 2 error rate are useful and important

when comparing the bootstrap methods and this is left as a topic for future research.

For bivariate data, Dolker et al. [28] stated that Efron’s bootstrap method leads

to bad approximation results for Pearson correlation when the sample size is small

due to the ties occurred in the bootstrap samples. Lee and Rodgers [58] proposed an

univariate sampling procedure for bootstrapping correlation coefficients, and com-

pared it to Efron’s method through simulation studies. They performed hypothesis

testing and compute their corresponding Type 1 error rates via bootstrap confidence

intervals. They found that the proposed bootstrap method performs better. In this

chapter, we use the proposed smoothed bootstrap methods presented in Chapter 3

to test hypotheses and compute their Type 1 error rates. The results will be com-

pared to those of Efron’s method. For future research, we will investigate the power

and Type 2 error rate, which are helpful and crucial.

In Section 4.2, the Type 1 error rates for quartiles’ tests are computed based on

the smoothed bootstrap method and Efron’s bootstrap method. In Section 4.3, the

Type 1 error rate for two sample medians’ tests is computed using the achieved sig-

nificance level based on the bootstrap methods. Note that the simulations considered

in Sections 4.2 and 4.3 include right-censored observations. Section 4.4 compares

the proposed bootstrap methods, introduced in Chapter 3, and Efron’s bootstrap in

computing the Type 1 error rate for Pearson correlation test. Section 4.5 compares

the proposed bootstrap methods, introduced in Chapter 3, and Efron’s bootstrap

in computing the Type 1 error rate for Kendall correlation test. In the last section,

we point out some concluding remarks.

4.2 Hypothesis tests for quartiles

In this section, we compute the Type 1 error rates of quartiles’ hypothesis tests

based on the bootstrap methods, presented in Chapter 2, where data contains right-

censored observations. To do investigations based on the bootstrap methods, we

simulate data sets including right-censored observations from two different scenar-

ios. For the first scenario, we set that the event time T follows Beta distribution
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with parameters α = 1.2 and β = 3.2, and the censored time C follows Uniform

distribution with parameters a = 0 and b = 1.82. The second scenario is defined as

T ∼ Log-Normal(µ = 0, σ = 1) and C ∼ Weibull(α = 3, β = 3.7). The censoring

proportion p in the generated data sets for both scenarios is 15%.

To conduct comparisons between the two bootstrap methods, we generate N =

1000 data sets from either one of the scenarios we proposed above. Then for each

generated data set, we apply the methods B = 1000 times. This leads to have

1000 bootstrap samples based on each method. We then compute the quartile of

interest at each bootstrap sample, and from the resulting values, we can define the

100(1 − 2α)% bootstrap confidence interval for the quartile. We count one if the

value of the quartile specified in the null hypothesis is not included in the confidence

interval; otherwise we count zero. We repeat this procedure for all N = 1000

generated data sets, then count the number of times the null hypothesis was rejected

over the 1000 trials. This ratio will be the Type 1 error rate of the quartile’s

hypothesis test with significance level 2α.

It should be noted that the bootstrap samples obtained by Efron’s method often

include some censored observations, so we use the Kaplan-Meier estimator to find

their corresponding quartiles. Suppose we are interested in the median, we should

find a time t such that Ŝ(t) = 0.50 in each bootstrap sample. Unfortunately in some

samples, we cannot find that time t. To overcome this issue, we use the three options,

denoted by E(1), E(2) and E(3), which are described in Subsection 2.4.1. In the

following simulations, the NA number represents the number of Efron’s bootstrap

samples whose quartiles are not found, and this number is out of 1000000. In case

there is a bootstrap sample including only right-censored observations, that sample

will be replaced by another sample that includes at least one event time. This action

is counted and denoted by ABS, which is out of 1000000.

For the smoothed bootstrap method, we consider three different strategies in

sampling observations from the n + 1 intervals partitioning the sample space. The

first one is sampling uniformly from all intervals, and this is denoted by SB. Secondly,

we assume exponential tail for each interval and sample from the tails to create the

bootstrap samples, which is denoted by SBexp. The third one is sampling uniformly
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H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n measures SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3)

Type 1 0.103 0.103 0.105 0.107 0.107 0.107 0.090 0.096 0.097 0.151 0.151 0.149 0.068 0.110 0.111 0.200 0.202 0.172

10 NA — — — 228 0 0 — — — 3736 0 0 — — — 32821 0 0

ABS — — — 12 12 12 — — — 12 12 12 — — — 12 12 12

Type 1 0.098 0.098 0.101 0.108 0.108 0.108 0.126 0.126 0.114 0.117 0.117 0.117 0.121 0.121 0.126 0.108 0.107 0.107

50 NA — — — 0 0 0 — — — 0 0 0 — — — 56 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type 1 0.100 0.100 0.098 0.100 0.100 0.100 0.120 0.120 0.117 0.104 0.104 0.104 0.133 0.133 0.134 0.114 0.114 0.114

100 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type 1 0.104 0.104 0.104 0.100 0.100 0.100 0.126 0.126 0.126 0.110 0.110 0.110 0.121 0.121 0.121 0.094 0.094 0.094

500 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Table 4.1: Type 1 error rates with significance level 2α = 0.10, T ∼ Beta(α =

1.2, β = 3.2), C ∼ Unif(a = 0, b = 1.82) and p = 0.15.

H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n measures SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3)

Type 1 0.051 0.049 0.050 0.088 0.088 0.088 0.046 0.048 0.050 0.070 0.070 0.068 0.020 0.072 0.065 0.183 0.181 0.146

10 NA — — — 228 0 0 — — — 3736 0 0 — — — 32821 0 0

ABS — — — 12 12 12 — — — 12 12 12 — — — 12 12 12

Type 1 0.054 0.054 0.045 0.059 0.059 0.059 0.066 0.066 0.070 0.069 0.069 0.069 0.067 0.067 0.067 0.059 0.059 0.059

50 NA — — — 0 0 0 — — — 0 0 0 — — — 56 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type 1 0.047 0.047 0.052 0.045 0.045 0.045 0.057 0.057 0.061 0.057 0.057 0.057 0.078 0.078 0.083 0.061 0.061 0.061

100 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type 1 0.058 0.058 0.058 0.054 0.054 0.054 0.062 0.062 0.062 0.054 0.054 0.054 0.072 0.072 0.072 0.049 0.049 0.049

500 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Table 4.2: Type 1 error rates with significance level 2α = 0.05, T ∼ Beta(α =

1.2, β = 3.2), C ∼ Unif(a = 0, b = 1.82) and p = 0.15.

from all intervals except the last intervals, for which we sample from the exponential

tails. For this strategy, we indicate it by SBLexp. We consider these three ways in

sampling to improve the results for the last quartile when n gets large.

Tables 4.1 and 4.2 present the Type 1 error rates for the quartiles’ hypothesis

tests with significance levels 0.10 and 0.05, respectively, where the simulated data

sets are from the first scenario. The smoothed bootstrap with its three assumptions,

SB, SBexp and SBLexp, provides lower discrepancies between the actual and nominal

error rates for all quartiles’ tests when n = 10. This superiority occurs not only due

to the event observations obtained for the smoothed bootstrap samples, but also

the KM estimator used in Efron’s bootstrap samples is often not able to find the
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H0 : Q1 = 0.509 Q2 = 1 Q3 = 1.963

n measures SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3)

Type 1 0.092 0.096 0.103 0.103 0.103 0.098 0.093 0.128 0.119 0.126 0.104 0.108 0.287 0.304 0.172

10 NA — — 1813 0 0 — — 23589 0 0 — — 167582 0 0

ABS — — 61 61 61 — — 61 61 61 — — 61 61 61

Type 1 0.089 0.092 0.121 0.121 0.121 0.095 0.092 0.106 0.106 0.106 0.118 0.115 0.118 0.119 0.119

50 NA — — 0 0 0 — — 2 0 0 — — 18178 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type 1 0.084 0.090 0.100 0.100 0.100 0.097 0.102 0.101 0.101 0.101 0.119 0.117 0.116 0.117 0.117

100 NA — — 0 0 0 — — 0 0 0 — — 1421 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type 1 0.103 0.106 0.098 0.098 0.098 0.106 0.103 0.104 0.104 0.104 0.120 0.120 0.112 0.112 0.112

500 NA — — 0 0 0 — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Table 4.3: Type 1 error rates with significance level 2α = 0.10, T ∼ Log-Normal(µ =

0, σ = 1), C ∼Weibull(α = 3, β = 3.7) and p = 0.15.

H0 : Q1 = 0.509 Q2 = 1 Q3 = 1.963

n measures SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3)

Type 1 0.040 0.045 0.084 0.084 0.084 0.047 0.050 0.070 0.069 0.070 0.065 0.069 0.250 0.268 0.138

10 NA — — 1813 0 0 — — 23589 0 0 — — 167582 0 0

ABS — — 61 61 61 — — 61 61 61 — — 61 61 61

Type 1 0.047 0.049 0.066 0.066 0.066 0.054 0.054 0.056 0.056 0.056 0.066 0.059 0.062 0.062 0.062

50 NA — — 0 0 0 — — 2 0 0 — — 18178 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type 1 0.042 0.046 0.047 0.047 0.047 0.050 0.047 0.049 0.049 0.049 0.061 0.065 0.065 0.065 0.065

100 NA — — 0 0 0 — — 0 0 0 — — 1421 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type 1 0.054 0.057 0.054 0.054 0.054 0.047 0.043 0.050 0.050 0.050 0.070 0.066 0.062 0.062 0.062

500 NA — — 0 0 0 — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Table 4.4: Type 1 error rates with significance level 2α = 0.05, T ∼ Log-Normal(µ =

0, σ = 1), C ∼Weibull(α = 3, β = 3.7) and p = 0.15.
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H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n Banks Efron Banks Efron Banks Efron

10 0.102 0.099 0.080 0.136 0.081 0.096

50 0.089 0.113 0.099 0.112 0.099 0.111

100 0.099 0.103 0.113 0.109 0.095 0.103

500 0.097 0.103 0.101 0.102 0.087 0.091

Table 4.5: Type 1 error rates with significance level 2α = 0.10, Beta(α = 1.2, β =

3.2) and p = 0.

quartiles, in particular the second and third ones. In 228, 3736 and 32821 bootstrap

samples, we cannot find the first, second and third quartiles, respectively. As the

sample size increases to 50, 100 and 500, both methods provide good results, but

Efron’s method is better, and the NA and ABS numbers decrease toward zero. These

decreases lead to equal results when E(1), E(2) and E(3) are used. Also, SB, SBexp

and SBLexp provide approximately equal outcomes at these large sample sizes.

In the second scenario, we should note that the data space is (0,∞), so that the

last intervals for the smoothed method are not bounded. In this case, we can only

use the SBexp and SBLexp assumptions, not SB. The results of Type 1 error rates

for the quartiles’ hypothesis tests with significance levels 0.10 and 0.05 are listed

in Tables 4.3 and 4.4. The SBexp and SBLexp methods again outperform Efron’s

method in defining the Type 1 error rates when the sample size is small. As n gets

large, both methods perform well as we observed in Tables 4.1 and 4.2.

As a special case when data includes only failures, no censored observations, we

will use the original Banks’ bootstrap and the standard Efron’s bootstrap methods to

compute the Type 1 error rates for the quartiles’ hypothesis tests. In the simulations,

we use Beta(α = 1.2, β = 3.2) to create data sets and repeat the same comparison

procedure as in the previous simulations. Tables 4.5 and 4.6 present the Type 1 error

rates for the quartiles’ hypothesis tests based on Banks’ and Efron’s methods with

significance levels 0.10 and 0.05, respectively. It is again that the Banks’ bootstrap

method performs better, in particular when n = 10 and 2α = 0.05. As n gets large,

both methods perform well.
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H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n Banks Efron Banks Efron Banks Efron

10 0.052 0.089 0.046 0.064 0.014 0.086

50 0.046 0.059 0.058 0.060 0.055 0.069

100 0.043 0.042 0.054 0.060 0.054 0.058

500 0.052 0.058 0.057 0.056 0.040 0.042

Table 4.6: Type 1 error rates with significance level 2α = 0.05, Beta(α = 1.2, β =

3.2) and p = 0.

4.3 The two sample problem

In the literature, the achieved significance level ASL has been used to draw a con-

clusion for a hypothesis test H0 : θ1 = θ2, where θ1 and θ2 represent the function of

interest in the first and second samples, respectively. Having observed θ̂ = θ̂1 − θ̂2,

the achieved significance level is defined as the probability of observing at least that

large a value when the null hypothesis is true,

ASL = ProbH0{θ̂∗ ≥ θ̂} (4.1)

The smaller the value of ASL, the stronger the evidence against H0. The variable

θ̂ is fixed at its observed value and the random quantity θ̂∗ has the null hypothesis

distribution, the distribution of θ̂ if H0 is true [34].

Efron and Tibshirani [34] used the achieved significance level to test whether the

two samples have equal mean or not. Suppose we have two samples z = z1, z2, . . . , zn

and y = y1, y2, . . . , ym from possibly different probability distributions, and we wish

to test the null hypothesis H0 : µ1 = µ2. Efron and Tibshirani [34] use Efron’s

bootstrap method to approximate the ASL value, then H0 is rejected when ÂSL <

2α. The computation of the bootstrap test statistic for testing the null hypothesis

is as follows

(i) Combine z and y samples together, so we get a sample x of size n + m.

x = z1, z2, . . . , zn, y1, y2, . . . , ym

(ii) Draw B bootstrap samples of size n + m with replacement from x, and call
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the first n observations z∗b and the remaining m observations y∗b for b =

1, 2, . . . , B.

(iii) On each bootstrap sample, we compute the means of z∗b and y∗b, then find

A∗b = z∗b − y∗b, b = 1, 2, . . . , B.

(iv) The achieved significance level ASL can be approximated by

ÂSL =

∑B
b=1{A∗b ≥ Aobs}

B
(4.2)

where Aobs = z − y, and z and y are the sample means of the two original

samples.

In this section, we want to use the proposed strategy to test whether two samples

have equal median or not based on the bootstrap methods, presented in Chapter 2,

and conduct comparisons through simulations. We will compute the Type 1 error

rate for the following hypothesis test

H0 : Q1
2 = Q2

2 VS. H1 : Q1
2 6= Q2

2 (4.3)

To conduct comparisons between the bootstrap methods through simulations,

we generate two data sets, both of size n, from the second scenario we proposed in

Section 4.2. We compute their medians Q̂1
2 and Q̂2

2 and calculate Aobs = Q̂1
2 − Q̂2

2.

The two generated data sets will be combined together, so that the new sample

will be of size 2n. Based on each bootstrap method, we draw 1000 samples of

size 2n, and call the first n observations z∗b and the remaining n observations y∗b

for b = 1, 2, . . . , B. We then compute A∗b = Q̂2(z
∗b) − Q̂2(y

∗b) on each bootstrap

sample. This leads to have 1000 A∗ values. Finally, we compute the approximation

of ASL, and reject H0 if ÂSL < 2α. We repeat this procedure 1000 times, then

count the number of times that we reject the null hypothesis. We take the ratio

out of 1000 due to the 1000 trials, and consider the best method is the one that its

corresponding ratio is closer to 2α. The final results of the simulations are presented

in Tables 4.7 and 4.8 with two different significance levels.

As the sample space of the underlying distribution is (0,∞), we only consider

SBexp and SBLexp for the smoothed bootstrap method, and with Efron’ method, we
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n SBexp SBLexp E(2) E(3)

10 0.078 0.075 0.091 0.089

50 0.079 0.079 0.090 0.090

100 0.100 0.101 0.107 0.107

500 0.105 0.101 0.104 0.104

Table 4.7: Type 1 error rates with significance level 2α = 0.10, and all samples cre-

ated by (T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(α = 3, β = 3.7),where p =

0.15).

n SBexp SBLexp E(2) E(3)

10 0.025 0.025 0.031 0.031

50 0.039 0.041 0.039 0.039

100 0.047 0.046 0.049 0.049

500 0.043 0.042 0.043 0.043

Table 4.8: Type 1 error rates with significance level 2α = 0.05, and all samples cre-

ated by (T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(α = 3, β = 3.7),where p =

0.15).

consider E(2) and E(3) because they can obtain a median for each set of each bootstrap

sample. Tables 4.7 and 4.8 present the Type 1 error rates of the hypothesis test (4.3)

with significance levels 0.10 and 0.05, respectively. The SBexp and SBLexp methods

mostly provide lower actual Type 1 error rates than the ones based on E(2) and E(3)

at different sample sizes. However, E(2) and E(3) make the discrepancies between

the actual and nominal Type 1 error levels lower, in particular when the sample size

is small. When n = 500, all methods provide nearly identical results.

In the previous simulations, we created both samples in each trial from one

scenario, but now we desire to have the samples from two different scenarios. In

each trial, we set that the first sample is created from T ∼ Log-Normal(µ = 0, σ =

1), C ∼ Weibull(α = 3, β = 3.7) and the second sample is from T ∼ Weibull(α =

1, β = 1.443), C ∼ Exponential(λ = 0.12),where p = 0.15 in both scenarios. We

want to investigate how the bootstrap methods perform when the two samples have
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n SBexp SBLexp E(2) E(3)

10 0.082 0.079 0.083 0.083

50 0.103 0.105 0.095 0.095

100 0.101 0.097 0.093 0.093

500 0.089 0.092 0.084 0.084

Table 4.9: Type 1 error rates with significance level 2α = 0.10, the first samples from

(T ∼ Log-Normal(µ = 0, σ = 1), C ∼Weibull(α = 3, β = 3.7),where p = 0.15) and

the second samples from (T ∼ Weibull(α = 1, β = 1.443), C ∼ Exponential(λ =

0.12),where p = 0.15).

n SBexp SBLexp E(2) E(3)

10 0.030 0.027 0.038 0.038

50 0.046 0.047 0.046 0.046

100 0.041 0.043 0.034 0.034

500 0.045 0.047 0.043 0.043

Table 4.10: Type 1 error rates with significance level 2α = 0.05, the first samples

from (T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(α = 3, β = 3.7),where p =

0.15) and the second samples from (T ∼ Weibull(α = 1, β = 1.443), C ∼

Exponential(λ = 0.12),where p = 0.15).

two different distributions, but they have the same median, which is equal to 1.

Tables 4.9 and 4.10 outline the Type 1 error rates with significance levels 0.10 and

0.05, respectively. All methods perform well at all different sample sizes, and the

results are nearly close to the nominal size 2α, in particular when the sample size is

large.

4.4 Pearson correlation test

To compare the proposed bootstrap methods, presented in Chapter 3, to Efron’s

method, we compute the corresponding Type 1 error rate, where the method is

considered superior if its corresponding Type 1 error rate is closer to the significance
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level 2α. In this section, we consider two different distributions to simulate the data

sets. For the first scenario, we generate data sets from Gumbel copula, where the

marginalsX and Y are both following the standard uniform distribution. The second

scenario is Clayton copula, where X follows normal distribution with mean 1 and

standard deviation 1 and Y follows normal distribution as well, but with mean 5

and standard deviation 3. In both scenarios, we consider three dependence levels of

ρ and three sample sizes with two significance levels. With the simulation results in

the tables, we present the dependence parameters of copulas and their concordance

measure Kendall’s τ as there is a one-to-one relationship between them.

To compute Type 1 error rate for the null hypothesis of ρ = ρ? based on a

bootstrap method, we create N = 1000 data sets with sample size n and dependence

level ρ = ρ? from one scenario we presented above. Then for each generated data

set, we apply each bootstrap method B = 1000 times, and compute the Pearson

correlation of each bootstrap sample. We order the 1000 Pearson correlation values

from lowest to highest and obtain the 100(1 − 2α)% bootstrap confidence interval.

If the null hypothesis value is not included in the confidence interval, we reject H0

and count 1; otherwise, we do not reject H0 and count 0. The number of times that

the null hypothesis was rejected over the 1000 trials will be the Type 1 error rate.

Table 4.11 presents the Type 1 error rates based on the bootstrap methods,

where the significance level is 0.10. For small sample size, n = 10, the SBSP and

SBNP methods, presented in Chapter 3, provide error rates closer to the nominal

rate, = 0.10, compared to Efron’s and the smoothed Efron’s methods. However, the

SBNP method is the best one when ρ = 0.4 and 0.8. When n increases to 50 and

100, all methods decrease the discrepancies between the actual and nominal error

rates, but the SBNP method is the superior one in most cases.

With significance level 0.05, the actual Type 1 error rates based on the bootstrap

methods are listed in Table 4.12. The SBSP and SBNP methods again provide lower

discrepancies between the nominal and actual Type 1 error rates compared to Efron’s

and the smoothed Efron’s methods, in particular when n = 10. When the sample

size increases to 50 and 100, all methods perform better, but the SBNP method is

the best one in most settings.
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 ρ=0 0.114 0.120 0.139 0.142 0.105 0.113 0.106 0.105 0.106 0.102 0.107 0.106

0.275 1.3793 ρ=0.4 0.137 0.129 0.147 0.149 0.136 0.122 0.128 0.127 0.129 0.105 0.109 0.106

0.610 2.5641 ρ=0.8 0.133 0.075 0.189 0.184 0.129 0.123 0.121 0.126 0.126 0.103 0.111 0.107

Table 4.11: Type 1 error rates with significance level 0.10, Gumbel copula, X ∼

Unif(0, 1) and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 ρ=0 0.064 0.072 0.085 0.081 0.046 0.051 0.053 0.058 0.056 0.052 0.055 0.057

0.275 1.3793 ρ=0.4 0.075 0.070 0.100 0.098 0.067 0.079 0.080 0.075 0.066 0.061 0.061 0.058

0.610 2.5641 ρ=0.8 0.079 0.034 0.131 0.127 0.074 0.070 0.078 0.076 0.080 0.066 0.071 0.071

Table 4.12: Type 1 error rates with significance level 0.05, Gumbel copula, X ∼

Unif(0, 1) and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 ρ=0 0.119 0.026 0.144 0.147 0.119 0.097 0.117 0.115 0.116 0.097 0.102 0.102

0.259 0.6990 ρ=0.4 0.142 0.039 0.167 0.165 0.150 0.102 0.122 0.125 0.135 0.114 0.116 0.119

0.630 3.4054 ρ=0.8 0.144 0.175 0.189 0.196 0.218 0.110 0.141 0.132 0.277 0.104 0.111 0.118

Table 4.13: Type 1 error rates with significance level 0.10, Clayton copula, X ∼

Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 ρ=0 0.065 0.009 0.086 0.086 0.053 0.048 0.060 0.064 0.063 0.056 0.054 0.058

0.259 0.6990 ρ=0.4 0.088 0.012 0.108 0.105 0.076 0.048 0.066 0.068 0.083 0.066 0.063 0.070

0.630 3.4054 ρ=0.8 0.080 0.039 0.130 0.132 0.147 0.051 0.079 0.079 0.200 0.054 0.062 0.063

Table 4.14: Type 1 error rates with significance level 0.05, Clayton copula, X ∼

Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).
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From the second scenario, we simulate N = 1000 data sets with dependence

level ρ = ρ?, and we compute Type 1 error rates by using the bootstrap methods

as shown in Tables 4.13 and 4.14. When n = 10, the SBSP method provides the

closer results to the nominal error rates at most levels of ρ. Then as n increases

to 50 and 100, its performance worsens for H0 : ρ = 0.8 because the underlying

distribution is not symmetric. At these large sample sizes, the results of SBNP,

Efron and SEB methods are better than those of the SBSP method, in particular

the results based on the SBNP method. The SBNP method mostly provides the

lowest discrepancies between the nominal and actual error rates in comparison to

those of the other methods in both significance levels 0.10 and 0.05. However, when

n = 10 and ρ = 0, 0.4, the SBNP method provides very small error rates.

4.5 Kendall correlation test

In Section 4.4, we compute the Type 1 error rate for Pearson correlation test at

different sample sizes and different dependence levels. For this section, we want

to repeat the same comparisons, but we will consider the Kendall correlation test

instead. We use the same scenarios to create data sets and conduct the simula-

tions, where n = 10, 50 and 100, and the dependence level τ = 0, 0.4 and 0.8 with

significance levels 0.10 and 0.05.

We use Gumbel copula, where both marginals follow Uniform(0,1), to generate

data sets and create Tables 4.15 and 4.16. From these tables, it is clear that the

SBSP method performs well when τ = 0 at all different sample sizes. However,

it performs poorly as the sample size increases when τ = 0.4 and 0.8. This is

contrary to the results based on SBNP, Efron’s and smoothed Efron’s methods.

These methods provide lower error rates than the nominal levels when the sample

size is small at all different dependence levels. As n increases to 50 and 100, the

error rates become closer to the nominal level 2α.

Tables 4.17 and 4.18 present the Type 1 error rates for Kendal correlation test

at different dependence levels with significance levels 0.10 and 0.05, respectively.

When τ = 0 and n = 10, the error rate based on the SBNP method is extremely
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 τ = 0 0.103 0.076 0.073 0.076 0.103 0.094 0.087 0.092 0.105 0.096 0.102 0.099

0.4 1.667 τ = 0.4 0.120 0.059 0.078 0.065 0.133 0.107 0.110 0.100 0.128 0.100 0.100 0.098

0.8 5 τ = 0.8 0.047 0.062 0.094 0.046 0.132 0.076 0.076 0.077 0.130 0.077 0.081 0.070

Table 4.15: Type 1 error rates of Kendall correlation test with significance level

0.10, Gumbel copula, X ∼ Unif(0, 1) and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 τ = 0 0.057 0.035 0.037 0.040 0.048 0.041 0.041 0.045 0.055 0.047 0.049 0.052

0.4 1.667 τ = 0.4 0.063 0.032 0.038 0.035 0.071 0.053 0.055 0.055 0.079 0.047 0.052 0.049

0.8 5 τ = 0.8 0.021 0.025 0.021 0.025 0.072 0.039 0.032 0.037 0.068 0.043 0.038 0.042

Table 4.16: Type 1 error rates of Kendall correlation test with significance level

0.05, Gumbel copula, X ∼ Unif(0, 1) and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 0 0.103 0.020 0.073 0.076 0.103 0.087 0.087 0.092 0.105 0.095 0.102 0.099

0.4 1.333 0.4 0.125 0.037 0.089 0.074 0.140 0.094 0.101 0.099 0.121 0.090 0.098 0.089

0.8 8 0.8 0.049 0.918 0.110 0.046 0.165 0.456 0.078 0.080 0.160 0.169 0.088 0.094

Table 4.17: Type 1 error rates of Kendall correlation test with significance level

0.10, Clayton copula, X ∼ Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 0 0.057 0.006 0.037 0.040 0.048 0.033 0.041 0.045 0.055 0.055 0.049 0.052

0.4 1.333 0.4 0.065 0.013 0.041 0.032 0.076 0.039 0.050 0.046 0.067 0.045 0.054 0.048

0.8 8 0.8 0.020 0.749 0.027 0.019 0.096 0.307 0.044 0.028 0.107 0.103 0.043 0.040

Table 4.18: Type 1 error rates of Kendall correlation test with significance level

0.05, Clayton copula, X ∼ Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).
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lower than the nominal level 2α, while the results of other methods are close to the

nominal levels. As the sample size increases to 50 and 100, all methods provide

well outcomes. If there is a strong relation between the variables, it is advised

to use either Efron’s bootstrap method or the SEB method. They are both able to

accomplish well results because these methods have much less effects than the SBSP

and SBNP methods on the observations rank which is the base to compute Kendall

correlation.

4.6 Concluding remarks

This chapter explored how the smoothed bootstrap methods, proposed for right-

censored data and bivariate data, can be used to compute the Type 1 error rates

for some hypothesis tests, and compare their results to those of Efron’s bootstrap

methods for right-censored data and bivariate data through simulations. For right-

censored data, the null hypothesis tests are that the quartiles are equal to those of

the underlying distributions. We also test whether two sample medians are equal

regardless whether the two samples are from the same underlying distribution or

not. For bivariate data, we compute the Type 1 error rates for Pearson and Kendall

correlation tests.

We found, in the right-censored situation, the smoothed bootstrap method per-

forms better when the sample size is small. It provides lower discrepancies between

the actual and nominal error rates. As the sample size gets large, both bootstrap

methods provide well results, but Efron’s method mostly performs better for the

third quartile. For two sample medians, we use the achieved significance level ASL

to test whether the two samples have equal median or not. Through the simulations,

it is clear that all bootstrap methods perform well, and the Type 1 error rates are

close to the nominal levels.

For Pearson correlation test, the SBSP and SBNP methods lead to lower dis-

crepancies between the actual and nominal Type 1 error rates compared to Efron’s

and the smoothed Efron’s methods when the sample size is small. For large n, all

methods provide good results, but the SBNP method performs better in most de-
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pendence levels. If the data distribution is asymmetric, the SBSP method does not

perform that well, in particular when τ 6= 0, which results from the Normal copula

assumption.

For Kendall correlation test, it is advised to use either Efron’s bootstrap method

or the SEB method, in particular when the underlying distribution is asymmetric

and has a strong Kendall correlation. Their influences on the observations rank

are much less than those of the SBSP and SBNP methods. When τ = 0 and the

sample size is small, all bootstrap methods perform good, and as n gets large, their

performances are improved and the Type 1 error rates become closer to the nominal

level 2α.

In this chapter, we used the bootstrap methods for right-censored data and

bivariate data to compute the Type 1 error rates for different hypothesis tests. It

will be of interest to use these bootstrap methods to compute the power or Type

2 error rates for some hypothesis tests, this is left as an interesting topic for future

research.



Chapter 5

Conclusions

This chapter summarizes the main results in this thesis, and some topics are dis-

cussed for future research. For right-censored data, we introduced a new smoothed

bootstrap method, which has been used for inferences in terms of coverage probabili-

ties, survival functions and Type 1 error rates of hypothesis tests. We also presented

three new smoothed bootstrap methods for bivariate data and studied the coverage

proportions for some functions of interest. Moreover, we used these methods to

derive the Type 1 error rates of Pearson and Kendall correlation tests.

In Chapter 2, we presented the smoothed bootstrap method for right-censored

data on a finite support and on a positive real line. This bootstrap method allows

us to sample from the whole data range to create the bootstrap samples and avoids

the issues of ties and censored observations. This method has more variation in

sampling than the one of Efron, and this mostly leads to better accuracy in the

coverage probabilities, in particular when the sample size is small or medium. For

survival function inferences, the smoothed bootstrap method performs better than

the alternative smoothed bootstrap method in terms of the coverage probability for a

survival function at a certain time t. For future research, it will be interesting to use

the smoothed bootstrap method to derive the Type 2 error rates of hypothesis tests.

The asymptotic behaviour of smoothed bootstrap method is also of interest, the

study of this is left as a topic for future research. We expect that, for large sample

sizes, the behaviour of our method will be similar to that of Efron’s method because

the difference between sampling from intervals between observations or sampling

110
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from observations becomes less when the number of observations increases.

Chapter 3 introduced three smoothed bootstrap methods for bivariate data, and

these methods were compared to Efron’s bootstrap method through simulation stud-

ies. The first two methods are based on the semi-parametric and nonparametric pre-

dictive methods, proposed by Coolen-Maturi et al. [22] and Muhammad et al. [65],

and the third one is based on the uniform kernels. These smoothed methods avoid

the issue of ties that often occurred in the bootstrap samples conducted by Efron’s

method, and this leads to better accuracy in terms of the coverage probability for

some functions of interest. If the data distribution is symmetric or approximately

symmetric, the smoothed bootstrap methods perform better than Efron’s bootstrap

method when we are interested in the Pearson correlation and the means of T1 and

T2. However, Efron’s bootstrap performs better if we consider the Kendall and

Spearman correlations. In case of no symmetry is observed for the data distribu-

tion, it is advised to use either Efron’s bootstrap or the smoothed Efron’s method

because they are more likely to provide better results. For further research, it will be

interesting to derive a smoothed bootstrap method for bivariate data, where one or

both marginals include right-censored observations. This could be based on a com-

bination of the right-censoring A(n) assumption and a parametric or nonparametric

copula model. As a starting point to derive the method, we can attempt to the

right-censoring A(n) assumption on the marginals first, then to take the dependence

structure into account, we use copulas. This will provide a partial distribution for

one future bivariate observation and this partial distribution will be used to derive

a smoothed bootstrap method for bivariate right-censored data. We expect that

the (n+ 1)2 blocks partitioned the sample space will be overlapping due to the cen-

sored observations and challenges may be experienced, so we reckon some heuristic

method will be needed to link copulas to the NPI marginals in this case. Also as a

topic for future research, it is of interest to study the asymptotic behaviour of the

smoothed bootstrap methods as the sample size increases.

In Chapter 4, the proposed bootstrap methods were used as alternative methods

for some hypothesis tests. Simulations were used to study their performance in

deriving the Type 1 error rates. When the data include right-censored observations,
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we found that the smoothed bootstrap provides smaller discrepancies between the

actual and nominal error rates of the quartiles’ hypothesis tests compared to Efron’s

method, in particular when the sample size is small. For the two sample median test,

the smoothed bootstrap method and Efron’s method both provide good results. For

Pearson correlation test at any dependence level, the smoothed bootstrap based on

the nonparametric predictive method mostly provides lower discrepancies between

the actual and nominal Type 1 error rates. For Kendall’s correlation test, it is

advised to use either Efron’s bootstrap or the smoothed Efron’s method. For future

research, the proposed bootstrap methods will be used to compute either the Type

2 error rate or the power of such hypothesis tests and compared the results to the

ones of Efron’s methods. The evaluation of these statistics is important and useful.

The proposed methods can be used or introduced to the field of system reliability,

where for example for a coherent system, the standard bootstrap has been used

to provide the lifetime distribution. Marks et al. [61] presented the resampling

bootstrap method to find the empirical system lifetime distributions of parallel and

series systems. In reliability applications, our approaches can be used to find the

empirical system lifetime distributions of any system, and inferences can be made

with high accuracy. This is left as a future research topic in system reliability.

Bootstrap methods have been widely used in many statistical fields for precise

inferences due to their simplicity and efficiency to give good estimates. The boot-

strap, in general, can be used in many statistical situations. For future research,

we want to use it for imprecise inferences, and this could be of interest in practical

use to provide a range of estimates. Instead of providing one single value as an

estimation for a function of interest, the bootstrap methods could lead to an impre-

cise bootstrap estimate. In other words, the imprecise bootstrap for any function

of interest can replace a single estimate with an interval of estimations including

lower and upper bounds. As this will be the first research into developing bootstrap

methods for imprecise inferences, there are many related research opportunities and

challenges.

Tukey [82] introduced a nonparametric estimation technique referred to as statis-

tically equivalent blocks and tolerance regions. This technique uses the original data
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points to divide the sample space into n+1 blocks, where each block is assigned with

probability 1/(n+1). Based on these blocks, it could be possible to introduce a new

smoothed bootstrap method for any data type; univariate, bivariate or multivariate

data. This is left as a future research topic. Also as a topic for future research, it

is of interest to explore the asymptotic behaviour of the suggested bootstrap meth-

ods as both the sample size n and the number of variables increase. It is expected

that smoothing will be advantageous as the number of variables increases, but there

may be a need for a very large sample size n in order to be able to do meaningful

nonparametric inference in higher dimensional spaces.



Appendix A

Comparing the smoothed

bootstrap to Efron’s bootstrap for

right-censored data

A.1 Simulations for the quartiles

Table A.1 presents the chi-squared values obtained from the actual coverage prob-

abilities based on the bootstrap methods for the true median where the censoring

proportion p in the generating data sets is 0.30. The smoothed bootstrap method

performs better than Efron’s method when n = 6, 10, 20, 40, but Efron’s method

with its three modifications accomplishes better results when n = 100. The three

modifications have an identical chi-squared value when n = 100 because we found a

median at each bootstrap sample; the number NA is equal to 0. Due to increasing

the censoring proportion to 0.30, The NA and ABS numbers increase as well, and

they are greater than the results in Table 2.4 where the censoring proportion p is

set equal to 0.15.

Table A.2 presents the chi-squared values obtained from the actual coverage prob-

abilities for Q1, where the censoring proportion p is 0.30. The smoothed bootstrap

method mostly provides better results than those of Efron’s method, in particular

when the sample size is small or medium. When n = 6, 10, 20 and 40, the smoothed

bootstrap method achieves better coverage probabilities than Efron’s method in

114
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 43.38 163.72 127.52 132.68 63.84 179.16 152.92 146.04

NA — 41629 0 0 — 41629 0 0

ABS — 4582 4582 4582 — 4582 4582 4582

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 9.34 58.60 52.40 62.48 23.12 69.64 65.56 73.60

NA — 20044 0 0 — 20044 0 0

ABS — 175 175 175 — 175 175 175

P-value 0.406 0.000 0.000 0.000 0.232 0.000 0.000 0.000

20 χ2 6.22 7.80 7.46 6.48 13.32 17.88 17.56 16.72

NA — 3096 0 0 — 3096 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.718 0.554 0.589 0.691 0.822 0.530 0.552 0.609

40 χ2 11.32 11.38 11.10 11.10 22.84 30.60 30.64 30.64

NA — 37 0 0 — 37 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.254 0.251 0.269 0.269 0.244 0.045 0.044 0.044

100 χ2 21.40 5.86 5.86 5.86 26.40 18.52 18.52 18.52

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.011 0.754 0.754 0.754 0.119 0.488 0.488 0.488

Table A.1: The chi-squared values for Q2 = 0.236, and their P-values with the

corresponding NA and ABS numbers.

both divisions, but Efron’s method performs better when n = 100. The smoothed

bootstrap method is still good to provide reasonable coverage probabilities at this

sample size, but the three options of Efron’s bootstrap method are better.

For the third quartile Q3, Table A.3 presents the chi-squared values obtained

from the actual coverage probabilities. The smoothed bootstrap method has a better

accuracy in terms of defining the actual coverage probabilities when n = 6, 10 and

20 in both divisions. However, it does not achieve the same level of performance

when the sample size increases to 40 and 100. When n = 40, 100, Efron’s method

with its three options shows its superiority providing lower chi-squared values, in

particular when the third option is assumed. The third suggested option for Efron’s
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 24.80 1049.84 989.94 979.14 96.32 2139.52 1985.40 2015.48

NA — 13616 0 0 — 13616 0 0

ABS — 4582 4582 4582 — 4582 4582 4582

P-value 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 17.54 775.76 746.30 759.66 64.88 1318.44 1291.76 1308.04

NA — 2279 0 0 — 2279 0 0

ABS — 175 175 175 — 175 175 175

P-value 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 13.08 122.50 122.50 122.50 39.76 430.88 430.88 430.88

NA — 38 0 0 — 38 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.159 0.000 0.000 0.000 0.004 0.000 0.000 0.000

40 χ2 10.58 91.82 91.82 91.82 24.40 117.16 117.16 117.16

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.306 0.000 0.000 0.000 0.181 0.000 0.000 0.000

100 χ2 14.54 6.10 6.10 6.10 31.52 19.32 19.32 19.32

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.104 0.730 0.730 0.730 0.035 0.436 0.436 0.436

Table A.2: The chi-squared values for Q1 = 0.117, and their P-values with the

corresponding NA and ABS numbers.

method, E(3), clearly has better coverage probabilities in comparison to the other

two options, E(1) and E(2), in all different sample sizes and in both divisions. More

variations are occurred in the chi-squared values corresponding to the three options

of Efron’s method if the NA number is large, and this can be shown from Table A.3.

When n = 6, the NA number is 140875 and the chi-square values of E(1), E(2) and

E(3) are 1318.90, 1290.20 and 500.02, respectively. The three options have about the

same chi-squared value when n = 100 because the NA number is only 163 out of

1000000, which is small.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 147.28 1318.90 1290.20 500.02 198.72 2710.36 2991.12 1221.84

NA — 140875 0 0 — 140875 0 0

ABS — 4582 4582 4582 — 4582 4582 4582

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 41.88 481.80 461.30 141.02 57.28 1052.12 1123.68 415.52

NA — 101223 0 0 — 101223 0 0

ABS — 175 175 175 — 175 175 175

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 7.28 74.88 64.74 22.20 16.52 184.68 184.40 74.88

NA — 51700 0 0 — 51700 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.608 0.000 0.000 0.008 0.622 0.000 0.000 0.000

40 χ2 38.70 12.80 12.44 10.44 60.80 40.44 40.68 33.80

NA — 11572 0 0 — 11572 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.000 0.172 0.190 0.316 0.000 0.003 0.003 0.019

100 χ2 49.18 12.54 12.42 12.42 71.20 28.64 28.20 28.20

NA — 163 0 0 — 163 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.000 0.185 0.191 0.191 0.000 0.072 0.080 0.080

Table A.3: The chi-squared values for Q3 = 0.396, and their P-values with the

corresponding NA and ABS numbers.
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A.2 Simulations for q0.10 and q0.90

10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 59.86 3092.98 3092.98 3092.98 374.96 6832.68 6832.68 6832.68

NA — 580 0 0 — 580 0 0

ABS — 699 699 699 — 699 699 699

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 90.20 1146.48 1146.48 1146.48 235.56 2680.56 2680.56 2680.56

NA — 15 0 0 — 15 0 0

ABS — 14 14 14 — 14 14 14

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 χ2 19.20 149.52 149.52 149.52 107.56 462.60 462.60 462.60

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000

40 χ2 22.08 176.42 176.42 176.42 73.44 441.44 441.44 441.44

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

100 χ2 5.40 68.24 68.24 68.24 35.96 400.24 400.24 400.24

NA — 0 0 0 — 0 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.798 0.000 0.000 0.000 0.011 0.000 0.000 0.000

Table A.4: The chi-squared values for q0.10 = 0.2231, and their P-values with the

corresponding NA and ABS numbers.

Table A.4 outlines the chi-squared values obtained from the coverage probabili-

ties for q0.10 = 0.2231. The smoothed bootstrap (SB) approach apparently achieves

a better accuracy than Efron’s method with its three options at all different sample

sizes in both divisions. In other words, the SB method provides lower discrepancy

between the nominal and estimated coverage probabilities. The three options of

Efron’s method are equal because we get a time t met the condition Ŝ(t) = 0.90

in most of the bootstrap samples. The NA number goes down as the sample size

increases. The NA numbers are 580 and 15 when n = 6 and 10, respectively, then

it gets 0 with large sample sizes. As the sample size increases, Efron’ chi-squared

values generally decrease as they do for the quartiles in Tables 2.9, 2.10 and 2.11.
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10 CR 20 CR

n measures SB E(1) E(2) E(3) SB E(1) E(2) E(3)

6 χ2 50.32 3379.08 3474.22 2854.48 70.96 7282.16 7615.24 6288.72

NA — 58470 0 0 — 58470 0 0

ABS — 699 699 699 — 699 699 699

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 χ2 9.92 1652.02 1661.78 1205.94 30.52 3591.60 3727.68 2750.52

NA — 46573 0 0 — 46573 0 0

ABS — 14 14 14 — 14 14 14

P-value 0.357 0.000 0.000 0.000 0.046 0.000 0.000 0.000

20 χ2 7.68 432.74 419.80 333.92 48.64 1223.04 1196.24 968.08

NA — 32670 0 0 — 32670 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.567 0.000 0.000 0.000 0.000 0.000 0.000 0.000

40 χ2 13.68 71.78 72.48 71.94 42.16 244.04 238.52 235.88

NA — 6160 0 0 — 6160 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.134 0.000 0.000 0.000 0.002 0.000 0.000 0.000

100 χ2 19.10 8.24 8.16 8.16 34.96 26.40 26.24 26.24

NA — 100 0 0 — 100 0 0

ABS — 0 0 0 — 0 0 0

P-value 0.024 0.510 0.518 0.518 0.014 0.119 0.124 0.124

Table A.5: The chi-squared values for q0.90 = 1.7437, and their P-values with the

corresponding NA and ABS numbers.

In Table A.5, the chi-squared values obtained from the coverage probabilities

for q0.90 = 1.7437 are outlined. When n = 6, 10, 20 and 40 and regardless of the

number of confidence regions, the SB method distinctly performs a better coverage

accuracy, and it makes the discrepancy between nominal and estimated coverage

probabilities lower than Efron’s method does. The SB method is still performing

well when n = 100, but Efron’s method provides better results. This could be from

the influence of Exponential tail(s) assumed for the end interval(s) when the SB

method is applied. By observing the pattern of chi-squared values as the sample

size increases, the chi-squared values of Efron’s bootstrap method become smaller

while there is no pattern with those of the smoothed bootstrap method, and this is

another influence from the Exponential tail(s) assumed for the last interval(s).



Appendix B

R codes

B.1 The smoothed bootstrap method (SB)

The R codes to compute M -function values are written by Maturi [62].

# The functions to compute the m-function values

X.c <- function(X) {

# to get the censored data

ifelse(length(X[X[, 2] == 0,]) > 2, x1 <-

X[X[, 2] == 0,][, 1], x1 <- X[X[, 2] == 0 ,][1])

return(x1)

}

X.u <- function(X) {

# to get the failure data

ifelse(sum(X[, 2] == 1) == 1, x1 <- X[X[, 2] == 1,][1],

x1 <- X[X[, 2] == 1,][, 1])

return(x1)

}

120



B.1. The smoothed bootstrap method (SB) 121

Xu1 <- function(X) {

# all censored , no failure occurs

ifelse(sum(X[, 2] == 1) == 0, Y <- 1, Y <- c(X.u(X),

1))

return(Y)

}

Xt0 <- function(X) {

Y <- c(0, X[, 1])

return(Y)

}

cond <- function(X, y) {

P1 <- NULL

n <- nrow(X)

Xc <- X.c(X)

ncc <-

function(X, cr) {

# calculate the term in the product term

(sum(X[, 1] >= cr) + 1) / sum(X[, 1] >= cr)

}

cr.obs <- Xc[Xc < y]

n.cr.obs <-

length(cr.obs) # calculate the condition under the product term

if (n.cr.obs == 0 | sum(X[, 2] == 0) == 0)

{

P1 <- 1

}

else{

for (j in 1:n.cr.obs) {

P1[j] <- ncc(X, cr.obs[j])

}

}

P3 <- prod(P1) / (n + 1)

return(P3)
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}

# calculate Mfun and prob

Mfun <- function(X) {

Y <- rbind(c(0, 1), X)

ny <- nrow(Y)

if (sum(Y[, 2]) == ny) {

Mu = rep(1 / ny, ny)

} else{

Mu <- NULL

for (i in 1:ny) {

Mu[i] <-

(sum(X[, 1] >= Y[, 1][i])) ^ (Y[, 2][i] - 1) * cond(X, Y[, 1][i])

}

}

return(Mu)

}

# Create a data set with right -censored observations

n = 10

T = rbeta(n, 1.2, 3.2)

C = runif(n, 0, 1.82)

time = ifelse(T <= C, T, C)

cens = ifelse(T <= C, 1, 0)

dataa1 = data.frame(time , cens)

dataa = as.matrix(dataa1[order(dataa1$time), ])

mfun = Mfun(dataa)

U = Xu1(dataa)

L = Xt0(dataa)
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lower = NULL

upper = NULL

for (r in 1:( length(T) + 1)) {

lower[r] = L[r]

upper[r] = U[U > L[r]][1]

}

mdaataa = data.frame(lower , upper , mfun)

daataa = as.matrix(mdaataa)

median = NULL

# Create 1000 bootstrap samples and compute their corresponding

medians

for (a in 1:1000) {

mysample = daataa[sample(length(T) + 1, length(T) , replace = TRUE ,

prob =

mfun), ]

obs = NULL

for (i in 1: length(T)) {

obs[i] = runif(1, min = mysample[i, 1], max = mysample[i, 2])

}

median[a] = quantile(obs , prob = 0.5)

}
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B.2 The smoothed bootstrap method based on

the semi-parametric predictive method (SBSP)

Muhammad [64] provided the R codes to compute the probabilities hij.

library(copula)

library(CDVine)

library(VineCopula)

fun1 = function(i, j) {

pMvdc(c(i / (n + 1), j / (n + 1)), mycopula)

}

ff3 <- function(XY) {

rXY <- apply(XY , 2, rank)

gg <- NULL

ss <- NULL

for (i in 1:(n + 1)) {

for (j in 1:(n + 1)) {

a <- rXY[i, 1]

b <- rXY[j, 2]

ff <- NULL

if (a > 1 &

b > 1)

ff <- fun1(a, b) - fun1(a - 1, b) - fun1(a, b - 1) + fun1(a - 1, b

- 1)

if (a > 1 & b == 1)

ff <- fun1(a, b) - fun1(a - 1, b)

if (a == 1 & b > 1)

ff <- fun1(a, b) - fun1(a, b - 1)

if (a == 1 & b == 1)

ff <- fun1(a, b)

gg <- rbind(gg, c(XY[i, 1], XY[j, 2], a, b, ff))

}

}

return(gg)

}
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#######################################################

# To set the dependence level

tau = 0

theta = 1 / (1 - tau)

theta

tau = 1 - (1 / theta)

tau

#######################################################

gumbel.cop = gumbelCopula(theta)

xyz = mvdc(gumbel.cop , c("unif", "unif"),

list(list(min = 0, max = 1), list(min = 0, max = 1)))

n = 10

data = rMvdc(n, xyz)

x = data[, c(1)]

y = data[, c(2)]

data = data.frame(x, y)

#######################################################

#To estimate parametric copula , using the data

eu = cbind ((rank(x) / (n + 1)), (rank(y) / (n + 1)))

u = eu[, 1]

v = eu[, 2]

# The inversion of Kendall ’s tau estimate

fit2 = BiCopEst(u, v, family = 1, method = "itau")$par

#######################################################

#Using estimated theta
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mycopula = mvdc(normalCopula(fit2), c("unif", "unif"),

list(list(min = 0, max = 1), list(min = 0, max = 1)))

#######################################################

xyU = rbind(data , c(1, 1)) #to add the Upper Bound

xyL = rbind(c(0, 0), data) #to add the lower Bound

xyL = xyL[order(xyL[, 1], xyL[, 2]) ,]

xyU = xyU[order(xyU[, 1], xyU[, 2]) ,]

RR = ff3(xyU)

order_hij = RR[order(RR[, 3], RR[, 4]), ]

limitx = c(0, x[order(x)])

orderLX = rep(limitx , n + 1)[order(rep(limitx , n + 1))]

limity = c(0, y[order(y)])

orderLY = rep(limity , n + 1)

order_data = data.frame(orderLX ,

order_hij[, 1],

orderLY ,

order_hij[, 2],

order_hij[, 3],

order_hij[, 4],

order_hij[, 5])

colnames(order_data) = c("LX", "UX", "LY", "UY", "rX", "rY", "hij")

Or_data = order_data

#######################################################

#######################################################

# Applying the SBSP method 1000 times

Pearson = NULL
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probability = Or_data[, 7]

for (aa in 1:1000) {

mysample = Or_data[sample(nrow(Or_data),

length(x) ,

replace = TRUE ,

prob = probability), ]

for_X = NULL

for_Y = NULL

for (wre in 1: length(x)) {

divint1 = runif(1, min = mysample[wre , 1], max = mysample[wre , 2])

divint2 = runif(1, min = mysample[wre , 3], max = mysample[wre , 4])

for_X[wre] = divint1

for_Y[wre] = divint2

}

Boot_data = data.frame(for_X, for_Y)

Pearson[aa] = cor(Boot_data , method = c("pearson"))[1, 2]

}

B.3 The smoothed bootstrap method based on

the nonparametric predictive method (SBNP)

Muhammad [64] provided the R codes to compute the probabilities hij.

library(gtools)

library(np)

tau = 0

theta = 1 / (1 - tau)



B.3. The smoothed bootstrap method based on the nonparametric
predictive method (SBNP) 128

theta

tau = 1 - (1 / theta)

tau

#######################################################

gumbel.cop = gumbelCopula(theta)

xyz = mvdc(gumbel.cop , c("unif", "unif"),

list(list(min = 0, max = 1), list(min = 0, max = 1)))

n = 3

data = rMvdc(n, xyz)

x = data[, c(1)]

y = data[, c(2)]

data = data.frame(x, y)

h_x = 1.06 * min(sd(x), (IQR(x) / 1.349)) * (n ^ (-1))

h_y = 1.06 * min(sd(y), (IQR(y) / 1.349)) * (n ^ (-1))

xy = cbind(x, y)

n = nrow(xy)

#######################################################

#make a data frame (matrix)

mydat2 = data.frame(x = xy[, 1], y = xy[, 2])

mydat = apply(mydat2 , 2, rank) / (n + 1)

mydat = data.frame(x = mydat[, 1], y = mydat[, 2])

#include upper and lower limit

mydat1 = rbind(c(0, 0), mydat , c(1, 1))

n1 = nrow(mydat1)

grid.dat = mydat1

#######################################################
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#######################################################

## Estimate the copula

bw = npudistbw(

~ x + y,

data = mydat ,

bws = c(h_x, h_y),

bandwidth.compute = FALSE ,

ckertype = "gaussian"

)

copula = npcopula(bws = bw , data = mydat , u = grid.dat)

#######################################################

copulaa = copula[order(copula[, 2]), ]

HIJ = matrix(copulaa[, 1], n1 , n1 , byrow = T)

nn = nrow(HIJ)

HIJorder = order(HIJ[nn, ])

HIJO = HIJ[, HIJorder]

#######################################################

# For Hij

BB = HIJO[-1, -1]

n2 = nrow(BB)

#######################################################

# For hij

D0 = permutations(n2 , 2, 1:n2 , repeats = TRUE , set = FALSE)

D1 = D0 / n2

B0 = rep(0, n2)

BB2 = cbind(B0 , BB[, -n2], deparse.level = 0)

BB3 = rbind(B0 , BB[-n2 , ], deparse.level = 0)

BB4 = cbind(B0 , rbind(B0[-1], BB[-n2 , -n2]), deparse.level = 0)

H1 = c(BB + BB4 - BB2 - BB3)

h_ij = H1
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########################################

xyU = rbind(data , c(1, 1)) #to add the Upper Bound

xyL = rbind(c(0, 0), data) #to add the lower Bound

xyL = xyL[order(xyL[, 2], xyL[, 1]) ,]

xyU = xyU[order(xyU[, 2], xyU[, 1]) ,]

limity = c(0, y[order(y)])

orderLY = rep(limity , n + 1)[order(rep(limity , n + 1))]

limityU = c(y[order(y)], 1)

orderLYU = rep(limityU , n + 1)[order(rep(limityU , n + 1))]

limitx = c(0, x[order(x)])

orderLX = rep(limitx , n + 1)

limitxU = c(x[order(x)], 1)

orderLXU = rep(limitxU , n + 1)

order_data = data.frame(orderLX , orderLXU , orderLY , orderLYU , h_ij)

colnames(order_data) = c("LX", "UX", "LY", "UY", "hij")

Or_data = order_data

#######################################################

#######################################################

# Applying the generalizing Banks ’ bootstrap for bivariate data:

Pearson = NULL

for (aa in 1:1000) {

mysample = Or_data[sample(nrow(Or_data),

length(x)

,

replace = TRUE ,

prob = h_ij), ]

for_X = NULL

for_Y = NULL

for (wre in 1: length(x)) {

divint1 = runif(1, min = mysample[wre , 1], max = mysample[wre , 2])
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divint2 = runif(1, min = mysample[wre , 3], max = mysample[wre , 4])

for_X[wre] = divint1

for_Y[wre] = divint2

}

Boot_data = data.frame(for_X, for_Y)

Pearson[aa] = cor(Boot_data , method = c("pearson"))[1, 2]

}

B.4 The smoothed Efron’s bootstrap (SEB)

x = c(1, 2, 3)

y = c(3, 1, 2)

n = length(x)

data = data.frame(x, y)

h_x = 1.06 * min(sd(x), (IQR(x) / 1.349)) * (n ^ (-4))

h_y = 1.06 * min(sd(y), (IQR(y) / 1.349)) * (n ^ (-4))

LX = x - (h_x / 2)

UX = x + (h_x / 2)

LY = y - (h_y / 2)

UY = y + (h_y / 2)

Or_data = data.frame(LX , UX , LY , UY)

#######################################################

# Applying the SEB method 1000 times:

Pearson = NULL

for (aa in 1:1000) {

mysample = Or_data[sample(nrow(Or_data), length(x) , replace = TRUE

), ]

for_X = NULL

for_Y = NULL

for (wre in 1: length(x)) {

divint1 = runif(1, min = mysample[wre , 1], max = mysample[wre , 2])

divint2 = runif(1, min = mysample[wre , 3], max = mysample[wre , 4])
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for_X[wre] = divint1

for_Y[wre] = divint2

}

Boot_data = data.frame(for_X, for_Y)

Pearson[aa] = cor(Boot_data , method = c("pearson"))[1, 2]

}
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