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Abstract

Within the broad field of Discrete Mathematics and Theoretical Computer Science, the
theory of graphs has been of fundamental importance in solving a large number of
optimization problems and in modelling real world situations. In this thesis we study a
topic that covers many aspects of Graph Theory: transversal sets. A transversal set in a
graph G is a vertex set that intersects every subgraph of G that belongs to a certain class
of graphs. The focus is on vertex cover, feedback vertex set and odd cycle transversal.

The decision problems VertexCover, FeedbackVertex Set and OddCycle Transver-
sal ask, for a given graph G and an integer k ≥ 0, whether there is a corresponding
transversal of G of size at most k. These problems are NP-complete in general and
our focus is to determine the complexity of the problems when various restrictions are
placed on the input, both for the purpose of finding tractable cases and to increase our
understanding of the point at which a problem becomes NP-complete. We consider
graph classes that are closed under vertex deletion and in particular H-free graphs, i.e.
graphs that do not contain a graph H as induced subgraph.

The first chapter is an introduction to the thesis. There we illustrate the motivation
of our work and introduce most of the terminology we have used for our research. In
the second chapter, we develop a number of structural results for some classes of H-free
graphs.

The third chapter looks at the Subset Transversal problems: there we prove that
Feedback Vertex Set and Odd Cycle Tranversal and their subset variants can be solved
in polynomial time for both P4-free and (sP1 + P3)-free graphs, while for Subset Vertex
Cover we show that it can be solved in polynomial time for (sP1 + P4)-free graphs.

The fourth chapter is entirely dedicated to the Connected Vertex Cover problem.
The connectivity constraint requires additional proof techniques. We prove this problem
can be solved in polynomial time for (sP1 + P5)-free graphs, even when weights are
given to the vertices of the graph.

We continue the research on connected transversals in the fifth chapter: we show
that Connected Feedback Vertex Set, Connected Odd Cycle Transversal and their
extension variants can be solved in polynomial time for both P4-free and (sP1 + P3)-free
graphs.

In the sixth chapter we study the price of independence: can the size of a smallest
independent transversal be bounded in terms of the minimum size of a transversal? We
establish complete and almost-complete dichotomies which determine for which graph
classes such a bound exists and for which cases such a bound is the identity.
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1 Introduction

A graph is a model that represents, mostly binary, relationships between objects; it is
composed of a set of items, which we call vertices, and a set of relationships among
them, which we call edges. For example, consider a number of individuals in a social
network: each person can be considered as a vertex and an edge is present between two
individuals if they are friends. A common question is to determine if there is a group
of people large enough in a social network such that every person has a friendship with
everybody else in the group; the term clique is associated to such groups. This concept
has appeared in the mathematical literature with a paper by Erdős and Szekeres [40]
in 1935, linked to the famous Ramsey Theory. Later Luce and Perry [77] introduced
cliques into the social sciences. Finally in 1957, Harary and Ross [58] began to study
the algorithmic aspects of finding cliques. Maximum Clique and other related problems
have a central role in Graph Theory and Theoretical Computer Science.

Fig. 1: A City Map with Streets and Crossings

Another common application of graphs is in the study of physical maps: for example,
in Figure 1 we see a small part of a city map where streets are the edges and their
crossings form the vertex set of a graph. One might be interested to compute the shortest
route among two vertices of a map: this problem is formally known as Shortest Path.
Another interesting problem on maps inspects if it is possible to place a bounded number
of cameras on crossings in order to cover every street: in a more formal setting the
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Vertex Cover problem requires to select a bounded set of vertices that transverse every
edge of the graph. In this regard both these problems are central to the study of algorithms
on graphs.

The Shortest Path problem can be seen as the discrete version of finding a geodesic,
i.e. a curve between two points of minimum length, in a metric space and has became a
classical problem in Graph Theory and has been generalized in a large variety of ways
to answer different questions. A large body of literature can be found in [27] where
different aspects of the problem are considered. Frequently we use the following variant
of this problem: we ask if it is possible to connect a given set of vertices with a limited
number of edges; this variant is known as Steiner Tree.

The vertex cover concept is very important in this thesis and is part of a group
of definitions that are closely related. Pairs of vertices that do not belong to a vertex
cover can not be linked by an edge, or the vertex cover definition is contradicted; these
vertex sets are also know as independent sets and the problem asking if there exists
an independent set of bounded size is called Independent Set. The operation of graph
complementation, i.e. the replacement of every edge with a non-edge, and vice versa,
transforms independent sets into cliques, and vice versa. In this sense vertex cover,
independent set and clique are strongly related concepts for general graphs.

Vertex Cover is an NP-complete problem: we do not know any efficient algorithm
for solving Vertex Cover and and many Computer Scientists believe there are not any.
In practice however, input graphs usually have a certain structure and such structure
helps in the design of efficient algorithms. In the study of NP-complete problems, it is
common among Computer Scientists to determine graph classes such that the problem is
still NP-complete when restricted to such classes or their properties can be exploited to
design efficient algorithms.

Topics in Graph Theory are usually motivated by interesting questions regarding the
physical world and other field of science but they commonly have relevance and interest
on their own. To properly study these combinatorial objects we need to give precise
definitions, statements and algorithms; moreover, we have to adopt a mathematical
attitude to manage all of them together.

The vertex cover definition is part of a large group of concepts that are known as
graph transversals. A graph transversal is a vertex subset of some given graph that
intersects all the subgraphs belonging to a predefined set of graphs. When a transversal
exists, usually the aim is to minimize its size. For very specific and more common
predefined sets, many variants and generalizations have been analysed over the years. We
survey both computational complexity and structural results around the most common
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graph transversals and their variants, obtained adding extra constrains, when the input is
restricted to some special graph class. Before presenting these results we first state the
necessary definitions and terminology.

1.1 Basic Graph Terminology

While self-loops, directed and multiple edges can be relevant and generalizing factors
in the study of transversals, we will assume such structures are not present in the
graphs dealt in this thesis to exclude extra complications. Hence, we only consider finite
undirected graphs with no multiple edges or self loops, that is, a graph G is an ordered
pair (V, E), where V is a finite set of elements called vertices and E is a set of unordered
pairs uv, with u, v ∈ V and u , v, called edges. The sets V and E are called the vertex set

and edge set of G, respectively. In some situations we write V(G) and E(G) instead of V

and E for a graph G whenever the topic includes more than one graph and there is a risk
of ambiguity. Moreover for a graph G = (V, E), let n be the number of vertices |V | and m

be the number of edges |E| in the graph G.

A graph H is a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G) having
only edges contained in V(H). A graph H is an induced subgraph of a graph G if
V(H) ⊆ V(G) and E(H) ⊆ E(G) having all the edges contained in V(H). We write
H ⊆ G and H ⊆i G to denote that H is a subgraph or an induced subgraph of G,
respectively. For a subset S ⊆ V , we let G[S ] and G − S denote the induced subgraph of
G with V(G[S ]) = S and G[V \ S ].

For an integer r ≥ 1, the graph Pr denotes the path on r vertices, i.e., V(Pr) =

{v1, ..., vr} and E(Pr) = {vivi+1 | 1 ≤ i ≤ r − 1}. For an integer r ≥ 3, the graph Cr denotes
the cycle on r vertices, i.e., V(Cr) = {v1, ..., vr} and E(Cr) = {vivi+1 | 1 ≤ i ≤ r−1}∪{v1vr}.
The length of a path or cycle is the number of its edges. A cycle or path is even or odd
depending on the parity of its length. The graph Kr denotes the complete graph on r

vertices, i.e., V(Kr) = {v1, ..., vr} and E(Kr) = {viv j | 1 ≤ i < j ≤ r}. The vertex set
of a complete graph is called a clique. The graph rP1 denotes the graph on r vertices
with empty edge set; such vertex sets are called independent. We say that a graph G is
connected if for every pair of distinct vertices u and v, there is a path connecting u and v.

Let G = (V, E) be a graph. A vertex-weighting of G is a function wV : V → Q+

(where Q+ denotes the set of strictly positive rational numbers), that is, each vertex v

has an associated positive rational weight wV (v). Moreover an edge-weighting of G is a
function wE : E → Q+, that is, each edge e has an associated positive rational weight
wE(e). The weight of a set of vertices, or edges, is the sum of the weights of its elements.
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For two graphs G and H, a vertex mapping f : V(G) → V(H) is called a graph

isomorphism when uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). In that case we say that G

and H are isomorphic. In some situations, with an abuse of notation, we write that two
graphs are equal or are the same when instead we mean those two graphs are isomorphic.

1.2 Basic Complexity Theory

Computational complexity studies how much time and space are involved and necessary
to solve problems. Algorithms plays a central role in this investigation, since they are
often the tools we use to solve such problems. Moreover, as the complexity of an
algorithm is always an upper bound on the complexity of the problem solved by that
algorithm, it is common to focus on its performance.

We put particular emphasis on the time resource: the number of required elementary
operations, which are assumed to take a constant amount of time, on a given input
express the time complexity.

In these settings it is common to use the so called big O notation: let f : R+ −→ R

and g : R+ −→ R+ two functions, we say f (n) = O(g(n)) if there exists a real number
M > 0 and and integer n0 such that | f (n)| ≤ Mg(n) for all n ≥ n0. Informally we say that
an algorithm runs in O(g(n))-time on an input of size n if its running time does not grow
faster than g(n).

The class P contains all problems that are solvable in polynomial time, and the
class NP contains all problems for which a candidate solution can be verified in polyno-
mial time. Trivially P ⊆ NP holds. On the other side it is widely believed that P , NP,
but this is a major unsolved problem in Theoretical Computer Science. A polynomial
time reduction, or simply a reduction, for a problem π to another problem π′ is an
algorithm that runs in polynomial time, for transforming any input of π into an equivalent
input of π′.

A problem is called NP-complete if it is in NP and every problem in NP can be
reduced into this problem in polynomial time; informally the class of NP-complete
problems contains the hardest problems in NP. A problem is called NP-hard if every
other problem in NP can be reduced in polynomial time to it; informally the class of
NP-hard problems contains all the problems that are at least as hard as the hardest
problems in NP. Figure 2 describes the relationships between the described complexity
classes.

A parametrized problem consists of a tuple (π, k) where π is the problem instance
and k is the parameter. A parametrized problem is said to be fixed parameter tractable
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or FPT if there exists an algorithm for the problem with time complexity O( f (k) · |π|O(1)),
where f is a function of k alone and |π| represents the size of the input instance.

NP-hard

NP-complete

NP

P

Fig. 2: Euler diagram for P, NP, NP-complete and NP-hard set of problems under the
assumption P,NP.

Given a graph G with n vertices and m edges, the computational complexity of an
algorithm on G is expressed as a function of n and m. For example, the breadth-first
search algorithm [81] runs in O(n + m) time.

1.3 Graph Transversal Terminology

LetH be a possibly infinite set of graphs and G = (V, E) be a graph; a subset S ⊆ V is
anH-transversal of G if G − S contains no subgraphs isomorphic to an element ofH .
LetH be a set of graphs, we can define the following decision problem:

H-Transversal
Instance: a graph G = (V, E) and a positive integer k.
Question: does G have anH-transversal S with |S | ≤ k?

The following definitions introduce notable graph transversals that are obtained by
choosingH in a very natural way. A set S is a vertex cover if it is a {P2}-transversal. A
set S is a feedback vertex set if it is a {C3,C4,C5, ...}-transversal. A set S is an odd cycle

transversal if it is a {C3,C5,C7, ...}-transversal.

Every vertex cover is also a feedback vertex set,
which is, in turn, an odd cycle transversal.
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Now we can define a decision problem for each transversal as follows:

Vertex Cover
Instance: a graph G = (V, E) and a positive integer k.
Question: does G have a vertex cover S with |S | ≤ k?

Feedback Vertex Set
Instance: a graph G = (V, E) and a positive integer k.
Question: does G have a feedback vertex set S with |S | ≤ k?

Odd Cycle Transversal
Instance: a graph G = (V, E) and a positive integer k.
Question: does G have an odd cycle transversal S with |S | ≤ k?

By [67], Vertex Cover and Feedback Vertex Set are NP-complete and Cygan
et al. [33] proved the same for Odd Cycle Transversal. Due to these fundamental
results, the aim of this thesis is to consider input graphs that belong to some special
graph class in order to understand the graph properties that force intractability or allow
polynomial-time solvability for these problems.

1.4 Variants of Graph Transversals

One can be interested to slightly modify definitions and questions of a research topic to
get a wider understanding of it. To what extent can we use or adapt proof techniques,
tools and results for the modified setting? How far is it reasonable to push the changes
such that the results provide useful indications for the original topic? For the sake
of comparison, it is important to highlight differences and common points between
the modified and original versions of the subject: in this way we do not only obtain
information on how hard it is to deal with such topic but we also show the strengths and
weaknesses of those changes.

The goal of this thesis is to contribute to the process of relating graph transversals and
their variants. Given the fact there is already a large body of literature on the topic, which
we survey in Sections 3.1,4.1,5.1 and 6.1, our aim is to obtain complexity dichotomies
and increase our understanding of the structural properties.

We study four variants of graph transversal, two of which result in generalizations
and the other two are specializations. Let G = (V, E) be a graph, W ⊆ V andH be a set
of graphs; a subset S W ⊆ V is anH-transversal extension of W if S is anH-transversal
that contains W. Note that if W = ∅ this definition coincides with the original one. Let

12



G = (V, E) be a graph, T ⊆ V and H be a set of graphs; a subset S T ⊆ V is a subset

H-transversal of T if G − S T contains no subgraphs isomorphic to an element of H
that contains a vertex of T . Note that if T = V this definition coincides with the original
one. Let G = (V, E) be a graph and a set of graphs H ; a subset S ⊆ V is a connected

H-transversal if it is anH-transversal that induces a connected subgraph. Let G = (V, E)
be a graph and a set of graphsH ; a subset S ⊆ V is an independentH-transversal if it is
anH-transversal that induces an independent set. We define the corresponding decision
problems as follows:

H-Transversal Extension
Instance: a graph G = (V, E), W ⊆ U, a set of graphsH and a positive integer

k.
Question: does G have anH-transversal S W containing W with |S W | ≤ k?

SubsetH-Transversal
Instance: a graph G = (V, E), T ⊆ U, a set of graphsH and a positive integer

k.
Question: does G have anH-transversal S T of T with |S T | ≤ k?

ConnectedH-Transversal
Instance: a graph G = (V, E), a set of graphsH and a positive integer k.
Question: does G have a connectedH-transversal S with |S | ≤ k?

IndependentH-Transversal
Instance: a graph G = (V, E), a set of graphsH and a positive integer k.
Question: does G have a independentH-transversal S with |S | ≤ k?

Moreover, we can define another generalization of a transversal decision problem as
follows:

WeightedH-Transversal
Instance: a graph G = (V, E), a vertex-weighting function wV , a set of graphs

H and a positive rational k.
Question: does G have anH-transversal S with wV (S ) ≤ k?

For example, we can define Vertex Cover Extension, Subset Vertex Cover, Con-
nected Feedback Vertex Set, Independent Feedback Vertex Set or Weighted Odd Cycle
Transversal; moreover, it is possible to mix two or more variants together in order to
obtain different case studies, like Subset Connected Feedback Vertex Set Extension.
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We often consider the optimization version of these transversal problems, in which
case we are asked to find an optimal solution. Note that while problems like Vertex
Cover, Feedback Vertex Set and Odd Cycle Transversal are all NP-complete problems
by [33,67], the corresponding optimization problems are NP-hard. There is a linear time
reduction of a decision problem to the corresponding optimization version: let (I, k) be
an input of such decision problem, the optimal solution S for input I can be accepted or
not depending on its value when compared to k.

1.5 More Graph Terminology

For a subset F ⊆ E(G), G − F denotes the graph obtained from G by removing the
edge set F. We say that a subgraph H spans a graph G if H = G − F, for some edge
set F ⊆ E(G). The union of two graphs G and H is the graph with V(G)∪V(H) as vertex
set and E(G) ∪ E(H) as edge set. If no vertex is in common, that is, V(G) ∩ V(H) = ∅,
then we call the union of G and H the disjoint union of G and H, denoted G + H. The
disjoint union of r copies of G is denoted by rG. The join of two graphs G and H is the
graph with V(G) ∪ V(H) as vertex set and the edge set is obtained from E(G) ∪ E(H)
by adding all possible edges between V(G) and V(H). If no vertex is in common, then
the join of G and H is denoted by G × H. Let S and T be two disjoint vertex sets,
then we say S is complete to T if every vertex of S is adjacent to every vertex of T ,
i.e. G[S ∪T ] = G[S ]×G[T ], and S is anti-complete to T if there are no edges between S

and T , i.e. G[S ∪ T ] = G[S ] + G[T ].

Let G = (V, E) be a graph. The degree degG(u) of a vertex u ∈ V is the num-
ber of edges incident with it, or equivalently the size of its neighbourhood NG(u) =

{v ∈ V | uv ∈ E}; the closed neighbourhood NG[u] is defined to be NG(u) ∪ {u}. For a
vertex set U ⊆ V we can equivalently define its neighbourhood and closed neighbour-
hood as the sets NG(U) = (

⋃
u∈U NG(u)) \ U and NG[U] = NG(U) ∪ U, respectively: the

neighbourhood of a vertex set contains all the vertices not in the set that are adjacent to
it.

A vertex of degree 0 is an isolated vertex. If a graph is not connected, then it is called
disconnected and can be seen as the disjoint union of its maximal connected induced
subgraphs, called connected components. The girth of G is the length of a shortest cycle
in G; if G has no cycle, then the girth of G is equal to +∞. The complement of G, denoted
by G, has V as vertex set and an edge between two distinct vertices if and only if these
vertices are not adjacent in G. A set D ⊆ V is a dominating set of G if every vertex of
the set V \ D is adjacent to at least one vertex of D, that is, N(D) = V \ D. An edge uv

dominates G if {u, v} is dominating. A matching in a graph is a set of pairwise disjoint
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edges. A matching is perfect if every vertex of the graph is contained in one edge of the
matching.

Let k be a natural number, a graph G = (V, E) is called k-connected if |V | > k and the
graph G −U is connected for every set U ⊆ V with |U | < k. Note that every (non-empty)
graph is 0-connected, and the 1-connected graphs are precisely the non-trivial connected
graphs. We say a graph is biconnected if it is 2-connected or K2. A block of a graph is a
maximal biconnected subgraph and is non-trivial if it contains a cycle, or, equivalently,
is on at least three vertices. A block decomposition of a graph is a partition of its vertex
set into blocks and it is well known that this can be found in O(n + m) time (see e.g.
[62]).

We say that we identify two vertices u and v in a graph G if from G − {u, v} we add a
new vertex that is adjacent to NG({u, v}). If uv ∈ E(G), then this operation is also called
an edge contraction. For a subset F ⊆ E(G), G/F denotes the graph obtained from G by
contracting the edge set F. A graph G contains a graph H as a minor if a subgraph of G

can be modified into H by a sequence of edge contractions. We write H ⊆m G to denote
that H is a minor of G. For any integer k ≥ 1, we say that we subdivide an edge e = uv

k-times or apply a k-subdivision on e, if we replace e with a path having the vertices u

and v as endpoints having exactly k new internal vertices.

A colouring of a graph G = (V, E) is a mapping from the vertex set V to a finite
set of positive integers, i.e., φ : V → {1, 2, ..., t} for some t ≥ 1, such that φ(u) , φ(v)
whenever uv ∈ E. A k-colouring of G is a colouring φ of G with 1 ≤ φ(v) ≤ k for all
v ∈ V . In that case we say G is k-colourable. Equivalently, a graph is k-colourable if
we can partition its vertex set into k (possibly empty) independent sets (called colour

classes or partition classes). The smallest integer k for which a graph G is k-colourable
is called the chromatic number of G, denoted by χ(G).

1.6 Special Graph Classes

In this section we give the definitions of a number of graph classes known in the literature.

Let G be a graph and {H1, ...,Hp} be a set of graphs. We say that G is (H1, ...,Hp)-free

if G has no induced subgraph isomorphic to a graph in {H1, ...,Hp}; we may write H-free
instead of (H)-free. In a similar fashion we can define that G is (H1, ...,Hp)-subgraph-free

or (H1, ...,Hp)-minor-free if G has no subgraph or no minor isomorphic to a graph in
{H1, ...,Hp}, respectively. Note that if H′ is an induced subgraph of H, every H′-free
graph is also H-free.

A graph class G is called hereditary if it is closed when taking induced subgraphs,
that is, if G ∈ G then G′ ∈ G, for every G′ ⊆i G. It is well-known that a graph class G
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is hereditary if and only if G is the class of FG-free graphs, for a possibly infinite
set of graphs FG (see e.g. [42]). Most of the graph classes that we have introduced
and are going to define are hereditary, when possible we specify the minimal set of
forbidden subgraphs FG. As we have seen already, the classes of complete graphs and of
independent sets coincide with 2P1-free and K2-free graphs, respectively.

For an integer r ≥ 1, a graph is r-partite if its vertex set can be partitioned into r non-
empty sets A1, ..., Ar such that no edge is contained in Ai, for 1 ≤ i ≤ r. A 2-partite graph
is also called bipartite. The class of bipartite graphs coincides with (C3,C5,C7, ...)-free
graphs. For integers r ≥ 1 and s ≥ 1, the graph Kr,s denotes the complete bipartite graph
with partition classes of size r and s, respectively, i.e. V(Kr,s) = {u1, ..., ur} ∪ {v1, ..., vs}

and E(Ks,r) = {uiv j | 1 ≤ i ≤ r and 1 ≤ j ≤ s}, alternatively Kr,s = rP1 × sP1. For an
integer r ≥ 1, the graph K1,r is also called a star; in particular the graph K1,3 is called the
claw. For an integer r ≥ 1, let K+

1,r denote the graph obtained from K1,r by subdividing
one edge. See Figure 3 for drawings of these graphs. For integers p ≥ 1 and q ≥ 1,
the double star Dp,q is a graph with V(Dp,q) = {x, y} ∪ {u1, . . . up} ∪ {v1, . . . , vq} and
E(Dp,q) = {xy} ∪ {xui | 1 ≤ i ≤ p} ∪ {yv j | 1 ≤ j ≤ q} (see also Figure 21 for an example).

P5 C5 K2,3 K1,3 K+
1,3 D2,3

Fig. 3: Notable graphs.

A graph is a tree if it is connected and without cycles. In a tree a vertex of degree
one is called leaf, while all the vertices of degree at least two are known as internal

vertices. A graph is a forest, if each connected component is a tree. A graph is a
linear forest, if each connected component is a path. While the class of trees is not
hereditary, the classes of forests and of linear forests coincide with (C3,C4,C5, ...)-free
and (K1,3,C3,C4,C5, ...)-free graphs, respectively.

A graph is perfect if the chromatic number of every induced subgraph equals the size
of a largest clique in that subgraph. By the Strong Perfect Graph Theorem [30], a graph
is perfect if and only if it is (C5,C5,C7,C7,C9,C9, ...)-free. A graph is a permutation

graph if line segments connecting two parallel lines can be associated to its vertices in
such a way that two vertices are adjacent if and only if their corresponding line segments
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intersects. A graph is an interval graph if intervals of the real line can be associated to
its vertices in such a way that two vertices are adjacent if and only if their corresponding
intervals overlap.

A chord of a cycle C is an edge between two vertices u, v ∈ V(C) with uv < E(C).
A graph is chordal if every cycle on four or more vertices has a chord. Equivalently,
a graph is chordal if and only if it is (C4,C5,C6, ...)-free. A graph G is a split graph
if its vertex set can be partitioned into a clique and an independent set. Split graphs
coincide with (2P2,C4,C5)-free graphs [44]. The line graph of a graph G = (V, E) is the
graph L(G) with E as the vertex set and e, e′ ∈ E are adjacent in L(G) if and only if e

and e′ share an end-vertex in G. By a classical result by Beineke [6], the class of line
graphs is characterized by a set of nine forbidden induced subgraphs, which contains the
claw K1,3.

A graph class is called minor-hereditary if it is closed under minors. In a long series of
papers (see from [93] to [94]) Robertson and Seymour proved that any minor-hereditary
graph class can be defined by a finite set of forbidden minors. A graph is planar if it
can be drawn in the plane so that its edges can intersect only at their end-vertices. By
Wagner’s Theorem [98], a graph is planar if and only if it is (K5,K3,3)-minor-free.

The graph complementation operation gives a way to define a number of graph
classes. Given a graph class G, we let co-G be the complementary class of G that is
obtained from G by complementing every graph in the class. For example, cobipartite
graphs are all the graphs which complements are bipartite. Note that if a graph class G is
hereditary then also co-G is so.

1.7 Why Hereditary Graph Classes?

Recall the definition of a hereditary graph class: it is a class of graphs that is closed when
taking induced subgraphs. Independently from the containment relation chosen for our
research, we want to emphasize the importance of considering graph classes closed under
such relation. Loosely speaking, containment relations of graphs allow one to modify a
graph into another graph by the use of a given set of rules, sometimes called operations.
It is a very common use in structural and algorithmic Graph Theory, and more in general
in the whole field of science, to be interested in the effects of modifying a given object
following specific steps. To what extent the properties of such object can be extended
to the product of its modification? Which properties are preserved at any point of those
steps? While a general and complete answer is impossible to give, considering graph
classes closed under a given containment relation has important consequences on our
research.
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Deleting a vertex, along with all adjacent edges, from a graph is the only operation
we are allowed to apply when considering the induced subgraph relation. This allows
to preserve the (non-)adjacency of pairs of vertices that have not been deleted. This
operation set of taking induced subgraphs is limited, compared to the subgraph and
minor relations (those are allowed to delete edges and, for the minor relation, also to
contract edges), but has notable strengths. For any set of graphsH , the class ofH-free
graphs contains the class of H-subgraph-free graphs which contains the class of H-
minor-free graphs: these containments hold but equalities hold only for very specific
cases ofH . Moreover hereditary graph classes capture a very relevant part of the Graph
Theory literature and research. Most of the graph classes we define, as already noted, are
hereditary.

Selecting an H-transversal S of a graph G = (V, E) corresponds to a partition
{S ,V \ S } of V such that G − S contains no subgraphs isomorphic to an element of
H . Loosely speaking we can think of V as a starting pool and we study the process of
placing its elements into the pools S and V \ S as efficiently and quickly as possible
while satisfying said condition on G−S . The operation of vertex deletion serves not only
to stay inside an hereditary graph class but also to craft such partition. Edge deletion
and edge contraction do not provide the same benefits in our settings: a profitable use
of edge deletion would require to change the definition ofH-transversal from being a
vertex set to an edge set.

Finally we want to discuss our choice regarding the definition of anH-transversal S

for a graph G: we require G − S to contain no subgraph isomorphic to an element
of the set H , that is, G − S is H-subgraph-free. We compare this definition with the
one requiring G − S to beH-free. For vertex cover, feedback vertex set and odd cycle
transversal, these definitions are the same, since for every edge, cycle and odd cycle there
is an induced one "contained" in it. The situation changes when we study, for example,
subset odd cycle transversal.

Fig. 4: The square vertex of the House forms a set T .
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For an example of subset odd cycle transversal, see Figure 4: there is a unique odd
T -cycle but it is not induced.

1.8 Overview of the Thesis

In the rest of the chapters of this work we analyse different aspects of transversals, both
recalling known results from literature and including original work. Recall that every
hereditary graph class G can be characterized by a possibly infinite set FG of forbidden
induced subgraphs. This enables us to initiate a systematic study, starting from the case
where |FG| = 1.

In Chapter 2, we list and prove a sequence of structural lemmas from [17,35,64]
regarding some notable subclasses of H-free graphs, especially when H is a linear forest.
We use these structural results in later chapters to create efficient algorithms that solve
the transversal problems.

Chapter 3 deals with algorithmic aspects regarding all the original transversal prob-
lems and their subset variant. The original results spring from On cycle transversals

and their connected variants in the absence of a small linear forest [35] while most of
them have been generalized in Computing subset transversals in H-free graphs [17] after
considering the subset version of the problems. In particular we prove Subset Vertex
Cover is polynomial time solvable on (sP1 + P4)-free graphs, while the same result holds
for Subset Feedback Vertex Set and Subset Odd Cycle Transversal on both P4-free
and (sP1 + P3)-free graphs. On the other hand Odd Cycle Transversal and Subset Odd
Cycle Transversal are proved to be NP-complete on (P2 + P5, P6)-free and split graphs,
respectively.

Chapter 4 is completely dedicated to Connected Vertex Cover and Connected

vertex cover for (sP1 + P5)-free graphs [64] proves it is polynomial time solvable on
(sP1 + P5)-free graphs, even for the weighted version. In [35] we note that this result
holds also for the extension variant of the problem.

In Chapter 5 we research the case where the connected and the extension variants are
combined together for all the other transversal problems on H-free graphs. In particular
with our work [35] we prove that Connected Feedback Vertex Set Extension and
Connected Odd Cycle Transversal Extension are polynomial time solvable for both
P4-free and (sP1 + P3)-free graphs. A brief introduction to the Steiner Tree problem
obtained from Steiner trees for hereditary graph classes: a treewidth perspective [9]
allows us to develop a strategy to solve Weighted ConnectedH-Transversal Extension,
for any graph setH , at the cost of strong limitations on the input.
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In Chapter 6 we resume our research on structural properties: we analyse for which
graph H, the size of a minimum independent transversal of an H-free graph can be lower
bounded by a function of the size of a minimum transversal of the same graph. In On the

price of independence for vertex cover, feedback vertex set and odd cycle transversal [36]
we study when such bounding function exists or not, while in Independent transversals

versus transversals [37] we check when the bounding function is the identity. Finally we
merge the results to express explicit values of the bounding functions and prove some of
them are tight.

At the end of each chapter, we discuss open questions and explore different directions
for future research regarding each topic.
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2 Interesting Classes of H-free Graphs

In this thesis we put great emphasis on the fact we are working with hereditary graph
classes. For this reason it is important to highlight relevant structural properties of these
classes for the most frequent cases. In Section 2.1 we analyse the case of P4-free graphs,
including a decomposition and efficient recognition result. In Section 2.2, we study
the class of (sP1 + P3)-free graphs, for any integer s ≥ 0; there we prove a number of
stuctural results which provide great support for later chapters.

Finally in Section 2.3 we write more in general regarding Pr-free graphs. First we
showcase literature examples where there is a complexity jump from Pr-free graphs to
Pr+1-free graphs on different problems. Then we provide more structural results on these
graph classes that serve as auxiliary tools for later proofs.

Before we examine in depth the structure of graphs in these hereditary graph classes,
we want to explain how we use the properties proved in this chapter to create efficient
algorithms that solve the decision problems dealt in this thesis. We consider different
cases that correspond to different structures present in a transversal of a graph and
describe polynomial-time subroutines that find a minimum transversal for each case. We
obtain an optimal solution by running each of these subroutines in turn: for each case we
obtain a potential solution and we output the one with minimum size overall.

2.1 Case: H = P4

The class of P3-free graphs can be easily described as exactly those graphs that are
disjoint unions of cliques: every connected component of a P3-free graph has diameter
at most one, and so it is a clique. The class of P4-free graphs, that is, graphs that do
not contain an induced path on four vertices, have a more complex structure and have a
relevant role on our research. A graph is a cograph if it can be generated from K1 by a
sequence of join and disjoint union operations. A graph is a cograph if and only if it is
P4-free (see e.g. [14]). The following lemma is well known, but we include a short proof
for completeness.

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning

complete bipartite subgraph which can be found in polynomial time.

Proof. Let G = (V, E) be a connected P4-free graph on at least two vertices. Then there is
a partition V = X ∪ Y such that G is the join of G[X] and G[Y]. Hence, G has a spanning
complete bipartite subgraph with partition classes X and Y . Note that this implies that G

is disconnected. In order to find a (not necessarily unique) spanning complete bipartite
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subgraph of G with partition classes X and Y in polynomial time, we put the vertices of
one connected component of G in X and all the other vertices of G in Y . ut

It is also well known (see e.g. [31]) that a graph G is a cograph if and only if G

allows a unique cotree decomposition called the cotree TG of G, which has the following
properties:

1. The root r of TG corresponds to the graph Gr = G.
2. Each leaf x of TG corresponds to exactly one vertex of G, and vice versa, hence x

corresponds to a unique single-vertex graph Gx.
3. Each internal node x of TG has at least two children, is labelled + or ×, and corre-

sponds to an induced subgraph Gx of G defined as follows:
• if x is a +-node, then Gx is the disjoint union of all graphs Gy where y is a child

of x;
• if x is a ×-node, then Gx is the join of all graphs Gy where y is a child of x.

4. Labels of internal nodes on the (unique) path from any leaf to r alternate between +

and ×.

Note that TG has O(n) vertices. We modify TG into a modified cotree T ′G in which
each internal node has exactly two children by applying a well-known procedure (see
e.g. [10]). If an internal node x of TG has more than two children y1 and y2, remove the
edges xy1 and xy2 and add a new vertex x′ with edges xx′, x′y1 and x′y2. If x is a +-node,
then x′ is a +-node. If x is a ×-node, then x′ is a ×-node. Applying this rule exhaustively
yields T ′G. As TG has O(n) vertices, constructing T ′G from TG takes linear time.

The following result, due to Corneil, Perl and Stewart, proves cographs can be
recognized efficiently.

Lemma 2 ([32]). Let G = (V, E) be a graph with n vertices and m edges. Then deciding

whether or not G is a cograph, and constructing a modified cotree T ′G (if it exists), takes

O(n + m) time.

2.2 Case: H = sP1 + P3

The class of H-free graphs, when H = sP1 + P3 for some s ≥ 1, plays a central role in
this research: we developed many polynomial-time results for this class of graphs and
those results are often the best possible for the moment, in the sense that for no graph
H ⊃i sP1 + P3 such polynomial-time result is known.

Let G be an (sP1 + P3)-free graph; if we remove from G an induced P3 and its
neighbours, we are left with a graph having at most s − 1 independent vertices. In the
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same way, if we remove from G a set of s independent vertices and their neighbours,
we are left with a P3-free graph (that is, a disjoint union of complete graphs). In this
sense, the class of (sP1 + P3)-free graphs can be seen as the generalization of the class
of sP1-free and of P3-free graphs.

In this section we gather a number of preliminary lemmas that assist to exploit
properties and structure of graphs in this class.

Let us define a function a on non-negative integers by a(s) := max{7, 4s − 2}.

Lemma 3. Let s be a non-negative integer, and let R be an (sP1 + P3)-free tree. Then

either

(i) |V(R)| ≤ a(s), or

(ii) R has precisely one vertex r of degree more than 2 and at most s − 1 vertices of

degree 2, each adjacent to r. Moreover, r has at least 3s − 1 neighbours.

Proof. If R has no vertices of degree more than 2, then R is a path and has at most
2s + 2 ≤ a(s) vertices, otherwise R has an induced sP1 + P3 subgraph. Now let r be a
vertex of degree more than 2, and let x, y and z be distinct neighbours of r. We view r as
the root of the tree, and for v ∈ V(R) we use Rv to denote the subtree rooted at v.

Suppose that Rx has a vertex of degree at least 2. Then Rx has an induced P3 subgraph,
so R − (V(Rx) ∪ {r}) is sP1-free, and hence, by [87, Observation 1], this subtree consists
of at most 2(s − 1) vertices. Likewise, R[{y, r, z}] = P3, so Rx − x is sP1-free, and hence
consists of at most 2(s − 1) vertices. Thus |V(R)| ≤ 2(s − 1) + 2(s − 1) + 2 = 4s − 2.

We may now assume that for each v ∈ N(r), the subtree Rv has no vertices of degree at
least 2; that is, either Rv = P1 or Rv = P2. It remains to show that when (i) does not hold,
at most s− 1 of the Rv subgraphs are isomorphic to P2. Towards a contradiction, suppose
that R has s vertices at distance 2 from r, and |V(R)| > a(s). Since |V(R)| > 2(s + 1) + 1
for any non-negative integer s, the vertex r has at least s + 2 neighbours. Without loss
of generality, label the neighbours of r as v1, v2, . . . , vdeg(r) such that Rvi = P2 for each
i ∈ {1, . . . , s}. Then R[vs+1, r, vs+2] = P3, and Rvi − {vi} = P1 for each i ∈ {1, . . . , s}; a
contradiction.

Finally, |NR(r)| + (s − 1) + 1 ≥ |V(R)| ≥ 4s − 1, so |NR(r)| ≥ 3s − 1. ut

Lemma 4. Let s ≥ 0 be an integer. Let R = (V, E) be an (sP1 + P3)-free tree. Then R

has at most 4s internal vertices.

Proof. Let U be the set of internal vertices of R. Suppose that |U | ≥ 4s + 1 ≥ 1. We will
show that this leads to a contradiction. As a path with at least 4s + 1 internal vertices
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r

≤ s − 1

≥ 3s − 1

Fig. 5: The structure of an (sP1 + P3)-free tree, as given by Lemma 3, when (i) does not
hold.

contains an induced sP1 + P3, we may assume that R is not a path and so has at least
three leaves. Hence |V | ≥ 4s + 4.

Let X and Y be the two bipartition sets of R, and assume without loss of generality
that |X| ≥ 2s+2. For Z ∈ {X,Y}, let LZ and UZ be the leaves and internal vertices of R that
belong to Z, respectively. If there is a vertex in Y of degree at least 2 that is anti-complete
to a set of s vertices of X, then R contains an induced sP1 + P3, a contradiction. Therefore
we may assume that every vertex of Y either has degree at least |X| − s + 1 or is in LY .
Then

|X| + |UY | + |LY | − 1 = |X| + |Y | − 1

= |V | − 1

= |E|

=
∑
v∈Y

deg(v)

≥
∑
v∈UY

(|X| − s + 1) + |LY |

= (|X| − s + 1)|UY | + |LY |

= |X| · |UY | − s|UY | + |UY | + |LY |.

Thus we have |X| − 1 ≥ |X||UY | − s|UY | and we rearrange to see that

|UY | ≤
|X| − 1
|X| − s

= 1 +
s − 1
|X| − s

.

Since |X| ≥ 2s + 2, we have that |UY | < 2. First suppose |UY | = 0. Then |UX | ≤ 1 and
|LX | = 0, or |UX | = 0 and |LX | ≤ 1. Both cases contradict the assumption that X has at
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least 2s + 2 vertices. Now suppose |UY | = 1. Then, by our assumption that |U | ≥ 4s + 1,
we have that |UX | ≥ 4s and so |LY | ≥ |UX | ≥ 4s. Now it is easy to find an induced
sP1 + P3 (see Figure 6), and this contradiction completes the proof. ut

The bound of 4s in Lemma 4 is not tight but, as we shall see later, it suffices for our
purposes.

y

x
z

≥ 4s

LX UY UX LY

Fig. 6: The structure of the tree R in the proof of Lemma 4 in the case when |UY | = 1.
The set LX is an independent set of vertices and each of them is adjacent to the unique
vertex y ∈ UY . The set LY is partitioned into independent sets of vertices that have the
same neighbour in UX . The vertices y, x, z, together with s vertices of Ly not adjacent
to x, induces an sP1 + P3 in R (which leads to the desired contradiction in the proof).

Let us define a function b on non-negative integers by b(s) := max{3, 2s − 1}.

Lemma 5. Let s ≥ 0 be an integer. Let B be a bipartite (sP1 + P3)-free graph. If B

has a connected component on at least b(s) vertices, then there are at most s − 1 other

connected components of B and each of them is on at most two vertices.

Proof. First note that the s = 0 case of the lemma is trivially true, as every connected
component of a bipartite P3-free graph has at most two vertices.

Suppose, for contradiction, that B has a connected component C1 on at least b(s)
vertices and a connected component C2 on at least three vertices. As C1 is bipartite
and contains at least 2s − 1 vertices, C1 contains an independent set of s vertices that
induce sP1. As C2 is bipartite and contains at least three vertices, C2 has a vertex v

of degree at least 2, and so v and two of its neighbours induce a P3. Thus G is not
(sP1 + P3)-free, a contradiction.
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Similarly, if B contains a connected component C1 on at least b(s) ≥ 3 vertices, then
this connected component contains an induced P3. Since B is (sP1 + P3)-free, B can
contain at most s − 1 connected components other than C1. ut

Lemma 6. Let s ≥ 0 be an integer. Let G be a connected (sP1 + P3)-free graph and let

U be a set of vertices in G. Then there is a set of vertices R in G such that G[R ∪ U] is

connected and |R| ≤ 2s2 − 2s + 3.

Proof. If G[U] is connected, then let R = ∅. Otherwise, since G cannot now be a
complete graph, it contains an induced path P on three vertices in G. The number of
connected components of G[U] that do not contain a vertex that is either in P or adjacent
to a vertex of P in G is at most s − 1, otherwise G contains an induced sP1 + P3. Let R

contain the vertices of P and the internal vertices of shortest paths in G from P to
each set of vertices that induces a connected component of G[U]. As at most s − 1
of these shortest paths have more than zero internal vertices, and as each contains at
most 2s internal vertices (any longer path contains an induced sP1 + P3, it follows that
|R| ≤ 3 + 2s(s − 1) = 2s2 − 2s + 3. As G[R ∪ U] is connected, the lemma is proved. ut

2.3 Case: H is a Linear Forest

The computational complexity of many problems jump from polynomial-time solvable
on Pr-free graphs to NP-complete on Pr+1-free graphs. For instance, Colouring is
polynomial-time solvable for P4-free graphs but is NP-complete for P5-free graphs [69].

A clique transversal of a graph G is a set S ⊆ V such that S contains a vertex of
each maximal clique of G (note that a vertex cover can be viewed as a transversal which
contains a vertex of each 2-vertex clique). It is known that computing a smallest clique
transversal can be done in polynomial time for comparability graphs [4] and thus for
P4-free graphs, but is NP-hard for cobipartite graphs [57] and thus for P5-free graphs.

We will use the following result of Bacsó and Tuza [3] in a successive proof.

Lemma 7 ([3]). Every connected P5-free graph G has a dominating set D, computable

in O(n3) time, that induces either a P3 or a complete graph.

This also follows from a more general result of Camby and Schaudt [25] for Pr-free
graphs.

Lemma 8 ([25]). Let k ≥ 4 be an integer. Every connected Pk-free graph G has a

dominating set D that induces either a Pk−2 or a Pk−2-free graph.

We use Lemma 7 to prove the next one.
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Lemma 9. Let s ≥ 0 and let G be a connected (sP1 + P5)-free graph. Then G has

a connected dominating set D that is either a clique or has size at most 2s2 + s + 2.

Moreover, D can be found in O(n2s2+s+3) time.

Proof. If G is P5-free, then we apply Lemma 7 to find, in O(n3) time, a set D that either
induces a P3 or is a clique. Otherwise, as G is (sP1 + P5)-free, there exists an integer
0 ≤ r ≤ s − 1 such that G contains an induced subgraph H isomorphic to rP1 + P5.
Let V(H) = {a1, . . . , ar, b1, . . . , b5} such that the vertex set {b1, b2, b3, b4, b5} induce a
P5. We choose r to be maximum, so G contains no induced (r + 1)P1 + P5. Hence,
V(H) dominates G. As G is (sP1 + P5)-free, G is also P5+2s-free. Hence, for each ai,
there exists a path of at most 5 + 2s − 1 vertices that connects ai to b1. Let H∗ be the
graph that contains H and all these ai − b1-paths. Then we choose D = V(H∗). As V(H)
dominates G, we find that D ⊇ V(H) also dominates G. Moreover, D has size at most
r(5 + 2s − 2) + 5 ≤ 2s2 + s + 2. We can find D by considering, if needed, every set of
at most 2s2 + s + 2 vertices in G and by checking if each such a set is dominating. The
latter takes O(n) time per set. Hence, this brute force procedure takes O(n2s2+s+3) time in
total. ut

The following lemma expresses that the class of connected H-free graphs is closed
under edge contractions, whenever H is a linear forest.

Lemma 10. Let H be a linear forest and let G be a connected H-free graph. The graph

obtained from G after contracting an edge is also connected and H-free.

Proof. Let e be an edge of E and consider G/e: the graph obtained from G by contracting
the edge e. Let ve be the vertex of G/e created by the contraction of e. Note that G/e

is trivially connected. For contradiction suppose G/e contains an induced subgraph H′

that is isomorphic to H and let H′′ ⊆i G be the graph that is obtained from H′ by
uncontracting the edge e. If ve < V(H′) then H′′ = H′ and we are done. Now we can
assume ve ∈ V(H′). Since H′ is a linear forest, it is easy to note that H′′ (and so G)
contains H′ as an induced subgraph; a contradiction. ut
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3 Subset Transversal

For a graph G = (V, E) and a set T ⊆ V , a T-edge or a T-cycle is, respectively, an edge
or a cycle of G that intersects T . A set S T ⊆ V is a T-vertex cover, a T-feedback vertex

set or an odd T-cycle transversal of G if S T has at least one vertex of, respectively,
every T -edge, every T -cycle or every odd T -cycle. For example, let G be a star, whose
leaves form the set T . Then, both V \ T and T are T -vertex covers of G but the first is
considerably smaller than the second. See Figures 7 and 8 for some more examples.

Fig. 7: The square vertex of the House forms the set T . This graph contains only one
(not induced) odd T -cycle (containing all the vertices of the graph). Any vertex of the
House is a (minimum) odd T -cycle transversal.

Fig. 8: In both examples, the square vertices of the Petersen graph form a set T and the
black vertices form a T -feedback vertex set S T . In the left example, S T ∩ (V \ T ) , ∅,
and in the right example, S T ⊆ T .
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Now we can formally state the three transversal problems of this section.

Subset Vertex Cover
Instance: a graph G = (V, E), a subset T ⊆ V and a positive integer k.
Question: does G have a T -vertex cover S T with |S T | ≤ k?

Subset Feedback Vertex Set
Instance: a graph G = (V, E), a subset T ⊆ V and a positive integer k.
Question: does G have a T -feedback vertex set S T with |S T | ≤ k?

Subset Odd Cycle Transversal
Instance: a graph G = (V, E), a subset T ⊆ V and a positive integer k.
Question: does G have an odd T -cycle transversal S T with |S T | ≤ k?

The Subset Feedback Vertex Set and Subset Odd Cycle Transversal problems are
well known. The Subset Vertex Cover problem is introduced in our paper [17], and we
are not aware of past work on this problem. On general graphs, Subset Vertex Cover is
polynomially equivalent to Vertex Cover: to solve Subset Vertex Cover remove edges
in the input graph that are not incident to any vertex of T to yield an equivalent instance
of Vertex Cover . However, this equivalence no longer holds for graph classes that are
not closed under edge deletion.

Since, in the case T = V these subset transversal problems are equivalent to their
respective original ones, the three problems are NP-complete [33,67], we consider the
restriction of the input to hereditary graph classes in order to better understand which
graph properties cause the computational hardness. In order to initiate a systematic study,
we start our research from the hereditary graph classes defined by forbidding a single
graph.

Lemma 11. Let S be a minimum solution for an instance (G,T ) of a subset transversal

problem. Then |S \ T | ≤ |T \ S |.

Proof. For contradiction, assume that |S \T | > |T \ S |. Then |T | < |S | (see also Figure 9).
This means that T is a smaller solution than S , a contradiction. ut

A subgraph of G is a T-forest if it has no T -cycles. A subgraph of G is T-bipartite if
it has no odd T -cycles. A subgraph of G is T-path if it is a path that contains a vertex of
T . A T -path is odd or even depending on the parity of the path.

We will use the following lemma, which proves that T -forests and T -bipartite graphs
can be recognized in polynomial-time. It combines results claimed but not proved
in [73,88].
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V \ S S

T

V \ T

T \ S

S \ T

Fig. 9: For a minimum solution S for an instance (G,T ) of a subset transversal problem,
it must hold that |S \ T | ≤ |T \ S | (see also Lemma 11).

Lemma 12. Let G = (V, E) be a graph with n vertices and m edges and T ⊆ V. Then

deciding whether or not G is a T-forest or T-bipartite takes O(n + m) time.

Proof. Suppose that we have a block decomposition of G; which can be found in O(n+m)
time with the breadth-first search algorithm [81]. It is clear that G is a T -forest if and
only if no non-trivial block contains a vertex of T . We claim that G is T -bipartite if
and only if no non-bipartite block contains a vertex of T . To see this note first that
the sufficiency is obvious. We will show that if a vertex t of T belongs to a block B

that contains an odd cycle C, then t belongs to an odd cycle. If t is in C, we are done.
Otherwise find two paths P and P′ from t to, respectively, distinct vertices u and u′ in
C. We can assume that the paths contain no other vertex of C (else we truncate them)
and that, as B is 2-connected, they contain no common vertex other than t. We can form
two cycles that contain t by adding to P + P′ each of the two paths between u and u′ in
C. As C is an odd cycle, the lengths of these two paths, and therefore the lengths of the
two cycles, have distinct parity. Thus t belongs to an odd cycle. Finally we note that the
checks of the block decomposition needed to decide whether or not G is a T -forest or
T -bipartite can be done in O(n + m) time. ut

One could also define and study the extension version for any (subset) transversal
problem. However, such extension version will be polynomially equivalent to the (subset)
problem. Indeed, we can solve the extension version on the input (G,W, k) by considering
the original problem on the input (G −W,max{0, k − |W |}) and adding W to the solution.
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3.1 Existing Results.

First we start with results of the classical versions. By Nagamochi and Xiao Vertex
Cover can be solved in O(1.1996n) time using polynomial space on general graphs [102]
and in O(1.0836n) time when restricted to graphs of maximum degree 3 [101]. Using
Poljak’s construction [89], Vertex Cover is readily seen to be NP-complete for graphs of
arbitrarily large girth and thus for H-free graphs whenever H contains a cycle. Moreover
Vertex Cover is NP-complete for planar graphs [49], cubic graphs [48] and more
generally for k-regular graphs for any fixed k [47].

Vertex Cover becomes polynomial-time solvable on perfect graphs [54,55] and
on claw-free graphs [78,95] and thus for line graphs. By combining two classical re-
sults [5,96] Vertex Cover is polynomial-time solvable for sP2-free graphs for any
integer s ≥ 1. These results have been generalized further in four different ways: by
Alekseev [2], Lozin and Milanič [74] for K+

1,3-free graphs, by Lozin and Mosca for
(P2 + K1,3)-free graphs [75] and for 2P3-free graphs [76] and recently by Brandstädt and
Mosca [15] for sK1,3-free graphs for any integer s ≥ 1.

Even the case where H is a single path on r vertices the computational complexity is
not settled for Vertex Cover: it is not known if there exists an integer r such that Vertex
Cover is NP-complete for Pr-free graphs. Lokshtanov, Vatshelle, and Villanger [72]
proved that Independent Set, and thus Vertex Cover, is polynomial-time solvable for
P5-free graphs. Recently, Grzesik, Klimošová, Pilipczuk and Pilipczuk [56] extended
this to P6-free graphs. We also note that if Vertex Cover is polynomial-time solvable on
H-free graphs for some graph H, then it is polynomial-time solvable on (P1 + H)-free
graphs. This follows from the observation (see, e.g., [82]) that to solve the complementary
problem of Independent Set on a (P1 + H)-free graph one solves the problem on each
H-free graph obtained by removing a vertex and all its neighbours. This proves the
following result:

Theorem 1 ([56]). For every s ≥ 0, Vertex Cover can be solved in polynomial-time for

(sP1 + P6)-free graphs.

On general graphs Fomin and Villanger proved Feedback Vertex Set can be solved
in O(1.7347n) time [46], while Raman, Saurabh and Sikdar proved Odd Cycle Transver-
sal can be solved in O(1.9526n ·nO(1)) time [92]. By Poljak’s construction [89], Feedback
Vertex Set is NP-complete for graphs of girth at least g for every integer g ≥ 3. The
same holds for Odd Cycle Transversal [28]. Moreover, Feedback Vertex Set [84] and
Odd Cycle Transversal [28] are NP-complete for line graphs and thus for claw-free
graphs. Hence, both problems are NP-complete for H-free graphs if H has a cycle or
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claw. While Okrasa and Rza̧żewski [85] proved Odd Cycle Transversal is NP-complete
for P13-free graphs, there is no known integer r such that Feedback Vertex Set is
NP-complete for Pr-free graphs.

Both problems are polynomial-time solvable for P4-free graphs [13] and for sP2-free
graphs for every s ≥ 1 [28]. In [35], authors show polynomial-time algorithms that solves
these problems for (sP1 + P3)-free graphs for every s ≥ 1. Very recently, Abrishami et
al. showed that Feedback Vertex Set is polynomial-time solvable for P5-free graphs [1].
We summarize as follows.

Theorem 2. For a graph H, Feedback Vertex Set on H-free graphs is polynomial-time

solvable if H ⊆i P5, H ⊆i sP1 + P3 or H ⊆i sP2 for some s ≥ 1, and NP-complete if

H ⊇i Cr for some r ≥ 3 or H ⊇i K1,3.

Theorem 3. For a graph H, Odd Cycle Transversal on H-free graphs is polynomial-

time solvable if H = P4, H ⊆i sP1 + P3 or H ⊆i sP2 for some s ≥ 1, and NP-complete if

H ⊇i Cr for some r ≥ 3, H ⊇i K1,3 or H ⊇i P13.

This situation changes for Subset Feedback Vertex Set which is, unlike Feedback
Vertex Set, NP-complete for split graphs (that is, (2P2,C4,C5)-free graphs), as shown
by Fomin et al. [45]. Papadopoulos and Tzimas [87,88] proved that Subset Feedback
Vertex Set is polynomial-time solvable for sP1-free graphs for any s ≥ 1, co-bipartite
graphs, interval graphs and permutation graphs, and thus P4-free graphs.

We are not aware of any results on Subset Odd Cycle Transversal for H-free graphs,
but note that this problem generalizes Odd Multiway Cut, just as Subset Feedback
Vertex Set generalizes NodeMultiway Cut, another well-studied problem. We refer to a
large body of literature [29,34,45,50,60,63,65,68,70,73] for further details, in particular
for parameterized and exact algorithms for Subset Feedback Vertex Set and Subset Odd
Cycle Transversal. These algorithms are beyond the scope of this thesis.

3.2 Our Results

Our polynomial-time results from [35] for (sP1 + P3)-free graphs are included in our
other paper [17] where we significantly extend the known results for Subset Feedback
Vertex Set in Section 3.4 and Subset Odd Cycle Transversal in Section 3.5 on H-free
graphs. Moreover in Section 3.5, we prove that Odd Cycle Transversal is NP-complete
on (P2 + P5, P6)-free graphs and Subset Odd Cycle Transversal is NP-complete on split
graphs. These new results lead us to Table 1 and to the following two almost-complete
dichotomies:
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Theorem 4. Let H be a graph with H , sP1 + P4 for all s ≥ 1. Then Subset Feedback
Vertex Set on H-free graphs is polynomial-time solvable if H = P4 or H ⊆i sP1 + P3

for some s ≥ 1 and NP-complete otherwise.

Theorem 5. Let H be a graph with H , sP1 + P4 for all s ≥ 1. Then Subset Odd Cycle
Transversal on H-free graphs is polynomial-time solvable if H = P4 or H ⊆i sP1 + P3

for some s ≥ 1 and NP-complete otherwise.

P4 P5 P6 P2 + P5

s

sP1 + P3

s

sP2 C5 K1,3

Fig. 10: The forbidden graphs of Theorems 2–5.

Though the proved complexity of Subset Feedback Vertex Set and Subset Odd
Cycle Transversal are the same on H-free graphs, the algorithm that we present for
Subset Odd Cycle Transversal on (sP1 + P3)-free graphs is more technical compared
to the algorithm for Subset Feedback Vertex Set, and considerably generalizes the
transversal algorithms for (sP1 + P3)-free graphs of [35]. There is further evidence that
Subset Odd Cycle Transversal is a more challenging problem than Subset Feedback
Vertex Set. For example, the best-known parametrized algorithm for Subset Feedback
Vertex Set runs in O(4k · nO(1)) time [63], but the best-known run-time for Subset
Odd Cycle Transversal is O(2O(k3 log k) · nO(1)) [73], where k is the maximum size of a
solution.

In Section 3.3 we present some results for Subset Vertex Cover: first we show that
Subset Vertex Cover is polynomial-time solvable for (sP1 + P4)-free graphs for every
s ≥ 1 and later we use this as a subroutine to obtain a polynomial-time algorithm for
Subset Odd Cycle Transversal on P4-free graphs. In Section 3.6 we discuss on future
work on the Subset Vertex Cover more in more detail.

3.3 Subset Vertex Cover

In this section we present some results on Subset Vertex Cover.

Lemma 13. Subset Vertex Cover can be solved in O(n + m) time for P4-free graphs.
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girth p line graphs sP2-free Pr-free sP1 + Pr-free
VC NP-c [89] P [78,95] P: s ≥ 0 [15] P: r ≤ 6* P: s ≥ 0, r ≤ 6 [56]
FVS NP-c [89] NP-c [84] P: s ≥ 0 [28] P: r ≤ 5 [1] P: s ≥ 0, r ≤ 3*
OCT NP-c [28] NP-c [28] P: s ≥ 0 [28] P: r ≤ 4* P: s ≥ 0, r ≤ 3*
SVC NP-c* ? ? P: r ≤ 4* P: s ≥ 0, r ≤ 4
SFVS NP-c* NP-c* NP-c: s ≥ 2 [45] P: r ≤ 4 [87,88] P: s ≥ 0, r ≤ 3
SOCT NP-c* NP-c* NP-c: s ≥ 2 P: r ≤ 4 P: s ≥ 0, r ≤ 3

Table 1: The computational complexity of the three transversal problems together with
their subset variant on graphs of girth at least p for every (fixed) constant p ≥ 3, on line
graphs, and on H-free graphs for various linear forests H. Results that directly follow for
other results in the table while starred and unreferenced results are ours; finally question
marks show cases that are left as open problems. Note this table does not completely
summarise all the results from our work and from the literature.

Proof. Let G be a P4-free graph with n vertices and m edges and let T ⊆ V . First
construct a modified cotree T ′G and then consider each node of T ′G starting at the leaves
of T ′G and ending at the root r. Let x be a node of T ′G. We let S x denote a minimum
(T ∩ V(Gx))-vertex cover of Gx.

If x is a leaf, then Gx is a 1-vertex graph. Hence, we can let S x = ∅. Now suppose
that x is a +-node. Let y and z be the two children of x. Then, as Gx is the disjoint union
of Gy and Gz, we can let S x = S y ∪ S z. Finally suppose that x is a ×-node. Let y and z

be the two children of x. As Gx is the join of Gy and Gz we observe the following: if
V(Gx) \ S x contains a vertex of T ∩ V(Gy), then V(Gz) ⊆ S x. Similarly, if V(Gx) \ S x

contains a vertex of T ∩ V(Gz), then V(Gy) ⊆ S x. Hence, we let S x be the smallest set of
S y ∪ V(Gz), S z ∪ V(Gy) and T ∩ V(Gx).

Constructing T ′G takes O(n + m) time by Lemma 2. As TG′ has O(n) nodes and
processing a node takes O(1) time, the total running time is O(n + m). ut

The following lemma generalizes a corresponding well-known observation (see
e.g. [82]) for Subset Vertex Cover .

Lemma 14. Let H be a graph. If Subset Vertex Cover is polynomial-time solvable for

H-free graphs, then it is for (P1 + H)-free graphs as well.

Proof. Let G = (V, E) be a (P1 + H)-free graph and let T ⊆ V . Let S T be a minimum
T -vertex cover of G. For each vertex u ∈ T we consider the option that u belongs to the
set V \ S T . If so, then N(u) belongs to S T . Let G′ = G − N[u] and let T ′ = T \ N[u].
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As G′ is H-free, we find a minimum T ′-vertex cover S T ′ of G′ in polynomial-time. We
remember the smallest set S T ′ ∪ N(u) and compare it with the size of T to find S T (or
some other minimum solution for (G,T )). ut

Lemma 13, combined with s applications of Lemma 14, yields the following result.

Theorem 6. For every integer s ≥ 1, Subset Vertex Cover can be solved in polynomial-

time for (sP1 + P4)-free graphs.

3.4 Subset Feedback Vertex Set

In this section we prove Theorem 4. Our contribution to it is Theorem 7, which is the
case where H = sP1 + P3. In Section 3.5, we present an analogous result for Subset Odd
Cycle Transversal. The proofs are similar in outline, but the latter requires additional
insights.

The next lemma shows how we can extend "partial" solutions to full solutions in
polynomial-time as follows.

Lemma 15. Let G = (V, E) be a graph with a set T ⊆ V. Let V ′ ⊆ V and S ′T ⊆ V ′

such that S ′T is a T-feedback vertex set of G[V ′], and let Z = V \ V ′. Suppose that G[Z]
is P3-free, and |NG−S ′T (Z)| ≤ 1. Then there is a polynomial-time algorithm that finds a

minimum T-feedback vertex set S T of G such that S ′T ⊆ S T and V ′ \ S ′T ⊆ V \ S T .

Proof. Since G[Z] is P3-free, it is a disjoint union of complete graphs. Let G′ = G − S ′T .
Suppose that C is a T -cycle in G′. Then C contains at least one vertex of Z. If NG′ (Z) = ∅,
then C is contained in a connected component of G[Z]. On the other hand, if NG′ (Z) = {y},
say, then y is a cut-vertex of G′, so there exists a connected component G[U] of G[Z] such
that C is contained in G[U ∪ {y}]. Hence, we can consider each connected component
of G[Z] independently: for each connected component G[U] it suffices to find the
maximum subset U′ of U such that G[U′∪NG′ (U)] contains no T -cycles. Then U′ ⊆ FT

and U \ U′ ⊆ S T . So, S T will be the union of S ′T and the vertex sets U \ U′, for
every component G[U] of G[Z]. Hence, it remains to prove how to find the sets U′ in
polynomial time; we show this below.

Let U ⊆ Z such that G[U] is a connected component of G[Z]. Either NG′ (U)∩T = ∅,
or NG′ (U) = {y} for some y ∈ T . First, consider the case where NG′ (U)∩T = ∅. We find a
set U′ that is a maximum subset of U such that G[U′ ∪NG′ (U)] has no T -cycles. Clearly
if |U | = 1, then we can set U′ = U. If |U′| ≥ 3, then, since U′ is a clique, U′ ⊆ V \ T .
Thus, if |U \ T | ≥ 2, then we set U′ = U \ T . So it remains to consider when |U | ≥ 2 but
|U \ T | ≤ 1. If there is some u ∈ U that is anti-complete to NG′ (U), then we can set U′ to
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be any 2-element subset of U containing u. Otherwise NG′ (U) = {y} and y is complete to
U. In this case, for any u ∈ U, we set U′ = {u}.

Now we may assume that NG′(U) = {y} and y ∈ T . Again, we find a set U′ that is a
maximum subset of U such that G[U′ ∪ {y}] has no T -cycles. Partition U into {U0,U1}

where u ∈ U1 if and only if u is a neighbour of y. Since y ∈ V ′ \ S ′T , observe that U′

contains at most one vertex of U1, otherwise G[U′ ∪ {y}] has a T -cycle. Since U′ is a
clique, if |U′| ≥ 3 then U′ ⊆ U \ T . So if |U0 \ T | ≥ 2 and there is an element u ∈ U1 \ T ,
then we can set U′ = {u} ∪ (U0 \ T ). If |U0 \ T | ≥ 2 but U1 \ T = ∅, then we can set
U′ = U0 \ T . So we may now assume that |U0 \ T | ≤ 1. If U0 , ∅ and |U | ≥ 2, then we
set U′ to any 2-element subset of U containing some u ∈ U0. Clearly if |U | = 1, then we
can set U′ = U. So it remains to consider when U0 = ∅ and |U1| ≥ 2. In this case, we set
U′ = {u} for an arbitrary u ∈ U1. ut

Before stating the main result of this section, let us recall the function a on non-
negative integers defined by a(s) := max{7, 4s − 2} used in Lemma 3.

Theorem 7. For every integer s ≥ 0, Subset Feedback Vertex Set can be solved in

polynomial time for (sP1 + P3)-free graphs.

Proof. Let G = (V, E) be an (sP1 + P3)-free graph for some s ≥ 0, and let T ⊆ V . We
describe a polynomial-time algorithm for the optimization version of the problem on
input (G,T ). Let S T ⊆ V such that S T is a minimum T -feedback vertex set of G, and
let FT = V \ S T , so G[FT ] is a maximum T -forest. Note that G[FT ∩ T ] is a forest. We
consider three cases: either

1. G[FT ∩ T ] has at least 2s connected components;
2. G[FT ∩ T ] has fewer than 2s connected components, and each of these connected

components consists of at most a(s) vertices; or
3. G[FT ∩ T ] has fewer than 2s connected components, one of which consists of more

than a(s) vertices.

We describe polynomial-time subroutines that find a set FT such that G[FT ] is a maxi-
mum T -forest in each of these three cases, giving a minimum solution S T = V \ FT in
each case. We obtain an optimal solution by running each of these subroutines in turn:
of the (at most) three potential solutions, we output the one with minimum size.

Case 1: G[FT ∩ T ] has at least 2s connected components.

We begin by proving a sequence of claims that describe properties of a maximum T -
forest FT , when in Case 1. Since G is (sP1 + P3)-free, FT ∩ T induces a P3-free forest,
so G[FT ∩ T ] is a disjoint union of graphs isomorphic to P1 or P2. Let A ⊆ FT ∩ T such
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that G[A] consists of precisely 2s connected components. Note that |A| ≤ 4s. We also let
Y = N(A)∩ FT , and partition Y into {Y1,Y2} where y ∈ Y1 if y has only one neighbour in
A, whereas y ∈ Y2 if y has at least two neighbours in A.

Claim 1: |Y2| ≤ 1.

Let v ∈ Y2. Then v has neighbours in at least s + 1 of the connected components
of G[A], otherwise G[A∪ {v}] contains an induced sP1 + P3. Note also that v has at most
one neighbour in each connected component of G[A], otherwise G[FT ] has a T -cycle.
Now suppose that Y2 contains distinct vertices v1 and v2. Then, of the 2s connected
components of G[A], the vertices v1 and v2 each have some neighbour in s + 1 of
these connected components. So there are at least two connected components of G[A]
containing both a vertex adjacent to v1, and a vertex adjacent to v2. Let A′ and A′′ be
the vertex sets of two such connected components. Then A′ ∪ A′′ ∪ {v1, v2} ⊆ FT , but
G[A′ ∪ A′′ ∪ {v1, v2}] has a T -cycle; a contradiction. This proves Claim 1.

Claim 2: |Y | ≤ 2s + 1.

By Claim 1, it suffices to prove that |Y1| ≤ 2s. We argue that each connected component
of G[A] has at most one neighbour in Y1, implying that |Y1| ≤ 2s. Indeed, suppose that
there is a connected component CA of G[A] having two neighbours in Y1, say u1 and u2.
Then G[V(CA) ∪ {u1, u2}] contains an induced P3 that is anti-complete to A \ V(CA),
contradicting that G is (sP1 + P3)-free. This proves Claim 2.

Claim 3: Y1 is independent, and no connected component of G[A] of size 2 has a

neighbour in Y1.

Suppose that there are adjacent vertices u1 and u2 in Y1. Let ai be the unique neighbour
of ui in A for i ∈ {1, 2}. Note that a1 , a2, for otherwise G[FT ] has a T -cycle. Then
{a1, u1, u2} induces a P3, so G[{u1, u2} ∪ A] contains an induced sP1 + P3, which is a
contradiction. We deduce that Y1 is independent.

Now let {a1, a2} ⊆ A such that G[{a1, a2}] is a connected component of G[A], and
suppose that u1 ∈ Y1 is adjacent to a1. Then a1 is the unique neighbour of u1 in A,
so G[{u1, a1, a2}] � P3. Thus G[{u1} ∪ A] contains an induced sP1 + P3, which is a
contradiction. This proves Claim 3.

Claim 4: Let Z = V \ N[A]. Then N(Z) ∩ FT ⊆ Y2.

Suppose that there exists y ∈ Y1 that is adjacent to a vertex c ∈ Z. Let a be the unique
neighbour of y in A. Then G[{c, y} ∪ A] contains an induced sP1 + P3, which is a
contradiction. So Y1 is anti-complete to Z. Now, if c ∈ Z is adjacent to a vertex in
N[A] ∩ FT , then c is adjacent to y2 where Y2 = {y2}. This proves Claim 4.
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Fig. 11: An example of the structure obtained in Case 1 when Y2 = {y2}.

We now describe the subroutine that finds an optimal solution in Case 1. In this case,
for any maximum forest FT , there exists some set A ⊆ T of size at most 4s such that
A ⊆ FT , and G[A] consists of exactly 2s connected components, each isomorphic to
either P1 or P2. Since G[A] consists of components of G[FT ∩ T ], there is such an A for
which N(A) ∩ T ⊆ S T . Thus we guess a set A′ ⊆ T in O(n4s) time, discarding those sets
that do not induce a forest with exactly 2s connected components, and those that induce
a connected component consisting of more than two vertices.

For any such FT and A′, the set N(A′)∩FT has size at most 2s + 1, by Claim 2. Thus,
in O(n2s+1) time, we guess Y ′ ⊆ N(A′) with |Y ′| ≤ 2s + 1, and assume that Y ′ ⊆ FT

whereas N(A′) \ Y ′ ⊆ S T . Let Y ′2 be the subset of Y ′ that contains vertices that have at
least two neighbours in A′. We discard any sets Y ′ that do not satisfy Claims 1 or 3,
or those sets for which G[A′ ∪ Y ′] has a T -cycle on three vertices, one of which is the
unique vertex of Y ′2.

Let Z = V \ N[A′] (for example, see Figure 11). Since G[A′] contains an induced
sP1, the subgraph G[Z] is P3-free. Now N(Z) ∩ FT ⊆ Y ′2 by Claim 4, where |Y ′2| ≤ 1 by
Claim 1. Thus, by Lemma 15, we can extend a partial solution S ′T = N[A′] \ (A′ ∪ Y ′) of
G[N[A′]] to a solution S T of G, in polynomial-time.

Case 2: G[FT ∩ T ] has at most 2s − 1 connected components, each of size at most a(s).

We guess sets F ⊆ T and S ⊆ V \ T such that FT ∩ T = F and S T \ T = S . Since F has
size at most (2s−1)a(s) = (2s−1) max{7, 4s−2} vertices, there are O(nmax{14s−7,8s2−8s+2})
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possibilities for F. By Lemma 11, we may assume that |S T \T | ≤ |F|. So for each guessed
F, there are at most O(nmax{14s−7,8s2−8s+2}) possibilities for S . For each S and F, we set
S T = (T \ F) ∪ S and check, in O(n + m)-time by Lemma 12, if G − S T is a T -forest. In
this way we exhaustively find all solutions satisfying Case 2, in O(nmax2{14s−7,8s2−8s+2})
time; we output the one of minimum size.

Case 3: G[FT ∩ T ] has at most 2s − 1 connected components, one of which has size

more than a(s).

By Lemma 3, there is some subset BT ⊆ FT ∩ T such that |B| > a(s), and G[B] is a
connected component of G[FT ∩ T ] that is a tree satisfying Lemma 3(ii), as illustrated in
Figure 5. In particular, there is a unique vertex r ∈ B such that r has degree more than 2
in G[B]. Moreover, G[FT ] has a connected component G[D] that contains B, where
G[D] is a tree that also satisfies Lemma 3(ii). Note that there are at most s− 1 vertices in
NG[B](r) having a neighbour in V \ T .

We guess a set B′ ⊆ T such that |B′| = a(s) + 1 = max{8, 4s − 1}. We also guess a
set L′ ⊆ V \ T such that |L′| ≤ s − 1. Let D′ = B′ ∪ L′. We check that G[D′] has the
following properties:

– G[D′] is a tree,

– G[D′] has a unique vertex r′ of degree more than 2, with r′ ∈ B′,

– G[D′] has at most s − 1 vertices with distance 2 from r′, and each of these vertices
has degree 1, and

– each vertex v ∈ L′ has degree 1 in G[D′], and distance 2 from r′.

We assume that D′ induces a subtree of the large connected component G[D], where
r = r′, and D′ contains r, all neighbours of r with degree 2 in G[D], and all vertices at
distance 2 from r. In other words, G[D′] can be obtained from G[D] by deleting some
subset of the leaves of G[D] that are adjacent to r. In particular, D′ ⊆ FT . We also
assume that L′ is the set of all vertices of V(D) \ T that have distance 2 from r.

It follows from these assumptions that N(D′ \ {r}) \ {r} ⊆ S T . Let Z = V \N[D′ \ {r}],
and observe that each z ∈ Z has at most one neighbour in D′ (if it has such a neighbour,
this neighbour is r). So N(Z) ∩ FT ⊆ {r}.

In order to apply 15, it remains to show that G[Z] is P3-free. Let B1 = B′ ∩ N(r).
As r has at least 3s − 1 neighbours in G[B′], by Lemma 3, G[B1] contains an induced
sP1. Moreover, N(B1) ∩ FT ⊆ D′. Since G is (sP1 + P3)-free, G[Z] is P3-free. Thus, by
Lemma 15, we can extend a partial solution S ′T = N(D′ \ {r}) \ {r} of G[N[D′ \ {r}]] to a
solution S T of G, in polynomial time. ut

39



We are now ready to prove the following result.

Theorem 4 (restated). Let H be a graph with H , sP1 + P4 for all s ≥ 1. Then

Subset Feedback Vertex Set on H-free graphs is polynomial-time solvable if H = P4 or

H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Proof. If H has a cycle or a claw, we use Theorem 2. The cases H = P4 and H = 2P2

follow from the corresponding results for permutation graphs [87] and split graphs [45].
The remaining case H ⊆i sP1 + P3 follows from Theorem 7. ut

3.5 Subset Odd Cycle Transversal

We start this Section by proving that Odd Cycle Transversal is NP-complete on
(P2 + P5, P6)-free graphs. We do this by modifying the construction used in [85] for
proving that this problem is NP-complete on P13-free segment graphs.

Theorem 8. Odd Cycle Transversal is NP-complete on (P2 + P5, P6)-free graphs.

Proof. To prove NP-hardness we reduce from Vertex Cover (recall this problem is
NP-complete, see e.g. [49]). Let (G, k) be an instance of Vertex Cover . Let n and m be
the number of vertices and edges, respectively, in G. Let v1, . . . , vn be the vertices of G.
We construct a graph G∗ from G as follows.

1. For i ∈ {1, . . . , n} create vertices ai, bi, ci, xi and yi. Let A, B,C, X and Y be the sets
of, respectively, ai, bi, ci, xi and yi vertices.

2. For i, j ∈ {1, . . . , n}, add the edges xiy j and biy j (so we make Y complete to both X

and B).
3. For each i ∈ {1, . . . , n}, add edges xiai, xibi, aibi, bici, ciyi (a vertex gadget, see also

Figure 12(a) and note that bi is adjacent to yi by the previous step).
4. For each edge viv j in G with i < j, add a vertex di, j adjacent to both xi and y j (an

edge gadget, see also Figure 12(b)). Let D be the set of di, j vertices.

We first claim that the following statements are equivalent:

(i) G has a vertex cover of size at most k;
(ii) G∗ has an odd cycle transversal of size at most n + k;

Below we prove (i)⇒ (ii) and (ii)⇒ (i).

(i)⇒ (ii). Suppose that G has a vertex cover Q of size at most k. We define the set

S =
⋃
vi∈Q

{xi, yi} ∪
⋃
vi<Q

{bi}

40



xi yi

ai bi ci

(a) Vertex gadget

xi y j

di, j

(b) Edge gadget

Fig. 12: The two gadgets used in the proof of Theorem 8.

and observe that |S | = 2|Q| + (n − |Q|) = n + |Q| ≤ n + k. We claim that S is an odd cycle
transversal of G∗. This can be seen as follows. The only induced odd cycles in G∗ are the
three triangles in each vertex gadget and the triangle in each edge gadget. By construction
of S , for every i ∈ {1, . . . , n}, either S contains both xi and yi or S contains bi, thus every
triangle in every vertex gadget intersects S . Furthermore, since Q is a vertex cover of G,
for every edge gadget {xi, y j, di, j}, either xi ∈ S or y j ∈ S . Therefore S intersects every
odd cycle in G∗.

(ii)⇒ (i). Suppose that G∗ has an odd cycle transversal S of size at most n + k. Consider
an edge gadget on {xi, y j, di, j}. If di, j ∈ S then S ′ := (S \ {di, j}) ∪ {xi} is an odd cycle
transversal of G with |S ′| ≤ |S |. We may therefore assume that S contains no vertices
of D. For i ∈ {1, . . . , n}, the vertex bi intersects all odd cycles in the vertex gadget on
{ai, bi, ci, xi, yi}. If bi < S then |S ∩ {ai, bi, ci, xi, yi}| ≥ 2 since S intersects all induced
odd cycles of the vertex gadget. Note that {xi, yi} intersects all odd cycles of the vertex
gadget. Therefore, if |S ∩ {ai, bi, ci, xi, yi}| ≥ 2, then S ′ := (S \ {ai, bi, ci}) ∪ {xi, yi} is
an odd cycle transversal of G∗ with |S ′| ≤ |S |. We may therefore assume that for every
i ∈ {1, . . . , n}, either bi ∈ S or {xi, yi} ⊆ S and there are no other vertices in S . Let
BS = B ∩ S , XS = S ∩ X and YS = S ∩ Y . Then |S | = |BS | + |XS | + |YS | = n + |XS |. Let
Q =

⋃
xi∈S {vi}. Then |Q| = |XS | = |S | − n ≤ n + k − n = k.

We claim that Q is a vertex cover of G. This can be seen as follows. Consider an
edge viv j of G (without loss of generality assume i < j). Then |{xi, y j, di, j} ∩ S | ≥ 1, as S

is an odd cycle transversal of G∗. By assumption on S , di, j < S and if y j ∈ S then x j ∈ S .
It follows that xi ∈ S or x j ∈ S and so vi ∈ Q or v j ∈ Q. We conclude that Q is a vertex
cover of G of size at most k.

It only remains to show that G∗ is (P2 + P5, P6)-free. Suppose, for contradiction, that
H ∈ {P2 + P5, P6} is an induced subgraph of G∗. Every vertex in A∪C ∪ D has degree 2
and its two neighbours are adjacent. Therefore no vertex in V(H) ∩ (A ∪ C ∪ D) is an
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internal vertex of a path of H. That is, if x ∈ V(H) ∩ (A ∪ C ∪ D) then x has degree 1
in H. Furthermore, A∪C ∪D is an independent set in G∗. Hence, if H = P2 + P5, then at
most one vertex of the P2 connected component of H can be in A ∪C ∪ D. We conclude
that G∗[V(H) ∩ (B ∪ X ∪ Y)] contains an induced subgraph H′ on four vertices that is
isomorphic to P1 + P3 if H = P2 + P5 or P4 if H = P6. Since Y is an independent set
and B∪ X is a perfect matching, H′ must contain at least one vertex of B∪ X and at least
one vertex of Y . As Y is complete to B ∪ X, we find that H′ contains either C4 or K1,3 as
a (not necessarily induced) subgraph, a contradiction. This completes the proof. ut

The next result uses the same reduction of [87] which proved the analogous result
for Subset Feedback Vertex Set.

Theorem 9. SubsetOdd Cycle Transversal is NP-complete for the class of split graphs

(or equivalently, (C4,C5, 2P2)-free graphs).

Proof. We observe that the problem belongs to NP. To show NP-hardness, we reduce
from Vertex Cover . Let a graph G = (V, E) and a positive integer k be an instance of
Vertex Cover . From G, we construct a graph G′ as follows. Let V(G′) = V ∪ E. Add
an edge between e ∈ E and v ∈ V in G′ if and only if v is an end-vertex of e in G. Add
edges so that V induces a clique of G′. Hence, G′ is a split graph with independent set E

and clique V . For example, when G = P4, see Figure 13. Let T = E. We show that G

has a vertex cover of size at most k if and only if G′ has an odd T -cycle transversal of
size at most k.

First suppose that G has a vertex cover S of size at most k. Then S is an odd T -cycle
transversal of G′. Now suppose that G′ has an odd T -cycle transversal S T of size at
most k. As every vertex of E in G′ has degree 2, we can replace every vertex of E that
belongs to S T by one of its neighbours to obtain an odd T -cycle transversal of the same
size as S T . Hence we may assume, without loss of generality, that S T ∩ E = ∅. As a
vertex of E and its two neighbours in V form a triangle, this means that S T contains at
least one neighbour of every e ∈ E. Hence, S T is a vertex cover of G. ut

Recall that Subset Feedback Vertex Set can be solved in polynomial time for P4-free
graphs (see e.g. [87,88]). Now we are ready to prove the same for Susbset Odd Cycle
Transversal.

Theorem 10. Subset Odd Cycle Transversal can be solved in polynomial-time for

P4-free graphs.

Proof. Let G be a cograph with n vertices and m edges. First construct the modified
cotree T ′G and then consider each node of T ′G starting at the leaves of T ′G and ending in
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V E

Fig. 13: The graph P′4: an example of the construction in the proof of Theorem 9.

its root r. Let x be a node of T ′G. We let S x denote a minimum odd (T ∩ V(Gx))-cycle
transversal of Gx.

If x is a leaf, then Gx is a 1-vertex graph. Hence, we can let S x = ∅. Now suppose
that x is a +-node. Let y and z be the two children of x. Then, as Gx is the disjoint union
of Gy and Gz, we let S x = S y ∪ S z.

Finally suppose that x is a ×-node. Let y and z be the two children of x. Let Ty =

T ∩ V(Gy) and Tz = T ∩ V(Gz). Let Bx = V(Gx) \ S x. As Gx is the join of Gy and Gz we
observe the following. If Bx ∩V(Gy) contains two adjacent vertices, at least one of which
belongs to Tx, then Bx∩V(Gz) = ∅ (as otherwise G[Bx] has a triangle containing a vertex
of T ) and thus V(Gz) ⊆ S x. In this case we may assume that S x = S y ∪ V(Gz). Similarly,
if Bx ∩ V(Gz) contains two adjacent vertices, at least one of which belongs to Tz, then
Bx ∩ V(Gy) = ∅ and thus V(Gy) ⊆ S x. In this case we may assume that S x = S z ∪ V(Gy).
From the two sets S y ∪ V(Gz) and S z ∪ V(Gy) we remember the smallest one.

It remains to examine the case where Bx ∩ V(Gy) and Bx ∩ V(Gz) induce subgraphs
of G in which the vertices of Ty ∩ Bx and Tz ∩ Bx, respectively, are singleton components.

First suppose that Ty ∩ Bx and Tz ∩ Bx are both non-empty. Then Bx ∩ V(Gy) and
Bx ∩ V(Gz) are both independent sets, as otherwise G[Bx] would contain a T -triangle.
We examine this situation by computing a largest independent set Iy in Gy and a largest
independent set Iz in Gz; it is well-known that this can be done in polynomial time (for
example, it follows from Lemma 13). We remember V(Gx) \ (Iy ∪ Iz).

Now suppose that Ty ∩ Bx is non-empty, but Tz ∩ Bx is empty. Then Bx ∩V(Gz) must
be an independent set, as otherwise we obtain a T -triangle by taking a vertex of Ty ∩ Bx

and two adjacent vertices of Bx ∩ V(Gz). First assume that Bx ∩ V(Gz) has size at least 2.
We observe that (Bx ∩ V(Gy)) \ Ty is also an independent set; otherwise two adjacent
vertices of (Bx ∩V(Gy)) \Ty, two vertices of Bx ∩V(Gz) and one vertex of Ty ∩ Bx would
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form a T -cycle on five vertices. Hence, both Bx ∩ V(Gy) and Bz ∩ V(Gz) are independent
sets, and we already dealt with this case above.

Now assume that Bx ∩ V(Gz) has size at most 1. In this case Bx ∩ V(Gy) is a
minimum Ty-vertex cover of Gy. We can compute a minimum Ty-vertex cover S of
Gy in polynomial time by Theorem 6. We remember S ∪ (V(Gz) \ {z}) where z is an
arbitrary vertex of V(Gz) \ Tz if the latter set is non-empty; otherwise we just remember
S ∪ (V(Gz).

We deal with the case where Tz ∩ Bx is non-empty, but Ty ∩ Bx is empty in the
same way and remember the output. We also consider the possible situation where
Tz ∩ Bx = Ty ∩ Bx = ∅, in which case we remember T . Finally, we take as set S x a set of
minimum size over the sets that we remembered.

Constructing T ′G takes O(n + m) time by Lemma 2. As TG′ has O(n) nodes and
processing a node takes O(n + m) time (due to the application of Lemma 13), the total
running time is O(n2 + mn). ut

The following theorem is the main result of the section and it is our contribution to
Theorem 5. Its proof uses the same approach as the proof of Theorem 7 but we need
more advanced arguments.

Theorem 11. For every integer s ≥ 0, Subset Odd Cycle Transversal can be solved in

polynomial-time for (sP1 + P3)-free graphs.

Proof. Let G = (V, E) be an (sP1 + P3)-free graph and let T ⊆ V . If s = 0, then
we can apply Theorem 10, so we may assume that s ≥ 1. We describe a polynomial-
time algorithm to solve the optimization problem on input (G,T ). That is, we describe
how to find a smallest odd T -cycle transversal. In fact, we will solve the equivalent
problem of finding a maximum size T -bipartite subgraph BT of G which is, of course,
the complement of a smallest odd T -cycle transversal, that is S T = V \ BT . We separate
into two cases that separately seek to find T -bipartite subgraphs with complementary
constraints on the size of the intersection of this subgraph with T . The largest one found
overall is the desired output.

Case 1: Compute a largest T -bipartite subgraph BT of G such that |BT ∩ T | ≤

max{3, 4s − 3}.

Note that B∗ = V \T is a candidate solution. We must see if we can find something larger.
Consider each set B′ ⊆ T of size at most max{3, 4s − 3}, discarding any set that does not
induce a bipartite graph. There are O(nmax{3,4s−3}) possible sets. For each choice of B′,
consider all sets S ⊆ V \ T of size less than |B′|. Then B′ ∪ (V \ T ) \ S is a candidate
solution if it induces a T -bipartite subgraph, which is checked in O(n + m)-time by
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Lemma 12. For each B′, there are O(nmax{3,4s−3}) possible choices of S to consider. Note
that we do not need to examine larger S since then B′ ∪ (V \ T ) \ S is no larger than B∗.

Case 2: Compute a largest T -bipartite subgraph BT of G such that |BT ∩ T | ≥

max{4, 4s − 2}.

Note that BT might not exist in which case the output of Case 1 is our result. We
make some observations regarding the subgraph BT that we seek. As G[B ∩ T ] is a
bipartite graph on at least max{4, 4s − 2} vertices, it contains an independent set A of
size max{2, 2s − 1}. Let Y = BT ∩ N(A) and consider a partition {Y1,Y2} of Y where y is
in Y1 if y has precisely one neighbour in A, and otherwise y is in Y2. Let Z = V \ N[A].

Claim 1: Y1 is an independent set, no two vertices of Y1 have a common neighbour in A

and |Y1| ≤ |A|.

Suppose that there are adjacent vertices y, y′ ∈ Y1, and let a be the unique neighbour of y

in A. Then, according to whether or not y′ is adjacent to a, either {y, y′, a} induces an odd
T -cycle, or G[A ∪ {y, y′}] contains an induced sP1 + P3; both are contradictions. If there
are vertices y, y′ ∈ Y1 that have the same neighbour a in A, then, again, G[A ∪ {y, y′}]
contains an induced sP1 + P3, a contradiction. It follows that |Y1| ≤ |A|. This proves
Claim 1.

Claim 2: Y2 is an independent set, each y ∈ Y2 has at least s neighbours in A and any

two vertices of Y2 share at least one neighbour in A.

Let y and y′ be distinct vertices in Y2. Since G[A∪{y}] is (sP1 +P3)-free, y is non-adjacent
to at most s − 1 vertices of A. So y has at least 2s − 1 − (s − 1) = s neighbours in A.
Similarly, y′ is non-adjacent to at most s − 1 vertices of A, so y and y′ have a neighbour
of A in common, a say. If y and y′ are adjacent, then {y, y′, a} induces an odd T -cycle; a
contradiction. This proves Claim 2.

Claim 3: N(Z) ∩ BT ⊆ Y2.

By definition, N(Z)∩ BT ⊆ Y . Suppose that z ∈ Z is adjacent to a vertex y ∈ Y1. Let a be
the unique neighbour of y in A. Since |A| = max{2, 2s−1} ≥ s + 1 for all s ≥ 0, it follows
that G[{z, y} ∪ A] contains an induced sP1 + P3, a contradiction. So Y1 is anti-complete
to Z, and the claim follows. This proves Claim 3.

Armed with these definitions and claims we consider how to find BT . The basic idea is
to consider all possible choices of A and Y . We have two subcases.

Case 2a: Compute a largest T -bipartite subgraph BT of G such that |BT ∩ T | ≥

max{4, 4s − 2} and, for some choice of A, we have |Y | < max{s + 3, 3s}.
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Consider each set A ⊆ T of size max{2, 2s − 1} such that A is an independent set. There
are O(nmax{2,2s−1}) choices. For each A, we consider each set Y1 ⊆ N(A) of vertices that
each has a single neighbour in A such that Y1 satisfies Claim 1. As we require that
|Y1| ≤ |A|, there are again O(nmax{2,2s−1}) choices. Then consider each set Y ⊆ N(A) of
size at most max{s + 3, 3s} such that Y1 ⊆ Y and Y2 = Y \ Y1 is a set of vertices that each
has at least two neighbours in A and satisfies Claim 2. We also require that A ∪ Y does
not contain any odd T -cycles, which is checked in O(n + m)-time by Lemma 12. There
are O(nmax{s+3,3s}) choices for Y .

Note that G[A ∪ Y] is bipartite since G[Y] can contain only even cycles as Y1 and
Y2 are independent sets, and any odd cycle is an odd T -cycle, since A ⊆ T , which we
have proscribed. By Claim 2, vertices of Y2 all belong to the same connected component
of G[A ∪ Y] and, as, by definition and Claim 1, each vertex in G[A ∪ Y1] has degree at
most 1, we deduce that every vertex of degree at least 2 in G[A ∪ Y] belongs to the same
connected component. We denote this connected component by G[D], or we let D be the
empty graph if there is no such connected component (which only occurs when Y2 = ∅).
See Figure 14 for an illustration.

⊆ A

Y2⊆ Y1

Fig. 14: An example of a connected component D of G[A ∪ Y].

Recall that Z = V \N[A]. Since A contains an induced sP1 subgraph, G[Z] is P3-free,
and so is a disjoint union of complete graphs. For a connected component G[U] of G[Z],
let U+ contain each vertex u of U such that G[A ∪ Y ∪ {u}] does not contain an odd
T -cycle through u, which is checked in O(n + m)-time by Lemma 12.

The aim in the remainder of this subcase is to find the largest possible T -bipartite
subgraph BT that contains A∪Y and a subset of Z. Clearly for each connected component
G[U] in G[Z], any vertex that might be in BT must belong to U+. We shall see later that
we can consider each connected component of G[Z] independently and that it suffices to
find for each the maximum size subset of U+ that can be added to BT . We first investigate
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the possible edges between U+ and D. Note that by Claim 3, the neighbours of U+ in D

belong to Y2.

Claim 4: Either |N(U+ ∩ BT ) ∩ V(D)| ≤ 1 or |N(D) ∩ (U+ ∩ BT )| ≤ 1.

We can assume that there are two vertices u1, u2 of U+ ∩ BT that each have a neighbour
in D else the claim follows immediately. Moreover we can assume that these neighbours,
say y1 and y2 respectively, are distinct. By Claim 2, y1 and y2 have a common neighbour
a in A. Thus we have a path u1y1ay2u2. As U+ is a clique, this can be extended to a cycle
by the edge u1u2, but, as A ⊆ T , this is an odd T -cycle, a contradiction. This proves
Claim 4.

Claim 5: For each component G[U] of G[Z], let U++ be a subset of U+; and let Z++ be

the union of each U++ over all components G[U] of G[Z]. If G[A∪Y ∪Z++] contains an

odd T-cycle, then G[A ∪ Y ∪ U++] contains an odd T-cycle for some component G[U]
of G[Z].

Suppose that C is an odd T -cycle of G[A ∪ Y ∪ Z++]. First we show that C contains two
vertices of some U++. Towards a contradiction, suppose C is a subgraph of G[A∪Y∪Z∗],
where Z∗ is a subset of Z++ with at most one vertex from each component of G[Z]. Recall
that D is a bipartite graph that (if non-empty) is a component of G[A ∪ Y]. By Claim 3,
all neighbours of Z∗ are contained in Y2, which, in turn, is contained in one side of the
bipartition of D. Hence G[A ∪ Y ∪ Z∗] has no odd T -cycles and, in particular, C is not
an odd T -cycle. From this contradiction we deduce that there is some component G[U]
of G[Z] such that C contains two vertices of U++. Let u1 and u2 be distinct vertices of
V(C) ∩ U++. If C is not contained in G[A ∪ Y ∪ U++], then there are distinct vertices
y1 ∈ NC(u1) ∩ Y2 and y2 ∈ NC(u2) ∩ Y2. But, by Claim 2, y1 and y2 have a common
neighbour a ∈ A, so u1y1ay2u2u1 is an odd T -cycle contained in G[A ∪ Y ∪ U++]. This
proves Claim 5.

Let Z+ be the union of U+ over all connected components U of G[Z]. Suppose that C is
an odd T -cycle of G[A ∪ Y ∪ Z+]. We show that C contains two vertices of some set U+.
Assume that C is a subgraph of G[A ∪ Y ∪ Z∗], where Z∗ is a subset of Z+ with at most
one vertex from each connected component. But this is a contradiction as G[A ∪ Y ∪ Z∗]
is bipartite: G[A ∪ Y] is bipartite and the vertices of Z∗ are adjacent to Y2 whose vertices
are separated by paths of length 2. Thus to extend A∪Y to the largest possible T -bipartite
graph, for each connected component U of G[Z], we must find U++, a maximum subset
of U+ such that G[A ∪ Y ∪ U++] has no odd T -cycle. By the preceding argument and
Claim 4, we can consider each connected component separately.

We describe how to find such a set U++. We first suppose that for the set we seek
|U++| ≥ 3. Partition U+ into {U+

0 ,U
+
1 ,U

+
2 } where u ∈ U+

0 if u ∈ U+ has no neighbours in
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V(D), u ∈ U+
1 if u has exactly one neighbour in V(D), and otherwise u ∈ U+

2 . By Claim 4,
and since we are assuming that |U++| ≥ 3, we have |U+

2 ∩U++| ≤ 1. And U+
2 ∩U++ = {u2}

if this set is not empty. Let N(U+
1 ) ∩ V(D) = {d1, . . . , dm}, for some m ≥ 1, if U+

1 is not
empty. We partition U+

1 into classes {Q1, . . . ,Qm} such that u ∈ Qi if N(u)∩ V(D) = {di}.
Using Claim 4 again, we have that U++∩U+

1 ⊆ Qi for some i ∈ {1, . . . ,m}. So we choose
the i with di < T that maximises |Qi \ T |, and set U++ = (U+

0 ∪ Qi) \ T . If di ∈ T for
all i ∈ {1, . . . ,m} but U+

1 \ T , ∅, then U++ = (U+
0 \ T ) ∪ {u} for an arbitrarily chosen

u ∈ U+
1 \ T . Otherwise U++ = (U+

0 ∪ U+
2 ) \ T . This process finds a maximum U++ of

size at least 3 if such a set exists.

Now consider the case where |U++| ≤ 2. Recall that no vertex of U+ creates an odd
T -cycle with vertices of A ∪ Y . So any odd T -cycle of G[A ∪ Y ∪ {u1, u2}] contains
{u1, u2}. We require one more claim to handle this case, which shows that we may also
consider each of these remaining connected components independently.

Claim 5: If C is an odd T-cycle of G[A ∪ Y ∪ Z] with |C ∩ U | ≤ 2 for each connected

component U of G[Z], then there is a connected component U∗ and an odd T-cycle C′

of G[A ∪ Y ∪ Z] such that C′ ∩ Z = C ∩ U∗.

Let C be such an odd T -cycle of G[A∪Y∪Z]. Since N(Z)∩(A∪Y) ⊆ Y2, by Claim 3, and
the vertices of Y2 are contained in one part of the bipartition of D, C must contain at least
one edge u1u2 with u1, u2 in some connected component U∗ of G[Z]. By assumption
and Claim 3, C contains the path yu1u2y′ for some y, y′ ∈ Y2. Then there is some
a ∈ N(y) ∩ N(y′) ∩ A, by Claim 2, and C′ = {a, y, u1, u2, y′, a} is an odd T -cycle. This
proves Claim 5.

Now, to extend A∪ Y to the largest possible T -bipartite graph, for each component G[U]
of G[Z], we must find a maximum subset U++ of U+ such that G[A ∪ Y ∪ U++] has no
odd T -cycle. By the contrapositive of Claim 5, if G[A ∪ Y ∪ U++] does not contain an
odd T -cycle for each component G[U] of G[Z], then G[A ∪ Y ∪ Z++] does not contain
an odd T -cycle.

We describe how to find such a set U++ in polynomial time. We first suppose that for
the set we seek |U++| ≥ 3. Note that in this case we have U++ ∩ T = ∅, since U++ is a
clique. Partition U+ \T into {U+

0 ,U
+
1 ,U

+
2 } where u ∈ U+

0 if u ∈ U+ \T has no neighbours
in V(D), u ∈ U+

1 if u has exactly one neighbour in V(D), and otherwise u ∈ U+
2 . If U+

1

is not empty, then let N(U+
1 ) ∩ V(D) = {d1, . . . , dm}, for some m ≥ 1. We partition U+

1

into classes {Q1, . . . ,Qm} such that u ∈ Qi if N(u) ∩ V(D) = {di}. Using Claim 4, either
U++ ∩ U+

1 = ∅ or U++ ∩ U+
2 = ∅. Moreover, when U++ ∩ U+

1 , ∅, then U++ ∩ U+
1 ⊆ Qi

for some i ∈ {1, . . . ,m}; and when U++∩U+
2 , ∅, then |U++∩U+

2 | = 1. So, if there exists
some di < T , then we choose such an i that maximises |Qi|, and set U++ = U+

0 ∪ Qi.
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If U+
1 , ∅ but di ∈ T for all i ∈ {1, . . . ,m}, then set U++ = U+

0 ∪ {u} for an arbitrarily
chosen u ∈ U+

1 . Now suppose U+
1 is empty, and recall that in this case |U+

2 ∩ U++| ≤ 1.
If U+

2 is non-empty, then set U++ = U+
0 ∪ {u2} for some u2 ∈ U+

2 . Finally, if U+
2 is also

empty, then set U++ = U+
0 . This process finds a maximum U++ of size at least 3 if such

a set exists.

Now consider the case where |U++| ≤ 2. We exhaustively check all pairs of vertices in
U+, of which there are O(n2). Let u1, u2 be such a pair of distinct vertices. By Claim 5, we
need only check that G[A∪Y ∪{u1, u2}] is T -bipartite; if it is, then we set U++ = {u1, u2}.
Recall that this check runs in polynomial time, by Lemma 12. Finally, if no pair is found,
we set U++ to be the singleton set consisting of any arbitrarily chosen vertex of U+.

Case 2b: Compute a largest T-bipartite subgraph BT of G such that |BT ∩ T | ≥

max{4, 4s − 2} and, for some choice of A, we have |Y | ≥ max{s + 4, 3s + 1}.

Note that as A has size max{2, 2s−1} and |Y1| ≤ |A|, we have that |Y2| ≥ s+2. So suppose
that Y ′2 is a subset of Y with |Y ′2| = s + 2. Let A0 = N(Y ′2) ∩ A, and let Y0 = N(A0) ∩ BT .
Observe that s ≤ |A0| ≤ max{2, 2s − 1} and Y ′2 ⊆ Y0 ⊆ Y . Finally let Y ′0 = N(A0) and
note that Y ′2 ⊆ Y0 ⊆ Y ′0.

Claim 6: Let y ∈ Y ′2 and y′ ∈ Y0 be distinct vertices. Then there is an even T-path in

G[A0 ∪ Y ′2 ∪ {y
′}] between y and y′.

Assume that y and y′ have no common neighbour in A0 else the claim is immediate. First
let us assume at least one vertex between y and y′ is contained in Y ′2. Without loss of
generality, y ∈ Y ′2. By Claim 2 and the definitions of A0 and Y ′0, we can assume that
y′ ∈ Y ′0 \ Y ′2 and that y′ has a neighbour a′ in A0, and, moreover, that a′ is the neighbour
of some vertex y′′ ∈ Y ′2 \ {y}. Again by Claim 2, y and y′′ share a common neighbour
a′′ ∈ A0. Thus ya′′y′′a′y′ is an even T -path in G[A0 ∪ Y ′2 ∪ {y

′}].

Now we consider the case where y, y′ ∈ Y ′0 \ Y ′2. Let y∗ be a vertex of Y ′2. By the
previous case there is an even T -path in G[A0 ∪ Y ′2 ∪ {y, y

∗}] between y and y∗ and an
even T -path in G[A0∪Y ′2∪{y

′, y∗}] between y′ and y∗. By joining these two even T -paths
we obtain an even T -path in G[A0 ∪ Y ′2 ∪ {y, y

′, y∗}] = G[A0 ∪ Y ′2 ∪ {y, y
′}] between y and

y′. This proves Claim 6.

Recall that A0 ⊆ A and A is an independent set. Hence, G[A0] has an induced sP1.

Claim 7: N(A0) ∩ N(Y ′2) ∩ BT = ∅.

Assume there is a vertex v ∈ N(A0) ∩ N(Y ′2) else the claim is immediate. By assumption
there are vertices a ∈ A0 ∩ N(v) and y ∈ Y ′2 ∩ N(v). By definition of A0, there is a vertex
y′ ∈ Y ′2 ∩ N(a). If y′ = y then v < BT or {a, v, y} induces an odd T -cycle in BT . Suppose
now that y′ , y, then by Claim 6 there is an even T -path in G[A0 ∪ Y ′2 ∪ {y, y

′}] between
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A

A0

⊆ Y0

Y ′2Y1

Fig. 15: An example of G[A ∪ Y1 ∪ Y ′2] when s = 3.

y and y′. Then v < BT or the cycle obtained by linking this even T -path between y and y′

with the path yvay′ would be an odd T -cycle of BT . This proves Claim 7.

Claim 8: If u ∈ U2, then u has at least two neighbours in Y ′2 ⊆ Y2.

Suppose that u ∈ U2. Since Y ′0| ≥ |Y
′
2| = s + 2, the graph G[Y ′0] contains an induced sP1

subgraph by Claim 2. Consider when s ≥ 1. First we show that no vertex of Y ′0 ∪ N(u)
is adjacent to Y ′2, that is Y ′0 ∩ N(u) ∩ N(Y ′2) = ∅. Assume, to reach a contradiction, that
there is a vertex y ∈ Y ′0 ∩ N(u) ∩ N(Y ′2). By Claim 2, y ∈ Y ′0 \ Y ′2 and by definition of Y ′0,
y has a neighbour in A0: then y < Y ′0, which is a contradiction (recall Y ′0 now contains no
vertex from N(A0) ∩ N(Y ′2)).

Let x and y be neighbours of u in Y ′0 that are contained in distinct components of
G[Y ′0]. By what we have just proved, the set Y ′2∪{x, y} is independent. As G[Y ′2∪{u, x, y}]
is (sP1 +P3)-free, u is non-adjacent to at most s−1 of the vertices in Y ′2. Since |Y ′2| = s+2,
the claim holds. The case where s = 0 follows, in a similar manner, since |Y2| ≥ 2. This
proves Claim 8.

Claim 9: Either U0 = ∅ or U1 = ∅. Moreover, |N(U1) ∩ Y ′0| = 1 if U1 , ∅.

Suppose that U0 and U1 are both non-empty. Let u0 ∈ U0, u1 ∈ U1 and y ∈ N(u1) ∩ Y ′0.
By the argument used in Claim 8, the set Y ′2 ∪ {y} is independent. Then {u0, u1, y} induces
a P3, so G[{u0, u1} ∪ Y ′0] contains an induced sP1 + P3; a contradiction. Similarly, let
u1, u′1 ∈ U1, y1 ∈ N(u1) ∩ Y ′0 and y′1 ∈ N(u′1) ∩ Y ′0. If y1 , y′1, then {y1, u1, u′1} induces a
P3 and by the same argument used in Claim 8, the set Y ′2 ∪ {y1, y′1} is independent. Since
|Y ′2| = s + 2, then G[{u1, u′1} ∪ Y ′0] contains an induced sP1 + P3; a contradiction. This
proves Claim 9.

Claim 10: |U2 ∩ BT | ≤ 1.

Assume there exist u, u′ ∈ U2 ∩ BT with u , u′. By Claim 8, u and u′ each have at least
two neighbours in Y ′2. Hence, there exist vertices y, y′ ∈ Y ′2 such that y ∈ N(u), y′ ∈ N(u′)
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and y , y′. By Claim 6, there is an even T -path P in G[A′0 ∪ Y2] between y and y′. Using
the path yuu′y′, P can be extended to an odd T -cycle; a contradiction. This proves Claim
10.

Claim 11: Suppose that u1, u2 ∈ BT for some u1 ∈ U1 and u2 ∈ U2. Let N(U1)∩Y ′0 = {y}.

Then y ∈ Y ′0 \ Y2 and y < BT .

Since u2 has at least two neighbours in Y ′2, by Claim 8, u2 has a neighbour y′ ∈ Y ′2
such that y′ , y. By Claim 6, there is an even T -path P in G[A0 ∪ Y2 ∪ {y}] between
y and y′. Using the path yu1u2y′, the path P can be extended to an odd T -cycle. Since
V(P) \ {y} ⊆ A0 ∪ Y2 ⊆ BT and u1, u2 ∈ BT , we deduce that y < BT . This proves Claim
11.

Our approach is to consider each possible pair of sets A0 and Y ′2 with s ≤ |A0| ≤

max{2, 2s − 1} and |Y ′2| = s + 2 that conform with the definitions of this subcase and
Claim 6. We want to find the largest possible BT that contains them. Thus we want to
include in BT as many vertices as possible from Y ′0 \Y2 and Z. We first describe, for each
component G[U] of G[Z], how to find the largest possible set of vertices U′ in U to add
to A0 ∪ Y ′2. As before, we let S T = V \ BT . We then prove, as Claim 12, the correctness
of the approach of considering each component independently; that is, we prove that
we cannot introduce any odd T -cycles that meet multiple components of G[Z]. We then
complete the proof by considering which vertices of Y ′0 \ Y2 to add to BT .

First consider whether it is possible to find U′ such that |U′| ≥ 3. Then U′ contains
no vertex of T , otherwise G[U′] has an odd T -cycle, since U is a clique. By Claim 10,
|U′ ∩U2| ≤ 1. By Claim 9, at most one of U0 and U1 is non-empty. Hence, if U0 \T , ∅,
then we let U′ contain (U0 \ T ), and, if U2 \ T , ∅, we also add to U′ an arbitrary
u ∈ U2 \ T .

If U0 \ T = ∅, then possibly U1 \ T , ∅. By Claim 9, there exists y ∈ Y ′0 such that
N(u) ∩ Y ′0 = {y}, for all u ∈ U1. As U1 ∪ {y} is a clique, we assume that y < Y ′2 ∩ T ;
otherwise |U1 ∩ U′| ≤ 1 and hence |U′| ≤ 2 by Claim 10. If U2 \ T , ∅, then U′ =

(U1 \ T ) ∪ {u} for an arbitrary u ∈ U2 \ T , and, by Claim 11, we also have y ∈ S T . If
U2 \ T = ∅, then we set U′ = U1 \ T and if y ∈ T , then y ∈ S T .

We now assume that we want to find U′ such that |U′| ≤ 2. First consider when
U0 , ∅ (so, by Claim 9, U1 = ∅). If |U0| ≥ 2, then we set U′ = {u, u′} for any distinct
u, u′ ∈ U0. If U0 = {u0} and |U2| ≥ 1, then we set U′ = {u0, u2} for an arbitrary u2 ∈ U2.
Finally, if U0 = {u0} and U2 = ∅, then U′ = {u0}.

Now consider when U0 = ∅. If U1 , ∅, then, by Claim 9, there is some y ∈ Y ′0
such that U1 ∪ {y} is a clique. If y < Y ′2 ∩ T and |U2 \ T | ≥ 2, then set U′ = U2 \ T

and put y ∈ S T . If y ∈ Y ′2 ∩ T then set U′ = {u1, u2} for an arbitrary u1 ∈ U1 and some
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u2 ∈ U2 \ T such that y < N(u2), if such an element u2 exists. Otherwise, |U′| ≤ 1, and
we set U′ = {u} for an arbitrary u ∈ U1 ∪ U2.

Claim 12: Let Z∗ be a subset of Z. If the graph G[A∪ Y ∪ Z∗] contains an odd T-cycle C,

then there exists a component G[U∗] of G[Z] such that the graph G[A∪Y ∪U∗] contains

an odd T-cycle C′ and C ∩ U∗ = C′ ∩ Z∗.

Let us assume there is an odd T -cycle C in G[A ∪ Y ∪ Z∗]. Without loss of generality,
we may assume that for each component G[U] of G[Z] that intersects C, C ∩ U induces
a path; if not, then there is a shorter odd T -cycle of G[A ∪ Y ′0 ∪ U] having the same
property. The cycle C is the concatenation of a number of the following two types of
paths: a path is of type (1) if it starts and ends in Y ′0 and is contained G[A ∪ Y ′0]; a path
is of type (2) if it starts and ends in Y ′0 and all the internal vertices are contained in a
component of G[Z].

Since G[A ∪ Y ′0] is bipartite, all the sub-paths of C of type (1) are even. Moreover,
since C is an odd cycle, there is a path P of type (2) that is odd. Recall that P is a path
starting and ending in Y ′0 with all the internal vertices in a component, say G[U∗], of
G[Z]. By Claim 6, P can be extended to an odd T -cycle of G[A ∪ Y ′0 ∪ U∗]. This proves
Claim 12.

Finally we ask which vertices in Y ′0 \Y2 to add to BT . First note that G[Y ′0 \Y2] is P3-free;
indeed, if a component G[W] of G[Y ′0 \ Y2] contains an induced P3, then G[Y2 ∪ W]
has an induced sP1 + P3 subgraph, as Y2 is anti-complete to Y ′0 \ Y2 by Claim 7. So
G[Y ′0 \ Y2] is a disjoint union of complete graphs. By Claim 6, there is an even T -path
between any pair of vertices of G[Y ′0], so we keep at most one vertex of each clique. For
some component G[U] of G[Z] such that N(U1) ∩ Y ′0 = {y} and y ∈ T , we may have
forced y ∈ S T , when |U′| ≥ 3. It is always optimal to have y ∈ S T in such a case else we
would have |U′| = 1, since U′ ∪ {y} is a clique. So for each clique G[W] of G[Y ′0 \ Y2],
we include a vertex of W \ S T in BT . ut

We are now ready to prove our almost-complete classification.

Theorem 5 (restated). Let H be a graph with H , sP1 + P4 for all s ≥ 1. Then Subset
Odd Cycle Transversal on H-free graphs is polynomial-time solvable if H = P4 or

H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Proof. If H has a cycle or claw, we use Theorem 3. The cases H = P4 and H = 2P2

follow from Theorems 9 and 10, respectively. The remaining case, where H ⊆i sP1 + P3,
follows from Theorem 11. ut
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3.6 Conclusions

We showed that Odd Cycle Transversal is NP-complete on (P2+P5, P6)-free and Subset
Odd Cycle Transversal is NP-complete on split graphs. Moreover we gave almost-
complete classifications of the complexity of Subset Feedback Vertex Set and Subset
Odd Cycle Transversal for H-free graphs. The only open case in each classification is
when H = sP1 + P4 for some s ≥ 1, which is also open for Feedback Vertex Set and
Odd Cycle Transversal for H-free graphs.

Open Problem 1 Determine the complexity of (Subset) Feedback Vertex Set and

(Subset) Odd Cycle Transversal for (sP1 + P4)-free graphs, when s ≥ 1.

One of the main obstacles to solve Open Problem 1 is the case where there is a
solution S such that G − S is a forest that contains (many) arbitrarily large stars. In
particular, Lemma 3 no longer holds.

Open Problem 2 Determine whether there exists an integer r ≥ 5 such that (Subset)
Feedback Vertex Set is NP-complete for Pr-free graphs.

The vertex-weighted version of Subset Feedback Vertex Set has also been stud-
ied for H-free graphs. Papadopoulos and Tzimas [88] proved that Weighted Subset
Feedback Vertex Set is polynomial-time solvable for 4P1-free graphs but NP-complete
for 5P1-free graphs (in contrast to the unweighted version). Bergougnoux et al. [8]
proved that Weighted Subset Feedback Vertex Set is polynomial-time solvable for
P4-free graphs. Recently Brettell et al. [18] solved the cases H ∈ {P1 + P2, P1 + P3} with
polynomial-time algorithms. Combining these results with Theorem 4 still leaves three
gaps.

Open Problem 3 Determine the complexity of Weighted Subset Feedback Vertex
Set for H-free graphs when H ∈ {2P1 + P3, P1 + P4, 2P1 + P4}.

For the weighted variant, a vertex in T may have a large weight that prevents it from
being deleted in any solution; in particular, Lemma 11, which plays a crucial role in our
proofs, no longer holds.

We note that the NP-completeness proof given by Papadopoulos and Tzimas for
Weighted Subset Feedback Vertex Set on 5P1-free graphs [88] can also be used to show
that the Weighted Subset Odd Cycle Transversal is NP-complete for 5P1-free graphs.
Brettell et al. [18] proved that for H ∈ {3P1 + P2, P1 + P3} this problem is polynomial
time solvable. Combining these results with Theorem 5 still leaves three gaps.
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Open Problem 4 Determine the complexity of Weighted Subset Odd Cycle Transver-
sal for H-free graphs when H ∈ {2P1 + P3, P1 + P4, 2P1 + P4}.

We also introduced the Subset Vertex Cover problem and showed that this problem
is polynomial-time solvable on (sP1 + P4)-free graphs for every s ≥ 0.

Open Problem 5 Determine the complexity of SubsetVertex Cover for P5-free graphs.

Open Problem 6 Determine whether there exists an integer r ≥ 5 such that (Subset)
Vertex Cover is NP-complete for Pr-free graphs.

Let us recall that Vertex Cover becomes polynomial-time solvable on K1,3-free
graphs [78,95] and on sP2-free graphs [15]. We did not research the complexity of
Subset Vertex Cover on either K1,3-free or sP2-free graphs and also leave these as open
problems for future work.

Open Problem 7 Determine the complexity of Subset Vertex Cover for K1,3-free

graphs.

Open Problem 8 Determine the complexity of Subset Vertex Cover for sP2-free

graphs.

Finally, several related transversal problems have been studied but not yet for H-free
graphs. For example, the parameterized complexity of Even Cycle Transversal and
Subset Even Cycle Transversal has been addressed in [80] and [65], respectively.
Moreover, several other transversal problems have been studied for H-free graphs, but
not the subset version; see [12,28,36,37,64] for a number of recent results. It would
be interesting to solve the subset versions of those transversal problems for H-free
graphs and to determine the connections amongst all these problems in a more general
framework.
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4 Connected Vertex Cover Extension

For a graph G = (V, E) and a subset W ⊆ V , a set S W ⊆ V is a connected vertex cover

for W if it is a vertex cover that induces a connected subgraph and contains W.

This chapter is entirely dedicated to the following problem.

Connected Vertex Cover Extension
Instance: a graph G = (V, E), a set W ⊆ V and a positive integer k.
Question: does G have a connected vertex cover S W for W and |S W | ≤ k?

This problem is NP-complete by [83]. For this reason we consider the restriction of
the input to hereditary graph classes in order to better understand which graph properties
cause the computational hardness. Moreover we aim to extend and strengthen existing
complexity results on hereditary graph classes, expecially those found by forbidding a
unique induced subgraph.

4.1 Existing Results

In 1977, Garey and Johnson [48] proved that Connected Vertex Cover is NP-complete
for planar graphs of maximum degree 4. More recently, Priyadarsini and Hemalatha [90]
and Fernau and Manlove [43] strengthened this result to 2-connected planar graphs
of maximum degree 4 and planar bipartite graphs of maximum degree 4, respectively.
Wanatabe, Kajita and Onaga [99] proved that Connected Vertex Cover is NP-complete
even for 3-connected graphs. Very recently, Munaro [83] proved the same for line
graphs of planar cubic bipartite graphs and for planar bipartite graphs of arbitrarily
large girth, and Li, Yang, and Wang [71] showed NP-completeness for 4-regular graphs.
Chiarelli, Hartinger, Johnson, Milanič, and Paulusma in [28] observed that the results
of Munaro [83] imply that Connected Vertex Cover is NP-complete for H-free graphs
if H contains a cycle or a claw. It is not known if there exists an integer r such that
Connected Vertex Cover is NP-complete for Pr-free graphs.

We now turn to tractable cases. Ueno, Kajitani and Gotoh [97] proved that Connected
Vertex Cover is polynomial-time solvable for graphs of maximum degree at most 3.
Escoffier, Gourvès and Monnot [41] proved the same result for chordal graphs. By
using the concept of the price of connectivity [22,26,59], Chiarelli et al. [28] proved
that Connected Vertex Cover is polynomial-time solvable for sP2-free graphs for any
integer s ≥ 1.
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4.2 Our Results and Method

The main result of the chapter, which is proved in Section 4.4, largely extends tractable
cases for Connected Vertex Cover:

Theorem 12. For every s ≥ 0, Connected Vertex Cover Extension can be solved in

O(n19s3+24) time for (sP1 + P5)-free graphs.

Remark 1 Let (G,W, k) be an input of Connected Vertex Cover Extension. Then we

may assume the graph G is connected. If it is not, then either at most one connected

component of G intersects W and has edges, in which case isolated vertices do not need

to be considered, or the answer is immediately no. Testing whether or not an input has

an immediate no answer can be done in O(n + m)-time.

It is easy to construct graphs with a minimum connected vertex cover that do not
contain a minimum vertex cover; see the graph G1 in Figure 16. We also note that
the difference in size between a minimum vertex cover and a minimum connected
vertex cover in an (sP1 + P5)-free graph is at most 3 if s = 0, and at most 3s + 10 if
s ≥ 1 [59]. We cannot exploit this property directly as that would require an algorithm
to enumerate all minimum vertex covers in polynomial time. Moreover, the graph G2

in Figure 16 shows that even if this was possible, it is not immediately obvious how
to proceed; one cannot necessarily hope to find a minimum connected vertex cover by
extending a minimum vertex cover. As an extra complication, for Connected Vertex
Cover one cannot extend results on H-free graphs to results on (sP1 + H)-free graphs in
a straightforward way, like as in Lemma 14.

Our method is based on a structural analysis of dominating sets in (sP1 + P5)-free
graphs using the characterization of P5-free graphs due to Bacsó and Tuza [3] given in
Lemma 7. We translate the problem into a problem in which we try to extend a partial
vertex cover into a full connected vertex cover. We solve this variant of Connected
Vertex Cover by using Theorem 1 (applied to the smaller class of (sP1 + P5)-free
graphs). We show how to do this in Section 4.3 and then show how to use this result to
prove Theorem 12 in Section 4.4.

An important ingredient of our proof is that we reduce the size of the input graph by
contracting an edge between two vertices u and v whenever we detect that u and v will
both belong to the connected vertex cover. This idea stems from the observation that a
connected graph G on n vertices has a connected vertex cover of size k if and only if G

contains the star K1,n−k on n− k + 1 vertices as a contraction. If G has a connected vertex
cover S of size k, then contracting every edge between vertices in S modifies G into
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K1,n−k. If G contains K1,n−k as a contraction, then V(G) can be partitioned into sets A,
B1, . . . , Bn−k that each induce a connected graph such that there exists at least one edge
between a vertex from A and a vertex from Bi for i = 1, . . . , n − k and no edges between
two vertices from different B-sets. If |Bi| ≥ 2, then we move every vertex that is adjacent
to a vertex of A to A until we have only one vertex in Bi left. This gives us a connected
vertex cover of size k.

G1 G1 G2 G2

Fig. 16: An example of a P5-free graph G1 with a minimum connected vertex cover
(coloured black in the right-hand drawing) that contains no minimum vertex cover (there
are exactly two, indicated by the sets of black and white vertices in the left-hand drawing).
The graph G2 is an example of a (P1 + P5)-free graph with a minimum vertex cover
(coloured black in the left hand drawing) that is not contained in any minimum connected
vertex cover: clearly any connected vertex cover that contains it has at least five vertices
and an example of a minimum connected vertex cover on four vertices is indicated by
the vertices coloured black in the right-hand drawing.

Finally in Section 4.5, we prove Theorem 12 can be extended to Weighted Connected
Vertex Cover Extension .

4.3 An Auxiliary Problem

In this section we prove that a variant of Connected Vertex Cover can be solved in
polynomial time for (sP1 + P5)-free graphs for every integer s ≥ 0. To prove Theorem 12
we will solve a polynomial number of instances of this variant, which we show can be
solved in polynomial time for (sP1 + P5)-free graphs for every s ≥ 0. We introduce
the variant by first describing its input. Let G = (V, E) be a connected graph, let J ⊆ V

be a subset of the vertex set of G and let y be a vertex of J. We call the triple (G, J, y)
cover-complete if it has the following properties (see also Figure 17):

(A) J is an independent set;
(B) y is adjacent to every vertex of G − J;
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(C) the neighbours of each vertex in J \ {y} form an independent set in G − J.

We now describe the problem.

Connected Vertex Cover Completion
Instance: a cover-complete triple (G, J, y).

Task: find a smallest connected vertex cover S of G such that J ⊆ S .

We will show how to solve this problem in polynomial time for (sP1 + P5)-free
graphs for any s ≥ 0. We first give some further definitions and then prove a number of
lemmas.

Let (G, J, y) be a cover-complete triple, where G is a connected (sP1 + P5)-free graph.
For a vertex w ∈ NG(J \ {y}), we write Jw = NG(w)∩ J. Note that, by (B), y ∈ Jw. Let G′

be the graph obtained from G by contracting every edge of G[Jw ∪ {w}]. As G[Jw ∪ {w}]
is connected, contracting its edges reduces it to a single vertex which we denote yw. We
say that we have set-contracted G into G′ via w and that we contracted Jw ∪ {w} into yw;
see Figure 17 for an example.

L

J y

w

Jw

L′

J′yw

Fig. 17: An example of a cover-complete triple (G, J, y) and the cover-complete triple
(G′, J′, yw) obtained from set-contracting G via vertex w. The sets J′ = (J \ Jw) ∪ {yw},
L = NG(J \ {y}) and L′ = NG′(J′ \ {yw}) are also displayed (the latter two sets will be
formally introduced later).

The following lemma is crucial.

Lemma 16. Let (G, J, y) be a cover-complete triple, where G is a connected (sP1 +

P5)-free graph for some s ≥ 0. Let w ∈ NG(J \ {y}), and let G′ be the graph obtained

from G after set-contracting via w. Let J′ = (J \ Jw) ∪ {yw} and y′ = yw. Then the

following statements hold:
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1. G′ is a connected (sP1 + P5)-free graph;

2. (G′, J′, y′) is a cover-complete triple;

3. A set S ⊆ VG is a (smallest) connected vertex cover of G that contains J ∪ {w} if and

only if (S \ (J ∪ {w})) ∪ J′ is a (smallest) connected vertex cover of G′ that contains

J′.

Proof. We will prove 1-3 separately.

1. By Lemma 10, G′ is connected and (sP1 + P5)-free. This proves 1.

2. We will prove (A)-(C) for (G′, J′, y′). Before we do this we first observe the following.
As (B) holds for (G, J, y), we find that y ∈ J is adjacent to w in G. Hence y belongs to Jw

and thus to Jw ∪ {w}, which is contracted to the single vertex y′ in G′. Hence, y is not in
G′ and its role has been taken over by y′, as we show below.

We first prove (A). As J is an independent set in G, we find that J \ Jw is an
independent set in G′. For contradiction, suppose that y′ is adjacent to a vertex in J \ Jw.
Then there is an edge between a vertex of J \ Jw and a vertex of Jw ∪ {w} in G. However,
this not possible as J is independent in G, and thus every edge in G[J ∪ {w}] is incident
with w. Hence J′ = (J \ Jw) ∪ {y′} is an independent set in G′. This proves (A).

We now prove (B). Recall that y belongs to Jw ∪ {w}, which is contracted to y′ in G′.
Hence, as y is adjacent to every vertex of G − J in G, we find that y′ is adjacent to every
vertex of G′ − J′. This proves (B).

Finally we prove (C). Let x ∈ J′ \ {y′}. Then x is not adjacent to y′, as we showed
above that J′ is an independent set in G′. Then NG′ (x) = NG(x) is an independent set, as
(C) holds for (G, J, y). This proves (C) and 2.

3. Let S be a connected vertex cover of G that contains J ∪ {w}. Then S contains every
vertex of Jw ∪ {w}. Hence, contracting Jw ∪ {w} to y′ yields a connected vertex cover
(S \ (J ∪ {w})) ∪ J′ of G′ that contains J′. Any connected vertex cover S ′ of G′ that
contains J′ contains y′. Hence uncontracting the edges of G[Jw ∪ {w}] yields a connected
vertex cover (S ′ \ J′) ∪ J ∪ {w} of G that contains J ∪ {w}. Moreover, a set S ∗ of G that
contains J ∪ {w} is a connected vertex cover of G that is smaller than S if and only if
the set (S ∗ \ (J ∪ {w})) ∪ J′, which contains J′, is a connected vertex cover of G′ that is
smaller than (S \ (J ∪ {w})) ∪ J′. This proves 3. ut

Let (G, J, y) be a cover-complete triple. We define LJ = NG(J \ {y}). If there is no
ambiguity, we will just write L = LJ (see also Figure 17). Note that, by (C), NG(z) is
an independent set in G − J for every z ∈ J \ {y}, but L itself might not be independent.
However, we can deduce the following lemma, which follows immediately from (C).
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Observation 1 Let (G, J, y) be a cover-complete triple. If w1 and w2 are two adjacent

vertices in L, then no vertex of J \ {y} is adjacent to both w1 and w2.

We introduce two key definitions for a cover-complete triple (G, J, y). Two vertices
w1,w2 ∈ L form a pseudo-dominating pair if

– w1 and w2 are non-adjacent;

– w1 has a neighbour x1 ∈ J not adjacent to w2; and

– w2 has a neighbour x2 ∈ J not adjacent to w1.

Three vertices w1,w2,w3 ∈ L form a pseudo-dominating triple if

– w1 is adjacent to neither w2 nor w3;

– w2 and w3 are adjacent;

– J contains two distinct vertices x1 and x2 such that

• x1 ∈ NG(w1) \ NG({w2,w3}) and

• x2 ∈ (NG(w1) ∩ NG(w2)) \ NG(w3).

See the illustrations in Figure 18, from which we also observe that no pseudo-dominating
pair or pseudo-dominating triple can be found in a P5-free graph.

L

J

w1 w2

x1 x2

y

L

J

w1

w2

w3

x1 x2

Fig. 18: Examples, on the left, of a pseudo-dominating pair (w1,w2), and, on the right, of
a pseudo-dominating triple (w1,w2,w3). As easily seen, the presence of either implies
the existence of at least one induced P5. To explain our notion of pseudo-domination,
note that the vertices of any induced (s − 1)P1 + P5 dominate the graph.

Let S be a connected vertex cover of G that contains J. Recall that J is an independent
set. A subset L∗ ⊆ L ∩ S is a connector of S if J ∪ L∗ is connected. We present the
following two lemmas.
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Lemma 17. Let (G, J, y) be a cover-complete triple, where G is an (sP1 + P5)-free graph

for some s ≥ 0. Let S be a connected vertex cover of G that contains J. If S contains

both vertices of a pseudo-dominating pair w1, w2, then S has a connector of size at most

s + 1 that contains both w1 and w2.

Proof. By definition, there exist two vertices x1 and x2 in J, such that w1 is not adjacent
to x2 and w2 is not adjacent to x1. As J is an independent set by (A) and each vertex of L

is adjacent to y by (B), we find that {x1,w1, y,w2, x2} induces a P5 in that order. As G

is (sP1 + P5)-free and J is an independent set, this means that {w1,w2} dominates all
vertices of J except for a subset I ⊆ J of at most s − 1 vertices. We choose L∗ to consist
of w1, w2 and a neighbour in L ∩ S of each vertex of I (note that such a neighbour must
exist for each vertex of I as S is connected). Then J ∪ L∗ is connected, that is, L∗ is a
connector, as each vertex of J is adjacent to some vertex of L∗ and each vertex of L∗ is
adjacent to y ∈ J due to (B). Moreover, L∗ has size at most s + 1. ut

Lemma 18. Let (G, J, y) be a cover-complete triple, where G is an (sP1 + P5)-free graph

for some s ≥ 0. Let S be a connected vertex cover of G that contains J. If S contains all

three vertices of a pseudo-dominating triple w1,w2,w3, then S has a connector of size

at most s + 2 that contains {w1,w2,w3}.

Proof. By definition, there exist two vertices x1 and x2 in J such that x1 is adjacent to w1

but not to w2 and w3, and x2 is adjacent to w1 and w2 but not w3. Then {x1,w1, x2,w2,w3}

induce a P5 in that order. As G is (sP1 + P5)-free and J is an independent set, this means
that {w1,w2,w3} dominates all vertices of J except for a subset I ⊆ J of at most s − 1
vertices. We choose L∗ to consist of w1, w2, w3 and a neighbour in L ∩ S of each vertex
of I (note that such a neighbour must exist for each vertex of I as S is connected). Then
J ∪ L∗ is connected, that is, L∗ is a connector, as each vertex of J is adjacent to some
vertex of L∗ and each vertex of L∗ is adjacent to y ∈ J due to (B). Moreover, L∗ has size
at most s + 2. ut

Let (G, J, y) be a cover-complete triple. Let S be a connected vertex cover of G that
contains J. If S contains both vertices of some pseudo-dominating pair of G or all three
vertices of some pseudo-dominating triple of G, then S is of type 1. Otherwise S must
contain at most one vertex of any pseudo-dominating pair and at most two vertices of
any pseudo-dominating triple of G. In that case we say that S is of type 2. We observe
that G might have connected vertex covers of only one type.

We will now see, in Lemma 20, how to find a smallest type 1 connected vertex
cover of a graph G of a cover-complete triple (G, J, y) in polynomial time (if it exists).
After that we shall prove how to find a smallest type 2 connected vertex cover of G
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in polynomial time (if it exists). To compute these sets we need the following lemma,
which uses Theorem 1 in its proof.

Lemma 19. Let (G, {y}, y) be a cover-complete triple, where G is an (sP1 + P5)-free

graph for some s ≥ 0. Then it is possible to compute a smallest connected vertex cover

of G that contains y in O(ns+14) time.

Proof. As G− y is (sP1 + P5)-free, we can, by Theorem 1, compute in polynomial time a
smallest vertex cover S of G − y. As (G, {y}, y) is a cover-complete triple, y dominates G.
Hence, S ∪ {y} is a smallest connected vertex cover of G that contains y.

To establish the bound on the running time we need only describe how to compute
a smallest vertex cover of G − y in O(ns+14) time. This is achieved by presenting an
algorithm for the complementary problem of computing a maximum independent set in
G − y. We first determine by brute force, in time O(ns), the largest integer s′ ≤ s, such
that G − y has an independent set of size s′. If s′ ≤ s − 1, then s′ is the size of a largest
independent set of G − y and we are done. Otherwise, if s′ = s, we consider each set S ′

of s independent vertices of G − y. For each choice, we remove the vertices of S ′ and
their neighbours from G − y. The remaining graph is P5-free and we use the algorithm
of [72], which runs in O(n14) time, to find a maximum independent set therein. This set
is added to S ′ to give an independent set of G − y. The largest independent set found in
this way must be of maximum size. ut

Using Lemmas 17–19, we are now ready to deal with type 1 smallest connected
vertex covers.

Lemma 20. Let (G, J, y) be a cover-complete triple. It is possible to find in O(n2s+16)
time a smallest type 1 connected vertex cover of G.

Proof. We can compute all pseudo-dominating pairs of G by examining each pair of
vertices in turn. This takes O(n) time per pair. As the number of pseudo-dominating pairs
is O(n2), this takes O(n3) time in total.

For each pseudo-dominating pair (w1,w2) of G, we describe how to compute a
smallest connected vertex cover S w1,w2 of G that contains J ∪ {w1,w2}. By Lemma 17,
such a vertex cover must have a connector L∗ of size at most s + 1 that contains w1 and
w2. We find each such connector L∗ by considering all sets of up to s − 1 vertices and
asking whether, combined with w1 and w2, they form such a connector.

For each such set L∗, we do as follows. We first check if J ∪ L∗ is connected. If so,
then we apply Lemma 16 recursively for each w ∈ L∗. This takes O(n2) time, as we
can use Breadth First Search and set contract at the same time. Let (G′, J′, y′) be the
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resulting cover-complete triple. Then J′ = {y′}, which means we can apply Lemma 19 to
find a smallest connected vertex cover S ′ of G′ in O(n14+s) time. By Lemma 16, we can
translate S ′ into the desired vertex cover S w1,w2 by uncontracting any contracted edges.
As, for each pseudo-dominating pair, the number of sets L∗ that contain them is O(ns−1),
and the number of pseudo-dominating pairs is O(n2), the time needed to find these vertex
covers is O(n2s+15).

For each pseudo-dominating triple (w1,w2,w3) of G we compute a smallest con-
nected vertex cover S w1,w2,w3 of G that contains J ∪ {w1,w2,w3}. We can do this in
O(n2s+16) time by exactly the same arguments: the only differences are that the number
of pseudo-dominating triples is O(n3) and that we need to apply Lemma 18 instead of
Lemma 17.

From all the computed sets S w1,w2 and S w1,w2,w3 we keep track (in constant time) of a
smallest one, and in the end this yields a smallest type 1 connected vertex cover of G.
This proves Lemma 20. ut

Let (G, J, y) be a cover-complete triple. Using Lemma 20 we can find a smallest
type 1 connected vertex cover of G in polynomial time. However, it might be possible
that G has a smaller connected vertex cover of type 2. To investigate this, we introduce
two reduction rules that will transform a cover-complete triple (G, J, y) into a triple
(G′, J′, y′) with |J′| < |J|. We say that such a rule is safe if the following three conditions
hold:

1. If G is (sP1 + P5)-free and connected, then G′ is (sP1 + P5)-free and connected.
2. (G′, J′, y′) is cover-complete.
3. Given a smallest connected vertex cover S ′ of G′ that contains J′, it is possible, in

O(n2s+16) time, to find a smallest connected vertex cover S of G that contains J.

Rule 1. Set-contract via x whenever x is a vertex in L ∩ NG(w1) ∩ NG(w2) for some
pseudo-dominating pair (w1,w2).

Rule 2. For any vertex w5 ∈ L that is not adjacent to any vertex of a clique of four
vertices w1,w2,w3,w4 in L, delete w5 and set-contract via u for every u ∈ L ∩ NG(w5).

Lemma 21. Rules 1 and 2 are safe.

Proof. We first consider Rule 1.
Let (G′, J′, y′) be the resulting triple after an application of Rule 1, where J′ =

(J \ Jx) ∪ {yx} and y′ = yx. By Lemma 16, (G′, J′, y′) is a cover-complete triple. By the
same lemma, G′ is (sP1 + P5)-free and connected if G is (sP1 + P5)-free and connected.
Hence we have proven that conditions 1 and 2 hold.
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We are left to prove condition 3. Let S ′ be a smallest connected vertex cover in G′

that contains J′. Then S = (S ′ \ {y′}) ∪ Jx ∪ {x} is a smallest connected vertex cover of
G that contains J ∪ {x} due to Lemma 16. We prove the following claim.

Claim 1: For any type 2 connected vertex cover T of G, it holds that |T | ≥ |S |.

We prove Claim 1 as follows. Let T be a connected vertex cover T of G that is of type 2.
Suppose x < T . Then, as x is adjacent to both w1 and w2, we find that T contains both
w1 and w2. Thus T is not of type 2, a contradiction. Hence T contains x. This implies
that the set T ′ = (T \ (J ∪ {x})) ∪ J′ is a connected vertex cover of G′ that contains J′.
As S ′ is a smallest connected vertex cover of G′ that contains J′, we find that |T ′| ≥ |S ′|.
Hence |T | = |T ′| + |Jx| ≥ |S ′| + |Jx| = |S |. This proves Claim 1.

The above means that we can do as follows. Given S ′ we compute S = (S ′ \ {y′}) ∪
Jx ∪ {x} in constant time. By Lemma 20 we can also compute, in O(n2s+16) time, a
smallest type 1 connected vertex cover S ∗ of G (note that S = S ∗ is possible). If S

is of type 2, then S is a smallest type 2 connected vertex cover of G, due to Claim 1.
We compare |S | and |S ∗| and choose the smallest one. If S is of type 1, then S ∗ is a
smallest connected vertex cover of G, again due to Claim 1. This proves condition 3 and
completes the proof that Rule 1 is safe.

We now consider Rule 2. We first show that w5 cannot be in any connected vertex cover S

of G that is of type 2. For contradiction, suppose that w5 is in such a connected vertex
cover S . Because S is a vertex cover and {w1,w2,w3,w4} is a clique, S contains at least
three of {w1,w2,w3,w4}, say w1, w2, w3.

For i = 1, . . . , 5, let Xi be the set of neighbours of wi in J. As wi ∈ L, every Xi , ∅

by definition of L. By Observation 1, we find that X1, X2 and X3 are pairwise disjoint.
Let x ∈ X1. If x < X5, then X5 ⊆ X1, as otherwise (w1,w5) is a pseudo-dominating pair
of vertices that are both contained in S , which is not possible as S is of type 2. As
X1 ∩ X2 = ∅, we find that X5 ∩ X2 = ∅. This means that (w2,w5) is a pseudo-dominating
pair of vertices that are both contained in S , which is not possible either. Hence x ∈ X5.
We conclude that X1 ⊆ X5. For the same reason, we find that X2 ⊆ X5 and X3 ⊆ X5.

Recall that X1 ∩ X2 ∩ X3 = ∅. Hence we can pick a vertex x1 ∈ X1 and a vertex
x3 ∈ X3, which are both adjacent to w5 but not to w2, and so find that (w5,w1,w2) is a
pseudo-dominating triple. As all three vertices w1, w2, w5 belong to S , while S is of
type 2, this is not possible. Hence S does not contain w5.

If G − w5 is disconnected, then w5 belongs to every connected vertex cover of G.
From the above it follows that it is not possible to find a connected vertex cover of G

that contains J of type 2 in this case. Now suppose that G − w5 is connected. As no
connected vertex cover of G of type 2 may contain w5, any connected vertex cover of G
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that is of type 2 must contain all neighbours of w5, and we can delete w5. The proof of
conditions 1–3 is identical to the proof for Rule 1 where the neighbours of w5 in L take
the role of the vertex x in the proof for Rule 1. ut

We call a cover-complete triple (G, J, y) free if G has no pseudo-dominating pair
with a common neighbour in L, and moreover, G[L] is (P1 + K4)-free. By exhaustively
applying Rules 1 and 2 in arbitrary order, which we may safely do due to Lemma 21, we
have the following lemma.

Lemma 22. A cover-complete triple (G, J, y) can be modified, in O(n6) time, into a free

cover-complete triple (G′, J′, y′) with the following properties:

1. If G is (sP1 + P5)-free and connected, then G′ is (sP1 + P5)-free and connected..
2. Given a smallest connected vertex cover S ′ of G′ that contains J′, it is possible to

find in O(n2s+17) time a smallest connected vertex cover S of G that contains J.

Proof. We exhaustively apply Rules 1 and 2 in arbitrary order. Checking if Rule 1 can
be applied takes O(n3) time, as there are O(n2) pairs of vertices and for each pair it
takes O(n) time to check if it is pseudo-dominating. Similarly, checking if Rule 2 can
be applied takes O(n5) time. As each application of each of these rules takes O(n) time,
and reduces the size of G, this procedure will complete in O(n6) time. By repeated use
of Lemma 21, this results in a cover-complete triple (G′, J′, y′) that satisfies the two
properties of the lemma; in particular given a a smallest connected vertex cover S ′

of G′ that contains J′, it is possible to find in O(n2s+17) time a smallest connected vertex
cover S of G that contains J, as we applied Rules 1 and 2 at most n times and by
condition 3 we need O(n2s+16) time per application. Moreover, G′ contains no pseudo-
dominating pair with a common neighbour in L′ = LJ′ and G′[L′] is (P1 + K4)-free, as
otherwise we could still apply Rule 1 or Rule 2, respectively. Hence (G′, J′, y′) is a free
cover-complete triple. ut

Let (G, J, y) be a free cover-complete triple. A connector of a connected vertex
cover S of G is minimal if it does not properly contain a smaller connector of S . The
next three lemmas are on free cover-complete triples; the second makes use of the first.

Lemma 23. Let (G, J, y) be a free cover-complete triple. Then every minimal connec-

tor L∗ of every type 2 connected vertex cover S of G is a clique.

Proof. For contradiction, suppose that L∗ is not a clique. Then L∗ contains two non-
adjacent vertices w1 and w2. As L∗ is a minimal connector, w1 has a neighbour in J not
adjacent to w2, and vice versa. However, then (w1,w2) is a pseudo-dominating pair of G.
This is not possible, as S is of type 2. ut
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Lemma 24. Let (G, J, y) be a free cover-complete triple that has a pseudo-dominating

pair (w1,w2). Then every minimal connector L∗ of every type 2 connected vertex cover S

of G has size at most 5.

Proof. For contradiction, suppose that |L∗| ≥ 6. By Lemma 23, L∗ is a clique. As (G, J, y)
is free, G′[L′] is (P1 + K4)-free by definition. Hence w1 must be adjacent to at least
three vertices of L∗, which we denote by x1, x2, x3. Note that {w1, x1, x2, x3} induces a
K4 in G[L]. By definition of a pseudo-dominating pair, w1 and w2 are non-adjacent. As
(G, J, y) is free, w2 is not adjacent to any neighbour of w1 in L by definition. Hence w2

is not adjacent to any vertex of {x1, x2, x3}. This means that the set {w1,w2, x1, x2, x3}

induces a P1 + K4 in G[L], a contradiction. ut

Lemma 25. Let (G, J, y) be a free cover-complete triple that has no pseudo-dominating

pair. It is possible to find in O(n3) time a clique K ⊆ L with NG(K) ∩ J = J.

Proof. We describe how to construct K. Consider a vertex w1 ∈ L that has maximal
neighbourhood in J, that is, there is no vertex w ∈ L with NG(w1) ∩ J ( NG(w) ∩ J. We
put w1 in K. Suppose that at some point we have constructed a clique K = {w1, . . . ,wi}

for some i ≥ 1. If NG(K) ∩ J = J, then we stop. Otherwise we pick a vertex wi+1 with
maximal neighbourhood in J \ NG(K) over all vertices in L (or equivalently, all vertices
in L \ {w1, . . . ,wi}). Note that wi+1 exists as G is connected.

Suppose that wi+1 is adjacent to some x ∈ NG(K) ∩ J. Then, by Observation 1, we
find that x is adjacent to a unique vertex wh in K. By the same lemma, wi+1 is not adjacent
to wh. As G has no pseudo-dominating pair and wi+1 has a neighbour in J \ NG(K) (that
is, a neighbour not adjacent to wh), we find that NG(wh) ( NG(wi+1). This means that we
would have chosen wi+1 earlier, namely instead of wh. Hence, wi+1 is not adjacent to any
x ∈ NG(K) ∩ J. As G has no pseudo-dominating pairs, this means that wi+1 is adjacent
to every w j with 1 ≤ j ≤ i. That is, we can extend K into a larger clique by adding wi+1.

As we increase NG(K) ∩ J each time we add a new vertex to K, our procedure will
stop with the desired output K = {w1, . . . ,wr} for some r ≥ 1. We note that constructing
K takes O(n3) time. ut

We are now ready to prove the following theorem.

Theorem 13. For every s ≥ 0, Connected Vertex Cover Completion can be solved in

O(n2s+19) time for cover-complete triples (G, J, y), where G is an (sP1 + P5)-free graph.

Proof. Let s ≥ 0 and let (G, J, y) be a cover-complete triple, where G is an (sP1+P5)-free
graph. We first apply Lemma 22 to obtain a free cover-complete triple (G′, J′, y′) in O(n6)
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time. By the same lemma, G′ is (sP1 + P5)-free. Our aim is to find a smallest connected
vertex cover of G′ that contains J′ in polynomial time, so that we can apply statement 2
of Lemma 22. We first compute in O(n2s+16) time a smallest type 1 connected vertex
cover S ∗ of G′ using Lemma 20. We now need to compute a smallest type 2 connected
vertex cover S ′ of G′ and compare |S ′| with |S ∗|.

We check if G′ contains a pseudo-dominating pair. This takes O(n3) time, as G′

contains O(n2) pairs of vertices and for each pair it takes O(n) time to check if it is
pseudo-dominating.

First suppose that G′ contains a pseudo-dominating pair. For each set of at most
five vertices, we check if it is a minimal connector of size at most 5, and if so we apply
Lemma 16 on its vertices. This takes O(n2) time per set. If we obtain an instance of
the form (G′′, {y′′}, y′′), then we apply Lemma 19, which takes O(ns+14) time. Then we
uncontract all contracted edges in O(n) time to get a connected vertex cover of G′ of
type 2. By Lemma 24, doing this for every possible minimal connector of size at most 5
gives us a smallest type 2 connected vertex cover S ′ of G′. As we process each set of at
most five vertices in O(ns+14) time and the number of such sets is O(n5), we find S ′ in
O(ns+19) time. We compare S ′ and S ∗ and choose the smaller of the two.

Now suppose that G′ has no pseudo-dominating pair. Let L′ = NG′(J′ \ {y′}). By
Lemma 25, we can obtain in O(n3) time a clique K ⊆ L′ with NG′(K) ∩ J′ = J′. Let
K = {w1, . . . ,wr} for some r ≥ 1. As K is a clique, every vertex cover contains at least
r − 1 vertices of K. We will do as follows: first we will find in O(ns+14) time a smallest
connected vertex cover of G′ that contains J′ ∪K, and then we will find in O(ns+17) time,
for i = 1, . . . , r, a smallest connected vertex cover of G′ that contains J′ ∪ (K \ {wi}) and
that does not contain wi. As there are O(n) cases, the total time of processing this case is
O(ns+18).

We start by computing a smallest connected vertex cover of G′ that contains J′ ∪ K

by set-contracting via each vertex of K. This takes O(n2) time. By Lemma 16, this yields
a cover-complete triple (G′′, {y′′}, y′′) to which we apply Lemma 19 in O(ns+14) time.
Uncontracting all contracted edges yields, by Lemma 16, a smallest connected vertex
cover S K of G′ that contains J′ ∪ K; this takes O(n) time. Hence, the total running time
for this step is O(ns+14), as we claimed above.

We now show how to compute, in O(ns+17) time, a smallest connected vertex cover
of G′ that contains J′ ∪ (K \ {w1}) and that does not contain w1. The cases where i ≥ 2
are done in the same way.

We first note that if G−w1 is disconnected, then w1 belongs to every connected vertex
cover of G′. Hence, in that case there is no connected vertex cover of G′ that contains

67



J′ ∪ (K \ {w1}) but does not contain w1. Now suppose that G − w1 is connected. Let
A = L′ \NG′ (w1) consist of all non-neighbours of w1 in L′. As G′[L′] is (K4 + P1)-free by
definition, we find that G′[A] is K4-free. As w1 is not in the connected vertex cover we
are looking for, we remove w1. Then we set-contract, in O(n2) time, via each neighbour
of w1 in L. By Lemma 16, we may now consider the resulting cover-complete triple
(G′′, J′′, y′′) where G′′ is connected and (sP1+P5)-free. As G′ had no pseudo-dominating
pairs, we have that G′′ has no pseudo-dominating pairs. We write L′′ = NG′′(J′′ \ {y′′}).
As L′′ ⊆ A, we find that G′′[L′′] is K4-free.

Claim 1: Every minimal connector L∗ of every connected vertex cover of G′′ that contains

J′′ has size at most 3.

We prove the claim by showing that L∗ is a clique, which implies that L∗ has size at
most 3, as G′′[L′′] is K4-free. Suppose instead that L∗ is not a clique. Then L∗ contains
two non-adjacent vertices w1 and w2. As L∗ is a minimal connector, w1 has a neighbour
in J′′ not adjacent to w2, and vice versa. But then (w1,w2) is a pseudo-dominating pair
of G′′: this is not possible, as G′′ has no pseudo-dominating pairs. This contradiction
proves Claim 1.

We now consider all subsets in L′′ that have size at most 3. For each set we check if
it is a minimal connector, and if so we apply Lemma 16 on its vertices. This takes O(n2)
time per subset. If we obtain an instance (G′′′, {y′′′}, y′′′), then we apply Lemma 19 in
O(ns+14) time. Then uncontracting all contracted edges yields a connected vertex cover
of G′′ that contains J′′. As there are O(n3) subsets in L′′ of size at most 3, the total
running time is O(ns+17), as we claimed above. We keep track (in constant time) of the
smallest one of these connected vertex covers of G′′. For this connected vertex cover of
G′′, we uncontract all contracted edges again to obtain a smallest connected vertex cover
S w1 of G′ that contains J′ ∪ (K \ {w1}) and that does not contain w1.

As mentioned, we pick the smallest one out of the connected vertex covers S K and
S wi , 1 ≤ i ≤ r, to obtain a smallest type 2 connected vertex cover of G′, the size of which
we compare with the size of S ∗. We pick the smallest one.

Thus we obtain in O(n6) + O(n2s+16) + O(n3) + O(ns+19) + O(ns+18) = O(n2s+19) time
a smallest connected vertex cover of G′ that contains J′ (both in the case where G′ has a
pseudo-dominating pair and in the case where G′ has no pseudo-dominating pair). As
stated, it remains to apply statement 2 of Lemma 22 to find in O(n2s+17) time a smallest
connected vertex cover of G that contains J. Hence the total running time is O(n2s+19).
The correctness of our algorithm follows immediately from the above case analysis and
the description of the cases. ut
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4.4 Our Main Result

In this section we prove Theorem 12, that is, we show that Connected Vertex Cover
Extension can be solved in polynomial time for (sP1 + P5)-free graphs for every in-
teger s ≥ 0. The proof relies heavily on Theorem 13. The main idea is to reduce an
(sP1 + P5)-free input graph G of Connected Vertex Cover Extension to a polynomial
number of instances (Gi, Ji, yi) of Connected Vertex Cover Completion . We can then
solve each of these instances (Gi, Ji, yi) in polynomial time by Theorem 13. Then we
translate the resulting connected vertex covers of Gi (which contain Ji) into connected
vertex covers of G that contains the input set W. We pick the smallest of these sets as
our final output.

We need one more lemma.

Lemma 26. Let J be an independent set in a connected graph G such that J has a vertex

y that is adjacent to every vertex of G − J. Let J′ consist of those vertices of J \ {y} that

have two adjacent neighbours in G − J (or equivalently, in G). Then a subset S is a

connected vertex cover of G that contains J if and only if S \ J′ is a connected vertex

cover of G − J′ that contains J \ J′.

Proof. Let w ∈ J \ {y} be a vertex in G with two neighbours a and b that are adjacent in
G − J (or equivalently in G). Let S be a subset of G. First suppose that S is a connected
vertex cover of G that contains J. Then S \ {w} is a vertex cover of G − w that contains
J \ {w}. As y ∈ J and y , w, we find that S \ {w} contains y. Then every vertex of S \ {w}

that belongs to G − J is adjacent to y in G[S \ {w}]. Moreover, as S is connected and J is
independent, every vertex of J \ {w} must be adjacent in G[S \ {y}] to a vertex of G − J.
Hence, S \ {w} is connected in G − w.

Now suppose that S \ {w} is a connected vertex cover of G − w that contains J \ {w}.
Then S is a vertex cover of G that contains J. As y ∈ J, we find that S contains y. As ab

is an edge, S contains at least one of a and b. Then w and y are connected in S either
due to the edges ya, aw (if a is in S ) or due to the edges yb, bw (if a is not in S , as then
b ∈ S ). Hence S is connected in G.

We now consider the graph G − w and repeat the arguments above for any vertex in
J′ \ {w}. ut

We are now ready to prove our main result.

Theorem 12 (restated) For every s ≥ 0, Connected Vertex Cover Extension can be

solved in O(n19s3+24) time for (sP1 + P5)-free graphs.
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Proof. Let G be an (sP1 + P5)-free graph on n vertices for some s ≥ 0 and let W ⊆ V(G)
be a subset of vertices of G. By Remark 1, we may assume that G is connected. By
Lemma 9 we can first compute in O(n2s2+s+3) time a connected dominating set D that
either has size at most 2s2 + s + 2 or is a clique. We note that, if D is a clique, any vertex
cover of G contains all but at most one vertex of D. This leads to a case analysis where
we guess the subset D∗ ⊆ D \W of vertices not in a smallest connected vertex cover
of G that contains W. That is, we choose a set of at most one vertex if D is a clique
and a set of at most |D \W | vertices otherwise, and eventually look at all such sets. As
|D \W | ≤ |D| ≤ 2s2 + s + 2 if D is not a clique, the number of guesses is O(n2s2+s+2). For
each guess of D∗, we compute a smallest connected vertex cover S D∗ that contains all
vertices of (D \ D∗) ∪W and no vertex of D∗. Then, in the end, we return one that has
minimum size overall. In particular we note that, since D is a connected dominating set
of G, D ∪W is also a connected dominating set of G.

Let D∗ be a guess. Before we start our case analysis we first prove the following
claim.

Claim 1: We may assume, at the expense of an O(n14s3+2) factor in the running time, that

D \ D∗ is connected.

We prove Claim 1 as follows. Suppose D \D∗ is not connected. Recall that G[D] is either
a complete graph or has size at most 2s2 + s + 2. In the first case, G[D \D∗] is connected.
Hence, the second case applies so D has size at most 2s2 + s + 2. Let v ∈ D \D∗. As G is
(sP1 + P5)-free, G is also P5+2s-free. Hence, for each u ∈ D \ (D∗ ∪ {v}), any connected
vertex cover of G contains a path of at most 5 + 2s − 1 vertices that connects u to v. We
will guess all these paths from u to v (using only vertices from G − D∗) and add their
vertices to D. As the number of paths is at most 2s2 + s + 1, this branching adds an
O(n(5+2s−3)(2s2+s+1)) = O(n14s3+2) factor to our running time. We have proven Claim 1.

We distinguish two cases.

Case 1: D∗ = ∅.

We compute a minimum vertex cover S ′ of G−(D∪W) in polynomial time by Theorem 31.
To be more precise, this takes O(ns+14) time by using the same arguments as in the proof
of Lemma 19. Clearly S ′∪D∪W is a vertex cover of G. As D is a connected dominating
set, S ′ ∪ D ∪W is even a connected vertex cover of G. Let S ∅ = S ′ ∪ D ∪W. As S ′ is a
minimum vertex cover of G − (D∪W), S ∅ is a smallest connected vertex cover of G that
contains all vertices of D ∪W. We remember S ∅. Note that S ∅ is found in O(ns+14) time.

Case 2: 1 ≤ |D∗| ≤ |D| (recall that |D| ≤ 2s2 + s + 3).
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Recall that we are looking for a smallest connected vertex cover of G that contains
every vertex of (D \ D∗) ∪W, but does not contain any vertex of D∗. Hence D∗ must
be an independent set, disjoint from W, and G − D∗ must be connected (if one of these
conditions is false, then we stop considering the guess D∗). Moreover, a vertex cover
that contains no vertex of D∗ must contain all vertices of NG(D∗). Hence we can safely
contract not only any edge between two vertices of (D \ D∗) ∪ W, but also any edge
between two vertices in NG(D∗) or between a vertex of (D \ D∗) ∪ W and a vertex
in NG(D∗). We perform edge contractions recursively and as long as possible while
remembering all the edges that we contract. This takes O(n) time. Let G∗ be the resulting
graph.

Note that the set D∗ still exists in G∗, as we did not contract any edges with an
endpoint in D∗. By Claim 1, the set D \ D∗ in G corresponds to exactly one vertex of G∗.
We denote this vertex by y. The set W of G corresponds to an independent set of G∗. We
denote this set by W∗. We observe the following equivalence, which is obtained after
uncontracting all the contracted edges.

Claim 2: Every smallest connected vertex cover of G∗ that contains {y} ∪W∗ and that

does not contain any vertex of D∗ corresponds to a smallest connected vertex cover of G

that contains (D \ D∗) ∪W and that does not contain any vertex of D∗, and vice versa.

As we obtained G∗ in O(n) time, and we can uncontract all contracted edges in O(n)
time as well, Claim 2 tells us that we may consider G∗ instead of G. As G is connected
and (sP1 + P5)-free, G∗ is connected and (sP1 + P5)-free as well by Lemma 10.

We write J∗ = NG∗(D∗) ∪ W∗ and note that y belongs to NG∗(D∗) ⊆ J∗ as D is
connected in G. We now consider the graph G∗ − D∗. As G − D∗ is connected, G∗ − D∗

is connected. By Claim 2, our new goal is to find a smallest connected vertex cover of
G∗ − D∗ that contains J∗. By our procedure, J∗ is an independent set of G∗ − D∗. As D

dominates G, we find that D \D∗ dominates every vertex of G−D∗ that is not adjacent to
a vertex of D∗. Hence the vertex y, to which the vertices of D \ D∗ have been contracted,
is adjacent to every vertex of (G∗ − D∗) − J∗ in the graph G∗ − D∗.

Let J ⊆ J∗ consist of y and those vertices in J∗ whose neighbourhood in G∗ − D∗ is
an independent set. As y is adjacent to every vertex of (G∗ − D∗) − J∗ in G∗ − D∗, and
we can remember the set J∗ \ J, we can apply Lemma 26 and remove J∗ \ J. That is, it
suffices to find a smallest connected vertex cover of the graph G′ = (G∗ − D∗) − (J∗ \ J)
that contains J.

As J∗ is an independent set of G∗ −D∗, we find that J is an independent set of G′. By
definition, y ∈ J. As y is adjacent to every vertex of (G∗ − D∗) − J∗ in G∗ − D∗, we find
that y is adjacent to every vertex in G′ − J. By definition, the neighbours of each vertex
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in J \ {y} form an independent set in G′ − J. Hence the triple (G′, J, y) is cover-complete.
This means that we can apply Theorem 13 to find in O(n2s+19) time a smallest connected
vertex cover S ′ of G′ that contains J.

We translate S ′ in constant time into a smallest connected vertex cover S ∗ of G∗−D∗

that contains J∗ by adding J∗ \ J to S ′. We translate S ∗ in O(n) time into a smallest
connected vertex cover S D∗ of G that contains that contains (D \ D∗) ∪W but no vertex
of D∗ by uncontracting any contracted edges. It takes O(n2s+19) time to find S D∗ .

As mentioned, in the end we pick a smallest set of the sets S D∗ . This set is then a smallest
connected vertex cover of G that contains W. As there are O(n2s2+s+3 · n14s3+2) of such
sets, each of which is found in O(n2s+19) time, the total running time is O(n19s3+24). The
correctness of our algorithm follows immediately from the above case analysis and the
description of the cases. ut

Note that the algorithm in Theorem 12 not only solves the decision problem, but also
finds a minimum connected vertex cover of a given (sP1 + P5)-free graph.

4.5 Weighted Connected Vertex Cover Extension

Recall that a vertex-weighting for a graph G = (V, E) is a function wV : V → Q+ that
assign a positive rational weight to every vertex v. The weight of a subset S ⊆ V is
defined as wV (S ) =

∑
v∈S wV (v). A vertex cover S of G is a minimum weight vertex cover

if G has no vertex cover S ′ with wV (S ′) < wV (S ). The Weighted Vertex Cover problem
is to find a minimum weight vertex cover of a vertex-weighed graph G. As mentioned,
Theorem 1 can be generalized to hold for Weighted Vertex Cover [56]. As we use
Theorem 1 to prove Theorem 12, this allows us to solve the following more general
problem in polynomial time for (sP1 + P5)-free graphs (s ≥ 0).

Weighted Connected Vertex Cover Extension
Instance: a graph G, a vertex weighting function wV , a subset W ⊆ V and an

integer k

Question: does G have connected vertex cover S W for W and wV (S W ) ≤ k?

In order to prove this result we first need to generalize the Connected Vertex Cover
Completion problem.

Weighted Connected Vertex Cover Completion
Instance: a cover-complete triple (G, J, y) and a vertex weighting function wV .

Task: find a minimum weight connected vertex cover S of G that con-
tains J.
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We first prove the following theorem.

Theorem 14. For every s ≥ 0, Weighted Connected Vertex Cover Completion can be

solved in O(n2s+19) for cover-complete triples (G, J, y), where G is an (sP1 + P5)-free

graph.

Proof. We can follow the same approach as in the proof of Theorem 13. We first note that
Lemma 10 is a structural lemma unrelated to the vertex weight function wV . Lemma 7
was not needed for the proof of Theorem 13 and we do not need it here either. For
Lemma 16, we do not have to adjust statements 1 and 2 and only have to replace
statement 3 by its weighted version. In order to do so, we define the weight of the new
vertex yw, obtained from set-contracting via a vertex w, as the sum of the weights of
all the vertices in Jw ∪ {w}. We can then use the same arguments. Observation 1 and
Lemmas 17–18 are structural lemmas that are unrelated to the vertex weight function w,
so we can still use them. We need to replace Lemma 19 by its weighted version. We
can then use the same arguments; in particular, as we may replace Theorem 1 by its
weighted version [56]. We can also replace Lemma 20 by its weighted version: its proof
uses brute force searching, and instead of remembering and updating the smallest size of
a connected vertex cover, we keep track of the smallest weight. Lemma 21 still holds
in our setting as well. That is, after replacing condition 3 by its weighted version, we
can still use the same arguments (modified for weights of sets instead of their sizes).
The same holds for Lemma 22 (we need to replace property 2). Lemmas 23 and 24 are
structural lemmas unrelated to the vertex weight function wV , so we can still use them.
Lemma 25 is algorithmic, but as this lemma is not related to vertex weight functions
we can still use it. That is, any clique K ⊆ L with NG(K) ∩ J = J found by Lemma 25
suffices, as every (connected) vertex cover must use all but at most one vertices of a
clique. Hence, for proving Theorem 14 we can use the same arguments as in the proof
of Theorem 13; in particular the claim inside the proof of Theorem 13 is still valid and
instead of remembering the smallest size of the vertex covers found by the algorithm so
far, we remember the smallest weight. ut

We are now ready to show the following result.

Theorem 15. For every s ≥ 0, Weighted Connected Vertex Cover Extension can be

solved in O(n19s3+24)-time for (sP1 + P5)-free graphs.

Proof. Let s ≥ 0, and let G be an (sP1 + P5)-free graph. We first recall that Lemma 10
is unrelated to the vertex weight function wV . The same holds for Lemma 7. Hence we
may still use both lemmas. In particular this implies that Lemma 9 still holds. Lemma 26
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is a structural lemma that is unrelated to the vertex weight function wV , so we can safely
use it. By these observations and Theorem 14, we can now follow the same arguments
as used in the proof of Theorem 12. This proof is based on brute force searching. The
only thing we need to do is to remember the smallest weight of the vertex covers found
during the execution of the algorithm instead of their sizes. ut

4.6 Conclusions

We proved that Weighted Connected Vertex Cover Extension is polynomial-time
solvable for (sP1 + P5)-free graphs for every integer s ≥ 0. We finish this chapter by
posing the following open problems.

Open Problem 9 Determine the complexity of Connected Vertex Cover for P6-free

graphs.

Open Problem 10 Determine whether there exists an integer r such that Connected
Vertex Cover is NP-complete for Pr-free graphs.

For Open Problem 9, it might be easier to consider first the class of (P2 + P3)-free
graphs, for which we do not know the complexity of Connected Vertex Cover either.

For Open Problem 10, we need a better understanding of Pr-free graphs. The Con-
nected Vertex Cover problem belongs to a range of problems which we only know
to be polynomial-time solvable on Pr-free graphs up to some value of r. These prob-
lems include, for example, Vertex Cover, Feedback Vertex Set, Connected Feedback
Vertex Set, Independent Feedback Vertex Set, Independent Odd Cycle Transversal,
3-Colouring and (Dominating) InducedMatching, see [11,51] for further details. Even
our understanding of bipartite Pr-free graphs is limited. For instance, we only know that
Hypergraph 2-Colourability is polynomial-time solvable on P7-free incidence graphs
(which are bipartite) [25].

We conclude this section with the following conjecture.

Conjecture 1 Let G be a P5-free graph and S be a minimum vertex cover of G. Then

either S is contained in a minimum connected vertex cover S ′ of G or S has the same

size of S ′.

This conjecture is false for the case of (sP1 +P5)-free graphs, with s ≥ 1; for example,
see the graph G2 in Figure 16. A proof of this conjecture would allow to increase our
knowledge of the Connected Vertex Cover problem when restricted to P5-free graphs.
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5 Connected Cycle Transversal Extensions

For a graph G = (V, E), a set S W ⊆ V is a connected feedback vertex set extension or
connected odd cycle transversal extension for a set W ⊆ V if it is a feedback vertex set
or odd cycle transversal, respectively, that induces a connected subgraph and contains W.
With these definitions we can formally state the corresponding transversal problems of
this section.

Connected Feedback Vertex Set Extension
Instance: a graph G = (V, E), a subset W ⊆ V and a positive integer k.
Question: does G have a connected feedback vertex set S W for W and |S W | ≤ k?

Connected Odd Cycle Transversal Extension
Instance: a graph G = (V, E), a subset W ⊆ V and a positive integer k.
Question: does G have a connected odd cycle transversal S W for W and |S W | ≤

k?

Since in the case W = ∅ these connected transversal extension are equivalent to
their respective connected original ones, the two problems are NP-complete [28,52],
we consider the restriction of the input to hereditary graph classes in order to better
understand which graph properties cause the computational hardness.

Remark 2 Let (G,W, k) be an input of Connected Feedback Vertex Set Extension or

Connected Odd Cycle Transversal Extension. Then we may assume the graph G is

connected. If it is not, then either at most one connected component of G contains W

and has (odd) cycles, in which case tree (bipartite) connected components do not need

to be considered, or the answer is immediately no. Testing whether or not an input has

an immediate no answer can be done in O(n + m)-time.

5.1 Existing Results

We focus on proving new complexity results for Connected Feedback Vertex Set and
Connected Odd Cycle Transversal on H-free graphs. As we will use algorithms for
Vertex Cover and Connected Vertex Cover restricted to H-free graphs as subroutines
for our new algorithms, we include these two problems in our discussion. A list of
complexity results on these problems can be found in Sections 3 and 4.

Both Connected Feedback Vertex Set and Connected Odd Cycle Transversal re-
main NP-complete on graphs of arbitrarily large girth and on line graphs [28] and
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Grigoriev and Sitters [52] proved that Connected Feedback Vertex Set is NP-complete
even on planar graphs with maximum degree 9.

A small modification of the construction by Okrasa and Rzążewski [85] proves that
Connected Odd Cycle Transversal is NP-complete on P13-free graphs. The complexity
of Connected Feedback Vertex Set is unknown when restricted to Pr-free graphs for
r ≥ 5. For every s ≥ 1, both connected problems are polynomial-time solvable on
sP2-free graphs [28], using the price of connectivity for feedback vertex set [7,59]. See
Table 2 for an overview on the complexity results on these problems.

5.2 Our Results

In Section 5.3 with our work [35] we prove that Connected Feedback Vertex Set is
polynomial-time solvable for P4-free and (sP1 + P3)-free graphs, for every s ≥ 0.
Moreover in Section 5.4 we show that the same results hold for Connected Odd Cycle
Transversal and, in addition, that this problem is NP-complete on (P2 + P5, P6)-free
graphs, like we did in Theorem 8.

girth p line graphs sP2-free Pr-free sP1 + Pr-free
CVC NP-c [83] NP-c [83] P : s ≥ 0 [28] P : r ≤ 5* P : s ≥ 0, r ≤ 5
CFVS NP-c [28] NP-c [28] P : s ≥ 0 [28] P : r ≤ 4 P : s ≥ 0, r ≤ 3
COCT NP-c [28] NP-c [28] P : s ≥ 0 [28] P : r ≤ 4 P : s ≥ 0, r ≤ 3

Table 2: The complexity of the three connected transversal problems on graphs of girth at
least p for every (fixed) constant p ≥ 3, on line graphs, and on H-free graphs for various
linear forests H. Results that directly follow from other results in the table are starred
while unreferenced results are ours. Note this table does not completely summarise all
the results from our work and from the literature.

We will prove all our results for connected feedback vertex sets and connected odd cycle
transversals for the extension version. These extension versions will serve as auxiliary
problems for some of our inductive arguments, but this approach also leads to slightly
stronger results.

Recall that for (Subset) Vertex Cover we have Lemma 14 that allows to prove
polynomial-time solvability for (P1 +H)-free graphs when it is the case for H-free graphs.
As for the cases of FeedbackVertex Set, Odd Cycle Transversal and ConnectedVertex
Cover, this strategy can not be used for Connected Feedback Vertex Set and Connected
Odd Cycle Transversal (see Figure 16 for example).
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5.3 Connected Feedback Vertex Set Extension

In this section, we will prove our polynomial time results for Connected Feedback
Vertex Set Extension for P4-free graphs in Theorem 16 and for (sP1 + P3)-free graphs
in Theorem 17.

Theorem 16. Connected Feedback Vertex Set Extension can be solved in polynomial

time on P4-free graphs.

Proof. Let G = (V, E) be a P4-free graph on n vertices and let W be a subset of V . By
Remark 2, we may assume that G is connected. By Lemma 1, in polynomial time we
can find a spanning complete bipartite subgraph G′ = (X,Y, E′), and we note that, by
definition, every edge in G′ is dominating. Below, in Case 1, in polynomial time we
compute a smallest connected feedback vertex set of G that contains W and intersects
both X and Y . In Case 2, in polynomial time we compute a smallest connected feedback
vertex set of G that contains W and that is a subset of either X or Y (if such a set
exists). Then the smallest set found is a smallest connected feedback vertex set of G that
contains W.

Case 1: Compute a smallest connected feedback vertex set S of G such that W ⊆ S ,

S ∩ X , ∅ and S ∩ Y , ∅.

We perform Case 1 as follows. Consider two vertices u ∈ X and v ∈ Y . We shall describe
how to find a smallest connected feedback vertex set of G that contains W ∪ {u, v}. We
find a smallest feedback vertex set S ′ in G − (W ∪ {u, v}). As G − (W ∪ {u, v}) is P4-free,
this takes polynomial time by the result of [1]. Then S ′∪W∪{u, v} is a smallest feedback
vertex set of G that contains W ∪ {u, v} and is connected, since uv is a dominating edge.
By repeating this polynomial-time procedure for all O(n2) possible choices of u and v,
we will find S in polynomial time.

Case 2: Compute a smallest connected feedback vertex set S of G such that W ⊆ S and

S ⊆ X or S ⊆ Y.

For Case 2 we describe only the S ⊆ X case, as the S ⊆ Y case is symmetric. Thus we
may assume that W ⊆ X, otherwise no such set exists. Clearly, we may also assume
that G[Y] contains no cycles. If G[Y] contains an edge it follows that S = X, otherwise
G − S would contain a triangle. Suppose instead that Y is an independent set. If |Y | = 1,
then X \ S must be an independent set, otherwise G − S contains a triangle. So S is a
smallest connected vertex cover of G[X] that contains W. As G[X] is P4-free, we can find
such an S in polynomial time by Theorem 12. If |Y | ≥ 2, then |X \ S | ≤ 1, as otherwise
G − S contains a 4-cycle. Thus, we check, in polynomial time, if there exists a vertex
x ∈ X \W, such that X \ {x} is connected. If so, S = X \ {x}. ut
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Before stating the main result of this section, let us recall the function b on non-
negative integers by b(s) := max{3, 2s − 1} used for Lemma 5.

Theorem 17. For every s ≥ 0, Connected Feedback Vertex Set Extension can be

solved in polynomial time on (sP1 + P3)-free graphs.

Proof. There are similarities to the proof of Theorem 7, but different arguments are
needed. Let s ≥ 0 be an integer, let G = (V, E) be an (sP1 + P3)-free graph and let W

be a subset of V . By Remark 2, we may assume that G is connected. We must show
how to find a smallest connected feedback vertex set of G that contains W in polynomial
time. We show how to solve the complementary problem in polynomial time: how to
find a largest induced forest F of G that does not include any vertex of W and V \ F is
connected. We will say that an induced forest F is good if it has these two properties.

Our algorithm computes the following three cases in polynomial time. Together,
these three cases cover all possibilities.

Case 1: Compute a largest good induced forest F such that there is a connected compo-

nent of F that has at least b(s) vertices.

By Lemma 5 we know that F has exactly one connected component on at least b(s)
vertices and there are at most s − 1 other connected components of F, each on at most
two vertices. By Lemma 4, the connected component on at least b(s) vertices has at
most 4s internal vertices. We consider O(n4s+2(s−1)) choices of a non-empty set U of at
most 4s vertices that induces a tree and a set U′ of at most 2(s−1) vertices that induces a
disjoint union of vertices and edges such that U ∪ U′ does not intersect W, U is disjoint
from U′ and no vertex of U has a neighbour in U′. Let R be the set of vertices that
each have exactly one neighbour in U and no neighbour in U′, but do not belong to W.
We then add to U ∪ U′ the largest possible set L of vertices that are independent and
belong to the set R such that G − (L ∪ U ∪ U′) is connected. This is achieved by taking
the complement of the smallest connected vertex cover of G − (U ∪ U′) that contains
V \ (R ∪ U ∪ U′). By Theorem 12, this can be done in polynomial time.

Case 2: Compute a largest good induced forest F such that F has at most s−1 connected

components and each connected component has at most b(s) − 1 vertices.

Since the number of vertices in F is bounded by the constant (s − 1)(b(s) − 1), we can
simply check all sets containing at most that many vertices to see if they induce such a
good forest.

Case 3: Compute a largest good induced forest F such that F has at least s connected

components and each connected component has at most b(s) − 1 vertices.
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We consider O(ns(b(s)−1)) choices of a non-empty set L of at most s(b(s) − 1) vertices.
We reject L unless G[L] is a good induced forest on s connected components with no
connected component of more than b(s)−1 vertices. Assuming our choice of L is correct,
the connected components of G[L] will become connected components of G[F].

Let U = N(L) and note that no vertex of U is in F. If G − U is a good forest, then
we are done. Otherwise we consider every set R of at most 2s2 − 2s + 3 vertices of
G − (L ∪U ∪W) such that G[R ∪U ∪W] is connected; see also Figure 19. We note that
if there is a largest induced forest F such that the connected components of G[L] are
also connected components of G[F], then Lemma 6 applied to G − F implies that such a
set R exists.

Let S = R ∪ U ∪ W. If G − S is a forest, then we are done. Otherwise note that
G − (L ∪ S ) is the disjoint union of one or more complete graphs: G − (L ∪ S ) cannot
contain an induced P3, as it is anti-complete to L which contains an induced sP1.

As G is connected, each of the complete graphs in G − (L ∪ S ) contains at least one
vertex that is adjacent to some vertex of S . Hence in polynomial time we can find a set S ′

of vertices containing all but min{2, |X|} vertices from each of the complete graphs X in
such a way that G[S ∪ S ′] is connected. Then G − (S ∪ S ′) is a largest good induced
forest that contains L and no vertex of R ∪ U.

G − (L ∪ U ∪W)

W

L U = N(L)

s

Fig. 19: The decomposition of the (sP1 + P3)-free graph G, as given in Case 3 of the
algorithm from the proof of Theorem 17.

79



After considering each of the O(n2s2−2s+3) choices for R, in polynomial time we find
a largest good induced forest that contains L and no vertex of U. After considering each
of the O(ns(b(s)−1)) choices for L, we find in polynomial time a largest good induced
forest that has at least s connected components, each with at most b(s) − 1 vertices. ut

5.4 Connected Odd Cycle Transversal Extension

In this section, we will prove that Connected Odd Cycle Transversal Extension can
be solved in polynomial time for P4-free graphs in Theorem 18 and for (sP1 + P3)-free
graphs in Theorem 19. Finally in Theorem 20, we show that Connected Odd Cycle
Transversal Extension is NP-complete on (P2 + P5, P6)-free graphs.

Theorem 18. Connected Odd Cycle Transversal Extension can be solved in polyno-

mial time on P4-free graphs.

Proof. We only provide an outline, as the proof follows that of Theorem 16. We consider
the same two cases. In Case 1, we need to find a smallest odd cycle transversal S ′ in
G − (W ∪ {u, v}) and can use the result of [13]. In Case 2, we again note that if G[Y]
contains an edge, then S = X. Suppose that Y is an independent set. Then G− S contains
no odd cycles if and only if X \ S is independent, so S is a smallest connected vertex
cover of G[X] that contains W. (That is, the |Y | = 1 case from the proof of Theorem 16
can be used for all values of |Y |, as we are no longer concerned with whether G − S

might contain cycles of even length.) ut

Before stating this important result of the section, let us recall the function b on
non-negative integers by b(s) := max{3, 2s − 1} used for Lemma 5.

Theorem 19. For every s ≥ 0, Connected Odd Cycle Transversal Extension can be

solved in polynomial time on (sP1 + P3)-free graphs.

Proof. Let s ≥ 0 be an integer, let G = (V, E) be an (sP1 + P3)-free graph and let W be a
subset of V . By Remark 2, we may assume that G is connected. We must describe how
to find a smallest connected odd cycle transversal of G that contains W. We will solve
the complementary problem: how to find a largest induced bipartite graph of G that does
not include any vertex of W and whose complement is connected. We will say that an
induced bipartite graph B is good if it has these two properties. Our algorithm consists of
three cases, which can each be performed in polynomial time and which together cover
all the possible cases.

Case 1: Compute a largest good induced bipartite subgraph B such that B has a

bipartition {X,Y} in which one set, say X, has size |X| ≤ s.
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We consider O(ns) choices of an independent set X of at most s vertices of G that does
not intersect W. We wish to find Y , the largest possible independent set in G − (W ∪ X)
such that G − (X ∪ Y) is connected. By Theorem 12, we can do this in polynomial time
by computing a minimum connected vertex cover of G − X that contains W and taking
its complement (in G − X).

Case 2: Compute a largest good induced bipartite subgraph B such that B has at least s

connected components and each connected component has at most two vertices.

Note that 2 ≤ b(s) − 1. The algorithm mimics Case 3 of the algorithm in the proof of
Theorem 17, but checks for a good bipartite graph instead of a good forest.

Case 3: Compute a largest good induced bipartite subgraph B such that there is a

connected component of B that has at least three vertices and B has a bipartition {X,Y}

with |X| ≥ s + 1 and |Y | ≥ s + 1.

It is in this case that we must do most of the work in proving the theorem, and here we
will need ideas beyond those already met in this section.

As B contains a connected component on at least three vertices, it will contain
an induced P3 and so |X| ≥ 1 and |Y | ≥ 1. We consider O(n2s+2) choices of disjoint
independent sets X′ and Y ′ that each contain s + 1 vertices of G and do not intersect W.
If G[X′ ∪ Y ′] contains an induced P3, our aim is to compute a largest good induced
bipartite graph B with bipartition {X,Y} such that X′ ⊆ X and Y ′ ⊆ Y; otherwise we
discard the choice of X′,Y ′.

We define (see also Figure 20) a partition of V \ (X′ ∪ Y ′):

U = (N(X′) ∩ N(Y ′)) ∪W

VX = N(X′) \ (Y ′ ∪ N(Y ′) ∪W)

VY = N(Y ′) \ (X′ ∪ N(X′) ∪W)

Z = V \ (X′ ∪ Y ′ ∪ N(X′) ∪ N(Y ′) ∪W)

There are a number of steps where our procedure branches as we consider all possible
ways of choosing whether or not to add certain vertices to B. Note that assuming our
choice of X′ and Y ′ is correct, no vertex of U can be in B. If we decide that a vertex will
not be in B, we will then add it to U.

Step 1: Reduce Z to the empty set.

Notice that Z does not contain an independent set on more than s − 1 vertices otherwise
G[X′ ∪ Y ′ ∪ Z] would contain an induced sP1 + P3. We consider O(n2s−2) choices of
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U

X′

Y ′

VY

VX

Z

W

N(X′) ∩ N(Y ′)

Fig. 20: The decomposition of G in Case 3. Full and dotted lines indicate when two
sets are complete or anti-complete to each other, respectively. The absence of a full or
dotted lines indicates that edges may or may not exist between two sets. The circles
in VX and VY represent disjoint unions of complete graphs.

disjoint independent sets ZX and ZY that are each subsets of Z and each contain at
most s − 1 vertices. We move the vertices of ZX and ZY by adding them to X′ and Y ′,
respectively. We move the vertices of Z \ (ZX ∪ ZY ) by adding them to U. If after this
process is complete there are vertices in VX ∪ VY with neighbours in both X′ and Y ′, we
move these vertices by adding them to U. We note that now:

– Z is the empty set,

– VX still contains vertices with neighbours in X′ but not in Y ′,

– VY still contains vertices with neighbours in Y ′ but not in X′, and

– U contains vertices that will not be in B.

So our task is to decide how best to add vertices of VX to Y ′ and vertices of VY to X′, but
first there is another step: as G − B must be connected, and G[U] is a subgraph of G − B,
we choose some vertices that will not be in B, but will connect together the connected
components of G[U]. This will not be possible if the vertices of U belong to more than
one connected component of G − (X′ ∪ Y ′). Hence, in that case we discard this choice of
ZX ,ZY .

Step 2: Make G[U] connected.

We consider O(n2s2−2s+3) choices of set R of vertices of G − (X′ ∪ Y ′) such that each
contains at most 2s2 − 2s + 3 vertices. If G[R ∪ U] is connected, we move the vertices
of R by adding them to U, and so G[U] becomes connected. Note that since all vertices
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of U are in the same connected component of G − (X′ ∪ Y ′), Lemma 6 implies that at
least one such set R can be found.

Step 3: Add vertices from VX to Y ′ and from VY to X′.

We note that G[VX] is P3-free, as no vertex of VX has a neighbour in Y ′, |Y ′| ≥ s, and G is
(sP1 + P3)-free. By symmetry, G[VY ] is P3-free. Thus both G[VX] and G[VY ] are disjoint
unions of complete graphs. Note that B can contain at most one vertex from each of
these complete graphs. We consider two subcases.

Case 3a: Compute a largest good induced bipartite subgraph B with bipartition {X,Y}

such that X′ ⊆ X, Y ′ ⊆ Y and G − B contains no edges between VX and VY .

As G − B must be connected, each clique of VX and VY that contains at least two vertices
must contain a vertex adjacent to U (otherwise such a set B cannot exist). Thus we can
form X from X′ by adding to X′ one vertex from each clique of VY and form Y by adding
to Y ′ one vertex from each clique of VX in such a way that G − B is connected. (If we do
this, it is possible that G − B will contain an edge from VX to VY , but then this solution is
at least as large as one where such edges are avoided.)

Case 3b: Compute a largest good induced bipartite subgraph B with bipartition {X,Y}

such that X′ ⊆ X, Y ′ ⊆ Y and G − B has an edge xy where x ∈ VX , y ∈ VY .

We consider O(n2) choices of an edge xy, x ∈ VX , y ∈ VY . Let vX ∈ X′ be a neighbour
of x and note that vX , x and y induce a P3 in G. Therefore, since G is (sP1 + P3)-free, x

must be complete to all but at most s−1 cliques of VY . By symmetry, y must be complete
to all but at most s − 1 cliques of VX . A clique in VX or VY is bad if it is not complete
to y or x, respectively. Note that the cliques containing x and y may be bad. We move x

and y to U.

We consider O(n2s−2) choices of a set S of at most 2s − 2 vertices that each belong
to a distinct bad clique and move each to X′ or Y ′ if they are in VY or VX respectively.
We move the other vertices of the bad cliques to U. If the vertices of U are not in the
same connected component of G − (X′ ∪ Y ′), we discard this choice of S . We consider
O(n2s2−2s+3) choices of sets R′ of vertices of G− (X′∪Y ′) such that each contains at most
2s2 − 2s + 3 vertices. If G[R′ ∪U] is connected we move the vertices of R′ to U, so G[U]
becomes connected. Since the vertices of U are in the same connected component of
G − (X′ ∪ Y ′), Lemma 6 implies that at least one such set R′ can be found.

Note that some cliques might have been completely removed from VX and VY by
the choice of R′. It only remains to pick one vertex from each remaining clique of VX

and VY , and add these vertices to Y ′ or X′, respectively to finally obtain B. As all vertices
in these cliques are adjacent to x or y we know that G − B will be connected. ut
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Noting that the odd cycle transversal S in the proof of Theorem 8 is connected, is
enough to prove the following result.

Theorem 20. Connected Odd Cycle Transversal is NP-complete on (P2 + P5, P6)-free

graphs.

5.5 Steiner Tree Problem and Graph Transversals

Let G = (V, E) be a graph and W ⊆ V be a set of vertices, a Steiner tree for W of G is a
tree TW of G that contains W. Now we can formally define two decision problems.

Edge Steiner Tree
Instance: a graph G = (V, E), an edge-weighting function wE , a subset W ⊆ V

of terminals and a positive integer k.
Question: does G have a Steiner tree TW for W with wE(TW ) ≤ k?

Edge Steiner Tree is often known simply as Steiner Tree, but we wish to distinguish
it from a closely related problem. The following problem is sometimes known as Node-
Weighted Steiner Tree.

Vertex Steiner Tree
Instance: a connected graph G = (V, E), a vertex-weighting function wV , a

subset W ⊆ V and a positive integer k.
Question: does G have a Steiner tree TW for W with wV (TW ) ≤ k?

We say that an instance of a problem is unweighted if the weighting is constant. Note
that Edge Steiner Tree is a generalization of the Spanning Tree problem (set W = V).
We refer to the textbooks of Du and Hu [38] and Prömel and Steger [91] for further
background information on Steiner trees.

Remark 3 Let (G,W, k) be an input of Steiner Tree. Then we may assume the graph G

is connected. If it is not, then either W is contained in at most one connected component

of G, in which case other connected components can be ignored, or the answer is

immediately no. Testing whether or not an input has an immediate no answer can be

done in O(n + m)-time.

Edge Steiner Tree has been known to be NP-complete [67]. Now we need to give a
number of results for Steiner Tree that are going to be used to prove the main result of
the section.

Theorem 21. Unweighted Vertex Steiner Tree is NP-complete for line graphs.
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Proof. First note that unweighted Edge Steiner Tree is NP-complete (see [48] for
example). Let (G,W, k) be an instance of this problem. From G we construct a new
graph G′ by introducing a new vertex vu for each terminal u ∈ W, which we make
only adjacent to u. We let W ′ consist of all these new vertices. We observe that G′ has a
Steiner tree T ′ for W ′ with at most k + |W | edges if and only if G has a Steiner tree T

for W with at most k edges.

We now consider the line graph L(G′) with set of terminals W∗ = {uvu | u ∈ U}; this
is a set of edges in G′ and a set of vertices in L(G′). To complete the proof, we show
that G′ has a Steiner tree for W ′ on, say, ` edges if and only if L(G′) has a Steiner tree
for W∗ on ` vertices. We first note that the edge set E′ of a Steiner tree for W ′ of G′

must contain the set W∗. Further, E′, considered as a set of vertices of L(G′), induces a
connected subgraph and has |E′| = ` vertices. Conversely, if there is a Steiner tree for
W∗ in L(G′) on ` vertices, then these vertices, considered as edges in G′, form a Steiner
tree for W ′ in G′. ut

Before we are able to prove our main result regarding Steiner trees, we need the
following result.

Theorem 22. For every s ≥ 0, Vertex Steiner Tree can be solved in time O(n2s2−s+5)
for connected (sP1 + P4)-free graphs on n vertices.

Proof. Let s ≥ 0 be an integer. Let G = (V, E) be an (sP1 + P4)-free graph with a vertex
weighting wV : V → Q+ and set of terminals W. By Remark 3, we may assume that G is
connected. We show how to solve the optimization version of Vertex Steiner Tree on G.
Let R ⊆ V \W be such that G[W ∪ R] is connected and, subject to this condition, W ∪ R

has minimum weight wV (U ∪ R). Thus any spanning tree of G[W ∪ R] is an optimal
solution. Let us consider the possible size of R.

First suppose that G[W ∪R] is P4-free. Then, by Lemma 1, G[W ∪R] has a spanning
complete bipartite subgraph. That is, there is a bipartition (A, B) of W ∪R such that every
vertex in A is joined to every vertex in B. We may assume without loss of generality that
|W | ≥ 2. Then |W ∪ R| ≥ 2, and thus neither A nor B is the empty set. If W intersects
both A and B, then G[W] is connected and |R| = 0. So let us assume that W ⊆ A, and
so R ⊇ B. Then R ∩ A = ∅ since G[W ∪ B] is connected. As we know that every vertex
in A = W is joined to every vertex in B = R, we find that |R| = 1.

Suppose instead that G[W ∪ R] contains an induced path P on four vertices. We call
the connected components of G[W] bad if they do not intersect P or the neighbours
of P in G. There are at most s − 1 bad connected components; else, G contains an
sP1 + P4. Let W∗ be a subset of U that includes one vertex from each of these bad
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connected components. Then each vertex of G[W ∪ R] belongs either to W or P or is
an internal vertex of a shortest path in G[W ∪ R] from P to a vertex of W∗. The number
of internal vertices in such a shortest path is at most 2s + 1; else, the path contains an
induced sP1 + P4. As R is a subset of V(P) and these internal vertices, we find that
|R| ≤ 4 + (2s + 1)(s − 1) = 2s2 − s + 3.

So in all cases R contains at most 2s2 − s + 3 vertices and our algorithm is just
to consider every such set R and check, in each case, whether G[W ∪ R] is connected.
Our solution is one with minimum weight that satisfies the connectivity constraint. As
there are O(n2s2−s+3) sets to consider, and checking connectivity takes O(n2) time, the
algorithm requires O(n2s2−s+5) time. ut

We are finally ready to prove the following complete dichotomy.

Theorem 23. Let H be a graph. If H is an induced subgraph of sP1 + P4 for some s ≥ 0,

then Vertex Steiner Tree is polynomial-time solvable for H-free graphs, otherwise even

unweighted Vertex Steiner Tree is NP-complete.

Proof. If H has a cycle then, due to the results on chordal bipartite graphs [16] and
on split graphs [100], the problem is NP-complete. Hence, we may assume that H has
no cycle, so H is a forest. If H contains a vertex of degree at least 3, then the class of
H-free graphs contains the class of claw-free graphs, which in turn contains the class of
line graph. Hence, we can apply Theorem 21. Thus we may assume that H is a linear
forest. If H contains a connected component with at least five vertices or two non-trivial
connected components, then the class of H-free graphs contains the class of 2P2-free
graphs and so we can apply the NP-completeness result on split graphs [100]. It remains
to consider the case where H is an induced subgraph of sP1 + P4, for which we can
apply Theorem 22. ut

Now we can prove the following result.

Theorem 24. For any graph setH , there is a polynomial-time reduction of Weighted
ConnectedH-Transversal Extension to Vertex Steiner Tree whenever in the input

(G,wV ,W, k), the set W is anH-transversal of G.

Proof. Let (G,wV ,W, k) be an input of Weighted ConnectedH-Transversal Extension
and assume W is an H-transversal of G. We claim that if G has a Steiner tree for the
set W of vertex-weight at most k then G has a connectedH-transversal that contains W

with vertex-weight at most k.
Indeed let TW be a Steiner tree for W with wV (TW ) ≤ k. By definition TW induces a

connected subgraph and contains W, moreover W isH-transversal by assumption and
wV (TW ) ≤ k. ut
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The following result is the direct application of Theorem 23 to Theorem 24.

Corollary 1. For any graph set H and every integer s ≥ 0, Weighted Connected H-

Transversal Extension can be solved in polynomial time for inputs (G,wV ,W, k), where

G is an (sP1 + P4)-free graph and W is anH-transversal of G.

5.6 Conclusions

We proved polynomial-time solvability of Connected Feedback Vertex Set Exten-
sion and Connected Odd Cycle Transversal Extension on H-free graphs, when H = P4

or H = sP1 + P3; see also Table 2, where we place these results in the context of known
results for these problems on H-free graphs. We also showed that Connected Odd Cycle
Transversal is NP-complete on (P2 + P5, P6)-free graphs.

Natural cases for future work are the cases when H = sP1 + P4 for s ≥ 1 and H = P5

for all four problems (in particular the case when H = P5 is the only open case for
Odd Cycle Transversal and Connected Odd Cycle Transversal restricted to Pr-free
graphs).

Open Problem 11 Determine the complexity of Connected Odd Cycle Transversal for

(sP1 + P4)-free graphs.

Open Problem 12 Determine the complexity of Connected Odd Cycle Transversal for

P5-free graphs.

One of the main obstacles to solving Open Problem 11 is that Lemma 5 does not
hold on (sP1 + P4)-free graphs: the disjoint union of any number of arbitrarily large stars
is even P4-free.

Recall that Vertex Cover and Connected Vertex Cover are polynomial-time solv-
able even on (sP1 + P6)-free graphs by Theorem 1 and (sP1 + P5)-free graphs by
Theorem 12, respectively, for every s ≥ 0. In contrast to the case for Odd Cycle
Transversal and Connected Odd Cycle Transversal, it is not known whether there
is an integer r for which any of the problems Vertex Cover, Feedback Vertex Set or
their connected variants is NP-complete on Pr-free graphs. Determining whether such
an r exists is an interesting research question which has been collected in Open Prob-
lems 2, 6, 10 and in the following one.

Open Problem 13 Determine whether these exists an integer r such that Connected
Feedback Vertex Set is NP-complete for Pr-free graphs.
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We note that a similar complexity study has also been undertaken for the independent
variants of the problems Feedback Vertex Set and Odd Cycle Transversal, while
Independent Vertex Cover is polynomial-time solvable. In particular, Independent
Feedback Vertex Set and Independent Odd Cycle Transversal are polynomial-time
solvable on P5-free graphs [12], but their complexity status is unknown on P6-free
graphs. It is not known whether there is an integer r such that Independent Feedback
Vertex Set or Independent Odd Cycle Transversal is NP-complete on Pr-free graphs.

We conclude that in order to make any further progress, we must better understand
the structure of Pr-free graphs. This topic has been well studied in recent years, see also
for example [51,53]. However, more research and new approaches will be needed.
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6 Independent Transversals

For each studied transversal we have introduced a vast research literature and developed
original work regarding the computational complexity of the respective transversal
problems.

Recall that, for a graph G = (V, E), a transversal is independent if every two vertices
are non-adjacent. In this section we are interested in the following research question:

How is the minimum size of a transversal in a graph affected by adding the

requirement that the transversal is independent?

Of course, this question can be interpreted in many ways. In this section, we focus
on the following: is the size of a smallest possible independent transversal (assuming
one exists) bounded in terms of the minimum size of a transversal? That is, one might
say, what is the price of independence?

6.1 Existing Results

To the best of our knowledge, the term price of independence was first used by Camby [20]
in a recent unpublished manuscript for dominating sets. As she acknowledged, though
first to coin the term, she was building on past work. In fact, Camby and her co-author
Plein had given a forbidden induced subgraph characterization of those graphs G for
which, for every induced subgraph of G, there are minimum size dominating sets that
are already independent [23], and there are a number of further papers on the topic of
the price of independence for dominating sets (see the discussion in [20]).

We observe that this incipient work on the price of independence is a natural com-
panion to recent work on the price of connectivity, investigating the relationship between
minimum size transversals and minimum size connected transversals. This work began
with the work of Cardinal and Levy in their paper [26] and has since been taken in
several directions; see, for example, [7,21,22,24,28,52,59].

Some results for the price of connectivity have some algorithmic consequences for
the connected transversal problems. We want to understand if a study for the price of
independence could have similar consequences. Until now there is no clear indication
for a positive development in this direction: the difference between the minimum size of
a transversal in a graph and the minimum size of an independent transversal in the graph
can become unbounded quickly.
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6.2 Our Results

In this section, as we broaden the study of the price of independence by investigating
vertex cover, feedback vertex set and odd cycle transversal. We will concentrate on
classes of graphs defined by a single forbidden induced subgraph H, just as was done for
the price of connectivity [7,59]. That is, for a graph H, we ask what, for a given type
of transversal, is the price of independence in the class of H-free graphs? The ultimate
aim in each case is to find a dichotomy that allows us to say, given H, whether or not the
size of a minimum size independent transversal can be bounded in terms of the size of a
minimum transversal.

The Price of Independence for Vertex Cover. A graph has an independent vertex
cover if and only if it is bipartite. For a bipartite graph G, let vc(G) denote the size
of a minimum vertex cover, and let ivc(G) denote the size of a minimum independent
vertex cover. Let X be a class of bipartite graphs. Then X is ivc–bounded if there
exists a function f : N → N such that ivc(G) ≤ f (vc(G)) for every G ∈ X, and X is
ivc–unbounded if no such function exists, that is, if there is a k such that for every s ≥ 0
there is a graph G in X with vc(G) ≤ k, but ivc(G) ≥ s. Moreover, X is ivc-identical if
ivc(G) = vc(G) for every G ∈ X.

In our first two results, proven in Section 6.3, we determine for every graph H,
whether or not the class of H-free bipartite graphs is ivc–bounded or ivc–identical,
respectively.

Theorem 25. Let H be a graph. The class of H-free bipartite graphs is ivc–bounded if

and only if H is an induced subgraph of K1,r + rP1 or K+
1,r for some r ≥ 1.

Theorem 26. Let H be a graph. The class of H-free bipartite graphs is ivc–identical if

and only if H is an induced subgraph of K+
1,3 or 2P1 + P3.

The Price of Independence for Feedback Vertex Set. A graph has an independent
feedback vertex set if and only if its vertex set can be partitioned into an independent set
and a set of vertices that induces a forest; graphs that have such a partition are said to
be near-bipartite. For a near-bipartite graph G, let fvs(G) denote the size of a minimum
feedback vertex set, and let ifvs(G) denote the size of a minimum independent feedback
vertex set. Given a class X of near-bipartite graphs, we say that X is ifvs-bounded if
there is a function f : N → N such that ifvs(G) ≤ f (fvs(G)) for every G ∈ X and
ifvs-unbounded otherwise. Moreover, a class X of near-bipartite graphs is ifvs-identical

if ifvs(G) = fvs(G) for every G ∈ X.
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In our next two results, proven in Section 6.4, we almost completely determine for
every graph H, whether or not the class of H-free near-bipartite graphs is ifvs-bounded
or ifvs-identical, respectively; the only open case left is determining whether the class of
K1,3-free near-bipartite graphs is ifvs-identical.

Theorem 27. Let H be a graph. The class of H-free near-bipartite graphs is ifvs-

bounded if and only if H is isomorphic to P1 + P2, a star or an edgeless graph.

Theorem 28. Let H be a graph different from K1,3. The class of H-free near-bipartite

graphs is ifvs-identical if and only if H is a (not necessarily induced) subgraph of P3.

The Price of Independence for Odd Cycle Transversal. A graph has an independent
odd cycle transversal S if and only if it has a 3-colouring, since, by definition, we are
requesting that S is an independent set of G such that G − S has a 2-colouring. For a
3-colourable graph G, let oct(G) denote the size of a minimum odd cycle transversal,
and let ioct(G) denote the size of a minimum independent odd cycle transversal. Given
a class X of 3-colourable graphs, we say that X is ioct-bounded if there is a function
f : N→ N such that ioct(G) ≤ f (oct(G)) for every G ∈ X and ioct-unbounded otherwise.
Moreover, a class X of 3-colourable graphs is ioct-identical if ioct(G) = oct(G) for every
graph G ∈ X.

In our final two results, proven in Section 6.5, we address the question of whether
or not, for a graph H, the class of H-free 3-colourable graphs is ioct-bounded or
ioct-identical, respectively. Here, we do not have complete dichotomies. For the former
question, we prove that the number of non-equivalent open cases left is three, namely
the cases when H ∈ {K1,4,K+

1,3,K
+
1,4}. Note that for the latter question there are also three

missing cases.

Theorem 29. Let H be a graph. The class of H-free 3-colourable graphs is ioct-bounded:

– if H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0 and
– only if H is an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0.

Theorem 30. Let H be a graph such that H < {K1,3,K+
1,3, 2P1 + P3}. The class of H-free

3-colourable graphs is ioct-identical if and only if H is a (not necessarily induced)

subgraph of P4 that is not isomorphic to 2P2.

6.3 Vertex Cover

In this section we prove Theorems 25 and 26 as part of a more general theorem. We start
with a useful lemma.
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Lemma 27. Let r, s ≥ 1. If G is a (K1,r + sP1)-free bipartite graph with bipartition (X,Y)
such that |X|, |Y | ≥ rs + r − 1, then either:

– every vertex of G has degree less than r or
– fewer than s vertices of X have more than s − 1 non-neighbours in Y and fewer

than s vertices of Y have more than s − 1 non-neighbours in X.

Proof. Let G be a (K1,r + sP1)-free bipartite graph with bipartition (X,Y) such that
|X|, |Y | ≥ rs + r − 1. No vertex in X can have both r neighbours and s non-neighbours
in Y , otherwise G would contain an induced K1,r + sP1. Therefore every vertex in X has
degree either at most r − 1 or at least |Y | − (s − 1) ≥ rs + r − s. By symmetry, we may
assume that there is a vertex x ∈ X of degree at least r. Suppose, for contradiction, that
there is a set X′ ⊆ X of s vertices, each of which has more than s−1 non-neighbours in Y .
Then every vertex of X′ has degree at most r− 1. Since deg(x) ≥ rs + r− s = s(r− 1) + r,
there must be a set Y ′ ⊆ N(x) of r neighbours of x that have no neighbours in X′. Then
G[{x} ∪ Y ′ ∪ X′] is a K1,r + sP1, a contradiction. It follows that fewer than s vertices
in X have more than s − 1 non-neighbours in Y . Since |X| ≥ r + (s − 1), there is a
set X′′ ( X of r vertices, each of which has at most s − 1 non-neighbours in Y . Since
|Y | > r(s − 1), there must be a vertex y ∈ Y that is complete to X′′, and therefore has
deg(y) ≥ r. Repeating the above argument, it follows that fewer than s vertices of Y have
more than s − 1 non-neighbours in X. This completes the proof. ut

We recall that a graph has an independent vertex cover if and only if it is bipartite,
and we prove two more lemmas.

Lemma 28. Let r, s ≥ 1. If G is a (K1,r + sP1)-free bipartite graph, then ivc(G) ≤
r · vc(G) + rs.

Proof. Let G be a (K1,r + sP1)-free bipartite graph. Fix a bipartition (X,Y) of G. Let S

be a minimum vertex cover of G, so |S | = vc(G). We may assume that vc(G) ≥ 2,
otherwise ivc(G) = vc(G), in which case we are done. We may also assume that
|X|, |Y | > vc(G)r + rs > rs + r − 1, otherwise X or Y is an independent vertex cover of
the required size, and we are done. If every vertex of G has degree at most r − 1, then
S ′ = (S ∩Y)∪(N(S ∩X)) is an independent vertex cover in G of size at most vc(G)(r−1),
and we are done. By Lemma 27, we may therefore assume that fewer than s vertices of X

have more than s−1 non-neighbours in Y . We will show that this leads to a contradiction.
Since |X|, |Y | ≥ vc(G) + s, there must be a set S ′ of vc(G) + 1 vertices in X that each have
at least vc(G) + 1 neighbours in Y . If a vertex x ∈ V(G) has degree at least vc(G) + 1,
then |N(x)| > |S |, so x ∈ S . Therefore every vertex of S ′ must be in S , contradicting the
fact that |S ′| = vc(G) + 1 > vc(G) = |S |. ut

92



Lemma 29. Let r ≥ 2. If G is a K+
1,r-free bipartite graph, then ivc(G) ≤ (r − 1)(vc(G))2.

Proof. Clearly it is sufficient to prove the lemma for connected graphs G. Let G be a con-
nected K+

1,r-free bipartite graph. Fix a bipartition (X,Y) of G. Let S be a minimum vertex
cover of G, so |S | = vc(G). We may assume that vc(G) ≥ 2, otherwise ivc(G) = vc(G)
and we are done. We may also assume that |X|, |Y | > (vc(G))2(r − 1), otherwise X or Y is
an independent vertex cover of the required size.

If there are two vertices x, y ∈ X with dist(x, y) = 2 and deg(x) ≥ deg(y) + (r − 1),
then x, y, a common neighbour of x and y, and r − 1 vertices from N(x) \ N(y) would
induce a K+

1,r in G, a contradiction. Therefore, if x, y ∈ X with dist(x, y) = 2, then
| deg(x) − deg(y)| ≤ r − 2. By the triangle inequality and induction, it follows that if
x, y ∈ X, then | deg(x)−deg(y)| ≤ ( r−2

2 ) dist(x, y). Observe that vc(P2 vc(G)+2) = vc(G) + 1,
so G must be P2 vc(G)+2-free. Since G is connected, it follows that if x, y ∈ V(G), then
dist(x, y) < 2 vc(G)+1. We conclude that if x, y ∈ X, then | deg(x)−deg(y)| ≤ vc(G)(r−2).
Note that if a vertex x ∈ V(G) has degree at least vc(G) + 1, then |N(x)| > |S | and so
x ∈ S .

Since |X| > (vc(G))2(r − 1) > vc(G) = |S |, there must be a vertex y ∈ X \ S . Since
y ∈ X \S , it follows that deg(y) ≤ vc(G). It follows that deg(x) ≤ deg(y) + vc(G)(r−2) ≤
vc(G)(r− 1) for all x ∈ X. We conclude that S ′ = (S ∩Y)∪ (N(S ∩X)) is an independent
vertex cover in G of size at most (vc(G))2(r − 1). This completes the proof. ut

A graph is an almost complete bipartite graph if it can be obtained from a complete
bipartite graph by removing a (possibly empty) set of edges that form a matching. We
need the following lemma due to Alekseev.

Lemma 30 ([2]). Every connected K+
1,3-free bipartite graph is either a path, a cycle or

an almost complete bipartite graph.

We also need the following lemma.

Lemma 31. Let G be an almost complete bipartite graph. Then ivc(G) = vc(G).

Proof. Notice that ivc(G) = vc(G) holds if and only if the equality holds for every
connected component of G. Therefore, without loss of generality, we may assume that G

is connected. Let X,Y be the parts of the bipartition of G, and let S be a minimum vertex
cover of G. We may assume without loss of generality that |X| ≤ |Y |. If vc(G) ≤ 1, then
ivc(G) = vc(G). Therefore we may assume that |X| ≥ vc(G) ≥ 2. If S is independent or
|S | = |X|, then again ivc(G) = vc(G).

Now we assume that S is not independent and |X| > |S |. This implies that there exist
two adjacent vertices x ∈ X ∩ S and y ∈ Y ∩ S , and another vertex y′ ∈ Y \ S . Since G
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is a connected almost complete bipartite graph, the vertex y′ is adjacent to all vertices
of X but at most one. Moreover, since y′ < S , the neighbourhood of y′ is contained in S .
Therefore |X| > |S | ≥ |{y} ∪ N(y′)| ≥ 1 + (|X| − 1) = |X|, a contradiction. ut

Our next theorem is the main result of this section and immediately implies Theo-
rems 25 and 26. If an upper bound given in this theorem is tight, that is, if there exists
an H-free bipartite graph G for which equality holds, we indicate this by a ∗ in the
corresponding row (whereas the other upper bounds are not known to be tight).

Theorem 31. Let H be a graph. Then the following two statements hold:

(i) the class of H-free bipartite graphs is ivc–bounded if and only if H is an induced

subgraph of K1,r + rP1 or K+
1,r for some r ≥ 1; and

(ii) the class of H-free bipartite graphs is ivc–identical if and only if H is an induced

subgraph of K+
1,3 or 2P1 + P3.

In particular, the following statements hold for every H-free bipartite graph G:

(1)∗ ivc(G) = vc(G) if H ⊆i K+
1,3 or H ⊆i 2P1 + P3

(2)∗ ivc(G) ≤ vc(G) + 1 if H = K1,3 + P1

(3) ivc(G) ≤ vc(G) + s − 3 if H = sP1 for s ≥ 5

(4) ivc(G) ≤ vc(G) + s − 2 if H = sP1 + P2 for s ≥ 3

(5)∗ ivc(G) ≤ vc(G) + s − 2 if H = sP1 + P3 for s ≥ 3

(6) ivc(G) ≤ vc(G) + 3s + 2 if H = K1,3 + sP1 for s ≥ 2

(7)∗ ivc(G) ≤ (r − 1) vc(G) − 1 if H = K1,r for r ≥ 4

(8) ivc(G) ≤ r · vc(G) + rs if H = K1,r + sP1 for r ≥ 4, s ≥ 1

(9) ivc(G) ≤ (r − 1) vc(G)2 if H = K+
1,r for r ≥ 4

Proof. We start by proving (i).

(i): "⇐". First suppose that H is an induced subgraph of K1,r + rP1 or K+
1,r for some r,

then Lemma 28 or 29, respectively, implies that the class of H-free bipartite graphs is
ivc–bounded.

(i): "⇒". Now suppose that the class of H-free bipartite graphs is ivc–bounded, that
is, there is a function f : N → N such that ivc(G) ≤ f (vc(G)) for all H-free bipartite
graphs G. We will show that H is an induced subgraph of K1,r + rP1 or K+

1,r for some r.

For r ≥ 1, s ≥ 2, let Dr
s denote the graph formed from 2K1,s and P2r by identifying

the two end-vertices of the P2r with the central vertices of the respective K1,s’s (see also
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Fig. 21; note that D1
s = Ds,s). It is easy to verify that vc(Dr

s) = r + 1 and ivc(Dr
s) = r + s.

Note that, for every r ≥ 1,

ivc(Dr
f (r+1)) = r + f (r + 1) = r + f (vc(Dr

f (r+1))) > f (vc(Dr
f (r+1))).

Hence, for every r ≥ 1, Dr
f (r+1) cannot be H-free. Note that for r ≥ 1 and s, t ≥ 2, if s ≤ t

then Dr
s is an induced subgraph of Dr

t . Therefore, for each r ≥ 1, there must be an s such
that Dr

s is not H-free. In other words, for each r ≥ 1, H must be an induced subgraph
of Dr

s for some s.

Fig. 21: The graphs D1
3 = D3,3 and D2

2. The black vertices form a minimum independent
vertex cover.

In particular, the above means that we may assume that H is an induced subgraph
of D1

t for some t ≥ 1. If H contains at most one of the central vertices of the stars that
form the D1

t , then H is an induced subgraph of K1,t + tP1 and we are done, so we may
assume H contains both central vertices. If one of these central vertices has at most one
neighbour that is not a central vertex, then H is an induced subgraph of K+

1,t+1, and we
are done. We may therefore assume that H contains an induced D1

2. However, for every
s ≥ 2, D2

s is D1
2-free and therefore H-free, a contradiction. This completes the proof

of (i).

We now prove (ii). Let H be a graph.

(ii): "⇐". First suppose that H is an induced subgraph of K+
1,3 or of 2P1 + P3.

Case 1: H = K+
1,3.

Let G be a K+
1,3-free bipartite graph. We may assume without loss of generality that G

is connected. By Lemma 30, G is either a path, a cycle or an almost complete bipartite
graph. For the first two cases it is readily seen that ivc(G) = vc(G). For the third case we
apply Lemma 31.
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Case 2: H = 2P1 + P3.

Let G be a (2P1 + P3)-free bipartite graph with bipartite classes A and B, and let S be a
minimum vertex cover of G. Suppose S is not an independent set. Then S contains two
adjacent vertices x and y, say x ∈ A and y ∈ B. Let Ix and Iy be the set of neighbours of x

and y, respectively, in V(G) \ S . As S has minimum size, Ix and Iy are both nonempty.
Moreover, as G is bipartite, Ix ∩ Iy = ∅. As the vertices of G − S form an independent
set, no two vertices in Ix ∪ Iy are adjacent. Then |Ix| ≤ 1 or |Iy| ≤ 1, say |Ix| ≤ 1, as
otherwise x, two vertices of Ix and two vertices of Iy form an induced 2P1 + P3 in G, a
contradiction.

Let Ix = {u}. If |Iy| ≥ 2, we replace S by S ′ = (S \ {x}) ∪ {u} to obtain another
minimum vertex cover of G. Moreover, u has no neighbours in S ′. In order to see this,
let z be a neighbour of u in S ′, and let v1, v2 be two vertices in Iy. As V(G) \ S is an
independent set, u is non-adjacent to v1 and v2. As v1, v2, x, z all belong to A, they are
also mutually non-adjacent. Hence, the set {v1, v2, x, u, z} induces a 2P1 + P3 in G, a
contradiction. We conclude that replacing x by u yields a minimum vertex cover S ′ such
that G[S ′] contains at least one fewer edge than G[S ].

Let now S ∗ be a minimum vertex cover such that G[S ∗] has as few edges as possible.
If S ∗ is independent, then we have proven that ivc(G) = vc(G). Suppose S ∗ is not an
independent set. Then S ∗ contains two adjacent vertices x∗ and y∗, say x∗ ∈ A and y∗ ∈ B.
By the choice of S ∗ and the above discussion, we conclude that each of x∗ and y∗ has
exactly one (private) neighbour in V(G) \ S ∗. Since G is (2P1 + P3)-free, this means
that G − S ∗ has at most three vertices. The latter implies that at least one of |A \ S ∗| and
|B \ S ∗|, say |A \ S ∗|, has at most one vertex. But now, since |B ∩ S ∗| ≥ 1, it follows that
ivc(G) ≥ vc(G) = |S ∗| = |A ∩ S ∗| + |B ∩ S ∗| ≥ |A ∩ S ∗| + |A \ S ∗| = |A| ≥ ivc(G), and
hence ivc(G) = vc(G).

(ii): "⇒". Now suppose that H is not an induced subgraph of K+
1,3 or of 2P1 + P3. By (i),

we need only consider the case when H is an induced subgraph of K1,r + rP1 or K+
1,r

for some r ≥ 1. Hence, H contains an induced subgraph from the set {K1,4,K1,3 + P1,

3P1 + P2, 5P1}. Let G be the double star D2,2 with two leaves for each central vertex,
that is, G is the tree on vertices x, y, u1, u2, v1, v2 and edges xy, u1x, u2x, v1y, v2y. We
note that G is bipartite and (K1,4,K1,3 + P1, 3P1 + P2, 5P1)-free and thus H-free, while
vc(G) = 2 and ivc(G) = 3. This completes the proof of (ii).

We now consider Statements (1)–(9). Statement (1) follows directly from (ii), whereas
Lemmas 28 and 29 imply statements (8) and (9), respectively. We prove Statements (2)–
(7) separately.
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(2). Let G be a (K1,3 + P1)-free bipartite graph with partition classes A and B. If G has
maximum degree 2, then G is the disjoint union of paths and even cycles, implying
that ivc(G) = vc(G). Hence, we may assume that G contains a vertex u of degree at
least 3, say u ∈ A. Note that G must be connected, as otherwise u, three neighbours of u

and a vertex from another connected component of G induce a K1,3 + P1 in G. By the
(K1,3 + P1)-freeness of G, we also find that u is adjacent to every vertex of B.

First suppose that |B| ≥ 5. Consider an arbitrary vertex u′ ∈ A \ {u}. We find that u′ is
adjacent to all but at most two vertices of B, as otherwise u, u′ and three non-neighbours
of u′ in B induce a K1,3 + P1 in G, a contradiction. As |B| ≥ 5, this means that u′ has at
least three neighbours in B. Again by (K1,3 + P1)-freeness, we find that u′ is also adjacent
to all vertices of B. As u′ is an arbitrary vertex, we conclude that G is a complete bipartite
graph, which implies that ivc(G) = vc(G).

Now suppose that |B| ≤ 4. As B is an independent vertex cover of G, we find that
ivc(G) ≤ 4. If vc(G) = 3, then ivc(G) ≤ vc(G) + 1 (so Statement (2) holds). If vc(G) ≤ 1,
then ivc(G) = vc(G). Hence, we may assume that vc(G) = 2. Let S = {x, y} be a
minimum vertex cover. If S is independent, then ivc(G) = vc(G) = 2, so we may assume
that x and y are adjacent. As G is connected, bipartite, and V(G) \ S is an independent
set, we find that G is a double star. As G is (K1,3 + P1)-free and contains a vertex of
degree at least 3, and moreover S is a minimum vertex cover of G, we find that G = D1,2

or G = D2,2. Then ivc(G) = vc(G) holds in the former case and ivc(G) = vc(G) + 1 holds
in the latter case. Hence we have proven the bound of (2) and also, as demonstrated by
the graph D2,2, that this bound is tight.

(3). For some s ≥ 5, let G be an sP1-free bipartite graph with partition classes A and B.
If vc(G) ≤ 1, then ivc(G) = vc(G) and thus ivc(G) ≤ vc(G) + s − 3. Suppose that
vc(G) ≥ 2. As G is sP1-free, |A| ≤ s − 1 holds. As A is an independent vertex cover, this
means that ivc(G) ≤ s − 1 = 2 + s − 3 ≤ vc(G) + s − 3.

(4) and (5). Note that the bound for (5) immediately implies (4), so it is sufficient to
prove Statement (5). For some s ≥ 3, let G be a (sP1 + P3)-free bipartite graph with
partition classes A and B. Let S be a minimum vertex cover of G. First suppose that
each vertex of S has at most one neighbour in V(G) \ S . As S has minimum size, this
means that each vertex of S has exactly one neighbour in V(G) \ S . We replace every
u ∈ S ∩ A with its unique neighbour in V(G) \ S , and note that his neighbour belongs
to B. This results in a vertex cover S ∗ of the same size as S , but which is a subset of B.
This implies that S ∗ is independent. Thus in this case it follows that ivc(G) = vc(G).
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Now suppose that S contains a vertex u, say u ∈ A, with at least two neighbours
in V(G) \ S . As G is (sP1 + P3)-free and V(G) \ S is independent, this means that at
most s − 1 vertices of G − S belong to A. First suppose that S ⊆ A. Then, as A is an
independent set, we find that S is independent and thus ivc(G) = vc(G). Now suppose
that S \ A , ∅, so |A ∩ S | ≤ |S | − 1. As A is an independent vertex cover of G, we find
that ivc(G) ≤ |A| = |A ∩ S | + |A ∩ V(G − S )| ≤ |S | − 1 + s − 1 = vc(G) + s − 2.

The graph Ds−1,s−1, which is (sP1 + P3)-free, demonstrates the above bound is tight:
indeed vc(Ds−1,s−1) = 2, whereas ivc(Ds−1,s−1) = s − 1 + 1 = s = vc(Ds−1,s−1) + s − 2.

(6). For s ≥ 2, let G be a (K1,3 + sP1)-free bipartite graph with partition classes A and B.
If A or B has fewer than max{3s + 2, vc(G) + s} vertices, then we can take the smallest
partition class as an independent vertex cover to obtain the desired bound. We may
therefore assume that both A and B have size at least max{3s + 2, vc(G) + s}.

If every vertex in G has degree at most 2, then G is K1,3-free and by (1) we find that
ivc(G) = vc(G). By Lemma 27, we may therefore assume that fewer than s vertices of A

have more than s−1 non-neighbours in B. We will show that this leads to a contradiction.

Let S be a minimum vertex cover of G. Since A and B each have at least vc(G) + s

vertices, there must be a set S ′ of vc(G) + 1 vertices in A that has at least vc(G) + 1
neighbours in B. If a vertex x ∈ V(G) has degree at least vc(G) + 1, then |N(x)| > |S |,
so x ∈ S . Therefore every vertex of S ′ must be in S , contradicting the fact that |S ′| =
vc(G) + 1 > vc(G) = |S |.

(7). For some r ≥ 4, let G be a K1,r-free bipartite graph with partition classes A and B.
Let S be a minimum vertex cover of G. If S is independent, then ivc(G) = vc(G).
Suppose that S is not independent. Let A∗ ⊆ A be the set of neighbours of the vertices in
S ∩B. Note that |(S ∩A)∩A∗| ≥ 1, as S is not independent. Also note that (S ∩A)∪A∗ is
an independent vertex cover of G. Hence ivc(G) ≤ |(S ∩A)∪A∗| = |S ∩A|+|A∗|−|(S ∩A)∩
A∗| ≤ |S ∩A|+ (r−1)|S ∩B|−1. Similarly, ivc(G) ≤ |S ∩B|+ (r−1)|S ∩A|−1. Therefore
ivc(G) ≤ 1

2 (|S ∩A|+(r−1)|S ∩B|−1+|S ∩B|+(r−1)|S ∩A|−1) = 1
2 (r|S ∩A|+r|S ∩B|−2) =

1
2 (r|S |) − 1 = r

2 |S | − 1. To see that this is tight, note that Dr−2,r−2 is a K1,r-free bipartite
graph with vc(Dr−2,r−2) = 2 and ivc(Dr−2,r−2) = r − 1 = r

2 vc(Dr−2,r−2) − 1. ut

6.4 Feedback Vertex Set

In this section we prove Theorems 27 an 28 as part of a more general theorem. Recall
that a graph has an independent feedback vertex set if and only if it is near-bipartite. We
first show the following lemma.
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Lemma 32. If G is a (P1 + P2)-free near-bipartite graph, then ifvs(G) = fvs(G).

Proof. Let G be a (P1 + P2)-free near-bipartite graph. Note that G is a P3-free graph,
so G is a disjoint union of cliques. It follows that G is a complete multi-partite graph, say
with a partition of its vertex sets into k non-empty independent sets V1, . . . ,Vk. We may
assume that k ≥ 2, otherwise G is an edgeless graph, in which case ifvs(G) = fvs(G) = 0
and we are done. Since G is near-bipartite, it contains an independent set I such that
G − I is a forest. Note that I ⊆ Vi for some i ∈ {1, . . . , k}. Since near-bipartite graphs
are 3-colourable, it follows that k ≤ 3. Furthermore, if k = 3, then |V j| = 1 for some
j ∈ {1, 2, 3} \ {i}, otherwise G − I would contain an induced C4, a contradiction. In
other words G is either a complete bipartite graph or the graph formed from a complete
bipartite graph by adding a dominating vertex.

First suppose that k = 2, so G is a complete bipartite graph. Without loss of generality
assume that |V1| ≥ |V2| ≥ 1. Let S be a feedback vertex set of G. If there are two vertices
in V1 \ S and two vertices in V2 \ S , then these vertices would induce a C4 in G − S , a
contradiction. Therefore S must contain all but at most one vertex of V1 or all but at most
one vertex of V2, so fvs(G) ≥ min{|V1| − 1, |V2| − 1} = |V2| − 1. Let I be a set consisting
of |V2| − 1 vertices of V2. Then I is independent and G− I is a star, so I is an independent
feedback vertex set. It follows that ifvs(G) ≤ |V2| − 1. Since fvs(G) ≤ ifvs(G), we
conclude that ifvs(G) = fvs(G) in this case.

Now suppose that k = 3, so G is obtained from a complete bipartite graph by adding
a dominating vertex. Without loss of generality assume that |V1| ≥ |V2| ≥ |V3| = 1. Let S

be a feedback vertex set of G. By the same argument as in the k = 2 case, S must contain
all but at most one vertex of V1 or all but at most one vertex of V2. If there is a vertex
in Vi \ S for all i ∈ {1, 2, 3}, then these three vertices would induce a C3 in G − S , a
contradiction. Therefore S must contain every vertex in Vi for some i ∈ {1, 2, 3}. Since
|V1| ≥ |V2| ≥ |V3| = 1, it follows that |S | ≥ min{|V2| − 1 + |V3|, |V2|} = |V2|. Therefore
fvs(G) ≥ |V2|. Now V2 is an independent set and G −V2 is a star, so V2 is an independent
feedback vertex set. It follows that ifvs(G) ≤ |V2|. Since fvs(G) ≤ ifvs(G), we conclude
that ifvs(G) = fvs(G). ut

Lemma 33. If r ≥ 1 and G is a K1,r-free near-bipartite graph, then ifvs(G) ≤ (2r2 −

5r + 3) fvs(G).

Proof. Fix integers k ≥ 0 and r ≥ 1. Suppose G is a K1,r-free near-bipartite graph with a
feedback vertex set S such that |S | = k. Since G is near-bipartite, V(G) can be partitioned
into an independent set V1 and a set V(G) \ V1 that induces a forest in G. Since forests
are bipartite, we can partition V(G) \ V1 into two independent sets V2 and V3.
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Suppose x ∈ Vi for some i ∈ {1, 2, 3}. Then x has no neighbours in Vi since Vi is an
independent set. For j ∈ {1, 2, 3} \ {i}, the vertex x can have at most r − 1 neighbours
in V j, otherwise G would contain an induced K1,r. It follows that deg(x) ≤ 2(r − 1) for
all x ∈ V(G).

Let S ′ = S . Let F′ = V(G) \ S ′, so G[F′] is a forest. To prove the lemma, we will
iteratively modify S ′ until we obtain an independent feedback vertex set S ′ of G with
|S ′| ≤ (2r2−5r +3)|S |. Every vertex u ∈ S ′ has at most 2r−2 neighbours in F′. Consider
two neighbours v,w of u in F′. As F′ is a forest, there is at most one induced path in F′

from v to w, so there is at most one induced cycle in G[F′ ∪ {u}] that contains all of u, v

and w. Therefore G[F′∪{u}] contains at most
(

2r−2
2

)
= 1

2 (2r−2)(2r−2−1) = 2r2−5r +3
induced cycles. Note that every cycle in G contains at least one vertex of V1. Therefore,
if s ∈ S ′ ∩ (V2 ∪ V3), then we can find a set X of at most 2r2 − 5r + 3 vertices in
V1 \ S ′ such that if we replace s in S ′ by the vertices of X, then we again obtain a
feedback vertex set. Repeating this process iteratively, for each vertex we remove from
S ′∩ (V2∪V3), we add at most 2r2−5r+3 vertices to S ′∩V1. We stop the procedure once
S ′∩ (V2∪V3) becomes empty, at which point we have produced a feedback vertex set S ′

with |S ′| ≤ (2r2 − 5r + 3)|S |. Furthermore, at this point S ′ ⊆ V1, so S ′ is independent. It
follows that ifvs(G) ≤ (2r2 − 5r + 3) fvs(G). ut

Note that all near-bipartite graphs are 3-colourable (use one colour for the indepen-
dent set and the two other colours for the forest). We prove the following lemma.

Lemma 34. Let k ≥ 3. The class of Ck-free near-bipartite graphs is ifvs-unbounded

and ioct-unbounded.

Proof. For r, s ≥ 2, let S r
s denote the graph constructed as follows (see also Fig. 22).

Start with the graph that is the disjoint union of 2s copies of P2r, and label these copies
U1, . . . ,U s,V1, . . . ,V s. Add a vertex u adjacent to both endpoints of every U i and a
vertex v adjacent to both endpoints of every V i. Finally, add an edge between u and v.

u v

U1 U2 U3 V1 V2 V3

Fig. 22: The graph S 3
3.
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Every induced cycle in S r
s is isomorphic to C2r+1, which is an odd cycle. Thus a set

S ⊆ V(S r
s) is a feedback vertex set for S r

s if and only if it is an odd cycle transversal
for S r

s. It follows that fvs(S r
s) = oct(S r

s) and ifvs(S r
s) = ioct(S r

s).
Now {u, v} is a minimum feedback vertex set of S r

s, so fvs(S r
s) = oct(S r

s) = 2.
However, any independent feedback vertex set S contains at most one vertex of u and v;
say it does not contain u. Then it must contain at least one vertex of each U i. It follows
that ifvs(S r

s) = ioct(S r
s) ≥ s + 1. Since for every s ≥ 2, k ≥ 3, the graph S k

s is Ck-free,
this completes the proof. ut

We are now ready to prove the main result of this section, which immediately implies
Theorems 27 and 28. If an upper bound given in this theorem is tight, that is, if there
exists an H-free near-bipartite graph G for which equality holds, we again indicate this
by a ∗ in the corresponding row (whereas the other upper bounds are not known to be
tight).

Theorem 32. Let H be a graph. Then the following two statements hold:

(i) the class of H-free near-bipartite graphs is ifvs-bounded if and only if H is isomor-

phic to P1 + P2, a star or an edgeless graph.
(ii) for H , K1,3, the class of H-free near-bipartite graphs is ifvs-identical if and only

if H is a (not necessarily induced) subgraph of P3.

In particular, the following statements hold for every H-free near-bipartite graph G:

(1)∗ ifvs(G) = fvs(G) if H ⊆ P3

(2)∗ ifvs(G) ≤ fvs(G) + 1 if H = 4P1

(3) ifvs(G) ≤ fvs(G) + s − 3 if H = sP1 for s ≥ 5
(4) ifvs(G) ≤ (2r2 − 5r + 3) fvs(G) if H = K1,r for r ≥ 3.

Proof. We start by proving (i).

(i): "⇐". First suppose that H is isomorphic to P1 + P2, a star or an edgeless graph. If
H = P1 +P2, then the class of H-free near-bipartite graphs is ifvs-bounded by Lemma 32.
If H is isomorphic to a star or an edgeless graph, then H is an induced subgraph of K1,r

for some r ≥ 1. In this case the class of H-free near-bipartite graphs is ifvs-bounded by
Lemma 33.

(i): "⇒". Now suppose that the class of H-free near-bipartite graphs is ifvs-bounded.
By Lemma 34, H must be a forest. We will show that H is isomorphic to P1 + P2, a star
or an edgeless graph.
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We start by showing that H must be (P1 + P3, 2P1 + P2, 2P2)-free. Let vertices
x1, x2, x3, x4, in that order, form a path on four vertices. For s ≥ 3, let Ts be the graph
obtained from this path by adding an independent set I on s vertices (see also Fig. 23) that
is complete to the path and note that Ts is near-bipartite. Then {x1, x2, x3} is a minimum
feedback vertex set in Ts. However, if S is an independent feedback vertex set, then S

contains at most two vertices in {x1, x2, x3, x4}. Therefore S must contain at least s − 1
vertices of I, otherwise Ts −S would contain an induced C3 or C4. Therefore fvs(Ts) = 3
and ifvs(Ts) ≥ s − 1. Note that Ts is (P1 + P3, 2P1 + P2, 2P2)-free (this is easy to see
by casting to the complement and observing that Ts is the disjoint union of a P4 and a
complete graph). Therefore H cannot contain P1 + P3, 2P1 + P2 or 2P2 as an induced
subgraph, otherwise Ts would be H-free, a contradiction.

x4x3x2x1

Fig. 23: The graphs T5 and T ′5. The edge x2x3 is present in T5, but not in T ′5.

Next, we show that H must be P4-free. For s ≥ 3 let T ′s be the graph obtained
from Ts by removing the edge x2x3 (see also Fig. 23). Then {x1, x2, x3} is a minimum
feedback vertex set in T ′s, so fvs(T ′s) = 3. By the same argument as for Ts, we find that
ifvs(T ′s) ≥ s − 1. Now the complement T ′s is the disjoint union of a C4 and a complete
graph, so T ′s is P4-free. Therefore H cannot contain P4 as an induced subgraph.

We may now assume that H is a (P1 + P3, 2P1 + P2, 2P2, P4)-free forest. If H is
connected, then it is a P4-free tree, so it is a star, in which case we are done. We may
therefore assume that H is disconnected. We may also assume that H contains at least one
edge, otherwise we are done. Since H is (2P1 + P2)-free, it cannot have more than two
connected components. Since H is 2P2-free, one of its two connected components must
be isomorphic to P1. Since H is a (P1 + P3)-free forest, its other connected component
must be isomorphic to P2. Hence H is isomorphic to P1 + P2. This completes the proof
of (i).

We now prove (ii). Let H be a graph not isomorphic to K1,3.

(ii): "⇐". First suppose that H is a subgraph of P3. If H ⊆i P1+P2, then ifvs(G) = fvs(G)
for every H-free near-bipartite graph G by Lemma 32. If H ⊆i P3, then every H-free
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near-bipartite graph G is a disjoint union of complete graphs on at most three vertices,
and hence ifvs(G) = fvs(G) holds. Finally, suppose that H ⊆i 3P1. Let G be a 3P1-free
near-bipartite graph. As G is 3P1-free, every minimum independent feedback vertex set
of G has size at most 2. Hence, every minimum feedback vertex set of G also has size at
most 2. Moreover, if it has size less than 2, then it is an independent feedback vertex set.
We conclude that ifvs(G) = fvs(G).

(ii): "⇒". Now suppose that H is not a subgraph of P3. Recall that we assume that
H , K1,3. By (i), we may then assume that H = K1,r for some r ≥ 4 or H = sP1 for
some s ≥ 4. Consider the graph G in Fig. 24. It is straightforward to check that G is
4P1-free and near-bipartite; {u, v} is a minimum feedback vertex set (indeed G − {u, v}

is P5) while ifvs(G) = 3; for instance, {v, v2, v3} is a minimum independent feedback
vertex set of G. This completes the proof of (ii).

We now consider Statements (1)–(4). Statement (1) follows directly from Statement (ii),
whereas Lemma 33 implies Statement (4). We prove Statements (2) and (3) below.

(2) and (3). First note that, as shown in the proof of Statement (ii), the graph G in
Fig. 24 is 4P1-free, with fvs(G) = 2 and ifvs(G) = 3, so the bound in Statement (2)
is tight. It remains to prove that ifvs(G) ≤ fvs(G) + s − 3 if H = sP1 with s ≥ 4
(this proves the bounds in Statements (2) (s = 4) and (3) (s ≥ 5)). Let G be an
sP1-free near-bipartite graph. If fvs(G) ≤ 1, then ifvs(G) = fvs(G). Hence, we may
assume that fvs(G) ≥ 2. As G is near-bipartite, V(G) can be partitioned into three
independent sets V1, V2, V3, such that V2∪V3 induce a forest. Hence, V1 is an independent
feedback vertex set. As G is sP1-free, V1 has size at most s − 1. This means that
ifvs(G) ≤ s − 1 = 2 + s − 3 ≤ fvs(G) + s − 3. This completes the proof of Statements (2)
and (3). ut

6.5 Odd Cycle Transversal

In this section we prove Theorems 29 and 30 as part of a more general theorem. Recall
that a graph has an independent odd cycle transversal if and only if it is 3-colourable.
Before proving the main result of this section, we first provide a sequence of auxiliary
statements.

Lemma 35. If G is a P4-free 3-colourable graph, then ioct(G) = oct(G).

Proof. Let G be a P4-free 3-colourable graph. It suffices to prove the lemma for each
connected component, so we may assume that G is connected. Note that G cannot contain
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u

v

v2

v3

Fig. 24: An example of a 4P1-free near-bipartite graph G with ifvs(G) = fvs(G) + 1,
which shows that the bound in Theorem 32(2) is tight.

any induced odd cycles on more than three vertices, as it is P4-free. Let (V1,V2,V3)
be a partition of V(G) into independent sets. We may assume that G is not bipartite,
otherwise ioct(G) = oct(G) = 0, in which case we are done. As G is connected, P4-free
and contains more than one vertex, its complement G must be disconnected. Therefore
we can partition the vertex set of G into two parts X1 and X2 such that X1 is complete
to X2. No independent set Vi can have vertices in both X1 and X2, so without loss of
generality we may assume that X1 = V1 and X2 = V2 ∪ V3. Since G[X2] is a P4-free
bipartite graph, it is readily seen that it is a disjoint union of complete bipartite graphs.

Note that G − X1 is a bipartite graph, so X1 is an odd cycle transversal of G. Fur-
thermore, X1 is independent. Now let S be a minimum vertex cover of G[X2]. Observe
that G − S is bipartite, so S is an odd cycle transversal of G. Since G[X2] is the disjoint
union of complete bipartite graphs, for every connected component C of G[X2], S must
contain one part of the bipartition of C, or the other; by minimality of S , it only contains
vertices from one of the parts. It follows that S is independent.

We now claim that every minimum odd cycle transversal S of G contains either X1

or a minimum vertex cover of G[X2], both of which we have shown are independent odd
cycle transversals; by the minimality of S , this will imply that S is equal to one of them.
Indeed, suppose for contradiction that S is a minimum odd cycle transversal such that
there is a vertex x ∈ X1 \ S and two adjacent vertices y, z ∈ X2 \ S . Then G[{x, y, z}] is
a C3 in G − S . This contradiction completes the proof. ut

Lemma 36. If G is a K1,3-free 3-colourable graph, then ioct(G) ≤ 3 oct(G).

Proof. Fix an integer k ≥ 0. Let G be a K1,3-free 3-colourable graph with an odd
cycle transversal S such that |S | = k. Fix a partition of V(G) into three independent
sets V1,V2,V3. Without loss of generality assume that |S ∩ V1| ≥ |S ∩ V2|, |S ∩ V3|, so
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|S ∩ (V2 ∪ V3)| ≤ 2k
3 . Let S ′ = S and note that G − S ′ is bipartite by definition of odd

cycle transversal. To prove the lemma, we will iteratively modify S ′ until we obtain an
independent odd cycle transversal S ′ of G with |S ′| ≤ 3k.

Suppose x ∈ Vi for some i ∈ {1, 2, 3}. Then x has no neighbours in Vi since Vi is an
independent set. For j ∈ {1, 2, 3} \ {i}, the vertex x can have at most two neighbours in V j,
otherwise G would contain an induced K1,3. It follows that deg(x) ≤ 4 for all x ∈ V(G).

As G − S ′ is a bipartite K1,3-free graph, it is a disjoint union of paths and even cycles.
Every vertex u ∈ S ′ has at most four neighbours in V(G) \ S ′. An induced odd cycle
in G − (S ′ \ {u}) consists of the vertex u and an induced path P in G − S ′ between two
neighbours v,w of u such that P∩ N(u) does not contain any vertices apart from v and w.
If u has q neighbours in some connected component C of G − S ′, then there can be
at most q such paths P that lie in this connected component. It follows that there are
at most four induced odd cycles in G − (S ′ \ {u}). Note that every induced odd cycle
in G contains at least one vertex in each Vi. Therefore, if s ∈ S ′ ∩ (V2 ∪ V3), then we
can find a set X of at most four vertices in V1 \ S ′ such that if we replace s in S ′ by
the vertices of X, then we again obtain an odd cycle transversal. Repeating this process
iteratively, for each vertex we remove from S ′ ∩ (V2 ∪ V3), we add at most four vertices
to S ′ ∩ V1, so |S ′| increases by at most 3. We stop the procedure once S ′ ∩ (V2 ∪ V3)
becomes empty, at which point we have produced an odd cycle transversal S ′ with
|S ′| ≤ |S | + 3|S ∩ (V2 ∪ V3)| ≤ k + 3 × 2k

3 = 3k. Furthermore, at this point S ′ ⊆ V1, so S ′

is independent. It follows that ioct(G) ≤ 3 oct(G). ut

Lemma 37. Let r, s ≥ 1. Suppose there is a function f : N → N such that ioct(G) ≤
f (oct(G)) for every K1,r-free 3-colourable graph G. Then ioct(G) ≤ max{oct(G)r + r2 +

3rs − 2r, f (oct(G))} for every (K1,r + sP1)-free 3-colourable graph G.

Proof. Fix r, s ≥ 1 and k ≥ 0. Let G be a (K1,r + sP1)-free 3-colourable graph with
a minimum odd-cycle transversal T on k vertices. Fix a partition of V(G) into three
independent sets V1,V2,V3. We may assume that oct(G) ≥ 2, otherwise ioct(G) = oct(G)
and we are done. If |Vi| ≤ max{oct(G)r + r2 + 3rs − 2r, f (oct(G))} for some i ∈ {1, 2, 3},
then deleting Vi from G yields a bipartite graph, so ioct(G) ≤ max{oct(G)r+r2 +3rs−2r,

f (oct(G))} and we are done. We may therefore assume that |Vi| > max{oct(G)r + r2 +

3rs − 2r, f (oct(G))} for all i ∈ {1, 2, 3}. If G is K1,r-free, then ioct(G) ≤ f (oct(G)), so
suppose that G contains an induced K1,r, say with vertex set X. Note that |X| = r + 1, and
each Vi can contain at most r vertices of X, since every Vi is an independent set.

For every i ∈ {1, 2, 3}, there cannot be a set of s vertices in Vi \ X that are anti-
complete to X, otherwise G would contain an induced K1,r + sP1, a contradiction.
For every i ∈ {1, 2, 3}, since |Vi| > oct(G)r + r2 + 3rs − 2r ≥ r2 + 3rs, it follows that
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|Vi \X| ≥ |Vi|−r > (s−1)+ (r+1)(r−1) = (s−1)+ |X|(r−1). Hence for every i ∈ {1, 2, 3},
there must be a vertex x ∈ X that has at least r neighbours in Vi. Applying this for each i

in turn, we find that at least two of the graphs in {G[V1 ∪ V2],G[V1 ∪ V3],G[V2 ∪ V3]}
contain a vertex of degree at least r; without loss of generality assume that this is the
case for G[V1 ∪ V2] and G[V1 ∪ V3]. Let V ′2 and V ′3 denote the set of vertices in V2

and V3, respectively, that have more than s − 1 non-neighbours in V1. By Lemma 27,
|V ′2|, |V

′
3| ≤ s − 1.

Suppose a vertex x ∈ V2 \ V ′2 is adjacent to a vertex y ∈ V3 \ V ′3. By definition
of V ′2 and V ′3, the vertices x and y each have at most s − 1 non-neighbours in V1.
Since |V1| − 2(s − 1) ≥ oct(G) + 1, it follows that |N(x) ∩ N(y) ∩ V1| ≥ oct(G) + 1 so
N(x) ∩ N(y) ∩ V1 * T . We conclude that at least one of x or y must be in T . In other
words, T ∩ ((V2 \ V ′2) ∪ (V3 \ V ′3)) is a vertex cover of G[(V2 \ V ′2) ∪ (V3 \ V ′3)], of size
at most oct(G). Therefore (T ∩ ((V2 \ V ′2) ∪ (V3 \ V ′3))) ∪ V ′2 ∪ V ′3 is a vertex cover of
G[V2∪V3] of size at most oct(G)+2(s−1). By Lemma 28, there is an independent vertex
cover T ′ of G[V2 ∪ V3] of size at most (oct(G) + 2(s − 1))r + rs = oct(G)r + 3rs − 2r.
Note that by definition of vertex cover, (V2 ∪ V3) \ T ′ is an independent set, and so
G − T ′ is bipartite. Therefore T ′ is an independent odd cycle transversal for G of size at
most oct(G)r + 3rs − 2r. This completes the proof. ut

The following result follows immediately from combining Lemmas 36 and 37.

Corollary 2. For s ≥ 1, ioct(G) ≤ 3 oct(G) + 9s + 3 for every (sP1 + K1,3)-free 3-

colourable graph G.

Lemma 38. The class of (P1 + P4, 2P2)-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 2. We construct the graph Qs as follows (see also Fig. 25). First, let A, B

and C be disjoint independent sets of s vertices. Choose vertices a ∈ A, b ∈ B and c ∈ C.
Add edges so that a is complete to B ∪C, b is complete to A ∪C and c is complete to
A ∪ B. Let Qs be the resulting graph and note that it is 3-colourable with colour classes
A, B and C.

Note that {a, b} is a minimum odd cycle transversal of Qs, so oct(Qs) = 2.
Let S be a minimum independent odd cycle transversal. Then S contains at most

one vertex in {a, b, c}, say S contains neither b nor c. If a vertex x ∈ A is not in S , then
Qs[{x, b, c}] is a C3 in Qs − S , a contradiction. Hence every vertex of A is in S , and so
ioct(Qs) ≥ s.

It remains to show that Qs is (P1 + P4, 2P2)-free. Consider a vertex x ∈ A. Then
Qs − N[x] is an edgeless graph if x = a and Qs − N[x] is the disjoint union of a star
and an edgeless graph otherwise. It follows that Qs − N[x] is P4-free. By symmetry,
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A \ {a}

B \ {b} C \ {c}

a

bc

Fig. 25: The graph Q4.

we conclude that Qs is (P1 + P4)-free. Now consider a vertex y ∈ N(a) ∩ B. Then
Qs − N[{a, y}] is empty if y = b and Qs − N[{a, y}] is an edgeless graph otherwise. It
follows that Qs − N[{a, y}] is P2-free. By symmetry, we conclude that Qs is 2P2-free.
This completes the proof.

Lemma 39. Let H be a graph with more than one vertex of degree at least 3. Then the

class of H-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 1. We construct the graph Zs as follows (see also Fig. 26). Start with the
disjoint union of s copies of P4 and label these copies U1, . . . ,U s. Add an edge ab and
make a and b adjacent to both endpoints of every U i. Let Zs be the resulting graph and
note that Zs is 3-colourable (colour a and b with Colours 1 and 2, respectively, colour
the endpoints of the U is with Colour 3 and colour the remaining vertices of the U is with
Colours 1 and 2).

Note that Zs − {a, b} is bipartite, so {a, b} is a minimum odd cycle transversal and
oct(Zs) = 2. However, any independent odd cycle transversal S contains at most one
vertex of a and b; say it does not contain a. For every i ∈ {1, . . . , s}, the graph Zs[U i∪{a}]
is a C5. Therefore S must contain at least one vertex from each U i. It follows that
ioct(Zs) ≥ s.

Let H be a graph with more than one vertex of degree at least 3. By Lemma 34,
we may assume that H is a forest. It remains to show that Zs is H-free. Suppose, for
contradiction, that Zs contains H as an induced subgraph and let x and y be two vertices
that have degree at least 3 in H. Since H is a forest, x and y must each have three pairwise
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a b

U1 U2 U3 U4

Fig. 26: The graph Z4.

non-adjacent neighbours in Zs. The endpoints of each U i have exactly three neighbours,
but two of them (a and b) are adjacent. Without loss of generality we may therefore
assume that x = a and y = b. Since x has degree at least 3 in H, the vertex x must have
a neighbour z , y in H and so z must be the endpoint of a U i. Therefore x, y and z

are pairwise adjacent, so H[{x, y, z}] is a C3, contradicting the fact that H is a forest. It
follows that Zs is H-free. This completes the proof. ut

Lemma 40. The class of K1,5-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 1. We construct the graph Ys as follows (see also Fig. 27).

1. Start with the disjoint union of four copies of P3s and label the vertices of these
paths a1, . . . , a3s, b1, . . . , b3s, c1, . . . , c3s and d1, . . . , d3s in order, respectively.

2. For each i ∈ {1, . . . , 3s} add the edges aibi and cidi.

3. For each i ∈ {1, . . . , 3s − 1} add the edges aici+1 and dibi+1.

4. Finally, add an edge xy and make x adjacent to a1 and d1 and y adjacent to a1, b1, c1

and d1.

Let Ys be the resulting graph.

First note that Ys is K1,5-free. The vertices y, a1 and d1 all have degree 5, but their
neighbourhood is not independent, so they cannot be the central vertex of an induced K1,5.
All the other vertices have degree at most 4, so they cannot be the central vertex of an
induced K1,5 either. Therefore no vertex in Ys is the central vertex of an induced K1,5,
so Ys is K1,5-free.

The graph Ys − {x, y} is bipartite with bipartition classes:

1. {ai, ci | 1 ≤ i ≤ 3s, i ≡ 1 mod 2} ∪ {bi, di | 1 ≤ i ≤ 3s, i ≡ 0 mod 2} and

2. {ai, ci | 1 ≤ i ≤ 3s, i ≡ 0 mod 2} ∪ {bi, di | 1 ≤ i ≤ 3s, i ≡ 1 mod 2}.
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x
y

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Fig. 27: The graph Y2. Different shapes show the unique 3-colouring of Y2. Different
colours show the 2-colouring of Y2 − {x, y}.

It follows that oct(Ys) = 2.

Furthermore, Ys is 3-colourable with colour classes:

1. {x} ∪ {ai, di | 1 ≤ i ≤ 3s, i ≡ 2 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 1 mod 3},

2. {y} ∪ {ai, di | 1 ≤ i ≤ 3s, i ≡ 0 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 2 mod 3} and

3. {ai, di | 1 ≤ i ≤ 3s, i ≡ 1 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 0 mod 3}.

In fact, we will show that this 3-colouring is unique (up to permuting the colours). To see
this, suppose that c : V(Ys)→ {1, 2, 3} is a 3-colouring of Ys. Since x and y are adjacent
we may assume without loss of generality that c(x) = 1 and c(y) = 2. Since a1 and d1

are adjacent to both x and y, it follows that c(a1) = c(d1) = 3. Since b1 is adjacent to y

and a1, it follows that c(b1) = 1. By symmetry c(c1) = 1.

We prove by induction on i that for every i ∈ {1, . . . , 3s}, c(ai) = c(di) ≡ i + 2 mod 3
and c(bi) = c(ci) ≡ i mod 3. We have shown that this is true for i = 1. Suppose that the
claim holds for i − 1 for some i ∈ {2, . . . , 3s}. Then c(ai−1) = c(di−1) ≡ (i − 1) + 2 mod 3
and c(bi−1) = c(ci−1) ≡ i − 1 mod 3. Since bi is adjacent to bi−1 and di−1, it follows
that c(bi) ≡ i mod 3. Since ai is adjacent to bi and ai−1, it follows that c(ai) ≡ i+2 mod 3.
By symmetry c(ci) ≡ i mod 3 and c(di) ≡ i+2 mod 3. Therefore the claim holds for i. By
induction, this completes the proof of the claim and therefore shows that the 3-colouring
of Ys is indeed unique.

Furthermore, note that the colour classes in this colouring have sizes 4s + 1, 4s + 1
and 4s, respectively. A set S is an independent odd cycle transversal of a graph if and
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only if it is a colour class in some 3-colouring of this graph. It follows that ioct(Ys) = 4s.
This completes the proof. ut

Before we can prove our main theorem of this section, we need one more lemma,
due to Olariu.

Lemma 41 ([86]). Every connected component of a P1 + P3-free graph is either C3-free

or complete multi-partite.

We are now ready to prove the main result of this section, which immediately implies
Theorems 29 and 30. If an upper bound given in this theorem is tight, that is, if there
exists an H-free 3-colourable graph G for which equality holds, we again indicate this by
a ∗ in the corresponding row (whereas the other upper bounds are not known to be tight).

Theorem 33. Let H be a graph. Then the following two statements hold:

(i) the class of H-free 3-colourable graphs is ioct-bounded

– if H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0 and

– only if H is an induced subgraph of K+
1,4 or K1,4 + sP1 for some s ≥ 0.

(ii) For H < {K1,3,K+
1,3, 2P1 + P3}, the class of H-free 3-colourable graphs is ioct-

identical if and only if H is a (not necessarily induced) subgraph of P4 that is not

isomorphic to 2P2.

In particular, the following statements hold for every H-free bipartite graph G:

(1)∗ ioct(G) = oct(G) if H ⊆ P4 but H , 2P2

(2) ioct(G) ≤ oct(G) + s − 3 if H = sP1 for s ≥ 5

(3) ioct(G) ≤ oct(G) + 3s − 1 if H = sP1 + P2 for s ≥ 3

(4) ioct(G) ≤ 2 oct(G) + 6s if H = sP1 + P3 for s ≥ 2

(5) ioct(G) ≤ 3 oct(G) if H = K1,3

(6) ioct(G) ≤ 3 oct(G) + 9s + 3 if H = K1,3 + sP1 for s ≥ 1.

Proof. We start by proving (i).

(i): "⇐". First suppose that H is an induced subgraph of P4 or K1,3 + sP1 for some
s ≥ 0. Then the class of H-free 3-colourable graphs is ioct-bounded by Lemma 35 or
Corollary 2, respectively.
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(i): "⇒". Now suppose that the class of H-free 3-colourable graphs is ioct-bounded. We
will prove that H must be an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0. By
Lemma 34, H must be a forest. By Lemma 40, H must be K1,5-free. Since H is a K1,5-free
forest, it has maximum degree at most 4. By Lemma 38, H must be (P1 + P4, 2P2)-free.

First suppose that H is P4-free, so every connected component of H is a P4-free tree.
Hence every connected component of H is a star. In fact, as H has maximum degree
at most 4, every connected component of H is an induced subgraph of K1,4. As H is
2P2-free, at most one connected component of H contains an edge. Therefore H is an
induced subgraph of K1,4 + sP1 for some s ≥ 0 and we are done.

Now suppose that H contains an induced P4, say on vertices x1, x2, x3, x4 in that
order and let X = {x1, x2, x3, x4}. Since H is a forest, every vertex v ∈ V(H) \ X has at
most one neighbour in X. A vertex v ∈ V(H) \ X cannot be adjacent to x1 or x4, since H

is 2P2-free. By Lemma 39, the vertices x2 and x3 cannot both have neighbours outside X;
without loss of generality assume that x3 has no neighbours in V(H) \ X. Since H is
(P1 + P4)-free, every vertex v ∈ V(H) \ X must have at least one neighbour in X, so it
must be adjacent to x2. As H has maximum degree at most 4, it follows that H is an
induced subgraph of K+

1,4. This completes the proof of (i).

We now prove (ii). Let H be a graph that is not isomorphic to a graph in {K1,3,K+
1,3, 2P1+P3}.

(ii): "⇐". First suppose that H is a subgraph of P4 that is not isomorphic to 2P2. If H is
an induced subgraph of P4, then the claim follows from Lemma 35. It is sufficient to
prove that ioct(G) = oct(G) if G is a 3-colourable H-free graph in three remaining cases,
namely when H = 4P1, H = P1 + P3 and H = 2P1 + P2.

Case 1: H = 4P1.
Let G be a 4P1-free 3-colourable graph and let X1, X2, X3 be the colour classes of some
3-colouring of G. Note that |X1|, |X2|, |X3| ≤ 3 since G is 4P1-free and X1, X2, X3 are
independent sets. If oct(G) ≤ 1 then ioct(G) = oct(G), so we need only consider the case
when oct(G) ≥ 2. Since G is 4P1-free, every independent odd cycle transversal has at
most three vertices, so ioct(G) ≤ 3.

Suppose, for contradiction, that oct(G) , ioct(G). Since oct(G) ≤ ioct(G), it follows
that oct(G) = 2 and ioct(G) = 3. If |Xi| < 3 for some i ∈ {1, 2, 3} then Xi is an
independent odd cycle transversal on fewer than three vertices, a contradiction. It follows
that |X1| = |X2| = |X3| = 3 and so G has exactly nine vertices. Let S be a minimum
odd cycle transversal of G, in which case |S | = 2. Then G − S is a bipartite graph on
seven vertices. Therefore one of the parts of G − S contains at least four vertices, and
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so G − S (and therefore G) contains an induced 4P1. This contradiction implies that
ioct(G) = oct(G).

Case 2: H = P1 + P3.
Let G be a (P1 + P3)-free 3-colourable graph and let X1, X2, X3 be the colour classes of
some 3-colouring of G. By Lemma 41, every connected component of a P1 + P3-free
graph is either C3-free or complete multi-partite. Let D1, . . . ,Dr be the connected com-
ponents of G. Then V(G) can be partitioned into sets A1, . . . , Ar, with Ai = V(Di) for
i ∈ {1, . . . , r}, such that

(a) for all i ∈ {1, . . . , r}, the graph G[Ai] is either 3P1-free or a disjoint union of complete
graphs, and

(b) for all i, j ∈ {1, . . . , r} with i , j, the set Ai is complete to the set A j.

As G is 3-colourable and hence contains no K4, Property (b) implies that r ≤ 3. First
suppose that r = 3. Then, as G is 3-colourable, each Ai must be an independent set.
Hence, G is a complete 3-partite graph with partition classes A1, A2, A3. It follows that
ioct(G) = oct(G) = min{|A1|, |A2|, |A3|}.

Now suppose that r = 2. As G is 3-colourable and A1 is complete to A2, one of the
sets A1 or A2, say A1, must be an independent set, and the other set, A2, must induce a
bipartite graph. First assume that G[A2] is a disjoint union of complete graphs. As G[A2]
is bipartite, this means that every connected component of G[A2] has at most two vertices
(see Fig. 28 for an example). Pick a vertex of each edge in G[A2] and let A′2 be the set of

A1

A2

Fig. 28: An example of a (P1 + P3)-free 3-colourable graph G in the case when r = 2
and G[A2] is the disjoint union of one or more complete graphs on at most two vertices.

selected vertices. Then ioct(G) = oct(G) = min{|A1|, |A′2|}. By Property (a), it remains
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to consider the case when G[A2] is bipartite and 3P1-free. Then ivc(G[A2]) ≤ 2 and so
ioct(G) ≤ 2 and therefore ioct(G) = oct(G).

Finally, suppose that r = 1. If G = G[A1] is the disjoint union of complete graphs,
then each complete graph must have at most three vertices (as G is 3-colourable). This
implies that ioct(G) = oct(G). If G = G[A1] is 3P1-free, then ioct(G) ≤ 2 and therefore
ioct(G) = oct(G). We conclude that ioct(G) = oct(G).

Case 3: H = 2P1 + P2.
Let G be a (2P1+P2)-free 3-colourable graph. As G is 3-colourable, we can partition V(G)
into three independent sets A, B, C. If oct(G) ≤ 1, then ioct(G) = oct(G). Hence, we
may assume that oct(G) ≥ 2. For contradiction, we assume that ioct(G) ≥ oct(G) + 1. As
oct(G) ≥ 2, it follows that G is not bipartite. Hence, A, B, C are non-empty and moreover,
there exists an edge between each pair of these sets. We claim that every subgraph of G

induced by two vertices in one set in {A, B,C} and two vertices in another set in {A, B,C}
has at least one edge. This can be seen as follows. For contradiction, suppose that there
exist two vertices a1, a2 of A and two vertices b1, b2 of B, such that {a1, a2, b1, b2} is an
independent set. As G[A ∪ B] contains an edge, there exist adjacent vertices x ∈ A and
y ∈ B. As {a1, a2, b1, b2} is an independent set, it follows that x < {a1, a2} or y < {b1, b2}.
Assume without loss of generality that x < {a1, a2}. Then y must be adjacent to least
one of a1, a2, as otherwise {a1, a2, x, y} would induce 2P1 + P2. Assume without loss of
generality that y is adjacent to a1. Then y < {b1, b2}, as {a1, a2, b1, b2} is an independent
set. However, now {b1, b2, a1, y} induces 2P1 + P2, a contradiction. Hence, the claim
holds.

Now let S be a minimum odd cycle transversal of G. Let A′ = A \ S , B′ = B \ S and
C′ = C \ S . First suppose that each of A′, B′, C′ contains at least three vertices. As S is
an odd cycle transversal, G − S = G[A′ ∪ B′ ∪C′] is bipartite. Hence, A′ ∪ B′ ∪C′ can
be partitioned into two independent sets X and Y . As each of A′, B′, C′ has at least three
vertices, one of X, Y , say X, contains two vertices of at least two sets of A′, B′, C′. By
the above claim, G[X] contains an edge, a contradiction. Hence, we may assume without
loss of generality that |A′| ≤ 2, so |S ∩ A| ≥ |A| − 2. Since A is an independent odd cycle
transversal, it follows that |A| ≥ ioct(G). Hence, we obtain

|S ∩ A| ≥ |A| − 2 ≥ ioct(G) − 2 ≥ oct(G) − 1 = |S | − 1.

As S is not an independent set, this implies that |S ∩ A| = |A| − 2 = |S | − 1, and
thus S contains exactly one vertex from B ∪C, say, S ∩ B = {b} (and thus S ∩C = ∅).
As |S ∩ A| = |A| − 2, it follows that |A′| = |A \ S | = 2. Let A′ = {a′, a′′}. Since
ioct(G) > oct(G) ≥ 2, and B and C are odd cycle transversals, it follows that |B|, |C| ≥ 3.
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Suppose that |B| ≥ 4. As ioct(G) > oct(G), the independent set (A ∩ S ) ∪ {a′′} is
not an odd cycle transversal. Consequently, G − ((A ∩ S ) ∪ {a′′}) = G[{a′} ∪ B ∪ C]
is not bipartite. As G[B ∪ C] is bipartite, this means that G − ((A ∩ S ) ∪ {a′′}) has an
odd cycle containing a′. This implies that a′ has a neighbour in both B and C. As G

is (2P1 + P2)-free and |B| ≥ 4, this means that a′ has at least three neighbours in B,
and thus at at least two neighbours b1, b2 in B \ {b}. As |C| ≥ 3, we find for the same
reason that a′ has at least two neighbours c1, c2 in C. By our previous claim, there is
at least one edge with one end-vertex in {b1, b2}, say b1, and the other one in {c1, c2},
say c1. However, now {a′, b1, c1} induces a C3 in G − ((A ∩ S ) ∪ {b}), contradicting the
fact that S = (A ∩ S ) ∪ {b} is an odd cycle transversal. We conclude that |B| = 3, say
B = {b, b′, b′′}.

As 3 = |B| ≥ ioct(G) > oct(G) = |S | ≥ 2, we find that |S | = 2. Hence |S ∩ A| = 1
and |A| = |S | + 2 = 3, say S = {a, b} and A = {a, a′, a′′}. In particular, both a′ and a′′ are
adjacent to at least one vertex of B and to at least one vertex of C, as otherwise {a, a′′} or
{a, a′}, respectively, is an independent odd cycle transversal of G of size 2.

By our claim, there exists at least one edge between a vertex of {a′, a′′}, say a′, and a
vertex of {b′, b′′}, say b′. Since {b, b′′} is not an odd cycle transversal and G[A ∪ C] is
bipartite, b′ belongs to an odd cycle in G− {b, b′′} = G[A∪C∪ {b′}]. This implies that b′

has a neighbour in C. This, together with the fact that G is (2P1 + P2)-free, implies that b′

is adjacent to all but at most one vertex in C. Recall that a′ also has a neighbour in C.
By the same argument, this means that a′ is adjacent to all but at most one vertex in C.
Since |C| ≥ 3, we find that a′ and b′ have a common neighbour c ∈ C. Then, as a′ and b′

are adjacent, {a′, b′, c} induces a C3 in G − {a, b}, contradicting the fact that S = {a, b} is
an odd cycle transversal of G. We conclude that ioct(G) = oct(G).

(ii): “⇒”. Now suppose that H = 2P2 or H is not a subgraph of P4. By (i) we may
assume that H is an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0, which
in particular implies that H , 2P2. Recall that H < {K1,3,K+

1,3, 2P1 + P3}. This means
that H contains an induced subgraph from the set {K1,4,K1,3 + P1, 5P1, 3P1 + P2}.

First consider the graph G from Fig. 29 and note G is (K1,4,K1,3 + P1, 5P1)-free
and 3-colourable. Moreover, {u, v} is a minimum odd cycle transversal, so oct(G) =

2, while ioct(G) = 3 (for instance, {u, u1, u2} is a minimum independent odd cycle
transversal of G). Now consider the graph G from Fig. 30. It is readily seen that G is
(3P1 + P2)-free and 3-colourable. Moreover, oct(G) = 2, as {u, v} is a minimum odd
cycle transversal, while ioct(G) = 3 (for instance, {u, u1, u2} is a minimum independent
odd cycle transversal of G). This completes the proof of (ii).
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u v

u1

u2

Fig. 29: A (K1,4,K1, + P1, 5P1)-free 3-colourable graph G with ioct(G) = oct(G) + 1.

u v

u1

u2

Fig. 30: A (3P1 + P2)-free 3-colourable graph G with ioct(G) = oct(G) + 1.

We now consider Statements (1)–(6). Statement (1) immediately follows from State-
ment (ii), whereas Lemma 36 and Corollary 2 imply Statements (5) and (6), respectively.
It remains to prove Statements (2)–(4).

(2). Let H = sP1 for some s ≥ 5. Let G be an sP1-free 3-colourable graph. If oct(G) ≤ 1,
then ioct(G) = oct(G). Hence, we may assume that oct(G) ≥ 2. As G is 3-colourable,
V(G) can be partitioned into three independent sets V1, V2, V3. Hence, V1 is an indepen-
dent odd cycle transversal. As G is sP1-free, V1 has size at most s − 1. This means that
ioct(G) ≤ s − 1 = 2 + s − 3 ≤ oct(G) + s − 3.
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(3) and (4). Statements (3) and (4) follow from Lemma 37 after observing that ioct(G) =

oct(G) holds for every K1,r-free 3-colourable graph G with r ∈ {1, 2} (this also follows
from (1)). This completes the proof. ut

6.6 Conclusions

To develop an insight into the price of independence for classical concepts, we have
investigated whether or not the size of a minimum independent vertex cover, feedback
vertex set or odd cycle transversal is bounded in terms of the minimum size of the
not-necessarily-independent variant of each of these transversals for H-free graphs (that
have such independent transversals). While we note that the bounds we give in some of
our results are tight, in this section we were mainly concerned with obtaining dichotomy
results on whether there is a bound, rather than trying to find exact bounds. We will now
discuss some open problems resulting from our work.

We fully classified for which graphs H the class of H-free bipartite graphs is
ivc–bounded and for which graphs H the class of H-free near-bipartite graphs is
ifvs-bounded. By Lemma 37, for r, s ≥ 1 the class of K1,r-free 3-colourable graphs
is ioct-bounded if and only if the class of (K1,r + sP1)-free 3-colourable graphs is
ioct-bounded. Therefore, Theorem 29 (and similarly, Theorem 33 (i)) leaves three open
cases with respect to ioct-boundedness, as follows:

Open Problem 14 Determine whether the class of H-free 3-colourable graphs is ioct-
bounded when H is:

1. K1,4 (or equivalently K1,4 + sP1 for any s ≥ 1),
2. K+

1,3 or
3. K+

1,4.

We fully classified for which graphs H the class of H-free bipartite graphs is
ivc–identical. However, we have a few remaining cases for the notions of being ifvs-
identical (one open case) and being ioct-identical (three open cases):

Open Problem 15 Does there exist a K1,3-free near-bipartite graph G with ifvs(G) >
fvs(G)?

Open Problem 16 For H ∈ {K1,3,K+
1,3, 2P1+P3}, does there exist an H-free 3-colourable

graph G with ioct(G) > oct(G)?

In particular, we note that the H = K+
1,3 case is the only one open for both Open Prob-

lem 14 and Open Problem 16. We also note that, in contrast to the class of (2P1 +P3)-free
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3-colourable graphs (see, for example, [19]), the classes of K1,3-free near-bipartite
graphs and K1,3-free 3-colourable graphs are NP-complete to recognize. This follows
from the results that the problems of deciding near-bipartiteness [12] and deciding 3-
colourability [61] are NP-complete for line graphs, which form a subclass of K1,3-free
graphs.

As results for the price of connectivity implied algorithmic consequences for con-
nected transversal problems [28,64], it is natural to ask whether our results for the price
of independence have similar consequences. The problems Independent Vertex Cover,
Independent Feedback Vertex Set and Independent Odd Cycle Transversal ask to
determine the minimum size of the corresponding independent transversal. The first
problem is readily seen to be polynomial-time solvable. The other two problems are
NP-hard for H-free graphs whenever H is not a linear forest [12], just like their classi-
cal counterparts Feedback Vertex Set [79,83] and Odd Cycle Transversal [39] (see
also [66,69]). The complexity of these four problems restricted to H-free graphs is still
poorly understood when H is a linear forest. Our results suggest that it is unlikely that
we can obtain polynomial algorithms for the independent variants based on results for
the original variants, as the difference between ifvs(G) and fvs(G) and between ioct(G)
and oct(G) can become unbounded quickly.
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