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Abstract

Latency in the control loop of Adaptive Optics (AO) systems can severely

limit its performance. Theories describing the temporal evolution of the at-

mospheric turbulence, such as the frozen flow hypothesis, justify the feasibility

of predicting the turbulence (or equivalently its measurements) to compensate

for the resultant temporal error in the system. This will mostly benefit AO

assisted High Contrast Imaging (HCI) instruments for enhanced contrast, or

wide-field AO systems for improved sky coverage.

In this thesis, we explore the potential of an Artificial Neural Network (ANN)

as a nonlinear tool for open-loop wavefront prediction. The ANN predictor

composes mainly Long Short-Term Memory (LSTM) cells, an ANN type spe-

cialised in sequence modelling and prediction. We demonstrate the efficiency

and robustness of an ANN predictor both with simulated and on-sky 7 × 7

Shack-Hartmann Wavefront Sensor (SHWFS) CANARY data measured at

150 Hz, an AO demonstrator on the 4.2 mWilliam Herschel Telescope (WHT),

La Palma. We provide evidence that in addition to accurately predicting the

wavefronts, an ANN predictor is also filtering high temporal frequencies such

as Wavefront Sensor (WFS) noise. We show that an ANN predictor is adaptive

to time-variant turbulence on sub-second level without user tuning. Specific-

ally, we show that an ANN predictor is capable of predicting both frozen flow

and non-frozen flow such as dome seeing, and that the ANN prediction can

be based on a per-subaperture basis. As a pioneer, this thesis examines in

great detail the characteristics of an ANN wavefront predictor and provides

implications towards an on-sky implementation.

Supervisors: Tim Morris, Lisa Bardou and Chris Saunter
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Chapter 1

Introduction

Tremendous success in Astronomy over the last few decades has been revolu-

tionising our understanding of existence and being. In these findings, ground-

based telescopes play a key role in delivering scientific information from the uni-

verse. Among recent technologies that significantly enhance the performance of op-

tical/infrared ground-based telescopes, astronomical Adaptive Optics (AO) is the

technique that mitigates image blurring caused by the turbulence in the Earth’s at-

mosphere in real time, which otherwise worsens as the size of the telescope increases.

With the success of modern AO, the resolving power of the largest telescopes ever

built can be fully delivered to study smaller, further objects in far greater detail.

1.1 Motivation

All AO systems, in their basic form, consist of a Wavefront Sensor (WFS) that

measures the wavefront aberrations, an adaptive optical element, usually a Deformable

Mirror (DM), correcting the aberrations, and a real-time control system linking

these two. The inevitable finite integration time of the WFS and the computation

time within the control system induces a time lag between wavefront sensing and

correction. This time lag is usually on the same order of the characteristic time

of the atmospheric turbulence (milliseconds) that depicts how fast the turbulence
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evolves. The resultant temporal error in the system can severely limit the AO

performance.

For Extreme Adaptive Optics (XAO) systems for High Contrast Imaging (HCI) of

exoplanets, the temporal error results in broadening of the Point Spread Function

(PSF) along dominant wind directions, which severely degrades contrast, especially

at small star separations (Kasper, 2012; Males and Guyon, 2018). For wide-field

AO systems dominated by tomographic errors, to keep temporal error tolerable,

the integration time of wavefront sensing and thus guidable star magnitude (either

natural or laser) is limited, limiting sky coverage of the system (Correia et al.,

2014; Jackson et al., 2015). One way to overcome this is to attempt to predict

the future wavefront based on recent past wavefront measurements. Under the

frozen flow hypothesis (Taylor, 1938), the turbulence volume is modeled as a linear

composition of static, independent layers, each translating across the telescope

aperture with certain velocity as a result of dominant wind at that layer. Because

of this temporal correlation, it is possible that the future wavefronts can be partially

predicted using past measurements. This hypothesis is a reasonable simplification

of the turbulence for wavefront prediction purposes.

1.2 Related Work

Predictive control in AO is an active research area that incorporates wavefront

prediction based on the frozen flow hypothesis into controller design. One of the

most popular schemes is the Kalman filter based Linear Quadratic Gaussian (LQG)

control (Paschall and Anderson, 1993; Le Roux et al., 2004). Under this frame-

work, the whole system (both turbulence and AO system) is represented by a small

set of state variables. Linear assumptions, such as an autoregressive process, are

used to describe temporal evolution of those variables as well as their links with

system measurements. Priors from system telemetry and noise statistics are then

combined to obtain the control law. Because of their flexibility in structure, LQG
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predictors allow for consideration of other system error sources such as static error

and vibration. Numerical and laboratory implementations focusing on a single or a

few Zernike modes show great improvement in terms of overall residual Wavefront

Error (WFE) or Strehl ratio (Le Roux et al., 2004; Kulcsár et al., 2012), especially

in vibration filtering (Petit et al., 2006, 2008). Poyneer et al. (2007) developed a

computationally efficient Fourier based LQG predictive controller, which can be ex-

tended to non-integer loop delays (Poyneer and Véran, 2008), facilitating graceful

formulation of wind-blown turbulence evolution under Fourier basis. Laboratory

tests demonstrate a reduction of around 67% in temporal error using a full Fourier

LQG controller (Rudy et al., 2015). Correia et al. (2014) incorporates open-loop

wavefront prediction into a minimum Mean Squared Error (MSE) tomographic

reconstructor design for Multi-Object Adaptive Optics (MOAO) systems. This

tomographic predictor allows the use of guide stars one magnitude fainter (cor-

responding to an increase in the density of available stars by a factor of 1.8) in

end-to-end simulations of RAVEN (Andersen et al., 2012), which is expected to be

further improved if deployed within the LQG framework. LQG based predictive

control has been deployed for AO systems on HCI instrument SPHERE (Petit et al.,

2014) for both turbulence correction and vibration filtering in Tip and Tilt (TT)

modes. Stability and robustness of LQG controller in full-mode Single-Conjugate

Adaptive Optics (SCAO) control has also been verified on sky (Sivo et al., 2014),

showing overall performance improvement over a standard integrator controller in

conditions where temporal error is not dominant.

Data-driven approaches to predictive control remove the constraint of an explicit

physical model describing the turbulence evolution, aiming at fully exploiting lin-

ear spatio-temporal correlations within input telemetry and improving controller

robustness. Guyon and Males (2017) deployed the Empirical Orthogonal Func-

tions framework. Numerical HCI simulations demonstrate significantly improved

contrast and resistance against sensor noise. van Kooten et al. (2019) proposed an

Linear Minimum Mean Squared Error (LMMSE) predictor and successfully tested
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its robustness using on-sky SPHERE data (van Kooten et al., 2020).

On the other hand, to adapt to varying turbulence conditions, frequent monitoring

(e.g. at least every 10 s as suggested in Poyneer et al. (2007)) of some turbulence

parameters such as the wind speed might be unavoidable to update the LQG con-

trol law. For the linear data-driven approaches, this would require the reset and

on-line re-learning of the controller parameters. An estimate of the noise level for

determining the LQG control law also suggests the controller requires updating

when this condition changes. Similarly, the predictive reconstructor for MOAO

systems requires re-computation when the Guide Star (GS) geometry varies (Cor-

reia et al., 2014). These will impose an additional complexity on the AO Real-Time

Control (RTC) and system calibration.

In this thesis, we exploit the potential of Artificial Neural Network (ANN) as a

nonlinear framework for wavefront prediction. It falls in the regime of the data-

driven approach, learning the underlying model within the data through a training

process. ANNs have the potential to take the calibration complexity out of op-

erations, and replace it with a training scheme that imposes training constraints

beforehand, but is insensitive to different conditions and does not impose an ad-

ditional operational overhead on-sky. This however imposes further limitations on

how accurate the training data needs to be, as will be investigated in this thesis.

ANNs have been applied to a variety of tasks within AO. Angel et al. (1990)

and Sandler et al. (1991) successfully applied a simple feed-forward Multilayer

Perceptron (MLP) network for wavefront sensing based on a pair of in-focus and

slightly defocused images in simulation and with on-sky data respectively. Nor-

ris et al. (2020) used Convolutional Neural Network (CNN)s for the nonlinear

wavefront reconstruction in the photonic lantern technique, a novel all-photonic

focal-plane wavefront sensor. This nonlinear reconstructor suits the nonlinear rela-

tionship between the input phase and the output intensities. Osborn et al. (2012)

successfully demonstrated an ANN tomographic reconstructor for MOAO systems,

which can adapt to a wide range of atmospheric conditions and is more resistant to
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photon noise than linear reconstructors. This technique was later validated on-sky

(Osborn et al., 2014), showing comparable performance with linear tomographic

techniques with less sensitivity to the estimation error in turbulence layer heights.

For the use of ANN for wavefront prediction, early numerical simulations adopt-

ing a feed-forward MLP network demonstrate promise for using this nonlinear tool

for open-loop slope prediction based on a time series of past noisy measurements

by a Shack-Hartmann Wavefront Sensor (SHWFS) (Jorgenson and Aitken, 1992,

1994), with further improvement over a linear predictor when the Signal-to-Noise

Ratio (SNR) of wavefront sensing gets lower (Lloyd-Hart and McGuire, 1996). The

last few decades have seen significant advances in both the theory and applications

of ANNs (LeCun et al., 2015), among which the Long Short-Term Memory (LSTM)

network is well-suited to time series modeling and prediction by design (Hochreiter

and Schmidhuber, 1997; Gers et al., 1999). The adaptive memory elements within

the LSTM makes it competitive for predicting evolving turbulence without user

tuning. Swanson et al. (2018) explored the prediction of wavefront phase map

from its last few frames using convolutional LSTM, a combination of CNN and

LSTM for simultaneously extracting spatial and temporal correlations from im-

age sequences. This was later extended to the prediction of slopes in a simulated

Pseudo Open Loop (POL) system, outperforming an integrator under a variety of

WFS SNR conditions (Swanson et al., 2021). Landman et al. (2020) experimented

with a closed-loop LSTM-based AO controller for the attenuation of both vibration

and latency in TT control. They showed that the ANN can adapt to varying vibra-

tion frequency without retraining. The resurgence of ANN since early 2010s has

brought more sophisticated ANN architectures and learning algorithms, however

the potentials and properties of an ANN wavefront predictor remain largely under

study.
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1.3 Synopsis

This thesis characterises an ANN predictor in a 7 × 7 Shack-Hartmann SCAO

system placed on a 4.2 metre telescope with open-loop wavefront sensing, both in

simulations and with on-sky data. In addition to determining if an ANN can be

used to accurately predict a future wavefront based on past measurements, we will

address the following questions:

1. How robust is an ANN to changes in real turbulence conditions?

2. Is the knowledge of the spatial distribution of WFS subapertures required for

ANN prediction?

3. Should an ANN predictor be trained with simulated or real data?

The reasons that we have adopted the open-loop wavefront sensing and control

configuration, are mainly as follows,

1. The ANN will not need to learn the dynamics of the system such as the

interaction between the WFS and the DM or the potential loop gain for

closed-loop control, which will simplify the problem to predicting the tem-

poral evolution of wavefronts only, saving the amount of training data and

training time required.

2. A Pseudo Open Loop Control (POLC) scheme would be more realistic but

complicated, introducing additional noise terms which can affect loop stability

(Gilles, 2005). We will show that the ANN is resistant to noise. This will

alleviate the stability issue, however we leave this to future study.

3. Limiting the problem to wavefront prediction only will also simplify the un-

derstanding of the ANN performance. The nonlinear nature of the ANN can

complicate standard AO analyses that rely on independent error terms.
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We adopt the low-order 7×7 AO configuration mainly for the ease of fast validation

and exploitation of the concept of ANN wavefront prediction, but also because of

the availability of open-loop on-sky data taken using the CANARY instrument.

CANARY is an AO demonstrator built for Extremely Large Telescope (ELT) in-

struments, hosted by the 4.2 m William Herschel Telescope (WHT) on La Palma

in the Canary islands.

In Chapter 2 we provide theoretical background for atmospheric turbulence,

SCAO systems and describe the AO simulation tool, Soapy (Reeves, 2016), that is

used throughout this thesis.

In Chapter 3 we provide necessary mathematical background for ANNs and de-

scribe the ANN training methodology. We provide the mathematical framework

for the operation and training of ANNs. We present the ANN architectures used

in this thesis. We then describe the simulated CANARY SCAO system and how

the training is undertaken for this system. Using the simulated CANARY system

we will generate the ANN training data and evaluate the prediction performance.

In Chapter 4 we demonstrate the effectiveness and robustness of the ANN pre-

dictor within the simulated SCAO system under the frozen flow hypothesis. Both

time-invariant and time-variant turbulence conditions are considered. The ANN

can generalise to multi-layer profiles or systems with a two-frame latency. Spe-

cifically, we investigate the impact of training noise level on the performance. We

explore a non-spatially aware ANN where the prediction is on a per-subaperture

basis and the ANN has not been trained with any knowledge of the spatial distri-

bution of WFS subapertures with respect to one another.

In Chapter 5 we demonstrate the proficiency of the ANN predictor with CANARY

on-sky telemetry taken by the on-axis SHWFS in open loop. We identify that

CANARY experienced strong dome turbulence instead of frozen flow, and that

strong vibrations existed in TT modes. We show the improved ANN performance

brought by the use of an empirical stationary turbulence model, and how the
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vibration impacts ANN performance. Analyses with the training noise level and the

spatial awareness of the ANN are conducted as in the previous chapter, revealing

expectations and considerations for on-sky implementations.

Finally, in Chapter 6 we summarise the conclusions drawn from these studies and

discuss the future prospects for the use of ANN prediction with AO systems.
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Chapter 2

Theory

2.1 Atmospheric Turbulence

As solar energy is transferred through Earth’s atmosphere, the temperature of the

air, hence the density, fluctuates spatially and temporally. Optical turbulence is

caused by mechanical mixing of large air masses of differing temperatures. In a

dense medium, the light travels more slowly, implying a larger refractive index. For

the incoming light, atmospheric turbulence forms a continuous screen of constantly

varying refractive indices, acting as arrays of lenses. When imaging through the

atmosphere, different parts of the light from an astronomical source propagates

through different paths, resulting in parts of the incoming wavefront being delayed

with respect to others. The once-flat wavefront becomes distorted. The wave-

front distortion spreads the energy received into a diffuse disk in the focal plane,

considerably degrading the image quality.

Astronomical Adaptive Optics (AO) is the technique used to compensate for atmo-

spheric turbulence for ground-based telescopes in real time. For the performance

of an AO system to be predicted and optimised, it is essential to understand the

theory behind the turbulence.
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2.1.1 Spatial Properties of the Atmosphere

In 1941, Kolmorogov developed a theory to analyse the mechanical structure of

turbulence (Kolmogorov, 1941), enabling statistical description of its effects. In

this theory, atmospheric turbulence is formed by the cascade of thermal energy

from large to smaller scales. The energy is injected on large spatial scale and

forms eddies. As the turbulent flow breaks up, the energy is transferred to smaller

scales until the eddies become small enough that the energy is dissipated by viscous

friction.

Kolmogorov introduced the idea of a structure function to describe the refractive

index of the atmosphere. The structure function of refractive index n is defined as

the mean-square difference in refractive index between two points separated by r

(Hardy, 1998)

Dn(r) ≡ 〈[n(x+ r)− n(x)]2〉

= C2
nr

2/3,

(2.1)

where r = |r|, x is a point in space. C2
n is the refractive index structure constant

in m−2/3, which can be used to quantify the turbulence strength. Though termed

constant, C2
n is a function of both altitude and time (Hardy, 1998).

Roddier used the thin layer approximation to study the cumulative optical effects

of the turbulence (Roddier, 1981). Assume a thin turbulence layer at altitude h

with a thickness of δh. δh is large compared with the eddy size, but small enough

for diffraction effects within the layer to be ignored. The phase structure function

at the output of this layer is then

Dφ(h, r) = 2.914k2r5/3C2
n(h)δh, (2.2)

where k = 2π/λ, with λ being the wavelength of the light. For a continuous

distribution of turbulence, the phase structure function at the telescope pupil,

Dφ(r), is the integral of Dφ(h, r) along the imaging path,

Dφ(r) =
∫

secζDφ(h, r), (2.3)
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where ζ is the zenith angle.

The Fried parameter r0, also termed the coherence length, describes in a single

parameter the integrated effect of the refractive-index fluctuations throughout the

atmospheric volume (Fried, 1965),

r0 =
(

0.423k2secζ
∫
C2
n(h)δh

)−3/5
. (2.4)

Using this notation, Dφ(r) can be expressed in terms of r0,

Dφ(r) = 6.88
(
r

r0

)5/3
. (2.5)

The significance of r0 is that it defines the diameter of a pupil within which the Root

Mean Squared (RMS) phase error is approximately 1 rad for a given wavelength

(Noll, 1976). The phase error of 1 rad is the threshold above which the image

quality deteriorates quickly (Hardy, 1998). Thus, small values of r0 correspond to

stronger turbulence. Eq. 2.4 shows that r0 is wavelength dependent. r0 is usually

defined at 500 nm.

The phase power spectrum Φφ(f) describes the distribution of the turbulence

strength with respect to spatial frequency f , and is related to the phase struc-

ture function by

Dφ(r) = 2
∫

Φφ(f)(1− cos(2πf · r))δf , (2.6)

where · represents dot product. Combining Eqs. 2.5 and 2.6 yields Kolmogorov

phase power spectrum

ΦK
φ (f) = 0.023r−5/3

0 f−11/3. (2.7)

This power law breaks down at very large or very small spatial scales, i.e. r > L0

or r < l0, where l0 is known as the inner scale and L0 is the outer scale. Tatarskii

modified this spectrum for r < l0 (Tatarskii, 1961). However, since very little

power is contained in small spatial scales (large f), the effect of a finite l0 in AO

simulation can be safely ignored. On large spatial scales (small f), the Kolmogorov
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spectrum tends towards infinity, implying unphysical infinite energy input. Besides,

the measured value of L0 vary between 10 and 100 m (Ziad et al., 2004; Ono et al.,

2017), comparable to the size of a modern telescope. The effect of a finite L0

should thus be considered in numerical simulations. This leads to the von Kármán

spectrum,

ΦvK
φ (f) = 0.023r−5/3

0 (f2 + f2
0 )−11/6, (2.8)

where f0 = 1/L0.

2.1.2 Temporal Properties of the Atmosphere

Although the structure of the turbulence across the telescope aperture evolves

with time due to temperature fluctuations, this will be on time scales much longer

than those caused by wind-blowing turbulence translation. Thus, the temporal

fluctuations of turbulence observed by the telescope are mainly the latter (Hardy,

1998). This is known as Taylor’s frozen flow hypothesis (Taylor, 1938).

Taylor’s hypothesis enables the conversion between spatial and temporal properties

of turbulence. Given this hypothesis and Eq. 2.5 describing the spatial phase

structure function, we can define a temporal phase structure function

Dφ(τ) ≡ 〈[φ(x, t+ τ)− φ(x, t)]2〉

= 6.88
(
v̄τ

r0

)5/3
.

(2.9)

This function describes the evolution of the phase at any point x over a telescope

aperture between time t and t + τ . v̄ is the average wind speed across the atmo-

spheric volume,

v̄ =
[∫

C2
n(h)v(h)5/3δh∫
C2
n(h)δh

]3/5

, (2.10)

where v(h) is the wind speed at height h.

From Eq. 2.9 we can define the coherence time τ0, which is the time for the RMS

phase error to reach 1 rad,

τ0 = 0.314r0
v̄
. (2.11)
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2.1.3 Zernike Polynomials for Modal Representation of

Turbulence

Wavefronts over a disk (such as the telescope aperture without a central obscur-

ation) generated by the atmospheric turbulence can be represented by a set of

orthonormal functions of ascending spatial frequency. One commonly used set of

two-dimensional orthogonal functions are Zernike polynomials, defined on a unit

disk in polar coordinates by

Zmn =
√
n+ 1Rmn (r)



√
2cos(mθ), m 6= 0
√

2sin(mθ), m 6= 0

1,m = 0

(2.12)

where

Rmn (r) =
(n−m)/2∑
S=0

(−1)S(n− S)!rn−2S

S![(n+m)/2− S]![(n−m)/2− S]! . (2.13)

n and m are radial and azimuthal orders respectively. Noll (1976) introduced

a numbering system where each Zernike polynomial can be indexed by a single

variable j, which is a function of n andm. In Noll’s notation, an even j corresponds

to cos(mθ) while an odd j corresponds to sin(mθ).

Zernike polynomials defined in Eq. 2.12 satisfy∫
d2rW (r)ZjZj′ = δjj′ , (2.14)

where
W (r) = 1/π, r ≤ 1

= 0, r > 1
(2.15)

and δjj′ is the Kronecker delta function. Eq. 2.14 implies that each mode has an

RMS value of 1 over the unit disk. Zernike modes 2-36 (in Noll’s notation) used

within this thesis are shown in Fig. 2.1.

An arbitrary wavefront φ(ρ, θ) over a circular aperture of radius R can be expanded

as an infinite sum of these modes (Noll, 1976),

φ(ρ, θ) =
∑
j

ajZj(r, θ), (2.16)
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Figure 2.1: Zernike modes (in Noll’s notation) 2-36 (from left to right, top to
bottom). Modes 2 and 3 correspond to Tip and Tilt respectively. Modes in the
same row have the same radial order.

where the normalised coordinate r = ρ/R and the coefficient aj is given by

aj =
∫
d2rW (r)φ(ρ, θ)Zj(r, θ) (2.17)

2.1.4 Imaging through Atmospheric Turbulence

The wavefront φ of a celestial point source, perturbed by the atmospheric tur-

bulence, propagates through the telescope optics and forms a Point Spread Func-

tion (PSF) in the focal plane. Mathematically, this imaging process can be modelled

as

PSF = |F(Meiφ)|2, (2.18)

where |·| takes the absolute value, F denotes the Fourier transform, and M repres-

ents the pupil mask, which is 1 inside the pupil and 0 elsewhere.
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2.1.4. Imaging through Atmospheric Turbulence

In the absence of atmospheric turbulence, the wavefront φ is considered flat (or

equivalently a zero matrix). The resulting diffraction-limited PSF is an airy disk

(shown in Fig 2.2 (a)). The Full Width at Half Maximum (FWHM) of this image

is

θ = 0.98 λ
D
, (2.19)

where D is the diameter of the circular aperture, λ is the imaging wavelength.

The resolving power of a telescope is the minimum angular distance for two adjacent

point sources of equal magnitude to be resolved. According to the Rayleigh criterion

(Strutt, 1879), it is when the peak intensity of one source lies in the first minimum

of the other. In the case of a circular aperture with the absence of turbulence,

R = 1.22 λ
D
. (2.20)

Atmospheric turbulence induces an optical path difference between different parts

of φ. The resulting focused image is no longer diffraction limited. Low- and high-

order aberrations in φ have different impact on image formation. Short-exposure

images (exposure time less than about 1/50 seconds) are composed of a number

of speckles, the size of each approximating that of a diffraction-limited spot, pro-

duced by interference between rays separated by D. This structure is dominated

by higher-order wavefront aberrations. The increase in the angular extent over

which the speckles are spread are factored by D/r0, as is shown in Fig 2.2 (b)-(d).

For long-exposure imaging, the time-varying image motion induced by low-order

aberrations (Tip and Tilt) causes speckles to add together, producing a blurred

large halo.

When D < r0, there is little distortion within the aperture. The image is effectively

diffraction limited with an overall displacement. When D > r0, the resolving power

of the telescope is reduced to

R ≈ 1.22 λ
r0
, (2.21)

which is equivalent to reducing the size of the telescope aperture to r0. When

D/r0 is between 1 and 10, there is a modest improvement in the short-exposure
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Figure 2.2: Simulated short-exposure diffraction-limited imaging of a point source
at infinity (a) and turbulence-limited imaging when D/r0 equals 1 (b), 5 (c) and
20 (d). The plots are shown in log scale. The normalised peak intensity decreases
as r0 decreases due to the spread of energy into more speckles over larger area.

telescope performance by image motion compensation, which is a simple form of

AO. When D > 10 r0, the impact of image motion becomes less severe. The

structure and size of the uncompensated image are mainly determined by r0. In

premier observing sites, r0 typically varies between 5 and 20 cm (Hardy, 1998).

Most modern ground-based optical observations fall within the D > 10 r0 regime.

It is in this regime where the potential performance gain by the use of AO for full

wavefront compensation is most prominent.
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2.2 Single-Conjugate Adaptive Optics

Astronomical AO is the technique for ground-based telescopes to compensate for

atmospheric turbulence in real time. This thesis focuses on Single-Conjugate Ad-

aptive Optics (SCAO), which is a basic form of AO that corrects for the turbulence

in a single observing direction.

2.2.1 Structure of an SCAO System

The layout of a closed-loop SCAO system imaging a natural celestial point source

is illustrated in Fig. 2.3. The wavefront from the science target is considered flat

before the turbulence introduces a wavefront perturbation. Here the science target

itself is bright enough to be used as a Natural Guide Star (NGS) for wavefront

sensing in addition to being imaged. The wavefront corrector, here a Deformable

Mirror (DM), is deformed in such a way that the wavefront reflected by it is ideally

flattened. A beamsplitter splits the residual wavefront into a wavefront sensing

and control path and an imaging path. In the feedback control loop, a Real-Time

Control (RTC) system converts the residual wavefront distortion measured by the

Wavefront Sensor (WFS) to the driving signal (or command) of the DM in real

time. In an SCAO system, the DM is optically conjugate to the telescope pupil,

providing a small corrected Field of View (FOV).

An open-loop control scheme is shown in Fig. 2.4. In this scheme, the WFS meas-

ures the uncompensated instead of residual wavefront. This measurement is then

converted to the DM driving signal via the RTC, however the DM correction is

now unseen by the WFS, as well as errors in the correction such as those induced

by WFS or DM non-linearity (Gilles, 2005). System calibration in an open-loop

system is also more challenging and demanding than in a closed-loop system. This

has limited the use of a pure open-loop AO systems in practice.

A third control scheme is the Pseudo Open Loop Control (POLC). This was de-
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2.2.2. Shack-Hartmann Wavefront Sensor

veloped for wide-field closed-loop AO systems where the minimum variance wave-

front reconstruction technique is used and the Pseudo Open Loop (POL) slope

measurement is required (Ellerbroek and Vogel, 2003). For such systems, POLC

improves the system stability over closed-loop control. The POL measurement

is recovered from the residual measurement, the DM command and the known

DM-WFS response. This can be followed by a classical open-loop reconstructor.

POLC can also be used in an SCAO system if the reconstruction is based on POL

slopes. More details on open-loop or closed-loop implementation will be given in

Section 2.2.5.

Throughout the thesis, we assume open-loop wavefront sensing and control con-

figuration. Reasons for this have been given in Section 1.3. We will focus on the

prediction power of the Artificial Neural Network (ANN) in this work, omitting

calibration error and DM or WFS non-linearity for the rest of the thesis.

2.2.2 Shack-Hartmann Wavefront Sensor

There are many types of wavefront sensors used within AO, each with their strengths

and weaknesses. This thesis focuses solely on the Shack-Hartmann Wavefront

Sensor (SHWFS).

The SHWFS uses a lenslet array that is optically conjugate to the telescope pu-

pil and divides it in subapertures. Each subaperture focuses a section of the in-

coming wavefront to form a spot, recorded for example by a Charged Coupled

Device (CCD) positioned at the focal plane of all the lenslets (see the illustration

in Fig. 2.5). All spots form a regular grid if the wavefront is unperturbed. In

the presence of the atmospheric turbulence, there exists a local slope across each

subaperture. This will deviate the centre of the spot, measured by centroid, from

the central position and this amount of deviation is proportional to the local slope

in the linear regime of WFS. The centroids in orthogonal directions within each

subaperture can be calculated using centroiding algorithms from the focal plane
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Figure 2.3: Diagram of a closed-loop SCAO system. In a closed-loop scheme, a
wavefront measurement is made after a correction has been applied. In the feedback
control loop, the RTC system converts the residual wavefront measured by a WFS
to the driving signal of a DM. The DM is deformed in such a way that the wavefront
distortion passing through it can be flattened. Mathematically, this is modelled as
subtracting the DM shape from the incoming distortion.
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Figure 2.4: Diagram of an open-loop SCAO system. In an open-loop scheme, a
wavefront measurement is made before the DM correction. There is no feedback
in the control loop, adding difficulties to system calibration.

images (Platt and Shack, 2001). The wavefront can then be reconstructed from

measured centroids from all subapertures (see Section 2.2.4)

The Centre of Gravity (CoG) algorithm represents the centroid (in number of CCD

pixels) as a weighted average,

sx,CoG =
∑
x,y xI(x, y)∑
x,y I(x, y) , (2.22)

with the weight I(x, y) being the intensity of the subaperture image at CCD loca-

tion (x, y). The summation is across all pixels within a single subaperture. sy can

be calculated by replacing x with y in the above equation.
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The improved Thresholded Centre of Gravity (TCoG) algorithm is designed to sup-

press WFS noise (detailed in Section 2.2.6.4) for medium-flux observations (Arines

and Ares, 2002; Thomas et al., 2006) by choosing brighter pixels for centroiding,

sx,TCoG =
∑
I>IT

x(I − IT )∑
I>IT

(I − IT ) , (2.23)

where IT is the intensity threshold. It is set to IT = TImax, where T is the

thresholding coefficient between 0 and 1 and Imax is the maximum pixel value

within one subaperture. T is usually fixed across subapertures. The summation is

only across pixels with an intensity larger than IT . A larger T reduces the amount

of noise in the centroid calculation, but might introduce the truncation effect since

only a fraction of pixels are considered, which can in turn introduce nonlinearities

and additional measurement errors. Hence, there is a compromise in optimising T

as a function of photon count.

Another thresholding method is the brightest pixel selection algorithm (Thomas

et al., 2006; Basden et al., 2011). Similar to the TCoG algorithm, it involves

selecting the N brightest pixels in each subaperture, setting all pixels below this

level to 0, and subtracting from those selected pixels the N + 1th brightest pixel

value. After the selection and subtraction, a standard centroiding method such as

CoG proceeds. The benefit of this algorithm is that the threshold can be modified

based on the actual intensity of pixels within the WFS image. From simulations

based on the CANARY instrument, which is an AO demonstrator on the 4.2 m

William Herschel Telescope (WHT) on La Palma, Basden et al. (2011) found that

setting N to 20 is optimal (a trade-off between slope estimation accuracy and the

linearity of measurements) for average seeing, while more pixels should be used for

poorer seeing, dependant on the WFS Signal-to-Noise Ratio (SNR) level.

2.2.3 Deformable Mirrors

The DM is used for correcting the aberrations, ideally flattening the incoming

wavefront. These are usually continuous-surface mirrors which can be mechanically
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Figure 2.5: An illustration of the SHWFS. Each subaperture measures the local
slopes in orthogonal directions from its focal plane images, from which the wave-
front can be reconstructed. (a) and (c) show the operation of the WFS when
observing flat and perturbed wavefronts respectively. (b) and (d) show the cor-
responding images in the WFS focal plane with an annular telescope aperture.
White lines denote subaperture boundaries. Subapertures around aperture edges
are partially illuminated, causing the lack of intensity of these spots.
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deformed by devices called actuators behind the mirror surface (Tyson, 2011). The

stroke of an actuator is its largest possible displacement. Actuators push or pull

the mirror into the desired shape given a set of commands determined by the

RTC system. The shape formed on the mirror by the activation of each individual

actuator is known as the influence function of the DM, which is greatly influenced

by the actuator technology.

Simulations in Chapters 3 and 4 assume a DM with a regular square grid geometry.

The influence function of such DMs can be approximated using a super-Gaussian

function with nearly zero response at the adjacent actuators (Hardy, 1998), provid-

ing zonal corrections, making them compatible with local tilt wavefront sensors such

as SHWFSs.

We assume a Zernike DM in some of the analyses (see Section 4.2.1 and Chapter 5).

In this thesis, such a DM is not used for correcting the wavefront. Instead its in-

teraction (detailed in the next section) with a WFS facilitates performance quan-

tification. The influence functions of Zernike DMs are Zernike polynomials up to

an order that is equivalent to the spatial resolution of the matching WFS (detailed

in Section 4.2).

The phase compensation provided by the DM can be modelled as

ΦDM =
∑
i

ciMi
inf, (2.24)

where ci and Mi
inf are respectively the command and the influence function of the

ith actuator.

2.2.4 Wavefront Reconstruction

The RTC uses reconstruction algorithms to reconstruct DM commands from WFS

measurements in real time. The fundamental algorithm is the Matrix Vector

Multiplication (MVM) approach which utilises the linear interaction matrix Mint

between the DM and the WFS.
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The most common means of measuring Mint is to record the influence of each

actuator on the measured wavefront during system calibration. Mint describes in

each row the corresponding WFS measurements for a unit activation of each DM

actuator. As a result, given the DM command vector c and the linear WFS-DM

interaction, the WFS measurements should be

s = Mintc. (2.25)

During AO operations, the least-squares estimate of c given s can be computed

using

c = Mrecs, (2.26)

where Mrec is the reconstruction, or control matrix. Mrec is the pseudo-inverse of

Mint, meaning MrecMint = I, I being the identity matrix. The pseudo-inverse of

Mint is usually obtained via singular value decomposition. It is possible that the

DM can form shapes which the WFS will sense poorly. These DM modes corres-

pond to small singular values of Mint and can degrade the reconstruction. One

way to mitigate this is to set small singular values below a threshold to zero during

the inversion process. Adjusting this threshold degrades the pseudo-inversion, but

can make the system more stable, as it will not attempt to correct poorly sensed

wavefront modes that may be dominated by WFS noise.

In a real system, to maintain loop stability, c is not directly applied. A basic

integrator with gain g maintains a running average of c (see the next section).

2.2.5 Time Lines for SCAO

The operating frequency of an AO system, fS , is usually the inverse of the effective

WFS integration time, T , during which time enough photons are collected for

wavefront sensing. The discrete nature of the RTC in a closed-loop system is

illustrated in Fig. 2.6. During frame [(k− 2)T, (k− 1)T ], the residual wavefront is

integrated by the WFS, yielding φres
k−1. After the WFS exposure, it takes another
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frame for the CCD readout and centroiding, the generation of the measured slope

sresk , and the calculation of the DM command ck. In the classical closed-loop AO

control scheme this can be modelled as an integrator whose gain is noted g, and

the control signal is given by

ck = ck−1 + gMrecs
res
k . (2.27)

This can be understood as the sum of an applied correction ck−1 and a weighted

residual correction Mrecs
res
k determined using Eq. 2.26. g is for maintaining the

closed-loop stability, typically between 0 and 1. The control is then applied on the

next frame [kT, (k + 1)T ]. Here we omit the DM settling time taken for the DM

to arrive at the desired shape, which can usually be safely neglected.

When the system is controlled in open loop, the time line shown in Fig. 2.6 is still

valid. The main difference is that the WFS samples the uncompensated wavefront

φatmk−1 instead of the residual φresk−1. The control signal then becomes

ck = (1− g)ck−1 + gMrecs
OL
k , (2.28)

where sOL
k is the slope measurement of φatmk−1.

This AO loop shown in Fig. 2.6 has a 1.5-frame latency, which is the time delay

between the mid-point of the WFS exposure and the beginning of the application of

DM correction. Overall system latency is typically dominated by the time taken for

computations within the RTC system, with the most challenging Extreme Adaptive

Optics (XAO) systems requiring sub-frame latency.

In a discrete, simulated system however, the physical processes shown in Fig. 2.6

are all assumed instantaneous. For example, as is shown in Fig. 2.7, the WFS

samples the wavefront at the discrete timestep of (k−1)T . The integration time is

considered infinitesimal. Slope and DM command calculation can be considered to

take place between time steps (k−1)T and kT . At kT , the DM correction is applied

to the wavefront distortion at that instance. The average delay is thus one frame,

which is the time between the ‘mid-point’ of the ‘integration’ and the availability of
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Figure 2.6: Typical time line for a continuous closed-loop SCAO system. Here,
the delay between the mid-point of the WFS integration and the application of the
corresponding DM commands is about 1.5 frames due to time taken for the WFS
exposure, CCD readout, calculation of slopes and control signals.
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Figure 2.7: Typical time line for a discrete, simulated closed-loop SCAO system.
Here, the WFS integration and DM correction is assumed instantaneous, taking
place at discrete time steps. The average loop latency is one frame, accounting
only for the time taken for slope and DM command calculation.

the DM commands. When the loop latency is extended to two frames, this means

the slope and DM command calculation is considered to take up two frames.

2.2.6 Error Sources in SCAO

The performance of an SCAO system can be measured in varied ways for different

purposes. This thesis mainly examines the RMS residual Wavefront Error (WFE),
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which we label as σ.

The sources of error in an AO system that contribute to the error variance, σ2,

depend on both the property of the atmosphere and the components of the system.

For the SCAO system studied here, these are the temporal error, fitting error, WFS

noise error and aliasing error. Assuming the contribution from individual sources

are uncorrelated, σ2 can be estimated using

σ2 = σ2
temporal + σ2

fitting + σ2
noise + σ2

aliasing. (2.29)

Eq. 2.29 is widely used in AO system design. In practice, there are correlations

between error terms (especially spatial errors). This will lead to an overestimate

of σ2.

2.2.6.1 Temporal Error

Temporal errors are caused by the latency between wavefront sensing and correction

as has been shown in Fig. 2.6, during which time the turbulence has evolved.

As is detailed in Section 2.1.2, for small time scales such as the crossing time of the

turbulence across the telescope aperture due to the wind, the temporal evolution

of the turbulence is dominated by the frozen flow translation. As a result, the

temporal error due to pure loop delay is equivalent to the temporal phase structure

function Dφ(τ). Combining Eqs. 2.9 and 2.11 we have,

σ2
temporal =

(
τd
τ0

)5/3
, (2.30)

where τd is the loop delay in seconds.

2.2.6.2 Fitting Error

For a DM with zonal correction elements such as the piezoelectric DM (Hardy,

1998), the finite number of these elements (thus a finite degree of freedom) means

that the DM is incapable of perfectly fitting an arbitrary shape of the wavefront,
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while there is no limit to the spatial frequency of a well-developed Kolmogorov

turbulence as the power spectrum suggests. This sets a fundamental limit to the

system. The fitting error is given by

σ2
fitting = aF

(
dDM
r0

)5/3
, (2.31)

where dDM is the actuator spacing. The coefficient aF is determined by the DM

type. For a continuous phase sheet DM with super-Gaussian influence functions,

aF is between 0.28 and 0.34 rad2 (Hardy, 1998).

2.2.6.3 Aliasing Error

Similar to the fitting error, aliasing is a phenomenon associated with spatial sampling

caused by the finite number of sensing elements (e.g. the subapertures in a SHWFS)

in the WFS (Poyneer and Macintosh, 2004). High-spatial frequencies in the tur-

bulence that are above the Nyquist frequency of the WFS will be misinterpreted

as low-frequency signals. This will lead to an error in the reconstruction and the

resulting system performance. The aliasing error depends on the characteristics of

the turbulence as well as the spatial resolution of the WFS and the control law

(Kulcsár et al., 2012). Rigaut et al. (1998) shows that σaliasing can be estimated in

the case of a continuous phase sheet DM using

σ2
aliasing = 0.08

(
dDM
r0

)5/3
. (2.32)

.

2.2.6.4 Noise Error

For a SHWFS, the focal plane image IWFS is randomly contaminated by Poissonian

photon noise and Readout Noise (RON),

IWFS = P(IWFS) + ne, (2.33)

32



2.2.6.4. Noise Error

where P denotes a Poisson process and ne denotes the RMS RON in number of

electrons per CCD pixel, which can be modelled as a zero-mean Gaussian distri-

bution. WFS noise, especially photon noise, is unavoidable and determines the

precision of the slope measurements.

The noise-induced slope variance can be estimated from measured data by a SHWFS

using the approach described in Gendron and Léna (1995), which is based on the

temporal auto-correlation of open-loop slope measurements. The auto-correlation

is defined as

Aj(∆n) = 1
nt −∆n

∑
k

sj(k)× sj(k + ∆n), (2.34)

where j is the index of a subaperture, nt is the length of the slope sequence in

frames. It can be proven from the above equation that A is an even function.

Fig. 2.8 shows the auto-correlation of an open-loop slope sequence (10,000 frames)

taken by the CANARY instrument in the x direction of a single WFS subaper-

ture. At ∆n = 0, the auto-correlation is the sum of the variances of the turbulence

and the noise, Aj(0) = s2
turb,j + s2

noise,j . When ∆n 6= 0, because the noise is not

correlated with itself over time, Aj(∆n) is the auto-correlation of the turbulence

only, which degrades with time and can be approximated at small ∆n by a para-

bola. The parabolic approximation was justified mathematically in Gendron and

Léna (1995). It was verified with on-sky data by the correlation of noise variance

measured by this approach and by a different approach based on the slope variance

(Gendron and Léna, 1994), which shows the reliability of both methods with dif-

ferent principles. This parabola can be obtained by fitting Aj(1) and Aj(2). The

fitted value at ∆n = 0 then gives the slope variance induced by the turbulence only,

s2
turb,j . Subtracting this value from Aj(0), we obtain s2

noise,j . This approach also

provides a way of defining the noise as a component that is uncorrelated through

time, which we will use to identify and quantify the noise in the predicted slopes.
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Figure 2.8: Time-lagged auto-correlation of an open-loop slope sequence in the x
direction of the 5th WFS subaperture. At ∆n = 0, the auto-correlation is the sum
of the covariances of the turbulence and WFS noise. At small ∆n, since the noise is
uncorrelated over time, the auto-correlation contains the turbulence contribution
only, which can be approximated by a parabola. The fitted parabola at ∆n = 0
gives the turbulence variance. Subtracting this from the auto-correlation at ∆n = 0
then gives the noise variance.

2.3 AO Simulation with Soapy

Numerical simulations of the turbulence and AO systems as a whole provide a

powerful tool for analysing and predicting the performance of a given system, or

validating new ideas and implementations. AO simulations within this thesis are

performed using Soapy (Simulation ‘Optique Adaptative’ with Python) (Reeves,

2016). Soapy is a Monte-Carlo AO simulation tool written in the Python program-

ming language. This section introduces modules of Soapy, with a focus on the

principle of atmospheric turbulence simulation adopted by Soapy.

2.3.1 Layered Atmosphere Model

In many AO simulations, the atmospheric turbulence is treated as a finite number

of infinitesimally thin, discrete and independent turbulence layers (Roddier, 1981).
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This mathematical simplification has been grounded by many observations (Wang

et al., 2008; Poyneer et al., 2009; Wilson et al., 2009), where the turbulence is

found to exist in distinct thin layers at different heights, each translating with an

independent wind vector in the case of frozen flow.

Under this assumption, Eq. 2.4 reduces to

r0 =
(

0.423k2secζ
∑
i

C2
ni

∆zi

)−3/5

, (2.35)

where Cni and ∆zi are respectively the refractive index structure constant and

thickness of the ith layer. The effective strength of the ith layer is defined as

(Roggemann et al., 1995)

r0i = [0.423k2secζC2
ni

∆zi]−3/5. (2.36)

The fraction of the ith layer in the total integrated strength, also known as the

relative strength, is then

ρi =
C2
ni

∆zi∑
iC

2
ni

∆zi
. (2.37)

The relative strength satisfies
∑
i ρi = 1. From Eqs. 2.35-2.37 we have

r0i = ρ
−3/5
i r0, (2.38)

or r0 can be determined from r0i ,

r0 =
(∑

r
−5/3
0i

)−3/5
. (2.39)

The relationship between v̄ (defined in Eq. 2.10) and the wind speed of each layer

vi can be derived in a similar fashion. Combining Eqs. 2.10 and 2.37, we have

v̄ =
(∑

ρiv
5/3
i

)3/5
. (2.40)

In Soapy implementation, the optical effects of each layer is modelled as a phase

screen. After individual properties of each layer are determined, the corresponding

phase screen can be generated given r0i (detailed in the following section), which

then translate with vi, with different portions of the screen sampled by the telescope

at each discrete timestep. The wavefront aberration φ at the telescope pupil is the

sum from all layers along the propagation path.
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2.3.2. Monte-Carlo Phase Screens

2.3.2 Monte-Carlo Phase Screens

Turbulence-induced phase aberrations are a random process with a well-defined

power spectrum (see Section 2.1.1). To generate a random realisation of such a

process on a discrete two-dimensional sample grid, it is a common practice to

filter a white Gaussian noise with the square root of the power spectrum in the

frequency domain, and then transform the filtered spectrum to the spatial domain

via Fast Fourier Transform (FFT) (McGlamery, 1976; Johansson and Gavel, 1994;

Ellerbroek and Cochran, 2002).

With this approach, we can represent a discrete two-dimensional phase screen,

φ(x, y), given its strength r0, as

φ(x, y) =
∑
κx

∑
κy

g(κx, κy)
√
Fφ(κx, κy)ei2π(κxx+κyy)∆κx∆κy. (2.41)

The spatial domain sample points x and y are x = m∆x and y = n∆y, where

∆x = ∆y = L/N . L is the physical size of the square phase screen on each side,

and N is the number of pixels along L. Usually N is a power of 2 for the ease of

FFT implementation. The wavenumbers κx and κy are given by κx = k∆κx and

κy = l∆κy, where ∆κx = ∆κy = 2π/L. g(κx, κy) is defined as

g(κx, κy) = g′(k, l)√
∆κx∆κy

, (2.42)

where g′ is a complex Hermitian noise matrix, both the real and imaginary parts

of which follow an independent zero-mean Gaussian distribution with a standard

deviation of 1/
√

2. Under von Kármán statistics,

Fφ(κx, κy) = 0.490 r−5/3
0 (κ2 + κ2

0)−11/6, (2.43)

where κ =
√
κ2
x + κ2

y, κ0 = 2π/L0. This expression is consistent with Eq. 2.8,

with a scaling factor being (2π)2(2π)−11/3 due to the conversion between spatial

frequency κ and spatial wavenumber f , i.e. κ = 2πf .
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Figure 2.9: A sample phase screen (of size 1024 × 1024 pixels) showing phase
variations (in nm) with von Kármán statistics generated using the FFT method.

Converting from wavenumber space to spatial frequency domain and combining

Eqs. 2.41-2.43, we obtain

φ(m,n) =
N/2−1∑
k=−N/2

N/2−1∑
l=−N/2

g′(k, l)h(k, l)ei2π( mk+nl
N

)

= N2F−1[g′(k, l)h(k, l)],

(2.44)

where F−1 denotes the inverse Fourier transform, with N2 added to match the

discrete numerical implementation. h(k, l) is the turbulence spatial filter,

h(k, l) = 0.1513
L

r
−5/6
0 (f2 + f2

0 )−11/12, (2.45)

where f0 = κ0/2π. h(0, 0), corresponding to the direct component of the phase

screen which has no effect on image formation, is set to zero. Both the real and

imaginary part of φ are realisations of a von Kármán phase screen. Usually the

real part is taken.

A sample phase screen generated using this method is shown in Fig. 2.9. L = 67.2

m and N = 1024. r0 is 0.16 m. L0 is 25 m.

The minimum and maximum spatial frequencies represented by this method are

fmin = 1/L and fmax =
√

2
2 N/L. Thus, the maximum and minimum scale sizes
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represented are smax = L and smin =
√

2L/N respectively. For L = 67.2 m and

N = 1024, we have smax = 67.2 m and smin = 0.0928 m. For typical inner (a

few millimeters) and outer (tens of meters) scales of turbulent eddies, this means

either the low- or high-frequency component of turbulence might be poorly sampled

for trading off the computation requirements. While the improper sampling of

the inner scale is relatively negligible (Johansson and Gavel, 1994), the generated

phase screen is normally made much larger than the telescope aperture size in

order to sufficiently sample the outer scale (Herman and Strugala, 1990). This also

guarantees that the phase screen is large enough for the translation needed during

a simulation run.

2.3.3 Soapy Modules

Soapy can be used for end-to-end simulations where the entire system parameters

are defined in a configuration file. The real power lies in its modular nature.

Each AO component is modelled as a Python object with intrinsic attributes and

methods. Each object can be configured from the related block of parameters in

the configuration file. This enables fast implementations and novel configurations

using parts of the modules, from which this thesis has benefited hugely. New

concepts implemented as a Python object can also be easily integrated. Below we

introduce principal Soapy modules and related attributes and methods we have

used. A simulated SCAO system built from these modules will be introduced in

Section 3.3.

2.3.3.1 Atmosphere

The atmosphere class generates a given number of phase screens (the number of

turbulence layers) with von Kármán statistics using the FFT method described in

Section 2.3.2. The strength of each layer r0i can be determined using Eq. 2.38 from

its fractional strength ρi and the integrated r0 given in the configuration file. A
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2.3.3.2. SHWFS

phase screen generated using the FFT method is periodic and continuous across its

opposite edges. The screen size should be at least 10 times of L0 to better sample

large spatial components. This also guarantees that the duration of the simulation

is satisfied. Under the frozen flow hypothesis, the moveScrns method can be called

on each timestep to move the phase screens forward, the size of which is determined

by the system frequency and the wind speed of that layer, converted to pixels given

the pixel scale (m/pixel) of the simulation. Sub-pixel movements are represented

by bilinear interpolation in the phase screens. The phase aberration seen by the

telescope at that timestep is the sum of the resulting sampled smaller screens from

all layers.

2.3.3.2 SHWFS

The SHWFS class used in this thesis inherits from the base WFS class. The frame

method calculates slopes from the input phase aberration, which calls three meth-

ods in sequence. The calcFocalPlane method computes individual focal plane im-

age focused by each subaperture using Eq. 2.18. The makeDetectorPlane method

combines all these images and fits them back into a single detector plane image as

is shown in Fig. 2.5 (b) and (d). Desired amount of noise is added using Eq. 2.33.

The calculateSlopes method calculates slopes across the subaperture from the

detector image given the centroiding method. We mainly use TCoG and brightest

pixel selection centroiding methods described in Section 2.2.2.

2.3.3.3 DM

The DM base class has a dmFrame method that computes the DM shape using

Eq. 2.24 given its influence functions and the input DM commands. The influence

function for each actuator is determined by the makeIMatShapes method defined

within each subclass inheriting from the DM base. For the Piezo subclass simulating

a piezoelectric DM, the influence function of an actuator is initialised as an n× n

39



2.3.3.4. Reconstructor

matrix where n is the number of actuators across telescope pupil, with only this

actuator set to 1 and the rest to 0. This matrix is then bicubicly interpolated

to the simulation size (number of pixels representing the pupil). For the Zernike

subclass representing a Zernike DM, the influence functions are a set of Zernike

polynomials up to a given order.

2.3.3.4 Reconstructor

The reconstructor base class has a makeIMat method that measures the interac-

tion matrix between a given WFS and DM pair. Each row in the interaction mat-

rix is the resulting WFS measurements given an individual DM influence function

(multiplied by an activation value), representing the influence on the WFS meas-

urement of a single activation. The makeCMat method calls the calcCMat method

within each subclass to calculate the control matrix. For the MVM subclass, the

calcCMat method calculates the pseudo inversion of the interaction matrix. Trun-

cation of singular values involved in this process has been explained in Section 2.2.4.

The reconstruct method outputs DM commands given measured slopes from WFS

using Eq. 2.26.
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K. Jackson, and C. Bradley. Statistics of turbulence parameters at maunakea

using the multiple wavefront sensor data of raven. Monthly Notices of the Royal

Astronomical Society, 465(4):4931–4941, 2017.

B. Platt and R. Shack. History and principles of shack-hartmann wavefront sensing.

Journal of refractive surgery (Thorofare, N.J. : 1995), 17(5):S573–7, 2001.

L. A. Poyneer and B. Macintosh. Spatially filtered wave-front sensor for high-order

adaptive optics. J. Opt. Soc. Am. A, 21(5):810–819, 2004.

L. A. Poyneer, M. van Dam, and J.-P. Véran. Experimental verification of the frozen

flow atmospheric turbulence assumption with use of astronomical adaptive optics

telemetry. J. Opt. Soc. Am. A, 26(4):833–846, 2009.

A. Reeves. Soapy: an adaptive optics simulation written purely in python for

rapid concept development. In Proc. of SPIE 9909, volume 9909, page 99097F.

International Society for Optics and Photonics, 2016.

42



2.4. References

F. J. Rigaut, J.-P. Veran, and O. Lai. Analytical model for Shack-Hartmann-based

adaptive optics systems. In Adaptive Optical System Technologies, volume 3353,

pages 1038–1048. SPIE, 1998.

F. Roddier. The effects of atmospheric turbulence in optical astronomy. Progess

in Optics, 19:281–376, 1981.

B. M. Roggemann, D. Montera, and T. A. Rhoadarmer. Method for simulating

atmospheric turbulence phase effects for multiple time slices and anisoplanatic

conditions. Applied Optics, 34(20):4037–4051, 1995.

J. W. Strutt. Investigations in optics, with special reference to the spectroscope.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-

ence, 8(49):261–274, 1879.

V. I. Tatarskii. Wave Propagation in Turbulent Medium. McGraw-Hill, 1961.

G. I. Taylor. The spectrum of turbulence. Proceedings of the Royal Society A, 164

(919):476–490, 1938.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset.

Comparison of centroid computation algorithms in a Shack–Hartmann sensor.

Monthly Notices of the Royal Astronomical Society, 371(1):323–336, 2006.

R. K. Tyson. Principles of Adaptive Optics (Third Edition). CRC Press, 2011.

L. Wang, M. Schöck, and G. Chanan. Atmospheric turbulence profiling with slodar

using multiple adaptive optics wavefront sensors. Appl. Opt., 47(11):1880–1892,

2008.

R. W. Wilson, T. Butterley, and M. Sarazin. The Durham/ESO SLODAR optical

turbulence profiler. Monthly Notices of the Royal Astronomical Society, 399(4):

2129–2138, 2009.

43



2.4. References

A. Ziad, M. Schöck, G. A. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino,

and F. Martin. Comparison of measurements of the outer scale of turbulence by

three different techniques. Appl. Opt., 43(11):2316–2324, 2004.

44



Chapter 3

ANN Training for Wavefront

Prediction

3.1 Overview

This chapter mainly address two questions: how to develop the Artificial Neural

Network (ANN) training methodology for the wavefront prediction task and how

does the training work?

We first provide necessary theoretical background for understanding ANN techno-

logies used in this thesis. We then introduce the software modules and data flow

of a simulated 7 × 7 Single-Conjugate Adaptive Optics (SCAO) system. We will

describe how the simulated system can be used to generate ANN training data and

how the ANN training and hyperparameter tuning process works.

3.2 Artificial Neural Networks

3.2.1 Supervised Learning

ANN is a computational model that can be used to solve many supervised learning

tasks, where input-target pairs are provided for their underlying mapping to be
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learnt. This learning scheme is based on the fact that it is sometimes easier to

obtain examples from the desired mapping than defining the mapping directly

(Karpathy, 2016). Let X be an input space and Y be an output space. D is the

data distribution over X × Y . The goal of supervised learning task is to find the

mapping f from X to Y based on a training set consisting of n independent and

identically distributed (i.i.d.) samples representative of D, Strain = {(xi, yi)}ni=1, in

order to minimise the expected loss error E(L) over the data generating distribution

D,

f∗ = argmin
f∈F

E(x,y)∼D[L(f(x), y)]. (3.1)

L is a scalar-valued objective function. E represents the expectation of L evaluated

on D. F is a class of functions which f is restricted to.

Because not all elements of D are known, the expected loss error becomes intract-

able, but can be approximated by the training error under the i.i.d. assumption,

f∗ ≈ argmin
f∈F

E(x,y)∼Strain [L(f(x), y)]

= argmin
f∈F

1
n

n∑
i=1

L(f(xi), yi).
(3.2)

The expected value of the error on a new input in D but not in Strain is defined as

the generalisation error, which is usually estimated by measuring the performance

on a test set Stest. The goal of the training process (which focuses on reducing the

training error only) is to achieve the lowest possible generalisation error.

When ANNs are used as the computational model for input-output mapping, F

will be a neural network with given architecture but unknown parameters θ to be

determined from Strain. The learning problem in Eq. 3.2 reduces to an optimisation

problem,
θ = argmin g(θ)

= argmin 1
n

n∑
i=1

L(fθ(xi), yi),
(3.3)

which is referred to as training in the ANN context.
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For this thesis, the supervised learning task will be to predict the future open-loop

Wavefront Sensor (WFS) measurements given a time sequence of the immediate

past WFS measurements. In this case, xi is the WFS measurement history. f is

the mapping defined by an ANN. θ is the parameter of the ANN to be learnt.

fθ(xi) is the predicted measurement made by the ANN while yi is the actual or

targeted measurement. For L we will use the Mean Squared Error (MSE) metric.

More details will be given in Section 3.4.1.

3.2.2 Optimisation with ANNs

3.2.2.1 Algorithms with First Order Derivatives

When g in Eq. 3.3 is differentiable, algorithms based on first order derivatives can

be used to solve this optimisation problem. The gradient descent (GD) algorithm

is such a method. It is based on the first order approximation of g, from which

the gradient vector ∇θg can be seen as a direction along which g increases, thus

the opposite direction along which g can be decreased. Gradient Descent (GD)

alternates between two steps: 1) calculate ∇θg with backpropagation (detailed in

Section 3.2.3) given the current value of θ and 2) update θ by taking a small step

along −∇θg,

θ ← θ − ε∇θg, (3.4)

where ε is called the learning rate. If ε is too large, the optimisation may not

converge or even diverge. If ε is too small, the optimisation process will be too

slow or converge to a local minimum.

In practice, ∇θg is approximated as the average gradient vector across the training

set. This leads to the batch gradient descent algorithm. Batch GD is promised to

reach the global minima with a well tuned learning rate. However, because gradi-

ents calculated from every training sample have to be computed at each optimisa-

tion step, batch GD is computationally expensive. A much more computationally
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3.2.2.1. Algorithms with First Order Derivatives

efficient algorithm when the training set size is huge is the stochastic gradient des-

cent algorithm, which evaluates a single example at each step. Compared with the

batch approach, stochastic GD provides a much noisier estimate of ∇θg, prevent-

ing the optimisation from converging to a local minima (LeCun et al., 1998). The

minibatch gradient descent algorithm balances between finding the global minimum

and avoiding the local minima by evaluating several samples simultaneously (called

a minibatch) at each step. The size of the minibatch is known as the batch size. An

epoch is the process during which all training samples have been evaluated once.

For example, for a training set of 100,000 samples and a batch size of 100, θ is

updated once during one epoch with batch GD, 1,000 times with minibatch GD

and 100,000 times with stochastic GD.

Many advanced algorithms exist that can accelerate convergence by modifying

the update direction based on ∇θg (Goodfellow et al., 2016). For example, the

addition of a momentum term acts as the inertia of the motion of the algorithm in

the parameter space (Sutskever et al., 2013), guaranteeing that the optimisation is

along consistent instead of zigzag directions in some cases,

v ← αv − ε∇θg

θ ← θ + v.
(3.5)

v (initialised as 0) is analogous to velocity in physics and becomes momentum

if mass of the particle is considered unit, while ∇θg is regarded as the force on

the particle at position θ. α is within 0 and 1 and determines how quickly the

contribution of previous gradients decays. The larger α is, the more heavily the

optimisation direction is influenced by accumulative previous steps. This also helps

to avoid local minima.

While momentum is based on the running estimate of the first moment of ∇θg

(its mean value), Tieleman and Hinton (2012) showed that the use of the run-

ning estimate of its second moment guarantees convergence in certain optimisation
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situations, leading to the RMSProp algorithm,

r ← ρr + (1− ρ)∇θg �∇θg

∆θ ← − ε√
δ + r

�∇θg

θ ← θ + ∆θ,

(3.6)

where δ is a small constant (e.g. 1e-8) avoiding division by 0, � denotes elementwise

multiplication, and ρ is a parameter controlling the speed of the running average.

r can be considered an accumulation factor regulating the learning rate.

The algorithm used within this thesis is Adam (Kingma and Ba, 2014), which

features the second moment modified to include momentum,

t← t+ 1

s← ρ1s+ (1− ρ1)∇θg

r ← ρ2r + (1− ρ2)∇θg �∇θg

s← s

1− ρt1

r ← r

1− ρt2

∆θ ← −ε s√
r + δ

θ ← θ + ∆θ,

(3.7)

where s, r or t are initialised as 0 or 0. The Adam algorithm is generally regarded

robust to the choice of ρ1 and ρ2 (default is 0.9 and 0.999 respectively), while the

learning rate ε can be tuned for better test performance.

All these advanced learning algorithms feature adaptive learning rate, such that

parameters with smaller gradients take larger updates (larger effective learning

rate) (Goodfellow et al., 2016).

3.2.2.2 Cross Validation

Other variables encountered in the ANN parameter optimisation process such as

the batch size and learning rate as well as the topology of an ANN (e.g. the number
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of hidden layers and the number of neurons in each hidden layer, to be introduced

below) have to be specified before the optimisation is implemented. These are

usually called the hyperparameters. Hyperparameters have a direct impact on the

network performance and the optimal values of these are task specific. However,

because this impact cannot be quantified easily, it is difficult to optimise hyper-

parameters alongside θ using algorithms mentioned above. Instead, a stochastic

optimisation technique is adopted, i.e. training is repeated for each of the net-

works configured from a set of hyperparameters sampled from a search range. The

trained network with the lowest error on a withheld validation set, Sval ∼ D, yields

the optimal set of hyperparameters. The validation set is independent from the

training dataset. Similar to the training data, the validation set is used during the

training process only. However, it is mainly for estimating the network performance

on unseen data, not for updating the network parameters as the training dataset

does. Thus the validation process guides the training towards minimising the gen-

eralisation error. It is most efficient to randomly sample the hyperparameter space

rather than searching along its parameter grids (Bergstra and Bengio, 2012).

3.2.2.3 Generalisation

The ultimate goal of ANN training is to achieve the best performance on a test set

Stest ∼ D that is not seen during training, which can be considered an estimate of

the generalisation error. A trained network can have minimised training error by

memorising all training samples but will perform poorly on Stest, which is referred

to as overfitting. To avoid this many methods have been proposed, derived from

either statistical or empirical principles. For the experiments in this thesis we

use two methods: early stopping and dropout. The effect of the size of Strain on

generalisation error is also evaluated qualitatively.

Early stopping. This is an empirical approach and perhaps the simplest for

improved generalisation (Graves, 2012). The objective function is evaluated on the

validation set Sval after a fixed number of epochs and the lowest validation error is
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3.2.2.3. Generalisation

recorded. If this error shows no improvement after a few evaluations (the number

of which is referred to as patience), training is terminated. This approach is based

on the fact that during training the validation error usually levels off or begins to

rise after a certain point while the training error continues to decrease (see Fig. 3.6

in Graves (2012)). In this thesis we evaluate the validation error after each epoch

and the patience is set to 5.

Dropout. Dropout is a regularisation technique (Srivastava et al., 2015; Gal and

Ghahramani, 2016), which encodes preference to one group of f over others. For

example, an L2 regularisation favours θ of small L2 norm. Dropout works by

randomly dropping a fixed proportion of neurons (alongside their connections with

other neurons) within the network before each training epoch to reduce the physical

capacity of the network. At test time, all neurons and connections are assumed

active. This prevents the network from assigning significant connections to features

specific to the training set only. A large network trained with dropout is proved to

have lower validation error than a smaller one trained without dropout (Goodfellow

et al., 2016).

The training set size. When the test error of a trained system is significant

but the training error is much lower, the most efficient way of reducing the gen-

eralisation error is to enlarge Strain. As is shown in Fig. 5.4 in Goodfellow et al.

(2016), as the training set size increases, the test error decreases rapidly while the

training error increases slightly. When the amount of training data, the complexity

of the optimisation problem, and the effective capacity of the network (determined

by both its topology and the optimisation process) match with each other, both

the training error and the test error will stabilise after certain point, with the test

error slightly higher than the training error showing good generalisation property.
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3.2.3. Multilayer Perceptron Networks

3.2.3 Multilayer Perceptron Networks

ANNs were originally developed to emulate the signal processing capability of bio-

logical neurons (McCulloch and Pitts, 1943; Rosenblatt, 1958), though nowadays

the development of ANNs has deviated from pure understanding of neuroscience.

Many varieties of ANNs have emerged over the years with distinct structures and

properties. Depending on whether its outputs are dependent only on current inputs

or on both current and past/future inputs, ANNs can be divided into feedforward

networks and feedback, recursive or recurrent networks. The most widely used

feedforward network is the Multilayer Perceptron (MLP) (Rumelhart et al., 1986).

MLPs are said to be universal function approximators because an MLP with a

hidden layer containing sufficient nonlinear neurons are proven to be able to ap-

proximate any continuous function on a compact input domain (Hornik et al.,

1989).

3.2.3.1 Forward Pass

The structure of a Fully Connected (FC) MLP is shown in Fig. 3.1. It is composed

of neurons (or nodes) in a layered structure. By fully connected we mean each

neuron is connected to not partial but all neurons in adjacent layers. The shown

network has two hidden layers. The depth of an MLP can be extended to multiple

hidden layers for increased capacity of representation (Goodfellow et al., 2016).

Consider an MLP receiving n0-element input vector x. For each hidden neuron h

in the first hidden layer, it is connected with input neurons by the weight vector

w1
h, and a weighted sum of x is referred as the network input a1

h to neuron h. The

activation function of the first layer, g1, is then applied to this input, yielding the

activation b1h,

a1
h =

n0∑
i=1

w1
ihxi

b1h = g1(a1
h).

(3.8)

52



3.2.3.1. Forward Pass

Most used activation functions are the hyperbolic tangent

tanh(a) = e2a − 1
e2a + 1 , (3.9)

and the logistic sigmoid

σ(a) = 1
1 + e−a

. (3.10)

The sigmoid was used in the original biological model squashing the weighted sum

between 0 and 1, representing the firing rate of a neuron. tanh(a) and σ(a) are

linked via tanh(a) = 2σ(2a) − 1, and are found to provide the same results in

practice (Graves, 2012).

Rectified Linear Unit (ReLU) is a piece-wise linear function,

ReLU(a) = max(0, a). (3.11)

ReLU is more computationally efficient. It has fewer vanishing gradient problems

than sigmoid and tanh that render training of deep neural networks difficult (Ho-

chreiter, 1991; Bengio et al., 1994; Glorot et al., 2011), gaining vast popularity as

learning with deep networks has dominated.

All these activations are considered nonlinear, providing far more power than linear

networks when for example approximating nonlinear functions or finding nonlin-

ear classification boundaries (Goodfellow et al., 2016). They are all differentiable

functions, allowing the network to be trained with gradient-based optimisation

algorithms. Their first derivatives are

tanh′(a) = 1− tanh2(a)

σ′(a) = σ(a)(1− σ(a))

ReLU ′(a) = H(a),

(3.12)

where H(a) is the Heaviside function, which returns 1 for non-negative inputs and

0 otherwise.

The calculation in Eq. 3.8 is repeated for subsequent hidden layers, i.e.

akh =
nk−1∑
i=1

wkihb
k−1
i

bkh = gk(akh)

(3.13)

53



3.2.3.1. Forward Pass

input layer
first hidden layer

second hidden layer

output layer

W1 W2 W3

! "#

Figure 3.1: Example structure of a multilayer perceptron with two hidden layers.
Each cell (represented by a white circle) represents a neuron. This network receives
3-element input vectors and outputs 2-element vectors. Each neuron in the same
layer is connected to all neurons in adjacent layers but not connected to each other.
Wi (i = 1, 2, 3) is the weighting matrix. For example, W1x gives the 4-element
input vector a1 to the first hidden layer. This vector is then transformed by an
elementwise nonlinear function, producing the output vector b1 of this layer. This
process continues until the output layer is reached.

for neuron h in hidden layer k.

The output layer is treated as a hidden layer for calculating the output vector ỹ,

aK+1
h =

nK∑
i=1

wK+1
ih bKi

ỹh = gK+1(aK+1
h ),

(3.14)

where K is the number of hidden layers. The number of neurons in the output layer

(the length of output vector) and its activation function depend on the specific task

(Goodfellow et al., 2016).

An initial value of L, the objective function of the training process, has to be

determined for the optimisation process to begin. This requires the initialisation

of θ. Gradient based algorithms require that θ has small, random initial values.
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3.2.3.2. Objective Function

For experiments in this thesis, we use Xavier uniform distribution to initialise the

weights linking feedforward FC layers (Glorot and Bengio, 2010). Xavier distri-

bution is a uniform distribution between −
√

6/(nin + nout) and
√

6/(nin + nout),

where nin and nout are the numbers of neurons in adjacent layers. For example,

for the network shown in Fig. 3.1, nin = 3, nout = 4 for elements in W1.

3.2.3.2 Objective Function

Under the supervised learning scheme where the targeted output y is provided for

a given input x, the objective function L can now be evaluated. For regression

problems such as the wavefront prediction task considered in this thesis, the MSE

is a commonly adopted metric, which can be calculated from a minibatch of m

training samples,

LMSE = 1
m
||yh − ỹh||22, (3.15)

where || · ||2 denotes the Euclidean distance between two vectors.

3.2.3.3 Backward Pass

The backward pass is the process of finding the derivatives of the objective function

with respect to network weights, such that gradient based optimisation algorithms

introduced in Section 3.2.2.1 can be used for updating these weights and decreasing

the objective function. Backpropagation is the technique for efficiently calculating

derivatives in neural networks (Rumelhart et al., 1986), which is a repeated applic-

ation of chain rule for calculating partial derivatives in calculus.

The first step of backpropagation is to calculate the derivative of the objective

function with respect to network outputs. For the objective function defined in

Eq. 3.15, for a single training sample, this derivative is

∂LMSE

∂ỹh
= 2(ỹh − yh) (3.16)

for the hth element in the output vector.
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3.2.4. Long Short-Term Memory Networks

Here we introduce the following notation:

δkh ≡
∂LMSE

∂akh
. (3.17)

For the output layer, from the chain rule we have

δK+1
h = ∂LMSE

∂ỹh

∂ỹh

aK+1
h

= 2(ỹh − yh)g′K+1(aK+1
h ). (3.18)

By applying the chain rule recursively, working backwards through hidden layers,

we have

δkh = ∂LMSE

∂bkh

∂bkh
∂akh

= ∂bkh
∂akh

nk+1∑
i=1

∂LMSE

∂ak+1
i

∂ak+1
i

∂bkh
. (3.19)

From Eq. 3.13 we have

δkh = g′k(akh)
nk+1∑
i=1

δk+1
i wk+1

hi (3.20)

for any unit h in hidden layer k. Then we can have the derivatives with respective

to each of the weights

∂LMSE

∂wkih
= ∂LMSE

∂akh

∂akh
∂wkih

= δkhb
k−1
i , (3.21)

where wkih is the weight linking neuron h in layer k and neuron i in layer k − 1.

For training on minibatches, the derivative is evaluated as the average derivative

from each sample.

3.2.4 Long Short-Term Memory Networks

While the output of an MLP depends only on the current input, in a Recurrent

Neural Network (RNN), a memory of the input history is retained. RNNs are

specialised in sequence-to-sequence mapping, using a recurrence formula of the

form

ỹt = fθ(ht−1,xt), (3.22)

where f is a function dependent on the network topology. Its parameter set θ is

fixed across all time steps. The state vector ht can be understood as a running
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3.2.4. Long Short-Term Memory Networks

‘memory’ of all previous inputs, and is updated at each time step. h0 can either be 0

or treated as a parameter and learnt during training. In this thesis we will set h0 to

0. RNNs are proven to be able to approximate any sequence-to-sequence mapping

to arbitrary accuracy given a sufficient number of hidden neurons (Hammer, 2000).

In this thesis we focus on Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997; Gers et al., 1999), which is a powerful variety of RNN. LSTM

is the most efficient solution so far to the vanishing gradient problem in training

RNNs (Hochreiter, 1991; Bengio et al., 1994), allowing long-term memories to be

maintained within the network.

The inner structure of an LSTM cell is shown in Fig. 3.2. While the topology of

an MLP is determined by the number of hidden layers and the number of neurons

in each layer, an LSTM cell can be constructed once the number of its neurons m

is known. Several LSTM cells can be stacked though to increase the depth of the

resulting network. In addition to a hidden state vector ht, LSTMs maintain a cell

state vector ct. The calculation is as follows,

i

f

o

g


=



σ

σ

σ

tanh


W

 xt
ht−1



ct = f � ct−1 + i� g

ht = o� tanh(ct).

(3.23)

i, f and o are the input gate, forget gate and output gate respectively, controlling

whether each memory element is updated, reset, or output to update the hidden

state. These are binary gates activated by the sigmoid function. These vectors

alongside g, c and h are all m-element vectors, where m is the number of neurons

of this cell. g is for additively modifying the cell memory, and it is this additive

interaction that allows gradients on c to flow backwards through time uninterrup-

tedly for a long period, enabling the retaining of long-term dependencies. W is the

weighting matrix of dimensions 4m× (m+ n), where n is the input vector size. In
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Figure 3.2: Data flow within an LSTM cell. xt is the cell input. It has a hidden
state ht, which is also its output vector, and a cell state ct for retaining memory.
i, f and o are three gates activated by the sigmoid function, controlling whether
the cell memory is updated, reset or output to update the hidden state. g is for
additively modifying the memory content. All these vectors are updated at each
time step.

this thesis, blocks in W linking xt are initialised using Xavier distribution between

−
√

6/(nin + nout) and
√

6/(nin + nout). Blocks linking ht−1 are initialised as an

orthogonal matrix to preserve gradient norm for a long term (Saxe et al., 2014;

Vorontsov et al., 2017).

The addition of a cell state with internal loops and the gating mechanism makes

the time constant of an LSTM variable. This can change dramatically with inputs

even when the parameters of this network are fixed after training (Goodfellow et al.,

2016). The calculation in Eq. 3.23 is repeated for all time steps. When applied,

an LSTM can process a sequence spanning for arbitrary time steps, contrary to an

MLP receiving inputs of fixed size only.

The gradients of the objective function with respect to network weights in an

RNN can be computed using the technique called Backpropagation Through Time

(BPTT) (Werbos, 1990). Like backpropagation, BPTT is also a recursive applic-
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3.3. SCAO Simulation

ation of the chain rule. The difference is that because the RNN parameters are

shared across time the partial derivatives also have to take into account all previous

time steps. Equations of gradient computation in an LSTM can be found in Graves

(2012).

The forward and backward calculations of an MLP or an LSTM introduced so far

have been implemented by Keras (Chollet et al., 2015), which is a high-level ANN

library written in Python. For this thesis, we will use Keras for ANN training.

3.3 SCAO Simulation

In this section we describe the schematic of a simulated SCAO system built with

Soapy. This system takes the configuration of CANARY low-order SCAO mode

(Morris et al., 2010). We use this system to generate sequences of open-loop slope

measurements as ANN training data, and to evaluate the performance of trained

ANN predictor in terms of Root Mean Squared (RMS) Wavefront Error (WFE).

The architecture of the simulated SCAO system is shown in Fig. 3.3. Throughout

the simulation we use a point source at infinity to act as a natural Guide Star (GS).

To generate the training data, one single turbulence layer is assumed. Here, the

use of a single layer is for the ease of training. We will show that an ANN predictor

trained using one turbulence layer is capable of predicting in multi-layer conditions

(see Section 4.6). A large random phase screen with von Kármán statistics is

generated within the atmosphere module Atmos at the start of each loop run. Pure

frozen flow is assumed, under which the large phase screen is translated over the

telescope aperture with a given velocity due to the wind. At each time step, a

smaller portion of the large phase screen, the part of which is seen by the telescope

aperture, is output to SHWFS. SHWFS then outputs measured noisy wavefront slopes

from the image plane using the Thresholded Centre of Gravity (TCoG) algorithm

to suppress photon noise and readout noise. A single frame delay can be used in

Soapy simulations (the center loop in Fig. 3.3) to account for the inevitable WFS
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Figure 3.3: Composition of the simulated SCAO system and its data flow. RMS
wavefront error of the predictive correction (upper) is expected to be between the
1-frame delay (center) and zero-delay (lower) corrections.

integration time. For the ANN training, we assume a 1-frame delay. This delay

can be varied to any integer number of frames. Simulating sub-frame latency in

Monte Carlo simulations involves additional iterations that increases the running

time of the simulation and the time taken to generate the training data. This time

lag between wavefront measurement and correction can be compensated either

by applying slope measurements immediately (the lower loop) or by sending the

prior slopes to an ANN predictor to extrapolate the current measurements (the

upper loop). A reconstructor module (Recon) combines noisy slopes (either delayed,

predictive, or delay-compensated) and control matrix generated during calibration

to output Deformable Mirror (DM) commands, which are used by DM to generate

the corrected phase. RMS error between the phase distortion and the DM shape

is then output as the performance metric, RMS WFE.

The central loop can be seen as an open-loop integrator with the gain value in

Eq. 2.28 set to 1. As can be seen from Fig. 3.4, this is the optimal gain for

an open-loop integrator regardless of the noise condition. Different thresholding

values (given in Table 3.1) of the TCoG algorithm were used at each guide star

magnitude to suppress measurement noise. These thresholds gave the lowest RMS

slope measurement error under each condition during the system calibration. The

residual wavefront error is the average of 1,000 independent runs each lasting for

100 frames. We will keep the gain in the 1-frame delay loop as 1 in the following
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Figure 3.4: Residual wavefront error as the gain of the open-loop integrator changes.
A unity-gain integrator corresponds to the central loop in Fig. 3.3, which we will
refer to as the 1-frame (or 2-frame in Chapter 5) delay loop. Due to optimised
noise suppression during the WFS measurement, the curves for the noise-free and
the magnitude 6 conditions, or the magnitude 7 and 8 conditions, overlap.

Table 3.1: Thresholding value of the TCoG algorithm as the GS magnitude varies.

Noise-free 6 7 8 9 10
Threshold 0 0 0.02 0.02 0.1 0.1

analyses.

We also note from Fig. 3.5 that an open-loop unity-gain integrator has better

performance than a closed-loop optimised-gain integrator in the simulation setup

regarding temporal, noise, aliasing and fitting errors only. This is because when the

system is controlled in closed loop, any WFS measurement error such as noise and

aliasing will be integrated with a non-zero gain, leading to performance degradation

compared with an open-loop integrator of the same gain. The closed-loop gain was

sampled from 0.3 to 1 with a step of 0.1. The optimal gain yields the lowest residual
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Figure 3.5: Performance comparison of a closed-loop optimised-gain integrator and
an open-loop unity-gain integrator as guide star magnitude varies. Here the error
sources are temporal, noise, aliasing and fitting errors.

wavefront error.

For the following analyses, we will use the 1-frame (or 2-frame as in Chapter 5)

delay loop as our performance benchmark. This can be considered an open-loop

unity-gain integrator. In reality, a pure open-loop system is rare and challenging

because the DM is not seen by the WFS. Potential DM errors are difficult to

calibrate and this can easily deviate the system performance from being optimal.

The configuration of open-loop wavefront sensing and control adopted in this study

is mainly for the ease of implementation and performance interpretation, as has

been explained in Section 1.3.

Principal simulation parameters for generating ANN training data and for the

performance analyses conducted in Chapter 4, unless stated otherwise, are listed in

Table 3.2. A layout of the subapertures is shown in Fig. 3.6. A detailed introduction
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3.3. SCAO Simulation

Table 3.2: Principal parameters used with the Soapy SCAO simulation for ANN
training and optimisation.

Parameter Value
Telescope diameter 4.2 m
Central obscuration 1.2 m
System frequency 150 Hz
Loop latency 1 frame
Throughput 1
# of phase screens 1
Wind speed 10-15 m/s
Wind direction 0-360◦

r0 @ 500 nm 0.16 m
L0 25 m
GS magnitude 10
Type of WFS Shack-Hartmann
# of subapertures 7×7 (36 active)
# of pixels per subaperture 16× 16
Subaperture Field of View (FOV) 4.8 arcsec
Readout noise 1 e− RMS
Photon noise Yes
WFS wavelength 600 nm
Centroiding algorithm TCoG
Thresholding value of TCoG 0.1
Type of DM Piezo
# of DM actuators 8×8
Real-Time Control (RTC) in open loop Yes

to CANARY can be found in Section 5.2. We typically train the predictor under

similar atmospheric and system conditions to those where it will be validated. The

impact of the WFS noise on ANN training and the predictor’s robustness against

changes in input statistics will be explored in Chapter 4.
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Figure 3.6: The layout of the subapertures of the simulated Shack-Hartmann Wave-
front Sensor (SHWFS). The shaded area is the pupil, which is circular with a
central obscuration. Each square cell with a number represents the position of an
active subaperture, which has over 50% overlap in area with the pupil and is thus
defined as well-illuminated.

3.4 ANN Training

3.4.1 Training Data Generation

The wavefront sensing subsystem consisting of Atmos and SHWFS modules is used to

generate the first 100,000 training samples. Each sample is a time sequence of thirty

72-element vectors (s1, s2, ... , s30), with each vector, si, being the x and y slope

for each of the 36 subapertures. (s1, s2, ... , s29) will be ANN inputs sequentially

during training, and s30 will be the targeted output. Wind velocity corresponding

to each sample is a random vector, with its magnitude uniformly sampled from the

range 10 to 15 m/s and its direction uniformly sampled from the range 0 to 360◦.

Wind velocity is constant within each sequence.

We then reverse each sequence to form the other half of the training set, with the

last frame being the first and first being last. This corresponds to reversing the

wind direction. We use this data augmentation approach to introduce variability
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in training data to improve model robustness. Resulting ANN input and targeted

output sets are tensors of shape (2×105, 29, 72) and (2×105, 72) respectively. The

amount of training data is decided by trial and error to match both ANN architec-

ture complexity and problem complexity to balance between training data fitting

and model generalisation. No further training data pre-processing is implemented.

During training, 90% of the dataset forms the training dataset while the remaining

10% is reserved to form the validation set.

3.4.2 ANN Training and Hyperparameter Tuning

The ANN architecture consists of stacked LSTM cells and a final FC output layer.

The activation function of the FC layer is ReLU. The depth of neural networks is

associated with the depth of representations that can be learnt (Goodfellow et al.,

2016), thus the stacking of LSTM cells in our case.

The ANN topology comprising two LSTM cells and a FC layer is shown in Fig. 3.7.

The display is unrolled in time, which means all components in the same colour

(or row) are duplicates in time and essentially identical to inputs at any time step.

At each time step t (t ≥ 2), the network can output a slope prediction s̃t based on

the current input st−1 and two state vectors, the cell state and the hidden state.

Both states are either initialised as all-zero vectors (t = 2) or updated at each time

step (t > 2) using information in the input sequence so far.

10% dropout is deployed for each LSTM cell (Gal and Ghahramani, 2016). Batch

size is set to 128. The training error is MSE between the targeted output s30 and

the actual output s̃30 evaluated and averaged on the current minibatch. The Adam

optimisation algorithm is used to optimise the network parameters in a direction

that minimises the training error. During one epoch, every minibatch is evaluated

once and the network parameters are updated accordingly multiple times. At the

end of each epoch, the updated network is evaluated on the validation set for

the assessment of the generalisation error. The default learning rate, 1e-3, of the
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Figure 3.7: The ANN predictor structure unrolled in time. The predictor can start
predicting from the 2nd time step, although initial predictions can be unstable and
inaccurate due to limited temporal information. The two LSTM cells have the
same inner structure, but different sets of parameters after training.

Adam algorithm is kept as no prominent performance improvement was observed

by tuning this. If the validation error shows no improvement for 10 consecutive

epochs, showing the potential of overfitting on the training set probably due to the

optimisation process being too fast, the learning rate is reduced to its 1/5 unless

reaching 1e-5. The reduced learning rate allows only small updates of the network

parameters to prevent this optimisation process from early stagnation. Training

is terminated after 40 epochs, at which point both training and validation errors

have levelled off.

The hyperparameter tuning process is coupled with ANN training. We tune two

hyperparameters that determine the physical capacity of the network: number of

stacked LSTM cells (1 or 2) and length of output vectors of each LSTM cell (a

random integer between 100 and 250, different for each cell). Every time a set of

these two hyperparameters are chosen, the model is recompiled, re-initialised and

re-trained as is described above. The random search routine is adopted (Bergstra

and Bengio, 2012). In total 30 combinations of the hyperparameters were tested.

The model that achieves the lowest validation error at the end of the 40th epoch
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Table 3.3: The optimised ANN architecture.

Module Input vector size Output vector size
First LSTM 72 247
Second LSTM 247 226
FC 226 72

is composed of two LSTM cells and a final FC layer (as is shown in Fig. 3.7). The

output vector of the first LSTM cell has 247 elements and the second cell has 226

elements. The resulting model has 761,000 trainable parameters in total.

After training, the optimised predictor is inserted between SHWFS and Recon to

form part of a predictive correction loop. From this stage, the parameters within

the ANN are fixed and inputs are now processed in a deterministic way.

3.5 Conclusions

In this chapter we have developed the training methodology of an ANN predictor

with a simulated SCAO system. We have shown how the wavefront sensing sub-

system can be used for generating training data and how the ANN predictor can

be inserted between the WFS and the DM to form a predictive correction loop,

the residual error of which can be compared with the delayed or zero-delay loop

to evaluate the ANN performance. We described the principle and workflow of

the ANN training and hyperparameter tuning process, and presented the architec-

ture of the trained ANN predictor that will be examined in greater detail in the

following chapters.

We will show in the following chapters that although originally developed with

simulated frozen-flow turbulence, the training methodology presented here can be

adapted to work with on-sky turbulence as well, showing that the training method

is valid for a variety of problems.
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Chapter 4

Prediction Results in Simulation

4.1 Overview

In this chapter, we will investigate if an Artificial Neural Network (ANN) can

be used for wavefront prediction in a simulated Single-Conjugate Adaptive Op-

tics (SCAO) system and characterise system performance when an ANN-based

predictor is used. We will also address the following questions:

1. Among the many turbulence and system parameters determined before train-

ing, which is an ANN predictor sensitive or insensitive to?

2. Can an ANN trained with a single turbulence layer generalise to multi-layer

profiles?

3. Can the ANN-based predictor operate without knowledge of the spatial dis-

tribution of Wavefront Sensor (WFS) subapertures?

To investigate these, the performance of the ANN predictor obtained through the

training workflow presented in the previous chapter is examined across seven scen-

arios:

• Guide Star (GS) magnitude is decreased from 10 (on which the predictor is

trained) to 6, which decreases WFS noise in input slopes. We investigate
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4.1. Overview

the noise level of training data on ANN performance. We then examine

the predictor’s performance in the spatial and temporal frequency domain to

assist our understanding of its performance.

• The turbulence strength is varied from an r0 of 8 to 30 cm, for an ANN

trained with an r0 of 16 cm.

• A time-variant turbulence is considered by changing either the wind speed or

the direction every 10 frames (15 Hz) after the predictor stabilises.

• We test the stability and robustness of the predictor under realistic r0 con-

ditions for a simulated time of one hour (540,000 frames).

• A multi-layer turbulence is considered to test the predictor’s ability to track

multiple wind vectors.

• We extend our approach to account for a more realistic 2-frame latency,

where we trained a separate ANN predictor to predict two frames in advance

directly, and compare that with applying the single-frame latency predictor

twice.

• We compare the performance of spatially aware predictor and non-spatially

aware predictor. For the former, the prediction of a single subaperture is

based on the history of all subapertures. For the latter, each subaperture

is treated independently and in parallel, although the same temporal evolu-

tion is assumed for all. This, alongside Section 5.7, will investigate if spatial

awareness is necessary for predicting frozen flow and non-frozen flow turbu-

lence such as dome seeing.

In most scenarios, statistics of the input slopes to the predictor are slightly different

from that used during training to test the generalisation capability of the ANN.

In each scenario, we used 1,000 simulated test slope sequences each of 100 frames

(lasting for 0.67 s) for the test. The predictor’s memory (both cell and hidden
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4.2. Performance with Varying WFS Noise Level

states) is zeroed before a new slope sequence. The predictor is expected to build

up its memory and output stable predictions in 30 frames as the training was

designed. Other simulation parameters are mostly the same as listed in Table 3.2,

unless stated otherwise.

4.2 Performance with Varying WFS Noise Level

In this section, we examine the performance under varied WFS noise levels, and

the sensitivity of an ANN predictor to the training noise level.

To investigate these, in addition to the ANN obtained in Section 3.4.2 that was

trained on a guide star of magnitude 10, we include results from two networks that

have been trained with different magnitudes of GSs (thus different noise levels) us-

ing the training methodology developed in Section 3.4. These three predictors are

denoted as Mag-10, Mag-8 (trained with a GS of magnitude 8) and Noise-free

(trained without WFS noise) respectively. The training procedure and other simu-

lation parameters were the same as detailed in Section 3.4, except the thresholding

value of the Thresholded Centre of Gravity (TCoG) algorithm that was reduced

to 0.02 for the Mag-8 predictor, and 0 for the Noise-free predictor to accom-

modate for the lowered noise levels. The resulting ANN architectures are listed

in Table 4.1. For each network, we see that the residual Wavefront Error (WFE)

decreases until the 20th frame, after which the performance of each ANN stabilises.

This is depicted in Fig. 4.1 when observing a bright GS of magnitude 6.

The RMS WFE of all predictors as GS magnitude varies is shown in Fig. 4.2. The

corresponding thresholding values of the TCoG algorithm are listed in Table 3.1.

We note that the ANN trained with the highest noise level performs far better

than the ANNs trained in lower noise regime and this behaviour was observed

irrespective of test GS magnitude. Mag-10 and Mag-8 predictors perform better

than the 1-frame delay in all test conditions.
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Figure 4.1: Mean Root Mean Squared (RMS) WFEs in an Adaptive Optics (AO)
loop averaged across 1,000 test sequences. The GS used to generate test slopes has
a magnitude of 6, which decreases the noise level of inputs to the predictor that is
trained with a GS of magnitude 10 (Mag-10) compared with during its training.
Wind speed is 15 m/s in a single direction. We also compare Mag-10 predictor
using the same set of test slopes with another two predictors that were trained with
GS magnitude 8 (Mag-8) and trained without WFS noise (Noise-free).

Table 4.1: Training conditions and structures of Mag-10, Mag-8 and Noise-free
predictors.

ANN Predictor Mag-10 Mag-8 Noise-free
GS magnitude during training 10 8 -
# of neurons of the first cell 247 247 162
# of neurons of the second cell 226 203 114
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Figure 4.2: Performance of Mag-10, Mag-8 and Noise-free predictors that were
trained with decreasing WFS noise when the test guide star magnitude varies. The
wavefront error is measured using data from the 30th frame after the ANNs have
stabilised.

To further quantify the ANN performance, we introduce the prediction error, σp,

as follows,

σp =
√
σpred2 − σzero-delay2, (4.1)

where σ∗ is the average WFE after the 30th frame and across all sequences. σpred2

is the WFE in the predictive correction loop and σzero-delay
2 is the WFE in the

zero-delay correction loop. The delay error is defined in a similar fashion, with

σdelay
2 the WFE in the 1-frame delay loop,

σd =
√
σdelay2 − σzero-delay2. (4.2)

For the simulated SCAO system, the error sources are temporal, noise, aliasing

and fitting errors, as described in Section 2.2.6. If we assume these terms are

independent from one another, the wavefront error can be decomposed as,

σzero-delay
2 = σ2

fitting + σ2
noise + σ2

aliasing

σdelay
2 = σ2

fitting + σ2
noise + σ2

aliasing + σ2
temporal.

(4.3)
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4.2. Performance with Varying WFS Noise Level

Table 4.2: Delay error σd and prediction error σp (nm) of Mag-10, Mag-8 and
Noise-free predictors as GS magnitude varies.

GS magnitude σd Mag-10 σp Mag-8 σp Noise-free σp
Noise-free 82.6 39.3 69.8 69.2
6 80.6 34.9 62.5 66.2
7 77.4 35.7 69.0 75.5
8 82.1 36.0 53.0 68.4
9 71.1 24.6 67.9 89.7
10 72.6 19.6 49.2 100.3
Mean 77.7 31.7 61.9 78.2
STD 4.5 7.1 8.1 12.6

We make two assumptions about the error breakdown in the prediction case. Be-

cause both the input and targeted output slopes of the ANN are perturbed by

noise and aliasing, we assume that the ANN predictions also contain these two

error terms, although their values could have been altered. We use σnoise′ and

σaliasing′ to denote the ANN-filtered noise and aliasing errors. We will use the auto-

correlation approach in Section 2.2.6.4 to identify and quantify σnoise′ . σtemporal′

denotes the temporal error after the prediction and represents the ANN prediction

power. The fitting error should remain unchanged before and after the predic-

tion since in both cases this is limited only by the WFS sampling of the pupil.

The second assumption is the filtered temporal, aliasing and noise errors are still

independent. Correlations between errors introduced by the filtering may exist in

practice, however this breakdown enables the quantitative examination of the ANN

performance described here. As a result, σpred2 can be decomposed as

σpred
2 = σ2

fitting + σ2
noise′ + σ2

aliasing′ + σ2
temporal′ . (4.4)

Combining Eqs. 4.1 to 4.4, we have

σ2
d = σ2

temporal

σ2
p = (σ2

noise′ − σ
2
noise) + (σ2

aliasing′ − σ
2
aliasing) + σ2

temporal′

(4.5)

The delay error σd is the temporal error, σtemporal. The aim of the prediction

error σp is to give an insight into the prediction power of the ANN, represented by
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σtemporal′ when comparing it with σd. Calculated σd and σp as GS magnitude varies

are listed in Table 4.2. The significantly decreased σd in much noisier conditions

might be due to the inherent accuracy of the simulation.

However at this stage, a prediction error σp smaller than the delay error σd can

indicate the suppression of noise and aliasing errors as well as the temporal error.

We will examine the filtered error terms qualitatively and quantitatively in the

following sections, and prove that σtemporal′ is smaller than σtemporal.

4.2.1 Modal Analysis of ANN Performance

In this section we analyse the Zernike breakdown of the residual WFEs to under-

stand Fig. 4.2.

To access this, we can convert slope errors to phase errors via a perfectly calibrated

control matrix Mrz,
adelayerr = Mrz(st − st−1)

aprederr = Mrz(st − s̃t).
(4.6)

Mrz is the pseudo inverse of a perfect interaction matrix Mzi
∗. Both matrices

were developed for CANARY performance analysis. Mzi is the interaction matrix

between a 7 × 7 Shack-Hartmann Wavefront Sensor (SHWFS), which takes the

CANARY WFS configuration, and a 35-mode Zernike Deformable Mirror (DM).

Each row of Mzi, corresponding to the WFS response to a given Zernike mode input

phase, were computed directly as the line integral of a high-resolution Zernike phase

map along the perimeter of each subaperture (Akondi and Dubra, 2020), not from

an image plane. This removes WFS noise and Charged Coupled Device (CCD)

pixel sampling effects. The pseudo inverse was thus computed with a conditioning

value of 0 without any regularisation or mode filtering. The limit of 35 Zernike

terms represents those terms that are adequately sampled by the WFS and has

been determined from the formula

nZ = (N + 1)(N + 2)
2 , (4.7)
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4.2.1. Modal Analysis of ANN Performance

where N is the maximum Zernike radial order that a 7× 7 WFS can sense, which

is 7.

The temporal variance (after the 30th time step) of each Zernike error in each

sequence, averaged across all sequences, gives an RMS error term on that mode z,

σ2
delay,z

=< |at − at−1|2 >

=< |(atatmos − at−1
atmos) + (atnoise − at−1

noise) + (ataliasing − at−1
aliasing)|

2 >

=< |atatmos − at−1
atmos|2 > + < |atnoise − at−1

noise|
2 > + < |ataliasing − at−1

aliasing|
2 >

=< |atatmos − at−1
atmos|2 > + < |atnoise|2 > + < |at−1

noise|
2 >

+ < |ataliasing|2 > + < |at−1
aliasing|

2 >

= σ2
temporal,z + σ2

noise,z + σ2
noise,z + σ2

aliasing,z + σ2
aliasing,z.

(4.8)

< · > denotes the temporal mean. The derivation uses the fact that < |at* ×

at−1
* | >= 0 where * denotes noise or aliasing, and that < |aa × ab| >= 0 where a

and b refer to two statistically independent terms. Similarly, we have

σ2
pred,z = σ2

temporal′ ,z + σ2
noise,z + σ2

noise′ ,z + σ2
aliasing,z + σ2

aliasing′ ,z.
(4.9)

Fig. 4.3 shows σpred,z of the Mag-10 predictor and σdelay,z of the 1-frame delay

in the noise-free condition. We also plot the Zernike breakdown of the open-loop

measurements, < |at|2 >, and the RMS error in the 2-frame delay loop, < |at −

at−2|2 >, for comparison. The bump around Z30 indicates the aliasing. It is unclear

why the 1-frame or 2-frame temporal error is especially low (e.g. Z8, Z16, Z25, Z30)

or high (e.g. Z29) in some modes. The fact that the prediction follows this trend

indicates that the delay compensation by the ANN is partial. Still, the ANN has

a lower error in all modes than the 1-frame delay.

Fig. 4.4 shows the ratio between σpred,z and σdelay,z as GS magnitude varies. A

ratio less than unity indicates the system will benefit from the prediction of that
∗Both matrices were obtained through the private communication with Lisa Bardou at Centre

for Advanced Instrumentation (CfAI), Durham University.
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mode, which is mostly the case. Figure 4.4 shows that the performance of the

ANN predictor is highly dependent on the ANN training regime. The relative per-

formance of the Noise-free predictor gets much worse as the magnitude increases,

while the performance of the Mag-8 and Mag-10 predictors remains unchanged

with variation in guide star magnitude. As the magnitude increases to 9 and 10,

Mag-10 predictor has the lowest error in all modes, followed by Mag-8 predictor.

Combining Figs 4.3 and 4.4 we can also see that the ANN reduction is most

significant in poorly corrected modes (e.g. Z7, Z17, Z29) by the 1-frame delay.

These results show that:

• It is beneficial to train the ANN predictor using a dataset that includes

sources of noise, and that ANNs trained in noise-free conditions can degrade

performance when noise is present.

• Importantly, a predictor trained with noise can also operate in noise-free

conditions.

• Predictors trained on noisy data are not insensitive to noise, as can be seen

by the overall increase in ratio as the GS magnitude increases.

• ANN predictor performance appears to be dependent on the amount of noise

present within the training data set, with noisier training data providing a

better performance.

4.2.2 ANN Characteristics with Temporal Frequencies

The temporal behaviour of ANN predictors can be understood by analysing the

temporal Power Spectral Density (PSD) of non-predicted and predicted slopes.

The temporal PSDs were obtained using the Welch’s average periodogram method

(Welch, 1967), which groups the time sequence of each Zernike mode into sub-

sequences of 1024 frames with an overlap of 512 frames, windowed by a Hanning

window.
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Figure 4.3: Zernike breakdown of the RMS wavefront error (nm) by the 1-frame
delayed slopes, the 2-frame delayed slopes and the ANN predictive slopes compared
with the zero-delay slopes. The Zernike breakdown of the uncorrected zero-delay
slopes are also plotted for comparison.

Although an analysis of frequency transfer is typically implemented in a linear

system where the input frequency is not altered by the system, this analysis can

still be meaningful for a nonlinear system. For example, the comparison of residual

PSDs was used in Landman et al. (2020) to demonstrate the ability of an ANN-

based closed-loop controller in attenuating vibrations in Tip and Tilt (TT) modes.

4.2.2.1 Temporal Response with Sine Waves

We first input to the ANN simple sine waves to show its frequency transfer is

nonlinear. The input is either a 49-Hz sine wave of unit amplitude, sin(98πt), or

the sum of two sine waves with frequencies 45 and 49 Hz respectively, sin(90πt) +

sin(98πt). In each case the sequence lasts for 9,000 frames (60 s) with a sampling

rate of 150 Hz. This sequence is then multiplied by a 72-element unit vector to

match the input size of the ANN. This can be understood as a vibration in the
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Figure 4.4: Ratio between the Zernike breakdown of the RMS wavefront error by
the predicted slopes and the 1-frame delayed slopes. This is consistent with Fig. 4.2.
A ratio below unity indicates the system will benefit from the ANN prediction of
that mode.
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Figure 4.5: Temporal PSD of a sine wave (at 49 Hz) and that of the ANN prediction.
The frequency limit is 75 Hz, with a temporal resolution of around 0.20 Hz.

TT modes.

The filtering of a single sine wave is shown in Fig. 4.5. The input has a distinct

peak at 49 Hz as expected. After the ANN filtering, this peak is maintained,

however significant amount of power is transferred to other frequencies, with a few

peaks other than the 49 Hz. This is further complicated when the input contains

more than one frequency (see Fig. 4.6 for the filtering of the sum of a 45-Hz and a

49-Hz sine wave). This has been observed with other combinations of frequencies.

Here we define the prediction transfer as the ratio between the predicted PSD and

the non-predicted. Because each frequency in the output is the contribution of

many frequencies in the input including itself, if the prediction transfer at a certain

frequency is below unity, we can safely say that such a frequency must have been

attenuated by the ANN.

We have shown that the frequency transfer of the ANN predictor is nonlinear. This

may complicate the interpretation as each frequency of the output may come from a

variety of frequencies. However as explained above, the PSD of the output is a valid
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Figure 4.6: Temporal PSD of the sum of two sine waves (at 45 and 49 Hz respect-
ively) and that of the ANN prediction.

concept regardless of the linearity of the system, and the prediction transfer of the

ANN is reliable at least in indicating frequency attenuation. A prediction transfer

of unity may also imply the capability of learning the input power spectrum. Thus,

for the following analyses we regard the prediction transfer as a generalised transfer

function for a nonlinear system.

4.2.2.2 Temporal Response with WFS Measurements

To obtain the PSDs of the predicted WFS slopes, in each of the GS magnitude

conditions, we generated a 10,000-frame (66.7 s) slope sequence. All simulation

parameters are as listed in Table 3.2, except that an infinite phase screen was used

to satisfy the duration of this simulation (Assémat et al., 2006). The wind speed

is 15 m/s along 0 deg. Initially, a 4096 × 4096 phase screen was generated using

the Fast Fourier Transform (FFT) approach described in Section 2.3.2 as a stencil.

This is roughly 11 times of L0. Using the infinite phase screen technique, each new

column of the phase screen is determined from several recently generated columns
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4.2.2.2. Temporal Response with WFS Measurements

given the turbulence statistics. An infinitely long phase screen can be generated

this way. Compared with the FFT approach, this technique is computationally

expensive, but reduces memory required to store the phase screen, and allows

Monte Carlo simulations lasting for minutes or even hours of simulated time. The

slopes were then converted to Zernikes via Mrz.

Fig. 4.7 displays the temporal PSDs of the zero-delay slopes of low-order Tilt

(Zernike mode 3) and higher-order Trefoil (mode 10). As the noise level increases,

PSDs at high temporal frequencies are gradually flattened, deviating from the

exponential decay. This indicates the contamination of high frequencies by WFS

noise. It is especially visible for frequencies higher than 30 Hz on the PSDs when

the GS magnitude is 10.

Fig. 4.8 displays the prediction transfer of Tilt and Trefoil. Similar trends were

observed in other modes. The ratio of the Mag-10 predictor stabilises at 1, de-

creasing slightly above 10 Hz in noisier conditions, implying mild suppression of

high temporal frequency aberrations in addition to predicting low frequencies well.

It is clear that using the predictor trained on noisier data results in a better overall

performance, and the negative slope in the transfer at frequencies above 10 Hz is

indicative of noise filtering. This ratio of the Mag-8 and the Noise-free predictors

at high temporal frequencies exceeds 1, especially when the magnitude increases.

Due to the nonlinear nature of the ANN frequency transfer, we cannot deduce at

this stage that both predictors amplify noise from this plot. However, we will prove

this in the next section.

This behaviour with high frequencies is observed in other Zernike modes as well.

See Fig. 4.9 for the transfer of modes 2-36 in the noise-free condition. We have also

observed that the low frequencies of some modes are magnified by all predictors

and that this magnification can transit between modes as wind direction varies and

can even vanish for certain directions. This might also explain the poorly corrected

modes suggested in Fig. 4.3 where the wind direction is 0 deg. The ANN predictors

all show this same property that we hypothesise is due in part to a Zernike term’s
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4.2.2.2. Temporal Response with WFS Measurements
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time-averaged amplitude being dependent on wind direction and not speed alone

(Gordon et al., 2011). See Appendix A for the prediction transfer as wind direction

varies and a brief description there.

4.2.3 Noise Propagation

Recall from Section 2.2.6.4 that the noise-induced error can be estimated as the

difference between the actual auto-correlation of slopes at ∆n = 0 and a fitted

parabola (representing the turbulence) around ∆n = 0. Fig. 4.10 shows the auto-

correlation of slopes measured by the 10th subaperture (fully illuminated) with and

without WFS measurement noise. In the noise-free condition, the auto-correlation

peak at ∆n = 0, which contains the power of the turbulence only, is 1.51 × 10−2.

The fitted peak using values at ∆n = 1 and 2 is 1.50 × 10−2, reducing slightly

to 1.49 × 10−2 when fitted with ∆n = 2 and 3. The relative parabola fitting

error is 0.5% and 1.7% respectively. Thus, we consider the parabola fit a valid

approximation at ∆n ≤ 3 in our simulations.

In the magnitude 10 condition, We observed slight deviation from a parabola at

∆n = 1 and 0 of the predicted slopes. The derivation at ∆n = 0 suggests that

ANN predictors suppress or magnify noise to different levels. The deviation at

∆n = 1 might imply the noise propagation between adjacent frames after filtering

by the ANN.

Due to the noise propagation at ∆n = 1, we use the auto-correlation values at

∆n = 2 and 3 (instead of 1 and 2) to fit the parabola, and subtract the fitted curve

from the actual auto-correlation to obtain the propagated noise to ∆n = 1. We

think that the noise is propagated between adjacent frames, to a much lesser extent

to further separated frames as is supported by Fig. 4.10. The fitted parabolas for

the non-predicted and predicted slopes are also shown in this plot.

Fig. 4.11 shows that non-zero noise propagation exists even in the zero-delay slopes,

and this is indicative of the inaccuracy in the parabolic fit approach. We can
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4.2.3. Noise Propagation
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Figure 4.10: Auto-correlation of predicted and zero-delay slopes. The parabola
is fitted using the auto-correlation values at ∆n = 2 and 3. The gap between
the actual auto-correlation at ∆n = 1 and the fitted parabola indicates the noise
propagation between adjacent frames.

therefore say that noise propagation by the Mag-10 and Mag-8 predictors are

similar to that of the non-predicted slopes and their noise propagation can be

considered negligible. Due to this, we can use the auto-correlation at ∆n = 1 and

2 to fit the parabola and subtract the actual auto-correlation at ∆n = 0 from this

to obtain the noise-induced slope variance (see Fig. 4.12). The Mag-10 predictor

slightly suppresses WFS noise while the other two predictors amplify this. This

together with Fig. 4.8 shows that the amplification in the power of the noise floor

can be indicative of noise amplification, regardless of the linearity of the system

transfer.

This is in line with Osborn et al. (2012), which shows that in noisy conditions an

ANN tomographic reconstructor trained with photon noise has significantly better

performance than an ANN reconstructor trained without any noise. The improved

performance of the ANN tomographic reconstructor might as well have benefited

from the noise filtering, potentially brought by the spatial averaging of multiple

WFS measurements. This suggests that applying the ANN prediction technique

to multi-GS systems, combining the ANN spatial filtering and temporal filtering,
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Figure 4.11: Noise propagation between adjacent frames by ANN predictors. This
is represented by the deviation of the actual auto-correlation of slopes at ∆n = 1
from the parabola fitted with values at ∆n = 2 and 3 (shown in Fig. 4.10).

might improve the noise suppression even further.

4.2.4 Discussion

From the analyses presented in this section we have the first tests of our hypothesis

that the ANN is capable of wavefront prediction. Whilst it is clear that using the

ANN predictor results in a reduction in wavefront error compared to the slopes

delayed by a single frame, this could also be due to a reduction in noise or aliasing

errors. The nonlinear nature of the ANN does not allow us to easily investigate

these errors in isolation, but we can compare some of the errors associated to the

ANN prediction to that of the delayed slopes where the error budget can be more

easily derived.
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Figure 4.12: Measured noise variance of zero-delay and predicted slopes.

Recall from Eq. 4.5 the breakdown of the delay and prediction errors,

σ2
d = σ2

temporal

σ2
p = (σ2

noise′ − σ
2
noise) + (σ2

aliasing′ − σ
2
aliasing) + σ2

temporal′ .

(4.10)

As a result,

σ2
temporal′ = σ2

p + σ2
noise − σ2

noise′ + σ2
aliasing − σ2

aliasing′ . (4.11)

Consider the Mag-10 predictor in the noise-free condition. σnoise is 0 and σnoise′

is thus 0. From Table 4.2 we have σd = σtemporal = 82.6 nm and σp = 39.3 nm.

The aliasing error can be estimated using Eq. 2.32. Given the DM spacing 0.6 m,

r0 = 0.16 m @ 500 nm, we have

σ2
aliasing = 0.08

(
dDM
r0

)5/3

= 67.72 (nm2).
(4.12)

91



4.2.4. Discussion

Eq. 4.11 then becomes

σ2
temporal′ = σ2

p + σ2
aliasing − σ2

aliasing′

= 39.32 + 67.72 − σ2
aliasing′

= 78.32 − σ2
aliasing′ ≤ 78.32

< 82.62 = σ2
temporal,

(4.13)

i.e. σtemporal′ < σtemporal and therefore we can conclude that ANN is predicting

the wavefront.

In noisy conditions (GS magnitude = 6 to 10), Fig. 4.12 shows that σnoise ≈ σnoise′

for the Mag-10 predictor. As a result, the first equation in Eq. 4.13 still holds.

Using σp and σd values in Table 4.2, the derivation in Eq. 4.13 can be easily

followed. It can then be proven that σtemporal′ < σtemporal in all conditions except

when GS magnitude is 9, where the sum of σ2
p and σ2

aliasing (722) is slightly higher

than σ2
temporal (71.12). However, because Eq. 4.13 gives only the loose upper bound

of σtemporal′ and σtemporal′ < σtemporal holds for both magnitudes 8 and 10, the

same conclusion should hold for magnitude = 9 as well.

The prediction power of the Mag-8 and Noise-free predictors can be understood

intuitively. Fig. 4.9 shows that high temporal frequencies will be amplified by both

predictors. Noise and aliasing can both be considered high temporal frequency

errors, but aliasing will be observed only on higher-spatial frequency terms. If

these terms are amplified by the Mag-8 and Noise-free predictors, as indicated

in Fig. 4.9, we can assume that σ2
noise − σ2

noise′ and σ
2
aliasing − σ2

aliasing′
should both

be negative. In this case, from Eq. 4.11 and Table 4.2 we have,

σ2
temporal′ = σ2

p + σ2
noise − σ2

noise′ + σ2
aliasing − σ2

aliasing′

< σ2
p < σ2

d = σ2
temporal,

(4.14)

i.e. σtemporal′ < σtemporal in all conditions.

In the following six scenarios, we show the results obtained with Mag-10 predictor

only. We use a brighter guide star of magnitude 6 in all following scenarios to reduce

the performance variations brought by WFS noise.
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Figure 4.13: Residual WFE as a function of r0. Guide star magnitude is 6. Wind
speed is 15 m/s along a single direction.

4.3 Performance with Different Turbulence Strengths

Fig. 4.13 shows the residual WFE when r0 of the test slope sequence varies from 8

to 30 cm. The predictor was trained with a median r0 of 16 cm.

In this r0 range the prediction performance is constantly better than the 1-frame

delay. This implies that an ANN predictor trained with a fixed r0 can generalise

well to other turbulence strength levels, especially when the seeing condition is

better than during training. When the seeing gets much worse(in our case below

10 cm), the sensitivity of the predictor to r0 increases and a retraining dedicated

for bad seeing should be considered once the performance becomes unacceptable.

4.4 Performance with Time-Variant Wind Velocity

In the above scenarios, we have assumed stationary turbulence. In this section, we

demonstrate the agility and robustness of the ANN predictor against fluctuations
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Figure 4.14: Robustness of the predictor against wind speed fluctuations between
10 and 15 m/s every 10 frames. Wind direction is 0 degree. Guide star magnitude
is 6.

in wind velocity.

Here we use a synthetic wind speed sequence (upper panel in Fig. 4.14) in a relat-

ively short time scale of 100 consecutive WFS frames (0.67 s). Once the prediction

stabilises after the first 20 frames, wind speed changes every 10 frames (15 Hz)

to a value within 10 and 15 m/s. This fluctuation is reflected in the dynamics of

the 1-frame delayed correction, as a faster translation of the phase screen induces

increased phase variations between adjacent frames under frozen flow.

Fig. 4.15 demonstrates robustness of the predictor against wind direction fluctu-

ations between 0 and 45 degrees every 10 frames (upper panel). This corresponds to

a maximum instantaneous change of 8.4 m/s in wind speed along a single direction.

Recently van Kooten et al. (2019) have used typical wind profiles from the Thirty

Metre Telescope (TMT) site to demonstrate effects of wind velocity variations in

a data-driven Linear Minimum Mean Squared Error (LMMSE) predictor over a

period of 5 seconds in numerical simulations. Wind data are linearly interpolated
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Figure 4.15: Robustness of the predictor against wind direction fluctuations
between 0 and 45 degrees every 10 frames. Wind speed is 15 m/s. Guide star
magnitude is 6.

to system frequency to allow for per-frame fluctuations. Two adaptive variations,

resetting-batch LMMSE and forgetting LMMSE, along with LMMSE were tested.

Compared with these linear predictors, the ANN predictor is more robust to wind

fluctuations in that the variance of predicted WFEs did not increase significantly

after the wind disturbance. This robustness can be explained as the ANN predictor

is allowed to use more spatial and temporal information when making inferences.

Furthermore, compared with the adaptive LMMSE the updating and forgetting

mechanisms of the Long Short-Term Memory (LSTM) ANN are not fixed, but can

constantly self-adjust according to the inputs, which by design allows for more

flexible control on data flow.
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4.5. Performance with Time-Variant Turbulence Strength

4.5 Performance with Time-Variant Turbulence

Strength

In this section we demonstrate the robustness of the predictor against realistic

fluctuations in the turbulence strength r0. The r0 sequence was measured using

the stereo-SCIDAR technique from on-sky data taken at La Palma in 2020 (Osborn

et al., 2018). The time resolution is around 90 s, which is 13,500-frame long given

the 150 Hz rate of our simulated system. The measured r0 ranges from 12 to 23 cm

(see the upper plot in Fig. 4.16).

The lower plot in Fig. 4.16 shows the phase errors for a continuous simulated time

of one hour, with 40 different r0 values. Each data point in this figure is the average

value within 10 s. L0 is 25 m. Wind speed is set to 30 m/s. An infinite phase

screen with 4096 pixels in one dimension was simulated. The ANN predictor was

not updated during this process. In the first 90-second slot and the fifth from

last slot, the r0 values are both around 12.6 cm. The average RMS errors in the

prediction loop within both slots are 231.3 and 231.9 nm respectively, showing

negligible degradation even with the ANN integration for a long period. This

demonstrates the robustness of the ANN against realistic r0 fluctuations without

user tuning. Mean RMS WFEs of the delayed, predictive and zero-delay correction

loops are 201.9, 189.4 and 148.5 nm respectively.

4.6 Performance with Multi-Layer Turbulence

Although we train the ANN with a single turbulence layer for the ease of training,

there usually exist several layers at high altitudes in addition to a strong ground

layer (Farley et al., 2018, 2019). It is thus meaningful to test the predictor’s

sensitivity to multiple layers moving with different velocities.

Here we show the results obtained with European Southern Observatory (ESO)

96



4.6. Performance with Multi-Layer Turbulence

0.12
0.15
0.18
0.21
0.24

r0
 (c

m
)

0 15 30 45 60
Time (minute)

125

150

175

200

225

250

275

Re
si
du
al

 w
av

ef
ro

nt
 e

rro
r (

nm
)

1-frame delay Mag 10 predictor Zero-delay

Figure 4.16: Robustness of the predictor against turbulence strength fluctuations
every 90 s of simulated time (13,500 frames). Wind speed is 30 m/s. Guide star
magnitude is 6. The internal states of the LSTMs were not reset during this
process. The r0 value (0.16 cm) at which the ANN was trained is represented by a
red dotted line in the upper plot.

median 35-layer profile (Sarazin et al., 2013). r0 is 0.157 m, slightly worse than

during ANN training. L0 is 25 m. We generated 1,000 slope sequences each of 100

frames with this profile. For comparison, we also generated the same amount of test

data of a single ground layer and of a four-layer profile (detailed in Table 4.3), both

moving at 9.21 m/s (slightly slower than the training range), which is equivalent

to the dynamics of the 35-layer profile.

Fig. 4.17 shows residual WFEs when wind vectors of multi-layer profiles (either

the 4-layer or the 35-layer) move in different directions. For the 35-layer profile,

the moving direction of each layer is a random integer between 0 and 360 degrees.

For the 4-layer profile, wind directions are listed in Table 4.3. The delayed and the

zero-delay correction loops behave similarly regardless of the number of layers due

to similar turbulence statistics used, thus only values obtained from the single-layer

profile are displayed here. Mean RMS WFEs of the delayed, 35-layer predictive,

4-layer predictive, 1-layer predictive and zero-delay correction loop after the 20th
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Figure 4.17: ANN performance with multiple turbulence layers moving along differ-
ent directions. Wind speeds of either the 1- or 4-layer profile are scaled to maintain
the same dynamics as that of the 35-layer profile. r0 is 0.157 m.

frame are 167.9, 166.4, 164.6, 161.9 and 159.2 respectively.

Fig. 4.18 shows improved ANN performance when all layers in either multi-layer

profile move in the same direction (wind speeds are the same as used in Fig. 4.17).

Mean RMS WFE of the 35-layer predictive loop decreases to 164.0 nm, slightly

better than the 4-layer predictive loop when wind vectors are largely distinct from

each other. Mean RMS WFE of the 4-layer predictive loop decreases to 162.4 nm,

approaching that of the 1-layer predictive loop.

We think that the wind directions adopted represent two extreme conditions, and

that performance with real turbulence profiles would fall within these two cases.

These results show that the predictor trained on a single layer frozen-flow conditions

is capable of providing performance improvement even when complex profiles with

random wind directions are encountered.
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Figure 4.18: ANN performance with multiple turbulence layers moving along the
same direction. Compared with Fig. 4.17, the ANN performance suffers from the
increased number of wind vectors, but mainly from the variety among those vectors.

Table 4.3: Four-layer turbulence profile used for testing the predictor in a multi-
layer scenario. r0 is 0.157 m. L0 is 25 m. Two sets of wind directions corresponding
to Figs. 4.17 and 4.18 respectively are examined.

Layer 1 Layer 2 Layer 3 Layer 4
Height (m) 0 4000 10000 15500
Relative strength 0.65 0.15 0.10 0.10
Wind speed (m/s) 7.6 9.5 11.4 15.2

Wind direction (degrees) 0 330 135 240
0 0 0 0

4.7 Performance with Two-Frame Delay

Up to this point, we have considered only a 1-frame delay in the AO loop to account

for WFS integration time only but ignored the time taken for real-time processing

and the update of the surface shape of the DM.

In Fig. 4.19 we show the ANN performance when a more realistic loop delay of two

frames is considered. We trained a separate ANN that was designed to predict two

frames in advance in a single step. The training dataset described in Section 3.4.1
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was re-utilised in the way that (s1, s2, ... , s28) in each sequence are the ANN

inputs and s30 is the training target. The training and hyperparameter tuning

setup follows that described in Section 3.4.2. The resulting network comprises two

stacked LSTM cells and a final Fully Connected (FC) layer. The output vector

sizes of the two LSTMs are 122 and 171 respectively. The resulting mean RMS

WFE of this single-step predictive loop after the 30th frame is significantly reduced

to 166.9 nm, compared with 225.6 nm of the 2-frame delayed loop and close to

157.1 nm, the WFE corresponding to the zero-delay loop.

As a comparison, the 1-frame predictor can also be applied twice to provide a 2-

frame prediction: first, the measured (s1, s2, ... , st) (t ≥ 2) is fed into the predictor

to generate the predicted s̃t+1 as it was designed; second, s̃t+1 is treated as its truth

value st+1 and forms part of the ANN input vector (s1, s2, ... , st, s̃t+1), which is

then used to generate s̃t+2 as in the first step. This resulted in a WFE of 174.4 nm,

slightly worse than the single-step prediction, however still significantly better than

the 2-frame delay.

4.8 Performance of Non-Spatially Aware Predictor

For the Mag-10, Mag-8 and Noise-free predictors we have examined so far,

the ANN prediction of measurements by a single subaperture has been derived

from past measurements of all subapertures. We call these spatially aware predict-

ors. Including this level of spatial information allows for the exploitation of the

spatio-temporal correlation of frozen flow. However, in van Kooten et al. (2020)

measurements from surrounding subapertures did not bring performance benefits

compared with a per-subaperture basis prediction by a linear data-driven predictor

with on-sky SPHERE data, which is a High Contrast Imaging (HCI) instrument on

the 8.2 m Very Large Telescope (VLT). In this section we examine the performance

of a non-spatially aware predictor which predicts the slopes on a per-subaperture

basis.
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Figure 4.19: Prediction performance of a 1-frame predictor (two-step prediction)
and a 2-frame predictor (single-step prediction) in a system with a 2-frame latency.
The methodology adopted for the prediction in a 1-frame delay system is extended
to training a separate ANN predictor to predict two frames in advance directly
(single-step prediction). In this case, the 1-frame predictor can also be applied
twice in sequence (two-step prediction), albeit with slightly worse performance.
Both predictors significantly improve the system performance compared with the
2-frame delay. Guide star magnitude for test is 6. Wind speed is 15 m/s along a
single direction.

Using the training dataset for Mag-10 predictor, we trained an ANN predictor that

receives the x and y slope of a single subaperture only, and predicts the x and y slope

one frame in advance. In this case, slope measurements of a single subaperture are

treated as a single training sample, thus one sample in the original dataset breaks

into 36 samples (one for each subaperture). The first 10,000 sequences in the

original dataset then yield a new training dataset of size 360,000, each sample being

a 30-frame sequence composed of 2-element slope vectors. We again adopted the

two stacked LSTMs structure. The number of neurons of each of the LSTMs were

tuned in the range of 4 to 30 to match the reduced input/output size. Following the

training and hyperparameter tuning procedure detailed in Section 3.4, we obtained

what we refer to here as a non-spatially aware predictor. It has only 30 neurons

101



4.9. Conclusions

in the first LSTM and 20 in the second. After training, 36 copies (one for each

subaperture) of this predictor will be run in parallel, which is well suited to modern

processor architectures.

Below we compare the performance of this predictor and its spatially aware counter-

part, the Mag-10 predictor, using approaches introduced in Section 4.2. Residual

WFE is plotted in Fig. 4.20. Although not as performant as a spatially aware pre-

dictor, the non-spatially aware predictor improves system performance when GS

magnitude is 9 or lower.

Fig. 4.21 displays the prediction transfer of temporal PSDs in Zernike modes Tilt

and Trefoil by both predictors. The non-spatially aware predictor has a transfer

gain of nearly unity below around 10 Hz, implying a nearly perfect restoration

of slowly evolving components. However, it will significantly magnify fast-evolving

components such as WFS noise or aliasing, which might explain its performance de-

gradation as the GS magnitude increases. This is manifested in Figs. 4.22 and 4.23.

These were measured using the auto-correlation approach detailed in Section 4.2.3.

For the non-spatially aware predictor, both the noise propagation and the noise

variance are much more severe than the spatially aware predictor under all test

conditions.

4.9 Conclusions

We have shown in extensive numerical simulations the potential of ANNs as a

nonlinear framework for wavefront prediction under the frozen flow hypothesis.

The residual wavefront error of the simulated 7×7 subaperture SCAO system with

1-frame delay improves significantly after the predictor is incorporated irrespective

of guide star magnitude and wind velocity. We have provided evidence that the

ANN predictor reduces the temporal error.

For the ANN architecture studied within this thesis, the key parameter that affects

ANN performance is the level of noise present in the training data set, with ANNs

102



4.9. Conclusions

Noise-free 6 7 8 9 10
Test guide star magnitude

160

180

200

220

240

260

W
av

ef
ro

nt
 e

rro
r (

nm
)

1-frame delay
Spatially aware predictor
Non-spatially aware predictor

Figure 4.20: Performance of a spatially aware (Mag-10 predictor) and a non-
spatially aware predictor when the test guide star magnitude varies. Both predict-
ors were trained with the same level of WFS noise.

trained on noisier data sets providing better system performance. The ANN is

relatively insensitive to other parameters, such as turbulence strength and wind

velocity. Sensitivity to the internal configuration of the ANN in terms of number

of neurons and hidden layers was not explicitly investigated, but was optimised via

the hyperparameter tuning step.

In addition to accurately predicting the wavefront, we have provided evidence that

the ANN predictor also compensates for some noise and/or aliasing errors that can

be temporally filtered from the wavefront. This behaviour however is dependent

on the ANN training regime and was only observed when the system was trained

on a faintest 10th magnitude guide star.

We have shown that the ANN predictor trained on a single atmospheric turbulence

layer is also capable of predicting under more complex conditions with multiple

layers with independent wind vectors, albeit with reduced performance. The ANN

approach taken with a 1-frame delay is transferable to systems with a 2-frame
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Figure 4.22: Noise propagation between adjacent frames by the spatially aware and
the non-spatially aware predictors.
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Figure 4.23: Measured noise variance of the zero-delay slopes and slopes predicted
by the spatially aware and the non-spatially aware predictors as guide star mag-
nitude varies.
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delay.

We have also shown that a non-spatially aware predictor is capable of predicting

the frozen flow turbulence. Although the non-spatially aware predictor tends to

amplify the noise and aliasing which then degrades its performance, it can predict

the slowly-evolving components (below around 10 Hz) with more accuracy in all

test conditions compared with the spatially aware predictor.
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Chapter 5

Prediction Results with CANARY

Data

5.1 Overview

In this chapter, we will investigate if an Artificial Neural Network (ANN) can be

used for wavefront prediction with on-sky data. We will apply the ANN prediction

technique to Wavefront Sensor (WFS) data taken using the CANARY Adaptive

Optics (AO) system, recorded between 28 September and 2 October, 2017, using an

on-axis 7× 7 Shack-Hartmann Wavefront Sensor (SHWFS) operating in open loop

wavefront sensing. In this chapter we wish to address the following key questions:

1. Does the training methodology from Chapter 3 that works in simulation

translate to real data?

2. Are there identifiable properties of the CANARY data that can explain any

variations in between expected and actual performance?

3. Should an ANN predictor be trained in simulation or with real data?

We first introduce the CANARY instrument, with a focus on the system and atmo-

spheric characteristics when the datasets were acquired. We show that CANARY
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sees strong evolving static turbulence that is indicative of dome seeing as opposed

to frozen flow. We then present a static turbulence model that better describes the

temporal evolution of observed data than the frozen flow hypothesis and demon-

strate performance benefits brought by training with the fitted turbulence model.

Specifically, we investigate how the training noise level and spatially awareness of

the ANN can impact the prediction performance with dome seeing.

5.2 CANARY and Dataset Description

CANARY is a single-channel Multi-Object Adaptive Optics (MOAO) demonstrator

for Extremely Large Telescope (ELT) instruments, hosted by the 4.2 m William

Herschel Telescope (WHT), on La Palma in the Canary Islands (Myers et al., 2008;

Morris et al., 2010). MOAO is an AO configuration correcting simultaneously for

several individual lines of sight over a large Field of View (FOV), using wave-

front information from multiple WFSs observing within that field (Assémat et al.,

2007). CANARY was initially designed to demonstrate the concept of MOAO by

correcting for on-axis turbulence using off-axis wavefront information.

The development of CANARY was phased. In its initial phase in 2010, CANARY

implemented MOAO using a 52-actuator piezoelectric Deformable Mirror (DM)

controlled in open loop. The open-loop control signal was generated using the

Learn and Apply algorithm with information from three off-axis 7×7 Natural Guide

Star (NGS) SHWFSs (Vidal et al., 2010). An on-axis reference Truth Sensor (TS)

(a SHWFS) observed the corrected residual wavefront, providing a performance

measurement. In its later phases, CANARY was upgraded with additional four

off-axis Laser Guide Star (LGS) SHWFSs, bringing the total number of reference

sources to seven, a higher-order DM and upgraded WFSs with double the number

of subapertures across the pupil, gradually matching the MOAO architecture of the

proposed MOSAIC ELT instrument. The concept of MOAO has been successfully

demonstrated on-sky in both NGS-only and mixed NGS/LGS modes (Gendron
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5.2. CANARY and Dataset Description

Table 5.1: Timestamps of CANARY Datasets 0-5.

Dataset No. Timestamp
0 2017-09-28-21h20m20s
1 2017-09-28-23h10m34s
2 2017-09-29-03h46m09s
3 2017-09-29-05h26m20s
4 2017-10-02-01h43m38s
5 2017-10-02-02h04m08s

et al., 2011; Morris et al., 2013). CANARY was not designed for astronomical

science use, but for the study of AO system performance. CANARY performance

with the low-order DM results in an H-band Strehl ratio of 0.2-0.4, which is low

compared to modern AO systems, but sufficient for the characterisation of MOAO

performance. Its enormous flexibility by design has been used for the investigation

of other ELT related problems such as the design of the real time controller (Basden

and Myers, 2012) and the use of LGSs (Bardou et al., 2018), novel AO topics such

as nonlinear tomographic wavefront reconstructors (Osborn et al., 2012), vibration

mitigation techniques (Sivo et al., 2014) and automated wind velocity profiling

(Laidlaw et al., 2019).

To quantify the ANN prediction performance with on-sky data, we used six open-

loop slope Datasets taken by the TS of the CANARY instrument between 28

September and 2 October, 2017. These Datasets each last for 10,000 frames, which

correspond to 66.7 s in time given the 150 Hz system frequency. These were re-

corded for turbulence profiling for the study of elongated LGS wavefront sensing

technique taken around the same time (Bardou et al., 2018).

Timestamps for these Datasets are shown in Table 5.1, representing the time that

the final frame in the dataset was recorded. For the ease of representation, we will

refer to these as Datasets 0-5.

Characteristics of the TS are listed in Table 5.2. It has 7 × 7 subapertures, 36

active (each with over 50% illumination, providing a valid slope measurement).

Each subaperture has a FOV of 3.87 arcsec, sampled by 16 × 16 pixels on the
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5.2. CANARY and Dataset Description

Table 5.2: Principal AO system parameters of CANARY Datasets 0-5. This is
also the configuration of the simulated Single-Conjugate Adaptive Optics (SCAO)
system used within this chapter to generate ANN training data that are for the
prediction of CANARY data, except that the loop latency is an integer 2 frames
in the simulated system for simplicity.

Parameter Value
System frequency 150 Hz
Loop latency 2.2 frames
Telescope diameter 4.2 m
Central obscuration 1.2 m
Truth Sensor type SHWFS
# of subapertures 7×7 (36 active)
Readout noise 0.3 e− RMS
# of pixels per subaperture 16×16
Subaperture pixel scale 0.24 arcsec
Subaperture FOV 3.87 arcsec
Real-Time Control (RTC) in open loop Yes
Centroiding algorithm Brightest pixel selection
# of brightest pixels selected 12

Charged Coupled Device (CCD) detector. The pixel scale is thus 0.24 arcsec. The

detector has a readout noise of 0.3 electron Root Mean Squared (RMS). Wavefront

slopes were determined using the brightest pixel selection algorithm described in

Section 2.2.2, with 12 brightest pixels being used within any subaperture. For the

6 Datasets, the DM was inactive with actuators set to midrange values.

Observational parameters describing the turbulence conditions of the six Datasets

are listed in Tables 5.3 and 5.4. Turbulence profiles were measured using the Learn

3 Steps (L3S) approach upgraded from the Learn and Apply algorithm (Martin

et al., 2016), using information from the TS and 3 off-axis WFSs. The L3S approach

dissociates the identification of slowly evolving turbulence terms and fast evolving

terms in order to speed up the fitting process. The turbulence is measured for

fixed altitudes between 0 and 18 km, with a resolution of 2 km. This procedure

also yields turbulence strength of each layer and the integrated r0 can be deduced

using Eq. 2.39. All profiles show a strong ground layer turbulence.
∗Wind direction 0 deg corresponds to wind blowing from the north while 90 deg corresponds

to wind blowing from the east.
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Table 5.3: Principal observational parameters of CANARY Datasets 0-5.

Dataset No. 0 1 2 3 4 5
GS magnitude (V) 9.66 10.83 10.83 9.47 10.92 10.92
r0 (cm) 9.76 13.90 17.22 10.79 10.79 22.00
Ground-layer r0 (cm) 10.90 14.67 21.45 11.57 12.09 30.12
Ground-layer wind speed
(m/s) 3.23 5.34 8.21 5.14 3.89 0.87

Ground-layer wind direction
(deg) ∗ -48.1 -66.6 -100.0 -79.0 89.5 138.3

# of photons/frame 8610 5060 4530 10030 2500 2560
# of photons/frame/fully illu-
minated subaperture 270 150 140 300 70 80

Measured noise variance
(×10−3) (arcsec2) 2.5 2.4 8.3 12.0 20.1 12.8

Wind speeds and directions of the ground layer were taken from weather station

archives of the Issac Newton Group of Telescopes †, which were determined using

the SLODAR technique (Wilson, 2002). High altitude wind information is not avail-

able. The number of photons collected per WFS frame was the average flux level

of a separate 5,000-frame TS Dataset observing the same asterism, taken shortly

before or after (within 17 minutes) the 10,000-frame Datasets used for the following

prediction performance analyses. Table 5.3 also lists the measured noise variance

from the 10,000-frame slopes using the approach detailed in Section 2.2.6.4. The

discrepancy between the photon level and the noise level suggests the unreliability

of the photon count, potentially due to the time difference between the Datasets

0-5 and the datasets used for determining the flux. We will therefore adopt the use

of the excess noise variance when analysing the ANN performance with respect to

the WFS noise level.

5.3 Temporal Properties of CANARY Data

In this section, we investigate if there is any temporal property of CANARY Data-

sets that deviates from the hypotheses used for the simulation in Chapter 4. We
†http://catserver.ing.iac.es/weather/archive/index.php
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5.3.1. Covariance Map

Table 5.4: Relative turbulence strength (%) of CANARY Datasets 0-5. Each
column representing one Dataset sums up to 1.

Layer height (km) 0 1 2 3 4 5
0 83.4 91.4 69.3 89.0 82.7 59.4
2 6.9 3.1 11.4 3.7 9.3 11.6
4 0 0.1 0 0 0.1 2.0
6 1.4 0 0 0.1 1.4 3.3
8 2.9 2.1 0 0.1 0 5.0
10 0 0.1 0.1 2.3 0.1 4.3
12 0.1 0.1 0.5 0 2.3 9.8
14 0 0 0.1 0.1 0.6 0.8
16 0 3.0 0 0.2 2.6 0
18 5.3 0.1 18.6 4.5 0.9 3.8

have identified two of these through the examination of the covariance map and

temporal Power Spectral Density (PSD) of the observed data respectively.

5.3.1 Covariance Map

For two two-dimensional discrete variables A and B of size N × N , the element

at (m,n) (m,n = 0, 1, ..., 2N) of their covariance map Γ(A,B) is defined as the

correlation of their overlapping parts when one matrix is offset by (m−N,n−N)

with respect to the other, averaged across all time steps. This map describes

the spatial correlation between these two variables. Values of large magnitude

(either negative or positive) in the map implies a strong correlation between the

corresponding parts of these two variables.

Under the frozen flow hypothesis, within short time scales the covariance map

between two parts of the turbulence is equivalent to the temporal correlation of one

part with itself given the correct time separation, as is detailed in Section 2.1.2 and

in Wilson (2002). This spatio-temporal correlation can be reflected by the time-

lagged auto-covariance map of open-loop slope measurements by a single WFS,

ΓS
∆t = Γ(S(t),S(t+ ∆t)), (5.1)
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where S(t) is a two-dimensional slope matrix with values being slope measurements

projected on the corresponding subaperture positions. Either slopes in x or y

direction can be used and the properties shown will be independent of this choice.

In the analyses below we use slopes in x. Before calculating the covariance map

of a slope sequence, the static component, which is the temporal mean of the

slope measurement by an individual subaperture, should be subtracted from each

subaperture to remove static aberrations that may be present in the Dataset. The

global Tip and Tilt signal (different from the Zernike Tip and Tilt), which is the

mean measurement of all subapertures at each time step, should also be subtracted

to remove the effect of common motions such as wind shake (Butterley et al., 2006).

Comparison of the time-lagged covariance maps from CANARY Dataset 2 and

those obtained through the simulation of a single frozen flow layer with ∆t ranging

from 0 to 0.2 s (30 frames) are shown in Fig. 5.1. The characteristics of the

simulated layer are the same as the ground layer of Dataset 2 (which accounts for

69.3% of total turbulence). Other simulation parameters are the same as listed in

Tables 5.2 and 5.3 for Dataset 2. In the lower panel in this figure, at ∆n = 0, the

covariance peak of the simulated layer appears at the centre, implying a perfect

correlation with itself without any need of spatial displacement. This peak moves

almost three pixels upward (which is slightly less than the size of three subapertures,

1.8 m) in 0.2 s. This is equal to the speed at which the turbulence moves (the wind

speed is 8.21 m/s), though in the opposite direction (the wind direction is -100 deg,

with 0 deg pointing to the right in the map and 90 deg upwards). Under the frozen

flow hypothesis, when there exist multiple layers, several peaks of varied strengths

moving with different velocities should be observed, each representing the relative

movement of the WFS with respect to the corresponding layer (Wang et al., 2008).

Covariance maps of Dataset 2 are shown in the upper panel in Fig. 5.1. Contrary

to the simulation assuming pure frozen flow, the covariance peak remains at the

centre, although its intensity decays as ∆n increases. The shape of the peak also

varies with ∆n, which might be indicative of a slowly moving layer. A static but
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Figure 5.1: Covariance maps of CANARY Dataset 2 (upper row) and from the
corresponding Soapy simulation (lower row) assuming a single frozen flow layer.
The frozen flow layer simulates the ground layer of Dataset 2, moving at 8.21 m/s
along the direction of -100 deg, which is in the opposite direction of the peak
movement (in this plot, 0 deg corresponds to the right and 90 deg upwards). ∆n in
frame corresponds to a time lag of 0 to 0.2 s given a system frequency of 150 Hz. The
peak movement shown with the simulation represents the frozen layer translation,
while this is not observed with real data.

degrading central peak is observed for all Datasets. This absence of covariance

translation implies that the turbulence observed by CANARY deviates from pure

frozen flow matching the ground-layer wind speed measured at the local weather

station.

5.3.2 Temporal Power Spectral Density

PSDs of Zernike modes Tip (left) and Tilt (right) are shown in Fig 5.2 for all

Datasets (from top to bottom). Wide spikes around 1 Hz and a few narrow spikes

between 10 and 30 Hz indicate perturbations induced by the telescope vibration.

This can be caused by the telescope tracking error or wind shake of the telescope

structure, and is common to most existing AO systems (Kulcsár et al., 2012). Such

spikes were not observed in higher-order Zernike modes. This is another deviation

from the temporal properties of the turbulence in simulation. Since we have not

trained ANNs with vibrations, we will study how the ANN copes with these.
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Figure 5.2: Temporal PSDs of CANARY Datasets 0-5 (from top to bottom) of
Zernike modes Tip (left) and Tilt (right). There exist a wide peak at around 1 Hz
and a few narrow peaks between 10 and 30 Hz in both modes in all Datasets,
showing strong vibrations at these frequencies. This is not observed with higher-
order modes.
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5.4 Prediction Performance with Frozen Flow

Predictor

We start with the methodology described in Section 3.4 to generate ANN training

data in simulation with Soapy, and to train a frozen flow ANN predictor to predict

the CANARY data.

We first determine the simulation parameters. We have adopted most of the CA-

NARY parameters given in Table 5.2, except that a 2-frame instead of 2.2-frame

latency is assumed for simplicity. We have shown in Section 4.7 that the ANN can

be designed to predict two frames in advance directly. In all CANARY Datasets

there exist multiple turbulence layers. Results in Section 4.6 have shown that the

ANN predictor trained with a single turbulence layer can generalise to multi-layer

profiles which have strong ground layers, albeit with reduced performance. Thus,

here we train an ANN predictor that predicts two frames in advance directly as-

suming a single frozen layer. Sections 4.3 and 4.4 show that the ANN is much less

sensitive to r0 and wind speed than to the noise level. So here we maintain the

choice of r0 and wind velocity for training as was adopted in Section 3.4.

We have shown in Section 4.2 that the ANN training is highly sensitive to the WFS

noise. Table 5.3 shows that CANARY data is much noisier than the simulated data

used in Chapter 4 (recall from Fig. 4.12 that the noise variance of the noisiest Guide

Star (GS) magnitude 10 condition is 5.4× 10−4 arcsec2, around one quarter of the

least noisy CANARY Dataset 1). Here we configure the simulation to match the

photon flux level of Dataset 3, which has a medium noise level among all Datasets.

The resultant training data has a measured noise variance of roughly 2.8 × 10−4

arcsec2, lower than all Datasets. This is roughly the noise variance of a magnitude 9

GS in simulations (see Fig. 4.12). Possible reasons for the discrepancy between flux

level and measured noise variance have been discussed in Section 5.2. The impact of

training noise level on the prediction performance will be explored in Section 5.7.2.
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Table 5.5: Additional parameters (in addition to Table 5.2) used with the Soapy
simulation for training the frozen flow predictor for predicting CANARY Datasets.

Parameter Value
# of phase screens 1
Wind speed 10-15 m/s
Wind direction 0-360◦

r0 @ 500 nm 0.16 m
L0 25 m
GS magnitude 9.47
Throughput 0.361
WFS wavelength 600 nm
RTC in open loop Yes
Measured noise variance 2.8× 10−4 arcsec2

The simulation parameters used in this chapter are listed in Table 5.5.

In total we generated 200,000 training samples, with the second half of the data-

set being the reversed sequence of the first half, which is equivalent to reversing

the wind direction. Each sample is a time sequence of thirty 72-element vectors

(s1, s2, ... , s30). (s1, s2, ... , s28) will be the ANN training input sequentially and

s30 will be the training target.

The network comprises two stacked Long Short-Term Memory (LSTM) cells and

an output Fully Connected (FC) layer as is shown in Fig. 3.7. The training and

hyperparameter tuning principles are as described in Section 3.4.2, with a slight

modification in the tuning of the hyperparameters: we use a recently developed

hyperparameter tuning tool, Keras Tuner (O’Malley et al., 2019), to tune the

numbers of neurons of both LSTM cells (an integer between 100 and 250, with

a step of 5). The tuning routine set in this tool is random search (Bergstra and

Bengio, 2012), similar in operation to that used in section 3.4.2. The total number

of network configurations for evaluation is 20. The resulting optimal structure has

220 neurons in the first cell and 250 in the second.

After training, the predictor is applied to CANARY data directly. Its internal

states are zeroed every time a different Dataset is input. At each time step, the
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Table 5.6: The 2-frame delay error σdelay (nm RMS) of CANARY Datasets and
the corresponding prediction error σpred by a frozen flow ANN predictor.

Dataset No. 0 1 2 3 4 5
Two-frame delay 221.5 192.9 316.3 389.9 494.4 401.9
Frozen flow predictor 274.3 223.5 349.4 429.6 507.9 410.9

internal states from the previous time step and the input st (t = 0, 1, ..., 9997) are

combined to output the predicted s̃t+2.

Because the wavefront perturbation input to the AO system is not available as in

Chapter 4, in this chapter we convert slope differences to an RMS wavefront error

to quantify the prediction or delay performance, as was done in Section 4.2.1. This

is obtained by first converting s̃t − st or st−2 − st to Zernikes via the calibrated

control matrix Mrz, then taking the square root of the sum of the temporal variance

(averaged across each time sequence after the 30th time step by when the predictor

has stabilised) of each Zernike mode (from mode 2 to 36). Recall from Eqs. 4.8

and 4.9 that

σ2
delay = σ2

temporal + 2× σ2
noise + 2× σ2

aliasing

σ2
pred = σ2

temporal′ + σ2
noise + σ2

noise′ + σ2
aliasing + σ2

aliasing′ ,

(5.2)

where σdelay is the RMS 2-frame delay error and σpred is the RMS prediction error.

σtemporal′ , σnoise′ and σaliasing′ denote the ANN-filtered temporal, noise and aliasing

errors respectively as was explained for Eq. 4.4. A prediction error σpred lower than

the delay error σdelay thus represents the ANN power in suppressing the temporal

error as well as the noise and aliasing errors.

Table 5.6 gives the computed σdelay of all Datasets and the corresponding σpred

by the frozen flow predictor. The predicted performance is worse than the non-

predicted in all cases. Degradation of the ANN performance could be due to the

vibrations, or the inappropriate frozen flow hypothesis taken here for the ANN

training. We will explore these in the following sections.
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5.5 Modelling CANARY Data

In this section, we will concentrate on modelling the temporal characteristics of CA-

NARY Datasets in order to generate more representative training data to improve

the ANN performance.

Fig. 5.3 shows the covariance peak degradation of all Datasets in a time frame of

1 s (150 frames). At ∆n = 0, this peak contains the power of both turbulence

and WFS noise. At ∆n > 0, because the noise is uncorrelated between frames, the

peak contains power from turbulence only. For ∆n > 0, Datasets 0 and 1 show an

exponential decay while in other Datasets the decay is more curved.

We have suggested in Fig. 5.1 the presence of static turbulence and/or a slowly

moving turbulence layer. In the following subsections, we will examine the above

hypothesis by fitting the covariance peak profiles.

5.5.1 Fitting a Slow Frozen Flow Layer

We simulated two noise-free open-loop slope sequences lasting for 10,000 frames

each, assuming CANARY wavefront sensing configuration. A single frozen layer is

assumed, with wind speeds of 0.01 and 0.1 m/s along a single direction respectively.

r0 is 9.76 cm (that of Dataset 0). The screen size is 512 by 512 pixels, with the

central 64 by 64 pixels being the position of the pupil. A log plot of the covariance

peak degradation of both sequences is shown in Fig. 5.4. When the wind speed is

0.01 m/s, the covariance peak decay is exponential (as is observed in Datasets 0

and 1), however the decay is much slower with a gradient of magnitude 1.4× 10−4

arcsec2/s (regardless of the turbulence strength), compared with 10−2 of Dataset 0

and 4× 10−3 of Dataset 1. When the wind speed increases to 0.1 m/s, the amount

of decay also increases (1.4× 10−3 in 1 s), but the shape of decay does not match

any of these of CANARY Datasets shown in Fig. 5.3. When the wind speed is over

around 1 m/s, the peak degrades rapidly within just a few frames. This implies that
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Figure 5.3: Peak value (arcsec2) degradation of the covariance maps of CANARY
Datasets 0-5. The time lag in frame corresponds to 0 to 1 s.
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Figure 5.4: Covariance peaks assuming a slowly moving frozen flow layer with
a wind speed of 0.01 (left) and 0.1 m/s. The y axis is in log scale. When the
layer moves at 0.1 m/s or faster, the decay curve shape does not follow any of the
CANARY Datasets. When the layer moves slowly enough, the decay is exponential,
but its magnitude is far too small compared with CANARY Datasets.

the observed covariance peak decay profiles of CANARY data cannot be described

by frozen flow alone, regardless of the wind speed.

One thing to note in Fig. 5.4 is the temporal mean across 10,000 frames of the

slopes measured by one subaperture when the wind speed is 0.01 m/s is larger

than when the speed is 0.1 m/s, due to the shorter spatial distance travelled by the

turbulence in the former case, meaning that the average slopes are further away

from zero. Since the temporal mean of slopes are subtracted before calculating the

covariance, this results in the smaller covariance value at ∆n = 0 when the wind

speed is smaller, whereas we expect it to be affected by r0 only when the slope

sequence is long enough. Increasing the wind speed would make the temporal

mean closer to the expectation, however the decay curve would deviate further

from exponential. Thus the conclusion drawn from Fig. 5.4 is still valid. In this

chapter all slope sequences (either observed or simulated) for covariance calculation

will be of the same length (10,000 frames) to minimise this effect.
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5.5.2 Modelling Dome Turbulence

A static covariance peak might be an indication of dome seeing, which has been

identified by many on-sky observations (Avila et al., 2000; Shepherd et al., 2013;

Guesalaga et al., 2014). Dome seeing is caused by mixing of air of different tem-

peratures within and around a telescope dome structure (Basden et al., 2015),

which introduces wavefront aberrations in addition to the intrinsic seeing by the

atmospheric turbulence. One example of dome seeing effects is the Low Wind Ef-

fect (LWE) known in the High Contrast Imaging (HCI) community (Sauvage et al.,

2015), which is due to radiatively supercooled telescope spiders. LWE causes a

strong degradation of the instrument Point Spread Function (PSF) and thus the

contrast. Dome turbulence often exhibits a deviation from the Kolmogorov/von

Kármán power spectrum with more power at high spatial frequencies (Lai et al.,

2020). High spatial frequencies are amplified by the AO system through aliasing.

It is therefore important to identify the source of dome seeing and remove this

effect either physically through modification of the telescope and/or dome, or by

data processing. Still, the physical and statistical properties of dome seeing remain

largely unknown and are open to further research.

Below we describe a method to simulate an evolving but non-translating turbu-

lence which will try to match to the observed covariance peak profiles of CANARY

Datasets. It should be noted that in this thesis, this model is used solely to com-

pare the performance of ANNs trained on simulated frozen flow and fitted dome

turbulence models and we draw no conclusions on the accuracy of this model in

recreating the exact dome turbulence conditions encountered within CANARY.

These are undoubtedly affected by the local telescope environment and not taken

into account in the model here.

This approach uses the same framework for modelling boiling turbulence given in

Glindemann et al. (1993), which was for explaining the short time scales (tens of

milliseconds) of observed turbulence. The framework is based on the Fast Fourier
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Transform (FFT) approach described in Section 2.3.2, while modelling the evolu-

tion of the turbulence as a Markov process. Similar to Eq. 2.44, at t = 0 the square

root of a turbulence power spectrum (here the Kolmogorov spectrum is assumed)

is filtered with a Gaussian white noise in the spatial frequency domain,

G0 = g′0h, (5.3)

where g′ is a complex Hermitian matrix representing a Gaussian white noise in the

frequency domain. h is defined as

h = 0.1513
L

r
−5/6
0 f−11/6, (5.4)

where L is the physical size of the phase screen in metres, r0 is the turbulence

strength. f is a spatial wavenumber matrix with the values ranging from 0 to
√

2N
2L ,

where N is the number of pixels along one dimension of the phase screen. The real

part of the inverse Fourier transform of G0 gives the initial phase screen.

When t > 0, Gt is updated as a weighted sum of its last state Gt−1 and a newly

generated filtered Kolmogorov spectrum g′th,

Gt = βGt−1 +
√

1− |β|2g′th. (5.5)

In Glindemann et al. (1993), the weighting matrix β can be determined from the

observed data. In this thesis, we calculate β from a scalar decay rate α ‡,

β = [1− (1− f−11/12
n )(1− α)]e−if ·v, (5.6)

where fn = Lf , v is the wind vector, and · denotes the dot product. In both cases,

the decay is assumed spatial frequency dependent. The real part of the inverse

Fourier transform of Gt then yields the phase screen at time step t. When v is

nonzero, this simulates a boiling and translating turbulence layer. When v is zero,

this simulates an evolving but static layer. In the following simulations of the dome

turbulence, we will set v to 0.
‡This is an empirical function fitted on on-sky data by Tim Butterley at Centre for Advanced

Instrumentation (CfAI), Durham University. A rigorous mathematical theory of the dome seeing
is still under study in the AO community.
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When α = 1, β will be a unit matrix and Gt = G0, meaning a constant phase

screen invariant of time. As α gets smaller, β is smaller for all fn. From Eq. 5.6,

Gt will be more influenced by the random g′t, indicating a more rapid degradation.

Besides, in this model, higher spatial components degrade slightly faster (smaller

β) (Conan et al., 1995). β corresponding to the piston of the turbulence is set to

0, indicating that this component is completely random and independent through

time.

If the decay is assumed independent of the spatial frequency, as is found in Srinath

et al. (2015) by fitting the open-loop temporal PSDs of the Gemini Planet Imager

(GPI) telemetry, Eq. 5.5 reduces to

Gt = αGt−1 +
√

1− α2g′th. (5.7)

We call the dome model assuming frequency-dependent decay rates (Eqs. 5.5 and 5.6)

dome Model-A, and the model assuming a constant decay rate (Eq. 5.7) Model-B.

5.5.3 Fitting the Dome Model

Degradation of the covariance peak of slopes generated assuming dome Model-A

or Model-B follows a power law, as CANARY Datasets 0 and 1 in Fig. 5.3 exhibit.

Such dome models have two parameters as described above, r0 and α. r0 determines

how strong the peak is when ∆n = 0 (noise peak excluded). α determines the

gradient of peak degradation. By fitting the degradation profiles, we can find the

set of dome model parameters that best describes CANARY Datasets.

Fig. 5.5 shows this fitting using Model-A (left) and Model-B (right) of CANARY

Dataset 0. For the curve fitting, simulated slopes are generated using the wave-

front sensing subsystem built by Soapy and relevant module parameters listed in

Table 5.2, except that the frozen flow turbulence model is replaced with each dome

model and wavefront sensing noise is turned off for the robustness of fitting. Gen-

erated phase screens are 512× 512 pixels, with the central 64× 64 pixels being the
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Figure 5.5: Covariance peak fitting of CANARY Dataset 0 in simulation using dome
Model-A (left) and Model-B (right) with noise-free wavefront sensing. Model-A: the
decay rate varies with spatial frequencies. Model-B: the decay rate is independent
of spatial frequencies. The time lag corresponds to 0 to 1 s. The extra power shown
in Dataset 0 at ∆n = 0 is brought by WFS noise.

Table 5.7: Fitted parameters of CANARY Datasets. Model-1 and Model-2 were
fitted on Dataset 0. Model-3 was fitted on Dataset 3.

Turbulence type Parameter Model-1 Model-2 Model-3

Dome r0 (m) 0.112 0.112 0.141
α 0.9957 0.9962 0.97

Frozen flow r0 (m) None None 0.05
v (m/s) 0.01

telescope pupil. Simulated slope sequences (assuming either Model-A or B) last

for 10,000 frames as CANARY Datasets. Fitted parameters of both dome models

are listed in Table 5.7 as Model-1 and Model-2 respectively. It should be noted

that even with a very long slope sequence (100,000 frames), the peak curve did not

converge and fluctuated slightly between different realisations. The fitted curve

shown is a best fit, which gives the lowest RMS error between the fitted and the

actual auto-correlations, evaluated at ∆n ≥ 20. Considering the amount of time

taken for the peak fitting procedure we will not focus on quantifying the dome

model fitting error here. However, we will later show that the ANN performance

is tolerant to this error.

Decay trends shown in Datasets 2-5 are more curved than an exponential decay.
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Figure 5.6: Covariance peak fitting of CANARY Dataset 3 in simulation assuming
a dome layer (Model-A) and a slowly moving frozen flow with noise-free wavefront
sensing.

To fit this trend, we consider two independent layers, one dome layer and one

slowly moving frozen flow layer. Fig. 5.6 shows the fitting of Dataset 3 using this

combination. For the dome layer Model-A is assumed. The fitted parameters are

given in Table 5.7 as Model-3. The dome layer has an r0 of 14.1 cm, accounting

for 15% of the total turbulence strength. Its decay rate is 0.97. The frozen layer

follows von Kármán statistics with an L0 set to 25 m. The best fit wind speed was

0.01 m/s with an r0 of 4.96 cm.

5.6 Training Models

In this section, we train ANN predictors using the turbulence models we fitted in

the last section presented in Table 5.7. These turbulence models are:

1. Model-1, a single dome layer assuming dome Model-A fitted on Dataset 0,

with parameters given in the third column of Table 5.7.

2. Model-2, a single dome layer assuming dome Model-B fitted on Dataset 0,

with parameters given in the fourth column of Table 5.7.
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3. Model-3, the sum of a dome layer and a slow frozen flow layer fitted on

Dataset 3, with parameters given in the fifth column of Table 5.7.

From each turbulence model we generated 100,000 open-loop slope sequences. Each

sequence is a 30-frame sequence consisting of 72-element slope vectors, (s1, s2, ... , s30).

(s1, s2, ... , s28) are the ANN training inputs sequentially and s30 is the training

target. The slope generation process is as described in Section 3.4.1, using the

wavefront sensing subsystem built with Soapy. GS magnitude is 9.47. The calcu-

lated system throughput is 0.361, matching the photon count level of Dataset 3,

as was set for training the frozen flow predictor in Section 5.4. See Table 5.2 for

other related simulation parameters.

In Section 4.8 we have applied a non-spatially aware predictor to the frozen flow,

which predicts each subaperture from its own history without the knowledge of

the spatial distribution of WFS subapertures. Here we explore the potential of a

non-spatially aware predictor with static turbulence. The first 10,000 sequences

in each of the above three training datasets were reshaped into 360,000 sequences,

each being a 30-frame slope sequence of 2-element vectors, the x and y slope of a

single subaperture.

In total we have six training datasets, three for training spatially aware predictors

and three for non-spatially aware predictors. Using each of the datasets we will

train an ANN predictor. The training and hyperparameter tuning procedures follow

that described in Section 5.4. The network is set to have two stacked LSTM cells

and a final FC layer. In the hyperparameter tuning process, the searching range

of neuron numbers of both LSTM cells is between 100 and 250 for spatially aware

predictors, with a step of 5. For non-spatially aware predictors, the searching range

is between 4 and 30, with a step of 2. The total trial number of the ANN topology

for each predictor is 20.

Table 5.8 lists all six ANN predictors we obtained (namely Predictor-I, -II, -III,

-IV, -V and -VI ). Corresponding network structures are also given.
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Table 5.8: Structures and training turbulence conditions of ANN dome predictors.

Predictor I II III IV V VI

Turbulence model assumed Model-
1

Model-
1

Model-
2

Model-
2

Model-
3

Model-
3

Dome model used for training A A B B A A
An extra frozen layer for

training No No No No Yes Yes

Input/output vector size 72 2 72 2 72 2
# of neurons in the first

LSTM 185 22 155 24 230 18

# of neurons in the second
LSTM 110 8 105 6 155 16

5.7 Prediction Performance with Dome Predictor

In this section we analyse the prediction performance using the approaches detailed

in Section 4.2.

5.7.1 Performance of Different Turbulence Models

Prediction errors σpred (defined in Section 5.4) of each predictor alongside cor-

responding 2-frame and 1-frame delay errors are detailed in Table 5.9. We have

observed the following:

1. All prediction errors by dome predictors are lower than corresponding 2-frame

delay errors, showing a significant improvement in prediction performance

brought by using a turbulence model that better describes the observed data

than a pure frozen flow model.

2. For Datasets 2 to 5, prediction errors are even lower than corresponding 1-

frame delay errors.

3. The use of a dome turbulence instead of a frozen flow model provides the

best predictor performance, however the differences between different models

(turbulence Model-1 to 3) are negligible. This indicates that the training is
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Table 5.9: Prediction error (in nm RMS) of all six ANN predictors-I to -VI with
CANARY Datasets compared with 1-frame and 2-frame delay errors. Performance
of the frozen flow predictor from Section 5.4 is also listed here for comparison.

Dataset No. 0 1 2 3 4 5
2-frame delay 222 193 316 390 494 402
1-frame delay 199 179 305 380 484 391
Frozen flow predictor 274 224 349 430 508 411
Predictor-I 209 180 288 352 440 362
Predictor-II 203 173 283 343 433 355
Predictor-III 209 180 289 353 442 363
Predictor-IV 204 174 286 348 439 359
Predictor-V 215 186 298 363 457 374
Predictor-VI 201 171 281 341 432 353

relatively robust across a range of different observing conditions, and should

be tolerant to the dome turbulence model fitting error as well.

4. Non-spatially aware predictors (-II, -IV and -VI) perform better than their

spatially aware counterparts (-I, -III and -V) regardless of turbulence model

assumed or Dataset considered.

Table 5.10 displays the reduction in the 2-frame delay error deduced from Table 5.9.

This is defined as
√
σ2
delay − σ2

pred/σdelay, where σdelay and σpred are the RMS delay

and prediction errors described in Eq. 5.2. This value represents the reduction of

the combination of temporal, noise and aliasing errors by dome predictors. The

non-spatially aware Predictor-VI has a largest average improvement of 46.5±2.4%.

Although the ANN training data were fitted on either Dataset 0 or Dataset 3, all

predictors have the best performance with Dataset 4, then Datasets 5 and 3. This

could be an indication that training is not sensitive to turbulence strength, which

is consistent with our findings in Section 4.3.

We also notice that the ANN cannot suppress vibrations detected in Fig. 5.2.

See Fig. 5.7 for the temporal PSDs of the predicted slopes by the frozen flow

predictor presented in Section 5.4 and by the dome Predictor-I for an example.

Both predictors were trained with spatial awareness at the same noise level. All
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Table 5.10: Reduction in the RMS 2-frame delay error by dome predictors

strong spikes indicative of vibrations were maintained in the predicted slopes PSD.

Note from Section 4.2.2.1 that the ANN frequency transfer is highly nonlinear,

which complicates the analysis with a single-frequency component. However, the

reproduction of the power in that component is still undesired and can potentially

degrade the system performance.

Fig. 5.8 displays the transfer of temporal PSDs of Tilt and Trefoil modes by the

frozen flow predictor and dome Predictor-I, which is the PSD of the predicted

slopes divided by that of the non-predicted slopes. The transfer of the first 36

Zernike modes can be found in Fig. A.5, where we found all modes were treated

roughly the same by either predictor, unlike the dependence on the direction of the

mode with respect to the wind which was present when frozen flow was assumed

(see Section 4.2.2). Here a dome predictor can be interpreted as a low-pass filter

in the temporal domain, with a response approximating unity with low frequencies

implying its prediction power with these signals. The difference between the frozen

flow predictor and the dome predictor in high frequencies beyond around 10 Hz

suggests that the later might be attenuating noise or aliasing.

5.7.2 Performance with Varying WFS Noise Level

As is shown in Section 4.2, the WFS noise level impacts the ANN training and test

significantly. In this section, we explore this with CANARY data. We compare the

performance of spatially aware and non-spatially aware predictors (trained with
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Figure 5.7: Temporal PSDs of CANARY Datasets 0-5 and of the corresponding
predictions made by the frozen flow predictor and the dome Predictor-I.
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Figure 5.8: Prediction transfer of temporal PSDs of CANARY Datasets 0-5 in Tilt
and Trefoil by the frozen flow predictor and dome Predictor-I.
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Table 5.11: Structures of ANN dome predictors trained with different noise levels.
From left to right, the predictors were trained with increasing noise variance.

Predictor II II(2) II(3)
Turbulence model used for

training Model-1 Model-1 Model-1

Input/output vector size 2 2 2
# of neurons in the first

LSTM 22 14 26

# of neurons in the second
LSTM 8 10 12

Table 5.12: Measured noise variance (×103) (arcsec2) of CANARY Datasets 0-5
and of training data for Predictors-II, -II(2) and -II(3).

Predictor-
II

Predictor-
II(2)

Predictor-
II(3) Dataset 0 1 2 3 4 5

0.3 1.6 4.2 2.5 2.4 8.3 12.0 20.1 12.8

the same noise level) under different noise conditions, and the performance of non-

spatially aware predictors trained with different noise levels.

For the latter, we generated another two training datasets with more noise. The

first dataset was acquired by using all WFS pixels for centroiding (instead of the

12 brightest ones). The second dataset was obtained by using all the pixels for

centroiding and reducing the GS magnitude from 9.47 to 10.2. For both datasets,

turbulence Model-1 was assumed.

Using these two training datasets, we trained another two non-spatially aware

dome predictors, Predictor-II(2) and Predictor-II(3) respectively. Structures of

both predictors alongside Predictor-II can be found in Table 5.11. To be explicit,

the only difference in training conditions among these three predictors is the noise

level. Measured noise variances of the training data for Predictor-II, -II(2) and

-II(3) alongside those of CANARY Datasets copied from Table 5.3 are given in

Table 5.12.

To test the predictors in different noise conditions, additional Gaussian noise was

added to Dataset 0. Standard deviation of this noise ranges from 0.1 to 1.5 pixels,

with a step of 0.2 pixel. The resultant delay and prediction errors are plotted in
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Figure 5.9: Prediction error (in nm RMS) of Predictors-II, -II(2) and -II(3) along
with 2-frame delay error as levels of Gaussian noise added to CANARY Dataset 0
increases. The corresponding measured noise variance is also labelled for reference.

Fig. 5.9. The corresponding measured noise variance is also labelled. Compared

with Table 5.12, the measured noise variance of the noisiest CANARY Dataset is

equivalent to an additional noise of approximately 0.5 pixel RMS to Dataset 0. The

smaller gradients shown with the dome predictor curves compared to the 2-frame

delay curve suggest that such predictors are resistant to WFS noise.

Fig. 5.10 plots σpred,z/σdelay,z (defined in Section 4.2.1), the ratio between the

Zernike breakdown of the RMS prediction error and the 2-frame delay error. Recall

that Predictors-II, -II(2) and -II(3) are non-spatially aware predictors trained with

increasing WFS noise. Predictors-I and II were trained with the same amount of

noise, the former with spatial awareness. There are several observations we can

make from Fig. 5.10:

1. The spatially aware predictor exhibits an improvement in performance (i.e. a

lower relative prediction error) for higher-order Zernike terms. This behaviour
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is not observed for any of the three non-spatially aware predictors.

2. The performance of the non-spatially aware predictors is dependent on the

level of training noise, with better performance achieved by predictors trained

in noisier regimes. This is in line with earlier results (see Section 4.2), but

here we see that the correction is broadly uniform across all Zernike modes

of higher-order than Tip and Tilt (TT).

3. At the highest noise level (1.5 pixel standard deviation of additional slope

noise added), the spatially aware and non-spatially aware predictors perform

the same for Zernike terms above Z = 28.

4. The prediction accuracy of Tip and Tilt for non-spatially aware predictors is

dependent on the additional noise level.

Fig. 5.11 shows the prediction transfer of temporal PSDs by non-spatially aware

dome predictors trained with different noise levels. The higher the noise present

during training, the higher the transfer is at high temporal frequency. This implies

that increasing the training noise improves the noise suppression and the result-

ant prediction performance. Fig. 5.12 compares the transfer of temporal PSDs

by the spatially aware dome Predictor-I and its non-spatially aware counterpart

Predictor-II. Comparing this with Fig. 5.10, we can see that the transfer of a non-

spatially aware predictor is uniform across different Zernike modes, while the spa-

tially aware predictor shows stronger rejection of high frequencies in higher-order

Zernike modes. This implies stronger filtering of WFS noise in higher-order modes,

which contributes to the lower error of the spatially aware predictor with these

modes compared with the non-spatially aware predictor. Still, the non-spatially

aware predictor predicts components below around 10 Hz with more accuracy re-

gardless of the noise level. These trends shown in Fig. 5.12 are consistent with

Fig. 4.21.

Fig. 5.13 displays the auto-correlation of predicted and non-predicted slopes when

the additional noise is 0.1 and 0.5 pixel RMS. The auto-correlation values at
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∆n = 0 are further away from the fitted parabolas compared with Fig. 4.10, due to

the much more noise present. From the auto-correlation fit we obtain the measured

noise variance of the predicted and non-predicted slopes (shown in Fig. 5.14) and

the noise propagation between adjacent frames (shown in Fig. 5.15), where this

propagation is taken as the difference between the measured auto-correlation at

∆n = 1 and the value of the fitted parabola at the same ∆n (with the parabola

fitted using the values measured at ∆n = 2 and ∆n = 3). A spatially aware

predictor (Predictor-I) has lower noise variance and less propagated noise than a

non-spatially aware one (Predictor-II) trained with the same amount of noise.

These results show that:

• An ANN trained with more noise shows better prediction performance irre-

spective of the spatial frequency (Zernike mode), which implies it is better at

rejecting noise. This is consistent with the conclusion in Section 4.2.1.

• A spatially aware predictor is better at suppressing noise. However, the non-

spatially aware predictor predicts slowly-evolving components (below around

10 Hz) with more accuracy. This is consistent with the conclusion in Sec-

tion 4.8.

• For the Datasets dominated by a static layer studied in this chapter, a non-

spatially aware predictor always shows better performance than the spatially

aware predictor trained in the same noise condition.

5.8 Conclusions

We have provided the first evidence that the ANN can improve an on-sky AO

system performance and that the methodology for training an ANN predictor taken

in simulations in Chapter 3 can transfer to real systems. We have trained ANNs

with simulated data to predict six 10,000-frame slope datasets taken in open loop
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Figure 5.13: Auto-correlation of predicted and non-predicted slopes with an addi-
tional Gaussian noise of 0.1 (left) and 0.5 (right) pixel RMS added to CANARY
Dataset 0 respectively. The parabolas were fitted using the values at ∆n = 2 and
3. Deviation at ∆n = 0 indicates the noise present within the slopes (shown in
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Figure 5.15: Noise propagation (arcsec2) between adjacent frames by ANN pre-
dictors. Noise propagation in the non-predicted slopes is negligible, represented by
the nearly flat curve approaching 0.

at 150 Hz by the 7×7 SHWFS of the CANARY instrument between 28 September

and 2 October, 2017. The largest reduction in the combination of the temporal,

noise and aliasing errors filtered by the ANN compared with those associated to

the 2-frame latency is 48%.

In addition to the training noise levels, we have identified two factors that signi-

ficantly impact the ANN performance: vibrations and temporal dynamics of the

observed turbulence. We have observed vibrations in TT modes, and that the

observed data was dominated by a strong static layer indicative of dome seeing,

instead of frozen flow assumed in simulations. We have used an empirical static

turbulence model for training ANNs. The improved performance over a frozen flow

predictor suggests that this model provides a better representation of the observed

data, however the ANN performance is tolerant of the error in fitting this model.

We have shown that the ANN cannot predict the vibrations.
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For the CANARY Datasets dominated by a static layer, the non-spatially aware

predictor shows better performance than the spatially aware predictor trained with

the same amount of noise in all conditions. The non-spatially aware predictor

predicts low-temporal frequencies (below around 10 Hz) with improved accuracy.

An ANN predictor should be trained offline in simulation due to the amount of

training data or the variability (e.g. wind speed, decay rate) within for the ro-

bustness and adaptability. However, the training data should be representative of

on-sky observations by matching the noise condition and the dynamics of the turbu-

lence such as the existence of vibration and/or frozen flow. System and turbulence

characterisation is thus necessary before the ANN training.
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Chapter 6

Conclusions

6.1 Thesis Aim

This thesis has been dedicated to exploring the potential of Artificial Neural Net-

work (ANN) as a nonlinear tool for open-loop wavefront prediction, in order to

compensate for the inevitable temporal error in Adaptive Optics (AO) systems.

We have successfully demonstrated the robustness and effectiveness of ANN-based

predictors both with simulated and on-sky CANARY data, recorded by the 7 × 7

Shack-Hartmann Wavefront Sensor (SHWFS) running at 150 Hz.

In this chapter we present conclusions drawn from this study by answering the

questions posed in Chapter 1, and discuss paths forward.

6.2 Characteristics of an ANN Wavefront Predictor

We provided the workflow for training and optimising an ANN predictor with sim-

ulated training data. The predictor receives a time sequence of past slope meas-

urements by a SHWFS and predicts directly the future measurement either one or

two frames in advance. The predictor is composed mainly of stacked Long Short-

Term Memory (LSTM) cells. This workflow was first developed for simulations,

but later translated well to real systems. Predicting only a single frame in advance
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provides a more accurate prediction, but a two frame prediction still shows a large

performance benefit compared to a two-frame temporal delay and more accurately

represents the latency encountered within a real AO system.

We have demonstrated that the ANN is capable of wavefront prediction both with

simulated and real data. In simulations, the system performance in terms of re-

sidual Root Mean Squared (RMS) Wavefront Error (WFE) improved significantly

after the predictor is incorporated, irrespective of guide star magnitude or turbu-

lence strength. The prediction error is within 19.6 to 39.3 nm RMS of a latency-

free system operating under the same conditions compared to a temporal error of

77.7 ± 4.5 nm RMS. We provided evidence that the ANN reduces the temporal

error in a system that is mainly corrupted by the noise, aliasing, fitting and tem-

poral errors. For on-sky data, we achieved a 46.5±2.4% reduction in the temporal,

noise and aliasing errors. Disentangling these three errors from one another was

complicated by the presence of the ANN that modified some of the standard AO

analysis techniques that allow, for example, an independent estimation of noise.

Apart from accurately predicting the wavefront, we have provided evidence that the

predictor is also filtering high temporal frequency components such as Wavefront

Sensor (WFS) noise and aliasing errors. This behaviour is however dependent on

the training noise level of the WFS and was observed only with predictors trained

with a noise variance of 2.8 × 10−4 arcsec2 or higher. This has the potential to

alleviate the stability issue caused by additional noise in the Pseudo Open Loop

Control (POLC). How this optimal training noise limit may vary for systems other

than low-order 7 × 7 SHWFS of CANARY was not investigated however, but we

leave this open for future investigation.

We have shown in simulations that the predictor is robust to changes in wind

velocity on sub-second timescales, and that the ANN is insensitive to changes in

turbulence strength r0. The predictor trained with a single turbulence layer is

capable of predicting in more complex conditions with up to 35 layers each with

distinct wind vectors, albeit with reduced performance. However, the perform-
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ance of a frozen-flow trained ANN when applied to on-sky CANARY data with

a ground-layer dominated turbulence profile did not show a significant perform-

ance improvement. We identified that the CANARY Datasets were contaminated

by vibrations in Tip and Tilt (TT) modes and that the observed turbulence was

dominated by an evolving static layer (indicative of dome seeing) instead of frozen

flow assumed in simulations. We adopted an empirical model of dome turbulence

to fit to the observed temporal properties of the CANARY data (excluding vibra-

tions), and showed that an ANN trained using this model significantly outperforms

a frozen flow predictor trained in the same noise condition.

We have shown that both the frozen-flow or dome turbulence model trained ANN

cannot filter or predict vibrations. This can potentially degrade the control system

performance. The removal of vibrations before the ANN prediction can thus be

beneficial. We note that it is likely the ANN architecture used within this thesis

could also be used to identify and/or predict vibrations, but this study was not

performed due to limited time and can be investigated at a later date.

A non-spatially aware predictor proves competitive both with frozen flow and dome

seeing. The knowledge of the spatial distribution of WFS subapertures is most

beneficial in suppressing high temporal frequencies such as noise and aliasing. A

non-spatially aware predictor can predict the slowly-evolving components (below

around 10 Hz) with more accuracy in all test conditions. Additionally, the parallel

nature of the operation of a non-spatially aware predictor may make it well suited

for high-order Extreme Adaptive Optics (XAO) systems. We have not compared

the computational load of the ANN approach presented here with existing linear

predictive techniques applied to higher-order AO systems. The difficulty lies in

that the computational load of a spatially aware ANN scales in an unknown form

with the AO order due to the nonlinear nature of its implementation, and that

different techniques may benefit from parallelism to varied degrees. We will leave

this to future study.
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6.3 Implications for On-Sky Implementation

An ANN wavefront predictor should be trained with simulated data. The training

method presented here uses simulated SHWFS slope data which could be applied

to any real WFS data as has been shown. However, the sensitivity of the ANN per-

formance to the training regime and the requirement for a large amount of training

data acquired under the same conditions means that the collection of a real WFS

dataset may take a significant amount of time. It may therefore be best to initially

train in simulation and convert real WFS slopes to ensure that the subaperture

geometry and pixel scale matches that encoded within the ANN. However sys-

tem and turbulence characterisation is necessary before the ANN training for the

identification of WFS noise level and the dynamics of the turbulence such as the

existence of vibrations and/or frozen flow.

The technique proposed here inherently scales to multiple guide star systems through

parallelism. An on-sky implementation of the ANN presented here is equivalent to

an additional processing step for each WFS before reconstruction within the sys-

tem. The turbulence profile can be derived from multi-WFS data that may provide

information on frozen-flow wind velocities and non-frozen ground conjugated tur-

bulence conditions in real time. This may make a system more robust to complex

multi-layer turbulence, but at the expense of a more complex training regime. This

will be subject to future study.
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Appendix A

The Dependence of ANN

Frequency Transfer on Wind

Direction

We have observed the sensitivity of a spatially aware Artificial Neural Network

(ANN) predictor to the relative direction between the wind and a Zernike mode in

simulations, where the frozen flow hypothesis is assumed. This is reflected as the

magnification of small temporal frequencies (below 10 Hz) by the ANN in some

modes and the transition of ANN response between modes when the wind direction

varies.

Figs. A.1 and A.2 display the transfer of simulated temporal Power Spectral Density

(PSD)s of Zernike modes 2-36 (from top to bottom, left to right) by the Mag-10,

Mag-8 and Noise-free predictors in the noise-free condition. Wind directions are

10 and 90 degrees respectively. We have seen the same kind of plot (Fig. 4.9) when

the wind direction is 0 deg. In a few modes (for example modes 17 and 23 in this

figure), all predictors especially the Mag-10 predictor exhibit some magnification.

We have observed that this magnification transits between modes when the wind

direction varies. When the wind direction changes from 0 to 90 degrees, as is

shown in Figs. 4.9 and A.2, the magnification transits between adjacent modes
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with the same odd azimuthal order (for example, from mode 17 to 16). This can

be interpreted as these two modes interchange when the axis rotates odd multiples

of 90 degrees (equivalent to the change of wind direction). For two modes with the

same azimuthal order (m = 1, 2, ..., 7), when the rotation angle equals nπ
2m , where

n = 1, 3, 5, ..., these two modes interchange. Based on this, another observation

is when the wind direction (e.g. 10 deg) is away from any of these angles, the

magnification becomes much less severe in all modes (see Fig. A.1).

However, a non-spatially aware predictor is less sensitive to the wind direction and

treats different Zernikes roughly the same. See Figs. A.3 and A.4 for the transfer

by spatially aware and non-spatially aware predictors in the noise-free condition.

The wind direction is 0 and 90 degrees respectively.

For CANARY telemetry, which has been shown to be dominated by a non-translating,

evolving turbulence, we did not observe the discrepancy in the transfer of PSDs

across Zernike modes (see Fig. A.5). The wind speed is effectively 0. The two

predictors shown are both spatially aware.
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