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Stokes polarimetry and magnetometry
using a thermal Rb vapour in the Voigt
geometry with large magnetic fields

Francisco Sebastian Ponciano-Ojeda

Abstract

We present investigations of magneto-optical phenomena using a 87Rb thermal
vapour in large magnetic fields. At this point, in the hyperfine Paschen-Back
regime, optical transitions can be separated by more than their Doppler-
broadened linewidth, providing a high level of control over the atomic system
and a simpler theoretical model for studying atom-light-magnetic field interac-
tions. In this context, we study the spectra of 87Rb at magnetic fields of 0.4 T
and 1.5 T in the Voigt geometry. In both cases we find excellent agreement
between experimental and theoretical absorption spectra. With the 1.5 T field
we also study polarisation changes induced in the light by the atoms subject
to a large magnetic field. Using this approach, we consider the practical
applications of our system as a vector magnetometer. We present a scheme
that eliminates most sources of systematic errors in the measurement of the
field strength by using pairs of transitions that cancel excited-state terms in
the energy shifts. Finally, we extend the concepts and ideas investigated to
an application in precision thermometry. We discuss how good understanding
of the spectra and the magnetic field strength potentially allow detection of
small differences in different spectral features, which could then be traced to
the effect of the Boltzmann factor, kBT , on the atomic populations.
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Chapter 1

Introduction

Atomic spectroscopy

The advent of the laser in 1960 [1] brought with it a renewed desire to carry
out spectroscopic investigations of numerous media and materials. Since then,
atomic spectroscopy has come to be one of the pillars of high precision meas-
urements due to its relatively easy to use and accessible experimental setups.
Applications of these spectroscopic atom-based sensors range from tests of
fundamental physics [2, 3, 4] to precision time-keeping [5, 6, 7, 8], medical
imaging [9, 10, 11] and measurement of electromagnetic fields [12, 13, 14, 15],
among others. While operating these sensors at ultra-cold temperatures
can provide advantages that may lead to an increase in precision, such as
the macroscopic manifestation of quantum effects [16, 17, 18], these systems
typically require complex experimental setups. Work can also be done with
thermal atomic vapours, which have benefits and limitations of their own. In
particular, thermal atomic vapours can provide simple, compact experimental
platforms that allow the use of atom-based sensors in real-world applications
and conditions.

Thermal vapours of alkali-metal atoms

Use of thermal atomic vapours in spectroscopy has historically been common
due to the ease with which they can be handled. Of the different atomic
species on the periodic table, the Group I elements –the alkali metals– have
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Chapter 1. Introduction

been of particular interest because of their physical and chemical proper-
ties. These metals have relatively low melting points, with some existing in
their liquid form at room temperature, and can be stored in glass cells
under vacuum conditions or in protective atmospheres to prevent them
from reacting with water vapour. Additionally, the atomic vapour pres-
sure of these elements increases exponentially as a function of temperature,
allowing an optically-dense medium to be used to easily carry out meas-
urements using lasers [19, 20, 21, 22]. As such, these alkali-metal atoms
have been extensively used in fundamental research [23, 24] and in prac-
tical applications such as microfabricated cells [25, 26], for use in atomic
clocks [27, 28, 29] and magnetometry [30, 31, 32, 33], metrology [34, 35] and
optical devices [36, 37, 38, 39].

While they are easy to use in experiments, thermal vapours may also present
some challenges. To begin with, the thermal nature of the vapour introduces a
velocity distribution for the atoms that in turn results in Doppler broadening
of the lineshapes. For alkali-metal atoms this broadening is typically greater
than the hyperfine splitting of the energy levels, complicating the theoretical
description of the system and the ability to obtain well-resolved spectral
features to measure. Not only this, but collisions between the atoms and
cell walls can also lead to changes in the observed spectral lines [40, 41]
and other characteristics of the vapour [42, 43, 44, 45]. Nevertheless, these
challenges can be overcome with the use of Doppler-free [46, 47, 48] or
velocity-selective [49, 50] spectroscopies and optical pumping [51]; collisions
can also be controlled to a certain degree by the use of specially coated cell
walls [52, 53, 54] and the presence of buffer gases in the cell [55, 56, 57].
Another way to deal with these effects is by introducing an external magnetic
field to generate additional shifts in the atomic energy levels in order to better
resolve the spectral lines [58, 59, 60].

Interactions of atomic vapours with external magnetic fields

The study of atomic vapours subject to an external magnetic field via spectro-
scopy is very well understood. Prior to the advent of the laser, experiments

2



Chapter 1. Introduction

in the late XIX century were carried out with light emitted by metallic
salts introduced in flames provided evidence of the interaction between a
magnetic field and light due to the presence of charged particles in the
atom [61, 62, 63, 64, 65]. The subsequent discovery of the electron and its
spin led to further understanding of the observed changes in the spectral
emission when subject to large magnetic fields [66, 67, 68]. This work served
as the foundation for many of the advances obtained with laser spectroscopy
as it was now possible to interact with the internal energy levels of the atom
more precisely, leading to the ability to trap and slow atoms [69, 70, 71].

Extensive studies have since been carried out in thermal vapours of alkali-
metal atoms at both low- and high-densities [72, 73, 74, 75] looking at
the magneto-optic effects that result from this interaction [76, 77, 78, 79].
However, this statement is true predominantly for fields that are stationary
(i.e. DC) and typically below 1 T; under these conditions nuclear magnetic
resonance (NMR) is commonly used due to its highly accurate measurements
and the commercial availability of ready-to-use devices1. In addition to this,
the convenience of using widely-available electronics to measure physically-
relevant quantities, such as the Larmor precession frequency of the system [80],
has been a deciding factor in promoting work at this lower end of the range
of magnetic field strengths.

The limited amount of work done using atomic spectroscopy to study interac-
tions with large (>1 T) external magnetic fields has been carried out in pulsed
magnetic fields [81, 82] produced non-destructively, and with destructive
techniques up to hundreds of T [83, 84]. Despite these precedents, there is
little ongoing research directed at using atom-based sensors for measurement
of large DC magnetic fields. This is because the interaction between an atom
and an external magnetic field at these field strengths generates a decoupling
of the nuclear and electronic spins, known as the hyperfine Paschen-Back
(HPB) regime [85, 86]. The typical measurement of a Larmor precession
frequency no longer proves to be a viable option as at these higher fields this

1Devices are readily available that claim <10 p.p.b. precision; see https://www.metrolab.
com/products/pt2026/, accessed November 03, 2020
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Chapter 1. Introduction

frequency becomes too large to measure by conventional electronics. Under
these conditions, the interaction between the atoms and the magnetic field can
be studied using alternative methods. Measurement of absorption spectra has
been demonstrated to be a more straightforward way of obtaining information
about the magnetic field strength in this case, as at high fields of the order
of 1 T the Zeeman shift is large enough to create absorption spectra with
characteristic features such as greater symmetry [87, 88]. Other detection
methods, such as Stokes polarimetry [89], can also be used to detect the
changes in the light used to probe the atoms due to magneto-optical rotation
in the medium.

Atom-based magnetometers in the real world

Work with atom-based sensors for the measurement of magnetic fields has
seen a rapid increase in interest thanks to the technological advances of
recent years [90, 91, 92]. Building upon a solid understanding of the physical
interactions involved in these atomic systems [76, 80, 93, 94, 95], this has
allowed for these sensors to begin appearing in a number of different areas,
ranging from bio-medical applications [96, 97, 98, 99, 100] to characterisation
of materials and industrial techniques [101, 102, 103, 104]. Together with the
wealth of experience in spectroscopy using thermal vapours, this has proven to
be a novel way of realising precision measurements of magnetic fields. Various
protocols for optical atomic magnetometry have been developed [105, 106,
107, 108, 109] to exploit several aspects of these systems with the intention of
increasing their versatility and precision. Nevertheless, these techniques and
protocols have been limited to the lower range of field strengths (< 10 mT)
and have left open the possibility of translating the basic principles to work
at higher (≥ 1 T) field strengths.

1.1 Motivation

The aim of the present investigation is to expand the study of thermal atomic
vapours in the presence of large magnetic fields. Of particular interest here
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Chapter 1. Introduction

will be the use of the Voigt geometry, i.e. when the laser beam propagates
perpendicularly to the direction of the magnetic field, which will allow for
specific sets of transitions to be selected as a function of the polarisation of
the light used. The fields used in our experiments (0.4 and 1.5 T) will allow
for a theoretical model of the system in the hyperfine Paschen-Back regime
to be used and further validated. This line of research builds upon previous
results from similar experiments, where alkali-metal atomic vapours were
placed in large magnetic fields using the Faraday geometry. In such systems
the advantages of carrying out measurements in the hyperfine Paschen-Back
regime have been demonstrated [24, 60, 110, 111, 112]. However, these systems
omit part of the available information by design, as they are not able to excite
π transitions due to the geometrical constraints on the system.

In comparison, by setting the experimental system in the Voigt geometry all
of the atomic transitions are excitable, thus allowing for increased benefits to
the amount of information obtained and its precision. To highlight this we
present results of a systematic investigation of these atomic systems, using
tools such as the Stokes parameters, to obtain a complete set of information on
the processes occurring in the atomic vapour. Quantitative comparison of said
results to the predictions of a theoretical model will also be presented. We will
also put forth ideas and results that show the increase in precision of certain
measurements, such as that of the magnetic field strength, obtained by using
an atomic system in the proposed configuration. In doing so it is our hope
that the present work will contribute to the understanding of the interactions
between atoms, light and magnetic fields, as well as providing points of interest
for further spectroscopic research of thermal atomic vapours.

1.2 Thesis summary

Chapter 2 – A broad overview of the fundamental concepts behind the
interaction of atoms and an external electromagnetic field is given. We then
proceed to discuss the interaction of such an atom-light system in the presence
of an additional external magnetic field, with a particular emphasis on the
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effects of strong (≥ 1 T) fields and of the geometry of the physical system.
The properties of alkali-metal atoms, in particular of rubidium, are mentioned
in order to provide context for the experiments realised for this thesis.

Chapter 3 – The absorption spectroscopy of a thermal vapour of 87Rb atoms
subject to a 0.4 T external magnetic field is presented. The theory describing
this particular experiment is briefly expanded upon, allowing use of a model
to fit the results with excellent agreement. This enables for more precise
determination of the magnetic field strength and of its orientation relative
to the atom-light system; our method raises the possibility of atom-based,
high-field vector magnetometry.

Chapter 4 – We expand on previous work to present a polarimetric
investigation of a vapour of 87Rb atoms at a field strength of 1.5 T. We find
very good agreement between the experiment and fits using our theoretical
model. From these fits we are able to precisely determine the field strength
and relative orientation, with respect to our laser beam, of the field used. In
addition to this, measurements of the Stokes parameters allow us to observe,
and correct, birefringence due to the vapour cell windows in our experiment.
The work presented provides the foundations for an all-optical scheme for
precision atomic vector magnetometry in high fields.

Chapter 5 – We take advantage of the properties of an atomic vapour
in the hyperfine Paschen-Back regime and the Voigt geometry to carry out
precision magnetometry. Our method, relying on the measurement of fre-
quency differences between particular transitions, allows us to determine
field strengths with a precision of ∼ 50 mT, limited by the precision of our
frequency measurements in an absorption spectrum. A natural application of
this experimental scheme, with rubidium or other alkali-metal atoms, is in
all-optical precision magnetometry in high fields, an area little explored with
atom-based sensors.

Chapter 6 –With the experience and knowledge from the experiments thus
far presented, we investigate the possibility of realising precision thermometry
with a thermal rubidium vapour. The necessary theory for doing so is briefly
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Chapter 1. Introduction

discussed, and a proposal for an experimental realisation is given. The
simulated precision of this method proves to be of metrological interest,
possibly serving as an all-optical secondary standard for the determination of
the Boltzmann constant.

Chapter 7 – The most significant results from the experiments carried out
are summarised. A brief discussion of further applications and development
of the work presented is also given.

1.3 Publications

The following papers have been published from the work described in this
thesis:

J. Keaveney, F. S. Ponciano Ojeda, S. Rieche, M. J. Raine, D. P. Hampshire
and I. G. Hughes, Quantitative optical spectroscopy of 87Rb vapour in the
Voigt geometry in DC magnetic fields up to 0.4 T, Journal of Physics B:
Atomic, Molecular and Optical Physics 52, 055003 (2019), 10.1088/1361-
6455/ab0186 [113]

F. S. Ponciano-Ojeda, F. D. Logue and I. G. Hughes, Absorption spectroscopy
and Stokes polarimetry in a 87Rb vapour in the Voigt geometry with a 1.5 T
external magnetic field, Journal of Physics B: Atomic, Molecular and Optical
Physics 54, 015401 (2021), 10.1088/1361-6455/abc7ff [114]

F. S. Ponciano-Ojeda, F. D. Logue and I. G. Hughes, In preparation, (2021)

1.4 Author contributions

F. S. Ponciano-Ojeda was responsible for carrying out the majority of experi-
ments, most of the analysis of the results and contributed to the the writing
of each of the above publications. J. Keaveney contributed to the design and
realisation of the experiment, and the analysis of results, presented in the
first of the articles. S. Rieche contributed to the experimental realisation
of the first publication mentioned above. M. J. Raine contributed to the
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design of the experimental setup used in, and the writing of, the first article.
D. P. Hampshire contributed by kindly providing access to the electromagnet
used in the experiment and in writing the first publication. F. D. Logue
contributed to the experiment and analysis, as well as the writing of, the
second of the above publications. I. G. Hughes contributed to the writing of
each article and is the principal investigator for this project.
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Chapter 2

Interactions between atoms, light
and external magnetic fields

In this chapter we will give a broad overview of the main theoretical concepts
behind the interaction of atoms with light and external magnetic fields. This
will serve as a common starting point in order to understand the behaviour
of the atomic systems studied. Additional theoretical details for specific cases
of the experimental systems will be given in their respective chapters.

2.1 Atom-light interactions

We begin by addressing the theory behind experiments involving spectroscopic
measurements – the interaction between an atom and an electromagnetic
(EM) field. For the majority of experiments, including the work reported
in this thesis, a semi-classical description of the interaction is sufficient.
This means that while the atom is described by its quantum mechanical
framework, namely the Schrödinger equation, the electromagnetic field is
treated according to its classical description based on Maxwell’s equations
of electromagnetism. It is worth mentioning that this will give a description
of the dynamics and interaction on the microscopic level, which will then be
translated to macroscopic properties of an atomic medium in order to better
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Chapter 2. Interactions between atoms, light and external magnetic fields

represent the conditions found in the laboratory.

2.1.1 Quantum-mechanical description of an atomic sys-

tem

Consider an atom where the nuclear mass is much greater than that of the
electrons, such that the system can be described in terms of its centre of mass.
An equivalent assumption is that the nucleus does not move with respect to
the electron. For the simplest non-relativistic case, neglecting effects due to
the nucleus and quantum electrodynamics, an atom composed of a proton
and a single orbiting electron (i.e. hydrogen) can be described in terms of
the Hamiltonian

Ĥ =
p̂2

2µatom

+
−e2

4πε0r̂
, (2.1)

where p̂ is the momentum operator of the electron, µatom is the reduced
mass of the atomic system, e is the fundamental charge of the electron,
and r̂ is the position operator describing the distance of the electron from
the centre of mass [85, 86, 115]. Closer inspection will show that the two
terms shown in equation 2.1 are the kinetic energy of the electron and
the Coulomb force between the positively-charged proton and the electron.
For the case of atoms with multiple nucleons and electrons, terms must be
added to equation 2.1 to account for all of the Coulomb interactions between
these [85, 86, 115, 116]. The resulting Hamiltonian is commonly referred to
as the bare-atom Hamiltonian, Ĥ0.

Using the bare-atom Hamiltonian, we can proceed to solve the Schrödinger
equation to obtain the quantum-mechanical description of the behaviour
of the atom, expressed in terms of its wavefunction Ψ(r̂, t). The quantised
energies En of the electrons in the atom are obtained as solutions to the
eigen-system created by use of the Schrödinger equation. As such, a set of
solutions (Ψ, E(n,L,mL,S,mS)) can be constructed, where the quantum numbers
n, (L,mL) and (S,mS) serve to describe the discrete energy states of the
atomic system. Having the wavefunctions and energies allows the atomic
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system to be well-defined in terms of a complete set, which consequently
provides a basis for incorporating further interactions both within the atom
and with external fields.

The definition of an atom’s behaviour as provided by the complete set of
solutions (Ψ, E(n,L,mL,S,mS)) allows us to begin describing said behaviour, yet
it does not take into account many of the subtleties that arise from other
phenomena within the atom. One of these phenomena is the interaction
between the different angular momenta in the atom, which will play an
important role in defining the interaction with electromagnetic fields seen
in sections 2.1.2 and 2.2. We can begin to introduce the effects of angular
momenta in the atomic system by considering the coupling between the
intrinsic angular momentum of the electron, also known as its spin Ŝ, and
the orbital angular momentum of the electron, given by the quantum number
L̂:

ĤFS = γLS(L̂ · Ŝ). (2.2)

The constant γLS in equation 2.2 quantifies the magnitude of the spin-orbit
coupling in the atom. Using the theory of addition of angular momenta [117],
we can express the interaction between these two momenta as a quantity
Ĵ = L̂+Ŝ which will also be a good quantum number for the atom [85, 86, 115].
In the context of the atom, Ĵ is referred to as the total electronic angular
momentum, and the interaction that leads to it is known as the fine interaction.
As a consequence of this coupling between angular momenta, the structure of
the energy levels is modified and some of the initial degeneracy found in the
energies E(n,L,mL,S,mS) is removed. At this point the atomic energy levels are
said to be showing the fine structure.

Similar to the case of the fine interaction, a further coupling of angular
momenta can be introduced to better explain the interactions within the
atom. As a result of the intrinsic angular momenta of the protons and
neutrons (i.e. their spin), the nucleus as a whole also has an intrinsic angular
momentum, Î. Once again, we use the theory of angular momenta [117]
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to couple this nuclear angular momentum with the total electronic angular
momentum Ĵ in a new quantity, F̂ = Î + Ĵ, that also serves as a good
quantum number for describing the atom. The quantity F̂ is thus associated
to the total atomic angular momentum. This is known as the hyperfine
interaction [85, 86, 115],

ĤHFS = AHF(Î · Ĵ) +BHF

3(Î · Ĵ)2 + 3
2
(Î · Ĵ)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (2.3)

with the first term of the right-hand sum corresponding to a magnetic dipole
interaction and the second term corresponding to an electric quadrupole
interaction. Here I and J are simply the eigenvalues associated with the
operators Î and Ĵ, respectively. In equation 2.3 we have chosen not to
write higher-order interactions as they are typically small [90, 118, 119]; in
commonly used atomic systems they have been found to be at least three
orders of magnitude smaller than the electric quadrupole interactions [120,
121, 122, 123, 124]. The effect of this coupling on the energy levels of the
atom gives rise to the hyperfine structure, which further helps remove some
of the degeneracies and provides greater details as to the internal structure of
the atoms.

At this point we have given enough detail of the internal interactions of the
atom so that we can begin to consider the effects of external interactions. We
begin by noting that our bare-atom Hamiltonian now must also include the
fine and hyperfine interactions [85, 86, 115], such that

Ĥatom = Ĥ0 + ĤFS + ĤHFS. (2.4)

This Hamiltonian will encapsulate all of the information regarding the
quantum-mechanical description of the behaviour of an atom. To deal with
the additional complexity of the system, it will now become convenient to
adopt a different notation for the atomic states, commonly known as Dirac
notation, where rather than identifying the state by the wavefunction Ψ(r̂, t)

we use the quantum numbers that describe the system, |nLmLSmSImI〉. A
corollary of this change of notation is that we will now also be considering
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the quantum mechanical observables (e.g. p̂, r̂) as hermitian operators in the
equations covered thus far.

2.1.2 Interaction between an atom and an electromag-

netic wave

To introduce the interaction of an atom with an external electromagnetic
field we begin by recalling that in the presence of a classical EM field, the
Hamiltonian describing the movement of a particle with charge q is [115,
125]

ĤEM =
1

2mq

(p− qA(r, t))2 + qΦ(r, t). (2.5)

Here we have taken r,p as the position and momentum of the particle, mq

as its mass and Φ(r, t),A(r, t) the scalar and vector potentials that describe
the EM field. Introducing this classical interaction into the Hamiltonian for a
hydrogen-like atom, we can make certain assumptions that allow for a more
compact, yet accurate, expression for the atom-light interaction. Firstly, we
will assume that in this interaction we work in the radiation gauge, which
effectively allows us to consider Φ(r, t) = 0 and

[
p̂, Â

]
= 0 [126]. For the

extent of this work we will also consider the EM field the atoms interact
with as plane, monochromatic waves of the form exp[i(k · r− ωt)], with k

the wave-vector of the light and ω = 2πc
λ

the frequency of the field.

As a result of the assumptions made, after some algebraic manipulation of
equation 2.5 we can write the resulting Hamiltonian for an atom interacting
with an EM field in the form

Ĥ = Ĥatom −
Ze

µatom

p̂ · Â(r̂, t) +
Z2e2

2µatom

Â2(r̂, t),

= Ĥatom + Ĥlight, (2.6)

where we have used the substitutions q → Ze and mq → µatom for a general
hydrogen-like atom. The atomic Hamiltonian Ĥatom, is that previously seen
in equation 2.4 and already includes the p̂2 term present in equation 2.5. The
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remaining terms on the right hand side of equation 2.6 have been written as the
interaction Hamiltonian between the atom and light, Ĥlight. For the majority
of the work here presented, we will keep only the first-order term of the
interaction Hamiltonian Ĥlight, (p̂ · Â), as we assume the interaction between
the EM field and the atom is weak in comparison to the internal interactions
of the atom (i.e. we can omit the second-order Â2 term) [126, 127]. This
Hamiltonian can then be substituted into the Schrödinger equation, where
the interaction Ĥlight can be treated as a perturbation using time-dependent
perturbation theory [115].

With this framework we can now proceed to consider the special case of an
atom interacting with light whose frequency is close to, or equal, to the energy
difference between two atomic energy states. We denote the lower energy
state the ground state, |g〉 = |nLmLSmSImI〉, and the higher energy state
the excited state |e〉 = |n′L′mL′S ′mS′ImI′〉. The probability density of the
atom going from the ground state to the excited state when interacting with
the light, given in terms of the matrix element 〈g|Ĥ|e〉, can be expressed
as

〈g|Ĥ|e〉 = 〈g|Ĥatom + Ĥlight|e〉

≈ 〈g| −Ze
µatom

p̂ · Â(r̂, t)|e〉. (2.7)

In this expression we have taken the Hamiltonian Ĥ as defined in equation 2.6
and omitted the terms to second-order of the vector potential Â. Note that
the term 〈g|Ĥatom|e〉 = 0 by virtue of |g〉, |e〉 both being eigen-states of the
atomic Hamiltonian.

The final expression in equation 2.7 can be rewritten in a more convenient
manner by considering the relation between a particle’s position and mo-
mentum operators, as well as the classical interaction between an electric
dipole moment and an electric field. For the first of the aforementioned con-
siderations, we use the commuter relation p̂ = im/~

[
Ĥ, r̂

]
[115] where the

Hamiltonian in question corresponds in our case to the atomic hamiltonian as
defined in equation 2.4. Substituting this into equation 2.7, we recall the fact
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that the light in the interaction is a plane, monochromatic wave to write

〈g|Ĥ|e〉 ≈ 〈g|−p̂Ze
µatom

· Â(r̂, t)|e〉

= 〈g|−iZeµatom

~µatom

[
Ĥatom, r̂

]
· Â0 exp [i(k · r̂− ωt)] |e〉

= 〈g|−iZe
~

(
−i
ω

)
[
Ĥatom, r̂

]
· Ê0 exp [i(k · r̂)] exp [(−iωt)] |e〉

= 〈g|−Ze
ω

(
(Eg − Ee)

~

)
r̂ · Ê0 exp [i(k · r̂)] exp [(−iωt)] |e〉

=
ωge
ω
〈g|d̂ · Ê0 exp [i(k · r̂)] exp [(−iωt)] |e〉. (2.8)

Here we have used the relation between the electric field E and the vector
potential A, E = − ∂

∂t
A. We recognise the quantity d̂ = −Zer̂ as the electric

dipole moment to relate this expression with the classical interaction of the
electric dipole moment with an electric field, Ĥdipole = d̂·Ê [85, 116, 128].

The expression in equation 2.8 is responsible for defining the details of the
interaction between an atom and light. In this context, the so-called dipole
transitions are the excitations of the electrons in the atom between energy
states resonant with the incident light; note that these are commonly studied
in the literature [85, 86, 126, 127] after having carried out the dipole and
rotating-wave approximations. In particular, the dipole approximation allows
us to assume the charged particle interacts with the electromagnetic field
at a single point in space (i.e. |k · r̂| = kr � 1) [86, 127, 128] while the
rotating-wave approximation allows us to discard rapidly oscillating terms
in the interaction (e.g. ω + ωge) and define a detuning close to resonance
in the study of the interaction of the atom and light [86, 126, 128]. These
transitions follow certain rules which are a result of the geometry of the atom-
light system and some general considerations of the nature of the transitions.
As we are considering electronic transitions, we note that the value of the
projection of the nuclear angular momentum mI does not change (mI = mI′).
Furthermore, we recognise that the position operator r̂ has an odd parity
(i.e. its components change sign under the transformation r̂ → −r̂), which
means that the parity of |g〉 and |e〉 must be opposite in order for the matrix
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element in equation 2.8 to be non-zero.

If we take the direction of propagation of the light along a Cartesian z-axis
and label the components of r̂ as rq in the helicity basis (q = 0,±1), we can
use the Wigner-Eckart theorem [85, 115, 129] to reduce the dipole matrix
element 〈g|Ĥdipole|e〉:

〈g|Ĥdipole|e〉 = 〈nLmLSmSImI |erq|n′L′mL′S ′mS′ImI〉

= 〈nLmL|erq|n′L′mL′〉〈S ′mS′|SmS〉

= 〈nL||er||n′L′〉〈L′mL′1q|LmL〉δS,S′δmS ,mS′

= 〈nL||er||n′L′〉(−1)L
′−1+mL

√
2L+ 1

×

(
L′ 1 L

mL′ q −mL

)
δS,S′δmS ,mS′ . (2.9)

The quantity 〈nL||er||n′L′〉 is known as the reduced dipole matrix element,
and is independent of the component of r̂ and of the projections mL,mL′ of
the orbital angular momentum. In equation 2.9 we have begun by splitting
the orbital (angular) and spin components of the dipole matrix element. This
allows us to ensure that the matrix element is non-zero when we conserve the
spin of the system, S = S ′,mS = mS′ . For the orbital part, the Wigner-Eckart
theorem can be applied to show that the conditions for the matrix element
to be non-zero, by virtue of the properties of the 3-j symbol [85, 117, 129],
are:

mL′ + q = mL ⇒ ∆mL = |mL′ −mL| = q = 0,±1,

|L′ − 1| ≤ L ≤ L′ + 1 ⇒ ∆L = |L′ − L| = 0,±1, and

L + L′ ≥ 1. (2.10)

These selection rules will prove of particular interest when looking at the
interaction of an atoms and light in the presence of an external magnetic field
(section 2.2), as will be seen later in the analysis of experimental spectra in
chapters 3, 4 and 5.
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2.1.3 Macroscopic effects of the atom-light interaction

Having considered the interaction between an atom and light, we are now
concerned with finding a physical quantity that allows us to characterise this
interaction in the laboratory. This is often done via atomic spectroscopy,
with the transmission of light through an atomic medium being the quantity
measured. Nevertheless, we recognise that there must be a link between
the microscopic description of the interaction in section 2.1.2 and that for
a macroscopic medium. For this we fall back on the optical concept of the
refractive index of a medium, and the classical electromagnetic concept of the
susceptibility of a medium.

We start by recalling that for an optical medium, its refractive index is in
general a complex quantity, n = n< + in= [125, 130, 131, 132]. The real part
of said index affects the optical properties derived from the change in the
speed of light through the medium, such as refraction, while the imaginary
part is responsible for losses in the form of absorption. As our experimental
interest lies in the transmission of light Tlight through the medium, we can
relate the absorption coefficient of the medium α and the imaginary part of
the refractive index via a linear relation, α = 2kn= [125]. Thus, using the
Beer-Lambert law [125, 131, 132], we can write T as

Tlight = exp(−αl) = exp(−2kn=l), (2.11)

where l represents the length of the medium and k is the wavenumber of the
light used.

The relation between the macroscopic and microscopic nature of the optical
medium comes as a result of the link between the refractive index and
the medium’s susceptibility, χ, which is itself a complex-valued quantity
(χ = χ< + iχ=) [115, 125, 131]:

n = n< + in=

=
√

1 + χ. (2.12)
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The macroscopic susceptibility of a medium χ can be described in terms of its
microscopic components (e.g. atoms/molecules) by taking into account the
effect an electric field has on the individual electric dipoles in the structure of
the material. A case of interest is when the magnitude of the susceptibility
(and thus the effect of the electric field) is small, |χ| � 1, so that we
can take a Taylor-series expansion of equation 2.12. This gives us, to first
order [115, 125],

n ≈ 1 +
χ

2
= 1 +

χ<
2

+ i
χ=
2
,

∴ n< ≈ 1 +
χ<
2
, n= ≈

χ=
2
. (2.13)

It is worth noting that here we have assumed the refractive index is linear; in
strong electric fields (such as those obtained from intense laser beams) it is
possible to observe non-linear effects involving changes in the refractive index
as light propagates through the medium [130, 131, 133]. The above treatment
will be useful for simplifying the calculations necessary to model and carry out
the analysis of experimental spectra, as will be seen in chapters 3 and 4.

For the simplest case of a medium composed of atoms with two discrete energy
levels interacting with light, the susceptibility can be written as [72]:

χ(∆) =
C2d2N
ε0~

f(∆),

f(∆) =
i

Γ/2− i∆
, (2.14)

where C2 is the strength of the transition given in terms of the square of the
prefactors and the 3-j symbol in equation 2.9, d is the reduced dipole matrix
element and N is the atomic number density of the medium. The function
f(∆) corresponds to the characteristic lineshape of the transition between
the two levels, with a decay rate Γ, given as a function of the difference in
angular frequency of the atomic transition and the light, ∆ = ωlight − ωatom.
Experimentally it will be more convenient to deal with linear frequencies,
given in terms of ∆/2π.
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In reality, the atoms involved in the description of equation 2.14 are in motion.
For the experiments presented in this work, the medium we use is a thermal
atomic vapour. This means that the movement of the atoms is described by
a Maxwell-Boltzmann distribution,

g(v) =

√
ma√

2kBTπ
exp

[
−v2

2kBT/ma

]
, (2.15)

with ma the mass of an atom, kB the Boltzmann constant, T the temperature
of the vapour and v the velocity of the atoms along one dimension. We note
the quantity u =

√
2kBT/ma is the root-mean-square (RMS) speed of the

atoms, which defines the width of the distribution.

The effect of the movement of the atoms on the medium, particularly on
its susceptibility, comes from the fact that the frequency of the light is
Doppler-shifted proportional to their velocity. As such, the susceptibility is
effectively averaged over the component along the direction of light propaga-
tion (i.e. parallel to the k vector of the plane wave; see section 2.1.2) of all of
the atomic velocities in the Maxwell-Boltzmann distribution and results in
what is commonly referred to as Doppler broadening. The expression for χ in
equation 2.14 can thus be rewritten as

χ(∆) =
C2d2N
ε0~

V(∆),

V(∆) =

∫ ∞
−∞

f(∆− kv)g(v)dv, (2.16)

with the convolution between the lineshape of the transition and the Maxwell-
Boltzmann distribution giving the well-known Voigt lineshape V [86, 116].

2.1.4 Stokes polarimetry

The choice of the Stokes parameters to characterise the transmitted electric
field through an atomic medium is due to their convenience in this context.
As will be seen in the section 2.2, the geometry of the interaction between
atoms, light and magnetic fields results in propagation eigenmodes that can

19



Chapter 2. Interactions between atoms, light and external magnetic fields

readily be expressed in terms of the polarisation of light. As such, the Stokes
parameters are a natural choice for studying these interactions. One needs
only to measure the intensity (I ∝ | ~E|2) of the beam in orthogonal polarisation
bases to access information not only on the absorption of the medium, but
also on the optical rotation it generates.

The Stokes parameters, S0, S1, S2 &S3, are simply linear combinations of
the measured orthogonal components of polarisation in different orthogonal
bases [134]. For a beam that is incident on the medium with an intensity I0,
the Stokes parameter S0 is defined as

S0 ≡
Ix + Iy
I0

=
I↗ + I↘

I0

=
IRCP + ILCP

I0

, (2.17)

and it represents the normalised total transmitted intensity through the me-
dium. As can be seen, this makes the measurement of this particular parameter
independent of the basis chosen. The remaining Stokes parameters,

S1 ≡
Ix − Iy
I0

, (2.18)

S2 ≡
I↗ − I↘

I0

, (2.19)

S3 ≡
IRCP − ILCP

I0

, (2.20)

provide information on the optical rotation of the light after passing through
the atomic medium in terms of the difference between orthogonal polarisation
components: S1 is measured in the linear horizontal (Ix, Iy) basis; S2 takes
measurements in a diagonal (I↗, I↘) basis and S3 is measured in the helicity
basis (IRCP, ILCP) composed of right- and left-hand circular polarisations.
These last three parameters are also normalised with the incident intensity so
as to form a complete basis to describe a normalised arbitrary polarisation
state of light [89, 135, 136].
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2.2 Effects of external fields on atom-light in-

teractions

The interaction of an atom with an external magnetic field which we assume
is time-independent, B = B(r), can be described by the Hamiltonian

ĤZeeman = −µ̂ · B̂, (2.21)

where µ̂ is the magnetic dipole moment of the atom. This is commonly
referred to as the Zeeman effect. The nature of µ̂ lies in the well-known fact
that a charged particle rotating about an axis will generate a small magnetic
field as described by Maxwell’s equations [125]. In writing equation 2.21
we have considered the paramagnetic response of the particle and omitted
the diamagnetic contribution to the interaction, which can be linked to
the Â2 term in equation 2.6 and can be shown to be on the order of ∼
149 kHz/T2 [90]. In addition to this, the intrinsic spin of the electron also
contributes to the generation of an electronic magnetic dipole moment. Thus,
in terms of the quantum description of the atom given in section 2.1.1, the
magnetic dipole moment of the atom is related to the angular momenta of
the protons and electrons via a direct proportional relation of the quantum
numbers Î, L̂ and Ŝ to the nuclear magneton µN and the Bohr magneton µB,
respectively [85, 86, 90, 116]:

µ̂ = µ̂e + µ̂n

=
µB

~
(gLL̂ + gSŜ) +

µN
~
gI Î. (2.22)

In equation 2.22 we have written µ̂e as the electron magnetic dipole moment,
µ̂n as the nuclear magnetic dipole moment, and gL, gS, gI as constants of
proportionality known as the gyromagnetic ratios. For the remainder of this
work, we will assume these gyromagnetic ratios are independent of the field
strength. These constants serve to quantify how strongly the atomic system
will react in the presence of the external field B; of the three here mentioned,
gS has been the subject of great interest as its value serves as one of the most
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stringent tests of quantum mechanical theory to date [137, 138]. Furthermore,
we also note that the nuclear magneton µN is three orders of magnitude
smaller than the Bohr magneton µB, resulting in a smaller contribution to the
interaction from the last term on the right-hand side of equation 2.22.

Given the relation between the magnetic dipole moment of the atom and
the external magnetic field in equation 2.21, it is clear that the interaction
has a significant dependence on the orientation of the system. While in
the absence of an external magnetic field the atom-light interactions have a
quantisation axis defined by the direction of propagation of the light, given by
the wave-vector k, in the presence of an external magnetic field we see that
it is now the direction of the field B that defines the privileged axis in the
interaction. Furthermore, the magnitude of the magnetic field is a parameter
that effectively controls the strength of the interaction, allowing for different
regimes to be accessed by simply tuning this value.

In the following subsections we explore one such regime of particular interest
for the work in this thesis. We will also look at the two main geometric
configurations for the interaction involving an external magnetic field, and
set out the implications this has on the atom-light interactions previously
described.

2.2.1 The hyperfine Paschen-Back regime

As mentioned previously, the strength of the interaction between an atom
and an external magnetic field B can be determined by the magnitude of said
field. At low magnetic field strengths, the atom-magnetic field interaction
can be described using equation 2.21, where the magnetic dipole moment µ̂
of the atom is now described in terms of the total angular momentum of the
electron, Ĵ and the nuclear angular momentum, Î. Following the description
of the hyperfine interaction given in section 2.1.1, we can use the total atomic
angular momentum F̂ and its projection mF as ‘good’ quantum numbers to
describe the state of the atom. In this way, one can express the Zeeman effect,
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under these conditions, as

ĤZeeman = −µ̂ · B̂ ≈ −µBgF
~

F̂ · B̂, (2.23)

where the magnetic dipole moment µ̂ has been written in terms of the
total atomic angular momentum F̂, µ̂ = µB

~ gF F̂, with gF the corresponding
gyromagnetic ratio [85, 86, 116]. As a result of equation 2.23 the energy levels,
described using the (F,mF ) quantum numbers, will see their energy shifted
due to the Zeeman effect by an amount

∆EZeeman = µBgFmFB, (2.24)

with mF = −F,−F +1, ..., F −1, F the projection of the total atomic angular
momentum F̂ along the quantisation axis and B = |B| the magnitude of the
magnetic field [85, 86, 116].

The description of the Zeeman effect given by equations 2.23 and 2.24 is
valid for low magnetic field strengths due to the fact that the hyperfine
interaction in the atom, as described in section 2.1.1, is dominant. In this
sense, the presence of the external magnetic field serves as a method of
removing some of the degeneracy present in the hyperfine structure of the
energy levels. However, this description is only valid as long as the energy
shift created by the Zeeman effect is less than the shifts resulting from the
hyperfine interaction in the atom. This is equivalent to asking at what point
the shift in energy from the Zeeman effect is comparable to the shifts due
to the hyperfine interaction, which can, in the first instance, be obtained by
looking at the values of the hyperfine constants AHF, BHF. In particular, the
ratio between these constants and the Bohr magneton µB, which serves as
a base unit for the Zeeman-induced energy shifts, will give a value for the
magnetic field strength necessary for the two interactions to be of comparable
strength [85, 116, 139],

BHPBmin
=

(AHF/h)

µB

. (2.25)
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As the magnitude of the magnetic field increases the shift in energies caused
by the Zeeman effect will increase proportionally, by virtue of equation 2.21,
to the point where these become similar in value, and eventually equal or
greater, to the hyperfine energy splitting in the atom. A similar expression
to that given in equation 2.25 can be written for this limit in terms of the
hyperfine splitting between the highest and lowest energy states, ∆HF,

BHPB =
∆HF

µB

. (2.26)

When this occurs the atom can no longer be properly described by the (F,mF )

quantum numbers as the hyperfine interaction no longer dominates. In this
case, the ‘good’ quantum numbers that describe the energy states of the system
are (J,mJ) and (I,mI), which correspond to the total angular momentum of
the electron Ĵ and the nuclear spin Î, respectively. This transition between
these two regimes for describing the energy states of the system is shown in
figure 2.1. Once again, we can describe the interaction, using equation 2.21,
by writing the magnetic dipole moment µ̂ in terms of Ĵ and Î [85],

ĤZeeman = −µ̂ · B̂ ≈
(
−µB

~
gJ Ĵ +−µN

~
gI Î
)
· B̂, (2.27)

with gJ , gI the gyromagnetic ratios for the total electronic angular momentum
and the nuclear spin, respectively. The atom at this point is said to be in the
hyperfine Paschen-Back (HPB) regime, and the shift in the energy levels can
be described by the expression [85, 118, 116]

∆EZeeman = µB

(
gJmJ +

me

mp

gImI

)
B, (2.28)

where mJ = −J,−J + 1, ..., J − 1, J and mI = −I,−I + 1, ..., I − 1, I are the
projections of Ĵ and Î along the quantisation axis, respectively, and B is the
magnitude of the magnetic field. We have also written the nuclear magneton
µN in terms of the Bohr magneton µB via the relation µN = me

mp
µB which

uses the mass of the electron me and the mass of the proton mp. As this last
ratio is small (≈ 1/2000) the last term in equation 2.28 will not contribute as
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Figure 2.1: Breit-Rabi diagram for a J = 1/2 atomic system with I = 5/2,
showing the transition between the linear Zeeman regime (left panel; blue shaded
region), given by equation 2.24, and the hyperfine Paschen-Back regime (red shaded
region), given by equation 2.28. The diagram is plotted in dimensionless units of
∆EZeeman/AHF, µBB/AHF, to demonstrate this behaviour without the necessity
of specifying an atomic species. We note that in the intermediate points of the
transition (i.e. purple shaded region), neither (F,mF ) or (J,mJ ; I,mI) are good
quantum numbers for the system, but linear combinations of either bases can be
used to describe the energy levels. In the left panel, the linear dependence in B of
the different energy levels in the (F,mF ) basis is plotted as a guide to the eye.

significantly to the shift in energies as the first term.

One way of visualising this change of regime is by looking at how the angular
momenta precess about the direction of the external magnetic field B, as seen
in figure 2.2: while at low field strengths the total atomic angular momentum
F̂ precesses about B. Once the field strength is high enough, the angular
momenta that make up F̂ (the total angular momentum of the electron Ĵ

and the nuclear angular momentum Î) decouple and precess independently
about B.
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Figure 2.2: Diagram showing the precession of different angular momenta in
the atom about an external magnetic field B. On the left, for a low magnetic
field strength, the total angular momentum of the electron J and the nuclear spin
I couple into the total angular momentum F; this then precesses about B given
that (F,mF ) are the ‘good’ quantum numbers in this regime. On the right, at
higher field strengths, the Zeeman shift of the energies is greater than or equal to
the hyperfine structure of the atom, which causes (F,mF ) to no longer be a good
quantum number to describe the energy states. Rather, the energy states can now
be described by the quantum numbers (J,mJ) and (I,mI) in what is known as the
hyperfine Paschen-Back regime, and both J and I now precess independently about
B.
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2.2.2 Faraday geometry

As mentioned at the beginning of section 2.2, the interaction between an
atom and an external magnetic field has a strong geometric dependence as
described by equation 2.21. It is this, along with the geometric dependence
of the atom-light interaction (see section 2.1.2), that determines geometries
of particular interest in the study of interactions between atoms, light and
magnetic fields. A basic scheme of these geometric considerations is given in
figure 2.3. One such geometry is when we consider both of these interactions
to have the same quantisation axis, i.e. when we assume the propagation of
the light, given by the wave-vector k, and the direction of the magnetic field
B are parallel (k ‖ B, θB = 0; see figure 2.3). This is commonly referred to
as the Faraday geometry [59, 60, 140].

In this configuration we will assume that both k and B are oriented along the
Cartesian z-axis. This means that for light, assumed to be a plane wave and
as described by Maxwell’s equations, we will have oscillating electric Elight

and magnetic Blight fields in the x− y plane. Defining the polarisation of the
light as the direction of oscillation of the electric field Elight, we see that the
plane of polarisation is perpendicular to the quantisation axis defined by k,B.
The result is that the matrix elements of the system, with a Hamiltonian
composed of those given in equations 2.8 and 2.21, are non-zero for elements
of the dipole operator with q = ±1. Said elements correspond to the light that
interacts with the atom exciting only σ+ (q = 1) or σ− (q = −1) electronic
transitions between the ground and excited energy levels [59, 74, 132, 141].

2.2.3 Voigt geometry

The second geometry of interest when looking at interactions between atoms,
light and magnetic fields occurs when the aforementioned have different
quantisation axes. The most significant of these configurations is the case
of perpendicular quantisation axes as defined by the atom-light interaction
and the interaction with an external magnetic field. In terms of the notation
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k
B

Figure 2.3: Basic scheme of the general geometry for experiments involving
atom-light interactions in the presence of an external magnetic field. k is the
wave-vector of the light, which indicates the direction of propagation of the light
interacting with the atom and B is the direction of the external magnetic field. We
introduce the angle θB to describe the relative orientation between k and B. The
electromagnetic nature of light, as set forth by Maxwell’s equations, implies that the
oscillations of the electric and magnetic fields of the light occur in a perpendicular
direction to the propagation for a plane wave; if we assume the direction of k lies
along the Cartesian z-axis as shown, the electric and magnetic fields then lie in the
x− y plane. An arbitrary angle φB can be defined to describe the direction of the
magnetic field relative to the Cartesian x-axis, which is conveniently taken as the
direction of the electric field of the light.
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provided in the previous section, this corresponds to the direction of propaga-
tion of the light and that of the magnetic field being at an angle of θB = π/2

with respect to each other (i.e. k ⊥ B), as per the scheme given in figure 2.3.
This is referred to as the Voigt geometry [134, 142, 143].

For the configuration described above we can assume the wave-vector k of
the light as oriented along the Cartesian z-axis. This means that, per the
conditions given for the Voigt geometry, the magnetic field B must be oriented
in the x− y plane. Without any loss of generality, we assume B to be along
the x-axis. As a corollary of the above, we can see that in general we can
define the electric field of the light Elight to be co-planar to the external
magnetic field B. We introduce an arbitrary angle, φB, to describe the
orientation of B relative to that of Elight, as seen in figure 2.3. This results
in the ability to split Elight, which also defines the polarisation state of the
light, into two orthogonal components, one of which lies along the direction
of B (φB = 0), so that the system has a greater number of non-zero matrix
elements. In particular, it can be seen that the component of Elight that
is parallel to B gives matrix elements of the system are non-zero for the
element of the dipole operator with q = 0. This means that, in contrast to
the Faraday geometry, light interacting with the atom can excite π (q = 0)

electronic transitions [113, 134]. Conversely, the component perpendicular to
the direction of B can drive σ± (q = ±1) transitions in the atom (as in the
Faraday geometry, but weighted by a factor sin2(φB)) [114].

2.3 Atomic structure of an alkali metal

The theory presented in sections 2.1 and 2.2 is general and applies to many
atomic species. However, the scope of this work is directed primarily at looking
at alkali metals in part due to their similarity to the hydrogen atom and in
part due to their prevalence among experimental work in recent history. These
atomic species are characterised by having one uncoupled electron in the outer-
most energy level of the atom (i.e. a single valence electron) that interacts not
only with other atomic species, but also with any external electromagnetic
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fields. By virtue of this single valence electron, alkali-metal atoms have an
electronic spin S = 1/2, with projections mS = ±1/2 along the quantisation
axis. Another fact to note is that the total orbital angular momentum
L of the system is simply the orbital angular momentum of the valence
electron. As a result of this, alkali-metal atoms have a n2S1/2 ground state
(L = 0) configuration, with n ≥ 2 the principal quantum number of the atom;
similarly, alkali-metal atoms have a fine-structure doublet in the first excited
state (L = 1) corresponding to projections of the total electronic angular
momentum J = 1/2, 3/2. Experimentally this is seen in the characteristic
D-lines in the absorption spectra of these alkali metals [85, 86, 116, 139].

For the remainder of this thesis, all of the work presented will be carried out
with the alkali-metal atom with n = 5: rubidium. Nevertheless, all of the
work presented can be easily adapted to other common alkali-metal atoms
such as caesium (n = 6), potassium (n = 4), sodium (n = 3) and lithium
(n = 2).

2.3.1 Atomic structure of rubidium

In this section the structure of the atomic electron energy levels of rubidium is
presented in order to give a foundation for the understanding of the remainder
of this work. As mentioned previously in section 2.3, rubidium (Rb) is an
alkali-metal atom with a principal quantum number of n = 5. Its atomic
number is Z = 37, and the ground state electronic configuration is [Kr]5s.
Atomic rubidium has two naturally occurring isotopes: rubidium 85 (85Rb)
with an abundance of 72.17% and nuclear spin I = 5/2 and rubidium 87
(87Rb) with an abundance of 27.83% and nuclear spin I = 3/2. The former is
stable, while the latter is radioactive with a half-life of 48.8× 109 years and
undergoes β− decay [118].

In the absence of external electric and magnetic fields, the quantum-mechanical
description of an atom formulated in section 2.1.1 is valid and the energy
levels for the electron in a rubidium atom are given in the coupled (F,mF )

basis due to the hyperfine interaction. A simple energy level diagram showing
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this structure for 87Rb is shown in figure 2.4; the diagram for 85Rb is similar
with the exception of the values of F and the differences between the hyperfine
energy levels. In the scope of this work we will focus on the isotope 87Rb as
the separation between the energy states is larger; the ground-state hyperfine
energy levels are separated in frequency by ∼ 6.83 GHz [119, 144]. This will
prove to be an advantage as it will allow for the different absorption lines
to be more clearly resolved, despite Doppler broadening, as will be seen in
chapters 3, 4 and 5.

From the 52S1/2 ground state, the valence electron in rubidium can be excited
with near-IR radiation to the 52PJ excited state. The electronic transition
52S1/2 → 52P3/2 is known in the literature as the D2 line, while the transition
52S1/2 → 52P1/2 is known as the D1 line [116, 118, 119]. Of these two, the D2
line is favoured experimentally as it has a closed hyperfine transition, greater
transition strength [119, 144] and allows for greater signal-to-noise ratios in
most measurements.

In the presence of an external magnetic field B, the energy levels of a ru-
bidium atom will change as per the theory discussed in section 2.2. As
previously mentioned, the interaction with the external magnetic field can
be characterised into two regimes of interest for this work. In the first, the
magnitude of B is small enough to generate energy shifts smaller that the
differences in energy of the hyperfine levels. This means that the system can
be described in the coupled (F,mF ) basis, with the Zeeman energy shifts
given by equation 2.24.

In the second, the strength of B is such that the atom transitions into the
hyperfine Paschen-Back regime. The description of this regime is given
in section 2.2.1, with the energy shifts due to the interaction expressed in
equation 2.28. However, from figure 2.4 it is clear that the difference in
splittings between hyperfine levels is smaller in the excited state than in the
ground state, and this will cause the interaction with B to become dominant
at different values of the field strength. This is easily quantified by comparing
the hyperfine level splittings to the Bohr magneton µB and is shown in
table 2.1 for the ground state and in table 2.2 for the excited state. These

31



Chapter 2. Interactions between atoms, light and external magnetic fields

52S1/2

F = 2

F = 1

D2, 780.24 nm

52P3/2

F = 0

F = 1

F = 2

F = 3

D1, 794.98 nm

52P1/2

F = 0

F = 1

6834.68 MHz

72.22 MHz

156.94 MHz

266.65 MHz

814.50 MHz

Figure 2.4: Energy level diagram for 87Rb, showing the ground state, the fine
structure doublet in the first excited state (52P1/2 and 52P3/2) and hyperfine
(F ) energy levels in the absence of external electric and magnetic fields. The
52S1/2 → 52P1/2 electronic transition is commonly referred to as the D1 line
and has an excitation wavelength of 794.98 nm. Similarly, the 52S1/2 → 52P3/2

electronic transition is referred to as the D2 line and has an excitation wavelength
of 780.24 nm [144, 145].
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Isotope AHF/h
(MHz) BHPBmin

HF
splitting
(MHz)

BHPB

85Rb 1011.91 ∼ 0.07 T 3035.73 ∼ 0.22 T
87Rb 3417.34 ∼ 0.24 T 6834.68 ∼ 0.49 T

Table 2.1: Minimum magnetic field values for atoms to enter the hyperfine
Paschen-Back regime, BHPBmin (equation 2.25), and for the Zeeman shift in energy
to be equal to the hyperfine splitting, BHPB (equation 2.26), in the ground state
(52S1/2) of the rubidium atom. The values for the hyperfine constants AHF are
obtained from [141]. To obtain the values of the magnetic field, the hyperfine
constant/ground-state splitting is compared to the Bohr magneton µB, expressed
in units of frequency shift per unit magnetic field (µB = 1.399624× 104 MHz/T).

State Isotope AHF/h
(MHz)

BHF/h
(MHz)

BHPBmin

(T)

Manifold
splitting
(MHz)

BHPB (T)

52P1/2

85Rb 120.64 - ∼ 0.009 361.58 ∼ 0.03
87Rb 406.15 - ∼ 0.03 814.50 ∼ 0.06

52P3/2

85Rb 25.04 26.01 ∼ 0.002 213.41 ∼ 0.02
87Rb 84.72 12.50 ∼ 0.006 495.81 ∼ 0.04

Table 2.2: Minimum magnetic field values for atoms to enter the hyperfine
Paschen-Back regime, BHPBmin (equation 2.25), and for the Zeeman shift in energy
to be equal to the hyperfine splitting, BHPB (equation 2.26), in the 52P1/2, 5

2P3/2

excited states of both Rb isotopes.The values for the hyperfine constants AHF, BHF

are obtained from [141]. To obtain the values of the magnetic field, the hyperfine
constant/ground-state splitting is compared to the Bohr magneton µB, expressed
in units of frequency shift per unit magnetic field (µB = 1.399624× 104 MHz/T).

limits can be seen in figures 2.5 and 2.6 for 87Rb, which show the energy shifts
due to the Zeeman effect in the ground and excited states, respectively, as a
function of field strength B.

2.4 Numerical calculations of theoretical spec-

tra using ElecSus

We can now take the general theoretical concepts covered thus far in this
chapter and incorporate additional details to enrich them in order to verify

33



Chapter 2. Interactions between atoms, light and external magnetic fields

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Magnetic field strength (T)

10

5

0

5

10

E
ne

rg
y 

(G
H

z)

87Rb
L = 0, J = 1/2, I = 3/2

(F,mF)

(J,mJ; I,mI)

Figure 2.5: Diagram of the energy level shifts as a function of field strength B
for the 52S1/2 ground state of 87Rb. On the left of the diagram, the energy levels
are described by their (F,mF ) quantum numbers. As the field strength increases,
these are no longer “good” quantum numbers for the system. The transition to the
hyperfine Paschen-Back regime (BHPB; see section 2.2.1), indicated by the vertical
line and given by the value in table 2.1, means that the energy levels can now be
described by the quantum numbers (J,mJ) and (I,mI). This diagram is commonly
known in literature as the Breit-Rabi diagram.
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Figure 2.6: Diagram of the energy level shifts as a function of field strength B
for the 52P3/2 excited state of 87Rb. On the left of the diagram, the energy levels
are described by their (F,mF ) quantum numbers. As the field strength increases,
these are no longer “good” quantum numbers for the system. The transition to
the hyperfine Paschen-Back regime (BHPB; see section 2.2.1), indicated by the
vertical line and given by the value in table 2.2, means that the energy levels can
now be described by the quantum numbers (J,mJ) and (I,mI). We note how, in
comparison to the 52S1/2 ground state, the transition to the hyperfine Paschen-Back
regime occurs at a much lower field in this case. This is a result of the smaller
hyperfine level splittings, given by the constants AHF and BHF in table 2.2.
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and validate our experimental results, which will be presented further on
in chapters 3, 4 and 5. All of these concepts and details are incorporated
in a single, easy-to-use model in the form of the publicly-available software
package ElecSus1. This has been extensively validated previously [134, 141],
and we find that it remains valid over the parameter space we present in our
experimental fits and simulated datasets. As such, we only give a brief overview
of how ElecSus carries out the numerical calculations, and refer readers to
references [134, 141] for greater detail on how the software operates.

Of particular interest in this work will be the simulating the case of the
interaction of an alkali-metal atomic thermal vapour with a near-resonant laser
field whilst in the presence of an external magnetic field. In the experiments,
the atom-light system is placed in an external magnetic field oriented as per
the Voigt geometry. Furthermore, we will also consider the strength of the
magnetic field used to be such that the alkali-metal vapour (in this case a
87Rb vapour) is in the hyperfine Paschen-Back regime. We will thus, without
loss of generality, consider the atomic states in the uncoupled |mL,mS,mI〉
basis, taking into account the internal energy levels of the atom and the energy
shifts due to the Zeeman effect. More detail of what these considerations
imply is given in sections 2.2.1 and 2.2.3. As we will be looking at realising
measurements arising from these interactions, we consider the macroscopic
effects as visible in a laboratory environment (see section 2.1.3).

The numerical calculations begin by taking the key parameters of the system
(i.e. the constants and values associated to the atomic species of choice) and
using them to construct the atomic Hamiltonian, given by equation 2.4, in
the uncoupled |mL,mS,mI〉 basis; a separate Hamiltonian is constructed
for the n2S ground state and for the n2P excited state. At this point
it is also possible to add the Zeeman Hamiltonian, using equations 2.21
and 2.22, to consider the interaction of the atom with an external magnetic
field of strength B. It is worth noting that the Hamiltonians at this point
are constructed assuming the rotating-wave approximation has been taken
(allowing a detuning ∆ to be defined and to consider the system in the

1https://github.com/jameskeaveney/ElecSus
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rotating frame), and that the direction of light propagation is along the
z-axis, setting this as the quantisation axis for the system. From here, matrix
operations are implemented to numerically diagonalise the Hamiltonian,
effectively finding the set of eigenstates and eigenvalues which give the atomic
states and their respective energies. The atomic transitions of interest in
the system are obtained by selecting rows in the ground-state and excited-
state Hamiltonians, following the selection rules given in equation 2.10 and
considering the geometry of the system (see section 2.2.1).

With this we can now consider the complex electric susceptibility χ(∆)

of a two-level atom, in this case between an energy level in the ground
state and one in the excited state, given in general by equation 2.14. The
corresponding transition strength C and resonant frequency are determined by
operating with the rows of the Hamiltonians and the energies corresponding
to the selected states. The movement of the atoms in the thermal vapour
gives rise to a Doppler shift, modifying the susceptibility to arrive at the
expression given in equation 2.16. This expression can be extended to a
multi-level atom composed of j transitions (e.g. the complete diagonalised
Hamiltonian previously discussed), such that each transition can be associated
to a susceptibility χj(∆j) that has a well-defined detuning ∆j , strength Cj and
reduced dipole matrix element dj . By virtue of the principle of superposition,
and assuming there are no coherent effects in the system, we can write the
total susceptibility of the atomic medium χT as,

χT(∆) =
∑
j

χj(∆−∆j), (2.29)

where we have taken ∆ as a global detuning common to all transitions.
It is important to note that ∆ is defined as an angular frequency, while
experimentally a linear frequency (i.e. ∆/2π) is measured.

With the total electric susceptibility of the medium χT now defined, we can
now consider the phenomena of atomic absorption. Using equations 2.11
and 2.12, we can use the Beer-Lambert law to write the atomic absorption
coefficient and an expression for the total amount (intensity, I) of light
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transmitted through the medium,

αatom(∆) = k=[χT(∆)],

Tlight ≡ I(l) = I0 exp(−αatom(∆)l) = I0 exp(−k=[χT(∆)]l). (2.30)

Here we have assumed the absorption is a function of the length l of the atomic
medium and k is the magnitude of the propagation vector of the laser field; I0

is the intensity of the light incident on the medium. In order for equation 2.30
to be valid, we maintain the approximation used in equation 2.13, namely
that |χ| � 1; this is equivalent to assuming that work is being carried out in
the weak-probe regime [51]. Previous work [146] in a dense rubidium vapour
has also shown that the maximum value of the susceptibility is χ = 0.3,
allowing us to use the aforementioned approximation for easier calculation of
the properties of the atomic system.

With the complex susceptibility defined, we can now use the relation between
susceptibility and refractive index given in equations 2.12 and 2.13 to define
the complex refractive index of the atomic medium. From here the wave
equation can be solved in order to find the two propagation eigenmodes, each
associated with a complex refractive index ni that couples to the atomic
transitions in a distinct manner. As was mentioned in section 2.1.3, a complex
refractive index has effects on both the dispersive and absorptive properties of
the medium: the differences in these complex refractive indices associated with
their respective eigenmodes mean that the atomic medium is both dichroic
and birefringent.

We can calculate the combined result of all of these effects on the light
transmitted by transforming the electric field into the eigenbasis coordinate
system, propagating each refractive index over the length l of the atomic
medium by multiplying using a factor einikl, and finally transforming back to
the laboratory coordinates that are most relevant. The components of the
latter are analysed via Stokes polarimetry [89, 135]. As defined in section 2.1.4,
these are a set of parameters easily accessible in the laboratory obtained by
measuring the intensity of light in different sets of orthogonal polarisation
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bases. Of particular interest is the Stokes parameter S0,

S0 ≡ I(l)/I0 = exp(−αatom(∆)l) (2.31)

which represents the normalised total transmitted intensity of the light,
thus giving a measurement independent of the basis used to measure the
components.

Assuming the propagation of linearly-polarised plane wave along the Cartesian
z-axis, the polarisation of this light will lie in the x − y plane. Taking the
direction of polarisation (the electric field E) to lie along the x-axis, we
define the polarisation angle φB as the angle between E and the external
magnetic field B. We recall once again that we are working in the Voigt
geometry (see section 2.2.3), such that k ⊥ B. In our case, the refractive
indices are associated with the propagation of linearly polarised light as a
result of the geometry. Light polarised so that φB = 0 will drive π transitions
while light polarised such that φB = π/2 will drive σ± transitions. From
this geometry it must be noted that the relative phase between polarisation
components of E is unimportant, i.e. for circularly polarised light of either
left- or right-handedness, the light couples to the atoms as linearly polarised
light with equal x and y components (φB = (2n− 1)π/4;n ∈ Z) would.

All of the above processes for numerically calculating atomic spectra with
ElecSus can be summarised in the block diagram shown in figure 2.7. We
note that ElecSus provides a graphical user interface (GUI) as well as access
via an API for external Python scripts in order to carry out these calculations.

For the purpose of this work, some modifications were made to the ElecSus
code in order to proceed more efficiently with the analysis of our results. The
first of such changes was to incorporate analytical expressions [148] for solving
the wave equation associated with propagation eigenmodes obtained in an
arbitrary geometry, i.e. when the system is neither in the Faraday or Voigt
geometries. These expressions allow for faster calculation of the theoretical
spectra in this general case. The second notable change was the inclusion of
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Figure 2.7: Block diagram showing the general flow of information in the ElecSus
software. In order to numerically calculate a theoretical spectra, the user must
first introduce the system parameters into the software. These are then processed
according to the process described in this section in order to obtain the atomic
spectra of interest. The software also allows for fitting experimental data to the
theoretical model, which is discussed in more detail in section 2.4.1 and in later
chapters. This figure is taken from [147].
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a module in order to allow for calculation of spectra with variations in the
ground-state populations (see chapter 6 for further details). These changes,
while extending and improving the functionality of the software, do not
substantially modify the procedure for calculating atomic spectra described
in this section.

2.4.1 Fitting of experimental data

In addition to numerical calculations, ElecSus also allows for experimental
spectra to be fit directly with the theoretical model. In order to do this, the
frequency-calibrated experimental data is introduced into the code in .csv

format. The experimental parameters are also introduced as the starting
parameters for the calculations, and a fitting routine is chosen. Fitting is done
with the lmfit Python package [149, 150] to allow for boundaries on the fit
parameters to be set, as well to allow for determination of the uncertainties
in these. A block diagram of the fitting process is shown in figure 2.7.

The fits carried out with ElecSus, through use of the lmfit package, allow for
multi-parameter fits where individual parameters can be fixed or bound to vary
within a range of values [134]. Furthermore, a choice of several fit algorithms
is available to allow for local minima and the global minimum of the parameter
space to be found. Specific details on these algorithms, their operation and
advantages is beyond the scope of this work; detailed information can be
found on the documentation pages for lmfit [149, 150]. The output from
carrying out a fit with this package consists of a set of optimised parameters
and their uncertainties, as well as the fit residuals and best-fit curve. For the
purposes of this work it is important to note that the uncertainties obtained
from these fits, taken to represent the estimated statistical standard error
(1σ uncertainty)2, will be reported in the experimentally-determined values.
These errors are obtained from calculating the covariance matrix for the fit
parameters, which also allows for correlations amongst the different parameters

2See documentation at https://lmfit.github.io/lmfit-py/fitting.html#
uncertainties-in-variable-parameters-and-their-correlations for a more
detailed discussion.
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to be determined. As such, this information can be used for additional
corrections to the calculated uncertainty to be calculated if necessary. It is
also worth noting that the fits are carried out assuming a uniform weight
for the data, and the fitted function has been adequately scaled before
minimisation (in the case of ElecSus this is true, as the absorption is scaled
between 0 and 1).

2.5 Summary

In this chapter we have presented a theoretical framework for describing
the interaction between atoms, light and external magnetic fields. We have
seen the semi-classical formalism that describes the quantum mechanical
nature of the atom and the classical electromagnetic interaction between the
electrons in the atom and light in the form of an electromagnetic field. From
this we have studied the macroscopic manifestations of this interaction, as
measured by atomic spectroscopy experiments. We then gave details on the
interaction between the atom-light system and an external magnetic field,
looking in particular at the hyperfine Paschen-Back regime and the importance
of geometry in the interaction. We concluded by looking at the significance
and structure of alkali-metal atoms in this framework, with emphasis on
the case of rubidium. For the analysis of experimental results presented in
the following chapters of this work, the above theory forms the basis of the
model implemented in the ElecSus [134, 141] software package used. With
this we will look at experiments carried out in the Voigt geometry at different
magnetic field strengths, and some applications of these experiments to fields
such as metrology.
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Chapter 3

Spectroscopy of a Rb vapour in
the Voigt geometry at 0.4 T

This chapter is based on the following publication:

J. Keaveney, F. S. Ponciano Ojeda, S. Rieche, M. J. Raine, D. P. Hampshire
and I. G. Hughes, Quantitative optical spectroscopy of 87Rb vapour in the
Voigt geometry in DC magnetic fields up to 0.4 T, Journal of Physics B:
Atomic, Molecular and Optical Physics 52, 055003 (2019), 10.1088/1361-
6455/ab0186

3.1 Introduction

In the hyperfine Paschen-Back (HPB) regime, discussed in section 2.2.1, the
decoupling of the nuclear and electronic spins introduces an additional geomet-
ric constraint on the system derived from the fact that the magnetic field now
acts as a quantisation axis. The simplest case of this constraint, and the most
commonly used thus far, is the Faraday configuration, as previously defined
in section 2.2.2. In this configuration spectroscopic measurements taken serve
only to quantify the magnitude of the magnetic field [93]. However, another
case of this geometric constraint is possible, when the external magnetic field
and the wave-vector of the light are now perpendicular. This configuration,
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where k ⊥ B, is known as the Voigt configuration (see section 2.2.3). Here,
spectroscopic measurements allow both the magnitude and the relative direc-
tion of the magnetic field to be determined. While both configurations allow
determining the magnitude of the field used, the added ability to determine
the relative direction of the magnetic field on a plane perpendicular to k, a
fact not possible in the Faraday configuration, presents the option of carrying
out 2D vector magnetometry when using the Voigt configuration.

Together with the decoupling generated at high fields, the Voigt configuration
allows for new possibilities of expanding previous work of atomic spectroscopy
in the presence of external magnetic fields. The shift in energies and decoupling
generated in the hyperfine Paschen-Back regime provide atomic systems that
can be more easily described by the appropriate theoretical treatment [24, 60,
110, 112, 151], while the geometry of the Voigt configuration allows 2D vector
magnetometers to be developed. In this chapter we present both the theory
and experimental methods necessary to study a thermal vapour of 87Rb in
the Voigt geometry with a variable-strength magnetic field up to 0.4 T. This
allows us to demonstrate how for a given initial light polarisation we can
obtain a value for the magnetic field strength and its relative direction to
the propagation of the light, with well understood sensitivity of the atomic
spectra to changes in both of these parameters.

3.2 Theoretical model

The work presented in this chapter can be described by the general theoretical
concepts covered in chapter 2. In particular, our interest is to analyse
experimental results by comparing them, through numerical fits, to theoretical
spectra. These will be carried out using the model implemented in the publicly-
available software ElecSus ; a brief overview of how this software carries out
these numerical calculations is given in section 2.4. In this case we wish
to examine the interaction of a 87Rb thermal vapour with a near-resonant
laser field tuned on the D2 line, while also in the presence of an external
magnetic field of 0.4 T in the Voigt geometry (see section 2.2.3). Under these
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conditions, the system can be better described by the characteristics of the
hyperfine Paschen-Back regime, discussed in section 2.2.1.

3.3 Experiment

3.3.1 Experimental setup

For the experiments carried out, the experimental setup consists of two main
sets of equipment. A diagram of the general experimental setup can be seen in
figure 3.1 showing these two sets. Both use a single source of light, provided
in this case by a tunable distributed feedback (DFB) laser1 whose central
emission wavelength is 780 nm, with a linewidth specified by the manufacturer
to be < 2 MHz and typical output power of ∼ 80 mW. The tuneability of
the laser, via changes in the operating temperature of the laser diode, allows
for mode-hop-free frequency scans over many hundreds of GHz. An optical
isolator (OI) is placed at the output of the DFB laser to prevent unwanted
back-reflections from generating instability in the emission mode of the laser
medium.

Light emitted from the laser, after passing through the OI, is split into
two separate beams using a polarising beam-splitter (PBS) and a half-wave
retarder plate (λ/2); this allows for control of polarisation purity and beam
power in the resulting beams. From here, one of the beams is sent to the
set of equipment that will act as the reference optics for the experiment.
The signals obtained from the photodiodes (PD) placed in these reference
optics are then used to linearise and calibrate the laser scan as described in
section 3.3.2 and Appendix B.

The second beam generated from the first PBS is transmitted towards the
second set of equipment used in the experiment, which in this case provides
the measurements of interest for this chapter. Prior to entering the vapour
cell where the atomic medium is contained, the beam first passes through
an acousto-optic modulator (AOM), controlled by a custom-made PID servo

1Eagleyard Photonics; part number EYP-DFB-0780-00080-1500-TOC03-0002.
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Figure 3.1: Simple scheme of the two experimental optical layouts used: one for
reference optics and the other for the experimental (probe) optics. Both layouts
have a common light source in the form of a distributed feedback (DFB) laser whose
output is split using a polarising beam-splitter (PBS) cube. For the reference optical
layout, the light is once again split into two beams, one of which is transmitted
through a Fabry-Pérot etalon and a second beam that is transmitted through a
reference, natural abundance 75 mm Rb cell; the signals from the photodiodes
(PD) in this setup are used to calibrate the laser scan as described in B.1. In the
probe layout, light from the laser arrives after passing through an acousto-optical
modulator (AOM) and a polarisation maintaining fibre (PMF). Once inside the
probe, the light is once again split using a beam-splitter cube (BS) in order to provide
a feedback signal for a power-stabilisation servo circuit using the AOM [152]. The
laser light is also used to measure the transmission through an isotopically enriched
(99% 87Rb) 1 mm vapour cell placed in a variable magnetic field, in the Voigt
geometry (see section 2.2.3). M: mirror; Osc.: oscilloscope; TIA: trans-impedance
amplifier.
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controller, for the purposes of beam-power stabilisation [152]. The resulting
beam, the first diffracted order from the AOM, then goes through a further
step of polarisation filtering using a combination of a PBS & λ/2 wave-plate
before being coupled into a single-mode polarisation maintaining optical fibre
(PMF). The output of the optical fibre is located inside a specially designed
probe that allows for the vapour cell to be placed inside an electromagnet, with
field magnitudes adjustable up to 0.4 T via an external power supply.

In order to operate the experiment in the desired Voigt configuration, a spe-
cially designed probe was designed to allow the vapour cell to be placed in a
way such that the field generated by the electromagnet used was perpendicular
to the propagation of the light through the cell. For this purpose, a cylindrical
probe shape was chosen to allow for the necessary optical and electronic com-
ponents to be arranged in the interior while allowing for adequate positioning
within the electromagnet, as shown in figure 3.2. A central bed of copper,
housing a heater and commercially calibrated resistance thermometer2 [153]
that is insensitive to magnetic fields, provides a stable base as well as thermal
mass for the experimental system. Upon this base a fibre collimator couples
light from the PMF into an optical system consisting of a 5 mm beam-splitter
(BS) cube, a vapour cell with a 1 mm cavity length containing isotopically
enriched rubidium (99% purity 87Rb) [74] and two photodiodes. The photodi-
odes are mounted on a custom printed circuit board (PCB) with low-noise
trans-impedance amplifiers (TIA) that provide a feedback reference signal for
the AOM and PID servo used for stabilising the beam power and a signal
with the absorption of light through the atomic medium.

The power of the beam is stabilised to around 1 µW, which for a beam with a
1/e2 waist of around 0.5 mm allows for optical pumping effects to be avoided.
This is to ensure the atoms interact with the laser beam in the weak-probe
regime [51]. As a corollary to this, given the beam waist of ∼ 0.5 mm we can
also set the effective spatial resolution of the probe to be approximately equal
to the volume of atoms that are interrogated, in this case a cylinder of length
1 mm and radius ∼ 0.5 mm.
2Cernox 1070 temperature sensor, CX-1070-SD-HT-4M; Lakeshore Cryotonics, Inc.
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Figure 3.2: Rendered diagram of the custom-built probe for placing the atomic
vapour cell in the Voigt geometry inside the variable-strength field generated by
an electromagnet. Shown on the left is the position of the probe relative to the
electromagnet and the direction of the magnetic field B generated between the
two pole pieces, separated by 44 cm. The insert on the right shows the interior
details of the cylindrical probe. Inside the copper cylinder of the probe assembly
is a smaller bed of copper upon which are placed a fibre collimator for delivering
light for the experiments, a beam-splitter (BS) cube for dividing the light into two
separate beams, the vapour cell and a custom printed circuit board (PCB) with
the necessary electronics for detection of the transmission signals generated.

48



Chapter 3. Spectroscopy of a Rb vapour in the Voigt geometry at 0.4 T

Thermal stability for the system is provided by both passive and active
components in the probe design. The central bed of copper is in weak thermal
contact with a copper shield that surrounds it; this shield is itself isolated
from the environment using a layer of Aerogel insulation. The copper shield
also has two flexible silicon heaters attached onto it. These flexible heaters
allow a background temperature close to the desired point to be established by
delivering a constant power to them. The temperature stability of the vapour
cell is then maintained at the desired point by using the internal heater and
Cernox thermometer as source for a feedback signal to a PID temperature
controller3. All of these elements allow for a thermal stability, over the course
of an experimental run (∼ 30 min), of better than 100 mK as recorded by
the Cernox thermometer and PID controller.

3.3.2 Frequency calibration of experimental spectra

In order for the experimental data obtained to be analysed it must first be
processed so that the signals observed can be described in terms of the linear
frequency of the laser scan. For this, a set of reference optics consisting of a
Fabry-Pérot etalon and a natural abundance rubidium reference cell, each
with its respective photodiode, are used. These signals are used to convert the
x-axis coordinates of the data, all of which are initially equally spaced in time
due to their being acquired with an oscilloscope, into points along a frequency
axis; these are then calibrated to an appropriate zero value that represents
the interactions in the atomic system [72, 73, 154]. A brief discussion of the
most important aspects of this process will be given in this section, with
complementary material also given in Appendix B.

Each of the experimental spectra in these experiments is acquired simultan-
eously with the signals from the reference optics mentioned above. These
‘raw’ signals can be seen in figure 3.3. As mentioned in section 3.3.1, the
signals are obtained by changing the operating temperature of the laser diode,
thus changing its frequency of emission, as a function of time. In this way,

3Lakeshore Cryotronics Model 336; see manufacturer’s page for more information and
specifications.
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Figure 3.3: Sample raw signals taken with our experimental setup. Shown are
the signals from the reference optics (blue curve for the etalon and red curve for the
natural abundance Rb reference cell) and the experiment cell (purple curve); the
signal from the experiment cell has been multiplied by a factor of 10 for visibility.
The signals shown here were acquired using a Tektronix™ digital oscilloscope, with
a sample rate of 200,000 points per channel and 50 µs (20K samples/s) resolution.

a wide mode-hop-free scanning range can be obtained, but at the cost of a
relatively slow (∼ 10 s) non-linear scan as the thermoelectric element in the
laser attempts to stabilise the diode at the set operating temperature. We
note that due to the nature of the signal used to scan the temperature of the
laser (i.e. a triangular waveform), the raw signals are cropped in order to
show just one full scan.

To begin the calibration process, we first look at the raw signal obtained for
the etalon in the reference optics. Over the range of the laser scan in figure 3.3
it is clear that there are a large number of transmission peaks from the etalon;
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this transmission can be characterised by the free spectral range (FSR) of the
etalon and a well-known lineshape [130, 132]. As such, we can use the position
(in time) of the centre of these peaks to obtain a conversion factor that will
allow us to linearise the time axis in preparation for the change to frequency
further ahead. Ideally, the distance between adjacent transmission peaks
(i.e. the FSR) will remain constant over the range of the laser scan, allowing
a linear fit to be made between the peak number and its position in time.
However, this is not the case in our experiments and in figure 3.3 there is a
deviation from the expected position (i.e. a deviation from the linear fit) of
the transmission peaks. This is shown in figure 3.4; the effect of this deviation
can be taken into account by fitting a high-order polynomial function (≥ 5)
to the measured positions of the peaks. The resulting curve is then used
to convert the non-linear time axis to a linear time axis by evaluating the
polynomial at the time corresponding to each data point and subtracting the
resulting correction from the data’s original time value.

Once the x-axis of our data has been processed to be a linear time axis, it is
necessary to locate a zero frequency for said axis that relates the signal to
the frequencies observed in the atom-light interactions. For this, we make
use of the hyperfine ground-state splitting of 87Rb , which has been carefully
measured and reported in literature [119, 144]. To obtain said frequency
reference, we make use of the signal from the natural abundance reference cell,
shown in figure 3.3. To this signal we fit a theoretical transmission spectra,
calculated by ElecSus (see section 2.4), with an added linear background.
The values of the slope and intercept from the previous fit then allow for the
time axis to be scaled and shifted, respectively, to correspond to the value of
zero detuning of the atomic system. The result, shown in figure 3.5, is then a
frequency calibrated horizontal axis for the signals obtained.

The process described in this section is then carried out for each experimental
spectrum acquired. Furthermore, the process can also be applied to scans over
a much larger range of frequencies, as will be shown in chapters 4 and 5.
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Figure 3.4: Deviation from linear fit of peak position as a function of peak
number, for the transmission peaks in the sample etalon signal shown in figure 3.3.
The etalon can be characterised by its free spectral range (FSR), which we assume
to be constant over the range of the laser scan. As such, a linear relation (purple
curve) can be calculated as a function of the number of peaks and their positions
in time. By comparing the measured positions of these transmission peaks to
their expected positions, given by the aforementioned linear relation, we obtain the
deviation for each peak, as shown in the inset of the figure. These points are then
fit using a high-order (≥ 5) polynomial (red curve) in order to obtain a correction
factor to linearise the horizontal axis and later allow the conversion from time to
frequency.
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Figure 3.5: Sample calibrated signals taken with the experimental setup described
in section 3.3.1. Shown are the signals from the reference optics (blue curve for the
etalon and red curve for the natural abundance Rb reference cell) and the experiment
cell (purple curve); the signal from the experiment cell has been multiplied by a
factor of 10 for visibility. All of the signals have been frequency calibrated with the
process described in the present section.
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Uncertainties in the frequency calibration process

We now proceed with a brief discussion regarding the uncertainties present
in the frequency calibration process described in section 3.3.2. Although our
discussion will be carried out with data and examples from the experimental
setup in this chapter, the general points are applicable to similar experiments
such as those presented in chapters 4 and 5.

To discuss the uncertainties in our frequency calibration of experimental
spectra we must begin by considering the uncertainty in the horizontal axis of
the raw data. In the first instance this will be determined by the equipment
used in the acquisition of the raw signals. For the sample data shown in the
previous section, with a resolution of 50 µs, the manufacturer specifications
state a ±2.5 p.p.m accuracy in the oscilloscope time base and an overall time
resolution of 250 fs4. As such, we consider this to give an uncertainty of 2.5 µs
in the position of points along the time axis of the raw signals, considering
the oscilloscope time base range of 1 s/division.

We now continue to consider the uncertainties in the determination of the
positions of the etalon peaks. As previously mentioned, this allows for the
time axis to be converted to a frequency axis, and will consequently carry
on the uncertainty in time to one in frequency. In order to determine the
positions in time of the transmission peaks, numerical packages in Python are
used; further details can be found in Appendix B. As the resolution of our
data is limited to 50 µs, the determination of our peaks is limited to a similar
precision. We thus consider each peak to have an associated uncertainty of
±25 µs due to this constraint.

In addition to this, the uncertainty in the determination of the linear relation
between the positions of these peaks must be taken into account. Using the
example shown in figure 3.4, we see that the fit parameters in this case are
m = (8.207± 0.014)× 10−2 s/peak and c = (1.677± 0.008) s. Together this
gives an uncertainty in the position of (8.207× 10−2)× 25 ≈ ±2 µs per peak.

4Tektronix DPO7254; more information available at https://uk.tek.com/datasheet/
dpo7000-series.
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To this we must then add the effects of the non-linear correction applied
to correct the deviations from the expected positions of the etalon peaks.
Using the polynomial function derived for said deviations, with the above
uncertainty in the peak position (±2 µs) we obtain an uncertainty of ∼ ±8 ns.
From this, we can assume that the dominant uncertainty in the position of
the points along the linearised time axis is that corresponding to the positions
of the etalon peaks, ±25 µs.

The final contribution to the uncertainty in the calibration process comes
from the translation of the frequency axis to the zero detuning of the atomic
system. As mentioned in section 3.3.2, this is done by using the hyperfine
ground-state splitting of 87Rb. For the sample data shown, the resulting
parameters of the slope and y-axis intercept are (9.07 ± 0.04) GHz/s and
(−49.7 ± 0.2) GHz, respectively. The uncertainty in these parameters can
then be used to calculate the error in the frequency calibration, as shown
in figure 3.6. Further details on this calculation are given in Appendix B.
From said figure we can see that the error in the frequency calibration has a
minimum at zero detuning, due to the process followed to calibrate our axis
and whose value is directly related to the uncertainty in the y-axis intercept,
and increases following a quadratic trend towards the ends of the scan. Over
the region of interest in our experiments, we determine from figure 3.6 an
error of 1.5% (15 MHz/GHz) over a scan of 40 GHz centred around zero
detuning, measured by taking the difference between minimum of the curve
(at 0 GHz) and the value of the error at ±20 GHz.

3.3.3 Results

Using the theoretical model described in chapter 2 and in section 2.4 (in the
form of the ElecSus software [134, 141]) we generate an initial prediction
of the evolution of the atomic states up to, and the resulting spectrum at,
an external field strength of 0.4 T. These are shown in figure 3.7. In the
upper panels the calculated spectra for an isotopically enriched (99% purity)
87Rb vapour cell at T = 80◦C and B = 0.4 T are shown: in the top panel the
spectrum for π transitions can be seen while in the bottom panel the spectrum
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Figure 3.6: Error in the frequency calibration process used in our analysis
of experimental data. Using the uncertainties in the parameters obtained for
the conversion from linearised time to frequency, the error in the calibration is
determined via propagation of errors and shown as the blue curve in the bottom
panel. In the top panel, the reference absorption spectrum (red curve) of natural
abundance Rb and the experimental spectrum (purple curve) are shown. We note
that the error follows a quadratic trend as a function of detuning, with a minimum
determined by the value of the uncertainty in the y-axis intercept (∼ 0.2 GHz). As
our region of interest in the laser scan is defined by the extension of absorption
features in our experimental spectrum, we observe that the error in the calibration
is approximately 600 MHz over 40 GHz, as given by the values taken at ±20 GHz.
This can then be used to calculate, via a linear relation, an error of 15 MHz/GHz,
or equivalently 1.5%, over the extension of the region of interest.
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shows σ± transitions. We note that the isotopic impurity in our cell, 1% 85Rb,
is taken into account in these calculations, yet it is sufficiently small so that it
has no significant contribution in the spectra. In the bottom of the figure an
energy level diagram shows the ground- and excited-state manifolds (52S1/2 &
52P3/2, respectively) for 87Rb as a function of the magnetic field strength B.
At B = 0.4 T the manifold decompositions in the |mJ ,mI〉 basis are shown,
along with the initial and final states involved in each of the transitions, as
indicated by the coloured vertical arrows: olive for π (mJ ′ = mJ ′), blue for σ+

(mJ ′ = mJ + 1) and purple for σ− (mJ ′ = mJ − 1) transitions. The coloured
vertical lines, using the same colour code as the vertical arrows, serve as
indicators of the frequency at which the laser scan is in resonance with these
transitions, with the zero corresponding to the weighted D2 line centre of
naturally abundant Rb in the absence of a magnetic field [72].

At a field strength B = 0.4 T, the energy levels in the 52P3/2 manifold strongly
decouple into the |mJ ,mI〉 basis (the HPB regime), as can be confirmed by
the values presented in section 2.3.1. This results in four groups of lines
(multiplets) that are organised by their mJ = ±3/2,±1/2 projection, with an
internal structure defined by the mI = ±3/2,±1/2 projection values. The
same cannot be said of the levels in the 52S1/2 ground state manifold due
to a stronger hyperfine interaction that prevents the atomic system from
being completely within the HPB regime. As a result of this, there is a small
admixture of states with the opposite mJ projection in the decomposition
into the |mJ ,mI〉 basis, as seen on the bottom right of figure 3.7; more
details regarding the nature of this decomposition are given in reference [151].
Experimentally, this admixture results in groups of three ‘weak’ transitions
seen far towards the ends of the absorption spectra in addition to the ‘strong’
multiplets of transitions closer to zero detuning.

Another feature of note in these spectra is the presence of areas where the
absorption lines overlap. This comes as a result of the Zeeman splitting not
being large enough (compared to the ground-state hyperfine structure) in order
to completely resolve all the individual transitions at B = 0.4 T. In particular,
lines corresponding to the ‘strong’ |mJ = 1/2,−3/2〉 → |mJ ′ ,−3/2〉 and
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|mJ = −1/2,−3/2〉 → |mJ ′ ,−3/2〉 transitions are separated by less than
the Doppler width (ΓDoppler ≈ 2π × 555 MHz at T = 80◦C), so that in the
spectra they overlap almost completely. For π transitions this is evident at
∼ 1 GHz, while for the σ± transitions this occurs at ±7 GHz, respectively.
This, while not ideal for the purpose of identifying the individual transitions
in a spectrum, may prove to be an advantage for magnetometry, as the
overlap of the absorption features causes the spectrum to change rapidly with
relatively small changes in the magnetic field strength and direction. This
will be discussed with more detail further ahead in this chapter.

Analysis of absorption spectra

Figure 3.8 shows an experimentally acquired absorption spectrum (S0) that
has been fit with ElecSus together with the residuals of the fit R, multiplied by
a factor of 100 for clarity. We note that the uncertainties in the experimental
data points (∼ 3 × 10−3) are too small to be seen in the plot and are of
the same order of magnitude as the residuals. For the spectrum shown, the
RMS error between theory and experiment is 0.3%; along with the lack of
discernible structures in the residuals, this indicates an excellent fit [155]. The
fit was run as a function of four parameters: the magnetic field strength B, the
temperature of the atomic vapour T , the angle of the magnetic field relative to
the polarisation of the light φB and the amount of inhomogeneous broadening
ΓBuf due to the presence of buffer gases in our vapour cell. These parameters
were chosen to carry out the fit as they were the most significant physical
parameters varied, or in the case of the inhomogeneous broadening, unknown,
in our setup. The rest of the parameters were fixed by our experimental
geometry and setup, and were thus included in the model generated by ElecSus
to carry out said fit (see section 2.4.1).
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Figure 3.8: Experimental data (purple dots) and model fit (blue solid line) using
ElecSus for the absorption spectrum of the 87Rb D2 line in the Voigt geometry
(average polarisation angle φB = (π/2 ± 0.02)), for a measured magnetic field
strength BHall = (390 ± 1) mT. The difference between the data and fit, shown
as the residuals R (multiplied by a factor of 100 for better visibility), is very
small and shows a lack of structure. In combination with the small RMS error of
0.3%, this indicates an excellent agreement between theory and experiment [155].
From the fit we extract a magnetic field strength B = (394± 4) mT, temperature
T = (81.23 ± 0.02)◦C, angle φB = (1.412 ± 0.004) rad and an inhomogeneous
broadening ΓBuf/2π = (631± 3) MHz.

From the fit we can extract the following values for our parameters: B = (394±
4) mT, T = (81.23± 0.02)◦C, φB = (1.412± 0.004) rad and ΓBuf/2π = (631±
3) MHz. Uncertainties in the values are obtained from our fit of a spectrum,
using the Levenberg-Marquardt algorithm for least-square minimisation, as
described in section 2.4.1. We can compare the values for the magnetic
field strength B and the temperature of the atomic vapour T with direct
measurements from other equipment in our experimental setup. Using a
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commercial Hall probe we measured a value for the field strength of BHall =

(390± 1) mT. For the temperature of the atomic vapour, we used the Cernox
thermometer placed inside the probe to obtain a value of TCernox = (82.32±
0.04)◦C. We see that the value obtained for the magnetic field from our
experiment agrees, within the error bars, with that reported by the Hall
probe. In the case of the temperature, we see that the experimental value
is not in agreement with that of the Cernox thermometer. This could be a
result of the larger thermal conductivity of the copper block compared to
that of the vapour cell, as well as of the location of the Cernox thermometer
on the block.

The inhomogeneous broadening in our vapour cell is suspected to come from
previous experiments in which the vapour cell was exposed to a helium-rich
gas environment while being heated to a high temperature (∼ 100◦C). This
would cause diffusion of helium atoms through the cell windows, resulting
in an elevated concentration of a buffer gas in the cell. We note that the
presence of this buffer gas does not generate any significant shift in the
position of the atomic transitions. The effects of buffer gases in atomic
spectroscopy are well-known [57] and we explore this in further detail in
appendix A. We also note that subsequent experiments using this cell, reported
in chapter 4, the amount of inhomogeneous broadening in the cell decreased.
We attribute this to the diffusion of the helium out of the cell through the
glass windows [156, 157].

Using our experimental setup, our theoretical model was tested over a range of
field strengths up to 0.4 T. Figure 3.9 shows a summary of the measurements
carried out over this range. Each of the points corresponds to a result
obtained from the weighted average of 5 fits to the experimental spectra, all
taken during a single run. The temperature T , polarisation angle φB and
inhomogeneous broadening ΓBuf/2π were also allowed to float during these
fits, giving global average values of T = (102.26± 0.01), φB = (1.34± 0.07)

and ΓBuff/2π = (675± 2) MHz. Example spectra are shown for values of the
external magnetic field B ≈ 0.15, 0.35 T; the field strength was simultaneously
measured using a commercial Hall probe in order to have a comparison to
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commercially available equipment. Consequently, this allows us to determine
the accuracy of our setup compared to that of the commercial equipment by
fitting a straight-line (BHall = mB+c) to the data. Keeping the intercept fixed
to zero (which assumes no systematic errors in the commercial equipment),
we extract a value of the gradient m = (0.995± 0.009). If, on the other hand,
we fit the line with the intercept as a free parameter (taking into account
the systematic errors in the commercial equipment), we extract a value of
m = (1.015± 0.002) for the gradient and c = (−5± 1) mT for the intercept.

The results from the comparison of the values measured for the field strength
from the spectra and the Hall probe indicate a systematic 1.5% difference
between the two methods. We attribute this difference predominantly to inac-
curacies in the calibration of the Hall probe used, quoted by the manufacturer
to be ±1% at a 1 mT resolution. Other systematic errors that contribute
in this analysis are the scaling and linearisation of the frequency axis (a
15 MHz/GHz error in the calibration of our scan is an error of ∼ 1 mT/GHz;
see section 3.3.2 and Appendix B.1 for details), misalignment in the axis
of the Hall probe with respect to the direction of the magnetic field during
measurement and the numerical uncertainties in our theoretical calculations.
Furthermore, the field homogeneity was measured to be < 1 mT within
a 14 mm central diameter sphere volume between the pole pieces of the
electromagnet at all field strengths tested.

From this comparison we can assume our atomic technique for measuring field
strengths as an accurate and precise method for characterising the strength of
an external field. Our technique is independently sensitive to field strength and
relative orientation (i.e. angle of the field with respect to light polarisation)
without any mechanical adjustments to the sensor head. This comes as a
result of the atom-light interactions and the interaction with the external
magnetic field, as described in greater detail in chapter 2. The Zeeman shift,
which depends on the strength of the external field, sets the position of the
atomic resonances, whilst the strength of the coupling of the atom’s electronic
transitions is dependent on the relative direction between the electric field of
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Figure 3.9: Comparison of measurements of magnetic field strength obtained
through fits of experimental spectra, B, and by using a commercial Hall probe,
BHall. Each of the points on the plot corresponds to the weighted average of 5
measurements; the error bars of each point, obtained from the average of the
uncertainties of the 5 measurements, are approximately 1 mT in size and are too
small to be seen on the current scaling of the figure. The comparison is carried
out by fitting a linear function to the data in two ways. Fitting with the y-axis
intercept fixed to 0 (c = 0), we extract a gradient of m = (0.995 ± 0.009) (black
solid line). Fitting with both the gradient and intercept as free parameters, we
obtain a value of m = (1.015 ± 0.002) for the gradient and c = (−5 ± 1) mT for
the intercept. Shown as insets are two sample experimental absorption spectra (S0)
taken at B ≈ 0.15, 0.35 mT, with their respective fits, as a function of the linear
detuning ∆/2π.
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the light, i.e. its polarisation, and the direction of the magnetic field. This is
an advantage over conventional Hall probe measurements, where the angle
between the Hall probe and the direction of the external field affects the
accuracy of the field strength measured. Combined with the relatively high
and scalable spatial resolution of our technique, these considerations serve as
proof-of-concept for atomic-based spectroscopy to be used as a replacement
for commercial Hall probes in applications such as simultaneous mapping of
both magnitude and direction of magnetic fields (e.g. vector magnetometry).
An extension of these considerations are presented in the remainder of this
section.

At this point it is worthwhile to note that for all of the previous results no
magnetic shielding was used. This is due to the fact that the effect of the
Earth’s magnetic field, or of any other sources of parasitic magnetic fields,
are negligible in our system as they are typically orders of magnitude smaller
(∼ 10−4) when compared to the strength of the fields in this work. Also, we
note that no significant changes in temperature or polarisation occurred during
an experimental run; the polarisation drift across individual measurements
was < 10% and the temperature drift was < 1◦C. The latter is consistent with
the small changes, < 100 mK, registered by the Cernox thermometer.

Sensitivity of spectra to changes in geometry and field strength

As mentioned earlier, the partial overlap between absorption features due to
the atomic system not being completely in the HPB regime can cause rapid
changes in the spectra as a function of changes in the magnetic field strength
and direction. It can be argued that this is a desirable feature to consider in
a system for magnetic field sensing. To begin, we consider the change in the
absorption spectrum with respect to changes in the magnetic field strength,
dS0/dB. We have used ElecSus to calculate these changes over the width
of the 87Rb D2 line spectrum, for values up to 0.5 T, and present them in
figure 3.10. The regions of interest, corresponding to higher sensitivities to
changes in the magnetic field strength, are visible at a detuning of ∼ 1 GHz
at 0.1 and 0.23 T, and at fields of strength . 0.05 T. In the former cases, the
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sensitivity arises from the overlap of the absorption features due to the 52S1/2

ground state not being fully in the HPB regime whilst in the latter case it is
the overlap of absorption features due to the 52P3/2 excited state not being
fully in the HPB regime that generates high sensitivity.

For these calculations, the system is taken to be in the Voigt geometry (see
section 2.2.3), with the light linearly polarised along the Cartesian x-axis.
We conveniently define said axis so that the angle between the polarisation
direction and the direction of the magnetic field is φB = π/2. This is chosen
as it is the angle that drives σ± transitions the strongest, thus creating a
larger energy splitting between the two sets of transitions (see figure 3.7)
relative to zero detuning. As such, at lower field strengths the overlap between
the σ+ and σ− transitions also contributes to the increase in sensitivity. At
the higher field strengths, closer to the lower limit of the HPB regime (see
chapter 2), the energy shifts in the ground and excited states provide up to
a factor of 3µBB in the field-strength sensitivity of the system: the ground
state level shifts down in energy by µBB while the excited state level shifts
up by 2µBB.

In addition to the previous statements, the angle between the direction of
polarisation and the direction of the magnetic field (φB) can also be varied
to study the sensitivity of the absorption spectra with respect to changes in
said angle. For this case we consider the quantity dS0/dφB, making use once
again of ElecSus to calculate the changes over the width of the 87Rb D2 line
absorption spectrum. From the theory given in chapter 2 and section 2.4, we
know that φB changes the relative coupling of the π and σ± electron transitions
in the atom, with a cos2(φB) and sin2(φB) dependence, respectively. As such,
we can expect for the sensitivity of the spectra to be greatest at an angle of
φB = π/4, where the gradient of both of these functions is greatest and the
relative coupling is equal.

Figure 3.11 demonstrates this by showing both experimental data and the
calculated values of dS0/dφB, as a function of detuning, at three values of
interest for φB: 0, π/4 and π/2. The absorption (S0) spectra at these values
are shown in the upper top panels, with the plot of dS0/dφB in the lower top
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Figure 3.10: Change in spectral absorption as a function of change in magnetic
field strength, dS0/dB, plotted as a function of detuning and magnetic field. The
regions of interest, here indicated by bright purple/yellow and dark red/blue areas
on the colour map, are the result of the overlap between absorption lines in the
87Rb D2 line spectrum and point to areas of the spectrum with high sensitivity to
changes in the field strength. All calculations for construction of the colour map
were carried out using ElecSus [134, 141] with the following values of the spectrum
parameters: cell length L = 1 mm, vapour temperature T = 80◦C, polarisation
angle φB = π/2 rad, buffer gas broadening ΓBuf/2π = 650 MHz and field strengths
up to B = 0.5 T. These values were chosen to match the experimental parameters
as closely as possible.

panels. The vertical lines indicate points of interest in the spectra where the
overlap between absorption features is clearly visible. In the lower panel, the
evolution of dS0/dφB at these values of detuning is shown as a function of the
polarisation angle φB; the sinusoidal dependence is clearly visible, with the
global maximum/minimum located, as expected, at a value of φB = π/4.

Note that while this technique is sensitive to changes in the polarisation angle
φB, the spectra produced are not unique: there are two equivalent values
of φB, obtained by reflection of this angle around the x- and y-axes, that
yield the same spectrum. In order to be able to uniquely determine φB a full
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polarimetric analysis of the light transmitted through the medium would be
necessary. Also, it should be noted that the relative sensitivities to magnetic
field strength and polarisation angle also have an implicit dependence on
the linewidth of the absorption features in the spectra. This comes from the
fact that the sensitivity depends, as initially stated, on the overlap of the
spectral lines, which is in turn affected not only by the relative position but
also by the width of the lines. As the features become narrower, the changes
in the spectrum become sharper, allowing for the possibility of more sensitive
measurements to be made.

3.4 Summary

In summary, we have presented the results of the experimental investigation
of a thermal 87Rb atomic vapour in the Voigt geometry. The strength of
the magnetic field used varied up to 0.4 T, allowing us to see the change
in absorption spectra up to the lower limit of the hyperfine Paschen-Back
regime. These results have been shown to have excellent agreement with
our theoretical model, allowing for a precise determination of the magnetic
field strength and relative angle between the polarisation of the light and the
direction of the magnetic field. As a result, we have been able to use this
method to introduce the idea of using atomic vapours and optical signals as
a viable method for high-field vector magnetometry. In the next chapter we
extend this work to experiments carried out at higher fields, well within the
hyperfine Paschen-Back regime of the atomic vapour defined in section 2.3.1,
and looking at systematics (such as birefringence of the cell windows) that
become important under said conditions.

68



Chapter 4

Stokes polarimetry of a Rb
vapour in the Voigt geometry at
1.5 T

This chapter is based on the following publication:

F. S. Ponciano-Ojeda, F. D. Logue and I. G. Hughes, Absorption spectroscopy
and Stokes polarimetry in a 87Rb vapour in the Voigt geometry with a 1.5 T
external magnetic field, Journal of Physics B: Atomic, Molecular and Optical
Physics 54, 015401 (2021), 10.1088/1361-6455/abc7ff

4.1 Introduction

As has been seen up to this point in the present work, the use of atomic
systems for the measurement of magnetic fields is a promising area of research.
While the majority of the literature covers work with low field strengths
(∼ 10 mT) and frequency measurements in these experiments, spectroscopic
techniques provide a more straightforward way of obtaining information about
the magnetic field. These have been studied in a wide range of conditions for
the atomic systems [72, 74, 73, 75], allowing very good understanding of the
physics involved. Of particular interest is the interaction between atoms and
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external magnetic fields –the Zeeman effect–, whose nature allows for these
systems to operate in different regimes (such as the hyperfine Paschen-Back
regime [158, 159, 160, 161] or the Paschen-Back regime [67, 68, 162]) and
different geometries (e.g. the Faraday or the Voigt geometry). In chapter 2 we
presented the fundamental theory behind these techniques. This theory was
then applied to the experiments presented in chapter 3, where we studied the
interaction between an alkali-metal vapour in a large magnetic field (0.4 T)
in the Voigt geometry (i.e. k ⊥ B).

From the results presented in the previous chapter it was possible to ob-
serve some of the advantages of working in the Voigt geometry. Rather than
providing information only on the magnitude of the magnetic field (B) used,
spectroscopic measurements in the Voigt geometry also provide some inform-
ation on the direction of the field relative to that of the laser beam used to
excite the atoms. This comes as a result of the change in atomic selection rules
when compared to those in the Faraday geometry (i.e. k ‖ B) [163] which
allows access to a wider range of transitions, including some not typically
allowed [164] in said case. The result is a richer description not only of the
magnetic field, but also of the interactions of said field with, and the changes
it generates in, the atomic system. We highlight the importance of being able
to access π transitions in the Voigt geometry, and the ability to excite σ±

transitions as in the Faraday geometry, by selecting the polarisation of the
light to have components parallel and perpendicular to the direction of B. Our
theoretical model, described in chapter 2 and implemented with the ElecSus
software, allowed us to obtain this information from fits to experimental
absorption spectra.

In the present chapter we will expand upon the work done at 0.4 T by carrying
out experiments with a thermal vapour of 87Rb in the Voigt geometry at a
larger magnetic field strength of 1.5 T. These conditions allow for the system
to be well within the hyperfine Paschen-Back regime, allowing for spectra
with clearly resolved absorption features to be obtained. Similarly to the
results in chapter 3, we use the absorption of light passing through the atomic
vapour to obtain a precision measurement of the magnetic field strength
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and its orientation within the overall experimental system, relative to the
direction of propagation of light; the validity of our theoretical model is also
demonstrated in this regime as we continue to analyse the experimental data
with numerical calculations from ElecSus. Furthermore, we use polarimetric
techniques (e.g. the Stokes parameters) to study optical rotation phenomena
within the vapour, as well as other systematic effects in the experiment, such
as cell window birefringence.

4.2 Theoretical model

The theoretical model for describing the experiments in this chapter builds
largely upon the concepts covered in chapter 2; these are implemented in
the underlying model for the ElecSus software that is used to fit our results
to theory. More details on said implementation can be found in section 2.4
and in references [134, 141]. For the particular experiments in this chapter
we will consider the case of a 87Rb thermal vapour in the presence of an
external magnetic field, arranged in the Voigt geometry, strong enough to
drive the system into the hyperfine Paschen-Back regime (see section 2.2.1).
The vapour will be probed with a near-resonant laser beam tuned to the D2
line to observe the changes in the atomic medium due to the magnetic field
via the atom-light interactions. This allows for polarimetric techniques that
take advantage of the changes in the dichroic and birefringent response of
the atomic refractive indices to be used to study the system. In particular,
we will look at using Stokes polarimetry [89, 135] to analyse our results and
take these effects into account. Details of the Stokes parameters used in this
analysis have been given in section 2.1.4.

4.3 Experiment

4.3.1 Experimental setup

The experiments in this chapter were carried out with a setup similar to
that in chapter 3. In these experiments however, the difference is that the
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external magnetic field was provided by a permanent magnet, thus allowing
a higher strength field to be accessed. Figure 4.1 shows the experimental
setup used. As in the previous experiments presented, the setup consists
of two sets of equipment using a common source of light in the form of a
tunable DFB laser with an output power of ∼ 80 mW1. This laser, with a
central emission wavelength of 780 nm and specified linewidth of < 2 MHz,
is tuned by changing the operating temperature of the laser diode with a
commercial PID controller2 to generate frequency scans over many hundreds
of GHz without mode-hops. This sets an upper limit on the duration of the
scan, of the order of the controller’s bandwidth, as the diode temperature
must stabilise after feedback is provided. As such, a typical scan over the
hundreds of GHz takes ∼ 2 seconds.

An optical isolator (OI) is placed at the output of the DFB laser in order to
prevent back-reflections to the diode that could cause mode-hops during the
scan. Approximately half of the light emitted from the laser is sent to the set
of reference optics shown in figure 4.1 by a combination of a half-wave retarder
plate (λ/2) and a polarising beam-splitter (PBS), as also seen in the setup in
section 3.3.1. This set of optics, made up of a free-standing Fabry-Pérot etalon
and a natural abundance Rb cell, allows for the raw data to be linearised and
calibrated according to an absolute frequency reference, as specified in 3.3.2
and B.1, to obtain a spectra as a function of linear detuning. The remainder
of the emitted light is passed through several additional steps that serve to
filter the polarisation and, if necessary, control the beam power arriving at the
experiment cell. Half- and quarter-wave (λ/2 & λ/4, respectively) retarder
plates placed before the light enters the cell allow for a linear or circularly
polarised beam to be used. While the function of the setup is similar to
that used in chapter 3, here the light going to the experiment cell is not
fibre coupled as in the former case; the photodiodes, etalon and reference cell
used, while fulfilling the same functions, are also different to those previously
used.

1Eagleyard Photonics; part number EYP-DFB-0780-00080-1500-TOC03-0002.
2ThorLabs TED200C Laser Diode Temperature Controller
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Figure 4.1: Schematic of the optical setup used for spectroscopy experiments
with a permanent magnet. Two main setups, one of reference optics and the other
of the experiment optics, are shown. A common light source, a distributed feedback
(DFB) laser emitting at 780 nm, passes through an optical isolator (OI) before
being split into two beams using polarisation optics. One of the beams is used
in the reference optics setup, composed of a commercial natural abundance Rb
vapour cell and a Fabry-Pérot etalon made with two mirrors (M), to linearise
and calibrate the frequency of the laser scan in a zero magnetic field environment
(see B.1 for more details). The second beam is sent to the experiment optical
setup via an acousto-optic modulator (AOM), which allows for stabilisation of
the beam power [152], and combinations of polarising beam-splitter (PBS) and
half-/quarter-wave retarder plates (λ/2 & λ/4, respectively) to filter and generate
the desired polarisation state of light for use in spectroscopic measurements. The
experiment optics are composed of a 1 mm 87Rb isotopically enriched (∼ 99%
purity) vapour cell placed in a cylindrical magnet designed to give a mostly axial
field of 1.62 T at its centre [165]; detection of the transmitted light is achieved
with a polarisation-sensitive setup consisting of a PBS, retarder wave plate and
two balanced photodiodes (PD). This allows a voltage signal with information on
the absorption and optical rotation of the atomic medium to be easily measured.
Several plano-convex lenses (L) are used in order to resize the beam along the
optical path in order to ensure the size is such that there is no significant clipping.
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The experimental measurements are made using a cuboidal microfabricated
vapour cell with a cavity length of 1 mm and filled with isotopically enriched
(99% 87Rb) rubidium. This cell was the same as used in the experiments at
0.4 T reported in section 3.3.3. In order to obtain the atomic density (and
consequently, optical depth) to observe the phenomena of interest the cell
must be heated. Previous studies [74, 166, 167, 168] have found that at these
optimal operating temperatures microfabricated cells such as the one used in
this work exhibit birefringent properties. Further details on the fabrication
methods of our cell can be found in reference [169].

The cell, as well as basic optics to steer the beam (i.e. uncoated right-angle
prisms), are mounted on a custom copper mount. This bed of copper also
provides space for a resistive heater3 to be housed, as is shown in figure 4.2.
Applying a constant voltage to the heater allows the temperature of the copper
block to be raised during operation of the experiment; passive temperature
stability of the cell is maintained by allowing the cell to thermalise with
its surroundings. A cylindrical PTFE shield surrounds this entire assembly,
making weak thermal contact with the copper block so as to avoid sudden,
sharp fluctuations in the temperature of the system. The spatial footprint of
the system is reduced due to the central bore size of the magnet, and this
meant it was not possible to include a temperature sensor in the mount for
active stabilisation of the operating temperature.

In order to obtain higher field strengths for these experiments a cylindrical
permanent magnet was used. The magnet has a central bore of 22 mm along
its axis and was designed using the “magic sphere” configuration described
in [165]; this design, as well as the fabrication, was carried out at the Institut
de Recherche sur les Systemes Atomiques et Moleculaires Complexes4 in
Toulouse, France and later donated to our research group in Durham. In
general, the “magic sphere” configuration consists of using a distribution of
magnetisation in a region of space extending between two concentric spheres

3ThorLabs HT15W Resistive Cartridge Heater
4Laboratoire Collisions, Agrégats, Réactivité, UMR 5589, CNRS—Université de Toulouse,
Université Paul Sabatier
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Figure 4.2: Copper heater block used to carry out measurements in the Voigt
geometry in a permanent magnet. Seen here is the base of the copper block with an
angled slot (∼ 2◦) for the microfabricated 1 mm vapour cell to avoid back-reflections
from the cell windows and two spaces for 5 mm uncoated right-angle prisms to
steer the beam. The laser light follows the path of the red arrows, entering and
exiting the block through two optical access holes (entry hole seen in the upper
left of the end face); the right-angle prisms allow for the light to pass through the
cell in a direction perpendicular to its original direction of propagation upon entry
and also exit in this original direction. Indicated also in the bottom-centre of the
end face of the block is the hole that houses the resistive heater which allows for
the temperature of the block, and consequently of the vapour in the interior of the
cell, to be raised to the operating point. The block is covered by a copper lid (not
shown) and housed inside a hollow, custom-made PTFE cylinder that allows optical
access and cable feed-through in order to carry out experiments while placed inside
the permanent magnet.
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of different radii to generate a field at the origin that is homogeneous inside
the internal sphere and vanishes once outside the outermost sphere [165, 170].
This allows for the maximum value of the magnet’s field to be 1.62 T at
its centre, with it quickly falling radially outwards to the ends as seen in
figure 4.3. On the outside of the magnet, the field strength is kept to below
hundreds of mT by design.

The custom-made PTFE and copper heater block assembly that houses the
experiment cell sits inside the magnet’s bore. Together with the design of
the magnet, this gives a well-characterised field along the axis that ensures
field homogeneity across the length of the experiment cell (1 mm). Details on
the design, construction and characterisation of the magnet can be found in
reference [165]. We note that the length of the heater block assembly described
above (28 mm) is significantly smaller than the length of the magnet (152 mm),
which generates difficulties in the alignment of the axis of the heater block
once inside the magnet relative to the laboratory frame of reference. As a
result, we recognise there is a slight roll of the heater block about the axis
of the magnet (i.e. the z-axis) that results in a relative orientation of the
x, y-axes of the atom and those of the laboratory; this can be described easily
with our theoretical model by taking the polarisation angle φB and adding
an effective offset.

As in experiments at lower field strengths (see chapter 3), the power of the laser
beam that probes the atomic medium is kept in the weak-probe regime [51, 94]
to avoid optical pumping effects. In this case, physical constraints of the
system limit the maximum beam waist (1/e2) to approximately 0.7 mm,
such that the optical power must be ∼ 1 µW. This gives an effective spatial
resolution of our system determined by the volume of atoms interrogated
by the laser beam, which is roughly equal to a cylinder of length 1 mm and
radius 0.7 mm.
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Figure 4.3: Axial (z) field profile (blue curve) for the cylindrical permanent
magnet used to generate the field for our experiments. The red shaded area
corresponds to the length of the experiment cell (1 mm). In the top right, the radial
(x− y plane) profile of magnetic field is shown. The blue shaded area corresponds
to the region at z = 0 where the maximum field value of 1.62 is constant, with the
experimental cell indicated by the red shaded region, the magnet bore indicated by
the solid black line and the grey shaded area corresponding to the magnet walls.
The field profile along the z-axis was calculated using the quadratic expression
of the field profile based on the “magic sphere” design given in reference [165],
B(z) = Bz,0 +Bz,2(z − zc)2/2 +O4; information is also provided in reference [165]
for the radial characteristics of the field. In this case, the values for the coefficients,
taken from said reference, are: Bz,0 = 1.62 T, Bz,2 = −0.0031 T/m2, zc = 0. Higher
order terms were excluded as they are almost negligible [165]. An image showing
the mounted magnet in the lab is provided in the bottom right.
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4.3.2 Results

In order to better understand the physics of the experiments realised we
have used the theory described in chapter 2 and section 4.2 to generate the
expected spectra at, and the evolution of the atomic energy levels up to,
a field strength of 1.5 T. These calculations are shown in figure 4.4 for an
atomic vapour of isotopically enriched 87Rb (99% purity) at a temperature
T = 100◦C in the Voigt geometry. The upper half of the figure corresponds
to the calculated absorption (S0) spectra for π (upper panel) and σ± (lower
panel) transitions. The coloured vertical lines shown in the upper panels
indicate the frequency, given in terms of a linear detuning, at which the
atomic resonance lines are found, with the colour of the line itself serving
to indicate the type of transition that is excited at said resonance: olive
green for π transitions, blue for σ+ transitions and purple for σ− transitions.
Underneath the absorption spectra one can see the energy level diagrams for
the 52S1/2 ground- and 52P3/2 excited-state manifolds evolving as a function
of field strength B up to B = 1.5 T. For each transition, the initial and final
states involved are shown as the end-points of the coloured arrows, with the
colour code being the same as that of the vertical lines. Transparency of the
coloured arrows highlights the fact that there are still overlapping transitions
in the system due to the small remnant admixture in the state decomposition
as a result of the hyperfine interaction [151, 163]. Said decompositions can be
seen in the lower-right corner and are given in the |mJ ,mI〉 uncoupled basis.

At the field strength used (1.5 T), the atomic system is well into the hyper-
fine Paschen-Back (HPB) regime, as defined in chapter 2. In comparison
to previous work [24, 110, 113] (see also section 3.3.3), this means that
the two initial hyperfine ground states, as well as the 52P3/2 excited state
manifold, are strongly decoupled into the |mJ ,mI〉 basis. The 52P3/2 ex-
cited states decouple into four groups of absorption features, organised by
their mJ projection (mJ = 3/2, 1/2,−1/2,−3/2), with an internal struc-
ture dictated by the mI = ±3/2,±1/2 projections. Similarly, the ground
state is split into two distinct groups of features, one each correspond-
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ing to the mJ = ±1/2 projections, where the internal structure is given
by clearly defined mI = 3/2, 1/2,−1/2,−3/2 states despite the Doppler-
broadening (ΓDoppler/2π ≈ 550 MHz) in the vapour. Overall, this gives four
well-defined multiplets of ‘strong’ transitions (|mJ ,mI〉 → |mJ ′ ,mI〉, with
mJ ′ = mJ (π),mJ + 1 (σ+),mJ − 1 (σ−)). Less visible multiplets of ‘weak’
transitions are also present, a result of the ground states not being pure eigen-
states in the |mJ ,mI〉 basis, and originate from a small (< 1%) admixture of
the opposite mJ state in the decomposition. This can be seen on the bottom
right of figure 4.4, with more details on the nature of this admixture given in
reference [151].

Atomic absorption spectra at high fields

Experimental data of the absorption spectra (S0) obtained with our setup are
shown in figures 4.5 and 4.6. Each of the spectra shown is an average over
five spectra, all acquired in similar conditions and processed to remove any
remaining background noise as described in appendix B.2, and have been fit
using ElecSus, which is the practical implementation of our theoretical model.
More details regarding the basic process behind the fitting of our spectra is
presented in section 2.4.1. The error bars for the data points shown are on
the order of 1× 10−3, and are thus not visible in our experimental spectra.
Also shown in each figure are the residuals R of the fit, in this case multiplied
for clarity by a factor of 100. We note that the residuals are of the same order
of magnitude as the error bars, and we thus proceed with using the absolute
residuals for analysis. From this we calculate an RMS difference between the
theory and experimental data of 1.2%; together with the lack of discernible
structure in the residuals, this indicates a very good fit [155].

For each spectrum the fit is carried out by using three of the physically-
relevant quantities as free parameters: T , the temperature of the atomic
vapour in our experiment cell; B, the magnitude of the magnetic field as
experienced by the atoms and φB, the polarisation angle which indicates the
angle between the magnetic field and the direction of polarisation of the laser
beam–here we take the beam polarisation to be linear, along the x-axis in
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figure 4.5 and along the y-axis in figure 4.6. The angle θB, the angle of the
magnetic field relative to the direction of propagation of the light, is fixed by
the geometry of the experimental setup–for the Voigt geometry, k ⊥ B and
so θB = π/2 with an uncertainty of < 1%. The other significant experimental
parameters, e.g. those relating to the effects that result from the presence
of buffer gas in the vapour cell (ΓBuf , δshift), are kept fixed during the fitting
process. Their values are obtained by fitting the individual spectra from the
same experimental run as those averaged and shown; these are then averaged
and used in the fit of the averaged spectra. Of these two parameters, δshift

has no significant correlation (i.e. a correlation coefficient of < |0.1|) to the
other parameters while Γ

Buf
has weak correlations to T (ccorr,ΓBuf↔T ≈ −0.4),

B (ccorr,ΓBuf↔B ≈ −0.2) and φB (ccorr,ΓBuf↔φB ≈ −0.2). We note that while
the time needed for a spectrum to be acquired (i.e. the time for a complete
scan of the laser frequency) is on the order of a second, the time needed to
analyse and fit spectra such as those shown here is on the order of minutes
due to the complexity of the physical parameter space.

We attribute the significant buffer gas broadening in our spectra (ΓBuf/2π =

(350± 2) MHz) to the presence of He atoms trapped in the interior of the cell.
As mentioned in section 3.3.3, this is due to the cell being previously exposed
to a He-rich environment. Furthermore, we note that there is an associated
small shift (δshift = (50± 1) MHz) in the position of the resonance lines. We
can use the literature values for the broadening coefficient of He [57] (see
also appendix A) to translate this broadening to a He pressure of ∼ 18 torr
(∼ 24 mbar) in our experiment cell. It is worth noting here that the amount
of He in the cell is significantly lower than that previously seen in the results
of chapter 3 taken several months prior to this experiment.

For the spectrum in figure 4.5 we obtain a value of φB = (0.4491± 0.0007) ra-
dians (φB = (25.74± 0.04)◦) from the fit realised. The value obtained from
the fit for figure 4.6 is φB = (2.0082± 0.0007) radians (φB = (115.05± 0.04)◦).
Both values differ from their corresponding expected values (φB = 0, π/2,
respectively) by approximately ∆φB = 0.45 radians (≈ 25◦), which we at-
tribute to a systematic error due to the orientation of the cell heater block
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Figure 4.5: Experimental absorption spectrum (S0; blue circles) as a function
of linear detuning, averaged over five spectra, using horizontally polarised light as
input. The corresponding fit (purple line) generated using ElecSus, as well as the
residuals R of the fit (bottom panel), are also shown. Very good agreement between
the data and theory is found, with an RMS error of 1.2% [155]. The free parameters
used to fit this spectrum are: T , the temperature of the atoms; B, the magnetic
field strength and φB, the angle of the magnetic field with respect to the x-axis
(i.e. the direction of the polarisation of the light). From the fit, averaged values
obtained for these parameters are T = (108.94± 0.04)◦C, B = (1.52± 0.08) T and
φB = (0.4491± 0.0007) rad. The remaining parameters for describing the system
are fixed as follows: θB = π/2, ΓBuf/2π = (350±2) MHz and δshift = (50±1) MHz.
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Figure 4.6: Experimental absorption spectrum (S0; blue circles) as a function of
linear detuning, averaged over five spectra, using vertically polarised light as input.
The corresponding fit (purple line) generated using ElecSus, as well as the residuals
R of the fit (bottom panel), are also shown. Very good agreement between the
data and theory is found, with an RMS error of 1.2% [155]. The free parameters
used to fit this spectrum are: T , the temperature of the atoms; B, the magnetic
field strength and φB, the angle of the magnetic field with respect to the y-axis
(i.e. the direction of the polarisation of the light). From the fit, averaged values
obtained for these parameters are T = (110.23± 0.03)◦C, B = (1.52± 0.07) T and
φB = (2.0082± 0.0007) rad. The remaining parameters for describing the system
are fixed as follows: θB = π/2, ΓBuf/2π = (350±2) MHz and δshift = (50±1) MHz.
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once inside the bore of the cylindrical magnet described in section 4.3.1. As a
result, both spectra show excitation of both π and σ± transitions as there are
both parallel and perpendicular components of B projected onto the direction
of polarisation of the light. Our theoretical model takes this into account
by giving each type of transition a different relative strength, as mentioned
in 2.2.3. In our case, the difference in strength is given by the factor cos2(∆φB)

for the parallel component and sin2(∆φB) for the perpendicular component,
resulting in an approximate 4 : 1 ratio; this is clearly visible in both figures 4.5
and 4.6.

Similarly, the value obtained for the magnetic field strength from both fits
is B = 1.52 T, with an uncertainty of 80 mT for figure 4.5 and of 70 mT
for figure 4.6. The latter are mainly attributed to the linearity in the laser
scan realised for acquiring the spectra in this experiment. While the DFB
laser we use allows for large mode-hop-free scans (∼ 150 GHz in this case),
this scanning range comes at a cost of a non-linearity as the temperature,
and thus emission frequency, of the laser is changed; a shift in the position
of the atomic resonances will affect the value of B obtained, particularly as
the fit calculates the value of B that best fits all 24 transitions. As such,
we assume the non-linearity generates a shift by a different amount for each
transition and is thus responsible for the above uncertainties. Along with
other systematic errors in the calibration and scaling of the frequency axis of
our spectra (see section 3.3.2 and appendix B for more details), this is the
primary source of uncertainty in our measurements. Future work aims to
redesign the experiment in a way that the non-linearity of the scan is reduced
so as to be able to increase the precision of the measurements of B.

We can at this point take the results presented thus far, expanding on those
presented in section 3.3.3, to propose this atomic spectroscopy as a technique
for measurement of large magnetic fields and their relative orientation. Once
the atomic system is completely in the hyperfine Paschen-Back regime, the
Zeeman shift in all the atomic resonance lines allows for a more accurate
determination of the magnetic field strength. The ability to more clearly
observe the relative strength between different sets of transitions (namely,
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π and σ±) as a result of geometrically-induced differences in the coupling
strengths between the atoms and light in this regime provides a more precise
method to determine the relative direction between the magnetic field and
the direction of the electric field vector (i.e. the polarisation) of the light.
Thus, the experimental setup and technique presented in this work leads
to a natural application of atomic-based spectroscopy in the area of vector
magnetometry.

Sensitivity of optical rotation signals to cell window birefringence

In addition to being able to work in the hyperfine Paschen-Back regime, the
use of large magnetic field strengths in this work also provides additional
information about the atomic medium in the form of optical rotation phe-
nomena [59, 93, 171]. For the present work, we note that the optical rotation
can be measured by the Stokes parameters, defined in section 2.1.4, giving
greater insight into the interactions between the atoms and the external
magnetic field. We present the results of experimental measurements of the
dichroism and birefringence of the 87Rb atomic medium in the orthogonal
polarisation bases that correspond to the S1, S2 and S3 parameters, shown
in figures 4.7, 4.8 and 4.9, respectively. To acquire these spectra, the set
of polarisation optics (PBS+λ/2, λ/4) and balanced photodiodes shown in
the experiment optics (figure 4.1) were used to record orthogonal polarisa-
tion components simultaneously; these were subsequently processed into the
corresponding Stokes parameters for the chosen polarisation basis.

Figure 4.7 shows the spectrum for the S1 parameter, corresponding to the
difference between orthogonal linear (i.e. horizontal and vertical) polarisations
(equation 2.18). Figure 4.8 shows the spectrum for the S2 parameter, which
corresponds to the difference between orthogonal linear polarisations rotated
anti-clockwise by π/4, resulting in diagonal components in a Cartesian basis
(equation 2.19). Figure 4.9 shows the spectrum for the S3 parameter, which
is defined as the difference between orthogonal circular polarisations in the
helicity basis (i.e. left-hand and right-hand circular) (equation 2.20). Together,
these Stokes parameters provide information regarding the linear and circular
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birefringence of the atomic medium for a given well-defined input polarisation
of light.

Figure 4.7: Experimental spectrum (blue circles) of the S1 Stokes parameter,
taken as a function of linear detuning with a linearly polarised input beam. A fit
taking cell window birefringence into account (purple line), and the residuals R, are
shown; very good agreement (RMS error of ∼ 2%) [155] is found between experiment
and theory. In this case, the fit parameters allowed to vary are the temperature T ,
magnetic field strength B, polarisation angle φB and the birefringence of the cell
windows, as characterised by the angles θBR and φBR. The remaining parameters
in the fit are kept fixed: ΓBuf/2π = (350 ± 2) MHz, δshift = (50 ± 1) MHz and
θB = π/2. A fit without the effects of the cell window birefringence (broken green
line) is included for comparison.

We used our theoretical model, implemented by ElecSus, to fit the experi-
mental data to the each of the Stokes parameters mentioned above. This
gives very good agreement between the data (blue circles) and theory (broken
green curve) [155] seen in figures 4.7, 4.8 and 4.9. However, there are still
small visible discrepancies between the data and theoretical model. We try
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Figure 4.8: Experimental spectrum (blue circles) of the S2 Stokes parameter,
taken as a function of linear detuning with a linearly polarised input beam. A fit
taking cell window birefringence into account (purple line), and the residuals R, are
shown; very good agreement (RMS error of ∼ 3%) [155] is found between experiment
and theory. In this case, the fit parameters allowed to vary are the temperature T ,
magnetic field strength B, polarisation angle φB and the birefringence of the cell
windows, as characterised by the angles θBR and φBR. The remaining parameters
in the fit are kept fixed: ΓBuf/2π = (350 ± 2) MHz, δshift = (50 ± 1) MHz and
θB = π/2. A fit without the effects of the cell window birefringence (broken green
line) is included for comparison.
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Figure 4.9: Experimental spectrum (blue circles) of the S3 Stokes parameter,
taken as a function of linear detuning with a linearly polarised input beam. A fit
taking cell window birefringence into account (purple line), and the residuals R, are
shown; very good agreement (RMS error of ∼ 2%) [155] is found between experiment
and theory. In this case, the fit parameters allowed to vary are the temperature T ,
magnetic field strength B, polarisation angle φB and the birefringence of the cell
windows, as characterised by the angles θBR and φBR. The remaining parameters
in the fit are kept fixed: ΓBuf/2π = (350 ± 2) MHz, δshift = (50 ± 1) MHz and
θB = π/2. A fit without the effects of the cell window birefringence (broken green
line) is included for comparison.
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and remove some of these errors by taking into account the birefringence of
the cell windows in our experiment. In the theoretical framework established
in chapter 2 for the interaction of atoms with an electromagnetic field, we
include in our model the effect of two thin, birefringent windows that interact
with the electric field of our laser beam on two occasions: once just before the
beam enters the atomic medium in the cell cavity and once when the light has
passed the atomic medium and exits the cell. To carry out the calculations,
we use the Jones matrix formalism [134, 172] so that the transmitted electric
field Eout through the vapour cell in our experiment can be written as

Eout = E(θBR, φBR)× Jatoms × E(θBR, φBR)× Ein, (4.1)

where Ein is the electric field incident on the cell, E(θBR, φBR) is the Jones
matrix representation of a birefringent window and Jatoms is the Jones matrix
that represents the dichroic and birefringent atomic medium. The angles
θBR and φBR correspond to the axis of birefringence and the angle of optical
rotation generated in light passing through a birefringent medium, respectively.
The presence of E(θBR, φBR) twice in the above expression takes into account
the behaviour described above for the entry and exit windows of the experiment
cell. The resulting transmitted electric field Eout through the cell can then be
multiplied by the appropriate Jones’ matrices to give the desired orthogonal
polarisation components (in the laboratory frame of reference), which in turn
are processed into the different Stokes parameters.

Using the modifications to our model, given in equation 4.1, we can generate
another fit to the experimental data for the Stokes parameters. A summary
of the values obtained for the fit parameters is given in table 4.1. These
allow us to determine that the birefringence introduced by the cell windows
is considerably small. Our experiment cell has windows of 300 µm thickness
each [169]; at the wavelength of the light used to excite the Rb D2 line
(∼ 780 nm), this can be used together with the reported value for the Verdet
coefficient of glass [173] to calculate an induced rotation of ≈ 0.05◦ from
each window. In equation 4.1 we have initially assumed that both of the cell
windows have identical birefringent properties. The fits, seen as the broken
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green curve in figures 4.7, 4.8 and 4.9, show very good agreement with the
experimental data, as evidenced by the residuals R and an RMS error of
∼ 2% [155].

From these fits to the different Stokes parameters we obtain average values
of θBR = (0.96± 0.16) radians ((55± 9)◦) and φBR = (0.06± 0.03) radians
((3± 2)◦), as seen in table 4.1. We note that these values correspond to the
combined effect of both of the cell windows on the electric field transmitted
through the experiment cell. The discrepancy between the calculated induced
rotation (≈ 0.1◦) and the measured value for φBR can be assumed to be a
result of the cell windows being heated and of mechanical stresses applied
during the fabrication process and the placement of the cell in the optical
setup. Upon closer inspection of the fits with and without the birefringent
effects of the cell windows, we see that these effects are particularly evident in
the spectrum of the S3 parameter shown in figure 4.9. From the definition of
said parameter (equation 2.20), we proceed to state that the cell windows have
a predominantly circular birefringence. Here we have exploited the sensitivity
of the atomic system to optical rotation phenomena, in this case in the basis
of orthogonal circular polarisation states, to experimentally enhance these
effects so that they are more clearly visible. In particular, we have taken
advantage of the dichroism and circular birefringence of the atomic medium
to obtain a highly sensitive signal in the form of the S3 Stokes parameter. As
such, this experimental system provides a tool to characterise the birefringent
effects due to vapour cell windows, allowing for them to be quantified and in
this way reduce systematic errors in future measurements.
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4.4 Summary

In the course of this chapter we have presented experimental results of a
spectroscopic investigation using a vapour of 87Rb in the Voigt geometry
which allows us to measure the absolute magnetic field strength and relative
orientation of the field. We have taken advantage of a high field strength of
1.5 T to drive the atomic system well into the hyperfine Paschen-Back regime,
where the atomic resonance lines can be clearly resolved and measurements of
all the Stokes parameters can be made. The very good agreement between our
data and theoretical model allows us not only to determine the field strength
and polarisation angle, but also the changes in optical rotation phenomena
within the atomic medium and systematic effects such as the cell window
birefringence due to the strong magnetic field. While the results presented use
an isotopically enriched sample of 87Rb, the experimental method and setup is
applicable to other alkali-metal atoms. As such, we demonstrate an all-optical
scheme for precision atomic vector magnetometry in field strengths up to the
order of Teslas. The following chapter builds further upon this technique,
making use of the description of the atomic system in the hyperfine Paschen-
Back regime to provide a scheme for potentially increasing the precision of
the field strength measurements to levels that could in the future allow for
new areas of research, such as measurement of fundamental constants via
precision thermometry, to be pursued.
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Chapter 5

Magnetometry using Rb vapour
in the Voigt geometry

5.1 Introduction

As mentioned previously in chapters 3 and 4, atom-based magnetometry
has seen a surge in interest in recent years. New technologies [91, 92] and
measurement protocols [105, 106, 107, 108] have been developed thanks
to a solid understanding of the physical interactions between atoms and
external magnetic fields. Together with in-depth knowledge of atom-light
interactions in the presence of magnetic fields [59, 74, 76, 80], the applications
for optical atomic magnetometry continue to grow into a number of diverse
areas [11, 98, 99, 100, 103, 104]. Nevertheless, this work has been focused
on measurements at the lower end of the range of field strengths (∼ 10 mT),
leaving open the possibility of translating the basic principles to work at
higher (≥ 1 T) field strengths.

Work at high magnetic field strengths has historically required the use of
systems that provide an easily measured quantity in the laboratory. As
such, techniques such as nuclear-magnetic resonance (NMR) [174, 175],
electron-spin resonance (ESR) [176] and superconducting quantum inter-
ference (SQUID) [177, 178] devices have come to be start-of-the-art for this
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purpose. However, these techniques impose constraints such as the use of
cryogenic environments or large equipment footprint. Thus, a natural in-
terest in use of atom-based sensors for measurement of high magnetic field
strengths comes from their relatively simple operating environments and the
comparably small footprint of the equipment necessary. In particular, the use
of atom-based spectroscopic techniques for this purpose has been previously
explored; the nature of the interaction between the atoms and an external
magnetic field (i.e. the Zeeman effect) introduces a geometric dependence that
can provide access to a more detailed description of the system, as discussed
in sections 2.2.2 and 2.2.3, and seen in the work presented in chapters 3
and 4.

The work presented in this chapter aims to provide support for the use of
atom-based magnetometers at high fields by providing the theoretical and ex-
perimental demonstration of an all-optical scheme for precision measurements
of the operating field strength. The scheme takes advantage of the effect of
the high field strengths on a thermal vapour of atoms–namely, the hyperfine
Paschen-Back regime–and the operating geometry, as recorded by absorption
spectra. From these spectra, pairs of transitions are specifically chosen to
provide a method of calculating the field strength that is limited in precision
by the precision of the frequency measurement of the difference in position of
the two transitions. In this case, we have used a vapour of 87Rb to determine
our operating field strength with a relative uncertainty of 3.5× 10−2

5.2 Theory

For the experiments in this chapter we will make use of the theoretical
concepts touched upon previously in chapter 2, albeit at a greater level of
detail. Whereas our previous interest was looking at the interactions between
atoms, light and a magnetic field via their compound macroscopic effects,
here we will change the focus to be more practical. We will consider the case
of an alkali-metal atomic vapour in the presence of an external magnetic field,
probed by a near-resonant laser beam: the difference from work in previous
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chapters will be in the approach taken to determine the field strength.

As we are again dealing with an atom-light system inside an externally-
applied magnetic field, and in particular, oriented in the Voigt geometry, the
theoretical basis is that described in chapter 2. Our focus here will be looking
at the interaction with the magnetic field, so that we will concentrate on the
Zeeman effect as described in 2.2. We recall that both the geometry and
the field strength determine the strength of the interaction (equation 2.21),
so that we can focus on looking at the Zeeman-induced energy shifts of the
atomic states to grasp at these parameters.

Without loss of generality, we assume that we will be working with field
strengths such that the atomic system is in the hyperfine Paschen-Back
regime (see section 2.2.1). This means the description of the atomic states
can best be done using the uncoupled |mJ ,mI〉 basis and the energy shift
from the Zeeman effect can be described by equation 2.28. Thus, taking the
total Hamiltonian of the physical system (Ĥ = Ĥatom + Ĥlight + ĤZeeman; see
sections 2.1.1, 2.1.2 and 2.2.1 for details on each term), we write the shift in
the energy of the levels of the atom as

E(J,mJ ; I,mI) = AHFmJmI +BHF
6(mJmI)

2 + 3mJmI − 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)

+µB(gJmJ + gImI)B, (5.1)

which is obtained by diagonalising the Hamiltonian in the |mJ ,mI〉 basis
and projecting the system along the quantisation axis (e.g. the z-axis). It is
important to note here that the energy is expressed in frequency units. The
magnetic-dipole and electric-quadrupole constants AHF, BHF, respectively,
remain from the hyperfine interaction in the atom, and are here used as
scaling factors for the energy shift. J, I are, respectively, the eigenvalues of
the total electronic angular and nuclear angular momenta; mJ ,mI represent
their projections along the chosen quantisation axis.

For alkali-metal atoms, the general electronic structure of the atom (sec-
tion 2.3) allows us to rewrite equation 5.1 in two relevant forms. The ground
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state of these atoms has a well-defined total electronic angular momentum
J = 1/2 and no electric-quadrupole hyperfine interaction (BHF = 0), such
that

E(J = 1/2,mJ ; I,mI) = AHFmJmI + µB(gJmJ + gImI)B. (5.2)

Similarly, we know that the first excited state in alkali-metal atoms has two
possible values for the total electronic angular momentum: J = 1/2 for the
n2P1/2 state (the so-called D1 line) and J = 3/2 for the n2P3/2 state (the D2
line). For the former there is also no electric-quadrupole hyperfine interaction.
Thus, the n2P1/2 excited state has an shift in energies of the same form as
that of the ground state (equation 5.2). The latter excited state (n2P3/2) has
both magnetic-dipole and electric-quadrupole interactions; we can thus write
the energy shift as [85, 90]

E(J = 3/2,mJ ; I,mI) = AHFmJmI +BHF

×6(mJmI)
2 + 3mJmI − 2I(I + 1)(3/2)(3/2 + 1)

4I(2I − 1)(3/2)(2(3/2)− 1)

+µB(gJmJ + gImI)B

= AHFmJmI

+BHF
6(mJmI)

2 + 3mJmI − 2I(I + 1)(15/4)

4I(2I − 1)(3)

+µB(gJmJ + gImI)B. (5.3)

Looking at equations 5.2 and 5.3 it is clear that, given the appropriate
choice of levels (i.e. values of mJ ,mI) it is possible to cancel out terms in
certain transitions. The cancellation of terms provides a way of increasing the
precision in the measurements taken, as there are less sources of error [155]
that contribute to the overall uncertainty. This fact has been exploited in
previous experiments [81, 179, 180, 181] that look to obtain information on
the excited state g-factors or hyperfine interactions in other atoms; an added
result of this is the measurement of field strengths down to parts per million.
For a system such as ours in the hyperfine Paschen-Back regime, the selection
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rules for electric-dipole transitions constrain the possible values for the ground
and excited states used in each transition.

We now consider the case of atomic Rb, in particular that of 87Rb (I = 3/2),
in the hyperfine Paschen-Back regime. To begin, we can look at the transition
that occurs between the extreme (i.e. stretched) energy levels both in the
ground and excited states. We note that this corresponds to the system
studied in reference [81], and will only give a summary of the main points.
For the ground state, this means we will be using the level with mJ =

1/2,mI = 3/2, while for the excited state we will use the level corresponding
to mJ = 3/2,mI = 3/2. Substituting these values into the corresponding
equations for the ground and excited state energy shifts (equations 5.2 and 5.3,
respectively), we take the difference E(J = 3/2 = mJ ; I = 3/2 = mI)− E(J =
1/2 = mJ ; I = 3/2 = mI) ≡ ∆E,

∆E = µB
3gJ ′ − gJ

2
B +

3(3A′HF − AHF)

4
+
B′HF

4
, (5.4)

where we can take ∆E = hνLaser corresponding to the laser detuning, with
respect to the hyperfine manifold centre of gravity, of the transition in question.
The primed variables in equation 5.4 correspond to values for the excited
state. We see also that there is no longer a dependence on the value of the
nuclear angular momentum projection mI by virtue of the dipole selection
rules (see section 2.1.2).

We can observe that the expression above depends linearly on B, so that by
knowing the laser detuning we can determine the magnetic field strength,

B =
2

µB(3gJ ′ − gJ)

[
hνLaser −

1

4
(B′HF + 3(3A′HF − AHF))

]
. (5.5)

In general, using the selection rule ∆mI = 0 we can write the energy difference
∆E of an electronic transition as,

∆E = µB
αgJ ′ + βgJ

2
B +

mI(γA
′
HF + εAHF)

2
+ ηB′HF, (5.6)
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where the values of α, β, γ, ε and η are determined by the choice of ground-
and excited-state levels; the values of these coefficients for our case are shown
in table 5.1. Here we note that the value of the magnetic field B is determined
by both ground and excited state constants, where the latter are often not as
well-reported as the former and represent sources of error in measurements
such as those reported in [119, 144].

The idea of taking advantage of the different states involved in a transition
to cancel out terms in the resulting energy shift can be expanded upon. Now,
rather than using just one transition we consider pairs of transitions that,
together, allow us to remove additional terms in equation 5.6. We want to
focus specifically on removing all the terms that arise from the excited state
constants (i.e. gJ ′ , A′HF, B

′
HF); to do this, ideally we want to consider pairs

of transitions that have a common excited state level with the same values
of mJ ,mI . However, we can begin by considering a pair of transitions of the
same type, for instance, two σ+ transitions. These two transitions will be
chosen so that they begin at different energy levels in the ground state, which
in turn means that they will not end in the same excited state energy level.
Nevertheless, the two levels can be chosen so as to give a partial cancellation
of the excited state terms.

As an example, we consider the energy shift for the transitions |J = 1/2 =

mJ ; I = 3/2,mI = 1/2〉 → |J ′ = 3/2 = mJ ′ ; I = 3/2,mI = 1/2〉 and |J =
1/2,mJ = − 1/2; I = 3/2 = mI〉 → |J ′ = 3/2,mJ ′ = 1/2; I = 3/2 = mI〉, as well as
their difference (see figure 5.1):

∆Eσ+
1

= 1
4

(3A′HF − AHF) + 1
2
µB(3gJ ′ − gJ)B − 5

8
B′HF

∆Eσ+
2

= 3
4

(A′HF + AHF) + 1
2
µB(gJ ′ + gJ)B − 5

8
B′HF

∴ (∆Eσ+
1
−∆Eσ+

2
) = −AHF + µB(gJ ′ − gJ)B. (5.7)

We can see in equation 5.7 that, compared to equation 5.4, there are fewer
terms that contain excited state constants–here only the excited state g-factor
is present. The result is that now we can determine the magnetic field strength
by taking the laser frequency difference ∆νσ+

1→2
equal to the energy difference
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to write

B =
1

µB(gJ ′ − gJ)

(
(∆Eσ+

1
−∆Eσ+

2
) + AHF

)
=

1

µB(gJ ′ − gJ)

(
∆Eσ+

1↔2
+ AHF

)
. (5.8)

Here we can argue there is a potential increase in the precision of the meas-
urement due to the presence of only the excited state gJ ′ factor and the
measurement of a frequency difference ∆Eσ+

1↔2
; the latter means no absolute

frequency reference is necessary and systematic errors in the measurement of
the frequencies can be reduced. Note that from table 5.1 we can determine
other similar pairs of transitions that allow for the partial removal of the
excited state constants in the expression for measuring the field strength.
Some of these transitions can be found in table 5.2.

As previously stated, the aim of using such pairs of transitions is to attempt
to remove all excited state constants. To do so, we want pairs of transitions
with a common excited state level; following the selection rules for transitions
in the hyperfine Paschen-Back regime this is only possible by taking pairs of
transitions that start in different ground state levels but end in the same level
of the excited state. To demonstrate this, we take the π (∆mJ = 0) transition
and the σ+ (∆mJ = 1) transition to the excited state |mJ ′ = 1/2,mI = 3/2〉
energy level, as seen in figure 5.1. Using the adequate values from table 5.1
in equation 5.6, we can write the energy shift for each of the transitions and
look at the difference,

∆Eπ = 3
4

(A′HF − AHF) + 1
2
µB(gJ ′ − gJ)B − 5

8
B′HF (5.9)

∆Eσ+ = 3
4

(A′HF + AHF) + 1
2
µB(gJ ′ + gJ)B − 5

8
B′HF

∴ (∆Eσ+ −∆Eπ) = 3
2
AHF + µBgJB,

where we see that there is still a linear dependence in the field strength B, but
now there are no excited state constants in the expression. Equation 5.10 is
expressed in a simple form and in terms of well-known experimental constants
(AHF, gJ), which could help further improve the precision in the measurement

100



Chapter 5. Magnetometry using Rb vapour in the Voigt geometry

of the field strength by using the expression,

B =
1

µBgJ

(
(∆Eσ+ −∆Eπ)− 3

2
AHF

)
=

1

µBgJ

(
∆Eσ+↔π −

3

2
AHF

)
, (5.10)

in a straightforward manner by means of a linear relation between field and
frequency difference. Additional pairs of transitions that provide similar
expressions to the one above can be found in table 5.3. The simplicity of the
expression means that the few parameters must have precise values assigned;
experimentally, this means that, in particular, the precise determination of
the centres of the absorption features in a spectrum is fundamental. This,
amongst other aspects, will be expanded upon in the next section of this
chapter.

5.3 Experiment

5.3.1 Experimental setup

The experiments carried out for this chapter used the same experimental
setup described in chapter 4. The main characteristics of the system will be
summarised here; further details can be found in section 4.3.1. The magnetic
field in the setup was once again provided by a cylindrical permanent magnet
designed to have an axial field of 1.62 T, with this value rapidly falling off
towards the ends of the magnet [165]; more details on the axial field profile are
given in section 4.3.1. Inside the magnet’s central bore of 22 mm we placed a
custom-made PTFE and copper heater assembly, which houses the necessary
optical components and a 1 mm cuboidal experiment vapour cell, for carrying
out measurements in the Voigt geometry (see section 2.2.1). This heater
assembly is passively temperature-stabilised by use of a resistive cartridge
heater; the atomic vapour in the cell is heated to its operating temperature
by thermal contact with the copper.

For probing the atomic system, a distributed feedback (DFB) laser with
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< 2 MHz linewidth was scanned over a mode-hop-free range of hundreds
of GHz around the rubidium D2 line (∼ 780 nm). This was the same laser
used in the experiments carried out in chapter 4. In order to avoid optical
pumping effects, a beam power of ∼ 1 µW was used to remain in the weak-
probe regime [51] while probing a volume of atoms that is roughly cylindrical,
with a length of 1 mm and radius equal to the maximum beam waist (1/e2)
of 0.7 mm. Prior to entering the experiment vapour cell, the beam passes
through a series of polarising elements that help control the beam power
and polarisation purity used. For these experiments, linear polarisation at
45◦ from the horizontal (x-axis) was chosen in order to have access to both
π and σ± transitions to use the scheme described in section 5.2. The total
transmission of the beam (S0; see section 2.1.4) through the atomic medium
was measured using a single photodiode. However, it is worth noting that
the absorption depth is not critical as all that is necessary is for the two
selected features, corresponding to the transitions discussed in section 5.2,
to be clearly resolved in order for their centre frequency to be determined.
As such, the polarisation can be varied and is not a critical factor in this
experiment.

5.3.2 Results

Optical magnetometry using a thermal vapour of 87Rb atoms

As context for understanding the results obtained from our experiments,
figure 5.2 shows the expected absorption spectrum as a function of linear
detuning at a field strength of 1.5 T, along with the evolution of the atomic
energy levels up to this value. These numerical results are obtained by using
the theory presented in chapter 2 and sections 2.4 and 5.2. The atomic system
used is a thermal atomic vapour, T = 100◦C, of 87Rb in the Voigt geometry.
Coloured lines serve to highlight the position of the atomic transitions of
interest for measuring the field strength. The corresponding coloured arrows
in the bottom half of the figure indicate the initial and final states involved
in the transitions.
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The transitions highlighted in figure 5.2 correspond to those used in writing
equation 5.10. In the conditions used for calculating the spectra, the atomic
system is operating in the hyperfine Paschen-Back regime; this allows for
all of the absorption features to be clearly resolved despite the Doppler
broadening (ΓDoppler/2π ≈ 550 MHz). As such, the scheme for measuring
the magnetic field strength, using equation 5.10, experimentally becomes a
question of determining the centre of the absorption features. For this we
know that the expected lineshape is a Voigt profile (see section 2.1.3); we use
the implementation of this function, as given by its relation to the Fadeeva
function, in the lmfit Python package [149, 150] to fit the experimental data
using tailor-made code for this scheme.

A sample of the experimental data acquired with our setup is shown in
figure 5.3. The raw signals from the photodiode were processed in order to
linearise the laser scan and calibrate the horizontal frequency axis as described
in 3.3.2 and appendix B. The data shown (blue circles) have been fit using
two approaches: the first consists of simultaneously fitting the chosen pair
of transitions with a single expression (purple curve), while the second fits
each of the transitions with an independent expression, albeit with the same
lineshape widths, which are subsequently added together (red curve). Both of
these approaches fit the transition of interest as well as adjacent transitions
in the same multiplet in order to take into account possible effects due to
the overlap of lineshapes. The residuals from both of these fits are shown in
the bottom panel of figure 5.3. It is worth noting that the error bars in the
experimental data are too small (∼ 1× 10−3) to be seen in said figure.

From the fits shown in figure 5.3 we obtain two values for the magnetic field
strength B. In both of these, there are only four free parameters for the
absorption features of interest: the line centre xc, Gaussian width ΓGauss,
Lorentzian width ΓLorentz and amplitude A0. For the remaining absorption
features, both Gaussian and Lorentzian widths are maintained as a common
parameter, leaving only the line centre and amplitude as free parameters.
The first fit, indicated by the purple curve, returns a value of B = (1.524±
0.014) T. From the residuals we see that there is good agreement between the

107



Chapter 5. Magnetometry using Rb vapour in the Voigt geometry

Figure 5.3: Experimental data (blue circles) used for determining the magnetic
field strength with our optical magnetometry scheme (equation 5.10). The absorp-
tion (S0) spectrum, taken as a function of linear detuning, is used to obtain the
position of the transitions of interest (i.e. the π transition at ≈ −10 GHz and the σ+

transition at ≈ 39 GHz) by fitting Voigt lineshapes; the line centre xc, amplitude
A0, Gaussian ΓGauss and Lorentzian ΓLorentz widths are used as free parameters for
the fit. Transitions in the same multiplet as that of the transition of interest are also
fitted, using only the respective line centres and amplitudes as free parameters now,
in order to take any effects of lineshape overlap in the multiplet into account. A fit
using a common expression for both chosen transitions and their adjacent transitions
(purple curve), as well as one using a separate expression for each multiplet and
then adding both (red curve), are shown, together with their respective residuals in
the bottom panel. From these fits we obtain values of B = (1.5239± 0.0142) and
B = (1.5259± 0.0002) T, respectively. We note that the agreement between the
data and the red curve is excellent [155], with an RMS error of ∼ 1% in the regions
of interest and no visible structure in the residuals.
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experimental data and the fit of the lineshapes in the region of interest, yet
there is little agreement in the surrounding regions. On the other hand, the
second fit, indicated in the figure by the red curve, has much better agreement
in the region of interest and in the immediate surroundings. We obtain a
value of B = (1.5259± 0.0002) T from this fit which, together with the lack
of any clear structure in the residuals, allows us to claim excellent agreement
between the experiment and lineshape fit [155].

The precision in the measurement of B can be increased if we take advantage
of the presence of all of the ‘strong’ π, σ± transitions to use the expressions
in table 5.3. In practice, this means we have to determine the position of
the absorption features for an additional 11 pairs of transitions: 4 for each
mI projection in each of the mJ = ±1/2 states, with the additional four
corresponding to pairs that use different values of mI for each transition in
the pair to remove the dependency on this parameter (see table 5.3). This
is readily done by virtue of the fits being carried out; a single fit allows
for the necessary information of 6 pairs of transitions, coming from two
distinct multiplets, to be used for calculating B. As such, only two fits of the
experimental data need to be carried out for the full 12 pairs to be available.
The results of this for a single experimental run, consisting of 70 spectra
taken under similar conditions, is shown in figure 5.4.

The value of B obtained from each pair of transitions for each spectra in the
run are indicated by the red crosses in figure 5.4; the average of the values
corresponding to pairs of π, σ+ transitions are indicated by blue circles, while
those corresponding to π, σ− pairs are indicated by the blue squares. Their
respective averages are indicated by the dotted and broken purple lines. The
average of all values is indicated by the black broken line. The coloured
bands (purple for the averages of just π, σ+/π, σ− pairs; blue for average of
all values) represent one standard deviation of uncertainty from the average
value. Also shown in the side panel are the histograms for the individual
measurements of the field strength (red) and the average field strength value
for each spectrum (blue). From this it can be clearly seen that the precision
of our measurement increases, approximately by a factor of 2, by taking all
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12 pairs of transitions into account.

Figure 5.4: Values of the experimental field strength B obtained from the optical
magnetometry scheme presented in section 5.2 and summarised in table 5.3. Spectra
from a single experimental run were processed in order to obtain the position of
the transitions in each pair necessary to determine the field strength (red crosses);
for the 6 pairs of π, σ+(π, σ−) transitions in each spectrum, the average value
of B is taken and shown as a blue square (blue circle). On the right of the
figure, histograms showing the previously mentioned values are constructed. The
average value of all the π, σ+ and π, σ− transitions pairs, B = (1.538± 0.008) T
and B = (1.539 ± 0.008) T, are shown by the purple broken and dotted lines,
respectively. For these, one standard deviation of uncertainty is given, as shown by
the purple coloured band. The average of all of the experimentally obtained values
B = (1.538± 0.004) T is given by the black broken line, along with an uncertainty
of one standard deviation represented by the blue coloured band.

Uncertainty budget for measurements of field strength using op-
tical magnetometry scheme

In the results presented in figures 5.3 and 5.4 it is clear that the optical
magnetometry scheme proposed allows for the magnetic field strength B to
be determined with very good precision. Compared to the results obtained
by fitting a spectrum with the theoretical model provided in ElecSus (see
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section 4.3.2), the values obtained with our scheme (e.g. B = (1.5239 ±
0.0142), (1.5259± 0.0002) T) are within the experimental error bars of those
obtained with ElecSus (B = (1.52 ± 0.08) T; see figure 4.5). Furthermore,
the values for B obtained from the magnetometry scheme have a smaller
uncertainty than those determined by fitting the spectrum with ElecSus. This
can be accounted for from the expressions used to determine B, given in
table 5.3: as only ground state and fundamental constants are used (gJ , AHF

and µB, respectively), the precision of this scheme is limited by the precision
in the determination of the frequency of each of the atomic transitions selected.
In addition to this, the lack of need for an absolute frequency reference, as
the quantity of interest is a frequency difference, also allows for a reduced
impact from systematic effects on the uncertainty of our measurements.

Taking equation 5.10 as an example, we can see our uncertainty in the
determination of B is given by five quantities. Of these, three quantit-
ies correspond to physical constants that are known to excellent precision
(>100 p.p.b; 10−7 relative uncertainty): µB (30 p.p.b) [182, 183], gJ and
AHF (100 p.p.b & 1 × 10−5 p.p.b, respectively) [119, 141]. The remaining
two quantities, ∆Eπ and ∆Eσ+ , can be combined into a single parameter
(∆Eσ+↔π ≡ ∆Eσ+ −∆Eπ) whose uncertainty only depends on the sum of the
uncertainties of each quantity (obtained from fits to the experimental data as
the standard error), omitting other systematic uncertainties (e.g. systematic
errors in the frequency axis) by design [155]. This parameter is the only one
experimentally determined and, as such, will contribute the greatest to the
uncertainty in our measurement of B. The uncertainty budget obtained from
this example of our scheme is presented in table 5.4. From this we find that
with our current setup, the precision in our measurement of the field strength
is limited to ∼ 50 mT, corresponding to a relative uncertainty of ≈ 3.5×10−2.

Bi-modal distribution of field strengths

We now proceed to further discussion of the results presented in figure 5.4,
namely, the histograms for the distribution of values for B obtained using our
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Quantity
(units) Value Uncertainty Relative

uncertainty
Bohr magneton
µB (Hz/T) 13,996,244,936.1 4.2 3× 10−10

87Rb ground state
gJ (a.u.) 2.00233113 2× 10−7 1× 10−7

87Rb ground state
hyperfine constant
AHF (Hz/2π)

3,417,341,305.452145 4.5× 10−8 1× 10−14

Frequency
difference between

transitions
∆Eσ+↔π (Hz)

48, 026× 106 3.4× 106 7.2× 10−5

Calibration error
over frequency

interval σ∆Eσ+↔π

(Hz)

1, 681× 106 1.2× 105 3.5× 10−2

Magnetic field
strength B (T) 1.531 5.4× 10−2 3.5× 10−2

Table 5.4: Uncertainty budget for the determination of the magnetic field strength
using the optical magnetometry scheme (equation 5.10). The quantities involved
in the calculation of the value for B, along with their values, uncertainties and
relative uncertainties, are shown. At the bottom, the calculated value of B and
its uncertainty is shown. Data for µB, gJ and AHF are taken from [182, 183], [119]
and [141], respectively. The value of ∆Eσ+↔π is taken from one of the spectra in
the experimental run previously presented. We note that in this case, the precision
in our measurement of B is limited by the calibration error associated with our
determination of the frequency difference ∆Eσ+↔π, which in this case is of the
order of ∼ 1.6 GHz (∼ 3.5× 10−2 relative uncertainty).
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optical magnetometry scheme. In particular, we highlight the presence of two
modes in the distribution of the values obtained from our experimental
data. These are located at approximately B = (1.534 ± 0.004) T and
B = (1.542± 0.003) T. The difference between these two values corresponds
to a frequency difference of (112±70) MHz. The appearance of such a feature
is not expected from the expressions given in table 5.3 and it is thus necessary
to look in more detail at the nature of this bi-modal distribution.

Figures 5.5 and 5.6 show a breakdown of the histogram in terms of the values
of B determined using π, σ+ transitions and π, σ− transitions, respectively.
The top two panels of the figures once again present histograms of the
values obtained yet now they are broken down by the mI values used in each
transition. The upper (lower) of these two panels in figure 5.5 (5.6) corresponds
to the expressions from table 5.3 that use the pair of transitions with different
mI values, while the lower (upper) panel shows four histograms corresponding
to the different mI values used in the expression with mI dependence from
the same table. The bottom-most panel of both figures shows the relation
between frequency difference of the transition pair and the magnetic field
strength, with the experimental values plotted for reference.

Both figures clearly show that the bi-modal distribution can be broken down
by considering mI = ±3/2 and mI = ±1/2 values. For the transition pairs
that use different mI values for each of the transitions, the histogram resulting
from the values of B determined with these pairs once again show the presence
of two distinct modes.
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Figure 5.5: Breakdown of bi-modal histogram for the values of B determined
using π, σ+ transitions for the optical magnetometry scheme. The two upper panels
show the breakdown of the histogram into two: the top panel corresponds to
the mI -indepedent expression in table 5.3 and the bottom panel corresponds to
the first expression in table 5.3, coloured according to the mI value used (mI =
3/2 (black), 1/2 (blue),−1/2 (red),−3/2 (green)). The bottom panel of the figure
shows the relation between frequency difference and field strength, as given by the
expressions in table 5.3, as a function of mI value (light blue circles; red crosses
correspond to pairs with different mI values). It can be observed that the two
modes in the distribution of values appear to correspond to those determined from
mI = ±3/2 and mI = ±1/2 projections of the nuclear angular momentum.
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Figure 5.6: Breakdown of bi-modal histogram for the values of B determined
using π, σ− transitions for the optical magnetometry scheme. The two upper panels
show the breakdown of the histogram into two: the top panel corresponds to
the mI -independent expression in table 5.3 and the bottom panel corresponds to
the first expression in table 5.3, coloured according to the mI value used (mI =
3/2 (black), 1/2 (blue),−1/2 (red),−3/2 (green)). The bottom panel of the figure
shows the relation between frequency difference and field strength, as given by the
expressions in table 5.3, as a function of mI value (light purple squares; yellow
crosses correspond to pairs with different mI values). It can be observed that the
two modes in the distribution of values appear to correspond to those determined
from mI = ±3/2 and mI = ±1/2 projections of the nuclear angular momentum.
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Origin of the bi-modal distribution of field strengths

We now proceed to discuss possible mechanisms that could give rise to the
bi-modal distribution seen in figure 5.4.

1. Lineshape overlap The way in which the positions of the transitions are
determined allows us to discard effects of lineshape overlap in the generation
of the bi-modal distribution.

2. Diamagnetism & quadratic Zeeman shifts Similarly, we can rule
out diamagnetic/second-order terms in the Zeeman effect as other work at
higher fields (58 T) found no significant evidence of these effects [81]: as we
are working at a field strength of ∼ 1.5 T, the expected contribution of these
effects is several orders of magnitude smaller (∼ 0.39 MHz/T2; 1.3 GHz at
58 T vs. ∼ 880 kHz at 1.5 T).

3. Excited-state Landé factor Another possible origin for the two modes
in the distribution of the determined values for B is the value used for the
excited state gJ ′ factor. In this work we use the value obtained from the Russel-
Saunders coupling of the orbital and spin angular momenta [85, 117, 129]
of gJ ′ = 1.3341. Recent work [81] has given a more precise experimental
determination of this value, gJ ′ = (1.33494±0.00015). The difference between
these two values generates a shift of 17.63 MHz/T in the energies of the
excited state, as given by equation 5.3; this shift is also translated to a shift
in the position of the transitions by virtue of equation 5.6. However, as our
proposed scheme does not rely directly on this factor (see equation 5.10), this
can be discarded.

4. Frequency calibration and non-linearity The remaining possibility
for generating the bi-modal distribution in figure 5.4 is the frequency calibra-
tion of our spectra, which is also the limiting factor in the precision of our
measurements (see table 5.4). As discussed in section 3.3.2 and appendix B,
the raw data is taken and processed in order to remove the non-linearity from
our laser scan and calibrate the horizontal axis in terms of the frequency
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of this scan. We would expect that this process would result in spectra
where adjacent points on the frequency axis showed a linear relation between
themselves, with the ideal being simply a constant difference between the two
points. The results presented in chapter 4 show that this is for the most part
true as we can obtain a very good agreement between our theoretical model
and the experimental data. Nevertheless, we are aware that our experimental
setup is prone to a large non-linearity in the scan of the laser, as well as errors
in our calibration process (see figures 5.7 and 5.8), which is further evidenced
in the context of the magnetometry scheme proposed.

Taking the spectrum shown in figure 5.3, we can evaluate the impact of the
frequency calibration and linearisation on our optical magnetometry scheme.
As a reference, figure 5.9 shows the experimental data plotted along with
a theoretical spectrum generated with the model and values obtained in
chapter 4. The difference between these two curves shown in the plot is
consistent with a very good agreement with our model [155], yet one can
also observe the presence of dispersion-like structures in the residuals in
the areas close to resonance. These structures clearly indicate a shift along
the frequency axis of the absorption features, with this being particularly
evident towards the edges of the spectrum more so than near the centre. As
mentioned above, we would expect for the separation along the frequency axis
of adjacent points to be linear such that there is no particular region of the
spectrum being shifted more than the other. We thus proceed with looking
at the difference in frequency between adjacent points of our experimental
data. The resulting plot is shown in figure 5.10.

Figure 5.10 clearly shows that there is a non-linearity in the intervals between
adjacent points in our spectra as a result of our initial linearisation and
calibration. We can see that this non-linearity is largest in the difference
between adjacent points towards the edges of the spectrum and is approx-
imately linear near the centre; we can possibly attribute this to a greater
gradient (and value) of the deviation of original scan from a linear case (see
figure 5.7), which in turn results in a lower sensitivity to the corrections
applied. Together with the structures observed in the residuals of figure 5.9,
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Figure 5.7: Deviation from linear fit of etalon peak positions as a function of
peak number for the etalon used to calibrate the spectrum shown in figure 5.3. The
calibration process has been discussed in detail previously in section 3.3.2. The
etalon can be characterised by its free spectral range (FSR), which we assume to be
constant over the range of the laser scan. As such, a linear relation (purple curve)
can be calculated as a function of the number of peaks and their positions in time.
By comparing the measured positions of these transmission peaks to their expected
positions, given by the aforementioned linear relation, we obtain the deviation for
each peak, as shown in the inset of the figure. These points are then fit using a
high-order (≥ 10) polynomial (red curve) in order to obtain a correction factor to
linearise the horizontal axis and later allow the conversion from time to frequency.

118



Chapter 5. Magnetometry using Rb vapour in the Voigt geometry

60 40 20 0 20 40
Detuning (GHz)

0.5

1.0

S
0

60 40 20 0 20 40
Detuning (GHz)

0.00

0.01

0.02

E
ta

lo
n

 tr
an

sm
is

si
on

 (a
.u

.)

6

4

2

0

2

D
ev

ia
tio

n 
fr

om
 li

ne
ar

 sc
an

 (G
H

z)

18 20 22 24

1.2

1.4

1.6

0

2

4

Fr
eq

ue
nc

y
 c

al
ib

ra
tio

n
 e

rr
or

 (G
H

z)

Figure 5.8: Deviation of experimental frequency scan from the ideal case with
points on the frequency axis equally spaced, for the data shown in figure 5.3.
As has been previously discussed (see section 3.3.2), the process of calibrating
raw experimental signals involves the removal of background non-linearity using a
high-order (≥ 10) polynomial, followed by a linear conversion of time to frequency
with factors obtained from fitting the absorption in a natural abundance, room
temperature Rb reference cell. The top panel shows the absorption (S0) spectrum
(blue curve) from our experimental cell, while the bottom panel shows the linearised
and calibrated etalon transmission (red curve) acquired simultaneously. The bottom
panel also shows the error in the calibration of the frequency axis (yellow broken
curve) over the frequency scan. In the centre panel, the difference between the
experimental frequency of the data points and that of an ideal frequency scan
(purple curve), consisting of the same number of equally-spaced points along a
scan with the experimental frequency end-points (i.e. the minimum and maximum
detuning values), is shown. From these curves it is evident that the process of
linearisation and calibration of the experimental signals causes the points on the
frequency axis to be re-distributed in a non-linear manner. The inset in the centre
panel shows how locally (in this case, in the detuning range corresponding to the
absorption features highlighted in the top panel and whose theoretical positions are
shown as broken vertical lines) this non-linearity can result in shifts of several MHz
in the measured positions of local features, as well as a variation of this shift as a
function of detuning.
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Figure 5.9: Experimental data (blue points) and theoretical spectrum (purple
curve) generated for B = (1.52 ± 0.08) T. The model used for generating the
theoretical spectrum, as well as the value for field strength, are those used in
chapter 4. In the bottom panel, the difference between the experimental data and
the model curve are shown. This is done in order to observe the presence of small
dispersion-like features in the regions close to resonance. These are due to a small
shift in the positions of the experimental absorption features in relation to their
calculated positions. This shift could affect the precision of our magnetometry
scheme by causing a change in the frequency differences measured.
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Figure 5.10: Effects of the scan non-linearity in the frequency difference between
adjacent points of the experimental data used to test our optical magnetometry
scheme. Raw data is processed according to the method described in section 3.3.2
and appendix B, which remove the majority of the non-linearity inherent in the laser
scan used to obtain the spectrum shown; this would ideally result in a spectrum
where the points on the frequency axis follow a linear relation that is at best a
constant offset. However, looking at the difference in frequency between adjacent
data points shows there is a non-linear variation in the interval between points
across the spectrum. In particular we can observe how at the centre of the spectrum
the variation is approximately linear, while towards the edges of the spectrum
there is a clear curve describing the variation. Together with the shifts seen in the
difference between our data and a theoretical model of the spectrum (figure 5.9),
this non-linearity could be the underlying reason for the presence of two modes in
the distribution of calculated values for B obtained with our optical magnetometry
scheme (see figure 5.4).
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this provides some initial support for the idea that it is this non-linearity that
may be responsible for the bi-modal distribution seen in our results. At this
point it is natural to try and quantify the effect this non-linearity could have
on our measurements; our method to do so is to consider our experimental
data in relation to a theoretical calculation using the global average value
for B obtained with our scheme. This plot is shown in the upper panel of
figure 5.11, with the corresponding difference between experiment and theory
shown in the bottom panel. Once again, it can be clearly observed from
the difference between experiment and theory that there are dispersion-like
features which are greater in amplitude towards the ends of the spectrum.
This can be taken as a result of a greater shift between the features due to
the underlying non-linearity that remains in the scan.

From the previous discussion we have seen that the remaining non-linearity
in our scan may be the possible cause for the bi-modal distribution in the
histogram in figure 5.4. We continue to quantify this claim by carrying out a
variation of our magnetometry scheme, namely that used in reference [81];
this modified scheme relies on the measurement of the position of a single σ+

transition. This transition is chosen as it involves the stretched states in both
the ground and excited states (|mJ = 1/2,mI = 3/2〉 and |mJ ′ = 3/2,mI′ = 3/2〉,
respectively), both of which have an energy shift with a linear dependence
on the magnetic field strength B. This allows for analytic expressions for
the Zeeman energy shift of these states (valid at any magnetic field [81]) to
be used to determine the position of the absorption feature, which in turn
is also linearly dependent on B. We proceed to fit Voigt lineshapes to the
corresponding transition and its adjacent transitions in the multiplet in order
to take into account any systematic effects from the overlap of lineshapes.
From said fit we extract the centre of the lineshape for our chosen transition
and proceed to calculate the field strength using equation 5.4. The resulting
theoretical spectra will then serve as a reference, with the deviation of the
experimental absorption features from their expected positions as an indicator
of this remaining non-linearity and errors in our calibration procedure.

In this modified magnetometry scheme, we expect our precision to be limited
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Figure 5.11: Experimental data (blue points) and theoretical spectrum (purple
curve) generated at the value of B corresponding to the global mean shown in
figure 5.4, B = (1.538± 0.004) T. The model used for generating the theoretical
spectrum is that used in chapter 4. In the bottom panel, the difference between
the experimental data and the model curve is shown. It can be clearly observed
that in this difference there are dispersion-like features in the regions close to the
position of the transitions. The origin of these structures is a shift in the positions
of the experimental absorption features in relation to the calculated positions. We
note that the amplitude of the features is larger towards the edges of the spectrum,
in agreement with observations of a remnant non-linearity that is greater towards
these areas of the spectrum than at the centre, as well as errors in our frequency
calibration process.
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by the excited state constants. Work in reference [81] provides a bound of
75 p.p.m. on the precision of B as a result of the uncertainty in the value
of the excited state gyromagnetic ratio gJ ′ . From implementation of this
modified magnetometry scheme we obtain a value of B = (1.5256± 0.0002) T.
Taking the errors in our calibration into account, this returns a value of
B = (1.526 ± 0.053) T. The uncertainty in this value is dominated by the
precision of our frequency calibration and measurements and the uncertainty
in the value of gJ ′ . It is worth noting that this value is within the values
reported earlier in this section, as well as with the values presented in chapter 4.
With this, we proceed to generate a theoretical spectrum in order to once
again observe the difference between this and our experimental data. This
comparison is shown in figure 5.12. As we have also seen in figure 5.11,
the difference shows dispersion-like features that are greater in amplitude
towards the ends of the spectrum, with a change in the sign of their slope at
≈ 10 GHz, and which are consistent with us considering the remnant non-
linearity and calibration errors as a significant contribution to the distribution
of the measurements of B using our scheme.

Using the value of B obtained from a single σ+ transition we can follow the
work presented in reference [81] and provide further support to the idea that
the bi-modal distribution is due to a remnant non-linearity and calibration
errors in our spectra. In particular, we use this value for the field strength to
calculate the position of the adjacent lines to our selected transition in the
multiplet. These values are shown in table 5.5, along with their corresponding
experimental counterparts and the differences between the two.

From these values we can see that there is a significant shift in the positions
of the transitions in the experiment. Furthermore, we can also see effects of
the non-linearity in the separations between the transitions. Our calculated
values for the positions of the transitions give a separation of ∼ 1.58 GHz;
these separations, in turn, vary by a constant amount equal to approximately
9 MHz. In contrast to this, our experimentally determined positions for the
transitions are separated by a value of (1.5 ± 0.1) GHz. The separations
also differ by approximately 100 MHz. Given the error in our calibration of
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Figure 5.12: Experimental data (blue points) and theoretical spectrum (purple
curve) generated at the value of B corresponding to the value determined using
a single σ+ transition, B = (1.526± 0.53) T. The model used for generating the
theoretical spectrum is that used in chapter 4, while the value of B is determined
using equation 5.4. In the bottom panel, the difference between the experimental
data and the model is shown, with clearly visible dispersion-like features. The
location of these features in regions close to resonance between the laser frequency
and the transitions represents a shift in the position of the experimental absorption
features relative to their theoretical positions. We note that the amplitude of
the features is larger towards the edges of the spectrum, further supporting the
notion that there is a non-linear effect, as well as errors in our calibration, that
remains in our spectrum. This in turn could explain the appearance of two distinct
modes in the histogram of values of B obtained with our magnetometry scheme
(see figure 5.4).
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∼ 3.5% over 120 GHz (see bottom panel of figure 5.8), we see that over this
frequency interval there is an associated uncertainty of ∼ 55 MHz. A visual
representation of this is shown in figure 5.13. Recalling the values of the two
distinct modes in the histogram shown in figure 5.4 (B = (1.534± 0.008) T
and B = (1.542± 0.007) T) we see that this difference in the position of the
transitions and in their separations is consistent with the expected frequency
difference of ∼ 110 MHz. This allows us to be confident in stating that
the bi-modal distribution in our histogram of values for B is a result of the
combined effects of the non-linearity that remains in our spectra as well as
the uncertainties associated to our calibration process.

Improving the precision of measurements made with the optical
magnetometry scheme

As has been seen throughout section 5.3.2, the proposed optical magnetometry
scheme is limited primarily by the precision in the frequency difference
measured. For the results shown with our experimental setup, the precision
available in the frequency measurements is a combination of the non-linearity
of the laser scan and the frequency calibration, as described in appendix B,
and the error in the determination of the line-centres when carrying out the
fits. The effect of the latter is more easily reduced, as it involves increasing
the resolution in the data acquisition process (e.g. increasing the resolution
of the oscilloscope). However, there are also ways in which systematic errors
coming from the laser scan and frequency calibration can be reduced.

One way of reducing the systematic errors due to the laser scan and frequency
calibration could be by making use of commercial wavelength meter to carry
out a direct frequency measurement. These are common pieces of equipment
in most atomic physics laboratories, and state-of-the-art devices can achieve
accurate measurements on the order of MHz 1. These are often the cheapest
option, and offer users a portable and compact solution at the expense of
higher precision measurements. In the case of our scheme this however is not
1e.g. the HighFinesse WS8-2 Wavemeter can achieve 2 MHz accuracy & 200 kHz resolution;
https://www.highfinesse.com/en/wavelengthmeter/wavelengthmeter-ws-8-2.
html
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Figure 5.13: Comparison between the calculated and experimental positions for
the σ+ transitions with origin in the mJ = 1/2 ground state levels. The values for
the calculated and experimental positions, given in table 5.5 for a sample spectrum,
are used as the x and y coordinates, respectively, for each of the points shown. The
broken diagonal represents the case where the calculated and experimental positions
coincide. It can be observed that the first point, corresponding to the position of
the σ+ transition from the |mJ = 1/2,mI = 3/2〉 ground-state energy level, falls
on this line; this is due to the fact that this transition is used to determine a value
for B (equation 5.4) which is then used in our calculation. The dotted lines along
both axes correspond to the calculated positions and serve as a guide to the eye
to highlight the shift in the experimentally determined position of the transitions.
Furthermore, it can be seen that the deviation from the expected values is not
constant, which can be attributed to the remnant non-linearity and calibration
errors in our spectrum discussed previously.
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desirable, as the relative uncertainty in our measurements is of a similar order
of magnitude to those of these devices, as seen in table 5.4. Another possibility
is the use of an optical frequency comb. This has been an increasingly common
option for carrying out precision spectroscopy experiments [184, 185, 186, 187],
as these optical frequency combs can provide a frequency reference with
relative uncertainties of less than 10−11. However, these systems typically
require additional space and specific operating conditions, increasing the
complexity of the experimental system; in addition to this, frequency combs
are difficult to transport, making in situ measurements with this scheme
unlikely. As such, alternative options such as the use of electro-optic frequency
modulators (EOMs) have been explored, with promising applications to atomic
spectroscopy [188, 189, 190, 191]. These devices have the advantage of a
relatively small footprint in the experimental setup, as well as providing a
means to precisely control the modulation via radio-frequency and microwave
electronics.

For the scheme we have proposed, the use of an EOM is a simple and promising
addition to the system that could allow greater precision. Following previously
reported work with these devices [2, 189, 192], we consider the use of an EOM
with a bandwidth of 20 GHz2. This would allow for the laser frequency to
be kept at a fixed point, with modulation sidebands at ±20 GHz generated
to interrogate the transitions of interest; while not large enough for directly
measuring the majority of the frequency differences in our scheme, this would
allow effects from the laser scan and frequency calibration to be simultaneously
removed. For the larger frequency differences, using the second harmonic of
the EOM to allow for additional sidebands (e.g. at ±40 GHz) would give the
necessary light to interrogate all the transition pairs here proposed. Use of
this system could allow for measurements of the required frequency differences
to be made with relative uncertainties of ∼ 10−8, giving our proposed scheme
a greater precision limited in said case by the precision of the ground-state
gyromagnetic ratio gJ . More importantly, this method could also avoid the
non-linearity inherent to the laser scan and provide a means to obtain more
2iXblue Photonics NIR-MPX800-LN-20 https://photonics.ixblue.com/store/
lithium-niobate-electro-optic-modulator/phase-modulators
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statistical weight for improving the precision our measurements. As the laser
would no longer need to be scanned, more spectra could be acquired per
second as the limit on the speed of data acquisition would be the bandwidth
and response time of the electronics used. A simplified diagram of the
experimental implementation of these proposed improvements is shown in
figure 5.14.
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Sideband lock

Rb cell

PDref

PDcell

AOM

Intensity stabilisation

Laser locking
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Figure 5.14: Simplified diagram of the optical layout necessary to implement
the proposed methods for improving the precision of the frequency measurements
in our experiment. In the case of using the commercial wavemeter, the measured
wavelength would be processed electronically in order to generate an error signal
which could then be fed to a PID circuit to control the emission frequency of the
laser throughout the scan; we include here a Rb frequency reference, such as the
one in reference [193], in order to improve the long-term accuracy and stability of
the wavemeter. In the case of using the optical frequency comb, the laser emission
frequency is compared directly to the comb as the former is scanned, allowing
for an absolute frequency calibration, as well as an evaluation of the linearity of
the frequency scan for later removal. In the case of using the EOM, the laser
frequency is kept fixed, while the sidebands generated by the EOM are monitored
via a Pound-Drever-Hall spectroscopy [194, 195, 196] (PDPDH); the resulting signal
would then be fed back to a PID circuit controlling the laser’s frequency. In all
cases, a small portion of the total output light of the laser is used for the equipment
already mentioned while a similar amount is then used to obtain the absorption
spectrum from a natural abundance, room temperature Rb reference cell. We
include here an additional step to stabilise the power going into this reference cell
using an AOM as described in reference [152].
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5.4 Summary

This chapter has presented the theory and the experimental validation of an
optical magnetometry scheme using a thermal vapour of 87Rb. We have used
the Voigt geometry, together with a field strength of ∼ 1.5 T, to measure
the frequency differences between pairs of transitions in order to increase
the precision in the determination of the magnetic field strength. The large
field strength, which allows for the atomic system to operate in the hyperfine
Paschen-Back regime, along with adequate choice of transitions enables us to
have a relative uncertainty of 3.5× 10−2 in our measurement of B. We find
that this uncertainty in our measurement of B is limited primarily by the
accuracy and precision in the determination of the frequencies at which the
transitions occur due to errors in our calibration: we can envision obtaining a
much higher precision in these measurements by using state-of-the-art lasers
and stabilisation techniques, or frequency sidebands generated using stable
references and electronics, which have been shown to provide precision of over
one part in 108. Application of this scheme in other alkali-metal atom vapours
also allows for access to a wider range of field strengths, thus providing
strong support for use of this scheme as an all-optical precision magnetometer
for high fields. In the following chapter we will use the concepts treated
thus far in this thesis to lay out a proposal for the use of thermal atomic
vapours in precision thermometry for the definition of a secondary standard
of fundamental constants.
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Chapter 6

Towards precision thermometry
with a Rb vapour –an all-optical
secondary standard for the
Boltzmann constant

6.1 Introduction

Throughout the years the need for measuring physical quantities precisely has
become a fundamental part of everyday life. From time-keeping [5, 6, 7, 8]
to measurements of distance [197] and mass [198, 199], the evolution of
technologies and advances in research have allowed society to benefit from
unprecedented levels of precision and accuracy. As such, the work of the
international metrological community has expanded to include a wider range
of areas of research. At the global scale this has lead to the 2019 redefinition
of the SI of units by the BIPM [200, 201], which has now given a more
precise definition based on constants to all but one of the fundamental
quantities.

Under the 2019 redefinition of the SI units, the primary and secondary met-
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rological standards used have seen significant changes. No longer are physical
objects, such as platinum-iridium rods and weights [199, 202], required for
the definition of fundamental units. In their place, fundamental constants
–used and measured with extraordinary precision in our time– now serve
as the starting point for the definition of units such as the metre, second
and kilogram, amongst others [201]. While this allows for greater precision
in the units used in common applications, an increasing need for a wider
range of accessible and easily-reproducible measurement standards in order
to accommodate these changes has become apparent. As the focus in now on
maintaining, or in effect increasing, the precision of the measurement of the
fundamental constants, the statistical importance of having different methods
of measuring these constants ensures the associated units in the SI are kept
precisely and accurately defined.

The redefinition of the SI unit of temperature, the Kelvin, in terms of a
fundamental constant was a subtler change than that seen for other units [203,
204]. Regardless, this created a large interest in the standards that could
now be used to precisely measure temperature and, as a consequence, the
associated fundamental constant: Boltzmann’s constant kB. From this call
for variety in the standards used, several approaches involving atom-based
measurements were proposed. In particular, there were several proposals
for the use of atomic/molecular spectroscopy [205, 206, 207, 208] to be
considered. In these proposals of Doppler-broadened thermometry the spectral
lineshape is carefully measured and, by using kinetic theory of gases to
describe the velocity distribution of the atoms/molecules, a value for kBT is
extracted. The extensive experience and excellent precision in spectroscopic
measurements makes these proposals of interest due to their relative ease of
implementation.

The purpose of this chapter is to present work we have done to provide
support for the idea of using atomic spectroscopy as a method for precision
thermometry. We build upon other metrological applications of atom-based
sensors to benefit from the high precision that can be obtained from spectral
measurements. This allows us to conceive two variations of an optical ther-
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mometry scheme, conceptually different to schemes for Doppler-broadened
thermometry. In our first variation, a thermal vapour in the presence of
a strong external magnetic field is probed with a resonant laser beam to
generate a spectrum: the shifts in energy due to the Zeeman effect will have
an effect on the ground-state level populations, which in turn will affect key
spectroscopic properties, such as absorption depth, that can be measured with
precision in the laboratory. With the other physically-relevant parameters
fixed or measured to a high degree of precision, the values measured for the
change in absorption and populations allow for the temperature of the vapour
to be determined by a well-defined relation. Our second variation relies
on observing the effects of a change in the population distribution via the
optical rotation generated in the atomic vapour. In this case, the change in
population is effectively converted into a shift in the position of a zero-crossing
–visible only in the Voigt geometry–, which then allows for the temperature
to be determined using precision frequency measurements. As such, our
proposed technique for precision thermometry could additionally serve as
a secondary standard for the fundamental SI unit of temperature, whereby
the measurement of spectral properties or frequencies with readily available
equipment allows a relation to be established between these properties and
the factor kBT .

6.2 Theory

From the theory presented in chapter 2 we have identified several key physical
parameters in the interaction of an atom with light and an external magnetic
field. Once the geometry for the system has been fixed and a precise value
for the magnetic field strength B has been obtained, the next parameter of
significant physical importance is the temperature T of the atoms. At first
glance, the importance of this parameter is clear: the temperature of the
atoms is related to the mean kinetic energy in the system and consequently
to a given velocity distribution which will determine the magnitude of the
Doppler effect on the detuning of the light interacting with the atoms and on
the broadening of lineshapes (see section 2.1.3). However, the dependence on
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temperature of the interactions goes deeper and affects other aspects of the
physical system.

We recall from section 2.1.2 that, experimentally, we observe the interaction of
an atomic system with external electromagnetic fields via atomic spectroscopy.
As such, the role of temperature T appears implicit in several aspects of
the atomic spectra that will be studied. In the case of work carried out
with a thermal vapour of atoms, T determines the vapour pressure in the
vapour cell, in turn allowing greater absorption and signal-to-noise ratio
(SNR) in the spectra. Upon closer inspection we can see that temperature,
or thermal energy (as given by the factor kBT ), is also present in quantities
such as the strength of the transition and the atomic number density. For
the former of these two quantities, the dependence on temperature is a
consequence of another aspect of the atomic system: the statistical-mechanical
population distribution of atoms in the ground state. We note that while
this aspect is dependent on the thermal energy of the system, it differs from
Doppler-broadened thermometry [205, 206] in that it looks at the distribution
of populations rather than the associated velocity distribution at a given
temperature.

Statistical mechanics tells us that for a set of particles with i discrete energy
levels we can calculate the population of particles in each of these levels
(pi) by taking into account the average energy of the system. This will be
determined by the temperature T of the atoms, and as such can be explicitly
written as [209]

pi =
e−Ei/kBT∑
i e
−Ei/kBT

, (6.1)

where Ei is the energy of the i-th discrete level and kB is the Boltzmann
constant. For the above expression to be valid we note that the system in
question must have reached thermal equilibrium. It is also worth noting
that since the dependence on the temperature is inversely proportional in
the exponent, for a given fixed energy level Ei there will be less population
as T increases; in the limit where kBT � Ei (i.e. when the temperature of

136



Chapter 6. Towards precision thermometry with a Rb vapour –an all-optical
secondary standard for the Boltzmann constant

the system is low or the energy of the level in question is very large), the
population increases up to a maximum value of pi = 1. Furthermore, as we
are assuming that all of the atoms in the system are being considered we
impose the condition that

∑
i pi = 1, which is implict in equation 6.1 in the

form of the normalisation factor in the denominator.

In practice we can easily take into account the populations in the ground-
state energy levels of the atomic species being used. From equation 6.1,
we see that we can write the energy of the ground state level with respect
to the lowest energy of the atomic system. This will be given by solving
the Hamiltonian of the system that considers the atom-light as well as the
magnetic field interaction, as seen in chapter 2 and section 5.2. At this point,
the calculated values of pi for the N = 2(2I + 1) ground-state levels can be
incorporated into the calculations via an effective weight factor that modifies
the strength of the transitions. The implementation of our theoretical model,
ElecSus (see section 2.4), has taken this into account and been experimentally
validated [134].

6.3 Simulations and experimental proposal

We begin by considering 87Rb atoms in a thermal vapour at a given tem-
perature T in the ground state. To this we add an external magnetic field
B of high enough strength such that the atoms are now in the hyperfine
Paschen-Back regime (see section 2.2.1). As we have seen in section 5.2, the
presence of the magnetic field will generate a shift in the energies of the
different levels of the atom due to the Zeeman effect that is proportional to
B (see equations 5.1 and 5.2). This in turn will, according to equation 6.1,
modify the populations in the ground-state energy levels. In the case here
proposed, we known that there are 8 discrete ground-state energy levels for
87Rb (regardless of the presence or strength of B) that must be populated,
and we expect the majority of the atoms to be in these levels at the given
temperature T as they are energetically lower than those in the first excited
state. For other excited states the value of the exponent in equation 6.1
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is even smaller as the energies of these states, with respect to the lowest
ground-state energy, are significantly larger.

6.3.1 Absorption-based thermometry

For experimental purposes it is common to approximate the population in
each of the ground-state levels to be equal, i.e. the total normalised population
of atoms Natoms = 1 is divided by the number N of levels available. In our
system of 87Rb atoms we know that I = 3/2, which gives N = 2(2I + 1) = 8

discrete energy levels in the ground state (see section 2.3.1). As such, the
population of each level can be taken as pi = Natoms/N = 1/8. This typically
provides a good enough approximation to the actual populations in each of
the energy levels so that theoretical models can give reliable predictions of
the experimentally observed behaviour. However, an alternate approach is
to consider a thermal distribution of population in the ground-state energy
levels given by equation 6.1. This change of distribution will generate small
changes in the observed absorption of the medium, as shown in figure 6.1.
We consider these as being the only energy levels populated due to the energy
difference of the optical D-line transitions being on the order of 300 THz,
which is equivalent to approximately 60 times the thermal energy at room
temperature. The result of this is a factor of e−60 ≈ 10−28 attenuating the
populations in the excited states, as calculated by equation 6.1.

The changes in the absorption spectra shown in figure 6.1 as a result of
changing how the ground-state energy levels are populated can be interpreted
as follows. As the population in the ground-state energy levels is redistributed,
the number of atoms participating in each transition changes; the effective
transition strength is thus increased or decreased, giving place to enhancement
or reduction of the absorption of light by the atomic medium. The presence
of an external magnetic field serves to further highlight this effect as the
energy shifts generated by the Zeeman effect contribute to a larger overall
shift of the discrete levels in the ground state. When compared to the thermal
energy of the system (kBT ≈ THz), these shifts are still orders of magnitude
smaller; as a reference, in the case of 87Rb in the hyperfine Paschen-Back
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Figure 6.2: Simple diagram of the effects of a thermal population distribution
on the absorption of light by an atomic medium. Shown at the bottom are the
ground-state and excited-state Zeeman shifted energy levels for an alkali-metal atom
optically excited on the D1 transition. The thermal distribution of population in the
ground-state energy levels, taken as a function of the energy difference ∆E relative
to the lowest level, gives rise to changes in the absorption of the light (top-right)
used to excite the transition as the effective transition strength is changed. The
change in population is given by the exponential term in equation 6.1, which is in
turn a function of the strength of the magnetic field used; this is shown (top-left) for
fields of up to 10 T, at which point the atom is well in the hyperfine Paschen-Back
regime.

regime, the energy difference of the optical D-line transitions is on the order
of 300 THz and the Zeeman energy shifts are on the order of tens of GHz.
Despite this difference of several orders of magnitude, the contribution to the
energy shifts from the Zeeman effect is still visible in the form of a gradient
in the difference in absorption within each of the multiplets, as a result of
the dependence on mI in equation 5.2. A simplified diagram of the above
interpretation can be seen in figure 6.2 for the simpler structure of the D1

line in an alkali-metal atom (see section 2.3 for details).

Using the concepts described above we can propose a scheme for precision
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thermometry using atoms in an external magnetic field. The approximation
of thermally-distributed populations leads to a natural method for this as a
result of the exponent in equation 6.1, which relies both on the energy, in itself
a function of the field strength B, of the ground-state levels (Ei ≡ Ei(B)),
and temperature T of the atomic medium. To do this, we consider an atomic
absorption spectrum where the total light transmitted for a given detuning,
which will correspond to a transition between a particular ground-state and an
excited-state energy level (i.e. an absorption feature), is carefully measured;
the choice of the transition, or of pairs of transitions, allows for finding the
greatest difference in the absorption relative to the case of an equal distribution
of populations while simultaneously providing a way of measuring the field
strength. Here we note that a precise measurement of the field strength B,
using methods such as those proposed in chapter 5, in this scenario provides a
means for the precise measurement of T as this allows for greater precision in
the determination of the ground-state energies. Experimentally this scheme
requires for spectra to be acquired with a very high signal-to-noise ratio
(SNR) or to be acquired using a very strong (> 1 T) magnetic field in order
to create greater contrast between the equally and thermally populated cases.
Fulfilling one, or both, of these requirements then allows for the amount of
light absorbed by the distribution of populations in the ground state to be
precisely measured, even if the changes are small; the determination of T is
then done by relating this change in absorption with the factor Ei(B)/kBT

seen in equation 6.1.

In figures 6.3 and 6.4 we can see the calculated changes to the absorption
(S0) spectra at field strengths of 0.4 T and 8 T, respectively. In both cases we
have assumed there is no buffer gas content in the vapour cell that could lead
to discrepancies in our calculations (see Appendix A for details). Under these
conditions, the maximum energy shift due to the Zeeman effect (measured with
respect to the lowest ground-state energy level) is on the order of ∼ 15 GHz
and ∼ 250 GHz, respectively. When compared to the thermal energy of
the system, kBT ≈ 4.9 × 10−21 J (∼ 7.4 THz), these shifts are at least one
order of magnitude smaller. Despite this, the difference in population induced
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in the ground state from equation 6.1 is within experimentally measurable
limits, albeit with some challenges. For the spectrum at 0.4 T, the maximum
absorption difference observed in the spectrum is ∼ 0.025%; at 8 T, this
value is two orders of magnitude larger, ∼ 0.5%. These two values, in turn,
correspond to a change in population of ∼ 0.2% and ∼ 2.5%, respectively.

It must be noted at this point that the above proposal makes two important
assumptions. First, we are assuming that the thermal population distribution
is reached when the system is in thermal equilibrium. This is important in
ensuring that we can define an average temperature for the atomic system
with certainty, and to omit any effects on the distribution arising from the
dynamics of the system [210]. In particular, we assume that the ground-state
thermalisation is carried out by collisions between 87Rb atoms and other
atoms/molecules (87Rb or buffer gas) in, as well as with the walls of, our
experimental vapour cell on a timescale of ∼ 10 ms [55]. We note that
additional non-thermal effects, such as optical and hyperfine pumping [211],
can be largely avoided by working at low values of the saturation parameter
of the system, although their effect can be taken into account when modelling
the absorption in the atomic system [75].

The second assumption made is that the spin-states of the atomic vapour
are also in equilibrium with the walls of the cell. Previous work in thermal
vapours [52, 105, 212, 213, 214] has shown that collisions between the atoms
and the container walls can lead to depolarisation of the system’s spin state;
the cross-section for these spin-exchange collisions are typically on the order
of 10−14cm2 [55, 106]. This has lead to great interest in coatings for container
walls that help reduce the depolarisation of the medium to levels where it
does not significantly affect the measurements that depend on addressing
specific spin states [53, 54, 215, 216, 217]. In this case, as we consider the
system to be in thermal equilibrium, the collisions between the atoms and
walls of our cell are assumed to lead to an equilibrium state for the overall
spin state of the vapour.
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6.3.2 Optical-rotation-based thermometry

We can also consider a case where neither of the above mentioned requirements
(i.e. a high SNR for the spectra or a very strong magnetic field) are available.
To continue being able to make a precision measurement of the temperature T
of the atomic vapour we must now consider the use of additional information,
or of a different scheme, that does not rely on measuring small changes in the
absorption. In particular, we will look at using the Voigt geometry to access
the π transitions, allowing for additional features to appear in the optical
measurements we make.

Whilst being amongst the easiest spectroscopic techniques to implement,
absorption spectroscopy does not take advantage of all of the available
information in the experimental system, some of which is more sensitive
to small changes in the medium and can provide signals to measure said
changes. An example of this is the loss of distinction of different polarisation
components of the light used to excite the atoms, as the absorption can be
described by the polarisation-basis-independent Stokes parameter S0 (see
section 2.1.4). In contrast, we know that polarisation sensitive detection
techniques and the remaining Stokes parameters (see section 4.2 for their
definitions) are sensitive to small changes such as the birefringence of the
vapour cell windows, as shown in section 4.3.2, and optical rotation effects [52,
79, 95, 218]. Furthermore, there is a strong tradition in atomic physics of using
optical rotation signals for the purpose of investigations into fundamental
physics [3, 171, 219, 220, 221].

As before, we take the example of a thermal vapour of 87Rb in an external
magnetic field of strength large enough such that the atomic energy levels
are in the hyperfine Paschen-Back regime. However, rather than measuring
the change in populations in terms of a change in the absorption we now
consider using another of the Stokes parameters in order to take advantage of
additional information on the medium and increased sensitivity. While the
effect of changing the ground state populations is small in a spectrum of S0,
the changes in population have a noticeable effect on a spectrum of S3 (see
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section 2.1.4); this effect will now be measured in terms of the differences
in the atomic medium’s response as given by the optical rotation due to
birefringence, thus being more sensitive to small changes in the internal
conditions of the medium, as seen in section 4.3.2, than the absorption. We
can thus consider the use of the S3 spectrum to determine the population
difference in the ground state by looking at the zero crossings in the spectrum,
particularly between groups of transitions, as seen in figure 6.5.

From figure 6.5 we see clearly the advantage of using the S3 spectrum to
measure ground state population differences for a 87Rb vapour sample at
T = 100◦C and B = 1.5 T. Whereas in figures 6.3 and 6.4 the difference is in
the depth of the absorption feature, in figure 6.5 the difference is now in the
position of the zero-crossing highlighted in blue. It is important to note that
the highlighted feature in the S3 spectrum appears between the multiplets
corresponding to π transitions; these are only observed when working in the
Voigt geometry, as seen in chapters 4 and 5.

In this case, the maximum energy shift of the ground-state energy levels is of
the order of ∼ 50 GHz. While the corresponding difference in the absorption
observed is ∼ 1%, the difference in the position of the zero-crossing, shown in
the bottom panel of figure 6.5, is∼ 20 MHz. Current state-of-the-art frequency
standards are commercially available that can easily measure values of this
order of magnitude to a precision of > 109 [193]. Furthermore, by measuring
a frequency shift (i.e. a difference in frequency relative to a reference point)
systematic effects in the acquisition of the spectrum can be reduced and thus
contribute to an increased precision in subsequent measurements [155].

As previously mentioned we will be working in the hyperfine Paschen-Back
regime, and as such will require precise measurement of the field strength
B. This can be accomplished using the magnetometry scheme described in
chapter 5, which we have seen provides a relative uncertainty of ∼ 3.5 ×
10−2, limited by the precision to which the frequency difference between two
transitions is measured; methods for improving this limit, such as the use of
a frequency comb or an EOM, have been previously discussed in section 5.3.2.
Assuming the errors in our frequency calibration (∼ 3.5%) will be the primary
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source of uncertainty in our measurement of the temperature T , we find that
this is greater to the uncertainty of other proposed methods of atom-based
thermometry [205]. As such, we can expect a relative uncertainty in the
measurement of the temperature of the atomic system of ≈ 3.5× 10−2 with
experimental conditions similar to those used in chapters 4 and 5; values for
a rough uncertainty budget are shown in table 6.1.

It is worth noting here that, similar to other polarisation-sensitive spectro-
scopic schemes (e.g. polarisation spectroscopy or DAVLL), the polarisation
purity and residual dichroism/birefringence of the optical system [222, 223,
224, 225, 226] play an important role in optimisation of the zero-crossing in
the S3 spectra. In addition to this, because the position of the zero-crossing
is off-resonant by > 1 GHz to the atomic transitions (in this case, π trans-
itions) it is reasonable to expect the scheme we propose in this section will
be sensitive to the residual dichroism/birefringence. Under similar experi-
mental conditions to those discussed in chapter 4, including an additional
birefringence of 1 mrad (e.g. from cell windows) would generate a shift of
∼ 35 MHz in the position of the zero-crossing and a change of ∼ 4× 10−8 in
the slope of the S3 signal. Effects of birefringence on the order of 10−8 rad
have been experimentally measured using atomic spectroscopy in reference
[168]; at this level, the effects on the position and slope of the zero-crossing
are negligible. We will thus assume a high (> 400 : 1) polarisation purity in
the system, together with stabilisation of the beam power via an AOM [152],
to reduce the effect of polarisation fluctuations on the S3 spectrum, as well as
the ability to compensate the small birefringent effects of optics via optical
elements or the addition of terms using the Jones matrix formalism into our
theoretical model. A more detailed analysis of these effects is beyond the
scope of this work, but would prove necessary for implementing the scheme
we propose in a metrological context.

An additional advantage of using S3 rather than S0 spectra is the fact that
the zero-crossing of the former provides additional sensitivity to small changes.
This is due to the fact that in the Voigt geometry the separation between
the π multiplets is smaller than that of the σ± multiplets, allowing for
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Quantity (units) Value Uncertainty Relative
uncertainty

Bohr magneton µB

(Hz/T) 13,996,244,936.1 4.2 3× 10−10

87Rb ground state
gJ (a.u.) 2.00233113 2× 10−7 1× 10−7

87Rb ground state
hyperfine constant
AHF (Hz/2π)

3,417,341,305.452145 4.5× 10−8 1× 10−14

Frequency
difference between

transitions
∆Eσ+↔π (Hz)

48, 026× 106 3.4× 106 7.2× 10−5

Calibration error in
frequency interval
σ∆Eσ+↔π

(Hz)
1, 681× 106 1.2× 105 3.5× 10−2

Magnetic field
strength B (T) 1.531 5.4× 10−2 3.5× 10−2

Boltzmann
constant kB (J/K) 1.380649× 10−23 (exact) (exact)

Frequency shift of
zero-crossing (Hz) 21,394,139 0.02 9.3× 10−10

Calibration error in
position of

zero-crossing (Hz)
748,795 7× 10−4 3.5× 10−2

Temperature T (K) 353.15 1.24× 101 3.5× 10−2

Table 6.1: Uncertainty budget for the determination of temperature using the
proposed thermometry scheme based on optical rotation. The quantities involved
in the calculation of the value for T , along with their values, uncertainties and
relative uncertainties, are shown. At the bottom, the calculated value of T and its
uncertainty is shown. Data for µB, gJ , kB and AHF are taken from [182, 183], [119]
and [141], respectively. The value of ∆Eσ+↔π is taken from an absorption spectra in
order to determine the field strength as outlined in chapter 5. The precision in the
measurement of B is limited by the precision available in the determination of the
frequency difference ∆Eσ+↔π, which in this case contributes a relative uncertainty
of ∼ 3.5× 10−2 to our calculations. This is due to the associated error over this
frequency interval due to errors in our calibration procedure. This is then the limiting
factor in the precision to which we can obtain the temperature of the system, via the
relation established in equation 6.1, under the assumption that the frequency shift
of the zero-crossing is measured using a commercially available 10 MHz frequency
reference and additional RF electronic components [193]. Methods to increase the
precision in the measurement of B are discussed in detail in section 5.3.2.
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Figure 6.6: Numerical simulations of the position of the main zero-crossing in the
S3 spectrum of a thermal vapour of 87Rb atoms at a fixed temperature of T = 120◦C
as a function of field strength B, from 1.2 T up to 10 T. This range of values was
chosen as the zero-crossing is clearly visible and has no overlap with the atomic
resonances. The position of the zero-crossing is calculated for the equally-populated
case (light blue curve) and the thermally-populated case (blue curve). Also shown
is the slope (red curve), calculated using a distance of ±200 MHz around the zero-
crossing, as a function of B. We can see there is a clear difference in the behaviour
of the position of the zero-crossing under the equally- and thermally-populated
cases, with the former increasing as a function of B while the latter slowly increases
before then decreasing as the value of B increases. Furthermore, we see how the
slope of the zero-crossing, useful in precise determination of the position of this
feature, decreases rapidly as a function of B.

the appearance of the well-defined zero-crossing in the S3 spectra shown
in figure 6.5. In particular, not only can we consider the position of the
zero-crossing but we can also look at the slope of the signal around this point
as an indicator of any changes in the ground state population distribution.
We can calculate both of these measurable quantities as a function of field
strength B and temperature T , as shown in figures 6.6 and 6.7, respectively,
to see their dependence on these parameters. It is also convenient to calculate
the quantities for the case of equally populated ground-state energy levels, so
as to be able to have a reference and compare. This provides a method to
discriminate the changes in population due to the assumption of a thermal
distribution from other systematic effects in the system.
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From figure 6.6 we can see that the detuning of the zero-crossing as a function
of field strength B has a noticeably different behaviour when considering a
equal (light blue curve) or a thermal (blue curve) distribution of the ground-
state populations. We also see that the slope of the zero-crossing has a rapidly
decreasing behaviour as B increases. As such, we see that the sensitivity in
the measurement of the position of the zero-crossing can be optimised by
choosing a value of B where the slope is greater and the difference in detuning
between the two population distributions is greatest. In the calculations
shown, this occurs at field strengths of ∼ 2 T, suggesting that it is possible to
carry out the thermometry scheme in fields readily available with permanent
magnets.

In figure 6.7 we see the detuning of the zero-crossing as a function of tem-
perature T , along with the slope of of the signal around the zero-crossing.
The equally-populated ground-state energy levels give place to a zero-crossing
whose position decreases as T increases; we know this is a result of the in-
crease of optical depth of the atomic medium which also broadens the spectral
features as a result of collisions. This increase in optical depth and broadening
of the features is also present in the thermally-populated case, yet the position
of the zero-crossing increases up to a critical temperature (T ≈ 160◦C) before
decreasing. In addition to this, we see that the slope of the signal around the
zero-crossing increases as a function of T . Together with the behaviour of the
position of the zero-crossing, this allows us to determine an optimal value of
T (T ≈ 100◦C) around which to operate our scheme with greater sensitivity
to the changes in the ground-state population distribution.

From the above we can proceed to consider a set of optimised operating
conditions for our thermometry scheme based on S3 spectra. Ideally we want
to work with an alkali-metal atom, as the vapour pressure at room temperature
is sufficient to carry out spectroscopic measurements. In addition to this,
the alkali metals with smaller values of nuclear angular momentum I may
have the highest sensitivity as their structure in the hyperfine Paschen-Back
regime could be better resolved; this singles out 23Na or 87Rb as the most
convenient choices. Taking atoms of 87Rb as our species of choice, we want to
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Figure 6.7: Numerical simulations of the position of the main zero-crossing
in the S3 spectrum of a thermal vapour of 87Rb atoms at a fixed field strength
of B = 1.54 T as a function of temperature T , from 60◦C to 180◦C. This range
of values was chosen based on the typical operating temperatures for optically-
bonded cells and on the optical depth of the atomic medium. The position of the
zero-crossing is calculated for the equally-populated case (light blue curve) and
the thermally-populated case (blue curve). Also shown is the slope (red curve),
calculated using a distance of ±200 MHz around the zero-crossing, as a function
of T . We see that while the position of the zero-crossing in the equally-populated
case decreases as T increases, for the thermally-populated case the position of the
zero-crossing increases as T increases until a critical temperature of T ≈ 160◦C, at
which point it decreases. This is take to be the point at which the optical depth of
the atomic medium and additional collisions that broaden the spectral features are
dominant. We can also observe how the slope of the zero-crossing increases as a
function of T , which allows us to determine an operating value of T at which we
can obtain greater sensitivity and precision in our measurements.
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be able to precisely measure the energy of the ground-state levels working at
field strengths of ∼ 2 T and temperatures close to 100◦C. This will provide a
large value for the slope, with which we can better resolve the position of the
zero-crossing, as well as being more sensitive to fluctuations in temperature.
Taking all of these factors into account, as well as increases in the precision
of the frequency measurements taken, we can consider the precision in the
temperature resulting from measurements in these conditions. A speculative
uncertainty budget is shown in table 6.2 to provide a quantitative outlook of
our optimised scheme.
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Quantity (units) Value Uncertainty Relative
uncertainty

Bohr magneton µB

(Hz/T) 13,996,244,936.1 4.2 3× 10−10

87Rb ground state
gJ (a.u.) 2.00233113 2× 10−7 1× 10−7

87Rb ground state
hyperfine constant
AHF (Hz/2π)

3,417,341,305.452145 4.5× 10−8 1× 10−14

Frequency
difference between

transitions
∆Eσ+↔π (Hz)

61, 321× 106 1× 105 1.6× 10−6

Calibration error in
frequency interval
σ∆Eσ+↔π

(Hz)
920× 106 1.5× 103 1.5× 10−2

Magnetic field
strength B (T) 2 3× 10−2 1.5× 10−2

Boltzmann
constant kB (J/K) 1.380649× 10−23 (exact) (exact)

Frequency shift of
zero-crossing (Hz) 40,948,094 0.02 4.8× 10−10

Calibration error in
position of

zero-crossing (Hz)
614,221 3× 10−4 1.5× 10−2

Temperature T (K) 373.15 5.6 1.5× 10−2

Table 6.2: Uncertainty budget for the determination of temperature using the
proposed thermometry scheme, based on optical rotation, under optimised experi-
mental conditions. The quantities involved in the calculation of the value for T ,
via equation 6.1, along with their values, uncertainties and relative uncertainties,
are shown. At the bottom, the calculated value of T and its uncertainty is shown.
Data for µB, gJ , kB and AHF are taken from [182, 183], [119] and [141], respectively.
The precision in the measurement of B is limited by the precision available in
the determination of the frequency difference ∆Eσ+↔π, assumed here to be the
calculated value between the pair of π, σ+ transitions used in the scheme shown in
chapter 5. This is due tothe associated error over this frequency interval due to
errors in our calibration procedure, which we assume is optimised to an amount
similar to that reported in chapter 3 of 1.5%. The frequency shift of the zero
crossing is assumed to be acquired using a commercially-available 10 MHz frequency
reference providing a measurement accuracy of 10−9 [193], and for the frequency
difference ∆Eσ+↔π to be obtained using the optimised experimental setup described
in section 5.3.2. Under these conditions, the limiting factor in the precision of our
temperature remains the error in the calibration of our frequency axis, but with an
increase in precision by an order of magnitude when compared to the unoptimised
case. 154
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6.3.3 Comparison of proposed thermometry schemes

The optical thermometry schemes presented in sections 6.3.1 and 6.3.2 each
offer advantages over conventional thermometry schemes. However, between
the two schemes there are also certain aspects that prove to be advantageous
in the context of traditional precision measurement techniques in atomic
physics. A brief summary of both schemes, together with the points in favour
of or against them, will be given in this section.

The variant of the thermometry scheme presented in section 6.3.1 is based on
being able to measure changes in populations from absorption (S0) spectra.
In this case, the change in the absorption depth is the indicative feature of
the change in population. Experimental measurements of these depths can
then be compared to those obtained using an equally-distributed population
in order to obtain a value of T via the relation in equation 6.1. This requires
very good signal-to-noise ratios in the spectra taken, as well as reducing
systematics that could alter the depth or shape of the absorption features.
Despite this, the change in populations is a function of the field strength B:
a bigger field will generate a larger Zeeman shift in the ground state and, as
a consequence, a more significant difference in the populations of the levels
in this state. As such, the use of even larger magnets, including those at
international facilities, for the experimental setup may be necessary.

On the other hand, the thermometry scheme presented in section 6.3.2 relies
on close observation of a particular feature in optical rotation spectra, as
given by the S3 Stokes parameter. The feature, a zero-crossing between the
two π transition multiplets, occurs due to the experiment happening in the
Voigt geometry. Here, the change in population of ground-state energy levels
causes a distinctive change in the position and slope of the zero-crossing to
that caused by the assumption of equally-populated levels. We have shown
that these changes can be more easily distinguished at conditions readily
accessible in the laboratory; field strengths of B ∼ 2 T can be obtained with
permanent magnets and the shift, on the order of 20 MHz, can be measured
precisely using commercially available RF electronic equipment. Both of these
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points allow for the precision of the scheme to be easily improved, as discussed
in the improvements to our magnetometry scheme in chapter 5, or by using
higher precision frequency counters. All together, this optical-rotation-based
thermometry scheme is more compatible with the state-of-the-art techniques
used in precision metrology with atom-based systems.

6.4 Summary

We have presented a proposal to carry out precision thermometry using optical
measurements with an atomic vapour. In particular, our thermometry scheme
relies on the atomic vapour, in our case 87Rb, being in the presence of a
large magnetic field. This allows for the ground state populations to slightly
change due to the Zeeman effect; these changes can then be measured from
the atomic spectra as changes in absorption depth or shifts in the frequencies
of features of interest on the spectra. The features used in the latter case are
characteristic of spectra taken in the Voigt geometry, as they are present due
to excitation of π transitions in the atoms. Our initial numerical calculations
show that for readily obtainable experimental configurations our scheme
could measure these changes at precisions of better than 10−2 (perspectives
for achieving even higher precision are also briefly mentioned). As such,
the precision offered by our scheme is on par with other state-of-the-art
techniques. Building upon other work presented in this thesis, we propose
that this scheme can potentially serve as an all-optical atomic standard for
the Boltzmann constant, kB, that is amenable to metrology and research labs
worldwide.
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Chapter 7

Conclusions and outlook

7.1 Summary

In this work we have looked at magneto-optical phenomena occurring in
a 87Rb thermal vapour in the Voigt geometry and at large magnetic fields.
This particular geometric configuration allows us to take advantage of the
decoupling of angular momenta in the atom to operate in the hyperfine
Paschen-Back (HPB) regime, with the ability to address both π and σ±

transitions. Under these conditions, spectroscopic studies, such as those using
the full set of Stokes parameters, can be carried out without the thermal
broadening, common in atomic vapour spectroscopy, being a concern. We
have taken advantage of this to refine our understanding of atomic spectra
in the HPB regime in the Voigt geometry and to propose applications of
these atomic systems in areas such as large-field vector magnetometry and
thermometry.

In chapter 3 we presented experiments realised with a thermal vapour of
87Rb atoms at 0.4 T in the Voigt geometry. Although not fully in the HPB
regime, as defined in section 2.3.1, the atomic vapour at this field strength
presented features that were in excellent agreement with our theoretical model;
we varied the field strength up to 0.4 T and the geometry of our system to
further validate this model. This allowed a determination not only of the
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field strength, with precision comparable to commercial systems, but also of
the relative direction of the field with respect to the laser beam used to probe
the atoms.

In chapter 4 we conducted spectroscopic studies of a vapour of 87Rb atoms at
1.5 T in the Voigt geometry by measuring the complete set of Stokes paramet-
ers, defined in section 2.1.4. The larger value of field strength here allowed
for individual features on the atomic spectra to be resolved, irrespective of
the broadening in the lineshape due to the thermal nature of the vapour.
Furthermore, use of the polarisation-basis dependent Stokes parameters (S1,
S2 and S3) allowed us to obtain additional information on the rotation of
light through the atomic medium; we make additional use the S3 spectrum
to determine other systematic sources of birefringence, such as the vapour
cell windows. We found very good agreement between our experiments and
the theoretical model developed, further validating the use of atom-based
large-field vector magnetometers.

In chapter 5 we expanded our study of thermal 87Rb atoms by considering
their use as a large-field optical magnetometer. In this case rather than using
our theoretical model to fit the spectrum itself, we took advantage of the
Zeeman induced energy shifts to create a measurement scheme that provides
greater precision. We did this by measuring the relative frequency difference
between two transitions, one π and one σ+. We demonstrated that in our
experimental conditions, we obtained a relative uncertainty of ∼ 3.5× 10−2

in the measurement of the field strength, limited primarily by the precision
in our frequency measurements and our calibration error.

Finally, in chapter 6 we proposed the use of 87Rb atoms in a thermal vapour
for precision thermometry. We considered the case of using both absorption
and optical rotation spectra, S0 and S3, respectively, to look at the change in
populations in the ground-state energy levels. From numerical simulations
we saw that S0 spectra show these changes as reductions/enhancements of
the absorption of light through the medium, while S3 spectra showed them
as shifts in the position of zero-crossings on the spectra. The zero-crossings
of interest in the S3 spectra come about as a result of the Voigt geometry,
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which allows for π transitions to be excited in the atoms. This provides a
way of clearly and precisely measuring the temperature of the vapour, limited
once again by the precision in the measurement of frequencies.

In a time where increasing the precision of measurements has become ne-
cessary, and the associated experimental apparatus grows in complexity,
atom-base sensors are an affordable, compact and accessible way to carry out
measurements in a wide range of environments. With the results from the
experimental investigations carried out we show that working with atomic
vapours in the HPB regime as well as in the Voigt geometry provides a new
set of tools that expands the understanding of atom-light interactions in
an external magnetic field. The ability to address all of the dipole-allowed
atomic transitions (i.e. π and σ±) via selection of the polarisation of the
probe beam provides a greater number of features that serve to enhance
the statistical precision of a number of measurements. It also provides the
means with which to observe a wider range of magneto-optical phenomena.
Furthermore, the atomic system used can be quickly and accurately mod-
elled due to the ability to select different types of transitions while in the
HPB regime. This serves as a complement to previous work done in this re-
gime [24, 59, 60, 89, 112, 227, 228, 229], where now the geometrical dependence
of the system allows for new ways of observing magneto-optical phenomena
and for innovative technological applications to be envisioned [230, 231]. In
particular, the work presented here demonstrates the use of atom-based
sensors for large magnetic fields with equipment that is easily accessible to
both research and teaching laboratories.

7.2 Outlook

This thesis has presented work that covers a little studied combination of
factors, and is thus by no means an exhaustive and definitive study of the
interaction between atoms, light and external magnetic fields under the
conditions here presented. As such, there still remains a range of possible
lines of research both in fundamental and applied areas that take advantage
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of atomic systems in the hyperfine Paschen-Back regime, configured in the
Voigt geometry. In this section we will briefly mention some of the more
immediate applications, and present some ideas that may help guide future
work.

In our investigation of a 87Rb thermal vapour at a field strength of 0.4 T
we compared the results of our atom-based measurements to that of a com-
mercial Hall probe sensor. From this comparison we found that our atomic
system was able to provide equally-accurate and precise measurements of the
magnetic field strength while also providing information regarding the relative
orientation of the field with respect to the laser beam. As such, a natural
area of application for these systems is atom-based vector magnetometry.
The use of an atomic system would provide two dimensional resolution of the
field geometry, as well as being able to operate over a much wider range of
strengths than typical magnetometers: the model developed and tested in our
work also provides a means to study field gradients [134]. Furthermore, use of
atom-based sensors provides the possibility of real-time optical measurements
of magnetic fields with a reduced equipment footprint.

At a higher field strength of 1.5 T we were able to further expand on the
idea of using an atomic vapour as a precision magnetometer. This was
done by showing the results of a polarimetric study of the light transmitted
through the vapour, with the Stokes parameters as the measurement basis
of choice, and by using the analytic expression for the energy shifts to find
pairs of transitions that would enable high-precision readings of the field
strength. Of particular interest is the ability of the optical rotation signals to
provide a sensitive measurement of other experimental sources of birefringence,
such as that of the vapour cell windows. A vapour of 87Rb atoms like the
one used in our investigation could have potential use in measuring the
birefringence of other materials in the presence of large (> 1 T) magnetic
fields, as well as being a viable system for operating in such environments
under more restrictive geometrical considerations. This could provide a means
for real-time monitoring and optimisation of large magnetic fields with optical
feedback, which could potentially be automated for ease-of-use.
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Another point of interest is the precision magnetometry: here we used the
rubidium D2 line, but a similar experiment could well be carried out using
the rubidium D1 line or on a transition to a second excited state, as seen in
recent work [232]. In the case of using the D1 line the resulting spectra would
have a simpler structure that could help to further increase the precision
of the measurements. Use of a second excited state would not only allow
for different sensitivities to the magnetic field to be accessed, but using
the magnetometry scheme proposed in chapter 5 could also provide a way
to better determine the gyromagnetic factors. The latter application is of
special interest for precision spectroscopic measurements, such as those used
in optical clock transitions or ion-based quantum logic systems [180, 181] as
this could allow for more precise and reliable operation of state-of-the-art
equipment. In addition to this, the limits of precision of our scheme – namely
the precision of the frequency differences measured – can easily be overcome
by use of a wavementer, an optical frequency comb or high-bandwidth electro-
optic modulators (EOM). The use of commercially available modulators 1

together with a stable, low-noise laser and electronics for second-harmonic
generation would be a relatively simple way of obtaining precisions of well
over 1 p.p.m.

As discussed in chapter 6, another exciting and promising application of
atomic vapours in large magnetic fields is the field of precision thermometry.
Our work was partially limited by the availability of larger magnetic fields
(> 1.5 T) with which to test the ideas proposed, but we are confident this
line of work can be further developed in the near future. By taking advantage
of the simplification of the theoretical model provided by working in the HPB
regime, one can envision precision thermometry carried out in a “clean” two-
level system. Doing this would allow for more sophisticated theoretical models
that incorporate the quantum details of the system to be used, together with
a reduced number of systematic errors that would be necessary to take into

1e.g. iXblue Photonics NIR-MPX800-LN-20 https://photonics.ixblue.com/store/
lithium-niobate-electro-optic-modulator/phase-modulators or QUBIG
PM11-NIR https://www.qubig.com/products/electro-optic-modulators-230/
phase-modulators/pm11-nir.html
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account.

This work has demonstrated some of the advantages of detailed spectroscopic
studies of thermal atomic vapours. Our choice of operating in the Voigt
geometry, in large field strengths and with a particular atomic species (87Rb)
is one of many possible systems for studying atom-light interactions in the
presence of external fields. We hope that this rekindles the interest in carrying
out “simple” spectroscopy experiments and for ongoing efforts in application of
this knowledge to real-world problems. For the time being, world-domination
by atoms, lasers and magnets has just begun, one sphere at a time.
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Appendix A

Characterisation of MEMS
vapour cells

For most of the applications of atomic vapours mentioned in previous chapters
a fundamental component is the vapour cell in which the atoms are contained
and the measurements are carried out. Over the past decades the develop-
ment of techniques for the manufacture of these cells has greatly expanded.
Current techniques allow for the manufacture of cells of varying sizes and
geometries, with cavities smaller than centimetres possible [31, 169, 233, 234].
This, together with the development and availability of equipment for micro-
manufacturing, has allowed for vapour cells to be incorporated into the
catalogue of micro-electro-mechanical systems (MEMS) [91, 235, 236].

The work presented details the use of two MEMS 87Rb vapour cells 1 in an
absorption spectroscopy setup for exciting the D2 line in order to characterise
their atomic/optical properties. In particular, spectroscopic measurements
allow for a non-destructive characterisation of the cell contents to be made.
This is possible due to the well-known effects of additional trapped gases
in the cells [57, 237, 238], placed there deliberately or as a consequence of
the manufacturing process, on the lineshapes of the atomic transitions; an
overview of the most common such gases, and their effects, can be seen
1Fabricated by CSEM, http://csem.ch
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Buffer gas GBuf

(MHz/torr)
dBuf

(MHz/torr)
He 20.0 +0.37
Ne 9.47 -2.44
Ar 17.7 -5.76
Kr 17.2 -5.50
Xe 17.8 -6.19
N2 18.3 -5.79

Table A.1: Coefficients for broadening (GBuf) and shifts (dBuf) due to common
buffer gases in Rb vapour cells. The values presented here correspond to the Rb D2
line, but a similar table can be constructed with values corresponding to the D1
line [57].

in table A.1. Together with the ability to micro-fabricate cells, this has
proven to be of interest in applications where control of atomic diffusion
and collisions [239, 240, 241] is important, as well as in the development of
miniature atomic clocks [29, 242].

Using a theoretical model to fit the spectra obtained allows these effects to
be quantified, which in turn allows the contents of the cell to be determined
in a relatively straight-forward manner. For this, we will use the open-source
software ElecSus [134, 141], details of which were discussed in chapter 2. We
note that ElecSus has not been previously used in atomic vapours where
the broadening due to buffer gases is on the order of, or larger than, the
Doppler width of the D-line transitions; the investigation presented serves as
a validation of the model under these conditions and is of relevance to the
results presented in chapters 3, 4 and 5.

Section A.1 will provide an overview of the experimental setup used in
acquisition of the spectra. Samples of these results, as well as some discussions
centred around them, are then provided in section A.2.
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A.1 Experimental setup

The experimental setup used is shown in figure A.1. A distributed feedback
(DFB) laser tuned to the Rb D2 line was used to excite the atoms in the
MEMS cell. The laser frequency was scanned by slowly (∼ 1 Hz) varying
the diode temperature using a function generator to change the set point
of a commercial temperature controller 2. To protect the diode from stray
retroreflected light an optical isolator (OI) was placed along the beam path.
A portion of the light from the main beam was then taken using a half-
wavelength retarder plate (λ/2) and polarising beam splitter (PBS) to be
used in a reference 75 mm cell and an etalon (PD1 & PD2, respectively) to
generate a frequency calibration for the spectra. The reference cell contained
natural abundance Rb and was left at room temperature. All spectra were
taken in the weak-probe regime [51, 72] to avoid distortions to the lineshape
that could affect the frequency calibration or fit accuracy.

The remaining light from the main beam was then used in the characterisation
of the MEMS cell by looking at the absorption of light by the atomic sample
(PD3) and using our theory model, the publicly available software ElecSus [134,
141], to fit the resulting spectra. Data to characterise the MEMS cells was
taken without an external magnetic field first and then placed in a magnetic
field, generated by rare-earth permanent magnets, in the Faraday configuration
(k ‖ B) with the intention of further testing the validity of ElecSus in a strongly
pressure-broadened atomic vapour. The strength of the magnetic field was
set by adjusting the separation between the magnets.

The MEMS cell was mounted in a custom-made copper block and PTFE
enclosure that allows for temperature stability and optical access. Passive
control of the temperature was achieved via a commercial heating element 3

and a thermistor to monitor the temperature changes. The laser beam was
focused in order to pass through the available optical access in the design
of the PTFE and copper block, as well as to avoid any clipping with the

2Thorlabs TED200C Temperature Controller
3Thorlabs HT15W Cartridge Heater
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Figure A.1: A distributed feedback (DFB) laser was used to tune the Rb D2
transition in both the MEMS cell and a 75mm reference cell. Light transmitted
through the MEMS cell was collected using a commercial photodiode. A secondary
beam illuminating the reference cell was used, along with an etalon, to generate
a frequency reference for the absorption spectra taken. OI: optical isolator, PBS:
polarising beam splitter, M: mirror, L: lens, PD: photodiode.

walls of the cell cavity. Upon exiting the cell, the light was collimated onto a
photodiode (PD3) and a signal was recorded as a function of the frequency
scan of the laser.

A.2 Results and discussion

Typical spectra of the absorption signals obtained with the two MEMS cells
provided, hereafter referred to by their manufacturer IDs, H12 and H20, are
shown in figure A.2 and A.3 as functions of linear detuning, respectively,
along with sample fits carried out using ElecSus. The fits were carried out
leaving only three free parameters: the number density of Rb atoms (i.e. the
temperature T of the gas), additional Lorentzian broadening ΓBuf and line-
centre shifts δBuf due to buffer gas in the cell. All other parameters remained
constrained to the theoretical model used and to the experimental conditions.
For the spectra shown in figure A.3 the fit gives T = (62.89 ± 0.03)◦C,
ΓBuf = (2550± 11) MHz and δBuf = (−642± 4) MHz. For the spectra shown
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Figure A.2: Sample absorption spectrum using MEMS cell H12. In the top panel,
experimental data and a fit from theory are shown while the fit residuals, multiplied
by a factor of 100, are shown in the bottom panel. From the fit we obtain values
of T = (72.42 ± 0.03)◦C, ΓBuf = (2632 ± 11) MHz and δBuf = (−515 ± 5) MHz.
The error in the fit is smaller than 1% RMS, which typically indicates very good
agreement between theory and experimental data [155]. However, the visible
presence of structure in the residuals around the regions corresponding to the peaks,
as well as the mismatch between the data and fit in these regions, indicate there is
a systematic variation not taken into account by our model.

in figure A.2 the fit gives T = (72.42± 0.03)◦C, ΓBuf = (2632± 11) MHz and
δBuf = (−512± 5) MHz. The uncertainties presented in the previous values
correspond to the errors in the fit carried out for the spectra shown.

From the manufacturing specifications we can use the measured pressures of
the buffer gasses in the cell to give an approximate value for the expected
broadening and shift of the absorption features. Said values can be found in
table A.2. Comparing these roughly-estimated values with the experimental
results, given in table A.3, we see that there is little agreement between the
values. The experimentally obtained additional broadening ΓBuf is almost a
factor of two greater than the value expected from the measured pressure.
However, it is worth noting that the experimental values were obtained
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Figure A.3: Sample absorption spectrum using MEMS cell H20. In the top panel,
experimental data and a fit from theory are shown while the fit residuals, multiplied
by a factor of 100, are shown in the bottom panel. From the fit we obtain values
of T = (62.89 ± 0.03)◦C, ΓBuf = (2550 ± 11) MHz and δBuf = (−642 ± 4) MHz.
The error in the fit is smaller than 1% RMS, which typically indicates very good
agreement between theory and experimental data [155]. However, the visible
presence of structure in the residuals around the regions corresponding to the peaks,
as well as the mismatch between the data and fit in these regions, indicate there is
a systematic variation not taken into account by our model.
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Cell Measured
Ar (mbar)

Measured
N2 (mbar)

Expected
ΓBuf (MHz)

Expected
δBuf (MHz)

H12 57.4 61.1 1601 -513
H20 45.6 42.5 1189 -382

Table A.2: Measured pressure values of the different buffer gas components
present in the MEMS cells, as measured by the manufacturer using the method in
reference [243]. Measurements were carried out at room temperature (23◦ C). Using
the coefficients in table A.1 we can give an approximation of the broadening and
shift of the spectral features corresponding to the measured buffer gas pressures.

Cell Temp. (◦C) ΓBuf (MHz) δBuf (MHz)
H12 62.89± 0.03 2632± 11 −515± 5
H20 72.42± 0.03 2550± 11 −642± 4

Table A.3: Experimental values for buffer gas effects (broadening and shift) in
MEMS vapour cells obtained by fits using our theory model [134, 141]. These values
correspond to the fit curves seen in figures A.3 and A.2.

with an atomic sample which was approximately three times hotter than
the conditions used by the manufacturer for measurement of the buffer gas
content. For the values of the frequency shift we can see that there is a
slightly better agreement, with the experimental shift for cell H12 agreeing
with the expected value while the value for cell H20 is a factor of two larger
than the expected value.

Using the experimental values for the broadening of the absorption lineshape
we can estimate the buffer gas content. To do this, we will use the values in
table A.2 for the measured components of buffer gases in the cell in order
to obtain the mole fraction of said components. We will be assuming that
for the cell volume (∼ 7mm3) we have a mixture of ideal gases and that the
vapour pressure of Rb is much smaller than that of the buffer gases despite
the cell being heated. With this in mind, we find that for cell H12 the ratio
of the fraction of argon is xAr ≈ 48.4% and that of N2 is xN2 ≈ 51.6%, while
for cell H20 xAr ≈ 51.8% and xN2 ≈ 48.2%. Thus, taking the total additional
broadening found from the fits, ΓBuf , we can use a straightforward calculation
between ratios to obtain the experimental values for the partial pressures of
Ar and N2, seen in table A.4.
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Cell
Ar

fraction
(%)

Exp. Ar
pressure
(torr)

N2

fraction
(%)

Exp. N2

pressure
(torr)

H12 48.4 72± 11 51.6 74± 11
H20 51.8 75± 11 48.2 67± 11

Table A.4: Experimental values for the buffer gas pressures in the MEMS cells.
The values were calculated by assuming no considerable pressure from the Rb in
the cell and an ideal-gas mixture. The mole fraction for each of the gases, used to
determine the fraction of ΓBuf (see table A.3) due to each of the components, was
obtained from the values in table A.2.

It can be clearly seen from figures A.2 and A.3 that while the overall fit is
very good (< 1% RMS error) [155] there are areas of the spectra where the
theory model does not coincide with the experimental data. In particular,
the model does not reproduce the on-resonance absorption for both hyperfine
transitions of the D2 line. This highlights the presence of a systematic effect
not previously considered in the model due in particular to the large amount
of buffer gas in the cell. As such, an independent fit using Voigt profiles with
the necessary physical values for the width and centre parameters, but with
freedom to adjust the individual values of amplitude for each of the profiles,
was carried out. In this case, the only free parameters were ΓBuf and δBuf ;
the temperature was taken directly from the thermistor in the cell mount and
used to calculate the Gaussian component (ΓDopp) of the Voigt profile. The
results of this fit can be seen in figures A.4 and A.5. With this simplified
model, the fit gives ΓBuf = (1273 ± 2) MHz and δBuf = (−446 ± 4) MHz
for cell H20; for cell H12, the fit values are ΓBuf = (1278 ± 6) MHz and
δBuf = (−380± 10) MHz. When compared to figures A.2 and A.3 it can be
clearly seen that this method of fitting spectra achieves even better agreement
with the experimental data (< 0.5% RMS error) while also being closer to
the expected values from table A.2.

Additional spectra were also taken by placing the cell in a magnetic field
generated by two rare-earth magnets. Once again, a fit was carried out for
the experimental data with T , ΓBuf , δBuf as free parameters for the model,
with the addition of the magnetic field intensity B as a parameter. The
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Figure A.4: Sample absorption spectrum using MEMS cell H12. In the top
panel, experimental data and a fit from a simple model of two Voigt profiles are
shown. Fit residuals, multiplied by a factor of 100, are shown in the bottom panel.
From the fit we obtain values of T = (82.23± 0.05)◦C, ΓBuf = (1278± 6) MHz and
δBuf = (−380± 10) MHz. The error in the fit is smaller than 1% RMS, indicating
better agreement between theory and experimental data [155] than that seen in
figure A.2. In particular, the depth of the absorption features is correctly fit by
using this simple model.
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Figure A.5: Sample absorption spectrum using MEMS cell H20. In the top
panel, experimental data and a fit from a simple model of two Voigt profiles are
shown. Fit residuals, multiplied by a factor of 100, are shown in the bottom panel.
From the fit we obtain values of T = (72.17± 0.05)◦C, ΓBuf = (1273± 2) MHz and
δBuf = (−446± 4) MHz. The error in the fit is smaller than 1% RMS, indicating
better agreement between theory and experimental data [155] than that seen in
figure A.3. In particular, the depth of the absorption features is correctly fit by
using this simple model.
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Figure A.6: Sample absorption spectrum using MEMS cell H12 in the presence
of an external magnetic field. In the top panel, experimental data and a fit from
theory are shown while the fit residuals, multiplied by a factor of 100, are shown in
the bottom panel. From the fit we obtain values of T = (70.95± 0.03)◦C, ΓBuf =
(1878±15) MHz and δBuf = (−636±6) MHz, with a magnetic field strength of B =
(127.5± 2.4) mT. The error in the fit is smaller than 1% RMS, normally indicating
very good agreement between theory and experimental data [155]. Nevertheless,
there is a clear systematic variation in the depth of the calculated features as visible
from the difference between data and fit and from the structure in the residuals.

results of this can be seen in figure A.6 and A.7. The values obtained for
the spectrum shown are T = (70.95 ± 0.03)◦C, ΓBuf = (1878 ± 15) MHz,
δBuf = (−636 ± 6) MHz and B = (127.5 ± 2.4) mT for cell H12 and T =

(78.94 ± 0.04)◦C, ΓBuf = (2373 ± 25) MHz, δBuf = (−642 ± 11) MHz and
B = (199.9± 0.1) mT for cell H20. Uncertainties are reported as the errors
in the fit that was carried out for a single spectrum.

By using an external magnetic field in acquiring the spectra shown in fig-
ures A.6 and A.7 we were able to further support the idea of the presence
of a systematic variation in the vapour cell that is unaccounted for in our
model. It is evident once again that in these figures the quality of the fit
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Figure A.7: Sample absorption spectrum using MEMS cell H20 in the presence
of an external magnetic field. In the top panel, experimental data and a fit
from theory are shown while the fit residuals, multiplied by a factor of 100, are
shown in the bottom panel. From the fit we obtain values of T = (78.94± 0.04)◦C,
ΓBuf = (2373±25) MHz and δBuf = (−642±11) MHz, with a magnetic field strength
of B = (199.9±0.1) mT. The error in the fit is around 1% RMS, normally indicating
good agreement between theory and experimental data [155]. Nevertheless, there is
a clear systematic variation in the depth of the calculated features as visible from
the difference between data and fit and from the structure in the residuals.
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is good [155], with RMS errors of ∼ 1%, yet there are visible discrepancies
between the experimental data and the fit. In particular we see that the depth
of the absorption features in the experiment does not match that from our
fit; in the presence of the magnetic field, we can observe that this systematic
variation, seen in the zero-field case in the region of the main absorption
peaks, is present at several other places in the spectra. This could indicate
that the variation is due to a field-independent interaction, such as collisions
between the buffer gas and rubidium atoms [56, 57] or due to changes in the
populations in the atomic states [42, 55, 244].

A.3 Summary

From the absorption spectra obtained using the MEMS cells we get a value of
ΓBuf = (2632± 11) MHz for cell H12 and ΓBuf = (2550± 11) MHz for cell H20
from fits carried out using our theoretical model ElecSus. Good agreement is
found between experiment and theory, although the residuals present some
remnant structure due to the fits not coinciding with the amplitude of the
absorption features in the experimental data. Using a simple model, consisting
of fitting Voigt profiles with a fixed Gaussian width of ΓDopp ≈ 550 MHz
(i.e T ≈ 80◦C), but with independent amplitudes, different values for ΓBuf

were obtained, namely (1278 ± 6) MHz for cell H12 and (1273 ± 2) MHz
for cell H20. Significantly better agreement is found between the model and
experimental data in this case, indicating that our theoretical model does not
completely reproduce the effects of large buffer gas pressures on the atomic
system. This could indicate that there may be a change in the ground state
populations due to the high buffer gas content in the cells.
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Appendix B

Frequency calibration of spectra
and removal of systematic errors
in the background

B.1 Frequency calibration using a reference cell

The majority of the data presented in this work corresponds to atomic spectra,
which are acquired as an electronic signal measured over the period of time
the laser frequency is scanned. As such, the initial data is not directly useful
when it is taken with equipment such as an oscilloscope or a data-acquisition
(DAQ) module. In this case, the data is first processed to turn the electronic
signal into a quantitative spectrum, where the time axis (x-axis) becomes a
frequency axis based on a well-known reference and the vertical axis of the
signal is transformed to represent the amount of light transmitted through
the atomic vapour. A more detailed description of this process is given
in section 3.3.2 with sample data from experiments in chapter 3. Here we
present additional details to some of the aspects of the frequency calibration
process.

In the context of the experiments performed, the frequency calibration of the
horizontal axis is done by simultaneously recording the electronic signal from

177



Appendix B. Frequency calibration of spectra and removal of systematic
errors in the background

two additional photodiodes, one monitoring the light transmitted through
a 75 mm natural abundance Rb reference vapour cell at room temperature
and the other monitoring the transmission of light through a Fabry-Pérot
etalon. These two additional signals are then used to linearise and calibrate
the horizontal axis of the electronic signal of interest so as to convert time
units into frequency units: the signal from the Fabry-Pérot etalon, which has
a well-known free-spectral range (FSR) (375± 1 MHz), allows us to extract
the locations (in time) of the transmission peaks. The etalon in question is
composed of two concave mirrors, with a 10 cm curvature radius1, spaced
approximately 30 cm apart.

For the frequency calibration in this work we have used custom code written in
the Python programming language to analyse the spectra. Separate methods
for the different aspects of the process discussed in section 3.3.2 are provided
under a single class, allowing for ease of use. The positions in time of the
etalon transmission peaks are obtained numerically by using custom Python
code that uses the numpy package. This is done by looking for the maxima in
the etalon transmission signal, taking into account a minimum height value
and a minimum separation between peaks. Additional parameters allow for
the detection of peaks to be tuned in order to identify a single position for
each peak in the signal. This code, as well as its dependencies and a basic
documentation, can be found in reference [245].

With the position of the peaks determined, a linear relation between peak
positions and numbers (i.e. the order of appearance of the peaks) is de-
termined via a least-squares fit using the scipy.optimize Python module.
Uncertainties in these fit parameters are given as the standard error (1σ
confidence interval). In order to take into account non-linear effects during
the scan of the laser, the deviation of the peaks from their expected positions
is calculate, as shown in figure 3.4. Using the lmfit package [149, 150], a
high-order (≥ 5) polynomial is fit to these values using a differential evolution
algorithm, followed by a least-squared minimisation in order to determine
the uncertainties as mentioned above. The resulting polynomial is then used

1ThorLabs CM254P-050-E03
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to convert the original time axis to a linearised time axis by generating a
correction for each of the data points.

In order to fully calibrate the linearise time axis to absolute frequency reference
values, the transmission spectrum from the natural abundance Rb reference
cell is needed; using ElecSus (see section 2.4 for more details), the transmission
signal is fitted and the hyperfine separations of the ground states (for both
isotopes) are used to calibrate the frequency axis. This then allows for spectra
with a well-defined frequency calibration, where the zero of the frequency
axis corresponds to the centre of the ground state hyperfine manifold in the
absence of external fields. Further details of this method can be found in
references [72, 73, 154].

B.1.1 Calculation of the error in the frequency calibra-

tion

In order to calculate the error associated to the frequency calibration process,
we proceed to carry out an analysis of the propagation of errors. Following the
process described in section 3.3.2, we begin by writing an analytic expression
for conversion of time to frequency. Given the raw time values for the
experimental data, traw, we determine that the final frequency value ν along
the horizontal axis is determined by the expression

ν = mt→νtlin + ct→ν ,

= mt→ν(traw − tcorr) + ct→ν , (B.1)

where tcorr is the non-linear correction applied in order to linearise the time axis,
tlin is the linearised time value, (mt→ν ±σmt→ν ) is the slope and (ct→ν ±σct→ν )

is the y-axis intercept of the calibration obtained from fitting the reference
absorption spectrum. We note that these last two parameters have an
associated uncertainty, which we proceed to use in order to calculate the
uncertainty σν in the final frequency value. Taking the standard formulas for
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the propagation of errors in reference [155], we arrive at the expression

ν = mt→νtlin + ct→ν ,

↪→ νlin = mt→νtlin 3
σνlin
νlin

=
√

(
σmt→ν

mt→ν
)2 + (

σtlin
tlin

)2,

∴ σν =
√

(σνlin)2 + (σct→ν )
2. (B.2)

From this expression, we proceed to obtain a value of σν for every point along
the linearised time axis. The resulting curve can the be plotted, as shown in
figure 3.6 (see section 3.3.2), and used to estimate the percentage error in the
frequency calibration over the extent of the frequency scan.

B.2 Low-finesse etalons in the absorption back-

ground

In many cases processing the electronic signals into quantitative atomic
spectra that can be analysed with the method described in B.1 allows for
excellent agreement between the experimental data and the numerical model.
However, in the cases where the laser frequency must be scanned over a
range of tens or hundreds of GHz, systematic effects appear in the regions
of the spectra that are far off-resonance. These effects appear in structured
noise in the electronic signal background, and, in the case of optical systems
with uncoated or misaligned surfaces, are due to the formation of low-finesse
etalons in the optical setup [2, 205].

While usually not having a significant impact on the quality of the spectra,
the presence of these low-finesse etalons can have an impact when carrying
out measurements with high precision. For the experiments presented in this
work these etalons can have an effect on the depth of the absorption features,
which in turn affects the precision of the overall analysis performed.

In order to take into account the low-finesse etalons present in the signal
background the model proposed in [2, 192, 205] is used. The model is based
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on taking into account the transmission signal T of an etalon [132],

T =
Tpeak

1 + (2F/π)2 sin2(πf/fFSR + φ)
, (B.3)

where F is the finesse of the etalon, fFSR is the free-spectral range (FSR), φ
is the frequency offset of the etalon, f is the frequency of the light and Tpeak

is the peak transmission of the etalon signal. In the case where the finesse
is low, F << 1, we can modifiy equation B.3 by approximating the term
1/(1 + x2) ≈ (1− x2), thus giving an expression for the transmission in this
regime of the form

T ≈ Tpeak(1− (2F/π)2 sin2(πf/fFSR + φ)),

≈ Tpeak(1− a sin2(πf/fFSR + φ)), (B.4)

where we have introduced the parameter a = 4F2/π2 as the amplitude of the
etalon.

From the expressions in equations B.3 and B.4 we can proceed to incorporate
the effects of n distinct low-finesse etalons in the overall transmission by
considering the measured transmitted light Ttotal as that due to the atomic
absorption Tatom and the etalons Tetalon,

Ttotal = Tatom × Tetalon,

= Tatom

n∏
j=1

(1− aj sin2(πf/fj,FSR + φj)). (B.5)

We note that in equation B.5 we are considering that each of the n etalons has
a unique finesse and free-spectral-range, as well as an offset, that characterises
it.

Experimentally, we proceed to remove these etalons from the acquired optical
signals in a straightforward manner. Once acquired, the spectrum of transmis-
sion Ttotal of light as a function of laser frequency through the atomic medium
(S0) is initially fit using ElecSus, as shown in figure B.1. This allows for the
absorption due to the atoms, Tatoms, to be determined; at this point we assume
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there are no etalons in the signal and that, due to their low finesse, the charac-
teristic absorption profiles of the atomic medium are not significantly altered.
Using equation B.5 we can then obtain a signal for the etalon transmission
by taking the quotient Ttotal/Tatoms. We fit this expression using a custom
model built using the lmfit Python package [149, 150] using only three free
parameters for each etalon: the etalon amplitude a, free-spectral-range (FSR)
fFSR and etalon offset φ. The number of etalons is increased iteratively from
1 to 6 until the residuals of the fit show no slowly-oscillating features and can
be considered to be experimental noise; previous work using this method has
found that this is typically achieved after introducing 3 etalons in the fit [2].
The results of carrying out this procedure are demonstrated in figure B.2
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Figure B.1: Experimentally acquired absorption spectrum (S0; blue dots) for
a 1 mm 87Rb vapour cell. An initial fit (purple curve) using ElecSus is carried
out in order to obtain the transmission through the atomic medium Tatoms (see
section 2.4); the residuals from this fit are shown, multiplied by a factor of 100 to
better observe the presence of slowly-oscillating features. The fit RMS error here is
0.2%. The total transmission Ttotal is then divided by this fit (see equation B.5),
leaving the transmission of a series of low-finesse etalons that correspond to the
oscillating features in the residuals. These are fit, by iterating the number of etalons,
using three free parameters: the etalon amplitude a, free-spectral-range (FSR) fFSR

and etalon offset φ. In this case, four etalons were included in the fit, resulting in a
transmission signal with noticeably reduced background noise (red curve) which
can subsequently be fit again for increased precision.
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Figure B.2: Experimentally acquired absorption spectrum (S0; blue dots) for
a 1 mm 87Rb vapour cell. A fit (purple curve) using ElecSus is carried out in
order to obtain the transmission through the atomic medium Tatoms (as described
in section 2.4); the residuals from this fit are shown, multiplied by a factor of 100
to better observe the removal of the slowly-oscillating features present in figure B.1.
In this case, the RMS error of the fit is 0.1%, an improvement by a factor of two
over the previous fit.
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