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An effective theory for higher-dimensional black holes
and applications to metastable antibranes

Nam Huy Hoai Nguyen

Abstract

Despite their consequential applications across the subfields of high energy phys-

ics, metastable states of antibranes in warped throats are not yet fully under-

stood. In this thesis, we provide new information on various aspects of these

metastable antibranes through applications of the blackfold effective theory for

higher-dimensional black holes. As concrete examples, we study the conjectured

metastable state of polarised anti-D3 branes (namely, wrapped NS5 branes with

dissolved D3 brane charge) at the tip of the Klebanov-Strassler (KS) throat

in type IIB supergravity and the analogous state of polarised anti-M2 branes

(namely, wrapped M5 branes with dissolved M2 brane charge) at the tip of the

Cvetic-Gibbons-Lu-Pope (CGLP) throat in eleven-dimensional supergravity.

For anti-D3 branes in KS throat, from a finite-temperature analysis in the wrapped

NS5 regime, we provide novel evidence for the existence of the metastable state

exactly where no-go theorems are lifted. In particular, in the extremal limit,

we recover directly in supergravity the metastable states originally discovered

by Kachru, Pearson, and Verlinde (KPV). Away from extremality, we uncover a

metastable wrapped black NS5 state (the thermalised version of the KPV state)

and observe that such metastability is lost when we heat the wrapped NS5 state

sufficiently that its horizon geometry resembles that of a black anti-D3 state.

All claims regarding metastability of antibranes in warped throats only refer to

a balance of force and not statements of robustness under perturbations. For

their various applications, it is important to determine whether these configura-

tions are truly metastable by probing them with perturbations. Here, we study

the classical stability of the KPV state under generic long-wavelength deforma-

tions. We observe that, with regards to considered perturbations and regime of

parameters, the state is classically stable.
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A study of anti-M2 branes in CGLP throat reveals many similarities to that of

the anti-D3 branes. We recover directly in supergravity the Klebanov-Pufu (KP)

state at extremality, and our finite temperature results fit suggestively well with

known, complementary no-go theorems. However, a unique feature of the anti-

M2 state is that when considering the effects of non-zero temperature on the KP

metastable state, we discover an exotic pattern of thermal transitions different

from that of the KPV.

This thesis contains detailed discussions on all the above results as well as a ped-

agogical introduction to the blackfold formalism, focusing on aspects immediately

relevant to applications to metastable antibranes.

Supervisor: Vasileios Niarchos
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Chapter 1

Introduction

“Physics is really nothing more than a search for ultimate simplicity,

but so far all we have is a kind of elegant messiness.”

Bill Bryson

1.1 An invitation

An understanding of controlled supersymmetry (SUSY) breaking in string theory

is among the principal goals in string phenomenology for establishing connections

between string theory and our reality. Even in the case that string theory turns out to

be not the quantum gravity of our universe, non-SUSY string configurations are still

relevant because they can be used as pseudo experimental data for constructions of

Swampland conjectures on how all quantum gravity theories must behave and they de-

scribe holographically non-SUSY quantum field theories (QFT) that have immediate

practical applications.

One of the canonical methods for breaking supersymmetry in string theory involves

balancing antibranes in warped throats [1]. Despite their consequential applications

in holographic QFT [2, 3], string cosmology [4, 5], and black hole physics [6], some as-

pects of the resulting antibranes configurations are not yet well-understood. Through

applications of the blackfold effective theory for higher-dimensional black holes [7–9],

we have uncovered novel properties regarding the existence [10], stability [11], and
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1.1. An invitation

thermal transitions [12] of these metastable antibranes. This thesis is a report on

those findings.

In recent debates of string cosmology, a prominent role is played by the de Sitter

Swampland conjecture, which considers the possibility that de Sitter vacua cannot

come from a consistent quantum gravity theory [13, 14]. The conjecture, which

applies to all quantum gravity theories, is proposed based primarily on the obser-

vation that we cannot construct a rigorous de Sitter vacuum in string theory [15].

Among all constructions of string de Sitter vacua, the most promising is perhaps the

Kachru-Kallosh-Linde-Trivedi (KKLT) construction [4]. Lie at its heart is a meta-

stable configuration of polarised anti-D3 branes at the tip of the Klebanov-Strassler

(KS) throat [16], first discovered by Kachru, Pearson, and Verlinde (KPV) in [2].

Many debates on the validity of the KKLT construction are rooted in our incomplete

understanding of the KPV configuration. As a result, to determine whether de Sitter

vacua live in the Landscape or the Swampland, we begin with a study of the KPV

configuration of metastable antibranes.

The initial discovery of the KPV state was based on brane probe analysis. The status

of this analysis beyond probe became controversial when unphysical singularities were

found in the backreacted supergravity description of localised anti-D3 branes in KS

throat [17, 18]. The presence of these singularities was viewed by some authors

as evidence that backreaction can change dramatically the conclusions of the probe

approximation, casting doubt to the very existence of the metastable state. Though

such singularities disappear for polarised anti-D3 branes, or equivalently wrapped

NS5 branes with dissolved anti-D3 brane charge (wrapped anti-D3-NS5), which is

what the KPV state really is [19], because of technical difficulties, the majority of

follow up computations were performed in the localised anti-D3 regime instead of

the wrapped NS5 regime. Nevertheless, a proper understanding of the KPV state

beyond probe requires information about the backreacted wrapped NS5 state. This

motivates our first research objective:

2



1.1. An invitation

Investigate the backreacted profile of wrapped anti-D3-NS5 branes at the tip of the KS

throat in relation to the existence of the KPV state.

As the KPV state is an exemplar antibranes metastable state, the findings regarding

the KPV state are also applicable to other antibranes metastable states, e.g. the

Klebanov-Pufu state [3].

Another important question regarding the KPV state and its application in string

cosmology is whether such configuration is robust under perturbations. What is

shown in [2], and subsequently in [10], is only that homogeneous, spherical anti-D3-

NS5 branes living at the tip of the KS throat can form an equilibrium by balancing

“electromagnetic” forces pushing them over the S3 of the tip and gravitational forces

doing the opposite. Based on these works alone, we cannot say whether the resulting

state is short-lived or truly metastable under perturbations. This motivates our

second research objective:

Investigate the classical stability of the KPV state with respect to generic perturba-

tions.

Studies on the effects of non-zero temperature on antibranes can reveal much about

their physics. Already in the scope of our first research objective, the behaviours

of nonextremal antibranes are crucial. However, because of their relevance to fur-

ther topics such as holographic QFT or black hole physics, it is fruitful to study

nonextremal metastable antibranes beyond the scope of existence discussions. For

our study, we find it most interesting to take as our specimen the Klebanov-Pufu

(KP) [3] metastable state of polarised anti-M2 branes, or equivalently wrapped M5

branes with dissolved anti-M2 brane charge (wrapped anti-M2-M5 branes), at the tip

of the Cvetic-Gibbons-Lu-Pope (CGLP) throat [20]. This forms our third research

objective:

Study the effects of non-zero temperature on the KP metastable state of wrapped anti-

M2-M5 branes at the tip of the CGLP throat.

Outline of thesis This thesis consists of 6 chapters and 4 appendices. Chapter

1 contains an introduction to the research topic and research questions, a summary

3



1.2. Blackfolds: An effective theory for higher-dimensional black holes

of the subsequent chapters, and a statement of notations and conventions. Chapter

2 (summarised in section 1.2) provides a pedagogical introduction to the blackfold

effective theory for higher-dimensional black holes, focusing on aspects immediately

relevant for applications to metastable antibranes. Chapters 3, 4, and 5 (summarised

in sections 1.3, 1.4, and 1.5) are developed from our three research questions, provid-

ing discussions on respectively the existence, the classical stability, and the thermal

transitions of metastable antibranes. To avoid repetition, for the study of the anti-

D3-NS5 state in chapter 3, we provide comprehensive explanations on the blackfold

construction of the metastable state but only a brief discussion on the thermal ef-

fects. On the other hand, for the study of the anti-M2-M5 state in chapter 5, while

the discussion on the blackfold components is short, the discussion on the effects of

nonextremality is thorough. Lastly, in chapter 6, we conclude with a presentation of

the outlook.

The 4 appendices are integral to the thesis. They contain a presentation of the pre-

liminaries, crucial components that are shared by different chapters in the main text,

as well as important calculations. In particular, appendix A provides the prelimin-

aries on embedding geometry. Appendix B discusses relevant throat geometries and

prepares them for our applications. Appendix C presents the brane bound states and

extracts from them relevant information. Appendix D holds the derivation of the

blackfold perturbation equations for the KPV state.

With references to the relevant appendices, the chapters of this thesis can be read

individually as they are self-contained and each carries a complete story.

1.2 Blackfolds: An effective theory for

higher-dimensional black holes

The blackfold (short for black-manifold) formalism [7, 8] is an effective theory for

higher-dimensional black holes, first developed in the study of neutral higher-dimensional

black ring solutions in pure Einstein gravity [21]. In this thesis (chapter 2), we in-

4



1.2. Blackfolds: An effective theory for higher-dimensional black holes

troduce the blackfold approach in two steps: (i) derive the blackfold equations as

effective branes dynamical equations and (ii) demonstrate that the blackfold equa-

tions provide information on the backreacted (super)gravity description of the branes

configurations.

For step (i), we begin with a derivation of the effective dynamical equations for charged

branes in fluxed backgrounds from Dirac action (section 2.1) [22, 23] and from con-

servation principles (section 2.2) [9]. These effective dynamical equations can be

written in term of forced conservation equations, which for the example of branes in

Einstein-Maxwell theory take the form:

∇aT ab = ∂bXµFµ , T abK
(i)

ab = Fµ n(i)
µ , (1.1)

∇a1(Jq+1)a1...aq+1 = 0 , ∇a1(JD−q−3)a1...aD−q−3 = 0 (1.2)

where T ab, Jq+1, and JD−q−3 are respectively the energy-stress tensor, the electric

current, and the magnetic current carried by the branes. The force term F is given

by

Fµ = 1
(q + 1)! (Fq+2)µa1...aq+1 (Jq+1)a1...aq+1

+ 1
(D − q − 3)!(FD−q−2)µa1...aD−q−3(JD−q−3)a1...aD−q−3 . (1.3)

To make use of equations (1.1)-(1.2), we have to write down an expression for the

currents carried by the branes: Tµν , Jq+1, and JD−q−3. Generally, as these currents

depend on the background profile, this is not an easy task. However, if we can tune

the parameters of our branes/background configurations to the blackfold regime where

the configurations possess a large separation of scales: R,RE � rb where R, RE , and

rb are respectively the characteristic length scale of the background, the curvature

radius of the bending in the configuration, and the characteristic near horizon scale of

the branes, we can approximate these currents by a set of equivalent currents, which

can be computed from the branes’ uniform flat-space solutions (section 2.3).

As R � rb, the leading order effective branes dynamics is probe dynamics, e.g. back-

reactions of the branes to the background profile can be ignored. By substituting the

5



1.2. Blackfolds: An effective theory for higher-dimensional black holes

set of equivalent currents into the forced conservation equations (1.1)-(1.2), we ob-

tain the blackfold equations. In this derivation, it is clear that the blackfold equations

describe the effective dynamics of branes in fluxed background. We note that the

presented derivation can be straightforwardly generalised to branes in a more general

(super)gravity theory [9].

For step (ii), we start with a discussion of the matched asymptotic expansion (MAE)

[24, 25], a procedure for constructing perturbatively the backreacted description of the

branes configurations everywhere in spacetime by matching two asymptotic regions:

the near zone (r � R, RE) where the profile can be approximated by a seed solution

and the far zone (r � rb) where the profile can be approximated by a background

solution. Applying this procedure to the example of bending black branes in flat space,

we show explicitly that the blackfold equations provide the necessary conditions for

the MAE procedure (section 2.4) [26, 27]. In a similar manner, this statement can

also be proven for generic branes/background configurations in various (super)gravity

theories [9].

In the case of bending black branes, one can show that the blackfold equations provide

also the sufficient conditions for the MAE procedure [27]. Naturally, we introduce

the blackfold conjecture [28], which is the generalisation of this statement to generic

configurations, that there is a one to one correspondence between a solution of the

blackfold equations and a regular solution of the gravitational equations. This conjec-

ture is almost analogous to the statement in Fluid/Gravity [29] that there is a one

to one map between a solution of the fluid equations and a regular solution of the

gravitational equations.

From the perspective of effective branes dynamics, blackfold equations can be easily

derived. As one can show that these equations provide the necessary conditions

and perhaps also the sufficient conditions for a leading order matched asymptotic

description of the backreacted configurations, they can be used to extract information

on such description. This is the essence of the blackfold approach. Evidence for the

power of such approach can be found in the wealth of examples in the literature, e.g.

6



1.3. On the existence of metastable antibranes

[30–33].

1.3 On the existence of metastable antibranes

For discussions on the existence of metastable antibranes, our specimen is the Kachru-

Pearson-Verlinde (KPV) conjectured metastable state of polarised anti-D3 branes, or

equivalently wrapped NS5 branes with dissolved anti-D3 brane charge (wrapped anti-

D3-NS5 branes), at the tip of the Klebanov-Strassler (KS) throat [2, 16]. Originally

in [2], it was shown from brane probe analysis that, in the regime of p/M1 between 0

and pcrit with pcrit ≈ 0.080488, the anti-D3-NS5 brane can balance its own “weight”

with “electromagnetic” forces from the fluxes to form a metastable state at the tip of

the KS throat.

The existence of this KPV state has been refuted in various works starting with the

investigations of [17]. The problem, found at the time, arises when trying to go

beyond the probe limit and investigate what happens once the branes backreact. In

particular, [17] and many subsequent works [18] found that the backreacted profile

of localised anti-D3 branes had singular 3-form fluxes in such a way that it would

cause immediate brane-flux decay [34]. It is further noted in [35] that there is a

conflict in regimes of validity in the original DBI derivation of the KPV state in [2].

As a response, [36] argued that the singularity can be renormalised in such a way

that does not affect stability when p = 1, which is a case that is not amenable to a

supergravity analysis. Subsequently, [19, 37] argued that metastability can also be

retained when p � 1 since the observed singularities cannot be proven to exist once

one backreacts spherical NS5 branes instead of point-like anti-D3 branes. In fact, all

proofs of unphysical singularities rested on an assumption which was in contradiction

with KPV from the start, since polarised anti-D3 metastable states are really NS5

states.

Several studies [38–41] have investigated the effect of adding temperature to the anti-
1p denotes the number of the anti-D3 branes and M the strength of the Klebanov-Strassler

background flux.

7



1.3. On the existence of metastable antibranes

D3 branes. Most of these works were motivated by the would-be singularity in the

3-form fluxes. Whether or not a singularity can be cloaked by a horizon that arises

when moving away from extremality is believed to be an important criterium for

deciding the fate of singularities [42]. Although strong indications were found that

one should not worry about singularities at all, [19, 36, 37], it remains an outstanding

problem to understand what happens when the antibranes are at finite temperature.

In this thesis (chapter 3), we present a finite-temperature study on the backreacted

profile of anti-D3-NS5 branes in KS throat, recovering the KPV state at extremality

[10]. To study the KPV and its thermal analogue state, we are interested in the type

IIB supergravity solution describing wrapped anti-D3-NS5 branes at the tip of the

KS throat. Because an exact description of such configuration is technically unfeas-

ible, we turn to approximate descriptions. In particular, a perturbative description

of the configuration can be obtained through the technique of matched asymptotic

expansion, where the solution is approximated in the far zone by the background

solution of interest, here the KS throat, and in the near zone by an uniform flat-space

p-brane solution, here the D3-NS5 bound state. As the blackfold equations provide

the necessary conditions and perhaps also the sufficient conditions for the leading

order matched asymptotic solution, we make use of such equations to learn about the

configuration of anti-D3-NS5 branes in KS throat.

After introducing the KPV state in section 3.1, we derive, in section 3.2, the blackfold

equations for nonextremal anti-D3-NS5 branes at the tip of the KS throat, recovering

consistently in the supergravity regime (gsp� 1) the KPV [2] results at extremality.

In section 3.3, we provide a discussion on the regime of validity of our analysis. Sub-

sequently, in section 3.4, we describe effective potentials for nonextremal anti-D3-NS5

branes and study the effects of nonextremality on the conjectured KPV metastable

state. In particular, we observe that, as soon as the branes become nonextremal,

an additional unstable vacuum appears. This is a novel, ‘fat’ unstable NS5-brane

state. Increasing the entropy of the solutions leads to a merger of the fat unstable

state with the thin metastable state, annihilating both vacua. By plotting the ratio

8



1.4. On the stability of metastable antibranes

d ∼ (NS5 Schwarzschild radius/Radius of the wrapped S2), we show that the origin

of this transition is closely related to the geometric properties of the corresponding

black hole horizon.

The picture from our blackfold analysis is suggestively consistent with the exact

analysis of [19]. A no go-theorem, based on singularities, implies that the black

NS5 solution, if it exists, has a maximum horizon radius until it disappears. A

black anti-D3 solution also escapes the no go, but was deemed unphysical in [19],

since it does not persist in the extremal limit. We have now shown that, in all cases

where [19] lifted the no-go theorem, our blackfold analysis produce a go with concrete

quantitative predictions. Since the prevailing picture regarding the singularities has

now been argued for in complementary regimes, we believe the findings constitute

strong evidence for the existence of the metastable state.

In the spirit of keeping this summary in appropriate length, we have been brief in

our explanations. For detailed discussions on how the anti-D3-NS5 blackfold results

together with existing literature on the topic form an argument for the existence of

the metastable state, we refer readers to section 3.5.

1.4 On the stability of metastable antibranes

The claims regarding metastability of antibranes in warped throats from DBI ana-

lysis in [2, 3] and subsequently from the blackfold approach in [10, 12] (presented in

chapter 3 and 5) only refer to a balance of force that allows the branes to be in equi-

librium in certain directions and not statements of robustness under perturbations.

In particular, what is shown for the anti-D3-NS5 branes in [2], and subsequently in

[10], is that a homogeneous, spherical NS5 state living at the tip of the KS throat feel

a balance of “electromagnetic” forces pushing it over the S3 and gravitational forces

doing the opposite. Based on these works alone, we cannot say whether the state

is short-lived or robust under perturbations. For their numerous applications, par-

ticularly cosmological string de Sitter construction [4], it is important to determine
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whether these branes are truly metastable.

In [35], from the perspective of localised anti-D3 branes, it was argued that there

exists a direction along which the branes feel repulsive forces among themselves and

destabilise away from the KPV state. This suggests that, in an appropriate regime

of parameters, the KPV configuration suffers from fragmentation instability.

From the complementary perspective of anti-D3-NS5 branes2, we study the stability

of the KPV state using the blackfold approach. Before summarising our results, let

us stress what our analysis does not do. As blackfold is based on the idea of matched

asymptotic expansion, one need to specify a seed metric as the description of the

solution in the near zone. By choosing the stacked anti-D3-NS5 branes solution as

the near zone seed, we have effectively ignored all brane splitting and fragmentation

deformations. Moreover, as noted in chapter 3, the analysis is reliable when p/M is

not too close to zero, at which point the size of the NS5 sphere shrinks (ψ ≈ 0) and the

localised anti-D3 perspective becomes the better description. Since the analysis in [35]

is done from the localised anti-D3 branes perspective and the discovered instabilities

are brane splitting instabilities, the blackfold results presented here should be thought

of as complimentary and not contradictory to that of [35]. Another important caveat

is that, as blackfold theory is an effective theory of long-wavelength interactions, our

claim of stability is made only with respect to long-wavelength perturbations.

Let us note that a preliminary study of the stability of the KPV state was done in

[43] where it was argued that the spherical NS5 shell is unstable under perturbations.

While keeping in mind that the regime of validity of the D3 perspective analysis done

in [43] and ours are different, as we shall see shortly, our results do not support the

picture proposed in [43].

In chapter 4, by introducing generic long-wavelength deformations to the blackfold

description of the KPV state, we observe that the blackfold equations (constraints

on long-wavelength deformations) prohibit the existence of tachyonic modes. It is
2For a discussion on the localised D3 perspective versus the spherical NS5 perspective, we refer

readers to section 3.5.
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1.5. On the thermal transition of metastable antibranes

interesting to mention also that counter-intuitively, the KPV state, a polarised state

of anti-D3 branes, can feel an electromagnetic repulsion away from the tip of the

KS throat. Nevertheless, this electromagnetic repulsion is “out-weighted” by the

gravitational pull so the KPV state is still stabilised radially by a net force downward.

Even though this result is evidence supporting the metastability of the KPV state

under generic perturbations, since our current approach cannot observe directly3

fragmentation instabilities (if they persist in the large NS5 sphere regime, M � 1)4,

we believe that further works needed to be done to reach a conclusive statement.

1.5 On the thermal transition of metastable antibranes

For the study of thermal transition of metastable antibranes, our exemplar candidate

is the Klebanov-Pufu (KP) metastable state of polarised anti-M2 branes, or equival-

ently M5 branes with dissolved anti-M2 brane charge (wrapped anti-M2-M5 branes),

at the tip of the Cvetic-Gibbons-Lu-Pope (CGLP) throat [3, 20]. Originally in [3],

it was shown that, in the regime of p/M̃ ≤ pcrit ' 0.05385, the anti-M2-M5 brane

balances its own “weight” with “electromagnetic” forces from the fluxes to form a

metastable state at the tip of the CGLP throat.

The anti-M2-M5 metastable state is the eleven-dimensional supergravity analogue

of the type IIB supergravity anti-D3-NS5 metastable state discussed previously. As

such, in our blackfold study of the anti-M2-M5 state, we unsurprisingly observed that

many of the properties proven for the anti-D3-NS5 state also hold true for the anti-

M2-M5 state. To avoid repetition, here and in the main text, we shall not discuss

these common properties but instead focus on exploring the exotic pattern of thermal
3It is interesting to note that, in certain cases, the leading order blackfold equations can detect

the onset of a fragmentation instability. For example, the onset of the Gregory-Laflamme (GL)
instability in black strings [44, 45] and black rings [46] whose end point is fragmentation [47, 48] can
be observed by an analogous blackfold stability analysis [8, 49].

4As the regime of validity of the analysis in [35, 43] is that of small/finite size NS5 sphere, it is
possible that the instability observed there does not persist in the large sphere regime. An analogous
example of this picture can be found in the study of black rings where a fragmentation instability
(elastic mode instability) is observed for fat rings but is not observed for very thin rings [48, 49].

5p denotes the number of the anti-M2 branes and M̃ the strength of the CGLP background flux.
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transition of the anti-M2-M5 state, which is different from that of the anti-D3-NS5

state.

In this thesis (chapter 5), through an application of the blackfold formalism, we

present a black hole phase diagram that is not only consistent with the no-go theorems

of [37] but also reveals new unexpected patters of finite-temperature transitions. At

zero temperature, we show that the blackfold equations recover faithfully the abelian

DBI equations used by KP in [3] and the same extremal metastable vacuum that

they found. At finite, sufficiently small temperature, we uncover (in direct analogy

to the case of anti-D3-NS5 branes) three main branches of wrapped M5 black brane

solutions: a fat unstable state, a metastable state and a thin unstable state. The

terms ‘fat’ and ‘thin’ refer to the relative size of the S3 that the M5 brane wraps

and the size of the Schwarzschild radius. The behaviour of these branches at higher

temperatures depends on the value of p/M̃ . In particular, we discover three separate

regimes of p/M̃ (inside the window of the metastable state, p/M̃ . 0.054) that exhibit

different patterns of thermal transitions.

There is a low-p/M̃ regime where the anti-M2 physics in CGLP is very similar to the

anti-D3 physics in KS. In this regime, there is a single finite-temperature transition

that involves the merger of a fat unstable black M5 with the metastable black M5.

Beyond this merger the metastable state is lost. We present non-trivial quantitative

evidence that supports the scenario where this merger is driven by properties of the

horizon geometry.

In addition, for the anti-M2 system we find two regimes of p/M̃ that have no known

counterpart in the system of anti-D3 branes in KS. In the large-p/M̃ regime, there is

a single merger between the metastable state and the thin unstable M5 brane state.

In this case, unsurprisingly, there are no indications that the loss of the metastable

state is driven by properties of the horizon geometry. In an intermediate regime of

p/M̃ , the phase diagram exhibits three (instead of one) transitions: two of them

involve mergers of the metastable state with the thin unstable state and one involves

a merger of the metastable state with the fat unstable state. These patterns are new,

12



1.6. Notations and conventions

unexpected predictions of the blackfold formalism for the supergravity solution and

the dual QFT.

1.6 Notations and conventions

• The signature is mostly plus (−+ + + ...).

• Greek letters (α, β, ...) are used for background indices. Latin letters (a, b, ...)

are used for worldvolume indices.

• The Hodge star operator of a p-form on an n-dimensional manifold is defined

as

(∗A)µ1...µn−p = 1
p!εν1...νpµ1....µn−pA

ν1...νp (1.4)

with εν1...νpµ1....µn−p the Levi-Civita tensor.

• Electric currents appear with a − sign in the sourced Maxwell equations:

d ? Fp+2 = −16πG Jp+1 . (1.5)

• Magnetic currents appear with a + sign in the sourced Maxwell equations:

dFp+2 = 16πG jn−q−3 . (1.6)

• The type IIB supergravity action is given by

IIIB = 1
16πG

∫
M10

d10x

{
√
−g
[
e−2φ

(
R+ 4∂µφ∂µφ−

1
2 |H3|2

)

− 1
2 |F̃1|2 −

1
2 |F̃3|2 −

1
4 |F̃5|2

]
− 1

2C4 ∧H3 ∧ F3

}
(1.7)

where the gauge invariant field strengths are defined as

F̃q+2 = Fq+2 −H3 ∧ Cq−1 (1.8)

with the exception of the self-dual F̃5 which is defined as

F̃5 = F5 +B2 ∧ F3 (1.9)
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where Fq+2 ≡ dCq+1. As we shall be using the type IIB supergravity equations

a lot in this thesis, for the convenience of the readers, let us write them explicitly

here. In particular, in our conventions, the type IIB supergravity equations are

made up of the following equations:

The φ equation

4e2φ∇µ
(
e−2φ∂µφ

)
+R+ 4∂µφ∂µφ−

1
12(H3)µ1µ2µ3(H3)µ1µ2µ3 = 0 . (1.10)

The B2 equation

d

(
e−2φ ? H3 − ?F̃3 ∧ C0 −

1
2 F̃5 ∧ C2 + 1

2C4 ∧ F3

)
= 0 . (1.11)

The C0 equation

d(?F1) +H3 ∧ ?F̃3 = 0 . (1.12)

The C2 equation

d
(
?F̃3

)
+H3 ∧ ?F̃5 = 0 . (1.13)

The C4 equation

d
(
?F̃5

)
−H3 ∧ F3 = 0 . (1.14)

And finally, the gµν equation

e−2φGµν+2∇µ
(
e−2φ∂νφ

)
−2∇ρ

(
e−2φ∂ρφ

)
gµν = Tµν(φ)+T

µν
(H3)+T

µν
(F1)+T

µν
(F3)+T

µν
(F5)

(1.15)

with

Tµν(φ) = 4e−2φ
(
∂µφ∂νφ− 1

2g
µν∂λφ∂

λφ

)
(1.16)

Tµν(H3) = e−2φ

4

(
Hµµ1µ2

3 H ν
3 µ1µ2 −

1
6g

µν |H3|2
)

(1.17)

Tµν(F1) = 1
2

(
Fµ1 F

ν
1 −

1
2g

µν |F1|2
)

(1.18)

Tµν(F3) = 1
4

(
F̃µµ1µ2

3 F̃ ν
3 µ1µ2 −

1
6g

µν |F̃3|2
)

(1.19)

Tµν(F5) = 1
2

1
48

(
F̃µµ1...µ4

5 F̃ ν
5 µ1...µ4 −

1
10g

µν |F̃5|2
)

(1.20)

where |Fp|2 = 1
p!(Fp)µ1...µp(Fp)µ1...µp .
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• The eleven-dimensional supergravity action is given by

IM = 1
16πG

∫
M11

[
?R− 1

2G4 ∧ ?G4 −
1
6A3 ∧G4 ∧G4

]
. (1.21)
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Chapter 2

Blackfolds: An effective theory for

higher-dimensional black holes

The purpose of this chapter is to introduce an effective theory for higher-dimensional

black holes named blackfolds [7–9]. We begin with a discussion of brane dynamics,

deriving the branes effective dynamical equations from Dirac action in section 2.1 and

from conservation principles in section 2.2. Subsequently, in section 2.3, we introduce

the blackfold equations and demonstrate how such equations can be used to describe

the dynamics of generic branes in generic background. In section 2.4, we discuss

blackfolds in the framework of matched asymptotic expansion (MAE). Through the

example of bending black branes in flat space, we show that the same blackfold

equations provide the necessary conditions for a matched asymptotic description of

the backreacted configurations. We further discuss the blackfold conjecture, which

states that the blackfold equations provide also the sufficient conditions for a matched

asymptotic solution. Lastly, in section 2.5, we note down the blackfold equations for

configurations in type IIB supergravity and eleven-dimensional supergravity as their

explicit forms are important for discussions in later chapters.
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2.1. Brane dynamics from Dirac action

2.1 Brane dynamics from Dirac action

Let us start with the Dirac action for a p-brane embedded in a D-dimensional manifold

in a standard Einstein-Maxwell type theory, coupling to a background metric gµν and

a (p+ 1)-form gauge field Aµ1...µp+1 :

IDirac =
∫
Wp+1

dp+1σ
√
−γ L

(
Aµ1...µp+1 , gµν

)
(2.1)

= −T
∫
Wp+1

dp+1 σ
√
−γ + Qp

∫
Wp+1

P[Ap+1] (2.2)

with Wp+1 the worldvolume of the p-brane, σ the worldvolume coordinates, γ the

determinant of the worldvolume induced metric γab, L the Lagrangian density, T the

tension of the brane, Qp the charge of the brane under the Ap+1 gauge field, and

P[Ap+1] the pullback of Ap+1 to the worldvolume. As an example, for a point particle

coupling to the background metric and the Maxwell gauge field with mass m and

charge e respectively, the action takes the form

I e =
∫
W1

dτ
√
−γ

(
−m+ e√

−γ
∂τX

ρAρ

)
(2.3)

where γ = gµν∂τX
µ∂τX

ν .

If we vary the background fields gµν and Aµ1...µp+1 in (2.1), we obtain the variational

equation

δIDirac =
∫
Wp+1

dp+1σ
√
−γ

(1
2T

µνδgµν + 1
(p+ 1)!J

µ1...µp+1δAµ1...µp+1

)
(2.4)

where

Tµν = 2 ∂L
∂gµν

+ L hµν , Jµ1...µp+1 = (p+ 1)! ∂L
∂Aµ1...µp+1

. (2.5)

Considering the gauge field variation δAµ1...µp+1 = ∇[µ1χ...µp+1], as such variation is

a pure gauge transformation, we have that δIDirac has to vanish. Explicitly, we have

δIDirac =
∫
Wp+1

dp+1σ
√
−γ

(
Jµ1...µp+1∇µ1χ...µp+1

)
= 0 . (2.6)

Assuming that our currents vanish at the boundaries, by integration by parts, we

obtain

∇µ1J
µ1...µp+1 = 0 . (2.7)
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2.1. Brane dynamics from Dirac action

It is important to note that Jµ1...µp+1 is a worldvolume projected tensor1. For example,

in the case of the point charge (2.3), such current is given by e√
−γ∂τX

ρ, which is

clearly a projected tensor. Therefore, the current conservation equation becomes

∇µ1J
µ1...µp+1 = 0 (2.8)

where ∇µ = hνµ∇ν . As proven in (A.14), this equation is equivalent to the world-

volume conservation equation:

∇a1J
a1...ap+1 = 0 (2.9)

where ∇a is a covariant derivative with respect to the induced metric.

Turning our attention to the metric variation δgµν , the analogous gauge symmetry is

diffeomorphism, which is nothing but the “active” version of a coordinate transform-

ation. The difference between diffeomorphism and the (p+ 1)-form gauge symmetry

above is that diffeomorphism acts on both the metric gµν and the (p+ 1)-form gauge

field Aµ1...µp+1 . Under an infinitesimal diffeomorphism, the background gauge fields

vary as

δAµ1...µp+1 = £ξAµ1...µp+1 = ξσ∇σAµ1...µp+1 + (p+ 1)!Aσ[µ1....∇µp+1]ξ
σ , (2.10)

δgµν = £ξgµν = 2∇(µξν) (2.11)

where £ denotes Lie derivative and ξρ is a vector specifying the direction of infinites-

imal displacement. Substituting these variations into (2.4), we have

δIDirac =
∫
Wp+1

dp+1σ
√
−γ
(
Tµν ∇µ ξν

+ 1
(p+ 1)!J

µ1...µp+1
(
ξν∇νAµ1...µp+1 + (p+ 1)!Aνµ1....∇µp+1ξ

ν
))

. (2.12)

Integrating by parts, assuming all our currents vanish at the boundaries, and making

use of (2.7), we have

δI =
∫
Wp+1

dp+1σ
√
−γ ξν

( 1
(p+ 1)!F

νµ1...µp+1Jµ1...µp+1 −∇µ Tµν
)

= 0 (2.13)

1For further discussions on embedding geometry and projected tensors, see appendix A.
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2.1. Brane dynamics from Dirac action

where Fp+2 ≡ dAp+1. Analogous to before, as Tµν is a worldvolume projected tensor,

the divergence of Tµν should be computed with ∇ instead of ∇. As ξν is arbitrary,

from (2.13), we have

∇µTµν = Fν (2.14)

with

Fν = 1
(p+ 1)!F

νa1...ap+1Ja1...ap+1 . (2.15)

As discussed in (A.15)-(A.18), we can decompose equation (2.14) into intrinsic and

extrinsic equations given respectively by

∇aT ab = ∂bXµFµ , (2.16)

T abK
(i)

ab = Fµ n(i)
µ (2.17)

where K (i)
µν ≡ K ρ

µν n
(i)
ρ with n(i)

ρ being the normal vectors of the introduced branes.

Obtained from the consideration of the Dirac brane action, the current conservation

equation (2.9), the intrinsic (2.16), and extrinsic (2.17) equation form a set of effective

dynamical equations for a p-brane coupling to a background metric gµν and a (p+ 1)-

form gauge field Aµ1...µp+1 . As an illustration, let us apply these equations to the point

charge (2.3). In such case, the currents are computed using (2.5) to be T ττ = −mγττ

and J = e dτ . The current conservation equation, the intrinsic, and extrinsic equation

become respectively

∂τe = 0 , (2.18)

∂τm = 0 , (2.19)

m∂2
τX

ρ = −mΓ(i)
ττ + e ∂τXµ F

µν n(i)
ν (2.20)

where

Γ(i)
ττ ≡ Γρµν∂aXµ∂bX

νn(i)
ρ . (2.21)

Equations (2.18) and (2.19) are trivial, however, the extrinsic equation (2.20) has

a very interesting interpretation: it is the generalisation of Newton’s second law

F = ma. In particular, we see that the LHS of equation (2.20) is already in the
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2.2. Brane dynamics from conservation equations

form ma while the RHS describes the generalisation of the force term with both the

gravitational effects (via the term −mΓ(i)
ττ ) and the electromagnetic effects (via the

term e ∂τXµ F
µν n

(i)
ν ). Let us note that, even for generic configurations, the extrinsic

equation can still be written as

T ab∂a∂bX
ρ = −T ab Γ(i)

ab + Fµ n(i)
µ (2.22)

and, thus, interpreted as the generalisation of Newton’s F = ma. Of course, we can

also consider branes that couple simultaneously to many gauge fields. In such case,

the force term (2.15) shall be straightforwardly modified to include those terms. For

further discussions on the dynamics of submanifolds from action variational principles,

we refer readers to the review by Carter [22] and references therein. One might also

be interested in reading a modern generalisation of the formulation to surfaces with

non-trivial edges in [23].

2.2 Brane dynamics from conservation equations

In this section, we demonstrate how one can obtain the effective dynamical equations

for branes coupling to non-trivial background fields from conservation principles, tak-

ing Einstein-Maxwell theory as an illustrative example. Let us start with the action

for the Einstein-Maxwell theory:

IEM = 1
16πG

∫
MD

?R− 1
2Fq+2 ∧ ?Fq+2 . (2.23)

From this action, we obtain respectively the Einstein and Maxwell equations:

Gµν − 8πGTMµν = 0 , (2.24)

d ? Fq+2 = 0 (2.25)
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2.2. Brane dynamics from conservation equations

where Gµν is the standard Einstein tensor, and TMµν is the electromagnetic energy-

stress tensor:

TMµν = 2√
−g

δImatter
δgµν

(2.26)

= 1
16πG (q + 1)!

(
(Fq+2)µµ1...µq+1 (Fq+2)νµ1...µq+1

− 1
2(q + 2)g

µν (Fq+2)2
)
.

(2.27)

Note that for the complete set of Einstein-Maxwell equations, we also have to include

the Bianchi identity for the A gauge field:

dFq+2 = 0 . (2.28)

Let us have a background with metric gµν and gauge field Aµ1...µq , satisfying the

Einstein-Maxwell equations (2.24), (2.25), and (2.28). If we introduce to this back-

ground branes carrying energy-stress tensor TµνB , electric current Jq+1, and magnetic

current JD−q−3, the effects are described by the Einstein equation

Gµν − 8πGTMµν = 8πGTBµν , (2.29)

the sourced Maxwell equation

d ? Fq+2 = −16πG ? Jq+1 , (2.30)

and the modified Bianchi identity

dFq+2 = 16πG ? JD−q−3 . (2.31)

For later convenience, note that equations (2.30)-(2.31) can also be equivalently ex-

pressed in index notation respectively as

∇µ
(
(Fq+2)µµ1...µq+1

)
= −16πG (Jq+1)µ1...µq+1 , (2.32)

∂[µ(Fq+2)µ1...µq+2] = 16πG
(D − q − 3)! (q + 3) (JD−q−3)ν1...νD−q−3εν1...νD−q−3 µ...µq+2

(2.33)

21
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where εν1...νD−q−3 µ...µq+2 is the Levi-Civita tensor. Taking the divergence of both sides

of (2.29), as ∇µGµν = 0, we have

∇µTµνB =−∇µTµνM (2.34)

= 1
(q + 1)!∇µ (Fq+2)µµ1...µq+1

(Fq+2)νµ1...µq+1 (2.35)

− 1
(q + 2)!F

µµ1...µq+1
q+2 gνρ(q + 3)∇[ρFq+2µµ1...µq+1] (2.36)

= 1
(q + 1)! (Fq+2)νµ1...µq+1 (Jq+1)µ1µ2....µq+1 (2.37)

+ 1
(D − q − 3)!(FD−q−2)νµ1...µD−q−3(JD−q−3)µ1µ2...µD−q−3 (2.38)

where in the second line we have used (2.27) and in the third line we have used (2.32)-

(2.33). Note that we have also defined the field strength FD−q−2 as FD−q−2 ≡ ?Fq+2.

From equations (2.30)-(2.31), we have the current conservation equations

d ? Jq+1 = 0 , (2.39)

d ? JD−q−3 = 0 (2.40)

which, in index notation, take the form

∇µ1(Jq+1)µ1...µq+1 = 0 , (2.41)

∇µ1(JD−q−3)µ1...µD−q−3 = 0 . (2.42)

As our introduced energy-stress tensor and currents are carried by branes, using the

same arguments as that of the previous section, we can write the energy-momentum

conservation equation as

∇aT ab = ∂bXµFµ , (2.43)

T abK
(i)

ab = Fµ n(i)
µ (2.44)

and the current conservation equations as

∇a1(Jq+1)a1...aq+1 = 0 , (2.45)

∇a1(JD−q−3)a1...aD−q−3 = 0 (2.46)
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2.2. Brane dynamics from conservation equations

where we have drop the subscript B from T ab, and defined the force term F as

Fµ = 1
(q + 1)! (Fq+2)µa1...aq+1 (Jq+1)a1...aq+1

+ 1
(D − q − 3)!(FD−q−2)µa1...aD−q−3(JD−q−3)a1...aD−q−3 . (2.47)

Equations (2.43)-(2.46) can be called forced conservation equations2. Of course, it is

straightforward to write down the analogous equations for branes coupling to more

gauge fields in a more complicated gravity theory [9].

Though our forced conservation equations may look identical to the branes effective

dynamical equations derived in the previous section, there are subtleties that are

worth discussing. In our derivation of equations (2.43)-(2.46), we have only used

generic properties of the gravitational theory while making no assumptions on the

branes or the background3. As such, these equations should hold even for the fully

backreacted solution. In particular, if we plug into (2.43)-(2.46) the (perturbative)

backreacted expressions for the metric, the gauge field, and the currents, we will be

able to extract information beyond the leading order effective dynamics. This possib-

ility will be discussed further at a later stage (page 27). For now, let us consider how

one can use equations (2.43)-(2.46) to describe the leading order effective dynamics

of branes.

To make use of equations (2.43)-(2.46), we have to write down an expression for

the metric gµν , the gauge field Aµ1...µq , and the introduced currents T ab, Jq+1, and

JD−q−3. Imagine if we are in a regime of parameters where the leading order effective

dynamics is the probe dynamics, i.e. backreactions from the introduced branes can be

ignored, we can simply use the background metric gµν and gauge field Aµ1...µq in our

computations. If the regime also allows us to approximate the introduced currents

T ab, Jq+1, and JD−q−3 with known equivalent currents, our task is done. A regime

that satisfy both of the above is the blackfold regime, which shall be discussed in the

next section.
2For discussions of analogous conservation equations in the framework of generalised global sym-

metries [50], we refer readers to [51, 52].
3As opposed to the Dirac action treatment of branes dynamics where the assumptions are that

the branes have negligible thickness, curvature and their backreactions are mild.

23



2.3. Blackfold equations as dynamical equations

Figure 2.1: An illustrative picture describing a localised black hole with horizon
radius rb living in a background with a spacelike dimension compactified into a circle
with curvature radius R.

2.3 Blackfold equations as dynamical equations

A thorough discussion of the blackfold approach usually begins with a discussion of

the matched asymptotic expansion (MAE), a procedure for constructing approximate

solutions in gravity theories. However, for our first contact with the blackfold ap-

proach, it is beneficial for our intuition if we first introduce the blackfold equations

as effective branes dynamical equations. Don’t worry about missing out, though,

a discussion of blackfolds in the framework of MAE will be provided in subsequent

sections.

We begin with the definitions of some terminology. Let us have branes with char-

acteristic near horizon scale rb and background with characteristic length scale R.

Then, the blackfold regime is defined as the parameters space where we have a large

separation of scales rb � R. Consider as an example the configuration of a black

hole on a cirle, illustrated by figure 2.1, where the scale rb is given by the horizon

radius of the black hole and the scale R is given by the curvature radius of the circle.

In this example, the blackfold regime is guaranteed when the horizon radius is much

smaller than the curvature radius.

24



2.3. Blackfold equations as dynamical equations

Equivalent currents are currents that mimic the far-zone effects of our added objects

on the background. The idea of equivalent currents is nothing new. An intuitive

example is “equivalently” modelling the Sun as a point mass and solving for its far-

zone description, which is nothing but the linearised Schwarzschild solution.

As the blackfold regime requires the scale of the introduced branes rb to be small

(compared to all other scales in the problem), the branes leading order effective

dynamics is that of probe branes4 and we can mimic their introduced currents with

equivalent currents. As the blackfold regime also requires the scale of the background

R to be large (compared to all other scales in the problem), we can approximate such

equivalent currents with the currents carried by the branes in flat space5. Plugging

the expressions for the equivalent currents into equations (2.43)-(2.46), we arrive at

a set of equations named the blackfold equations, which approximates the dynamics

of the branes.

For concreteness, let us consider the example of a charged particle moving in a non-

trivial background. If we tune the parameters of the particle/background configura-

tion in such a way that there is a large separation of scaleR � rb, we can approximate

the currents carried by the point charge using its description in flat space, which in

4-dimension takes the familiar form of the Reissner-Nordstrom solution6:

ds2 = −
(

1− r0
r

+
r2
Q

r2

)
dt2 +

(
1− r0

r
+
r2
Q

r2

)−1

dr2 + r2dΩ2
2 , (2.48)

A = Q

r
dt (2.49)

where rQ and Q are related by

r2
Q = KQ2G (2.50)

with K being the Coulomb force constant.
4For example, in [53], it is rigorously proven that in General Relativity, the leading order dynamics

of small bodies with low size and mass is that of probe particles.
5It can be helpful to think about the example of a black hole on a circle (figure 2.1). In particular,

it is easy to persuade ourselves with this example that when rb is small, the black hole can be
approximated as a point-like object and its leading order dynamics should be that of a probe particle.
Moreover, when R is large, the far-zone effects of the black hole on the circle can be approximated
by the analogous effects of the black hole on a straight line.

6The description of the Reissner-Nordstrom black hole in higher dimension is known, e.g. [54].
Nevertheless, we decided to consider the 4-dimension case for familiarity.
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2.3. Blackfold equations as dynamical equations

For the construction of equivalent currents, we want to know what spatially point-like

sources would reproduce the far-zone description of the Reissner-Nordstrom solution

when substituting into the forced Einstein-Maxwell equations (2.29)-(2.31). This

question can be easily answered through the notion of the mass and charge of the seed

solution. In particular, as the ADM mass is defined as the localised point-like source

that replicates the metric in the far-zone, our energy-stress tensor is T ττ = mADM γττ

where mADM can be read off from (2.48):

mADM = r0
2G . (2.51)

Similarly, we have J = Q dτ where Q is the electric charge of the solution, computed

using Gauss’s law as

Q = − 1
16πG lim

r→∞

∫
?F2 = Q

4G . (2.52)

Substituting these currents into (2.43)-(2.46), we get the blackfold equations

∂τQ = 0 , (2.53)

∂τmADM = 0 , (2.54)

mADM ∂2
τX

ρ = −mADM Γ(i)
ττ +Q ∂τXµ F

µν n(i)
ν . (2.55)

Comparing these equations to (2.18)-(2.20), we can easily see that the blackfold equa-

tions describe the effective dynamics of a particle with mass r0
2G and charge Q

4G .

Our analysis for the point particle in Einstein-Maxwell theory generalises straight-

forwardly to branes in (super)gravity theories. In such cases, the approximation of

the energy-stress tensor T ab shall be obtained through a generalisation of the ADM

mass, or equivalently the Brown-York energy-stress tensor [55]. The approximation of

the gauge fields/dilaton currents in a supergravity theory might require some care as

there can be different, nonequivalent notions of charge [56]. In fact, these subtleties

do appear in our later discussions, e.g. in the computation of equivalent currents of

anti-D3-NS5 bound state in appendix C.1 or anti-M2-M5 bound state in appendix

C.2.

In the case of non-trivially embedded branes, there is another scale in the story, the

curvature radius of the bending in the configuration, RE . Even in flat space, there
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2.3. Blackfold equations as dynamical equations

are not many known description of non-trivially embedded branes. As a result, we

often further approximate the equivalent currents of the branes configurations by

their trivially-embedded description. In such case, the required blackfold regime is

rb � R,RE .

After deriving the dynamical equations from conservation equations, discussing equi-

valent currents, stating the blackfold regime, and introducing the blackfold equations,

we obtain as an example the effective dynamics of a point charge. Naturally, one might

say “We already know the effective dynamics of a point charge from Dirac action.

Why bother with all these?”. One reason is that our method for computing branes

dynamics can be used in situations where other methods are difficult or even not

feasible. Examples of these include the dynamics of nonextremal anti-D3-NS5 branes

(chapter 3) and anti-M2-M5 branes (chapter 5) in warped throats. A more important

reason is that, even though we introduce the blackfold equations as effective dynam-

ical equations, they should not be understood solely as such. As argued in details in

the next section, the blackfold equations are part of the (super)gravity equations for

the first order matched asymptotic description of the backreacted configuration. As

such, they give information on the backreacted profile of the branes configuration.

In describing effective branes dynamics with the blackfold equations, we have made

two approximations. Firstly, we have approximated the metric and gauge fields in

equations (2.43)-(2.46) with their values in the unperturbed background profile, ef-

fectively ignoring all effects of backreations from the branes. Secondly, we have ap-

proximated the currents carried by the branes by their equivalent currents, which

are further approximated by the far-zone currents carried by the flat-space homo-

geneous description of the introduced branes. Improvements can be made on both

of these approximations. In particular, we can improve our first approximation by

obtaining the matched asymptotic description of the configuration and use it as the

background profile in the computation of the blackfold equations. Improvements of

this type are related to the self-force of the branes, i.e. our blackfold equations now

include the effects of backreactions from the branes and the obtained dynamics is bey-
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2.4. Blackfold equations as constraints of MAE

ond probe dynamics. We can also improve our second approximation. Specifically,

we can improve how well the equivalent currents mimic the actual currents carried

by the branes by including in their descriptions finite-thickness and bending effects

[57]. We should also make use of the matched asymptotic description to write down

a better approximation for the equivalent currents. Improvements of this type are

related to the intrinsic information of the branes, i.e. they allow us to study non-

linear effects (viscosity, damping) in the blackfold (fluid) equations. For discussions

and applications of the next-to-leading order blackfold equations, we refer readers to

[26, 54, 57–62].

2.4 Blackfold equations as constraints of MAE

In the previous section, we have introduced the blackfold equations as effective dynam-

ical equations for branes in background satisfying the condition R,RE � rb where

R, RE , and rb are respectively the characteristic length scale of the background,

the curvature radius of the bending in the configuration, and the characteristic near

horizon scale of the branes. In this section, we demonstrate that the same blackfold

equations provide the necessary conditions for a matched asymptotic (super)gravity

description of the backreacted configuration to first order in derivative expansion.

Let us begin with an introduction to the procedure of matched asymptotic expansion

(MAE), see e.g. [24, 25] for a discussion of the MAE in the context of caged black

holes. The MAE can be understood as a procedure where the (super)gravity profile is

analysed in two asymptotic regions: the near zone, r � R,RE , where the profile can

be approximated by a seed solution and the far zone, r � rb, where the profile can be

approximated by a background solution. Then, given that we can tune our system to

have R,RE � rb, information on the full (super)gravity profile can be extracted from

the matching of these two asymptotic regions in an overlap zone, R,RE � r � rb.

The information obtained in the overlap zone can tell us a lot about the system.

In particular, we can make use of such information to construct an ansatz for a

perturbative description of the configuration everywhere in spacetime. Plugging this
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2.4. Blackfold equations as constraints of MAE

ansatz into the (super)gravity equations, solving the resulting differential equations,

we will have a leading order matched asymptotic description of the (super)gravity

profile.

To implement the MAE procedure, let us introduce the idea of derivative (long-

wavelength) expansion, see e.g. [29, 63] for discussions of derivative expansion in the

context of fluid-gravity correspondence. As an illustrative example, let us consider a

family of p-branes solutions in flat space in pure Einstein gravity:

ds2
seed =

(
ηab + rn0

rn
uaub

)
dσadσb + dr2

1− rn0
rn

+ r2dΩ2
n+1 (2.56)

where σa are the worldvolume coordinates along the branes and r, Ωn+1 are the trans-

verse coordinates orthogonal to them. In (2.56), ηab = gµν∂aX
µ∂bX

ν = ηµνδ
µ
a δ

ν
b can

be view as the induced metric of Minkowski space on the trivially-embedded branes.

We can categorise the parameters of this solution family into intrinsic parameters,

e.g. the horizon thickness r0 and boost velocity ua, and extrinsic parameters, e.g.

the embedding functions Xµ
⊥

7 hidden inside the induced metric.

It is easy to see that if we fix the parameters of (2.56) to any constant values (r0)∗,

(ua)∗, (Xµ
⊥)∗, it will simply be a solution corresponding to black p-branes with such

horizon radius, boost velocity, and embedding. However, if we turn these parameters

into functions varying with respect to the worldvolume coordinates σ, (2.56) will no

longer be a solution and we expect to have to add corrections correcting for the dif-

ferences between constant and varying. Such corrections are of course derivatives of

the parameter functions with respect to the worldvolume coordinates. The procedure

where one turns the parameters of a family of gravity solutions into worldvolume func-

tions and adds derivative corrections to it is called a derivative expansion. As we want

our expansion to be well-behaved, we restrict our scope to long-wavelength physics

so that, as things only change after going a large “distance”, each order of derivative

comes with a subduing factor. This is the reason why doing a derivative expansion
7Note that, because of reparametrisation invariance along the worldvolume directions, we only

have to consider the portion of the embedding functions that is normal to the branes, i.e. ∂aXµXµ
⊥ =

0.
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2.4. Blackfold equations as constraints of MAE

can be alternatively understood as introducing long-wavelength perturbations to a

seed solution. Note that the long-wavelength requirement of the derivative expansion

is compatible with the MAE requirement that R,RE � rb. As such, we can use

the profile of the branes in flat space as seed and figure out what long-wavelength

corrections are needed to turn the seed into a profile that asymptotically match to

the required background.

For concreteness, let us consider the example of bending black p-branes in flat space

[27]. In such case, we take our ansatz to be the long-wavelength expansion of (2.56):

ds2
ansatz =

(
γab(Xµ(σ)) + rn0 (σ)

rn
ua(σ)ub(σ)

)
dσadσb

+ dr2

1− rn0 (σ)
rn

+ r2dΩ2
n+1 + εfµν + ... (2.57)

where the induced metric γab is given by γab = ηµν∂aX
µ(σ)∂bXν(σ), ε is a subduing

factor of the same order as the first order worldvolume derivatives of the parameter

functions, and the dots refer to higher derivative corrections. The subduing factor ε

can also be thought of as the ratio rb/R8. In (2.57), the intrinsic long-wavelength

perturbations are expressed explicitly through the parameter functions r0(σ) and

ua(σ). The extrinsic long-wavelength perturbations are expressed implicitly through

the induced metric γab. Note that, as we bend our branes in flat space, the background

metric gµν is still ηµν . However, this generalises straightforwardly to more general

background metric.

By plugging (2.57) into the Einstein vacuum equations, Gµν = 0, and requiring that

they are satisfied up to leading order in ε, we obtain a set of differential equations

for the parameter functions r0, ua, X
µ and the corrections term fµν . However, as our

purpose is only to recover the blackfold equations from MAE, we focus solely on a

subset of these differential equations for which only the parameter functions appear.
8From here and on wards, we shall not be distinguishing clearly the background scale R and the

bending scale RE but only use a representative scale R. Note that, in our immediate example of
bending black p-branes, the representative scale R should really be understood as the bending scale
RE .
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2.4. Blackfold equations as constraints of MAE

These turn out to be the constraint equations, a subset of gravity equations obtained

by projecting the Einstein equations along the worldvolume surface.

As in these equations the intrinsic and extrinsic parameter functions decouple, we can

consider them separately. In particular, considering the intrinsic parameter functions,

keeping track of the subduing factors from the worldvolume derivatives, we obtain to

first order in ε [26]:

∇aT ab = 0 (2.58)

where T ab is given by

T ab = Ωn+1
16πGr

n
0 (nuaub − ηab) . (2.59)

Note that (2.59) is exactly the Brown-York tensor obtained from the flat black p-

branes solution and, thus, (2.58) is nothing but the intrinsic blackfold equations.

Considering the extrinsic (embedding) parameter functions, it is convenient to trans-

form our background, here the Minkowski space, to an adapted coordinates system

where it is readily compatible with our near zone ansatz (2.57). In particular, we

write our Minkowski background to leading order in 1/R as [27]:

ds2
flat =

(
ηab − 2K i

ab yi
)
dσadσb + dyidy

i +O
(
y2/R2

)
(2.60)

where the spacetime coordinates are (σa, yi). We can think of the metric (2.60) as

being adapted to a p + 1 dimensional worldvolume Wp+1 with yi = 0 denoting the

position ofWp+1. As such, yi acts as the orthogonal embedding parameter describing

the long-wavelength extrinsic perturbations of the worldvolume Wp+1 away from its

trivial embedding, e.g. δXµ
⊥(σ) = yi.

Let us define our orthogonal coordinates yi such that the bending of our branes occurs

along a specific orthogonal direction yî. By transforming the orthogonal coordinates

yi into spherical coordinates with

r =
√
yiyi , (2.61)

yî = r cos θ , (2.62)
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2.4. Blackfold equations as constraints of MAE

we can write the Minkowski background metric to leading order in 1/R as

ds2
flat =

(
ηab − 2K î

ab r cos θ
)
dσadσb + r2dΩ2

(n+1) . (2.63)

Requiring that our ansatz (2.57) matches asymptotically in the far zone to the back-

ground to leading order in 1/R, we have

ds2
ansatz =

(
ηab − 2K î

ab r cos θ + rn0
rn
uaub

)
dσadσb

+ dr2

1− rn0 (σ)
rn

+ r2dΩ2
n+1 + εfµν (2.64)

where we have expressed the induced metric explicitly as

γab = ηab − 2K î
ab r cos θ . (2.65)

Before continuing, let us explain that the appearance of extrinsic curvature K î
ab in

the induced metric is not as surprising as it might first appear. The leading order

deviation away from ηab of the induced metric γab due to bending of the branes can

be computed as

δγab = −2K i
ab δXi = −2K î

ab yî = −2K î
ab r cos θ (2.66)

where we have used (D.2) in the first equality. Therefore, it is rather obvious that to

leading order in 1/R we have (2.65).

Pushing our ansatz (2.64) to the overlap zone, to leading order in rn0 /rn and 1/R, we

have

ds2
ansatz =

(
ηab − 2K î

ab r cos θ + rn0
rn
uaub

)
dσadσb

+
(

1 + rn0
rn

)
dr2 + r2dΩ2

n+1 + εfµν . (2.67)

Plugging this into the Einstein equations, we note that we can extract an equation

that doesn’t involve fµν , which can be written as [27]

T abK î
ab = 0 (2.68)

where T ab is the Brown-York tensor (2.59). This is simply the extrinsic blackfold

equations.
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Before continuing, let us count the number of equations and degrees of freedom. For

a p-brane in D dimensions, we have p + 1 intrinsic blackfold equations (2.58) and

D− (p+ 1) extrinsic blackfold equations (2.68)9. Thus, in total, we have D blackfold

equations. Let us now count the number of degrees of freedom. The zeroth order

long-wavelength deformations of the p-brane are given by the parameter functions

r0, ua, X
µ (2.57). As deformations in Xµ along the worldvolume directions can be

undone by a worldvolume coordinates reparametrisation10, we are only interested in

the deformations normal to the branes11. Therefore, from Xµ, we have D − (p + 1)

degrees of freedom. As ua has to satisfy the unitary condition, from ua, we have p

degrees of freedom. Lastly, we have 1 degree of freedom from r0. Thus, altogether, we

also have D degrees of freedom. When we consider charged branes, there will be extra

degrees of freedom associated to the “electromagnetic” currents. However, then, the

current conservation equations (2.39)-(2.40) will allow us to define conserved charges.

Once we fix these charges, we can write the extra degrees of freedom in terms of the

old ones.

We have shown explicitly through the example of bending black p-branes in flat

space that the blackfold equations are part of the gravity equations for the leading

order backreacted matched asymptotic description. As such, they can be viewed

as the necessary conditions for a matched asymptotic solution. This result can be

straightforwardly extended to generic branes in generic backgrounds in supergravity

theories [9].

On the other hand, the question whether the blackfold equations provide also the

sufficient conditions for a matched asymptotic description, i.e. solving only the sub-

set of blackfold equations guarantee the satisfaction of all (super)gravity equations,

is more tricky. In our immediate example of bending black p-branes in flat space, it

was proven in [27] that, indeed, solving the blackfold equations guarantee a regular
9In equation (2.68), we only consider the normal direction yî as we only bend the brane in such

direction, i.e. for all other directions, the extrinsic curvature K i
ab vanishes. However, in general, one

would have T abK i
ab = 0 where i runs over all normal directions.

10Given that the branes have no edges.
11This is the reason why it is often convenient to put Xµ in static gauge.
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2.5. Blackfold equations in supergravity theories

solution that matches the seed in the near zone and the background in the far zone

to first order in 1/R. However, despite partial evidence in all cases that have been

worked out in detail, the generalisation of this statement to generic branes and back-

ground in supergravity remains a conjecture, known as the blackfold conjecture [28].

This conjecture is almost analogous to the statement in Fluid/Gravity that there is

a one to one map between a solution of the fluid equations and a regular solution of

the gravitational equations [29].

2.5 Blackfold equations in supergravity theories

Going through the procedure explained in the previous sections, one can derive the

blackfold equations of generic branes in generic background in a general (super)gravity

theory [9]. For our later convenience, in this section, let us collect the blackfold

equations for systems in type IIB supergravity and eleven-dimensional supergravity.

Type IIB supergravity The action for the bosonic sector of the type IIB super-

gravity theory in the Einstein frame can be written in the democratic formulation as

[64]

IIIB = 1
16πG

∫
M10

[
?R− 1

2dφ ∧ ?dφ−
1
2e
−φH3 ∧ ?H3 −

1
4
∑
q

eaqφF̃q+2 ∧ ?F̃q+2

]
(2.69)

where the dilaton coupling aq is given by aq = (3 − q)/2 and the values of q are

q = −1, 1, 3, 5, 7. Of course, the equations of motion of the action (2.69) must be

supplemented by the duality relations F̃D−q−2 = ?F̃q+2.

Letting our degrees of freedom be represented by the lower form fields, from con-

servation considerations, we have the blackfold equations for probe branes with H3

electric current j2; H3 magnetic current j6; F̃1, F̃3, F̃5 electric currents J0, J2, J4;

F̃1, F̃3 magnetic currents J8, J6; and dilaton current jφ are given by the energy-
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2.5. Blackfold equations in supergravity theories

momentum tensor conservation equations12

∇µTµν = 1
2!H

νµ1µ2
3 j2µ1µ2 + e−φ

6! H
νµ1...µ6
7 j6µ1...µ6 + jφ∂

νφ

+
∑
q

1
(q + 1)!

(
F̃
νµ1...µq+1
q+2 + q(q + 1)

2! Hνµ1µ2
3 C

µ3...µq+1
q−1

)
Jq+1µ1...µq+1

−
∑
q

eaqφ

(q̃ + 1)!

(
F̃
νµ1...µq̃+1
q̃+2 + q̃(q̃ − 1)

2! Hνµ1µ2
3 C

µ3...µq̃+1
q̃−1

)
Jq̃+1µ1...µq̃+1

+ 1
4!
(
F̃ νµ1...µ4

5 + 3Hνµ1µ2
3 Cµ3µ4

2

)
J4µ1...µ4

−
∑
q

eaqφ

(q + 2)! F̃
µ1...µq+2
q+2 (?j6 ∧ Cq−1)νµ1...µq+2

(2.70)

and the current conservation equations

d ? J0 + ?J2 ∧H3 + eφF̃7 ∧ ?j6 = 0 , d ? J4 + e−φF̃3 ∧ ?j6 = 0 , (2.71)

d ? J2 + ?J4 ∧H3 + F̃5 ∧ ?j6 = 0 , (2.72)

d ? J8 = 0 , d ? J6 = H3 ∧ ?J8 , (2.73)

d ? j2 = 0 , d ? j6 = 0 (2.74)

where we have defined H7 ≡ ?H3. The sum over q takes value over q = −1, 1, 3 and

we have introduced q̃ = D − q − 4.

Eleven-dimensional supergravity The action of the bosonic sector of eleven-

dimensional supergravity is given by [65]

IM = 1
16πG

∫
M11

[
?R− 1

2G4 ∧ ?G4 −
1
6A3 ∧G4 ∧G4

]
. (2.75)

The blackfold equations for probe branes with electric current J3 and magnetic current

J6 are given by

∇µTµν = 1
3!G

νµ1µ2µ3
3 J3µ1µ2µ3 −

1
6!G

νµ1...µ6
7 J6µ1...µ6 , (2.76)

d ? J3 + ?J6 ∧G4 = 0 , (2.77)

d ? J6 = 0 (2.78)

where we have defined the dual field strength G7 ≡ ?G4.
12Our equations have some sign differences compared to [9]. These are simply due to differences

in conventions.
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Chapter 3

On the existence of metastable

antibranes

The purpose of this chapter is to demonstrate an application of the blackfold approach

in the argument for the existence of metastable states of antibranes in warped throats.

Our exemplar candidate is the Kachru-Pearson-Verlinde (KPV) [2] metastable state

of polarised anti-D3 branes, or equivalently wrapped NS5 branes with dissolved anti-

D3 brane charge (wrapped anti-D3-NS5 branes), at the tip of the Klebanov-Strassler

(KS) throat [16]. As such, we are interested in the type IIB supergravity solution

describing wrapped anti-D3-NS5 branes at the tip of the KS throat. Because an exact

description of such configuration is technically unfeasible, we turn to approximate

descriptions. In particular, a perturbative description of the configuration can be

obtained through the technique of matched asymptotic expansion, where the solution

is approximated in the far zone by the background solution of interest (here the KS

throat) and in the near zone by an uniform flat-space p-brane solution (here the

D3-NS5 bound state). As the blackfold equations provide the necessary conditions

and perhaps also the sufficient conditions for the leading order matched asymptotic

solution, we make use of such equations to learn about the configuration of anti-D3-

NS5 branes in KS throat.

We begin, in section 3.1, with an introduction to the KPV state and a brief review of
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the discussions regarding its existence. In section 3.2, we derive the blackfold equa-

tions for nonextremal anti-D3-NS5 branes at the tip of the KS throat, recovering the

KPV DBI probe analysis at extremality. In section 3.3, we provide a discussion on the

regime of validity of our analysis. Subsequently, in section 3.4, we describe effective

potentials for nonextremal anti-D3-NS5 branes and study the effects of nonextremal-

ity on the conjectured KPV metastable state. In particular, we provide quantitative

evidence for a thermal metastability-losing mechanism that is driven by horizon geo-

metry. Lastly, in section 3.5, we discuss how these findings, together with previously

known results, constitute to a strong argument for the existence of antibranes meta-

stable state.

3.1 Introduction to the KPV state

Let us begin our story with the Klebanov-Strassler (KS) throat [16], a 10-dimensional

type IIB supergravity solution. The KS throat involves a 6-dimensional deformed

conifold, a 4-dimensional Minkowski space, and non-trial F3, F5, H3 fluxes that in

turn induce warping effects to the throat. The principal difference between our 6-

dimensional deformed cone and a regular cone is that, instead of having a point-like

tip, our deformed cone has an S3 tip. One can intuitively think of the KS throat as

the solution resulting from placing D3 and D5 brane charge at the tip of a Ricci-flat

(deformed) conifold. The D3 and D5 brane charge will induce non-trivial F3, F5, H3

fluxes as well as warping effects to the conifold, giving us a warped, fluxed throat

geometry. For a detailed introduction to the KS throat, we refer readers to appendix

B.1. In appendix B.1, we focus on aspects of the KS throat that are immediately

relevant for its role as background geometry of metastable antibranes. For further

discussion, we refer readers to the original paper [16] or the review [66].

Let us take some anti-D3 branes and place them near the tip of the KS throat. As

one expects (or via explicit calculations), these anti-D3 branes will be attracted to

the tip via both gravitational and “electromagnetic” forces. Through considering the

non-abelian worldvolume theory of the stack of anti-D3 branes at the tip of the KS
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Figure 3.1: On the left, we have an illustrative picture of the tip of the KS throat,
which is an S3. The coordinate ψ ∈ (0, π) is the azimuth angle of this S3. The red
circle illustrates the KPV state, which is a spherical NS5 state (wrapping an S2 of
the S3) that experiences a balance of force along the azimuth angle ψ. On the right,
we have the effective potential of a spherical NS5 state at the tip of the KS throat
for p/M = 0.03. As we can from the plot, the potential has a metastable minimum
at ψ ≈ 0.3. This is the KPV state.

throat, [2] argued that these anti-D3 branes will polarise via the Myers effects [67]

into a spherical NS5 brane with dissolved anti-D3 brane charge, wrapping an S2 of

the S3 at the tip. From the perspective of the NS5 brane, [2] further argued that,

for some regime of parameters, this NS5 brane can experience a balance of force that

allow it to form a metastable state. In particular, they found that for p/M between

0 and pcrit with p denotes the number of the anti-D3 branes, M denotes the strength

of the KS fluxes, and pcrit ≈ 0.080488, the effective potential of the NS5 brane has a

metastable minimum, see figure 3.1. This metastable state of spherical NS5 brane at

the tip of the KS throat is what we call the KPV state. Let us note that the KPV

configuration is classically stable but can tunnel quantum mechanically to the true

minimum at ψ = π. However, the rate of decay is exponentially suppressed [2].

Discussions on the existence of the KPV state were started from two main observa-

tions: First, in writing down the worldvolume action for the antibranes, [2] utilised

S-duality. The concern is that such step would take their analysis outside of its regime

of validity, thus, invalidating the results [35]. Second, in attempts to construct the

supergravity description of the KPV configuration, people encountered unexpected
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3.1. Introduction to the KPV state

difficulties which cast doubt on the state’s existence. In [17], unphysical singularities

in the 3-form fluxes were observed in the supergravity description of anti-D3 branes

at the tip of the KS throat where the anti-D3 branes are smeared all over the S3 of

the tip. By requiring a consistent UV/IR gluing of antibranes to the KS throat [19],

a set of no-go theorems were constructed. These no-go theorems can be summarised

as below:

• Smeared anti-D3 and extremal localised anti-D3 solutions are not permitted.

• Non-extremal localised anti-D3 solutions are permitted but have no extremal

limit.

• Spherical NS5 solutions are permitted.

An intuitive interpretation of these no-go theorems can be obtained via the Smarr

relations [19, 37]. One starts by deriving the Smarr relations for antibranes at the tip

of the throat geometry. This thermodynamic equation carries the gluing conditions by

relating the UV (e.g. the ADM energy) and the IR (e.g. horizon area, surface gravity,

chemical potential, charge) information of the solution. From the Smarr relations,

we can quickly see that smeared anti-D3 and extremal localised anti-D3 solutions are

not permitted. Furthermore, the Smarr relations offer an explanation for why the

spherical NS5 escapes the no-go theorem while the localised anti-D3 does not. The

key reason is that the spherical NS5 has a non-trivial horizon geometry which allows

it to balance the non-zero ADM energy with dipole charge.

In the rest of the chapter, we will study the KPV state using the blackfold approach.

After obtaining some new results, we will come back and discuss the existence of

KPV state more thoroughly in section 3.5.
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3.2. Blackfold equations for anti-D3-NS5 branes in KS throat

3.2 Blackfold equations for anti-D3-NS5 branes in KS

throat

The KS throat For the purpose of deriving the anti-D3-NS5 blackfold equations,

we present here only the metric and the flux components of the KS throat that

contribute in our derivation. For more discussions on the KS throat, we refer readers

to appendix B.1. For our convenience, let us set the string scale ls = 1. As the dilaton

of the KS solution is a constant, we further set gs = 1. As discussed in the appendix,

in adapted coordinates, the KS metric near the apex is given by

gµνdx
µdxν = Mb20

(
− dt2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dθ2

2 + sin2 θ2dφ
2
2)
)

+ ... (3.1)

and the relevant fluxes are given by

F3 = 2M sin2 ψ sinω dψ ∧ dω ∧ dϕ+ ... , (3.2)

H7 = −2M3b40 sin2 ψ sinω dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dψ ∧ dω ∧ dϕ+ ... (3.3)

where b20 ≈ 0.93266 and the dots refer to components of the metric/fluxes that do

not contribute in our derivation1. The factor M , which counts the units of F3 flux

piecing the S3 at the tip of the throat (B.12), is a characteristic parameter of the

KS throat. As we shall see shortly in the discussion on the regime of validity, our

blackfold approach is applicable only for KS throat with large M .

Anti-D3-NS5 branes As discussed in chapter 2, the anti-D3-NS5 blackfold equa-

tions can be obtained as the conservation equations of equivalent sources induced

by the branes onto the background. Equivalent sources are sources that mimic the

far-zone effects of the seed solution on the background profile. For discussions of

the anti-D3-NS5 branes and their equivalent sources, we refer readers to appendix

C.1. Here, we simply present the results. For nonextremal anti-D3-NS5 branes, the
1Some terms in the dots are important to our stability analysis in chapter 4 and shall be discussed

appropriately later on.
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3.2. Blackfold equations for anti-D3-NS5 branes in KS throat

equivalent energy-stress tensor is

T ab = C

[
r2

0

(
uaub − 1

2γ
ab
)
− r2

0 sin2 θ sinh2 α(γab − vavb − wawb)− r2
0 cos2 θ sinh2 αγab

]
(3.4)

and the equivalent currents are

J2 = Cr2
0 sinh2 α sin θ cos θ v ∧ w , (3.5)

J4 = Cr2
0 sinhα coshα sin θ ∗ (v ∧ w) , (3.6)

j6 = −Cr2
0 sinhα coshα cos θ ∗ (1) (3.7)

where C = Ω3
8πG with Ω3 = 2π2 the volume of the unit radius S3, and ∗ is the

worldvolume Hodge dual operator. In our description, r0, α, tan θ, va, wa, ua are

the parameters of the anti-D3-NS5 branes, describing respectively the Schwarzschild

horizon radius, the boost rapidity, the brane charge distribution, the orientation of

the anti-D3 dissolved charge (with two orthogonal vectors v and w)2, and the thermal

flow (with one directional vector u).

Anti-D3-NS5 branes in KS throat In a blackfold set-up of anti-D3-NS5 branes

in KS background, the variables of the system are

r, θ2, φ2, ψ, r0, α, tan θ, va, wa, ua . (3.8)

Variables r, θ2, φ2, ψ are the embedding parameters of the branes to the background.

Variables r0, α, tan θ, va, wa, ua are the characteristic parameters of the seed solu-

tion.

In order to construct a metastable state, we place the anti-D3-NS5 branes at the tip

of the KS throat in such way that 4 of the 6 dimensions of the D-brane bound state lie

along the Minkowskian directions t, x1, x2, x3, and the other 2 wrap around the 2-cycle

ω, ϕ. For simplicity, let us further restrict our attention to t dependent configurations

with dissolved anti-D3 brane charge lying along the Minkowski directions and thermal
2To specify the orientation of the 4-dimensional anti-D3 branes in the 6-dimensional worldvolume

of the NS5 brane, we can specify its 2 codimensions. These are described by the vectors v and w.
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3.2. Blackfold equations for anti-D3-NS5 branes in KS throat

flow along the t direction. This means we have set

r = 0 , (3.9)

restricted our scalar variables to

ψ(t), r0(t), α(t), tan θ(t) , (3.10)

and specified our vectors as

va∂a = ∂ω√
Mb0 sinψ

, (3.11)

wa∂a = ∂ϕ√
Mb0 sinψ sinω

, (3.12)

ua∂a = ∂t√
Mb0

√
1− ψ′2

(3.13)

where ψ′ ≡ ∂t ψ. The factors in (3.11)-(3.13) are to make sure that v, w, u satisfy

the unitary condition, i.e. vava = 1. Note that, even when we ask v and w to be

orthogonal to each other, i.e. vawa = 0, there is still a rotational gauge symmetry

in the specification of v and w due to the redundancies in the language we used to

describe the orientation of the dissolved anti-D3 branes. Such gauge symmetry is

helpful later in chapter 4 where we consider generic long-wavelength perturbations to

the configuration.

The blackfold equations Substituting the KS background profile (3.1)-(3.3) and

the anti-D3-NS5 equivalent currents (3.4)-(3.7) into the blackfold equations in type

IIB supergravity (2.70)-(2.74), we obtain the anti-D3-NS5 blackfold equations. These

blackfold equations can be written in term of energy-momentum conservation equa-

tions and current conservation equations as presented explicitly below.

1. Energy-momentum conservation equations:

∇aT ab = ∂bXµFµ , (3.14)

T abK
(i)

ab = Fµ n(i)
µ (3.15)
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3.2. Blackfold equations for anti-D3-NS5 branes in KS throat

where n(i)
µ denotes the normal vectors of the anti-D3-NS5 blackfold, K (i)

ab =

K ρ
ab n

(i)
ρ , and the force term Fµ is given by

Fµ = − 1
6!H

µa1...a6
7 j6a1...a6 + 1

2! F̃
µa1a2
3 J2a1a2 . (3.16)

2. Current conservation equations

d ∗ j6 = 0 , (3.17)

d ∗ J4 + ∗j6 ∧ F3 = 0 , (3.18)

d ∗ J2 +H3 ∧ ∗J4 = 0 (3.19)

where F3, H3 are the projected background fluxes and ∗ is the 6-dimensional

Hodge dual of the worldvolume directions.

Considering the intrinsic equation (3.14), one can show that the equation is non-

trivial only when b = t and such equation can be simplified to

∂t

(
r2

0

(3
2 + sinh2 α

))
+ 2 cotψψ′r2

0

(
1 + sinh2 α sin2 θ

)

= − 2
b20
ψ′r2

0 sinh2 α sin θ cos θ . (3.20)

Considering the extrinsic equation (3.15), as we are focusing on dynamics at the tip,

the only normal vector is

n(1) =
√
Mb0√

1− ψ′2
(
−ψ′dt+ dψ

)
. (3.21)

Plugging this into (3.15) yields

ψ′′

(1− ψ′2)2

(
3
2 + sinh2 α

)
+ cotψ

1− ψ′2

(
1 + 2 cos2 θ sinh2 α

)

= 2
b20

1√
1− ψ′2

cos θ sinhα coshα+ 2
b20

1
1− ψ′2 sinh2 α sin θ cos θ . (3.22)
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3.2. Blackfold equations for anti-D3-NS5 branes in KS throat

From the current conservation equations (3.17)-(3.19), we can define conserved Page

charges Q3 and Q5 that keep track of the number of anti-D3 branes and NS5 branes:

Q5 = ∗j6 = Cr2
0 sinhα coshα cos θ , (3.23)

Q3 =
∫
S2
∗ (J4 + ∗(∗j6 ∧ C2)) (3.24)

= −4πM Cr2
0 sinhα coshα

(
sin θ b20 sin2 ψ + cos θ

(
ψ − 1

2 sin 2ψ
))

(3.25)

where we have used C2 = M(ψ − 1
2 sin 2ψ) sinωdω ∧ dϕ. It follows immediately that

we can write tan θ as

tan θ = 1
b20 sin2 ψ

(
πp

M
−
(
ψ − 1

2 sin 2ψ
))

(3.26)

where we have made the identification

−Q3
4πQ5

= πp . (3.27)

Equations (3.20), (3.22), and (3.26) form our set of blackfold equations.

Recovery of the KPV state at extremality In the extremal limit, the intrinsic

equation (3.20) becomes obsolete as it is simply the derivative of the equation for

tan θ (3.26). With some algebraic manipulations, the set of anti-D3-NS5 blackfold

equations can be written as

cotψ = 1
b20

√
1− ψ′2

√
1 + tan2 θ + 1

b20
tan θ − 1

2(1 + tan2 θ) ψ′′

1− ψ′2 (3.28)

where tan θ is given by

tan θ = 1
b20 sin2 ψ

(
πp

M
−
(
ψ − 1

2 sin 2ψ
))

. (3.29)

On the other hand, from the DBI action in [2], we have the equation of motion

cotψ = 1
b20

√
1− ψ′2

√
1 + P2 + 1

b20
P − 1

2(1 + P2) ψ′′

1− ψ′2 (3.30)

where P is given by

P = 1
b20 sin2 ψ

(
πp

M
−
(
ψ − 1

2 sin 2ψ
))

. (3.31)
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Thus, we have shown that the blackfold equations at extremality recover the results

obtained from DBI analysis by KPV in a regime very different from theirs pgs � 1.

In particular, we observe directly from the supergravity regime pgs � 1 that, for 0 <

p/M < pcrit where pcrit ≈ 0.080488, the anti-D3-NS5 branes can form a metastable

state at the tip of the KS throat. For further discussions on the connections between

the blackfold description of branes in supergravity and their DBI description in the

probe regime, we refer readers to [9, 28, 68].

3.3 Regimes of validity

Validity of the blackfold analysis requires a large separation of scales rb � R, L where

rb is the characteristic near horizon scale of the seed branes, R is the scale of the

curvature radius of the bending in the branes, and L is the characteristic length scale

of the background. In the case at hand, the length scale rb is the largest scale among

the energy density radius rε ∼ r0 sinhα, the length scale associated to the conserved

NS5 Page charge r(NS5)
h ∼ Q5/C, and the length scale associated to the conserved

anti-D3 Page charge r(D3)
h ∼ −Q3/C. The scale R ∼

√
gsMls sinψ is controlled by

the size of the S2 that the NS5 wraps, while the background scale L ∼
√
gsMls is set

by the size of the S3. For our purposes, between the scale R and L, it is sufficient to

only consider the bending scale R as R is always smaller than L.

We have the condition rε � R leads to

r0 sinhα�
√
gsMls sinψ (3.32)

which constrains the product r0 sinhα. The condition r(NS5)
h � R leads to

√
N5 � gs

√
M sinψ (3.33)

where N5 is the number of NS5 branes defined through Q5 = Q5 = N5 µ5 with µ5 =

(2π)−5l−6
s the charge of a single NS5 brane. Using (3.27)3, the condition r(D3)

h � R

leads to √
p

M
� gs

√
M sin2 ψ . (3.34)

3With appropriate factors of gs and ls added.
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From equations (3.32)-(3.34), it is easy to see that our requirements fail at the North

and South poles, sinψ = 0. For sufficiently large M , however, our calculations will

be valid everywhere except a small region around the poles.

In addition, since the NS5 brane has a running dilaton one may worry whether regions

of spacetime with large values of string coupling eφ invalidate our analysis. We

note that the running of the dilaton is capped off at the horizon for nonextremal

solutions at the value eφ(r0) = gs
√

sin2 θ + cosh2 α cos2 θ. Hence, by suitably tuning

the asymptotic value of gs we can achieve wide areas in parameter space where our

solutions are everywhere weakly coupled. Admittedly, this tuning is not possible for

extremal solutions. However, since it is understood how to treat the strong coupling

singularity of NS5 branes in flat space, and since the constraint (blackfold) equations

can be obtained in a far-zone analysis of the solution, where the string coupling is

weak, we anticipate that a large dilaton in the bulk of the solution does not invalidate

the conclusions of our analysis even at extremality.

3.4 Nonextremal effective potentials

As noted in equations (3.28)-(3.31), the equations of motions of the KPV DBI action

are identical to the extremal blackfold equations. As such, we can take the KPV

action as our extremal blackfold action:4

SKPV =
∫
M4

dx4

√
b40 sin4 ψ +

(
π
p

M
− ψ + 1

2 sin(2ψ)
)2√

1− ψ′2 −
(
ψ − 1

2 sin 2ψ
)

(3.35)

withM4 the 4-dimensional Minkowski space. For peace of mind, one can write down

the equations of motion of this action, which is given by the usual Euler-Lagrange

equations
∂L
∂ψ
− ∂

∂t

(
∂L
∂ψ′

)
= 0 , (3.36)

4This action is, up to some constant factors in front, simply the spherical NS5 action in [2].
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3.4.1. Effective potential at fixed boost rapidity

and note that indeed we get back our extremal blackfold equations (3.28). From the

action (3.35), we can easily read off the extremal NS5 effective potential:

VKPV(ψ) =

√
b40 sin4 ψ +

(
π
p

M
− ψ + 1

2 sin(2ψ)
)2
−
(
ψ − 1

2 sin 2ψ
)
. (3.37)

The KPV effective potential gives rise to the extremal static blackfold equations.

With the nonextremal static blackfold equations in hand, we ask what are the effective

potentials that give rise to these equations. These potentials can, thus, be thought

of as generalisations of the KPV effective potential for nonextremal antibranes. For

constructing nonextremal effective potentials, we are interested in the static blackfold

equation5:

cotψ = 1
b20

(cothα
cos θ + tan θ

) 2 cos2 θ

2 cos2 θ + (sinhα)−2 (3.38)

where tan θ is given by (3.26).

Since the local temperature of the NS5 brane does not vanish at extremality, it is

appropriate to choose an effective potential that holds some other nonextremality

parameters fixed, e.g. the constant boost rapidity α or the global entropy S. In this

section, we take a look at both.

3.4.1 Effective potential at fixed boost rapidity

Recall that the boost rapidity α is a measure of nonextremality for the seed anti-D3-

NS5 bound state (see appendix C.1). In particular when α → ∞, we have extremal

anti-D3-NS5 branes and we can increase their nonextremality by pushing α closer

and closer to 0. An obvious finite α effective potential is given by

Vα(ψ) = b20 sin2 ψ
1

cos θ − cothα
(
ψ − 1

2 sin(2ψ)
)

+ 1
sinh2 α

H(ψ) (3.39)

where H(ψ) is

H(ψ) =
∫ ψ

0
dχ cotχ

√
b40 sin4 χ+

(
π
p

M
− χ+ 1

2 sin(2χ)
)2

. (3.40)

5In the time-independent case, the intrinsic equation (3.20) becomes trivial.
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Figure 3.2: Plots of the effective potential at fixed boost rapidity α, as a function of
the angle ψ on S3. Both figures represent plots at p/M = 0.03. The right plot zooms
into the region near the North pole of the S3. As we increase nonextremality, we
encounter a critical value α∗ ≈ 2.223, where the metastable vacuum of KPV (black
dots on the right) merges with a new unstable vacuum (blue dots on the left) to create
a saddle point (green dot)

When α → ∞, the constant α effective potential Vα (3.39) reduces to the KPV

effective potential VKPV (3.37)6. Away from extremality, as one can check explicitly,

this potential gives rise to the static blackfold equation (3.38). Let us note also that

the Vα potential near π has an unfortunate feature of being “infinitely” sensitive to

nonextremality as H(π) =∞ due to a cotχ in its definition

Consider first the regime p/M < p∗/M ' 0.08 where the extremal solutions have a

metastable vacuum. In figure 3.2, we show how the effective potential Vα changes as

we vary the boost rapidity α for a fixed value of p/M . We observe two interesting

new features. Firstly, as soon as α is turned on, a new unstable vacuum emerges

(black dots on the right plot of figure 3.2) near the North pole, ψ ' 0. For sufficiently

low level of extremality, there are three extrema: two unstable and one metastable.

Secondly, as we increase the nonextremality further, i.e. lowering α, the new unstable

extremum comes closer to the metastable vacuum and the two merge at a critical

value of the rapidity α∗, which is a function of p/M . Above this value the metastable

vacuum is lost.

The new unstable state represents a fat black NS5 with a highly pinched R3 × S5

6In Vα(ψ), we use θ but it is trivial to substitute in tan θ (3.26) to see that they indeed agree.
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Figure 3.3: Plots of the ratio d that expresses how ‘fat’ a nonextremal D3-NS5 bound
state is. On the left plot we depict the dependence of d on the nonextremality
parameter α for the unstable (blue) and metastable (orange) branches for p/M = 0.03.
On the right plot, we depict d at the critical merger point as a function of p/M .

horizon geometry that resembles a black anti-D3. Instead, the metastable state starts

life near extremality as a thin black NS5 with R3×S2×S3 horizon topology. At the

merger, the metastable black NS5 turns effectively into a black anti-D3. The picture

of a merger driven by horizon geometry is reinforced by the following observation.

A quantitative measure of the ‘fatness’ of a black NS5 wrapping an S2 is provided by

the ratio

d =
2√p r̂0√
M sinψ

, (3.41)

where r̂0 ≡
√
Cr0/
√
Q5 is dimensionless. The ratio d, which is a natural function

of p/M and the equilibrium ψ, compares the scale 2√gspr̂0`s = 2(gspN−1
5 )1/2r0 as-

sociated to the Schwarzschild radius and the scale of the S2 wrapped by the NS5

worldvolume
√
gsM`s sinψ. As an illustration, on the left plot in figure 3.3 we see

how d behaves in the unstable branch (blue colour) and the metastable branch (orange

colour). The unstable branch has visibly higher values of d, expressing the dominance

of the Schwarzschild radius. The metastable branch captures a thin black NS5 with

small values of d. The merger occurs at a value of d notably close to 1.

On the right plot of figure 3.3, we show how d at the merger point behaves as a

function of p/M . Remarkably, the ratio remains effectively constant, near the value

0.89 over a significant range. It deviates slightly from this value in the vicinity of the

upper bound of p/M , where effects from the second unstable state (already visible in
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Figure 3.4: Plots of the effective potential at fixed entropy, VS , as a function of the
angle ψ on S3. Both figures represent plots at p/M = 0.03. The right plot zooms into
the region near the North pole of the S3. As we increase the entropy we encounter
a critical value S∗, where the metastable vacuum of KPV (blue dots on the right)
merges with a new unstable vacuum (black dots on the left).

KPV [2]) become important. The characteristically weak dependence of d on p/M is

a clear signal that the properties of the merger point are closely tied to the properties

of the horizon geometry. Finally, by increasing p/M further, above the critical value

p∗/M ' 0.08, we observe the complete loss of the metastable vacuum exactly as in

the extremal KPV analysis [2]. The unstable vacuum in the vicinity of the North

pole, however, remains even above p∗/M and constitutes the single vacuum of the

nonextremal static blackfold equations.

3.4.2 Effective potential at fixed entropy

As the non-thermodynamic nonextremal parameter boost rapidity α might not be

everybody’s cup of tea, let us consider effective potentials that hold the global entropy

S fixed and demonstrate that they give the same picture.

We define the global constant entropy as S ≡
∫
B5
dV5 s ∼ r3

0 coshα sin2 ψ where B5

is the spatial part of the NS5 worldvolume, and s is the local entropy (C.15). Note

that, by dividing appropriate factors of constant charge Q5, we can eliminate r0 to

get

S ∼ Ŝ = sin2 ψ√
cos3 θ sinh3 α coshα

. (3.42)

For convenience, let us from now on use Ŝ instead of the actual value of S. The
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constant S effective potential is given by

VS(ψ) = b20 sin2 ψ

cos θ

(
3 + 2 sinh2 α

2 sinhα coshα

)
−
(
ψ − 1

2 sin(2ψ)
)

(3.43)

where α(ψ, Ŝ) should be thought of as implicit function of Ŝ. By obtaining an explicit

expression for α(ψ, Ŝ) from (3.42), one can check directly that VS(ψ) gives rise to our

nonextremal blackfold equation (3.38). As demonstrated in the plot of the constant

entropy potentials in figure 3.4, all features described in the previous section using

the constant boost rapidity α stay true, with the added perk of having the potentials

well-behaved near the South pole ψ = π.

3.5 Discussions on the existence of anitbranes

metastable states

The initial discovery of the anti-D3-NS5 metastable state was performed from probe

computations in [2] in two complementary ways: (i) using the worldvolume theory of

the anti-D3 branes and (ii) using a worldvolume theory for the NS5 branes. In the

D3 perspective (i), the non-abelian DBI action is best understood in the super-Yang-

Mills limit, which, effectively, restricts the description close to the north pole of the

S3 (ψ ≈ 0). The NS5 brane perspective (ii) does not have this restriction but the

formulation of an effective worldvolume theory for NS5 branes is more challenging.

KPV employed an abelian DBI action that arises by S-duality from the DBI action

of the D5 brane. This step is dubious (see e.g. [35]), because it is in conflict with the

regime of validity of the probe approximation that requires gsp� 1.

The fate of the metastable state beyond the probe approximation involves higher levels

of complexity. Considerable effort has been devoted to understand the properties of

backreaction in the supergravity regime where one needs to construct backreacted

anti-D3 brane solutions with KS asymptotics. Many works, starting with [17], re-

vealed solutions of the supergravity equations that involved unphysical singularities

in the 3-form fluxes.7 The presence of these singularities was viewed by some authors
7Related earlier work includes [69, 70]. Subsequent developments after [17] include [18, 34, 71–73].
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3.5. Discussions on the existence of anitbranes metastable states

as evidence that backreaction can change dramatically the conclusions of the probe

approximation, casting doubt on the very existence of the metastable state originally

discovered by KPV (and its subsequent applications to string phenomenology, e.g.

[5]). This conclusion was challenged, however, by the authors of [36] who argued that

the inclusion of backreaction effects in the effective field theory of a single anti-D3

brane are mild and under control, as one would naively expect.

The nonextremal properties of anti-D3 branes can provide further information about

the physics of the system. The thermal properties of anti-D3 black branes in the

Klebanov-Strassler background were discussed in a series of papers [38–41].

In the overwhelming majority of the supergravity constructions the discussion centred

around the physics of the backreaction of point-like anti-D3 branes. There are several

reasons why the NS5-brane point of view is more appropriate:

1) The metastable state in the probe computation of [2] is a spherical NS5 state.

2) A natural candidate for the resolution of the observed supergravity singularities

involves the formation of a spherical NS5-brane state á la Polchinski-Strassler

[74].

3) The exact supergravity arguments of [19, 37], which are based on Smarr rela-

tions, provided a natural explanation for the observed singularities and indic-

ated that the no-go theorems for point-like anti-D3 branes can be evaded for

spherical NS5 branes in agreement with the probe computation. In particular,

there are no regular extremal solutions of point-like anti-D3 branes. Here and in

what follows, the terminology ‘point-like anti-D3’ refers to solutions with van-

ishing NS5 brane dipole charge and spherical horizon topology (more precisely,

R3×S5 horizon topology). Regular solutions of NS5 branes wrapping a 2-cycle,

with horizon topology R3 × S2 × S3, can evade the no-go theorem. At finite

temperature, point-like anti-D3 black brane solutions can in principle exist but

they cannot have a regular extremal limit. Regular black NS5 brane solutions

wrapping a 2-cycle are in principle allowed.

52



3.5. Discussions on the existence of anitbranes metastable states

For all these reasons, a proper understanding of anti-D3 backreaction in the KS back-

ground requires information about spherical NS5 states. Without this information,

previous indications, either from the probe or the supergravity computations with

point-like or smeared anti-D3 brane solutions, remain inconclusive.

By utilising the blackfold equations, the necessary conditions (and perhaps sufficient

conditions) for the first order matched asymptotic solution, we have made the follow-

ing key observations of the backreacted spherical NS5 brane states in KS throat.

1) As discussed in section 3.2, extremal spherical NS5 branes should obey at lead-

ing order in the derivative expansion the same equations that were employed

by KPV, namely the equations that arise from the S-dual of the DBI action for

the D5 brane. Since our blackfold analysis are consistent in the supergravity

regime of large gsp, there is no clash between different regimes of validity and,

thus, that removes one of the criticisms against the KPV metastable state.

2) In the appropriate regime of parameters, p/M . 0.08, the extremal spher-

ical NS5 branes exhibit two vacua away from the north and south poles: one

metastable and one unstable. The study of nonextremal effective potentials in

section 3.4 reveals that, as soon as the branes become nonextremal, an addi-

tional unstable vacuum appears. This is a novel, ‘fat’ unstable NS5-brane state.

Increasing the entropy of the solutions leads to a merger of the fat unstable

state with the thin metastable state, annihilating both vacua. As a function of

the entropy, the nonextremal system exhibits a transition with the features of

saddle-node bifurcation. The plot of the ratio

d ∼ (NS5 Schwarzschild radius/Radius of the wrapped S2)

(figure 3.3) at the point of transition shows that d is constantly close to 1 for

the majority of the regime, signally that the origin of this transition is closely

related to the geometric properties of the corresponding black hole horizon.
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3) The emerging picture from our blackfold analysis is suggestively consistent with

the exact analysis of [19]. In all cases where [19] lifted the no-go theorem,

our blackfold analysis produce a go with concrete quantitative predictions. In

particular, we observe that the anti-D3-NS5 branes can form a metastable state

at the tip of the KS throat. However, such metastable solution would disappear

as soon as we heat the anti-D3-NS5 state sufficiently that its horizon geometry

resembles that of a point-like anti-D3 state.

We believe that these findings constitute strong evidence for the existence of the

metastable states, since they have now been argued for in complementary regimes.
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Chapter 4

On the stability of metastable

antibranes

The claims regarding metastability of antibranes in warped throats from DBI analysis

in [2, 3] and from the blackfold approach in [10, 12] are all with respect to specific

modes of deformations. For their numerous applications, particularly cosmological

string de Sitter construction [4], it is important to determine whether these branes

are truly metastable under generic perturbations. In this chapter, through an ap-

plication of the blackfold approach, we study the classical stability of the exemplar

Kachru-Pearson-Verlinde (KPV) state [2] of polarised anti-D3 branes at the tip of the

Klebanov-Strassler (KS) [16] throat with regards to generic long-wavelength deforma-

tions. As demonstrated later on, we observe that the blackfold equations (constraints

on long-wavelength deformations) prohibit the existence of tachyonic modes.

We begin with a review of the blackfold description of the KPV state in section 4.1.

Subsequently, in section 4.2, we present a long-wavelength stability analysis of the

state. In this section, we also provide a discussion on how the different notions of

charge give rise to an interesting dynamical property of the anti-D3-NS5 branes.
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4.1 Blackfold description of the KPV state

The purpose of this section is to review the blackfold description of the KPV state.

Various aspects of the metastable anti-D3-NS5 blackfold, including recovery of the

KPV state, have already been discussed in chapter 3. Nevertheless, we find it useful

to revisit the starting point of our stability analysis.

Blackfold equations In the blackfold description of extremal anti-D3-NS5 branes

in KS background, the variables of the system are

r, θ2, φ2, ψ, rh, tan θ, va, wa . (4.1)

Variables r, θ2, φ2, ψ are embedding parameters of the anti-D3-NS5 branes to the

background. Variables rh, tan θ, va, wa are characteristic parameters describing re-

spectively extremal horizon radius, charge distribution, and the orientation of the

dissolved charge.

For describing the KPV state, as we are only interested in static and spatially ho-

mogeneous configurations, we can already fix variables r, θ2, φ2, v
a, wa (see equations

(4.14)-(4.15) for detailed expressions) and set the remaining variables rh, ψ, tan θ to

constants with respect to the worldvolume coordinates. In our conventions, the ex-

tremal anti-D3-NS5 blackfold equations are given by

1. The energy-momentum conservation equations:

∇aT ab = ∂bXµFµ , (4.2)

T abK
(i)

ab = Fµ n(i)
µ (4.3)

where n(i)
µ denotes the normal vectors of the anti-D3-NS5 blackfold, K (i)

ab =

K ρ
ab n

(i)
ρ , and the force term Fµ is given by

Fµ = − 1
6!H

µa1...a6
7 j6a1...a6 + 1

2! F̃
µa1a2
3 J2a1a2 + 3

4!H
µa1a2
3 Ca3a4

2 J4a1...a4

+ 1
4! F̃

µa1...a4
5 J4a1...a4 . (4.4)
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4.1. Blackfold description of the KPV state

For the purpose of describing the KPV state, the terms with H3 and F̃5 in (4.4)

are not relevant because they vanish at the tip of the throat. Nevertheless, as

they will play a role when we consider perturbations away from the tip, we

present them explicitly here.

2. The current conservation equations:

d ∗ j6 = 0 , (4.5)

d ∗ J4 + ∗j6 ∧ F3 = 0 , (4.6)

d ∗ J2 +H3 ∧ ∗J4 = 0 (4.7)

where F3, H3 are the projected background fluxes and ∗ is the 6-dimensional

Hodge dual of the worldvolume directions.

From the current conservation equations, we can define the conserved Page charges

Q3 and Q5 that keep track of the number of anti-D3 and NS5 branes:

Q5 = ∗j6 = Cr2
h cos θ , (4.8)

Q3 =
∫
S2
∗ (J4 + ∗(∗j6 ∧ C2)) (4.9)

= −4π
(
Cr2

h sin θMb20 sin2 ψ + Cr2
h cos θM(ψ − 1

2 sin 2ψ)
)

(4.10)

where we have used C2 = M(ψ − 1
2 sin 2ψ) sinωdω ∧ dϕ. It follows immediately that

we can write tan θ as

tan θ = 1
b20 sin2 ψ

(
πp

M
−
(
ψ − 1

2 sin 2ψ
))

(4.11)

where we have made the identification

−Q3
4πQ5

= πp . (4.12)

From the energy-momentum tensor conservation equations, after some algebraic ac-

robatics, we can write all variables in term of ψ and obtain the equation

cotψ − 1
b20

√
1 + tan2 θ − 1

b20
tan θ = 0 . (4.13)
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The KPV state We can numerically determine that equation (4.13) has a meta-

stable solution for 0 < p/M < pcrit where pcrit ≈ 0.080488. These metastable solu-

tions are the KPV states. For our convenience, let us note down some explicit in-

formation of the configuration. With respect to our variables, the KPV states are

specified by

r = 0, ψ = ψ0, tan θ = 1
b20 sin2 ψ0

(
πp

M
− ψ0 + 1

2 sin(2ψ0)
)
, (4.14)

rh =

√
Q5

C cos θ , va∂a = 1√
Mb0 sinψ0

∂ω, wa∂a = 1√
Mb0 sinψ0 sinω

∂ϕ (4.15)

where ψ0 is the metastable solution of

cotψ − 1
b20

√
1 + tan2 θ − 1

b20
tan θ = 0 . (4.16)

We note also the induced metric on the worldvolume of the anti-D3-NS5 branes

γabdσ
adσb = Mb20

(
−dt2 + (dx1)2 + (dx2)2 + (dx3)2 + sin2 ψ0

(
dω2 + sin2 ωdϕ

))
,

(4.17)

the non-zero components of the worldvolume Christoffel symbol Θa
bc

Θϕ
ωϕ = Θϕ

ϕω = cotω , Θω
ϕϕ = − cosω sinω , (4.18)

the relevant components of the background Christoffel symbol Γµαβ

Γψωω = − cosψ0 sinψ0 , Γψϕϕ = − cosψ0 sinψ0 sin2 ω , (4.19)

and the non-zero component of the extrinsic curvature K ρ
ab

K ψ
ωω = − cosψ0 sinψ0 , K ψ

ϕϕ = − cosψ0 sinψ0 sin2 ω . (4.20)

4.2 Stability of the KPV state

The goal of this section is to analyse generic deformations of the KPV state. Starting

with the blackfold description of the configuration, we introduce generic perturbations

by varying slightly all its variables. Subsequently, we derive the blackfold perturbation

equations, and use these equations to identify allowed deformations.
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4.2.1 Perturbation parameters

To introduce perturbations to our system, we vary slightly the variables of the con-

figuration around their KPV values. Explicitly, we have

r = 0 + δr , ψ = ψ0 + δψ , rh =
√

Q5
C cos θ(ψ0) + δrh , (4.21)

tan θ = 1
b20 sin2 ψ0

(
πp

M
− ψ0 + 1

2 sin(2ψ0)
)

+ δ tan θ , (4.22)

va∂a = 1√
Mb0 sinψ0

∂ω + δva∂a, (4.23)

wa∂a = 1√
Mb0 sinψ0 sinω

∂ϕ + δwa∂a (4.24)

where all variations are functions of the worldvolume coordinates, e.g. δrh(σ). To

simplify our syntax, from here on we shall denote the variable values at the

KPV configuration by the variables themselves, e.g. ψ0 will be denoted as ψ,

the value of tan θ at KPV is denoted as tan θ, etc.

Let us make use of symmetries and constraints to minimise the number of paramet-

ers we work with while still preserving all the relevant information for the stability

analysis. Firstly, because of Lorentz symmetry of the blackfold equations and the

original KPV configuration, without loss of generality, we can consider variations in-

volving the worldvolume coordinate t only instead of the full Minkowskian coordinates

t, x1, x2, x3. Secondly, using the unitary constraints on v and w, i.e. vava = wawa = 1,

we can show that

δvω = − cosψ√
Mb0 sin2 ψ

δψ , (4.25)

δwϕ = − cosψ√
Mb0 sin2 ψ sinω

δψ . (4.26)

Thirdly, as we use v and w together as normal vectors to specify the anti-D3 charge

orientation inside the NS5 branes, it is obvious that we have a rotational gauge

symmetry here. Making use of this gauge symmetry and the orthogonality constraint,

i.e. vawa = 0, we can set

δvϕ = δwω = 0 . (4.27)
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With the simplifications noted above, our relevant variation parameters are

δr(t, ω, ϕ), δψ(t, ω, ϕ), δrh(t, ω, ϕ), δ tan θ(t, ω, ϕ), (4.28)

δvt(t, ω, ϕ), δvω(t, ω, ϕ), δwt(t, ω, ϕ), δwϕ(t, ω, ϕ) (4.29)

where δvω, δwϕ can be written in term of δψ as expressed in (4.25)-(4.26).

Regime of validity As we utilise the blackfold equations, it is obvious that our

stability analysis only makes sense when the blackfold equations are valid. As dis-

cussed thoroughly in section 3.3, this happens when the size of the wrapped S2 is very

large, i.e. when ψ 6= 0, π and M very large. Let us note also that, with our current

approach, we can only study long-wavelength perturbations despite the potentially

deceiving form of the (4.25)-(4.26).

When studying ripples on the spherical NS5, because we are looking at compactified

space, one might be worried whether these modes can be slowly varying. However, as

we require this wrapped S2 to be very large, up to some order of spherical harmonics,

there is no problem.

4.2.2 Blackfold perturbation equations

In this subsection, we present the blackfold equations for perturbations around the

KPV state. We relegate the exciting details on the derivation of these equations to

appendix D.

4.2.2.1 Conservative Currents & Charges

As shown in (D.16), the j6 conservation equation implies

∂a δQ5 = 0 (4.30)

where Q5 = Cr2
h cos θ. This means δQ5 is a constant of motion. Recall that Q5 keeps

track of the number of NS5 branes. As we are interested in the dynamical stability

of the KPV configuration, we impose the condition that δQ5 vanishes. Note that the
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imposition δQ5 = 0 automatically fixes δrh in term of δ tan θ

δrh = 1
2rh cos θ sin θδ tan θ . (4.31)

As shown in (D.22), the J4 conservation equation implies

−Q5Mb20 sin2 ψ sinω
(
∂tδ tan θ + 2 tan θ cotψ∂tδψ + 2

b20
∂tδψ

)

= Q5M
3/2b30 tan θ sinψ

(
∂ϕδw

t + ∂ω
(
sinωδvt

) )
. (4.32)

Integrating over ω and ϕ and enforcing the periodicity conditions

δwt|ϕ=0 = δwt|ϕ=2π , (4.33)

we obtain1

∂aδQ3 = 0 (4.34)

where

δQ3 =
∫
S2
δ
(
∗J̃4

)
= −Q5Mb20 sin2 ψ

∫
dωdϕ sinω

(
δ tan θ+2

(
tan θ cotψ + 1

b20

)
δψ

)
.

(4.35)

This means δQ3 is a constant of motion. In a similar fashion to how the Q5 charge

keeps track of the number of NS5 branes, the Q3 charge keeps track of the number of

anti-D3 branes. As we are interested in the dynamical stability of the KPV configura-

tion, we shall impose that δQ3 = 0. However, note that unlike the Q5, the imposition

δQ3 = 0 doesn’t automatically guarantee the satisfaction of the current perturbation

equation.

Finally, as shown in (D.24), the J2 conservation equation implies

cot θ cos2 θ∂ωδ tan θ +
√
Mb0 sinψ∂tδvt = 0 , (4.36)

cot θ cos2 θ∂ϕδ tan θ +
√
Mb0 sinψ sinω∂tδwt = 0 , (4.37)

∂ϕδv
t − ∂ω(sinωδwt) = 0 . (4.38)

1Let us note that the equation keeps constant the Q3 Page charge while put no restrictions on
the Q3 brane charge, which is free to vary.
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4.2.2.2 Energy-momentum conservation equations

Recall from (4.2)-(4.3), the intrinsic and extrinsic blackfold equations

∇aT ab = ∂bXµFµ , (4.39)

T abK
(i)

ab = Fµ n(i)
µ . (4.40)

Focusing on perturbations around the KPV state, as shown in (D.35), the intrinsic

equation implies for b = t, ω, ϕ respectively

1. The t intrinsic perturbation equation:

∂tδ tan θ +
√
Mb0

sinψ tan θ
(
∂ωδv

t + 1
sinω∂ϕδw

t + cotωδvt
)

+ 2
(

cotψ tan θ + 1
b20

)
∂tδψ = 0 , (4.41)

2. The ω intrinsic perturbation equation:

√
Mb0 sinψ tan2 θ∂tδv

t + sin θ cos θ∂ωδ tan θ = 0 , (4.42)

3. The ϕ intrinsic perturbation equation:

√
Mb0 sinψ sinω tan2 θ∂tδw

t + sin θ cos θ∂ϕδ tan θ = 0 . (4.43)

Similarly, as shown in (D.55), the extrinsic blackfold equation implies

1. The ψ extrinsic perturbation equation:

(∂t)2δψ − cos2 θ

sin2 ψ
∇2δψ = 2 cos2 θ

sin2 ψ
δψ + 2

b20
cos2 θ (1 + sin θ) δ tan θ , (4.44)

2. The r extrinsic perturbation equation:

(∂t)2δr − cos2 θ

sin2 ψ
∇2δr = 8a2

a0
sin θδr + 8a2

a0
δr − 16a0 + 20a2

5a0
cos2 θδr

+ 4
5 cos2 θ sin2 ωδr (4.45)

where a0 ≈ 0.71805, a2 = −(3 × 61/3)−1 are the warping constants of the

KS throat (B.50) and ∇2 is the normalised Laplacian, i.e. ∇2 = (∂ω)2 +

1/ sin2 ω(∂ϕ)2 + cotω∂ω.
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Figure 4.1: Plots of the ratio of brane charge density for the KPV and KP metastable
state, as a function of p/M from 0 to pcrit where pcrit is the point after which meta-
stability is lost. The left plot is the ratio Q3/Q5 for the KPV state. The middle plot
zooms into the regime near pcrit of the left plot. The right plot is the ratio Q2/Q5 for
the KP state, a metastable state of polarised anti-M2 branes in CGLP background.

Before continuing, let us note an interesting fact about the r extrinsic equation. If

one follows the details in paragraph D.3.2, it can be easily seen that the term

8a2
a0

sin θδr (4.46)

is the F̃5 electromagnetic force term while the terms

8a2
a0

δr − 16a0 + 20a2
5a0

cos2 θδr + 4
5 cos2 θ sin2 ωδr (4.47)

are the gravitational force terms coming from the warping of the throat. The direction

of the electromagnetic force term depends on the sign of the D3 brane charge carried

by the KPV state Q3 = Cr2
h sin θ. As KPV is a polarised state of anti-D3 branes,

one might naively expect that this force is always attractive. However, this is not the

case. The reason is because, in a fluxed setting, the D3 Page charge (4.9) and the D3

brane charge are not necessarily the same. In particular, for a range of p/M near pcrit,

the Q3 brane charge flips sign and, consequently, the electromagnetic force becomes

repulsive. This effect can also be seen with the Klebanov-Pufu (KP) configuration

[3] of anti-M2 branes at the tip of the Cvetic-Gibbons-Lu-Pope (CGLP) throat [20].

In figure 4.1, we plot the ratio of brane charge density for the KPV and KP metastable

state. For the KPV state, this is the ratio Q3/Q5. As the NS5 brane charge density

Q5 = Cr2
h cos θ is the same as the conserved NS5 Page charge Q5 (4.8) which we take

to be positive, the sign flip in Q3/Q5 indicates a sign flip of the D3 brane charge.

This flip happens near pcrit as one can see from the middle plot of figure 4.1. For the

KP metastable state of anti-M2 branes, the same flip happens as demonstrated in the
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right plot. Let us note also that the blowing up of the ratio Q3/Q5 near p/M = 0 is

nothing to be afraid of. Near p/M = 0, the metastable equilibrium value of ψ is very

small, and so the size of the spherical NS5 is also very small. As the conserved Page

charge Q3 (4.9) is not a charge density but a total charge over the NS5 sphere, the

blowing up of the charge density Q3 is simply to compensate for the small size. Of

course, the same can be said for the Q2/Q5 plot of the KP state.

4.2.3 Stability analysis

Immediately from the blackfold perturbation equations above, we see that the δr vari-

ation decouples from other variations and is controlled only by equation (4.45). This

allows us to study separately stability of the non-radial perturbations and stability

of the radial perturbations. For our convenience, before continuing, let us expand all

our perturbations into momentum and spherical harmonic modes. We have

δvt =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Svt)ml (λ)Y m
l (ω, ϕ) , (4.48)

δwt =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Swt)ml (λ)Y m
l (ω, ϕ) , (4.49)

δ tan θ =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Stan θ)ml (λ)Y m
l (ω, ϕ) , (4.50)

δψ =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Sψ)ml (λ)Y m
l (ω, ϕ) , (4.51)

δr =
∫
dλ e−iλt

∞∑
l=0

l∑
m=−l

(Sr)ml (λ)Y m
l (ω, ϕ) (4.52)

where Y m
l (ω, ϕ) are the standard spherical harmonics. Note that we do not write

down the expansion for δvω, δwϕ, and δrh because they can be expressed in term of

other perturbations as shown in (4.25), (4.26), and (4.31).

Stability of non-radial perturbations Assuming λ 6= 0, expanding our per-

turbations in momentum and spherical harmonic modes, the ω intrinsic perturbation

equation (4.42) yields
∞∑
l=0

l∑
m=−l

(Svt)ml Y m
l = − i cot θ cos2 θ

λ
√
Mb0 sinψ

∞∑
l=0

l∑
m=−l

(Stan θ)ml ∂ωY m
l (4.53)
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where λ, ω, ϕ dependence of Sml (λ) and Y m
l (ω, ϕ) have been subdued for syntactical

simplicity. Similarly, from the ϕ intrinsic perturbation (4.43), we have

∞∑
l=0

l∑
m=−l

(Swt)ml Y m
l = − i cot θ cos2 θ

λ
√
Mb0 sinψ sinω

∞∑
l=0

l∑
m=−l

(Stan θ)ml ∂ϕY m
l . (4.54)

Let us note that satisfying the ω and ϕ intrinsic perturbation equation automatically

guarantee the satisfaction of the J2 conservation equations (4.36)-(4.38). Turning our

attention to the t intrinsic perturbation equation (4.41), making use of the expressions

above along with the identity ∇2Y m
l = −l(l + 1)Y m

l , we can show that

(Stan θ)ml = −2λ2 sin2 ψ
(
cotψ tan θ + 1/b20

)
λ2 sin2 ψ − l(l + 1) cos2 θ

(Sψ)ml . (4.55)

Again, let us note that satisfying the t intrinsic perturbation equation automatically

guarantee the satisfaction of the J4 conservation equation (4.32) and the conservation

of Q3 charge (4.35). Plugging in the expression of (Stan θ)ml in term of (Sψ)ml into the

ψ extrinsic perturbation equation (4.44) yields a quadratic equation for λ2

λ4 + bλ2 + c = 0 (4.56)

where the constants b and c are given respectively by

b = − 4
b20

cos2 θ(sin θ + 1)
(

cotψ tan θ + 1
b20

)
− 2

(
l2 + l − 1

) cos2 θ

sin2 ψ
, (4.57)

c = (l − 1)l(l + 1)(l + 2) cos4 θ

sin4 ψ
. (4.58)

Then, it trivially follows that

λ2 = −b±
√
b2 − 4c

2 . (4.59)

It is important to remember that, as declared in the “Perturbation parameters” para-

graph 4.2.1, ψ and θ denote the values of the variables evaluated at the KPV config-

uration. This means, for any KPV configuration, we can write down explicitly the

values of b and c, thus, the value of λ2.

It can be shown that λ2 is positive for all KPV configurations. The case when l = 0

corresponds to having spherically homogeneous deformations around the KPV config-

uration and, as one would expect, it recreates the picture previously found. Including
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4.2.3. Stability analysis

Figure 4.2: Plot of λ2 of non-radial perturbations against p/M .

non-spherically homogeneous deformations does not change the statement regarding

(meta)stability. In Figure 4.2, we present the values of λ2 for KPV configurations

with p/M ∈ (0, pcrit) for l equals 0, 1, 2, and 5.

Before continuing, let us ask the question: what happens if λ = 0? If λ = 0, the

conservation of Q3 charge (4.35) and the ψ extrinsic perturbation equation (4.44)

both provide constraints on the Y 0
0 spherical harmonics mode of δ tan θ and δψ.

These conditions can only be simultaneously satisfied when

1
sin2 ψ

− 2
b20

(1 + sin θ)
(

tan θ cotψ + 1
b20

)
= 0 . (4.60)

Recall that the KPV states exist when the parameter p/M is in the range p/M ∈

(0, pcrit) where pcrit ≈ 0.080488. As one can easily checked, equation (4.60) cannot

be satisfied with any KPV states strictly in the regime p/M ∈ (0, pcrit). It is only

satisfied when p/M = pcrit as one would expect.

Stability of radial perturbations Turning our attention to radial perturbations,

it is instructive to consider the following intuition. Ignoring the gravitational effects

of the NS5 branes (terms with cos θ), the radial force term is given by

8a2
a0

sin θδr + 8a2
a0

δr . (4.61)
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4.2.3. Stability analysis

It is easy to see that the electromagnetic repulsion from the D3 brane charge is

never stronger than its gravitational pull. With the expectation that the ignored NS5

gravitational effects are attractive, we expect the sign flip of the D3 brane charge

to not pose a threat to the radial stability. Even though not explicitly discussed,

following a similar argument, one can demonstrate the same phenomenon in the KP

state.

Armed with this intuition, let us expand δr in equation (4.45) into momentum and

spherical harmonic modes:

− λ2
∞∑
l=0

l∑
m=−l

(Sr)ml Y m
l + cos2 θ

sin2 ψ

∞∑
l=0

l∑
m=−l

(Sr)ml l(l + 1)Y m
l

=
(

8a2
a0

sin θ + 8a2
a0
− 16a0 + 20a2

5a0
cos2 θ + 8

15 cos2 θ

) ∞∑
l=0

l∑
m=−l

(Sr)ml Y m
l

− 16
15

√
π

5 cos2 θ
∞∑
l=0

l∑
m=−l

(Sr)ml Y 0
2 Y

m
l (4.62)

where we have used

sin2 ω = 2
3 −

4
3

√
π

5Y
0

2 . (4.63)

Considering spherical harmonic modes Y m
l , we note that even though equation (4.62)

doesn’t mix m modes, because of the Y 0
2 Y

m
l contraction in the last term, l modes

are coupled and have to be studied together. Recall that the contraction of spherical

harmonics with the Y 0
2 mode can be expressed as a sum of harmonics

Y 0
2 Y

m
l =

√
5(2l + 1)

4π
∑
l3

(−1)m
√

2l3 + 1

2 l l3

0 m −m


2 l l3

0 0 0

Y m
l3 (4.64)

where

2 l l3

0 m −m

 and

2 l l3

0 0 0

 are the Wigner 3j-symbols, which vanish

unless |l− 2| ≤ l3 ≤ l+ 2. By writing down the condition for each individual l mode,

equation (4.62) can be expressed as a set of linear equations of (Sr)ml .

As m modes decoupled, let us discuss in details the spherical harmonic modes with
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4.2.3. Stability analysis

Figure 4.3: Plot of λ2 of radial perturbations against p/M .

m = 0. The associated matrix of the linear system of (Sr)0
l is given by

(
A 0

)
=



λ2 + d 0 −8 cos2 θ
15
√

5 . . . 0

0 λ2 + d− 2 cos2 θ
sin2 ψ

− 16
75 cos2 θ 0 . . . 0

−8 cos2 θ
15
√

5 0 λ2 + d− 6 cos2 θ
sin2 ψ

− 16
105 cos2 θ . . . 0

...
...

... . . . ...


(4.65)

where, for convenience, we have defined a constant d as

d = 8a2
a0

sin θ + 8a2
a0
− 16a0 + 20a2

5a0
cos2 θ + 8

15 cos2 θ . (4.66)

The system of linear equations is only satisfied when the determinant of the associated

matrix vanishes, i.e. detA = 0. Even though A is not diagonal, as the contribution of

the off-diagonal terms to the determinant of A is numerically much smaller than that

of the diagonals, the determinant of A can be well-approximated by the product of

the diagonal terms. With this approximation, it is trivial that λ2 is always positive.

Let us mention also that cases of m 6= 0 can be treated the same way and yield a

similar conclusion.

In Figure 4.3, we plotted the smallest λ2 root computed both with the diagonal

approximation2 and without the diagonal approximation, truncating A to be of order

21×21. From the plot, it can easily be seen that the off-diagonal corrections are indeed
2Practically, this is a plot of λ2 = −d as −d is obviously the smallest root in such case.
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very minimal and don’t affect the underlying physics of the system. Lastly, let us

note that the dip in λ2 near pcrit is because of the effect mentioned in the discussion

below equation (4.47) where the Q3 charge flips sign and the electromagnetic force

becomes repulsive. Nevertheless, as demonstrated here, this electromagnetic repulsion

is outweighed by gravitational attraction. Even though not explicitly stated, from

the blackfold treatment of the KP state in chapter 5, one can easily show a similar

picture for the polarised anti-M2 state.
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Chapter 5

On the thermal transition of

metastable antibranes

The purpose of this chapter is to study the effects of non-zero temperature on meta-

stable states of antibranes in warped throat. Our exemplar candidate is the Klebanov-

Pufu (KP) [3] metastable state of polarised anti-M2 branes, or equivalently M5 branes

with dissolved anti-M2 brane charge (wrapped anti-M2-M5 branes), at the tip of the

Cvetic-Gibbons-Lu-Pope (CGLP) throat [20]. As presented later on, we discovered

that the KP state exhibit an exotic, previously inaccessible pattern of thermal trans-

ition different from that of the KPV.

We begin, in section 5.1, with a derivation of the blackfold equations for anti-M2-M5

branes at the tip of the CGLP throat, recovering KP DBI analysis at extremality.

Subsequently, in section 5.2, we construct nonextremal effective potentials for these

antibranes and, in section 5.3, study the effects of nonextremality on their meta-

stable state. As the derivation of the anti-M2 blackfold equations is similar to that of

the anti-D3 discussed in chapter 3, such discussion is brief. On the other hand, the

discussion on thermal potentials and metastability-losing mechanism is more compre-

hensive.
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5.1 Blackfold equations for anti-M2-M5 branes in

CGLP throat

Anti-M2-M5 in CGLP throat The description of our background geometry, i.e.

the CGLP throat, is provided in appendix B.2 while the description of the seed

solution, i.e. the M2-M5 bound state, is provide in appendix C.2. In a blackfold set-

up of anti-M2-M5 branes at the tip of the CGLP throat, the variables of the system

are1

r, ψ, r0, α, tan θ, va, wa, ka, ua . (5.1)

The variables r, ψ are the embedding degrees of freedom of the branes to the back-

ground which, from the worldvolume perspective, are also referred to as transverse

scalars. The variables r0, α, tan θ, va, wa, ka, ua are the characteristic degrees of

freedom of the seed solution, describing respectively the Schwarzschild horizon ra-

dius, the boost rapidity, the brane charge distribution, the orientation of the anti-M2

dissolved charge (with three orthogonal vectors v, w, and k), and the thermal flow

(with one directional vector u).

In order to construct a metastable state, we place the anti-M2-M5 branes at the tip

of the CGLP throat in such way that 3 of the 6 dimensions of the M-brane bound

state lie along the Minkowskian directions t, x1, x2, and the other 3 wrap around the

3-cycle ϑ, ω, ϕ. For simplicity, let us further restrict our attention to t dependent con-

figurations with dissolved anti-M2 brane charge lying along the Minkowski directions

and thermal flow along the t direction. This means we have set

r = 0 , (5.2)

restricted our scalar variables to

ψ(t), r0(t), α(t), tan θ(t) , (5.3)
1For the variables of the anti-D3 blackfold in KS throat (3.8), we allow also the parameters of

the transverse S2 away from the tip. However, for the anti-M2 blackfold, we shall not include such
parameters because for our purposes, we don’t care about dynamics off the tip.
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and specified our vectors as

ua∂a = 1
m1/3b0

√
1− ψ′2

∂t , (5.4)

va∂a = 1
m1/3b0 sinψ

∂ϑ , (5.5)

wa∂a = 1
m1/3b0 sinψ sinϑ

∂ω , (5.6)

ka∂a = 1
m1/3b0 sinψ sinϑ sinω

∂ϕ (5.7)

where ψ′ ≡ ∂t ψ. The factors in (5.4)-(5.7) are to make sure that v, w, k, u satisfy

the unitary condition, e.g. vava = 1.

The blackfold equations Applying the eleven-dimensional blackfold equations

(2.76)-(2.78) to our configuration of anti-M2-M5 branes in CGLP background, we

obtain the blackfold equations for our system. Analogous to the anti-D3-NS5 case,

these blackfold equations can be written in term of energy-momentum and current

conservation equations. While the energy-momentum conservation equations can be

simplified to2

ψ′′

1− ψ′2
(4

9 + 1
3 sinh2 α

)
+ cotψ

(1
3 + cos2 θ sinh2 α

)
= − 9

4b30
sin θ cos θ sinh2 α+

√
1− ψ′2 9

4b30
cos θ sinhα coshα , (5.8)

the current conservation equations give rise to the conserved Page charges

Q5 = Cr3
0 cos θ sinhα coshα , (5.9)

Q2 = 27π2m

2 Cr3
0 sinhα coshα cos θ

(1
3 cos3 ψ − cosψ + 2

3

)
− 2π2Cmb30 r

3
0 sinhα coshα sin θ sin3 ψ . (5.10)

From these, we immediately have

tan θ = 1
b30 sin3 ψ

(
−9p
M̃

+ 27
4

(1
3 cos3 ψ − cosψ + 2

3

))
(5.11)

2At this point, there should also be an equation coming from the t component of the intrinsic
blackfold equation. However, such equation becomes trivial for the recovery of the KP state at
extremality and the construction of nonextremal effective potentials so we shall not write it explicitly
here.
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5.1. Blackfold equations for anti-M2-M5 branes in CGLP throat

where we have made the identification

p

M̃
≡ Q2

18π2mQ5
(5.12)

with M̃ defined in (B.57).

Regime of validity The validity of the blackfold analysis requires a large separa-

tion of scales rb � R, L where rb is the characteristic near horizon scale of the seed

branes, R is the scale of the curvature radius of the bending in the branes, and L is

characteristic length scale of the background. Following an analogous argument to

that of section 3.3, we obtain the requirements

r0 sinhα� b0m
1/3 sinψ, (N5)1/3 � M̃1/3 sinψ,

(
p

M̃

)1/3
� M̃1/3 sin2 ψ . (5.13)

It is clear that our requirements fail at the North and South pole, sinψ = 0. For suf-

ficiently large M̃ (or equivalently m), however, our calculations are valid everywhere

except for a small region around the poles.

Recovery of the KP state at extremality At extremality, the set of blackfold

equations can be written as

cotψ = − 9
4b30

tan θ + 9
4b30

√
1− ψ′2

√
1 + tan2 θ − ψ′′

3(1− ψ′2)
(
1 + tan2 θ

)
(5.14)

where tan θ is given by

tan θ = 1
b30 sin3 ψ

(
−9p
M̃

+ 27
4

(1
3 cos3 ψ − cosψ + 2

3

))
. (5.15)

On the other hand, from the DBI action in [3], we have the equation of motion

cotψ = − 9
4b30
P + 9

4b30

√
1− ψ′2

√
1 + P2 − ψ′′

3(1− ψ′2)
(
1 + P2

)
(5.16)

where P is given by

P = 1
b30 sin3 ψ

(
−9p
M̃

+ 27
4

(1
3 cos3 ψ − cosψ + 2

3

))
. (5.17)

Thus, we have shown that the blackfold equations (5.8)-(5.11) at extremality recover

in the supergravity regime the results obtained from DBI analysis in [3].
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5.2 Heated antibranes

From the point of view of holography, temperature can be incorporated in the system

at hand in different ways. Let us list here three rough possibilities:

• One option is to begin by adding temperature to the supersymmetric vacuum

of the dual QFT. In the bulk, this involves a CGLP black hole with positive

M2-brane charge.3 Then, one can analyse the existence and properties of a

metastable state in this thermal environment. In the bulk, an analysis based

on the probe approximation would entail at leading order the use of a DBI-type

action for a wrapped M5 brane in the background of the CGLP black hole.

• A second option that focuses more directly on the thermal effects on the meta-

stable state itself goes along the following lines. In the bulk description, we can

either consider solutions in the probe approximation using a thermalised DBI-

like effective action in CGLP, or in the supergravity regime we can attempt to

construct a wrapped M5 black hole with negative M2 charge that asymptotes

to the supersymmetric background. In this section, we will focus on the second

approach using blackfold techniques. The fundamental difference between this

bullet point and the previous one is that as one turns off the antibrane charge,

in the first case one recovers a thermal state of the dual QFT, whereas in the

second one recovers a supersymmetric ground state of the dual QFT.

• A third more general option is to thermalise all the sectors of the system at

the same time.4 This would entail in the bulk the construction of a black

hole solution that describes the backreaction of a thermally excited wrapped

M5 brane in the background of the CGLP black hole. One could also try to

capture aspects of this case with blackfold techniques but we will not explore

this possibility here.
3For a construction of smeared black M2-brane solutions that preserve an SO(5) symmetry see

[75].
4This approach was taken for example in [76] which considers the thermalized version of the BIon

solution by analyzing a D3-F1 blackfold in hot flat space and in [77] which considers an F1 blackfold
in the AdS black hole background to study finite temperature Wilson loops.
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Adding temperature to the effective actions of weakly coupled open strings is a notori-

ously difficult problem that involves open string loop computations (we refer readers

to [78] for relevant discussions). In that sense, implementing the option of the second

bullet point with a DBI-like probe analysis is not a straightforward exercise. In

the supergravity regime, however, the blackfold equations allow the incorporation of

thermal effects rather easily. In this section, from the anti-M2-M5 blackfold equations

(5.8)-(5.11), we construct thermal effective potentials for the anti-M2-M5 branes.

In what follows, we focus on static configurations where the anti-M2-M5 blackfold

equations simplify to

cotψ
(1

3 + cos2 θ sinh2 α

)
= 9

4b30
cos θ sinhα (− sin θ sinhα+ coshα) (5.18)

with

tan θ = 1
b30 sin3 ψ

(
−9p
M̃

+ 27
4

(1
3 cos3 ψ − cosψ + 2

3

))
. (5.19)

The solutions of equation (5.18) at fixed p/M̃ are parametrised by a free constant.

This could be a nonextremality parameter like r0 or α, or a more physically motivated

thermodynamic parameter like the total entropy S or the global temperature T .

The solutions of (5.18) and their properties will be discussed in detail in section 5.3.

In the rest of this section, we explain how to obtain these solutions as extrema of

suitable effective potentials. A different potential is formulated for each parameter

that we choose to keep fixed. We will discuss three kinds of potentials: VT where the

global temperature T is kept fixed, VS where the total entropy S is kept fixed, and

Vα where the parameter α is kept fixed.

5.2.1 Comments on effective thermodynamic potentials

Before we present specific effective potentials for the anti-M2-M5 configurations of

interest, it is useful to first comment on a slightly more general problem. The general

blackfold equations describe an effective fluid on a dynamical hypersurface. Let us

assume that we are interested in stationary solutions of these equations. For such

solutions, there is a worldvolume Killing vector field ka, which is assumed to be the
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pullback of a background Killing vector field kµ. It has been argued in [8, 62, 79]

that by using standard thermodynamic quantities, it is possible to formulate effective

actions of the transverse scalars whose extrema reproduce the profiles of the stationary

solutions. In these actions, the intrinsic degrees of freedom of the effective fluid are

integrated out and the variational problem is restricted to stationary configurations.

These actions are guaranteed to produce correct stationary solutions if they recover

the currents of the fluid under general variations of the background fields.

For concreteness, let us focus on the case of interest: anti-M2-M5 blackfolds in the

CGLP background. We can obtain an effective action by varying over stationary

configurations at a fixed global temperature T in the following manner. By definition,

the global temperature is related to the local temperature T (C.38) of the effective

fluid as T = |k|T . For the Killing vector ka we have ka∂a = ∂t, |k| = m1/3b0, and

ua = ka/|k| = ∂t/(m1/3b0). Variations of the background lead to variations of the

induced metric δγab, the pulled-back three-form gauge potential δA3abc and its dual

δA6abcdef , defined such that G7 = dA6 + A3 ∧G4/2. These variations are performed

keeping Q2, Q5 and T fixed. Let us denote γ⊥ab ≡ vavb + wawb + zazb the projector

onto worldvolume directions perpendicular to the dissolved M2 directions. Keeping

Q2, Q5 and T fixed under variations imply the variational properties

δ tan θ = (v ∧ w ∧ z)abcδA3abc −
1
2 tan θ γ⊥abδγab ,

δr0 = −1
2r0u

aubδγab − r0 sinhα coshα δ(tanhα) ,

δ(tanhα) = 3
2

tanhα
1− sinh2 α

uaubδγab + tanhα
1− sinh2 α

sin θ cos θ δ(tan θ)

(5.20)

respectively. Under such variations one can easily show that the thermodynamic

effective action

ST =−
∫
M6

d6σ
√
−γ F + Q5

∫
M6

P[A6] + Q2

∫
M3

P||[A3] ,

=−
∫
M6

d6σ
√
−γ F + Q5

∫
M6

(
P[A6] + 1

2P[A3 ∧A3] + Φ2
Φ5
dV⊥ ∧ P||[A3]

)
(5.21)

reproduces the correct currents

δST =
∫
M6

d6σ
√
−γ

(1
2T

abδγab + Jabc3 δA3abc + J a1···a6
6 δA6a1···a6

)
. (5.22)
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In (5.21) F = ε−T s is the free energy (C.41), P[A6] is the pullback of the background

six-form A6, M6 is the six-dimensional worldvolume of the effective theory, P||[A3]

is the pullback of the background A3 onto M3 and dV⊥ = √γ⊥dv ∧ dw ∧ dz is the

volume form onM⊥3 .

Invariance of (5.21) under gauge transformations δA3 = dΛ2 and δA6 = dΛ5 for gauge

parameters Λ2,Λ5 leads to the conservation equations for J3 and J6 respectively. The

last term in (5.21) vanishes for the specific configurations that we are interested in,

since P||[A3] = 0. However, in order to extract the correct currents via a variational

principle, it is required.

In (5.21), it is implicitly assumed that we have implemented all constraints from the

constant Q2, Q5 and T together with a stationary ansatz for the vectors ua, va, wa, za

and that we have expressed r0, α, θ in terms of the transverse scalars. The resulting

action is an action of the transverse scalars alone.5 By varying it with respect to

the transverse scalars, we are guaranteed to obtain equations that lead to the correct

stationary solutions of the blackfold equations. Explicit formulae for wrapped M5

branes will appear in the next subsection.

The effective action (5.21) has a well defined extremal limit T → 0, reducing to the

PST action [82, 83] (multiplied by the number of M5-branes N5) when all world-

volume gauge fields have been integrated out. However, the existence of a maximum

temperature (5.29), or in cases of bound states with a Hagedorn temperature such as

that of the anti-D3-NS5 configuration in chapter 3 for which T = 0 does not describe

all extremal solutions, the potential at fixed T is unsuitable for describing the entire

phase space of off-shell configurations. Instead defining B5 as the spatial part of the

worldvolumeM6, a closely related effective action where we keep the total entropy

S =
∫
B5

√
−γ s ut (5.23)

fixed is more appropriate and can be obtained by Legendre transforming (5.21) yield-
5It is also possible to write an action for M2-M5 branes that does not make assumptions about

the background or how the M2 branes are embedded into the M5. In this case, additional dynamical
fields must be introduced as in [80, 81].
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ing

SS = −
∫
M6

d6σ
√
−γ ε+ Q5

∫
M6

P[A6] + Q2

∫
M3

P||[A3] . (5.24)

5.2.2 Potential at fixed temperature

In this subsection, we present the precise form of the potential VT for anti-M2-M5

branes wrapping an S3 at the tip of the CGLP throat. The black M5s of interest are

characterised by the local temperature T = 3
4πr0 coshα . Eliminating r0 with the use

of equation (5.9) we can write

T 3 = 27C
64π3Q5

T 3 , T 3 ≡ cos θ sinhα
cosh2 α

. (5.25)

We will use T to express all the relevant formulae. Dividing ST by the infinite volume

of the R3,1 part of the M5 worldvolume and an overall constant factor of 36π2m2b30Q5

we obtain the potential

VT (ψ) = b30 sin3 ψ(1 + 3 sinh2 α)
54 cos θ sinhα coshα − 3

8f(ψ) (5.26)

with

f(ψ) = 1
3 cos3 ψ − cosψ + 2

3 . (5.27)

In this formula, α and θ are implicit functions of ψ where θ(ψ) can be obtained

explicitly from equation (5.11) and α(ψ) from combining (5.25) and (5.11). The po-

tential VT depends parametrically on p/M̃ and T . One can show by direct evaluation

that the equation dVT
dψ = 0 is equivalent to the blackfold equations (5.8)-(5.11). In

particular, when T = 0 we recover the extremal vacua of Klebanov and Pufu.

There are two intricacies of the fixed-T potential that are worth highlighting. The

first one is that equation (5.25) has in general two solutions of α for a given angle ψ

at a fixed value of T . The two solutions are

tanhα±(ψ) =

√√√√1
2 ±

√
1
4 −

T 6

cos2 θ(ψ) . (5.28)

The branch of α+ is valid for α ≥ α∗ and the branch of α− for α ≤ α∗. The

critical value α∗ defines a point where α+ = α−, i.e. a point where cos2 θ(ψ) = 4T 6.
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Figure 5.1: A plot of the maximum possible value of the temperature T of the M2-M5
branes at each angle ψ for p/M̃ = 0.03.

Numerically, α∗ ' 0.881374. Notice that these solutions are real only when

| cos θ(ψ)| ≥ 2T 3 . (5.29)

This inequality imposes a constraint on the domain of ψ where the potential VT (ψ)

in (5.26) can be defined sensibly.

The second related feature is that the temperature of the wrapped M5s at a given

angle ψ has a maximum possible value. This follows immediately from (5.25) and

the fact that the function sinhα/ cosh2 α has a maximum value of 1/2. A plot of the

maximum temperature at a given angle ψ appears in Figure 5.1.

5.2.3 Potential at fixed entropy

The action (5.24) allows us to formulate a potential whose extrema determine the

equilibria of the wrapped M5 branes at a fixed total entropy. In the case at hand the

total entropy (5.23) is given by the expression

S = 8π3m
5
3 b50Q

4
3
5

3 C
1
3

S , S3 ≡ sin9 ψ

cos4 θ sinh4 α coshα
. (5.30)

We express all relevant quantities using the properly normalised entropy S. Dividing

SS in (5.24) by the infinite volume of the R3,1 part of the M5 worldvolume and the
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5.2.4. Potential at fixed boost rapidity

overall factor 36π2m2b30Q5 we obtain the potential

VS(ψ) = b30 sin3 ψ(4 + 3 sinh2 α)
54 cos θ sinhα coshα − 3

8f(ψ) . (5.31)

with α and θ being implicit functions of S and ψ. Again, one can verify by direct

computation that the extrema of this potential reproduce the correct static solutions

of the blackfold equations at fixed total entropy S. The potential VS depends para-

metrically on p/M̃ and the entropy S. At S = 0 the potential (5.31) reduces to the

potential that follows from the DBI action.

In this case the potential is well defined in the whole range of angles ψ. We will

present numerical plots of the potential in different regimes of parameters in the next

section. The same type of fixed-entropy potential was computed for the wrapped NS5

branes in the Klebanov-Strassler background of type IIB string theory in chapter 3.

5.2.4 Potential at fixed boost rapidity

The above discussions demonstrate that one can consider effective potentials in dif-

ferent ensembles. All of them reproduce the same static configurations as the original

blackfold equations but the off-shell shape of the potential in each case is different.

It is natural to ask whether it is possible to define a potential that keeps some other

quantity constant, possibly one that does not have a straightforward thermodynamic

interpretation. When we solve the combination of equations (5.8)-(5.11), technically

the most convenient choice would be to solve them at a fixed value of α. α = ∞

would be the extremal case and α = 0 the exact opposite.

One can show by direct computation that the following fixed-α potential does the

job:

Vα(ψ) = 1
18b

3
0 sin3 ψ

1
cos θ(ψ) −

3
8 cothα f(ψ) + 1

sinh2 α
H(ψ) (5.32)

with

H(ψ) =
∫ ψ

ψ0
dχ

cotχ

√
Ĥ0
96 sin6 χ+

(3
8f(χ)− p

2M̃

)2
 . (5.33)

where the constant Ĥ0 is given in (B.58). The constant ψ0 in the lower limit of the

integration in (5.33) is arbitrary. Its value determines an arbitrary additive constant
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5.3. Antibranes metastability at finite temperature

to the potential. As before, we obtain θ(ψ) by solving the equation (5.11). As a

trivial check, notice that Vα reduces to the effective potential of [3] when α→∞ (in

that case the last term in Vα vanishes).

By varying the values of α, we obtain the full range of static wrapped M5-brane

configurations that we would obtain directly from the blackfold equations. The same

overall set of static configurations can be obtained by extremising either of the po-

tentials VT or VS for different values of T and S. In that sense, all the potentials that

we described above are equivalent.

The off-shell shape of each potential is different. One should exercise some caution

when employing the full shape of the potential to make statements about, say, the

stability of the different vacua. Since the entropy current is conserved in our leading

order ideal hydrodynamic effective theories, time-dependent solutions will naturally

evolve conserving the total entropy. This suggests that the off-shell shape of the fixed-

S potential contains correct information about the stability of the vacua we find (at

least within the homogeneous ansatz of wrapped M5s that we used). In the next

section, we plot the fixed-α potential and show that it shares the same qualitative

features as the fixed-S potential.

5.3 Antibranes metastability at finite temperature

We are now in position to determine in detail what happens to the KP vacua once

we turn on the temperature. We will discuss the nonextremal physics from the per-

spective of all the potentials presented in the previous section.

5.3.1 Vacua and transitions

For reference, Figure 5.2 depicts the extremal potential, first obtained in [3]. There is

a clearly visible metastable vacuum for p/M̃ ≤ p∗ ' 0.0538. In this regime, there are

also two unstable extrema: one at ψ = 0 and another in the vicinity of ψ ' 1.2. The

point ψ = 0 is outside the regime of validity of our long-wavelength approximations.
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Figure 5.2: A plot of the extremal potential Vextremal as a function of ψ as discovered
in [3]. Different colours depict the plot for different values of the p/M̃ (the values of
p/M̃ for each colour are quoted in the legend on the right).
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Figure 5.3: Plots of the nonextremal potential Vα as a function of ψ for p/M̃ =
0.03. The range of the plot is restricted in the region ψ ∈ (0, 1.5) where the most
interesting physics occurs. Different colours depict the potential at different values of
the nonextremality parameter α (the specifics of these values are listed in the legend).
The blue dots indicate the unstable fat M5 vacua near the north pole (ψ = 0). The
black dots indicate the metastable vacuum. The red dots indicate a second unstable
vacuum (thin M5 branch). The green dot at α ' 0.7424 is a merger point of the blue
and black vacua.

In what follows we focus on the ‘metastable regime’ p/M̃ ∈ (0, p∗) and examine how

thermal effects modify the stable and unstable vacua. It is technically convenient to

start with the analysis of the blackfold equations at fixed α, where the plots of the

potential Vα (in (5.32), (5.33)) exhibit the extrema most clearly. In Figs. 5.3 and 5.4,

we present plots of Vα at three different values of p/M̃ : 0.03, 0.035 and 0.04. Curves
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Figure 5.4: On the left, we plot the nonextremal potential Vα as a function of ψ
for p/M̃ = 0.035. Different colours depict the potential at different values of the
nonextremality parameter α. Once again, the blue dots indicate an unstable vacuum
near the north pole (ψ = 0) (fat M5 branch) and the black dots the metastable
vacuum. The red dots indicate a second unstable vacuum (thin M5 branch). In this
case there are three green dots. At α ' 0.8932 and α ' 0.6971 they represent merger
points of a metastable state with a red unstable thin M5 state. At α ' 0.65 the green
dot represents a merger with a blue unstable fat M5 state. On the right, we plot the
nonextremal potential Vα as a function of ψ for p/M̃ = 0.04. The plotted values of α
are listed in the legend. In this regime there is a single green dot at α ' 1.247, which
is a merger point of the black metastable state with the red unstable thin M5 state.

with different colours represent the form of the potential at the same p/M̃ for different

values of α. The dots indicate the locations of the extrema and the colour of the dots

the nature of the solution at those extrema. We use the following conventions:

• A blue dot represents an unstable solution in the vicinity of the north pole at

ψ = 0. This is a black M5 brane solution wrapping an S3 with a small radius

compared to the Schwarzschild radius (further details on this aspect will appear

in the next subsection). We call this type of solutions fat M5 branes.

• A black dot represents a metastable solution. These solutions are thermalised

versions of the KP metastable state.

• A red dot represents an unstable wrapped M5 black brane whose S3 radius is

large compared to the Schwarzschild radius. We call this type of solutions thin

M5 branes.

• A green dot represents the merger of an unstable state with a metastable state.

Depending on the regime of p/M̃ the system exhibits three different types of bifurc-

ations.
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5.3.1. Vacua and transitions

Regime I: small p/M̃ . The first type occurs for p/M̃ ∈ (0, p1). Numerically, we

have determined p1 ' 0.0345. The characteristic behaviour of this regime appears

in Figure 5.3. The bottom blue curve is a near-extremal curve at α = 1000. As we

decrease α (and therefore increase the nonextremal effects) we observe the gradual

convergence of the fat unstable branch towards the metastable branch. They merge at

a small value of α (α ' 0.7424 in the case of Figure 5.3) at ψ ' 0.5 which corresponds

to the renormalised temperature T ' 0.73873. At even smaller values of α only the

unstable thin M5 brane branch (red dot) remains. In this regime we observe the

same saddle-node type bifurcation that was observed in the case of polarised anti-D3

branes in the Klebanov-Strassler background in chapter 3. In the next subsection we

will present quantitative evidence that suggests that this type of merger is driven by

properties of the horizon geometry.

Regime II: intermediate p/M̃ . Interestingly, unlike the polarised anti-D3s in

Klebanov-Strassler, in the M-theory case at hand there are two additional types of

transitions that point towards qualitatively different properties of the dual three-

dimensional QFT. A more involved transition pattern occurs for p/M̃ ∈ (p1, p2).

Numerically, we obtain p2 ' 0.0372. This is a small window where, as we decrease

α, three consecutive saddle-node-type bifurcations occur. First, the metastable state

merges with the red thin black M5 state on the right of the plot (in Figure 5.4 on

the left this occurs at α ' 0.8932, ψ ' 0.74173 and T ' 0.78917). This type of

transition is qualitatively different compared to the transition in Figure 5.3. It bears

a strong resemblance to the zero temperature transition in Figure 5.2 when p/M̃

crosses the threshold for the existence of a metastable vacuum. For a range of lower

values of α only the fat unstable M5 brane state (blue dots) exists. Then, at another

saddle-node-type bifurcation a metastable state and a thin unstable state re-appear

out of nothing (in Figure 5.4 on the left this occurs at α ' 0.6971, ψ ' 0.69662

and T ' 0.78318). Subsequently, at even lower values of α the new metastable state

starts moving closer to the fat unstable state. A third and final merger between the

fat and metastable states occurs, which is qualitatively of the same character as in
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Figure 5.5: Plots of the fixed-S counterparts of the plots in Figs. 5.3 and 5.4 on the
right. The left plot depicts VS at p/M̃ = 0.03 and the right plot VS at p/M̃ = 0.04.

regime I. In Figure 5.4 on the left this merger occurs at α ' 0.65, ψ ' 0.58389 and

T ' 0.75475.

Regime III: high p/M̃ . There is a third regime, where p/M̃ ∈ (p2, p∗). In this

case, there is only one merger, which is a merger between the metastable state and

the red thin unstable state. In Figure 5.4 on the right this merger occurs at α ' 1.247

at ψ ' 0.81220, T ' 0.75445. As we noted above, this type of thermal transition

does not occur in the case of polarised anti-D3 branes in the Klebanov-Strassler

background. In the next subsection we present evidence suggesting that properties

of the horizon geometry play a less important role in this type of merger.

The corresponding analysis of the system at fixed total entropy S with the use of

the potential VS reveals exactly the same qualitative and quantitative features. In

Figure 5.5 we present the fixed-S counterparts of the plots in Figs. 5.3 and 5.4 on

the right. It is visually harder to observe the three transitions in the plot of VS at

p/M̃ = 0.035, so we did not include this value in Figure 5.5. As we noted previously,

the VS potential is better motivated physically compared to the Vα potential.

An interesting alternative perspective to the thermal properties of the wrapped M5

branes arises from the analysis of the blackfold equations at fixed temperature T .

Since the fixed-T potential VT is not defined for all angles ψ, it is more informative to

plot T as a function of ψ for the extrema of VT at each value of p/M̃ . In Figs. 5.6 and

5.7 we present these plots for p/M̃ = 0.01, 0.03, 0.035, 0.04. The colour conventions
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Figure 5.6: On the left, we plot the temperature of all the static M5-brane configur-
ations as a function of their position ψ on the four-sphere at fixed p/M̃ = 0.01. The
colour conventions are explained in the main text. There is a single fat-thin merger
in this regime represented by the green dot. On the right, we plot the temperature
of all the static M5-brane configurations as a function of their position ψ at fixed
p/M̃ = 0.03. This is still a phase diagram in regime I.

for these plots are as follows:

• The blue curves represent unstable configurations of fat M5 black branes with

values of α in the + branch in (5.28).

• The purple curves in Figs. 5.6 and Figs. 5.7 represent unstable configurations

in the − branch in (5.28).

• The black curves represent metastable states. They belong to both the + branch

and the − branch.

• The orange curves in Figs. 5.6 and the red curves in Figs. 5.7 represent unstable

thin M5-brane configurations. They belong to the + branch.

• The green dots represent mergers of a metastable with an unstable black hole

phase. These dots are in direct correspondence with the green dots in the

previous plots. Other points where different curves intersect are not merger

points. At these intersections there are two black hole states with the same T

and ψ but different values of α.
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Figure 5.7: On the left, we plot the temperature of all the static M5-brane configura-
tions as a function of their position ψ at fixed p/M̃ = 0.035. This is a representative
phase diagram in regime II. There are three merger points in this diagram represented
by green dots and two separate branches of metastable states represented by black
segments. On the right, we plot the temperature of all the static M5-brane configur-
ations as a function of their position ψ at fixed p/M̃ = 0.04. This is a representative
phase diagram in regime III.

The salient features of the temperature diagrams in Figs. 5.6 and 5.7 are the following.

There are again three separate regimes I, II, III, which are the fixed-T versions of the

corresponding regimes in the fixed-α and fixed-S analyses.

Regime I: small p/M̃ . At small enough values of p/M̃ the characteristic behaviour

of the phase diagram is represented by Figs. 5.6. Let us first consider the features of

the left plot of Figure 5.6. At small values of the temperature, there are four black

hole phases: the blue unstable fat M5 state, the black metastable state, the orange

unstable thin M5 state and the purple unstable thin M5 state. The combined branch

of the orange and purple states is in one-to-one correspondence with the unstable

states represented by red dots in e.g. Figure 5.3. There is no merger in this branch.

In this regime, there is only a single merger which is located on the blue-black branch.

The blue-black merger is the fat-metastable merger that we noted also in Figure 5.3

in the context of the fixed-α and fixed-S analyses. This merger involves two states in

the + branch.

As we increase p/M̃ we observe two effects, which are clearly visible in the right plot

of Figure 5.6. The first one is the appearance of intermediate purple states in the

blue-black pair. Unlike the case of the left plot of Figure 5.6, in this case the merger
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5.3.2. Nature of the merger points

happens in the − branch, involving a metastable state (which close to the merger is

in the − branch) and a state in the purple branch (which is, by default, also a state

in the − branch). This merger occurs now at higher values of T compared to those

in regime I. The second observation is that the blue-black and red-purple branches

have moved closer.

Regime II: intermediate p/M̃ . In the second regime, where p/M̃ ∈ (p1, p2), the

phase diagram has clearly rearranged. A representative case is depicted in the left

plot of Figure 5.7. In this diagram, the main metastable branch has joined to the

thin unstable (red) branch. The previous blue-purple branch has joined with the

remaining purple branch at large ψ through a new intermediate metastable set of

states. These metastable states are represented by the black segment between the

two green dots at ψ ' 0.6 and 0.7 in the left plot of Figure 5.7. There are three

merger points in this diagram in direct correspondence to the mergers observed in

the left plot of Figure 5.4.

Regime III: high p/M̃ . Above the second critical value p/M̃ = p2, the phase

diagram exhibits the behaviour represented by the right plot of Figure 5.7. In this

regime there is a single thin-thin merger represented by the green dot at the joining

point of the black (metastable) and red (unstable) branches. The combined blue-

purple branch has no merger points and all its states are unstable. This phase diagram

is directly related to the features observed in the right plot of Figure 5.4 and the right

plot of Figure 5.5.

5.3.2 Nature of the merger points

In the previous subsections we distinguished between different branches of solutions by

characterising them as thin or fat depending on the relative size of the Schwarzschild

radius and the radius of the S3 that the black M5 wraps. This characterisation can

be made quantitatively more specific by introducing the dimensionless ratio

d ≡ p1/3r̂0

R̂S3
=
(
p

M̃

) 1
3 1

sinψ(cos θ sinhα coshα)
1
3
, (5.34)
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where

r̂0 = r0

( C
Q5

) 1
3

(5.35)

is a dimensionless quantity proportional to the local Schwarzschild radius of the black

hole and

R̂S3 = (18π2)
1
3

2π`P
RS3 (5.36)

is a dimensionless quantity proportional to the radius RS3 = m
1
3 b0 sinψ of the S3 that

the M5 black brane wraps at an angle ψ. A similar measure of black hole ‘fatness’

was introduced in chapter 3 to describe wrapped NS5 black holes in the Klebanov-

Strassler background. An analogous quantity, called ν, that distinguishes between

thin and fat neutral black ring solutions was introduced in [84].

Black hole states with d � 1 are by definition thin states where the Schwarzschild

radius is comparatively smaller to the S3 radius. States on the opposite part of the

spectrum with d � 1 are fat states. For example, in the left plot of Figure 5.8 we

present the value of the ratio d for the blue unstable and black metastable branches

at p/M̃ = 0.03 that are depicted by blue and black dots in Figure 5.3. We note

that the near-extremal (i.e. large α) metastable states have very low value of d and

are therefore thin states, whereas the corresponding unstable blue states have a very

large value of d and are therefore fat states. The merger occurs at a value of d close

to one.

According to the validity analysis (5.13), one finds

d�
(
p

N5

)1/3
sinhα−1 . (5.37)

Thus, by appropriately tuning p/N5 � 1, it is always possible to keep the merger

points within our regimes of validity. On the other hand, as α increases, the validity

of the unstable branch (blue curve in the left plot of Figure 5.8) becomes more and

more restricted.

A particularly interesting part of our discussion in this paper concerns the physics of

the mergers where the metastable state is lost. The exact analysis of [37] shows that
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Figure 5.8: On the left, we plot the fatness ratio d for blue unstable and black
metastable states at p/M̃ = 0.03. The merger of the two branches occurs at d ' 1.
The near-extremal metastable configurations are thin (small values of d), whereas
the near-extremal unstable ones are fat (large values of d). On the right, we plot the
fatness ratio d (defined in equation (5.34)) at the merger points of the metastable
states as a function of p/M̃ . In region I, that involves a thin-fat merger, d is almost
constant. In region III, that involves a thin-thin merger, d depends strongly on p/M̃ .
The intermediate regime II involves a multiplet of merger points.

the existence of metastable anti-M2 states relies on the topology of the horizon. Su-

pergravity configurations that describe point-like anti-M2s are not allowed by no-go

theorems at zero temperature. At finite temperature anti-M2 black holes with spher-

ical horizon topology are in principle allowed but require special boundary conditions

for the fluxes on the horizon. Configurations of M5 black branes with non-spherical

horizon topology evade these restrictions and are allowed by no-go theorems at zero

temperature. As we thermalise the state, its horizon grows (namely, d increases). At

sufficiently high temperature one expects a transition where the horizon geometry

can play a role. In that case, a scenario where the metastable state is lost would be

consistent with the existing no-go theorems.

We have already seen that the blackfold analysis verifies the expectation that the

metastable state is lost at sufficiently high temperatures. The idea that the loss

of the metastable state occurs because of a horizon-driven transition can be tested

quantitatively by evaluating the fatness ratio d at the merger points of the metastable

states. Two things should happen if the above expectations are correct. Firstly, if

the mergers are fat-thin mergers the transitions should occur at some value of d of

order 1. Secondly, some feature, e.g. a weak dependence of d on p/M̃ , should signal
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the dominant role of the horizon geometry. This is a highly non-trivial expectation.

In the right plot of Figure 5.8 we present numerical data on d evaluated at the

merger points of the metastable states as a function of p/M̃ . We observe that the

above expectation is verified extremely well in regime I, where the metastable state

is lost via a fat-thin merger. Exactly the same type of physics was observed also in

the case of polarised anti-D3 branes in the Klebanov-Strassler background in chapter

3. These results are very suggestive about the validity of the overall picture that

emerges from the use of the leading order blackfold analysis.

A new feature of the M2-M5 system in CGLP compared to the D3-NS5 system in

Klebanov-Strassler is the existence of regimes II and III. In Regime III the metastable

state is lost in a thin-thin merger via a completely different mechanism. In this case,

the metastable state does not disappear because of the horizon-related effects, but

because it develops a classical instability at some critical temperature. Consistently

with this picture, in the right plot of Figure 5.8 we observe that the values of d at

those mergers in regime III are much smaller and exhibit strong dependence on p/M̃ .

In the intermediate regime II, where multiple metastable branches occur, we observe

an interesting feature of multi-valuedness in the dependence of d on p/M̃ .

The co-existence of these patterns of mergers in the M2-M5 system is an interesting

new prediction of the blackfold formalism. It would be very interesting to uncover

further evidence for these transitions in supergravity (perhaps with numerical meth-

ods) and to understand the implications of these features in the three-dimensional

QFT dual.
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Chapter 6

Outlook

The works in this thesis serve as a foundation for further (on-going) investigations on

metastable antibranes in warped throats. We present here a short summary of these

investigations and some of the relevant open problems.

It would be very interesting to complete the construction of the full leading-order

backreacted solution of wrapped NS5 and M5 (black) branes in the appropriate

scheme of matched asymptotic expansions. The benefits from such construction are

threefold: First, it would serve as highly non-trivial evidence for the blackfold conjec-

ture in the case antibranes backreaction, which claims that satisfying the blackfold

equations guarantees a regular perturbative solution of all the supergravity equa-

tions. Second, it would be conclusive evidence for the existence of metastable state

of antibranes in warped throats. Third, it would allow us to construct a blackfold

set-up that enables the detection of possible brane fragmentation instabilities in the

antibranes state. If the fragmentation instability is observed for extremal antibranes

states, then it would be interesting to study the effects of non-extremality to see if

such instability is resolved.

For unstable vacua, as well as semiclassically for the metastable ones, it is interest-

ing to ask how the corresponding instabilities evolve dynamically and what is the

end-state of the instabilities. When the solutions are extremal, there is an obvious

end-point of the instability: the supersymmetric vacuum at the south pole. For ex-
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ample, the metastable vacuum is expected to evolve through vacuum tunnelling to

the supersymmetric state through a process that is known as brane/flux annihilation

[2]. In the blackfold effective description of the thermal physics, we have seen that

the north and south poles are strictly outside the regime of validity. However, even

with this issue set aside for a moment, we notice that unlike the extremal case, the

potential VS does not have any naive extrema at the two poles. Because of these fea-

tures it is rather unclear what happens at the end-point of these instabilities. What

kind of thermal solution, or black hole lies at the end of the evolution process of clas-

sical and semiclassical instabilities for the wrapped NS5 and M5 black branes that

we described?

Finally, it would be interesting to elaborate further on the dual QFT interpretation

of our results. We have uncovered an intricate pattern of thermal transitions of black

hole phases in the bulk. What is the interpretation of these transitions in QFT? In

this context, it would be useful to gain a more complete understanding of the nature

of the finite-temperature merger points already in the gravity description. For the

fat-metastable mergers, besides the features of the ratio d that we reported above,

we have not detected any other characteristic feature of the merger. For the thin-

metastable mergers, one may note the similarity with the zero-temperature case at

the maximum value of the antibrane charge where the metastable vacuum is lost.
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Appendix A

Embedding geometry

The purpose of this appendix is to provide the preliminaries for discussions of embed-

ding geometry. In section A.1, we provide the definitions and properties of common

geometric objects. In section A.2, we show explicitly some useful properties of world-

volume conservation equations.

A.1 Preliminaries

Given a manifold M with metric gµνdxµdxν and a submanifold W defined by the

embedding Xµ(σa), we define the induced metric γab by projecting the background

metric gµν onto the worldvolume:

γab ≡ ∂aXµ∂bX
νgµν . (A.1)

Conversely, we can project any worldvolume tensors onto the background spacetime

using the projector ∂aXµ. For example, we can project the induced metric γab onto

the background to get a spacetime tensor hµν with

hµν ≡ γab∂aXµ∂bX
ν . (A.2)

hµν is the first fundamental form, or equivalently, the tangential metric. From the

tangential metric, we can easily define the orthogonal metric as

⊥µν≡ gµν − hµν . (A.3)
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With the above definitions, we can easily show the following properties

hµν∂aX
ν = ∂aX

µ , hµνh
ν
γ = hµγ , ⊥µν hνγ = 0 , (A.4)

⊥µν ∂aXµ = 0 , ⊥µν⊥νγ=⊥µγ . (A.5)

The definitions of tangential metric and orthogonal metric here are equivalent to the

definitions given by non-coordinates vectors where

hµν ≡ l
µ
Al
A
ν = ηABlµAlνB = −lµ1 lν1 + lµ2 lν2 + ... , (A.6)

⊥µν ≡ n
µ
Xn

X
ν = δXY nµXnY ν = nµ1n1ν + ... (A.7)

with lµA being vectors tangential to the worldvolume, nµX being vectors orthogonal to

the worldvolume, and together l, n form an orthogonal basis.

Defining the object ∂aXµ as

∂aXµ ≡ gµνγab∂bXν , (A.8)

the pullback of a general tensor from the spacetime manifoldM to the worldvolume

W is given by

T a1a2...an
b1b2...bm

≡ ∂a1Xµ1 ... ∂b1X
ν1 ... Tµ1...µn

ν1...νm . (A.9)

Conversely, one can also write down a general formula for projecting worldvolume

tensors onto the background. However, it is important to note that for the projected

worldvolume tensors, it is not well defined to take derivatives along arbitrary direc-

tions. Instead, it is only sensible to take derivatives in directions tangential to the

worldvolume. As such, we define the tangential derivative operator :

∇µ ≡ hµν∇ν . (A.10)

We define the extrinsic curvature tensor as

K ρ
µν ≡ hσν∇µhρσ = −hσν∇µ ⊥ρσ . (A.11)

By contracting K ρ
µν with appropriate tangential and orthogonal metric, we can show

that the extrinsic curvature tensor K ρ
µν is tangential in the first two indices and
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orthogonal in the third. It is also convenient to define the pullback extrinsic curvature

tensor

K ρ
ab ≡ ∂aX

µ∂bX
νK ρ

µν = ∇a (∂bXρ) + Γρµν∂aXµ∂bX
ν (A.12)

where ∇a acts only on the b index of ∂bXρ: ∇a(∂bXρ) = ∂a(∂bXρ) − Θc
ab∂cX

ρ with

Θc
ab the Christoffel symbols of the induced metric γab.

A.2 Worldvolume conservation equations

As it is important for our discussions in the main text, let us consider conservation

equations of projected worldvolume tensors, e.g. ∇µtµν with tµν = tab∂aX
µ∂bX

ν . In

the case that tµν is antisymmetric, let us call this tensor Jµν , we note that

⊥ρν ∇µJµν = ∇µ (⊥ρν Jµν)− Jµν∇µ ⊥ρν= JµνK ρ
µν = 0 (A.13)

so

∇µJµν = hνρ∇µJµρ = ∂bX
ν∇aJab (A.14)

where the last equality can be shown though direct substitution of background Chris-

toffel symbols Γ and worldvolume Christoffel symbols Θ. Thus, for antisymmetric

worldvolume current, ∇µJµν = 0 is equivalent to ∇aJab = 0. Of course, it can easily

be shown that this statement holds for antisymmetric currents of any rank.

In the case that tµν is symmetric, let us imagine the energy-stress tensor Tµν , we

can decompose the conservation equation ∇µTµν = 0 into equations along the world-

volume directions and equations orthogonal to the worldvolume directions, which we

call intrinsic and extrinsic equations respectively. In particular, we note that

∇µTµν = ∇µ (Tµν hρν) = T abK ρ
ab + ∂bX

ρ∇aT ab (A.15)

so, contracting ∇µTµν = 0 with hσρ , we obtain the intrinsic equation

∇aT ab = 0 (A.16)

and, contracting with n(i)
ρ , we obtain the extrinsic equation

T abK
(i)

ab = 0 (A.17)
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A.2. Worldvolume conservation equations

where K (i)
ab ≡ K ρ

ab n
(i)
ρ . By using (A.12), we can express K (i)

ab as

K
(i)

ab = ∂a∂bX
ρ + Γ(i)

ab (A.18)

where

Γ(i)
ab ≡ Γρµν∂aXµ∂bX

νn(i)
ρ . (A.19)
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Appendix B

Warped deformed conifolds

In this appendix, we provide discussions on the Klebanov-Strassler (KS) [16] and

Cvetic-Gibbons-Lu-Pope (CGLP) [20] warped deformed conifolds, which are also

commonly referred to as KS and CGLP throats, focusing on aspects immediately

relevant for their roles in the main text as background geometries of metastable anti-

branes. In particular, in our discussion of the KS throat in section B.1, we write down

the explicit description of the throat close to the tip. Subsequently, we derive an ex-

pression for such description in an adapted coordinate system. We discuss the CGLP

throat in section B.2. However, as there are obvious similarities, such discussion is

brief.

B.1 The Klebanov-Strassler throat

The KS throat is a 10-dimensional type IIB supergravity solution. The throat involves

a 6 dimensional deformed conifold, a 4 dimensional Minkowskian space, and non-

trial F3, F5, H3 fluxes which in turn induce warping effects on the flat space and the

conifold. In this section, we shall discuss aspects of this geometry that are relevant

for our blackfold analysis. For further information on the KS throat, we refer readers

to the review [66].
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B.1.1. The Klebanov-Strassler from the Klebanov-Tseytlin

B.1.1 The Klebanov-Strassler from the Klebanov-Tseytlin

A 6-dimensional conifold Let us start with a 6-dimensional conifold defined by

the equation
4∑

a=1
z2
a = 0 (B.1)

where za are complex numbers. For illustrative purposes, we can check that for

the case that a max is 2, this function reproduces the familiar description of a 2-

dimensional cone: x2 + y2 = z2. In such case, the defining equation (B.1) reduces to

the system 
x2

1 + x2
2 = y2

1 + y2
2

x1y1 + x2y2 = 0
(B.2)

where za = xa + iya. Eliminating y1 in the first equation using the second equation,

reparametrising the RHS as z2 = y2
2
(
1 + x2

2/x
2
1
)
, we see that the system indeed

becomes x2 + y2 = z2.

Back to the task at hand, we note that, as derived in [85], the metric of the 6-

dimensional conifold defined by equation (B.1) can be written as

ds2
6 = dr2 + r2ds2

T 1,1 (B.3)

with

ds2
T 1,1 = 1

9
(
dψ +

2∑
i=1

cos θidφi
)2

+ 1
6

2∑
i=1

(dθ2
i + sin2 θidφ

2
i ) (B.4)

with ψ ∈ (0, 4π) and θi, φi parametrise two S2 in a standard way. Here, T 1,1 refers

to the 5-dimensional base of our 6-dimensional conifold, and r denotes the radial

direction away from the tip of the cone. The base geometry T 1,1 is an Einstein

manifold with topology S2 × S3. For more details on the base geometry T 1,1 and its

parametrisation, we refer readers to [85]. At this point, our 6-dimensional conifold is

Ricci flat as one can easily check.

For later convenience, let us note that the metric can also be described using the
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B.1.1. The Klebanov-Strassler from the Klebanov-Tseytlin

following 1-forms

g1 = − sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2√
2

, (B.5)

g2 = dθ1 − sinψ sin θ2dφ2 − cosψdθ2√
2

, (B.6)

g3 = − sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2√
2

, (B.7)

g4 = dθ1 + sinψ sin θ2dφ2 + cosψdθ2√
2

, (B.8)

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 (B.9)

as

ds2
6 = dr2 + r2

(
1
9(g5)2 + 1

6

4∑
i=1

(gi)2
)
. (B.10)

Adding charges to the cone, the Klebanov-Tseytlin throat Let us begin with

a Ricci flat 10-dimensional spacetime given by the 4-dimensional Minkowski space ×

the 6-dimensional conifold. The metric of such geometry is given by

ds2
10 = −dt2 + dx2

1 + dx2
2 + dx2

3 + ds2
6 (B.11)

where ds2
6 is the conifold metric (B.3). We would like to place some D3 branes and

some wrapped D5 branes at the tip of the conifold. The D3 branes will lie along the

4 flat directions and the D5 branes will further wrap around an S2 of the base T 1,1 of

the conifold. Such introduction means our spacetime will have non-zero F3, F5 fluxes

obeying the following requirements:

1
4π2α′

∫
S3
F3 = M ,

1
(4π2α′)2

∫
T 1,1

F5 = N (B.12)

where M,N denote the number of D5 branes and D3 branes respectively. Note

further that, not unlike the familiar cases of D-brane bound state such as the D3-D5

configuration (C.10)-(C.14), because of the Chern-Simon terms in the supergravity

action, our introduction will also induce an H3 flux as a by product. The introduction

of branes to the tip of the conifold will also mean that our conifold now becomes

warped and no long Ricci flat. The solution describing such warped, fluxed conifold

is called the Klebanov-Tseytlin throat.
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The Klebanov-Strassler from the Klebanov-Tseytlin The motivation behind

the construction of the Klebanov-Strassler throat was originally because people do

not like the pointy tip of the 6-dimensional conifold in the Klebanov-Tseytlin throat.

To get rid of the pointy tip in the 6-dimensional conifold, we can deform the defining

equation (B.1) by introducing an ε2:
4∑
i=1

z2
i = ε2 . (B.13)

The effect is that the pointy tip is replaced by a finite size S3. The solution describing

the configuration resulted from blowing the point tip of the Klebanov-Tseytlin into a

finite size S3 is the Klebanov-Strassler solution.

By deforming the conifold, we have certainly changed some aspects of the geometry.

Nevertheless, the intuitive understanding for the Klebanov-Strassler remains similar

to that of the Klebanov-Tseytlin. In particular, we should think of the Klebanov-

Strassler as the solution resulting from placing D3 and D5 branes at the tip of a Ricci-

flat (deformed) conifold. The D3 and D5 branes will induce non-trivial F3, F5, H3

fluxes as well as warping effects to the conifold, giving us a warped, fluxed throat

geometry.

B.1.2 The 6-dimensional deformed conifold

Let us now take a closer look at the description of the KS throat. In particular, in

this section, we discuss the parametrisation of the 6-dimensional deformed conifold.

Even though there are already detailed discussion of the Euler angles parametrisation

of the conifold in the literature, we find it necessary to remind our readers here as we

will make use of this procedure later on to derive the description of the KS throat in

adapted coordinates.

The 6 dimensional deformed conifold of the KS solution is given by the equation
4∑
i=1

z2
i = ε2 (B.14)

where zi are complex numbers and ε characterises the degree of deformation, i.e. if

ε = 0, we have a normal cone. In order to obtain a parametrisation of the space, a
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B.1.2. The 6-dimensional deformed conifold

clever trick one can do is to define the matrix

W =

z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

 . (B.15)

Then, the defining equation becomes

detW = −ε2 . (B.16)

It is easy to see that

W0 =

 0 εeτ/2

εe−τ/2 0

 (B.17)

is one possible solution. Furthermore, if we define two SU(2) matrices Lj with j = 1, 2

then

W = L1.W0.L
†
2 (B.18)

also satisfies the equation detW = −ε2. As argued in [86], the metric of the deformed

conifold is then given by

ds2 = Ftr
(
dW †dW

)
+ G|tr(W †dW )|2 (B.19)

where

F(τ) = (sinh 2τ − 2τ)1/3

2× 21/3 × ε2/3 sinh τ
, (B.20)

G(τ) = 2− 3 coth2 τ + 3τ(cosh τ/ sinh3 τ)
12× ε8/3(cosh τ sinh τ − τ)2/3 . (B.21)

Euler angles parametrisation of the deformed conifold One can parametrise

the Lj matrices using Euler angles as

Lj =

cos θj2 e
i(ψj+φj)/2 − sin θj

2 e
−i(ψj−φj)/2

sin θj
2 e

i(ψj−φj)/2 cos θj2 e
−i(ψj+φj)/2

 (B.22)

with (ψj , φj) range from 0 to 2π and θ ranges from 0 to π. Plugging the parametrised

expression of W = L1.W0.L
†
2 into (B.19) yields the metric of the deformed conifold

written in angular coordinates ψj , θj , φj . As the coordinates ψ1 and ψ2 only appear
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in W as ψ1 +ψ2, we can define a new coordinate ψ = ψ1 +ψ2. The deformed conifold

metric in these coordinates is then given by

ds2
6 = 1

2ε
4/3K(τ)

[
1

3K3(τ)(dτ2+(g5)2)+cosh2
(
τ

2

)
[(g3)2+(g4)2]+sinh2

(
τ

2

)
[(g1)2+(g2)2]

]
(B.23)

where the function K(τ) is given by

K(τ) = (sinh 2τ − 2τ)1/3

21/3 sinh τ
, (B.24)

and the gi forms are given in (B.5)-(B.9).

B.1.3 The Klebanov-Strassler throat near the apex in Euler angles

For our purposes, we are only interested in the description of the KS throat near the

apex. From the full description of the throat, we expand the metric and gauge fields

in τ and keep only the relevant terms. To be more specific, we keep in the metric

and gauge fields terms of the required order such that the profile of metric and fields

solve the Supergravity equations to first order in τ . For convenience, let us also set1

gs = 1 and α′ = 1 in all further discussions of the KS throat.

The KS metric near the apex is approximated by

ds2
10 = A1(τ)

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+A2(τ)

(
d(τ)2 + (g5)2

)
+A3(τ)

(
(g3)2 + (g4)2

)
+A4(τ)

(
(g1)2 + (g2)2

)
(B.25)

where

A1(τ) = ε4/3

21/3(a0)1/2M
− a2 τ

2 ε4/3

2× 21/3(a0)3/2M
+ 3 (a2)2 τ4 ε4/3

8× 21/3(a0)5/2M
− a4 τ

4 ε4/3

2× 21/3(a0)3/2M
,

(B.26)

A2(τ) = (a0)1/2M

2× 61/3 + (a0)1/2M τ2

10× 61/3 + a2M τ2

4× 61/3(a0)1/2 −
(a2)2M τ4

16× 61/3(a0)3/2

+ (a0)1/2M τ4

210× 61/3 + a4M τ4

4× 61/3(a0)1/2 + a2M τ4

20× 61/3(a0)1/2 , (B.27)

1Setting gs = 1 is possible because the KS solution a has constant dilaton.
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A3(τ) = (a0)1/2M

61/3 + 32/3(a0)1/2M τ2

20× 21/3 + a2M τ2

2× 61/3(a0)1/2 + a4M τ4

2× 61/3(a0)1/2

+ 17 (a0)1/2M τ4

2800× 61/3 − (a2)2M τ4

8× 61/3(a0)3/2 + 32/3a2Mτ4

40× 21/3(a0)1/2 , (B.28)

A4(τ) = (a0)1/2M τ2

4× 61/3 − (a0)1/2M τ4

240× 61/3 + a2M τ4

8× 61/3(a0)1/2 + a4M τ6

8× 61/3(a0)1/2

− (a2)2M τ6

32× 61/3(a0)3/2 −
a2M τ6

480× 61/3(a0)1/2 + 59 (a0)1/2M τ6

50400× 61/3 (B.29)

with the constants a0 ≈ 0.71805, a2 = −(3× 61/3)−1, and a4 = (18× 61/3)−1.

The KS fluxes near the apex are approximated by2

H3 = −M2

((
τ2

4 −
τ4

16

)
dτ ∧ g1 ∧ g2 +

(
1
3 + τ2

60 + τ4

1008

)
dτ ∧ g3 ∧ g4

+
(
τ

6 −
7

180τ
3
)
g5 ∧ (g1 ∧ g3 + g2 ∧ g4)

)
, (B.30)

H7 = − ε8/3

2× 22/3a0M

((
1− τ2

12 −
a2τ

2

a0

)
dx0 ∧ ... ∧ dx3 ∧ g3 ∧ g4 ∧ g5

+ τ

6dx
0 ∧ ...dx3 ∧ dτ ∧

(
g1 ∧ g3 + g2 ∧ g4

)
+ τ2

12dx
0 ∧ ... ∧ dx3 ∧ g1 ∧ g2 ∧ g5

)
,

(B.31)

F3 = M

2

((
1− τ2

12 + 7 τ4

720

)
g5 ∧ g3 ∧ g4 +

(
τ2

12 −
7 τ4

720

)
g5 ∧ g1 ∧ g2

+
(
τ

6 −
7 τ3

180

)
dτ ∧ (g1 ∧ g3 + g2 ∧ g4)

)
, (B.32)

F5 = ε8/3

M2

(
τ

3× 31/3a2
0
− τ3

9× 31/3 a2
0
− 2 a2 τ

3

3× 31/3 a3
0

)
dx0∧dx1∧dx2∧dx3∧dτ , (B.33)

F̃5 = ε8/3

M2

(
τ

3× 31/3a2
0
− τ3

9× 31/3 a2
0
− 2 a2 τ

3

3× 31/3 a3
0

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ

−
(
M2 τ3

36

)
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (B.34)

2As our convention of the Hodge star operator is different from that of [16], our description of
H3 and F̃5 have different signs from those of [16].
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B.1.4 The Klebanov-Strassler metric near the apex in adapted

coordinates

The description of the KS throat near the apex above is in the angular coordinates

x0, x1, x2, x3, τ , ψ, θ1, φ1, θ2, φ2 as presented in the original paper of Klebanov and

Strassler. However, for our purpose, it proves useful to express the KS metric near

the apex in adapted coordinates t, x1, x2, x3, r, ψ, ω, ϕ, θ2, φ2 as used in the main

text3.

One might also wish to write the fluxes in term of the adapted coordinates. But,

as the fluxes enter the blackfold equations only when coupled to the anti-D3-NS5

currents, just some components are relevant. As a result, we shall not attempt to

transform the full description of the fluxes to the adapted coordinates but only the

relevant components when needed.

The Minkowskian coordinates x0, x1, x2, x3 and the radial coordinates τ of the

angular coordinate system are respectively, up to some scaling, equivalent to the

coordinates t, x1, x2, x3, and r of the adapted coordinates system. In particular, one

can transform from one to the other as

x0 →
√

2√a0M

31/6 × ε2/3
t , (B.35)

xi →
√

2√a0M

31/6 × ε2/3
xi , (B.36)

τ → 2 r . (B.37)

Let us turn to the base of the conifold, which originally was expressed using Euler

angles (ψ, θ1, φ1, θ2, φ2), and attempt to parametrise it using the spherical coordinates

(ψ, ω, ϕ, θ2, φ2).

Spherical parametrisation of the deformed conifold For our analysis, it is

most convenient to parametrise both the S3 at the tip and the transverse S2 using

spherical coordinates, i.e. (ψ, ω, ϕ) and (θ2, φ2) respectively. To do this, we shall apply
3Note that the duplicate coordinates x1, x2, x3, and ψ of the two coordinates system are different.

We decided not to change them to be consistent with the literature.
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the same parametrisation process as before but with an emphasis on identifying the

3 parameters of the tip S3 and incorporate the remaining 2 parameters as we go up

the throat. Recall from (B.19) that the metric of the deformed conifold is given by

ds2 = Ftr
(
dW †dW

)
+ G|tr(W †dW )|2 (B.38)

where

W = L1.W0.L
†
2 (B.39)

with

W0 =

 0 εeτ/2

εe−τ/2 0

 (B.40)

and Lj with j = 1, 2 are two SU(2) matrices. As noted before that the coordinates

ψ1 and ψ2 only appear in W as ψ1 + ψ2, so instead of relabelling the final result, we

parametrise L2 with only two variables (θ2, φ2)

L2 =

 cos θ2
2 e

iφ2/2 − sin θ2
2 e

iφ2/2

sin θ2
2 e
−iφ2/2 cos θ2

2 e
−iφ2/2

 . (B.41)

Expanding W0 in τ , we have

W0 = εf(τ)σ1 + εg(τ)σ2 (B.42)

where

σ1 =

0 1

1 0

 , σ2 =

 0 1

−1 0

 , (B.43)

and

f(τ) = 1 + τ2

8 + τ4

384 +O
(
τ6
)
, g(τ) = τ

2 + τ3

48 +O
(
τ5
)
. (B.44)

Thus, we have

W = L1.
(
εf(τ)σ1 + εg(τ)σ2

)
.L†2 (B.45)

= εf(τ)L+ εg(τ)L.L̂ (B.46)

where L ≡ L1.σ1.L
†
2 and L̂ ≡ L2.(σ1)−1.σ2.L

†
2 .
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As L is an unitary complex matrix with detL = −1, we can parametrise L using

spherical coordinates as4

L =

− sinψ sinω cosϕ+ i sinψ sinω sinϕ cosψ − i sinψ cosω

cosψ + i sinψ cosω sinψ sinω cosϕ+ i sinψ sinω sinϕ

 .

(B.47)

On the other hand, the parametrisation of L̂ comes directly from the parametrisation

of L2. We have

L̂ =

 − cos θ2 −eiφ2 sin θ2

−e−iφ2 sin θ2 cos θ2

 . (B.48)

Plugging the spherically parametrised W into (B.38), we obtain the metric of the

deformed conifold in spherical coordinates.

Klebanov-Strassler metric near the apex in adapted coordinates Recall

from [16], the KS metric is given by

ds2
10 = h−1/2(τ)

(
−dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+ h1/2(τ)ds2

6 (B.49)

where ds2
6 is the metric of the deformed conifold and the h(τ) is the warping effects

induced by the non-trivial fluxes:

h(τ) = M2 22/3ε−8/3
∫ ∞
τ

dx
x coth x− 1

sinh2 x
(sinh 2x− 2x)1/3 (B.50)

= M222/3ε−8/3 (a0 + a2τ
2 + a4τ

4) +O(τ6) (B.51)

where, as written down earlier, a0 ≈ 0.71805, a2 = −(3 × 61/3)−1, and a4 = (18 ×

61/3)−1.

Substituting in (B.49) the spherically parametrised deformed conifold metric, apply-

ing the coordinate transformations (B.35)-(B.37), and restricting our attention to

some leading orders of r, we obtain the expression of the KS metric near the apex in

our desired adapted coordinates. However, as the expression is long and ugly, we shall
4To obtain the deformed conifold metric, it is algebraically simpler to write the matrix L in

Hopf coordinates first, carry out the necessary computations, then transform Hopf to spherical.
Nevertheless, the final answers are the same.
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B.2. The Cvetic-Gibbons-Lu-Pope throat

not write it explicitly here. Instead, we shall only write down components/properties

that are immediately relevant for us.

Firstly, as you would expect, if we subdue terms of order r2 or higher in all but the

(θ2, φ2) directions, we recover the metric in (3.1):

gµνdx
µdxν = Mb20

(
− dt2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dθ2

2 + sin2 θ2dφ
2
2)
)

(B.52)

where b20 = 22/3√a0
31/3 ≈ 0.93266.

Secondly, as they will be relevant for our stability analysis, we note the following

derivatives

∂2
rgtt

∣∣∣
r=θ2=φ2=0

= 4× 22/3a2M

31/3√a0
, ∂2

rgxixi
∣∣∣
r=θ2=φ2=0

= −4× 22/3a2M

31/3√a0
, (B.53)

∂2
rgωω

∣∣∣
r=θ2=φ2=0

= 4× 22/3M

5× 31/3√a0
sin2 ψ

(
4a0 + 5a2 − 2a0 cos2 ψ sin2 ω

)
, (B.54)

∂2
rgϕϕ

∣∣∣
r=θ2=φ2=0

= 4× 22/3M

5× 31/3√a0
sin2 ψ sin2 ω

(
4a0 + 5a2 − 2a0 sin2 ψ sin2 ω

)
(B.55)

with a0 ≈ 0.71805 and a2 = −(3× 61/3)−1.

B.2 The Cvetic-Gibbons-Lu-Pope throat

Analogous to the KS throat in type IIB supergravity, the CGLP throat is a warped,

fluxed, deformed conifold solution of the eleven-dimensional supergravity theory. As

the discussion of the CGLP throat has many overlaps with that of the KS throat,

we include only the minimal details here. The eleven-dimensional background metric

has the form

ds2
11 = gµνdx

µdxν = H−
2
3
(
−(dx0)2 + (dx1)2 + (dx2)2

)
+H

1
3ds2

8 , (B.56)

where ds2
8 is the metric element of the Stenzel space. Details on the full structure of

this metric and the function H can be found in [3, 20]. The background also involves a

non-trivial profile for the four-form field strength G4 and its Hodge dual G7 = ?11G4.
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B.2. The Cvetic-Gibbons-Lu-Pope throat

It is convenient to collect the following constants that appear in this background (we

follow closely the notation in [3])

• A constant m appears in the expressions of G4 and G7 and is related to the M̃

units of G4 flux through an S4 of the background via the relation

M̃ = 18π2m

(2π`P )3 , (B.57)

where `P is the eleven-dimensional Planck length.

• The complex structure deformation of the four-complex dimensional conifold

that gives rise to the Stenzel space is expressed in terms of the constant ε. In

complex coordinates zi in C5 the Calabi-Yau space
∑5
i=1 z

2
i = 0 is deformed to∑5

i=1 z
2
i = ε2.

• At the tip of the cone the value of the function H is

Ĥ0
m2

ε
9
2
' 1.0898 m

2

ε
9
2
. (B.58)

• For simplicity, it is helpful to define and use the related constants:

a2
0 =

(
m2

ε
9
2
Ĥ0

)− 2
3

, b20 = 3
2Ĥ

1
3
0 . (B.59)

Anti-M2 branes placed in the CGLP background are attracted towards and eventually

stabilise at the tip of the eight-dimensional cone. Hence, for our purposes, it is enough

to focus on the tip of the conifold (τ = 0 in the appropriate radial coordinate τ [3]).

After a trivial rescaling of the Minkowski coordinates x0, x1, x2 by the constant factor

a0/(b0m1/3) one obtains the metric5

ds2 = m
2
3 b20

(
−(dx0)2 + (dx1)2 + (dx2)2 + dψ2 + sin2 ψ dΩ2

3

)
. (B.60)

We will use spherical coordinates ϑ, ω, ϕ to express the metric element of the unit

round S3 as dΩ2
3 = dϑ2 + sin2 ϑ

(
dω2 + sin2 ω dϕ2). The four-form flux G4 = dA3 is

5As can be analogously seen from setting r = 0 in the description of the KS metric (B.52), at
the tip of the CGLP throat, only the S4 of the conical base space remains.
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B.2. The Cvetic-Gibbons-Lu-Pope throat

given in terms of the gauge field

A3 = 27
4 mf(ψ) sin2 ϑ sinω dϑ ∧ dω ∧ dϕ (B.61)

where

f(ψ) = 1
3 cos3 ψ − cosψ + 2

3 , (B.62)

while the seven-form flux G7 takes the form

G7 = −27
4 m

2b30 sin3 ψ sin2 ϑ sinω dx0 ∧ dx1 ∧ dx2 ∧ dψ ∧ dϑ ∧ dω ∧ dϕ . (B.63)
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Appendix C

Brane bound states

In this appendix, we describe the D3-NS5 and the M2-M5 brane bound states, fo-

cusing on aspects relevant to their role in the main text as the seed solutions for the

metastable antibranes. We begin, in section C.1, by obtaining the supergravity de-

scription of the D3-NS5 bound state via S-dualising the D3-D5 solution. Subsequently,

we collect its thermodynamics information, and construct its far-zone equivalent cur-

rents. As the construction of equivalent currents is an important component of the

blackfold approach, we will take our time with such discussions. In section C.2, we

describe the M2-M5 brane bound state and its equivalent currents. As there are obvi-

ous overlaps, the discussion of the M2-M5 bound state will be less detailed. However,

it is still a worthwhile read because the M2-M5 equivalent currents possess an unique

and important feature that one might naively miss.
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C.1. D3-NS5 bound state & its equivalent currents

C.1 D3-NS5 bound state & its equivalent currents

C.1.1 D3-NS5 from S-dualising D3-D5

D3-D5 bound state The familiar D3-D5 brane bound state supergravity solution

is given by [87]1

ds2 = H−1/2
(
−fdt2 +D

(
(dx1)2 + (dx2)2

)
+

5∑
i=3

(dxi)2
)

+H1/2
(
f−1dr2 + r2dΩ2

3

)
,

(C.1)

e2φ = H−1D , (C.2)

B2 = tan θ(H−1D − 1)dx1 ∧ dx2 , (C.3)

C2 = −r2
0 sinh 2α cos θ ϕ sin2 ψ sinω dψ ∧ dω , (C.4)

C4 = (H−1 − 1) cothα sin θ dt ∧ dx3 ∧ dx4 ∧ dx5 −
(

r2

r2
0 sinh2 α cos2 θ

+ 1
)
B2 ∧ C2

(C.5)

with

f = 1− r2
0
r2 , D =

(
sin2 θH−1 + cos2 θ

)−1
, (C.6)

H = 1 + r2
0 sinh2 α

r2 (C.7)

where dΩ2
3 is the standard S3 metric dΩ2

3 = dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2).

D3-NS5 bound state via S-duality In the scope of supergravity, S-duality can

be described as a symmetry of the type IIB supergravity action. By S-dualising, we

mean making use of such symmetry to transform one solution, here the D3-D5 bound

state, to another solution, here the D3-NS5 bound state. For our purposes, in the

string frame, the transformation can be described as

eφ
NS5 = 1

eφD5 , dsNS5
2 = e−φ

D5
dsD5

2 , (C.8)

HNS5
3 = FD5

3 , FNS5
3 = −HD5

3 , F̃NS5
5 = F̃D5

5 . (C.9)

1Let us note that our description is slightly different from that of [87]. Nevertheless, one can
easily check through direct substitution that this description is indeed the correct description with
respect to our conventions stated in section 1.4.
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C.1.2. Far-zone equivalent currents

As a result, we have the D3-NS5 bound state given by

ds2 = D−1/2
(
−fdt2 +D

(
(dx1)2 + (dx2)2

)
+

5∑
i=3

(dxi)2
)

+HD−1/2
(
f−1dr2 + r2dΩ2

3

)
,

(C.10)

e2φ = HD−1 , (C.11)

C2 = − tan θ(H−1D − 1) dx1 ∧ dx2 , (C.12)

B2 = −r2
0 sinh 2α cos θ ϕ sin2 ψ sinω dψ ∧ dω , (C.13)

C4 = (H−1 − 1) cothα sin θ dt ∧ dx3 ∧ dx4 ∧ dx5 + r2

r2
0 sinh2 α cos2 θ

B2 ∧ C2 .

(C.14)

As one can easily check against the type IIB supergravity equations, this is indeed

a solution. In this description, the extremal D3-NS5 solution can be obtained by

taking the limit r0 → 0, α → ∞ in such a way that we can define a finite extremal

horizon radius rh ≡ r0 sinhα. As such, r0 and α can be thought of as nonextremal

parameters.

Thermodynamics As computed in [87], the thermodynamics of this solution are

ε = Ω3
16πGr

2
0

(
3 + 2 sinh2 α

)
, s = Ω3

4Gr
3
0 coshα , T = 1

2πr0 coshα , (C.15)

Φ3 = sin θ tanhα , Q3 = Ω3
8πGr

2
0 sin θ sinhα coshα , (C.16)

Φ5 = cos θ tanhα , Q5 = Ω3
8πGr

2
0 cos θ sinhα coshα (C.17)

where Ω3 = 2π2 is the volume of the unit radius round S3. And, the effective energy

stress tensor is given by [79]

Tab = T s
(
uaub −

1
n
γab

)
−

∑
q= 3,5

ΦqQqh(q)
ab . (C.18)

C.1.2 Far-zone equivalent currents

As discussed in [56], there are at least three sensible notions of charges in a supergrav-

ity theory. For the purpose of constructing equivalent currents, we shall be interested
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C.1.2. Far-zone equivalent currents

in something called the Maxwell charge. The key idea for the Maxwell charges is that

the Chern-Simons terms in the equation of motion can be thought of as a source for

the gauge field. For example, let us look at the equation of motion for the C4 gauge

field in type IIB supergravity:

d ? F̃5 −H3 ∧ F3 = −16πG ? J4 . (C.19)

In this case, the Maxwell current is given by

d ? F̃5 = −16πG ? JMaxwell
4 = −16πG ? J4 +H3 ∧ F3 (C.20)

where the sign and factors in front of JMaxwell
4 is to make sure it is compatible with

our conventions of J4.

The Maxwell current JMaxwell
4 can be interpreted as modelling how the branes interact

with the background flux F̃5. The Maxwell charge can be computed easily from

Gauss’s law of the F̃5 flux and, thus, can be interpreted as the monopole source that

will reproduce the F̃5 flux far away. As we shall see explicitly soon, this is what we

need for the construction of equivalent currents.

Turning our attention to the case of D3-NS5 bound state, the relevant forced Maxwell

equations are

d ? F̃3 = −16πG ? JMaxwell
2 , (C.21)

d ? F̃5 = −16πG ? JMaxwell
4 , (C.22)

d ? H7 = 16πG ? jMaxwell
6 . (C.23)

We do not know the exact expressions of these Maxwell currents, however, we can

mimic their effects far away by using Maxwell charges to construct a set of equivalent

currents. Adopting the convention thatQ =
∫
?J , using the description of the D3-NS5

bound state in (C.10)-(C.14), we obtain the Maxwell charges

QMaxwell
1 = − 1

16πG lim
r→∞

∫
?F̃3 = V ol4 Cr

2
0 sinh2 α sin θ cos θ , (C.24)

QMaxwell
3 = − 1

16πG lim
r→∞

∫
?F̃5 = V ol2 Cr

2
0 sinhα coshα sin θ , (C.25)

QMaxwell
5 = 1

16πG lim
r→∞

∫
?H7 = −Cr2

0 sinhα coshα cos θ (C.26)
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C.2. M2-M5 bound state and its equivalent currents

where C = Ω3
8πG = π

4G and V oln is the volume of the n-dimensional flat space.

Requiring that our equivalent currents reproduce the same Maxwell charges at r →∞,

they can now be easily constructed:2

Jequiv2 = Cr2
0 sinh2 α sin θ cos θ v ∧ w , (C.27)

Jequiv4 = Cr2
0 sinhα coshα sin θ ∗ (−v ∧ w) , (C.28)

jequiv6 = −Cr2
0 sinhα coshα cos θ ∗ (−1) (C.29)

where ∗ is the 6-dimensional worldvolume Hodge star, and v, w are orthogonal vectors

used to describe the distribution of the dissolved D3 charge.

In the description of D3-NS5 branes above, we have not restricted the range of θ ∈

(0, 2π). For the construction of KPV state, we are interested in anti-D3-NS5 branes,

which corresponds to the range θ ∈ (π, 3π/4) of our description3. For convenience,

we can do a reparametrisation θ → θ − π to bring it to the regime θ ∈ (0, π/2). In

the new θ, our currents are given by

J2 = Cr2
0 sinh2 α sin θ cos θ v ∧ w , (C.30)

J4 = Cr2
0 sinhα coshα sin θ ∗ (v ∧ w) , (C.31)

j6 = −Cr2
0 sinhα coshα cos θ ∗ (1) (C.32)

where we have drop the superscript equiv for syntactical simplicity.

C.2 M2-M5 bound state and its equivalent currents

C.2.1 M2-M5 bound state

Following [87], we can easily read off the description for the M2-M5 brane bound

state and its thermodynamics quantities. In flat space, the M2-M5 branes has the
2The equivalent currents are localised (δ function) currents in the full 10 dimensional picture.
3The statement that anti-D3-NS5 branes are described by θ in the regime of (π, 3π/4) is only

strictly true for background where Maxwell charges and Page charges are the same. As we shall see
in our study of the KPV state, the metastable state of anti-D3-NS5 branes can have θ outside of this
regime.
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C.2.1. M2-M5 bound state

metric

ds2 = (HD)−1/3
[
−fdt2 + (dx1)2 + (dx2)2 +D

(
(dx3)2 + (dx4)2 + (dx5)2

)]
+H

(
f−1dr2 + r2dΩ2

4

)
(C.33)

where

f = 1− r3
0
r3 , H = 1 + r3

0 sinh2 α

r3 , (C.34)

D =
(
sin2 θH−1 + cos2 θ

)−1
. (C.35)

The gauge fields are given by

A3 = − sin θ cothα(H−1 − 1)dt ∧ dx1 ∧ dx2 + tan θDH−1dx3 ∧ dx4 ∧ dx5 , (C.36)

A6 = cos θ cothαD(H−1 − 1)dt ∧ dx1... ∧ dx5 . (C.37)

The thermodynamics of this solution are

ε = Ω4
16πGr

3
0

(
4 + 3 sinh2 α

)
, T = 3

4πr0 coshα , (C.38)

s = Ω4
4Gr

4
0 coshα , Φ5 = cos θ tanhα , Φ2 = − sin θ tanhα , (C.39)

Q5 = 3Ω4
16πG cos θr3

0 sinhα coshα , Q2 = − 3Ω4
16πG sin θr3

0 sinhα coshα (C.40)

where Ω4 is the volume of the unit 4-sphere S4. A corresponding free energy F can

be defined as

F = ε− T s = Ω4
16πGr

3
0(1 + 3 sinh2 α) (C.41)

and the worldvolume energy-stress tensor as

Tab = T s
(
uaub −

1
3ηab

)
−
∑
q=2,5

ΦqQh(q)
ab (C.42)

where hab are the projector on to the M2 and M5 branes.
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C.2.2. Far-zone equivalent currents

C.2.2 Far-zone equivalent currents

Following the same procedure as before, we can easily write down an expression for

the M2-M5 equivalent currents. The feature of interest is that, in this case, J3 has two

legs. This is due to the fact that A3 (C.36) has two legs, one along the M2 branes and

the other orthogonal to it. When trying to mimic the effects of the M2-M5 bound

state on the G4 flux4, we need to take this into account. As a result, besides the

leg along the familiar directions of the M2 branes, J3 also has an extra leg in the

orthogonal directions. In order to write down an expression for this extra leg, it is

useful to compute a charge-like quantity Q̃2 from an integral of the four-form field

strength G4 over an S7 that surrounds the “orthogonal” leg of the field strength:

Q̃2 = − 1
16πG

∫
S7
?G4 = Cr3

0 sin θ cos θ sinh2 α . (C.43)

where C = 3Ω4
16πG = π

2G . With the expressions of the charges Q2, Q5 (C.40), and

the charge-like quantity Q̃2 (C.43), we have the far-zone equivalent currents of the

M2-M5 bound state:

J3 = Cr3
0 sin θ sinhα

[
coshα ∗ (v ∧ w ∧ z)− cos θ sinhα v ∧ w ∧ z

]
, (C.44)

J6 = −C cos θ r3
0 sinhα coshα (∗1) (C.45)

where ∗ is the 6-dimensional worldvolume Hodge star, and v, w, z are orthogonal

vectors used to describe the distribution of the dissolved M2 charge.

4Think of the required form of J3 for which the sourced eleven-dimensional supergravity gauge
field equation d ? G4 = −16πG ? J3 produces a field strength G4 = dA3 where A3 has 2 legs.
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Appendix D

Blackfold perturbation equations

In this appendix, we derive the blackfold perturbation equations for deformations

around the KPV state. We start with the computations of some useful variational

expressions. Subsequently, we present the derivation of the blackfold perturbation

equations used in the main text. For further discussions on variational properties of

embedding geometry or blackfold perturbation equation, see e.g. [23, 49].

D.1 Useful variations

Variation of induced metric Hitting δ to the definition of γab in (A.1), we obtain

the expression

δγab = ∂aX
µ∂bX

ν
(
∇µ (δXαgαν) +∇ν (δXαgαµ)

)
. (D.1)

When we embed a surface without edges in a higher-dimensional background, the vari-

ations along the brane directions of the embedding functions Xµ(σ) can be cancelled

by a reparametrisation of the worldvolume coordinates. As a result, we only have

to worry about the variations of the transverse scalars δXµ
⊥(σ) (i.e. ∂aXµδX

µ
⊥ = 0).

Making use of equation (A.12), we have

δγab = −2K ρ
ab (δXα

⊥gαρ) . (D.2)

Using the identity γabγbc = δca, we can easily deduce that

δγab = 2Kab
ρδX

ρ
⊥ . (D.3)
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D.1. Useful variations

Variation of normal vectors We note that the normal vectors are implicitly

defined by

∂aX
ρn(i)

ρ = 0 , (D.4)

n(i)
ρ n

ρ
(j) = δ

(i)
(j) . (D.5)

Hitting δ to both equations yields respectively the variation of n(i)
ρ along the world-

volume directions and normal to the worldvolume directions1:

hρσ δn
(i)
ρ = −∂aXσ∂aδX

ρ
⊥n

(i)
ρ , (D.6)

⊥ρσ δn(i)
ρ = 1

2n
α (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
σ . (D.7)

All together, we have

δn(i)
ρ = −∂aXρ∂aδX

σ
⊥n

(i)
σ + 1

2n
α (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ . (D.8)

Variation of extrinsic curvature Hitting δ to the expression of K ρ
ab in (A.12),

we obtain

δK ρ
ab = ∇a

(
∂bδX

ρ
⊥
)
− δΘc

ab∂cX
ρ + δΓρµν∂aXµ∂bX

ν + 2Γρµν∂aδX
µ
⊥∂bX

ν . (D.9)

Considering the variation of the projected extrinsic curvature K (i)
ab , we have

δ
(
K

(i)
ab

)
= δ

(
K ρ
ab n

(i)
ρ

)
= δ

(
K ρ
ab

)
n(i)
ρ +K ρ

ab δ
(
n(i)
ρ

)
. (D.10)

Making use of results in (D.8) and (D.9), we can write

δ
(
K

(i)
ab

)
= n(i)

ρ ∇a
(
∂bδX

ρ
⊥
)

+ n(i)
ρ δX

α
⊥∂αΓρµν∂aXµ∂bX

ν + 2n(i)
ρ Γρµν∂aδX

µ
⊥∂bX

ν

+ 1
2K

ρ
ab

(
nα (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ

)
. (D.11)

1As normal vectors are used collectively to specify the position of the branes inside the back-
ground, it is obvious that we have a rotational gauge symmetry in defining these vectors. Therefore,
we can safely ignore variations regarding rotations of the normal vectors among themselves.
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D.2. Current conservation equations

Variation of anti-D3-NS5 blackfold energy-momentum tensor Hitting δ to

the expression of T ab in (3.4), we obtain the expression

δT ab = −Q5 sin θδ(tan θ)γab −Q5
1

cos θ
(
2Kab

ρδX
ρ
⊥

)
+ Q5

(
δ(va)vb + vaδ(vb) + δ(wa)wb + waδ(wb)

)
tan θ sin θ

+ Q5(vavb + wawb) sin θδ(tan θ) + Q5(vavb + wawb) sin θ cos2 θδ(tan θ) . (D.12)

We can also provide the general expressions for the variations of the blackfold currents.

However, as the blackfold currents either enter our equations with a Hodge dual or

coupled to the background fluxes, let us write down only the needed components

when we use them.

D.2 Current conservation equations

Recall from (4.5)-(4.7) the blackfold current conservation equations

d ∗ j6 = 0 , (D.13)

d ∗ J4 − ∗j6 ∧ F3 = 0 , (D.14)

d ∗ J2 +H3 ∧ ∗J4 = 0 . (D.15)

1. Considering the j6 conservation equation, we can easily show that it gives rise

to the perturbation equation

∂aδQ5 = 0 (D.16)

where we have used ∗j6 = Q5.

2. Considering the J4 conservation equation, firstly, we note that it can be rewrit-

ten as

d ∗ J̃4 = 0 (D.17)

where

∗J̃4 = ∗J4 − ∗j6 ∧ C2 (D.18)

= −Cr2
h sin θ v ∧ w − Cr2

h cos θ C2 . (D.19)
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D.2. Current conservation equations

From the unitary condition vava = wawa = 1, it can be easily shown that

δvω =
√
Mb0 cosψ , δwϕ =

√
Mb0 cosψ sinω . (D.20)

Therefore, we have

δ
(
∗J̃4

)
= −Q5δ tan θ v ∧ w −Q5 tan θ (δv ∧ w + v ∧ δw)−Q5 δC2

= −
(
Q5Mb20 sin2 ψδ tan θ+2Q5Mb20 tan θ cosψ sinψδψ+2Q5M sin2 ψδψ

)
sinωdω∧dϕ

−
(
Q5 tan θ

√
Mb0 sinψδwt

)
dω ∧ dt−

(
Q5 tan θ

√
Mb0 sinψ sinωδvt

)
dt ∧ dϕ

(D.21)

where we have used that C2 at the tip is given by C2 = M(ψ− 1
2 sin 2ψ) sinωdω∧

dϕ and corrections away from the tip start at order O
(
r2). Thus, the J4

perturbation equation is given by

−Q5Mb20 sin2 ψ sinω
(
∂tδ tan θ + 2 tan θ cotψ∂tδψ + 2

b20
∂tδψ

)

= Q5M
3/2b30 tan θ sinψ

(
∂ϕδw

t + ∂ω
(
sinωδvt

) )
(D.22)

where we have used δvt = −Mb20 δv
t and δwt = −Mb20 δw

t.

3. Considering the J2 conservation equation, we have the variation of ∗J2 is given

by

δ
(
∗ J2

)
= Q5 (δ sin θ) ∗ (v ∧ w) + Q5 sin θδ (∗(v ∧ w))

= Q5
(
cos3 θδ tan θ

)√
−γ
(
vωwϕdt∧...∧dx3

)
−2Q5 sin θ(

√
−γγωωKωω

ψδψ)
(
vωwϕdt∧...∧dx3

)
+ Q5 sin θ

√
−γ
(
δvtwϕdx1 ∧ ... ∧ dx3 ∧ dω + vωδwtdx1 ∧ ...dx3 ∧ dϕ

+ δvωwϕdt ∧ ... ∧ dx3 + vωδwϕdt ∧ ... ∧ dx3
)
. (D.23)

As δ (H3 ∧ ∗J4) = δH3 ∧ ∗J4 + H3 ∧ δ(∗J4) = 0, the J2 perturbation equation

is equivalent to the set of equations

cot θ cos2 θ∂ωδ tan θ +
√
Mb0 sinψ∂tδvt = 0 , (D.24)

cot θ cos2 θ∂ϕδ tan θ +
√
Mb0 sinψ sinω∂tδwt = 0 , (D.25)

∂ϕδv
t − ∂ω(sinωδwt) = 0 (D.26)
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D.3. Energy-momentum conservation equations

where we have used (4.25)-(4.26).

D.3 Energy-momentum conservation equations

Recall from (4.2)-(4.3), the intrinsic and extrinsic blackfold equations

∇aT ab = ∂bXµFµ , (D.27)

T abK
(i)

ab = Fµ n(i)
µ (D.28)

where Fµ denotes the force terms coming from the coupling of the currents to the

fluxes (4.4).

D.3.1 Intrinsic perturbation equation

The blackfold intrinsic perturbation equation is given by

δ
(
∇aT ab

)
= δ

(
∂bXµFµ

)
. (D.29)

Considering the LHS, we have

δ
(
∇aT ab

)
= ∇aδT ab − T bc∇c

(
KρδX

ρ
⊥
)
− 2T ac∇c

(
K b
a ρδX

ρ
⊥

)
+ T ac∇b

(
KacρδX

ρ
⊥
)

(D.30)

where Kρ = γabK ρ
ab and we have used the identity

δΘb
ac = 1

2γ
bd(∇aδγcd +∇cδγad −∇dδγac) . (D.31)

Considering the RHS, we have

δ
(
∂bXµFµ

)
= δ

(
∂bXµ

)
Fµ + ∂bXµδ (Fµ) (D.32)

= γtbgψψ∂tδψ
(
Fψωϕ3 J2ωϕ

)
(D.33)

where we have made use of the explicit expression of Fµ in (4.4). Altogether, we have

the intrinsic perturbation equation

∇aδT ab − T bc∇c
(
KρδX

ρ
⊥
)
− 2T ac∇c

(
K b
a ρδX

ρ
⊥

)
+ T ac∇b

(
KacρδX

ρ
⊥
)

= γtbgψψ∂tδψ
(
Fψωϕ3 J2ωϕ

)
. (D.34)

Substituting in appropriate expressions, we obtain for b = t, ω, ϕ respectively
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D.3.2. Extrinsic equation

1. The t intrinsic perturbation equation

∂tδ tan θ +
√
Mb0

sinψ tan θ
(
∂ωδv

t + 1
sinω∂ϕδw

t + cotωδvt
)

+ 2
(

cotψ tan θ + 1
b20

)
∂tδψ = 0 , (D.35)

2. The ω intrinsic perturbation equation

√
Mb0 sinψ tan2 θ∂tδv

t + sin θ cos θ∂ωδ tan θ = 0 , (D.36)

3. The ϕ intrinsic perturbation equation

√
Mb0 sinψ sinω tan2 θ∂tδw

t + sin θ cos θ∂ϕδ tan θ = 0 . (D.37)

D.3.2 Extrinsic equation

The extrinsic blackfold perturbation equation is given by

δ
(
T abK

(i)
ab

)
= δ

(
Fµ n(i)

µ

)
. (D.38)

Making use of the results in (D.11), we can easily write the LHS as

δ
(
T abK

(i)
ab

)
= δT abK

(i)
ab + T abn(i)

ρ ∇a
(
∂bδX

ρ
⊥
)

+ T abn(i)
ρ δX

α
⊥∂αΓρµν∂aXµ∂bX

ν

+ 2T abn(i)
ρ Γρµν∂aδX

µ
⊥∂bX

ν + 1
2T

abK ρ
ab

(
nα (i)nβ (i)∂γgαβδX

γ
⊥n

(i)
ρ

)
. (D.39)

For our purpose, we are interested in the orthogonal directions ψ and r. The unitary

normal vectors specifying these directions are respectively

n(1) =
√
Mb0dψ , n(2) =

√
Mb0dr . (D.40)

For the ψ direction, the RHS is given by

δ
(
Fµn(1)

µ

)
= δFµn(1)

µ + Fµδn(1)
µ = δFψn(1)

ψ . (D.41)

The expression of δFψ can be easily obtained by hitting δ to the force term Fµ

(4.4). As the computation is tedious but straightforward, we shall not include all the
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D.3.2. Extrinsic equation

details here. Nevertheless, for the convenience of the readers, let us note down the

final results along with some useful (non-vanishing) intermediate steps. We have

δFψωϕ3 = δ
(
gψµγωa1∂a1X

α1γϕa2∂a2X
α2F3µα1α2

)
(D.42)

= gψψ (δγωω) γϕϕF3ψωϕ + gψψγωω (δγϕϕ)F3ψωϕ + gψψγωωγϕϕ (δF3ψωϕ)

(D.43)

=
(
4gψψKωω

ψγ
ϕϕF3ψωϕ + gψψγωωγϕϕ∂ψF3ψωϕ

)
δψ . (D.44)

Similarly, we have

δHψt...ϕ
7 =

(
4gψψγtt...γx3x3

Kωω
ψγ

ϕϕH7ψt...ϕ + gψψγtt...γϕϕ∂ψH7ψt...ϕ
)
δψ . (D.45)

Let us note also that

δJ2ωϕ = Q5 (δ sin θ) vωwϕ + Q5 sin θ (δvωwϕ + vωδwϕ) (D.46)

=
(
Mb20Q5 cos3 θ sin2 ψ sinω

)
δ tan θ +

(
2Mb20Q5 sin θ cosψ sinψ sinω

)
δψ

(D.47)

and

δj6t...ϕ = −Q5
(
δ
√
−γ
)

= −1
2Q5
√
−γγαβδγαβ (D.48)

=
(
2Q5
√
−γγωωK ψ

ωω gψψ
)
δψ . (D.49)

Altogether, we have the variation of the force term δFψ is given by

δFψ = −
(
δHψt...ϕ

7

)
j6t...ϕ−Hψt...ϕ

7 (δj6t...ϕ)+
(
δFψωϕ3

)
J2ωϕ+Fψωϕ3 (δJ2ωϕ) . (D.50)

For the r direction, the RHS is given by

δ
(
Fµn(2)

µ

)
= δFµn(2)

µ + Fµδn(2)
µ = δFrn(2)

r . (D.51)

Similar to our treatment of δFψ, we shall not present here the full computation of

δFr but only the final results along with some useful (non-vanishing) intermediate

steps. We have

δF̃ rt...x
3

5 = δ
(
grνγta1 ...γx

3a4∂a1X
α1 ...∂a4X

α4F̃5να1...α4

)
(D.52)

=
(
grrγtt...γx

3x3
∂rF̃5rt...x3

)
δr . (D.53)
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The variation of the force term δFr is given by

δFr =
(
δF̃ rt...x

3
5

)
J4t...x3 . (D.54)

Substituting in appropriate expressions and simplify where possible, we obtain re-

spectively

1. The ψ extrinsic perturbation equation

(∂t)2δψ − cos2 θ

sin2 ψ
∇2δψ = 2 cos2 θ

sin2 ψ
δψ + 2

b20
cos2 θ (1 + sin θ) δ tan θ , (D.55)

2. The r extrinsic perturbation equation

(∂t)2δr − cos2 θ

sin2 ψ
∇2δr = 8a2

a0
sin θδr + 8a2

a0
δr − 16a0 + 20a2

5a0
cos2 θδr

+ 4
5 cos2 θ sin2 ωδr (D.56)

where∇2 is the normalised Laplacian, i.e. ∇2 = (∂ω)2+1/ sin2 ω(∂ϕ)2+cotω∂ω.
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