
Durham E-Theses

Asynchronous Stabilisation and Assembly Techniques

for Additive Multigrid

MURRAY, CHARLES,DAVID

How to cite:

MURRAY, CHARLES,DAVID (2021) Asynchronous Stabilisation and Assembly Techniques for

Additive Multigrid, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/14028/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14028/
 http://etheses.dur.ac.uk/14028/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Asynchronous Stabilisation and

Assembly Techniques for Additive

Multigrid

Charles D Murray

A Thesis presented for the degree of
Doctor of Philosophy

Department of Computer Science
Durham University
United Kingdom

June 2021

Asynchronous Stabilisation and
Assembly Techniques for

Additive Multigrid

Charles D Murray

Submitted for the degree of Doctor of Philosophy
June 2021

Abstract: Multigrid solvers are among the best solvers in the world, but once
applied in the real world there are issues they must overcome. Many multigrid
phases exhibit low concurrency. Mesh and matrix assembly are challenging to
parallelise and introduce algorithmic latency. Dynamically adaptive codes exacerbate
these issues. Multigrid codes require the computation of a cascade of matrices and
dynamic adaptivity means these matrices are recomputed throughout the solve.
Existing methods to compute the matrices are expensive and delay the solve. Non-
trivial material parameters further increase the cost of accurate equation integration.
We propose to assemble all matrix equations as stencils in a delayed element-wise
fashion. Early multigrid iterations use cheap geometric approximations and more
accurate updated stencil integrations are computed in parallel with the multigrid
cycles. New stencil integrations are evaluated lazily and asynchronously fed to the
solver once they become available. They do not delay multigrid iterations. We
deploy stencil integrations as parallel tasks that are picked up by cores that would
otherwise be idle. Coarse grid solves in multiplicative multigrid also exhibit limited
concurrency. Small coarse mesh sizes correspond to small computational workload
and require costly synchronisation steps. This acts as a bottleneck and delays
solver iterations. Additive multigrid avoids this restriction, but becomes unstable
for non-trivial material parameters as additive coarse grid levels tend to overcorrect.
This leads to oscillations. We propose a new additive variant, adAFAC-x, with a
stabilisation parameter that damps coarse grid corrections to remove oscillations.
Per-level we solve an additional equation that produces an auxiliary correction.
The auxiliary correction can be computed additively to the rest of the solve and
uses ideas similar to smoothed aggregation multigrid to anticipate overcorrections.
Pipelining techniques allow adAFAC-x to be written using single-touch semantics
on a dynamically adaptive mesh.

Declaration

The work in this thesis is based on research carried out in the Department of
Computer Science at Durham University. No part of this thesis has been submitted
elsewhere for any degree or qualification.

Note on Publications Included in this Thesis

At the time of submission, this thesis contains chapters that have been based on
previously published papers in peer-reviewed journals:
C. D. Murray and T. Weinzierl, ‘Stabilized asynchronous fast adaptive composite
multigrid using additive damping’, Numerical Linear Algebra with Applications, 2020,
doi:https://doi.org/10.1002/nla.2328

C. D. Murray and T. Weinzierl, ‘Lazy stencil integration in multigrid algorithms’, in
International Conference on Parallel Processing and Applied Mathematics, Springer,
2019, pp. 25–37,
doi:https://doi.org/10.1007/978-3-030-43229-4_3

C. D. Murray and T. Weinzierl, ‘Delayed approximate matrix assembly in multigrid
with dynamic precisions’, Concurrency and Computation: Practice and Experience,
2020,
doi:https://doi.org/10.1002/cpe.5941

Copyright © 2021 Charles D Murray.
“The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged.”

https://dx.doi.org/https://doi.org/10.1002/nla.2328
https://dx.doi.org/https://doi.org/10.1007/978-3-030-43229-4_3
https://dx.doi.org/https://doi.org/10.1002/cpe.5941

Acknowledgements

This PHD was made possible by a Durham University/EPSRC DTA PhD scholarship.
This work has also made use of the Hamilton HPC Service of Durham University.
The source code used to support this thesis can be found at:
https://bitbucket.org/CDMurray/adafacx/src/master/
Thanks to my supervisor Tobias Weinzierl for his continued support and help through-
out my PhD. His knowledge and hands on approach has been invaluable—without
him none of this would have been possible. I am incredibly grateful for his aid.
I would also like to thank my friends and family for all their support through my
PhD—especially my sister for being willing to proofread my thesis even though this
thesis is most definitely not within her field. Thanks are also due to the metalcore
band Converge, for providing the inspiration of appropriate behaviour for multigrid
algorithms.

https://bitbucket.org/CDMurray/adafacx/src/master/

Contents

Abstract ii

List of Figures viii

List of Tables xiv

Summary of Nomenclature xv

1 Introduction 1

2 In a Nutshell 5

3 Motivation and Related Work 10
3.1 Assembly . 11

3.1.1 Mathematical framework 11
3.1.2 Meshes and adaptivity 14
3.1.3 Multilevel assembly 18

3.2 Solver ingredients 22
3.2.1 Solution characteristics 22
3.2.2 Additive multigrid 23
3.2.3 Improving intergrid transfer operators and BoxMG 27
3.2.4 Modifying coarse equations, damping and BPX 30
3.2.5 The FAC family of solvers 32
3.2.6 Additional parallel multigrid implementations 36
3.2.7 HTMG and FAS on space-trees 38

3.3 Hardware and implementation specifics 39
3.3.1 Memory accesses 39
3.3.2 Element-wise operator decomposition and storage 40
3.3.3 Single-touch 42

vi Contents

4 Lazy Stencil Integration 47

4.1 Outline . 48

4.2 Problem characteristics 50

4.3 Numerical computation of stencils in a task language 53

4.4 Delayed stencil integration 60

4.5 Adaptive stencil integration 62

4.6 Asynchronous and anarchic stencil integration 64

4.7 Vertical rippling 66

4.8 Full multigrid cycles and dynamic adaptivity 67

4.9 Incorporating other/non-Jacobi smoothers 69

4.10 Relationship to other notions of asynchronicity 70

5 Additive Damping Scheme 72

5.1 An additive multigrid solver 72

5.2 An additively damped additive multigrid solver 76

5.3 Three damping operator choices 80

5.4 adAFAC-Jac as a prolongation operator 84

5.5 Smoothed intergrid transfer construction 85

5.6 Incorporating other/non-Jacobi smoothers 87

5.7 Comparisons to existing solvers 89

5.7.1 adAFAC-PI 89

5.7.2 adAFAC-Jac 90

6 Implementation 93

6.1 Background stencils 93

6.1.1 Additional data structures 94

6.1.2 Coarse grid operators 98

6.1.3 Performance model 99

6.2 Additive damping 101

6.2.1 Single-touch 101

6.2.2 Intergrid transfer operators 105

6.2.3 Extending to distributed memory implementation 109

6.3 Wrap up and limitations of current concurrency 110

Contents vii

7 Results 112
7.1 Experimental setup 113

7.1.1 Test hardware 113
7.1.2 Scenarios and test equations 113
7.1.3 Data measurements 116
7.1.4 Limitations of the current approach 118

7.2 adAFAC-x: Consistency 120
7.3 adAFAC-x: Stability 125

7.3.1 Regular grid with one material jump 125
7.3.2 Adaptive mesh refinement with one material jump 128
7.3.3 Adaptive mesh refinement with non axis-aligned subdomains 130

7.4 adAFAC-x: Performance 132
7.5 Delayed stencil integration: Consistency 135
7.6 Delayed stencil integration: Stability 140

7.6.1 Robustness and iteration counts on a regular grid 140
7.6.2 Rippling with dynamically adaptive meshes 145

7.7 Delayed stencil integration: Performance 151
7.8 Wrap-up . 154

8 Conclusion 155
8.1 Discussion of our findings 155

8.1.1 Asynchronous assembly 155
8.1.2 Damping term 157

8.2 Future work . 159
8.2.1 Addressing weaknesses and shortcomings 159
8.2.2 Integrating our ideas within other solvers 160
8.2.3 Application to new problems 161

Bibliography 164

List of Figures

2.1 Summing of corrections within adAFAC-Jac. We damp fine grid
corrections with corrections from an auxiliary grid—we now only
remove resolution specific errors. This prevents overshooting when
we introduce coarse corrections. 6

2.2 An example of a possible material parameter within a cell (left).
A three stage splitting of the cell into regular grids of subcells, to
capture the material data with increasing accuracy. The subcells have
resolutions of 2x2, 8x8, and 64x64 (right). 8

3.1 An illustration of a Cartesian mesh as a hierarchy of regular grids
(left) and a mapping of the same cells directly to a tree (right). . 16

3.2 Attempts to accurately capture a material parameter (left) using
only four cells for both a Cartesian mesh (centre) and irregular mesh
(right). This geometry can be accurately represented on the irregular
mesh but not the regular mesh. 18

3.3 Representation of a multiplicative multigrid V -cycle (left) and an
additive multigrid V -cycle (right). Horizontal arrows correspond to
smoothing steps and the empty circles to accumulations/data trans-
fers. 25

3.4 Splitting of fine grid vertices into c-points, γ-points and f -points for
a BoxMG scheme on a space-tree that uses three partitioning. . . 29

3.5 A composite grid composed of multiple different mesh resolutions
(top). The three different regular subgrids who’s conjunction forms
the composite grid (bottom). 32

3.6 Decomposition of a nodal stencil into element-wise stencils on cells. 41
3.7 Traversal order of a sample mesh that has been adaptively refined.

The coarse mesh is traversed via a space-filling Peano curve. Refined
regions are expanded via a depth-first search when encountered, the
refined patches are recursively traversed via Peano curves. . . . 43

4.1 Top: Sample error on a fine grid. Bottom: The same error is restricted
to the coarse grid using geometric operators. If the coarse grid exactly
removed the coarse representation of the error, it would introduce error
on the fine grid. 49

List of Figures ix

4.2 An example material parameter with discontinuity partway through
a cell for a one-dimensional setup. The blue dotted line represents
the material parameter and red dots sampling points. Top: The true
material parameter and accurate stencils integrated for two vertices.
Middle: Initial stencils used by a solver—one material point sampled
per stencil giving inaccurate values. Bottom: Subsequent stencils
used by a solver—differing number of points sampled per stencil. . 57

4.3 Exact material parameter within a cell (left) and a splitting of the
material parameter into nd quadrants for numerical integration (right). 58

4.4 Task representation of early multigrid cycles with multilevel equation
assembly performed a priori. Each box corresponds to a task. We
perform an initial assembly phase, consisting of a series of level spe-
cific tasks. On level `max we perform the set of stencil construction
tasks A(geo)

`max
—one for each cell. We can then subsequently and se-

quentially compute coarse grid stencils A(alg)
`max−1 using Ritz-Galerkin.

Post-assembly we start smoothing. We smooth all elements on the
finest grid level initially (and in parallel)—this is the set of S`max tasks.
We can then smooth the coarse grid `max−1 with the smaller set of
smoothing operations, S`max−1, there. This recurses for additional
coarse grids and repeats for subsequent smoothing steps. 59

4.5 Construction of our delayed assembly. We use the same visual task
representation and breakdown as in (Fig. 4.4). That is, a box corres-
ponds to either an assembly or smoothing task acting upon a single
cell. The stencil integration A`max is broken down into iterative sub-
steps starting with a low-order approximation A(1)

`max . We intermingle
them with the earliest multigrid smoothing steps. Some stencils re-
quire further, more accurate integration A(n)

`max . Each stencil update
requires us to recompute the algebraic coarse grid operators. . . . 60

4.6 Illustrative diagram of how we perform the lazy integration. All cells
carry a n that holds the number of samples per dimension of the
quadrature. 63

4.7 Diagrammatic view of computing coarse grid equations prior to a
solver iteration (left) compared to plugging into a grid traversal of
the actual solver. 67

5.1 Representation of an Additive “V -Cycle” (transfer of data between
grids). The residual is computed on the finest grid then this same
residual is restricted to all grid levels. 73

5.2 Top: Non-homogeneously distributed error on the fine grid. The
fine detail is not apparent on the coarse. Bottom: Homogeneously
distributed error on the fine grid. When represented on the coarse it
captures the same detail. 74

x List of Figures

5.3 Representation of possible errors removed via an multiplicative smooth-
ing cycle with presmoothing and postsmoothing steps. Presmoothing
prevents the next coarser level from producing corrections for the same
error as the finer level. Postsmoothing prevents projected corrections
from introducing new errors on the fine grid. 75

5.4 Representation of a multiplicative V -Cycle with no presmoothing
steps. The finest grid smooths the error which is then restricted to
the coarsest grid level and sequentially smoothed on increasingly finer
grids. 75

5.5 Data flow overview of adAFAC-PI. Solid red lines denote traditional
subspaces within additive correction equations, dashed blue lines cor-
respond to auxiliary equations that damp the existing correction equa-
tions. 82

5.6 Data flow overview of adAFAC-JAC. Solid red lines denote tradi-
tional subspaces within additive correction equations, dashed blue
lines correspond to auxiliary equations that damp the existing cor-
rection equations. 82

5.7 Computation of the product AD−1 (using stencil notation) for regions
of constant ε. D is the diagonal of A. The ε cancels. We highlight the
regions as blocks in the resultant matrix beneath. Both non-white
regions hold the same values, a discontinuous ε only changes AD−1

directly over the discontinuity. 86
5.8 Data flow overview of AFACx. Solid red lines denote traditional

subspaces within additive correction equations, dashed blue lines cor-
respond to auxiliary equations that damp the existing correction equa-
tions. 88

6.1 Fine grid cells within the space-tree (left) each hold pointers to entries
in the heap that stores updated version of the local stencil that result
from the background tasks. 95

6.2 Illustrative diagram of how we perform the lazy integration. All cells
carry a n that holds the number of samples per dimension of the
quadrature. 96

6.3 Conventional sequential matrix equation assembly. The mesh is as-
sembled and then exact numerical integration of equations is per-
formed before the solver iterations begin. 99

6.4 Our delayed matrix equation assembly. The mesh is assembled and
then exact numerical integration of equations is performed in parallel
with the early the solver iterations. 99

6.5 In our implementation, we truncate transfer stencils so that vertices
adjacent to cell C only restrict to vertices adjacent to parent cell A.
There is no transfer to cell B. 106

6.6 Material parameter used for truncated RAM−1 computation. The
red region (top left) holds material parameter of 0.01 and blue (lower
right) holds 1. Black nodes are coarse grid vertices and green nodes
are interior points that we retain. 107

List of Figures xi

6.7 Decomposition of a space-tree into subdomains. Cells are assigned to
rank A, B or C. 109

7.1 The two non-constant ε distributions studied throughout the tests.
Left: (E2). Right: (E3). The blue area holds ε = 1, while the
remaining domain holds ε = 10−k, k ∈ {1, 2, . . . , 5}. 114

7.2 Mesh convergence for adAFAC-Jac as we increase the number of
elements. 120

7.3 Solves of the Poisson equation on regular grids of different levels. We
compare plain additive multigrid (top, left), multigrid using exponen-
tial damping (top, right), and adAFAC-Jac (bottom). 121

7.4 Comparing the number of iterations our adAFAC-Jac solver requires
to converge against a multiplicative multigrid solver provided by
PETSc. Both cases solved for approximately 4 ·107 degrees of freedom
on regular grids for different material parameter setups. 123

7.5 Left: Typical adaptive mesh for pure Poisson (constant material para-
meter) once the refinement criterion has stopped adding further ele-
ments. Right: We compare different solvers on the pure Poisson
equation using a hybrid FMG-AMR approach starting at a two grid
scheme and stopping at an eight grid 124

7.6 The domain material is split into two halves with an ε jump from ε = 1
to ε = 10−7. Solution development in sample point next to a discon-
tinuity, normalised by the true solution value at that point, i.e. one
means the correct value. We compare d-linear intergrid transfer (top)
to BoxMG operators (bottom). 126

7.7 Top Left: The domain material is split into two halves with an ε jump
from ε = 1 to ε = 10−k. Typical adaptive mesh for single discontinuity
setup once the refinement criterion has stopped adding further ele-
ments. Top Right: ε ∈ {1, 10−1}, i.e. the material parameter changes
by one order of magnitude. We present only data for converging solver
flavours. Bottom: The same setup but for the normalised maximum
norm. 128

7.8 Setup of Fig. 7.7 but with a five orders of magnitude jump in the
material parameter. We present only data for converging runs and
observe that fewer solver ingredient combinations converge. . . . 129

7.9 Typical adaptive mesh for a setup where the regions with different
material parameter ε are not axis-aligned. One order of magnitude
differences in the material parameter (top right) vs. three orders of
magnitude (bottom). 130

xii List of Figures

7.10 Left: Shared memory experiments with adAFAC-x. All solver variants
rely on the same code base, i.e. exchange only operators, such that
they all share the same performance characteristics. Right: Some
distributed memory run-time results with the time for one multiscale
grid sweep. This corresponds to one additive cycle as we realise single-
touch semantics. We study three different mesh sizes given via upper
bounds on the h. Two ranks per node, i.e. one rank per socket, are
used. 133

7.11 Convergence of delayed operator evaluation vs. precomputed sten-
cils/operators per iteration (top) and against real time (bottom). . 136

7.12 Number of iterations until convergence is reached for a selection of
setups using geometric intergrid transfers, with checkerboard material
parameter as the size of the jump increases. We either use an un-
damped setup (left) or our damped setup adAFAC-Jac (right). We
compare the conventional method of precomputing all operators be-
fore the first solver iteration (top) to our delayed stencil integration
with vertical rippling (bottom). 141

7.13 Number of iterations until convergence is reached for a selection of
setups using BoxMG intergrid transfers, with checkerboard mater-
ial parameter as the size of the jump increases. We compare two
damped solvers, adAFAC-PI (left) vs. adAFAC-Jac (right). The top
row shows the conventional method of precomputing all operators
whereas the bottom row shows our delayed stencil integration with
vertical rippling. 142

7.14 Number of iterations until convergence is reached for a selection of
setups using BoxMG intergrid transfers, with checkerboard material
parameter as the size of the jump increases. We show our delayed
stencil integration with vertical rippling, but no coarse grid operator is
used for an initial guess. We compare two damped solvers, adAFAC-
PI (left) vs. adAFAC-Jac (right). 143

7.15 Number of iterations until convergence for k = 5. Top Left: We use
geometric coarse operators and transfer operators. Top Right: We
use BoxMG intergrid transfer operators and start from a geometric
operator guess that we iteratively improve. Bottom: We use BoxMG
intergrid transfer operators with no coarse grid operator initial guess. 144

7.16 Residual plots for the jumping coefficient problem and ε ∈ {10−3, 1}
using geometric intergrid transfers. Both setups employ dynamic-
ally adaptive mesh refinement and either reassemble all operators
accurately (left) or use delayed operator assembly (right). 146

7.17 Residual plots for the jumping coefficient problem and ε ∈ {10−3, 1}
using geometric intergrid transfers. Both setups employ dynamic-
ally adaptive mesh refinement and either reassemble all operators
accurately (left) or use delayed operator assembly (right). This is the
same setup as in (Fig. 7.16) but comparing a normalised measure of
computational cost rather than time directly. 147

List of Figures xiii

7.18 Residual plots for the jumping coefficient problem and ε ∈ {10−3, 1}
using BoxMG intergrid transfers. We show two setups that employ
dynamically adaptive mesh refinement and a form of delayed operator
assembly. After a refinement coarse grid operators either negate the
impact of coarse levels temporarily (left) or the existing operators as
initial guess (right). 148

7.19 Illustration of material parameter sampling points in a coarse and fine
stencil after a refinement. A reasonably accurate coarse stencil will
use more sampling points than a recently instantiated fine grid stencil. 149

7.20 Run-time per grid sweep for twenty iterations for one discretisation
with various integration/tasking configurations. Results for grid with
h ≤ 0.005 . This corresponds to 58564 degrees of freedom. . . . 151

7.21 Task distribution/placement for one setup with four cores. Top: No
delayed tasking. Bottom: Delayed and asynchronous tasking. Brown
labels denote compute work, red is spinning (active waits), green
denotes idling. 152

List of Tables

5.1 Comparison of key features between existing multilevel solvers and
adAFAC-Jac. We use M−1 as a generic smoother symbol and D as
the diagonal of A. 92

7.1 Summary of the features we change in the equations. We use two dif-
ferent pairings of boundary conditions and right-hand sides (BC1/BC2)
and compare three different sample ε distributions with k fixed per run.113

7.2 A breakdown of time-to-solution, average time taken per iteration,
and total assembly cost for a selection of our additive solvers as we
increase the total degrees of freedom used in the solve when solving
for the Poisson equation on a regular grid. 122

7.3 Analysis of performance for our adAFAC-Jac solver. We compare
the performance of the sequential implementation of our code with
the shared memory implementation for a regular grid with 4, 778, 596
degrees of freedom. 132

7.4 Total solver timings for BoxMG including all assembly time. The
first row in each denotes the time-to-solution with a precise a priori
assembly, the second the speedup obtained through lazy integration. 140

7.5 Total solver timings when using geometric intergrid transfer operators,
across multiple large discontinuities, including all assembly time for
two different mesh sizes. The first row in each section denotes the time-
to-solution with a precise a priori assembly, the second the speedup
obtained through lazy integration. 140

Summary of Nomenclature

u` Solution on level `

b` Right-hand side on level `

A` Matrix on level `

M−1
` Smoother (cheap approximation of A`) on level `

M̃−1
`−1 Smoother on an auxiliary equation level `− 1

R`
`+1 Restriction from fine grid `+ 1 to level `

P `+1
` Prolongation from level ` to fine grid `+ 1

`max Level index for the finest grid

S Multigrid smoother iteration across all levels

S` Multigrid smoother iteration on single grid level

SDoF Individual smoothing update of the multigrid algorithm

A` Generic assembly process for level `

A(geo)
` Geometric assembly process for level `

A(geo)(n) Geometric assembly process for level ` with n sampling points

n number of subcells divisions in each dimension

A(alg) Algebraic coarse grid assembly process

U mesh refinement operator

Chapter 1

Introduction

The Partial Differential Equation (PDE)

−∇ · ε∇u = f (1.1)

on well-shaped domain Ω is a building block within many applications [4]. We are

interested in solutions u : Ω 7→ R, with f : Ω 7→ R and ε : Ω 7→ R+. This equation is

the Poisson equation when ε = 1 . The Poisson equation, and its generalised variants,

have many practical applications, such as dispersal of oxygen in tissue [5], or water

saturation in soil [6], [7]. They model diffusion. Poisson is not only common as a

problem in and of itself, but also as a subproblem within a larger system, such as

determining the friction in both the compressible and incompressible Navier-Stokes

equations [8], [9]. For problems with time stepping, the Poisson equation, or its

cousins, must be solved for each and every time step [10], [11]. Repeated solves

throughout the simulation put a great onus on quick time-to-solution.

Due to the highly variable nature of PDEs, different categories of PDE require differ-

ent approaches in order to be solved efficiently. There is no one hat fits all solution.

As we are interested in diffusion, we look to elliptic PDE solvers—in particular mul-

tigrid [12], [13]. Multigrid solvers are known to be among the best in the world for

solving linear elliptic problems, but have also been shown to be effective for certain

classes of non-elliptic and nonlinear problems. They have been widely applied in

2 Chapter 1. Introduction

many existing systems, and though multigrid solvers are a relatively mature family of

solvers—they converge in an optimal number of compute steps for certain problems

and show convergence rates that are independent of the problem size—there still

remain many challenges. Our aim is overcome some of these challenges. A multigrid

solve can be split into two broad phases:

1. The assembly phase.

2. The multigrid cycles themselves.

We reduce the overall time-to-solution of the solve by reducing the run-time of both

of these components separately.

To improve both phases within the overall multigrid solve, we must take into account

many factors that effect the overall run-time. Firstly, we improve the assembly phase.

We reduce the time-to-solution by reducing the delay due to initial assembly cost;

we introduce a lazy form of assembling the fine grid equation. Rather than assembly

being a discrete (i.e. separate) phase that occurs prior to the start of the solve, we

present it as a discreet (i.e. obscured) phase that occurs in parallel with the rest of

solve. The solve starts before an accurate assembly process has terminated. Instead

of an accurately assembled matrix, the solve uses an initial approximation that is

cheaper to compute. Secondly, we improve the multigrid cycles themselves. We

reduce the time-to-solution by introducing a method of stabilising additive multigrid.

As we move along the path to exascale, improvements must be made to parallel

multigrid solvers—additive multigrid is a multigrid solver that shows great potential

for parallelisation, so is our chosen multigrid flavour. However, additive multigrid

is less robust than its alternatives [14]. We improve the robustness via stabilisation

parameters—specifically by introducing a vertex-specific damping parameter that is

dependent upon the current solution value held in a specific vertex. This gives rise

to a new category of additive solvers: adAFAC-x. The damping parameters improve

stability without dramatically reducing the convergence rate.

We delay the integration of accurate stencils until the solve is well underway to

3

improve the assembly process. This phase has reduced concurrency compared to

the later multigrid cycles due to limited arithmetic intensity. We overlap the solve

phase with tasks from the assembly to increase parallel potential. The assembly

phase is now implemented as a series of background tasks that can be deployed to

cores that would otherwise be idle. This series of background tasks is an iterative

sequence that will eventually return an accurately integrated fine grid stencil. In

effect, we increase the workload performed by the assembly process, but we observe

a reduction in time-to-solution compared to a priori assembly as we have increased

the possibility for concurrency.

We introduce a new class of solvers: adAFAC-x. These are additively damped

Asynchronous Fast Adaptive Composite grid solvers, to improve the solve phase.

This is a category of solvers that constructs damping parameters on an auxiliary

coarse grid totally asynchronously to the main solve. They are inspired by the fast

adaptive composite grid (FAC) family of solvers, in particular AFACx [15]–[17]. Both

AFACx and our adAFAC-x solvers belong to the class of additive multigrid solvers.

Additive multigrid solvers allow for more concurrency than other multigrid solvers,

as they are not required to process coarse grids in a fixed order. Stability issues are

seen when a large number of grid levels are used or when solving more challenging

underlying equations—problems with large discontinuities in a material parameter ε

for example. These limit the classes of problems additive multigrid can effectively

be applied to as well as the practical sizes it can scale to. Existing methods to

recover stability are expensive or limit convergence rates. Our adAFAC-x solvers

have proven particularly effective for problems that have large discontinuities in

the material parameter and scale over a greater number of coarse grid levels than

baseline additive multigrid. They are also suitable for dynamically adaptive meshes.

When implementing both of our novel ideas, there are two trends in modern hardware

development that we focus on directly incorporating into algorithmic design. These

are: a movement towards massively parallel systems with a large number of cores

spread over a large number of compute nodes; and a widening gap between processor

4 Chapter 1. Introduction

clock speeds and memory access speeds [18]. To fully take advantage of a large scale

high performance computer, an implementation needs to fully utilise all available

cores (which may be in the hundreds, if not thousands), while not falling victim to

the limited bandwidth for communication between compute nodes. A solve must

scale all the way to exascale. An algorithm may require minimal compute steps, but

if the run-time is dominated by communication then it cannot scale. Performance

for a single node can also be dominated by periods of non-computation. This is

due to increasing memory access times—loading data from main memory onto the

chip, when the data is only required for a small number of computations, can kill

performance. If neither of these features are incorporated into the algorithm’s design

then an implementation will be unable to scale. Through this we hope to address

some fundamental issues that prevent scaling to exascale. We have eliminated

synchronisation points in existing approaches and found additional ways to exploit

hardware concurrency. This means we do not solve problems that are exascale,

rather we address some algorithmic problems with existing exascale approaches.

We investigate new ideas that could be used by others when solving exascale sized

problems.

The structure of the thesis is as follows: We open with a brief overview and summary

of our work (Chapter 2). Then in Chapter 3 we provide a detailed explanation of our

motivation, cover related work, and introduce existing ideas that we build upon. The

following three chapters explain in detail our contributions to the state of the art.

These are split into three categories: Firstly, our asynchronous assembly of operators

to mitigate setup costs (Chapter 4); secondly, our method of stabilising additive

multigrid using vertex-specific damping (Chapter 5); and finally, our implementation

of both of these concepts in a single-touch variant (Chapter 6). In Chapter 7 we

showcase a selection of results to examine the efficacy of our ideas. We close with a

discussion of our work and an examination of possible future work in Chapter 8.

Chapter 2

In a Nutshell

The following chapter is a quick summary of our key contributions. We give a brief

and informal overview of our main ideas and highlight our key contributions—these

are our adAFAC-x solver suite and use of asynchronous stencil computation. This

provides some intuition to our approach and lays the groundwork for the detail of our

ideas. Subsequent chapters explain the concepts in detail, but this initial summary

explains the “big picture” to illustrate how individual components fit together.

Multigrid solvers are generally viewed to be among the best solvers in the world [12].

They come in two main varieties: additive and multiplicative [14]. Both flavours are

multilevel correction schemes. An error approximation—the residual—is computed

on the finest grid level which is restricted to a set of coarse grid levels; for additive

multigrid specifically updates can then be computed for all grid levels in a single

grid traversal. The multiplicative variant of multigrid—where the grid levels are run

through sequentially—is known to yield optimal convergence rates in many scenarios.

Additive multigrid, in contrast, does not share this feature due to overcorrections:

multiple corrections across grid levels all push the solution too far in the same direc-

tion causing the solution value to “overshoot”. Therefore the performance of additive

multigrid is often worse than multiplicative. On the face of it, this implies that ad-

ditive multigrid is the lesser of the two options and only useful as a preconditioner.

However, damping corrections—i.e. scaling them—within an additive scheme pre-

6 Chapter 2. In a Nutshell

Error at the coarse resolution
on auxiliary grid

Corresponding auxiliary
coarse correction

Error at the fine resolution Corresponding fine correction

Total error after applying
coarse correction

Error at the coarse resolution
Corresponding coarse
correction

Error after applying fine and
negated auxiliary corrections

Figure 2.1: Summing of corrections within adAFAC-Jac. We damp
fine grid corrections with corrections from an auxili-
ary grid—we now only remove resolution specific errors.
This prevents overshooting when we introduce coarse
corrections.

vents these overcorrections, making additive multigrid more stable as a solver. Level-

specific damping, for example, is an effective method of removing the overcorrections,

although it harms the overall rate of convergence. Uniformly reducing the impact

of corrections across levels recovers stability, but harms the rate of convergence—

long distance correction contributions have their impact removed. Damping in

this fashion is in opposition to a fundamental feature of multigrid that make it so

effective—that updates propagate throughout the entire domain. We therefore de-

velop a new scheme—adAFAC-Jac (additive damped asychronous f ast

adaptive composite grids with Jacobi smoothing)—a damping scheme

that avoids this limitation. Stabilising additive multigrid makes it more compet-

itive as a solver, so it can be used not purely as a preconditioner. Additive multigrid

has better parallelisation properties than multiplicative multigrid, which are become

incredibly desirable in the exascale era.

Our novel damping term tries to mirror the component in coarse grid corrections that

is “too much”—we want to exclusively remove the part that leads to overcorrecting.

This goes beyond a simple parameter computed per-level—instead, we compute a

7

different damping term per-vertex. Multiplicative multigrid does not exhibit such

overcorrection, so we assume overcorrections can be negated by computing a damping

term that approximates the difference between an additive multigrid update and a

multiplicative one. The damping term imitates the missing multiplicative impact,

therefore we subtract it from the additive correction. This damping parameter

is computed additively, so does not reduce potential parallel performance. We

introduce an additional—“auxiliary”—correction space for each grid level within

the multigrid hierarchy: each space produces extra corrections that “correct” the

original corrections. The residual on each original grid level is additionally restricted

to the auxiliary correction spaces; however, this secondary restriction uses a partially

“smoothed” restriction operator. For a matrix A, smoother M−1, and existing

restriction operator R we restrict to the auxiliary grid space using the matrix triple

product RAM−1 (which we can precompute/hard-code). Our chosen smoother is

a Jacobi smoother, so M is simply the diagonal of A. Each auxiliary space exists

“on top” of an existing correction space: It covers the same topological region as the

original grid space, but with increased mesh spacing. The increased mesh spacing

means auxiliary correction spaces match to existing coarse grid correction spaces

with the same mesh spacing, i.e. the existing coarse grid space one level coarser

within the mesh hierarchy. When restricting to the auxiliary coarse grid space, the

partially smoothed restriction operator accounts for components within the residual

that are eliminated by fine grid smoothing. Once damped, the contributions from

the original grid spaces have effectively isolated the errors that exist exclusively on

that resolution. An illustration of how we target different error components is seen

in Fig. 2.1.

The solver algorithm is not the sole determining factor for time-to-solution when

solving a PDE. Before a solve can start, the grid and matrix must first be initialised

which can become expensive. It can become particularly costly if we use a regular

grid that gives a desired (low) discretisation error, due to the sheer number of grid

points required. Additional grid points increase both the memory cost, and the

8 Chapter 2. In a Nutshell

Figure 2.2: An example of a possible material parameter within
a cell (left). A three stage splitting of the cell into
regular grids of subcells, to capture the material data
with increasing accuracy. The subcells have resolutions
of 2x2, 8x8, and 64x64 (right).

number of computations that must be performed, thus delaying the solve start.

We propose to re-order operations such that the solver algorithm starts

earlier in the pipeline, i.e. to not wait for exact matrix equations to be

computed. Instead, the solver will start using less accurate stencils. More

accurate stencils are then iteratively computed in parallel with the solver steps. We

approach this in two ways: in how we handle the coarse grid equations, and in how

we handle the fine grid equations.

Rather than computing the fine grid equations to a high level of accuracy prior

to the first steps of a solve, an inaccurate initial approximation is instead used.

This is a similar principle to adaptive mesh refinement (AMR), where a simple

grid is used to kickstart the solve. In an AMR scheme, additional vertices are

added as the solve progresses, so the grid develops alongside the solution itself [19],

[20]. Within our scheme, the early iterations solve an inexact matrix equation—we

assume the solution to this equation is similar to the true solution, so the solution

approximation is still pushed towards the true solution. Accurate equations are

computed in parallel to the solve. These updated integrations are performed using

cores that would otherwise be idle if the solver exhibits low levels of concurrency—

this additional level of parallelisation means we see a reduction in time-to-solution

relative to the conventional method of equation assembly. The solve then sees no

delay on when it is able to progress due to the computation of fine grid equations.

9

A sample splitting of a single cell into subcells to capture material data can be seen

in Fig. 2.2. Here the material parameter is sampled in the centre of the subcell

and treated as constant over the subcell. Fine detail representation of the material

parameter is only seen when using a large number of subcells.

This idea carries through to the coarse grid equations. We use an iterative procedure

to construct both fine and coarse grid equations. Subsequent fine grid stencil itera-

tions increase the number of material parameter points incorporated to improve the

accuracy, so coarse grid equations are iteratively (re-)computed using the currently

held fine grid equation. Updates on the fine grid ripple up through the coarse grid

levels one level at a time. This is particularly effective when AMR is used, as each re-

finement changes the grid, so the entire equation hierarchy also changes. We assume

matrix equations change minimally after a refinement. Therefore, the new matrix

is not dramatically different from the old. Rather than delaying the continuation

of solve with an equation recomputation step, we delay the computation of the

equations instead, so the solve continues with the old equations. We target scenarios

where on-the-fly rediscretisation is insufficient—our primary use case is the Poisson

equation with non-trivial variable coefficients. Here, rediscretisation and simple

geometric interpretations are only conditionally stable or lack robustness [12], [21],

[22]. Algebraic construction of coarse grids therefore incurs substantial additional

assembly costs on every grid refinement. We avoid this with our use of approximate

coarse grid equations.

We integrate all these components into a single solver. To the best of our knowledge,

this is the first asynchronously constructed, additive multigrid scheme that imple-

ments locally adaptive damping. Our solver works on fully adaptive grids, is stable

under a wide range of conditions, and takes advantage of a single-touch policy. We

pipeline memory accesses, so that, in general, most memory locations are written to,

and read from, only once per grid traversal—this can be said to be an optimal total

number of read/write operations.

Chapter 3

Motivation and Related Work

There exist many challenges for solvers that we must first understand if we hope

to successfully address them. Here, we briefly outline specific challenges existing

solvers face and give an idea of what current approaches attempt. Further detail is

given to approaches that we build upon and specific issues within those approaches.

We split challenges into three broad categories: the first is the efficiency of the setup;

the second is the efficiency of the solver; the third is the implementation fully taking

advantage of underlying hardware. For the first two groups, efficiency specifically

refers to algorithmic and mathematical efficiency, and by extension robustness. A

non-robust solver can be viewed as an inefficient solver—solvers will switch to a

more robust, and likely more expensive, approach if their current approach is not

converging—therefore improving robustness also improves efficiency.

The following chapter includes sections modified from text that was previously published in [1],
[3]. The Sections 3.2.3, 3.2.5, 3.2.7, as well as parts of 3.2.6 and 3.3.3 are expanded from “Stabilised
Asynchronous Fast Adaptive Composite Multigrid using Additive Damping”. Section 3.3.2 and
other parts of 3.3.3 are expanded from “Delayed approximate matrix assembly in multigrid with
dynamic precisions”.

3.1. Assembly 11

3.1 Assembly

3.1.1 Mathematical framework

We start with the mathematical fundamentals: In order to solve an equation nu-

merically, we must first represent this equation within a computer. This overall

process is the assembly process and is a phase we seek to optimise. We start by

introducing the mathematical basics and outline some existing methods of repres-

enting equations discretely/numerically, more specifically, we introduce the Finite

Element Method [23]. Our work either builds on ideas covered here or uses lessons

learned from the methods to inform the development of our ideas.

Definition 3.1.1. Assembly: The holistic process of creating data structures, alloc-

ating memory, and filling said data structure with the correct information.

We are numerically solving the partial differential equation (PDE) −∇ · (ε∇u) = f

on the domain Ω with Dirichlet boundary conditions. That is, we are looking for

an approximation of the function u : Ω 7→ R, with ε : Ω 7→ R+ as a material

parameter and f : Ω 7→ R as the right-hand side. The entire equation must be

discretised in order to be solved—our chosen method is a finite element method.

For finite elements we start by rewriting the PDE in its weak formulation. This

rewrite involves integrating against an arbitrary test function v ∈ V . We take V

as a space of functions with local support and restrict v = 0 on ∂Ω. This gives the

weak formulation of the PDE as

∫
Ω
ε∇u · ∇vdx =

∫
Ω
fv dx, (3.1.1)

where u is represented as a sum of weighted basis functions ∑n
i=0 uivi, ui is a vertex

weight and vi a basis function. Basis functions are selected from the same space

as the test functions, i.e. we use a Ritz-Galerkin formulation. We work with scalar

equations and our nodal basis is chosen to be the vertices of a Cartesian mesh with d-

linear basis functions. Throughout the text, we therefore use the terms vertex, degree

12 Chapter 3. Motivation and Related Work

of freedom and weight function interchangeably. Each test function corresponds to

an integration over this region of local support and creates a linear constraint on

the weighted basis functions that exist within this region of support. That is, (3.1.1)

can be decomposed into a series of integrations over individual elements

∫
Ωh

ε (∇u,∇φ) dx =
∑
c∈Ωh

∫
c
ε (∇u,∇φ) dx. (3.1.2)

The integrations therefore define a system of linear equations, i.e. a (sparse) matrix.

Solving this approximation to the PDE then becomes a matter of inverting this

matrix [24].

Although we require a representation with high accuracy, this does not always give

rise to an obvious choice. Different bases give different quality representations for

different PDEs. For finite element discretisations, users generally commit to a single

class of basis functions, such as d-linear basis functions, with which they discretise

the domain spatially. This automatically yields a function space discretisation. As

the PDEs we are specifically interested in solving are those with non-trivial material

parameters, we focus on how methods represent such parameters in discretisations.

Careful positioning of the nodes/elements within a finite element computation can

exactly capture such features [25], [26].

However, simply adding additional degrees of freedom to resolve features is not an

ideal solution. Additional degrees of freedom increase the computational cost of

assembly and of the solve. Therefore, high discretisation accuracy for a fixed, or low,

number of elements is a priority. We want to keep assembly time low. The freedom

to move the position of nodes, or even change the order of basis functions, is a logical

choice due to these factors. Adaptive finite elements [27], [28] is one example of a

scheme that changes the order of shape functions and nodal position to craft a more

accurate equation. However, higher order schemes may be less stable than lower

order schemes and thus require a solver to fall back to a lower order scheme—such

as switching from a high order discontinuous Galerkin scheme to low order finite

volume limiter when the local solution violates predefined physical admissibility

3.1. Assembly 13

criteria [29]— to improve convergence rates. With this in mind, we focus on low

order schemes and aim to minimise the assembly time.

In general we are required to perform a numerical integration to assemble the matrix—

therefore it is this numerical integration we must optimise. Complicated/non-trivial

features within a PDE mean assembling the matrix analytically becomes costly or

impossible. Numerical integration of the PDE becomes expensive as arbitrarily

complicated features—e.g. material parameters—render the computation non-trivial.

Methods such as the Finite Cell Method [30], [31] develop efficient integration

quadrature rules using subcell splitting of elements. Adaptive quadrature schemes,

those schemes with dynamic termination criteria, are very cost-effective. They do

not fix the discretisation a priori and instead perform initial evaluations and use

error estimates to determine termination criteria. They are harder to implement

than static discretisations and the overall cost of assembly is unknown prior to the

start of the assembly process. Our own work uses adaptive integration schemes

within the assembly process.

Overhead from the data structure management in the assembly process also adds

to the cost. Without a careful choice of basis functions enforcing a specific sparsity

pattern for the matrix (such as the basis functions having local support), the matrix

itself can be dense. Many solvers involve the application of the original matrix to a

solution vector—applying a dense matrix is expensive. Dense matrices destroy data

locality patterns and therefore require additional memory access time. The additional

memory overhead inherent to storing the matrix is a limiting factor for scaling to

large problems and systems [32], [33]. Data movement also limits scalability. We

focus on equations with complex material data, this material data must be streamed

onto the chip. A large amount of data is thus moved to compute a proportionally

small number of scalar values. Such movement strains the memory interconnect

when loaded and delays computations, reducing arithmetic intensity [34].

An existing method of negating the initial discretisation phase is a matrix-free

implementation. Switching to a matrix-free scheme reduces the memory requirements

14 Chapter 3. Motivation and Related Work

of a solve, but does not reduce the memory access time. Such an implementation

does not have an initial assembly phase prior to the start of the solve and does

not explicitly store the matrix. Instead, local stencils are hard-coded, or assembled,

as and when they’re needed. There is no persistent storage of the matrix. This is

effective for solvers that only use geometric information about the PDE and thus

do not require additional data to be streamed onto the chip. It is less effective

for solvers that require additional processing of features, such as material data—

multigrid solvers that construct algebraic coarse grids and require information about

the structure of patches of the matrix, for example.

Our chosen method of discretisation is finite elements. They are a flexible discret-

isation scheme that is effective in the presence of large discontinuities and stencils

can be assembled in parallel.

3.1.2 Meshes and adaptivity

With a discretisation scheme at hand we now must decide on the most appropriate

method of storing this information in memory. Different choices work better for dif-

ferent solvers—we are most interested in an effective choice for an adaptive multigrid

scheme. An adaptive mesh amortises the assembly cost, and is an idea we follow up

on in our work. We briefly summarise a few existing options for discretisation and

their properties herein.

As we implement a multigrid solver, we work in the general realm of iterative

schemes. Any iterative scheme can be viewed as a matrix-vector product (mat-

vec). Multigrid itself involves the repeated application of an approximate inverse of

the matrix (a smoother) to a residual vector, and Krylov schemes involve repeated

application of the matrix to construct Krylov subspaces. For a stationary iterative

method, inverting the matrix becomes a process of repeated application of a matrix

to a solution vector. Within multigrid specifically, multiple mat-vecs are generally

required for residual updates and the smoother application. Therefore reducing the

3.1. Assembly 15

memory requirements for the matrix and memory access time of matrix elements

are two key concerns. In order to apply the matrix to a vector, a data structure

to store the matrix and the solution must both be chosen. Naively storing the

matrix as a series of rows and columns requires a large amount of memory and

necessitates indirect memory accesses. It is simply not feasible. A possible, smarter,

implementational solution would be a matrix storage format such as Compressed

Row Storage. However, we approach the problem along a different tack.

Encoding the matrix onto a mesh is our chosen solution. A structured grid is a

simple example of a mesh. In a structured grid the connectivity between vertices,

and by extension the layout of the entire mesh, is fixed. The same local structure

is repeated throughout the mesh. Structured grids, particularly regular grids, offer

many advantages. The simple structure allows matrix equation construction and

implementation to be similarly simple. Memory access patterns are defined before

the solve starts, limiting cache stalls and reducing latency, due to data being fetched

from main memory [35]. However, as meshes become increasingly fine, more mesh

points are required. Sufficiently fine regular grids can therefore require a prohibitively

large number of vertices, which increases both memory requirements, and compute

time for each iteration in an iterative solve, due to processing time for additional

vertices.

Structured grids are simple to implement but may not be the optimum grid for all

equations. A changing material parameter requires careful placement of vertices.

Meshes are not limited to being structured—instead vertices can be placed totally

arbitrarily with varying connectivity, this reduces the discretisation error for a fixed

total vertex count and more accurately represents material parameters. Features

within the material parameter can be totally represented within the mesh itself with

careful positioning of the vertices, as seen in Fig. 3.2, which reduces discretisation

error. Unfortunately, due to the fact that mesh cells can be arbitrary shapes, the

condition number of the resultant matrix can become arbitrarily large.

Smaller meshes are better than larger meshes for one key reason: A small mesh

16 Chapter 3. Motivation and Related Work

A

B C D

E F G H

I

A

B C

D

E F

G H

I

Figure 3.1: An illustration of a Cartesian mesh as a hierarchy of
regular grids (left) and a mapping of the same cells
directly to a tree (right).

means small matrix. Adaptive Mesh Refinement (AMR) can reduce the number of

points in a mesh, while still capturing features of the solution or equation directly

in the mesh, this was developed in seminal work by Berger and Colella [36], [37]. In

AMR, the mesh, and thus specific discretisation, is not fixed. For dynamic AMR,

the mesh changes through the solve, whereas, for static AMR, the mesh is fixed

once the solve itself starts. For either approach, we start with an initial guess of

the mesh and add additional nodes in regions of interest. The work by Berger and

Colella is specifically for hyperbolic equations—we use similar ideas, although we

focus on elliptic equations, so concepts do not map one-to-one. In early work on

AMR for elliptic equations, Achi Brandt stated “discretization and solution processes

are intermixed with, and greatly benefit from, each other” [19]. The goal of AMR is

to reduce the number of degrees of freedom within the discretisation, which results

in a final mesh with high accuracy fine detail representation only in regions where it

is most required. However, a feature of AMR, that we exploit, is an avoidance of an

initial costly assembly phase. Such phases delay the start of solve. The mesh instead

unfolds as the solution develops. The assembly cost is not negated, in fact it may

3.1. Assembly 17

be increased, but it is amortised over the duration of the solve. After a refinement,

a re-assembly process must be performed when setting up the new mesh—repeated

re-assembly processes massively increase the total cost of assembly. However, if the

equations are known a priori, e.g. Laplace equation on a Cartesian mesh, then this

delay is not seen.

This is the general theory behind AMR but says nothing about the implementation

and data structures. An adaptive mesh can, rather intuitively, be achieved with an

unstructured mesh. Whilst iterating towards a solution, additional vertices are added

in regions where they reduce the discretisation error the most. The lack of structure

means there are less strict constraints on the placement of additional vertices. The

connectivity of the mesh, and by extension the fine grid equation, change with the

addition of each new vertex. This triggers costly, and possibly non-local, re-assembly

phases. Similarly to general unstructured meshes, new vertices can increase the

condition number of the matrix. This, coupled with the fact that unstructured

mesh assembly is more complicated than assembly for structured meshes, results in

a reassembly process that quickly becomes painful.

Structured meshes can give rise to cheaper assembly phases than unstructured

meshes and associated matrices have additional structure that further benefits solvers.

Combining the best elements of AMR and structured meshes is therefore not unheard

of. An adaptive mesh can arise from the composition of multiple structured grids [19],

[38]: an initial coarse regular mesh is constructed, then additional (finer and regular)

grid spaces are introduced in regions where fine detail representation is of greatest

benefit. Composite grids are one implementational solution—the overall grid being

a composition of multiple separate subgrids. The subgrids can be arbitrarily placed

and overlap; many different subgrids can exist in the same region of space if they

correspond to different grid levels. Different subgrids of the same mesh resolution

can exist and also need not be connected—the key constraint is meshes of the

same resolution must not overlap. The composition of all subgrids (including the

original coarse grid) is the effective grid. Locally a grid is regular; however, the

18 Chapter 3. Motivation and Related Work

Figure 3.2: Attempts to accurately capture a material parameter
(left) using only four cells for both a Cartesian mesh
(centre) and irregular mesh (right). This geometry can
be accurately represented on the irregular mesh but not
the regular mesh.

mesh resolution is not constant across the domain. A subset of the structured

AMR approach is to use a space-tree [39]–[42]. A space-tree can be viewed as

a degenerated block structured mesh—the embedded fine grid patches are child

elements in the tree. A simple diagrammatic representation of a space-tree can be

see in Fig. 3.1. Quadtrees (and their higher dimensional analogue octrees) recursively

split the domain into smaller and smaller cells, and embed these directly into the

coarser cells [43]. Space-trees are widespread and have many different notations

and implementations: we specifically follow on from Weinzierl’s work on the Peano

framework [42], [44] and use that implementation as a baseline.

We chose to work with structured grids due to the relative simplicity of implementa-

tion. A simple grid gives a simple baseline for assembly and numerical integrations

therein—a structured grid produces a more readily parallelisable workload for the

assembly. Adaptive grids, specifically space-trees, mean we are still able to take

advantage of AMR.

3.1.3 Multilevel assembly

All of our novel ideas are for multigrid—one aspect of multigrid we contribute towards

is the construction of the required matrices. We briefly cover what matrices must be

constructed in a multigrid assembly phase and some options for the choice of these

3.1. Assembly 19

matrices and their assembly. We are particularly interested in approximate methods

of assembly for multigrid matrices.

Multigrid does not just require a single matrix equation and grid level to be con-

structed. It requires a cascade of matrices and grids [12], [13], [45]. Every grid level

in the multigrid hierarchy requires a defined set of grid points. Every grid level in

the multigrid hierarchy requires a matrix equation. Every grid level in the multigrid

hierarchy requires its own assembly process. Similarly to the construction of the

fine grid, and the resultant equation, the construction of coarse grids can also be

expensive. Coarse grid assembly can be split into three components: the method of

coarsening fine grid vertices to define the coarse grid, the construction of the coarse

grid equation, and the identification of intergrid transfer operators. We now cover

possible choices for these, as the specific choice drastically effects how effective a

multigrid solver can be.

Any multigrid implementation will also make use of a smoother. A smoother requires

two components to be assembled–the matrix being solved and an approximation of

the inverse of the matrix. The original matrix is involved in the residual calculation—

strictly speaking this does not need to be fully assembled, but information about the

matrix is required for an accurate residual to be computed. The residual calculation

is a mat-vec product. In our work, we mitigate certain issues in the assembly, by

enforcing a specific sparsity pattern due to our choice of basis functions (d-linear basis

functions on a Cartesian mesh) so the matrix is sparse and shows good data locality.

We also split stencils into element-wise decompositions, which further maintains data

locality. The approximation of the inverse also does not have to require a global

assembly procedure. We perform Jacobi smoothing, ergo we only require knowledge

about the diagonal elements of the matrix. Jacobi smoothing formally requires

multiple mat-vec products, but, in practice, we can implement the application of the

diagonal matrix as a scalar product between the extracted scalar diagonal element

and an already computed scalar residual to eliminate one mat-vec. The mat-vec to

compute the residual remains.

20 Chapter 3. Motivation and Related Work

Possible coarsening strategies for multigrid fall into one of two approaches: algebraic

multigrid (AMG) and geometric multigrid (GMG). AMG directly uses the matrix

to define the coarse grid [46], [47]. That is, no geometric information from the fine

grid enters the coarse grid. Instead, the fine grid equation, and the strength of

coupling between fine grid points, is used to identify a set of vertices to constitute

the coarse grid. This is not a cheap process. GMG, on the other hand, uses a much

less expensive method of coarsening. The coarse grid vertices are defined exclusively

using geometric information—this could be as simple as selecting alternate fine grid

points for a one-dimensional mesh. The coarse mesh can therefore be defined a priori.

As we use structured grids, we use a geometric coarsening strategy.

Coarse grid equations can also be defined via one of two approaches: through

rediscretisation or via an algebraic definition. In our work we incorporate both as

different options. For rediscretisation, coarse grid error equations are defined by

simply discretising again on that grid level [12]. This is relatively quick to compute

and can be constructed at run-time to avoid explicitly storing and constructing

the matrix. Rediscretisation can have limited effectiveness, however, as solvers can

exhibit instabilities [35], [40]. Alternatively, there are algebraic approaches. The

standard algebraic approach for coarse grid equations is Ritz-Galerkin, i.e. the coarse

grid equation AH is defined as the result of the matrix triple product AH = RAhP .

Ritz-Galerkin is the defacto method for AMG: the coarse grid does not use any

geometric information, so must be defined in terms of the fine grid equation and

intergrid transfer operators. The intergrid transfer operators, R and P , should be

constructed in a way so that coarse corrections do not introduce an error on the fine

grid. Algebraic methods may define R and P algebraically, or they may stick to

geometric definitions, e.g. d-linear interpolation. For certain grids, rediscretisation

and Ritz-Galerkin with geometric operators may give the same coarse grids, e.g. for

Finite Elements on Cartesian meshes. Algebraic approaches are generally more

flexible as a solver and as such can be applied to a wider range of problems than

geometric multigrid [12], [48], [49]. However, they have a costly setup phase—the

3.1. Assembly 21

coarse grid identification and coarse grid equations construction are expensive [50],

[51]. Some geometric implementations are shown to also share costly coarse grid

assembly phases [52].

The complex material parameters we focus on can result in complex solution beha-

viour, as relevant features might exist across multiple scales. When data is multiscale,

we must also incorporate this into the coarse grid representation. Homogenisation

is a general form of this [53], [54]. Material parameters can be too fine to accurately

be represented on even the finest computational grid, so coarse representations of

the material parameter must be “averaged” over the cells. The material on the

macro scale then has the same effective property as the true material parameter.

Harmonic, arithmetic and geometric averaging are simple implementations with

limited effectiveness [55]. More advanced approaches, such as renormalisation or

methods that separate the diffusion coefficient from the equations, have seen greater

success [56], [57]. The Ritz-Galerkin coarse grid formulation can be viewed as a

form of homogenisation [58] and is a standard element in the multigrid toolkit. This

idea is built on with algebraic multigrid. All of these accurately capture fine grid

information on the coarse grid but either suffer from increased assembly time or a

less effective solver and increased solve time.

A common application of multigrid is as a preconditioner. Preconditioners are a wide

class of approximate solvers that do not bother themselves with inverting an equation

exactly. They instead push the solution in the correct direction while another solver

handles the details. An approximate preconditioner for multiscale problems is the

appropriately named Multilevel Sparse Approximate Inverse preconditioner [59].

Here, there is a focus on AMR: Changes in the mesh require global changes in the

matrix—this preconditioner, however, does not require exact matrix inversions to be

effective so instead they use an approximation that is only depends upon local mesh

information. We posit that in an iterative solver, the idea behind a preconditioner—

not solving the exact equation but a similar equation that will push the solution in

the correct direction—is one that can be repurposed.

22 Chapter 3. Motivation and Related Work

3.2 Solver ingredients

3.2.1 Solution characteristics

To construct an effective solver for an equation we must understand the behaviour

and general character of solutions and the underlying problem. We develop a parallel

solver for elliptic equations that is designed to be able to scale to exascale, so are

interested in existing examples of this approach.

Elliptic operators are particularly challenging to solve. The Poisson equation is

the simplest example of an elliptic operator [23], [24]. A consequence of ellipticity

is that local changes effect the entire domain. The discretisation can be poor in

two ways: Firstly, poor spatial discretisations lower solution quality and accuracy.

This occurs when there is no local refinement around a singularity, for example.

They can cause cause pollution [60]. Secondly, poor operator discretisation, which

can take two forms—poor discretisation on the fine level and the coarse level. A

low quality fine grid operator integration creates an inconsistent discretisation—the

solver is solving a different problem than intended. A low quality fine grid operator

integration instead causes another type of pollution [32]. Coarse grid updates will

not fall into the nullspace of the fine grid operator, i.e. coarse corrections introduce

error after projection. This worsens the rate of convergence.

Poor integration becomes an issue when material data is not constant. A discon-

tinuity in the material data, for example, effectively decouples the two regions. A

non-continuous material parameter [21], [61], may induce jumps in the first derivat-

ive of the solution. This causes certain schemes, such as finite differences, to suffer.

Other schemes, such as finite elements, handle discontinuities better when the integ-

ration is performed accurately. A poor fine grid discretisation pollutes the solution

as the discretisation does not accurately resolve these features. Fine grid detail may

not be accurately resolved on the coarse grids. A poor coarse grid discretisation

smears over the discontinuity and introduces errors. Both factors cause additional

3.2. Solver ingredients 23

oscillations around a material parameter discontinuity when converging towards a

solution.

Larger jumps of the material parameter over a discontinuity cause a matrix repres-

entation of the system to have a worse condition number. Higher condition numbers

correspond to worsened rates of convergence for a solver—the number of steps an iter-

ative algorithm requires to converge increases. For a multilevel solver, e.g. multigrid,

this leads to large oscillations over the discontinuity, and sufficiently large jumps in

the material parameter causes such codes to diverge [21], [61]–[64]. Damping out

the oscillations in this region increases the stability of a solver. A discontinuity is

a highly localised anisotropic region along the jump itself, ergo a large magnitude

difference in the material parameter effectively decouples the regions, and harms the

convergence rate.

3.2.2 Additive multigrid

The specific flavour of multigrid we are interested in is additive multigrid. Our choice

of a solver is an additive solver which is known to suffer from stability issues. We

briefly explain the basics of additive multigrid and why it is often unstable.

One formulation of the additive multigrid method is given by the following algorithm:

Algorithm 1 Additive algorithm
function additiveMG(`, u`, f`)

if ` = 0 then
u` ← A−1

` f`
else

r` ← f` − A`u` . Can be omitted: u` = 0 means r` = f`
u`−1 ← 0
additiveMG(`− 1,u`−1,R`

`+1r`)
u` ← u` +M−1

` r`
u` ← u` + P `+1

` u`−1
end if

end function

24 Chapter 3. Motivation and Related Work

u` Solution on level `

b` Right-hand side on level `

A` Matrix on level `

M−1
` Smoother (cheap approximation of A`) on level `

R`
`+1 Restriction from fine grid `+ 1 to level `

P `+1
` Prolongation from level ` to fine grid `+ 1

The alternative to additive multigrid—the multiplicative formulation—smooths loc-

ally held values prior to the residual being restricted to the coarse grid [14]. Therefore

coarse solves do not act upon the same residual. The algorithm for the multiplic-

ative method is given in Alg. 2. The pre-smoothing steps, shown in blue, must be

performed prior to the coarse smoothing, and the post-smoothing steps, shown in

red, must be performed prior to projecting updates to finer grid levels. This enforces

the sequential handling of the grid levels.

Algorithm 2 Multiplicative algorithm
function multiplicativeMG(`, u`, f`, µpre, µpost)

if ` = 0 then
u` ← A−1

` f`
else

for i = 1 to µpre do
r` ← f` − A`u`
u` ← u` +M−1

` r`
end for
r` ← f` − A`u`
u`−1 ← 0
multiplicativeMG(`− 1,u`−1,R`

`+1r`, µpre, µpost)
u` ← u` + P `+1

` u`−1
for i = 1 to µpost do

r` ← f` − A`u`
u` ← u` +M−1

` r`
end for
end if

end function

Additive multigrid, on the other hand increases the potential for parallelism [65],

[66]. We can rewrite additive multigrid from the recursive formulation in Alg. 1 to

the loop based formulation seen in Alg. 3.

3.2. Solver ingredients 25

Algorithm 3 Additive algorithm as a for loop
function additiveMG(`, u`max , f`max)

r`max ← f`max − A`maxu`max

for all Level ` do
u` ← 0
u` ←M−1

` R`
`maxr`max

u`max ← u`max + P `max
` u`

end for
end function

Figure 3.3: Representation of a multiplicative multigrid V -cycle
(left) and an additive multigrid V -cycle (right). Ho-
rizontal arrows correspond to smoothing steps and the
empty circles to accumulations/data transfers.

`max Level index for the finest grid

For coarse grids, the residual computation shown is only there as a formality—u` is 0,

so additive coarse grid residuals simply become the right-hand side of the equation.

The same initial fine grid residual is restricted to the right-hand side of all coarse grid

levels. An additive coarse grid level only requires information from the finest grid

level. This is graphically shown in Fig. 3.3. Each loop can be handled independently,

therefore additive multigrid does not need to smooth sequentially. The generalised

matrix representation of additive multigrid can thus be written

u`max ← u`max +
 `max∑
`=`min

ωadd(`)P `max
` M−1

` R`
`max

 (b`max − A`maxu`max) . (3.2.1)

between data movement, V -cycles, for both variants is demonstrated As the same

residual is restricted to all coarse grid levels, additive multigrid solves the same error

equation across all grids—it is therefore prone to producing corrections to the same

error on multiple grid levels [14], [32]. In multiplicative multigrid, however, local

26 Chapter 3. Motivation and Related Work

errors are smoothed (read: removed) between transfers between grid levels. Thus,

overcorrections are minimised. The multiplicative variant therefore converges in

fewer iterations on a broader class of PDEs than the additive formulation.

The simple generalised matrix representation of additive multigrid is in stark contrast

with that of multiplicative multigrid. As a point of comparison, we chose two minimal

multiplicative multigrid variants, V (1, 0) and V (0, 1) cycles with exact solves on

coarse grids. With factorisation, the V (1, 0) reads as

u` ←
[
u` + ω`M

−1
` (b` − A`u`)

]
+P `

`−1A
−1
`−1R

`−1
` (I − ω`A`M−1

`)(b` − A`u`)

and the V (0, 1) cycle as

u` ←
[
u` + ω`M

−1
` (b` − A`u`)

]
+(I − ω`M−1

` A`)P `
`−1A

−1
`−1R

`−1
` (b` − A`u`).

Both multiplicative cycles require more matrix products and clearly do not share

the level independence of additive multigrid.

Stability issues in additive multigrid worsen as the number of grid levels increases [22].

We therefore investigate methods of improving stability. The more grid levels there

are, the greater the chance that overcorrections will be produced, which increases the

magnitude of oscillations in the solution. Coarse grid contributions can be weighted

with a damping parameter, ω, to reduce their impact on the fine grid solution and

reduce the scale of overcorrections. Damping coarse grid contributions will improve

stability but often at the expense of the rate of convergence. Currently there are few

damping schemes that exclusively target the components within a correction that

overcorrect [14].

With this in mind multiplicative multigrid may seem universally better than additive.

However, the additional smoothing steps in multiplicative multigrid that improve the

convergence rate also limit the maximum parallel potential [67]. A coarse grid update

3.2. Solver ingredients 27

cannot be computed until the fine grid has been smoothed and cannot be projected

until all coarser grids have computed their updates. This creates a bottleneck. The

coarsest grids are cheap by design, so most cores in a large scale machine will idle

during the coarsest grid updates. Additive multigrid does not share this limitation.

Updates across all grid levels can be computed in parallel as they share no data

dependence [65], [66].

3.2.3 Improving intergrid transfer operators and BoxMG

Our end goal is to improve the stability of additive multigrid by reducing overcor-

rections; additive algorithms suffer from over correction between grid levels but in

exchange gain increased potential for parallelism due to their potentially simultan-

eous handling of all levels. One approach to reduce overcorrections is to modify the

intergrid transfer operators. We are interested in a couple methods of doing this,

which we outline here.

An early example of this, which modifies the prolongation specifically, is by Green-

baum [64]. However, this does introduce a sequential element to the prolongation

of corrections—coarse corrections are transformed so they are orthogonal to the

updated fine grid residual vector once projected onto the fine grid. This reduces

overcorrections compared to plain additive multigrid, but limits the potential for

parallelism. Instead of modifying how corrections are projected, the restriction of

the residuals could be modified instead. This is the approach taken by Chan and

Tuminaro [68], [69]. They introduce a filter that separates the residual into two parts:

one that exhibits errors with frequency on the resolution of the coarse grid; and one

that exhibits errors on the fine grid resolution. Smoothers can therefore target errors

specific to their mesh resolution. This reduces the amount of overcorrection/repeated

correction between levels relative to conventional additive multigrid. However, this

filter can be as expensive as the solve in and of itself.

Both the prolongation and restriction could be modified in the same solver. Due to

28 Chapter 3. Motivation and Related Work

our focus on additive multigrid and our use of space-trees, we are most interested

in methods of improving additive stability that also use geometric coarsening. Geo-

metric coarsening defines the coarse grids using the topology of the fine grid and

therefore require no complex computations to construct. Coarse grid equations can

be constructed wholly using geometric information too; however, while this is simple

to compute, it can limit the robustness of a multigrid solve. Therefore we look to

existing methods that improve intergrid transfer operators to improve stability as

this also improves coarse grid equations.

Dendy’s Black Box Multigrid, BoxMG [21], keeps the simplicity of geometric coarsen-

ing, but constructs coarse grid equations that improve stability and rates of con-

vergence. BoxMG operates on a Cartesian mesh and with an enforced sparsity

pattern—the original outline is for two partitioning. BoxMG constructs algebraic-

ally inspired intergrid transfer operators, and corresponding coarse grid equations,

for this coarsening scheme. The computed intergrid transfer operators should not

introduce error on the fine grid when projecting coarse corrections, i.e corrections

are projected into the nullspace of the fine grid. BoxMG has been extended to

work on space-trees with three-partitioning [33], [70], [71]. Similar ideas of operator

dependent transfers are explored by De Zeeuw [72] and a thicket of further work

explores the interplay between AMG and GMG by using a forest of space-trees for

GMG on the fine grids with an AMG scheme working on the coarse nodes in the

forest [35], [40], [73].

To compute BoxMG intergrid transfer operators, all fine grid points are classified

into either c-points (those points that coincide spatially with coarse grid points of

the next coarser level), γ-points (points that coincide with the faces of cells of the

next coarser level) and f -points (the remaining points that exist on the cell interiors

of coarse grid cells). Weights must be computed that determine the impact of a

coarse grid point when transferring to the fine grid (and vice versa). This can be

seen in (Fig. 3.4). The weights are the entries of the matrix P .

• For c-points, prolongation and restriction weights are defined as the identity.

3.2. Solver ingredients 29

Figure 3.4: Splitting of fine grid vertices into c-points, γ-points and
f -points for a BoxMG scheme on a space-tree that uses
three partitioning.

• For points along coarse cell walls, i.e. γ-points, the fine grid stencil is “col-

lapsed”: If γ members reside on a face with normal n, the stencil is accumulated

(lumped) along the n direction. The resultant collapsed stencil contains only

entries along the non-n directions. Higher dimensional collapsing can be con-

structed iteratively. Applying this stencil to projected values from the coarse

grid, is equivalent to applying the original stencil to coarse values that have

been first projected along cell faces as normal, then linearly extrapolated in

the n direction. The optimal prolongation along the cell faces is one where

projected corrections do not introduce additional error, i.e. APe = 0|γ. We

solve a simplified version of this system: ÃPe = 0|γ. Ã stems from these

collapsed operators—for a chosen set of γ-points along a cell face and e is the

characteristic vector for a vertex on the coarse grid, i.e. holds one entry 1 and

zeroes everywhere else.

• Finally, weights for the f points, those on the cell interior must be computed.

We can readily solve APe = 0|f for these remaining points. When computing

these weights, f -points are only coupled to each other if they lie within the

same cell’s interior. This ensures the desired sparsity pattern for the transfer

operator.

An alternative method of constructing the BoxMG coarse grid equations and intergrid

transfer operators is explored by MacLachlan et al. [74]. Here BoxMG—and a

30 Chapter 3. Motivation and Related Work

proposed adaptive variant—are compared to AMG and Adaptive AMG (Adaptive

AMG [75], [76] is a modified AMG scheme that constructs the intergrid transfer

operators iteratively). Tentative values are used for intergrid transfer operators

initially with possible coarse grid candidates. Trial smoothing iterations are then

applied to improve the transfer operator quality. Smoothing results therefore inform

coarse grid definition. This ideology is applied to BoxMG to produce Adaptive

BoxMG with relative success.

3.2.4 Modifying coarse equations, damping and BPX

Another method of improving the stability of additive multigrid is to modify the

coarse grid equations being solved. This is an alternative approach we could in-

corporate into our solve. A popular form of modifying coarse equation is to damp

them—which is a key part of our approach for improving stability.

Exponential damping is an aggressive example of damping. Grid levels are damped

more aggressively the coarser they are [32], which is very effective at improving

stability, but at the significant expense of convergence speed. A similar approach

can be seen in Bastian and Hackbusch [14], where the same damping parameter is

used in the smoother across all grid levels, but an additional damping parameter is

encoded into the prolongation operator. The more levels a correction is projected

across the more it is damped. Another approach, again mentioned by Bastian and

Hackbusch, is to compute vertex-specific weights as the corrections are summed.

Here they propose a method of computing weights such that when applied to the

corrections within the bilinear form, the bilinear form maps onto the same value

as the linear form on the right hand side of the finite element problem maps to.

Computing these weights requires an additional matrix-vector product applied to

the entire grid and additional dot product per grid level. The resultant system can be

singular however, so this is not a perfect solution. Recent work by Vangara, Kashi and

Nadarajah [77] introduces a level-specific scaling parameter to recover multiplicative

3.2. Solver ingredients 31

multigrid convergence rates. The computed damping parameter is the result of two

additional inner products per grid level and minimises the difference between the

residual from multiplicative multigrid smoothing and the actually performed additive

smoothing process.

A widespread additive multilevel approach, that modifies coarse equations with

a strong focus on parallelism, is the original “BPX” algorithm. This is an early

example of an additive multigrid scheme, and remains a widely used choice of pre-

conditioner [67], [78]. The main features that separate BPX from other additive

schemes are the specific choice of coarse grid spaces and coarse grid equations. BPX

is built on parallel (nested) subspace corrections. Coarse grid corrections are merely

damped restricted residuals, rather than the result of a coarse solve. Restricted resid-

uals are weighted by an approximated diagonal matrix. Single iterations/corrections

can therefore be computed more quickly; however, more iterations may be required

for convergence—ideally these factors balance to reduce time-to-solution. The coarse

grid equations are defined simply—coarse grid corrections only use diagonal scaling

of the fine grid input. This has drawn comparison between BPX and Multilevel

Schwarz Algorithms. BPX has been shown to be equivalent to the Multilevel Diag-

onal Scaling (MDS) (which is a modification of Zhang’s Multilevel Additive Schwarz

(MAS) method [79]). The stability of BPX has been improved by updating vertices

according to a colouring scheme [80]. BPX also further limits the domain of the

coarse correction spaces to improve stability. Fine grid smoothing is only performed

on regions that do not hold coarse grid points. The colouring scheme is said to be

optimal for certain classes of equations.

Three coarse grid equation definitions that are of interest to our work are: the “BPX”

algorithm [67], [78], specifically the MDS variant; Dendy’s BoxMG [21], [70], [71];

and algebraic multigrid. BoxMG changes the definition of coarse grid equations

through changing the intergrid transfer operators. How stability changes between

these three methods for additive multigrid schemes is explored by Grauschopf et

al [22]. They compare the three alternatives: Here, BoxMG is shown to be generally

32 Chapter 3. Motivation and Related Work

Figure 3.5: A composite grid composed of multiple different mesh
resolutions (top). The three different regular subgrids
who’s conjunction forms the composite grid (bottom).

competitive with AMG as both sets of coarse grid equations have lower condition

numbers than MDS and thus converge in fewer iterations; the simpler construction

of MDS is shown to worsen the convergence rate. BoxMG and AMG are also shown

to be effective for more challenging setups.

3.2.5 The FAC family of solvers

The Fast Adaptive Composite grids (FAC) family of solvers [38] are collection of

methods that serve as a building block for a lot of our work. We build upon

the damping term from AFACx [81], [82] in particular. What follows is a brief

explanation of a few FAC solvers and their underpinning ideas.

Within a multigrid context, a simple mesh storage solution can become a concern

with the introduction of adaptivity as multigrid requires a hierarchy of meshes and

associated coarse grid equations. In a structured grid, the fine grid discretisations

embed within the coarse grid discretisations. Fine grid operators therefore, also

embed within coarse grid operators. The different grid levels are coupled, so a

method of handling this indirect coupling is required. The FAC family of solvers

3.2. Solver ingredients 33

write fine grid problems as subproblems that are solved separately. All grids store

full solution values and compute corrections for their respective grids. Fine grids

are subproblems and grid corrections are solved sequentially. MultiLevel Adaptive

Technique (MLAT) [20], [83], [84] and Fast Adaptive Composite grids (FAC) [17],

[38], [85] are multilevel adaptive schemes—they use multiple grid levels with different

resolutions that are handled sequentially/separately. An example of the overall

composite grid and how that example grid is composed of multiple subgrids is shown

in Fig. 3.5. This yields a hierarchical generating system rather than a basis.

FAC describes a multiplicative multigrid scheme over a hierarchical system. Starting

from the finest grid: the residual equation is determined there and then smoothed;

the residual is then re-computed and restricted to the next coarser level. It con-

tinues recursively. This is a multiplicative multilevel (multigrid) scheme. Early

FAC papers operate on the assumption of a small set of reasonably fine grids and

leave the implementation open of what solver to use on the individual grids. Some

explicitly speak of FAC-MG if a multigrid cycle is used as the iterative smoother per

level. Here we refrain from such details and consider fast adaptive composite grid

as a multiplicative scheme overall which can be equipped with simple single-level

smoothers. The first FAC papers [38] acknowledge difficulties for operators along the

resolution transitions. FAC traditionally uses a top-down traversal [15]: The cycle

starts with the coarsest grid, and then uses the updated solution to impose Dirichlet

boundary conditions on hanging nodes on the next finer level. This inversion of

the grid level order continues to yield a multiplicative scheme as updates on coarser

levels immediately propagate down and as all steps are phrased as residual update

equations.

FAC relies on spatial discretisations that are conceptually close to space-trees. Both

approaches thus benefit from structural simplicity: As the grid segments per-level are

regular, solvers (smoothers) for regular Cartesian grids can be (re-)used. As the grid

resolutions are aligned with each other, hanging nodes can be assigned interpolated

values from the next coarsest grid with a geometrically inspired prolongation. As all

34 Chapter 3. Motivation and Related Work

grid entities are cubes, squares or lines, all operators exhibit tensor-product structure.

FAC’s hierarchical basis differs from textbook multigrid [13] for adaptive meshes: The

fine grid smoothers do not address the real fine grid, but only separate segments that

have the same resolution. The transition from fine to coarse grid does not imply that

the number of degrees of freedom decreases. Rather, the number of degrees of freedom

can increase if the fine grid holds a localised AMR region with many refinements. It

is obvious that this poses challenges for parallelisation. Different grid levels produce

corrections that act upon the same regions of space and therefore the same fine

grid degrees of freedom—this creates a coupling between the grid levels. Different

grid levels cannot be handle totally in parallel in a naive manner, as information

propagates between them. If updates do not flow, then different grid levels will

produce redundant updates for the same grid points—possibly overcorrecting.

FAC can be mechanically augmented into a version with additive corrections. The

hierarchical generating system renders this endeavour straightforward. Plain additive

multigrid on a FAC data structure once again yields a non-robust solver that tends

to overcorrect [15], [32]. The hierarchical basis approach starts from the observation

that the instabilities within the generating system are induced by spatially coinciding

vertices. Therefore, it drops all vertices (and their shape functions) on one level

that coincide with coarser vertices. The asynchronous fast adaptive composite grid

(AFAC) solver family finally modifies the operators to anticipate overshooting [16],

[81]. BPX may be read as particular modification of additive multigrid and AFAC

as a generalisation of BPX, as stated by Jimack and Walkley [86]. AFAC was

historically served in two variants [15]:

AFACc simultaneously determines the right-hand side for all grid levels `. Before it

restricts the fine grid residual to a particular level `, any residuals on vertices spatially

coinciding with vertices on the level ` are instead set to zero. They are masked out

on the fine grid. This effectively damps the correction equation’s right-hand side.

If we applied this residual masking recursively—a discussion explicitly not found in

the original AFACc paper where only the points are masked which coincide with the

3.2. Solver ingredients 35

target grid—i.e. if we constructed the masking restriction recursively over the levels

instead of in one rush, then AFACc would become a hybrid solver between additive

multigrid and the hierarchical basis approach.

AFACf goes down a different route: The individual levels are treated independently

from each other, but each level’s right-hand side is damped by an additional coarse

grid contribution. This coarse grid contribution is an approximate solve of the

correction term for the particular grid. AFACf solves all meshes in parallel and

sums up their contributions, but each mesh has its contribution reduced by the local

additional coarse grid cycle. The resulting scheme is similar to the combination

technique as introduced for sparse grids [87]: We determine all solution updates

additively, but remove the intersection of their coarser meshes.

These two modifications allow great parallelism for FAC, but the full solves on all

coarse and auxiliary grid levels in AFAC are still expensive. AFACx is an additional

modification that swaps the full solves for simple smoothing steps instead, this is

observed to reduce the workload significantly but not noticeably harm the rate

of convergence. This is similar to standard additive multigrid and BPX, where

corrections on each grid level arise just from smoothing; however, the auxiliary grid

correction provides a damping term that isolates corrections to a specific grid level

to prevent overshooting. We introduce a smoother, M̃−1
`−1, for this auxiliary grid

level. A ˜ denotes that this belongs on the auxiliary grid. This exists on a grid

with increased mesh spacing, hence we have changed the index—even though it is

formally a correction that belongs to level `.

M̃−1
`−1 Smoother on an auxiliary equation level `− 1

For c`, an arbitrary correction on level `, auxiliary smoother M̃−1
`−1 and arbitrary

intergrid transfers R and P , AFACx produces the per-level correction

c` = PM̃−1
`−1Rr`︸ ︷︷ ︸

Initial guess

+M−1
` Rr` −M−1

` A`PM̃
−1
`−1Rr`︸ ︷︷ ︸

Coarse grid smoothing

−PM̃−1
`−1Rr`︸ ︷︷ ︸

Damping term

= M−1
` Rr` −M−1

` A`PM̃
−1
`−1Rr`.

36 Chapter 3. Motivation and Related Work

Note that the initial guess and damping term effectively cancel. AFACx again

operates on a composite grid and appropriate hierarchies of both correction grids and

auxiliary correction grids. To improve robustness relative to additive multigrid, an

additional sequential component is introduced between the grid levels—the auxiliary

smoothing step is performed before the smoothing process on the original coarse

grid levels. A single residual vector is computed, on the “composite” grid, and

this residual is restricted to all grid levels, including the auxiliary grid level. The

auxiliary grid is smoothed using zero as initial guess. This computes a correction

that is projected to the original coarse grid hierarchy. Each auxiliary grid is built

over an existing coarse grid space and projects its correction to that single grid space.

This projected correction serves as initial guess for smoothing on the coarse grid

level. After smoothing the auxiliary correction is used as an additive damping term

to prevent overcorrections. This means that corrections components on a coarse grid

level are isolated from the components they would share with the next coarsest level.

3.2.6 Additional parallel multigrid implementations

Beyond additive multigrid, there are more general techniques to increase the po-

tential for parallelism within multigrid or scale multigrid to very large machines.

None of these ideas modify the coarse equations, intergrid transfers or coarse grid

spaces specifically—the following schemes either do a combination of those ideas or

something completely novel. We briefly outline a few of them here and how they tie

into our work.

Parallel Superconvergent MultiGrid (PSMG) [88] introduces multiple grid spaces. It

is a multiplicative scheme, and, similar to AFACx, introduces additional work in the

form of supplementary grids. Multiple coarse grids for the same fine grid are used, and

this produces multiple corrections for the same resolution with the additional coarse

grids reducing the number of idle cores relative to regular multiplicative multigrid

when computing the coarsest corrections. Theoretically improved convergence may

3.2. Solver ingredients 37

be seen from these additional corrections, but this was not experimentally verified.

Rather than increasing the workload to take advantage of all parts of the system

communication can instead be minimised. Mult-additive [89] follows this idea and

removes the sequential processing of coarse grids entirely. Multiplicative coarse grid

corrections are written in purely additive semantics through the use of smoothed

interpolation operators, so that the convergence rate of multiplicative multigrid is

maintained, but the communication cost is closer to additive multigrid. Mult-additive

modifies the intergrid transfers using a similar philosophy to smoothed aggregation

multigrid and modifies itself to more closely resemble multiplicative multigrid.

Changing the smoother itself is a concept used in “Asynchronous Multigrid” [90].

Wolfson-Pou and Chow have implemented mult-additive and AFACx (and conven-

tional multiplicative multigrid) using asynchronous smoothers, An asynchronous

smoother is one where the number of smoothing steps on differing grid levels and

different regions of the same grid level are not guaranteed to be synchronised, i.e. the

same. Mult-additive was shown to be the most effective implementation they tested

under various metrics—being both the quickest in terms of wallclock time and gen-

erally being minimal in the number of iterations required for convergence. AFACx

in general required additional iterations to converge and a proportionally increased

run-time.

There have been many multigrid schemes designed for large scale runs—both for

large core counts and for large numbers of degrees of freedom. Gmeiner et al. [91]

have seen success in scaling multiplicative multigrid to large setups (300,000 cores

and problem sizes of 1012 unknowns), but their implementation is only for simple,

purely geometric setups. More complicated conditions were tackled by Lin et al. [92]

using algebraic multigrid. Effective scaling is seen up to 1.6 million cores for the

Poisson equation. However, common to many algebraic multigrid implementations,

the setup is a non-negligible factor. Impressive scaling can instead by achieved

with a conjunction of different solvers rather than solely one, for example, May et

al. [93] use a geometric multigrid solver on the finer levels, an algebraic solver on the

38 Chapter 3. Motivation and Related Work

next coarsest level and Krylov methods on the coarsest grid; this implementation

scales well for the tested setups, but only up to a total of 4000 total cores. The

multigrid component is also minimised and does not use a large number of grid

levels. Work by Rudi [94] also merges many solver types into one. Multiple forms of

coarsening—h-coarsening, p-coarsening and then a switch to an algebraic multigrid

solver—are used. Their solver shows promising scalability (up to 1.5 million cores

and for ill–condition problems); however, it is only used as a preconditioner rather

than as a solver in and of itself.

3.2.7 HTMG and FAS on space-trees

We use adaptive grids throughout our work—to simplify the implementation of them

we borrow ideas from full approximation storage (FAS) and use the hierarchical

transformation multigrid (HTMG) implementation. Although the implementation

of multigrid on adaptive meshes is, in principle, straightforward, implementational

complexity arises along resolution transitions. Weights associated to the vertices

change semantics once the comparisons for vertices on a level ` are made between

points that belong to the fine grid and those that belong to refined vertices: The

latter carry a nodal solution representation, i.e. a scaling of the Finite Element shape

functions, while the former carry correction weights. In classic multigrid starting

from a fine grid and then traversing correction levels, it is not straightforward how

to handle the vertices on the border between a fine grid region and a refined region

within one level. They carefully have to be separated [32], [33].

One solution to address this ambiguity relies on FAS [13]. Every vertex holds a

nodal solution representation. If two vertices v` and v`+1 from coarse level ` and

fine level `+ 1 spatially coincide, the coarser vertex holds a copy of the finer vertex:

In areas where two grids overlap, the coarse grid additionally holds the injection

u` = Iu`+1 of the fine grid. This definition exploits the regular construction pattern

of space-trees. Vertices in refined areas now carry a correction equation, plus the

3.3. Hardware and implementation specifics 39

injected solution rather than a sole correction. The injection couples the fine grid

problem with its coarsened representation and makes this representation consistent

with the fine grid problem on adjacent meshes which have not been refined further.

Griebel’s HTMG [95] is an effective implementation of the full approximation storage

scheme. It also relies on the assumption/approximation that all operators can be

approximated by Ritz-Galerkin multigrid RA`+1P = A`. Injection u` = Iu`+1 allows

a rewrite of each and every nodal representation into its hierarchical representation

û` = (id − PI)u`. A hierarchical residual r̂ is defined in the expected way. This

yields the modified multigrid equation:

A` (u` + c`) = A`u` + A`c` = Rr̂`+1

= R (b`+1 − A`+1(u`+1 − PI`+1))

= R (b`+1 − A`+1û`+1) , (3.2.2)

i.e. per-level equations

A`u` =


b` on the fine grid (regions)

b` = Rr̂`+1 on the coarse grid (regions) with r̂`+1 = b`+1 − A`+1û`+1.

To the smoother, u` resulting from the injection serves as the initial guess. Sub-

sequently it determines a correction c`. This correction feeds into the multigrid

prolongation.

3.3 Hardware and implementation specifics

3.3.1 Memory accesses

We seek to modify the assembly process and write a new implementation and also

develop a new family of solvers for our solver suite. Therefore we must take into

account the underlying hardware for our implementation. We briefly cover the key

features that we incorporate into our algorithmic design.

40 Chapter 3. Motivation and Related Work

Quite intuitively, one possible limit on how quickly a solver can complete a solve

is the hardware used—faster hardware therefore has historically guaranteed faster

times to solution. This observation no longer strictly holds. Processor clock speeds

are increasing at a rate greater than the rate of increase in memory bandwidth [18].

Processors complete local operations and are then required to wait for subsequent

data that is still held in memory, therefore faster clock speeds do not always lead to

reduced time-to-solution for a fixed solver.

Minimising memory accesses in iterative algorithms is therefore required to optimise

for modern hardware. The underlying multigrid algorithm is optimal in terms of

compute steps, the associated memory access patterns are often not. Associated

matrices can be sparse, leading to scattered memory accesses and poor data ac-

cess patterns. Many mesh structures use indirect memory accesses which increases

memory latency. High memory latency and low memory bandwidth means low arith-

metic intensity in multigrid implementations. Pipelining, wherein operations are

blocked such that data can be streamed into the core/cache from main memory and

not delay communications, is well trodden ground. Formulations of the pipelined

conjugate gradient method are a good example of this [96], [97]. Similar principles

have been applied to multilevel methods—in particular multigrid [98]–[100].

3.3.2 Element-wise operator decomposition and storage

Within our target implementation, all of our operators are decomposed and applied

in an element-wise fashion to reduce memory access costs—this follows on from

existing multigrid implementations [100], [101] and standard finite element cell-wise

operator decompositions [102]. Assembling a matrix as an explicit data structure

both incurs a large memory cost when storing elements and an increase in latency

when fetching elements. The latter is often due to poor memory access patterns.

Stencils restructure the matrix, matrix entries are stored in memory locations that

are local to the degrees of freedom they effect. A vertex in a mesh therefore need

3.3. Hardware and implementation specifics 41

only store matrix entries that impact it directly. The matrix is decomposed into

rows that are then stored in individual vertices, this is nothing new but serves as

motivation for further decompositions.

Figure 3.6: Decomposition of a nodal stencil into element-wise sten-
cils on cells.

A stencil can be further decomposed into components that are separately processed

by neighbouring cells. An example decomposition can be seen in Fig. 3.6. Stencils

are stored nodally and the element-wise decomposition is computed on demand. A

decomposition such as this is not unique. A stencil is additively split into components

centred around the cells (or elements in a finite element sense) that are adjacent to

the vertex on which the original stencil was centred. The element-wise decomposition

stores weights for all vertices adjacent to the chosen cell/element. The decomposition

can be applied to all cells independently and the results summed—as the element-

wise stencils result from an additive decomposition this produces the same result as

applying the nodal stencil.

For a matrix-free implementation, such stencils are recomputed on-the-fly, but as

soon as permanent recomputation of stencils becomes too expensive, the assembly

matrices must be stored. To avoid the maintenance of an explicit matrix data

structure, some schemes [32], [33] store the local element matrices directly within

the tree cells, i.e. embed the stencils into the cell stream. This avoids the memory

overhead of matrix data structures requiring meta data, sparsity pattern information

42 Chapter 3. Motivation and Related Work

and so forth, but it still has to pay for all actual matrix entries. They just are encoded

within the mesh rather than within a dedicated data container. Similar arguments

can be made for algebraic intergrid transfer operators—purely geometric operators

can be computed on-demand and require no precomputation. Each vertex stores its

element-wise operator parts from A. Each coarse grid vertex carries its prolongation

and restriction operator plus its stencil.

3.3.3 Single-touch

Following on from the ideas of Reps and Weinzierl [32], all of our algorithms are

written to be single-touch. A single-touch algorithm is an iterative algorithm that

aims to read to and writes from each memory location only once per iteration. This

can be verified by measuring cache hits and cache misses. If data is fetched only

once and stays in cache, then an algorithm can be assumed to be single-touch. There

are two main factors to account for when writing an iterative algorithm to be single-

touch: Firstly, the mesh/elements must be traversed in a manner that allows for

a single-touch handling of degrees of freedom. Secondly, degrees of freedom must

themselves be handled in a single-touch manner. We briefly outline an ordering

of elements for a mesh traversal, using a depth first traversal, that allows for a

single-touch implementation. Then we cover the specific reads/writes on degrees of

freedom that allow an additive multigrid iteration to be single-touch.

Traversing the mesh in a single-touch manner In Reps and Weinzierl’s work,

they developed an effective multigrid pipeline, which starts from an element-wise

traversal of the set of meshes. {Ω0,Ω1, . . . ,Ω`max} defines an ordering on the levels of

the mesh, and also provides a partial ordering of the cells within the mesh—it yields

a stream of cells. The partial ordering does not define an order on cells on the same

level, it only strictly defines an ordering between levels. There is no order constraint

on the cell enumeration within the stream for a specific level. We reiterate that in

both their work and our work, we construct the matrix using a nodal assembly but

3.3. Hardware and implementation specifics 43

Figure 3.7: Traversal order of a sample mesh that has been ad-
aptively refined. The coarse mesh is traversed via a
space-filling Peano curve. Refined regions are expanded
via a depth-first search when encountered, the refined
patches are recursively traversed via Peano curves.

mat-vec products are handled via an element-wise assembly/application. When we

handle the matrix using such an element-wise decomposition, as in Section 3.3.2,

we only treat each cell, and the associated vertices, once per grid traversal. We

therefore seek a method handling these cells such that they’re only loaded into main

memory once and similarly adjacent degrees of freedom are only written to once. For

a realisation of such an element-wise handling, possibly in a (dynamically) adaptive

scheme, there are many examples where the mesh is treated via a depth-first (DFS)

traversal of a space-tree [32], [33], [44], [100]. Each level’s cells, can therefore, be

organised along a space-filling curve [42]. An example traversal can be seen in

(Fig. 3.7). For modern hardware, data accesses are often a limiting factor. Reading

to and writing from main memory slows solves tremendously. We therefore introduce

the idea of single-touch—we limit both of these operations to once per grid traversal

per-vertex.

Definition 3.3.1. Single-touch: Variables in main memory are read to and written

from only once per grid traversal. They are loaded into cache once and only written

back once.

44 Chapter 3. Motivation and Related Work

With a naive element-wise decomposition, where each vertex is handled separately,

we would read/write from each memory location on a Cartesian mesh 2d times each

time we perform an update. Each vertex is adjacent to 2d cells in a Cartesian mesh

and partial updates therefore require 2d cells accesses and with each access causing

2d data writes to all relevant degrees of freedom. An element-wise matrix for a cell

can be constructed by decomposing the stencils of all adjacent vertices. The partial

stencils can then be processed for a cell in a single matrix-vector product, rather

than requiring multiple evaluations. Thus allowing degrees of freedom to remain in

cache during the traversal.

The combination of DFS with space-filling curves, means the tree traversal is weakly

single-touch with respect to the vertices: Vertices are loaded when an adjacent cell

from the space-tree is first entered. They are “touched” for the last time once all

2d adjacent cells within the space-tree have been left due to recursion backtracking.

In-between, they reside either on the call stack or can be temporarily stored in

stacks [42]. The call stack is bounded by the depth of the space-tree—it is small—

while all temporary stacks are bounded by the time in-between the traversal of two

face-connected cells. The latter is short due to the Hölder continuity of the underlying

space-filling curve. Hanging vertices per grid level, i.e. vertices surrounded by less

than 2d cells, are created on-demand on-the-fly. They are not held persistently. It is

therefore assumed that all data remains in the caches [44], [100].

Accessing degrees of freedom in a single-touch manner An additive al-

gorithm can be written to be single-touch. An additive correction scheme first

computes the residual on the fine grid, restricts it to the right-hand side of all

coarser correction levels, computes the update on a coarse grid level, and finally pro-

jects this coarse update to the fine grid. This implies a fine-to-coarse and subsequent

coarse-to-fine flow of information, which does not fit neatly into a DFS traversal of a

grid—which first unfurls the mesh coarse-to-fine and then backtracks fine-to-coarse.

We instead offset this by half an iteration—therefore, the data flow now follows the

3.3. Hardware and implementation specifics 45

mesh traversal. Due to the mesh traversal, we enforce a partial ordering—a fine

grid residual for a vertex is restricted to the next coarser grid level after all other

computations for the fine grid vertex have been performed. Therefore, locally the

fine grid must be handled before the coarse.

Algorithm 4 Outline of single-touch additive multigrid. sc is the summed coarse
grid correction contributions. sf is the summed fine grid correction contributions.
S(u`, b`) is the smoother applied to u` We invoke the cycle passing in the coarsest
grid `min.
function additiveMG(`)

sc` ← sc` + P `
`−1sc`−1 . Prolong contributions from coarse grid

u` ← u` + sc` + sf` . Anticipate fine grid smoothing
û` ← u` − P `

`−1u`−1 . Determine hierarchical solution
if ` < `max then

additiveMG(l + 1)
end if
r` ← b` − A`u` . Compute residual
r̂` ← b` − A`û` . Compute hierarchical residual
sc` ← ωS(u`, b`) . Perform coarse smoothing
if ` > `min then

b`−1 ← R`−1
` r̂`

sf`−1 ← I(sf` + sc`)
end if

end function

Similarly, a full approximation storage (e.g. HTMG) sweep can not straightforwardly

be realised within a single DFS grid sweep [32]: The residual computation propagates

information bottom-up, the corrections propagate information top-down, and the

final injection propagates information bottom-up again. This yields a cycle of causal

dependencies. Additive cycle’s smoothing steps are thus offset by half a grid sweep

again: Each grid sweep, i.e. DFS traversal, evaluates two mat-vecs—of FAS, of the

hierarchical transformation multigrid—but does not perform the actual updates.

Instead, correction quantities–for fine grid correction, coarse grid corrections and

local corrections—are bookmarked as additional attributes within the vertices while

the grid traversal backtracks, i.e. returns from the fine grids to the coarser ones. Their

impact is added to the solution throughout the downstepping of the subsequent tree

sweep. Here, the prolongation can also be evaluated. Restriction of the residual to

the auxiliary right-hand side and hierarchical residual continue to be the last action

46 Chapter 3. Motivation and Related Work

on the vertices at the end of the sweep when variables are last written/accessed.

These plug into a recursive function’s backtracking, all right-hand sides are thus

accumulated from finer grid levels by the final time a vertex is touched through a

multiscale grid traversal. All updates are computed but not applied. Only one tree

traversal is required per V -Cycle (plus one kick-off traversal). The helper variables

pick up on ideas behind pipelining and are a direct translation of optimisation

techniques proposed by Reps and Weinzierl. Per traversal, each unknown is read

into memory/caches only once. It is a “single-touch” implementation. The exact

steps for this are explicitly shown in Algorithm 4 (this is reprint of the algorithm

from [32] shown for clarity).

Chapter 4

Lazy Stencil Integration

In the preceding chapter, we laid out the groundwork and the existing work that

our ideas build upon. Now we move onto the first of our novel ideas. We introduce

our method of asynchronous equation construction—this is a method of integrating

fine grid stencils using a lazy evaluation. The computation of the exact—“true”—

stencil is delayed until later in the solve than with conventional assembly and we

use initial approximations of the stencil in early solver iterations. In this chapter

we explain how we can delay the equation construction without also delaying the

multigrid solve. We begin this chapter by explaining how to construct multigrid

equation assembly as a series of sequential operations—this is then further broken

down so the computation of an individual stencil is the result of an iterative series of

parallelisable tasks. Latter parts of the chapter give high concept pitches of how our

ideas can integrate with different aspects of a multigrid cycle. The general theory is

covered in this chapter but not our implementation. A detailed explanation of our

target implementation is instead given in Chapter 6.

The following chapter is modified from text that was previously published in [2], [3]. The
introductory covering of terminology (Section 4.1) and remarks on dynamic adaptivity (Section 4.8)
are modified from the earlier paper—“Lazy Stencil Integration in Multigrid Algorithms”. The
intermediate sections (Section 4.3-4.7)—where we iteratively construct what we mean by an adapt-
ive stencil integration—and the terminology section are edited from the latter paper—“Delayed
approximate matrix assembly in multigrid with dynamic precisions”.

48 Chapter 4. Lazy Stencil Integration

4.1 Outline

Solving the matrix equation Ax = b is costly for many reasons. Tackling a problem

across multiple scales is a seminal idea to reduce the cost—solvers that implement

this principle can thus yield optimal complexity for some problems. Optimality here,

however, refers exclusively to the solve process. The setup for such solves is still

not provided for free, as the assembly process for all the required data structures is

non-trivial. We have to numerically integrate all stencils on the fine grid in order

to construct the matrix equation. For complex equations, such as those with non-

constant material parameter ε, this numerical integration is a complex sequence of

operations and therefore costly. Some multigrid implementations require the coarse

grid spaces themselves to be computed in the assembly process. All multigrid imple-

mentations, however, require a coarse grid assembly phase, i.e. construction of coarse

grid stencils and intergrid transfer operators for all coarse grid levels in the hierarchy.

Even though we work in a best case scenario—we use space-trees which define a set

of coarse grids known a priori—we have to accept that the operator construction (as-

sembly) in robust multigrid makes up for a non-negligible part of the total run-time

[33]. Assembly is painful. It is the character of the assembly that complicates the

situation further: Often, we are constrained by memory characteristics, specifically

bandwidth and memory latency. Data from memory cannot be streamed to cores at

a rate that matches current processing speeds. Cores are therefore idle. As this gap

between compute power and memory bandwidth widens [34], the assembly becomes

harder and harder to scale.

A cheap method of constructing operators is to extract geometric information from

the underlying PDE. This use of geometric information leads to operator rediscret-

isation on the coarse grids and d-linear intergrid transfer operators, where d is the

dimension. Both choices reduce the assembly overhead. Rediscretisation is the pro-

cess of assembling coarse grid stencils using a discretisation process on the coarse

grid space. The coarse grid assembly process is therefore similar to assembly on the

4.1. Outline 49

Error at the fine resolution

Geometric restriction of
fine error to the coarse

Error introduced at discontinuity
as exact position not accurately
represented on coarse

No error at discontinuity

Figure 4.1: Top: Sample error on a fine grid. Bottom: The same
error is restricted to the coarse grid using geometric
operators. If the coarse grid exactly removed the coarse
representation of the error, it would introduce error on
the fine grid.

fine grid. Yet, the performance and robustness of rediscretised equations deteriorates

when we face non-constant ε [35], [40]. See Fig. 4.1, where error is geometrically

restricted to the coarse grid. If this error is exactly removed, it would introduce

error on the fine grid and cause oscillatory behaviour in fine grid solution values.

Therefore, an algebraic solver that uses the fine grid stencils to construct intergrid

transfer operators and the resultant coarse grid equations may become a requirement.

Typically, assembly refers to exclusively constructing the fine grid equations, how-

ever, as we construct Ritz-Galerkin operators for coarse grid equations, we expand

our use of the term to also include the construction of coarse grid operators and

intergrid transfer operators.

When constructing coarse grid equations, effective methods should take into account

the computational cost of assembly and the required storage. Geometric solvers can

require a minimal amount of storage because coarse grid operators are able to be

hard-coded. They require no additional fine grid information. This incurs additional

computational costs, however, as they must be recomputed each time they are

required. Recomputing coarse grid equations on-the-fly can become infeasible when

there are dramatic jumps in the fine grid material parameter. A coarse mesh will

therefore encapsulate more of these jumps, which further complicates the coarse grid

50 Chapter 4. Lazy Stencil Integration

assembly. Computing and then explicitly storing coarse grid equations and intergrid

transfer operators, as is usually the case for algebraic multigrid, can drastically

increase memory requirements. A hybridisation of algebraic and geometric multigrid

is a method of balancing these concerns—performing algebraic multigrid on the

coarser grid levels and geometric on the finer is one such example [73], [93]. These

concerns motivate our methodology.

4.2 Problem characteristics

We state the characteristics of multigrid as a series of operations, so we can explain

how we reduce the cost of implementing it. Classic multigrid, composed of a separate

construction and solve phase, can be read as a sequence of activities

(S ◦ . . . ◦ S) ◦ . . . ◦ A`−3 ◦ A`−2 ◦ A`−1 ◦ A(geo)
` (ε). (4.2.1)

S Multigrid smoother iteration across all levels

A` Generic assembly process for level `

A(geo)
` Geometric assembly process for level `

We start with the integration of a discretisation of (1.1) on a fine grid of mesh size

h identified by its level `. A(geo)
` yields the resulting discretisation matrix A`. This

is the assembly process in a finite element sense. We reiterate that the process

determines a stencil (3.1.2), i.e. integrates

∫
Ωh

ε (∇u,∇φ) dx =
∑
c∈Ωh

∫
c
ε (∇u,∇φ) dx,

for all cells in the mesh. It is a process based on the geometry. It incorporates

geometric information directly. The material ε directly enters the arising linear

equation system A`.

4.2. Problem characteristics 51

Definition 4.2.1. Task (fine grid): for a fine grid cell a task is defined as an

individual integration over an element in a finite element sense.

With a fine grid matrix to hand, or rather a method constructing this matrix, we

now detail the construction of the remaining multigrid operators. The coarse grid

equations could likewise be defined geometrically and also constructed via (numerical)

integration. Quite simply, A`−1 would be A(geo)
`−1 . The restriction and prolongation

operators, R and P , are also defined geometrically and can be computed on-the-fly.

Alternatively we can use an algebraic construction. This is a two-step process for

each level. Here, A is defined in a multigrid sense compared to A(geo) on the finest

grid, i.e. we assume that A is defined using Ritz-Galerkin: A`−1 = RA`P . A Ritz-

Galerkin assembly process requires the transfer operators to be constructed prior to

the construction of the coarse grid equation. For simplicity of our notation here, we

assume that all coarse grid meshes are known; the identification of coarse grid meshes

becomes a separate assembly step otherwise. This summarises the computations

that make up the assembly process for our multigrid algorithm. Each grid level

(sans the finest) requires three matrices—the coarse grid equation A` and the two

intergrid transfer operators R and P—to be constructed, and possibly stored.

Definition 4.2.2. Task (coarse grid): For a coarse grid cell a task is defined as any

individual process that computes the three element-wise coarse grid operators.

S` Multigrid smoother iteration on single grid level

Once all operators are set up, each multigrid cycle S decomposes into a series of

actions S` on specific grids. These actions are the smoothing steps. They can

be further broken down into sub-actions that operate on specific elements or local

regions of a grid. Depending on how we arrange and design these sub-actions, the

overall scheme denotes an additive or multiplicative cycle.

52 Chapter 4. Lazy Stencil Integration

A multigrid cycle is a series of actions that operate on grids in a designated order.

Different multigrid cycles run through the grid hierarchy, thus enacting these actions,

differently. In multiplicative this is serial; in additive this is parallel. For specific

grid levels in a two grid cycle, a multiplicative V (1, 1)-cycle in this notation becomes

S` · S`−1 · S` (the smoothing steps for all levels are handled sequentially), while an

additive cycle is S` + S`−1 (the smoothing steps for all levels are handled independ-

ently). While the number of resolution levels determines the length of the A sequence

as well as level updates, the solve itself is iterative: We therefore use the generic

symbol S, which summarises a whole multigrid solve (cycle), multiple times. The

total number of S applications is typically steered by the residual. We terminate

when the residual normalised by its initial value falls below a threshold, i.e. when

the error has been diminished by this factor.

Our work proposes a lazy element-wise assembly based on tasks: It starts from a

trivial integration of the weak formulation of (1.1) where we sample ε in the centre

of the cell once, to get the constant εc per cell. That is we initially approximate

the weak formulation as

∑
c∈Ωh

∫
c
ε (∇u,∇φ) dx =

∑
c∈Ωh

εc

∫
c
(∇u,∇φ) dx,

For n cells, the assembly generates n cell-wise tasks that each contribute to the

global assembly matrix. Each task is a low accuracy integration over that specific

cell. In parallel to the actual solve, we then improve the quadrature per stencil and

compute new stencil entries with better and better accuracy. With i being a subcell

within cell c, we now approximate the weak formulation as

∑
c∈Ωh

∫
c
ε (∇u,∇φ) dx =

∑
c∈Ωh

∑
i∈c

εi

∫
i
(∇u,∇φ) dx.

Each cell therefore spawns an iterative series of tasks. Whenever we need a stencil and

its next higher accuracy is not yet available, we continue with the old “low-accuracy”

one. It is a greedy process not delaying the solve. The assembly and smoothing steps

are interleaved and performed concurrently. As soon as two subsequent numerical

4.3. Numerical computation of stencils in a task language 53

integrations do not yield a large difference anymore, we stop the series of tasks for

this particular element. It is an adaptive process. As new stencils become available,

we restrict their influence to the next coarser level in the next multigrid cycle. It is

an iterative process where the algebraic coarse-grid computation and Ritz-Galerkin

construction incrementally push the operator information up the resolutions. The

operators ripple through the hierarchies.

4.3 Numerical computation of stencils in a task

language

We have given a high level overview of the activities within a multigrid solver, and

now we further break these down into our defined tasks that we reorder. We return

to our interpretation of multigrid operations as a series of actions upon grid levels:

S(DoF) specifically denotes an individual smoothing update of the multigrid algorithm

i.e. for one particular vertex/degree of freedom only; A(geo) is again a (geometric)

assembly task for a single element that is adjacent to the designated vertex/degree

of freedom. We omit the level indexing and work exclusively on the fine grid level

here.

A geometric, matrix-free implementation of multigrid then issues

S(DoF)◦ (A(geo) +A(geo) + . . .+A(geo))︸ ︷︷ ︸
2d assembly tasks for the 2d cells adjacent to one vertex

+S(DoF)◦(A(geo)+. . .+A(geo))+. . .

(4.3.1)

SDoF Individual smoothing update of the multigrid algorithm

as a series of tasks over the grid entries, i.e. the unknowns. All operators are to be

parameterised over the levels. As detailed in Section 3.3.2, our smoothers are applied

element-wise, so we do not perform 2d evaluations of each cell task A(geo). Instead,

we set up the element matrix once per iteration, and immediately feed its impact

on the surrounding u` values into the 2d residuals. The smoother S(DoF) then acts

54 Chapter 4. Lazy Stencil Integration

on the residuals. An assembly of the intergrid transfer operators is omitted here, as

for a wholly geometric implementation we know these operators and can hard-code

them. This hard-coding is achieved by repeated evaluation of the A(geo) task. If the

coarse grids are algebraic, such as our code’s use of BoxMG, then a similar splitting

into tasks must be constructed. However, we make no contribution there so do not

detail such a splitting, see related work for a reference implementation of BoxMG

on space-trees [33], [71].

This details what individual computation must be performed on each element and

now we state how we implement these operations. We exclusively work with an

element-wise assembly, where A(geo) computes the outcome of (3.1.2) over one cell

c. Equation (4.3.1) has 2d tasks—one task corresponding to each cell—that feed

into the same smoother. Each A(geo) assembly task can in turn feed into 2d S(DoF)

tasks—one for each vertex that is adjacent to the cell. It is convenient to evaluate

each cell operator once, feed it the 2d follow-up steps, and thus remove redundant

tasks. We stress the entire procedure remains inherently additive however.

There are two methods of constructing coarse grid equations; they can be computed

using rediscretisation—using geometric grid information—or algebraically—using

fine grid equations. We neglect to specify the coarsening procedure here. Coarsening

can be geometric or algebraic—our implementation uses geometric coarsening. We

explain how both can be viewed as a collection of subtasks—similarly to the work

we do on the fine grid.

With explicit geometric assembly, we run

(S ◦ . . . ◦ S) ◦
(
. . .+A(geo)

`−2 +A(geo)
`−1 +A(geo)

`

)
. (4.3.2)

In (4.3.2), the task symbol A(geo)
` is a supertask bundling the evaluation of all the

A(geo) tasks on level `. This formalism relies on the insight that we can read multigrid

cycles as iterations over one large equation system comprising of the fine grid and

all coarse grid equations, if we commit to a generating system [95]. The addition

in the assembly illustrates that submatrices within this large equation system can

4.3. Numerical computation of stencils in a task language 55

be constructed (assembled) concurrently, as the equations within individual cells

between levels are independent of each other.

With explicit algebraic assembly, we instead run

(S ◦ . . . ◦ S) ◦
(
. . .+A(alg)

`−2 +A(alg)
`−1 +A(geo)

`

)
. (4.3.3)

A(alg) Algebraic coarse grid assembly process

A(alg)
`−1 first constructs intergrid transfer prolongation P `

`−1 and restrictionR`−1
` between

this level and next finest. A true algebraic assembly process would also construct

the coarse grid space algebraically—we neglect this step and focus on geometric

coarsening. We therefore introduce k, to represent the increase of the mesh size

between levels; most literature uses k = 2 or k = 3. Our work—using the Peano

framework [42]—uses the latter. P `
`−1 and R`−1

` propagate a solution representation

from the (coarse) mesh with spacing kh (level `−1) to the (fine) grid with mesh size

h (level `) and back. Their construction—our work takes advantage of BoxMG [21],

[33]—takes the fine grid operator’s effective local null space into account. After that,

A(alg)
`−1 determines the matrix A`−1 = R`−1

` A`P
`
`−1 through the Ritz-Galerkin formula-

tion. A`−1 in total yields three matrices A`−1, R`−1
` and P `

`−1. These definitions are

recursive: A(alg)
`−2 is similarly defined in terms of A(alg)

`−1 .

If coarse grid equations are defined recursively, there exists a partial ordering between

grid levels—coarse grid equation construction tasks require relevant fine grid equation

construction tasks to have terminated. Specifically, due to our use of space-trees,

before a coarse grid equation can be computed for a coarse grid cell, fine grid

equations must already be computed for all kd child fine grid cells. This is a

constraint that must be considered in the implementation of subtasks.

We return to our handling of the fine grid equations and more specifically define the

subtasks.

Idea 1. Exact integration over finite elements is expensive. We instead initially

approximate this via a low accuracy numerical integration using piecewise constant

56 Chapter 4. Lazy Stencil Integration

quadratures of the material parameter ε. This approximation can subsequently be

improved with higher accuracy integrations.

To make a finite element discretisation consistent, the assembly A(geo) has to evaluate

(3.1.2) over all cells consistently, i.e. in the same way for all of a cell’s adjacent

vertices/stencils. This is trivial for constant ε, as we can extract weights and ε from

the integral and integrate over the remaining shape functions analytically. That

is, if we know ε within a vertex, we can precompute (3.1.2) for ε = 1 and scale it

on demand. If in (3.1.2) ε 6= const, the computation is less straightforward and

typically has to be computed numerically. For this, one option is to approximate ε.

A polynomial approximation makes limited sense, as we are particularly interested

in sharp ε transitions (material parameter jumps). Higher order polynomials would

induce oscillations. We can, however, approximate ε as a series of constant values,

i.e. we subdivide each cell into a Cartesian, equidistant subgrid with nd volumes.

Per volume, we assume ε to be constant.

For n = 1, such a subcell integration is equivalent to sampling ε once per cell

centre (Fig. 4.3). Our ideas work with any numerical integration scheme acting

upon the elements; however, we stick to our piecewise constant approximation of ε

for simplicity. We stick to the simplest method of numerical integration as we do

not contribute new ideas to the quality of numerical integrations. The numerical

integration can be expensive—not due to the arithmetic load but due to the fact that

ε lookups might be memory-access intense and thus slow—which strengthens the

case for an element-wise realisation of the assembly, i.e. it is better to make A(geo)

act per cell and feed into the 2d adjacent vertices rather than computing (3.1.2) per

S(DoF) invocation. The latter option would effectively integrate (3.1.2) 2d times.

If material parameters are exactly aligned with the cells, i.e. the jumps were aligned

with cell faces, then a single sampling point per cell immediately gives an accurate

stencil. However, the alignment of the cell geometry with the material parameter

dictates the number of sampling points required to accurately capture the material

4.3. Numerical computation of stencils in a task language 57

Figure 4.2: An example material parameter with discontinuity part-
way through a cell for a one-dimensional setup. The
blue dotted line represents the material parameter and
red dots sampling points. Top: The true material para-
meter and accurate stencils integrated for two vertices.
Middle: Initial stencils used by a solver—one mater-
ial point sampled per stencil giving inaccurate values.
Bottom: Subsequent stencils used by a solver—differing
number of points sampled per stencil.

58 Chapter 4. Lazy Stencil Integration

Figure 4.3: Exact material parameter within a cell (left) and a split-
ting of the material parameter into nd quadrants for
numerical integration (right).

parameter within the stencil. Rapidly changing material parameters require addi-

tional sampling points. We initially assume we can accurately represent the material

parameter with a single sampling point—full well knowing this is may not be the

case. An example discontinuous material parameter for a one-dimensional setup,

and corresponding stencils for two vertices next to the discontinuity, is shown in

Fig. 4.2. The first vertex, x0, is at x = 0.5, and the second , x1, at x = 1, while the

discontinuity is over the point x = 0.7, i.e. not at a vertex. Consistent finite element

stencils require consistent and accurate handling of the material parameter. Initial

integrations only sample material parameters at the vertices. This is inaccurate—

stencils are consistent but will give inaccurate solution values. Additional sampling

points are used in subsequent iterations, vertex x0 samples once per element centre

and x1 samples twice per element. This shows inconsistent representations due to

the differing sampling points, but the increasing accuracy from using additional

sampling points is clear.

A(geo)(n) Geometric assembly process for level ` with n sampling points

n number of subcells divisions in each dimension

We know that different ε distributions require different choices of n, therefore it is

convenient to parameterise the assembly tasks as A(geo)(n). A fast assembly—either

explicit or embedded into the solves—requires the evaluation of A(geo)(n) to be fast;

in particular as without explicit storage of the matrix, we evaluate each task once

per cycle, i.e. multiple times overall. Therefore, for fixed n, it is in the interest of

4.3. Numerical computation of stencils in a task language 59

the user to choose n as small as possible—A(geo)(n)’s workload is in O(nd)—yet still

reasonably accurate. Our current implementation averages the material parameter

over each cell in a numerical integration of the weak formulation. Greater accuracy

could be seen using a real homogenisation scheme, with the true Ritz-Galerkin

operator, or adaptive quadrature shapes within the integration region, but is out of

scope.

Figure 4.4: Task representation of early multigrid cycles with mul-
tilevel equation assembly performed a priori. Each
box corresponds to a task. We perform an initial as-
sembly phase, consisting of a series of level specific tasks.
On level `max we perform the set of stencil construc-
tion tasks A(geo)

`max
—one for each cell. We can then sub-

sequently and sequentially compute coarse grid stencils
A

(alg)
`max−1 using Ritz-Galerkin. Post-assembly we start

smoothing. We smooth all elements on the finest grid
level initially (and in parallel)—this is the set of S`max

tasks. We can then smooth the coarse grid `max−1 with
the smaller set of smoothing operations, S`max−1, there.
This recurses for additional coarse grids and repeats for
subsequent smoothing steps.

60 Chapter 4. Lazy Stencil Integration

Figure 4.5: Construction of our delayed assembly. We use the
same visual task representation and breakdown as in
(Fig. 4.4). That is, a box corresponds to either an as-
sembly or smoothing task acting upon a single cell. The
stencil integration A`max is broken down into iterative
substeps starting with a low-order approximation A(1)

`max .
We intermingle them with the earliest multigrid smooth-
ing steps. Some stencils require further, more accurate
integration A

(n)
`max . Each stencil update requires us to

recompute the algebraic coarse grid operators.

4.4 Delayed stencil integration

The classic assembly phase (4.3.2) determines all multigrid operators prior to the

(first) smoother application (Fig. 4.4). This is an expensive, initial step that delays

the start of the solve. Here, we propose a means of eliminating this for a “lazy”

alternative (Fig. 4.5). It is straightforward to implement a lazy implementation of

the assembly along the lines of lazy evaluation in functional programming languages.

Here, lazy denotes an on-demand evaluation of functions just before their result is

required. In the present case, this means that the local assembly matrix is computed

just prior to its first usage. The first time we access a cell during a smoother

application step, we assemble the local element-wise matrix. An element-wise matrix

is determined by either integrating (3.1.2) with an nd subgrid (the fine grid), or

4.4. Delayed stencil integration 61

by computing the multigrid stencils plus the intergrid transfer operators due to

the BoxMG/Ritz-Galerkin formulation (the coarse grid). The coarse grid assembly

A`−1, consisting of both the construction of the element-wise operators plus intergrid

transfer operator entries of R`−1
` and P `

`−1, is thus by definition already a series of

ready tasks. If a level ` is also a coarse grid then the equation on level ` − 1 is

computed recursively.

Idea 2. We do not perform an explicit, initial assembly phase. Instead we delay the

computations and obtain the result once the smoother iterations begin.

For multiplicative multigrid, this works naturally as we have a causal dependency

between levels. We visit them from fine to coarse. Consequently, all level operators

of level ` are available when we hit `− 1 for the first time. They have no incoming,

unresolved dependencies. They can be executed straight-away. This observation

holds for both geometric and algebraic multigrid operator variants. For additive

multigrid, on the other hand, this straightforward lazy stencil integration works if

and only if we stick to rediscretisation and geometric transfer operators. It breaks

down as we switch to algebraic operators, unless we prescribe the order that the

levels are traversed, i.e. unless we ensure that the traversal of level ` is complete

before we move to level `− 1. We can weaken this statement [32], [42] and enforce

that only those elements from level `+ 1 within the input of a chosen vertex’s local

P are ready. While this might be convenient for many codes, it eliminates some of

additive multigrid’s asynchronicity and thus one of its selling points.

With a lazy stencil integration, we can only utilise geometric coarse grid operators,

unless we accept that an access to a coarse grid stencil can trigger the lazy (on-

demand) evaluation of assembly steps on finer levels. We relax the assembly even

further. We weaken the information flow constraints within the assembly or the

accuracy demands on the fine grid operator. That is, we accept that fine grid

operators stem from a low-accuracy integration, or that coarse grid operators do

not yet hold appropriate Ritz-Galerkin data, even though we already use them.

62 Chapter 4. Lazy Stencil Integration

Lazy evaluation then is a particular flavour of a delayed operator assembly, where

missing information input is not tolerated but resolved on-demand. Lazy integration

delays the assembly and, hence, the synchronisation, but still adds it when results

are needed. Delayed integration in general, however, does not require us to wait

for all input and thus does not stick to the precise mathematical rules. We drop

synchronisation.

4.5 Adaptive stencil integration

Idea 3. We minimise the number of subcells used in a quadrature on a per element

basis. It is an adaptive integration.

If a proper global choice of n for the fine grid (as well as for the rediscretisation if

we stick to geometric operators) is not known a priori, we can employ an adaptive

parameter selection:

Again, let A(geo)(n) denote the assembly of the local assembly matrix of one cell. For

the evaluation of (3.1.2), it is parameterised by a suitable n ∈ N, 1 < n < N i.e. by

the numerical subsampling factor for the cell. Here N is a numerical subsampling

factor that gives machine precision. That is, for an adaptive stencil integration, the

current state of the integration per cell is determined by n. An initial low value for n

generates a quick/cheap local element matrix that a cell can feed into the smoother.

More accurate element matrices using successively larger values of n are computed,

until an element matrix is deemed sufficiently accurate. These intermediary element

matrices are used by the earlier smoothing updates: a smoother always uses the

most accurate element matrix that it has access to. Different cells terminate this

process independently. An effective termination criterion is when an element-wise

norm for the local matrix is below a constant C.

Idea 4. Early iterations of a smoother use less accurate matrix representations.

4.5. Adaptive stencil integration 63

Start

Compute
initial stencil

Set n=1
Deploy new
integration

Continue
traversal Increment n

Deploy new
integration

Continue
traversal

Continue
traversal

Update
local stencil

First iteration

Stencil accurate
enough

Existing matrix not
accurate enough

Continue
traversal

New stencil
accurate
enough

New stencil
not accurate
enough

Figure 4.6: Illustrative diagram of how we perform the lazy integ-
ration. All cells carry a n that holds the number of
samples per dimension of the quadrature.

Following the flow chart in Fig. 4.6 there are three state possibilities for a cell when

adaptively integrating the element matrix:

1. There is no existing element-wise matrix. In this case, set the initial value of

n← 1 and evaluate (3.1.2) with a single sampling point in the centre of the cell.

The resulting element matrix is stored to be used for subsequent calculations

until future tasks for this task are evaluated.

2. The existing element-wise matrix is accurate enough. We continue to work

with it.

3. There is an existing element matrix but it is of insufficient accuracy. The task

evaluates (3.1.2) over the cell of interest. It uses a (n+1)d subgrid to discretise

ε. This new matrix is A(new). The previous matrix A(old) is then compared to

A(new) to determine if the integration is of sufficient accuracy. The sequence

terminates if
‖A(new) − A(old)‖
‖A(old)‖

< C.

for constant C. The choice of C should be in line with discretisation accuracy,

i.e. A(new)u ≈ A(old)u to within O(h) for our setup. For simple setups a suitable

C can be chosen empirically. If this does not hold then n is incremented and

64 Chapter 4. Lazy Stencil Integration

future updates are computed when this cell is next accessed.

It is obvious that parameterisations of P `+1
` and R`

`+1 make limited sense. However,

BoxMG and algebraic methods make operators depend directly on the operator

on level ` + 1. This dependency propagates all the way through to the fine grid.

Therefore, both P and R will depend indirectly on the n choice of the algorithm for

algebraic implementations.

We assume that n ← n + 1 for successive integrations. Therefore, after at most

nmax + (`max − 1) steps all local equation systems are valid—as long as the grid

is stationary, and we tackle a linear problem. nmax is the maximum integration

accuracy over all cells that is required eventually. It is not known a priori. The

subsequent (`max− 1) correspond to the construction of the (`max− 1) Ritz-Galerkin

coarse grid equations. More aggressive incrementing of n can reduce the total number

of iterations, but increases the cost of each integration and can introduce redundant

integrations.

The scheme describes an adaptive quadrature rule, where the accuracy of the integ-

rator is cell-dependent and determined by an iterative process. This iterative process

terminates as soon as a further increase of the accuracy does not yield significantly

improved stencils anymore.

4.6 Asynchronous and anarchic stencil

integration

With the iterative scheme at hand, it is straightforward to construct an asynchronous

stencil integration, where the actual integration is deployed to a task of its own and

runs in parallel to the solver’s iterations (Fig. 4.5). We simply deploy the previously

defined tasks in parallel with existing work and use the updated matrices as and

when they drop in. The specifics of how this is implemented is covered in Chapter 6.

4.6. Asynchronous and anarchic stencil integration 65

Algorithm 5 Adaptive integration algorithm. Called when a cell is encountererd
for the first time during a grid traversal. n is the number of sampling points for
numerical integration. IntegrateStencil(n) represents the act of the numerical
integration up to accuracy n.
function greedy-integration

if First iteration then
n← 1
IntegrateStencil(n)
Wait until initial integration terminates
LocalStencil ← UpdatedStencil
n← 2
IntegrateStencil(n)

else if Stencil sufficiently accurate then
Take no action

else
if IntegrationTerminated then

if UpdatedStencil sufficiently similar to LocalStencil then
Stencil is sufficiently accurate

else
n← n+ 1
IntegrateStencil(n)

end if
LocalStencil ← UpdatedStencil
IntegrationTerminated ← False

end if
end if

end function

Idea 5. We do not require synchronisation between multigrid iterations and adaptive

integration iterations. They are performed independently.

This is shown in Alg. 5. The key difference between the synchronous and asyn-

chronous versions of the algorithm is the check “integration terminated”. In the

synchronous version, the integrations are performed immediately and the result

stored. There is no need to check if they’ve been performed. Obviously this is not

the case when they’re computed in parallel.

With an anarchic stencil integration, we have no control over when and with which

integration accuracy we use. In either case, fine grid stencil integrations are deployed

to the background and once they drop in, all affected coarse grid operators become

invalid in a Ritz-Galerkin sense.

66 Chapter 4. Lazy Stencil Integration

It is obvious that the iterative, delayed stencil integration can be applied to all levels

if we stick to rediscretisation. With algebraic operators, the technique applies only

to the finest grid level. If we use iterative stencil integration on coarser levels, we

have to control the termination criterion in (3) carefully: As the coarse equations are

only correction equations and are “only” solved up to a mesh-dependent accuracy

in classic multigrid terminology, it makes limited sense to choose the threshold C

there uniformly and small on all resolution levels, i.e. C is chosen dependent upon

the accuracy of the mesh/discretisation.

4.7 Vertical rippling

When working in a Ritz-Galerkin environment, possibly also with BoxMG, we can

either deploy the computation of the three arising coarse operators to background

tasks, too, or we can recompute these operators in each and every cycle. Given the

limited and deterministic computational load, the latter might be reasonable.

Idea 6. We give up on the idea of vertical synchronisation per multigrid iteration.

We use outdated coarse grid operators in multigrid cycles when the fine grid equations

change and update them in later iterations.

If the operators, however, are determined in the background, we can spawn only those

tasks that might actually yield changed operators. An analysed tree grammar [103]

formalises the requirements: If a matrix update changes the stencil associated with a

vertex v` which in turn is in the image of a stencil P `
`−1 associated with a vertex v`−1,

then the 2d adjacent cells of v`−1 should be flagged. In the next multigrid cycle, all

flagged cells’ A`−1, P, R computations should be repeated, taking the new fine grid

operator A` into account. The same level-by-level information propagation—shown

in Fig. 4.7—formalises how information propagates through both space and mesh

resolutions, if we recompute all three operators in each and every multigrid cycle.

4.8. Full multigrid cycles and dynamic adaptivity 67

Figure 4.7: Diagrammatic view of computing coarse grid equations
prior to a solver iteration (left) compared to plugging
into a grid traversal of the actual solver.

If we employ dynamically adaptive mesh refinement, the mesh coarsening or refine-

ment induces changes of operators. As a result, they implicitly trigger coarse grid

operator updates. A similar argument holds for nonlinear setups: If the nonlinear

component induces signification changes in the fine grid operator—for many oper-

ators, this might be a localised effect, i.e. the fine grid equation system might not

change everywhere—we have to change a set of affected coarse grid operators.

In an additive setting, delayed operator updates ripple through the equation system,

i.e. the updates propagate upwards by at most one grid level per cycle. Coarse grid

operators on a level ` lag behind the fine grid operators on level `max by `max − `

iterations.

4.8 Full multigrid cycles and dynamic adaptivity

Full multigrid, and any solver that employs adaptive mesh refinement for that matter,

undergo repeated explicit assembly phases due to the coarse grid operator updates.

The quality of the discretisation therefore improves after these assembly phases, but

the overall cost of assembly is worsened. Our adaptive integration reduces this cost.

Full multigrid, extends the fine-to-coarse idea of multigrid with a coarse-to-fine

68 Chapter 4. Lazy Stencil Integration

flavour: We start with a rather coarse fine grid mesh and run our multigrid solve

there. This initial mesh then is “unfolded” into the next finer resolution and we

continue. As the unfolding is combined with a (higher order) prolongation—the

higher order can be dropped if we are willing to invest additional smoothing steps—

a solve on a level ` − 1 serves as initial guess to the solve on level `. We solve

. . . ◦ A` ◦ A`+1 ◦ A(geo)
`+2 (ε) ◦ U ◦ S ◦ A` ◦ A(geo)

`+1 (ε) ◦ U ◦ S ◦ A(geo)
` (ε)

U mesh refinement operator

where U is the mesh unfolding operator. The term “unfolding” technically describes

mesh refinement. Whenever we equip our multigrid solver with dynamic adaptivity,

i.e. the solver may add more degrees of freedom to the mesh throughout the solve,

we technically inject (localised) U operators into the mesh and must trigger some

reassembly. From an implementation point of view, full multigrid cycles and dynamic

adaptivity share common properties. All properties, including full multigrid mesh

unfolding, thus hold for additive and multiplicative as well as both geometric and

algebraic multigrid.

This iterative unfolding of the mesh triggers an assembly phase each time any

component in the mesh changes. In multigrid, this is not just a local update, but

requires updates to all levels in the mesh hierarchy. Vertical rippling eliminates the

assembly phase as a discrete step, instead intermingling the assembly phase with

the solve phase. Coarse grid equations are assumed not to change dramatically after

a refinement. The old matrix equations are treated as suitable approximations of

the new and used in coarse grid smoothing steps until the recomputed coarse grid

equations “ripple” up to that level. This effectively eliminates the synchronisation of

grid equations across levels after a refinement and reduces the delay before solution

updates are produced again after a refinement.

4.9. Incorporating other/non-Jacobi smoothers 69

4.9 Incorporating other/non-Jacobi smoothers

At first glance, there is no apparent link between the choice of smoother and our

delayed method of stencil assembly. Any choice of smoother would appear to be

equally viable, as from an implementation perspective any existing smoother could

take advantage of delayed asynchronous assembly the same way it would an a priori

assembly. From the solver’s point of view, it merely accesses a representation of the

local operator and constructs the smoother using that data. The delayed assembly

process would provide local operators through the same interface, but the operators

would be constructed totally differently in the backend. This pattern of access would

work well with a smoother such as Red-Black Gauss-Seidel, which is already highly

parallel. However, upon closer inspection there may be an underlying connection

that must be taken into account during the implementation.

Our current smoother of choice is a simple Jacobi smoother. This is slow to converge,

and therefore unlikely to be impacted by errors in the representation of a local

operator. The final, accurate, integration is more likely to be ready by the time a

Jacobi smoother has converged to a final solution than with a smoother that converges

more quickly. Jacobi is a simple smoother—it only uses the diagonal of a matrix

equation being solved—so is also more forgiving of errors in the integration operator.

Smoothers that converge faster, such as Red-Black Gauss-Seidel or Successive Over

Relaxation, could converge to a solution that corresponds to an incorrect operator

representation, due to the final integration not being assembled in time. This would

have to be accounted for in the implementation. For example, higher priorities could

be assigned to integration tasks, so that they’re completed in earlier iterations or a

more aggressive adaptive scheme could be employed so fewer numerical integrations

iterations are required. Furthermore, a more powerful smoother is more sensitive

to errors in the representation of the operator than a less powerful one. A line

smoother, for example, acts on an entire face within the mesh, and solves for that

full face. This may be severely impacted by inaccurate solution representation over

70 Chapter 4. Lazy Stencil Integration

the face. Inconsistent representations between fine grid stencils may result in a

matrix that is singular, such smoothers are more sensitive to errors in the operator

representation. Therefore additional checks may be required on stencil quality—so

that local matrices do not become singular and also produce solutions of reasonable

quality.

4.10 Relationship to other notions of

asynchronicity

Another scheme that introduces asynchronous principles to multigrid is the work

of Chow and Wolfson-Pou [90], as discussed in Section 3.2.6. Their asynchronous

multigrid uses the idea of asynchronous smoothers—smoothing is performed by

smoother threads that act totally independently of other smoother steps/threads.

These smoothers may produce corrections at differing rates, that is, they become

out of sync. Certain smoother threads, and the corresponding topological regions or

grid levels, may therefore produce updates less frequently than others, or operate

on “outdated” solution information. Asynchronous multigrid algorithms are built on

top of additive multigrid—the alternative, multiplicative multigrid, would require

synchronisation between grid levels for pre- and postsmoothing, which is at odds

with the asynchronous principle.

Our work uses two notions of asynchronicity that differ from theirs: asynchronous

grid construction, and asynchronous processing of grids. We use an asynchronous

method of grid construction, rather than smoother application—updated forms of

the fine grid equations drop in anarchically but all corrections from smoothers are

implicitly synchronised between correction steps. Therefore, adaptive stencil integ-

ration/asynchronous grid construction is another flavour of asynchronous ideas. It

is orthogonal to asynchronous multigrid. As we use an element-wise smoother ap-

plication, this would allow corrections to be computed asynchronously too; however,

4.10. Relationship to other notions of asynchronicity 71

the application of corrections and restriction of residuals to coarse equations forces

a degree of synchronisation. Chow and Wolfson-Pou refer to this application of

asynchronous ideas as “asynchronous task-based processing of grids” and emphasise

that it differs from their main application of asynchronicity.

Both our asynchronous ideas and theirs can be seen to produce “inaccurate” residuals.

Our residuals do not use synchronised coarse grid equations and intergrid transfer

operators—residuals that coarse grids work with are not “true” residuals. The

work of Chow and Wolfson-Pou may produce inaccurate residuals due to smoothing

steps not being synchronised—subpartitions may not receive corrections from other

subpartitions. In this case, local corrections will not enter the right-hand side of

other correction equations.

There is no fundamental reason why lazy and adaptive stencil integration and asyn-

chronous multigrid could not be used within the same solver. Asynchronous smooth-

ers create threads that smooth equations independently and our adaptive integration

tasks could readily feed updated stencils into those threads. Smoothers could inde-

pendently handle the delayed construction and iterative improvement of local matrix

equations. Combining these two techniques would negate another synchronisation

step within multigrid. Chow and Wolfson-Pou have also observed improved robust-

ness due to the introduction of asynchronicity. Our techniques could see similar

improvements if we merged both ideas.

Chapter 5

Additive Damping Scheme

In the previous chapter we covered how we improve time-to-solution of a multigrid

solver by pipelining the assembly and thus negating some of the algorithmic latency.

Assembly is only part of the story. Overall time-to-solution is also effected by the

multigrid cycles themselves. We provide further improvements through the multigrid

cycles—we introduce a damping parameter that stabilises additive multigrid to

reduce the overall number of iterations required for convergence. The construction

and theory behind that damping parameter is the focus of this chapter. We start by

giving an outlook on why additive multigrid exhibits instabilities. Then throughout

the chapter build up to an overview of the theory behind our choice of damping

parameter. We outline some choices that govern the implementation here but do

not cover our own implementation—that is the subject of Chapter 6.

5.1 An additive multigrid solver

The generalised matrix representation of additive multigrid (3.2.1) reads as

u`max ← u`max +
 `max∑
`=`min

ωadd(`)P `max
` M−1

` R`
`max

 (b`max − A`maxu`max) ,

The following chapter is modified from text that was previously published in [1]—“Stabilised
Asynchronous Fast Adaptive Composite Multigrid using Additive Damping”. The text has been
expanded throughout and the Section 5.4 and Section 5.7 are new.

5.1. An additive multigrid solver 73

h

2h

4h

8h

Figure 5.1: Representation of an Additive “V -Cycle” (transfer of
data between grids). The residual is computed on the
finest grid then this same residual is restricted to all
grid levels.

whereM` is an approximation to A`. We use the Jacobi smootherM−1
` = diag−1(A`)

on all grid levels `. No alternative (direct) solver or update scheme is employed on

any level. The prolongation symbol P `max
` takes the solution on a particular level `

and projects it onto the finest level `max. The restriction symbol R`
`max works in the

opposite direction and is usually the transpose of P `max
` . In practice, we construct

this operator from repeated application of the previously introduced P `+1
` transfer

operators. Although the notation implies this is a single transfer between levels, it

is performed a single grid level at a time. Restriction, again, works the other way

round, i.e. projects from finer to coarser meshes. Ritz-Galerkin multigrid [13] finally

yields A` = R`
`+1A`+1P

`+1
` for ` < `max.

For an `-independent, constant ωadd(`) ∈ (0, 1], additive multigrid tends to become

unstable once `max − `min becomes large [14], [15], [32]: If the fine grid residual

b`max − A`maxu`max is homogeneously distributed then there are no high frequency

errors for the fine grid smoother to eliminate. Instead it will attempt to eliminate low

frequency error modii that the coarse grid is better suited at eliminating—effectively

attempting to reduce the same error multiple times. The coarse grid operator

therefore pushes the solution in the same direction as the fine. Summation of all

level contributions therefore over-relaxes and moves the solution too aggressively in

this direction. This effectively removes “too much” of the error. If the residuals

are not homogeneously distributed (fine grid error is not smooth), the restricted

residuals from the fine grid would “average out” the high frequency detail. The

fine grid and the coarse grid would therefore be solving for different error modii.

74 Chapter 5. Additive Damping Scheme

Error at the fine resolution Restricted Residual on
the coarse resolution

Error at the fine resolution

Homogenously distributed

Non-homogenously distributed

Restricted Residual on
the coarse resolution

Figure 5.2: Top: Non-homogeneously distributed error on the fine
grid. The fine detail is not apparent on the coarse.
Bottom: Homogeneously distributed error on the fine
grid. When represented on the coarse it captures the
same detail.

This is illustrated in Fig. 5.2—where a comparison is shown between homogeneous

and non-homogeneous fine grid errors. Homogeneous fine grid error distributions

can accurately be represented on a coarse grid, but this is not the case for non-

homogeneous distributions where the fine detail cannot always be captured. A

straightforward fix to overcorrection is exponential damping ωadd(`) = ω̂`max−`
add with

a fixed ω̂add ∈ (0, 1). Here the exponent corresponds to an actual exponent—not

a superscript. If an adaptive mesh is used, `max − ` is ill-suited as there is no

global `max hosting the solution. This is illustrated in the bottom right of Fig. 5.1.

Such exponential damping, while robust, struggles to track global solution effects

efficiently once many mesh levels are used: The coarsest levels make close to no

contribution to the solution. Previous work by Reps and Weinzierl [32] instead

made `max a per-vertex property—therefore the relaxation parameter on one level is

position dependent. A per-vertex damping parameter also means an additive scheme

is able to both handle a changing number of mesh levels more readily and larger

jumps in a changing material parameter. Their damping parameter is derived from

5.1. An additive multigrid solver 75

h

2h

4h

8h

Figure 5.3: Representation of possible errors removed via an multi-
plicative smoothing cycle with presmoothing and post-
smoothing steps. Presmoothing prevents the next
coarser level from producing corrections for the same
error as the finer level. Postsmoothing prevents projec-
ted corrections from introducing new errors on the fine
grid.

h

2h

4h

8h

Figure 5.4: Representation of a multiplicative V -Cycle with no pres-
moothing steps. The finest grid smooths the error which
is then restricted to the coarsest grid level and sequen-
tially smoothed on increasingly finer grids.

a tree grammar [103].

Multiplicative multigrid is more robust than additive multigrid by construction.

Multiplicative multigrid does not make one residual feed into all level updates in

one rush, but updates the levels one after another (see Fig. 5.3). It starts with

the finest level. Before it transitions from a fine level to the next coarsest level, it

runs some approximate solves (smoothing steps) on the current level to yield a new

residual. We may assume that the error represented by this residual is smooth. Yet,

the representation becomes rough again on the next level, where we become able

to smooth it efficiently again. Cascades of smoothers act on cascades of frequency

bands. Multiplicative methods are characterised by the number of the pre- and

postsmoother steps µpre and µpost, i.e. the number of relaxation steps before we move

to the next coarser level (pre) or next finer level (post), respectively.

We restrict our focus here to additive schemes which only use a single smoothing step

76 Chapter 5. Additive Damping Scheme

per-level—this follows from a review of additive and multiplicative multigrid [14],

where additional smoothing steps are not shown to provide a clear improvement to

the rate of convergence. The multiplicative multigrid solve closest to an additive

scheme with only one smoothing application is a V (0, µpost)-cycle, i.e. a scheme

without any presmoothing and µpost postsmoothing steps (see Fig. 5.4). Different to

additive multigrid, in a V (0, µpost)-cycle, the effect of smoothing on a level ` here

does feed into the subsequent smoothing on ` + 1. Since µpre = 0 yields no classic

multiplicative scheme—the resulting solver does not smooth prior to the coarsening—

we conclude that the V (µpre = 1, 0)-cycle thus is the (robust) multiplicative scheme

most similar to an additive scheme. The multiplicative V (1, 0) two-grid scheme with

exact coarse grid solve reads

u` ← P `
`−1A

−1
`−1R

`−1
` (b` − A`

[
u` + ω`M

−1
` (b` − A`u`)

]
)

+
[
u` + ω`M

−1
` (b` − A`u`)

]
. (5.1.1)

Next, we compare this multiplicative representation directly to the additive repres-

entation.

5.2 An additively damped additive multigrid

solver

Both additive and multiplicative multigrid sum up all the levels’ corrections. Mul-

tiplicative multigrid is more stable than additive—it does not overshoot—as each

level eliminates error modes tied to its resolution before other levels begin their

respective resolution and tackle their error modes. In practice, we cannot totally

separate error modes, and we cannot assume that a correction on level ` does not

introduce a new error on level `+ 1. Multigrid solvers thus often use postsmoothing.

Once we ignore this multiplicative lesson, the simplest class of multiplicative solvers

is V (µpre = 1, 0).

5.2. An additively damped additive multigrid solver 77

We start with a recast of the multiplicative V (1, 0) two-grid cycle (5.1.1) into an

additive formulation. Our objective is to quantify additive multigrid’s over-correction

relative to its multiplicative cousin. For this, we compare the multiplicative two-grid

scheme, denoted u`,mult, to the two level additive scheme with an exact solve on the

coarse level

u
(n+1)
`,add = P `

`−1A
−1
`−1R

`−1
` (b` − A`u(n)

`) +
[
u

(n)
` + ω`M

−1
` (b` − A`u(n)

`)
]
.

The difference is

u
(n+1)
`,mult − u

(n+1)
`,add = P `

`−1A
−1
`−1R

`−1
` (b` − A`

[
u

(n)
` + ω`M

−1
` (b` − A`u(n)

`)
]
)

−P `
`−1A

−1
`−1R

`−1
` (b` − A`u(n)

`)

= −P `
`−1A

−1
`−1R

`−1
` A`ω`M

−1
` (b` − A`u(n)

`). (5.2.1)

The superscripts (n) denotes old iterates of a vector, whereas (n+1) denotes new

iterates respectively. We continue to omit it from here where possible.

Starting from the additive rewrite of the V (1, 0) multiplicative two-level scheme, we

express multiplicative multigrid as an additive scheme. Additive multigrid tends to

more readily show improved performance on a large scale parallel implementation

than multiplicative multigrid. There is no close-to-serial coarse grid solve. There

is no coarse grid bottleneck in an Amdahl sense. Multiplicative multigrid, however,

tends to converge faster and is more robust. Different to existing approaches such as

mult-additive, our approach does not aim to achieve the exact convergence rate of

multiplicative multigrid. Instead, we aim to mimic the robustness of multiplicative

multigrid in an additive regime—i. e. allow additive multigrid to successfully converge

across a wider range of setups. Our agenda starts from one main idea:

Idea 7. We add an additional one-level term to our additive scheme which com-

pensates for additives overly aggressive updates compared to multiplicative V (1, 0)

multigrid.

78 Chapter 5. Additive Damping Scheme

This idea describes the rationale behind (5.2.1), where we stick to a two-grid form-

alism. Our strategy next is to find an approximation to

−P `
`−1A

−1
`−1R

`−1
` A`ω`M

−1
` (b` − A`u`) (5.2.2)

from (5.2.1) such that we obtain a modified additive two-grid scheme which, on the

one hand, mimics multiplicative stability and, on the other hand, is cheap. For this,

we read the difference term as an auxiliary solve.

Idea 8. We approximate the auxiliary term (5.2.2) with a single smoothing step.

The approach yields a per-level correction

−P `
`−1ω`−1M̃

−1
`−1R

`−1
` A`ω`M

−1
` (b` − A`u`). (5.2.3)

We use the tilde to denote the auxiliary solves. Following on from Idea 7, this is a

per-level correction: When we re-generalise the scheme from two grids to multigrid

(by a recursive expansion of A−1
`−1 within the original additive formulation), we do not

further expand the correction (5.2.2) or (5.2.3). The recursive expansion is the key

idea behind multigrid and where it gets its power—we ignore it for the damping term.

This implies another error, which we accept in return for a simplistic correction term

without additional synchronisation or data flow between levels.

Idea 9. The damping runs asynchronously to the actual solve. It is another additive

term computed concurrently to each correction equation.

Using A`ω`M
−1
` adds a sequential ingredient to the damping term. A fine grid

solve must be finished before it can enter the auxiliary equation. This reduces con-

currency. Therefore, we propose to merge this preamble smoothing step into the

restriction. This is similar to smoothed aggregation which typically uses a simple ag-

gregation/restriction operator, and then improves it by applying a smoother. Rather

than enriching a simple tentative transfer operator, we differ and instead use a more

powerful initial transfer and are merely interested in anticipating an additional fine

5.2. An additively damped additive multigrid solver 79

grid smoothing step. The idea is also similar to mult-additive [89], which constructs

intergrid transfer operators that pick up multiplicative pre- or postsmoothing be-

haviour. Mult-additive applies this to both restriction and prolongation operators

to the coarse grid level—we instead only apply the idea to a single operator to an

auxiliary grid level. We apply the smoothed operator concept to the restriction

R̃`−1
` = ωR`−1

` AM−1
` , and end up with a wholly additive correction term

− ω̃P `
`−1M̃

−1
`−1R̃

`−1
` , (5.2.4)

with its own damping weight, ω̃. This additional asynchronity is where we diverge

from the path set by AFACx—the auxiliary grid space in AFACx must be handled

prior to the original correction grid space it was built over. We merge the additional

smoothing step with the restriction and therefore do not impose this requirement.

Within our scheme, all grid levels—both auxiliary and original correction levels—can

be processed in arbitrary order.

In algebraic schemes coarse grid identification and set up is a significant part of

the overall assembly process and delays time-to-solution. The coarse grids also

introduce additional memory overhead that can limit the performance of a solver.

We effectively have to construct two coarse grid hierarchies, due to the addition of

our auxiliary coarse grids, which could introduce redundant work if we explicitly

construct two hierarchies. Minimising the costs of coarse grid assembly motivates

our next idea.

Idea 10. We geometrically identify the auxiliary coarse grid levels with the actual

multilevel grid hierarchy. All resolution levels can integrate into a single space-tree.

M̃` and Ã` are auxiliary operators but act on mesh levels which we hold anyway. With

a defined, multilevel hierarchy we can rewrite the exact matrix inversion in (5.2.1)

as a multilevel smoother iteration with each level incorporating its own additional

damping term.

80 Chapter 5. Additive Damping Scheme

We therefore unfold the two-grid scheme into

u`max ← u`max +
 `max∑
`=`min

ωadd(`)P `max
` M−1

` R`
`max

 (b`max − A`maxu`max)

−

 `max∑
`=`min

ω̃add(`)P `max
` M̃−1

` R̃`
`max

 (b`max − A`maxu`max) ,(5.2.5)

where we set, without loss of generality, M−1
`min = 0. This assumes that no level

coarser than `min hosts any degree of freedom.

Algorithms in standard AFAC literature present all levels as correction levels. That is,

a global residual is computed on the composite grid and then restricted to construct

the right-hand side of error equations on all grid resolutions. This includes the finest

grid level. We instead use standard multigrid convention and directly smooth the

finest grid level (Algorithms 6 and 7). We only restrict the residual to coarse grid

levels.

These four ideas mean we see three key benefits: We stick to a geometric grid

hierarchy and then also reuse this hierarchy for additional equation terms. We stick

to an additive paradigm and then also make additional equation terms additive. We

stick to a geometric-algebraic mindset.

5.3 Three damping operator choices

It is obvious that the effectiveness of the approach depends on an efficient and

accurate approximation of the inverse within (5.2.4). We propose three variants.

All three are based upon the assumption that smoothed intergrid transfer operators

yield better operators than standard bi- and trilinear operators (and obviously naive

injection or piecewise constant interpolation) [104]–[106]. Simple geometric transfer

operators fail to capture complex solution behaviour [107]–[109] for non-trivial ε

choices in (1.1).

For the three variants we introduce two modified, i.e. smoothed, intergrid transfer

5.3. Three damping operator choices 81

Algorithm 6 Blueprint of one cycle of an adAFAC-Jac iteration without AMR.
R`
`max or P `max

` denote the respective restriction or prolongation, between finest grid
level and an arbitrary grid level. R̃`

`max is the application of R`+1
`max , followed by an

application of a smoothed single level intergrid transfer operator.
function adAFAC-Jac

r`max ← b`max − A`maxu`max

for all `min ≤ ` < `max do . Restrict fine grid residual to grid levels `
b` ← R`

`maxr`max

b̃` ← R̃`
`maxr`max . Auxiliary residual restriction

end for
for all `min < ` ≤ `max do

c` ← 0; c̃`−1 ← 0 . Initial “guess” of correction and damping
c` ← jacobi(A`c` = b`, ω) . Iterate of correction equation stored in c`
c̃`−1 ← jacobi(A`−1c̃`−1 = b̃`−1, ω̃) . Iterate of coarser damping equation

end for
c`min ← 0; . Initial “guess” on coarsest level
c`min ← jacobi(A`minc`min = b`min , ω) . Iterate of correction equation
u`max ← u`max + c`min +∑`max

`=`min+1 P
`max
` c` − P `max

`−1 c̃`−1
end function

Algorithm 7 Blueprint of our adAFAC-PI without AMR. Ri or P i denote the re-
cursive application of the single level restriction or prolongation, R or P , respectively.
I is the injection operator.
function adAFAC-PI

r`max ← b`max − A`maxu`max

for all `min ≤ ` < `max do
b` ← R`

`maxr`max . Restrict fine grid residual to coarser levels
end for
for all `min < ` ≤ `max do

c` ← 0; c̃` ← 0 . Initial “guesses” for corrections
c` ← jacobi(A`c` = b`, ω) . Iterate of correction equation stored in c`
c̃` ← PIc` . Computation of localised damping for c`

end for
c`min ← 0; c̃`min ← 0
c`min ← jacobi(A`minc`min = b`min , ω) . No auxiliary damping for coarsest level
u`max ← u`max + c`min +∑`max

`=`min+1 P
`max
` c` − P `max

`−1 c̃`−1
end function

82 Chapter 5. Additive Damping Scheme

Compute residual
on composite grid

Restrict residual
to all subspaces

Compute corrections
and inject Sum corrections

+P

-P

R -P
+P

+P

R

R

Figure 5.5: Data flow overview of adAFAC-PI. Solid red lines de-
note traditional subspaces within additive correction
equations, dashed blue lines correspond to auxiliary
equations that damp the existing correction equations.

Compute residual
on composite grid

Restrict residual
to all subspaces Compute corrections Sum corrections

+P

-P

R

R
~

Figure 5.6: Data flow overview of adAFAC-JAC. Solid red lines de-
note traditional subspaces within additive correction
equations, dashed blue lines correspond to auxiliary
equations that damp the existing correction equations.

operators R̃`−1
` (the latter option is used to construct damping parameters in two

different ways):

1. Sole injection where we collapse M̃−1
`−1R

`−1
` A` into the identity. The overall

damping reduces to −ωP `
`−1IM

−1
` . We evaluate the original additive solution

update. While we perform this update, we identify updates within c-points,

i.e. for vertices spatially coinciding with the next coarser mesh, inject these, im-

mediately prolongate them down again, and damp the overall solution with the

result. The damping equation is PI (Algorithm 7). A schematic representation

is shown in (Fig. 5.5).

2. A “smoothed” R̃`−1
` ≈ ωR`−1

` AM−1
` , where we take the transpose of the full

operator above and truncate the support, i.e. throw away the small negative

5.3. Three damping operator choices 83

entries by which the stencil support grows. Furthermore, we approximate

M̃`−1 = M`−1, i.e. reuse multigrid’s correction operator within the damping

term. For this choice, memory requirements are slightly increased (we have to

track one more “unknown”) and two solves on all grid level besides the finest

mesh are required (Algorithm 6). The flow of data between grids can be seen

in (Fig. 5.6).

3. An alternative “smoothed” approach. We again use a smoothed operator but

instead smooth the prolongation operator rather than the restriction. That is,

we use P̃ `
`−1 ≈ (ωR`−1

` AM−1
`)T for the auxiliary grid but keep the restriction

operator the same (R̃`−1
` = R`−1

`)

Both transfer operators are motivated through empirical observations. Our results

study them for jumping coefficients in complicated domains, while previous work

demonstrates the suitability of this scheme Helmholtz-type setups [32]. The second

option, the intergrid transfer operator with smoother directly applied, is initially

only used as a restriction operator—we later explore the possibility of using it instead

as a prolongation operator for the auxiliary grid with a standard restriction operator.

Though the outcome of both approaches is promising for our tests, we hypothesise

that more complicated setups, such as convection-dominated phenomena, require

more care in the choice of R̃`−1
` , as R`−1

` has to be chosen more carefully [71].

All approaches can be combined with multigrid with geometric transfer operators

where P `
`−1—and similarly R`−1

` —is d-linear everywhere, or with algebraic approaches

where P stems from BoxMG. All approaches inherit Ritz-Galerkin operators on the

coarse grids, i.e. A` = R`
`+1A`+1P

`+1
` if they are used in the baseline additive scheme.

Otherwise, they exploit redisretisation.

84 Chapter 5. Additive Damping Scheme

All approaches are able to integrate with HTMG [95]. This allows for a simple

implementation of dynamic adaptivity and AMR, by avoiding the explicit handling

of the transition between regions that are correction spaces and fine grid spaces. For

a FAS-based implementation, all grid levels must be consistent—corrections from all

grid levels must be applied to all grid levels. This creates an implicit synchronisation

between levels and a two-way flow of information for corrections. Implementation

specifics of this follow later. However, the key concept in this melding of techniques

is a specific auxiliary correction must be applied to all grid levels—an auxiliary grid

correction is applied to all coarse grid levels not just finer grid levels.

Idea 11. As our solver variants are close to AFAC, we call them adaptively damped

AFAC and use the postfix PI or Jac to identify which operators our damping para-

meters employ. We thus introduce adAFAC-PI and adAFAC-Jac.

5.4 adAFAC-Jac as a prolongation operator

Our final proposal is to use a smoothed prolongation operator for the auxiliary grid

and keep the restriction operator the same as the existing coarse grid equations. This

motivation means we now approach the adAFAC-Jac principle from an alternative

direction. We had previously attempted to replicate a V (1, 0)-cycle, instead, we

could construct the auxiliary grid along the grounds of a V (0, 1)-cycle. A simple

representation of a V (0, 1)-cycle is show in Fig. 5.4. This produces the following set

of equations:

u
(n+1)
` =

[
u` + ω`M

−1
` (b` − A`u`)

]
+P `

`−1A
−1
`−1R

`−1
` (b` − A`u`)

−ω`M−1
` A`P

`
`−1A

−1
`−1R

`−1
` (b` − A`u`). (5.4.1)

These are the same set of linear operators as in (5.2.1), but they are now re-ordered.

5.5. Smoothed intergrid transfer construction 85

The difference between a two grid level multiplicative and additive scheme is now

u
(n+1)
`,V (0,1) − u

(n+1)
`,add = P `

`−1A
−1
`−1R

`−1
` (b` − A`u`)

−ω`M−1
` A`P

`
`−1A

−1
`−1R

`−1
` (b` − A`u`)

−P `
`−1A

−1
`−1R

`−1
` (b` − A`u(n)

`)

= −ω`M−1
` A`P

`
`−1A

−1
`−1R

`−1
` (b` − A`u`).

(5.4.2)

We can again approximate the coarse grid solve with a single smoothing step and

collapse the additional fine grid smoothing into the intergrid transfer operator. This

alternative is closer to the final corrections seen in AFACx and acts as a comparison

between adAFAC-x and AFACx.

5.5 Smoothed intergrid transfer construction

Let ε in (1.1) be one. We observe that a smoothed operator M−1Aε=1P derived from

a generic bilinear interpolation symbol P using a Jacobi smoother M−1 = diag(A)−1

for three-partitioning corresponds to the stencil



−0.0139 −0.0417 −0.0833 −0.0972 −0.083 −0.0417 −0.0139

−0.0417 0 0 0.0833 0 0 −0.0417

−0.0833 0 0 0.167 0 0 −0.0833

−0.0972 0.0833 0.167 0.444444444 0.167 0.0833 −0.0972

−0.0833 0 0 0.167 0 0 −0.0833

−0.0417 0 0 0.0833 0 0 −0.0417

−0.0139 −0.0417 −0.0833 −0.0972 −0.0833 −0.0417 −0.0139



.

86 Chapter 5. Additive Damping Scheme

Block matrix constant
everywhere except
over a discontinuity
i.e. the white region

Figure 5.7: Computation of the product AD−1 (using stencil nota-
tion) for regions of constant ε. D is the diagonal of A.
The ε cancels. We highlight the regions as blocks in the
resultant matrix beneath. Both non-white regions hold
the same values, a discontinuous ε only changes AD−1

directly over the discontinuity.

We neglect the damping weight ω in the stencil here. A stencil is a restructured

row of the full operator. We also introduce the generic restriction symbol R as the

transpose of P , and matrix D as the diagonal of A. The term A`M
−1
` now enters

the auxiliary restriction. Such an expression removes the impact of ε on all elements

with non-variable ε, therefore, for cells with constant ε we may treat the expression

A`M
−1
` as constant. Assuming jumps in ε are not too significant, we can could use

this assumption across the entire domain and only neglect small perturbations in

the off-diagonals of the system matrix. In the main, however, we only rely on this

assumption for regions of constant ε.

This removal of the ε influence in regions of constant ε when using a Jacobi smoother

is illustrated in Fig. 5.7. Constant epsilon over a cell is removed by the inverse

diagonal matrix, which is composed of diagonal weights of 1
ε
. This highlights that

overcorrections within additive multigrid occur when projecting over a discontinuity.

Damping brings greatest benefit over transition regions by cancelling out overcorrec-

tions from coarse grids when being projected down to the fine.

5.6. Incorporating other/non-Jacobi smoothers 87

5.6 Incorporating other/non-Jacobi smoothers

Similarly to our method of delayed assembly (Section 4.9) at first glance there is no

obvious link or effect between the choice of smoother and our ideas; however there

may also exist a link on a deeper level. Changing the smoother used effects rates of

convergence. A more aggressive smoother, for example Red-Black Gauss-Seidel or

ILU, will produce larger corrections to the solution compared to a simple scheme,

like Jacobi, and as such, a solver would converge in fewer iterations. This could

induce larger oscillations in the solution than Jacobi, if oscillations already exist, that

must be damped out. It has been shown that adaptively chosen damping factors are

beneficial to more powerful smoothers, this has been shown for an ILU smoother and

an anisotropic material parameter [14]. Our damping term should remain effective

for such scenarios, but we could not say for certain without further study.

In our current implementation we either exclusively rely on a geometric interpreta-

tion of the intergrid transfer operators, or a geometrically inspired choice. We use

BoxMG, which is constructed so that corrections projected to the fine grid map

directly into the nullspace of the local fine grid operator. In the vein of Brandt,

and Compatible Relaxation [110], [111], the coarse relaxation scheme should ensure

projected corrections map onto the near-nullspace. From this perspective, the choice

of smoother greatly impacts the intergrid transfer operators used.

From an implementational perspective there is also much to consider. The solve on

the auxiliary grid does not change its character with different smoothers—in principle

it is merely another solve on an existing coarse grid level. Smoothing on the auxiliary

grid is therefore implemented the same way as smoothing on the existing coarse

grid, and can re-use all existing data structures and functions. However, different

smoothers can change the character of intergrid transfer operators drastically. Quite

intuitively, a smoother that acts on a larger set of degrees of freedom will increase the

number of degrees of freedom that a partially smoothed intergrid transfer operator

acts upon. Amongst other issues, this changes the data access pattern, and may

88 Chapter 5. Additive Damping Scheme

Compute residual
on composite grid

Restrict residual
to all subspaces

Project auxiliary correction
to fine, correct + damp Sum corrections

+P

R +P

+P

R

R

Figure 5.8: Data flow overview of AFACx. Solid red lines denote tra-
ditional subspaces within additive correction equations,
dashed blue lines correspond to auxiliary equations that
damp the existing correction equations.

make certain data structure choices for the grid, such as space-trees, unsuitable. If

a smoother can be written as a single matrix application then it is straightforward

to construct an adAFAC-x scheme based upon it. Simply precompute an intergrid

transfer operator using the product of this matrix representation. adAFAC-x would

be a good fit for a polynomial smoother, for example, as it already has a clear

matrix representation—it may lead to a complicated data access pattern, however.

Other smoothers with a ready matrix representation and fixed data access pattern,

such as block smoothers, are also well suited, and produce a partially smoothed

intergrid transfer operator that can be hardcoded. adAFAC-x would mesh less well

parallel solvers that do not have simple and sparse matrix representations. A Gauss-

Seidel smoother would be infeasible to implement in this fashion—precomputing the

operator explicitly would render a dense matrix for the intergrid transfer operator.

Alternatives such as Red-Black Gauss-Seidel would also be non-trivial. One may

have to directly apply the smoother to the residual, then restrict as a two stage

process, rather than being able to collapse the smoother application and intergrid

transfer operator into a single matrix operator/stencil.

5.7. Comparisons to existing solvers 89

5.7 Comparisons to existing solvers

5.7.1 adAFAC-PI

adAFAC-PI takes inspiration from BPX. The auxiliary solve here is constructed in

a similar method to coarse corrections in BPX. BPX builds up its correction solely

through intergrid transfer operators while the actual fine grid system matrix does not

directly enter the correction equations. Though they do not deliver an explanation

as to why the solver converges, the introduction of the PI-scheme in [32] thus refers

to this solver as BPX-like. Rather than performing a smoothing step on an auxiliary

equation system, adAFAC-PI instead restricts (via injection) the residual and scales

it by a (fine grid) diagonal matrix. BPX constructs coarse corrections similarly by

scaling coarse equations by a restricted diagonal matrix. This is a very crude, but

also very inexpensive, interpretation of a smoothing step. We differ from a pure

BPX solver as we build this BPX-like solver over the top of an existing additive

multigrid scheme.

Further noteworthy comparisons can be made. adAFAC-PI also shares features with

forms of AFAC. Historically, there are two formulations of AFAC: the most common

is AFACf, where the fine grid corrections are modified; and the less common is AFACc

where the coarse grid equations are modified via the right-hand side. adAFAC-PI

shares similarity to AFACc but approaches things the other way round. In AFACc

coarse grid contributions are removed when they coincide with fine grid points, this

is achieved by setting the right-hand side of the coarse equation to zero. adAFAC-PI

instead negates the impact of fine grid points that are topologically in the same space

as coarse grid points; this feature is more similar to BPX and other hierarchical

basis schemes than AFACc. adAFAC-PI goes beyond just ignoring the impact of

theses vertices as their potential impact is removed from neighbouring vertices—it

actively negates part of the solution, rather than merely not being applied—this

change recovers additional stability. This is empirically shown in Section 7.3.

90 Chapter 5. Additive Damping Scheme

5.7.2 adAFAC-Jac

Our adAFAC-Jac approach shares ideas with the mult-additive approach [89] where

smoothed transfer operators are used in the approximation of a V (1, 1)-cycle. Mult-

additive yields faster convergence as it effectively yields stronger smoothers. We

stick to the simple presmoothing approach and solely hijack the additional term to

circumvent overshooting, while the asynchronicity of the individual levels is preserved.

Implementations of mult-additive, such as the asynchronously smoothed variant by

Wolfson-Pou and Chow [90] highlight the increased workload in mult-additive (even

compared to traditional multiplicative). Our focus is on keeping the workload

per iteration low while still retaining improved convergence. We use only a single

smoothed operator and stick to simple smoothers—rather than the more powerful,

but more expensive, smoother mult-additive uses.

We also share many similarities to the solvers within the AFAC family (Sect. 3.2.5).

We inherit the principle of auxiliary grids damping fine grid corrections which ori-

ginated with AFACf, and the focus on smoothing steps from AFACx. AFACx

incorporates an additional sequential element to improve convergence, the auxili-

ary smoothing must occur before the coarse grid smoothing, this is illustrated in

Fig. 5.8. AFACx does not cause significant degradation in convergence rates due to

only performing smoothing [82], [112], validating the use of smoothing steps. We

push the asynchronous part of AFAC further, however, and insist that all corrections

should be produced independently. Therefore we see similar benefits of improved

rate of convergence but with the same potential for parallelism as standard additive

multigrid. Using the smoothed intergrid transfer operator as a prolongation operator

produces an ordering of operations that is much closer to AFACx. It corresponds

to an AFACx implementation with a single pointwise smoothing step on the auxil-

iary and standard coarse grids. However, we have removed the sequential element

between the grid levels.

A direct comparison of specific elements between adAFAC-Jac and other solvers is

5.7. Comparisons to existing solvers 91

shown in Table 5.1.

92 Chapter 5. Additive Damping Scheme

G
rid

O
rd
er

A
ux

ili
ar
y

G
rid

s
Sm

oo
th
ed

R
/P

C
oa
rs
e
So

lv
e

Fi
ne

So
lv
e
(in

c.
A
ux

So
lv
e)

M
ul
tip

lic
at
iv
e

Se
qu

en
tia

l
7

7
M

−
1

`−
1

M
−

1
`

A
dd

iti
ve

C
on

cu
rr
en
t

7
7

M
−

1
`−

1
M

−
1

`

B
PX

C
on

cu
rr
en
t

7
7

D
−

1
`−

1
M

−
1

`

A
FA

C
C
on

cu
rr
en
t

3
7

A
−

1
`−

1
A

−
1

`
−

P
A

−
1

`−
1R

A
FA

C
x

C
on

cu
rr
en
t

3
7

M
−

1
`−

1
P

M
−

1
`−

1R
−

P
M

−
1

`−
1R

+
M

−
1

`
A

`
P

M
−

1
`−

1R

M
ul
t-

ad
di
tiv

e
C
on

cu
rr
en
t

7
3

M
−

1
`−

1
+

M
−

T
`−

1
−

M
−

T
`−

1A
`−

1M
−

1
`−

1

M
−

1
`

+
M

−
T

`
−

M
−

T
`

A
`
M

−
1

`

ad
A
FA

C
-P

I
C
on

cu
rr
en
t

3
In
je
ct
ed

fin
e

co
rr
ec
tio

n
M

−
1

`−
1

M
−

1
`
−

P
I
M

−
1

`

ad
A
FA

C
-J
ac

C
on

cu
rr
en
t

3
A
ux

ili
ar
y

R
on

ly
M

−
1

`−
1

M
−

1
`
−

P
M

−
1

`−
1R

A
M

−
1

`

Ta
bl
e
5.
1:

C
om

pa
ris

on
of

ke
y
fe
at
ur
es

be
tw

ee
n
ex
ist

in
g
m
ul
til
ev
el

so
lv
er
s
an

d
ad

A
FA

C
-J
ac
.
W
e
us
e
M
−

1
as

a
ge
ne
ric

sm
oo

th
er

sy
m
bo

la
nd

D
as

th
e
di
ag
on

al
of
A
.

Chapter 6

Implementation

In Chapter 4 and Chapter 5 we detailed our main algorithmic contributions, but the

actual implementation was left open. We now explain our chosen implementation to

fill in some of those gaps. Our implementation builds upon the single-touch ideas in

Section 3.3.3, so that one iteration of the solve is embedded into a single traversal of

a space-tree. This reduces total memory accesses to improve overall performance by

keeping arithmetic intensity high. Initially, we cover how our asynchronous assembly

process fits into an existing single-touch additive multigrid solve. We introduce

additional data structures to achieve this and ensure lazy stencil update process is

asynchronous. Subsequently, we cover how damping schemes can be written in a

single-touch way. Our baseline additive solver is based on the work of Reps and

Weinzierl [32] and we reframe their damping algorithm in terms of auxiliary grids

to show it is part of the adAFAC-x class of solvers. We then use this framing and

write our adAFAC-Jac implementation in a single-touch fashion.

6.1 Background stencils

In Section 4.3 we outline what individual work units are for our asynchronous as-

sembly process: We construct element-wise stencils based on finite elements. Each

element (in a finite element sense) creates a series of tasks/integration quadratures

94 Chapter 6. Implementation

of increasingly fine subcell size. Each integration quadrature is a discrete work unit.

We use Intel’s Threading Building Blocks (TBB) [113] for our tasking. Therefore

we define a direct mapping between our numerical integration tasks and a task in a

TBB sense. We generate TBB tasks while traversing the mesh and add them to a

task queue. When a core idles during the overall solve, it pulls an integration task

from this queue. Greater numbers of subcells used in a numerical integration in-

crease the accuracy of material data representation. Each mesh element produces 2d

element-wise stencils—one for each neighbouring vertex—a task is thus the numerical

integration of all 2d element-wise stencils. These tasks are independent of each other

and all subcells in an element are processed only once to compute all 2d element-wise

stencils. We store stencils persistently within vertices rather than storing as their

element-wise contributions within cells. This requires us to reconstruct fine grid

stencils whenever a new element-wise update is computed. Element-wise decomposi-

tions are not unique, so there is no guarantee that the recomputed decomposition of

a previously constructed nodal stencil is the same as when numerically integrating

the element-wise stencil. This lack of uniqueness means we cannot perform in-place

updates without redundant copies of element-wise stencils. Nodally held stencils

update asynchronously once element-wise updates are available—we remove a global

synchronisation step. Locally a nodal stencil is only “synchronised” when updated.

We reiterate that our smoother is also element-wise and the element-wise stencil

decomposition is computed on-the-fly from the persistently held nodal stencils, so

smoothing is thus totally independent to the element-wise stencil construction.

6.1.1 Additional data structures

All updated stencils from tasks are stored in a heap. The computational work for an

integration task is independent of all other actions within a multigrid solver and new

integrations are computed asynchronously. Synchronising updates is therefore not

required. A task writes updated stencil entries to the heap (rather than writing to a

cell directly) and terminates once done, freeing any memory required for the compu-

6.1. Background stencils 95

(*)(*)

(*)(*) (*)(*)

(*) (*)(*) (*)

A = [-1,-1,-1,...]

A = [-1,-1,-1,...]

The Heap

Pointers held in
cells point to
element-wise
stencil entries in
heap

Mesh is space tree
we rediscrete
on finest level
only

Tasks compute updated
element-wise stencils
and store results in
the heap

Task A

Task B

Task A2

Task B2

Cells spawn new tasks
once they've fetched
updated stencils
from the heap

Figure 6.1: Fine grid cells within the space-tree (left) each hold
pointers to entries in the heap that stores updated ver-
sion of the local stencil that result from the background
tasks.

tation. This is shown in Fig. 6.1. The use of a heap simplifies the implementation in

terms of asynchronicity—a cell holds the index for a location in the heap rather than

an element-wise stencil itself. Cells check the heap for updates independently. If

updated stencil entries exist, then these updated values are written to a temporary

stencil that is held nodally. This temporary stencil is rolled over—i.e. the nodally

held stencil is overwritten with this data—after a grid traversal is complete and all

cells have been visited. We also introduce two parameters per cell, an atomic flag

and an integer n, that are encoded in a tuple: The atomic flag is a signifier of the

most recently deployed task having terminated; the n corresponds to the “accuracy”

of the element-wise stencil, i.e. a count of how many subcells are used in a numerical

integration. In combination, these encode the current state within the sequence of

numerical integrations. They can be encoded into the cell stream, similarly to how

nodal stencils are stored, and loaded into cache when the cell is accessed.

We traverse the tree and check this tuple once per iteration, seen in Fig. 6.2. There

are three possible branches based on the state of n:

• n = ⊥: This is the first time the cell has been accessed in a solve, i.e. there is

no previously existing element-wise stencil. We therefore compute an initial

96 Chapter 6. Implementation

Upon stencil
access

Compute
initial
Stencil

Set n=1
Deploy new
integration

Continue
traversal

Update
local stencil

Increment n
Deploy new
integration

Continue
traversal

Continue
traversal

Continue
traversal

Check
atomic flag

True

False

In parallel

In parallel

Set atomic
flag true
upon completion

Set atomic
flag true
upon completion

Figure 6.2: Illustrative diagram of how we perform the lazy integ-
ration. All cells carry a n that holds the number of
samples per dimension of the quadrature.

stencil—this is a serial operation and is computed before the grid traversal

continues. For our purposes, this initial stencil is the already known Poisson

stencil weighted by a single material parameter sampling point. This is used

in initial smoothing steps, and is thus inserted into the hashmap immediately.

We now branch and can perform the following two steps in parallel:

1. The traversal of mesh elements in the tree continues, using the stencil in

the hashmap.

2. An additional numerical integration task, with 2d subcell sampling points,

is deployed. This is not processed immediately, but sent to a task queue

and handled by a core that may otherwise be idle. We initially set the

atomic flag to false to signify there is no current update, and the task

then sets this to true upon completion. n is also set to 2 to represent the

increased accuracy of the integration.

• n ∈ N : The stencil is actively being improved but is not sufficiently accurate

thus far. As such, there may possibly be an updated stencil available to be

rolled over into the nodal stencil. We check the atomic flag, if this returns

false we simply carry on with mesh traversal. However, if this returns true

then we know the previously deployed task has terminated, and similarly to

6.1. Background stencils 97

the previous case, we branch again. If the atomic flag is true, we perform the

following two steps in parallel:

1. We continue mesh traversal, using the currently held stencil values in the

heap. However, vertex-wise stencils may be required to be reconstructed

if neighbouring stencils have not finished their sequence of numerical

integrations.

2. We re-accumulate the nodal stencil with the update element-wise stencil—

after re-accumulation the nodal stencil is rolled over. During this process,

we compute a matrix norm to check if the stencil is of sufficient accuracy.

For previous element-wise stencil A(old), updated element-wise stencil

A(new), and the maximum element-wise matrix norm ‖.‖max, we set

n←


> if ‖A(new)−A(old)‖max

‖A(old)‖max
< C

n+ 1 if ‖A(new)−A(old)‖max
‖A(old)‖max

≥ C

for a fixed constant C. If n← n+ 1, a new numerical integration task is

deployed—the atomic flag is again set to false. Otherwise, if n← >, the

stencil is deemed accurate enough so no further integrations are required.

• n = >: The nodal stencils are accurate enough, therefore we can immediately

continue the mesh traversal using the values on the heap.

For a static regular grid, once an element-wise sequence has terminated, processing

for that element is finished forever. However, within an AMR context, this no longer

holds. After a refinement, a cell may switch from holding a fine grid element to a

coarse grid element. Therefore, the semantics of the local equation have changed.

Instead of the currently held fine grid equation being accurate, a new coarse grid

equation (most likely set by Ritz-Galerkin) is computed and stored. This involves a

recomputation step which we cover in the next section.

98 Chapter 6. Implementation

6.1.2 Coarse grid operators

We set coarse grid equations using a Ritz-Galerkin definition, A` = RA`+1P . As

we use a locally regular Cartesian mesh, this is equivalent to rediscretisation for

geometric R and P . Therefore, once the fine grid operators are rolled over at the end

of a cycle, the coarse grid operators are now invalidated, as they may have become

poor approximations. Any change to an individual element-wise operator on the

fine grid invalidates certain regions of the currently held coarse grid—the precise

definition of the coarse grids has changed. We assume any changes to be minimal

and that we are therefore able to use the old, now outdated, operators. However, as

we can not guarantee this, we still must recompute. There are two different operators

that must “ripple” up to the coarse grid levels—the coarse grid operators, and, if we

use a BoxMG environment, the intergrid transfer operators.

Due to our single-touch methodology, vertex-wise operators can only be rolled over

after the multigrid iteration they were set—all neighbouring cells must have been

processed for a vertex to be updated. Therefore, in order for operators on the

next coarsest grid to incorporate this information, they can only be computed on

the subsequent traversal or later. We apply this argument recursively. Thus, this

gives a hierarchical set of constraints on coarse grid operators—coarse grid operator

information can only propagate one level up the coarse hierarchy each grid traversal.

Moreover, in order for updated fine grid equations to enter the updated BoxMG

intergrid transfer operators, then the full patch of fine grid vertex stencils must

already be updated/rolled over. That is, all fine grid cells that are children of the

same coarse grid cell (and their neighbours) must be rolled over for this information

to be incorporated into a recomputed BoxMG transfer operator that acts on that

coarse grid cell. This is also impossible to guarantee in the same iteration a fine

grid stencil is updated, again due to our single-touch policy. Both requirements can

therefore be phrased as a partial ordering between grid cell processes. A patch of

grid cells must be updated before intergrid transfers can be computed on the next

6.1. Background stencils 99

Figure 6.3: Conventional sequential matrix equation assembly. The
mesh is assembled and then exact numerical integration
of equations is performed before the solver iterations
begin.

Figure 6.4: Our delayed matrix equation assembly. The mesh is
assembled and then exact numerical integration of equa-
tions is performed in parallel with the early the solver
iterations.

coarser level. Updated intergrid transfer operators are required before updated coarse

grid stencils can be computed. All coarse grid transfer operators must therefore be

set up prior to the computation of a coarse grid stencil for the representation to

be consistent. We cannot ensure this across all levels and all grid cells in a DFS

traversal, but we can ensure this locally—fine grid cells are updated prior to updating

their direct parents. This dictates our partial ordering.

6.1.3 Performance model

We now briefly outline a performance model to indicate expected gains due to our

delayed assembly. The runtime of any multigrid algorithm can be broken down into

three stages:

1. Grid setup

2. Equation assembly

3. Solver iterations

These are shown diagrammatically in (Fig. 6.3). With our asynchronous assembly, we

100 Chapter 6. Implementation

increase the potential for parallelism by reducing the time lag/algorithmic latency

due to equation assembly as much as possible. The time cost due to equation

assembly is hidden behind the computation of the solver iterations. This means, we

expect to see the runtime reduced by a consistent proportion by switching to our

assembly methodology, as we are effectively eliminating this phase’s impact on the

overall runtime.

Each phase in the multigrid iteration has an expected cost which we give relative to

the computational cost of a grid traversal. The grid setup is a fixed cost and one that

cannot be avoided (we neglect AMR setups for this approximation). As we initially

construct each element/cell within the grid, we estimate that the cost of grid setup

is roughly proportional to the cost of a grid traversal of the full grid. The solver

iterations themselves again are a cost that we do not eliminate with our methodology,

and again we approximate that each iteration of the solver has a cost proportional to

the total number of elements, i.e. to a grid traversal. Therefore the total cost of the

solver iterations corresponds to the number of iterations required for convergence

multiplied by the cost of a single grid traversal. The cost our approach explicitly

avoids is the equation assembly cost, which can now be performed in parallel with

other steps, shown in (Fig. 6.4). and can be further split into two parts: The cost

of accessing each element and the actual cost of the integration. Again the total

cost of accessing each element once is proportional to the cost of a grid traversal,

nut the cost of the integrations is both implementation dependent and potentially

unbounded. We therefore refer to the setup cost of other implementations as a

guideline. We refer to work by Lin et. al. [92], where the setup cost in terms of time

for the smoothers/equations is shown to be within the same order of magnitude as

that of the solve itself—for small problem sizes the smoother setup cost dominates

the time-to-solution, while for larger problems the smoother setup cost is roughly half

that of the solve cost in terms of time. In line with reported runtimes for different

phases for other solvers, we could reasonably expect to see an overall reduction in

runtime of approximately a third.

6.2. Additive damping 101

6.2 Additive damping

Without careful planning of intergrid transfers and the introduction of helper vari-

ables, an iteration of our additive damping scheme would not readily map onto a

single traversal of a space-tree. Computing coarse grid corrections and auxiliary

grid corrections might require additional data movement and traversals through

the grid hierarchy. We therefore use a single-touch methodology to avoid this. A

single-touch implementation of an additively damped scheme is showcased by Reps

and Weinzierl [32]. This algorithm was there referred to as “BPX”—we have now

identified this as a specific form of an adAFAC-x scheme. It is nothing other than our

adAFAC-PI algorithm, as the damping parameters can be shown to be be corrections

from auxiliary grids. We reiterate their implementation here, but clearly reframe it

as an adAFAC-x scheme. Our adAFAC-Jac implementation builds on their method

of damping parameter construction and exploitation of space-trees.

6.2.1 Single-touch

adAFAC-PI adAFAC-PI has an implicit auxiliary correction space, but the auxili-

ary correction space is merely injected updates from the fine grid. We do not perform

an additional solve. The corrections from the fine grid are re-used on the auxiliary

grid. For c-points (fine grid points that are in the same geometric/topological posi-

tion as a coarse grid point), the fine grid updates are not applied. This update is

computed and fed into the “auxiliary grid”, which can then be projected back onto

the original grid to be used as a damping parameter for the original corrections. The

damped corrections are then (recursively) projected onto the fine grid/composite

grid. In a FAC context, we would be done. However, for a HTMG implementation,

updates must be synchronised between all levels.

Reps and Weinzierl wrote the single-touch HTMG Algorithm 8 (originally printed

in [32] we reprint it here for clarity). Modifying the undamped additive HTMG

method to be single-touch required the introduction of a helper variable. Potential

102 Chapter 6. Implementation

Algorithm 8 Outline of single-touch adAFAC-PI. sc is the summed coarse grid
correction contributions. sf is the summed fine grid correction contributions. A tilde
identifies variables related to the auxiliary adAFAC grid. S(u`, b`) is the smoother
applied to u` A point v is a cPoint if a coarse grid point also exists at the same
position in space. We invoke the cycle passing in the coarsest grid `min.
function adAFAC-PI(`)

sc` ← sc` + P `
`−1sc`−1 . Prolong contributions from coarse grid

if not cPoint(v) then
sc` ← sc` − P `

`−1s̃c`−1 . Damp with correction from auxiliary grid
end if
u` ← u` + sc` + sf` . Anticipate fine grid smoothing
û` ← u` − P `

`−1u`−1 . Determine hierarchical solution
if ` < `max then

adAFAC-PI(l + 1)
end if
r` ← b` − A`u` . Compute residual
r̂` ← b` − A`û` . Compute hierarchical residual
if cPoint(v) then

sc`(v)← 0 . Cancel out update
else

sc` ← ωS(u`, b`) . Perform coarse smoothing
end if
if ` > `min then

s̃c`−1 ← I (ωS(u`, b`)) . Inject anticipated update onto auxiliary grid
b`−1 ← R`−1

` r̂`
sf`−1 ← I(sf` + sc`)

end if
end function

updates need to be bookmarked between iterations before they are recursively applied

to all finer grid levels— they are not just applied to the level they were computed on.

Without this local bookmarking an explicit synchronisation step would be required

so that all solution representations are kept consistent. Coarse grid updates are

projected to the fine, and applied to both the fine solutions and the bookmarked

fine grid updates. This bookmarking means that when fine grid updates are applied

to solutions on increasingly finer grids, the coarse updates are also propagated. Fine

grid updates are applied to the coarse grid by the fine grid solution value being

injected to the coarse when the residual is restricted.

This motivates the introduction of an additional—second—helper variable that solely

memorises the fine grid updates injected to the coarse grid and are not applied on

6.2. Additive damping 103

the fine grid. The additional variable simultaneously serves as the correction for

the auxiliary grid space and another component of the synchronisation of solution

representations across grid levels. It holds potential/unapplied fine grid updates after

the updates are injected onto the coarse grid. These updates are then recursively

projected onto all finer grids, in the same fashion as the coarse corrections. Within

our single-touch framework (see Section 3.3.3), we restrict the fine grid residual to the

coarse grid right-hand side at the end of a grid traversal when writing data to main

memory. With the fine grid residual at hand we can compute a partial correction

for a cell/patch. We use pointwise smoothers, specifically Jacobi smoothers, so once

we have computed a residual, we can immediately compute a partial correction and

inject to the auxiliary coarse grid. Although we are injecting this update—rather

than performing a full restriction—we still perform this restriction at the end of

a grid traversal when we are already restricting the residual. When projecting

auxiliary corrections in the downward grid sweep of the next traversal we recursively

project the updates via this helper variable. Upon first access of a fine grid vertex,

we compute the projected impact of both standard and auxiliary corrections from

coarse grid vertices. We apply the auxiliary correction to the fine grid solution as

a damping parameter (except at c-points). The impact of the auxiliary correction

is also applied to the helper variable on the fine grid. This allows the damping

parameter to recursively effect all grid levels, keeping the solution consistent across

grid levels.

adAFAC-Jac The considerations to rewrite adAFAC-Jac as single-touch have led

us to write Algorithm 9. adAFAC-Jac does not just re-use existing corrections—

auxiliary corrections must be calculated. Unlike the simple data movement of

adAFAC-PI, we perform meaningful auxiliary coarse grid computations for adAFAC-

Jac and thus explicitly introduce the additional correction space. Even though

we are working with FAS derived HTMG, we only compute corrections for the

auxiliary coarse space, we do not require an additional full solution representation.

An extra mat-vec is required for the auxiliary smoothing. This is in addition to the

104 Chapter 6. Implementation

Algorithm 9 Outline of single-touch adAFAC-Jac. sc is the summed coarse grid
correction contributions. sf is the summed fine grid correction contributions. A tilde
identifies variables related to the auxiliary adAFAC grid. S(u`, b`) is the smoother
applied to u` We invoke the cycle passing in the coarsest grid `min.
function adAFAC-Jac(`)

sc` ← sc` + P `
`−1sc`−1 . Prolong contributions from coarse grid

sc` ← sc` − P `
`−1s̃c`−1 . Damp with correction from auxiliary grid

u` ← u` + sc` + sf` . Anticipate fine grid smoothing
û` ← u` − P `

`−1u`−1 . Determine hierarchical solution
ũ` ← 0 . Reset auxiliary solution
if ` < `max then

adAFAC-Jac(l + 1)
end if
r` ← b` − A`u` . Compute residual
r̂` ← b` − A`û` . Compute hierarchical residual
sc` ← ωS(u`, b`) . Perform coarse smoothing
s̃c` ← ω̃S(ũ`, b̃`) . Perform auxiliary smoothing
if ` > `min then

b`−1 ← R`−1
` r̂` . Restrict hierarchical residual to coarse grid

b̃`−1 ← R̃`−1
` r` . Restrict residual to auxiliary grid

sf`−1 ← I(sf` + sc` + s̃c`)
end if

end function

two existing mat-vecs for smoothing the original solution and HTMG’s hierarchical

residual. We can use the adAFAC-PI specific helper variable for this value; however,

this additional variable is now incorporated in computations rather than exclusively

data movement. The element-wise residual required to smooth this variable is

performed in the same computational step as the two existing residual mat-vecs.

A second residual restriction is also required for the additional smoothing. The

auxiliary coarse grid right-hand side is set by a smoothed restriction of the residual,

as opposed to restricting the hierarchical residual in the base HTMG implementation.

This additional restriction is handled in the grid backtracking step, in the same

fashion as the original restriction in the baseline single-touch algorithm. To ensure

all grid levels maintain a consistent solution representation, the auxiliary corrections

must damp all grid levels, not just the finest. Auxiliary corrections therefore also

damp the solution representation on their level. When fine grid solutions are injected

to coarse grids, the auxiliary corrections are effectively also being applied there by

6.2. Additive damping 105

proxy.

Performance expectations Like any additive multigrid algorithm we expect the

cost of an iteration to scale proportionally to the number of elements on the fine grid.

Multigrid introduces coarse grid vertices. However, due our geometric coarsening

procedure, which coarsens in each dimension by a factor of three, we do not introduce

significantly more vertices for a two dimensional grid. The cost is still O(n). E.g.

for a fine grid with five million fine grid degrees of freedom (4,778,596) we would

introduce around half a million coarse grid vertices across all levels (595,692), when

constructing coarse grids using three-partitioning. Approximately a 10% increase

in vertices to be processed. Due to the additive nature of our algorithm, these can

be handled wholly in parallel. Furthermore, due to our reuse of data structures for

our adaFAC-x implementation, we do not anticipate a significant increase in cost of

an iteration of our adaFAC implementation relative to a baseline additive multigrid

iteration. We might reasonably expect the runtime of a single iteration to have an

increase of a few percent. Therefore, we believe the cost of a single grid traversal to

be a reasonably good indicator of the cost of one iteration of our algorithm.

6.2.2 Intergrid transfer operators

For adAFAC-Jac we must further augment our implementation—adAFAC-Jac re-

quires smoothed intergrid transfer operators. We can re-use the existing coarse grid

space for the auxiliary grid space, i.e. the next coarsest level in a space-tree. It is

in those coarse grid vertices that we store the additional auxiliary variable that we

use to compute auxiliary corrections. An ideal intergrid transfer would result from a

tentative transfer operator that has been smoothed an infinite number of times. This

is impractical due to the simple fact that smoothing an operator an infinite number

of times is impossible. Applying a smoother to the transfer operator a large number

of times on the other hand, is a possible but impractically expensive proposition

that would render a transfer operator dense. As well as being costly to compute, a

106 Chapter 6. Implementation

A

C

B

Figure 6.5: In our implementation, we truncate transfer stencils so
that vertices adjacent to cell C only restrict to vertices
adjacent to parent cell A. There is no transfer to cell B.

dense intergrid transfer is likely to cause a coarse grid solve to become exceedingly

expensive. The coarse grid solve with dense intergrid transfers effectively becomes

an exact inversion of the matrix—this undermines the multigrid principle of coarse

solves being cheap. To reduce the cost of the grid solve we want to use simpler

and sparser intergrid transfers. We only apply the smoother once to the intergrid

transfer operator and truncate the support to further reduce the cost.

Reducing the size of the support has many benefits—this is a pattern seen in many

codes [114], [115]—a minor benefit being the reduction in the operation count of a

grid transfer and a major benefit being that the transfer operators are able to retain

data locality. A wider support can involve non-local data movement, which adds to

memory access times. If we truncate the support we keep data movement largely

the same and can plug in to existing data transfers. This focus on data locality can

also be seen in our choice of fine grid stencils and smoothers—fine stencils are all

constructed using basis functions with local support and we use Jacobi smoothers.

When we apply a smoother to an already computed residual, we incorporate no

additional information, that is data movement, from other vertices.

6.2. Additive damping 107

Figure 6.6: Material parameter used for truncated RAM−1 compu-
tation. The red region (top left) holds material para-
meter of 0.01 and blue (lower right) holds 1. Black
nodes are coarse grid vertices and green nodes are in-
terior points that we retain.

When traversing a space-tree, we have ready access to a geometrically local subset

of coarse grid vertices from the perspective of a fine grid cell (see Fig. 6.5). This

corresponds to the coarse grid vertices that are adjacent to coarse grid parent cell.

Smoothing restriction operator widens the support of a stencil—a restriction operator

applied to a patch of 3d point fine grid stencils will increase the input vertices to the

smoothed restriction operation by two in each dimension. This motivates us to not

use the true operator. Instead we use a truncated intergrid transfer stencil and throw

away outer stencil elements. Note, that in our current implementation we simply

discard these elements—formally we should lump these elements and add them to

the diagonal. We have observed no negative effects due to our choice here, but this

should require further study. Data movement now falls neatly into a space-tree—it is

limited to transfers between fine grid cells and their direct parents. When analysing

the smoothed restriction stencil for constant epsilon (Section 5.5) we noted that the

boundary vertices contribute very small values—we therefore assume we can simply

neglect them.

For a region of constant material parameter the stencil for an intergrid transfer
operator that restricts to/projects from a single coarse grid vertex, neglecting the

108 Chapter 6. Implementation

damping weight ω is:

−0.0139 −0.0417 −0.0833 −0.0972 −0.083 −0.0417 −0.0139

−0.0417 0 0 0.0833 0 0 −0.0417

−0.0833 0 0 0.167 0 0 −0.0833

−0.0972 0.0833 0.167 0.444444444 0.167 0.0833 −0.0972

−0.0833 0 0 0.167 0 0 −0.0833

−0.0417 0 0 0.0833 0 0 −0.0417

−0.0139 −0.0417 −0.0833 −0.0972 −0.0833 −0.0417 −0.0139



.

This was already printed in Section 5.5, but we repeat it here for clarity. This

smoothed restriction operator can be hard-coded when ε is constant; however this

does not hold once ε varies as sharp jumps in ε induce changes in derived operators.

Due to our use of BoxMG, we already explicitly store intergrid transfer operators—

computing them on-the-fly becomes too costly. We compute and explicitly store

smoothed restriction operators across discontinuities (at the very least). The oper-

ators are stored as nodal stencils: A restriction operator is stored in the coarse grid

vertex it restricts to, and a prolongation operator in the coarse grid vertex it projects

from. We need only store one operator per-vertex however, as we use transposed

prolongation operator for restriction and prolongation.

We show an example transfer operator, for a chosen material parameter setup (shown
in Fig. 6.6). This stencil is computed once and stored between iterations.

−0.0139 −0.0160 −0.0168 −0.0393 −0.0794 −0.0456 −0.0139

−0.0160 0.106 0.109 0.0733 −0.0322 −0.00392 −0.0417

−0.0168 0.109 −0.0279 0.0262 −0.0565 −0.00392 −0.0833

−0.0393 0.0733 0.0262 0.366 0.155 0.0833 −0.0972

−0.0794 −0.0322 −0.0565 0.155 0 0 −0.0833

−0.0456 −0.00392 −0.00392 0.0833 0 0 −0.0417

−0.0139 −0.0417 −0.0833 −0.0972 −0.0833 −0.0417 −0.0139



.

We only store the entries that restrict values from element interiors (shown in green).

The outer elements are thrown away. Note, only entries near the discontinuity differ

from the stencil shown for constant ε, entries in regions of constant ε remain the same.

Specifically, if the stencil held in a vertex overlaps with a discontinuity, then elements

6.2. Additive damping 109

A

C

B

A A

A

B B

B B

Figure 6.7: Decomposition of a space-tree into subdomains. Cells
are assigned to rank A, B or C.

in the intergrid transfer operator that correspond to the vertices that influence the

stencil are altered.

6.2.3 Extending to distributed memory implementation

To effectively run on modern large scale machines an implementation must be able to

run on distributed memory systems. It is a rather straightforward exercise to split any

algorithm that acts on a space-tree into a distributed memory implementation that

acts on decomposed domains. A space-tree can readily be topologically decomposed

into different subdomains that can then be assigned to different processors, or more

specifically MPI ranks for our target implementation. An MPI rank is assigned a

coarse cell and a selection of its child cells. MPI ranks do not hold disjoint regions

of cells. A cell is only assigned to an MPI rank if it is either the coarsest cell

in that branch of a tree, or its parent is also assigned to that rank. An example

decomposition can be seen in (Fig. 6.7). As our implementation already handles

cells in an elementwise fashion while traversing the grid, the distributed memory

implementation can traverse the section of the tree it holds in much the same way.

The only wrinkle is how to explicitly handle degrees of freedom on the boundary of

110 Chapter 6. Implementation

each domain.

Degrees of freedom that lie directly on the boundary are held redundantly between

ranks. For example, in (Fig. 6.7), degrees of freedom on the edges of the cell

assigned to rank C would be held on rank C with select degrees of freedom also

existing redundantly on rank A and B. Each rank acts on its own local copy and

ranks exchange updates between iterations. As we use an elementwise traversal,

we are not required to introduce ghost elements along the boundary, and instead,

during the traversal for a specific rank, we accumulate partial sums for relevant

values—i.e. the three residuals we require—based on the processing of local elements.

When updates are exchanged between iterations these partial sums are accumulated

and become full sums. Partial residuals can be restricted to locally held coarse cells

per rank and coarse cells are able to act upon these (this is possible due to the

additive nature of restriction). For certain scenarios, such as rank C in (Fig. 6.7),

we must introduce redundant coarse degrees of freedom that can be restricted to.

6.3 Wrap up and limitations of current

concurrency

In an ideal case, the increase in concurrency due to tasking with the asynchronous

assembly is O(n). Each stencil construction operation is its own task and all tasks

are totally independent, but for most setups there is likely to be rapid drop off in the

number of tasks within the system. Fine grid stencils for most topological regions

will require only a small number of integration iterations before they are deemed

converged. The majority of the additional concurrency is only seen earlier in the solve.

Later concurrency gains are only for regions that require a large number of stencil

iterations before they terminate. A large improvement can be seen with dynamically

adaptive meshes, once the number of fine grid elements increases throughout the

solve—therefore the number of cells/elements requiring accurate integration, and

6.3. Wrap up and limitations of current concurrency 111

the number of assembly tasks, also increases. Additional concurrency is thus seen

throughout the solve, or at least while refinements are ongoing.

For our implementation, we embed the vertical rippling directly into the mesh tra-

versal. As we traverse the mesh, we recompute the coarse grid operators when we

write updates for cells that hold the operators back to main memory. They are

recomputed each traversal. This does not take into account another possible avenue

for concurrency: An actor system could be employed so that coarse grid recomputa-

tions are also a series of, potentially concurrent, tasks. Coarse grid stencils should

only be recomputed when there is fine grid detail they do not already incorporate

and these recomputations could be deployed to the background as a series of tasks.

Formally, when truncating our partially smoothed intergrid transfer operator, we

should lump the discarded stencil elements onto the diagonal. We do not currently

do this. Although we have observed no deterioration in convergence rates due to

our choice, this does not align with theory from smoothed aggregation multigrid,

so warrants further investigation. Our damping parameters are constructed as a

correction to a correction—modifications to the real solution are thus indirect and

two steps removed. This may be why damping parameters being “off” makes no

discernible difference to the solution. Furthermore, we also use damp correction

equations with ω—and further damp auxiliary corrections with ω2 through the

partially smoothed intergrid transfer—this aggressive damping might be another

reason we do not need to lump stencil elements.

Chapter 7

Results

In previous chapters we covered our ideas from a theoretical perspective (Chapter 4

and Chapter 5) and our target implementation (Chapter 6). Now we test those ideas

and provide the results of those tests. We have developed two main contributions—

our additive damping parameter adAFAC-x solvers and our asynchronous assembly

method—which we use to group results into two high level groups. Within each

group, we analyse that contribution first in terms of consistency, then stability and

finally in terms of performance. We present the adAFAC-x results first. This order is

the inverse of the earlier sections as we specifically investigate the impact adAFAC-x

has on the different assembly methods

The following chapter is modified from text that was previously published in [1]–[3]. The
introduction and problem setup incorporates elements of all three papers. The three Sections 7.2-
7.4, the analysis of our damping parameter, is an expanded version of the results section from
“Stabilised Asynchronous Fast Adaptive Composite Multigrid using Additive Damping”. The
subsequent three Sections (7.5-7.7) are an intermixed combination and expansion of the res-
ults section from “Lazy Stencil Integration in Multigrid Algorithms” and “Delayed approximate
matrix assembly in multigrid with dynamic precisions”. For all six sections, the majority of
the data in graphs is from slightly modified setups than those printed in the previous papers—
regularity conditions have been changed. The code used here has been made available at ht-
tps://bitbucket.org/CDMurray/adafacx/src/master/.

https://bitbucket.org/CDMurray/adafacx/src/master/
https://bitbucket.org/CDMurray/adafacx/src/master/

7.1. Experimental setup 113

Boundary condition Right-hand side
BC1 u|∂Ω = sin(πx0) for x1 = 0

u|∂Ω = 0 otherwise
f = 0

BC2 u|∂Ω = 0 f = −2π2sin(πx0)sin(πx1)

ε values ε boundaries
E1 1 N/A
E2 ε ∈ {1, 10−k}, k ∈ N x0 = 0.5

E3 ε ∈ {1, 10−k}, k ∈ N x1 = 5x0 − 2.5 and
x1 = 0.2x0 + 0.5

Table 7.1: Summary of the features we change in the equations.
We use two different pairings of boundary conditions and
right-hand sides (BC1/BC2) and compare three different
sample ε distributions with k fixed per run.

7.1 Experimental setup

7.1.1 Test hardware

All experiments are run on an Intel Xeon E5-2650V4 (Broadwell) with 12 cores per

socket clocked at 2.4 GHz. As we have two sockets per node, a total of 24 cores

per node is available. These cores share 64 GB TruDDR4 memory. Shared memory

parallelisation is achieved through Intel’s Threading Building Blocks (TBB), We rely

on a TBB wrapper [116], [117] with a custom priority layer such that we have very

fine-granular control over which tasks are run when.

7.1.2 Scenarios and test equations

All our studies solve the variable coefficient Poisson equation (1.1), specifically

−∇(ε · ∇)u = f

is solved on the unit square for differing values of ε. We introduce three different

material parameter configurations: constant ε and two discontinuous setups. For

the first, and simplest, case (E1), we fix ε = 1 everywhere—this is merely the

114 Chapter 7. Results

Figure 7.1: The two non-constant ε distributions studied through-
out the tests. Left: (E2). Right: (E3). The blue
area holds ε = 1, while the remaining domain holds
ε = 10−k, k ∈ {1, 2, . . . , 5}.

Poisson equation. In terms of the two discontinuous setups, we split the domain

into disjoint regions, which hold either ε = 1 or ε = 10−k. Per run, the respective

k ∈ {1, 2, . . . , 5} is fixed. The first of the two discontinuous setups (E2), introduces

the discontinuity along the line x0 = 0.5. The second discontinuous setup (E3)

separates the subdomains via the lines x1 = 5x0−2.5 and x1 = 0.2x0 + 0.5, and each

adjacent subdomain holds a different ε in a checkerboard fashion. No parameter split

is axis-aligned. These are simplistic yet already challenging for multigrid. We solve

for two different pairings of boundary conditions and f values. In the first pairing

(BC1), we set f = 0 over the whole domain, and set u|∂Ω = sin(πx0) for x1 = 0 or

u|∂Ω = 0 otherwise. For the other pair (BC2), we instead use homogeneous boundary

conditions, that is u|∂Ω = 0, and f = −2π2sin(πx0)sin(πx1) over the entire domain.

Our initial consideration is consistency studies for the adAFAC-x solver suite. We

test adAFAC-PI and adAFAC-Jac—both using partially smoothed restriction and

a variant that uses partially smoothed prolongation. The partially smoothed pro-

longation variant is labelled adAFAC-JacP and the variant with partially smoothed

restriction is labelled adAFAC-JacR. If a distinction is not made, then we refer to the

variant with partially smoothed restriction exclusively. We verify that adAFAC-x

solvers both converge and return a valid solution. The pure Poisson equation is a

simple equation, but can become challenging for additive multigrid as the problem

size increases. We can compute the analytical solution, therefore it is an effective

test for solver consistency. Additional degrees of freedom and a large number of

7.1. Experimental setup 115

grid levels causes overshooting in additive multigrid—even for the Poisson equation.

Pure Poisson thus also provides a good test case for our adAFAC-x solver suite to

show improved convergence rates for larger problem sizes.

We also explore possible stability improvements that adAFAC-x can bring. Addi-

tional tests, therefore, focus on non-homogeneous material parameters as these are

known to introduce instabilities in some solvers. Large jumps in the material para-

meter introduce oscillations in the solution value for an additive solver—larger jumps

corresponding to larger oscillations. Our adAFAC-x solver is designed to damp out

such oscillations. The first discontinuous material parameter setup (E2) splits the

domain into two equally sized sections. The domain boundary is axis orientated but

not axis aligned. Although axis orientated, the split does not coincide with the mesh,

as we employ three-partitioning of the unit square, therefore, this jump in material

parameter cannot be accurately represented on any mesh level. This renders it a

challenging solve and liable to introducing instabilities/oscillations in weaker solvers.

The second discontinuous material parameter setup (E3) is no longer axis orientated.

This exacerbates the same challenges seen with the first setup, and therefore a more

powerful toolkit is required for fast convergence.

To analyse our asynchronous stencil assembly, we primarily use the latter of the

discontinuous material parameter test setups. We do not investigate any setup

with a homogeneous material parameter. For homogeneous setups, all stencils are

uniform and known in advance so require minimal assembly. Our focus is on the

more challenging of the two material parameter configurations, as it is both more

expensive to assemble and will more clearly highlight any impact our lazy evaluation

has on the stability of the solver. We require a large number of integration points,

n, per cell around the discontinuity, but n = 1 will suffice in regions of constant ε.

Localised significant changes to ε mean the choice of n is not uniform. The overall

integration is therefore slow to converge due to the discontinuity. Additive multigrid

tends to overshoot significantly when there are large material parameter changes, so

we can readily expose any instabilities due to delayed assembly.

116 Chapter 7. Results

If tests are labelled as regular grid runs, each grid level is regular and, unless otherwise

stated, we consequently end up with a mesh holding (37 − 1)d = 4, 778, 596 degrees

of freedom for `max = 7. If tests are not labelled as regular grid runs, we rely on

dynamic mesh refinement. Otherwise our experiments focus on d = 2 and start with

a 2-grid algorithm (`max = 2) where the coarser level has (3 − 1)d = 4 degrees of

freedom and the finer level hosts (32 − 1)d = 64 vertices carrying degrees of freedom.

From hereon, we add further grid levels and build up to an 8-grid scheme (`max = 8).

When we apply adaptive mesh refinement to the setup with non-homogeneous bound-

ary conditions (BC1), our code manually refines the cells along the bottom boundary

in every other cycle, i.e. we refine the cells where one face carries u|∂Ω 6= 0. The

boundary is homogeneous in (BC2) so this is not required. We stop with this refine-

ment when the current `max reaches a predetermined constant. Our manual mesh

construction ensures that we kick off with a low total vertex count, while the solver

does not suffer from pollution effects: The scheme kickstarts further feature-based

refinement. Parallel to the manual refinement along the boundary, our implementa-

tion measures the absolute second derivatives of the solution along both coordinate

axes in every single unknown. A bin sorting algorithm is used to identify the vertices

carrying the (approximately) 10 percent biggest directional derivatives. These are

refined unless they already meet `max. The overall approach is similar to full multi-

grid where coarse grid solutions serve as initial guesses for subsequent cycles on finer

meshes, though our implementation lacks higher-order operators. All interpolation

from coarse to fine meshes, both for hanging vertices and for newly created vertices,

is d-linear.

7.1.3 Data measurements

Our runs employ a damped Jacobi smoother with damping ω = 0.6 and report the

normalised residuals

‖r(k)‖h
‖r(0)‖h

where ‖r(k)‖2
h :=

∑
i

hdi (r1
i (k))2, (7.1.1)

7.1. Experimental setup 117

with k being the multigrid cycle count. r(k)
i is the residual in vertex i and hi is the

local mesh spacing around vertex i. Dynamic mesh refinement inserts additional

vertices and thus might increase the number of entries in the residual vectors between

two subsequent iterations, thereby increasing this metric. As a consequence, residuals

under a Euclidean norm may temporarily grow due to mesh expansion. This effect is

amplified by the lack of higher order interpolation for new vertices. The normalised

residual (7.1.1) enables us to quantify how much the residual has decreased compared

to the residual fed into the very first cycle.

The use of this norm follows on from statements about inner product norms in [13]

and measurements obtained in [32]. This normalised residual is constructed as a

discrete interpretation of the L2 norm. We assume that underlying shape functions

are non-overlapping, therefore, weighting the squared residual from a vertex with

the element size acts as a suitable approximation of the integral of the squared

residual over that cell. Due to this weighting, residual contributions scale with the

mesh—a large number of very fine grid cells doesn’t dominate the norm due to

their quantity—the norm incorporates contributions over the entire domain, so is

an effective indication of global error. It is a bad indication if there exists only large

local errors. If there is low error over the majority of the domain but a small region

exhibits a large error, then the small region will only minimally effect the norm. As

we are interested in tracking residual developments around discontinuities—which

may exhibit large errors around the transition and low errors elsewhere—where

appropriate, we also display the normalised maximum residual

maxi{|r(k)
i |}

maxi{|r(0)
i |}

.

This second residual norm merely samples the single largest point in the domain in

each iteration and acts as an identifier of localised errors. We track the progression of

this sequence of largest values. which is analogous to the LInf norm for a continuous

space. This norm will be dominated by a single vertex that is slow to converge, or a

single point exhibiting large oscillations in the solution value. Oscillations will most

118 Chapter 7. Results

probably occur near discontinuities. Sampling individual vertices therefore acts an

early indicator of these instabilities.

7.1.4 Limitations of the current approach

For our current implementation we have targeted elliptic problems with discontinuous

material parameters. Our asynchronous assembly process has been written with a

finite element construction in mind, in particular one with simple basis functions

with local support. This choice is a limit of the implementation, not of the algorithm,

so our ideas are still applicable to more general problems. Our additive solver again

targets the same problem types, though our current coarsening procedure, and thus

choice of coarse grids and intergrid transfers, is somewhat dependent upon this choice

of basis.

With this in mind, our scheme is well suited for solving random material parameter

jumps; we can readily handle discontinuities of large magnitudes in the material

parameter or random material parameters corresponding to Perlin noise like distri-

butions. If the variation in the material parameter exists at a frequency longer than

a fine grid cell, then it does not drastically impact the fine grid assembly process

as the material parameter change per cell is still smooth. It will effect behaviour

on the coarse grid however, where material parameter variations will be picked up

and must be accurately represented. Our adAFAC-x damping is effective for these

coarse grid variations: we damp out oscillations from the coarse grid due to long

range variations. On the other side of things, the asynchronous stencil assembly is

effective for large variations in the material parameters when they exist in the range

of subcells of the fine grid. Asynchronous assembly initially constructs stencils which

holds errors in the material parameter that belong to the same frequency/length as

the fine grid cell itself. Using these stencils kickstarts solution convergence. The

solution initially holds errors of the same frequency also. Subcell information is fed

to the smoother in subsequent iterations. As long as the underlying discretisation is

7.1. Experimental setup 119

stable and shows accurate representation eventually, then the solution will converge

to the true solution. The asynchronous assembly simply provides a headstart. Our

dynamic integration process and dynamical adaptivity means the discretisation will

adapt to any material parameter configuration.

There exist problem types that our scheme is less well suited for; problems with

anisotropic material parameters present their own set of challenges, for example.

Additive multigrid (with geometric coarsening) is ill-suited for anisotropic problems.

Stability can often be maintained, but solvers will exhibit very slow convergence. Due

to our choice of geometric coarsening this still remains the case. We remain stable,

and retain stability for a larger difference in material parameters, but converge very

slowly. Although, we can construct operators very quickly due to our asynchronous

assembly, so may appear well suited on the surface, we are unlikely to be the best

choice due to our additive multigrid solver. Furthermore, many anisotropic problems

use constant material parameters per dimension, which is trivial to construct using

a tensor product formulation, so our asynchronous assembly would be overkill.

Our methodology also seems like a good fit for nonlinear problems. We use full

solution representations on all levels, so could easily modify our solver to be a true

FAS solver (rather than merely borrowing FAS ideas to make dynamical adaptivity

less painful). Our asynchronous assembly continually re-integrates all equations to

improve equation accuracy, which means we keep updating operator representation,

so our solver adapts to changes in the local operator due to the changing local

solution. However, vertical rippling of coarse grid operators slows the rate at which

these changes are represented in coarse representations. Therefore, coarse grids use

outdated solution representations in the operator, which may give rise to stability

issues. These issues are flaws with our current implementation however, rather than

the core tenets of asynchronous assembly.

We expect to see limited success when extending our solver to non-elliptic operators

as the sole solver; for example, solving parabolic problems such as the Navier-Stokes

equation. In its existing form, however, our solver could readily act as a sub-system

120 Chapter 7. Results

102 103 104 105 106

Number of Elements

10 6

10 5

10 4

10 3

10 2

M
ax

im
um

 a
bs

ol
ut

e
er

ro
r

Figure 7.2: Mesh convergence for adAFAC-Jac as we increase the
number of elements.

that acts upon elliptic subproblems within a larger equation. Struggling to tackle

problems with different character, such as parabolic problems, is due to the nature

of multigrid and its qualities as a solver—rather than an issue with our approach in

particular. In its current form, our integration process has only been implemented

for one case—the variable coefficient Poisson equation. By swapping out the exact

function that performs the integration, so as to perform a different integration,

we would be able to assemble a wider variety of matrices, and thus solve a wider

variety of equations. Our solver would be able to handle this, it is the current

implementation that holds it back.

7.2 adAFAC-x: Consistency

We initially focus on adAFAC-x and verify that it is consistent. That is, we check it

is actually a valid solver. We initially highlight a quick mesh convergence study: we

study the Poisson equation with a known solution. That is we record the maximum

absolute error across the domain for the setup with RHS f = −2π2sin(πx0)sin(πx1)

and homogeneous boundary conditions (BC2). This has known exact solution u =

sin(πx0)sin(πx1). The plot of this can be seen in (Fig. 7.2). This confirms that as

the mesh spacing decreases by a known factor—and therefore the total number of

mesh elements increases by the square of that factor—the error decreases by square

7.2. adAFAC-x: Consistency 121

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

2 grid
3 grid
4 grid
5 grid
6 grid
7 grid

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

2 grid
3 grid
4 grid
5 grid
6 grid
7 grid

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

2 grid
3 grid
4 grid
5 grid
6 grid
7 grid

Figure 7.3: Solves of the Poisson equation on regular grids of dif-
ferent levels. We compare plain additive multigrid (top,
left), multigrid using exponential damping (top, right),
and adAFAC-Jac (bottom).

of that factor, i.e. we are in O(h2) (as expected from our second order accurate

discretisation). This can be seen by the negative linear relationship between the

number of mesh elements and the L∞ error. Our first set of experiments then focus on

the pure Poisson equation, i.e. our (E1) material parameter (ε = 1 everywhere) and

(BC1) (where f = 0). Multigrid is expected to yield a perfect solver for this setup:

Each cycle (multiscale grid sweep) has to reduce the residual by a constant factor

which is independent of both the degrees of freedom, i.e. number of vertices, and

number of multigrid correction levels. Due to the constant material parameter, Ritz-

Galerkin multigrid yields the same operators as rediscretisation, since BoxMG gives

bilinear intergrid transfer operators for symmetric positive definite operators [118].

The setup is a natural choice to validate the consistency and correctness of the

adAFAC-x ingredients. All grids are regular.

Our experiments (Fig. 7.3) confirm that additive multigrid converges insignificantly

faster than the other alternatives for setups with a small number of meshes, if additive

remains stable. However, the more grid levels are added, the more additive multigrid

122 Chapter 7. Results

Degrees of Freedom
64 676 6,400 58,564 529,984 4,778,596

Additive Multigrid
Total runtime, [s] 1.97E-01 1.06E+00 6.07E+00 5.65E+01 5.31E+02 9.85E+03

Average time per solver iteration, [s] 4.18E-03 2.05E-02 1.19E-01 1.09E+00 9.75E+00 9.00E+01
Assembly time, [s] 2.97E-02 1.95E-01 1.07E+00 1.07E+01 1.02E+02 1.02E+03

adaFAC-JacR
Total runtime, [s] 2.29E-01 9.89E-01 6.49E+00 5.99E+01 5.39E+02 5.31E+03

Average time per solver iteration, [s] 4.43E-03 1.89E-02 1.29E-01 1.15E+00 1.02E+01 9.96E+01
Assembly time, [s] 5.05E-02 1.93E-01 1.07E+00 1.05E+01 1.00E+02 1.02E+03

adaFAC-JacP
Total runtime, [s] 2.31E-01 1.08E+00 6.65E+00 6.19E+01 5.60E+02 5.38E+03

Average time per solver iteration, [s] 4.56E-03 2.06E-02 1.30E-01 1.19E+00 1.07E+01 1.02E+02
Assembly time, [s] 4.74E-02 1.94E-01 1.07E+00 1.06E+01 1.01E+02 1.00E+03

adaFAC-PI
Total runtime, [s] 1.97E-01 9.70E-01 6.22E+00 5.69E+01 5.12E+02 4.98E+03

Average time per solver iteration, [s] 4.19E-03 1.84E-02 1.19E-01 1.10E+00 9.80E+00 9.45E+01
Assembly time, [s] 2.98E-02 1.93E-01 1.23E+00 1.06E+01 1.00E+02 1.00E+03

Exponentially Damped
Total runtime, [s] 2.10E-01 1.18E+00 1.01E+01 1.21E+02 1.35E+03 1.49E+04

Average time per solver iteration, [s] 4.22E-03 1.78E-02 1.19E-01 1.09E+00 9.79E+00 9.31E+01
Assembly time, [s] 4.01E-02 1.98E-01 1.13E+00 1.04E+01 9.97E+01 1.01E+03

Table 7.2: A breakdown of time-to-solution, average time taken
per iteration, and total assembly cost for a selection
of our additive solvers as we increase the total degrees of
freedom used in the solve when solving for the Poisson
equation on a regular grid.

overshoots per multilevel relaxation. When we add a seventh correction level, this

suddenly makes the plain additive code’s performance deteriorate. With an eighth

level added, the solver would diverge (not shown). Exponentially damped multigrid

does not suffer from such an instability for a large number of levels, but the aggressive

damping of coarse grid influence prevents the solution updates from retaining a long-

range impact, so updates do not propagate quickly. The convergence speed suffers

from additional degrees of freedom and additional correction levels. Here, we only

show the graph for adAFAC-Jac with smoothed restriction—our other damping

setups produce visually identical graphs. All three of our damping parameter choices

for adAFAC-x are stable, but they do not suffer from the speed deterioration of an

exponentially damped scheme—they retain textbook multigrid convergence. Their

localised damping makes both schemes effective and stable. A breakdown of time-to-

solution and the time of differing phases is shown in Table 7.2. We note that for the

same mesh size the time for an individual iteration is consistent between additive

multigrid and our adAFAC-x setups, as is total assembly time. In situations where

undamped additive multigrid converges, we see similar rates of convergence in our

7.2. adAFAC-x: Consistency 123

0 10 20 30 40
Iteration

10 9

10 7

10 5

10 3

10 1

||r
n ||

h

||r
0 ||

h

adAFAC-Jac Poisson
adAFAC-Jac 3 Order Jump
adAFAC-Jac 5 Order Jump
Multiplicative Poisson
Multiplicative 3 Order Jump
Multiplicative 5 Order Jump

Figure 7.4: Comparing the number of iterations our adAFAC-Jac
solver requires to converge against a multiplicative mul-
tigrid solver provided by PETSc. Both cases solved for
approximately 4·107 degrees of freedom on regular grids
for different material parameter setups.

damped implementations to that of undamped additive multigrid. Therefore, there

is no appreciable increase in computational cost when using auxiliary damping.

We now offer a brief comparison between our damped additive solver and an effective

existing multiplicative solver, the multiplicative multigrid solver provided within

PETSc [119]–[121]. This shows how our damping methodology compares to an

actual multiplicative solver, rather than just the advantage and improved stability

our damping scheme brings to an additive scheme. We do not use a Krylov solver on

any level and stick to damped Jacobi smoothers across all levels using a V (1, 1)−cycle.

This is not a realistic way to use PETSc but serves as a better comparison to our

damped additive scheme. We run a PETSc solver on a regular grid with 4, 198, 401

degrees of freedom, the regular grid for our damped additive scheme, on the other

hand, is slightly larger, and has 4, 778, 596 degrees of freedom. Experimental runs

stick to setups with zero right hand side and inhomogeneous boundary conditions

(BC1), and solve for either constant material parameter (E1, labeled as Poisson),

or the setup with a single jump in the middle of the domain (E2) with jumps

of either three or five orders of magnitude. The results of these experiments can

be seen in (Fig. 7.4). Unsurprisingly, the multiplicative solver outperforms our

damped additive scheme and converges in roughly half the number of iterations for

124 Chapter 7. Results

10 1 100

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

Figure 7.5: Left: Typical adaptive mesh for pure Poisson (constant
material parameter) once the refinement criterion has
stopped adding further elements. Right: We compare
different solvers on the pure Poisson equation using
a hybrid FMG-AMR approach starting at a two grid
scheme and stopping at an eight grid

all the material parameter configurations. This is to be expected, considering the

additional smoothing steps in the PETSc setup. PETSc performs a full V (1, 1)−cycle

rather than merely approximating a level specific V (1, 0)−cycle. We argue that

the increased potential for concurrency within an additive scheme means that our

damping scheme remains competitive. Also of note, when using the built-in additive

solver in PETSc on this setup it fails to converge, so the lack of stability for vanilla

additive multigrid can clearly be seen.

Despite the instability of plain additive multigrid, we continue to benchmark against

the undamped additive scheme, as exponential damping is both not competitive and

not unambiguously defined for adaptively refined meshes. We start to investigate

schemes with dynamic feature based refinement on ragged grids. Experiments from

hereon now may be reasonably irregular/coarse to circumnavigate the instabilities.

Feature-based dynamic refinement criterion makes the mesh spread out from the

bottom edge when u|∂Ω = sin(πx0) (Fig. 7.5). We start from a small regular grid

with a single correction level, and add additional points throughout the solver’s

run-time. Additional points are added to resolve features of interest within the

solution. To assess its impact on cost, we count the number of required degrees of

freedom updates plus the updates on coarser levels. These degree of freedom updates

correlate directly to run-time.

7.3. adAFAC-x: Stability 125

One smoothing step on a regular mesh of level eight yields 4.3 · 107 updates plus

the updates on the correction levels. If the solver terminated in 40 cycles, the

number of cycles required earlier for convergence, we would have to invest more

than 109 updates per solve. Dynamic mesh unfolding reduces the total required

updates to reduce the residual by up to three orders of magnitude. The final mesh

now holds fewer than 2000 degrees of freedom. This corresponded to a run time of

approximately 3 seconds for a single core study. For Poisson, this saving applies to

both plain additive multigrid—while it remains stable—and our adAFAC-x variants.

If ran with BoxMG, our codebase uses Ritz-Galerkin coarse operator construction

for both the correction terms and the auxiliary coarse grid operators in adAFAC-

Jac. We validated that both the algebraic intergrid transfer operators and geometric

operators yield exactly the same outcome. This is correct for pure Poisson as BoxMG

yields geometric operators here, therefore the use of Ritz-Galerkin coarse operator

construction for the correction terms yields the same result as rediscretisation.

Observation 1. Our code is consistent. For very simple, homogeneous setups,

however, it makes only limited sense to use adAFAC-x—unless there are many grid

levels. If adAFAC-x is to be used, adAFAC-PI is sufficient. There’s no need to

explicitly construct an actual additional auxiliary equation.

We conclude with the observation that all of our solvers, if stable, converge to

the same solution. They are real solvers, not mere preconditioners that only yield

approximate solutions.

7.3 adAFAC-x: Stability

7.3.1 Regular grid with one material jump

We next study a setup where the material “jumps” in the middle of the domain

(E2). The stronger the material transition, the more important it is to reflect the

126 Chapter 7. Results

0 5 10 15 20 25 30 35 40
Iteration

10 2

10 1

100
No

rm
al

ise
d

So
lu

tio
n

at
 fi

xe
d

po
in

t

Undamped/6 levels
Undamped/5 levels
Undamped/4 levels
adAFAC-Jac/6 levels
adAFAC-Jac/5 levels
adAFAC-Jac/4 levels

0 5 10 15 20 25 30 35 40
Iteration

10 2

10 1

100

No
rm

al
ise

d
So

lu
tio

n
at

 fi
xe

d
po

in
t

Undamped/6 levels
Undamped/5 levels
Undamped/4 levels
adAFAC-Jac/6 levels
adAFAC-Jac/5 levels
adAFAC-Jac/4 levels

Figure 7.6: The domain material is split into two halves with an
ε jump from ε = 1 to ε = 10−7. Solution development
in sample point next to a discontinuity, normalised by
the true solution value at that point, i.e. one means the
correct value. We compare d-linear intergrid transfer
(top) to BoxMG operators (bottom).

ε changes in the intergrid transfer operators. Otherwise, a prolongation of coarse

grid corrections introduces errors close to x1 = 0.5. Dynamic refinement yields

many additional degrees of freedom around this discontinuity; however, due to the

fact the space-tree setup uses three-partitioning, the discontinuity is never resolved

exactly. As no grid in the present setup has degrees of freedom exactly on the

material transition, the intergrid transfer operators are also never able to mirror the

material transition exactly. This extends to the coarse grid levels—they are unable

to exactly represent the chosen material jump and thus solve an inaccurate equation.

The additional fine grid vertices from AMR therefore act as a fix on the inaccurate

7.3. adAFAC-x: Stability 127

coarse grid solve. This ideology can be viewed as a foil to the damping used within

adAFAC-x. adAFAC-x removes coarse grid errors by improving the solve we perform

on the coarse, so coarse corrections are more accurate. Adaptivity removes coarse

grid errors by adding finer elements along the transition. Rather than simply using

adaptivity to fix errors we make errors smaller right from the start. The coarse grid

corrections incorporate additional fine grid information to produce corrections with

less error.

Without dynamic adaptivity, multigrid runs the risk of deteriorating in the mul-

tiplicative case and becoming unstable in the additive case. To document this

phenomenon, we monitor the solution in one sample point coinciding with the real

degree of freedom next to x = (0.5, 0.5)T , and employ a jump in ε of seven orders

of magnitude. We restrict our focus to the boundary setup (BC2). A regular grid

corresponding to ` = 6 is used. We start from a single grid algorithm, and add an

increasing number of correction levels. Not all possible grid level setups are shown

here. Without algebraic intergrid transfer operators, oscillations arise if we do not

use our additional damping parameter (Fig. 7.6). For undamped additive multigrid,

oscillations increase as the number of coarse grid levels used increases. Additive

multigrid is stable in cases with fewer than six grid levels, but it shows a reduced

rate of convergence. When only four grid levels are used it takes 15 iterations for

the solution approximate to be within an order of magnitude of the true solution,

for setups with five and six grid levels this is achieved after only one iteration. Un-

damped additive multigrid with six levels shows oscillations in solution value from

the very beginning. The oscillations increase in size with additional solver iterations.

Our damping parameter eliminates these oscillations and does not harm the rate

of convergence. adAFAC-Jac converges for the six level setup and for the four and

five level setups both undamped and damped additive multigrid see almost visually

identical curves and rates of convergence. Algebraic intergrid transfer operators

eliminate these oscillations, too. Both additive multigrid and adAFAC-Jac do not

show oscillations when using BoxMG intergrid transfer operators and when using the

128 Chapter 7. Results

same number of grid levels show similar rates of convergence. The results show why

codes without algebraic operators and without damping usually require a reasonably

coarse mesh to align with ε transitions.

7.3.2 Adaptive mesh refinement with one material jump

10 1 100 101 102

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101
||r

n ||
h

||r
0 ||

h adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG
additiveMG+BoxMG

10 1 100 101 102

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

m
ax

{|
rn |}

m
ax

{|
r0 |} adAFAC-JacR

adAFAC-JacP
adAFAC-PI
additiveMG
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG
additiveMG+BoxMG

Figure 7.7: Top Left: The domain material is split into two halves
with an ε jump from ε = 1 to ε = 10−k. Typical ad-
aptive mesh for single discontinuity setup once the re-
finement criterion has stopped adding further elements.
Top Right: ε ∈ {1, 10−1}, i.e. the material parameter
changes by one order of magnitude. We present only
data for converging solver flavours. Bottom: The same
setup but for the normalised maximum norm.

We continue with our analysis of a single material jump (E2) but switch to dynam-

ically adaptive meshes. All experiments use the already detailed AMR/FMG setup,

i.e. start from a coarse regular mesh and then dynamically adapt the grid. As these

runs also used non-homogeneous boundary conditions (BC1), we observe that the

hard-coded grid refinement refines along the stimulus boundary at the bottom, while

the dynamic refinement criterion unfolds the mesh along the material transition

(Fig. 7.7).

7.3. adAFAC-x: Stability 129

10 1 100 101 102

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG
additiveMG+BoxMG

10 1 100 101 102

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

m
ax

{|
rn |}

m
ax

{|
r0 |}

adAFAC-JacR
adAFAC-JacP
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG
additiveMG+BoxMG

Figure 7.8: Setup of Fig. 7.7 but with a five orders of magnitude
jump in the material parameter. We present only data
for converging runs and observe that fewer solver in-
gredient combinations converge.

For a single order of magnitude jump in ε, all showcased multigrid variants are stable.

The residual plot in the maximum norm validates our statement that large errors

arise along the material transition when we insert new degrees of freedom. The

absence of a higher-order interpolation for new degrees of freedom hurts, in that it

harms the overall convergence speed, but it does not destroy the overall stability.

We currently perform a “wrong” interpolation when setting up the fine grid, so must

perform at least one fine grid smoothing step to correct. Once the dynamic AMR

stops inserting new vertices—this happens once the grid holds 1.3 ·106 many vertices

and after almost 106 degrees of freedom have been processed in total—the residual

drops under both norms. This is an increase relative to the Poisson equation—of

around a hundred times—but as there are now a hundred times as many vertices,

this is still competitive. A large part of the computational time is due to equation

reconstruction performed after refinements.

Once we increase the size of the changes in ε (to a jump of two orders of mag-

nitude), undamped additive multigrid with geometric intergrid transfer operators

fails to converge. Using BoxMG, however, restores stability. We need an algebraic

interpolation routine, or alternatively one of our adAFAC-x variants. adAFAC-Jac

with bilinear transfer operators converges for all ε = 10−k values tested. This is

true when either smoothed restriction or prolongation is used for the auxiliary grids.

However, undamped additive multigrid and adAFAC-PI fail to converge without

130 Chapter 7. Results

10 1 100 101 102 103

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG
additiveMG+BoxMG

10 1 100 101 102 103

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-JacR+BoxMG
adAFAC-JacP+BoxMG
adAFAC-PI+BoxMG

Figure 7.9: Typical adaptive mesh for a setup where the regions
with different material parameter ε are not axis-aligned.
One order of magnitude differences in the material para-
meter (top right) vs. three orders of magnitude (bot-
tom).

BoxMG once the ε-transition becomes too harsh (Fig. 7.8). The geometric intergrid

transfer approach suffers from oscillations around the material transition. All stable

solvers play in the same league.

Observation 2. If we face reasonably small jumping materials, adAFAC-PI is su-

perior to plain additive multigrid, adAFAC-Jac or any algebraic-geometric extension,

as it is both stable and simple to compute. Once the jump grows, adAFAC-Jac be-

comes the method of choice. Its auxiliary damping equations compensate for the lack

of algebraic intergrid transfer operators, which are typically not cheap to compute.

7.3.3 Adaptive mesh refinement with non axis-aligned

subdomains

We move on to our experimental setup with a deformed checkerboard setup (E3).

Similar to the previous setup (E2), the material transitions are again not axis aligned,

but in addition, they are now also skew. This is harder to represent in coarse grid

7.3. adAFAC-x: Stability 131

equations. Due to our use of space-trees, the discontinuity does not exactly bisect

cells, so fine grid equations over a discontinuity no longer follow a fixed, repeating

pattern. We can never exactly resolve the material transitions with the degrees of

freedom or intergrid transfer operators. We again focus on (BC1), so a homogeneous

right-hand side and non-homogeneous boundary conditions (Fig. 7.9), where the

dynamic adaptivity criterion unfolds the mesh along the material transitions. The

solution behaviour within the four subregions itself is smooth, i.e. diffusive, and the

adaptivity around the material transitions thus is wider, more balanced, than the

hard-coded adaptivity directly at the bottom of the domain.

With small variations in ε, this setup does not pose a challenge to any of our damped

solvers, irrespective of whether they work with algebraic or geometric intergrid

transfer operators. Additive multigrid with d-linear grid transfer operators does

not retain textbook multigrid convergence for the full solve, however. Once grid

refinements cease all damped setups show this rate of convergence. Without BoxMG

operators, additive multigrid stagnates slightly—it requires 107 solution updates

to converge. This increase in required updates and iteration does not drastically

increase the runtime relative to other solvers however. This is an order of magnitude

slower than the number of updates required for the Poisson equation. There are

oscillations in the solution that slow the rate of convergence—for low ε jumps these

are slowly removed (hence the stagnation), but once ε becomes large the oscillations

increase and cause divergence. Case in point: we look to the setup with increasing

large jumps in ε. For ε = 3, we observe that additive multigrid starts to diverge,

even with algebraic grid transfers and hence is not shown on the plot. Smooth

regions are still sufficiently dominant and we suffer from overcorrection between

them. adAFAC-PI performs better yet requires algebraic operators to remain robust

up to ε variations of three orders of magnitude. With geometric operators both

options for adAFAC-Jac remain stable for all studied setups, up to and including the

five order of magnitude jump. adAFAC-Jac with algebraic operators consistently

outperforms its geometric cousin. BoxMG’s accurate handling of material transitions

132 Chapter 7. Results

Sequential Code Shared Memory Code (Number of Cores)
1 2 4 6 8 12

Runtime [s] 9.41E+03 1.14E+04 6.19E+03 3.79E+03 2.71E+03 2.34E+03 1.93E+03
Total Instruction Calls 3.05E+12 3.67E+12 3.58E+12 3.62E+12 3.65E+12 3.80E+12 3.83E+12
L1 request rate 6.99E-02 8.04E-02 7.84E-02 7.94E-02 7.99E-02 8.32E-02 8.33E-02
L1 miss rate 4.19E-05 3.00E-04 3.00E-04 3.00E-04 3.00E-04 5.00E-04 6.00E-04
L2 request rate 2.00E-03 2.16E-02 1.30E-02 1.46E-02 1.52E-02 1.52E-02 1.85E-02
L2 miss rate 7.00E-04 3.90E-03 3.30E-03 3.70E-03 3.90E-03 4.00E-03 4.70E-03

Table 7.3: Analysis of performance for our adAFAC-Jac solver. We
compare the performance of the sequential implementa-
tion of our code with the shared memory implementation
for a regular grid with 4, 778, 596 degrees of freedom.

decouples the subdomains from each other on the coarse correction levels. Updates

in one domain thus do not pollute the solution in a neighbouring domain.

Observation 3. While the auxiliary equations can replace/exchange algebraic oper-

ators in some cases, they fail to tackle material transitions that are not grid-aligned.

7.4 adAFAC-x: Performance

We perform an initial performance analysis of our code, where we verify that our

implementation is single-touch: that is, we check that we see minimal cache misses.

An illustration of hardware measurements and timings can be seen in Table 7.3.

These initial tests are for a regular grid with over 4 · 106 DoFs and a constant

material parameter. We report cache requests and misses as a rate, i.e. a proportion,

rather than as absolute values, and note that we see similar excellent cache utilisation

to that seen in Reps and Weinzeirl’s implementation [32]. Again, we reiterate their

insights, that due to the single-touch policy per unknown and the localised traversal

of the space-tree we can assume that each unknown is only loaded into the cache once

per grid traversal. The low rate of cache misses, for both L1 and L2 caches, confirms

this hypothesis. We also note that we see reasonable scaling (i.e. a reasonable

reduction it time-to-solution) as we increase the number of cores. Although we see

an initial increase in time-to-solution due to the TBB overhead for the single core

setup.

We close our adAFAC-x focused experiments with a scalability exercise. Both the

7.4. adAFAC-x: Performance 133

serial 2 4 8 16 24
Cores

1.00

2.00

4.00

8.00

16.00

Sp
ee

du
p

h 0.005
h 0.0025
h 0.001
h 0.0005
Linear speedup

1 2 4 8 16 32 64
Nodes

230

231

232

233

234

235

236

h 5.0e-04

h 2.5e-04

h 1.0e-04

C
o
st

 p
e
r

tr
a
v
e
rs

a
l
([

t]
=

n
s)

Figure 7.10: Left: Shared memory experiments with adAFAC-x.
All solver variants rely on the same code base, i.e. ex-
change only operators, such that they all share the
same performance characteristics. Right: Some dis-
tributed memory run-time results with the time for
one multiscale grid sweep. This corresponds to one
additive cycle as we realise single-touch semantics. We
study three different mesh sizes given via upper bounds
on the h. Two ranks per node, i.e. one rank per socket,
are used.

shared and the distributed memory parallelisation of our code use a multilevel non-

overlapping domain decomposition [44]. The non-overlapping domain decompositions

are derived using a space-filling curve: The fine grid cells are arranged along the

Peano space-filling curve and cut into curve segments of roughly the same number of

cells. We use a non-overlapping domain decomposition on the finest mesh. Logically,

our code does not distinguish between the code’s shared and distributed memory

strategy. They both decompose the data in the same way. The distributed memory

variant, however, replaces memory copies along the boundary with MPI calls. All

timings rely on run-times for one cycle of a stationary mesh, i.e. load ill-balances

and overhead induced by adaptive mesh refinement are omitted.

For all experiments, we start adAFAC-x and wait until the dynamic adaptivity has

unfolded the grid completely such that it meets our prescribed h as a maximum

mesh size. The associated total number of degrees of freedom are: 4,778,596 for

h ≤ 5.00E − 04; 43,033,600 for h ≤ 2.50E − 04; and 387,381,124 for h ≤ 1.00E − 04.

We use two MPI ranks per node (one rank per socket) and use a shared memory

134 Chapter 7. Results

splitting of elements within a node. Our splitting strategy assigns the same number

of degrees of freedom to each core/thread—results were ran on a static, regular grid

so this can be guaranteed. We furthermore hard-code the domain decomposition

such that the partitioning is close to optimal: We manually eliminate geometric

ill-balancing, and we focus on the most computationally demanding cycles of a solve.

Cycles before that, where the grid is not yet fully unfolded, yield performance which

is similar to experiments with a bigger h.

Our shared memory experiments (Fig. 7.10) show reasonable scalability up to eight

cores, if the mesh is detailed. The curves are characteristic for both adAFAC-PI

and both variants of adAFAC-Jac, i.e. we have not been able to distinguish the

run-time behaviour of these approaches. If the mesh is too small, we see strong

run-time variations. Otherwise, the curves are reasonably smooth. Overall, the

shared memory efficiency is limited by less than 70% even if we make the mesh more

detailed.

Our code employs a very low order discretisation and thus exhibits a low arithmetic

intensity. This intensity is increased by both adAFAC-PI and adAFAC-Jac, but the

increase is lost behind other effects, such as data transfer or the management of

adaptive mesh refinement. The reason for the performance stagnation is not clear,

but we may assume that NUMA effects play a role, and that communication overhead

affects the run-time, too. With a distributed memory parallelisation, we can place

two MPI ranks onto each node and use shared memory parallelisation within the node.

NUMA then does not have further knock-on effects, and we obtain smooth curves

until we run into too small partitions per node. With a low-order discretisation,

our code is communication-bound—in line with most multigrid codes—yet primarily

suffers from a strong synchronisation between cycles.

Due to a non-overlapping domain decomposition on the finest grid, all traversals

through the individual grid partitions are synchronised with each other. Our

adAFAC-x implementation merges the coarse grid updates into the fine grid smoother,

but each smoothing step requires a core to synchronise with all other cores. We

7.5. Delayed stencil integration: Consistency 135

eliminate strong scaling bottlenecks due to small system solves, but we have not yet

eliminated scaling bottlenecks stemming from a tight synchronisation of the (fine

grid) smoothing steps.

Observation 4. Despite adAFAC-x’s slight increase of the arithmetic intensity, it

seems to be mandatory to switch to higher order methods [122] or approaches with

higher asynchronicity [90] to obtain better scalability. This is in line with other

research.

7.5 Delayed stencil integration: Consistency

We now move on to experiments studying our asynchronous stencil assembly. Spe-

cifically we investigate consistency with dynamic termination criteria and the possib-

ility of starvation effects. We largely focus on the deformed checkerboard material

parameter setup (E3) seen in the previous section with the fine grid hosting a homo-

geneous right-hand side and non-homogeneous boundary conditions (see Fig. 7.1).

The discontinuities are not axis aligned or orientated, therefore accurately capturing

them within a fine grid cell integration will require a large number of integration

points. This is an expensive integration and a good use case for our asynchronous

assembly—the assembly process is expensive so we will clearly see any possible gains.

Moreover, we have shown this to be a challenging material parameter for a solver. If

delayed stencil integration introduces any instabilities to the solver then they will be

readily apparent. Again, we initially study consistency, before investigating AMR

applications. We begin this section of experiments with some studies on dynamic

termination criteria. Most codes terminate the solve as soon as the normalised

residual runs under a given threshold or stagnates. If we use delayed, asynchronous

stencil integration, i.e. we do not wait per cell for the underlying next step of the

integration to terminate, we thus run into the risk that we terminate the solve pre-

maturely, i.e. before the correct local assembly matrices have been computed. From

136 Chapter 7. Results

an assembly point of view, this is a starvation effect: The assembly tasks are issued,

yet have not been scheduled and thus cannot affect the solve. We end up with the

solution to a “wrong” problem described by these inaccurate operators.

We investigate this hypothesis simulating our test equation with a high parameter

variation on a regular Cartesian mesh hosting 59,049 degrees of freedom. We initially

focus on geometric intergrid transfer operators and a material parameter jump of

five orders of magnitude, using the non-axis aligned regions seen in Fig. 7.1. Four

multigrid correction levels are employed. Our experiment tracks both the residual

development and the number of background tasks pending in the ready queue. We

reiterate that they are issued with low priority such that the incremental improvement

of the assembly process does not delay the solver iterations.

0 20 40 60 80
Iteration

10 9

10 7

10 5

10 3

10 1

||r
n ||

h

||r
0 ||

h

0

100

101

102

103

104

To
ta

lu
nt

er
m

in
at

ed
pr

oc
es

se
s

background tasks
precomputed
unterminated stencils

2.5 5.0 7.5 10.0 12.5 15.0
Time [s]

10 9

10 7

10 5

10 3

10 1

||r
n ||

h

||r
0 ||

h

0

100

101

102

103

104

To
ta

lu
nt

er
m

in
at

ed
pr

oc
es

se
s

background tasks
precomputed
unterminated stencils

Figure 7.11: Convergence of delayed operator evaluation vs. pre-
computed stencils/operators per iteration (top) and
against real time (bottom).

7.5. Delayed stencil integration: Consistency 137

For smooth ε distributions, we have not been able to spot any deterioration of the

residual evolution due to the delayed stencil integration (not shown). For rapidly

changing ε, e.g. changing regions of ε = 1 or ε = 10−5, the solver’s behaviour changes

dramatically however (Fig. 7.11). Using a delayed assembly (stencil computation)

deployed to background tasks, the solver iteration count required to reduce the

normalised residual to a factor of 10−10 has doubled compared to a solve where all

operators are accurately computed prior to the multigrid solver iterations beginning.

Initially, both methods show a similar rate of convergence; however, the delayed solve

soon enters a regime where its residual almost stagnates around 10−5. Throughout

the initial residual decay, the number of pending background tasks reduces dramat-

ically. While the residual stagnates, the number of background integration tasks

remains constant, however. Towards the end of the residual plateau, the number

of background tasks drops to zero and the solver recovers and exhibits multigrid

performance again.

Our solver spans one background assembly task per fine grid cell initially and con-

tinues to work with a geometric approximation to the local assembly matrix from

thereon. Most of the assembly tasks are associated with cells covering smooth ε

distributions. Thus, they discover that the assembly approximation is sufficiently

accurate almost immediately, i.e. after increasing the number integration points per

cell n once. They terminate and do not reschedule any tasks for this particular

cell. Only the few tasks associated with regions close to the significant ε variations

require repeated rescheduling while increasing n. By the time only these rescheduled

tasks remain, the lack of accurate subcell material representations for some cells

becomes detrimental to the rate of convergence. We reach a point where the current

solution accuracy is balanced with the error of the stencils/assembly matrices that

still have to be integrated properly. Updates to the cell matrices hence “introduce”

error—or rather expose errors in the solution that the previously held stencil was

unable to account for. Due to the elliptic nature of the operator, these errors spread

through the entire domain. The entire solver stalls. At the point all the background

138 Chapter 7. Results

integration tasks have converged, i.e. do not reschedule themselves anymore, we

regain multigrid convergence as we finally solve the correct system that no longer

changes.

We note two key observations from this:

Observation 5. The fine grid changing and equations rippling to the coarse grids

can prevent the residual from continually converging/decreasing. It introduces oscil-

lations.

and

Observation 6. Dynamic termination criteria for the equation system solver also

have to be designed carefully with delayed operator assembly, as the solver might

converge towards a wrong solution.

While our convergence considerations therefore seem to not favour the delayed, asyn-

chronous assembly, if we instead make a comparison with regards to the execution

time, we change the picture (Fig. 7.11). An increased iteration count in the solver

is negated due to the headstart the delayed evaluation gives the solver. The setup

also highlights, that for certain solves, precomputing accurate stencils can take a

greater amount of time than the solve itself. Finally, we see that the time-to-solution

of the delayed assembly is superior compared to the explicit a priori assembly. As

we kick off with low-accuracy operators, we effectively merge the first few multigrid

cycles with the actual assembly process. This confirms the illustration which we

initially presented in Fig. 4.5 actually holds. For this simple setup, the point in

time at which delayed evaluation has computed an accurate solution representation

is a similar point in time to that when the precomputed stencil has computed an

accurate stencil; even though our precomputation routines employ a dynamic n

choice as well. Therefore the delayed method can be seen as a way of computing

a reasonably accurate initial guess, and the delayed assembly manages to maintain

the lead from its headstart.

7.5. Delayed stencil integration: Consistency 139

We further confirm that this gain for lazy stencil integration holds for larger grids

and present a selection of run-times for a regular grid with six multigrid levels and

529,984 degrees of freedom (Fig. 7.4). Here we show experimental data for completed

solver runs for the skew checkerboard setup (E3) with a jump of three orders of

magnitude (k = 3) and non-homogeneous right-hand side (BC1) using BoxMG

intergrid transfers. We report walltime—the total time taken for the assembly phase

and the multigrid iterations—for a solve that assembles all operators a priori and

the speedup gained from using lazy stencil integration. For the three multigrid

solvers we present experimental data for—adAFAC-Jac, adAFAC-PI and vanilla

additive multigrid—we see an improvement in time-to-solution of a factor of 2/3

(which corresponds to a speedup of 1.5). This proportional reduction in total run-

time remains roughly constant as we increase the total cores used in a solve—more

cores used in the solves already reduces time-to-solution. This further highlights the

reduction in overall run-time of our approach.

We provide a further comparison for the same experimental material parameter setup

but instead with geometric intergrid transfer operators. Like in Table 7.4, we again

compare for the solve with 529, 984 degrees of freedom, but also compare for a larger

setup with 4, 778, 596 degrees of freedom. We again provide walltime but further

break the runtime down into phases: the assembly (grid setup) time and the solve

time itself. This split should highlight more explicitly the performance benefit of

asynchronous assembly. This can be seen in Table 7.5. For both mesh sizes, we

see that asynchronous assembly dramatically reduces the time taken for the initial

assembly phase—this is expected as we are performing the same grid construction

and data structure setup as with an a priori assembly but the asynchronous setup

only performs a less expensive/accurate stencil integration. For both meshes, the

assembly phase with asynchronous assembly takes approximately a third of the

time it would have otherwise taken. For the solver phases, both a priori assembly

and asynchronous assembly take the same number of multigrid solver iterations to

converge to the same accuracy. Asynchronous assembly does take slightly more time

140 Chapter 7. Results

Solver Type Run-time [s] / Speedup
2 4 8 12

adAFAC-Jac: Original run-time 847.90 491.44 297.63 273.34
Speedup 1.54 1.50 1.50 1.604

adAFAC-PI: Original run-time 864.16 503.31 293.83 291.64
Speedup 1.49 1.48 1.40 1.49

Additive: Original run-time 976.39 562.21 323.51 279.31
Speedup 1.68 1.62 1.61 1.63

Table 7.4: Total solver timings for BoxMG including all assembly
time. The first row in each denotes the time-to-solution
with a precise a priori assembly, the second the speedup
obtained through lazy integration.

adAFAC-Jac Total
Time [s]

Assembly
Time [s]

Iteration
Time [s]

Average Time Per
Solver Iteration [s]

Total Iterations

Precompute
529,984 DoFs 550.47 222.35 328.12 6.08 54

4,778,596 DoFs 5,736.45 2,209.67 3,526.78 57.82 61
Asynchronous Assembly

529,984 DoFs 481.52 83.09 398.43 7.38 54
4,778,596 DoFs 4,947.06 757.62 4,189.45 67.57 62

Table 7.5: Total solver timings when using geometric intergrid trans-
fer operators, across multiple large discontinuities, in-
cluding all assembly time for two different mesh sizes.
The first row in each section denotes the time-to-solution
with a precise a priori assembly, the second the speedup
obtained through lazy integration.

per iteration however. This is both due to computing the stencil integrations within

the solver iterations, which requires compute time, and having to recompute coarse

grid stencils each solver iteration. There is a noteworthy increase on the runtime of

each individual iteration, but not enough that it increases the runtime of the solve

in total. That is, we see an overall reduction in time-to-solution.

Observation 7. A delayed operator integration pays off in time-to-solution for rough

material parameters.

7.6 Delayed stencil integration: Stability

7.6.1 Robustness and iteration counts on a regular grid

To test whether additional instabilities are introduced due to our laziness, we again

perform consistency studies on a regular grid. We start with regular grids, specifically

7.6. Delayed stencil integration: Stability 141

we again test with a grid setup that holds a total of 4, 778, 596 degrees of freedom on

the fine grid. Again using (E2), the non-axis aligned geometric parameter distribution

from Fig. 7.1, we fix ε = 1 in the bottom left and top right subdomain and make

ε = 10−k, k ∈ {1, 2, . . . , 5} otherwise. The total number of material parameter

sampling points n within a numerical integration is two for cells that do not lie on

the discontinuity. Most cells that hold a discontinuity required 20 sampling points

All data report normalised residuals, i.e. the residual development in the discrete L2

norm relative to the initial one. We stop when the initial residual is reduced by ten

orders of magnitude.

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

Figure 7.12: Number of iterations until convergence is reached for
a selection of setups using geometric intergrid trans-
fers, with checkerboard material parameter as the size
of the jump increases. We either use an undamped
setup (left) or our damped setup adAFAC-Jac (right).
We compare the conventional method of precomputing
all operators before the first solver iteration (top) to
our delayed stencil integration with vertical rippling
(bottom).

Our benchmarks compare five methods of initialising the stencils against each other:

• Exact integration + Geometric transfers: An exact computation of all fine grid

is computed and all coarse grid operators using geometric intergrid transfer

operators are setup prior to the first multigrid cycle.

142 Chapter 7. Results

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101
||r

n ||
h

||r
0 ||

h
10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

Figure 7.13: Number of iterations until convergence is reached for
a selection of setups using BoxMG intergrid transfers,
with checkerboard material parameter as the size of
the jump increases. We compare two damped solv-
ers, adAFAC-PI (left) vs. adAFAC-Jac (right). The
top row shows the conventional method of precomput-
ing all operators whereas the bottom row shows our
delayed stencil integration with vertical rippling.

• Lazy integration + Geometric transfers: An incremental, lazy update of the

fine grid stencils is computed in parallel with the multigrid solve, and an initial

geometric guess for all coarse operators is used. Coarse grid updates ripple

through the multigrid hierarchy via geometric intergrid transfer operators.

• Exact integration + BoxMG transfers: An exact computation of all fine grid

is computed and all coarse grid operators using algebraic intergrid transfer

operators (BoxMG) are setup prior to the first multigrid cycle.

• Lazy integration + BoxMG transfers: An incremental, lazy update of the

fine grid stencils is computed in parallel with the multigrid solve, and an

initial geometric guess for all coarse operators is used. Coarse grid updates

ripple through the multigrid hierarchy via algebraic intergrid transfer operators

(BoxMG).

• Lazy integration + Delayed BoxMG transfers: An incremental, lazy update of

7.6. Delayed stencil integration: Stability 143

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

10 1

10 2

10 3

10 4

10 5

Figure 7.14: Number of iterations until convergence is reached for
a selection of setups using BoxMG intergrid transfers,
with checkerboard material parameter as the size of the
jump increases. We show our delayed stencil integra-
tion with vertical rippling, but no coarse grid operator
is used for an initial guess. We compare two damped
solvers, adAFAC-PI (left) vs. adAFAC-Jac (right).

the fine grid stencils is computed in parallel with the multigrid solve, and no

initial guess for the coarse operators is used. Instead coarse grid updates are

disabled until the first algebraic expression (using algebraic grid transfers) has

rippled through. Coarse grid updates ripple through the multigrid hierarchy

via algebraic intergrid transfer operators (BoxMG).

In the final case, the algorithm develops from a 2-grid, into a 3-grid, into a 4-grid

algorithm and so forth. We have split geometric and algebraic transfers into entirely

separate setups due to the impact this choice has on vertical rippling.

When using geometric grid transfers, there are no sudden changes in coarse grid

stencils between iterations. Ritz-Galerkin coarse grid operators with geometric

grid transfers on regular grids produce the same stencils as rediscretisation with

appropriately scaled basis functions. Recomputing coarse grid operators based

on the currently held (intermediate) fine grid stencils is equivalent to computing

rediscretised coarse grid operators with the same subcell material accuracy. This

statement does not hold when algebraic grid transfers are used.

Our first tests focus on geometric grid transfers and vary k (Fig. 7.12). The damped

additive solver variants outperform its plain additive cousin as plain additive multi-

grid either stagnates and the curve flattens off (k = 1) or becomes unstable and the

144 Chapter 7. Results

curve blows up (k ≥ 2). The use of lazy evaluation does not impact performance,

however. adAFAC-Jac is stable for all jump sizes and shows textbook multigrid

convergence consistently. Additive multigrid and our damped additive solver show

identical residual progression with both methods of stencil evaluation.

This does not remain the case when we use BoxMG algebraic grid transfers (Fig. 7.13).

Two variants of our damped additive solver, adAFAC-PI and adAFAC-Jac with

partially smoothed auxiliary restriction, show expected multigrid convergence for

all k values when we precompute all operators. Our modified additive solvers only

exhibit constant residual reduction as long as k ≤ 3. If the parameter jump becomes

bigger, they start to suffer from some instabilities in the first few iterations. This

offsets the convergence curve. It is due to the rippling. Once we modify the rippling,

i.e. involve only levels with reasonably valid operators and use no initial guess, we

retain the convergence of accurate precomputation (Fig. 7.14).

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
adAFAC-JacR+Background
adAFAC-JacP+Background
adAFAC-PI+Background

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
adAFAC-JacR+Background
adAFAC-JacP+Background
adAFAC-PI+Background

0 10 20 30 40 50 60 70
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
adAFAC-JacR+Background
adAFAC-JacP+Background
adAFAC-PI+Background

Figure 7.15: Number of iterations until convergence for k = 5. Top
Left: We use geometric coarse operators and trans-
fer operators. Top Right: We use BoxMG intergrid
transfer operators and start from a geometric oper-
ator guess that we iteratively improve. Bottom: We
use BoxMG intergrid transfer operators with no coarse
grid operator initial guess.

We now fix k = 5 and further analyse the impact of the grid transfers on our damped

7.6. Delayed stencil integration: Stability 145

additive solvers. Our earlier experiments 7.3.3, suggest that additive multigrid which

employs a solver that tests permanently on an auxiliary grid whether it overshoots is

superior to a more “BPX-like” code, that is one which does not employ a coarse grid

operator but solely uses grid transfers of fine grid corrections and residuals. With

geometric transfers, there is again no noticeable impact from our lazy evaluation,

even for this large k that can introduce instabilities in a solver (Fig. 7.15). Both

variants of adAFAC-Jac converge and even though it starts to blowup, the residual

development for adAFAC-PI remains similar when using lazy evaluation. adAFAC-

Jac outperforms adAFAC-PI. With rippling, the coin flips. Now, these simpler

solvers become superior as they do not require Ritz-Galerkin operators. The early

shown offset for algebraic operators is bigger for the additive solvers that explicitly

construct an additional coarse grid problem (adAFAC-Jac). We can eliminate this

offset by negating the impact of algebraic coarse grids on the fine grids until an

intermediate value has rippled to that level of the hierarchy. Multiplicative multigrid

exhibits similarities to the resulting scheme. It first solves on the finest grid, then on

the next coarser, then on the next coarser. In our additive mindset, the individual

multiplicative steps are replaced by an additive cycle. However, if we omit this

gradual switching on of coarser and coarser meshes, it seems that too wrong coarse

grid operators can lead the solver into the wrong direction.

7.6.2 Rippling with dynamically adaptive meshes

We continue with experiments where the grid is no longer fixed. This adds an

additional level of complexity, as the coarse grid operators used change through the

solve, both due to the delayed fine grid integration plus the information rippling. In

a traditional AMR/multigrid setup, any change in the grid necessitates a change

in all “coarser” equations. This introduces a recompute step per mesh refinement.

Our methodology hides the recomputation cost behind the solve. Unfortunately,

information propagates at most one level per cycle up within the resolution hierarchy.

146 Chapter 7. Results

It is not clear whether such a massive delay in the coarse grid assembly could lead

into stability problems or severe convergence penalties: The coarse grids are no

longer acting upon the same equation as the fine grids all the time. While this is

an effect affecting the previous experiments, due to the nature of additive multigrid,

dynamic adaptive mesh refinement also makes the semantics of assembly matrices

change: After each refinement, former fine grid discretisations suddenly become

Ritz-Galerkin correction operators. With our tests, we investigate whether they still

continue to push the solution in a direction that effectively minimises the error. We

posit the improved stability from adAFAC might be of benefit. Our setup initially

starts as a regular Cartesian mesh hosting 64 degrees of freedom on the fine grid

and a single multigrid correction level. This increases due to the refinement to the

order of 250,000 degrees of freedom and seven multigrid correction levels.

10 1 100 101 102 103

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

10 2 10 1 100 101 102 103

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

Figure 7.16: Residual plots for the jumping coefficient problem and
ε ∈ {10−3, 1} using geometric intergrid transfers. Both
setups employ dynamically adaptive mesh refinement
and either reassemble all operators accurately (left) or
use delayed operator assembly (right).

We use our second test setup with only one type of a discontinuous material jump

over three orders of magnitude. Initial results are given for ε ∈ {10−3, 1}. We further

compare setups that use geometric grid transfer operators (Fig. 7.16) and algebraic

grid transfer operators (Fig. 7.18). Our dynamic adaptivity criterion evaluates the

solution’s gradient over the domain after each multigrid cycle and picks the degrees

of freedom carrying the top 10% of the absolute gradient values. We refine around

these vertices and continue. Convergence requires a total number of updates in the

order of 107 DoF updates. If a solve yields a residual that is 100 times bigger than

7.6. Delayed stencil integration: Stability 147

102 103 104 105 106 107

Total processed DoFs
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

102 103 104 105 106 107

Total processed DoFs
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

Figure 7.17: Residual plots for the jumping coefficient problem and
ε ∈ {10−3, 1} using geometric intergrid transfers. Both
setups employ dynamically adaptive mesh refinement
and either reassemble all operators accurately (left)
or use delayed operator assembly (right). This is the
same setup as in (Fig. 7.16) but comparing a normal-
ised measure of computational cost rather than time
directly.

the initial residual, we terminate the solver—even though the well-defined ellipticity

implies that the solver eventually will “converge back”. We perform two sets of

comparisons: Firstly, we compare geometric intergrid transfers when all stencils are

accurately computed before the solve resumes and when our lazy integratation is

used. We compare this using the actual runtime and “Total Processed DoFs”. We use

this second metric—a count of the number of times a vertex is updated—so we can

compare algorithmic development while taking into account the changing underlying

mesh between iterations. Secondly, we compare algebraic intergrid transfers with

lazy integration with the two possible methods of initialising coarse grid equations

(either with an initial guess for the coarse or without any coarse grid impact at all).

For runs that converge, the code with a complete re-assembly after each refinement

step converges with a rather shallow gradient at first. Throughout this phase, the

grid is refined on alternate cycles. Once the grid becomes stationary, the solver

exhibits a linear residual descent with a steeper gradient. We initially focus on

geometric grid transfers with a fixed k = 3 (Fig. 7.16). At first glance, the two

algorithms seem to progress quite differently, however this is not the case. If we

compare the two setups relative to solution updates, as in (Fig. 7.17), we see that

the residual progressions are similar. Comparing runtime directly takes into account

148 Chapter 7. Results

10 1 100 101 102

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101
||r

n ||
h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

10 2 10 1 100 101 102 103

Time ([t]=s)
10 11

10 9

10 7

10 5

10 3

10 1

101

||r
n ||

h

||r
0 ||

h

adAFAC-JacR
adAFAC-JacP
adAFAC-PI
additiveMG

Figure 7.18: Residual plots for the jumping coefficient problem and
ε ∈ {10−3, 1} using BoxMG intergrid transfers. We
show two setups that employ dynamically adaptive
mesh refinement and a form of delayed operator as-
sembly. After a refinement coarse grid operators either
negate the impact of coarse levels temporarily (left) or
the existing operators as initial guess (right).

the reassembly stages, which are not explicitly performed for our background stencil

computation. Furthermore, we see the performance gains by the quicker time-to-

solution. For such a large jump, the only setups that converge are damped additive

setups that construct an explicit equation on the auxiliary grid, i.e. adAFAC-Jac

variants. Visually, there is negligible difference in the plots for geometric intergrid

transfer setups when precomputing all stencils and using our lazy evaluation. If

all operators are algebraic (Fig. 7.18), both variants of adAFAC-Jac suffers from

significant, temporary residual explosions which eventually are recovered when the

coarse grid equations use an approximate initial guess. adAFAC-PI also exhibits this

increase but not to quite as severe a degree. The undamped solver also exhibits this

residual increases and is unable to recover. adAFAC-Jac is more robust yet still not

as fast as its cousin with geometric intergrid transfer operators. We can massively

reduce the residual increases by turning off coarse grids after a refinement and only

re-enabling them once they have been set by a rippling process.

For both solver variants, our adaptive mesh refinement reduces the approximation

accuracy temporarily, as it replaces mesh cells likely fed by high accuracy stencils

with finer mesh cells with only one integration point. This induces oscillations

manifesting in temporary residual spikes. As the fine grid cells start to improve their

integration accuracy iteratively, the overall system accuracy recovers. Until this is

7.6. Delayed stencil integration: Stability 149

complete, the residual can continue to increase by many orders of magnitude, as the

coarse grids solve an equation that is no longer a valid correction and hence push

the solution into the wrong direction. With algebraic intergrid transfer operators,

this effect is more distinct than with geometric operators: We know that geometric

operators spanning big discontinuities induce oscillations on the fine grid. In the

present case, we run into situations where algebraic intergrid transfer operators yield

fine grid corrections anticipating the real material parameter behaviour, but the new

fine grid discretisation is not yet ready to mirror them.

Observation 8. Rippling can cause dynamic mesh refinement to introduce massive

residual deterioration.

Figure 7.19: Illustration of material parameter sampling points in a
coarse and fine stencil after a refinement. A reasonably
accurate coarse stencil will use more sampling points
than a recently instantiated fine grid stencil.

Rippling yields temporarily incompatible equation system configurations (Fig. 7.19).

A newly introduced fine grid stencil will incorporate a less accurate material para-

meter than the existing coarse grid stencil. A straightforward fix to this behaviour

would be a mechanism that ensures consistency of the total number and placement

of material parameter sampling points in a region between the coarse grid level and

new fine grid level: If a cell results from a coarse grid cell with n approximation

points, it could immediately start a first fine grid integration with n
kd approximation

points. However, such an approach would be antithetical to the idea behind the

delayed approach. It would introduce new expensive assembly phases throughout

the duration of the solve. Instead we borrow ideas from an FMG cycle—we do

not incorporate corrections from all grid levels in one multigrid cycle. However,

150 Chapter 7. Results

we add additional coarse levels, rather than additional fine. We negate correction

steps on coarse levels and only start using their impact in later iterations. The

recently refined fine grid level ` is only impacted by coarse level `− i after i multigrid

cycles. The coarse grid operations ripple up the hierarchy one level per multigrid

cycle. After each refinement, we therefore observe that the next finest level operator

we depend on has been updated at least once before we compute a correction a

coarse grid—either due to the Ritz-Galerkin recomputation or due to the delayed

integration. This idea is repeatedly applied if we refine again and introduce an even

finer grid level.

We recover the stability of multigrid with an explicit reassembly, although we need

around twice as many DoF updates compared to a classical version. The improved

stability is not dissimilar to classic multigrid theory where the fast F-cycle conver-

gence rates require a higher order interpolation. We use classic d-linear interpolation

here whenever we introduce new vertices. As we switch off the coarse grid cor-

rections, we effectively smooth out this interpolation with a Jacobi step before we

continue with multigrid. The multigrid in turn is not switched on immediately but

we effectively work our way through a two-grid code, three-grid code, and so forth.

In the first solver phase where we add new grid elements frequently, we only run

series of fine grid smoothing steps for the majority of the cycles. The residual de-

cays nevertheless, as most errors that can be resolved by newly introduced vertices

here are high frequency errors which are damped out efficiently. At the same time,

switching off coarse grid corrections tends to free compute resources which can be

used to handle further stencil integrations.

Observation 9. It is reasonable to pair up delayed stencil integration with a careful

choice of which coarse grid operators are ready to be used in a multigrid cycle.

7.7. Delayed stencil integration: Performance 151

serial 2 4 8 16 32
Cores

23

24

25

26

27

tim
e

[t]
=s

n=1, i.e. no (delayed) tasks
n=8, C=0.1, delayed
n=32, C=0.1, delayed
n=8, C=0.1, delayed+asynchronous
n=32, C=0.1, delayed+asynchronous
n=8, C=0.01, delayed
n=32, C=0.01, delayed
n=8, C=0.01, delayed+asynchronous
n=32, C=0.01, delayed+asynchronous

Figure 7.20: Run-time per grid sweep for twenty iterations for one
discretisation with various integration/tasking config-
urations. Results for grid with h ≤ 0.005 . This
corresponds to 58564 degrees of freedom.

7.7 Delayed stencil integration: Performance

We wrap up our experiments with simple single node studies—the tasking paradigm

has sole single node effect. The experiments run through a series of setups per tested

grid. We perform an equal splitting of elements per core, that is, each core handles

the same number of degrees of freedom. First, we assess the pure scalability of the

code without any delayed integration and furthermore fix the number of integration

points n = 1. Next, we prescribe n > 1 and make the code yield C ∈ {0.1, 0.01}

integration tasks per cell, i.e. between one and ten percent of the cells spawn tasks. As

pointed out before, this fraction in real applications is not fixed. We fix it manually

here to assess the impact our idea has on scalability. Finally, we run each of the

experiment with a delayed integration twice: In the baseline, the synchronisation is

a preamble to the cell evaluation. In the alternative test, there is no synchronisation,

i.e. we spawn the integration and do not wait for the result actively at any point.

We work totally asynchronously. We test an arbitrary material parameter for the

stencil integration as we are only interested in the workload and not the end result.

152 Chapter 7. Results

Figure 7.21: Task distribution/placement for one setup with four
cores. Top: No delayed tasking. Bottom: Delayed
and asynchronous tasking. Brown labels denote com-
pute work, red is spinning (active waits), green denotes
idling.

The partitioning with n = 1 yields reasonable performance (Fig. 7.20). This obvi-

ously is a “flawed” setup from a mathematical point of view, yet assesses that the

underlying solver in principle does scale. As the workload is deterministic—it is

hard-coded and does not use any additional tasking—the setup also clarifies that

any tasking with n > 1 has to yield an unbalanced workload.

With integration for a ratio C of the cells, we indeed observe a deteriorated scalability.

We can neglect any specific material parameter as we prescribe a fixed integration

percentage—for all of our explored setups the high workload cells cluster along strong

discontinuities. We use a geometric decomposition of the domain before we deploy

the grid to the cores, and this decomposition tries to avoid disconnected partitions.

As a consequence, one or few cores only are responsible for all the high-workload

cells. With the anarchic tasking, we see that the scalability curve flattens out again

and that we gain performance. This difference is greater with higher workload per

integration and with higher core count.

Using Intel’s VTune, we compare a setup that does not use delayed stencil integration

(instead each immediately determines an improved operator during the grid traversal)

and one that uses an anarchic, i.e. an asynchronous delayed operator integration

(Fig. 7.21). We highlight a snapshot of a multigrid cycle for the two options, the total

execution of the first option spans 709.5s (a priori integration) while the second covers

428.3s (asynchronous, delayed integration). This is a notable reduction in run-time

per iteration. When anarchic tasking is not used, there are many periods where cores

7.7. Delayed stencil integration: Performance 153

are idle (shown in green) and only a single core is performing significant work (shown

in brown). Although we have increased the core count we cannot achieve perfect

scalability. From the colouring pattern, and frequent blocks of green, it is clear that

cores idle and wait on a single core to finish its work before they themselves can

perform meaningful work. A single core delays other cores as the stencil integration

work is performed in sequence. Once the stencil integration is done, which core

is idling switches and another core starts its work. By removing synchronisation

points—and using anarchic tasking—when a core is idle it can instead pull the

integration tasks from the task queue, rather than delaying other cores to compute

the integration work. There are no more extended idling periods.

Observation 10. The asynchronous, delayed element integration helps to regain

some scalability for unbalanced setups.

We observe that the cores that run out of work towards the end of their mesh

traversal pick up some of the pending integration tasks spawned by overbooked

colleague threads. Heavy integration tasks automatically slot into “idle” time of the

baseline. The delayed, asynchronous integration yields a solver with a performance

and scalability profile that is comparable to purely geometric multigrid where all

operators are computed geometrically with n = 1 sampling points per cell. Our

scalability tests fix the fraction C of cells that require an improved integration as

well as n. They thus study only the scalability behaviour of one particular multigrid

cycle. If we study the whole time-to-solution of a solver, we find that this behaviour

typically translates into a walltime of around 2/3 of the baseline (Fig. 7.4). Baseline

here is an implementation that uses the exactly same code base, yet realises the lazy

evaluation pattern, i.e. computes all operators prior to the first usage accurately.

Walltime always comprises both assembly phase and solve phase.

154 Chapter 7. Results

7.8 Wrap-up

We have shown that adAFAC-x, in both its adAFAC-PI and adAFAC-Jac forms,

is an effective class of solver and is consistent with additive multigrid. It produces

consistent solutions for the default Poisson equation, but it does not exhibit the same

overshooting additive multigrid shows once the problem size grows. Furthermore,

it remains stable once we introduce challenging material coefficients that cause

vanilla additive multigrid to diverge. Oscillations are effectively damped out. Our

target implementation is generic and takes advantage of mature techniques—such as

BoxMG intergrid transfer operators and dynamically adaptive grids through HTMG.

We have seen effective scaling and performance for our adAFAC-x implementations.

The additional workload from auxiliary grids does not significantly effect time taken

per multigrid cycle or limit the parallel scalability.

Lazily constructing fine grid equations also produces consistent solutions to construct-

ing them a priori. Multigrid using asynchronous stencil assembly is an actual solver.

It is not only valid as a preconditioner. Stencils are assembled non-deterministically

in parallel but we have not observed issues wherein a solver converges to an incorrect

solution due to inaccurate locally held stencils. If a solver converged using a priori

stencil integration, then it still converges when switching assembly method. When

using geometric intergrid transfers, the delayed fine grid equation construction does

not introduce any additional instabilities within a solve. Algebraic intergrid transfers

require additional care so convergence rates are not harmed but can still remain

effective. On average, we have observed a reduction in time-to-solution of around

2/3 due to our use of asynchronous assembly and we have also seen a significant

improvement in single node core utilisation when using parallel tasks—previously

idle periods in the multigrid cycle have been eliminated. Single node scaling is also

promising.

Chapter 8

Conclusion

In this thesis, we have presented two new ideas that push multigrid further along the

path to exascale. These are our delayed integration of the integrations for the fine grid

matrix and our adAFAC-x solver suite. Although neither idea are a silver bullet that

reinvents multigrid, they are both salves for lycanthropy that introduce additional

potential for parallelism in multigrid. Both of our novel ideas are implemented

within a single-touch context on an adaptive space-tree. Multigrid is notoriously

hard to mesh with other solvers due to the requirements when constructing the grid

hierarchy. Our implementation is shown to be compatible with mature techniques,

such as HTMG and BoxMG. As we are single-touch, the implementation inherits

good cache locality.

8.1 Discussion of our findings

8.1.1 Asynchronous assembly

Our delayed stencil integration pipelines the assembly process so that it now overlaps

with early multigrid cycles. We reorder computations in the assembly phase and

break them down into a series of iterative tasks that can be performed in parallel

with early iterations of the solve. Instead of using the true discretisation in the earlier

156 Chapter 8. Conclusion

multigrid iterations, the solver uses an initial approximation. For most situations,

this inaccurate approximation has been shown to not harm the rate of convergence.

The assembly phase is known to have lower arithmetic intensity than other phases,

therefore our reordering of operations eliminates algorithmic latency and increases

concurrency earlier in the solve. This is the reason we achieve an overall reduction

in time-to-solution even though we have increased the total assembly workload.

These two features—the increase in possible concurrency and corresponding reduc-

tion in algorithmic latency—are the main gains seen from asynchronous assembly.

Multigrid cycles start earlier in the run-time. We have shown that most of the

assembly workload can be deployed to cores within a machine that would otherwise

by idle within a multigrid iteration. There are two extreme cases in the assembly

process where our solver is ill-suited: When there is a negligible integration setup

(i.e. constant material parameter, so we perform redundant work with an iterative

integration); and when the integration is especially challenging (i.e. it requires a long

sequence of our iterative stencil integrations before we obtain an accurate stencil).

In the former case we have not empirically seen a notable performance penalty. The

latter case might cause a “starvation effect” and new integrations may not drop in,

or the frequent stencil changes might introduce instabilities. These instabilities are

due to coarse grid levels aggressively correcting and causing temporary overshooting.

Our tasking methodology has exhibited no issues due to starvation—the solver never

terminated early, giving an incorrect solution due to the true fine grid equation not

being available. We did see some setups requiring additional solver iterations to

converge—but the solver always converged to the true solution. While starvation is

still a theoretical concern, we do not believe it to be an issue in the main.

We have shown that, for a multigrid solver that uses geometric grids and rediscret-

isation, the impact on convergence due to our asynchronous assembly is negligible.

Geometric definitions create a hierarchy of equations, where all coarse grid equations

can be approximated with relatively high accuracy using only geometric information.

More algebraically inspired setups, such as those that use operator induced restric-

8.1. Discussion of our findings 157

tion or prolongation, require additional information from the fine grids to construct

the coarse grids. This obviously increases the cost of assembly when switching from

geometric to algebraic setups and introduces additional dependencies on the coarse

grid levels. Both could possibly limit the effectiveness of an asynchronous assembly

process. We have shown that with careful handling of coarse grids, our asynchronous

methodology can still be effective in the presence of algebraic grid transfers. Early

solver iterations use a modified grid cycle, inspired by F-cycles, so that coarse grid

equations are setup in tandem with coarse grid levels impacting fine grid levels for

the first time.

Lazy assembly has also been demonstrated to be particularly well-suited for dynam-

ically adaptive meshes. A dynamically adaptive mesh already amortises the cost of

assembly throughout the solve but historically has required many re-assembly phases

to accommodate this. We hide these re-assembly phases within the solve itself. The

solver does not pause after a refinement to wait for updated fine grid equations to be

computed—instead, solver iterations continue unabated after a refinement and the

asynchronous assembly computes the updated fine grid stencils in the background.

Switching to asynchronous assembly reduces time-to-solution.

8.1.2 Damping term

We have also shown that our family of adAFAC-x damping parameters is an effective

method of stabilising additive multigrid. Additive multigrids exhibits instabilities

due to both the total number of grid levels increasing, and the introduction of

complicated domain features, such as discontinuous material parameters. We have

introduced a per-vertex damping parameter that reduces overcorrections between

levels, thereby improving stability. This improvement has empirically been shown

to be similar the improvement when switching from geometric to algebraic intergrid

transfer operators (e.g. BoxMG). adAFAC-Jac with geometric transfer operators

is approximately as stable as additive multigrid with BoxMG transfer operators.

158 Chapter 8. Conclusion

Moreover, the damping parameter does not significantly impact the overall rate

of convergence of the solve when additive multigrid is stable as we compute the

damping parameter using an additional coarse grid solve on an auxiliary grid. We

augment intergrid transfer operators for the auxiliary grid, i.e. we smooth them,

to anticipate coarse grid smoothing. The auxiliary grid solve is computed totally

asynchronously to other corrections, therefore it does not impact the parallelism

within additive multigrid. The smoothing is also cheap, so it does not introduce a

significant additional workload. The construction of the damping term is not tied

into any one implementation, therefore using the damping terms does not conflict

with techniques such as BoxMG, both can be used in tandem to further improve

stability. Although we have implemented our damping methodology using single-

touch ideas on space-trees, the construction of damping term could also meld with

any target mesh or underlying additive multigrid solver.

adAFAC-x auxiliary corrections are cheap to compute. The construction of the

auxiliary meshes and equations does not require any additional data structures or

setup time—it can repurpose existing grids and equations. Most multigrid imple-

mentations are memory bound—so the increase in computational cost of another

mat-vec per iteration does not impact run-time significantly. The required matrix

is already loaded into memory per iteration and applying the matrix to another

vector per iteration is not an expensive procedure. Auxiliary grid data transfers

also maintain existing data locality of the solver, as they mirror existing intergrid

transfers. There is, however, an additional memory cost of storing the smoothed in-

tergrid transfers. The stencils for the smoothed intergrid transfer can be hard-coded

if the fine grid equation is homogeneous, but once the material parameter varies,

this becomes infeasible so they must instead be computed at run-time and stored.

Overall, computing our auxiliary damping term has a reasonably low impact on the

total computational cost of each iteration of the solve itself.

An obvious point of comparison for our damping parameter is the AFACx scheme and

its damping parameter designed to remove “oscillatory components”. Both schemes

8.2. Future work 159

are additive and compute damping terms using auxiliary grids. The additive nature

means the damping parameters are computed independently of the coarse correction

and applied additively. Therefore both share a similar operation count and core

idea. However, AFACx produces the fine correction sequentially after the auxiliary

correction. We do not share this limitation—both corrections can be computed in

parallel. Therefore, from an implementational perspective we have an advantage.

8.2 Future work

8.2.1 Addressing weaknesses and shortcomings

Although we have used HTMG, and therefore a FAS based implementation, we

have not directly dealt with nonlinear equations. We have used the principles, but

only to simplify the handling of AMR—we have not implemented a true nonlinear

solver. Both our additive damping ideas and asynchronous/lazy method of assembly

are applicable here. In a nonlinear solver, the local operator is dependent upon

the solution at that point, therefore the operator applied in each iteration is not

fixed throughout the solve as the locally held solution is updated. Changing the

operator bears similarity to how we update the representation of the fine grid equa-

tion throughout the solve. Both operators are merely approximations of the true

operator—which is only available at the end of the solve. Nonlinear equations are

more challenging to solve than linear equations and might cause solvers to exhibit

instabilities. Therefore improving stability, via our damping procedure, would also

benefit the solve.

The impact of different smoothers on both our additive damping parameter and

delayed stencil integration is a change that would notably alter their behaviour.

Currently, we have only used simple Jacobi smoothers. We could investigate the

impact that more powerful smoothers—such as block smoothers—could have on

our additive damping parameters specifically the intergrid transfer operators for the

160 Chapter 8. Conclusion

auxiliary grids. Block smoothers would involve increasing the support of the intergrid

transfers. We could also crib an idea from mult-additive—which uses a specific

symmetrised smoother on the coarse grid to more closely represent a V (1, 1) cycle

while still being totally additive. Using this smoother on the auxiliary grid would

allow us to also be closer to a V (1, 1) cycle—rather than a V (1, 0) or V (0, 1) cycle.

Block smoothers are again an interesting prospect for delayed stencil integration.

We would deploy both the block smoothing and stencil assembly to a background

task and the smoothing and assembly would be performed therein. Assembling a

stencil/smoother for block smoothing is more expensive than assembling a Jacobi

smoother, so is a good fit for our lazy approach.

8.2.2 Integrating our ideas within other solvers

Currently we have only developed a standalone multigrid solver. This demonstrates

that our ideas work, but is of limited use in a wider context, or to a wider audience.

Our key ideas work best as a single tool within a wider toolkit rather than as

the only tool within a shed. Developing a solver/module that uses our ideas and

integrates within another system, such as an elliptic submodule within PETSc, is a

natural progression. However, due to our geometric coarsening, our additive solver

may only mesh well with a limited subset of existing solver hierarchies. We would

need to explore other coarsening procedures or methods of choosing initial/tentative

intergrid transfer operators. A common practice in the multigrid community is to

fuse multiple multigrid solvers into the same multigrid cycle. They use one multigrid

flavour on the fine levels and a different flavour on the coarse. This can be seen in

many implementations, such as hp-multigrid [123], any flavour of algebraic-geometric

multigrid [73], [124], and many existing large scale runs that already already couple

additive solvers in a multigrid hierarchy [93], [94]. Our damped additive scheme

could fit into such a solver stack. Again, our choice of geometric coarsening may

create challenges. It is not trivial to construct a geometric multigrid scheme on

top of an algebraic scheme. In addition, if an existing solver cannot represent

8.2. Future work 161

the smoother as a sparse matrix product, then smoothing the intergrid transfer

operators for our auxiliary grids may also prove to be non-trivial: They may result

in intergrid transfers which are dense, which destroys data locality and the simplicity

that adAFAC-x takes advantage of. We have also not fully explored the impact of

coupling a fine grid scheme that uses high order polynomials with coarse grids that

are lower order—such aggressive coarsening is known to worsen convergence rates.

As our solver is readily parallel we would remove potential choke points on coarser

grid levels. In a stack of solvers, with each solver having its own construction phase,

assembly costs can be a concern. Using our asynchronous assembly to accelerate

part of, or all of, the stack is therefore an avenue of interest. Coarser solvers here act

as approximate solvers to accelerate the solve—they are not exact. Our approximate

assembly should not hinder convergence. However, as discussed in Section 4.9, there

may be implementational issues when using asynchronous assembly on less simple

smoothers.

The work on “Asynchronous Multigrid” of Chow and Wolfson-Hou has already

been discussed in Section 4.10, where we compared their notion of asynchronous

multigrid to ours. They modify multigrid to eliminate synchronisation between

smoothing steps in additive multigrid, whereas we modifying multigrid to eliminate

synchronisation between the assembly phase and the solver phase. Both approaches

to asynchronicity are orthogonal to each other and could be used in concert. Their

asynchronous multigrid method uses different threads—that do not synchronise

updates—to smooth different regions. We could simply instantiate these threads

with approximations of the true smoother and over the course of the solve feed these

threads with updated approximations of the true matrix equation.

8.2.3 Application to new problems

We have only applied our solver to a specific example of an elliptic equation. It

would be equally well suited to a wider array of problems, for example, we can

162 Chapter 8. Conclusion

apply both our lazy stencil integration and damping parameter to other elliptic

equations—not just to Poisson’s equation. An obvious candidate for our lazy stencil

integration is more complicated operators with costly stencil integration. When

assembly is more expensive there are greater gains to be made by pipelining the

assembly—a larger workload can potentially be parallelised. Our current work uses

relatively simple elliptic equations, locally regular grids and simple nodal basis

functions. Basis functions that are d-linear are cheap to integrate and the structure

of the mesh also further reduces the integration cost. All these factors mean we may

not currently see the full potential of an asynchronous assembly process. Instead

applying a delayed stencil integration procedure to a fine grid that uses higher order

basis functions, bubble functions, or any equation that requires a more expensive

numerical integration, increases the possible concurrency earlier in the solve for that

solver.

On the other hand, we could move in the other direction and focus on further min-

imising the cost of assembly. This follows on from the work on compressed stencil

storage to produce a quasi-matrix-free setup [33]. We have already performed pre-

liminary experiments in this vein, where our asynchronous assembly takes advantage

of approximated stencil storage and mixed precision computations [3]. Our cur-

rent work approximates stencils using low order integrations and with appropriate

handling, we see minimal deterioration in convergence rates. Further approximating

stencils using lower accuracy floating pointing storage would reduce the memory

footprint and arithmetic latency when fetching stencils from memory. This could

yield further reductions in time-to-solution.

A powerful additive solver, such as adAFAC-x, can be applied to other setups that

are more challenging. Incompressible Navier-Stokes often represents the pressure

component as a Laplacian that must be solved once for each time step solved.

Here the pressure component is likely to only change by a small amount between

time steps—so a single iteration of a multigrid solver will be sufficient to update

the pressure between time steps. Our solvers single-touch policy and embedding

8.2. Future work 163

into a single mesh traversal is therefore well suited. Alternatively, rather than

applying our solver as a subsystem it could be directly applied to a parabolic system,

solving a convection dominated problem as the sole solver, or as a multigrid-in-time

solver—building upon the work of Weinzierl and Köppl [125]—and work directly on

space-time grids.

Bibliography

[1] C. D. Murray and T. Weinzierl, ‘Stabilized asynchronous fast adaptive

composite multigrid using additive damping’, Numerical Linear Algebra with

Applications, 2020,

doi:https://doi.org/10.1002/nla.2328.

[2] ——, ‘Lazy stencil integration in multigrid algorithms’, in International

Conference on Parallel Processing and Applied Mathematics, Springer, 2019,

pp. 25–37,

doi:https://doi.org/10.1007/978-3-030-43229-4_3.

[3] ——, ‘Delayed approximate matrix assembly in multigrid with dynamic

precisions’, Concurrency and Computation: Practice and Experience, 2020,

doi:https://doi.org/10.1002/cpe.5941.

[4] W. Hackbusch, Elliptic differential equations: theory and numerical

treatment. Springer, 2017, vol. 18.

[5] T. W. Secomb, R. Hsu, E. Y. Park and M. W. Dewhirst, ‘Green’s function

methods for analysis of oxygen delivery to tissue by microvascular networks’,

Annals of Biomedical Engineering, vol. 32, no. 11, pp. 1519–1529, 2004.

[6] E. Hernández-Baltazar and J. Gracia-Fadrique, ‘Elliptic solution to the

Young–Laplace differential equation’, Journal of Colloid and Interface

Science, vol. 287, no. 1, pp. 213–216, 2005.

https://dx.doi.org/https://doi.org/10.1002/nla.2328
https://dx.doi.org/https://doi.org/10.1007/978-3-030-43229-4_3
https://dx.doi.org/https://doi.org/10.1002/cpe.5941

Bibliography 165

[7] M. Tuller, D. Or and D. Hillel, ‘Retention of water in soil and the soil water

characteristic curve’, Encyclopedia of Soils in the Environment, vol. 4,

pp. 278–289, 2004.

[8] A. J. Chorin, J. E. Marsden and J. E. Marsden, A mathematical

introduction to fluid mechanics. Springer, 1990, vol. 168.

[9] A. J. Chorin, ‘A numerical method for solving incompressible viscous flow

problems’, Journal of Computational Physics, vol. 135, no. 2, pp. 118–125,

1997.

[10] J.-L. Guermond and L. Quartapelle, ‘On stability and convergence of

projection methods based on pressure Poisson equation’, International

Journal for Numerical Methods in Fluids, vol. 26, no. 9, pp. 1039–1053, 1998.

[11] J.-L. Guermond and A. Salgado, ‘A splitting method for incompressible

flows with variable density based on a pressure Poisson equation’, Journal of

Computational Physics, vol. 228, no. 8, pp. 2834–2846, 2009.

[12] W. L. Briggs, V. E. Henson and S. F. McCormick, A multigrid tutorial.

SIAM, 2000.

[13] U. Trottenberg, C. W. Oosterlee and A. Schüller, Multigrid. Academic Press,

2001.

[14] P. Bastian, G. Wittum and W. Hackbusch, ‘Additive and multiplicative

multi-grid a comparison’, Computing, vol. 60, no. 4, pp. 345–364, 1998.

[15] L. Hart and S. F. McCormick, ‘Asynchronous multilevel adaptive methods

for solving partial differential equations on multiprocessors: Basic ideas’,

Parallel Computing, vol. 12, pp. 131–144, 1989.

[16] S. F. McCormick and D. J. Quinlan, ‘Asynchronous multilevel adaptive

methods for solving partial differential equations on multiprocessors:

Performance results’, Parallel Computing, vol. 12, no. 2, pp. 145–156, 1989.

166 Bibliography

[17] S. F. McCormick, Multilevel projection methods for partial differential

equations. SIAM, 1992.

[18] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,

D. Barkai, J.-Y. Berthou, T. Boku and B. Braunschweig, ‘The international

exascale software project roadmap’, The International Journal of High

Performance Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[19] A. Brandt, ‘Multi-level adaptive techniques (MLAT) for

singular-perturbation problems’, Numerical Analysis of Singular

Perturbation Problems, pp. 53–142, 1979.

[20] ——, ‘Multi-level adaptive technique (MLAT) for fast numerical solution to

boundary value problems’, in Proceedings of the Third International

Conference on Numerical Methods in Fluid Mechanics, Springer, 1973,

pp. 82–89.

[21] J. E. Dendy, ‘Black box multigrid’, Journal of Computational Physics,

vol. 48, no. 3, pp. 366–386, 1982.

[22] T. Grauschopf, M. Griebel and H. Regler, ‘Additive multilevel

preconditioners based on bilinear interpolation, matrix-dependent geometric

coarsening and algebraic multigrid coarsening for second-order elliptic

PDEs’, Applied Numerical Mathematics, vol. 23, no. 1, pp. 63–95, 1997.

[23] W. Hackbusch, Theory and numerical treatment of elliptic differential

equations. Springer, Berlin, 1992.

[24] ——, Iterative solution of large sparse systems of equations. Springer, 1994,

vol. 95.

[25] J. H. Ferziger, M. Perić and R. L. Street, Computational methods for fluid

dynamics. Springer, 2002, vol. 3.

Bibliography 167

[26] H. Ji, F.-S. Lien and E. Yee, ‘An efficient second-order accurate cut-cell

method for solving the variable coefficient Poisson equation with jump

conditions on irregular domains’, International Journal for Numerical

Methods in Fluids, vol. 52, no. 7, pp. 723–748, 2006.

[27] M. Ainsworth and C. Glusa, ‘Aspects of an adaptive finite element method

for the fractional Laplacian: A priori and a posteriori error estimates,

efficient implementation and multigrid solver’, Computer Methods in Applied

Mechanics and Engineering, vol. 327, pp. 4–35, 2017.

[28] M. Paszyński, D. Pardo, C. Torres-Verdín, L. Demkowicz and V. Calo, ‘A

parallel direct solver for the self-adaptive hp finite element method’, Journal

of Parallel and Distributed Computing, vol. 70, no. 3, pp. 270–281, 2010.

[29] M. Dumbser and R. Loubère, ‘A simple robust and accurate a posteriori

sub-cell finite volume limiter for the discontinuous Galerkin method on

unstructured meshes’, Journal of Computational Physics, vol. 319,

pp. 163–199, 2016.

[30] A. Düster, J. Parvizian, Z. Yang and E. Rank, ‘The finite cell method for

three-dimensional problems of solid mechanics’, Computer Methods in

Applied Mechanics and Engineering, vol. 197, no. 45-48, pp. 3768–3782, 2008.

[31] J. Parvizian, A. Düster and E. Rank, ‘Finite cell method’, Computational

Mechanics, vol. 41, no. 1, pp. 121–133, 2007.

[32] B. Reps and T. Weinzierl, ‘A complex additive geometric multigrid solver for

the Helmholtz equations on spacetrees’, ACM Transactions on Mathematical

Software, vol. 44, no. 1, 2:1–2:36, 2017.

[33] M. Weinzierl and T. Weinzierl, ‘Quasi-matrix-free hybrid multigrid on

dynamically adaptive Cartesian grids’, ACM Transactions on Mathematical

Software (TOMS), vol. 44, no. 3, pp. 1–44, 2018.

168 Bibliography

[34] J. Dongarra, J. Hittinger, J. Bell, L. Chacon, R. Falgout, M. Heroux,

P. Hovland, E. Ng, C. Webster and S. Wild, ‘Applied mathematics research

for exascale computing’, DOE ASCR Exascale Mathematics Working Group,

2014.

[35] R. S. Sampath and G. Biros, ‘A parallel geometric multigrid method for

finite elements on octree meshes’, SIAM Journal on Scientific Computing,

vol. 32, no. 3, pp. 1361–1392, 2010.

[36] M. J. Berger and J. Oliger, ‘Adaptive mesh refinement for hyperbolic partial

differential equations’, Journal of Computational Physics, vol. 53, no. 3,

pp. 484–512, 1984.

[37] M. J. Berger and P. Colella, ‘Local adaptive mesh refinement for shock

hydrodynamics’, Journal of Computational Physics, vol. 82, no. 1, pp. 64–84,

1989.

[38] L. Hart, S. F. McCormick, A. O’Gallagher and J. Thomas, ‘The fast

adaptive composite-grid method (FAC): Algorithms for advanced computers’,

Applied Mathematics and Computation, vol. 19, no. 1-4, pp. 103–125, 1986.

[39] M. Griebel and G. Zumbusch, ‘Hash-storage techniques for adaptive

multilevel solvers and their domain decomposition parallelization’,

Contemporary Mathematics, vol. 218, pp. 271–278, 1998.

[40] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk and G. Biros, ‘Dendro:

Parallel algorithms for multigrid and AMR methods on 2: 1 balanced

octrees’, in Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, IEEE Press, 2008, p. 18.

[41] H. Sundar, R. S. Sampath and G. Biros, ‘Bottom-up construction and 2: 1

balance refinement of linear octrees in parallel’, SIAM Journal on Scientific

Computing, vol. 30, no. 5, pp. 2675–2708, 2008.

Bibliography 169

[42] T. Weinzierl and M. Mehl, ‘Peano – A traversal and storage scheme for

octree-like adaptive Cartesian multiscale grids’, SIAM Journal on Scientific

Computing, Special Section: 2010 Copper Mountain Conference, vol. 33,

no. 5, R. Tuminaro, M. Benzi, X.-C. Cai et al., Eds., pp. 2732–2760, 2011.

[43] C. Burstedde, L. C. Wilcox and O. Ghattas, ‘P4est: Scalable algorithms for

parallel adaptive mesh refinement on forests of octrees’, SIAM Journal on

Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[44] T. Weinzierl, ‘The Peano software—parallel, automaton-based, dynamically

adaptive grid traversals’, ACM Transactions on Mathematical Software

(TOMS), vol. 45, no. 2, p. 14, 2019.

[45] A. Brandt, ‘Guide to multigrid development’, in Multigrid Methods,

Springer, 1982, pp. 220–312.

[46] J. W. Ruge and K. Stüben, ‘Algebraic multigrid’, in Multigrid methods,

SIAM, 1987, pp. 73–130.

[47] J. Xu and L. Zikatanov, ‘Algebraic multigrid methods’, Acta Numerica,

vol. 26, pp. 591–721, 2017.

[48] K. Stüben, ‘An introduction to algebraic multigrid’, Multigrid, pp. 413–532,

2001.

[49] K. Stüben, ‘A review of algebraic multigrid’, Numerical Analysis: Historical

Developments in the 20th Century, pp. 331–359, 2001.

[50] S. Maclachlan and N. Madden, ‘Robust solution of singularly perturbed

problems using multigrid methods; analysis and numerical results in one and

two dimensions’, Technical report, Department of Mathematics, Tufts

University, Tech. Rep., 2012.

[51] C.-T. Wu and H. C. Elman, ‘Analysis and comparison of geometric and

algebraic multigrid for convection-diffusion equations’, SIAM Journal on

Scientific Computing, vol. 28, no. 6, pp. 2208–2228, 2006.

170 Bibliography

[52] F. O. Campos, R. S. Oliveira and R. W. dos Santos, ‘Performance

comparison of parallel geometric and algebraic multigrid preconditioners for

the bidomain equations’, in International Conference on Computational

Science, Springer, 2006, pp. 76–83.

[53] B. Amaziane, A. Bourgeat and J. Koebbe, ‘Numerical simulation and

homogenization of two-phase flow in heterogeneous porous media’, in

Mathematical Modeling for Flow and Transport Through Porous Media,

Springer, 1991, pp. 519–547.

[54] J.-F. Bourgat, ‘Numerical experiments of the homogenization method’, in

Computing Methods in Applied Sciences and Engineering, 1977, I, Springer,

1979, pp. 330–356.

[55] S. Knapek, ‘Matrix-dependent multigrid homogenization for diffusion

problems’, SIAM Journal on Scientific Computing, vol. 20, no. 2,

pp. 515–533, 1998.

[56] M. G. Edwards and C. F. Rogers, ‘Multigrid and renormalization for

reservoir simulation’, in Multigrid Methods IV, Springer, 1994, pp. 189–200.

[57] P. R. King, ‘The use of renormalization for calculating effective

permeability’, Transport in Porous Media, vol. 4, no. 1, pp. 37–58, 1989.

[58] N. Neuss, W. Jäger and G. Wittum, ‘Homogenization and multigrid’,

Computing, vol. 66, no. 1, pp. 1–26, 2001.

[59] S. Wang and E. Sturler, ‘Multilevel sparse approximate inverse

preconditioners for adaptive mesh refinement’, Linear Algebra and its

Applications, vol. 431, no. 3-4, pp. 409–426, 2009.

[60] U. Rüde, Mathematical and computational techniques for multilevel adaptive

methods. SIAM, 1993.

Bibliography 171

[61] R. E. Alcouffe, A. Brandt, J. E. Dendy Jr and J. W. Painter, ‘The

multi-grid method for the diffusion equation with strongly discontinuous

coefficients’, SIAM Journal on Scientific and Statistical Computing, vol. 2,

no. 4, pp. 430–454, 1981.

[62] J. D. Moulton, J. E. Dendy Jr and J. M. Hyman, ‘The black box multigrid

numerical homogenization algorithm’, Journal of Computational Physics,

vol. 142, no. 1, pp. 80–108, 1998.

[63] A. Greenbaum, ‘Analysis of a multigrid method as an iterative technique for

solving linear systems’, SIAM Journal on Numerical Analysis, vol. 21, no. 3,

pp. 473–485, 1984.

[64] ——, ‘A multigrid method for multiprocessors’, Applied Mathematics and

Computation, vol. 19, no. 1-4, pp. 75–88, 1986.

[65] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro and U. M. Yang, ‘A

survey of parallelization techniques for multigrid solvers’, in Parallel

Processing for Scientific Computing, SIAM, 2006, pp. 179–201.

[66] J. E. Jones and S. F. McCormick, ‘Parallel multigrid methods’, in Parallel

Numerical Algorithms, Springer, 1997, pp. 203–224.

[67] J. H. Bramble, J. E. Pasciak and J. Xu, ‘Parallel multilevel preconditioners’,

Mathematics of Computation, vol. 55, no. 191, pp. 1–22, 1990.

[68] T. Chan and R. Tuminaro, ‘Design and implementation of parallel multigrid

algorithms’, in In Proceedings Third Copper Mountain Conference on

Multigrid Methods, SIAM, 1987, pp. 101–115.

[69] R. S. Tuminaro, ‘A highly parallel multigrid-like method for the solution of

the euler equations’, SIAM Journal on Scientific and Statistical Computing,

vol. 13, no. 1, pp. 88–100, 1992.

[70] J. E. Dendy and J. D. Moulton, ‘Black box multigrid with coarsening by a

factor of three’, Numerical Linear Algebra with Applications, vol. 17,

pp. 577–598, 2010.

172 Bibliography

[71] I. Yavneh and M. Weinzierl, ‘Nonsymmetric black box multigrid with

coarsening by three’, Numerical Linear Algebra with Applications, vol. 19,

no. 2, pp. 246–262, 2012.

[72] P. M. De Zeeuw, ‘Matrix-dependent prolongations and restrictions in a

blackbox multigrid solver’, Journal of Computational and Applied

Mathematics, vol. 33, no. 1, pp. 1–27, 1990.

[73] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas and G. Stadler,

‘Parallel geometric-algebraic multigrid on unstructured forests of octrees’, in

Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, IEEE Computer Society

Press, 2012, p. 43.

[74] S. P. MacLachlan, J. D. Moulton and T. P. Chartier, ‘Robust and adaptive

multigrid methods: Comparing structured and algebraic approaches’,

Numerical Linear Algebra with Applications, vol. 19, no. 2, pp. 389–413,

2012.

[75] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick and

J. Ruge, ‘Adaptive smoothed aggregation (α sa) multigrid’, SIAM Review,

vol. 47, no. 2, pp. 317–346, 2005.

[76] ——, ‘Adaptive algebraic multigrid’, SIAM Journal on Scientific Computing,

vol. 27, no. 4, pp. 1261–1286, 2006.

[77] S. S. Vangara, A. Kashi and S. Nadarajah, ‘Additive multigrid with scaled

correction for implicit compressible flow solvers’, in AIAA Aviation 2019

Forum, 2019, p. 3712.

[78] B. Smith, P. Bjorstad and W. Gropp, Domain decomposition: Parallel

multilevel methods for elliptic partial differential equations. Cambridge

University Press, 2004.

[79] X. Zhang, ‘Multilevel schwarz methods’, Numerische Mathematik, vol. 63,

no. 1, pp. 521–539, 1992.

Bibliography 173

[80] X.-C. Tai and P. Tseng, ‘Convergence rate analysis of an asynchronous space

decomposition method for convex minimization’, Mathematics of

Computation, vol. 71, no. 239, pp. 1105–1135, 2002.

[81] B. Lee, S. F. McCormick, B. Philipp and D. J. Quinlan, ‘Asynchronous fast

adaptive composite-grid methods for elliptic problems: Theoretical

foundations’, SIAM Journal Numerical Analysis, vol. 42, pp. 130–152, 2004.

[82] D. J. Quinlan, ‘Adaptive mesh refinement for distributed parallel

architectures’, PhD thesis, University of Colorado at Denver, Foo, Jul. 1993.

[83] A. Brandt, ‘Multi-level adaptive techniques (MLAT) for partial differential

equations: Ideas and software’, in Mathematical Software, Elsevier, 1977,

pp. 277–318.

[84] ——, ‘Multi-level adaptive solutions to boundary-value problems’,

Mathematics of Computation, vol. 31, no. 138, pp. 333–390, 1977.

[85] S. F. McCormick and J. Thomas, ‘The fast adaptive composite grid (FAC)

method for elliptic equations’, Mathematics of Computation, vol. 46, no. 174,

pp. 439–456, 1986.

[86] P. K. Jimack and M. A. Walkley, ‘Asynchronous parallel solvers for linear

systems arising in computational engineering’, Computational Technology

Reviews, vol. 3, pp. 1–20, 2011.

[87] H.-J. Bungartz and M. Griebel, ‘Sparse grids’, Acta Numerica, vol. 13,

pp. 147–269, 2004.

[88] O. A. McBryan, ‘Parallel superconvergent multigrid’, Multigrid Methods:

Theory, Applications, and Supercomputing, vol. 110, p. 195, 1988.

[89] P. S. Vassilevski and U. M. Yang, ‘Reducing communication in algebraic

multigrid using additive variants’, Numerical Linear Algebra with

Applications, vol. 21, no. 2, pp. 275–296, 2014.

174 Bibliography

[90] J. Wolfson-Pou and E. Chow, ‘Asynchronous multigrid methods’, in 2019

IEEE International Parallel and Distributed Processing Symposium

(IPDPS), IEEE, 2019, pp. 101–110.

[91] B. Gmeiner, H. Köstler, M. Stürmer and U. Rüde, ‘Parallel multigrid on

hierarchical hybrid grids: A performance study on current high performance

computing clusters’, Concurrency and Computation: Practice and

Experience, vol. 26, no. 1, pp. 217–240, 2014.

[92] P. T. Lin, J. N. Shadid, J. J. Hu, R. P. Pawlowski and E. C. Cyr,

‘Performance of fully-coupled algebraic multigrid preconditioners for

large-scale vms resistive mhd’, Journal of Computational and Applied

Mathematics, vol. 344, pp. 782–793, 2018.

[93] D. A. May, J. Brown and L. Le Pourhiet, ‘A scalable, matrix-free multigrid

preconditioner for finite element discretizations of heterogeneous stokes flow’,

Computer Methods in Applied Mechanics and Engineering, vol. 290,

pp. 496–523, 2015.

[94] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. Staar,

Y. Ineichen, C. Bekas, A. Curioni and O. Ghattas, ‘An extreme-scale

implicit solver for complex PDEs: Highly heterogeneous flow in earth’s

mantle’, in Proceedings of the international conference for high performance

computing, networking, storage and analysis, ACM, 2015, pp. 1–12.

[95] M. Griebel, Zur lösung von finite-differenzen-und finite-element-gleichungen

mittels der hierarchischen-transformations-mehrgitter-methode [On the

solution of the finite-difference and finite-element equations through the

hierarchical-transformational-multigrid method]. Technische Universität

München. Institut für Informatik, 1990.

[96] P. Ghysels, T. J. Ashby, K. Meerbergen and W. Vanroose, ‘Hiding global

communication latency in the GMRES algorithm on massively parallel

Bibliography 175

machines’, SIAM Journal on Scientific Computing, vol. 35, no. 1,

pp. C48–C71, 2013.

[97] P. Ghysels and W. Vanroose, ‘Hiding global synchronization latency in the

preconditioned conjugate gradient algorithm’, Parallel Computing, vol. 40,

no. 7, pp. 224–238, 2014.

[98] P. Ghysels, P. Kłosiewicz and W. Vanroose, ‘Improving the arithmetic

intensity of multigrid with the help of polynomial smoothers’, Numerical

Linear Algebra with Applications, vol. 19, no. 2, pp. 253–267, 2012.

[99] P. Ghysels and W. Vanroose, ‘Modeling the performance of geometric

multigrid stencils on multicore computer architectures’, SIAM Journal on

Scientific Computing, vol. 37, no. 2, pp. C194–C216, 2015.

[100] M. Mehl, T. Weinzierl and C. Zenger, ‘A cache-oblivious self-adaptive full

multigrid method’, Numerical Linear Algebra with Applications, vol. 13,

no. 2–3, pp. 275–291, 2006.

[101] F. Günther, M. Mehl, M. Pögl and C. Zenger, ‘A cache-aware algorithm for

PDEs on hierarchical data structures based on space-filling curves’, SIAM

Journal on Scientific Computing, vol. 28, no. 5, pp. 1634–1650, 2006.

[102] D. Braess, Finite elements: Theory, fast solvers, and applications in solid

mechanics. Cambridge University Press, 2007.

[103] D. E. Knuth, ‘The genesis of attribute grammars’, in WAGA: Proceedings of

the International Conference on Attribute Grammars and their Applications,

P. Deransart and M. Jourdan, Eds., Paris, France: Springer-Verlag, 1990,

pp. 1–12.

[104] R. S. Tuminaro and C. Tong, ‘Parallel smoothed aggregation multigrid:

Aggregation strategies on massively parallel machines’, in Supercomputing,

ACM/IEEE 2000 Conference, IEEE, 2000, pp. 5–5.

176 Bibliography

[105] P. Vaněk, J. Mandel and M. Brezina, ‘Algebraic multigrid by smoothed

aggregation for second and fourth order elliptic problems’, Computing,

vol. 56, no. 3, pp. 179–196, 1996.

[106] P. Vaněk, ‘Fast multigrid solver’, Applications of Mathematics, vol. 40, no. 1,

pp. 1–20, 1995.

[107] J. Bjørgen and J. Leenaarts, ‘Numerical non-LTE 3D radiative transfer

using a multigrid method’, Astronomy & Astrophysics, vol. 599, A118, 2017.

[108] J. Kouatchou and J. Zhang, ‘Optimal injection operator and high order

schemes for multigrid solution of 3D Poisson equation’, International

Journal of Computer Mathematics, vol. 76, no. 2, pp. 173–190, 2000.

[109] W. H. Press and S. A. Teukolsky, ‘Multigrid methods for boundary value

problems. i.’, Computers in Physics, vol. 5, no. 5, pp. 514–519, 1991.

[110] A. Brandt, ‘General highly accurate algebraic coarsening’, Electronic

Transactions on Numerical Analysis, vol. 10, no. 1, p. 21, 2000.

[111] R. D. Falgout, ‘An introduction to algebraic multigrid’, IEEE Annals of the

History of Computing, vol. 8, no. 06, pp. 24–33, 2006.

[112] R. Moe, Iterative local uniform mesh refinement methods and parallel

processing. University of Bergen. Department of Informatics, 1992.

[113] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core

processor parallelism. O’Reilly, 2007.

[114] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson and J. B. Schroder,

‘Reducing parallel communication in algebraic multigrid through

sparsification’, SIAM Journal on Scientific Computing, vol. 38, no. 5,

S332–S357, 2016.

[115] R. D. Falgout and J. B. Schroder, ‘Non-Galerkin coarse grids for algebraic

multigrid’, SIAM Journal on Scientific Computing, vol. 36, no. 3,

pp. C309–C334, 2014.

Bibliography 177

[116] D. E. Charrier, B. Hazelwood and T. Weinzierl, ‘Enclave tasking for DG

methods on dynamically adaptive meshes’, SIAM Journal on Scientific

Computing, vol. 42, no. 3, pp. C69–C96, 2020.

[117] D. E. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. Dumbser,

A. Kudryavtsev, A. Moskovsky and T. Weinzierl, ‘Studies on the energy and

deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE

solver’, The International Journal of High Performance Computing

Applications, vol. 33, no. 5, pp. 973–986, 2019.

[118] J. E. Dendy Jr, ‘Black box multigrid for nonsymmetric problems’, Applied

Mathematics and Computation, vol. 13, no. 3-4, pp. 261–283, 1983.

[119] S. Balay, S. Abhyankar, M. F. Adams et al., PETSc web page,

https://www.mcs.anl.gov/petsc, 2021,

https://www.mcs.anl.gov/petsc.

[120] ——, ‘PETSc users manual’, Argonne National Laboratory, Tech. Rep.

ANL-95/11 - Revision 3.15, 2021,

https://www.mcs.anl.gov/petsc.

[121] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, ‘Efficient

management of parallelism in object oriented numerical software libraries’,

in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset

and H. P. Langtangen, Eds., Birkhäuser Press, 1997, pp. 163–202.

[122] A. Gholami, D. Malhotra, H. Sundar and G. Biros, ‘FFT, FMM, or

multigrid? a comparative study of state-of-the-art Poisson solvers for

uniform and nonuniform grids in the unit cube’, SIAM Journal of Scientific

Computing, vol. 38, no. 3, pp. C280–C306, 2016.

[123] C. R. Nastase and D. J. Mavriplis, ‘High-order discontinuous Galerkin

methods using an hp-multigrid approach’, Journal of Computational Physics,

vol. 213, no. 1, pp. 330–357, 2006.

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc

178 Bibliography

[124] M. Weinzierl, ‘Hybrid geometric-algebraic matrix-free multigrid on

spacetrees’, PhD thesis, Technische Universität München, 2013.

[125] T. Weinzierl and T. Köppl, ‘A geometric space-time multigrid algorithm for

the heat equation’, Numerical Mathematics: Theory, Methods and

Applications, vol. 5, no. 1, pp. 110–130, 2012.

[126] D. A. Beard and J. B. Bassingthwaighte, ‘Modeling advection and diffusion

of oxygen in complex vascular networks’, Annals of biomedical engineering,

vol. 29, no. 4, pp. 298–310, 2001.

	Abstract
	List of Figures
	List of Tables
	Summary of Nomenclature
	Introduction
	In a Nutshell
	Motivation and Related Work
	Assembly
	Mathematical framework
	Meshes and adaptivity
	Multilevel assembly

	Solver ingredients
	Solution characteristics
	Additive multigrid
	Improving intergrid transfer operators and BoxMG
	Modifying coarse equations, damping and BPX
	The FAC family of solvers
	Additional parallel multigrid implementations
	HTMG and FAS on space-trees

	Hardware and implementation specifics
	Memory accesses
	Element-wise operator decomposition and storage
	Single-touch

	Lazy Stencil Integration
	Outline
	Problem characteristics
	Numerical computation of stencils in a task language
	Delayed stencil integration
	Adaptive stencil integration
	Asynchronous and anarchic stencil integration
	Vertical rippling
	Full multigrid cycles and dynamic adaptivity
	Incorporating other/non-Jacobi smoothers
	Relationship to other notions of asynchronicity

	Additive Damping Scheme
	An additive multigrid solver
	An additively damped additive multigrid solver
	Three damping operator choices
	adAFAC-Jac as a prolongation operator
	Smoothed intergrid transfer construction
	Incorporating other/non-Jacobi smoothers
	Comparisons to existing solvers
	adAFAC-PI
	adAFAC-Jac

	Implementation
	Background stencils
	Additional data structures
	Coarse grid operators
	Performance model

	Additive damping
	Single-touch
	Intergrid transfer operators
	Extending to distributed memory implementation

	Wrap up and limitations of current concurrency

	Results
	Experimental setup
	Test hardware
	Scenarios and test equations
	Data measurements
	Limitations of the current approach

	adAFAC-x: Consistency
	adAFAC-x: Stability
	Regular grid with one material jump
	Adaptive mesh refinement with one material jump
	Adaptive mesh refinement with non axis-aligned subdomains

	adAFAC-x: Performance
	Delayed stencil integration: Consistency
	Delayed stencil integration: Stability
	Robustness and iteration counts on a regular grid
	 Rippling with dynamically adaptive meshes

	Delayed stencil integration: Performance
	Wrap-up

	Conclusion
	Discussion of our findings
	Asynchronous assembly
	Damping term

	Future work
	Addressing weaknesses and shortcomings
	Integrating our ideas within other solvers
	Application to new problems

	Bibliography

