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Abstract

The offshore wind industry will make investment decisions regarding the electrical

transmission infrastructure required to connect offshore wind farms to the onshore grid.

Unfortunately, many policy, planning and operational decisions will be made under severe

uncertainty due to limited data, knowledge, and expertise. There is insufficient infor-

mation due to the assets’ short operational history, data is usually project-specific, and

future projects include advancing technologies. In particular, these uncertainties make

it challenging to assign probability distributions to inputs required to assess an offshore

transmission system economically. Therefore, methods based on classical probability the-

ory may not be justified under severe uncertainty. Nevertheless, solutions must be found

to handle severe uncertainty when planning future projects.

The work of this thesis designs (by setting up the methodology), tests (through appli-

cations) and validates (by comparing to conventional methods) new offshore transmission

planning techniques. The main original research contributions are the development of

an economic model to support offshore transmission planning, and the application of ad-

vanced statistical techniques to handle severe uncertainty in long-term decision making.

This thesis presents three in-depth practical applications.

Advanced statistical methods, such as imprecise probability, are used to handle un-

certainty in the input parameters. We demonstrate how to implement the techniques, as

well as find and overcome challenges that may arise when applying these techniques to

practical problems. Additionally, we show the benefits of these methods and, in particu-

lar, the ability to handle severe uncertainty in the input parameters more robustly than

conventional methods.

Overall, the original contribution of this thesis demonstrates a framework for decision

makers to handle severe uncertainty within the offshore transmission space and in the

broader energy context. This enables decisions on key offshore transmission assets to take

into account severe uncertainties. Ultimately, this research supports the integration of

renewable technologies in a cost-effective way.
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Chapter 1

Introduction

1.1 Background

Energy Challenges

Globally, there is a drive to find solutions to keep the increase in the global average

temperature well below 2°C, as described by the Paris agreement [3]. This challenge

involves decarbonising, among other areas, electricity generation. Subsequently, countries

worldwide are keen to move to low-carbon electricity generation sources.

The United Kingdom’s (UK’s) current energy policy centres around energy security,

decarbonisation and affordability. Accordingly, the fifth carbon budget recommends a

reduction in carbon intensity to less than 100g CO2/kWh by 2030 [4]. More recently, the

United Kingdom (UK) set a target of reducing its net greenhouse gas emissions by 100%

compared to 1990 levels by 2050 [5]. These targets, combined with other environmental

policies, has opened a gap for renewable energy.

Due to the changing energy demand and the shift away from fossil fuels, the energy

sector in the UK is evolving: the phase-out of coal-fired power stations by 2025 [6], the

continued growth in renewable energy [7], and increased interconnection with Europe [8].

In addition, the movement towards the electrification of transport and potentially heat

suggests that the future energy mix will be substantially changed. Although fossil fuels

remain dominant in the United Kingdom’s (UK) energy mix, we already see a difference,

and in 2019 fossil fuels accounted for 79.4% of the energy supplied [7]. This record low

value was primarily due to a continued switch from coal to renewables for electricity gen-

eration [7]. The energy mix is predicted to continue to evolve to achieve environmental

targets. For these reasons, research which enables offshore wind energy to be more com-

petitive is invaluable for the future.

1



Offshore Wind

Over the past decade, the amount of installed offshore wind globally has grown from

2.2 GW in 2009 to 28.9 GW in 2019 [9]. Breaking this down, the UK leads with 33%

of the share of installed capacity, followed by Germany 26%, China 23%, Denmark 6%,

and Belgium 4% [9]. Many other markets have plans to increase offshore wind capacity

including the Netherlands, US, Taiwan and Japan. Additionally, some emerging offshore

markets are Vietnam, India, Brazil and Australia [9].

In 2019, globally, a record 6 GW of offshore wind was installed [9], of which 3, 623 MW

was added in Europe across ten wind farms [10]. Across Europe, wind farms have grown

in size from an average capacity of 313 MW in 2010 to 621 MW in 2019 [10]. Furthermore,

these projects are being installed further offshore; in 2019, the average distance offshore

was 59 km, compared to 35 km in 2018 [10]. Moreover, at 1.2 GW, Hornsea One is

the largest installed offshore wind farm to date (2020) [10, 11], and there are plans for

larger projects such as Dogger Bank with a capacity of 3.6 GW [12]. New investments in

offshore wind continue to grow, and financial markets have supported the offshore wind

sector through investors and economic structures [10]. All of this information indicates

that the offshore wind industry is growing, and looks to have a promising future.

Focusing on the UK status, in 2019, 37.1% of the total electricity generated was from

renewable sources, an increase of 4% from the previous year (due to higher wind, solar

and biomass capacity) [7]. As of the end of 2019, the UK is a world leader in terms of

installed offshore wind capacity, with a total capacity of 9.9 GW spread across forty wind

farms [10]. The UK has ambitious plans to increase the contribution of offshore wind, and

in 2019 the offshore wind sector deal was announced [13]. Amongst other aims, the deal

sets out that offshore wind will provide a third of the United Kingdom’s (UK) electricity

generation by 2030 [13].

The price of offshore wind energy generation needs to be reduced to enable offshore

wind to be competitive with other energy generation technologies. The industry has

stepped up to the challenge, and 2016/17 saw a dramatic decrease in offshore wind prices

as did 2019. UK projects that reached financial investment decision status in 2019 achieved

a significantly lower than expected strike price of £39.65/MWh [14]. However, there is

potential for further cost reductions.

The cost reduction achieved thus far is believed to be due to the maturing of the indus-

try, improvement of technology and management practices, increased investor confidence

and the introduction of larger offshore turbines [15]. Turbine sizes are continuing to grow,

as is the capacity of the wind farms connected to the grid and the distance offshore. Fur-

thermore, these increasing trends are set to continue; the industry plans to locate offshore
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wind farms further offshore and in deeper water. This advancement allows the installa-

tion of offshore wind farms in more favourable and windier sites; however, it will induce

technical, financial and operational issues.

Offshore Power Transmission

An offshore wind farm is connected to the onshore grid by the offshore transmission

system (OTS). The requirements of an OTS are changing to accommodate the needs of the

industry. As the generation capacity of offshore wind farms grows, the capital costs of the

offshore transmission assets also increase since, among other factors, higher power rated

equipment and more offshore platforms are required. As projects move further offshore,

longer export cables are installed, and this raises the debate as to whether high voltage

alternating current (HVAC) or high voltage direct current (HVDC) technologies should

be installed [16, 17]. Furthermore, as the size of the wind farms grows, the greater is the

importance of the OTS to be in good working order and consequently, the significance of

high levels of reliability [18]. Ultimately, how we connect wind farms is an increasingly

crucial question and will be the focus of this thesis.

In line with the offshore wind industry’s aim of cost reduction, there is also a focus

to reduce the costs associated with the OTS. Accordingly, there is active research to

decrease both the capital expenditure (CAPEX) and operational expenditure (OPEX)

associated with the electrical transmission infrastructure. The layout of the OTS is under

consideration to reduce the capital costs of the offshore grid connection, and alternatives to

radial connections, such as meshed systems are being assessed [19, 16, 20, 21]. With regards

to individual assets within the transmission infrastructure, higher rated components to

carry greater capacities are being explored [22].

In terms of reducing the operational costs, the electrical transmission infrastructure

required to connect offshore wind farms has its particularities; especially with regards to

the cable systems a key focus of this thesis. Although there have been many offshore

power cables installed, the more recent offshore wind projects have introduced cables with

a higher nominal voltage and power carrying capacities [23]. The relatively short oper-

ational history of the assets coupled with new projects installing advancing technologies

results in a significant challenge: there are limited experience and data around which to

base economic assessments [24]. As the industry matures, this situation is likely to im-

prove; however, unfortunately, gaining sufficient information will take time.

Decision Making Under Severe Uncertainty

In the meantime, many decisions will be made in the planning and design of each new
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offshore wind project. These decisions will include selecting the type of technologies to

install, the grid connection layout, and the level of redundancy to include in the system.

While making these decisions, cost, availability, and environmental impact, among other

factors, will be considered. However, as mentioned above, offshore wind grid integration,

and in particular offshore transmission assets, is subject to many inherent uncertainties due

to a limited amount of relevant data and expert knowledge. These uncertainties complicate

decision making in terms of policy, planning and operations. Since these decisions could

have a substantial impact, appropriate techniques should be implemented in the decision

making analysis. This is one of the major issues we aim to address in this thesis.

When decisions are taken under severe uncertainty, it is essential to quantify this

uncertainty. Uncertainty quantification is usually conducted using the classical theory of

probability. When there only exists a small amount of information which is the case for

offshore power transmission due to the short operational history, data confidentially, and

most available data is project-specific it can be challenging to construct a model based

on classical probability theory. The challenge arises since techniques based on classical

probability theory require a large amount of data and knowledge; therefore, in the absence

of this information, these methods have severe limitations.

In contrast, techniques based on the theory of imprecise probability are an extension

of traditional probability concepts, but they allow for the more appropriate handling of

severe uncertainty [25]. By severe uncertainty we mean, for example, uncertainty due to

insufficient data that prevents us from accurately specifying a probability distribution.

Here, insufficient data could be very little data or even no data only expert intuition.

The methods within imprecise probability provide a framework to represent our knowledge

more accurately and enable inferences to be made under severe uncertainty. Consequently,

applying imprecise probability to support decision making under severe uncertainty could

have invaluable consequences for offshore power transmission.

Summary

In conclusion, throughout the next decade, the offshore wind industry is going to

be making investment decisions on strategic assets (including those in the OTS), under

severe uncertainty of a technical, economic and regulatory nature. Offshore electrical

transmission infrastructure projects have a short operational history, and data that is

available is usually project-specific. Additionally, future projects often include advancing

technologies for which there is no previous data. Nevertheless, new solutions must continue

to be found to effectively connect future offshore wind farms to the onshore grid; and

ultimately, to ensure that the balance between availability, affordability and sustainability
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is maintained.

The main focus of this research is the application of statistical methods for long-term

decision making (such as investment planning) under the presence of severe uncertainty

due to limited data, knowledge, and expertise. Specifically, we are dealing with uncer-

tainty in the input parameters (required to evaluate projects economically) due to limited

data, and therefore there is a limit to our knowledge when it comes to making long-term

decisions. Accordingly, this thesis will formulate decision problems that are both relevant

to the industry and taken under severe uncertainty. Advanced statistical techniques will

be used to handle the inherent uncertainties, which could ultimately influence the deci-

sions made. Subsequently, the main objectives of this thesis are to investigate advanced

statistical methods that handle severe uncertainty and to demonstrate how implementing

these techniques allows robust decision making under severe uncertainty in offshore power

transmission. Finally, we aim to review the extent to which these methods are beneficial

to decision makers in the offshore wind industry.

Throughout this thesis computational aspects, including simulations and figures, have

been performed in R [26] and Python, using Numpy [27] and Matplotlib [28].

1.2 Original Research Contribution

The work of this thesis designs (by setting up the methodology), tests (through ap-

plications) and validates (by comparing to conventional methods) a new power systems

planning technique to support the decisions taken under severe uncertainty in offshore

transmission. Advanced statistical methods, such as imprecise probability, are used to

address the inherent uncertainties (of a technical and economic nature) due to limited

data. These uncertainties make it challenging to assign probability distributions to inputs

required to assess a particular OTS economically.

The application of advanced statistical techniques to offshore power transmission is

the original contribution of the work conducted in this thesis. This thesis uses three

applications to demonstrate the utilisation of the techniques, and each decision problem

addresses a relevant research question. Exploring these questions alone is of interest to

those in the offshore wind transmission field. However, the main aim of this thesis is

to demonstrate the extent to which advanced statistical methods can be beneficial to

decision making under severe uncertainty in offshore power transmission. Accordingly,

the implementation of these techniques serves the following purposes: to demonstrate how

the techniques can be applied in the analysis of a practical decision problem; to find and

overcome challenges that may arise in the use of these techniques to practical problems;
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to show the benefits of taking this alternative approach and, in particular, its ability to

handle severe uncertainty in the input parameters more appropriately than conventional

methods; and to discuss any limitations.

Looking at the bigger picture, this thesis’s original contribution will provide decision

makers in offshore power transmission (and in the broader energy context) a framework

to handle severe uncertainty, and base their decision on analysis that addresses the uncer-

tainty involved. Consequently, developing and implementing a methodology that handles

severe uncertainty will be invaluable to the future of the offshore wind industry.

1.3 Research Aims and Questions

The research aims and questions of this thesis are divided into three areas: motivation,

methodology and application.

Motivation

1. To develop a methodology to assess the economic impact of severe uncertainty on

offshore transmission planning. What information and methodology are required to

assess the economics of an OTS effectively?

2. To identify areas of the economic model developed in Aim 1 that, for a future

OTS, contain significant uncertainty. Consequently, applying statistical models to

these areas will enable better risk-informed decisions to be made. What areas of the

economic model contain significant uncertainty that results in significant uncertainty

in the expected net present value of an OTS?

Methodology

3. Advanced statistical methods, such as imprecise probability, have been suggested in

the literature to handle severe uncertainty due to limited information. This work

aims to use these techniques to address severe uncertainty in the formulated decision

problems. We aim to identify which techniques are required to handle the identified

severe uncertainty appropriately in the formulated decision problems. Additionally,

we aim to understand how these techniques could be applied.

4. To understand and overcome challenges that arise during the application of advanced

statistical methods to practical applications in offshore power transmission. In par-

ticular, how do we overcome the issue of act-state dependence in a practical decision

problem?
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5. How do we effectively communicate the handling of severe uncertainty? In particular,

we set out to explore how to clearly communicate advanced statistical modelling and

the results of this analysis.

Application

6. The main aim of this thesis is to investigate the extent to which advanced statistical

methods can be beneficial to decision making under severe uncertainty in offshore

power transmission. To achieve this, we demonstrate how the methods proposed can

be implemented in the analysis of a practical decision problem that is made under

severe uncertainty. Furthermore, we aim to show how to address and quantify the

uncertainty in three applications.

7. To demonstrate the application of advanced statistical methods to practical decision

problems, we investigate the three questions outlined below. These questions act as

case studies to illustrate and understand the implementation of the techniques.

(a) For an emerging market, what regulatory regime and technology choice is op-

timal under severe uncertainty?

(b) From the perspective of different stakeholders, should they invest in an interlink

between two offshore substations to provide increased redundancy?

(c) Given the components available in the market, what is the optimal OTS for

different project capacities and distances from shore?

8. To show how the novel approach presented in this thesis to handle uncertainty in

offshore transmission decision problems compares to conventional methods. To il-

lustrate the benefits of taking this alternative approach and, in particular, its ability

to handle severe uncertainty in the input parameters (required to evaluate projects

economically) more appropriately. Finally, we will discuss any limitations to the

proposed methodology.

1.4 Thesis Outline

This thesis presents the research that addresses the aims outlined above and is organ-

ised in the following way. Additionally, Fig. 1.1 visually shows the thesis structure. To

begin, Chapter 1, explains the broader context in which the research of this thesis sits. We

also present the research aims of this thesis and its original contribution. In Chapter 2, we

discuss the current knowledge about OTSs, as well as review and summarise the literature
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in this field. In particular, we identified that there is a limited amount of relevant data

about offshore wind transmission systems to make long-term investment decisions.

Although we may not have enough data to accurately perform economic evaluations

and make decisions under severe uncertainty adequately, there does exist some data. In

Chapter 3, we collect and present data that is available in the public domain associated

with OTSs. In Chapter 4, we confirm the need for advanced statistical methods to handle

uncertainty in offshore transmission by developing an economic framework to assess an

OTS (we will use this framework throughout the thesis), identifying uncertain model vari-

ables, and, finally, evaluating their impact on project performance. Since some uncertain

inputs have a significant impact on the economic benefit of a project, and these projects

require considerable investments, there is a need to handle uncertainty appropriately.

In Chapter 5, we revisit conventional techniques currently implemented in decision

making analysis (based on the classical theory of probability), discuss their limitations

when applied to problems that involve uncertainty and subsequently, explore more robust

techniques under severe uncertainty. These advanced statistical techniques are applied in

Chapters 6 to 8, which are the application chapters of this thesis.

In Chapter 6, we investigate economically preferable regulatory regimes and technology

choices for emerging markets from an investor’s point of view. In Chapter 7, we explore,

from the perspective of different stakeholders, whether they should invest in an interlink

between two offshore substations to provide increased redundancy. The final application

is presented in Chapter 8, where we demonstrate a more comprehensive application by

extending the decision problem to include a framework to construct the decision space.

Therefore in Chapter 8, the application investigates and designs optimal OTS for varying

distances offshore and wind farm generation capacities. All three application chapter serve

the purpose of demonstrating and understanding how to implement the proposed advanced

statistical methods to ultimately show how they can be beneficial to decision makers in

offshore power transmission. Finally, in Chapter 9 we give chapter summaries, and in

Chapter 10 we present the conclusions of this thesis and discuss further work.

Before moving to the next chapter, it is important to make two notes. Firstly, in this

thesis, although the case studies have been designed as accurately as possible based on the

available information, there may be limitations to the problem formulation or data inputs.

However, as this work’s primary aim is to demonstrate the ability of advanced statistical

techniques to support decision making under severe uncertainty, accurately arriving at

decisions to the three applications is not the priority. In summary, these applications act

as case studies to demonstrate the application of advanced statistical methods to practical

decision problems. Secondly, the notation for variables should be contained within each
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Figure 1.1: Thesis structure showing the links between chapters, research aims and pub-

lication outputs.

chapter, and be consistent for variables that appear in multiple chapters. Some symbols

have been reused for variables that do not appear in multiple chapters due to limited

symbols.
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Chapter 2

Offshore Transmission Systems

State of the Art

2.1 Introduction

In Chapter 1, we established the need for methods to handle uncertainty when making

long-term investment decisions regarding the offshore transmission system (OTS). This

chapter discusses the current knowledge about OTSs and reviews the literature in this

field. The aims of this chapter are:

1. To gain a deeper understanding of the role of an offshore transmission system (OTS)

and its key components.

2. To investigate current challenges faced by the offshore wind industry, and in partic-

ular, the problems that need to be addressed to support offshore transmission.

3. To review current studies that assess policy, planning or asset management decisions

in offshore transmission. Furthermore, to advance our knowledge about the types of

decisions that are currently being made by project planners in offshore transmission.

4. To understand the challenges that uncertainties bring to offshore transmission plan-

ning, and review current approaches to handle these uncertainties.

This chapter begins by defining the offshore transmission system (OTS) before detailing

the components that constitute the system. This explanation is followed by a review of the

different ownership structures of the OTS adopted by individual countries. As the OTS is

one part of the offshore wind power plant (OWPP), we go on to discuss challenges faced

by the offshore wind industry. In particular, we focus on cost reduction. We also review

obstacles associated explicitly with the OTS. This aim of cost reduction is crucial in

many of the decisions taken throughout the lifetime of the OTS. Therefore, we look at the

long-, medium- and short-term decisions currently being investigated in the literature. We
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Offshore wind farm Offshore Transmission System (OTS) Onshore grid

Offshore substation Offshore cable Onshore cable Onshore substation

Offshore wind power plant

Figure 2.1: Breakdown of an OWPPs into an offshore wind farm and an offshore trans-

mission system (OTS), as well as detailing typical assets within the OTS.

identify that uncertainty due to a limited amount of data and expert knowledge impacts

the decision making process, and go on to review current approaches to handle uncertainty

in offshore transmission. Conclusions are drawn about current challenges and limitations

in offshore transmission; specifically, handling uncertainty in the decision making process

when planning and designing these systems.

2.2 Definition: Offshore Transmission System (OTS)

An offshore wind power plant (OWPP) is made up of an offshore wind farm and an

offshore transmission system (OTS) as shown by Fig. 2.1. An offshore wind farm consists of

many turbines along with the associated electrical equipment that is required to generate

the electricity. Electricity is generated offshore with the intent of it being sold to the

onshore grid. Therefore, the wind farm needs to be connected to the onshore network.

This connection is the role of the OTS. The exact assets that constitute an OTS will be

project dependent; however, the system will usually include offshore substations, offshore

cables, onshore cables, onshore substations and the electrical equipment associated with

each of these. We will detail each of these components in Section 2.3.

In technical terms, often, the offshore transmission assets are between the following

two boundary points as detailed in [19]:

1. The boundary point on the offshore wind farm side is located on the offshore sub-

station platform at the incoming low-voltage transformer circuit breaker cable ter-

mination.

2. The boundary point on the onshore network side is located in the onshore substation

between the high-voltage busbar disconnectors and the high-voltage circuit breaker.

This is known as the point of common coupling and is where the OWPP meets the

onshore grid.
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The expenditure associated with the OTS usually accounts for around 15% to 20%

of the capital costs of an offshore wind project which is equivalent to 10% to 15% of the

levelised cost of energy (LCoE) [29]. In 2019, transmission asset investments in Europe

amounted to e0.5 billion [10]. In the UK, the first wind farm was installed in 2000 at Blyth

offshore wind farm. This project, and many of the other early projects and demonstration

projects, are located close enough to shore that a full OTS was not required. Since these

projects, many offshore wind farms have been installed at a sufficient distance from shore

that an OTS is justified. In the UK, projects to date are located between 9 and 120

km from shore with a capacity between 64 and 1200 MW [30, 31]. Of these projects,

fourteen projects (that have a capacity between 90 and 630 MW) have detailed costing

data available in the public domain and suggest that, up until now, the capital costs of

an OTS (for varying project sizes) are between £25 million and £350 million [32]. This

value is likely to increase as project capacity grows.

Thus far, in the UK, the connection between the wind farm and the onshore network

is usually radial (point-to-point) and using HVAC technologies. Elsewhere, for exam-

ple, Germany has installed some HVDC offshore transmission systems (OTSs). However,

as the industry moves further offshore, alternative transmission connections, such as a

more coordinated approach or designing a wind farm that could accommodate a future

wind farm, are being considered [19, 16, 20, 21]. These alternative connections come as

a suggested solution to the need for an increased transmission network capacity. As off-

shore transmission advances to accommodate the needs of the industry, questions around

designing electrical transmission infrastructure arise.

2.3 Components in an Offshore Transmission System (OTS)

An offshore wind farm can be connected back to the onshore grid using one of two

technology types: HVAC technologies or HVDC technologies. In this section, we detail the

key components that make up an offshore transmission system (OTS) for both connection

approaches. We start by describing the offshore platform, where the OTS begins, before

explaining both the onshore and offshore cables. Finally, we discuss the onshore substation

where the OTS ends and meets the onshore grid.

• Offshore Platform

The offshore platform (or platforms) are where the array cables from the turbines

meet. Additionally, the platforms host the electrical equipment required to collect

the generated electricity and transmit this to the onshore grid [33]. An offshore

platform hosts the offshore transformer that transforms the voltage from 33 kV (in
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older projects) or 66 kV (in recent projects) to higher voltages of 132 kV (in older

projects) or 220 kV (in recent projects). This higher voltage (132 kV or 220 kV)

is required for transmission back to shore. To give an example, Race Bank offshore

wind, which became operational in 2018, has a capacity of 578 MW and consequently

has two offshore platforms. Each offshore platform in the Race Bank project is 20

m by 30 m by 38 m, and the overall height is 35 m [30].

If the offshore transmission system (OTS) is using HVDC technologies, then a sep-

arate offshore platform may be needed to host the voltage source converter (VSC).

This VSC converts the power from HVAC to HVDC for the transmission back to

shore. Recently, research by [34] investigates combining the transformer and con-

verter platforms to reduce costs. The study by [34] found that a 1 GW combined

HVAC and HVDC platform topside can be achieved; furthermore, this asset can

weigh less than 10, 000 tonnes which brings cost reductions. This is discussed fur-

ther in Section 3.8.2.

The use of HVDC grid technologies allow multi-terminal connections to be considered

as an alternative to point-to-point connections. The study by [20] finds that point-to-

point HVDC options are economically favourable (with regards to CAPEX), however

multi-terminal HVDC options have security of supply advantages.

The offshore platform also hosts other electrical equipment such as switchgear, shunt

reactors and auxiliary transformers. A project may require more than one platform

if it is sufficiently large in capacity. The size of the platform is limited by the

weight of the equipment on the platform. Once the power is in the correct form for

transmission, the platform connects to the offshore cable (or cables).

• Offshore Cable

The offshore cable, usually installed below the seabed and therefore called a subsea

cable, transmits the power back to shore. The combined offshore and onshore cable

system is sometimes referred to as the export cable. A larger project may require

more than one export cable; the capabilities of the cables available in the market

determines this. Depending on the technology chosen for the OTS, the offshore cable

will either be a HVAC or HVDC cable.

The majority of HVAC cables used in operational projects are three-core HVAC sub-

sea cables with cross-linked polyethylene (usually referred to as XLPE) insulation

[35, 33, 36, 37]. Some HVAC cables include a fibre optic cable for communications

[37]. A three-core cable is installed in a single trench, typically buried at a depth of

one to four metres below the seabed [38]. Cables installed between 2013 and 2016
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were usually rated at 132 kV. However, advancement in cable design and growth

in project capacity means that 220 kV are becoming the standard in more recent

projects [30, 38]. Currently, HVAC cables have the ability to transfer 350 to 400

MW per cable [38] and even 550 MW per cable as suggested in [37]. Should HVAC

approaches be considered for very far offshore projects, reactive power can become

problematic. Therefore, HVAC cables of such considerable lengths will require reac-

tive compensation units around the midpoint of the cable [16, 11].

Next, we move on to discuss HVDC cables, which are typically used for longer

distances to solve issues related to reactive power flow that occur in HVAC systems.

HVDC cables can be bipolar with two single-core cables, and currently a pair of

single-core 320 kV cables can export 1200 MW [38]. Some of the advantages of a

HVDC approach stem from the reduced weight and size of HVDC cables, as well as

being free from reactive power [39].

To compare costs, a 400 MW (220 kV) HVAC cable costs around £0.7 million per

km whereas a 1200 MW (220 kV) HVDC cable costs around £0.8 million per km

[33, 36, 37]. In 2019, NKT Group supplied 55% of the cables energised in Europe,

followed by Nexans (18%), Prysmian (18%) and LS Cable and System (9%). JDR

is another key manufacturer; however, they did not supply any of the cables that

were energised in 2019 [40]. When the offshore cable meets the landfall, a cable joint

connects the subsea cable to the onshore cable.

• Onshore Cable

The onshore cable, usually buried underground, takes power from the landfall to

the onshore substation. The length of the onshore cable depends on the onshore

substation’s location and the route from the landfall to the onshore substation.

Similar to the offshore cable, the onshore cable is usually a cross-linked polyethylene

(XLPE)-insulated cable. In line with the advancement of higher voltage offshore

cables, the onshore cables have also moved from 132 kV to 220 kV in more recent

projects [38, 37].

• Onshore Substation

The onshore substation houses the equipment required to transform the voltage up

to the level of the onshore grid and to connect to the onshore transmission system

[38]. In the UK, the onshore grid has a voltage level of 400 kV. The equipment in the

onshore substation may include transformers, switchgear, shunt reactors, harmonic

filters, and metering equipment to measure the amount of electricity exported to the

grid [30, 38]. If HVDC technologies have been chosen, the onshore substation may
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also host the onshore VSC which converts the power back from direct current to

alternating current. The estimated cost of an onshore substation is £30 million for

a 1 GW wind farm [38].

2.4 Ownership Structures

Currently, the responsibility of owning and operating the offshore transmission system

(OTS) varies between countries this section details individual countries’ set-ups for nations

leading in the offshore wind industry. We discuss the ownership structures for Belgium,

China, Denmark, Germany, the Netherlands and the UK. However, we note that these

structures may evolve to suit the needs of a country’s offshore wind market.

• Belgium

Previously, each offshore wind farm operator had to build their OTS. In 2017,

Elia (Belgium’s onshore transmission system operator (TSO)) announced that they

would connect the next four offshore wind farms to the onshore grid by investing in

a modular offshore grid (MOG) [41]. Each wind farm would connect to the MOG

for transmission to the onshore grid [41, 42].

• China

In earlier projects, offshore wind projects were located close to shore and connected

directly to the onshore substation by 35 kV cables [43]. Therefore, offshore sub-

stations, higher voltage cables and ownership structures for the transmission assets

were not required [43]. For more recent projects requiring a more substantial grid

connection, the developers are responsible for financing and constructing the OTS

[44]. However, ownership structures that split the responsibility are being considered

[44].

• Denmark

In Denmark, there are two ways to obtain a permit to build an offshore wind farm:

open door procedure and tender procedure [42]. Under the open door procedure,

the grid connection is located onshore and therefore, the wind farm developer pays

for the OTS. Under the tender procedure, the developer is only responsible up to

the grid connection, which is placed offshore. In this case, the Danish onshore TSO

are responsible for the connection to shore [42]. However, in 2018, for three offshore

wind projects, Denmark decided to switch to a developer build model for the OTS

[44].
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• Germany

In Germany, the responsibility to connect offshore generation assets falls either to

TenneT TSO or 50 Hertz Transmission GmbH. TenneT is legally obliged to connect

all offshore wind farms in the German North Sea to the power grid [45, 46].

• The Netherlands

In the Netherlands, for recent offshore wind farms, the government appointed the

Dutch onshore TSO, TenneT, as the Dutch offshore grid operator [47]. TenneT has

the responsibility to connect offshore generation assets to the onshore grid. Cur-

rently, TenneT is developing five offshore grid connections that could each connect

multiple wind farms, via an offshore substation and two 220 kV cables, to the on-

shore grid [47]. In 2015, Gemini was a pioneering project, and the wind farm owner

had to install its offshore grid [48].

• United Kingdom

In the UK, usually, a developer builds the entire power plant but must hand the

OTS (when it is operational) to a third-party entity termed an offshore transmission

owner (OFTO). An OFTO finances, operates and owns the OTS assets, under long-

term licences that guarantee a revenue stream subject to satisfying performance

requirements [49, 50, 51, 19].

From the countries’ set-ups, we see that ownership usually falls to either a third-party

entity, the offshore wind farm developer or the onshore TSO [52]. The industry as a whole

appears to prefer onshore TSO ownership.

When conducting an economic evaluation, a specific stakeholder’s perspective should

be taken. In the work of this thesis, due to the information available, we usually focus on

the UK market and analyse from the offshore transmission owner’s (OFTO) perspective.

The rest of this subsection will focus on and discuss in more detail the OFTO regime.

In the UK, currently, a developer builds both the wind farm and the OTS but will only

own the wind farm during its operational phase [50]. When the transmission system assets

can transfer electricity to shore, the developer must hand these assets over to an OFTO.

This transfer of assets is regulated by the Office of Gas and Electricity Markets (Ofgem)

who run a competitive tender process to select and award an OFTO licence to a particular

company [51].

During the competitive tender process, a cost assessment is carried out to determine

the transfer value of the assets. The developer provides Ofgem with figures and estimates

of their costs and Ofgem regulate these [50]. Throughout the assessment process, Ofgem

presents three numbers: the initial transfer value, the indicative transfer value and the
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final transfer value (FTV) [51]. The FTV is the payment that the OFTO makes to the

developer for the transfer of the transmission assets. The tender process also results in

an agreed revenue stream (including details about the base revenue) for the OFTO that

receives the assets.

In the United Kingdom’s (UK) regulatory regime, OFTOs are incentivised to maintain

very high levels of asset availability to limit financial losses to generators from network

outages. The reward or penalty that the OFTO receives depends on the availability of the

OTS to transmit electricity. Specifically, it is a result of whether the yearly availability

has reached the target of 98%. Only 10% of the offshore transmission owner’s (OFTO)

base revenue is at risk due to availability, hence should the availability fall below 94% the

OFTO would obtain 90% of the base revenue. For an availability value greater than 94%,

the revenue increases linearly from 90% of the base revenue at 94% availability to 105%

of the base revenue at 100% availability [53].

The work by [52] suggests that the United Kingdom’s (UK) approach is flexible, which

has allowed the UK to deliver timely offshore projects that economically and efficiently

connect offshore generation assets to the onshore grid. Furthermore, the report by [54]

indicates that this approach has a predictable revenue stream which attracts private in-

vestment in these assets.

2.5 Offshore Wind Industry Challenges

As the offshore transmission system (OTS) is part of the offshore wind power plant

(OWPP), it is necessary to understand the main challenges faced by the offshore wind

industry. In this section, we discuss those challenges. The offshore wind industry looks

to have a promising future, but it still faces a plethora of technical, environmental, social,

regulatory and financial challenges.

Possibly the most crucial challenge for offshore wind is cost reduction, and there is

potential for significant work in this area [55]. Dramatic progress has already been made

to reduce the cost of offshore wind; however, the industry must ensure that it is competitive

with other energy sources. The challenge of cost reduction is revisited in more detail in

Section 2.6.

There exist many investment, design and operational decision problems that require

answering to allow offshore wind to continue to progress. Some of these decision problems

are investigated in the literature: whether investors should expand, continue or abandon

projects [56]; operational decisions to optimise the maintenance strategy [57]; lifetime

extension of wind turbines [58]; optimising the wind farm layout [59]; selecting an optimal

17



access point for the wind farm to connect back to the onshore grid [60]; the selection of

suitable support structures for offshore wind turbines in deeper waters [61].

Furthermore, the offshore setting of an offshore wind farm adds additional complex-

ity to the maintenance and repair of these assets; specifically, logistical, time and cost

challenges that need to be addressed. Several works in the literature review operation

and maintenance practices for the offshore wind farm [62], usually focusing on the mainte-

nance and repair of the turbines. The work by [63, 64] compares the following maintenance

strategies: preventative, corrective, scheduled and unscheduled maintenance. Operational

strategies are vital to the success of a project, and therefore indicates the importance of

these asset management decisions.

The increasing size of offshore wind farms, coupled with more distant locations brings

additional maintenance challenges. Vessels will be required to travel further distances

in potentially harsher conditions, and therefore, research into robotics and drones for

operations and maintenance is attracting increasing attention [65]. Research into asset

management has led to the development of operations and maintenance tools [66, 67, 68,

69], and tools to aid in specific maintenance problems such as vessel routing [70].

Vessel hire is a significant contribution to the repair cost. Accordingly, the work of

[71] investigates different vessel capabilities and charter periods, and as a result, identifies

the advantage of hiring vessels for a more extended charter period. The study conducted

by [57] investigates three operations and maintenance decisions regarding vessel hire. Fur-

thermore, the work by [72] notes that acquiring effective and efficient asset management

processes facilitates structured and supported decision making throughout the lifetime of

the asset, and leads to a reduction in the cost of energy.

Another challenge arises due to uncertainty. Several studies have investigated the

uncertainties associated with the entire offshore wind power plant and their impact on

economic metrics [73, 74, 75]. In particular, the impact of variations in the power generated

by the wind farm is assessed. With the maturing of the industry, the situation will improve,

but this will take time. Therefore, appropriate techniques must be developed to deal with

this limited information.

In summary, one of the greatest challenges that the offshore wind industry faces is

its higher development and operational costs which are primarily due to the location of

the wind farm sites. Furthermore, the transmission system plays a significant role in

this, especially as projects grow in capacity and are installed further offshore. Due to the

increased importance of offshore transmission systems (OTSs), this work focuses on them.
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2.6 Cost Reduction Motivation and Progress

As highlighted in the previous section, one of the biggest challenges faced by the

offshore wind industry is cost reduction. As a result, research within the sector has a

strong focus on reducing the cost of energy. In this section, we explore the motivation

behind cost reduction and review the literature that suggests areas to address this issue.

As previously mentioned, across Europe, offshore wind farms have grown in size from

an average capacity of 313 MW in 2010 to 621 MW in 2019 [10]. This increase is partly due

to achieving economies of scale within the offshore wind energy sector, which has enabled

cost reduction. In particular, the increasing turbine size from an average of 3 MW in 2009

to almost 8 MW in 2019 [10]. Furthermore, in April 2020, Siemens Gamesa released a 14

MW offshore wind turbine which they plan to introduce by 2024 [76].

The cost reduction monitoring framework outlined in [77] evaluates the progress of

cost reduction in UK offshore wind projects against key milestones. Considerable cost

reduction has already occurred, and the report by [77] suggests that this is predominately

driven by technology developments, including higher power rated turbines. The report by

[77] also outlines that increased competition at the developer level (leading to lower supply

chain costs) and the improved confidence in the sector (ultimately reducing risk profiles

and capital costs) have supported cost reduction aims. The report by [77] suggests that

there is expected to be further cost reductions over the next decade through technology

innovation and collaboration across the sector.

Some areas of potential research to address cost reduction are suggested in [78]: erec-

tion and installation of turbines, the construction of platforms, the laying of subsea cables,

operations and maintenance, and decommissioning of the site. The work by [79] indicates

that operating costs are significantly influenced by labour costs and the availability of

the components. [79] goes on to detail key drivers for operational expenditure in offshore

wind: availability of vessels, crew, helicopters and parts, network charges, vessels for larger

equipment, production facilities of jackets, and lead time for cables. The work by [79] also

suggests that research into lead times for cables could result in substantial consequences

for the offshore wind industry.

Several initiatives are already in place to address the cost reduction challenge with

regards to the grid connection. These initiatives include the development of a coordinated

network and improvements to the offshore transmission owner process [55]. However,

the work by [55] suggests that such actions may lead to uncertainty about future policy

frameworks for offshore transmission, consequently making standardisation and other cost

reduction opportunities more difficult to reach. [80] describes offshore transmission infras-
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tructure development in a timely and cost-effective way to be essential to deliver offshore

wind generation.

2.7 Offshore Transmission Challenges

Cost reduction

In line with the aim of reducing the cost of offshore wind energy, the offshore trans-

mission system (OTS) also has a cost reduction focus. Delivering value for money offshore

transmission projects is discussed in [81] as one of the barriers to achieving the United

Kingdom’s (UK) Offshore Wind Sector Deal target of 30 GW by 2030. The industry has

already progressed in this area by advancing technologies; however, there is still work to

do, in particular with increasing the reliability of OTSs [18] and handling the uncertainties

involved in project assessments [82, 83].

Distance offshore

To enable wind farms to be deployed even further offshore requires technological inno-

vation regarding the OTS. The length of cable required, so far, has not been long enough

to cause significant problems. Project planners have to decide whether the transmission

topology should be HVAC or HVDC, taking into consideration that HVDC becomes the

more economical option after a certain length of cable. This cable length is disputed in the

literature; for example, the work by [16] suggests between 50 km and 80 km, whereas the

study by [84] suggested between 120 km and 160 km. Projects currently being planned

and installed are at distances within these ranges.

As offshore wind projects are installed at greater distances offshore and longer cables

are required, reactive power in HVAC grid connections becomes an issue. HVAC cables of

such considerable lengths will require reactive compensation units around the midpoint of

the cable, and this will inevitably come with higher costs [16]. [85] compares the investment

cost of two reactive compensation strategies: concentrated (a dedicated reactor unit) and

distributed (using the power converters in the offshore turbines). The work of [85] finds

that usually, a mix of both strategies is economically optimal.

Another challenge that the OTS has to overcome is due to the losses in the electrical

equipment. Models to calculate the power losses of the offshore cables, transformers and

converters are developed in [86]. This work finds that cables are the main contributors

to losses for HVAC connections, whereas converters and offshore transformers are the

primary source of power losses for HVDC connections [86].

Uncertainty

Unfortunately, many of the decisions taken in offshore transmission are under severe
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uncertainty which complicates the decision making process. In this section, we discuss

the nature of these uncertainties. In the context of offshore wind, uncertainty arises from

the need to predict the future, or due to a limited amount of relevant data and expert

knowledge.

The work by [87] describes uncertainty analysis to be an essential topic of research in

the wind power sector. The unpredictable nature of wind is also emphasised in the study by

[88], who analyses four wind speed distribution models. Similarly, the work by [89] points

out that uncertainty in the input parameters impacts the predictions, and unfortunately,

many variables in the design stage of an offshore wind farm contain uncertainty.

The methodology to assess the economics of offshore transmission projects usually

involves economic metrics such as net present value (NPV) or levelised cost of energy

(LCoE). These metrics rely on forecasts [87], and unfortunately, in offshore transmission,

the input parameters required are often uncertain. As a result, investment decisions are

taken based on uncertain variables, such as unknown costs associated with the capital,

operational, decommissioning and financing of a project, as well as wind farm availability

and losses predictions [90]. Uncertainties affect the financial stability of an offshore wind

project and [87] suggests that the main factors contributing to the uncertainty are wind

resource, discount rate, electricity price and future variable costs.

Some of the uncertainty in economic evaluations is due to limited costing data for

emerging technologies. The work of [91] reviews data in the public domain for HVDC grid

connections, and finds large variations between data sets. Perhaps an even larger challenge

is the uncertainty around predicting operational costs of these assets. As a result of the

short operational lifetime of offshore wind combined with the confidentiality surrounding

operational experience, expert information and data are scarce.

For these reasons, the data used to estimate the OPEX in [59] was taken from a two

year period where very few repairs took place and thus was not representative of the aver-

age operational year. Uncertainty in evaluating the OPEX has also been investigated by

[92]. The work by [92] focuses on the uncertainty surrounding the failure behaviour of the

electrical equipment and explores their impact on maintenance strategies. Unfortunately,

information regarding the availability of components is limited due to the short opera-

tional history of the industry. Furthermore, a breakdown of the variables that impact

the OPEX are presented in [93] and it is suggested that some of these variables, such as

meteorological conditions, turbine reliability, staff and vessel costs, capacity factors and

availability, contain uncertainties.

Reliability

Unfortunately, some offshore transmission projects have experienced costly (in terms
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of time and money) cable failures [82]. These cable failures occurred more frequently

than initially expected [83, 82]. A review of the reliability of offshore wind transmission

systems is conducted in [83] and finds that the failure rate experienced in operational

projects is higher than the value used in industry practice. Consequently, [83] suggests

that an intervention is required as there is insufficient data to carry out accurate failure

analysis.

The report by [82] compares the operational failure experience of export cables to the

failure rate value used in industry assessments, and finds, like [83], that operational sys-

tems are experiencing more failures than expected. Therefore, steps should be taken to

reduce the number and impact of offshore cable failures when planning future projects.

Consequently, research into cable reliability, proactive cable maintenance, cable installa-

tion practices, cable testing, cable fault detection methods, and redundancy has emerged.

The reliability of offshore wind systems is studied in [94, 95, 96, 18, 97, 16]. Offshore

grids are sensitive to low probability high impact failures such as cable failures [95], and

the reliability of an offshore grid impacts the security of supply of the onshore grid [18].

However, most studies in the field focus on evaluating offshore network reliability from a

wind farm owner’s perspective [18]. Therefore, little research has been done to evaluate

the impact of cable failures from a transmission owner’s perspective.

The reliability of HVDC transmission systems has been explored extensively [98, 99,

100]. The work of [98] uses Bayesian networks to advance techniques for reliability assess-

ments of HVDC onshore and offshore transmission systems. The availability of HVDC

systems is explored in [99] and finds that the subsea cable has the most significant impact

on the availability of the system. The study by [100] presents a methodology to assess the

reliability of a HVDC link and investigates the benefits of modelling the modular multi-

level converter (MMC) in an additional third state (called the derated state). The work

by [100] finds that this additional modelling reduces the downtime of the system, however

only slightly increases the revenue of the system.

From the literature, it is quite clear that the reliability of OTSs is an open area of

research and the operational experience indicates that improving the availability of these

systems is crucial. The work by [18] raises many open research questions around the

reliability of the offshore grid, such as, since the usual n − 1 redundancy criterion often

adopted is not economical offshore, what level of redundancy is required for offshore grids?

Further work is necessary to ensure that offshore networks can manage increased capacity

reliably.

Cable failures

As previously discussed in this subsection, industry experience is suggesting that it is
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challenging to assign an accurate value to the failure rate of offshore cables. The economic

impact of a cable failing is estimated to be on average £12.5 million, and this includes

the cost to repair the cable, loss of production, and any extra maintenance required as

a result of the cable failing [82]. Since an outage results in a substantial loss of revenue,

uncertainty in the failure rate could have a significant impact on the companies involved

[24]. The report by [82] presents the United Kingdom’s (UK) experience of seven post-

commissioning failures significantly higher than expected. £160 million has been spent

due to these seven failures [82], and thus cable failures seem to be an obvious avenue to

explore with regards to cost reduction and risk mitigation for future projects.

The experiences in the UK thus far have resulted in a failure rate of 0.0016 fail-

ures/km/year; however, a commonly used value is quoted in the literature to be 0.0007

failures/km/year [82]. The latter value is based on 60− 100 kV single-core cables with no

additional details as to whether the cable has a fibre optic or if it is buried [82]. There-

fore, it is not representative of the current offshore cables in operation in the offshore

wind industry and any extrapolation should be treated with care. Using a failure rate

lower than is realistic in economic assessments that underpin investment decisions could

be detrimental to the companies involved.

In this subsection, we have reviewed the main challenges faced when developing and

operating OTSs. These barriers centre around cost reduction, reliability, cable failures

and uncertainty in input parameters that feed into economic evaluations.

2.8 Decision Making in Offshore Transmission

Despite the challenges described above, different stakeholders, together and separately,

have to make decisions as to the best way to connect offshore wind farms to the onshore

grid. In this process, many long-, medium- and short-term decisions will be made. In

the long-term, governments and regulatory bodies will design frameworks and regulations

to facilitate the fair development of offshore transmission. In the medium-term, decisions

about the design of individual projects will be made. Finally, in the short-term, operational

decisions will be taken. The decision maker in each of these time scales may be different.

The industry aim of cost reduction is crucial in all of these types of decisions. In this

section, the literature surrounding each of these classes of problems is discussed.

Some of the critical questions that must be addressed when designing offshore systems

are discussed in [16]. These questions include who pays for the connection? Who benefits

from the link? Should overdesign of the grid connection be considered to allow a second

wind farm to be added at a later date? Should the system be HVAC or HVDC?
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Similarly, challenges that should be addressed to enable the US offshore wind market

to realise its potential are discussed in [101], and include how and where would an offshore

grid integrate with the onshore network? What onshore grid upgrades are required? Who

is responsible for transmission development? How will different regions coordinate? How

will offshore transmission be regulated? Many of these questions are relevant to other

emerging markets. In the UK context, to work towards the targets of the Offshore Wind

Sector Deal, [81] identifies grid-related challenges. These include the impact of onshore

infrastructure on communities, the capabilities of the onshore grid, further cost reduction,

and the need for a more coordinated approach between the onshore grid, offshore grid,

and interconnectors.

Long-term decisions

In the case where a country or region does not have an established offshore market,

there is a need to formulate regulations, regimes and frameworks to allow the development

of grid connections. Several studies in the literature explore issues around who should

design, build, own and operate the OTS and what regulations should be implemented to

support this. The report by [52] gives an in-depth review of current regulatory regimes in

a view to increasing the amount of offshore wind generation in the North and Irish Sea.

Similarly, the work by [102] compares two options to develop the offshore grid: de-

veloper build and TSO build. Benefits to the transmission system operator (TSO) build

are suggested in [102] to be the opportunity for early planning, central coordination and

the ability to consider a modular grid connection that has economies of scale advantages.

In terms of the developer build option, [102] identified that costs for individual projects

could be optimised. The research by [103] takes a consumer perspective to assess the

value for money of third-party ownership compared to TSO ownership. The work by [103]

suggests TSO ownership to be beneficial in small- and medium-scale projects. However,

for more substantial projects, the work by [103] suggests that a third-party approach may

be beneficial.

Medium-term decisions

In the case where an established offshore market exists, project planners will make

decisions regarding the optimal design of the electrical transmission infrastructure. One

major consideration is whether to use HVAC or HVDC technologies. There has been a his-

tory of interest in comparing HVAC and HVDC approaches for offshore wind connections,

for example, [104] economically compares HVAC and HVDC approaches for a 100 MW

offshore wind farm. The study by [104] assesses the impact of distance, component cost,

converter reliability and converter losses on the decisions made. Similarly, the work by [17]

investigates the economic value of VSC-HVDC connections and compares this approach
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to HVAC connections for a 300 MW wind farm. The study by [17] considers different

cable lengths between 25 and 100 km.

Assessing projects more representative of offshore wind farms planned for post-2020,

[84] compares HVAC and HVDC approaches for the connection of larger offshore wind

farms. The study by [84] considers the technical and economic benefits of each option,

as well as discussing how each technology option complies with industry standards. The

research in [84] makes important insights on the need to carefully consider the reactive

power produced by long HVAC cables, and consequently, finds that the costs associated

with energy lost during transmission are larger for HVAC systems. However, [84] notes

that the cost of VSCs are significant in the HVDC approach.

To allow HVAC approaches to be used at longer distances from shore, [105] investigates

non-conventional AC frequency approaches and finds that a frequency of 10 to 16.7 Hz is

comparable to the cost of VSC-HVDC up to 200 km. A comparison of HVAC and HVDC

technologies for large (80, 000 MW) offshore wind developments in the United States is

carried out in [106] with a focus on power losses. The results of [106] shows that for a

project 120 km offshore, losses in the HVDC approach is roughly 1% to 2% lower than a

HVAC system.

In more recent work, [107] compares different technologies to connect two offshore

wind farms: two separate HVAC links, two separate HVDC links and two separate HVDC

links with an interlink between the two links. The study by [107] uses a probabilistic

transmission expansion planning model and concludes that the HVDC topologies are more

efficient, are becoming a cost-effective solution for large offshore wind farms, and combined

with an interlink offers greater flexibility.

Another consideration in the planning of an OTS is the layout of the system which

is a highly discussed topic [20, 21, 95, 18, 108, 109, 110, 111, 112]. In particular, the

work by [113] investigates the design and planning of offshore transmission based on NPV

assessments. Although the UK has so far preferred radial systems, the question arises of

whether a coordinated or meshed network is more suitable as we move to larger projects

that are further offshore.

The literature often compares radial, coordinated and meshed layouts. For example,

[21] compares the economic benefit of a more coordinated transmission approach to man-

aging increasing network capacities. The work by [112] compares radial, ring and meshed

transmission topologies for connecting multiple offshore wind farms to multiple onshore

connection points, using a rule-based genetic algorithm to find the best economical and

technical grid solution. The approach adopted in [112] is developed into an optimisation

tool and is shown to find solutions with lower investment costs.
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Looking at layout options when connecting more than one wind farm, the work by

[20] investigates three HVDC topologies to join 2.4 GW of power from two separate wind

farms. Additionally, the study by [95] compares different HVDC configurations (radial,

multi-terminal, meshed and bipole) based on their reliability and finds that bipole trans-

mission helps to reduce the impact of cable failures. Finally, the study carried out in

[111] examines the benefits of integrated projects and investigates cost-benefit sharing

mechanisms between the integrated countries. The work by [111] shows that a coordi-

nated approach is optimal and highlights that it has yet to be adopted, perhaps due to on

occasion, generating countries will be at a loss.

Once the general topology has been chosen, the focus of decision making shifts to con-

sider specific components. Project planners make many decisions, such as selecting the

number, rating, and manufacturer of each component in the system. The study by [89]

presents a methodology to design, under risk, the transmission system, including choosing

HVAC or VSC-HVDC technologies, and the number and size of cables and transformers.

The work in [89] uses a Monte Carlo simulation to evaluate each design option econom-

ically. Additionally, the work by [89] selects the optimal configuration using a criterion

that incorporates the decision maker’s risk tolerance through a risk tolerance parameter.

The study considers energy generated by the wind farm, energy losses in the system and

the capital costs of the system.

Although the main focus of the work by [114] is the array cables, the study discusses

some vital design decisions that affect the OTS; they include the allocation of wind turbines

to an offshore substation, the number and location of the offshore substations and the

interconnection of offshore substations and onshore connection points. A decision about

the design of the system must be compliant with industry standards, and accordingly,

the work by [115] conducts a review of single transformer substations. The report by

[115] concludes that offshore platforms greater than 90 MW with single transformers are

compliant with industry standards, provided that at least two transformers are installed

in the OTS.

Short-term decisions

In regards to short-term planning, decision problems arise relating to the day-to-day

operations of the OTS. The work by [116] investigates the impact of uncertainties on the

performance evaluation of short-term reliability management. Furthermore, as discussed

in Section 2.5, a decision support tool for the routing of vessels to conduct maintenance

of wind turbines is presented in [117]. Other operation and management tools have been

developed by the research and development community, for example, NOWIcob [67], Uni-

versity of Strathclyde [66], and ECUME model [68].
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The operations and maintenance of OTSs are not as prominent as offshore wind farms

in the literature. However, the work of [118] reviews the operational experience of six

OTSs and makes recommendations to improve performance. These suggestions centre

around routine inspections, the need to focus on offshore specific requirements, contingency

planning and the availability of access vessels [118].

This subsection has reviewed important policy, planning and operational decisions

that are explored in the literature. From this review, we conclude that these decisions

centre around a few topic areas: regulation, technology choice, electrical system layout

and maintenance planning. As discussed and identified in Section 2.5, the offshore wind

industry faces a significant challenge due to the many uncertainties involved. In line with

Section 2.7 and Section 2.8, decision making associated with the OTS is no exception, and

therefore techniques to quantify and handle these uncertainties are critical in these types

of analyses. In the next subsection, we review the current methods used in the literature

to handle uncertainty in energy-related problems.

2.9 Current Approaches to Handling Uncertainty in Off-

shore Transmission

As previously discussed, there are many uncertainties associated with offshore wind.

These uncertainties are usually identified in the literature but not always addressed. In

the studies that do address uncertainty, a range of techniques are applied depending on

the situation at hand. Examples of some of the methods used to handle uncertainty in

energy-related problems are discussed below.

The report by [119] notes that if future events are uncertain, requiring precise predic-

tions to make strategic business decisions can be dangerous. Moreover, [119] categorises

four levels of uncertainty: a clear enough future in which precise probability is sufficient,

given the high amount of information available; alternative futures, where a small set of

discrete scenarios can describe the future; a range of potential prospects that could be pos-

sible; and finally, true ambiguity in which it is challenging to identify possible scenarios.

These varying levels of uncertainty require different techniques.

The work by [120] identifies areas of uncertainty in electric power systems and reviews

techniques to handle these uncertainties. The study splits the sources of uncertainty into

technical parameters (load, generation and component outages) and economic parameters

(inflation, interest rate, electricity price, investment costs and operational costs). The

following techniques to handle uncertainty are discussed in [120]: probabilistic approaches

(Monte Carlo simulation, scenarios based analysis and point estimate method), possi-
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bilistic approaches and hybrid probabilistic-possibilistic approaches. The review by [120]

concludes that novel techniques that handle uncertainty and have a lower computational

time could be an area of future work.

Focusing on decision making under uncertainty in energy systems, [121] reviews state-

of-the-art techniques in this field. In a similar way to [120], the work by [121] splits

the uncertain input parameters into technical and economic parameters. The methods

to handle uncertainty reviewed by [121] include probabilistic approaches (Monte Carlo

Simulation, point estimate and scenario-based modelling), possibilistic approaches, hybrid

probabilistic-possibilistic approaches (fuzzy-scenario and fuzzy Monte Carlo), information

gap decision theory, interval-based analysis and robust optimisation. The study by [121]

indicates that a method’s suitability depends on the level of uncertainty in the decision

problem.

When modelling a system, the stochastic nature of that system should be considered;

however, as noted by [122], this cannot be achieved using deterministic methods and fixed

values that artificially constrain the system. This problem establishes the requirement for

probabilistic methods. Although some of the literature in offshore transmission analysis

(and broadly speaking energy) uses a deterministic approach, there has been a shift to

using probabilistic methods. Some examples include the work by [123] (discussed in more

detail below), and the study by [96] which applies probabilistic reliability methods to

investigate the impact of the grid connection on the overall wind farm’s reliability.

When taking a probabilistic approach, the underlying assumptions of any statistical

model should be validated, and where this is challenging the assumptions should be stated.

The study by [124] illustrates this. In particular, [124] uses historical data and intuition

about the real-world processes to validate statistical assumptions required to model the

long-term reliability of demand and supply of electrical power.

Numerous reliability studies in the literature stem from the work by [125], who makes

a significant contribution to power system reliability research. In particular, the need

to apply probabilistic methods to assess the reliability of power systems. There have

been many advancements in this field [123, 126, 127, 123], including the development of

techniques to evaluate the reliability of both simple and complex systems, the economics

of power system reliability, and hierarchical system analysis (generation, transmission and

distribution). Notably, the work of [128] utilises Markov analysis to include component

repair and spare parts into the reliability analysis. The use of Markov models in power

system reliability analysis is now, and has been for some time, very popular.

A number of energy studies take a sensitivity analysis approach (where one input

at a time is varied over several values), to consider the impact of uncertainty on the
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outputs [129, 130, 88, 93]. This approach is taken by [130], who investigates the effect of

input variables on the life-cycle costs associated with a floating offshore wind farm, and

finds that the number of wind turbines and distance from shore have the most significant

impacts. The work of [93] also conducts a sensitivity analysis, and identifies the most

critical factors that contribute to operational costs to be access and repair costs, as well

as failure rates. A further example of using sensitivity analysis, but this time focused on

the offshore transmission system (OTS), is presented in [129]. The work of [129] compares

(through a cost-benefit analysis) three transmission grid topologies in the North Sea that

connect six countries. A sensitivity analysis is carried out to assess the impact of wind

speed, load and industry development on the cost-benefit analysis.

Similar to conducting a sensitivity analysis, some work in the literature handles uncer-

tainty by considering the study in different defined scenarios. This approach is sometimes

referred to as taking a scenario-based approach to handling uncertainty. The work by [92]

uses this approach to investigate four operational strategies under different failure rate

scenarios: fix on fail, batch repair, annual charter, and vessel purchase. The study in [92]

finds that if the failure rate is low, fix on fail or batch repair are preferred, whereas if the

failure rate is high, the vessel purchase strategy is optimal.

A strategy used in engineering for risk and reliability analysis is failure mode effect

analysis (FMEA). The work by [131] compares FMEA to a fuzzy-FMEA for the risk

assessment of offshore wind turbines. The study by [131] motivates the need for fuzzy-

FMEA by pointing out that the failure data for offshore wind turbines can be missing or

unreliable, and therefore, is often based on expert judgement.

Monte Carlo simulations are used to tackle a range of problems across many fields, in

particular when predictions are desired. Monte Carlo simulations use repeated sampling to

obtain numerical results. Markov chains (or processes for continuous-time modelling) are

stochastic models used to describe a sequence of events that are Markovian (the transition

probability to the next event depends only on the current state of the process). Monte

Carlo Markov chain is a popular sampling method that combines Monte Carlo properties

and Markov chain properties.

The work of [132] uses a Monte Carlo simulation approach to assess the profitability

of wind energy investment in four regions of China, [122] uses Monte Carlo simulations to

evaluate the reliability of an offshore wind farm, and the work of [90] uses Monte Carlo

simulations for levelised cost of energy (LCoE) estimation. Markov chains are implemented

by [133], who aims to automate the maintenance planning of offshore wind turbines.

Specifically, [133] uses a semi-Markov decision process to allow a failure rate that varies

with time.
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Additionally, a Monte Carlo based reliability analysis is presented in [20]. Specifically,

the work by [20] explores three HVDC topology options to connect 2.4 GW from two wind

farms at Dogger Bank (situated in the North Sea), to the onshore network. Repairs can

only occur when site conditions allow, which depends on wind speed (which affects energy

not supplied) and wave height (which affects repair times). Data for mean time to fail,

fixed delay and required time to repair for HVDC network components are presented in

[20] as single values. This data is used in the Monte Carlo simulation. Assigning single

values to inputs may be challenging given limited data.

Bayesian methods are also implemented in the literature to handle uncertainty in off-

shore wind applications. Bayesian methods are used by [134] to plan the operation and

maintenance of offshore wind turbines, by [135] to consider the uncertainty of extreme

natural hazards on offshore wind structures, and by [136] when conducting a risk assess-

ment of decommissioning options. The work by [66] also uses Bayesian techniques, namely

Bayesian belief networks, to aid with decision making about operational strategies for off-

shore wind turbines. One advantage of this approach that is discussed by [66] is the ability

to take dynamic decisions by updating beliefs throughout the lifetime of the project as

more information is gained.

Additionally, information gap decision theory is used to handle uncertainty in the lit-

erature. The study by [137] reviews the research that uses this approach for uncertainty

modelling in energy and power systems. Information gap decision theory uses functions

(termed robustness and opportunity functions) to assess the negative and positive aspects

of the uncertainty involved [137]. The final approach to uncertainty handling that we

discuss is called interval analysis. In particular, this is utilised in the literature for relia-

bility and availability applications. The work of [138, 139] conducts reliability analysis by

using intervals to represent uncertain inputs. Also, the work of [140] demonstrates the use

of Markov chains and interval analysis techniques to study the availability of multi-state

systems.

In this subsection, we explored different techniques implemented in the literature to

handle uncertainties in energy-related problems. We find that various methods are suitable

for a given level of uncertainty in a specific problem. Therefore, it is vital to implement an

appropriate approach for each given problem. Furthermore, from the techniques reviewed,

there is a need for methods that can handle severe uncertainty in energy-related problems.
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2.10 Conclusions

In this chapter, we defined what is meant by an offshore transmission system (OTS)

and reviewed the components that make up this system. We detail the state-of-the-art

technologies for both HVAC and HVDC connections. We move on to review the ownership

structures of the OTS implemented by the leading nations in offshore wind. We observe

that the different ownership structures fall into three broad categories: third-party entity

ownership, offshore wind farm ownership and onshore transmission system operator (TSO)

ownership.

As the OTS is part of the offshore wind power plant (OWPP), we investigated the

challenges faced by the offshore wind industry. From reviewing the literature, we identified

that cost reduction is one of the most significant challenges. We next reviewed the obstacles

specific to offshore power transmission. We established that as offshore wind projects grow

in capacity and move further offshore, the role of the OTS becomes even more crucial.

This advancement brings additional challenges, and we discovered that the main difficulties

centre around reliability, cost and uncertainty.

Furthermore, we see that a common theme amongst the literature reviewed is that

there is a considerable variation in the available data. This challenge leads to uncer-

tainty when economically evaluating projects, and this uncertainty can have substantial

impacts on operational projects. Despite the challenges, many policy, planning and opera-

tional decisions will be made to support the development and installation of the electrical

transmission infrastructure required to connect future offshore wind farms. Therefore, we

reviewed the decisions taken surrounding these assets to gain an understanding of the rele-

vant decision problems. Finally, given the identified challenge of uncertainty, we reviewed

current methods to handle uncertainty that have been applied to energy problems.

We concluded from the literature reviewed that there exists the need for research into

decision making under severe uncertainty for offshore transmission applications. This

research attention is on account of the industry challenge of uncertainty, the growing im-

portance of the OTS, the need to make decisions to plan future OTSs, and the limited

amount of techniques applied to energy-related problems that adequately handle severe

uncertainty. Therefore, there is a need to conduct research that investigates suitable meth-

ods that can be applied to decision problems under severe uncertainty, explore applying

these techniques to decisions made in offshore power transmission, and assess the benefits

and drawbacks of using these techniques.
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Chapter 3

Current Status: Data Collection

3.1 Introduction

In this chapter, we collect and present data associated with offshore transmission sys-

tems (OTSs) from a variety of sources, including academic papers and industrial reports.

In Chapter 2, we identified that there is a limited amount of relevant data about offshore

wind transmission systems. Although we may not have enough information to perform

economic evaluations of future projects adequately, there does exist some data. This data

may be for older projects with previous technologies. Nonetheless, this data can be useful

to identify industry trends and, as a starting point, is better than no data. Due to access

to data, the majority of the data presented in this chapter is for UK projects. The aims

of this chapter are:

1. To collate operational and costing data associated with OTSs.

2. From this data, gain a greater understanding of costs, operational project and com-

ponent trends, operational behaviour, component availability and future projects.

This chapter begins by presenting general characteristics of operational UK projects:

project start date, capacity, asset summary, cable details, availability values, project costs

and revenue streams. The chapter then goes on to present individual component costs in

more detail. This costing data is followed by component failure and repair data. Many

lessons can be learnt from power transmission in offshore interconnectors, and therefore we

include outage data from an interconnector. Analysis in offshore wind transmission may

require data about the amount of power transmitted through the system, which depends

on wind speed. Consequently, we discuss a tool that allows wind speed to be used in this

type of assessment. Finally, the chapter gathers information about future technologies for

offshore wind transmission systems.
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Figure 3.1: Characteristics (capacity, export cable length, export cable voltage and number

of export cables) over time for projects in OFTO tender rounds (TR) 1 to 6.

3.2 UK Offshore Wind Transmission Project Details

3.2.1 Project Characteristics

Although offshore wind is still in its infancy, there are some trends we can observe from

current and planned projects. Characteristics of operational and planned UK offshore

wind projects, including project capacity, export cable length, export cable voltage and

the number of export cables have been collected in Table 3.1 and graphically presented in

Fig. 3.1. The information has been gathered from an individual UK project’s preliminary

information memorandum [30, 31]. These documents are discussed in more detail below.

Fig. 3.1 shows that over time projects have increased in capacity, and more recent projects

have been installed further offshore. Furthermore, more recent projects have installed

cables with a higher nominal voltage of 220 kV. The final plot in Fig. 3.1 suggests that

there is no overall trend in the number of cables installed at each project against time.

3.2.2 Component Breakdown

For each offshore transmission project, the Office of Gas and Electricity Markets

(Ofgem) prepares a Preliminary Information Memorandum (PIM) document [30]. Ofgem

are the regulator for gas and electricity markets in Great Britain. These documents, [30],

33



Name TR Year Capacity

(MW)

Length

(km)

Voltage

(kV)

Export

Cable

Barrow 1 2008 90 27 132 1

Greater Gabbard 1 2012 504 61 132 3

Gunfleet Sands 1 1 2010 108 9 132 1

Gunfleet Sands 2 1 2010 64 9 132 1

Ormonde 1 2012 150 43 132 1

Robin Rigg 1 2010 174 12.5 132 2

Thanet 1 2010 300 26 132 2

Sheringham Shoal 1 2012 317 23 145 2

Walney 1 1 2011 184 15 132 1

Walney 2 1 2012 184 15 132 1

Lincs 2 2013 270 48 132 2

London Array 2 2013 630 54 150 4

Gywnt Y Mor 2 2015 576 40 132 2

West of Duddon Sands 2 2014 389 41 170 2

Westermost Rough 3 2015 210 12 150 2

Humber Gateway 3 2015 219 9 132 2

Burbo Bank Extension 4 2017 348 24 220 1

Dudgeon 5 2017 402 38 132 2

Galloper 5 2018 353 45 132 2

RaceBank 5 2018 573 71 220 2

Rampion 5 2018 400 17 150 2

Walney Extension 5 2018 659 80 220 2

Beatrice 6 2019 588 70 220 2

Hornsea 1 6 2020 1218 120 220 3

East Anglia 1 6 2020 714 73 220 2

Table 3.1: UK project details: project name, TR (tender round), year (project operational

date), project capacity, length (of the export cable), nominal voltage (of the export cable)

and the number of export cables in the project. Data from [30, 31].
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Name Capacity Number of

(MW) Cables Transformers

Offshore Onshore Offshore Onshore

Westermostrough 210 1 1 2 2

Humber Gateway 219 2 2 2 2

Burbo Bank 258 1 1 2 2

Galloper 336 2 2 2 2

West Of Duddon Sands 382 2 2 2 2

Dudgeon 400 2 2 2 2

Rampion 400 2 2 2 2

Race Bank 574 2 2 4 2

London Array 630 4 4 4 4

Walney Extension 659 2 2 4 2

Greater Gabbard 504 3 3 5 3

Gwynt Y Mor 576 4 4 4 2

Lincs 270 2 2 2 2

Sheringham Shoal 317 2 2 4 2

Thanet 300 2 2 2 2

Table 3.2: The number of cables (onshore and offshore) and transformers (onshore and

offshore) in UK projects. Data from [30].

include details of each project, such as a simplified single line diagram, breakdown of

transmission assets and characteristics of the components. Using this information, a sum-

mary of the components for the larger UK OTSs is presented in the following tables and

figures. Table 3.2 shows the number of cables (onshore and offshore) and transformers

(onshore and offshore). Table 3.3 goes on to detail the ratings of the transformers, and

Tables 3.4 and 3.5 present details of the offshore substation platforms installed at opera-

tional projects. Finally, Fig. 3.2 shows project capacity, export cable length, export cable

voltage and the number of export cables.

3.2.3 Offshore Wind Transmission Cable

This section analyses export cable data and makes summary conclusions about current

export cable trends. In particular, cable length, number of export cables, cable voltage,

and failure rates are explored. Information from National Grid performance reports [141],

including outage description and duration, for the export cable were analysed to provide
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Project Project Capacity (MW) Number of Platforms

Westermost Rough 210 1

Humber Gateway 219 1

Burbo Bank extension 259 1

Lincs 270 1

Thanet 300 1

Sheringham Shoal 317 1

Galloper 336 1

West of Duddon Sands 389 1

Rampion 400 1

Dudgeon 402 1

Greater Gabbard 504 2

Race Bank 573 2

Gwynt Y Mor 576 2

Walney Extension 659 2

East Anglia ONE 714 1

Hornsea 1 1218 3

London Array 630 2

Table 3.4: The capacity of each project and the number of offshore platforms installed at

each project. Data from [30].

Project Capacity Number of Dimensions

(MW) Platforms Height Width Length

(m) (m) (m)

Westermost Rough 210 1 15 30 15

Burbo Bank extension 259 1 20 30 40

Race Bank 573 2 20 30 38

Walney Extension 659 2 20 30 40

Table 3.5: Further details about some offshore platforms such as project capacity, number

of platforms and dimensions. This information is shown for selected projects depending

on the availability of this data in [30].
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Figure 3.2: Characteristics (capacity, export cable length, export cable voltage and number

of export cables) over time for projects OFTO tender rounds (TR) 1 to 6. Data from [30].
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Figure 3.3: Number of cables installed each year split by voltage. Data from [141] and

[30].

the summary information below. National Grid in the UK transports energy from pro-

ducers to local network operators. In the following analysis, we use the National Grid

performance reports that give data from 2011 to 2018. This data provides information on

twenty-one OTSs that have been operational between one and seven years.

In this section, we aim to find overall trends for export cables and ultimately ways

to quantify the failure rate of the export cable. In Chapter 2, we identified that current

industry practice uses the failure rate given in [142] of 0.000705 fails/year/km. This value

has been acknowledged in the literature, such as [82], to be low compared to operational

experience.

We begin by presenting a summary of operational subsea export cables. Figs. 3.3

and 3.4 show that the majority of installed cables are 132 kV. The amount of 220 kV

cables installed in 2018 suggests a potential shift towards higher voltage rating cables. This

advancement is in line with projects that are currently planned and under construction.

From here, the analysis only considers twenty-four 132 kV export cables that are

operational in UK waters. This subset has been selected for the following reasons:

1. Voltage ratings less than this are not planned to be installed in the future as project

capacity grows.

2. Export cables with a voltage level of 220 kV have been omitted as they are new
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Figure 3.4: Number of projects installed at each export cable voltage rating. Data from

[141] and [30].

projects and consequently, the National Grid transmission performance reports [141]

do not (at the time of writing) have sufficient operational data for them.

3. Export cables at Dudgeon and Galloper have also been omitted as they too are new

projects (at the time of writing). Therefore, National Grid performance reports [141]

do not contain sufficient operational data for these projects.

For the twenty-four 132 kV export cables considered, we explore the number of years

each export cable have been operational for (see Fig. 3.5), the number of export cables

installed at each project (see Fig. 3.6) and the length of cable installed (see Fig. 3.7).

Fig. 3.5 shows that so far, between two and four 132 kV export cables are installed each

year. As shown by Fig. 3.6, the majority of operational wind farms have one or two export

cables connected radially. For the data considered, export cables range between two and

seven years old. Fig. 3.7 suggests that the majority of installed export cables, considered

in this analysis, are between forty and fifty kilometres long.

We now investigate available data [141] for the experiences of cable failures. We look

at the number of cable failures in each calendar year (see Fig. 3.8) and the number of

cable failures in each year of operation for each cable (see Fig. 3.9). There is very little to

conclude from Fig. 3.8, other than that 2015 was a particularly bad year. Fig. 3.9 shows
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Figure 3.6: Histogram of the number of subsea export cables at each wind farm. Data

from [141] and [30].

41



Length (km)

F
re

qu
en

cy

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Figure 3.7: Histogram of subsea export cable length. Data from [141] and [30].

the number of failures in each year of operation (year one represents how many cables

failed in their first year of operation) and suggests that failures in the first and second

year of service are more common than in later years. One leading cause of cable failures is

thought to be poor cable installation [83]. Fig. 3.9 shows that the latter years only have

one or two cable failures a year. This low occurrence could be influenced by there being

fewer operational cables that are six years old in the data set.

Next, we look at the operational data surrounding cable failure rates. The failure rate

of offshore subsea cables is often quoted as the number of failures per year per kilometre. A

failure rate with these units implies that longer export cables experience a higher number

of failures per year. As used in the literature, including by [83], the observed failure rate

of an operational cable could be evaluated by Eq. (3.1).

failure rate = number of failures observed / operational years / export cable length

(3.1)

Using data from [141], Fig. 3.10 shows the number of failures per year against cable

length for the twenty-four export cables analysed. Similarly, Fig. 3.11 shows the number

of failures per year per kilometre against cable length for the twenty-four export cables.

Fig. 3.12 shows a histogram of the observed cable failure rates evaluated using Eq. (3.1).
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Figure 3.9: Number of failures in each year of operation for each cable. Using data from

[141].
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Figure 3.10: Number of failures per year against the length of the cable for the twenty-four

export cables. Using data from [141].

From Fig. 3.12 we see that a lot of the mass lies between 0 and 0.01 fails per year. This

low failure rate is influenced by ten of the twenty-four export cables that are yet to fail.

As it may be useful to look at how the failure rate changes over time, Fig. 3.13 shows the

failure rate for each project in each of its operational years.

3.2.4 Offshore Wind Transmission System Availability

Next, we study the availability of operational offshore transmission projects. National

Grid reports the availability of UK offshore transmission systems (OTSs) in performance

reports [141]. In this section, this data is visualised. Fig. 3.14 shows the monthly availabil-

ity for seventeen UK OTSs between 2011 and 2019. Fig. 3.15 shows the yearly availability

of these same wind farms, and Fig. 3.16 shows the annual availability indexed by the year

of operation.

The data shown in Appendix A.1 provides more detailed information on the cable

outages experienced by UK offshore wind cable systems. This information includes the

date the fault occurred, the project involved, a brief description of the fault, and the

downtime caused by the fault. This data is from [141].
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Figure 3.11: Number of failures per year per kilometre against the length of the cable for

the twenty-four export cables. Using data from [141].
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Figure 3.12: Histogram of observed failure rates for each export cable. Using data from

[141].
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between 2011 and 2019.
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Figure 3.15: Yearly availability for seventeen UK offshore transmission systems (OTSs)

between 2011 and 2019.
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Figure 3.16: Yearly availability for seventeen UK offshore transmission systems (OTSs)

between 2011 and 2019 indexed by their year of operation.
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Figure 3.17: Breakdown of the contributions to the final transfer value for the UK projects

in Table 3.7. Data from [32].

3.2.5 Costings

The capital cost of an OTS is essential when economically evaluating projects. As

discussed in Section 2.4, in the UK, the OFTO pays the developer for the transfer of the

offshore transmission assets. The amount the OFTO pays for the assets is called the final

transfer value (FTV). During the competitive tender process, a cost assessment is carried

out to determine the transfer value of the assets. The developer provides Ofgem with

figures and estimates of their costs and Ofgem regulates these [51].

Using data from Ofgem cost assessments [32], Table 3.6 shows the initial transfer value

(ITV), final transfer value (FTV) and the difference between these two values for some

operational UK projects. The initial transfer value is published in the early stages of

project development, and the final transfer value is towards the latter stages. Table 3.7

shows a breakdown of FTV into the sum of CAPEX, development costs, interest during

construction (IDC) and transaction costs. Using data from [143, 144, 145], Table 3.7

also shows the base revenue for most of the projects. The base revenue is determined

in the OFTO licence [49]. Finally, Fig. 3.17 shows the breakdown of the FTV for all the

projects in Table 3.7 combined. From Fig. 3.17 we can deduce that CAPEX is the greatest

contribution to the FTV and on average, for the projects considered, it contributes 77.6%.

3.2.6 Offshore Transmission Owner (OFTO) Revenue

For older projects, Ofgem produced OFTO revenue reports [143, 144, 145]. These

reports detailed a project’s base revenue and each year: the tender revenue stream, the
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Wind Farm Name ITV FTV FTV - ITV

(£million) Date (£million) Date (£million)

Robin Rigg 58.7 07/2009 65.5 11/2010 6.8

Gunfleet Sands 46.4 07/2009 49.5 11/2010 3.1

Barrow 36.5 07/2009 33.6 07/2011 -2.9

Walney 1 99.4 07/2009 105.4 07/2011 6

Ormonde 87 07/2009 103.9 03/2012 16.9

Walney 2 104.4 07/2009 109.8 07/2012 5.4

Sheringham Shoal 186.7 07/2009 193.1 02/2013 6.4

London Array 475.7 11/2010 458.9 09/2013 -16.8

Greater Gabbard 343.7 07/2009 317.1 04/2013 -26.6

Lincs 310.5 11/2010 307.7 12/2013 -2.8

Thanet 189 07/2009 163.5 10/2013 -25.5

Gwynt Y Mor 305.7 11/2010 351.9 11/2014 46.2

West of Duddon Sands 311 12/2012 268.9 03/2015 -42.1

Table 3.6: Initial transfer value (ITV), final transfer value (FTV) and the difference be-

tween the two value for UK projects. The table also shows the dates (in month/year

format) for both initial transfer value and final transfer value. Data from [32].
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Wind Farm CAPEX Development IDC Transaction FTV B

(£million) (£million)

Robin Rigg 49.5 4.4 10.9 0.7 65.5 6.499

Gunfleet Sands 37.9 6.1 4.2 1.3 49.5 5.983

Barrow 25.7 3.5 3 1.4 33.6 4.819

Walney 1 87.7 7.9 8.1 1.7 105.4 10.966

Ormonde 80.4 13.9 8.6 1 103.9 10.603

Walney 2 87.7 8.3 6.2 1.6 109.8 11.815

Sheringham Shoal 159.3 27.3 4.5 2 193.1 17.948

London Array 343.9 48.8 66.5 2.4 458.9 35.046

Greater Gabbard 241.4 34.3 39.3 2.1 317.1 24.761

Lincs 234.4 35.6 35 2.7 307.7 25.235

Thanet 120.3 26.7 12.7 3.8 163.5 16.548

Gwynt y Mor 252.7 51.5 45.6 2.1 351.9 24.194

West of Duddon Sands 215.1 31 20.7 2.1 268.9 19.778

Humber Gateway 128 14.3 14.8 3.2 160.3

Table 3.7: Breakdown of final transfer value (FTV) into capital expenditure (CAPEX),

development costs, interest during construction (IDC) for UK projects [32, 145]. The table

also shows the base revenue (B) for these UK projects. Empty cells in the table are due

to missing data in [32, 145].
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Capacity (MW) Cost (£million) Reference

200 36 [37]

400 50 [37]

400 48 [37]

600 74 [37]

200 36 [36]

400 44 [36]

400 45 [36]

700 81 [36]

700 70 [36]

1000 134 [36]

500 44 [147]

500 46 [147]

1000 127 [148]

1400 156.5 [148]

Table 3.8: Offshore platform capital costs presented in the literature for different platform

capabilities.

market rate revenue adjustment, the performance availability and the annual availability.

3.3 Component Costs

In this section, we detail the capital costs associated with the main assets that consti-

tute an OTS. We review several sources for the costs related to the offshore platform. For

the rest of the components, we examine cost information presented in [33, 36, 37, 146].

This data will be used throughout the thesis to evaluate the capital expenditure (CAPEX)

of offshore transmission systems (OTSs).

We collected data for the costs of an offshore platform from National Grid [36, 37],

European Network of Transmission System Operators for Electricity (ENTSO-E) [147],

and NorthSeaGrid [148]. This information is shown in Table 3.8.

Next, we seek to answer two questions: How can we use the information in Table 3.8 to

inform the costs of future offshore platforms? How can we assign values to larger, perhaps

than we have seen in previous projects, offshore platforms? These types of predictions may

be required when conducting economic evaluations of future projects. Fig. 3.18 shows the

costs of offshore platforms in Table 3.8 against the capacity that the offshore platform is

designed to support. Fig. 3.18 indicates that the data could be linear and therefore, we
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Figure 3.18: Cost of offshore platforms against platform capacity. Data from the literature

given in Table 3.8.

fitted a linear model of the form given by Eq. (3.2).

offshore platform cost = β1 × capacity + β2 + ε (3.2)

Here, β1 = 0.1, β2 = 2, and ε denotes the residual error, which is normally distributed

with mean zero and standard deviation 10. The fitted linear model has an R2 value of

0.9376. Fig. 3.19 and Fig. 3.20 show that the residuals display little pattern and therefore

homoscedasticity of the residuals can be assumed. Normality of the residuals can be

checked by the quantile-quantile plot shown in Fig. 3.21. Finally, Fig. 3.22 shows Fig. 3.18

with the linear model line added.

For the rest of the components, National Grid presents a comprehensive collection of

data related to the costs of components in the OTS. This information was published in

the appendix of the National Grid Electricity Ten Year Statement (ETYS) in years 2013,

2014 and 2015 [33, 36, 37]. Each of [33, 36, 37] contain more data than discussed below;

however, we only review the data for components we consider in the analysis of this thesis.

From the 2013 report [33], we find data for AC platforms (see Table E.23 in [33]) and the

installation costs of subsea cables (see Table E.21 in [33]).

From the 2014 edition [36], we find costs of onshore transformers (see Table E.23.3 in

[36]), onshore HVAC gas insulated switchgear (GIS) bay (see Table E.23.7 in [36]), onshore

shunt reactors (see Table E.23.8 in [36]), onshore shunt capacitor banks (see Table E.23.9

in [36]), onshore static var compensators (see Table E.23.10 in [36]), offshore transformers
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Figure 3.19: Residuals plotted against the

capacity of offshore platforms.
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Figure 3.20: Residuals plotted against the

fitted cost.
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Figure 3.21: Quantile-quantile plot for the

residuals.
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Figure 3.22: Fig. 3.18 with the fitted linear

model displayed.
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(see Table E.23.14 in [36]), offshore HVAC GISs (see Table E.23.15 in [36]), onshore HVAC

cables (see Table E.23.23 in [36]) and installation costs for onshore HVAC cables (see Table

E.23.27 in [36]). Finally, [36, 37] gives costs for HVAC offshore cables.

Additionally, the report by [146] carries out a cost assessment, to support Ofgem, of

the OTS installed to connect the wind farm at West of Duddon Sands. The work by [146]

also verifies whether the system is cost-efficient. The report by [146] includes a summary

of the key costs, offshore substation costs, land cable supply costs, onshore substation civil

works costs and onshore substation electrical equipment costs.

3.4 Component Failure and Repair Behaviour

In this subsection, we present values from the literature related to the failure and

repair of components in the OTS. The main components considered are offshore trans-

former, onshore transformer, offshore switchgear, onshore switchgear, offshore converter

and onshore converter. The work by [99] presents mean time to repair (MTTR) and mean

time to fail (MTTF) values for each of these components. Additionally, the work by [20]

presents MTTF values for onshore transformers and offshore transformers to be fifty years

and forty years, respectively as well as MTTR values for onshore transformers and offshore

transformers to be 2232 hours and 3000 hours, respectively.

The report by [142] presents data and analysis collected from a survey of installed

underground and submarine cables. In particular, [142] explores the failure rate of land

cables, repair rate of land cables and the failure rate of offshore cables. The report by

[142] goes on to discuss that the average repair time for reported incidents of submarine

cables is sixty days. The work by [142] also details the factors that affect the repair

time of submarine cables; they include the availability of spare cable and accessories,

the availability of an appropriate vessel and weather conditions. These factors lead to a

considerable variation in repair times between incidents.

Several pieces of literature give values for the failure and repair rate of offshore cables.

The failure rate of high voltage direct current (HVDC) offshore cables is quoted to be

0.0007 fails/year/km in [149], 0.00001107 fails/year/km in [95], 0.0000213 fails/year/km

in [95], and 0.00036889 fails/year/km in [95]. The failure rate of high voltage alternating

current (HVAC) offshore cables is quoted to be 0.000705 fails/year/km in [142], 0.00024

fails/year/km in [150], 0.0016 fails/year/km in [82], and 0.003 fails/year/km in [83]. The

repair time for offshore cables is quoted to be 60 days in [142], 60 days in [95], and between

30 and 150 days based on operational experience in [141].

The report by [82] gathers data and experience of UK offshore wind farm transmission

54



cables. The report also investigates cable reliability, the cause of cables failures and the

cost of cable failures. The report by [82] presents some key summary statistics:

• The average cable repair cost £12.5 million.

• Up to the end of 2016, the UK had installed over 4, 400 km.years of export cables

to support offshore wind. Here, 1 km.year represents a one kilometre cable that has

been operational for one year.

• Up to the end of 2016, UK offshore export cables had experienced seven major

failures.

• Up to the end of 2016, operational data suggests a mean time between failures of

630 km.years.

• The estimated total cost of export cable failures is £160 million. This expense is

equivalent to £170, 000 for every kilometre of high voltage export cable in service.

3.5 Operational Expenditure (OPEX)

Operational expenditure is the cost associated with the repair and maintenance of the

assets. Repair and maintenance are carried out to ensure that the assets are in good

working conditions. The operational expenditure of the wind farm is estimated in the

literature to be e76, 000 per MW per year in [151], £79, 000 per MW per year in [152],

between e80, 000 and e100, 000 per MW per year in [153], and £72, 000 per MW per year

[154].

One significant cost contribution to operational expenditure is the cost of repair vessels.

Vessels are required to repair and maintain offshore assets. The following values are costs

for vessels given in the literature. The day rate of a heavy lift vessel (HLV) is quoted

between £50, 000 and £125, 000 in [93]. The study by [92] gives the day rate of a jack-up

vessel for major replacements as £150, 000. [155] presents daily hire rates (in millions

of pounds) for jack-up vessels to be 0.102, 0.1473, and 0.1926 for a crane capacity of

800 tonnes, 1000 tonnes and 1200 tonnes, respectively. Additionally, twenty-year charter

rates, one-year charter rates and spot market rates are given by [71] for vessels with varying

CAPEX.

3.6 Interconnectors

Offshore wind export cables are not the only offshore power transmission systems,

and there are some similarities between the interconnectors and offshore wind export

cables. Therefore, in this section, we review data for interconnectors. European Network
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Figure 3.23: BritNed interconnector availability data with monthly moving average added,

using data from [156, 159].

of Transmission System Operators for Electricity (ENTSO-E) Transparency Platform [156]

contains data relating to electricity generation, transportation and consumption in Europe.

The data on this platform that is most relevant to the work of this thesis is around offshore

grid outages. In this section, we analyse data related to outages of the interconnector called

BritNed. BritNed is an interconnector between England and the Netherlands, specifically

a 250 km, 1000 MW, 450 kV, HVDC connection [157]. We note that data related to the

BritNed cable should be treated with care as the technology may differ from offshore wind

projects. In particular BritNed is a line-commutated converter HVDC (rather than VSC

HVDC) and uses mass impregnated cables (rather than XLPE) [158].

BritNed has been operational since March 2011. [156] reports start and end timestamps

of the outages, and from this information, hourly time series data can be generated. Outage

data for 2011 is missing from ENTSO-E Transparency Platform. 2011 was the first year

of operation, and during this year BritNed experienced many outages [159]. Therefore,

data from National Grid performance reports [159] has been used to include data for 2011.

Fig. 3.23 shows the availability of the interconnector. Using data from both [156] and [159]

we obtained time to fail and time to repair data for BritNed interconnector. Histograms

of this information are shown in Fig. 3.24 and Fig. 3.25.
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Figure 3.24: Time to fail data for BritNed interconnector using data from [156, 159]. The

plot on the left-hand side shows all the time to fail data, and the plot on the right-hand

side has removed the highest values to enable a closer look at the peak.
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Figure 3.25: Time to repair data for BritNed interconnector using data from [156, 159].

The plot on the left hand-side shows all the time to fail data, and the plot on the right-hand

side has removed the highest values to enable a closer look at the peak.
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Figure 3.26: Average yearly wind speed data using data from [160, 161] for the location

of Race Bank offshore wind farm.

3.7 Wind Speed

Historical time-series wind speed data can be useful for energy systems modelling.

The tool called Renewables.ninja [160, 161] provides hourly power outputs (for wind and

solar technologies) for any location. The tool also includes hourly wind speed data for

any location. It should be noted that Renewables.ninja uses hourly wind speed data from

the National Aeronautics and Space Administration (NASA) data set called Modern-Era

Retrospective analysis for Research and Applications (MERRA) [162, 163]. It is also

important to note that the output of the Renewables.ninja tool is deterministic.

This tool allows the user to select a location, wind farm size and turbine model. For

the purpose of presenting an example data set, we chose approximately the site for Race

Bank wind farm (latitude of 53.276 and longitude of 0.84), a capacity of 800 MW and the

Vestas 164/7000 turbine model. We note that this is an onshore turbine, however as we

are interested in the wind speed data (rather than the power output) the turbine model is

not relevant. Using the renewables ninja tool [160, 161], we obtain hourly wind speed data

for the years 2000 to 2018. Fig. 3.26 shows the mean wind speed each year, and Fig. 3.27

shows the monthly mean wind speed each year. These two figures suggest that 2008 had

particularly high wind speeds and 2010 low wind speeds.

Several studies report the capacity factors for offshore wind farms. Capacity factor

can be defined as the ratio of actual power output over potential power output. Values
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Figure 3.27: Average monthly wind speed data (for years 2000 to 2018) using data from

[160, 161] for the location of Race Bank offshore wind farm.

(or ranges of values) for capacity factor reported in the literature include 0.24 to 0.68 in

[164], 0.386 in [165], 0.473 in [165], 0.32 to 0.63 in [166], and 0.49 in [166].

3.8 Future Technologies

Most of the data and information so far has been for previous offshore wind projects. As

the offshore transmission space is advancing and evolving, it is important to look ahead

to new technologies. This enables the analysis of future projects to be more realistic,

given the current market conditions. Therefore, in this subsection, we look at recent and

future technologies. In Section 3.8.1 characteristics of two recent projects are detailed,

and Section 3.8.2 goes on to discuss advancements in HVDC platforms.

3.8.1 Recent Projects

Table 3.9 shows details for two of the more recent offshore transmission projects

[167, 11]. These projects are distinctively different from projects previously installed;

in particular, they are larger in capacity and located further offshore.

3.8.2 HVDC Converter Platform Optimisation

The offshore wind accelerator, run by the Carbon Trust, aims to reduce the cost

of offshore wind through innovation projects [22]. One project has looked at substation
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Name Capacity

(MW)

Distance

from shore

(km)

Number of

platforms

Number of

cables

Cable

Length

(km)

East Anglia ONE 714 50 1 2 85

Hornsea One 1218 120 3 3 120

Table 3.9: Offshore transmission system (OTS) details for projects currently in the devel-

opment stage. Data from [167, 11].

optimisation to reduce the cost of energy transmission. This project explored how the cost

of an offshore substation can be reduced by analysing a 1 GW HVDC system. Specifically,

the feasibility of combining the two HVAC substations and the HVDC converter platform

onto a single jacket substructure. This optimised design has several advantages, including

a 20% lower LCoE [34]. The key finding of this study is that a HVAC and HVDC combined

topside could be delivered weighing less than 10, 000 tonnes using currently proven HVDC

technology [34]. Therefore, there is a potential for cost reduction.

DolWin 5, located in the North Sea, is a HVDC offshore grid connection, 130 km

long, with a transmission capacity of 900 MW. This project will implement the innovative

concept described above, and is expected to be operational in 2024 [168].

3.9 Conclusions

In this chapter, we have collected and curated data that is relevant to the offshore

transmission system (OTS). This study contributes to our understanding of offshore trans-

mission and provides a more in-depth insight into the operational costs and experiences of

these projects. As offshore power transmission is an area where data is scarce, presenting

a collection of the data that is available can be valuable to the research community.

This chapter provides details of operational projects in the UK, including a breakdown

of the assets involved, availability levels, projects costs and revenue streams. The chap-

ter also collected component costing data, failure and repair data, and operational costs

from the literature. We presented some data for offshore interconnectors that can further

advance our knowledge of offshore power transmission. Furthermore, we discussed a tool

to obtain historical wind speed data that can be used for energy modelling. Finally, we

detailed future technologies in the offshore transmission space, as it is vital to understand

the direction the industry is expected to move when planning future projects.

The insights gained from this chapter may be of assistance to research that requires

economic evaluations of OTSs. In particular, we use the findings of this chapter when
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conducting economic assessments in this thesis.
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Chapter 4

An Economic Model for Offshore

Transmission Planning Under

Severe Uncertainty

The work of this chapter closely follows [1].

4.1 Introduction

In the literature review presented in Chapter 2, we recognised that there had been

significant progress in reducing the cost of offshore wind energy, with a strong focus on

the overall capital and operational costs of the wind farm. However, we also identified that

the offshore transmission system (OTS), which has a significant contribution to the total

cost, has not attracted the same attention. As offshore wind projects increase in capacity

and move further offshore, the costs associated with the OTS will increase. Furthermore, as

well as the investments, the inherent uncertainties related to offshore wind are substantial.

Therefore, as the industry looks to become even more competitive in the future, investors

are interested in identifying and assessing the risks given the inherent uncertainties.

Accordingly, investors conduct economic evaluations over a project’s lifetime as part

of the investment decision making process. In this chapter, we present a model to evaluate

projects economically from an offshore transmission owner’s (OFTO) perspective. There is

merit in taking an offshore transmission owner’s (OFTO) perspective as they play a vital

role in the offshore wind industry. This different perspective requires current, publicly

available, economic models to be reshaped to include elements such as revenue streams

and loan repayments.

Additionally, to allow a more realistic economic evaluation, data, regulatory informa-
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tion, and expert knowledge are collected, curated and, where necessary, combined with

statistical techniques. In the economic assessment presented in this chapter, we con-

sider the repayment structure of the FTV over time rather than CAPEX as an initial

investment. Furthermore, the analysis distinguishes random variables from those that are

not and applies statistical techniques accordingly. The inclusion of these aspects to the

economic model allows a more realistic view as to how investors view future projects.

The developed economic framework will be used throughout this thesis to assess offshore

transmission projects economically.

Unfortunately, in Chapter 2, we identified that economic evaluations of offshore wind

projects are subject to many inherent uncertainties. In particular, Chapter 2 highlights

that there exists uncertainty around the failure rates of export cables (a vital asset in

the OTS). Significant uncertainties do not necessarily imply a high economic impact

on project performance. Therefore, as well as developing an economic framework for

OTSs, this chapter identifies uncertain model variables and assesses their impact on project

performance. This assessment is valuable for investors who seek high profit and low-risk

investments.

In this chapter, we use a generic 1.2 GW project to gain a deeper understanding of

the severe uncertainties involved in offshore transmission planning and their impact on

a project’s expected profit. Understanding their impact, through a sensitivity analysis

where individually one factor is varied within an interval, supports decision making with

limited information.

The aims of this chapter are:

1. To formulate a model to conduct economic analysis from an offshore transmission

owner’s (OFTO) perspective. This framework can be used later in this thesis, in

particular, in the application chapters.

2. To identify areas of the economic model that contain significant uncertainty and

assess their impact on the expected profit of a project.

3. To identify model variables that significantly impact economic performance, and

therefore motivate the need to apply advanced statistical techniques here.

This chapter is structured as follows. Section 4.2 presents a range of cost models

that are used to economically evaluate projects. Section 4.3 defines how the NPV of the

OTS is going to be calculated from an offshore transmission owner’s (OFTO) perspective.

Section 4.4 formulates the revenue streams and discusses the yearly availability of the

system. Section 4.5 formulates the loan repayments and explores CAPEX by proposing

and validating a bottom-up evaluation approach. Section 4.6 presents methodology for
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operational expenditure (OPEX) evaluation. Details of a case study upon which we shall

conduct our analysis, input data and results of the expected NPV evaluation are presented

in Section 4.7. The impact of uncertain variables on the expected NPV is assessed through

interval analysis in Section 4.7. Finally, Section 4.8 outlines the conclusions of this chapter.

4.2 Cost Models

In Chapter 2, we presented several studies that conduct economic assessments of off-

shore wind projects [104, 89, 17, 87, 169, 170, 171, 113, 172]. In the literature, two metrics

are commonly used in economic evaluations of energy-related problems, namely levelised

cost of energy (LCoE) [90, 173, 174] and NPV [89, 87, 171, 113]. Other economic metrics

exist such as internal rate of return (IRR) and return on investment (ROI). Although

there is a range of metrics available, the choice of economic metric should be appropriate

for the problem at hand.

In this paragraph, we review two economic models ([173] and [90]) that have been

applied to the entire wind farm from the perspective of the developer. The work by [173]

breaks down the life cycle costs associated to an offshore wind farm into five main phases:

development and consenting, production and acquisition, installation and commissioning,

operation and maintenance, and decommissioning and disposal. The economic model

presented in [90] aims to advance the deterministic model to account for stochastic inputs

by taking a Monte Carlo approach to derive a joint probability distribution for the LCoE

for offshore wind. To stochastically model the uncertain variables, CAPEX and OPEX

ranges, assumed to follow a normal distribution, are taken from literature. The two

economic models reviewed take different approaches: [90] considers the cost components

in terms of broad cost areas, and [173] breaks down each of the cost components. When

designing and formulating a model, the level of granularity should allow the model to

contain the necessary information without over complicating.

One aspect of the economic model is the choice of metric. The metric LCoE can be

defined as the lifetime costs of a project per unit of energy generated [29]. Energy sold

above this LCoE value yields a greater return on investment [175]. The LCoE, which is

based on a discounted cash flow model, is often used when comparing costs across different

energy generation technologies. The discounted project costs are divided by the discounted

energy output and summed over the lifetime of the project. The LCoE for offshore wind

can be evaluated by Eq. (4.1) [175].

LCoE =

∑n
t=1

Investmentt+Operational costst
(1+d)t∑n

t=1
Energy Generationt

(1+d)t

(4.1)
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Here, t denotes the year of operation, d denotes the discount rate and n denotes the

lifetime of the project. The numerator contains initial investments and operational costs.

The denominator includes the energy generated by the project. Both the numerator and

denominator are discounted using the discount rate. The discount rate is discussed in

more detail in Section 4.3.2.

The LCoE metric does not consider the revenue stream of an investor, and subse-

quently, we explore the metric net present value (NPV) [115]. Similar to LCoE, this

metric also takes a discounted cash flow approach and this can be seen in Eq. (4.2) [87].

NPV =
n∑
t=1

Incomet − Investmentt −Operational costst
(1 + d)t

(4.2)

Here, the net cash flow in each year t is calculated in the numerator. The net cash

flow considers the income as well as the investment and operational expenditure. The

denominator of this sum discounts this cash flow. The NPV is the sum over the lifetime

of the project, n, of all the discounted future cash flows. Again, t denotes the year of

operation and d is the discount rate.

The economic metrics shown by Eq. (4.1) and Eq. (4.2) both depend on the capital

expenditure (CAPEX) and operational expenditure (OPEX) of a project. There has

been considerable research into the CAPEX and OPEX of offshore wind projects. In the

literature CAPEX is estimated using the following methods: as a function of distance to

shore or project capacity [173, 176], by values published in reports [90], or by summing

individual component costs [89, 17]. Similarly, in the literature, OPEX is calculated by a

variety of methods. The work by [87] estimates turbine maintenance as a price per MWh,

whereas the work by [104] and [177] estimates maintenance as a percentage of the CAPEX.

The study by [89] considers money lost due to energy not supplied and the work by [17]

splits operating costs into maintenance and losses.

Many economic assessments evaluate the cost of an energy generation technology rather

than from a particular investor’s perspective. Therefore, little research has been done from

an offshore transmission owner’s (OFTO) perspective. In the following subsections, we

present a developed economic framework from the offshore transmission owner’s (OFTO)

perspective.

4.3 Methodology Outline

In order to assess the impact of severe uncertainties on an offshore transmission owner’s

(OFTO) expected profit, an economic framework is required. Consequently, a literature

review, including academic papers, industrial reports and economic evaluations of the
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entire offshore wind farm, has been conducted to build an economic model for an OTS.

Some studies assess the economic impact of project specifications such as capacity and

distance from shore; however, this is not the focus of the work here. A fixed design is

taken and used to assess the impact of uncertainty on the expected economic benefit.

4.3.1 Economic Evaluation from Different Stakeholder’s Perspectives

The ownership structure of an offshore wind power plant varies between countries as

detailed in Chapter 2. The different ownership structures can be broadly classified as

third-party ownership, onshore transmission system operator (TSO) ownership and wind

farm developer ownership. During a project’s planning stage, the ownership structure is

usually well defined and therefore, when conducting an economic evaluation, a specific

stakeholder’s perspective should be taken.

In this work, we focus on the UK perspective who implements a third-party ownership

structure called the offshore transmission owner (OFTO) regime [49]. This regime has been

discussed in detail in Chapter 2. In summary, this regime involves a separate entity (an

OFTO) owning, financing, operating and maintaining the OTS. The developed economic

model could be adapted to other markets by changing aspects of the model that are no

longer relevant, for example, changing the revenue stream to be in-line with a particular

market’s practice. Many parts of the model are likely to remain unchanged, such as

CAPEX and OPEX.

4.3.2 Net Present Value

This chapter will use the metric termed NPV, to allow potential OFTOs to evaluate

the merit of investing in future projects. NPV, chosen as it allows the inclusion of both

revenue streams and expenditures, takes a discounted cash flow approach to evaluate the

time value of money [115]. A discounted cash flow approach is common practice within

the industry.

The metric NPV takes into account the time value of money and how this affects the

cash flow. For example, if we have £100 in 10 years, how much is that amount worth

today? This concept is incorporated using the discount rate; a rate that discounts future

cash flows to the present-day value [178]. The technique of discounting allows costs and

benefits that occur at different time periods to be compared. Discounting is a separate

concept from inflation, and is based on the principle that consumers prefer to receive goods

and services now rather than later [178]. The discount rate in year t is used to bring the

cash flow in year t to year t− 1.

The report by [179] discusses what value is reasonable to use as the discount rate.
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The report suggests two values: the social time preference rate (STPR) and the weighted

average capital cost (WACC). These two values can be implemented in different ways

depending on the systematic risks. We take the Spackman approach [180, 179], which uses

the STPR to discount all costs and benefits, including financing costs. A constant discount

rate of 3.5%, for projects with a lifetime between zero and thirty years, is recommended

by [178]. For long terms project, more than thirty years, the report by [178] recommends

variable discount rates. Furthermore, there is some uncertainty in the discount rate that

could be explored.

The net cash flow, Vt, in a given year, t, is the difference between the offshore trans-

mission owner’s (OFTO) income and expenditure in that year. The cash flow in each year

is discounted using the discount factor, d, to retrieve the value a future cash flow would

have today. NPV is the sum of these discounted future cash flows as shown by Eq. (4.3).

NPV =

n∑
t=1

Vt
(1 + d)t

(4.3)

Here, t represents the year of operation, Vt the uncertain cash flow in that year and n the

project lifetime. The analysis presented has been taken from the offshore transmission

owner’s (OFTO) perspective and thus the NPV model has also been formulated from this

perspective.

This chapter aims to use Eq. (4.3) to calculate a project’s expected NPV. The model

can be used to aid decision making since a NPV greater than zero indicates a worthwhile

project. The higher the NPV, the greater the project yield. NPV only indicates if a project

is expected to be profitable over its lifetime and not in each year. One would have to look

at the cash flow model to observe if there are expected to be financially difficult years,

as these individual negative Vt values could have a significant impact for some companies

involved.

The main contributions to cash flow are contractual income, loan repayment for capital

costs and operational expenditure, as shown by Eq. (4.4).

Vt = Contractual Incomet − Loan Repaymentt −Operational Expendituret (4.4)

Details on how to evaluate contractual income, loan repayment and operational expendi-

ture are given in Section 4.4, Section 4.5 and Section 4.6, respectively. Throughout this

chapter, this economic model is referred to as the NPV model.

The described NPV model can be summarised by Fig. 4.1, which gives a graphical

representation of the NPV model displaying all the variables required in the model and

showing the dependencies between model variables. The model variables with a double

circle represent input parameters that are used to evaluate other model variables. The
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Figure 4.1: Graphical representation of the net present value (NPV) model for a UK

offshore transmission system (OTS).

boxes on the graph provide a neat way to represent repeated indices, for example, year of

operation. Instead of having a separate node each year for the cash flow in that year, we

can represent all of these terms by a node termed cash flow in year t which lies in a box

that iterates over t.

Fig. 4.1 shows that contractual income, loan repayments, operational expenditure

(planned and unplanned), and discount rate are required to evaluate the NPV. This

corresponds to Eq. (4.3) and Eq. (4.4). This NPV evaluation is for a specific topology

which is represented in Fig. 4.1 as the input parameter termed technology. Fig. 4.1 is a

visual summary of the equations that follow in the rest of the chapter.
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4.4 Contractual Income

The OFTO is paid by the National Electricity Transmission System Operator (NETSO)

to operate and maintain the offshore transmission assets [53, 181]. The offshore trans-

mission owner’s (OFTO) contractual revenue is explained in detail in [182, 145, 50, 53].

Further guidelines presented in [50] state that the allowed OFTO revenue per year is made

up of base revenue, pass through items, performance adjustment, and a correction term.

Each of these contributions is discussed in this section.

The base revenue provides the most significant contribution to the contractual revenue

[143, 144, 145]. Therefore, in the NPV model, we focus on base revenue and availability

when evaluating the yearly revenue stream. Base revenue, availability, and their influence

on the revenue stream are discussed further in this section.

Wind characteristics are not considered in the revenue stream as they are not directly

considered under the OFTO regulatory regime. Uncertain weather conditions do play a

role regarding OPEX and are studied in the sensitivity analysis against repair time in

Section 4.7.4.

4.4.1 Base Revenue

The base revenue is made up of the tender revenue stream, the market rate revenue

adjustment, the post tender revenue adjustment and inflation [182]. The tender revenue

stream is established through the tender process and reflects the cost of financing, operat-

ing and maintaining the transmission assets [19]. Financing costs are the most significant

contribution to the overall tender revenue stream, whereas operational costs only account

for around 20% [19]. The market rate revenue adjustment accounts for the difference in fi-

nancial market rates during the licence consultation process compared to rates at the date

of financial close [50]. The post tender revenue adjustment is included if the FTV cannot

be calculated on time. The main component of the base revenue is the tender revenue

stream. Currently, the base revenue is fixed for the first twenty-five years of operation

[49]. After twenty-five years, this value is reviewed, and it is unclear what will happen

next as it depends on the demand for the assets.

A project’s base revenue is required in the NPV model but unknown in advance of a

project licence. Analysis of Office of Gas and Electricity Markets (Ofgem) cost assessments

[32], for fully commissioned UK offshore wind projects, identified a relationship between

CAPEX and base revenue, as shown by Fig. 4.2. Using linear regression and the method

of least squares, we obtained a linear model of the form presented in Eq. (4.5) with an R2

value of 0.9783. This linear model is shown in Fig. 4.2. R2 is a goodness-of-fit measure
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Figure 4.2: Base revenue against capital expenditure (CAPEX) for UK offshore wind

projects, with linear model added.

[183]. An R2 value of one represents models that explain all of the variation in the response

variable around its mean, whereas an R2 value of zero indicates that the model does not

explain all of the variation in the response variable around its mean. Eq. (4.5) allows the

base revenue, denoted by B, to be approximated from CAPEX.

B = β3CAPEX + β4 + ε1 (4.5)

where β3 = 0.09023, β4 = 3.038 and ε1 is the residual error.

4.4.2 Pass Through

A detailed explanation of the pass through variable is given in [53]. The OFTO licence

adjusts the OFTO’s revenue for pass through costs costs that may arise but are difficult

to predict during the bidding process. The contributions to the pass through term are

licence fee adjustment, network rates adjustment, crown estate lease, tender process costs,

decommissioning costs, income adjusting events, temporary physical disconnection pay-

ment and additional costs due to the marine and coastal access act [53]. The pass through

term allows OFTOs to claim expenditures out of their control back, and as a result, the

overall cash flow is zero over the lifetime of the wind farm. Therefore, this term is not

included in the NPV model.

4.4.3 Correction Term

The correction term contributes to the OFTO revenue to account for the difference

between the allowed OFTO revenue and the regulated OFTO revenue [53]. The allowed

OFTO revenue is the amount the OFTO should receive in a year and the regulated OFTO
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revenue is the OFTO’s forecast of the revenue that year which they invoice to the Na-

tional Electricity Transmission System Operator (NETSO) [53]. These values are likely

to be different due to uncertainty when forecasting the revenue [53]. The correction term

will have minimal impact on the NPV over the lifetime of the project. As a result, the

correction term is not included in the model to calculate the NPV metric.

4.4.4 Performance Availability

Under the regulatory regime, OFTOs are incentivised to maintain high levels of asset

availability throughout the revenue period to limit financial losses to generators. This

incentivisation is provided through the performance availability term. Dependent on the

yearly availability of the OTS, the OFTO receives a reward or penalty based around a

target of 98% availability. This structure is described in detail in Chapter 2, and can be

described by Eq. (4.6), which has been produced in line with [53].

Contractual Incomet =


0.9B, if Yt < 0.94

(0.9 + (Yt − 0.94)2.5)B, if Yt ≥ 0.94,

(4.6)

Here, Yt represents the availability of the OTS in year t and B denotes the base revenue.

4.4.5 Availability Evaluation

The work by [123, 99] evaluates availability by taking the ratio of uptime to total

time. In this work, we take a similar approach but focus on appropriately considering

random variables. Fig. 4.3 illustrates a general OTS topology based on the schematics of

operational OTSs. Fig. 4.3 will be used to explain the availability evaluation approach

for a general OTS. The explanation focuses on HVAC systems, but the approach can be

extended to HVDC systems.

Let the OTS contain s identical (with regards to the major equipment) and independent

circuits. For example, circuit 1 is illustrated in Fig. 4.3. Let each circuit carry 1
s of the

load through the system. This approach is a simplification as a real system is likely to

include redundancy.

Each node, denoted by three numbers ijk, represents a component (for example, off-

shore transformer) in the OTS. The first number, i, indicates the circuit a component

belongs to, where i ∈ I = {1, . . . , s}. As shown by Fig. 4.3, each circuit contains parallel

branches, where each branch contains components in series. This represents components

on the offshore substation. The second number, j, denotes which branch the component

belongs to where j ∈ J = {1, . . . , p} and p is the total number of branches. The set of

components in each branch is identical across the branches. The third number, k, denotes
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Figure 4.3: A sketch of a general OTS used for availability methodology explanation.

the component in the jth branch where k ∈ K1 = {1, . . . ,m} and m, is the number of

components in each branch. As shown in Fig. 4.3, these parallel circuits are in series with

a string of components that represent the assets connecting the offshore substation to the

onshore grid. These are indexed by j = p + 1 and k ∈ K2 = {1, . . . , v} where v is the

number of components in this string.

Cijkτ denotes the availability of the ijkth component at any one given point in time,

τ . Each component is either working (Cijkτ = 1) or not working (Cijkτ = 0). The

expected availability of each component is evaluated using its failure and repair rates; this

is explained later by Eq. (4.21). Components are assumed to fail independently.

Since all circuits are identical, the following analysis focuses on circuit 1. At any one

given point in time, the availability of circuit 1, A1τ , is:

A1τ =

∑
j∈J
∏
k∈K1

C1jkτ

p

∏
k∈K2

C1(p+1)kτ (4.7)

Therefore, by independence and linearity of expectations:

E(A1τ ) =

∑
j∈J
∏
k∈K1

E(C1jkτ )

p

∏
k∈K2

E(C1(p+1)kτ ) (4.8)
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Figure 4.4: Comparison between the cumulative distribution function (cdf) of Yt (yearly

availability) and Aτ (availability at any point in time).

The availability of the entire system, Aτ , is:

Aτ =
1

s

s∑
i=1

Aτi (4.9)

Here, s denotes the number of circuits in the system.

Yearly availability, Yt, is a continuous random variable required to evaluate the revenue

stream. Yt is defined as the fraction of time the system is capable of transmitting power

[141]:

Yt =
1

1 year

∫ 1 year

0
Aτ dτ (4.10)

Yearly availability, Yt, is a different quantity to availability at one point in time, Aτ as

shown in Fig. 4.4.

4.4.6 Non-linearity in Contractual Income

Eq. (4.6) is non-linear in Yt and therefore, to evaluate the expectation of the contrac-

tual income a distribution for Yt is required. On account of the limited amount of data

surrounding availability, a Monte Carlo simulation approach, using hourly discretisation

steps to approximate the integral in Eq. (4.10), has been adopted to determine the distri-

bution for Yt. The simulation results, shown in Fig. 4.4, indicate very little data (9% of
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the 100, 000 samples) below 94% and subsequently, we propose Eq. (4.11) as a simplified

expression to estimate the expected contractual income without capping the risk.

Eq. (4.11) is linear in Yt, unlike Eq. (4.6). This linearity allows the expected yearly

system availability to be used, which, under ergodicity, is equal to the expected availability

at any given point in time. By ergodicity, we mean that long-run statistical properties are

equal to statistical properties at any point in time. The concept of ergodicity has a long

history, and for a more in-depth discussion, we refer to [184].

Contractual Incomet = (0.9 + (Yt − 0.94)2.5)B (4.11)

Here, Yt denotes the average yearly availability and B denotes the base revenue. Taking

the expectation of Eq. (4.11) requires the expected yearly system availability:

E(Yt) = E(Aτ ) =
1

s

s∑
i=1

E(Aiτ ) =
sE(A1τ )

s
= E(A1τ ) (4.12)

where Aiτ is the availability of circuit i at any one given point in time.

In the scenario considered, the percentage error for using Eq. (4.11) instead of Eq. (4.6)

is 2.2%. This simplification is only appropriate when the majority of the mass lies above

94% availability. As the availability falls below 94%, Eq. (4.11) underestimates the avail-

ability with greater error for lower values of availability. However, in this situation,

Eq. (4.11) consistently gives a conservative estimate to the contractual income. Under-

estimating a project’s NPV is suitable for investment decisions as this will not lead to a

risky over-optimistic scenario. This justifies using the simplified Eq. (4.11) for contractual

income.

4.5 Loan Repayment

Most economic assessments, not taken from an investor’s perspective, consider CAPEX

as an upfront cost [89, 87]. The NPV model presented here considers the repayment

structure over a repayment period rather than an upfront cost. Under the OFTO regime,

the OFTO is required to pay the developer for the assets. The payment amount is called

the final transfer value (FTV). We recall from Chapter 2 that the FTV is the sum of

capital (CAPEX), development, contingency, interest during construction and transaction

costs.

The NPV model requires the project’s FTV, which is unknown until after the com-

petitive tender process. Accordingly, CAPEX is used to estimate the FTV. CAPEX is

chosen for three reasons: it can be estimated with acceptable accuracy (see Section 4.5.1),

it contributes the largest proportion to the FTV, and this proportion can be estimated.
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Using data from Ofgem cost assessments [32], CAPEX has an average contribution of

77.8% for projects up to date.

4.5.1 Capital Expenditure

Capital expenditure (CAPEX) refers to the cost to develop, construct, install and

commission the OTS [145]. As this value is unknown for future projects, a methodology

to evaluate CAPEX is required. This work, similar to [89, 17], proposes a bottom-up

approach by summing component costs found in literature [33, 36, 37]. This process

requires the knowledge of the topology of the transmission system.

A high-level breakdown of the OTS into offshore substation(s), offshore cable(s), on-

shore cable(s) and onshore substation(s) is considered. The CAPEX evaluation also

includes costs regarding the electrical equipment, platform structures and installation

[33, 36, 37]. The costs used in the analysis are presented in Chapter 3. Usually, the cost

of a component is presented in literature as an interval of costs and in this situation the

middle value of the interval has been taken. However, when required, judgement was used

to take a particular value within the range.

To validate the modelling strategy and input data used in this bottom-up approach,

the CAPEX of six operational OTSs are assessed. The six projects chosen are London

Array, Thanet, Gwynt Y Mor, West of Duddon Sands, Westermost Rough and Burbo Bank

Extension. Their topologies, found in the Preliminary Information Memorandum for each

project [185], combined with data contained in Office of Gas and Electricity Markets’s

(Ofgem) Cost Assessment for each project [32] are used to validate and calibrate this

approach. Table 4.1 and Table 4.2 shows the results of the CAPEX evaluation.

Our evaluation estimates the CAPEX of London Array, Thanet, Gwynt Y Mor, West

of Duddon Sands, Westermost Rough and Burbo Bank Extension to be £357 million,

£140 million, £282 million, £194 million, £113 million and £137 million respectively.

Table 4.2 shows approximately a ±10% difference between the CAPEX values stated by

Ofgem and the CAPEX values estimated via the bottom-up approach. This approach

seems to overestimate the CAPEX for systems with a nominal voltage of 132 kV and

220 kV and underestimate systems with a nominal voltage of 150 kV; however, due to a

small sample size, this pattern cannot be validated. Unfortunately, detailed project cost

breakdowns are, usually unavailable for those not directly involved.

The NPV model requires CAPEX values in advance of them being published by

Ofgem. To use our CAPEX evaluation (CAPEXOwn) to predict actual CAPEX values

(CAPEXOfgem), a linear model is fitted. Due to limited data available, a simple log-log

linear model of the form given in Eq. (4.13) has been chosen. Logarithms are used to
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CAPEX From Own Evaluation (£million)

Wind Farm Offshore

Substation

Onshore

Substation

Offshore

Cables

Onshore

Cables

Total

132 kV Export Cable

London Array 107.6 53.6 193.3 2.8 357.3

Thanet 55.2 28.9 49.6 6.1 139.8

Gwynt Y Mor 107.2 29.9 89.0 55.9 282.0

150 kV Export Cable

West of Duddon

Sands

57.5 27.8 96.1 12.3 193.8

Westermost

Rough

57.4 21.1 14.0 20.0 112.5

220 kV Export Cable

Burbo Bank Ex-

tension

57.7 34.4 29.8 14.7 136.5

Table 4.1: Breakdown of capital expenditure (CAPEX) values for five operational offshore

transmission systems (OTSs) based on our own evaluation. The breakdown considers the

costs of offshore substation, onshore substation, offshore cables and onshore cables.

CAPEX

Project Our Evaluation

(£million)

Ofgem

(£million)

Difference

(%)

London Array 357.3 343.9 +3.8

Thanet 139.8 120.3 +14.0

Gwynt Y Mor 282.0 252.7 +10.4

West of Duddon Sands 193.8 215.1 -11.0

Westermost Rough 129.7 122.3 +6.1

Burbo Bank Extension 153.6 152.6 -0.6

Table 4.2: Comparison of estimated and actual capital expenditure (CAPEX) values for

operational offshore transmission systems (OTSs).
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reflect a multiplicative error (the error scales with magnitude). The intercept and slope

are given fixed values of one and zero, respectively, since analysis showed them not to

differ from these values significantly.

log(CAPEXOfgem) = log(CAPEXOwn) + ε2 (4.13)

Here, ε2, the residual error, is normally distributed with mean zero and standard deviation

of σ1. In R, we obtained σ1 = 0.09. On the original (non-log) scale this translates as a

95% probability of the multiplicative error being between 0.84 and 1.19.

4.5.2 Loan Repayment Structure

As mentioned in Chapter 2, the UK has an OFTO regulatory regime which is different

to other markets. The OFTO licence specifies the FTV (the amount the OFTO pays the

developer for the assets). The NPV model presented here takes into account the economic

structure for the payment of the FTV to the developer. Specifically, in the NPV model,

the OFTO pays for the transmission assets using a loan as detailed below.

A term loan (often used in the European offshore wind market) is defined as a facility

being provided by a lender for a fixed repayment period [186]. Correspondingly, in this

chapter, the NPV model assumes that the OFTO takes a loan to pay for the transmission

assets and pays it back over a repayment period in regular instalments affected by an

interest rate. The economic structure is detailed below.

• The loan period is usually between 10 and 15 years [186].

• n1 denotes the total number of repayment instalments.

• η` denotes the interest rate in the `th instalment period.

• Two sequences of numbers are generated to feed into the NPV model: the repayment

amount in each instalment and the outstanding loan amount after each repayment

denoted by P and O, respectively: P1, . . . , Pn and O0, O1, . . . , On.

• It is not the purpose of this chapter to analyse OFTO debt financing strategies

specifically, and therefore the initial loan amount is taken to be the FTV.

• The payment in each instalment, P`, is calculated using Eq. (4.15).

• The repayment structure must ensure that the initial loan amount, O0, is repaid

after n1 instalments and that repayments are constant for a fixed interest rate. A

mathematical proof is presented in Appendix B to show that Eq. (4.15) along with

Eq. (4.16) satisfies these two constraints.

• Eq. (4.15) calculates the repayment amount for the `th instalment, P`. Eq. (4.16)

calculates the outstanding loan after the `th repayment, O`.
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The repayment amount in each instalment, P`, feeds into the NPV model through the

node termed loan repayment in year t. This is shown by Eq. (4.14).

Loan Repaymentt =
∑

` ∈ All instalments in year t

P` (4.14)

P` =
O`−1η`

1− (1 + η`)−(n1+1−`) (4.15)

O` = O`−1(1 + η`)− P` (4.16)

4.6 Operational Expenditure

The NPV model splits operational expenditure (OPEX) into planned and unplanned

OPEX, as shown by Eq. (4.17). Expenditure due to energy not supplied is not considered

under the OFTO regulatory regime.

OPEXt = Planned OPEXt + Unplanned OPEXt (4.17)

4.6.1 Planned Operational Expenditure

OFTOs conduct planned maintenance to ensure good system conditions, prevent fu-

ture failures and therefore, avoid costly unplanned maintenance. When detailed data is

unavailable, a common approach to estimate the yearly planned OPEX is to evaluate it as

a percentage of the CAPEX of the OTS [104, 177]. The value assigned to this percentage is

determined by expert knowledge and denoted by α in this work. This leads to Eq. (4.18).

Planned OPEXt = αCAPEX (4.18)

4.6.2 Unplanned Operational Expenditure

Unplanned OPEX accounts for the costs incurred by the OFTO due to unplanned

maintenance of the OTS. When components fail, OFTOs perform unplanned corrective

maintenance to maintain high availability levels. The following assumptions have been

made when estimating the unplanned OPEX of a project.

• Specific asset management strategies are beyond the scope of the chapter and, there-

fore, we assume component replacement upon failure. This approach is a worst-case

scenario since, usually, the component will be in a condition where a more economi-

cal repair, rather than a complete replacement, is satisfactory. Cable repairs are an

exception, since generally only a small section, typically 200 metres, of the cable is

replaced [177].
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• We only consider the unplanned maintenance of six major pieces of equipment:

offshore transformer, offshore switchgear, offshore cable, onshore cable, onshore

switchgear and onshore transformer. There are many other pieces of equipment;

however, this assumption seems reasonable since these six pieces of equipment make

up the main body of the system and are the most costly.

• A constant failure rate has been assumed throughout the lifetime of the assets. This

assumption may not be the case and should be explored further if regarded to be

important. Concerns about this assumption will be revisited and addressed in the

rest of the thesis.

• Due to limited data, we assume that each component has the same failure rate

regardless of their power rating. The cables are an exception as there is slightly

more data available.

• We assume that for both onshore and offshore cables, the length of cable replaced

due to a failure is 200 metres. The method to repair a cable is outlined in [187] and

summarised in the rest of this bullet point. First, the cable fault is located, and

the cable is cut on one side of the damage. Then, the damaged end is pulled onto

the vessel. Next, the cable is cut on the other side of the damage, and this end is

also lifted onto the vessel. Now the cable fault section has been removed. The spare

cable is joined to both of the retrieved cable ends. Finally, the cable is then laid

back onto the seabed and protected if needed.

Eq. (4.19) presents the formulation to estimate unplanned OPEX and has been devel-

oped from the literature [173, 93, 82].

Unplanned OPEXt =
∑
{x}

(
Cost per failurex ×Number of failuresx,t

+ Cost per day of downtimex ×Downtime in daysx,t

)
(4.19)

Here, {x} is the set of components in the OTS.

Eq. (4.19) contains two random variables: the number of failures and downtime in

a year for each component. We find expectations of these variables by modelling each

component as a two-state (not working and working) continuous-time Markov chain. r

and f represent the component’s repair and failure rate, respectively. For each component,

we obtain the expectation of the random variables required for Eq. (4.19):

E(Number of failst) =
fr

f + r
(4.20)

E(Downtimet) =
f

f + r
(4.21)
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Eq. (4.19) contains the variable termed cost per failure. For components located off-

shore, this is the component replacement cost. However, for components located onshore,

it is the replacement and one-off repair cost associated with that component. The variable

in Eq. (4.19) termed cost per day of downtime is zero for onshore components and equal

to the daily vessel hire rate for offshore components. Due to high vessel hire rates, the

unplanned OPEX for components located offshore is generally much greater than those

onshore. Additionally, Eq. (4.21) can be used to find the expected availability of a com-

ponent which we recall is required to evaluate the contractual income in Section 4.4.

4.7 Case Study, Results and Uncertainty Impact Assess-

ment

4.7.1 Case Study

For the purpose of the analysis in this chapter, a case study has been created. The

design is based on current project trends [188] and recent project topologies [185]. The

methodology described throughout the chapter will be applied to the HVAC offshore trans-

mission system (OTS) shown in Fig. 4.5. Each project deployed is growing in capacity

and distance from the shore. Therefore, the case study is located 140 km offshore with

a capacity of 1.2 GW. A reactive compensation unit and three circuits are considered

necessary for this transmission length when approaching with HVAC technologies. Each

circuit contains two sets of offshore transformers and offshore switchgear in parallel and

then in series with offshore switchgear, offshore cable (220 kV, 140 km), onshore cable (40

km), onshore switchgear and onshore transformer.

4.7.2 Input Data

The following input data is used to evaluate the NPV of the case study: 3.5% dis-

count factor [178], 25 year project lifetime, £1228.8 million CAPEX evaluated using the

bottom-up approach (a breakdown is shown in Table 4.3), a twelve year loan period and

four repayment instalments per year [186]. Inputs for availability, α, interest rate and

unplanned OPEX are discussed below.

The expected yearly availability of the case study, evaluated using methodology de-

tailed in Section 4.4.5, is 0.9772649. The expected availability of each component, calcu-

lated using component failure and repair rates [99, 142], is shown in Table 4.4.

Literature estimates the operational expenditure of cables to be 0.4% of capital costs

[177]. Similarly, the study by [104] uses a yearly maintenance cost of the substation to be
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Figure 4.5: Schematic drawing of the high voltage alternating current (HVAC) offshore

transmission system (OTS) used in the case study.

81



Component Cost (£million) Component Cost (£million)

Offshore Onshore

Substation 220.9 Substation 85.6

Cable 640.1 Cable 151.3

Reactive compensation unit 130.9

Table 4.3: Estimated capital expenditure (CAPEX) for the case study.

Component Availability Component Availability

Onshore Offshore

Transformer 0.99819 Transformer 0.99879

Switchgear 0.99992 Switchgear 0.99995

Cable 0.99655 Cable 0.98381

Table 4.4: Component availability for the case study.

0.4% of the capital costs of the transmission link. Furthermore, the work by [17] takes the

lifetime maintenance costs of HVAC connection to be 15%. Accordingly, α is assumed to

be 0.5% for the OTS.

Margin rates (interest on top of the base cost of lending) are set by the lender to reflect

the expected risk of a project [186]. Between 2010 and 2019, the base cost of lending varied

between 0.25% and 0.75% [189]. Margin rates, during the operational phase of an offshore

wind project, are between 2.5% and 4% [186]. Therefore, considering this data, and taking

a conservative approach, an interest rate of 3% is implemented.

Estimation of unplanned OPEX requires component failure and repair rates presented

in [99] and [142], component costs given in [33, 36, 37], one off repair costs interpreted

from [146] and vessel hire rates per day taken from [93, 155].

4.7.3 Results

For the described input data, the model estimates the expected NPV for the case study

to be £195 million. Breaking this down into the cash flow contributions: the expected

yearly contractual income is £113 million during the project’s lifetime, and the expected

loan repayments are £157 million for the first twelve years of the project. The remaining

contributions are the expected planned and unplanned OPEX for each year of operation,

evaluated to be £6 million and £2 million, respectively. These results are shown in Fig. 4.6.

For the chosen input data, the project is unprofitable in the first twelve years due to the
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Figure 4.6: Results of the cash flow throughout the lifetime of the case study showing a

breakdown of the cash flow into revenue, loan repayment, unplanned operational expen-

diture and planned operational expenditure.

considerable loan repayments; this could be critical to some OFTOs. Overall the project

is profitable; however, many assumptions are required for the analysis, and some input

values have severe uncertainty associated with them.

4.7.4 Uncertainty and Sensitivity Analysis

The quantification of the case study requires the input parameters discussed in Sec-

tion 4.7.2. It may not always be possible to know these input parameters with certainty,

and thus the model will contain uncertainty. The following section aims to, through sensi-

tivity analysis, identify the variables that, due to their uncertainty, could have a significant

impact on the project’s expected NPV. As it is challenging to put realistic distributions

on these parameters, we will consider reasonable ranges for these parameters instead, and

see how values in these ranges affect the NPV. By doing so, we assess the economic impact

of real-world variations on key and uncertain aspects of the project.

The sensitivity analysis considers the following parameters: α, vessel hire rate for cable

repairs, interest rate, offshore cable failure rate, offshore cable repair time and ε2. The

choice of values for each parameter is discussed below and presented in Table 4.5.

α is determined by expert knowledge and therefore contains uncertainty. As suggested

by literature [104, 17, 177], α values between 0.15% and 1.5% are considered.

Based on the following literature, we consider vessel hire rates between £0.05 million
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Symbol ?

×

Initial

input

Worst

Case

Scenario

α (%) - 0.15 0.50 0.75 1.0 1.5 1.5

Vessel Hire (£million) 0.05 0.085 0.1 0.125 0.14 - 0.14

Interest Rate (%) - 1.5 3.0 6.25 - - 6.25

Failure Rate

(fails/year/km)

- - 0.000705 0.0016 0.00705 - 0.00705

Repair Time

(days)

- - 60 90 120 150 150

ε2 - 0.09 0 -0.09 - - -0.09

Table 4.5: Summary of input parameters and the values considered in the interval analysis.

The column denoted by a cross details the initial input scenario. Individually, for each

input parameter, the initial input is varied to values shown in this table. The table shows

the symbol assigned to each input change that corresponds to Fig. 4.7. The last column

corresponds to the worst-case scenario inputs discussed in the chapter.

and £0.14 million. The day rate of a heavy lift vessel is quoted between £50, 000 and

£125, 000 in [93]. Vessel daily rates are quoted to be £102, 000, £147, 300, and £192, 600

for a 800, 1000, 1200 tonne jack up crane capacity, respectively [155]. Daily rates for the

spot market are quoted between £95, 300 and £287, 400 in [71]. In a recent export cable

repair, the rate for vessel and crew hire per day in UK waters was approximately £100, 000

[190].

Due to the uncertain nature of interest rates, three reasonable interest rates of 1.5%,

3% and 6.25% are considered [189].

Industry experience points out that the failure rate used in this chapter, 0.000705

fails/year/km [142], could be too small [82]. Therefore, the sensitivity analysis considers

two failure rates: ten times the value used in this chapter to observe the impact of a larger

failure rate (and in-line with values presented in [83]), and a failure rate of 0.0015873

fails/year/km based on recent experience [82].

Repair times are quoted in the literature between two and five months [142, 82], and

therefore the the sensitivity analysis considers repair times in this interval.

Since the CAPEX linear model is only based on six data points, the model parameters

contain uncertainty. Based on the residuals of individual data points, the impact of varying

ε2 in Eq. (4.13) between −20 and 30 is assessed.
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Figure 4.7: Interval analysis of uncertain input parameters. The symbols and their corre-

sponding numerical inputs are presented in Table 4.5.

The sensitivity analysis varies the variables, singly, as discussed above. The resulting

expected NPV for each scenario is plotted in Fig. 4.7. Table 4.5 shows the values of each

variable analysed and the corresponding symbol on Fig. 4.7.

With the input variables considered in Table 4.5, Fig. 4.7 shows that daily vessel hire

rates have a small impact on the project’s expected NPV. Cable failure rate, interest rate

and planned OPEX appear to have a critical impact, with the sensitivity analysis indicat-

ing a negative expected NPV for some input values. The sensitivity analysis also shows

that increasing the repair time of an offshore cable (a variable influenced by the inherent

uncertainties associated with offshore wind) also significantly impacts the expected NPV.

As shown in Fig. 4.7, increasing cable failure rate by a factor of ten results in the

expected NPV falling to −£609 million. This decrease is a combination of increased

unplanned OPEX and the effect of Eq. (4.11). As stated in Section 4.4.5, Eq. (4.11)

underestimates the expected contractual income for availability values less than 94%. This

underestimation is applicable here since a failure rate of 0.00705 fails/year/km results in

85% availability. Under the OFTO regulatory regime, the contractual income is capped

at 90% of the base revenue, and thus the expected NPV is estimated to be −£208 million.

This negative NPV still suggests a very unfavourable project and highlights the large

impact of cable failure rate on expected NPV. This example also highlights the safety

provided to the OFTO through the regulatory regime.
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Fig. 4.7 indicates that both an increased failure rate and longer repair time result in

a lower expected NPV. These two variables influence system availability and therefore,

a lower availability results in a smaller expected NPV. The OFTO regulatory regime

provides some protection; however, a 94% availability results in a significantly lower ex-

pected profit compared to 100% availability. Therefore, further work into increasing the

availability of an OTS should be investigated, especially when aiming to maximise profit.

A worst-case scenario, with regards to input data, resulted in an expected NPV of

−£1889 million, a very unfavourable project. The last line of Table 4.5 shows the input

data for the worst-case scenario. This scenario has 71% availability, and consequently,

Eq. (4.11) underestimates the contractual income as previously described. Under the

OFTO regulatory regime, the expected NPV is estimated to be −£885 million, still an

unfavourable project.

This investigation provides a deeper understanding of the uncertainties associated with

offshore transmission and highlights the importance of assessing their impact on economic

performance. The findings of this work indicate that some of the uncertain input pa-

rameters have a significant impact on the economic evaluation. As project planning and

investment decisions may be based on these economic assessments, the conclusions of

this work have significant implications for decision makers in offshore wind transmission.

The insights gained from this work suggest that care should be taken when economically

evaluating projects under severe uncertainty. In particular, the results indicate that the

offshore cable failure rate has a notable impact on NPV, and therefore the input value for

this parameter should be carefully considered. Furthermore, techniques to handle these

uncertainties should be explored and implemented.

4.7.5 Comparison to Operational Projects

Due to a limited amount of publicly available data, comparing a full economic evalua-

tion to real-life projects is beyond the scope of this chapter. However, access to some data

allows a comparison between individual parts of the economic model. In Section 4.5.1,

we compared our CAPEX evaluation to real project CAPEX values. In this subsection,

we compare two more parts of the proposed model with real-life data: the operational

expenditure of offshore cables and the availability of the OTS.

The operational expenditure of offshore cables for some operational projects is reported

to be on average £12.5 million per repair [82]. For the case study considered, an offshore

cable failure lasting 60 days has an expected repair cost of £6.1 million and an offshore

cable failure lasting 150 days has an expected repair cost of £15.1 million. These figures

are in good agreement with the average repair cost of £12.5 million.

86



In the UK, the availability of OTSs is reported in [141]. Between 2011 and 2019,

yearly availability values have ranged between 82.47% and 100%, with an average yearly

availability of 98.7% [141]. It is important to note that these values are for a range of

different projects that each have their design specification, located at varying distances

from shore, and importantly have a smaller capacity than the offshore wind project con-

sidered here. For the case study considered, using the initial input data, results in a yearly

availability of 97.7%. During the sensitivity analysis shown in Fig. 4.7, the availability

of the OTS ranged between 85.5% and 97.7%. These results suggest that the availability

values obtained in this work are in good agreement with the data presented in [141].

4.8 Conclusion

This chapter presents model formulation and analysis from the offshore transmission

owner’s (OFTO) perspective in the UK. A net present value (NPV) model, formulated

using the literature available, considers revenue stream, loan repayments and operational

expenditure (OPEX), among other details that enables it to be applied in many offshore

transmission system (OTS) planning scenarios. The novelty of this economic assessment

is based on incorporating an offshore transmission regulatory regime and including the

final transfer value (FTV) repayment structure. The methodology is implemented on

a 1.2 GW project. This application required the collection and curation of useful data

regarding capital expenditure (CAPEX), availability, and OPEX from a variety of sources.

During the quantification process, many areas were highlighted to contain severe uncer-

tainty with regards to the input data. This study investigates six input parameters that are

uncertain to a degree where it is difficult to assign them a distribution. Interval analysis is

conducted to quantify the economic impact of these uncertainties on project performance.

This work shows that interest rates, planned operational expenditure and, particularly,

cable failure rates are unknowns in offshore power transmission that are critical to the

offshore transmission owner’s (OFTO). For the case study considered, comparing cable

failure rates based on operational experience to inputs based on literature, resulted in a

64.2% lower NPV.

The results of this study indicate that cable failures have a significant impact on the

economic evaluation of an offshore wind transmission project, and strengthens the idea

that further research into offshore cable reliability could be beneficial to the industry.

Additionally, further work could explore advanced statistical techniques that handle these

severe uncertainties. This advancement, in particular, incorporating these techniques into

economic evaluations, could have useful implications for decision makers in offshore trans-
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mission.

In Chapter 2 we identified from the literature that there is a need to develop suit-

able techniques to handle severe uncertainties when making decisions in offshore power

transmission. In this chapter, we have developed and set up an economic framework to

base offshore transmission investment decisions. In addition, we used this framework to

assess the impact of uncertain model variables on the expected NPV. We found that some

variables, in particular, export cable failure rate, have a significant impact on the eco-

nomic benefit. Since these economic assessments are used in part of the decision making

process, we identify a need for advanced statistical techniques when planning future power

transmission systems. Therefore, this motivates the research aims of this thesis, and in

particular, necessitates the need for advanced statistical methods for decision making in

offshore power transmission under severe uncertainty. The next chapter will explore these

advanced statistical techniques.
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Chapter 5

Advanced Statistical Techniques

5.1 Introduction

The main focus of this research is the application of statistical methods for long-term

decision making (such as investment planning) under the presence of severe uncertainty

due to limited information. Specifically, we are dealing with uncertainty in the input

parameters (required to evaluate projects economically) due to a limited amount of data

available, and therefore there is a limit to our knowledge when it comes to making long-

term decisions. In this chapter, we revisit statistical techniques currently implemented,

discuss their limitations when applied to problems that involve uncertainty and there-

fore explore more robust techniques under severe uncertainty. These advanced statistical

techniques will be implemented in the application chapters of this thesis.

Chapter 2 identified uncertainties in offshore power transmission and the challenges

they bring to project planning. Furthermore, Chapter 4 highlighted the economic impact

of these uncertainties. The combination of these two chapters strengthens the case to

research and implement more suitable techniques when making decisions in offshore power

transmission under severe uncertainty.

Furthermore, statistical techniques based on the classical theory of probability provide

suitable tools to make statistical inferences when there is abundant data, for example, from

a repeated experiment. Unfortunately, in many applications, including offshore power

transmission, there is often an insufficient amount of data to justify these techniques.

Therefore, in these scenarios, using techniques based on classical probability theory may

lead to misleading inferences. Given the substantial stakes at risk, it is justified to seek

and apply other methods that enable conclusions to be made under weaker assumptions.

The aims of this chapter are:

• To define and explain what we mean by severe uncertainty.
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• To discuss statistical techniques currently implemented when taking decisions in

offshore power transmission and explain the limitations of these techniques.

• To present and explain techniques that advance current practice and address some

of the limitations of currently used methods when implemented under severe uncer-

tainty.

• To present small example applications of these advanced statistical techniques to

demonstrate the benefits and limitations of the proposed approach.

This chapter begins by defining and discussing uncertainty in Section 5.2. Next, in

Section 5.3 we detail statistical techniques currently used in practical applications and

show the limitations of these methods. Many statistical methods have been implemented

in the work of Chapter 4. However, these techniques are reliant on assumptions that

may not always be valid. In Section 5.3, the validity of these assumptions is assessed and

where appropriate, more suitable approaches are proposed, mainly, based on imprecise

probability. Then, in Section 5.4, we go on to present an overview of imprecise probability

theory before focusing on the more relevant topics within the theory (lower and upper

previsions, imprecise Markov chains and decision making techniques). Finally, we discuss

the advantages and limitations of these advanced statistical techniques through small

applications in Section 5.5.

5.2 Uncertainty

The focus of this chapter is to explore techniques that could be implemented when

there is severe uncertainty. We first define uncertainty which is a word commonly used in

everyday language. Uncertainty is defined in the English dictionary [191] as a situation in

which something is not known, or something is not certain; the feeling of not being sure

what will happen in the future; something one cannot be sure about; or a state of being

uncertain. For a more scientific definition of uncertainty, we refer to [192] who discusses

uncertainty and its link to risk. To ensure that there is no ambiguity about what we mean

by severe uncertainty, in the rest of this section, we discuss our definition.

Many practical applications require predictions and forecasts about events that will,

or perhaps will not, happen in the future. One approach to achieve this is to use historical

data about previous events to say something about a future event. In the absence of

enough relevant data, an alternative approach is to construct a model that describes the

underlying processes of the real system, that can be used to replicate the real system

and say something about future events. This model may be analytical, numerical, or a

combination of both.
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The modelling approach introduces uncertainty as we are creating a model that re-

sembles the real-life events, but of course, is not the real-life event. For example, we may

not be able to capture all of the real-life processes involved in a complex system. Further-

more, we may only be interested in predicting a single event, and therefore there may be

uncertainty around any given realisation of the model. The quality of a model could be

judged against its ability to imitate the real-life processes accurately, and, perhaps even

more critical, that any inferences made are in good agreement with real-life outcomes.

The model will require input values or distributions that propagate through the analysis

and influence the output. These inputs can also introduce a level of uncertainty.

The level of uncertainty about the model inputs determines the approach we take.

Many statistical techniques based on the classical theory of probability require enough data

or expert information to assign values or distributions to inputs accurately. If we do not

feel that we have enough data or expert information to assign these inputs confidently, then

we classify this as severe uncertainty. We identified in Chapter 2 and Chapter 4 that this is

often the case in offshore power transmission. A combination of short operational history,

each project is an advancement of previous projects resulting in a lack of standardisation,

and confidentiality within the industry means that there is insufficient data or information

when planning future projects. Although these severe uncertainties exist, decision makers

must make investment decisions about the design of future offshore transmission systems

(OTSs). Consequently, there is a need for decision making techniques that are robust

under severe uncertainty.

When using a model to conduct analysis, we might ask ourselves whether we have

enough information to assign values or distributions to the inputs accurately. If we do

have this information, we could proceed with using the classical theory of probability,

which we briefly discuss later in this chapter. However, if we do not have this information,

we should seek an alternative approach, and in Section 5.4, we discuss how imprecise

probability could be a solution.

Thinking back to Chapter 4 and the net present value (NPV) model formulated there,

several of the inputs were identified to be challenging to assign inputs values. These in-

puts included α (planned operational expenditure (OPEX) factor), vessel hire rate for

cable repairs, interest rate (for the loan repayment of the capital costs), offshore cable

failure rate, offshore cable repair time and ε2 (capital expenditure (CAPEX) evaluation

parameter). Therefore, we say that we have severe uncertainty about these inputs. In

Chapter 4, we also identified that uncertainty in interest rates, planned operational ex-

penditure and, particularly, cable failure rates have a significant impact on the NPV, and

therefore further motivates the need for an alternative approach.
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Several modelling parameters contain uncertainty, and the type of uncertainty can

be described by two broad categories: aleatory uncertainty and epistemic uncertainty.

Aleatory uncertainty comes from variability, and epistemic uncertainty arises due to a lack

of completeness in our knowledge. These definitions are further explained in the coin toss

example below. Additionally, the terms aleatory uncertainty and epistemic uncertainty

are used throughout the thesis.

Coin toss example

Say we have a coin that we can toss and when it lands, it can either land on heads

or tails. Lets first assume that we know the coin is fair, and therefore the probability of

getting heads is equal to the probability of getting tails. Therefore, in this scenario, we

would say that the probability of observing heads is 0.5. If we were to flip the coin and

predict whether the outcome is heads or tails, there is uncertainty here called aleatory

uncertainty. For example, we could not say for sure that the next toss will land on heads.

This uncertainty is because we are observing a random process, and therefore there is

variability in possible realisations of an event.

Now let us assume we have another coin that we do not know whether it is biased and

therefore, we do not know the probability of this coin landing on heads. This uncertainty is

our epistemic uncertainty: we do not have enough information or knowledge to accurately

assign a value to the probability that the coin lands on heads. In this case, we still have

aleatory uncertainty about the outcome of the next coin flip as it is a random process, but

we also have epistemic uncertainty as we do not know the probability of observing heads.

As the number of coin flips increases, our epistemic uncertainty reduces as we learn more

about the bias of the coin, and eventually, we will have enough information about the

probability of observing heads. However, our aleatory uncertainty about the outcome of

the next coin toss will remain as we are still observing a random process.

5.3 Statistical Techniques Currently Implemented

In many applications, we use methods to express and reason with our knowledge about

an event. If we are certain about our knowledge, we could use logic, and if we are uncertain,

we could use probability theory. Within probability, there exist many interpretations,

for example, the classical interpretation, the frequency interpretation and the subjective

interpretation. These probability interpretations are briefly introduced below; however,

for a more in-depth discussion, we refer to [193, 194].
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5.3.1 Interpretations of Probability

Using the classical interpretation of probability, each outcome is treated as though it

is as equally likely to occur as all the other outcomes [195]. To put this into context, as

an example, let us consider the failure behaviour of a cable we plan to install. To conduct

this analysis, we might wish to work with the probability of a cable failure occurring. In

this cable failure example, there are two outcomes (working or not working). Therefore,

based on the classical interpretation of probability, we assign a probability of 0.5 to each

option. This classical interpretation of probability is likely to be inappropriate for many

applications, including the cable failure example presented here. For examples where there

is clear physical symmetry, such as dice or card games, assigning equal probability may

be more suitable. In summary, if there are n possible outcomes of an experiment, then

under the classical interpretation of probability each outcome is equally likely, and so we

assign each outcome the same probability of 1
n .

An alternative interpretation is called the frequency interpretation of probability [196,

197]. This interpretation is based on the long-term relative frequency of occurrences of a

particular outcome. This relative frequency is used as the probability that we observe a

particular outcome if the process is repeated under similar conditions for a large enough

number of repetitions [194]. Unfortunately, many problems are not repeatable in this

sense. Furthermore, the requirement that the process is repeatable under similar con-

ditions brings additional challenges. Firstly, the definition of similar condition may not

be well defined; secondly, similar conditions may be unrealistic to achieve if we consider

repeating an experiment in the same place at the same time; and thirdly, it may not be

feasible (usually due to time, space or cost), to repeat experiments [194]. For example, a

project developer will only build one wind farm in any given location, at any given point

in time. Again, let us consider the cable failure example. Based on the frequency inter-

pretation of probability, we could use previous cable failure data, specifically the number

of times the cables have previously failed, to arrive at the probability of a future cable

failing. However, we may question whether the conditions surrounding each cable are

similar enough, and therefore whether this event can be repeated.

Another interpretation is called the subjective interpretation of probability. Under the

subjective interpretation, probabilities are degrees of belief of a subject and are assigned

based on a subject’s judgement about the likelihood that a given outcome will be obtained

[194]. The work by de Finetti [198, 199] details one way to measure a subject’s judgement,

and this is through betting rates; a subject can express their degree of belief about an

event occurring by a betting rate. This betting rate is the price a subject is willing to
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buy or sell a bet that returns one if the event occurs and zero if it does not. Naturally,

one subject’s beliefs (and therefore betting rates) may differ from another subject’s as

the probability assignments are likely to be based on the information a subject has about

an event. Returning to the cable failure example, a subject may assign the probability

of a specific cable failing based on the information they have about previous cables, as

well as information that may be unique to this situation. Ultimately, a subject will assign

probabilities based on all the evidence they have available.

5.3.2 Probability Theory

At this point, it is necessary to note that the theory of probability does not depend

on the chosen interpretation of probability. The theory of probability has evolved since

the 17th century, where it is generally thought that the mathematical theory of proba-

bility was introduced by Pascal and Fermat [194]. For a more in-depth discussion of the

history of probability we refer to [194]. Today, probability theory is a widely used tool

across many fields of study. A fundamental contribution to probability theory was made

by Kolomogorov who introduced the axioms of probability [200]. The three axioms of

probability are [200]:

1. The probability of every event, A, is non-negative. This can be expressed as for all

A,P (A) ≥ 0.

2. If an event A is certain to occur then P (A) = 1.

3. For an infinite sequence of disjoint events A1, A2, . . . , we have that:

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai). (5.1)

A probability can be defined mathematically as, on a sample space, the specification

of numbers P (A) for all A that satisfy the three axioms of probability [200]. From these

axioms, other fundamental properties of probability can be derived. Probability is used

to quantify how likely an event is to occur, and probability theory contains numerous

techniques that can be implemented in a range of applications. In practice, we are often

interested in discussing the expectation of an event occurring.

Let X be a random variable. The distribution of X contains all the probabilistic

information about X [194]. However, sometimes summary information is preferred to

describing the full distribution, for example, to communicate results concisely. One way

to achieve this is to consider the expected value, E(X), of X. If X is a discrete random

variable, the expected value is defined by:

E(X) =
∑
x

xp(x). (5.2)
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Here, p(x) = P (X = x), where X = x is the event that the random variable X equals the

value of x. If X is a continuous random variable, the expected value is defined by:

E(X) =

∫ ∞
−∞

xf(x)dx. (5.3)

Here, X has the probability density function f(x) = d
dxP (X ≤ x), where X ≤ x is the

event that the random variable X is less than or equal to the value of x. For clarity, we

point out that we are using standard notation by denoting the probability density function

by f(x). The use of f in this way is limited to Eq. (5.3), since elsewhere in this work

(unless stated) f denotes the failure rate. We also note that X is continuous if it has a

density (this means that the derivative exists for all x), and discrete if X only takes a

finite number of values. The expected value of X is sometimes referred to as the mean

of X and is commonly used in decision making. The expectation is used throughout the

application chapters of this thesis.

We may also be interested in other probability concepts and techniques to quantify un-

certainty such as probability distributions, variances and quantiles. For more information,

we refer to [194].

5.3.3 Statistical Inference

The concepts of probability are used in problems, and this is called statistical inference

[194]. One characteristic of a statistical inference problem is a statistical model, which is a

family of probability distributions and is discussed in detail in [201]. Statistical inferences

then make probabilistic statements (using concepts in probability) about parts of the

statistical model. When conducting statistical inference, there are different philosophies

about the treatment of parameters, namely frequentist statistics and Bayesian statistics.

In the frequentist approach unknown but fixed parameters are not treated as random

variables, whereas in the Bayesian approach, they are [194].

As previously described, when modelling a system, there may be aspects we are unsure

about. When inferences and decisions are being made under severe uncertainty, it is

essential to quantify this uncertainty. Uncertainty quantification is usually conducted

using techniques based on probability theory. By this, we mean for a given event, say that

an export cable will fail in the next year, we assign a probability to this event occurring.

This probability is then used for inferences and decision making. In the case of the

export cable, this may be predicting the expected number of failures a cable experiences,

evaluating the expected availability of the cable, the availability of the system it belongs

to, or predicting the expected cost of export cable failures.
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Figure 5.1: Two-state Markov chain. Here, state zero is the not working state and state

one is the working state, f denotes the failure rate and r denotes the repair rate.

This approach is widely used, especially in practical applications; however, the ap-

proach has some limitations. When there only exists a small amount of information (that

may be qualitative, irrelevant, or conflicting), we may not be able to specify a probabil-

ity distribution since this requires a substantial amount of information. Unfortunately,

there are situations where it is challenging to determine the probability of an event occur-

ring, for example, and in the case of offshore power transmission, when there is a limited

amount of useful data. Frequentist statistics and Bayesian statistics are often debated and

compared. However, in the case where the problem at hand contains severe uncertainty,

both options based on the classical theory of probability, may not be adequate. This

shortcoming motivates a need for more robust techniques under severe uncertainty.

5.3.4 Limitations

In Chapter 4, we used many classical probability techniques, including modelling the

component’s failure and repair behaviour as a Markov process [123]. A component is either

in the not working state (state 0) or the working state (state 1), and moves between the

two states according to the component’s failure and repair rate. Consequently, component

behaviour is often modelled using Markov chains, as shown by Fig. 5.1. A Markov chain

can be interpreted as a mathematical system that transitions between states according

to specific probabilistic rules. Modelling a component in this way allows the expected

downtime and number of failures to be calculated using Eq. (5.4) and Eq. (5.5). These

equations are simple to use and are popular in engineering applications.

E(Downtime) =
f

f + r
(5.4)

E(Number of failures) =
fr

f + r
(5.5)

Here, f and r are the failure and repair rate of a component, respectively.
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Unfortunately, precise Markov chains require assumptions to be made that may be

unrealistic. Modelling a process using a Markov chain makes three assumptions [202]:

1. Time stationarity.

2. The Markovian property, that the process is memory-less: the transition rate to any

other state only depends on the current state.

3. The transition rates (in the component behaviour case this is the failure and repair

rates) are known precisely.

One consequence of these assumptions is that the transition times between states should

be exponentially distributed.

Unfortunately, these assumptions may not be justified in the offshore wind setting.

The first assumption may not be justified as the transition rates may vary in time. With

regards to the second assumption, let us consider an offshore cable; the next state of the

cable will likely depend on the entire history of the cable and not just its current state.

Additionally, if we consider the repair rate of a component, as we see from the example

below and Table 5.1, repairs typically fall into two categories: shorter repair time and

longer repair time. A short repair time (perhaps less than one day) will be the case if a

remote repair is possible; however, a longer repair time will be the case if the fault needs

to be located and repaired by sending a vessel and crew offshore. Therefore, assuming a

constant repair rate may be unrealistic. Many components do not satisfy this Markovian

property (the second assumption) and subsequently, assuming that they do could be an

oversimplification.

Finally, in practice, due to a limited amount of useful data, it may be challenging to

specify the values of the transition rates. Therefore, the third assumption may not be

reasonable. Usually, the most likely estimate is taken to be the value of the parameter,

and as a result, any inferences made may not reflect the uncertainty of the input values.

The validity of these assumptions is also discussed in the work of [140], who demonstrates

the use of Markov chains and interval analysis techniques to study the availability of

multi-state systems.

Let us look at a small example. Gwynt Y Mor is an offshore wind farm that became

operational in February 2015. Between 2015 and 2017, two of the cable have experienced

three failures each [141]. Data for these failures is given in Table 5.1. As there have not

been many failures, there is minimal data and therefore checking that the time to fail and

time to repair values are exponentially distributed is very challenging. Consequently, we

do not have enough information to justify the Markovian property required to model the

system using a Markov chain. Furthermore, we do not have enough data to reasonably
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assign a value to the failure and repair rates. Usually, the mean time to fail (MTTF) and

mean time to repair (MTTR) would be evaluated to achieve this. However, given that we

only have three data points for each cable and the values are quite varied, taking a mean

would not be appropriate. Moreover, the export cables at Gwynt Y Mor have a nominal

voltage of 132 kV, and as we have seen, the industry is moving towards 220 kV export

cables. This advancement leads to the question of whether this data is relevant for future

projects.

Time to fail (days) Time to repair (days)

Cable 1 13, 454, 0.23 106.08, 0.053, 0.0375

Cable 2 218, 294, 0.0014 153.64, 0.057, 0.053

Table 5.1: Time to fail and time to repairs in days for the export cables in Gwynt Y Mor

offshore transmission system (OTS). Data interpreted from [141].

This subsection has highlighted that precise Markov chains are not suitable modelling

techniques to model the failure and repair of components under severe uncertainty. We do

not have enough information to confirm whether the modelling assumptions are realistic,

and therefore any inferences and decisions made from this analysis should be treated with

care. Although we have only demonstrated the limitations for Markov chain modelling, we

can see how this extends to other techniques based on the classical theory of probability.

In the next section, we suggest that techniques based on imprecise probability are a more

robust approach under severe uncertainty than methods based on classical probability

theory.

5.4 Imprecise Probability

5.4.1 Overview

The study of imprecise probability has a long history, including the work by [203].

More recently, [25] developed the theory further and coined the term imprecise probability.

The techniques in this field have been advanced and applied by the research community

several pieces of literature detail the theory, including [25, 204, 205]. In the next sections,

we present an overview of imprecise probability theory following the work of [25, 204]. In

summary, imprecise probability can be thought of as sets of probability models.

The techniques within the theory of imprecise probability are an extension of tradi-

tional probability concepts that allow for the more appropriate handling of severe uncer-

tainties, and, importantly, as we will see for investment planning, indecision. By severe
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uncertainty we mean, for example, due to insufficient data (perhaps, very little data or

even no data just expert intuition), and therefore, we cannot accurately specify a proba-

bility distribution. In contrast, if we have sufficient data, we have enough information to

accurately specify a probability distribution. The methods provide an elegant framework

for more accurately representing our knowledge and, enable inferences and decisions to be

made under severe uncertainty [206]. Consequently, applying imprecise probability could

have invaluable consequences for offshore power transmission.

A single probability measure is limited in the way that it can appropriately represent

our knowledge of an event. For example, we may wish to model the failure behaviour of

an export cable during the planning stage of a future project. In practice, we may not

have enough data for the following reasons: the technology has a short operational history;

previously installed cables may be in different conditions resulting in data that is likely

to be site-specific; as technology advances, previous cables may not be representative of

future cables; and finally, much of the data that exists is not publicly available. Therefore,

representing our knowledge by a probability distribution may not be suitable under this

level of uncertainty.

Let us say that we do not have enough information or data to assign a value or

distribution to the probability of event A occurring, P (A). However, we may be willing

to make a weaker commitment. One approach, using a behavioural interpretation is to

introduce a gap and specify supremum buying, P (A), and infimum selling, P (A), prices

for, in this case, the indicator function IA. Supremum is the greatest lower bound (often

shortened to sup) and infimum is the smallest upper bound (often shortened to inf). In

the literature, this described approach is called the theory of lower and upper previsions

[207, 208, 25]. In a broader sense, the term imprecise probability is used to cover theories

related to generalised uncertainty quantification, including lower and upper previsions [25].

The study of subjective probability as betting behaviours has a long history and was

introduced by de Finetti [198, 199]. Building on this work, Williams studied imprecise

subjective probabilities [209], and more recently Walley detailed this further [25]. By intro-

ducing the gap described above, imprecise probabilities can better represent our knowledge

by assigning different values to the prices we are willing to sell and buy the occurrence

of event A. Introducing this gap allows for indecision since we are willing to buy for any

price less than P (A) and sell for any price greater than P (A). However, we note that

between P (A) and P (A) we are undecided. Imprecise probabilities allow uncertainties

about events to be quantified by intervals instead of a single value or distribution. Instead

of representing the probability of event A occurring by P (A), an interval [P (A), P (A)] is

assigned [204]. Here, 0 ≤ P (A) ≤ P (A) ≤ 1, and P (A) and P (A) are the upper and lower
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probabilities, respectively.

The theory of imprecise probabilities contains a range of techniques that are usually

an extension of techniques found in the classical theory of probability. The selection of

which techniques are most appropriate for a given problem should be chosen and applied

based on the problem at hand. Accordingly, we reviewed the NPV model from Chapter 4

and identified that the foundations of imprecise probability (including lower and upper

previsions), imprecise Markov chains and decision making techniques are required. Each

of these topics will be discussed in the next sections.

5.4.2 Foundations of Imprecise Probability

Imprecise probability theory centres on the behavioural interpretation of subjective

probabilities. By behavioural, we mean a subject’s willingness to take certain actions.

In the explanation, we use the word subject to represent the person taking actions. The

knowledge that we have can be interpreted as a belief; an inclination to act. Imprecise

probabilities consider a specific action called accepting a gamble. The definition below of

a gamble follows [204].

Let X be a finite state space: the set of all possible states of the system. Any possible

state of the system is denoted by x. A gamble, g, is defined as an uncertain pay off as

the subject will obtain a different reward depending on the observed state [204]. g is a

real-valued function on X such that g : X → R. This can be interpreted as, if we take

gamble g and observe the state x then the reward, as a result of gamble g, is g(x) ∈ R.

The reward is measured in units of utility. The utility received as a result of observing

x is a measure of how x is valued and can be used to compare to the value of observing

other x ∈ X . L(X ) denotes the set of all gambles on X .

The reward of a gamble falls onto a linear utility scale, by that we mean that receiving

two lots of the same reward is double the value compared to receiving one reward [204].

This is the case when the reward is money. We also consider a simple utility scale, by

that we mean small scale money as large amounts may affect the way a subject gambles.

Therefore, we assume a subject is risk-neutral for small amounts. It should also be noted

that by these definitions, a reward can be negative. In this case, taking gamble g and

observing state x results in the subject losing money, and therefore g(x) is negative.

To put this into context, let us study a small example. We ask the question, what will

the state of the export cable be tomorrow? To this question, we consider two options:

working (a) and not working (b). In this case, X = {a, b}. Let us say that if the cable is

working, we receive five, but if the cable is not working, we owe ten that is g(a) = 5 and

g(b) = −10.
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A subject can accept a gamble; this means that they agree to the conditions of the

gamble (which describes a subject’s reward or loss for different possible outcomes) despite

the outcome being uncertain. A subject’s willingness to accept a gamble is likely to depend

on their knowledge about an event. In the cable failure example, the reward if the cable

is working is smaller than the penalty if the cable is not working. However, if the subject

strongly believes that the cable is in an excellent working condition, they may be willing

to accept the proposed gamble. A collection of gambles that a subject accepts forms a set

of gambles termed desirable gambles [204]. We denote a set of desirable gambles by D,

where D ⊆ L(X ).

To extend the set of desirable gambles, we consider the following rationality require-

ments for desirability [204]:

1. A transaction that results in a loss should not be acceptable.

2. If a transaction is acceptable, then any transaction that gives a greater reward should

also be acceptable.

3. A combination of acceptable gambles should also be acceptable.

4. Scaling an acceptable gamble by a positive constant should also be acceptable.

Specifically, axioms two to four can be used to extend the set of desirable gambles, and if

axiom one is violated, then the initial selection was bad.

These rationality requirements motivate the following rationality axioms for desirabil-

ity [204]. Let g, g1, g2 ∈ L(X ) and ζ1 ∈ R>0, then we have:

1. If g(x) ≤ 0 ∀x ∈ X and g(x) < 0 for at least one x ∈ X then g /∈ D.

2. If g(x) ≥ 0 ∀x ∈ X then g ∈ D.

3. If g1, g2 ∈ D then g1 + g2 ∈ D

4. If g ∈ D then ζ1g ∈ D

A set of desirable gambles D is coherent if the axioms above are satisfied [204]. Coherence

will be discussed later in this section.

Returning to the cable failure example, we present several gambles, gi, and discuss

whether they are desirable gambles. The gamble g1(a) = 0 and g1(b) = 0 is always

desirable as whatever the outcome the subject will not lose a reward. The gamble g2(a) =

−1 and g2(b) = −10 is never desirable since whatever the outcome the subject will be

at a loss. If the subject thinks the gamble g3(a) = 5 and g3(b) = −10 is desirable, then

g4(a) = 15 and g4(b) = −30 is also desirable to the same subject due to the positive

scaling axiom. Similarly, if g5(a) = 7 and g5(b) = −12 is desirable then g6(a) = 12 and

g6(b) = −22 is also desirable, due to the addition axiom (g3 + g5 = g6). Additionally, the
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gamble g7(a) = 6 and g7(b) = −9 is also desirable since it offers a greater reward than g3

which we assumed to be desirable.

The concepts of desirability provide the foundations upon on which the general the-

ory of imprecise probability is built [204]. Unfortunately, desirability uses an unfamiliar

language, especially in comparison to terms more commonly used in classical probability

theory such as events, probability and expectations [204]. To connect the concepts of

desirability and the more traditional theory of probability, lower and upper previsions are

used [204].

5.4.3 Lower and Upper Previsions

Upper and lower previsions are direct generalisations of the probabilities and expecta-

tions we see in classical theory [204]. This theory was largely developed by Peter Williams

[207, 208] and Peter Walley [25]. The theory considers two types of transactions:

1. A subject accepts to buy the gamble g for a price φ, which is equivalent to accepting

the gamble g − φ.

2. A subject accepts to sell the gamble g for a price of ψ, which is equivalent to accepting

the gamble ψ − g.

A lower prevision P (g) for gamble g is the supremum acceptable buying price for g

and the upper prevision P (g) for gamble g is the infimum acceptable selling price for g.

Mathematically, the definitions for lower and upper previsions are expressed by Eqs. (5.6)

and (5.7) [204]. Here, D denotes a set of desirable gambles.

P (g) := sup{φ ∈ R : g − φ ∈ D} (5.6)

P (g) := inf{ψ ∈ R : ψ − g ∈ D} (5.7)

To put this into context, we return to the cable failure example. Again, let gamble g

be defined by g(a) = 5 and g(b) = −10. If the subject were to buy gamble g for a price of

φ then if the cable is working, they would receive 5 − φ, and if the cable is not working,

they will receive −10 − φ. We recall that the lower prevision is the supremum amount

that the subject is willing to pay for the gamble. If the subject knew for certain that the

cable would be working, they might be willing to pay up to five for the gamble. Similarly,

if the subject were to sell the gamble g for a price of ψ, then they would receive ψ − 5 if

the cable is working and ψ + 10 if the cable is not working. The upper prevision is the

infimum amount the subject is willing to pay for the gamble. In this case, the subject will

make money if they sell the gamble for any price higher than five.

At this point, it is important to note that selling the gamble g for φ is the same as

buying the gamble −g for −φ. This can be shown, as in [204], to lead to P (g) = −P (−g).
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Also, we note that if the lower prevision is equal to the upper prevision, then we have a

precise prevision.

In the theory of lower previsions, we are not directly working with a subject’s set of

desirable gambles. Instead, we model their beliefs by lower and upper previsions [204]. Let

a subject indicate a lower prevision, P , this is a real-valued function such that P : K → R,

where K is the domain of P . We can define a subject’s lower prevision, P (g), as their

supremum buying price for g. This definition means that a subject is willing to pay

any price up to P (g) for g. Specifying a lower prevision, P , is equivalent to the subject

accepting g − P (g) + ε for all ε > 0. Likewise, a subject’s upper prevision P (g) is defined

as a subject’s infimum acceptable selling price for g [204].

Lower and upper previsions are subject to specific requirements that are based on the

rationality of a subject’s behaviour. Previously, we outlined the rationality requirements

for desirability. Similarly, here, we discuss two notions of irrational behaviour that lead to

requirements for the lower prevision. Firstly, the subject should not lose for all outcomes.

This condition is called avoiding sure loss, and we require that a lower prevision P avoids

sure loss. Mathematically, this is expressed by Eq. (5.8) [204]. P avoids sure loss if, ∀n ∈ N

and ∀gi ∈ K, we have:

sup
x∈X

(
n∑
i=1

(gi(x)− P (gi))

)
≥ 0. (5.8)

Here, N denotes the natural numbers including zero: N = {0, 1, 2, . . . }.

Returning to the cable failure example, we consider the gamble g8(a) = 2 and g8(b) =

−5, and the subject specifies a lower prevision P (g8) = 4. In this scenario, the subject

loses regardless of the cable’s status since g8 − P (g8) is −2 if the cable is working and −9

if the cable is not working. Similarly, let’s take the gamble g9(a) = 10 and g9(b) = 2, and

the subject specifies a lower prevision P (g9) = 9. Let’s also consider the gamble g10(a) =1

and g10(b) = 5, and say the subject specifies a lower prevision of P (g10) = 4. In this

scenario, the subject buys both of the gambles for thirteen, but only makes eleven if the

cable is working and seven if the cable is not working. Therefore, this case does not avoid

sure loss. This example to illustrate avoiding sure loss follows an example given in [204]

for a different context.

Secondly, we require that the subject is consistent with the gambles they accept. There-

fore, we require that the lower prevision for a gamble cannot be increased by considering

a positive linear combination of a finite number of other acceptable gambles [25]. This

condition is called coherence and can be mathematically expressed by Eq. (5.9). P is

coherent if, ∀n ∈ N,m ∈ N, and ∀g0, g1, . . . , gn ∈ K, we have that:

sup
x∈X

(
n∑
i=1

(gi(x)− P (gi))−m(g0(x)− P (g0))

)
≥ 0. (5.9)
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Again, we recall the cable failure example. This example to illustrate coherence also

follows an example given in [204] for a different context. Let g11(a) = 0 and g11(b) = 5,

and the subject specifies a lower prevision P (g11) = 4. Also let g12(a) = 7 and g12(b) = 2,

and the subject specifies a lower prevision P (g12) = 3 and an upper prevision P (g12) = 5.

We see that buying gamble g11 for 4 results in a reward of −4 if the cable is working and

a reward of 1 if the cable is not working. However, if the subject sells gamble g12 for 4,

they receive −3 if the cable is working and 2 if the cable is not working. This reward is

higher than buying g11 for 4. Therefore, selling g12 for 4 should be desirable. However,

the subject specified the upper prevision P (g12) = 5, which means that the subjects sells

g12 for any price her than 5. Therefore, the accepted gambles are inconsistent.

So far, in this section, we have detailed lower previsions. Next, we need to consider

how to apply these concepts to an investment planning decision problem. Coherent lower

previsions satisfy several properties; these are detailed in full in [25, 204]. In this section,

we present the properties that are most relevant to our applications. These properties

allow us to reason with lower and upper previsions. Eq. (5.10) relates the lower prevision

of a sum to the sum of its lower previsions. Eq. (5.11) relates the prevision of a product

of a constant and a gamble with the previsions of the gamble. Eq. (5.12) shows that the

lower prevision of a constant, upper prevision of a constant, and the constant itself are all

equal. Eqs. (5.13) and (5.14) shows how to relate a prevision of a gamble plus a constant

to the prevision of a gamble. Let g1 and g2 be gambles, P a coherent lower prevision and

P its conjugate upper prevision. Let ζ2 ∈ R≥0 and ζ3 ∈ R. Then we have Eqs. (5.10)

to (5.14) [25, 204].

P (g1) + P (g2) ≤ P (g1 + g2) ≤ P (g1) + P (g2) ≤ P (g1 + g2) ≤ P (g1) + P (g2) (5.10)

P (ζ2g1) = ζ2P (g1) (5.11)

P (ζ3) = P (ζ3) = ζ3 (5.12)

P (g1 + ζ3) = P (g1) + ζ3 (5.13)

P (g1 + ζ3) = P (g1) + ζ3 (5.14)

Throughout this work, upper and lower quantities will be denoted by the symbol having

an underline and overline, respectively. For example, if Q denotes the rate operator, then

Q denotes the lower rate operator.

5.4.4 Imprecise Markov Chains

In this section, we explain continuous-time imprecise Markov chains which have been

developed and applied by [210, 211, 212, 213, 214, 215, 216]. From a practical point, we

104



usually formulate a probabilistic model and assign input parameters for the purpose of

making inferences and decisions. These inferences will typically consider the expectation of

an event of interest. Therefore, the discussion in this section will focus on the methodology

required to make these inferences. We also focus on a two-state system as this is the case

for our application. For further details on the history, methodology developments and a

more general case of an imprecise continuous-time Markov chain, we refer to [212, 214].

Markov chains are mathematical models used to describe the evolution of a system un-

der stochastic uncertainty. Unfortunately, as previously identified, precise Markov chains

require assumptions to be made that may not always be realistic. One assumption is the

Markovian property which in the offshore power transmission setting may not be justi-

fied. Furthermore, precise Markov chains require point estimates for the transition rates.

Unfortunately, due to a limited amount of useful data, this may not be possible in the

offshore wind setting. These assumptions allow continuous-time Markov chains to be de-

scribed by simple analytical expressions and thus are widely used. In contrast, imprecise

continuous-time Markov chains provide more robust generalisations that relax these de-

scribed assumptions [214]. For a two-state system, these assumptions can be relaxed, and

the equations are still relatively simple to work with.

An imprecise continuous-time Markov chain is a set of stochastic processes where

conditions are specified on the bounds of these processes; however, in the set, the processes

may not be Markovian. When making inferences, rather than computing expected values

of a function, we compute lower and upper expectations. The lower and upper expectations

can be thought of as providing worst- and best-case scenarios when all of the stochastic

processes in the set are considered. An imprecise continuous-time Markov chain is similar

to a Markov chain and therefore can be used to model similar types of systems. The

development of imprecise Markov chains ([210, 211, 212, 213, 214, 215, 216]) provides a

framework to model stochastic processes under severe uncertainty.

Definitions and Notation for Imprecise Continuous-Time Markov Chains

Previously, in this chapter, we introduced a precise continuous-time Markov chain,

which describes a stochastic process whose transition rate to any other state only depends

on the current state. For a continuous-time Markov chain there exists a transition matrix,

Tt, which describes the probability of the system moving between states at any fixed time

t. Mathematically, this can be expressed as:

(Tt)ij := P (Xs+t = j|Xs = i) (5.15)
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where i and j are states in C and Xs is the state of the system at time s. Importantly,

modelling a system using a precise continuous-time Markov chain assumes that the prob-

ability of transitioning to the next state is conditional on Xs, but is independent of all

previous states of the system. Therefore, since Tt does not depend on the time s, the

process is stationary. Later in this chapter, when using imprecise continuous-time Markov

chains, we introduce upper and lower transition matrices denoted by T t and T t.

The transition matrix, Tt, satisfies Kolmogorov’s forward and backward equations given

by Eq. (5.16) and Eq. (5.17), with the initial condition T0 = I. Here, I is the identity

matrix. Let Q denote the transition rate matrix that describes how a Markov chain moves

between states. If Q is constant in time, then it can be shown that Tt = exp(tQ) is the

solution to Eq. (5.16) and Eq. (5.17).

d

dt
Tt = TtQ (5.16)

d

dt
Tt = QTt (5.17)

If Q =

−r r

f −f

, then Q01 = r describes a system moving from state 0 to state 1 at a

rate of r. In this two-state case, the transition matrix can be expressed by:

Tt := I + 1−e−(r+f)t

r+f Q. (5.18)

Again, in the imprecise case, we have upper and lower rate matrices denoted by Q

and Q. At this point, it is important to discuss what is meant by Q and Q. Here, we

provide an explanation that is sufficient for our applications. For more in-depth definitions

and descriptions, we refer to [213, 212, 214, 217]. Moving from a precise continuous-time

Markov chain to an imprecise continuous-time Markov chain, we relax the stationarity

assumption and the Markovian assumption. Consequently, using imprecise continuous-

time Markov chains, we now consider a set of transition rate matrices Q. Following the

definition given by [212], an imprecise continuous-time Markov chain is a random process

whose transition rate matrix is a function Q ∈ Q. Furthermore, all that is known about Q

is that it takes some values in Q; beyond this, we do not make any further assumptions.

Since Q is allowed to be time-dependent and history-dependent (and following the notation

given by [213]), Qij(t, tn, xn, . . . , t0, x0) can be a function that depends on the full history

of the system. Here, t0 > t1 > · · · > tn > t.

A methodology that does not assume time and history dependence is convenient for

offshore transmission applications since we previously discussed that, due to limited data,

we could not validate these assumptions. We are especially interested in making inferences

about the system, and in the imprecise case, this is possible by performing a sensitivity
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analysis over all the continuous-time processes in Q. As we see later in this chapter, to

make inferences about an imprecise continuous-time Markov chain, we require T t and Q.

Following [213], the lower rate operator Q is defined by:

[Qg]i := min
Q∈Q

[Qg]i = min
Qi∗∈Qi∗

[Qi∗g]i (5.19)

for any real function g on the state space of the Markov chain. Here, Qi∗ denotes the ith

row of Q. For further details, we refer to [213].

Based on the example given in [215], we present an example of a lower rate operator

for a two-state system:

Qg = min


−r r

f −f

g(0)

g(1)

 : r ∈ [r, r], f ∈ [f, f ]

 (5.20)

= min


r(g(1)− g(0))

f(g(0)− g(1))

 : r ∈ [r, r], f ∈ [f, f ]

 (5.21)

=



r(g(1)− g(0))

f(g(0)− g(1))

 , if g(1) > g(0)

r(g(1)− g(0))

f(g(0)− g(1))

 , if g(1) < g(0)

(5.22)

Using precise Markov chains, the transition rates are specified by single values. However,

using imprecise Markov chains we can to relax this constraint since, as shown in Eq. (5.20),

transition rates are specified by a set of values (for example, r ∈ [r, r] ). Relaxing this

requirement also relaxes the time stationarity assumption, as the rate parameters can vary

in time provided they stay within the bounds. Therefore, the imprecise Markov chain

allows us to relax the Markovian property since we only require the Markov assumptions

to be satisfied on the bounds.

The indicator function, which will be used later on, is defined by Eq. (5.23).

Ij(i) =


1, if i = j

0, otherwise

(5.23)

Imprecise Continuous-Time Markov Chain: Analytical Solution to the Differ-

ential Equation

Making inferences about an imprecise continuous-time Markov chain requires the so-

lution of the non-linear differential equation given by Eq. (5.24). Usually, analytical ex-

pressions for solutions to this differential equation are not available, and consequently,

numerical approximation methods have been developed [212, 214, 215]. Fortunately, for

107



the simple two-state case that we are considering, the work by [215] shows and proves that

an analytical solution exists. A generic version of this solution is presented here as well as

a shorter proof that it does indeed satisfy Eq. (5.24). This proof is also presented in [218].

d

dt
[T tg] = Q[T tg] with initial condition T 0 = g (5.24)

Once we have a solution to the differential equation, we can make inferences such as

the expected time spent in each state and the expected number of visits to each state.

These quantities are usually of interest when modelling a process using a Markov chain. In

the rest of this section, we first give a solution to the differential equation in the two-state

case and present a proof that the solution does satisfy Eq. (5.24). Then, we explain how

to use this imprecise Markov chain to make inferences.

Proposed Solution to the Differential Equation

Eq. (5.25) proposes a general solution to Eq. (5.24).

T tg := g + 1−e−(fg+rg)t

fg+rg
Qgg, (5.25)

Here,

Qg :=

−rg rg

fg −fg

 (5.26)

and

(rg, fg) :=


(r, f) if g(0) ≤ g(1)

(r, f) if g(0) > g(1)

(5.27)

where 0 ≤ f ≤ f bound the transition from state 1 to state 0, and 0 ≤ r ≤ r bound the

transition from state 0 to state 1.

At this point, we note that the solution proposed in Eq. (5.24) is quite unusual; usually,

the lower operator is not corresponding to the precise operators. This feature makes the

two-state case special. Furthermore, in practice, two-state imprecise Markov chains may

be more convenient than n-state Markov chains, where n > 2, to make inferences. This

simplicity arises as we have closed analytical expressions for typical quantities of interest,

such as expected time spent in each state and the expected number of transitions to each

state. Conveniently, many of the processes we model can be reasonably modelled by a

two-state imprecise Markov chain.

Next, we aim to show that T t given by Eq. (5.25) is the lower transition operator and

does satisfy Eq. (5.24). This proof is given in [218] and is presented below for completeness.

First, we prove Theorem 5.4.1 (which is required in the rest of the proof) by induction.
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Next, we prove that Eq. (5.25) is the lower transition operator. We then prove Lemma 5.4.2

and Lemma 5.4.3, and use these to prove Theorem 5.4.4: that Eq. (5.25) does satisfy

Eq. (5.24).

Throughout, we use the fact that for any matrix A:

exp(A) =
∞∑
n=0

1

n!
An. (5.28)

Theorem 5.4.1. For every a and b ∈ R such that a+ b 6= 0, and for every n ∈ N, n ≥ 1,

we have that −a a

b −b

n

= cn

−a a

b −b

 (5.29)

where cn := −(−a−b)n
a+b .

Proof. We proceed to prove Eq. (5.29) by induction. Clearly Eq. (5.29) holds for n = 1.

We assume Eq. (5.29) holds for a particular fixed value of n ≥ 1. Then,−a a

b −b

n+1

=

−a a

b −b

n−a a

b −b

 (5.30)

= cn

−a a

b −b

−a a

b −b

 (5.31)

= cn

 a2 + ab −a2 − ab

−ab− b2 ab+ b2

 (5.32)

= cn

−a(−a− b) a(−a− b)

b(−a− b) −b(−a− b)

 (5.33)

= cn+1

−a a

b −b

 (5.34)

So, by induction, Eq. (5.29) must hold for all n ∈ N, n ≥ 1.

Next, we want to prove that the expression for T t, repeated here for convenience,

corresponds to the lower transition operator.

T tg := g + 1−e−(fg+rg)t

fg+rg
Qgg, (5.35)

We prove that this operator, T t, solves the specific differential equation given in Eq. (5.24).

It follows then from [212] that the solution to this differential equation is the lower tran-

sition operator.

Lemma 5.4.2. For every g ∈ R2, we have that

[T tg](0)− [T tg](1) = (g(0)− g(1))e−(fg+rg)t. (5.36)
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Proof.

[T tg](0)− [T tg](1) (5.37)

=
(
g(0) + 1−e−(fg+rg)t

fg+rg
[Qgg](0)

)
−
(
g(1) + 1−e−(fg+rg)t

fg+rg
[Qgg](1)

)
(5.38)

=
(
g(0) + 1−e−(fg+rg)t

fg+rg
rg(g(1)− g(0))

)
−
(
g(1) + 1−e−(fg+rg)t

fg+rg
fg(g(0)− g(1))

)
(5.39)

= g(0)− g(1) + (g(0)− g(1))(−rg − fg)1−e
−(fg+rg)t

fg+rg
(5.40)

= (g(0)− g(1))e−(fg+rg)t (5.41)

Lemma 5.4.3. fT tg = fg and rT tg = rg.

Proof. fg and rg are determined solely by the sign of g(0)− g(1). Since, by Lemma 5.4.2,

the sign of [T tg](0)− [T tg](1) is the same as the sign of g(0)−g(1), we have that (fg, rg) =

(fT tg, rT tg).

Theorem 5.4.4. The operator T t, as defined in Eq. (5.35), solves

d

dt
[T tg] = Q[T tg] (5.42)

with initial condition T 0g = g.

Proof. We see that the initial condition T 0g = g is satisfied. Evaluating the left-hand side

of Eq. (5.42) we have:
d

dt
[T tg] = e−(fg+rg)tQgg (5.43)

Evaluating the right-hand side of Eq. (5.42) and using Lemma 5.4.3 we have:

Q[T tg] = QT tg[T tg] (5.44)

= Qg[T tg] (5.45)

=
(
Qg + 1−e−(fg+rg)t

fg+rg
Q2
g

)
g (5.46)

By Eq. (5.29), Q2
g = −(fg + rg)Qg. Therefore,

Q[T tg] =
(
Qg − 1−e−(fg+rg)t

fg+rg
(fg + rg)Qg

)
g (5.47)

= e−(fg+rg)tQgg (5.48)

This work proves that the general solution given by Eq. (5.25) satisfies the initial

condition and the differential equation. Subsequently, this verifies that Eq. (5.25) is a

solution of the differential equation and can be used to make inferences about the imprecise

continuous-time Markov chain.
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Solutions to the Differential Equation for Specific Scenarios

Below are the solutions for cases where g(0) > g(1) and g(0) < g(1). These will be

used later in the work and thus are here for future reference.

For g(0) > g(1):

[T tg](0) = g(0)− r

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.49)

[T tg](1) = g(1) +
f

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.50)

and similarly,

[T tg](0) = g(0)− r

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.51)

[T tg](1) = g(1) +
f

r + f
(g(1)− g(0))(1− e−t(r+f)). (5.52)

For g(1) > g(0):

[T tg](0) = g(0) +
r

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.53)

[T tg](1) = g(1)− f

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.54)

and similarly,

[T tg](0) = g(0) +
r

r + f
(g(1)− g(0))(1− e−t(r+f)), (5.55)

[T tg](1) = g(1)−
f

r + f
(g(1)− g(0))(1− e−t(r+f)). (5.56)

Using an imprecise Markov chain to make inferences

Now that we have a solution to the differential equation, we can use the model to make

inferences. In the rest of this section, we show how to use an imprecise continuous-time

Markov chain to make inferences. We begin by considering how to evaluate bounds on

the expected time spent in each state (the stationary distribution). The lower stationary

distribution is defined by [213]:

πi = lim
t→∞

[T tIi]j . (5.57)

And similarly, the upper stationary distribution is defined by:

πi = lim
t→∞

[T tIi]j . (5.58)

Following on from Eqs. (5.57) and (5.58), expressions for the upper and lower stationary

distribution are given by:

a) The lower expected proportion of time spent in state 0: π0 = limt→∞[T tI0]1
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b) The lower expected proportion of time spent in state 1: π1 = limt→∞[T tI1]0

c) The upper expected proportion of time spent in state 0: π0 = limt→∞[T tI0]1

d) The upper expected proportion of time spent in state 1: π1 = limt→∞[T tI1]0

In order to evaluate the expressions above, we need to use the analytical solutions

given in Eqs. (5.49) to (5.56). Using these analytical solutions, we obtain the expressions

given in Eqs. (5.59) to (5.62).

a)

lim
t→∞

[T tI0] = lim
t→∞

I0(0)− r
f+r (1− e−t(f+r))

I0(1) +
f

f+r (1− e−t(f+r))

 =

1− r
f+r

f

f+r

 (5.59)

b)

lim
t→∞

[T tI1] = lim
t→∞

I1(0) + r

r+f
(1− e−t(r+f))

I1(1)− f

r+f
(1− e−t(r+f))

 =

 r

r+f

1− f

r+f

 (5.60)

c)

lim
t→∞

[T tI0] = lim
t→∞

I0(0)− r

f+r
(1− e−t(f+r))

I0(1) + f

f+r
(1− e−t(f+r))

 =

1− r

f+r

f

f+r

 (5.61)

d)

lim
t→∞

[T tI1] = lim
t→∞

I1(0) + r
r+f (1− e−t(r+f))

I1(1)− f

r+f (1− e−t(r+f))

 =

 r
r+f

1− f

r+f

 (5.62)

Using these equation, we obtain the upper and lower stationary distributions given by:

π =

(
f

f + r
,

r

r + f

)
, (5.63)

π =

(
f

f + r
,

r

r + f

)
. (5.64)

Note that we see the following:

π1 = 1− π0, (5.65)

π1 = 1− π0. (5.66)

Next, we consider the lower and upper expectation of the number of visits to a given

state in a given period. This metric is usually of interest when making inferences about

a system modelled using a Markov chain. γi denotes the expected number of visits to

state i in a given time period of length κ. The lower and upper values of γi are given in

Eq. (5.68) and Eq. (5.68), respectively [213].

γ
i

= κ
∑
j 6=i

πj [QIi]j (5.67)

γi = κ
∑
j 6=i

πj [QIi]j (5.68)

112



Using Eqs. (5.67) and (5.68), we can formulate the upper and lower expected number

of transitions in one year from any state to each of the other possible states. The resulting

formula is given below. Note that κ = 1 since we are analysing one year.

e) The lower expected number of transitions to state 0: γ
0

= π1[QI0]1

f) The lower expected number of transitions to state 1: γ
1

= π0[QI1]0

g) The upper expected number of transitions to state 0: γ0 = π1[QI0]1

h) The upper expected number of transitions to state 1: γ1 = π0[QI1]0

In order to evaluate the upper and lower number of transitions to each state, we

evaluate the upper and lower stationary distributions (π and π), and the result of the

transition rate operator operating on the indicator function (for example, [QI1]). We

have already evaluated the upper and lower stationary distributions. The next step is

to evaluate the transition rate operator operating on the indicator function. Eqs. (5.69),

(5.72), (5.74) and (5.76) show the results of this evaluation, and will be used to evaluate

the expected number of visits to each state.

e)

[QI1] = min


r(I1(1)− I1(0))

f(I1(0)− I1(1))

 : r ∈ [r, r], f ∈ [f, f ]

 (5.69)

= min


 r

−f

 : r ∈ [r, r], f ∈ [f, f ]

 (5.70)

=

 r

−f

 (5.71)

f)

[QI0] = min


r(I0(1)− I0(0))

f(I0(0)− I0(1))

 : r ∈ [r, r], f ∈ [f, f ]

 (5.72)

=

−r
f

 (5.73)

g)

[QI1] = −min


r(I1(0)− I1(1))

f(I1(1)− I1(0))

 : r ∈ [r, r], f ∈ [f, f ]

 (5.74)

=

 r

−f

 (5.75)

113



h)

[QI0] = −min


r(I0(0)− I0(1))

f(I0(1)− I0(0))

 : r ∈ [r, r], f ∈ [f, f ]

 (5.76)

=

−r
f

 (5.77)

Therefore, the upper and lower expected number of transitions in one year from any

state to each of the other possible states are given by:

γ =

(
rf

r + f
,
rf

f + r

)
, (5.78)

γ =

(
rf

r + f
,
rf

f + r

)
. (5.79)

In this section, we have introduced imprecise continuous-time Markov chains, discussed

how they allow potentially unjustified assumptions to be relaxed, focused on a two-state

process and shown how to make inferences for this case. Importantly, going forward, we

have the methods required to evaluate bounds on the expected time spent in a given state

and the expected number of visits to each state. These quantities will prove useful when

modelling the failure and repair behaviour of an offshore transmission system (OTS) later

in this work.

5.4.5 Decision Making using Imprecise Probabilities

In this thesis, the application is focused on investment planning which requires a range

of decisions to be made. There will usually be a set of options from which an optimal

option or many optimal options can be selected. To put this into context, we may aim to

select a topology for an OTS, and let us say that we have two viable options to select from;

for example, to be connected using HVAC technologies or HVDC technologies. We need

some way to select which option we prefer. In this section, we present decision making

techniques using imprecise probability. These techniques are presented in more detail in

[204, 219].

A common approach is to measure and compare each option against some metric such

as expected cost. For example, let a HVAC approach cost £150 million, and a HVDC

cost £200 million. From these options, if we aim to minimise cost, we would select the

HVAC technology. However, if there are uncertainties about some of the inputs required

to evaluate the expected cost of each option, we may choose to use the theory of imprecise

probability to formulate the decision problem. In this case, we may no longer have point
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estimates for the expected cost of each approach but instead bounds on the expected cost.

For example, we may have that the HVAC expected cost is bounded by £140 million and

£240 million, whereas the HVDC expected cost is bounded by £180 million and £210

million. Since these bounds overlap, selecting the optimal option is no longer trivial.

There exist several decision criteria to approach the problem of decision making using

imprecise probability [204, 219]. These criteria include interval dominance, maximality, E-

admissible, Γ-maximin and Γ-maximax. Each criterion has advantages and disadvantages,

and therefore the suitability of a criterion may depend on the specifics of the decision

problem and also the decision maker’s risk aversion. As previously discussed, we also

note that using imprecise probabilities allows for indecision, which is in contrast to using

classical probability theory. This point means that if there is insufficient information to

make a decision, the inferences reflect this. As a simple example, let the expected cost of

a HVAC project be bounded by £140 million and £240 million, and the expected cost of

a HVDC project be bounded by £150 million and £230 million. In this case, the analysis,

for example, using the interval dominance decision criterion (which will be introduced

shortly), may suggest that neither option is preferred over the other.

In many practical applications, like the case studies considered in this thesis, we en-

counter act-state dependence. Act-state dependence is discussed in [204, 219, 220, 221],

and means that the distribution of the state of nature depends on the decision taken. The

presence of act-state dependence dictates the approach taken and the decision criterion

implemented. Importantly, the presence of act-state dependence prevents the use of max-

imality as a decision criterion and requires careful handling of variables. Consequently, we

use two decision criteria: interval dominance [222, 223] and Γ-maximin [224, 225, 226]. In

the rest of this section, we introduce and discuss each of these criteria.

Γ-maximin is a more conservative decision criterion, and selects the option with the

greatest lower bound. This decision criterion could be used if the decision maker is risk-

averse as the criterion selects the decision (or decisions) that maximise the worst expected

gain [224, 225, 226, 219, 204]. Let J be the sets of all options, j be a single option and g

be a function used to evaluate the metric that we are basing our selection on. We define:

E∗ := max
j∈J

E(gj). (5.80)

Any option j such that E(gj) = E∗ is identified as optimal using the Γ-maximin criterion.

This criterion can be thought of analogous to a decision criterion that selects the option

that maximises the pointwise expected value. This is a common approach if lower and

upper previsions are not used. However, using Γ-maximin, the pointwise expected value
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is replaced with the expected lower bound. In other words, we have:

opt(J ) := arg max
j∈J

E(gj). (5.81)

Here, opt(J ) contains all the optimal options j that are selected using the Γ-maximin

decision criterion. Alternatively, if the decision maker is risk tolerant, then they may use

the decision criterion called Γ-maximax, which selects the highest upper bound. Usually,

Γ-maximin and Γ-maximax selects only one option each, and they can be thought to select

the most pessimistic or optimistic option, respectively.

Another decision criterion that could be used is called interval dominance and may be

chosen if the decision maker is risk tolerant. Interval dominance decision criterion selects

any option which is not interval dominated by another option. Here, an option is interval

dominant if its interval is completely to the right-hand side of an interval for another

option. Let j1, j2 ∈ J be two options. j1 interval dominates j2 if [222, 223, 219, 204]:

E(gj1) > E(gj2). (5.82)

Using the interval dominance criterion, we select jk if:

E(gjk) ≥ max
ji∈J

E(gji). (5.83)

This decision criterion usually selects a larger set of optimal options.

To demonstrate the different decision criteria, we use the example presented in Fig. 5.2.

Here, we have four options (A, B, C and D), and we wish to select the option that

maximises the net present value (NPV). If we are risk-averse, we may use Γ-maximin

which selects option C (since option C has the greatest lower bound with a profit of £6

million). If we are risk tolerant, we might use Γ-maximax which also selects option C.

However, using interval dominance, we would select options B, C and D, as only option A

lies entirely to the left of another option.

5.5 Technique Comparison

So far, in this chapter, we have described statistical techniques (based on the clas-

sical theory of probability) currently implemented for decision making in offshore power

transmission. We put forward the case that these techniques may not be adequate in the

offshore transmission setting, as many evaluations are taken under severe uncertainty due

to a limited amount of useful information and data. Motivated by this shortcoming of

currently used techniques, we introduced a behavioural interpretation of probability and a

framework that more accurately reflects our knowledge; particularly, when we do not have

enough information to assign a single probability distribution. This approach is called
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Figure 5.2: Example of four options (A, B, C and D) and their bounds on the expected

NPV which is used to explain different decision criteria.

imprecise probability and can broadly be thought of as working with sets of probability

distributions.

At this point in the chapter, we have introduced the theory of imprecise probability and

some of the more relevant topics for our applications, namely imprecise continuous-time

Markov chains and decision making criteria. The next step is to apply these techniques to

offshore transmission applications and assess the benefits of doing this. These applications

are presented in Chapters 6 to 8. There are some advantages and disadvantages that

are specific to the decision problem at hand; these individual points will be discussed

in the relevant applications chapters. However, before moving on to these applications,

we present two small examples to demonstrate the advantages and disadvantages of the

proposed techniques on a smaller scale.

5.5.1 Example 1: Theoretical Problem

Objective

Let X be a random variable that is normally distributed with unknown mean µ and

known variance σ2 : X | µ ∼ N (µ, σ2) . The expectation of X2 (conditional on µ) is given

by Eq. (5.84).

E(X2|µ) = θ(µ) =

∫
x2

1√
2π
e
−(x−µ)2

2 dx (5.84)
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We aim to find the lower and upper expectation of X2. Let µ ∈ U = [µ, µ], where µ ≥ 0.

Assume θ(µ) has a minimum:

E(X2) = θ∗ = min
µ∈U

θ(µ). (5.85)

Also assume that θ(µ) has a maximum:

E(X2) = θ∗ = max
µ∈U

θ(µ). (5.86)

Here, E(X2) and E(X2) represent the lower and upper expectation of X2.

Assumptions

Here, we present a very simplistic example where µ is uncertain, but σ2 is known. If

we have enough data, we could use this data to assign a value or specify a distribution to

the input parameter µ. If we do not have enough information to specify a distribution,

we can instead bound µ. For example, perhaps we do not have data (or enough data) to

approximate µ, but instead, we have an expert who believes that the mean is in a specified

range. Allowing expert judgement then opens up the question of how to use this expert

information to bound µ. However, we do not focus on this problem here. In this example,

we assume we have a limited amount of information, and therefore, we have epistemic

uncertainty about µ. In this scenario, we consider µ in a set: µ ∈ U = [µ, µ], where µ ≥ 0.

This set represents a set of distributions. In this example, we assume σ is known and has

a fixed value of 1: X | µ ∼ N (µ, 1) .

Approach

For the purpose of this example, let us assume that we cannot compute the integral in

Eq. (5.84). Therefore, we aim to find an estimate to the expectation of X2 conditional on

µ. As we cannot compute θ(µ), we estimate θ(µ) using θ̂, where θ̂ is the standard Monte

Carlo estimator: E(θ̂(Z, µ)) = θ. θ̂ can be formulated using the process below.

Let Z be a random vector of m random variables, Zi, that are independently and

identically distributed: Zi ∼ N (0, 1). As we are interested in X | µ ∼ N (µ, 1), we

consider the transformation Xi = Zi + µ. Therefore, the estimator for the expectation of

X2 is given by:

θ̂(Z, µ) =
1

m

m∑
i=1

(Zi + µ)2. (5.87)

In this simple example, we have assumed that we know where the extremes occur. If we

did not know this, we would first need to find the extremes, and this can be difficult. [227]

provides more information about how to achieve this. As we know where the minimum

and maximum occur, we proceed as follows.
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As θ(µ), in this simple example, is an increasing function of µ (since µ ≥ 0), the

minimum value of θ(µ) occurs at the minimum value of µ which is µ. If µ < 0 then the

minimum value of θ(µ) would occur at µ = 0. Similarly, if µ < 0 the maximum value of

θ(µ) would occur at µ = µ. In this example we assume µ > 0, and therefore we have:

θ∗ = min
µ∈U

θ(µ) = θ(µ)|µ=µ. (5.88)

Similarly, the maximum value of θ(µ) occurs at the maximum value of µ which is µ.

Therefore,

θ∗ = max
µ∈U

θ(µ) = θ(µ)|µ=µ. (5.89)

θ(µ) ∈ [θ∗, θ
∗] by definition. As previously stated:

E(θ̂(Z, µ)) = θ(µ). (5.90)

Using the minimum and maximum points:

E(θ̂(Z, µ)) = θ∗ (5.91)

and

E(θ̂(Z, µ)) = θ∗. (5.92)

We can then evaluate:

θ̂(Z, µ) =
1

m

m∑
i=1

(Zi + µ)2 (5.93)

and

θ̂(Z, µ) =
1

m

m∑
i=1

(Zi + µ)2. (5.94)

Here, it should be noted that Zi (in Eq. (5.93) for the lower estimate and Eq. (5.94)

for the upper estimate) are the same sample. Using the same sample ensures that the

estimates are coherent; specifically, the lower estimate is less than the upper estimate. For

scenarios where µ and µ are equal (or sufficiently close together), and the sample error is

large, the upper estimate may be less than the lower estimate if the same sample is not

used for both bounds. In this case, the estimates would no longer be coherent, and this

could cause issues.

To demonstrate the need to use the same sample, we use the following example. Let

µ = 0 and µ = 1. If we consider a sample size of one (m = 1), and let Z and Z ′ be

separate samples for the lower and upper estimates. If Z = 0.823309 and Z ′ = −1.129038

then θ̂(Z, µ) = 0.67784 and θ̂(Z, µ) = 0.01665. We see that θ̂(Z, µ) is greater than θ̂(Z, µ):

that is the lower estimate of the expectation of X2 is greater than the upper estimate.

Therefore, it is good practice to use the same sample for both estimates to avoid this (by

fixing the seed in the simulation).
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Figure 5.3: θ̂ against µ, for values of µ between five and eight in steps of 0.1. For each

value of µ, one hundred samples (m=100) are used. The pink line shows the real value,

that is the E(X2) = µ2 + σ2.

An approximate 95% confidence interval for θ̂(Z, µ) can be given by:

θ̂(Z, µ)± 1.96
σ(Z, µ)√

n
(5.95)

where

σ2(Z, µ) =
1

m− 1

m∑
i=1

((Zi + µ)2 − θ̂(Z, µ))2. (5.96)

Numerical example

Let µ = 5, µ = 8 and σ2 = 1. Fig. 5.3 shows the value of θ̂ for values of µ between

five and eight and in steps of 0.1. For sample sizes ten, fifty and one hundred we estimate

bounds on the lower and upper expectation of X2, as well as confidence bounds on these

estimates. These results are presented below and visualised in Figs. 5.4 to 5.6.

• For a sample size of ten (m = 10):

– θ̂(Z, µ) = 28.051957

– Approximate 95% confidence interval for θ∗ : [24.047451, 32.056462]

– θ̂(Z, µ) = 70.96344

– Approximate 95% confidence interval for θ∗ : [59.73324, 82.19365]

• For a sample size of fifty (m = 50):
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Figure 5.4: Fig. 5.3 with confidence bounds added. θ̂(Z, µ) and θ̂(Z, µ), for m = 10, are

shown in solid blue and red lines respectively. 95% confidence bounds are shown for θ∗

and θ∗ by dashed blue and red lines respectively.

– θ̂(Z, µ) = 26.624366

– Approximate 95% confidence interval for θ∗ : [24.129142, 29.119591]

– θ̂(Z, µ) = 63.68158

– Approximate 95% confidence interval for θ∗ : [59.72543, 67.63774]

• For a sample size of one hundred (m = 100):

– θ̂(Z, µ) = 24.982932

– Approximate 95% confidence interval for θ∗ : [23.232308, 26.733556]

– θ̂(Z, µ) = 67.43350

– Approximate 95% confidence interval for θ∗ : [64.38156, 70.48543]

Summary

As we did not have enough knowledge about µ, we have epistemic uncertainty. To

handle this uncertainty we bounded the input parameter µ by considering µ ∈ U = [µ, µ].

This epistemic uncertainty leads to bounds on the E(X2): E(X2) and E(X2). In this

work, the bounds on E(X2) are denoted by θ∗ and θ∗. In this analysis, the aleatory

uncertainty is modelled by sampling from the normal distribution. However, this is not

communicated by the mean. To consider the aleatory uncertainty, we looked at confidence
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Figure 5.5: Fig. 5.3 with confidence bounds added. θ̂(Z, µ) and θ̂(Z, µ), for m = 50, are

shown in solid blue and red lines respectively. 95% confidence bounds are shown for θ∗

and θ∗ by dashed blue and red lines respectively.
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Figure 5.6: Fig. 5.3 with confidence bounds added. θ̂(Z, µ) and θ̂(Z, µ), for m = 100, are

shown in solid blue and red lines respectively. 95% confidence bounds are shown for θ∗

and θ∗ by dashed blue and red lines respectively.
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intervals around θ∗ and θ∗.

To conclude this example, we discuss how techniques used here based on imprecise

probability compare to techniques based on classical probability theory. In this example,

we see that, through lower and upper previsions, there exists a framework to model the

epistemic uncertainty in the modelling parameter µ. Techniques based on the classical

theory of probability do not as easily accommodate this. However, we note that the

example presented here is simple. More complex problems could be more computationally

expensive; in particular, where the extremes need to be located.

5.5.2 Example 2: Component Failures

In this section, we focus on a more practical application. For this small example, we

are interested in evaluating the yearly availability of a single component. Additionally, we

aim to compare the proposed approach to techniques used in the literature and practice.

The bullet points below give a summary of the main differences between the techniques.

• In classical probability theory, we usually assign a single distribution to the probabil-

ity of an event occurring; however, this may require strong modelling assumptions.

In the case of evaluating the yearly availability of a component, conventional tech-

niques used in the literature assume that the failure and repair times of components

are exponentially distributed. In Chapter 2, we discussed that these techniques are

based on the work by Billinton [125]. When these standard techniques are applied

to practical applications, the approach is usually not questioned and therefore, the

modelling assumptions are often not verified. As we saw earlier in this chapter,

the assumption that the failure and repair times of components are exponentially

distributed may be too strong in offshore transmission, and therefore we suggest

techniques that allow this assumption to be relaxed.

• Many techniques used are based on classical probability theory that requires input

parameters to be specified by a precise value or distribution. When there is a limited

amount of useful data, we may not be able to assign a probability distribution

accurately. Instead, we model epistemic uncertainty by considering bounds on these

inputs.

• Using imprecise probabilities allows for indecision, and this is beneficial in cases

where there is not enough information to select one option over another.

To further demonstrate these points, we evaluate the yearly availability of a single

component using two approaches, which, for convenience, we call approach A and approach
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Figure 5.7: Two state Markov chain. State 0 represents a component not working and

state 1 represents a working component.

B. Approach A models the component as a precise Markov chain, whereas approach B

models the component as an imprecise Markov chain.

Approach A

Using approach A, we model the component as a precise two-state Markov chain, as

shown in Fig. 5.7. Here, state 0 represents a component not working, state 1 represents

a working component, and f and r are the failure and repair rates, respectively. As we

have seen before, the rate matrix, given by Eq. (5.97), describes the rate a Markov chain

moves between states.

Q =

−r r

f −f

 (5.97)

We recall that the yearly availability of a component is a continuous random variable

that can take any value between zero and one, and is affected by the duration a component

spends in the failed and working states. The yearly availability of the component can be

defined by Eq. (5.98) (as seen in Chapter 4).

Yt =
1

1 year

∫ 1 year

0
Aτ dτ ' 1

8760

8760∑
h=0

Ah (5.98)

Here, Yt denotes the average yearly availability of the component, Aτ denotes the availabil-

ity of the component at any one given point in time, and Ah denotes the hourly availability

of the component. On account of the limited amount of data surrounding availability, a

Monte Carlo simulation approach, using hourly discretisation steps to approximate the

integral in Eq. (5.98), can be used to determine the distribution for Yt. The simulation

generates N realisations, y1, . . . , yN , of Yt. From these realisations, we can examine the

distribution of availability.

Approach A models aleatory uncertainty, but not epistemic uncertainty. Consequently,

this approach relies on the Markovian assumptions being satisfied and requires enough data

to assign a value to f and r. Unfortunately, we may not have enough information to be

confident that these assumptions are satisfied in the offshore transmission setting.
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Based on approach A, a long-term average of the yearly availability is often considered

which, under ergodicity (in other words, the long-term expected yearly availability is equal

to the expected availability at any given point in time), can be evaluated by Eq. (5.99) (or

equivalently Eq. (5.100)). This approach is frequently used in the literature, for example,

by [99], to evaluate availability.

Availability =
r

r + f
(5.99)

=
mean time to fail

mean time to fail + mean time to repair
(5.100)

Eq. (5.100) requires enough data to assign values to the mean time to fail (MTTF)

and the mean time to repair (MTTR) that accurately represents the information available

about a component. Using Eq. (5.100) directly does not model aleatory or epistemic

uncertainty; furthermore, we only obtain a single availability value, unlike in the simulation

above.

Approach B

In the second approach, which for convenience we call approach B, we model the

components using imprecise continuous-time Markov chains. Imprecise continuous-time

Markov chains and the corresponding theory were introduced and explained earlier in this

chapter in Section 5.4.4. In the example at hand, we adopt this modelling approach and

bound the transition rate from the working state to the failed state by f and f . Similarly,

we bound the transition rate from the failed state to the working state by r and r. Here,

0 < f < f and 0 < r < r.

In this approach, we work with a set of processes and therefore, the modelling as-

sumptions of a Markov process are relaxed. Importantly, we no longer require that the

transition rates are independent of the history of the system. Instead, we consider a set

of transition matrices that may depend on the full time and history of the system. Fur-

thermore, approach B no longer requires us to specify transition rates as precise values.

When making inferences, rather than computing expected values of a function, lower and

upper expectations are computed. Using this approach, we model aleatory uncertainty

and epistemic uncertainty.

Numerical Example

In this section, we apply the two approaches described above to the same problem.

We aim to evaluate the expected yearly availability of two components and select the

component that has the highest expected yearly availability. For this example, failure and

repair data of component one and component two are given in Table 5.2.
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Component 1 Component 2

Time to fail data (days) 100, 120, 60, 200, 250 110, 90, 120, 140, 70

Time to repair data (days) 1, 1, 20, 19, 3 2, 1, 5, 24, 18

Table 5.2: Table of failure and repair data used in the numerical example.
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Figure 5.8: Histogram of the yearly availability of component two obtained from the

simulation. The mean availability is 0.946 and shown by the black vertical line.

From the data in Table 5.2, for component one, we evaluate the MTTF to be 146 days,

the MTTR to be 8.8 days and, using Eq. (5.99), the long-run availability to be 0.943.

Similarly, for component two, we evaluate the MTTF to be 106 days, the MTTR to be 10

days and the long-run availability to be 0.914. This analysis suggests that component one

has a higher expected yearly availability.

To model the component using a Markov chain, we assign values to the transition rates

between the failed and working states. Using the data in Table 5.2, for component one we

assign a failure rate of 2.5 fails per year and a repair rate of 41.4 repairs per year, and for

component two we assign a failure rate of 3.4 fails per year and a repair rate of 36.5 repairs

per year. These values have been assigned by taking the reciprocal of the mean times.

As described above, we use these values to sample times to fail and times to repair and

generate a trace for the component. This trace is used to determine the yearly availability

of the component. We repeat this process to obtain a distribution for the component’s

yearly availability. The results are shown by Fig. 5.8 and Fig. 5.9. A summary of the

expected yearly availability results obtained is presented in Table 5.3.

This modelling approach assumes that the times to fail and times to repair follow an

exponential distribution. Given that we only have five data points, that vary from each

other, this assumption is difficult to justify. Furthermore, assigning a single value to the

transition rates does not sufficiently represent the data we have available.

Using approach B, we bound the transition rates. The choice of bounds falls to the
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Figure 5.9: Histogram of the yearly availability of component two obtained from the

simulation. The mean availability is 0.913 and shown by the black vertical line.

decision maker and remains an open topic of discussion. For now, we bound the transition

rates using the minimum and maximum data values observed. This approach is simplistic

and perhaps limited, but is reasonable enough for this simple example. However, we note

that in practice, this approach to assigning bounds on the transition rates is rarely taken.

Instead, in practice, techniques that more robustly represent our prior knowledge are used,

and one way to do this is to implement a robust Bayesian model. The work by [218] gives

an example of this.

For component one, we let the failure rate (transition rate to the not working state)

be bounded by 1.46 fails per year and 6.08 fails per year. Similarly, we let the repair rate

(transition rate to working state) be bounded by 18.25 repairs per year and 365 repairs

per year. For component two, we let the failure rate be bounded by 2.61 fails per year

and 5.21 fails per year, and the repair rate is bounded by 15.2 repairs per year and 365

repairs per year.

Using the bounds on the transition rate, we evaluate bounds on the expected time spent

in the working state in a year (the yearly availability). This is achieved using Eqs. (5.63)

and (5.64). A summary of these results is presented in Table 5.3. For component one, we

bound the time spent in the working state by 273.75 days (availability is 75.0%) and 363.54

days (availability is 99.6%). Likewise, for component two, we bound the expected time

spent in the working state by 270.1 days (availability is 74%) and 362.45 days (availability

is 99.3%).

Using these results, we can compare the bounds on expected availability to find which

component is more favourable. The bounds obtained using approach B overlap and there-

fore using the interval dominance criterion, as previously detailed, suggests that neither

option is preferred. Using Γ-maximin, we select the option with the greatest lower bound

and therefore suggests that component one is optimal.
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Figure 5.10: Component one. The left-hand side histogram shows the worst-case yearly

availability obtained from the simulation. The mean availability is 0.753 and shown by

the black vertical line. The right-hand side shows the histogram of the best-case yearly

availability obtained from the simulation. The mean availability is 0.998 and shown by

the black vertical line.

Expected Yearly Availability Decision

Component 1 Component 2

Approach A 0.946 0.913 Component 1

Approach B [0.750, 0.996] [0.740, 0.993] Γ-maximin selects Compo-

nent 1 and interval dominance

selects Component 1 and 2.

Table 5.3: Summary of expected yearly availability results using approach A and approach

B, and the component found to be optimal under each approach.

Using approach B, we can also simulate the behaviour of the components to find the

upper and lower distributions for the yearly availability of each component. These upper

and lower distributions are achieved by inputting best- and worst-case failure and repair

rates. These are shown by Fig. 5.10 and Fig. 5.11.

Comparing these two techniques, we see that approach B relaxes some of the strong,

and perhaps unjustified modelling assumptions that are required for approach A. Approach

B uses techniques that allow for the more appropriate handling of the severe uncertainties

that are present due to a limited amount of failure and repair data. Furthermore, the

outputs from approach B reflect the uncertainty in the input modelling parameters, and

the decision maker has more information to base their selection. Using approach B allows

for indecision in the case where we do not have enough information to select one component

over another. This indecision could be seen as an inconvenience to the decision maker;

however, we suggest that this indecision is useful, especially if these decisions are part of
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Figure 5.11: Component two. The left-hand side histogram shows the worst-case yearly

availability obtained from the simulation. The mean availability is 0.748 and shown by

the black vertical line. The right-hand side shows the histogram of the best-case yearly

availability obtained from the simulation. The mean availability is 0.996 and shown by

the black vertical line.

a significant investment decision.

5.6 Conclusions

In this chapter, we defined severe uncertainty; in summary, to be a scenario when we

do not have enough information to assign a probability distribution accurately. Next, we

present statistical techniques currently implemented when making decisions in offshore

power transmission. We go on to show the limitations of techniques based on classical

probability theory when there is severe uncertainty by presenting a cable failure example.

On account of these shortcomings, we motivate the need for more suitable techniques

when making decisions under severe uncertainty, as is often the case in offshore power

transmission.

We present and explain a behavioural interpretation of probability that uses supremum

buying and infimum selling prices, also known as lower and upper previsions. More gen-

erally, this approach is called using imprecise probability. We go on to discuss techniques

within the theory of imprecise probability that are relevant to our application: imprecise

continuous-time Markov chains and decision making criteria. In the final section of this

chapter, we present two examples where these more robust techniques under severe cer-

tainty are applied. In these examples, we assess the benefits and limitations of taking this

approach.

In the following chapters, we apply these suggested techniques to relevant decision

problems in offshore power transmission. Chapters 6 and 7 demonstrate the techniques

on specific decision problems. Specifically, Chapter 6 aims to find the optimal technology
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choice and ownership structures for an offshore transmission system (OTS). Chapter 7

considers whether it is beneficial to invest in an interlink between two offshore substations

in a single project. Chapter 8 presents a more significant contribution, as we present an

OTS planning tool under severe uncertainty that utilises the techniques presented in this

chapter.

So far, the techniques presented show promising signs to be beneficial in the applica-

tion to offshore power transmission. However, the application of theoretical techniques to

practical problems may bring challenges, and these are explored in the application chap-

ters. In particular, we investigate ways to communicate the outputs of the analysis in

an effective way for those unfamiliar with imprecise probability. Furthermore, we aim to

assess the extent to which these techniques are beneficial and also discuss the limitations

of taking this alternative approach.
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Chapter 6

Application 1: The Impact of

Offshore Transmission Regulatory

Regimes on Technology Choices

The work of this chapter closely follows [2].

6.1 Introduction

In Chapter 2, we discussed that many offshore transmission assessments and decisions

are taken under severe uncertainty, and how, unfortunately, these technical and economic

uncertainties surrounding offshore power transmission complicate decision making. In

this chapter, we focus on two decisions, the first taken by policymakers regarding which

regulatory regime to implement and the second taken by project planners concerning

project design specifications. The exploration of these questions is of interest to those

in offshore wind transmission. However, the main aim here is to demonstrate the extent

to which the advanced statistical techniques described in Chapter 5 can be beneficial to

decision making under severe uncertainty in offshore power transmission. The application

of these techniques serves the following purposes:

• To demonstrate how the techniques can be implemented in the analysis of a practical

decision problem.

• To find and overcome challenges that may arise in the application of these techniques

to practical problems.

• To show the benefits of taking this alternative approach and, in particular, its ability

to handle severe uncertainty in the input parameters (required to evaluate projects

economically) more appropriately.
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• To discuss any limitations.

Various factors contribute to a thriving offshore wind market, including its offshore

transmission regulatory regime. In Chapter 2, we discussed that countries implement

different ownership structures of the offshore transmission system (OTS), which can be

summarised as third-party ownership, onshore transmission system operator (TSO) owner-

ship or developer ownership. Each approach appears to have advantages and disadvantages

with regards to economic security, risk management and coordination within and between

projects. Assessing the benefits of existing regulatory regimes is valuable for emerging

markets since there is limited information available.

To enable lessons learned, in this chapter, we summarise and contrast different reg-

ulatory regimes. Other countries are keen to install offshore wind generation assets to

meet policy targets of a more significant share of renewables. Consequently, governments

and stakeholders will design policies and frameworks to support this movement and may

investigate current practices. Ultimately, policymakers will decide on an offshore trans-

mission regulatory regime. Once the regime is established, developers make technology

choices, including whether HVAC or HVDC is preferred. In this chapter, next-generation

transmission topologies (based on current design trends) are presented as case studies. We

then formulate a decision problem to assess the impact of transmission regulatory regimes

and technology choices on the economic performance of an offshore transmission project.

In the formulated decision problem, we identify uncertain model inputs: cable failure

rate, cable repair rate, capacity factor and wholesale energy price. Usually, as we discussed

in Chapter 5, distributions are assigned to model variables but, under severe uncertainty

due to limited information, it is difficult to identify the appropriate distribution. Since

classical decision making techniques are unable to deal with the identified uncertainties

adequately, and because these decisions could have substantial economic consequences,

imprecise probability techniques are utilised. Therefore, we assign a set of distributions

for each input parameter based on literature. Using these sets and imprecise probability

techniques presented in Chapter 5, we bound expected profit and analyse these bounds to

find economically preferable options.

When applying imprecise probability in this context, we encounter a similar problem

to [220] in that we have act-state dependence the distribution of the state of nature

depends on the decision. In this chapter, we discuss how we handle act-state dependence

in this decision problem and how it dictates the methodology. Once the methodological

approach has been established, we focus on the communication of the results and present

a visualisation approach that provides a way to engage with decision makers who are

unfamiliar with imprecise probability.
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In summary, this chapter investigates economically preferable regulatory regimes and

technology choices for emerging markets from an investor’s point of view; a key player in

the growth of the industry. As technical and regulatory decisions are taken under severe

uncertainty, we explore techniques that are robust under severe uncertainty and present

the benefits of this approach. The contributions of this work include the use of imprecise

probability in a new field, and by doing so, we aim to gain a better understanding of how

to implement these techniques.

The aims of this chapter are:

1. To apply imprecise probability decision making techniques to a practical decision

problem in offshore power transmission.

2. To investigate which investment-driven regulatory regime and technology choice are

economically preferable, from an investors perspective, under severe uncertainty.

3. To overcome the issue of act-state dependence in the decision problem by handling

act-state dependent and independent variables appropriately.

4. To explore ways to present and visualise the results effectively.

5. To compare classical and imprecise probability techniques to make decisions under

severe uncertainty.

The structure of the chapter is as follows. Section 6.2 summarises and contrasts current

regulatory regimes. Section 6.3 discusses emerging markets and presents a HVAC and

a HVDC transmission connection to act as our case studies. Section 6.4 outlines the

decision problem and explains the bounding approach used to address severe uncertainty.

Following this, Section 6.5 presents the input data. Section 6.6 goes on to present the

results of bounding expected profit to find optimal decisions. Section 6.6 also compares

the advanced statistical techniques to conventional methods, and discusses the advantages

of using imprecise probability to better handle severe uncertainty. Finally, Section 6.7

discusses the conclusions of this chapter.

6.2 Offshore Transmission Regulatory Regimes and Owner-

ship Structures

6.2.1 Individual Countries’ Set-ups

In this chapter, we focus on a decision problem relating to the offshore transmission

system (OTS). We begin by briefly recapping what defines an OTS (this was previously

defined in Section 2.2). The OTS connects the offshore wind farm to the onshore grid and

usually includes the offshore substations, offshore and onshore cable systems, and onshore
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substations.

Currently, the responsibility of owning and operating the OTS varies between countries.

In Section 2.4, we detailed ownership structures for Belgium, Germany, China, Denmark,

Netherlands and the UK. From these countries’ set-ups, we see that ownership usually

falls to either a third-party company, the offshore wind farm developer or the onshore

TSO. Each of these ownership structures are detailed in Sections 6.2.2 to 6.2.4.

There is limited detailed literature regarding OTS regulatory regimes and ownership

structures. On occasion, individual countries present outlines of their approach and these

were discussed in Section 2.4. Furthermore, several studies investigate the ownership

structure of an OTS. In the literature, [228] discusses the ability of current regimes to

support larger offshore wind farms as well as cross-border projects. Similarly, [52] gives an

in-depth report into current regulatory regimes, with a view to increasing the amount of

offshore wind generation in the North and Irish Sea. Additionally, the study by [103] takes

a consumer perspective to assess the value for money of third-party ownership compared

to TSO ownership. The work by [103] suggests TSO ownership to be beneficial in small

and medium-scale projects; however, for larger projects, third-party may be beneficial.

Together these studies suggest that the optimal regime is still debatable.

Information regarding the economics of onshore transmission system operator (TSO)

owned OTSs is detailed in law, and may vary from country to country. We do not

have enough information to formulate a justified economic model for onshore TSO owned

projects. Since this economic model is required to conduct a fair comparison, onshore

TSO ownership is omitted from the analysis conducted in this chapter. Instead, this work

focuses on regimes where OTS development is more competitive and investor-driven.

To date, the industry as a whole appears to prefer onshore TSO ownership; however,

an emerging market will assess their options in full. We also note that regimes yet to

be implemented are not considered here as this would also not be feasible; however, an

emerging market may choose to implement something novel. In this next sections, we detail

the three broad categories of ownership structures: onshore TSO owned (Section 6.2.2),

developer owned (Section 6.2.3) and third-party owned (Section 6.2.4). Following these

descriptions, in Section 6.2.5 we qualitatively compare the different ownership structures.

This comparison supports the quantitative comparison that follows in the rest of this

chapter.

6.2.2 Onshore Transmission System Operator (TSO) Owned

Several structures fall under onshore TSO owned. The offshore grid connection can be

regulated (by the onshore regulator), non-regulated (through a third-party investor), or
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something in between where there might be a third-party investor, but the onshore TSO

also takes on some of the expenses. These costs are then translated into tariffs.

In some cases, under onshore TSO ownership, both public and private, the responsibil-

ity of the onshore TSO to connect generating assets is extended offshore to include offshore

generating assets. When a government entrusts the onshore TSO to connect offshore gen-

eration assets (perhaps through regulated power utilities), they must plan, construct and

operate the required assets, while balancing costs and system availability [45]. Under this

approach, costs are socialised to all users [52]. Further details on onshore TSO ownership

are difficult to obtain.

6.2.3 Developer Owned

Under a developer owned structure, an offshore wind farm developer may build and

operate the offshore wind farm and OTS. Information outlining this ownership structure

has been drawn from [228, 52] and operational project details [48]. Under this approach,

the OTS is seen as an extension of the offshore wind farm. Therefore, the responsibilities of

the developer continue up to the onshore grid connection point. Approaches to developer-

owned OTSs are often tailored by a specific country [52].

In this work, we consider a general developer owned approach where subsidies are

not considered. This simplification could be justified in the future as we evolve towards

subsidy-free offshore wind [229]. The developer generates revenue based on the amount

of power transmitted to the onshore grid. Current economic models consider the revenue

stream for just the offshore wind farm to be the amount of energy produced multiplied

by the wholesale price of energy [24]. Extending this to include the OTS, we evaluate

the annual amount of revenue acquired to be the annual amount of energy generated and

transmitted multiplied by the wholesale price of energy. This is shown in Eq. (6.1).

Rt = Energy produced and transmittedt ×Wholesale pricet (6.1)

Here, R denotes revenue, t denotes the year of operation. Wholesale price refers to the

price of energy when it is initially traded. The energy produced and transmitted refers to

the yearly amount of energy that is transmitted to the onshore grid:

Energy produced and transmittedt = 8760× a× St × Yt (6.2)

Here, a denotes project capacity, which is the amount of power the wind farm is capable

of generating based on turbine ratings. In this work, a is assumed to be known at the time

of decision. 8760 is the number of hours in a year. St represents the wind farm capacity

factor which is the ratio of actual power output over potential power output. Capacity
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factor and wholesale price are unknown at the time of decision. Finally, Yt represents the

average yearly availability of the OTS and is a random variable.

6.2.4 Third-party Owned

Under a third-party approach (such as in the UK), a separate entity owns the OTS.

This regime was presented in detail in Chapter 2, and in this section, we give a recap. A

developer builds both the wind farm and OTS but only owns the wind farm during its

operational phase. Therefore, when the OTS is operational, the developer hands these

assets to an offshore transmission owner (OFTO). An energy regulatory body runs a

competitive tender process to award an OFTO licence to a particular company. The licence

determines the amount the OFTO pays the developer for the assets as well as an agreed

long-term revenue stream (base revenue), regardless of generating asset performance [181].

OFTOs are incentivised to maintain high levels of availability throughout the revenue

period. An offshore transmission owner’s (OFTO) revenue received depends on the avail-

ability of the OTS, and is based around an annual target of 98% availability. As we have

seen before, the incentive model can be described by Eq. (6.3) [49].

Rt =


0.9×B, if Yt ≤ 0.94

(0.9 + (Yt − 0.94)× 2.5)×B, if Yt ≥ 0.94

(6.3)

Here, R denotes revenue, t denotes the year of operation, B denotes the base revenue which

is unknown at the time of decision. Yt represents the average yearly availability of the

OTS, which can be defined as the fraction of time the system is capable of transmitting

power. Yt is unknown at the time of the decision, and must be treated as a random

variable.

6.2.5 Comparison of Ownership Approaches

Now that these three ownership structures have been presented, in this subsection, we

set out to compare them. The third-party and developer ownership structures are similar

in many respects. Both regimes require the OTS owner to finance the capital costs of the

OTS. A developer has a more substantial project capital as they must also finance the

offshore wind farm. Both approaches require the OTS owner to finance and coordinate

operational maintenance, and there is a financial incentive to maintain high availability.

There are some key differences between the two regimes. The third-party regime

involves an additional company which allows competition but leads to differences in the

ability to facilitate coordination. Under a third-party regime, investors are restricted

but guaranteed a revenue between 105% and 90% of a fixed base revenue. The revenue is
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dependent on OTS availability and therefore, independent of generating asset performance.

In contrast, under developer ownership, revenue is dependent on project performance

and wholesale price. The developer approach allows the developer to coordinate planned

maintenance to coincide with generating asset downtime and therefore, minimise total

system downtime. Although both approaches require owners to finance the transmission

assets, the time frame differs. Developers must finance assets pre-construction, whereas,

under the third-party approach, payment is not required until the assets are operational.

Furthermore, during construction, the developer experiences years of no revenue for the

offshore transmission assets, unlike in the third-party case where revenue is generated

shortly after the asset transfer.

The onshore TSO owned approach is similar to the third-party approach in terms of

asset management. In particular, there is still a requirement to maintain high levels of

availability; however, it is not clear whether there is an explicit revenue linked incentive.

Additionally, the onshore TSO owned approach is similar to the third-party approach in

terms of financing since the onshore TSO finances only the OTS. The main differences

between these two ownership structures arise due to a lack of competition.

6.3 Emerging Markets

6.3.1 Finding Solutions for New Market Participants

Many countries have clean energy generation targets to meet. Therefore, recently,

there is increased interest by countries to install offshore wind farms. These assets need

to be connected to the onshore grid, and to facilitate this the appropriate transmission

infrastructure will be installed. To find optimal solutions for these grid connections and

ultimately support government targets, studies to investigate ownership structures, busi-

ness models and regulatory regimes are required. This chapter focuses on the regulatory

and ownership aspect of this challenge.

During the planning stage of a project, many factors contribute to selecting a partic-

ular topology, including reliability, safety, environmental impact, social perspective and,

possibly most important to investors, the associated costs. Therefore, this work focuses

on the economic benefit of competitive investor-driven regimes.

6.3.2 Case Studies

After the regulations are in place those involved in planning an offshore transmission

project will decide on design specifications. As discussed in Section 2.8, several studies

explore optimal transmission topologies and technology choices including [16, 39, 89]. For
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Figure 6.1: HVAC (left) and VSC-HVDC bipole (right) case study. The dashed line

represents a neutral cable.
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a project one hundred kilometres from shore, one decision may be whether to implement

HVAC or HVDC connection technologies.

In this chapter, we take a 1.2 GW offshore wind farm case study as representative of

recent projects. Guidelines that have been given in [230] are used to design two generic,

far from shore, HVAC and VSC based HVDC topologies, shown in Fig. 6.1. We note

that Fig. 6.1 is a simplified diagram that makes assumptions, which will affect cost and

availability. Considering a topology in more detail is beyond the scope of this work, and so

we take Fig. 6.1 as standard designs for this work. For this 1.2 GW project to be deployed

in an emerging market, an optimal OTS regulatory regime and topology is desirable. The

following analysis evaluates bounds on the expected return on investment (ROI) for each

regulatory regime and technology choice while considering the associated uncertainties.

6.4 Methodology

So far, in this chapter, we have introduced and motivated the regulatory and tech-

nical decision problems that we will investigate. These decision problems are used to

demonstrate how to implement imprecise probability techniques to a practical problem of

interest. In this section, we more formally formulate the decision problem and explain the

methodology.

6.4.1 Problem Outline

Let policymakers make a decision (j1) between a developer and third-party ownership

structures and project planners make a decision (j2) between HVAC and HVDC tech-

nologies. In total there are four options: developer and HVAC (option one); developer

and HVDC (option two), third-party and HVAC (option three); third-party and HVDC

(option four). We aim to compare these four options. In this chapter, we use this decision

problem to demonstrate how techniques based on the theory of imprecise probability can

be applied to a practical decision problem that is taken under severe uncertainty.

In Section 6.4.2 we formulate the decision problem. Following this, Section 6.4.3 de-

scribes the limitations of using techniques based on the classical theory of probability, and

Section 6.4.4 shows how techniques based on imprecise probability can be applied to the

described decision problem. In Section 6.4.4, we also explain how the techniques allow for

the more appropriate handling of uncertain inputs, and therefore, illustrate the benefits

of applying imprecise probability.
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6.4.2 Return on Investment (ROI)

So far, in this thesis, we have focused on the economic metric termed net present

value (NPV). However, NPV may not be a suitable metric to compare multiple projects

when the initial investment of each project is drastically different. For example, if project

A has a NPV of 20 and project B has an NPV of 30, we cannot say that project B is

preferable over project A without knowing their initial investments and, more importantly,

whether they are similar. If these initial investments significantly differ, we may no longer

think that project B is preferable; for example, if we invested 2 in project A and 28 in

project B, we may not find project B to be preferable over project A.

This difference in initial investments is the case in this chapter, as we compare projects

from the perspective of both a developer and a third-party owner. A developer finances

the wind farm and the OTS whereas a third-party finances only the OTS. Furthermore,

wind farm costs are usually significantly higher than those of the OTS, and therefore

initial investments differ considerably. Consequently, in this chapter, we use the metric

termed ROI, as it may be more suitable to compare projects whose initial investments

vastly differ.

Usually, the choice of economic metric falls to the decision maker. There exist several

metrics to choose from, and each metric has different advantages and disadvantages, which

are discussed in detail in [231]. Selecting the most suitable metric is not the aim of this

work; therefore, we select a reasonable and suitable metric to conduct the analysis. In

this chapter, we set out to demonstrate how statistical techniques based on the theory of

imprecise probability can better handle severe uncertainties in the model inputs. These

techniques are applicable irrespective of the economic metric chosen; moreover, most met-

rics consider the same inputs. Therefore, we selected the metric termed ROI as an example

to demonstrate the implementation of imprecise probability.

The metric ROI, defined for our case study by Eq. (6.4), is used to compare the options

[231]. Here, R denotes revenue, t denotes the year of operation and n represents the number

of operational years. OPEX represents the operational expenditure and CAPEX denotes

the capital costs of the project.

ROI(j1, j2) =

∑n
t=1(Rt(j1, j2)−OPEXt(j1, j2))− capex(j1, j2)

capex(j1, j2)
(6.4)

The metric ROI does not reflect the duration of the investment, and this may be a

limitation. In this chapter, we compare projects with the same lifetime, so this limitation

may not be relevant. However, one solution is to consider the annual return on investment,

which can be calculated by Eq. (6.5) [232, 233].

Annual ROI = (1 + ROI)
1
n − 1 (6.5)
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Here, n is the project lifetime (number of operational years) and ROI is evaluated using

Eq. (6.4). We note that in this case, the annual ROI is not evaluated by simply dividing

Eq. (6.4) by the number of operational years as this would ignore the effect of compound-

ing. We also note that ROI calculated using Eqs. (6.4) and (6.5) is a ratio. ROI is more

commonly expressed as a percentage; this is achieved by simply multiplying the result of

Eqs. (6.4) and (6.5) by one hundred.

6.4.3 Classical Approach

Using statistics based on the classical theory of probability, we evaluate the expected

ROI for each option and suggest that the option with the highest expected ROI is optimal.

The expected value (denoted by E) is discussed in Chapter 5 and can be thought of as

the average value of a random variable over its possible outcomes. Furthermore, the

expectation is a summary statistic used for decision making. Evaluating the expected

ROI requires the expectation of capacity factor, availability and wholesale price. We do

not have enough information to assign realistic distributions to these inputs.

Furthermore, in Chapter 5, we discussed how classical availability models assume fail-

ure and repairs are exponentially distributed and unfortunately, we do not have enough

information to justify these modelling assumptions. Accordingly, we seek more suitable

methods and implement imprecise probability techniques that we introduced in Chap-

ter 5. The next section discusses how to apply these techniques to the decision problem

introduced in this chapter. Following this explanation of the methodology, we apply these

techniques in Section 6.6 and assess the benefits of doing so.

6.4.4 Bounding Approach

In Chapter 5, we discussed that strong assumptions required by classical techniques

could be relaxed using the theory of imprecise probability. Applying the theory of imprecise

probability, we consider lower and upper bounds on the expectation denoted by E and

E, respectively. We aim to find lower and upper bounds on the expected ROI. Here, we

focus on the lower bound, but similar expressions are used for the upper bound.

Firstly, the following result is required. Let X be a random variable, g be a gamble

which is a bounded real-valued mapping on the possibility space X , and let M be a set

of probability distributions. We define the lower expectation as the minimum expectation

over a set of distributions [204, 234]:

E(g(X)) = min
p∈M

Ep(g(X)). (6.6)
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For all j1 and j2, the CAPEX is fixed and known. Additionally, under weak assump-

tions, the lower expectation of Eq. (6.4) satisfies:

E(ROI(j1, j2)) =

∑n
t=1E((Rt(j1, j2)−OPEXt(j1, j2))− capex(j1, j2)

capex(j1, j2)
. (6.7)

Annual revenue can be formulated as:

R(j1, j2) =
8760aSWY (j2), if j1 = developer

(0.9IY (j2)≤0.94 − 1.45I0.94≥Y (j2) + 2.5Y (j2)I0.94≥Y (j2))B(j2), if j1 = third-party

(6.8)

Here, a denotes project capacity, S represents the capacity factor, W denotes the whole-

sale price of energy, Y (j2) represents the availability under technology j2, B(j2) denotes

the base revenue under technology j2 and IY is the indicator function. The numerical

coefficients in the bottom line of Eq. (6.8) arise from Eq. (6.3) in the following way: 0.9 is

the coefficient from the top line of Eq. (6.3), −1.45 comes from the bottom line of Eq. (6.3)

(specifically, −1.45 = 0.9 + (−0.94 × 2.5)) and 2.5 is the coefficient of Yt in the bottom

line of Eq. (6.3). Annual operational expenditure (OPEX) can be formulated as:

OPEX(j1, j2) =


opex′ + OPEX′′(j2) if j1 = developer

OPEX′′(j2), if j1 = third-party

(6.9)

Here, opex′ refers to OPEX of the wind farm (which we assume to be is fixed and known)

and OPEX′′(j2) refers to OPEX of the OTS.

Since CAPEX is fixed for each (j1, j2), we focus on E((Rt(j1, j2)−OPEXt(j1, j2)). For

option one (developer HVAC) and option two (developer HVDC):

E((Rt(j1, j2)−OPEXt(j1, j2)) = E(8760aswYt(j2)− opex′ −OPEX′′(j2)) (6.10)

= min
p∈M

Ep(8760aswYt(j2)− opex′ −OPEX′′(j2)) (6.11)

= min
p∈M

8760aswEp(Yt(j2))− opex′ − Ep(OPEX′′(j2))

(6.12)

Here, M is the set of worst- and best-case distributions of Y (j2). The final expression

is evaluated by inputting fixed values for a, s, w and opex′. Ep(Yt(j2)) is evaluated as

sample mean from the availability simulation for technology j2. Ep(OPEX′′(j2)) is also

evaluated in this simulation.
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Similarly, for option three (third-party HVAC) and option four (third-party HVDC):

E((Rt(j1, j2)−OPEXt(j1, j2)) (6.13)

= E((0.9IYt(j2)≤0.94 − 1.45I0.94≥Yt(j2) + 2.5Yt(j2)I0.94≥Yt(j2))B(j2)−OPEX′′(j2)) (6.14)

= min
p∈M

Ep((0.9IYt(j2)≤0.94 − 1.45I0.94≥Yt(j2) + 2.5Yt(j2)I0.94≥Yt(j2))B(j2)−OPEX′′(j2))

(6.15)

= min
p∈M

(0.9Ep(IYt(j2)≤0.94)− 1.45Ep(I0.94≥Yt(j2)) + 2.5Ep(Yt(j2))Ep(I0.94≥Yt(j2)))

Ep(B(j2))− Ep(OPEX′′(j2)) (6.16)

Here, Ep(I0.94≤Yt(j2)) and Ep(IYt(j2)≥0.94) are determined from the availability simulation.

Usually, when techniques based on classical probability theory are used, we find the

optimal decision by comparing point values. Since techniques based on imprecise prob-

ability give bounds on the expected value, we require techniques to compare intervals of

expected ROI. In the literature there exist different approaches to this, and these were

introduced in Section 5.4.5. Before recapping the decision criteria using imprecise prob-

ability, we discuss the impact of act-state dependence on the approach. We recall from

Chapter 5 that act-state dependence means that the distribution of the state of nature

depends on the decision taken.

In Chapter 5, we discussed how act-state dependence prevents the use of maximality

as a decision criterion and requires careful handling of variables. In the decision problem

presented in this chapter, we encounter act-state dependence; consequently, we need to

treat those variables whose distribution depends on the decision taken differently to those

variables whose distribution does not. The occurrence of act-state dependence is one

challenge that arises in practical applications that is not extensively discussed in the

theory. In the following paragraph, we describe how we deal with act-state dependence in

the decision problem at hand.

We first classify the act-state dependent and independent variables in the ROI expres-

sion. We identify the act-state dependent variable as yearly availability, and the act-state

independent variables are capacity factor and wholesale price. For the act-state depen-

dent variables, we assign a set of distributions for each input parameter and simulate the

system to obtain best- and worst-case scenarios. These scenarios are discussed in Sec-

tion 6.5.2. Using these scenarios, we bound expected return on investment (conditionally

on the act-state independent variables) and analyse these bounds, using interval domi-

nance and Γ-maximin, to find economically preferable options. To handle uncertainty in

the act-state independent variables, we take a sensitivity analysis approach and investigate

how the decision changes as a function of fixed values of these variables.
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In the remainder of this section, we recap the decision criteria presented in Chapter 5.

The decision criterion called interval dominance selects options whose upper bound is

greater than the greatest lower bound. In other words, interval dominance selects any

option which is not interval dominated by another option, where an option is interval

dominant if its interval is completely to the right-hand side of an interval for another

option. Alternatively, if the decision-maker is risk-averse, they may use the Γ-maximin

decision criterion which selects the option with the greatest lower bound. These two

decision criteria are defined below.

For interval dominance, we define: E∗ = maxj1,j2 E(ROI(j1, j2)) and use the following

decision criterion. Any option (j1, j2) such that E(ROI(j1, j2)) ≥ E∗ is optimal. For the

Γ-maximin decision, the option (j1, j2) such that E(ROI(j1, j2) = E∗ is optimal [224].

When applying statistical techniques to practical decision problems, good communica-

tion of outputs and results is vital. Consequently, we visualise the sensitivity type analysis

on a 2-D plot where the x and y axes represent the act-state independent variables we are

varying. In this chapter, although the theory allows us to consider more than two act-state

independent variables, we restrict ourselves to just two to ensure that the visualisation is

clear to interpret.

6.5 Input Data

The inputs to evaluate expected ROI are split into two categories: known inputs and

random variables. Both of these types of inputs are discussed below.

6.5.1 Inputs Based on Known Data

The known inputs are project lifetime, project capacity and CAPEX. The number

of operational years is taken to be twenty-five years which is typical across the industry.

However, we note that project lifetimes are increasing to about thirty years. The project

capacity is 1.2 GW. This capacity depends on turbine size and quantity, which is known

in the design stage.

The capital expenditure (CAPEX) of the offshore transmission system (OTS) is eval-

uated by summing component costs found in literature [33, 36, 37]. This approach is

detailed in Chapter 4. A high-level breakdown of the OTS into offshore substation(s),

offshore cable(s), onshore cable(s) and onshore substation(s) is considered. This includes

costs regarding electrical equipment, platform structures and installation. CAPEX of the

wind farm is evaluated by summing turbine, foundation and array cable costs presented in

[38]. Under developer ownership, CAPEX refers to the OTS and the offshore wind farm.
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Under third-party ownership, CAPEX refers to just the OTS. The CAPEX of the OTS

is evaluated to be £1.1 billion and £1.3 billion for the HVAC and HVDC case studies,

respectively. The CAPEX of the OTS and offshore wind farm are evaluated to be £2.7

billion and £2.9 billion for the HVAC and HVDC case studies, respectively.

6.5.2 Random Variables

The base revenue is fixed at the time of asset transfer for, usually, twenty-five years.

The base revenue is unknown at the time of the decision but can be estimated with

reasonable accuracy from the project’s CAPEX. Identical to the analysis in Chapter 4,

using linear regression and the method of least squares on data for fully commissioned UK

offshore wind projects [32], we obtained a linear model of the form presented in Eq. (6.17)

with an R2 value of 0.9783.

B = β3 × CAPEX + β4 + ε1 (6.17)

Here, B denotes the base revenue, CAPEX refers to the capital costs of the OTS, β3 =

0.09023, β4 = 3.038 and ε1, the residual error, is normally distributed with mean zero and

a standard deviation of 1.34. The parameters β4 and ε1 are in units of millions of pounds.

One of the main drawbacks to offshore wind is the inherent uncertainties. The avail-

ability of an OTS depends on outage frequency and duration, which are influenced by

uncertain factors including vessel availability, sea-state conditions and availability of spare

parts. The capacity factor depends on wind conditions and turbine availability, while the

main drivers of uncertainty in wholesale prices include matching supply to demand, fuel

commodity prices and weather [235].

Single input values may fail to represent our knowledge accurately. Since it is challeng-

ing to put realistic distributions on these input parameters, we consider reasonable sets

of distributions instead and assess the economic benefits over these sets. Using literature

values discussed in the paragraph below, realistic ranges have been determined (shown in

Table 6.1). We consider all distributions within these ranges.

In the next two paragraph, we give a summary of the literature values of the relevant

input parameters. Capacity factor is quoted in literature to be between 0.24 and 0.68

in [164], 0.386 in [165], 0.473 in [165], between 0.32 and 0.63 in [166], and 0.49 in [166].

The wholesale price of energy is quoted in literature to be between £47.25/MWh and

£48.10/MWh in [166], between £33.85/MWh and £67.54/MWh in [236], and between

£35.00/MWh and £78.00/MWh in [237]. The operational expenditure (OPEX) of a wind

farm is quoted in literature to be e76, 000/MW/year in [151], £79, 000/MW/year in [152],

between e80, 000 and e100, 000/MW/year in [153], and £72, 000/MW/year in [154].
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Input Range considered in

this work

Capacity Factor 0.3 - 0.65

Failure Rate of HVDC Export Cable (fails/year/km) 0.00001 - 0.0007

Failure Rate of HVAC Export Cable (fails/year/km) 0.000705 - 0.003

Wholesale price of energy (£/MWh) 35.00 - 65.00

Export Cable Repair Time (days) 30 - 150

Table 6.1: Input ranges considered in this chapter for uncertain model parameters.

The failure rate of a HVDC export cable is quoted to be 0.0007 fails/year/km in

[149], 0.00001107 fails/year/km in [238], 0.0000213 fails/year/km in [238], and 0.00036889

fails/year/km in [238]. The failure rate of a HVAC export cable is quoted to be 0.000705

fails/year/km in [142], 0.00024 fails/year/km in [150], 0.0016 fails/year/km in [82], and

0.003 fails/year/km in [83]. The export cable repair time is quoted in literature to be sixty

days in [142], sixty days in [238], and between thirty and one hundred and fifty days in

[141]. These input values are used to determine ranges given in Table 6.1.

A probability distribution for OTS availability under each technology is required for

the analysis. This was evaluated using Monte Carlo simulations performed in Python using

Numpy [27]. The state of each major component, and in turn, the system, is determined

each hour in a year using failure and repair rates given by [99] and Table 6.1. This system

trace determines the availability each year. The simulation has been repeated for 10,000

years to obtain a probability distribution for availability. Best- and worst-case scenarios

have been considered by inputting best- and worst-case failure and repair rates. The

results are shown in Fig. 6.2. Each simulation resulted in a peak at 100% availability that

has been removed for clarity. The number of counts at 100% availability, out of 10, 000,

are 6, 345, 3, 059, 2, 478 and 1, 648 for Figs. 6.2a to 6.2d, respectively.

Another random variable is operational expenditure (OPEX), which refers to the costs

associated with the maintenance and repairs required to keep the assets in a good working

condition. OPEX evaluation is complex and often commercially sensitive. Consequently, a

simplistic but reasonable approach is taken. Interval analysis indicates that OPEX of the

wind farm has little impact on the decision choice (see Section 6.5.3). Therefore, OPEX

of the wind farm is fixed at £75, 000 per MW per year.

OPEX of the OTS is evaluated using the previously described availability simulation.

In the simulation, when a component fails a repair cost is assigned (based on component

costs given by [33, 36, 37] and vessel hire rates given by [93]). Due to a limited amount of
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(a) Histogram of best-case HVAC availability.
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(b) Histogram of worst-case HVAC availability.
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(c) Histogram of best-case HVDC availability.
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(d) Histogram of worst-case HVDC availability.

Figure 6.2: HVAC and HVDC availability from Monte Carlo simulations of the case

studies. Each simulation resulted in a peak at 100% availability that has been removed

for clarity.
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operational information available, replacement upon failure is assumed except for cables

(typically 200 metres is replaced [187]) and converters (OPEX of the offshore converter

and onshore converter is assumed to be 2% and 0.7% of the component costs, respectively

[148]). In the simulation, these costs are summed over the year and used to find an average

yearly OPEX.

6.5.3 Interval Analysis for Wind Farm Operational Costs

In this section, we investigate the impact of OPEX associated with the wind farm

on the decisions made. Based on literature values, the analysis has been conducted with

wind farm OPEX at £70, 000 and £80, 000 per MW per year. These results are shown in

Figs. 6.3 to 6.7. Fig. 6.3 shows bounds on the expected ROI for each option with OPEX

of the wind farm fixed at £70, 000 per MW per year in Fig. 6.3a and £80, 000 per MW per

year in Fig. 6.3b. From these figures, we see very little difference, and therefore this input

has a small impact on decision choice. This is further confirmed by Figs. 6.4 to 6.7, which

shows that as we handle uncertainty in capacity factor and wholesale price, the decisions

do not change considerably for these two wind farm OPEX values.

6.6 Results & Sensitivity Analysis

6.6.1 Results

In the previous section, we detailed the methodology that would be applied to the

described decision problem of this chapter. In this section, we present the results of this

application. In the analysis, capacity factor and wholesale price are initially fixed at 0.45

and £50 /MWh, respectively. For each option, the upper and lower bounds of expected

ROI are shown in Fig. 6.8 and the bounds on expected annual ROI are shown in Fig. 6.9.

In this example, we see that the results and decision between ROI and annual ROI do

not differ. We also note that an expected ROI of 0.01 equates to 1%. In Fig. 6.8, under

option one, the lower expected ROI is 0.11, and the upper expected ROI is 0.18. These

are represented by vertical lines which are connected to represent an interval of expected

values. The vertical dashed line represents the greatest lower bound (considering all of

the options), E∗, and can be used to assist with identifying optimal options.

The results are dependent on the decision maker’s inputs. Using the described input

data and modelling approach, Fig. 6.8 shows that under interval dominance, HVAC third-

party and HVDC third-party are deemed optimal. Under the risk-averse decision criterion

called Γ-maximin, Fig. 6.8 shows HVDC third-party to be optimal. A decision maker can

tailor the inputs and pick a decision criterion that meets their needs. Therefore, this
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Option 2 (HVDC developer)

Option 3 (HVAC third-party)
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(a) In this analysis the OPEX of the wind farm is fixed at £70,000 per MW per year.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
E(ROI)

Option 1 (HVAC developer)

Option 2 (HVDC developer)

Option 3 (HVAC third-party)

Option 4 (HVDC third-party)

E*

(b) In this analysis the OPEX of the wind farm is fixed at £80,000 per MW per year.

Figure 6.3: Bounds on the expected return on investment (ROI) for each option. Here,

capacity factor (s) and wholesale energy price (w) are fixed at 0.45 and £50/MWh respec-

tively.
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(a) OPEX of the wind farm is fixed at £70,000

per MW per year.

(b) OPEX of the wind farm is fixed at £80,000

per MW per year.

Figure 6.4: The technology choice for different values of wholesale price and capacity factor

when interval dominance is used as the decision criterion.

(a) OPEX of the wind farm is fixed at £70,000

per MW per year.

(b) OPEX of the wind farm is fixed at £80,000

per MW per year.

Figure 6.5: The regime choice for different values of wholesale price and capacity factor

when interval dominance is used as the decision criterion.
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(a) OPEX of the wind farm is fixed at £70,000

per MW per year.

(b) OPEX of the wind farm is fixed at £80,000

per MW per year.

Figure 6.6: The technology choice for different values of wholesale price and capacity factor

when Γ-maximin is used as the decision criterion.

(a) OPEX of the wind farm is fixed at £70,000

per MW per year.

(b) OPEX of the wind farm is fixed at £80,000

per MW per year.

Figure 6.7: The regime choice for different values of wholesale price and capacity factor

when Γ-maximin is used as the decision criterion.
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Figure 6.8: Bounds on the expected ROI for each option. Here, capacity factor and

wholesale price are fixed at 0.45 and £50/MWh respectively.

approach could be adopted in decision making under severe uncertainty.

6.6.2 Sensitivity Analysis

To handle uncertainty in the act-state independent inputs, we assess how the decision

changes as a function of fixed values of capacity factor and wholesale price. To achieve

this, capacity factor and wholesale price are varied across values given in Table 6.1, and

we assess their impact on expected ROI. For each capacity factor and wholesale price

input combination, we find and visualise the optimal options under each decision criterion.

Fig. 6.10 and Fig. 6.11 shows how the decision changes as these inputs are varied. We

only include the sensitivity analysis plots for expected ROI since the results for expected

annual ROI are identical.

6.6.3 Technique Comparison

So far, in this chapter, we have demonstrated how to implement techniques based on

imprecise probability to two practical decision problems in offshore transmission. We now

compare the approach taken in this chapter to more conventional techniques based on the

classical theory of probability. In this chapter, we conduct this comparison qualitatively,

and in the next chapter (for a different decision problem), we will present the comparison

more quantitatively.

To conduct the same analysis using conventional techniques, we evaluate the expected
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Option 2 (HVDC developer)

Option 3 (HVAC third-party)

Option 4 (HVDC third-party)
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Figure 6.9: Bounds on the expected annual ROI for each option. Here, capacity factor

and wholesale price are fixed at 0.45 and £50/MWh respectively.

Figure 6.10: The regime (left) or technology (right) choice for different values of wholesale

price and capacity factor when interval dominance is used as the decision criterion.

Figure 6.11: The regime (left) or technology (right) choice for different values of wholesale

price and capacity factor when Γ-maximin is used as the decision criterion.
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ROI, E(ROI), for each option. To evaluate the expected ROI requires inputs such as

capacity factor, the wholesale price of energy, and component failure and repair rates.

In particular, we must assign values or distributions to these inputs. However, due to a

limited amount of relevant data and information, we do not have enough information to

assign probability distributions accurately. Therefore, if we were to assign a distribution,

it may not adequately represent the data available. This limitation of techniques based

on classical probability theory motivated us to seek out and apply alternative techniques

that are more robust under severe uncertainty.

For now, we ignore these more robust techniques and proceed to consider an approach

based on the classical theory of probability. At this point, due to the severe uncertainties

described, a methodology based on classical probability theory is weakened. Moreover,

situations where the inputs significantly impact the output can be problematic. Unfortu-

nately, in Chapter 4, we saw that this is the case for failure and repair rates, as they have

a significant impact on a project’s economic performance. Consequently, in this scenario,

the outputs of analysis based on classical probability theory under severe uncertainty are

inadequate, and it could be unwise to base investment decisions on these outputs.

To complete the analysis using classical probability theory, we assign values or dis-

tributions to inputs and evaluate the expected ROI, (we may also evaluate confidence

intervals around this expected ROI). However, this analysis used inputs that do not accu-

rately represent the information we have available. Furthermore, evaluating the expected

ROI requires the availability of the system. Conventionally, this is evaluated by modelling

the components within the system as Markov chains. Unfortunately, as we have previ-

ously noted, under severe uncertainty, we do not have enough information to justify the

assumptions required for a Markov chain, notably stationarity and the Markov property.

Therefore, the expected availability, the expected ROI and any inferences made are not

representative of the information available, and therefore, should be treated with care.

As we have seen, there exists a more general approach called imprecise probability,

and these techniques allow more appropriate handling of severe uncertainties in the input

parameters. Therefore, in this chapter, we applied these techniques. Techniques based on

imprecise probability have several benefits in applications that have severe uncertainty.

Here, we limit the discussion of advantages to those relevant to the decision problem in

this chapter.

In this chapter, we used imprecise Markov chains to allow strong modelling assumptions

required for precise Markov chains to be relaxed. Additionally, the approach allows us to

deal with epistemic uncertainty by considering inputs within more suitable ranges, and

therefore consider a set of processes. Ultimately, this approach evaluates bounds on the
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expected ROI rather than a single value; these bounds allow a better representation of the

available information. Another advantage of techniques based on imprecise probability

is that the approach allows for indecision this is important for scenarios where there is

insufficient information to arrive at a justified decision. Focusing more specifically on the

decision problem presented in this chapter, the described approach allows us to handle

uncertainty in act-state independent variables by evaluating how the decision changes as

a function of fixed values within a range. Overall, the techniques allow more appropriate

handling of severe uncertainty in the input parameters and allow us to make decisions

under severe uncertainty.

Although the techniques based on imprecise probability allow more appropriate han-

dling of severe uncertainty in the input parameters, compared to techniques based on the

classical theory of probability, there exist some limitations to this approach. Firstly, the

results depend on the sets of distributions we assign to the input parameters. Therefore,

the decision maker must be able to assign these sets or know which regions to consider in

the resulting sensitivity analysis plot. In the case where sets of distributions are challeng-

ing to identify, we may end up considering a wide range of values. Ultimately, this may

mean we obtain large sets of distributions for the outputs that may not be informative.

However, if the primary purpose is to compare different options to make a decision, these

large intervals may not be so much of a limitation.

Secondly, we do not investigate aleatory uncertainty (the uncertainty due to variabil-

ity), as we aim to maximise the expected return on investment. Instead, we focus on

epistemic uncertainties and handling severe uncertainty in the input modelling parame-

ters. To consider the aleatory uncertainty, we could look at confidence bounds around the

expected values. This limitation is to be discussed further and addressed in Chapter 8.

6.7 Conclusion

As the offshore wind industry matures, new markets will install assets and design

policies to facilitate this. One consideration will be optimising offshore transmission regu-

latory regimes to the situation of a particular market. If a competitive and investor-driven

approach is desirable for the offshore transmission system (OTS) development, the regime

must be attractive to investors and therefore maximise return on investment (ROI). Fur-

thermore, an emerging market will investigate the current operational practices. From

a developer’s perspective, they will make several decisions relating to the design of the

OTS, including, in the initial stages, whether to install HVAC or HVDC technologies. The

study of this chapter set out to find solutions to these regulatory and technical decision
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problems under severe uncertainty. Moreover, the aim was to apply advanced statistical

techniques to appropriately handle severe uncertainty in the input parameters (due to a

limited amount of relevant data) and assess the application of these techniques to decision

problems in offshore power transmission.

In this chapter, we summarised and contrasted current regulatory regimes, before

formulating two decision problems: firstly, which ownership structure to implement and

secondly, which technology choice to install. For the HVAC and HVDC case studies

considered (and contingent on model choices), the study found third-party ownership to

be optimal. These results were obtained using advanced statistical methods as approaches

based on the classical theory of probability were unable to deal with the identified severe

uncertainties adequately. This chapter demonstrated the benefits of this approach over

classical techniques, and they included addressing and more accurately representing the

uncertainty in our knowledge. The analysis conducted, and the resulting optimal decision

choice depends heavily on the availability distribution and associated operational costs.

In this chapter, we based these inputs on literature values. A more realistic analysis could

be obtained, following the same methodology, provided that we have access to relevant

data.

When applying imprecise probability in this chapter, we encountered act-state depen-

dence (the distribution of the state of nature depends on the decision), and showed a way

to overcome the issue of act-state dependence. We explored how to present the results

in a way that is simple to interpret and achieved this using a two-dimensional visualisa-

tion of the sensitivity analysis. This chapter showed that taking this sensitivity analysis

approach facilitates clear communication of results. In particular, the approach allows

decision makers to use their expert knowledge to simply read off the optimal decision(s)

from the visual output, rather than input their knowledge into the model.

Overall, we presented a more in-depth insight into the benefits of using imprecise prob-

ability for decision making in offshore wind and identified that careful consideration of how

to handle variables is required when there is act-state dependence. The study contributes

to our understanding of applying imprecise probability to offshore power decision problems

and confirms that we can more suitably handle severe uncertainty by implementing these

advanced statistical techniques. These findings suggest that the application of imprecise

probability to offshore power transmission advances the current practice. Finally, this

chapter demonstrated that where there is severe uncertainty, and classical statistical tech-

niques are no longer justified, we should seek more suitable approaches, such as techniques

based on imprecise probability. Consequently, these findings will be of interest to others

who make decisions under severe uncertainty.
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Chapter 7

Application 2: Assessing the

Benefit of Investing in

Redundancy for Offshore

Transmission Under Severe

Uncertainty

7.1 Introduction

In Chapter 6, we demonstrated how to apply techniques based on imprecise probability

to two decision problems (one taken by policymakers and one taken by project planners).

We showed that applying imprecise probability to these decision problems can be ben-

eficial to offshore power transmission, in particular, to handle severe uncertainty due to

insufficient data. In this chapter, we focus on another decision problem; however, this ap-

plication concentrates on project design. Furthermore, we demonstrate how to implement

imprecise probability to handle severe uncertainty in this particular investment problem.

We recall that each wind farm installed offshore is connected to the onshore grid by

an offshore transmission system (OTS). As offshore wind projects increase in capacity

and move further offshore, there is an increased importance for the OTS to have high

availability and reliability levels. Unfortunately, some offshore transmission projects have

experienced costly, in terms of time and money, cable failures [82]. Furthermore, these

cable failures occurred more frequently than initially expected [83, 82]. On account of this

challenge, steps must be taken to reduce the number and impact of offshore cable failures

when planning future projects. Consequently, research into proactive cable maintenance,
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cable installation practices, cable testing, cable fault detection methods, and redundancy

has emerged.

The reliability of offshore wind systems is studied in [94, 95, 96, 18, 97, 16]. However,

as we discussed in Chapter 2, most studies in the field focus on evaluating offshore network

reliability from a wind farm owner’s perspective [18]. Consequently, there has been lim-

ited research to assess the impact of cable failures from an offshore transmission owner’s

perspective. The failure behaviour of offshore cables introduces uncertainty when making

investment decisions; accordingly, we require a suitable decision making method.

In this chapter, we apply techniques based on imprecise probability to aid decision

making under severe uncertainty from the perspective of multiple stakeholders. Specifi-

cally, we utilise imprecise probability to assess whether to invest in an interlink between

two offshore substations to provide increased redundancy. Furthermore, we explain the

methodology and motivation behind the approach taken to handle uncertainty (in par-

ticular surrounding the export cable), as well as discuss how the presence of act-state

dependence, again, dictates our approach. Overall, we demonstrate how imprecise proba-

bility could be beneficial to decision makers who require the appropriate handling of severe

uncertainty in offshore power transmission.

The aims of this chapter are:

1. To investigate whether to invest in an interlink between two offshore substations

from the perspective of multiple stakeholders.

2. To demonstrate how to apply imprecise probability to a practical decision problem

where there is severe uncertainty that must be handled suitably.

3. To explain the methodology and motivation behind the approach taken to handle

uncertainty in this decision problem. In addition, to discuss the handling of uncer-

tainty in the presence of act-state dependence.

4. To compare techniques based on the classical theory of probability and imprecise

probability to take decisions under severe uncertainty.

This chapter is structured as follows. Section 7.2 describes the interlink decision prob-

lem and details the case studies. Section 7.3 introduces two stakeholder perspectives and

formulates the decision problem by outlining the metrics of interest for both stakeholders.

In Section 7.3, we first present a methodology based on the classical theory of probabil-

ity and then explain how uncertainty can be handled more appropriately using imprecise

probability. Next, we apply the techniques described in Section 7.3 to the case study given

in Section 7.2, and in Section 7.4 present and discuss the results of this work. Finally,

Section 7.5 concludes the chapter.
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7.2 Case Study: Interlink or No interlink?

In Chapter 2 and Section 7.1, we highlighted that the reliability of the OTS is critical

and that, currently, research is being carried out to improve the reliability of these systems.

One option to increase reliability is to invest in redundancy by installing duplicate com-

ponents. Current regulation in the UK specifies that each offshore substation must have

at least two offshore transformers unless the single transformer substations are interlinked

[115]. However, to the best of our knowledge and to date, no regulation specifies that

offshore substations hosting two offshore transformers should be interlinked. Nonetheless,

recent projects have installed an interlink in this situation, and therefore in this chapter,

we assess the advantages of this investment.

For the rest of the chapter, we focus on an OTS with two offshore substations. We

design a case study based on operational OTSs [30] that is capable of transmitting 800

MW. The array cables from the offshore wind turbines collect at two offshore substations,

each capable of carrying 400 MW, and each hosting two 220/34 kV offshore transformers.

Each offshore substation is connected onshore via an eighty kilometre 220 kV XLPE

offshore cable, that at the landfall meets an onshore cable. The 220 kV XLPE onshore

cable takes power twenty kilometres to the onshore substation. In this work, a branch

includes an offshore and onshore cable segment (as shown by Fig. 7.1). In practice, there

could be multiple branches connecting each offshore substation to the onshore substation,

but for simplicity, we restrict this analysis to just one branch per offshore substation. The

onshore substation hosts two 400/220 kV onshore transformers.

Based on the information presented in [30], we consider that, in the event of an outage

of an offshore cable or onshore cable, the normally de-energised interlink cable is switched

into service. To ensure that the rating of the remaining cables is not exceeded, both

offshore substations are curtailed to 50%. The interlink ensures that some of the power

collected at each offshore substation can be transmitted to the onshore grid. Figure 7.1

and Fig. 7.2 show simplified diagrams of the case studies without and with the interlink,

respectively.

7.3 Method

7.3.1 Investor Perspectives

The planning, installation and operation of an offshore wind power plant involve mul-

tiple stakeholders, including developers, customers, regulators, and insurers. Preferably,

the installed system is optimal from all perspectives involved. Based on the UK set-up,

159



Offshore 
Platform 1

Offshore 
Platform 2
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Figure 7.1: A case study that does not have an interlink between the two offshore substa-

tions. Each branch includes an offshore and onshore cable segment. The left-hand side

shows a simplified single line diagram of the case study, and the right-hand side numbers

the major components. These numbers will be referred to later in the chapter to describe

and evaluate quantities such as system availability and energy transferred.
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Figure 7.2: A case study with an interlink between the two offshore substations. The left-

hand side shows a simplified single line diagram of the case study, and the right-hand side

numbers the major components. These numbers will be referred to later in the chapter to

describe and evaluate quantities such as system availability and energy transferred. The

arrows aid the description of how the interlink works, and describes the power flow should

a component in branch two fail. Again, these annotations will be referred to later in the

chapter.
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we focus on two perspectives: offshore transmission owner (OFTO) and offshore wind

farm owner. From each perspective, we investigate whether investing in a system with an

interlink (j = interlink) is preferred to a system without an interlink (j = no interlink).

This decision problem consists of two options, denoted by j.

Offshore Transmission Owner (OFTO) Perspective

The first perspective we consider is from an OFTO. To compare the two investment

options, from an offshore transmission owner’s perspective, we evaluate the economic

metric termed NPV, for option j, by:

NPV(j) =

n∑
t=1

Vt(j)

(1 + d)t
. (7.1)

Here, d denotes the discount factor and Vt(j) denotes the cash flow in year t, for option

j, which we evaluate by Eq. (7.2).

Vt(j) =


V ′t (j) = Rt(j)−OPEXt(j)− Lt(j), for 0 ≤ t ≤ n1

V
′′
t (j) = Rt(j)−OPEXt(j), for n1 ≤ t ≤ n

(7.2)

Here, Rt(j) denotes revenue in year t, OPEXt(j) denotes the operational expenditure

in year t, Lt(j) denotes the loan repayment amount in year t, n denotes the number of

operational years, and n1 denotes the loan duration in years. Eq. (7.2) shows that the cash

flow is different in the first n1 years as it includes the loan repayments. As we have seen in

Chapters 2 and 4, according to the OFTO regime [49], annual revenue can be formulated

as:

Rt(j) = (0.9IYt(j)≤0.94 − 1.45IYt(j)≥0.94 + 2.5Yt(j)IYt(j)≥0.94)B(j) (7.3)

Here, Yt(j) represents the yearly availability under option j, B(j) denotes the annual

base revenue defined in the OFTO licence of option j and IY (j) is the indicator function.

We note that Rt(j) was called as contractual income in Chapter 4. We also note that

Eq. (7.3) is presented in a slightly different format to previous chapters, as this format is

more convenient in this chapter.

Wind Farm Developer Perspective

The second perspective we consider is from an offshore wind farm owner; they design,

build and operate the offshore wind farm. The wind farm owner relies on the OTS to

transmit the generated power back to shore and therefore values a reliable system. Conse-

quently, to compare the two investment options, from a wind farm owner’s perspective, we

evaluate the annual amount of energy generated and transmitted to shore for each option
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j. This quantity is denoted by Ut(j) and can be evaluated by:

Ut(j) =
8760∑
h=1

Zh(j) (7.4)

Here, Zh(j) denotes the hourly energy transferred to shore for option j, which is evaluated

by Eq. (7.5) and Eq. (7.6). If j = no interlink:

Zh(j) = P1hY1h + P2hY2h (7.5)

If j = interlink:

Zh(j) =



P1hY1h + P2hY2h, if C5hC6h = 1 and C7hC8h = 1

Q1h, if C5hC6h = 0 and C7hC8h = 1

Q2h, if C5hC6h = 1 and C7hC8h = 0

0, otherwise

(7.6)

Here, P1h and P2h are the hourly power output arriving at offshore substation one and

two, respectively. Y1h and Y2h are the hourly availability of branch one and two in the

transmission system. Q1h and Q2h denote the energy transferred when the interlink is

energised, and are discussed in more detail later in this section. Let Cih denote the

availability of component i at hour h where the component indexing corresponds to Fig. 7.1

and Fig. 7.2.

For clarity, C1h, . . . , C4h correspond to the offshore transformers. C5h and C6h cor-

respond to the offshore cable and onshore cable in branch one. Similarly, C7h and C8h

correspond to the offshore cable and onshore cable in branch two. C9h and C10h correspond

to the onshore transformers, and C11h corresponds to the interlink.

Detailed modelling of wind farm power output is beyond the scope of this work, and

therefore a simplified approach is taken. We ignore wake effects and therefore, do not

consider the spatial variation of the wind speed caused by the impact of turbines on each

other. We assume that the power output of one turbine is equal to the power output of

the other turbines connected to the same substation. Therefore, the hourly amount of

power reaching offshore substation m, denoted by Pmh, can be evaluated by:

Pmh =

ηm∑
l=1

Plmh = ηmP1mh (7.7)

Here, ηm denotes the number of turbines connected to offshore substation m. In this case

study m ∈ {1, 2} since we have two offshore substations. Plmh denotes the power output

of turbine l, connected to offshore substation m, at hour h. The hourly power output of
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a single turbine can be evaluated by [239]:

P1mh =



0 if νh < ν ′,

0.5ρκων3h if ν ′ < νh < ν ′′,

P ∗ if ν ′′ < νh < ν ′′′,

0 if νh > ν ′′′

(7.8)

Here, ρ denotes air density taken to be 1.225 kg m−3, κ denotes power coefficient, ω

denotes the rotor swept area of the turbine, and P ∗ denotes the wind turbine rated power.

νh, ν ′, ν ′′ and ν ′′′ denotes the wind speed at hour h, cut-in wind speed, rated wind speed

and cut-out wind speed, respectively. In this work, we use the eight MW reference turbine

for input values [240].

The evaluation of Zh(j), for j = interlink, given by Eq. (7.6) is motivated by how the

interlink works. While both branches are working the system behaves as if there is no

interlink. In the event of an outage of an offshore cable or onshore cable, the interlink

cable is switched into service. To ensure that the rating of the remaining cables is not

exceeded, both offshore substations are curtailed to 50%. Figure 7.2 describes the power

flows corresponding to when the interlink is in use due to a failure in branch two. This

reasoning leads to Eq. (7.10). Similarly, Eq. (7.9) corresponds to hourly energy transferred

if branch one experienced a failure.

Q1h = [min(P1h, 200) max(C1h, C2h)C11h + min(P2h, 200) max(C3h, C4h)]

(
C9h + C10h

2

)
(7.9)

Q2h = [min(P1h, 200) max(C1h, C2h) + min(P2h, 200) max(C3h, C4h)C11h]

(
C9h + C10h

2

)
(7.10)

In this subsection, we have detailed the metric of interest relevant to each stakeholder.

When making investment decisions, the decision making process may involve aiming to

maximise this metric. From the offshore transmission owner’s (OFTO) perspective, we

detailed how to evaluate the NPV of a project. Similarly, from the wind farm owner

perspective, we detailed how to evaluate the energy generated and transmitted to the

onshore grid.

7.3.2 Techniques Based on the Classical Theory of Probability

Up to this point, in this chapter, we have set up the decision problem and described the

metrics that will be used to assess whether to invest in an interlink between two offshore

platforms from the perspective of two key stakeholders. We now move on to outline the
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techniques implemented in this decision making analysis. We begin by describing methods

based on the classical theory of probability. Although these techniques are not used in

the final analysis (due to the limitations that we will discuss), we will use this approach

to compare conventional techniques to methods proposed in this thesis.

Offshore Transmission Owner (OFTO) Perspective

From the offshore transmission owner’s (OFTO) perspective, using techniques based on

the classical theory of probability, we evaluate the expected NPV. These techniques were

detailed in Chapter 4, and therefore, here, we only present a summary of the approach.

From the offshore transmission owner’s (OFTO) perspective, we evaluate the expectation

of Eq. (7.1) by:

E(NPV(j)) = E

(
n∑
t=1

Vt(j)

(1 + d)t

)
(7.11)

= E

(
n1∑
t=1

V ′t (j)

(1 + d)t
+

n∑
t=n1+1

V
′′
t (j)

(1 + d)t

)
(7.12)

=

n1∑
t=1

E(V ′t (j))

(1 + d)t
+

n∑
t=n1+1

E(V
′′
t (j))

(1 + d)t
(7.13)

= λ1E(V ′(t=1)(j)) + λ2E(V
′′

(t=n1+1)(j)). (7.14)

Here,

λ1 =

n1∑
t=1

1

(1 + d)t
(7.15)

λ2 =
n∑

t=n1+1

1

(1 + d)t
(7.16)

Focusing on E(V ′(t=1)(j)):

E(V ′(t=1)(j)) = E(R(t=1)(j)−OPEX(t=1)(j)− L(t=1)(j)) (7.17)

= E(R(t=1)(j))− E(OPEX(t=1)(j))− L(t=1)(j). (7.18)

Here, we use the fact that Lt(j) is constant. Similarly, for E(V
′′

(t=n1+1)(j)):

E(V
′′

(t=n1+1)(j)) = E(R(t=n1+1)(j)−OPEX(t=n1+1)(j)) (7.19)

= E(R(t=n1+1)(j))− E(OPEX(t=n1+1)(j)). (7.20)

Focusing on the first term in Eqs. (7.18) and (7.20) (the expected value of the yearly

revenue), we assume independent years, and by taking the expectation of Eq. (7.3), we
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obtain:

E(R(t=n1+1)(j)) = E(R(t=1)(j)) (7.21)

= E((0.9IY(t=1)(j)≤0.94 − 1.45IY(t=1)(j)≥0.94 (7.22)

+ 2.5Y(t=1)(j)IY(t=1)(j)≥0.94)B(j))

= (0.9P (Y(t=1)(j) ≤ 0.94)− 1.45P (Y(t=1)(j) ≥ 0.94) (7.23)

+ 2.5E(Y(t=1)(j))P (Y(t=1)(j) ≥ 0.94))E(B(j))

Here, we evaluate P (Y(t=1)(j) ≥ 0.94) and E(Y(t=1)(j)) from the availability simulation

which we will describe later in this section. To evaluate B, the base revenue, we refer back

to Section 4.4.1, where we obtained:

B(j) = β3CAPEX(j) + β4 + ε1 (7.24)

Here, β3 = 0.09023, β4 = 3.038 and ε1 is the residual error. For the expectation of OPEX,

we have:

E(OPEX(t=n1+1)(j)) = E(OPEX(t=1)(j)) (7.25)

= E(Planned OPEX(t=1)(j) + Unplanned OPEX(t=1)(j)) (7.26)

= E(Planned OPEX(t=1)(j) + E(Unplanned OPEX(t=1)(j))

(7.27)

Here, E(Planned OPEX(t=1)(j)) is evaluated following the approach outlined in Sec-

tion 4.6, and E(Unplanned OPEX(t=1)(j)) is evaluated during the availability simulation

described below.

The evaluation of E(NPV(j)) outlined above requires the following inputs:

• Capital expenditure (CAPEX): we evaluate the capital expenditure of a project by

summing individual component costs. For more details we refer back to Section 4.5.1.

• Loan repayments: we evaluate the loan repayments each year as a function of

CAPEX, loan duration, number of loan repayment instalments per year and in-

terest rate. For further details and the equations used to evaluate the yearly loan

repayment, we refer back to Section 4.5.2.

• Revenue stream: we evaluate the yearly revenue stream as a function of the base

revenue and the distribution of availability. Details of how we obtain a distribution

for availability are given in the next bullet point. We evaluate the base revenue

as function of CAPEX. For more details we refer back to Section 4.4 and in this

chapter to Eq. (7.3).

• Availability: the distribution for availability is required in this analysis. The con-

ventional approach to obtain a distribution for availability, based on the classical
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theory of probability, is to model the components in the system as a Markov chain.

Modelling a component as a Markov chain requires strong modelling assumptions

which we discussed in Chapter 5. Nonetheless, since we are restricted to using tech-

niques based on the classical theory for the purpose of this technique comparison,

we model a component’s behaviour as a Markov chain. We evaluate the distribution

for availability using Monte Carlo simulations, where the state of each major com-

ponent, and in turn, the system, is determined each hour in a year using failure and

repair rates of the components considered. This system trace determines the avail-

ability each year. The simulation is repeated to obtain a probability distribution for

availability.

• Operational expenditure (OPEX): we evaluate the expected annual operational ex-

penditure as a sum of the expected annual planned operational expenditure and

the expected annual unplanned operational expenditure. In this work, we evaluate

annual planned OPEX as a percentage of the project’s CAPEX, and we evaluate un-

planned OPEX during the availability simulation described above. For more details

we refer back to Sections 4.6 and 6.5.2.

• Discount factor, d: the discount factor is a rate that discounts future cash flows to

the present-day value [178].

• Project lifetime, n: the number of operational years for the offshore wind project.

Wind Farm Developer Perspective

To analyse from the perspective of an offshore wind farm developer, we use techniques

based on the classical theory of probability to evaluate the expected annual amount of

energy generated and transmitted, Ut(j). Taking the expectation of Eq. (7.4), we find:

E(Ut(j)) = E

(
8760∑
h=1

Zh(j)

)
. (7.28)

Here, we evaluate E(
∑8760

h=1 Zh(j)) by Monte Carlo simulation. This simulation calculates

an availability trace of the offshore transmission system (OTS) and a power output trace

of the wind farm. The availability trace is obtained in the same way as in the OFTO

case using component failure and repair rates and modelling components using a Markov

chain. The power trace is obtained using hourly historical wind speed data, the number of

turbines, and turbine model specification. For further details, we refer back to Eq. (7.8).

Numerical Example

Next, we turn to evaluate the expected NPV and expected energy generated and

transmitted using techniques based on the classical theory of probability that have been
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Component Failure rate

(fails/year)

Repair rate

(repairs/year)

Cost per

failure

(£million)

Cost per day

of downtime

(£million)

Offshore trans-

former

0.0105 8.69 3.75 0.0035

Offshore cable 0.000705× c1 8.76 0.0042 0.1426

Onshore trans-

former

0.0105 5.79 2.25 0

Onshore cable 5.77×10−6×c2 14.6 0.0841 0

Table 7.1: Component failure and repair rates are from the literature [99, 142]. Here, c1

and c2 stands for the cable length of the offshore and onshore cables, respectively. We

note that the cost per failure for the offshore cable is related to the material cost of a 200

m cable replacement.

described above. From the offshore transmission owner’s (OFTO) perspective, we use the

following inputs: a project lifetime of twenty-five years, a discount rate of 3.5% [178], a

planned OPEX factor of 0.5%, component failure and repair rates shown in Table 7.1,

unplanned OPEX inputs also outlined in Table 7.1, capital expenditure (evaluated to be

£500 million for the system without an interlink and £530 million for a system with an

interlink), the loan repayments (evaluated to be £45.6 million (no interlink system) and

£48.3 million (interlink system) considering the loan duration to be twelve years, with

four repayment instalments per year and an interest rate of 1.5%). Using this input data,

we evaluated the expected NPV to be £285.4 million (no interlink system) and £300.3

million (interlink system).

From the offshore wind farm developer’s perspective, we use the following inputs:

availability simulation inputs (as detailed in Table 7.1), wind speed data (we use historical

wind speed data for a specific location given by [160, 161, 162, 163]), the number of turbines

(we assume one hundred 8 MW turbines) and turbine characteristics (we use the 8 MW

reference turbine for input values [240]). Using this input data, we evaluated the expected

annual energy generated and transmitted to be 3.95 TWh (no interlink system) and 3.98

TWh (interlink system). These results will be used later in this chapter to compare

conventional techniques to methods proposed in Chapter 5.
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7.3.3 Handling Uncertainty in Decision Making

So far, we have evaluated the metrics of interest for both the OFTO and wind farm

developer using techniques based on the classical theory of probability. However, we recall

that these types of investment decision assessments are taken under severe uncertainty for

the following reasons: wind power transmission assets (especially at current distances from

shore and capacities) are still in their infancy; project conditions are site-specific making

it difficult to generalise; and technology advancements between projects result in a limited

amount of relevant historical data to base analysis. Unfortunately, severe uncertainty

complicates the decision making process and makes it challenging to justify the modelling

assumptions required for techniques based on classical probability theory. Notably, we

may not have enough information to assign probability distributions. In the case of this

work, we do not have enough information to assume that a component’s time to fail and

time to repair are exponentially distributed; and therefore, model a component’s failure

and repair behaviour as Markov chains.

In the classical theory of probability, there exist ways to handle uncertainty. For

example, we may evaluate confidence intervals around the expected value; however, this

only considers aleatory uncertainty (the variability in realisations of an event). Another

approach, which we took in Chapter 4, is through a sensitivity analysis where individually

one factor is varied within an interval. This approach does consider epistemic uncertainty

in the input parameters (required to evaluate projects economically); however, strong

modelling assumptions are still required. Therefore, we argue that these techniques are

not adequate when there is severe uncertainty in the input parameters.

In the absence of relevant data, and confidence to make these assumptions, in other

words, the presence of severe uncertainty, a more suitable approach to decision making is

required. Therefore, in the rest of this chapter, we use decision making techniques that

are based on imprecise probability to handle the severe uncertainties more appropriately.

We recall from Chapter 5 that we are using probability to model epistemic uncertainty;

in this application, this is due to uncertainty in the input parameters due to insufficient

relevant data. We take a subjective interpretation of probability using betting rates, and

in particular, take a more general approach using imprecise probability. The term impre-

cise probability covers theories related to generalised uncertainty quantification, including

lower and upper previsions (see Chapter 5 for more details). In short, using imprecise

probability, we consider sets of probability distributions.

As we have seen in previous chapters, instead of evaluating the expectation, using

imprecise probability, we calculate lower and upper bounds on the expectation using the
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theory of lower and upper provisions. These upper and lower bounds on the expectation,

denoted by E and E respectively, form intervals that represent sets of probability distribu-

tions. These intervals, for each option, can be compared to select the optimal option(s). In

Chapter 5, we introduced several decision criteria using imprecise probability that exists

in the literature, including interval dominance and Γ-maximin that will be implemented

in this chapter.

7.3.4 Lower and Upper Bounds on the Expectation

We recall from Chapters 5 and 6 that there are properties that coherent lower previsions

satisfy. In this section, we use these properties to find the lower bounds on the expectation

of the metrics of interest. Details of how to evaluate the upper bounds follow similarly

but are omitted. Taking the lower expectation of Eq. (7.1), we find:

E(NPV(j)) = E

(
n∑
t=1

Vt(j)

(1 + d)t

)
(7.29)

= E

(
n1∑
t=1

V ′t (j)

(1 + d)t
+

n∑
t=n1+1

V
′′
t (j)

(1 + d)t

)
(7.30)

= min
p∈M

Ep

(
n1∑
t=1

V ′t (j)

(1 + d)t
+

n∑
t=n1+1

V
′′
t (j)

(1 + d)t

)
(7.31)

= min
p∈M

(
n1∑
t=1

Ep(V
′
t (j))

(1 + d)t
+

n∑
t=n1+1

Ep(V
′′
t (j))

(1 + d)t

)
(7.32)

= min
p∈M

(
λ1Ep(V

′
(t=1)(j)) + λ2Ep(V

′′
(t=n1+1)(j))

)
(7.33)

Here, M is the set of worst- and best-case distributions of Yt(j). λ1 =
∑n1

t=1
1

(1+d)t and

λ2 =
∑n

t=n1+1
1

(1+d)t . Ep(V
′
(t=1)(j)) and Ep(V

′′

(t=n1+1)(j)) can be evaluated by:

Ep(V
′
(t=1)(j)) = Ep(R(t=1)(j)−OPEX(t=1)(j)− L(t=1)(j)) (7.34)

= Ep(R(t=1)(j))− Ep(OPEX(t=1)(j))− L(t=1)(j) (7.35)

and

Ep(V
′′

(t=n1+1)(j)) = Ep(R(t=n1+1)(j)−OPEX(t=n1+1)(j)) (7.36)

= Ep(R(t=n1+1)(j))− Ep(OPEX(t=n1+1)(j)). (7.37)

Here, Ep(OPEX(t=1)(j)) = Ep(OPEX(t=n1+1)(j)) is evaluated as a sample mean from the

availability simulation. The loan repayments in a year is known and fixed and therefore

Ep(L(t=1)(j)) = L(t=1)(j) as we see in Eq. (7.35). The loan repayment structure is detailed

in Chapter 4, and specifically the equations to evaluate the loan repayment in a year are

given by Eqs. (4.14) to (4.16). Ep(R(t=1)(j)) = Ep(R(t=n1+1)(j)), and (recalling Eq. (7.3))
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is evaluated by:

Ep(R(t=1)(j)) = (0.9P (Y(t=1)(j) ≤ 0.94)− 1.45P (Y(t=1)(j) ≥ 0.94)

+ 2.5Ep(Y(t=1)(j))P (Y(t=1)(j) ≥ 0.94))Ep(B(j)) (7.38)

Here, Ep(Y(t=1)(j)) is evaluated as sample mean from the availability simulation.

P (Y(t=1)(j) ≤ 0.94) and P (Y(t=1)(j) ≥ 0.94) are also determined from the availability

simulation.

From the wind farm owner’s perspective we aim to maximise the energy transmitted.

Taking the lower expectation of Eq. (7.4) we obtain:

E(Ut(j)) = E

(
8760∑
h=1

Zh(j)

)
= min

p∈M
Ep

(
8760∑
h=1

Zh(j)

)
(7.39)

Here, M is the set of worst- and best-case distributions of Yt(j), and Ep(
∑8760

h=1 Zh(j)) is

evaluated by Monte Carlo simulation. This involves combining the availability trace of the

OTS with the wind farm power output. The wind farm power output is evaluated using

historical wind speed data for a specific location [160] and the turbine power relation given

by Eq. (7.8).

7.3.5 Act-state Dependence

In the described decision problem, we, again, encounter act-state dependence. Act-

state dependence occurs when the distribution of the state of nature depends on the

decision taken. We discussed act-state dependence in Chapters 5 and 6. In this section,

we explain how we handle act-state dependence in the decision problem at hand.

We first identify the act-state dependent and independent variables in our decision

problem. In the OTS owner’s evaluation, the act-state dependent variable is availability

since the distribution of availability depends on the decision taken. Annual revenue and

operational expenditure depend on the availability. In the wind farm owner’s evaluation,

availability is also an act-state dependent variable and turbine power output is an act-state

independent variable.

To handle uncertainty in the act-state dependent variable, we simulate over best- and

worst-case distributions of this variable. To obtain a distribution for the yearly availability

of the system, Yt(j), we simulate Yt(j) for ten thousand years. We evaluate Yt(j) by

Eq. (7.40).

Yt(j) =
1

8760

8760∑
h=1

Y ′h(j). (7.40)

Here, Yt(j) denotes the yearly availability of option j in year t and Y ′h(j) denotes the

availability of option j at hour h. Y ′h(j) depends on the components in option j. If j =

no interlink:
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Y ′h(j) =
1

2

(
C1h + C2h

2
C5hC6h +

C3h + C4h

2
C7hC8h

)
C9h + C10h

2
. (7.41)

If j = interlink:

Y ′h(j) =

1
2

(
C1h+C2h

2 C5hC6h + C3h+C4h
2 C7hC8h

)
C9h+C10h

2 , if C5hC6h = 1 and C7hC8h = 1

1
2

(
max(C1h,C2h)

2 C11h + max(C3h,C4h)
2

)
C7hC8h

C9h+C10h
2 , if C5hC6h = 0 and C7hC8h = 1

1
2

(
max(C1h,C2h)

2 + max(C3h,C4h)
2 C11h

)
C5hC6h

C9h+C10h
2 , if C5hC6h = 1 and C7hC8h = 0

0, otherwise.

(7.42)

Here, Cih denotes the availability of component i at hour h. A component’s availability

at hour h takes the value zero or one. To evaluate a component’s availability, using

techniques based on the classical theory of probability we sample times to fail and times

to repair from the exponential distribution as detailed by Eq. (7.43) and Eq. (7.44). These

samples give a trace for each component and in turn a trace for the OTS.

time to faili ∼ exp(fi) (7.43)

time to repairi ∼ exp(ri) (7.44)

Here, fi and ri denote component i’s failure rate and repair rate, respectively.

Due to the short operational history of offshore wind transmission and technology

advancements between projects, it is difficult to assign precise values to the repair and

failure rates required in Eq. (7.44) and Eq. (7.43). In particular, the failure and repair

rates of the offshore cable are thought to be uncertain [83]. Furthermore, this limited data

also means that we may not have enough information to validate the assumption that the

times to fail and times to repair for an offshore cable are exponential; and therefore, that

the component’s behaviour can be modelled as a Markov chain.

Since it is challenging to put realistic distributions on the input parameters required to

model the failure and repair of an offshore cable, we alternatively consider reasonable sets

of distributions. Since we now consider a set of distributions rather than a single distribu-

tion (the exponential distribution), we no longer model the failure and repair behaviour of

an offshore cable as a Markov chain. Instead, as we demonstrated in Chapter 6, we model

the behaviour of an offshore cable as an imprecise Markov chain which we introduced in

Section 5.4.4. Literature values are used to determine ranges for which we consider all

distributions within.
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Figure 7.3: Histogram of yearly availability values from the Monte Carlo simulations for

the interlink (left) and no interlink (right) case studies. In both plots, the peak at 100%

availability has been removed for clarity.

In the literature, failure rates of HVAC offshore cables vary considerably. For ex-

ample, 0.000705 fails/year/km is quoted in [142], 0.0016 fails/year/km in [82] and 0.003

fails/year/km in [83]. In this work, we consider HVAC offshore cable failure rates between

0.000705 and 0.003 fails/year/km. Similarly, the repair time for a HVAC offshore cable

depends on factors such as weather, sea conditions, and the availability of vessels and

spare parts. Based on values given in [95] and [142], and operational experiences [141],

we consider repair times between 30 and 150 days. These inputs give us the best- and

worst-case distributions of availability for each option.

The results for the Monte Carlo simulation are shown in Fig. 7.3. Each simulation

resulted in a peak at 100% availability that has been removed for clarity. The number of

counts at 100% availability, out of 10, 000, are 7, 282, 5, 434, 7, 282 and 5, 434 for worst-

case interlink, best-case interlink, worst-case no interlink and best-case no interlink case

studies, respectively. In Fig. 7.3, the availability distribution for the interlink and no

interlink case studies appear identical. We will return to this observation in the results of

this chapter.

Next, we treat uncertainty in the wind speed, which is an act-state independent vari-

able. Initially, we fix the hourly wind speed input using historical data and use this input

to bound the metric of interest (energy output). We analyse these bounds using the deci-

sion criteria detailed in Section 7.3.6. Then, we investigate how the decision changes as a

function of fixed values of the wind speed.

To vary the wind speed, we are no longer able to use historical wind speed data.

Therefore, we need a method to generate simulated wind speed data. Various models are

implemented in the literature to generate simulated wind speed data such as the Weibull

distribution [241, 242] and auto-regressive moving average (ARMA) [243]. In this chapter,
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to investigate how the decision changes as a function of fixed values of the wind speed, we

employ the Weibull distribution to generate wind speed data.

The Weibull distribution is an independently and identically distributed process, and

therefore, sampling from this distribution ignores time correlations. In contrast, the

ARMA model does consider time correlation. When the analysis requires wind speeds

on an hourly level, time correlations between hourly wind speeds matter. However, in

this work, since we are considering the yearly expected value, we justify taking a simple

approach and sample the wind speeds from the Weibull distribution. Nevertheless, it is

necessary to note that the Weibull distribution is limited. To the best of our knowledge,

there is no universal wind model; furthermore, the model may be location dependent.

Further work could investigate how modelling the wind speed using different models, for

example, Weibull and ARMA, impacts this analysis. However, this is beyond the scope of

this study, and therefore, we proceed with the simple Weibull model.

The Weibull distribution, whose probability density function is shown by Eq. (7.45),

requires two model parameters: the shape parameter (θ) and the scale parameter (τ).

pdf(νh) =
θ

τ

(νh
τ

)θ−1
e−( νhτ )

θ

(7.45)

We assume the hourly wind speed, νh, follows a Weibull distribution with mean (µν) and

standard deviation (σν). The study by [244] shows a method to approximate the Weibull

distribution parameters from µν and σν using Eq. (7.46) and Eq. (7.47). Since there may

be uncertainty about the mean and standard deviation of the wind speed, we vary the

value of both of these inputs and evaluate the bounds on the expected energy generated

and transmitted.

θ̂ =

(
σν
µν

)−1.086
(7.46)

τ̂ =
µν

Γ(1 + 1
θ̂
)

(7.47)

In this chapter, we vary the mean wind speed between 3 m/s and 17 m/s. This

approach allows the decision maker to select wind speeds that are appropriate to their

specific project and therefore, read off the results that are relevant to them. Secondly,

we vary the wind speed standard deviation between 2 m/s and 5 m/s based on historical

wind speed data. Again, the decision maker can select which value or range of values that

are relevant to them. Furthermore, the decision maker can see if and how these inputs

affect the decisions made. In terms of visualisation, we plot the results for varied mean

wind speeds for a fixed standard deviation. We then repeat this visualisation for different

standard deviations.
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7.3.6 Γ-maximin and Interval Dominance

To find the optimal option(s), we recall two decision criteria from Chapter 5, Γ-maximin

[224, 225, 226] and interval dominance [222, 223]. Γ-maximin is a more conservative

decision criterion, and selects the option with the greatest lower bound. From the offshore

transmission owner’s perspective, using Γ-maximin, we define:

E∗ = max
j
E(NPV(j)) (7.48)

Any option, j such that E(NPV(j)) = E∗ is optimal. A similar equation can be written

from the wind farm owner’s perspective. Alternatively, interval dominance selects any

option which is not interval dominated by another option, where an option is interval

dominant if its interval is completely to the right-hand side of an interval for another

option. In other words, from the offshore transmission owner’s (OFTO) perspective, option

j1 interval dominates option j2 if:

E(NPV(j1)) > E(NPV(j2)). (7.49)

Again, a similar expression exists from the wind farm owner’s perspective.

7.4 Results and Discussion

To assess the benefit of investing in an interlink between offshore substations, we apply

the methodology based on imprecise probability detailed in Section 7.3 to the case study

detailed in Section 7.2. The results are shown in Figs. 7.4 to 7.8. From the offshore

transmission owner’s (OFTO) perspective, Fig. 7.4 shows the upper and lower bounds on

NPV for each option (an OTS with an interlink and an OTS with no interlink). From the

offshore wind owner’s perspective, Fig. 7.8 shows the upper and lower bounds on energy

transferred for each option.

Fig. 7.4 shows that the bounds on the expected NPV for each option overlap sig-

nificantly. Using the described input data and modelling approach, from the offshore

transmission owner’s (OFTO) perspective, Fig. 7.4 shows that Γ-maximin selects the sys-

tem with an interlink and interval dominance suggests neither option is preferred over the

other. However, we note that the NPV of a system with an interlink may be higher than

the system without an interlink because the initial investment is more significant for the

interlinked system. In Chapter 6, we discussed that using the metric NPV may not be a

suitable metric to compare multiple projects when the initial investment of each option

are drastically different.

Although the initial investments in this study only differ slightly, we explore other

metrics to assess further which option is preferable. Therefore, Figs. 7.5 and 7.6 shows
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Figure 7.4: Results from the offshore transmission owner perspective, showing bounds on

the expected NPV for each option.

Figure 7.5: Results from the offshore transmission owner perspective, showing bounds on

the expected ROI for each option.

bounds on the return on investment (ROI) and annual ROI from the offshore transmission

owner’s (OFTO) perspective, respectively. These metrics have been evaluated in a similar

way to the application in Chapter 6. Figs. 7.5 and 7.6 suggest that the options are

incomparable. Here, we note that an expected annual ROI of 0.025 is equivalent to 2.5%.

To understand the findings of this study further, in Fig. 7.7, we investigate bounds on

the expected yearly availability. Fig. 7.7 shows that both options have identical values.

The identical availability values arise since when the interlink is energised, the offshore

substations are curtailed to 50%. Therefore, usually, the availability of the system with

an interlink is identical to a system without an interlink. There exist some rare scenarios

where the availability differs between the interlink and no interlink options. Table 7.2

shows two scenarios where the availability values are identical and two where they differ;

this table is useful to understand how the failure of different components in the system

affects the availability of the system. Importantly, the availability of the interlink and no
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Figure 7.6: Results from the offshore transmission owner perspective, showing bounds on

the expected annual ROI for each option.

Figure 7.7: Results from the offshore transmission owner perspective, showing bounds on

the expected yearly availability for each option.

interlink systems only differ in 0.1% (best-case simulation) and 0.4% (worst-case simula-

tion) of the hours simulated. Overall, the results suggest that from an offshore transmission

owner’s (OFTO) perspective, an interlink is not anymore economically favourable than a

system without an interlink; however, they pay for this asset.

From the wind farm owner’s perspective, we evaluate bounds on the expected energy

generated and transmitted. These results are presented in Fig. 7.8 which shows that Γ-

maximin selects an interlink and interval dominance suggests neither option is preferred

over the other. Here, the wind resource is fixed using historical data (with a mean wind

speed of 9.8 m/s and a standard deviation of 3.7 m/s).

Next, we handle uncertainty in the act-state independent variable. We now model

the wind speed using the Weibull distribution described in Section 7.3.5, and estimate

the Weibull model parameters from the mean and standard deviation of the wind speed

(also described in Section 7.3.5). Figures 7.9 to 7.11 shows how the decision changes as
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Failed components Availability Power (MW)

Interlink No Interlink Interlink No Interlink

C1, C8 0.5 0.25 120 30

C4, C5 0.5 0.25 400 200

C4 0.75 0.75 115 115

C8 0.5 0.5 395 221

Table 7.2: Availability and power output simulation values for the interlink and no inter-

link case studies. Four hour slots have been chosen, with the failed components in that

hour identified for clarity.

a function of fixed mean wind speed between 3 m/s and 17 m/s. In Fig. 7.9, Fig. 7.10,

Fig. 7.11 the standard deviation is fixed at 2 m/s, 3 m/s and 5 m/s, respectively. As the

wind resource increases, interval dominance suggests that the two options are incomparable

from a wind farm owner’s perspective.

At this point, it is important to interpret the amount of energy transferred. In Fig. 7.8,

the lower bounds for the expected annual energy transferred are 3.84 TWh for the inter-

linked system and 3.77 TWh for the no interlink system. Based on these lower bounds,

the difference between the energy transferred in each option is 0.07 TWh. To understand

the value of this energy difference to the offshore wind owner, we evaluate the monetary

value of this extra energy. To do this, we multiply the amount of energy by the wholesale

price of energy. We recall from Chapter 6 that the wholesale price of energy is quoted in

literature to be between £47.25/MWh and £48.10/MWh in [166], between £33.85/MWh

and £67.54/MWh in [236], and between £35.00/MWh and £78.00/MWh in [237]. For

this example, let’s assume the wholesale price of energy is £50/MWh. Therefore, an en-

ergy difference of 0.07 TWh is worth £3.5 million per year. Over the project’s lifetime of

twenty-five years, this is equivalent to £87.5 million.

Figs. 7.9 to 7.11 show that the difference between the two options decreases at higher

wind speeds. At higher wind speeds, the amount of energy generated increases; however,

when the energy generated by each substation exceeds 50% of the total capacity, there

is no benefit to rerouting the power. This lack of gain occurs since when the interlink

is energised, the system is limited to 50%. Therefore, when there is a failure in one

transmission branch, the system can only transmit 50% of the capacity in both the interlink

and no interlink scenario. As a result, we see a reduced difference in the energy from the

interlinked system and no interlink system at higher wind speeds in Figs. 7.9 to 7.11. From

this study, we find that installing an interlink does not (in almost all cases) change the
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Figure 7.8: Results from the offshore wind farm owner’s perspective, showing bounds on

the expected energy generated and transmitted for each option. Here, the mean wind

speed is fixed at 9.8 m/s and standard deviation is fixed at 3.7 m/s.

system’s availability. However, from the offshore wind owner’s perspective, the interlink

allows some energy from both offshore substations to be transmitted and can increase the

amount of energy transferred.

Finally, we recall the results from Section 7.3.2, where we conducted the same anal-

ysis using conventional techniques. We evaluated the E(NPV) to be £285.4 million (no

interlink system) and £300.3 million (interlink system). Additionally, we evaluated the

expected amount of energy yearly generated and transmitted to be 3.95 TWh (no interlink

system) and 3.98 TWh (interlink system). Fig. 7.4 and Fig. 7.8 shows that these values

are within the intervals obtained using techniques based on imprecise probability. How-

ever, there are some key differences between the ways these results were obtained. The

intervals obtained using imprecise probability did not require a probability distribution

to be assigned to uncertain inputs. This approach is beneficial to the application in this

chapter, as it was challenging to assign probability distributions due to limited data.

Furthermore, the techniques provided a way to better express our knowledge by con-

sidering sets of probability distributions. In the case of modelling the offshore cable’s

failure and repair behaviour, this meant that the strong and usually unjustified modelling

assumptions could be relaxed. This relaxation of unjustified assumptions is important if

substantial investment decisions are going to be made based on the analysis.

Additionally, the techniques based on imprecise probability allow for indecision (unlike

methods based on the classical theory of probability). For the case study considered in

this chapter, we found that using interval dominance generally, neither option is preferred

over the other from both perspectives (for the metrics of interest considered). Overall,

considering these points, the outputs obtained using imprecise probability are more robust
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Figure 7.9: Bounds on yearly energy transferred (for interlink and no interlink systems) at

varying wind resource inputs. Here, the wind speed standard deviation is fixed at 2 m/s.

The two rows above the main plot show how the selected options varies (using Γ-maximin

and interval dominance decision criteria) as the wind resource varies.
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Figure 7.10: Bounds on yearly energy transferred (for interlink and no interlink systems)

at varying wind resource inputs. Here, the wind speed standard deviation is fixed at 3 m/s.

The two rows above the main plot show how the selected options varies (using Γ-maximin

and interval dominance decision criteria) as the wind resource varies.
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Figure 7.11: Bounds on yearly energy transferred (for interlink and no interlink systems)

at varying wind resource inputs. Here, the wind speed standard deviation is fixed at 5 m/s.

The two rows above the main plot show how the selected options varies (using Γ-maximin

and interval dominance decision criteria) as the wind resource varies.
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under severe uncertainty than those based on conventional techniques.

7.5 Conclusion

In this chapter, we set out to demonstrate how to apply imprecise probabilities to

handle severe uncertainty in a specific project design decision problem. This investigation

assessed the benefit of investing in an interlink between two offshore substations from

two perspectives: an offshore wind farm owner and an offshore transmission owner. Each

stakeholder has their view and therefore has a different metric of interest. In this chapter,

we formulated the decision problem from both perspectives by detailing the net present

value (NPV) evaluation from the offshore transmission owner’s (OFTO) perspective and

the energy generated and transmitted evaluation from the wind farm owner’s perspective.

We discussed that this investment decision, like others in offshore transmission planning,

is taken under severe uncertainty due to a limited amount of relevant data. This severe

uncertainty necessitates a suitable decision making approach, and therefore, we utilised

imprecise probability.

While applying imprecise probability, we encountered act-state dependence as the dis-

tribution of availability depends on the decision selected. Therefore, we explained how

act-state dependence impacts the handling of uncertainty in different variable types. To

handle uncertainty in availability (act-state dependent variable), we assigned a set of distri-

butions for each input parameter and simulated the systems to obtain best- and worst-case

scenarios. These scenarios bounded NPV and energy transmitted, and we analysed these

bounds using Γ-maximin and interval dominance to select the optimal option. To handle

uncertainty in the wind resource (act-state independent variable), we investigated how the

decision changes as a function of fixed values of the wind speed parameters. In conclusion,

this work presented decision making techniques to handle severe uncertainty in offshore

power transmission.

We found that for the 800 MW case study and described modelling approach, the two

stakeholders select different sets of optimal decisions. As the wind resource increases, the

wind farm owner cannot decide between the two options as the extra power generated

cannot be rerouted without overloading the cables. In conclusion, we found that, for this

case study and modelling approach, an interlink makes economic sense for the offshore

wind farm owner. However, there is a weak business case for an interlink from the offshore

transmission owner’s (OFTO) perspective.

Furthermore, the work of this chapter demonstrated how techniques based on imprecise

probability differ from conventional methods based on the classical theory of probability.
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We discussed how the approaches differ, in particular, how the conventional techniques

require enough information to assign a probability distribution. In contrast, the meth-

ods based on imprecise probability relax this requirement and instead consider a set of

distributions. This relaxation provided a way to consider epistemic uncertainty in the

input parameters. Therefore, we showed how techniques based on imprecise probability

give a more robust way to handle severe uncertainty than conventional approaches. Con-

sequently, this chapter has illustrated (through the application of imprecise probability

to a practical decision problem) that the proposed advanced statistical methods can be

beneficial to decision problems in offshore power transmission, that are taken under severe

uncertainty.

This chapter raises further design decision problems, such as investigating to what

extent should a cable be overdesigned in wealthy wind resource regions. Additionally, a

further study could assess whether the same conclusions are obtained for future meshed

and increased redundancy grids. Finally, further research might also explore in more detail

the ability of transmission regulation to support systems with increased redundancy.
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Chapter 8

Application 3: Designing Offshore

Transmission System (DOTS)

8.1 Introduction

In this chapter, we present a more comprehensive application of advanced statisti-

cal techniques to offshore power transmission. So far, in Chapters 6 and 7, we have

demonstrated how to apply the proposed techniques to specific decision problems. In this

chapter, we extend the decision problem by including a framework to construct the deci-

sion space. Specifically, we create possible topologies given the market conditions, rather

than selecting between predesigned systems for a given project specification.

Accordingly, this advancement allows the techniques to aid in the handling of severe

uncertainty when planning future offshore transmission systems (OTSs). In particular, we

allow the decision maker to specify design parameters, for example, project capacity; and

therefore, the implementation in this chapter is more directly applicable to an extensive

range of projects. In summary, this work presents a novel investment planning tool to

support decision makers in offshore power transmission by facilitating a more appropriate

way to handle uncertainty.

This study investigates and designs optimal OTSs for varying distances offshore and

wind farm generation capacities. Although offshore wind is still in its infancy, trends

in OTSs can be explored by considering current and planned projects. In Chapter 3,

we explored characteristics of operational OTSs in the UK. In particular, how project

capacity, export cable length, export cable voltage and the number of export cables have

evolved. We noted that there had been a shift to larger offshore wind generation capacities

(from 90 MW in 2008 to 1200 MW in 2020 [30, 31]) due to larger turbines installed further

offshore. Consequently, longer export cables have been installed, and more recent HVAC
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projects have installed cables with a higher nominal voltage of 220 kV [38].

The requirements of an OTS are changing to accommodate the needs of the indus-

try. As offshore wind farms grow in capacity, higher power rated equipment and more

offshore platforms are required. As projects move further offshore, longer export cables

are installed, as well as either the installation of reactive compensation units or a change

to HVDC technologies. Furthermore, as the size of the wind farms grows, the greater the

importance of the OTS to be in good working order and consequently, the significance of

reliability. Ultimately, how we connect wind farms is an increasingly crucial question [18].

There is limited literature publicly available that investigates how to design optimal

OTSs from components available in the market. However, the work by [89], which we dis-

cussed in Chapter 2, does present a methodology to design the transmission system under

risk. The decision process in [89] includes selecting HVAC or VSC-HVDC technologies,

the nominal voltage of the system, the size of the cable, the rating of the transformer and

the compensation type. Furthermore, the work by [89] uses a criterion that incorporates

the decision maker’s risk tolerance through a risk tolerance parameter. However, the anal-

ysis by [89], like other economic assessments in this field, is based on classical probability

theory. We argue that decisions made in offshore transmission are taken under severe

uncertainty, and hence require techniques that are more robust under uncertainty.

We have previously discussed that, unfortunately, decisions made during the planning

stage of an OTS are taken under severe uncertainty due to limited data. This challenge

arises due to the short operational history of these technologies; each project has its

specific requirements; and the limited amount of knowledge sharing within the industry.

Conventional techniques used in traditional power systems analysis, are based on the

classical theory of probability and do not sufficiently handle uncertainty. Therefore, we

apply imprecise probability [25] to aid in the design of future OTSs. In Chapter 5, we

introduced imprecise probability and explained how the theory provides techniques to

handle uncertainty.

In this chapter, we aim to present a methodology that allows the decision maker

to input components that are available in the current market, and based on these inputs,

output an optimal topology. To carry out this process, we take a two-step approach: firstly,

we design a set of optimal options (we refer to this as the modelling step) and secondly, we

find which of these options is optimal using probability bounding techniques (we refer to

this as the inference step). The presented methodology can be used to plan future OTSs

by specifying design parameters such as project capacity and distance offshore.

Several factors contribute to the final selection of a particular OTS including cost,

reliability, safety, environmental impact, social perspective, supply chain and previous

186



project experience. In this study, we focus on the economics of an OTS, which also includes

other considerations such as availability. To assess which topology is economically optimal,

we must take a stakeholder’s perspective, and previously, we discussed that the ownership

structure of the OTS varies between countries. Here, again, we consider the UK market

and analyse from the perspective of an offshore transmission owner (OFTO). We recall

that in the UK setting an OFTO finances, owns and operates the OTS. Unfortunately,

taking a specific view can appear to limit the applicability of the techniques. Therefore,

in this work, we discuss how the methodology could be adapted to suit the needs of other

markets and stakeholders.

To summarise, the aims of this chapter are:

1. To design feasible OTSs from components available in the market using physical and

logical constraints.

2. To demonstrate the application of imprecise probability to a more comprehensive

offshore power transmission decision problem. Furthermore, to present a novel in-

vestment planning tool to aid decision makers when designing an OTS under severe

uncertainty.

3. To illustrate how techniques based on imprecise probability could be beneficial to

decision makers in offshore power transmission when the analysis is conducted under

severe uncertainty.

This chapter is structured as follows. Sections 8.2 and 8.3 presents the methodology

of this chapter to design and find optimal OTSs. Section 8.2 describes how we design a

set of feasible OTSs from the components available in the market (the modelling step).

Then, Section 8.3 explains how we select the optimal design from the set of viable OTSs

(the inference step). In Section 8.3.6, we discuss how the methodology outlined could be

adapted to other markets. Next, Section 8.4 shows the results of this chapter for three

case studies. Finally, Section 8.5 concludes the chapter.

8.2 Methodology: Modelling

This work aims to develop an approach to planning future offshore wind transmission

systems under severe uncertainty. We propose to design and find an optimal OTS in two

steps:

• Step 1: For a given project capacity and distance offshore, design a set of viable

OTSs. This step is the main modelling part of the decision making analysis and

where we construct the decision space. Therefore, this step is referred to as the

modelling step.
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• Step 2: From the set of feasible topologies obtained in the modelling step, we find

which system is optimal. This step is the inference part of the decision making

analysis; and therefore, this step is referred to as the inference step.

Planning an OTS involves designing a set of feasible topologies. To do this, we suggest

that the decision maker (who could be the project planner) first identifies the range of com-

ponents available in the market. In this work, we consider the offshore platforms, offshore

transformers, offshore cables, onshore cables, offshore transformers, offshore voltage source

converters (VSCs) and onshore VSCs when designing the OTS. We use logical and phys-

ical constraints to design possible topologies from these components. These constraints,

detailed below, are motivated from previous projects, design standards and expert knowl-

edge; however, the constraints could be modified to consider non-standard systems should

the decision maker prefer. In Sections 8.2.1 to 8.2.3, we design HVAC and HVDC systems.

Table 8.1 sets up the notation that is used throughout the modelling step explanation.

In this work, we design HVDC monopole and bipole configurations. These types of

systems have been implemented in current HVDC offshore wind connections and electricity

interconnectors between different countries [245]. Furthermore, we focus on point-to-point

and multi-infeed point-to-point systems. Several studies (including [16, 20, 21, 95] and

the research project by [246]) suggest that other types of grid connection layouts, such as

multi-terminal HVDC, could be advantageous, especially as offshore wind farms grow in

capacity.

The suggested advantages of multi-terminal HVDC systems include lower CAPEX,

lower OPEX, improved reliability, lower environmental impact and, importantly, a lower

cost of energy [20, 21, 246]. Currently, there are still believed to be some challenges with

installing HVDC multi-terminal systems, including regulatory aspects [246]. In this work,

we do not design multi-terminal systems; however, the methodology presented below could

be extended to consider these systems and the economic evaluation would follow similarly.

A consideration when designing OTSs is that all selected components in a topology are

compatible with the nominal voltage of the system. To achieve this, we must first identify

a set of components compatible for a given nominal voltage and design a set of possible

topologies from this set of components. For example, to design a HVAC system with a

nominal voltage of 220 kV, we must identify components in the market that are suitable

for such a system and then apply the logical and physical constraints presented below to

design possible topologies for this nominal voltage. In order to design and compare systems

with different nominal voltages, we should repeat the modelling step for a suitable set of

components (that are available in the market) for each nominal voltage.

We note that this modelling step makes many assumptions and simplifications, includ-

188



ing usually designing a project for 100% of the rating where no over or underrating is

considered. On account of this limitation, this work could be implemented in the early

design phase of a project to narrow down topologies before more detailed system studies

are conducted.

8.2.1 Designing High Voltage Alternating Current (HVAC) Systems

In this subsection, we design offshore transmission systems (OTSs) that use HVAC

technology. We begin by identifying and outlining the logical and physical constraints

associated with each component considered in the system. For a HVAC system, we consider

offshore platforms, offshore transformers, offshore cables, onshore cables, and onshore

transformers. Each of these components is discussed below.

• Offshore platform

– All platforms are the same type of platform and support the same amount of

capacity.

– Together, all the offshore platforms in the system are able to carry the total

project capacity.

– We allow the platforms to be overrated (by rounding up).

– Therefore, for s1 ∈ S1 we evaluate the number of offshore platforms to be:

NS1 =

⌈
a

s1

⌉
. (8.1)

For clarity, s1 is a one platform chosen from the set of platforms available (S1

in Table 8.1). This notation follows similarly for all components.

• Offshore transformer

– All platforms host the same number of offshore transformers.

– All transformers are the same type (carry the same capacity), i.e. the same

k1 ∈ K1.

– Together, all the offshore transformers in the system are able to carry the total

project capacity.

– Physically, the number of offshore transformers is a natural number.

– Therefore, we evaluate the number of offshore transformers per platform to be:

NK1 =
a

NS1 × k1
∈ N. (8.2)

• Offshore cable

– All offshore cables in the project are of the same type, i.e. the same c1 ∈ C1.
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Symbol Definition

a Project capacity

C1 Offshore HVAC cable capacities in the market

C2 Onshore HVAC cable capacities in the market

C3 Offshore HVDC cable capacities in the market

C4 Onshore HVDC cable capacities in the market

K1 Offshore transformer capacities in the market

K2 Onshore transformer capacities in the market

S1 Offshore HVAC platform capacities in the market

S2 Offshore HVDC platform capacities in the market

V1 Offshore voltage source converter (VSC) capacities in the market

V2 Onshore voltage source converter (VSC) capacities in the market

NC1 Number of offshore cables per transformer

NC2 Number of onshore cables per transformer

NC3 Number of HVDC offshore cables

NC4 Number of HVDC onshore cables

NK1 Number of offshore transformers per platform

NK2 Number of onshore transformers required for this topology

NS1 Number of offshore platforms required for this topology

NS2 Number of HVDC offshore platforms

NV1 Number of offshore voltage source converters (VSCs)

NV2 Number of onshore voltage source converters (VSCs)

Table 8.1: Symbol definitions for quantities used throughout this chapter; in particular, in

the logical and physical constraints that are described in the modelling step of the decision

analysis.
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– The number of cables connected to each platform is the same for all platforms.

– The offshore cables combined are able to carry the total project capacity.

– Physically, the number of offshore cables connected to each platform is a natural

number.

– To ensure the system is symmetric, the number of cables connected to a trans-

former or the number of transformers connected to a cable is a natural number.

If the number of offshore cables is greater than the number of offshore transform-

ers, then we require that the number of cables connected to each transformer

(NCS1
NK1

) is a natural number. Here, NCS1 denotes the number of cables per

platform. Similarly, if the number of offshore transformers is greater than the

number of offshore cables, then we require that the number of transformers

connected to each cable ( NK1
NCS1

) is a natural number. This constraint leads to

Eq. (8.10).

– Therefore, we evaluate the number of offshore cables per transformer to be:

NC1 =
a

c1 ×NS1 ×NK1
. (8.3)

• Onshore cable

– All onshore cables in the project are the same type, i.e. the same c2 ∈ C2.

– Due to physical constraints, the number of onshore cables is equal to the number

of offshore cables. In Chapter 3, we observed that the number of offshore cables

is equal to the number of onshore cables in operational projects in the UK.

– The offshore cable rating must be compatible with the rating of onshore cables

available in the market.

– The onshore cable rating is equal to the offshore cable rating.

– Therefore, we check that c1 ∈ C2 and if satisfied, assign c2 = c1 and NC2 =

NC1.

• Onshore transformer

– All onshore transformers in the project are the same type, i.e. the same k2 ∈ K2.

– Each system has the same number of onshore transformers as the number of

offshore cables. This constraint ensures that the system is symmetric. The

exception is systems with only one offshore cable. In this case, two onshore

transformers are installed due to reliability. In Chapter 3, we observed that

operational projects support these constraints.

– The rating of the offshore cable is compatible with the ratings of onshore trans-

formers available in the market.
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– Therefore, the number of onshore transformers is evaluated by:

NK2 = max{2, NTC1}. (8.4)

Here, NTC1 denotes the total number of cables in the project.

• Reactive compensation unit

– For projects that are located significantly far offshore, transmission losses in

the cables becomes a challenge. One option is to install HVDC technologies;

however, if HVAC is preferred, a reactive power compensation unit could be

installed along the cable route [11]. The additional unit would host additional

reactive power compensation equipment.

– The distance offshore at which HVDC is preferred over HVAC technologies is,

as we discussed in Chapter 2, a highly debated topic [16, 84]. In general, this

distance is thought to be greater than fifty kilometres. Therefore, for HVAC

projects located more than eighty kilometres offshore, we factor into the analysis

an additional cost due to the need to install a reactive compensation unit.

– Without detailed costings of this type of infrastructure, due to limited numbers

of reactive compensation units installed in operational projects, we assume that

the CAPEX of a reactive compensation unit is £0.13 million per MVA. This

figure is based on costs given in [33, 36, 37] which suggest that the cost of the

platform is approximately £0.1 million per MVA and the installation costs are

approximately £0.01 million per MVA. Additionally, data from [148] suggests

that costs relating to reactive compensation equipment are approximately £0.02

million per MVA.

Using these described logical and physical constraints presented above, we formulate a

framework to design HVAC systems. This framework is described by the equations below.

To determine the number of offshore platforms, we choose s1 from S1 and calculate:

NS1 =

⌈
a

s1

⌉
. (8.5)

Then, we determine the number of offshore transformers by choosing k1 from K1 and

calculate:

NK1 =
a

NS1 × k1
. (8.6)

Before proceeding with this topology, we check that NK1 ∈ N. If NK1 /∈ N, we stop this

loop and try the next option (in other words, the next k1 from K1). Next, we determine

the number of offshore cables. We choose c1 from C1 and calculate:

NC1 =
a

c1 ×NS1 ×NK1
. (8.7)
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We then calculate the number of cables per platform (NCS1) by:

NCS1 = NC1 ×NK1. (8.8)

Before proceeding with this topology, we check that NCS1 ∈ N. Then, we calculate the

total number of cables in the project (NTC1) by:

NTC1 = NC1 ×NK1 ×NS1. (8.9)

The final check for the offshore cable is to check that the system is symmetric. To achieve

this, we check that the following is true:

max{NCS1, NK1}
min{NCS1, NK1}

∈ N. (8.10)

Now, we move on to determine the number of onshore cables. Firstly, we check that

c1 ∈ C2, and then assign c2 = c1, NC2 = NC1. Finally, we determine the number of

onshore transformers. We check c1 ∈ K2 and calculate:

NK2 = max{2, NTC1}. (8.11)

If all the checks are satisfied, we have found a feasible OTS. This option can be

described by [NS1, NK1, NC1, NC2, NK2]. We then repeat the process for all components

in the sets of components to find all feasible HVAC options. Should any of the checks not

be satisfied, the framework loops through the next component in the set, and only proceeds

if and when the constraints are satisfied.

8.2.2 Designing high voltage direct current (HVDC) systems (point-to-

point monopole link)

So far, the methodology has detailed how to design HVAC OTSs. Although the UK,

so far, has favoured HVAC technologies, to conduct a complete analysis, we move on

to also design HVDC systems. In this section, we motivate and explain the process

of planning HVDC systems. These technologies have been installed in offshore wind

projects in Germany [45]. We start by identifying the logical and physical constraints

associated with the components that constitute a HVDC point-to-point monopole system.

Here, we consider point-to-point and multi-infeed point-to-point systems [230]. A physical

constraint that applies to all components is the need for the quantity of each component

to be a natural number.

• Offshore voltage source converter (VSC)

– We start by selecting the VSC as it is one of the most expensive components

in the system.
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– All offshore VSCs in a system are the same type, i.e. the same v1 ∈ V1.

– Together, all the offshore VSCs in the system are able to carry the total project

capacity.

– We allow the offshore VSC to have a rating higher than the project rating, but

restrict the amount of overdesigning to 25% of the total capacity.

– Therefore, the number of offshore VSCs is evaluated by:

NV1 =

⌈
a

v1

⌉
. (8.12)

• Offshore platform

– Each platform hosts one VSC.

– The capacity of the platform is greater than or equal to the capacity of the

VSC it hosts.

– All platforms are the same type of platform, i.e. the same s2 ∈ S2.

– Together, all the offshore platforms in the system are able to carry the total

project capacity.

– We consider combined HVAC offshore substations and HVDC converter offshore

platforms in-line with state-of-the-art technology [34, 22] (for more details see

Section 3.8.2).

• Offshore transformer

– All transformers are the same type and carry the same capacity, i.e. the same

k1 ∈ K1.

– All offshore VSCs are connected to the same number of offshore transformers.

– Together, all the transformers in the system can carry the total project capacity.

• Offshore cable

– All offshore cables in the project are the same type, i.e. the same c3 ∈ C3.

– As we are considering point-to-point systems, each converter is connected to

one HVDC link.

– The cables combined are able to carry the total project capacity.

• Onshore cable

– All onshore cables in the project are the same type, i.e. the same c4 ∈ C4.

– In point-to-point topologies, each offshore cable is connected to one onshore

cable.
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– Together, all the onshore cables in the system can carry the total project ca-

pacity.

• Onshore VSC

– In point-to-point topologies, each option has the same number of onshore VSCs

as offshore VSCs.

– All onshore VSCs in a system are the same type, i.e. the same v2 ∈ V2.

– Together, all of the onshore VSCs in the system are able to carry the total

project capacity.

• Onshore transformer

– All onshore transformers in the project are the same type, i.e. the same k2 ∈ K2.

– Together, all the onshore transformers in the system can carry the total project

capacity.

Using these described logical and physical constraints, we formulate a framework to

design HVDC systems. This framework is described by the equations below. We begin

with determining the number of offshore VSCs. We choose v1 from V1 and calculate:

NV1 =

⌈
a

v1

⌉
. (8.13)

Before proceeding with this topology, we check that we have not overdesigned by more

than 25% of the total capacity:

NV1 × v1 ≤ 1.25a. (8.14)

Next, we determine the number of offshore platforms. We choose s2 from S2 such that

v1 ≤ s2 and assign:

NS2 = NV1. (8.15)

Next, we turn to the offshore transformer. We choose k1 from K1 and calculate the number

of offshore transformers in the topology, NK3, by:

NK3 =

⌈
a

k1

⌉
. (8.16)

Before proceeding, we check that the number of offshore transformers per platform, NK1,

is an integer:

NK1 =
NK3

NV1
∈ N. (8.17)

Then, we determine the number of offshore cables. We choose c3 from C3 such that v1 ≤ c3

and assign:

NC3 = NV1. (8.18)
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Next, we move on to the onshore cable. We choose c4 from C4 such that c3 ≤ c4 and then

assign:

NC4 = NC3. (8.19)

Next, we determine the number of onshore VSCs. We choose v2 from V2 such that v1 ≤ v2

and then assign:

NV2 = NV1. (8.20)

Finally, we determine the number of onshore transformer by choosing k2 from K2 and

calculate:

NK2 =

⌈
a

k2

⌉
. (8.21)

Similar to the HVAC case, if all the checks are satisfied, we have found a feasible OTS.

This option can be described by [(NV1, v1), (NS2, s2), (NK1, k1), (NC3, c3), (NC4, c4),

(NV2, v2), (NK2, k2)]. We then repeat the process to find all feasible HVDC options with

a monopole configuration.

8.2.3 Designing high voltage direct current (HVDC) systems (point-to-

point bipole link)

In Section 8.2.2, we presented a methodology to design HVDC systems with monopole

configurations. In this section, we aim to extend the decision space to include bipole

configurations. In general, the logical and physical constraints presented in Section 8.2.2

also apply to HVDC bipole configurations; however, some important considerations are

specific to a topology utilising bipole technology.

A significant benefit of a bipole configuration is the increased redundancy; the system

can operate at half capacity in the event of a cable fault [95]. The reliability advantages

come at higher CAPEX due to the additional return cable. The study by [95] investi-

gates the reliability of different grid connection options, including bipole configurations.

Furthermore, [95] details two areas for bipole configurations that result in extra costs:

specially designed converters and an additional return cable. In the absence of published

data for these costs, we follow the approach taken by [95]. Consequently, we assume an

additional ten per cent to the CAPEX of the converters and the CAPEX of the additional

return cable is fifty per cent of the costs of the standard cables. We note that the decision

maker can adjust these values to suit their needs; for example, they could assume that

bipole VSC converters are about the same price as a monopole.
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Figure 8.1: A high voltage alternating current (HVAC) point-to-point system.
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Offshore 
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Figure 8.2: A high voltage alternating current (HVAC) multi-infeed point-to-point system.

8.2.4 Sketches of types of topologies considered

In Figs. 8.1 to 8.6, we present sketches of the offshore transmission systems (OTSs)

designed in the modelling step of the decision making analysis. In summary, the framework

outlined in Sections 8.2.1 to 8.2.3 allows a project planner to input the components that

they have access to (and the ratings of these components), apply these equations, and

ultimately find all the possible topologies.

8.2.5 Case Study Example of Modelling Step

Next, we turn to apply the methodology of the modelling step (step one) to a case

study. We take the components listed in Table 8.2 and Table 8.3 and apply the described

methodology of the modelling step to a 1200 MW project located one hundred kilometres

offshore. Carrying out this step designs all possible topologies (based on the identified

constraints) for this project. The viable topologies for this case study are presented in

Table 8.4 and Table 8.5. We note that in the tables below [x, y] corresponds to x number

of components (where the component is given by the column heading) at rating y MW.

~
= ~

=Offshore 
wind farm

Onshore 
grid

Landfall

Figure 8.3: A high voltage direct current (HVDC) (monopole) point-to-point system.
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Figure 8.4: A high voltage direct current (HVDC) (monopole) multi-infeed point-to-point

system.
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Figure 8.5: A high voltage direct current (HVDC) (bipole) point-to-point system.
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Figure 8.6: A high voltage direct current (HVDC) (bipole) multi-infeed point-to-point

system.

Component Capacity ratings available in the market (MW)

Offshore VSC 800, 1000, 1200, 1800, 2200

Onshore VSC 800, 1000, 1200, 1800, 2200

Offshore cable 600, 800, 1000, 1200, 1500, 1800

Onshore cable 600, 800, 1000, 1200, 1500, 1800

Offshore platform 1000, 1250, 1500, 1750, 2000, 2250, 2500

Offshore transformer 200, 250, 300, 350

Onshore transformer 200, 250, 300, 350

Table 8.2: An example of high voltage direct current (HVDC) components available in

the market. These components are used in the case studies and examples throughout this

chapter.
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Component Capacity ratings available in the market (MW)

Offshore cable (220 kV) 150, 200, 250, 300, 350, 400

Onshore cable (220 kV) 150, 200, 250, 300, 350, 400

Offshore platform 300, 400, 700, 1200

Offshore transformer 200, 250, 300, 350

Onshore transformer 200, 250, 300, 350, 400

Table 8.3: An example of high voltage alternating current (HVAC) components available

in the market. These components are used in the case studies and examples throughout

this chapter.

8.3 Methodology: Inference

Up to this point, we have designed a set of possible topologies for the offshore trans-

mission system (OTS). Next, we aim to find the economically optimal topology from this

set; this is the inference step. To achieve this, we evaluate and compare the economic

benefit of the options. A decision maker must decide between the options such that some

quantity of interest (e.g. net present value (NPV)) is maximised (or minimised). How-

ever, usually, some inputs required to evaluate the quantity of interest are uncertain, to a

degree where it becomes hard to identify a probability distribution for these inputs that

accurately describes our knowledge.

Throughout this thesis, we have discussed that both literature and operational ex-

perience indicates that offshore wind grid integration, and in particular the planning of

OTSs, is subject to severe epistemic uncertainty. Due to each project having its specific

situation, the advancement of technology and the short operational history of the assets,

there is a limited amount of useful information to input into the analysis. Unfortunately,

this complicates the decision making process.

In Chapter 5, we introduced imprecise probability, and in Chapters 6 and 7, we applied

these techniques to specific decision problems. We recall that imprecise probability can

be described as a more general theory of uncertainty quantification. The techniques can

be implemented when we do not have enough information (for example, about our input

parameters) to use techniques based on the classical theory of probability. Since many

uncertainties surround offshore power transmission, taking investment decisions based on

analysis that uses imprecise probability could be beneficial. In this chapter, we demon-

strate how to apply imprecise probability in the proposed investment planning tool and

investigate the advantages of these methods.
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Option Offshore

platform

Offshore

transformer*

Offshore

cable**

Onshore

cable**

Onshore

transformer

Option 33 [4, 300] [1, 300] [1, 300] [1, 300] [4, 300]

Option 34 [3, 400] [2, 200] [1, 200] [1, 200] [6, 200]

Option 35 [3, 400] [2, 200] [0.5, 400] [0.5, 400] [3, 400]

Option 36 [3, 500] [2, 200] [1, 200] [1, 200] [6, 200]

Option 37 [3, 500] [2, 200] [0.5, 400] [0.5, 400] [3, 400]

Option 38 [2, 600] [3, 200] [1, 200] [1, 200] [6, 200]

Option 39 [2, 600] [2, 300] [1, 300] [1, 300] [4, 300]

Option 40 [2, 700] [3, 200] [1, 200] [1, 200] [6, 200]

Option 41 [2, 700] [2, 300] [1, 300] [1, 300] [4, 300]

Option 42 [1, 1200] [6, 200] [1, 200] [1, 200] [6, 200]

Option 43 [1, 1200] [6, 200] [0.5, 400] [0.5, 400] [3, 400]

Option 44 [1, 1200] [4, 300] [1, 300] [1, 300] [4, 300]

Table 8.5: Feasible HVAC topology options identified using the methods described in the

modelling step of the decision making analysis. These topologies have been designed for

a 1200 MW project located 100 km offshore. We note that since this project is 100 km

offshore, the design includes a reactive compensation unit. Here, * denotes when the

quantity is given per platform and ** denotes when the quantity is given per transformer.
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8.3.1 Economic Metrics of Interest

We recall that using imprecise probability, instead of evaluating the expectation, we

calculate lower and upper and bounds on the expectation using the theory of lower and

upper previsions. These upper and lower bounds on the expectation for each option form

intervals that represent sets of distributions, and are denoted by E and E, respectively.

These intervals are compared to select the optimal option. To compare the different con-

nection options from the offshore transmission owner’s (OFTO) perspective, we consider

two economic metrics: net present value (NPV) and return on investment (ROI). In this

section, we detail how to evaluate the lower bound of these two metrics of interest. Details

of how to evaluate the upper bound follow similarly but are omitted.

In Chapter 6 we detailed the metric ROI and in Chapter 7 we detailed the metric

NPV. We repeat the resulting expressions here for convenience. Each topology is referred

to as an option, denoted by j, and for each option, we evaluate its ROI by Eq. (8.22).

ROI(j) =

∑n
t=1(Rt(j)−OPEXt(j))− capex(j)

capex(j)
. (8.22)

Here, Rt(j) denotes revenue in year t, OPEXt(j) denotes the operational expenditure in

year t, capex is the capital expenditure, and n is the total number of operational years.

As we have seen before, annual revenue can be formulated as:

Rt(j) = (0.9IYt(j)≤0.94 − 1.45IYt(j)≥0.94 + 2.5Yt(j)IYt(j)≥0.94)B(j). (8.23)

Here, Yt(j) represents the availability under option j, B(j) denotes the base revenue under

option j and IY is the indicator function. Taking the lower expectation of Eq. (8.22), in

Chapter 6 we obtained:

E(ROI(j)) =
minp∈M n(Ep(Rt(j))− Ep(OPEXt(j)))− capex(j)

capex(j)
. (8.24)

Here, M is the set of worst- and best-case distributions of Yt(j). In this work, the worst-

and best-case scenarios are a result of the export cable behaviour. Ep(OPEX) is evaluated

as a sample mean from an availability simulation for each option j. Using Eq. (8.23), we

find that:

Ep(Rt(j)) = (0.9Ep(IYt(j)≤0.94)− 1.45Ep(IYt(j)≥0.94)

+ 2.5Ep(Yt(j))Ep(IYt(j)≥0.94))Ep(B(j)). (8.25)

Here, Ep(Yt(j)) is evaluated as a sample mean from an availability simulation for each

option j. Ep(I0.94≤Yt(j)) and Ep(IYt(j)≥0.94) are also determined from the availability sim-

ulation. If the metric annual ROI is preferred, then we recall Eq. (6.5) from Chapter 6,

and the analysis follows in a similar same way to the approach described here.
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Similarly, we repeat the expressions for NPV that we detailed in Chapter 7. For each

option j, the NPV can be evaluated by:

NPV(j) =

n1∑
t=1

Rt(j)−OPEXt(j)− Lt(j)
(1 + d)t

+
n∑

t=n1+1

Rt(j)−OPEXt(j)

(1 + d)t
. (8.26)

Here, d denotes the discount factor, Rt(j) denotes revenue in year t, OPEXt(j) denotes

the operational expenditure in year t, Lt(j) denotes the loan repayment amount in year

t, n denotes the number of operational years, and n1 denotes the loan duration in years.

Eq. (8.26) shows that the cash flow is different in the first n1 years as it includes the loan

repayments. Taking the lower expectation of Eq. (8.26), we find:

E(NPV(j)) = min
p∈M

((
n1∑
t=1

1

(1 + d)t

)
(Ep(R(t=1)(j))− Ep(OPEX(t=1)(j))− L(t=1)(j))

+

(
n∑

t=n1+1

1

(1 + d)t

)
(Ep(R(t=n1+1)(j))− Ep(OPEX(t=n1+1)(j)))

)
. (8.27)

8.3.2 Model Inputs that Contain Uncertainty

Several of the model parameters required in the expressions presented above (for ROI

and NPV) contain uncertainty. The type of uncertainty can be described by two broad

categories: aleatory uncertainty and epistemic uncertainty (see Section 5.2 for more de-

tails). Aleatory uncertainty comes from variability, whereas epistemic uncertainty arises

due to a lack of completeness in our knowledge. In our analysis, we concentrate on han-

dling uncertainty due to limited information (the epistemic uncertainty) for the following

model inputs:

1. The failure and repair rates of an offshore cable which are used to evaluate a com-

ponent’s availability.

2. The interest rate on the loan taken out to repay the capital costs.

3. The hire cost of an offshore cable repair vessel.

4. The amount of planned operational costs.

In this work, we encounter act-state dependence, which can be defined as instances in

which the distribution of the state of nature depends on the decision taken. We discussed

act-state dependence in Chapters 5 to 7. The act-state dependent variable that contains

uncertainty in this decision problem is the availability of the OTS. To handle uncertainty

in the act-state dependent variable, we simulate the best- and worst-case distributions

of availability, for fixed values of the act-state independent variables. These simulations

bound the expectation of NPV and ROI (conditionally on the act-state independent vari-

ables) and can be used with the interval dominance and Γ-maximin decision criteria.
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The act-state independent variables, that contain uncertainty and that we focus on in

this study, are the hire cost of an offshore cable repair vessel, the interest rate on the loan

taken out to repay the capital costs and the amount of planned operational costs. To treat

the act-state independent variables, we investigate how the decision changes as a function

of fixed values of these variables. The following subsections discuss four model variables

that contain uncertainty, and that will be is addressed in the analysis that follows.

Failure and repair rates of an offshore cable

We begin by discussing the act-state dependent variable: system availability. The

availability of an OTS depends on the frequency and duration of component outages. To

model the availability of each component, we use failure and repair rates. In this study, we

concentrate on uncertainty in the export cable failure and repair rates. Operational expe-

rience has seen unexpected cable failures that have had costly implications [82]; therefore,

these incidents suggest that cables could be an area of concern. Furthermore, the cable

reliability parameters commonly used in assessments are suggested to be unrealistic [83].

This paragraph recaps the failure rates and repair times quoted in the literature.

Failure rates of HVAC offshore cables are quoted to be 0.000705 fails/year/km in [142],

0.0015873 fails/year/km in [82], 0.00021 fails/year/km in [247], and 0.003 fails/year/km in

[83]. Similarly, failure rates of HVDC offshore cables are quoted to be 0.0001 fails/year/km

in [238], 0.0007 fails/year/km in [149], and 0.00021 fails/year/km in [247]. Repair times

are quoted in the literature between two and five months [142], and 60 days in [95].

Performance reports by National Grid indicate that UK cable failures have lasted between

a couple of hours and 125 days [141].

The limited amount of data means that it is difficult to assign distributions to model

the system and justify any modelling assumptions. In particular, as we have discussed

in Chapters 5 to 7, conventional techniques model cable failure and repair behaviour

using Markov chains. Unfortunately, under severe uncertainty due to limited data, we

cannot justify the modelling assumptions required to use Markov chains. Instead, to more

robustly handle the severe uncertainty, we work with a set of processes (for more details

see Section 5.4). By assigning bounds to the transition rates (between the working and not

working states), we consider a set of transition matrices that may depend on the full time

and history of the system. This approach means we no longer have to specify transition

rates as precise values.

Fig. 8.7 shows a simplified block diagram to explain the analysis and uncertainty

handling of the act-state dependent variable. In these diagrams input parameters are rep-

resented by a double circle, a box represents simulation processes, a single circle represents
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outputs of one process that are used by another, and a diamond shape represents the final

outputs of the analysis. In Fig. 8.7, the grey filled nodes show where epistemic uncer-

tainty in the act-state dependent variables is included in the analysis. The input node

termed ‘component properties’ includes four input parameters shown on the left-hand side

of Fig. 8.8: component failure rate, repair rate, daily repair cost and one-off repair cost.

As there is limited data regarding the failure behaviour of offshore cables, there is

epistemic uncertainty in the analysis. On account of this epistemic uncertainty, we as-

sign reasonable ranges to the offshore cable failure rate and repair rate and consider all

distributions with these ranges. Figs. 8.7 and 8.8 shows that these inputs feed into the

availability simulation which results in bounds on the simulation outputs: expected yearly

availability, the probability that availability is greater than 94% and the expected OPEX.

Ultimately, this bounds the expected NPV and ROI, which are then visualised and used

in the inference part of the decision making process.

During the modelling process, we consider aleatory uncertainty, and this is denoted

in the block diagrams by nodes with red font. In the availability simulation, we obtain

traces of the system using a Monte Carlo simulation; this modelling process introduces

aleatory uncertainty into the model. The right-hand side of Fig. 8.8 shows this in more

detail. However, as we focus on expectations and usually only visualise expectations, the

resulting plots do not show the aleatory uncertainty.

The interest rate of the loan used to repay the capital costs

Another model input that contains uncertainty is the loan interest rate, which is an act-

state independent variable. In the NPV analysis, capital investment is modelled through

a loan repayment structure. This loan repayment structure requires a model parameter

called the interest rate. Interest rates change throughout time, and its future value is

uncertain. Over the last twenty-years this value, according to the bank of England, has

ranged between 0.1% and 6% [189].

Vessel hire costs for offshore cable repairs

We also consider the uncertainty in the model input termed vessel hire costs, which is

an act-state independent variable. Upon the failure of an export cable, a repair process

begins, which may involve locating the cable fault and replacing the damaged cable section

[187]. The repair of a cable may require a specialist vessel, and unfortunately, hiring a

vessel at short notice can be expensive. Additionally, there may be a delay to the vessel

arriving on site (due to vessel availability or weather), which increases the cable downtime

[24, 142]. The exact cost of vessel hire depends on several factors, including the availability
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Figure 8.7: Simplified block diagram to explain epistemic and aleatory uncertainty in

our analysis. The grey filled nodes show where epistemic uncertainty is included in the

modelling process. The nodes written in red font indicate where we consider aleatory

uncertainty in our analysis. The diagram also shows the modelling step and the inference

step.
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Figure 8.8: Block diagrams for component properties (on the left-hand side) and avail-

ability simulation (on the right-hand side).

of vessels. Below, we list the daily vessel hire rates quoted in the literature:

• The day rate of a heavy lift vessel is quoted between £50, 000 and £125, 000 in [93].

• Vessel daily rates are quoted to be £102, 000, £147, 300, and £192, 600 for a 800,

1000, 1200 tonne jack up crane capacity, respectively [155].

• Daily rates for the spot market are quoted between £95, 300 and £287, 400 in [71].

• In a recent export cable repair, the rate for vessel and crew hire per day in UK

waters was approximately £100, 000 [190].

The amount of planned operational expenditure

Finally, we consider uncertainty in the model input required to evaluate the planned

OPEX, which is also an act-state independent variable. In Chapter 4, we discussed that

OFTOs conduct planned maintenance to ensure good system conditions. When detailed

data is unavailable, yearly planned operational expenditure is estimated as a percentage,

α, of the capital cost of the OTS [104, 177, 17]. There is uncertainty around the input

parameter α as it is often determined by expert knowledge.

Literature estimates the operational expenditure of cables to be 0.4% of the capital

costs [177]. Similarly, the study by [104] uses a yearly maintenance cost of the substation

to be 0.4% of the capital costs of the transmission link. Furthermore, the work by [17]

takes the annual maintenance costs of a HVDC connection to be 0.5% of the transmission
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Input Parameter Values considered

Loan interest Rate 0.01, 0.03, 0.05, 0.065

Vessel hire per day (£) 50,000, 100,000, 150,000, 200,000

Planned OPEX factor 0.005, 0.01, 0.015, 0.02

Table 8.6: Summary of input values for act-state independent variables that contain un-

certainty.

capital costs and the lifetime maintenance costs of HVAC connection to be 15%. In this

study, we assess how the decision changes for different input values of α between 0.5% and

2%.

One limitation of this work is that the model does not account for unavailability due

to planned maintenance. Further work could investigate including this.

Summary of input values considered

In the section, we have detailed the model inputs that contain uncertainty. We also

presented literature values for the act-state dependent variables (offshore cable failure

and repair rate), and the act-state independent variables (loan interest rate, vessel hire,

and planned OPEX factor). Table 8.6 shows a summary of input values for the act-state

independent inputs, and they will be used to obtain the results in Section 8.4.

In this section, we also explained that it is challenging to assign distributions to model

the failure and repair behaviour of offshore cables. Consequently, we consider a reasonable

set of distributions by assigning ranges to these inputs and considering all distributions

within these ranges. Therefore, the analysis that follows uses the following bounds on the

offshore cable failure rates: 0.000705 fails/year/km to 0.0016 fails/year/km (for HVAC

systems) and 0.0001 fails/year/km to 0.0007 fails/year/km (for HVDC systems). In this

study, we also assume that an offshore cable repair takes between 40 days and 150 days.

8.3.3 Decision Criteria

So far, in step two (the inference part of the decision analysis), we have presented a

methodology to evaluate bounds on the expected value of two economic metrics. Addi-

tionally, we have discussed and detailed the input data, in particular, the ranges for which

we consider all distributions within. This methodology allows us to obtain bounds on the

expected NPV and ROI for each viable offshore transmission system (OTS). Next, we

explain how to analyse and compare these intervals to select the optimal option.

In Chapter 5, we introduced several decision criteria that exist to make decisions under
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severe uncertainty using imprecise probability. On account of the presence of act-state

dependence, we use interval dominance and Γ-maximin as the decision criterion to select

the optimal OTS. These criteria were discussed in Chapter 5. Here, we repeat a brief

description of these criteria for convenience.

Firstly, Γ-maximin is a more conservative decision criterion, and selects the option

with the greatest lower bound. The second decision criterion that we use is called interval

dominance, and may be chosen if the decision maker is more tolerant to risk. Interval

dominance selects any option which is not interval dominated by another option, where

option A interval dominates option B if the interval for option A is entirely to the right-

hand side of interval B.

8.3.4 Sensitivity Analysis

To handle uncertainty in the act-state independent variables, we investigate how the

decision changes as a function of fixed values of the act-state independent variables. To

explain the methodology, and to aid the interpretation of future plots, Fig. 8.9 shows how

to construct the sensitivity analysis plot. For this example, we use topologies designed for

a 1200 MW project located one hundred kilometres offshore. To aid clarity, we only show

the results for eleven of the possible topologies that were designed in the modelling step;

these are labelled A to K.

The first plot (shown in the top-left of Fig. 8.9) shows the bounds on the expected net

present value (NPV) for each option when the value of the loan interest rate is fixed at

1%. The Γ-maximin decision criterion selects the option with the greatest lower bound.

A vertical dotted line is added to the plots at the value of the greatest lower bound, the

Γ-maximin value, to aid readability. In the first plot, the Γ-maximin line (shown in blue),

is in-line with the lower bound of option E. The plot shows that option J has bounds

completely below the Γ-maximin line. Accordingly, using the decision criterion termed

interval dominance, option J is dominated by the other options. Therefore, the optimal

set of options contains all the options except for option J.

On the next plot (shown in the top-right of Fig. 8.9), the bounds on the expected NPV

when the loan interest rate is 3% are added. Next, we find the Γ-maximin option, which

remains unchanged as option E. We add a purple dotted line at the Γ-maximin value and

see that there are no options whose bounds fall below this line. Consequently, the set

of options selected using the interval dominance decision criterion includes all options.

Therefore, the decision, using interval dominance has changed as the value of the loan

interest rate changes from 1% to 3%.

The third plot (shown in the bottom-left of Fig. 8.9) shows the bounds on the expected
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Figure 8.9: Shows the construction of the sensitivity analysis results plot and accompanies

the explanation in this section.
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NPV when the loan interest rate is changed to 5%. Using the Γ-maximin decision criterion,

we again select option E. The plot shows that, again, no options remain below the Γ-

maximin. Therefore, the decision made using interval dominance is unchanged (from 3%

to 5%).

Finally, the fourth plot (shown in the bottom-right of Fig. 8.9) includes the bounds on

the expected NPV when the loan interest rate is 6.5%. The Γ-maximin decision criterion

selects option E. We see that, again, no options fall below the Γ-maximin line. Therefore,

the set of options selected using the interval dominance decision criterion includes all

options.

When reporting the results of investigating how the decision changes as a function of

fixed values of the act-state independent variables, we present only the final plot. The

sensitivity analysis, for each act-state independent variable, will be displayed on a single

plot.

There exist some limitations in this sensitivity analysis approach to uncertainty han-

dling. Firstly, we do not investigate aleatory uncertainty (the uncertainty due to variabil-

ity). Modelling the failure and repair of components by the exponential distribution on

the bounds introduces uncertainty due to the random process, and consequently, there

will be differences between the realisations of the process. The analysis in Fig. 8.9 does

not visualise this type of uncertainty primarily as we aim to maximise (or minimise if

appropriate) the expectation of the metric of interest.

Instead, we focus on handling uncertainty in the input modelling parameters on account

of the previously discussed severe epistemic uncertainty. Therefore, it is necessary to

note that in the resulting plots, the intervals are due to epistemic uncertainty in the

input parameters. Importantly, the ranges are not to be confused with confidence bounds

which represent the uncertainty due to variability in the modelling process. Secondly,

this analysis only handles uncertainty in one act-state independent variable at a time.

Visualising the analysis in a way that is clear to interpret becomes challenging beyond one

variable. Therefore, we restrict the analysis to one variable at a time.

8.3.5 Aleatory Uncertainty

So far, we have described a methodology that models aleatory uncertainty; however,

we have not visualised this. Instead, we focused on expectations. In this section, we

turn to visualise aleatory uncertainty, as some decision makers may be interested in the

variability. Assessing the variability could be a secondary consideration in the decision

making process, as it provides extra information and could narrow down the set of optimal

options. For example, a decision maker may disregard an option if the variability is large
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and unfavourable.

In this example, we implemented the methodology of this chapter to design an offshore

transmission system (OTS) for a 1200 MW project located one hundred kilometres off-

shore. We first designed forty-four possible topologies and then to select the economically

preferable topology, we calculated bounds on the expected NPV. In Fig. 8.10, we present

the distributions of the NPV realisations for one topology option. Ideally, it would be

useful to have this information about variability when making investment decisions. Fur-

thermore, it would be useful to have this information visualised for all options to allow

the decision maker to understand the variability about the expectation.

Fig. 8.11 shows the aleatory uncertainty for all of the options in this example. A black

outlined box shows the bounds on the expected value of the NPV. The box is filled in grey

for interval dominant options, and black for Γ-maximin options. The vertical dotted line

shows the Γ-maximin value to aid interpretation. The blue histograms show the worst-case

scenario, and the red histograms show the best-case scenario. This is similar to Fig. 8.10,

however Fig. 8.11 shows the information for all options. The blue dots show one standard

deviation either side of the mean for the worst-case scenario. Similarly, the red dots are

for the best-case scenario. For the input data used, Fig. 8.11 suggests that there is more

significant variability for options seventeen onward (corresponding to the HVAC systems).

Based on this extra information, a decision maker may choose to disregard options with

considerable variability, especially if the economic metric is unfavourable.

8.3.6 Adapting to Other Markets

So far, this analysis has focused on the UK market and analysed from the perspec-

tive of an OFTO. This section details how this methodology could be adapted to other

markets. Each country adopts an ownership structure for an offshore wind power plant.

Moreover, in Chapter 2 we noted that the different approaches fall into three broad cat-

egories: a separate entity owning the offshore transmission system (OTS), the wind farm

developer extending their ownership to include the OTS, and the onshore transmission

system operator (TSO) extending their responsibilities offshore to include the OTS.

Firstly, we discuss how the methodology could be adapted for the scenario where the

offshore wind developer also owns the OTS. The main difference between the various own-

ership structures is the revenue stream formulation in the economic model. The revenue

stream for the wind farm developer is determined by the amount of energy they sell to the

onshore grid and the market price. Furthermore, the amount of energy sold to the grid

depends on the availability of the OTS.

With regard to OPEX and CAPEX, in a full economic analysis from a wind farm
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Figure 8.10: For one option, a histogram of the worst-case realisations of net present

value (NPV) shown in blue and a histogram of the best-case realisations of NPV shown

in red. The solid vertical lines show the corresponding mean values (blue for worst-case

and red for best-case). Similarly, the dashed lines show one standard deviation either side

of the mean.

developer’s perspective, these values will be much higher as they also include the offshore

generating assets (including turbines and array cables). However, the OPEX and CAPEX

associated with the offshore transmission assets could be different, as perhaps there is some

scope for cost savings due to coordinated maintenance strategies (between the offshore

wind farm and the OTS).

With these variables in mind, a wind developer could use the analysis in the following

ways. The availability of the OTS is critical to their profit, and therefore bounds on

availability could form part of the decision making process. Furthermore, the availability

bounds could be coupled with CAPEX and OPEX values relating to each option to assess

the balance between availability and investment costs. Additionally, an offshore wind farm

owner could conduct an economic assessment for the entire offshore wind farm, including

their revenue structure, and implement the methods described in this chapter to handle

epistemic uncertainty in the model inputs.

Secondly, we turn to the case of the onshore TSOs extending their assets offshore. It

is important to note that an onshore TSO may not have the same freedom and therefore,

may have limited technology choices to choose from if they are tightly regulated. Further

details on onshore TSO ownership are difficult to obtain. In particular, information on

the revenue streams. Therefore, to adapt the methodology described here, an onshore

TSO could substitute in their revenue stream model. Another option, similar to the wind
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Figure 8.11: Shows the variability around the expectation of NPV for all options. The

horizontal boxes show bounds on the expected value of NPV. The box is filled grey for

interval dominant options, and black for Γ-maximin options. The vertical dotted line

shows the Γ-maximin value. The blue dots show one standard deviation either side of the

mean for the worst-case scenario. Similarly, the red dots are for the best-case scenario.
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Component Failure rate Repair rate Cost per fail-

ure

Daily down-

time cost

Component (fails/year) (repairs/hour)(£million) (£million)

Offshore transformer 0.0105 0.0007 3.75 0.0035

Onshore transformer 0.0105 0.001 2.25 0

Offshore VSC 0.14016 0.005 3.23 0.0035

Onshore VSC 0.14016 0.0417 0.93 0

HVAC offshore cable - - 0.0042 0.1426

HVDC offshore cable - - 0.0042 0.1426

HVAC onshore cable - - 0.0841 0

HVDC onshore cable - - 0.0841 0

Table 8.7: Component failure and repair rates used in this analysis [99, 142]. The repair

and failure rates for the cables are left empty in this table as they are uncertain due

to limited data; these inputs are discussed and presented in Section 8.3.2. Costings are

interpreted from [33, 36, 37, 93, 155].

farm developer case, is to use the proposed analysis to obtain CAPEX values and compare

these to availability and OPEX bounds. The decision maker could then use these bounds

on individual variables in a way that best suits their needs.

8.4 Results

In this section, we present the results of this chapter. The methodology described

throughout this work facilitates the design of economically preferable offshore transmis-

sion systems (OTSs), for a given generation capacity and distance offshore. Using these

design parameters, we identify several possible topologies using the methods described in

Section 8.2. Following on from this modelling step, we aim to find optimal topologies

from this set of possible topologies by selecting the economically favourable options. On

account of the uncertainties described above, we implement techniques based on imprecise

probability to find optimal topologies (see Section 8.3).

The analysis requires several input values that are discussed in this paragraph. We

evaluate the CAPEX from individual component costs from [33, 36, 37, 146, 38], and using

the approach detailed in Chapter 4. For each of the major components, we also require

the failure rate, repair rate, one-off repair cost, and cost per day of downtime; these values

are shown in Table 8.7. Furthermore, we take the number of operational years to be

thirty years, distance onshore (from the landfall to the onshore substation) to be forty
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Results case study brief description Location in chapter

Case study one (700 MW, 30 km offshore) Section 8.4.1

Case study two (700 MW, 100 km offshore) Section 8.4.2

Case study three (1200 MW, 100 km offshore) Section 8.4.3

Impact of cable failure rate scenarios for a 1200 MW project Section 8.4.4

Table 8.8: A brief description of the studies considered in the results section.

kilometres, the loan duration to be twelve years and the number of loan instalments per

year to be four.

In this section, we present the results of the analysis described above applied to four

studies which are summarised in Table 8.8. We investigate three case studies: case study

one is a 700 MW project located thirty kilometres offshore, case study two is a 700 MW

project located one hundred kilometres offshore, and case study three is a 1200 MW project

located one hundred kilometres offshore. We use the components given in Tables 8.2

and 8.3 to design OTSs. In practice, a decision maker can input a set of components

available to them. The results for case study one, two and three are shown in Figs. 8.12

to 8.18, Fig. 8.19, and Figs. 8.20 to 8.24, respectively.

In the results figures, we show bounds on the expectation of the metrics of interest

(conditionally on the act-state independent variables). We initially fix the daily vessel hire

rate at £0.1 million, the loan interest rate at 3% and the planned OPEX factor at 0.5%.

Then, for each case study and each metric of interest, we investigate how the decision

changes as a function of fixed values of these act-state independent variables (displaying

one variable at a time for clarity).

Additionally, in Section 8.4.4, we investigate the impact of different cable failure rate

scenarios for a 1200 MW project located one hundred kilometres offshore. The description

of this study is not exhaustive; nevertheless, it serves as an illustration as to how a

decision maker could use the methods to investigate other decision problems of interest.

Furthermore, these scenarios demonstrate the applicability of these methods beyond the

three case studies considered.

8.4.1 Case Study 1: 700 MW Located 30 km Offshore

The first case study we examine is a 700 MW project located thirty kilometres offshore.

To find an optimal OTS for this project, we first design a set of possible topologies by

inputting the project design parameters into the modelling step. Tables 8.9 and 8.10 show

all the OTSs that are designed in the modelling step. Next, we aim to find which of
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these topologies is economically preferable, and this is achieved in the inference step of

the decision making analysis. The results of the inference step are shown in Figs. 8.12

to 8.18.

Fig. 8.12 shows the results for the metric NPV. Initially, for fixed values of the act-

state independent variables, Γ-maximin selects option thirty-one, and interval dominance

selects all of the HVDC bipole options. Option thirty-one is a HVDC system with one

offshore platform and one branch to the onshore substation. We also note that the NPV

tends to be greater for options one to thirty-two (the HVDC systems) than the HVAC

systems.

Figs. 8.13 to 8.15 show the results of investigating the impact of the act-state indepen-

dent variables. While investigating how the decision changes as we consider different fixed

values of the loan interest rate, we observe that varying this input has a significant impact

on the NPV; nonetheless, the optimal decision is almost unchanged. Whereas, varying the

input vessel hire rate has a reasonably small impact on the NPV of the options. Again, the

optimal decision remains largely unchanged. We find that, once more, interval dominance

selects all HVDC bipole options. However, using Γ-maximin and depending on the value

for the vessel hire chosen, the optimal topology varies.

The final act-state independent variable we consider is the planned OPEX factor, and

the results suggest that this input has a similar impact to loan interest rate. Varying

planned OPEX factor has a significant impact on the NPV; however, the optimal decision

remains almost the same. In practice, we note that increased planned operations and

maintenance should, in theory, reduce the unplanned OPEX. However, this is not captured

by our model.

Secondly, for case study one, we consider the metric annual ROI, and the results are

shown in Fig. 8.16. We notice that the results for ROI are considerably different from NPV;

and therefore, we observe that the choice of utility function affects the decision (for more

detail see the discussion in Section 6.4.2). Notably, for fixed initial values of the act-state

independent variables, Γ-maximin selects options thirty-seven, and interval dominance

selects several of the topologies (including both HVAC and HVDC technologies). Option

thirty-seven is a HVAC topology with one offshore platform, and one branch connecting to

the onshore substation. We find that the ROI only differs slightly across all case studies.

Furthermore, we investigate how the decision changes as a function of fixed values of the

act-state independent variables. These results are shown in Figs. 8.17 and 8.18. Starting

with Fig. 8.17, we observe that the annual ROI remains mostly unchanged for the different

vessel hire rates considered, and interval dominance still cannot select between the options.

However, for the different vessel hire rates investigated, Γ-maximin selects several options,
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including both HVAC and HVDC topologies. Another act-state independent variable we

investigate is the planned OPEX factor, and these results are shown in Fig. 8.18. We find

that the input value impacts the annual ROI of each option; however, the optimal decision

is unchanged (Γ-maximin still selects option thirty-seven).

Option Offshore

platform

Offshore

transformer*

Offshore

cable**

Onshore

cable**

Onshore

transformer

Option 33 [2, 400] [1, 350] [1, 350] [1.0, 350] [2, 350]

Option 34 [2, 500] [1, 350] [1, 350] [1.0, 350] [2, 350]

Option 35 [2, 600] [1, 350] [1, 350] [1.0, 350] [2, 350]

Option 36 [1, 700] [2, 350] [1, 350] [1.0, 350] [2, 350]

Option 37 [1, 1200] [2, 350] [1, 350] [1.0, 350] [2, 350]

Table 8.10: Feasible HVAC topology options for case study one (and case study two)

identified using the methods described. Here, * denotes when the quantity is given per

platform and ** denotes when the quantity is given per transformer.

8.4.2 Case Study 2: 700 MW Located 100 km Offshore

The second case study we consider is a 700 MW project located one hundred kilometres

offshore. To obtain optimal OTSs for this project, we first design a set of possible topolo-

gies by inputting the project design parameters into the modelling step. We note that the

set of topologies designed for case study one and two are identical in terms of the major

components and their quantities because the project capacities are the same. Therefore,

Tables 8.9 and 8.10 also shows the topologies designed for case study two. However, since

case study two is located 100 kilometres offshore, the cables will be longer, and the HVAC

topologies will include a reactive compensation unit. The key differences between the two

case studies will be considered in the economic analysis, for example, in project costs and

system availability. Next, we aim to find which of the topologies is economically prefer-

able, and this is investigated in the inference step of the decision making analysis. The

results of the inference step are given in Fig. 8.19.

The left-hand side of Fig. 8.19 shows the results of evaluating the metric NPV for case

study two. The optimal decision, when the act-state independent variables are initially

fixed and using Γ-maximin as the decision criterion, is option twenty-four: a HVDC topol-

ogy with one offshore platform connected to the onshore substation by one branch. We

also notice that interval dominance selects all options except for the HVAC connections.

The next stage of the decision analysis is to investigate how the decision changes as a
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Figure 8.12: Bounds on the expected net present value (NPV) for each option. Here, an

option is a possible offshore transmission topology for case study one (a 700 MW project

located 30 km offshore). We show the initial analysis for fixed values of the act-state

independent variables. The dotted vertical line represents the Γ-maximin line.
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Figure 8.13: Bounds on the expected net present value (NPV) for each option. Here, an

option is a possible offshore transmission topology for case study one (a 700 MW project

located 30 km offshore). We investigate how the decision changes as a function of fixed

values of the input loan interest rate. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.14: Bounds on the expected net present value (NPV) for each option. Here, an

option is a possible offshore transmission topology for case study one (a 700 MW project

located 30 km offshore). We investigate how the decision changes as a function of fixed

values of the vessel hire rate. The dotted vertical lines represent the Γ-maximin lines.
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Figure 8.15: Bounds on the expected net present value (NPV) for each option. Here, an

option is a possible offshore transmission topology for case study one (a 700 MW project

located 30 km offshore). We investigate how the decision changes as a function of fixed

values of the planned OPEX factor. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.16: Bounds on the expected annual return on investment (ROI) for each option.

Here, an option is a possible offshore transmission topology for case study one (a 700

MW project located 30 km offshore). We show the initial analysis for fixed values of the

act-state independent variables. The dotted vertical line represents the Γ-maximin line.
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Figure 8.17: Bounds on the expected annual return on investment (ROI) for each option.

Here, an option is a possible offshore transmission topology for case study one (a 700 MW

project located 30 km offshore). We investigate how the decision changes as a function

of fixed values of the vessel hire rate. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.18: Bounds on the expected annual return on investment (ROI) for each option.

Here, an option is a possible offshore transmission topology for case study one (a 700 MW

project located 30 km offshore). We investigate how the decision changes as a function

of fixed values of the planned OPEX factor. The dotted vertical lines represent the Γ-

maximin lines.
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function of fixed values of the act-state independent variables.

We find that many of the trends observed in the equivalent sensitivity analysis of case

study one are also seen in case study two. Therefore, we do not include the resulting

figures, but instead, discuss the findings. Varying the planned OPEX factor and loan

interest rate significantly impacts the NPV of an option but does not change the optimal

decision. Accordingly, option twenty-four is selected using Γ-maximin for all input values

considered. Considering different values for the vessel hire rate does not appear to impact

the NPV significantly; however, the Γ-maximin option does change. Overall we find

that the optimal options using interval dominance are the HVDC topologies; though,

occasionally, some HVAC connections are included in the interval dominant set.

The right-hand side of Fig. 8.19 shows the results for case study two considering the

metric annual ROI. For the initial scenario, when the act-state independent variables

are fixed, Γ-maximin selects options twenty-four, again. Alternatively, we find that the

interval dominance criterion selects all options. The sensitivity analysis, which investigates

the impact of uncertainty in act-state independent variables, showed similar patterns in

the results to the analysis using the metric NPV. Therefore, the visualisation of this

analysis is omitted.

8.4.3 Case Study 3: 1200 MW Located 100 km Offshore

In the third case study we consider a 1200 MW project located one hundred kilometres

offshore. First, we input these project design parameters into the modelling step to design

a set of possible topologies. We recall that this case study was used in Section 8.2.5, and

that Tables 8.4 and 8.5 show the topologies that are designed in the modelling step. We

note that these topologies are different from those designed in case study one and two as

we are considering a larger project capacity. We also note that we have designed more

topologies in case study three than the previous case studies. Next, we find which of these

topologies is economically preferable by carrying out the inference step of the decision

making analysis. The results of the inference step are given in Figs. 8.20 to 8.24.

Fig. 8.20 shows the bounds on the metric NPV for all of the OTSs that have been de-

signed for case study three. We initially fixed the act-state independent variables and found

that using Γ-maximin, the optimal topology is option twenty-eight (a HVDC system). We

then investigated the impact of uncertainty in the act-state independent variables. These

results are shown in Figs. 8.21 to 8.23. Again, we see many of the trends for the previous

case studies (changing the loan interest rate and planned OPEX impacts the NPV but

not the decision). In many of the scenarios considered, all but option forty-three falls into

the optimal set when the interval dominance decision criterion is applied. Importantly,
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Figure 8.19: Bounds on the expected net present value (NPV) (left) and annual return on

investment (ROI) (right) for each option. Here, an option is a possible offshore transmis-

sion topology for case study two (a 700 MW project located 100 km offshore). We show

the initial analysis for fixed values of the act-state independent variables. The dotted

vertical lines represent the Γ-maximin lines.
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HVAC offshore cable failure rate HVDC offshore cable failure rate

(fails/year/km) (fails/year/km)

Scenario 1 0.000705 - 0.0016 0.0001- 0.0007

Scenario 2 0.000705 - 0.0016 0.00021 - 0.0007

Scenario 3 0.0001 - 0.000705 0.00021 - 0.0007

Table 8.11: Scenario description where different ranges for the offshore cable failure rate

are considered.

we note that for some HVAC topologies, the lower bound is negative. A negative NPV

suggest that a project is not desirable to invest.

Similarly, Fig. 8.24 shows the bounds on the metric annual ROI. We also investigated

the impact of uncertainty in the act-state independent variables on the annual ROI and

found a similar pattern to the analysis that considered the metric NPV. For this reason,

we do not include the visualisation of these results. Notably, option twenty-eight seems

preferable in almost all scenarios considered. Additionally, we observe that the HVAC

options have wider intervals than the HVDC options. This observation is a consequence

of the ranges of the input values used, within which we consider all distributions.

8.4.4 Investigating the Impact of Different Failure Rates

This section focuses on case study three (a 1200 MW project located one hundred

kilometres offshore). Here, we now consider different bounds on the offshore cable failure

rates within which we consider all distributions. In practice, these bounds are determined

by the decision maker and are based on the information they have available to them. The

three scenarios investigated are summarised by Table 8.11 and the results are shown in

Fig. 8.25.

Fig. 8.25 suggests that using the inputs of scenario one and scenario two result in

similar bounds on the expected annual ROI. In contrast, scenario three results in different

bounds on the expected annual ROI, in particular, for the HVAC systems. In terms of the

optimal decision, interval dominance, for all three scenarios, cannot select between any of

the options. Using the decision criterion called Γ-maximin, we select option twenty-seven

for scenario one, and option thirty for scenario two and three. The explanation of this

study is not exhaustive; but it serves as a demonstration of how a decision maker could

use the methods to investigate another decision problem under severe uncertainty.
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Figure 8.20: Bounds on the expected net present value (NPV) for each option. Here,

an option is a possible offshore transmission topology for case study three (a 1200 MW

project located 100 km offshore). We show the initial analysis for fixed values of the

act-state independent variables. The dotted vertical line represents the Γ-maximin line.
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Figure 8.21: Bounds on the expected net present value (NPV) for each option. Here,

an option is a possible offshore transmission topology for case study three (a 1200 MW

project located 100 km offshore). We investigate how the decision changes as a function

of fixed values of the loan interest rate. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.22: Bounds on the expected net present value (NPV) for each option. Here,

an option is a possible offshore transmission topology for case study three (a 1200 MW

project located 100 km offshore). We investigate how the decision changes as a function

of fixed values of the vessel hire rate. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.23: Bounds on the expected net present value (NPV) for each option. Here, an

option is a possible offshore transmission topology for case study three (a 1200 MW project

located 100 km offshore). We investigate how the decision changes as a function of fixed

values of the planned OPEX factor. The dotted vertical lines represent the Γ-maximin

lines.
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Figure 8.24: Bounds on the expected annual return on investment (ROI) for each option.

Here, an option is a possible offshore transmission topology for case study three (a 1200

MW project located 100 km offshore). We show the initial analysis for fixed values of the

act-state independent variables. The dotted vertical line represent the Γ-maximin line.
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Figure 8.25: Bounds on the expected annual ROI for each option. Here, an option is a

possible offshore transmission topology for a 1200 MW project located 100 km offshore.

We investigate how the decision changes for the different scenarios investigated (see Ta-

ble 8.11). The dotted vertical lines represent the Γ-maximin lines.
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8.5 Conclusions

This chapter set out to demonstrate and investigate the implementation of imprecise

probability to a more comprehensive offshore power transmission decision problem. There-

fore, the purpose of this chapter was to present a novel investment planning tool that could

be utilised under severe uncertainty. To develop this tool, we set out to design feasible

offshore transmission systems (OTSs) from components available in the market, and then

evaluate the economic benefit of each topology to select the optimal system. Furthermore,

we investigated methods that enable this analysis to handle severe uncertainty appro-

priately. These research aims culminate to one overarching aim, which was to illustrate

how techniques based on imprecise probability could be beneficial to decision makers who

make critical investment decisions, regarding offshore transmission assets, under severe

uncertainty.

As part of the developed investment planning tool, this study showed how to design the

decision space this is a key difference between this chapter and the previous applications.

In Section 8.2, we showed how to design HVAC and HVDC topologies from individual

components using logical and physical constraints. This modelling step allows us to show,

in a more direct way, how the proposed inference techniques introduced in Chapter 5 can

be used to aid project planning for a range of projects. Furthermore, this step allows the

work to be a more comprehensive investment planning tool.

Additionally, in Section 8.3 we demonstrated how to implement imprecise probability,

to enable this investment planning tool to be robust under severe uncertainty. Firstly, we

utilised the methods to evaluate bounds on the metrics of interest presented in Chapters 6

and 7. We also discussed the handling of uncertainty in several of the model inputs:

offshore cable failure and repair rate, loan interest rate, vessel hire, and planned OPEX

factor. Importantly, we show how we deal with uncertainty in act-state independent and

act-state dependent variables. Once we obtained bounds for each option, we recalled the

decision criteria introduced in Chapter 5, and implemented these techniques to find the

optimal topology.

Most of the methodology focused on the expectation of a metric of interest; however,

we did explore aleatory uncertainty and showed how the variability around the mean could

be a secondary consideration in the decision making process. Before presenting the results,

we discussed how the methodology could be adapted to suit the needs of other markets.

Finally, we presented the results of the investment planning tool for three case studies.

A significant contribution to emerge from this study is the development of an in-

vestment planning decision tool that utilises imprecise probability to more appropriately
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handle severe uncertainty. The results suggest that: firstly, imprecise probability can be

implemented to aid in the planning of OTSs; secondly, the results of the techniques can be

visualised in a way that is clear to communicate and interpret; and finally, the proposed

techniques advance the current handling of uncertainty in economic evaluations and should

be implemented in the case where it is challenging to assign a probability distribution due

to limited data.
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Chapter 9

Chapter Summaries

In this chapter, we present summaries of each of the chapters in this thesis. Further-

more, we discuss how and where we address the research aims of this thesis. To recap,

in Chapter 1 we introduced the thesis and the broader context in which the research of

this thesis sits. In Chapter 1, we also outlined the research aims and questions that are

addressed in this research, as well as detailing the original research contribution of this

work. In Chapters 2 to 4 we motivated the research needs, in particular, the need for

advanced statistical methods to support decision making in offshore power transmission.

In Chapter 5, we presented the advanced statistical methods proposed to handle severe

uncertainty, and in Chapters 6 to 8, we showed the application of the described techniques.

In Chapter 10, we will summarise the conclusions of this thesis and discuss areas of further

work.

9.1 Chapter 2 Summary

We began by reviewing the literature in Chapter 2 to gain a deeper understanding of the

offshore transmission system (OTS) and its current situation. We defined what is meant

by an OTS and studied the components that make up this system. We also examined

the ownership structures of the OTS adopted by the leading nations in offshore wind. We

remarked that the ownership structure usually falls into three broad categories: third-

party entity ownership, offshore wind farm ownership and onshore transmission system

operator (TSO) ownership.

Following this, we investigated challenges faced by the offshore wind industry, including

cost reduction. We established that as offshore wind projects grow in capacity and move

further offshore, the role of the OTS becomes even more crucial. From the literature, we

identified that the main challenges to planning future OTSs centre around reliability, cost

and uncertainty.
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Furthermore, we noticed that a common theme amongst the literature reviewed is that

there is limited data regarding the OTS, and there is considerable variation in the data

that is available. Unfortunately, there is concern that this uncertainty can have substantial

impacts on operational projects. Despite these challenges, we learnt that policy, planning

and operational decisions would be made to support the development and installation of

offshore electrical transmission infrastructure. Additionally, we investigated the types of

decisions taken surrounding these assets to realise the relevant problems.

In particular, we gained a deeper understanding of uncertainty due to limited data

regarding the failure and repair of offshore cables a key focus of this thesis. Unfortunately,

we found that some offshore transmission projects have experienced costly cable failures,

and these cable failures occurred more frequently than initially expected. This operational

experience suggested that the failure rate of an offshore cable contains severe uncertainty.

Using a lower than realistic failure rate in economic assessments that underpin investment

decisions could significantly impact the companies involved. Therefore, to address these

concerns, we planned to investigate methods that handle severe uncertainty in inputs

required for economic assessments.

Chapter 2 motivated the need to conduct research that firstly, investigates suitable

methods to handle severe uncertainty in decision making and secondly, explores applying

these techniques to decisions made in offshore power transmission. This research attention

is on account of the industry’s challenge of uncertainty; the growing importance of OTSs;

the need to take policy, planning and operational decisions concerning the OTS; and

the limited amount of techniques applied in this area that adequately handles severe

uncertainty.

9.2 Chapter 3 Summary

In Chapter 3, we collected and curated data that is relevant to the offshore transmission

system (OTS). Although relevant data in this space is scarce, some data does exist. This

data may be for older projects with previous technologies. Nonetheless, we suggested that

this data can be useful as a starting point and to identify trends.

The data presented in Chapter 3 provided details of operational projects in the UK,

including a breakdown of the assets involved, availability levels, projects costs and revenue

streams. Additionally, we collected component costing data, failure and repair data, and

operational costs from the literature. We presented some data for offshore interconnectors

to supplement our knowledge of offshore power transmission. Furthermore, we discussed

a tool to obtain historical wind speed data that can be used for energy modelling [160].
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Finally, we detailed future technologies in the offshore transmission space, as it is vital to

understand the direction the industry is expected to move when planning future projects.

The work of Chapter 3 contributes to our understanding of offshore transmission and

provides a more in-depth insight into the operational costs and experiences of projects.

As offshore power transmission is an area where data is scarce, presenting a collection

of the data that is available may be valuable to the research community. With regards

to the thesis, the work of Chapter 3 further motivates the need for techniques to handle

uncertainty due to a limited amount of relevant data for some inputs parameters, and

where data does exist, provides information to input into economic evaluations.

9.3 Chapter 4 Summary

In Chapter 4, we developed and presented a model to evaluate projects economically

from an offshore transmission owner’s (OFTO) perspective. The model was based on the

economic metric net present value (NPV) and considered the revenue streams, capital

costs, and operational expenditure. This economic framework could be used to base

investment decisions regarding the offshore transmission system (OTS) and therefore, is

used throughout the thesis.

In Chapter 4, the methodology was implemented on a 1.2 GW project. Additionally,

we used this framework to assess the impact of uncertain model variables on the expected

NPV. We found that some variables, in particular, offshore cable failure rate, have a

significant impact on a project’s economic benefit. Since these economic assessments

may be used in the decision making process, we identified a need for advanced statistical

techniques when planning future OTSs under severe uncertainty. The results of Chapter 4

further motivated the research objectives of this thesis. Furthermore, the research of

Chapter 4 contributes to a deeper understanding of the severe uncertainties involved in

offshore transmission planning and their impact on a project’s expected profit.

The first research aim of this thesis was primarily addressed in Chapter 4 (although,

the work of Chapter 4 builds on Chapters 2 and 3). The first research aim centred around

understanding what information and methodology are required to assess the economic

benefit of an OTS effectively. To achieve this objective, data, regulatory information and

expert knowledge have been collected, curated and, where necessary, combined with sta-

tistical techniques, to develop the required bottom-up methodology tailored to the UK

market. In Chapter 4, we discussed the need to consider the perspective of a particular

stakeholder, and in this case, we chose the OFTO in the UK. Nonetheless, throughout

the thesis, we discussed how the model could be adapted to suit the needs of other mar-
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kets. The developed methodology, and its ability to be applied to more realistically assess

offshore transmission projects economically, required the collection and curation of useful

data regarding CAPEX, availability, and OPEX from a variety of sources.

In addition, we visually displayed the developed economic model using a graphical

representation. This visualisation included displaying all variables required in the model

and showing the dependencies between model variables. Furthermore, this graphical rep-

resentation aids in the communication of the model, and in particular, facilitates a way to

convey how uncertainty impacts the analysis. This approach is one way we addressed the

fifth research aim of this thesis.

The second research aim of this thesis focused on identifying areas of the economic

model that contain severe uncertainty and have a significant impact on the results. In

Chapter 4, during the quantification process, many areas were highlighted to contain

severe uncertainty. We investigated six input parameters that are uncertain to a degree

where it is difficult to assign a distribution. The six input parameters were the planned

OPEX factor (α), daily vessel hire rate for offshore cable repairs, the loan interest rate,

offshore cable failure rate, offshore cable repair time and CAPEX evaluation parameter

(ε2). We conducted interval analysis to quantify the economic impact of these uncertainties

on project performance. The results of Chapter 4 showed that loan interest rate, planned

operational expenditure and, especially, offshore cable failure rate are unknowns in offshore

power transmission that are critical to the offshore transmission owner’s profit.

9.4 Chapter 5 Summary

On account of the findings from Chapter 4, in Chapter 5 we explored more robust

methods under severe uncertainty. We began by defining severe uncertainty; in summary,

to be a scenario when we do not have enough information to assign a probability distribu-

tion accurately. Following this, we revisited statistical techniques currently implemented

when making decisions in offshore power transmission. This included discussing the clas-

sical, frequency and subjective interpretations of probability. We went on to discuss the

limitations of classical probability theory when applied to problems that involve severe

uncertainty.

These shortcomings motivated the need for more suitable techniques when making

decisions under severe uncertainty (which we identified to be often the case in offshore

power transmission). This issue is encapsulated by the third research aim of this thesis.

To achieve this aim, Chapter 5 explored advanced statistical techniques that handle se-

vere uncertainty. We presented and explained a behavioural interpretation of probability
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that uses supremum buying and infimum selling prices, also known as lower and upper

previsions. More generally, this approach is called imprecise probability [25].

Additionally, we discussed techniques within the theory of imprecise probability that

are relevant to our application; these include, imprecise continuous-time Markov chains

and decision making criteria. The second part of the third research aim is to understand

how these techniques could be applied. In the final section of Chapter 5, we presented two

small examples where these more robust techniques under severe uncertainty are utilised.

In these examples, we assessed the benefits and limitations of taking this approach and

thus contributes to addressing the third research aim of this thesis.

In Chapter 5, the techniques presented showed promising signs to be beneficial in

the application to offshore power transmission. However, the application of theoretical

methods to practical problems may bring challenges, and these are explored in detail in

the application chapters of this thesis (Chapters 6 to 8). In Chapter 5, we introduced one

of the main hurdles to implementing these techniques, namely the presence of act-state

dependence. This challenge is the scope of the fourth research aim of this thesis and is

addressed further in Chapters 6 to 8.

9.5 Chapter 6 Summary

Chapter 6 was the first of the application chapters presented in this thesis. In Chap-

ter 6, we summarised and contrasted current regulatory regimes, before formulating two

decision problems: firstly, which ownership structure to implement and secondly, which

technology choice to install for a 1.2 GW project. Exploring these decision problems

addressed research aim 7a of this thesis.

For the HVAC and HVDC case studies considered (and contingent on model choices),

the study found third-party ownership to be optimal. These results were obtained using

the described advanced statistical techniques to handle severe uncertainty. Furthermore,

the work of Chapter 6 compared the techniques used to approaches based on the classical

theory of probability. Overall, we presented a more in-depth insight into the benefits

of using techniques based on imprecise probability for decision making in offshore power

transmission, under severe uncertainty.

The fourth research aim of this thesis set out to understand and overcome challenges

that arise during the application of advanced statistical methods to practical applications.

This research aim was addressed in Chapter 6. When applying imprecise probability in

Chapter 6, we encountered a problem in that we have act-state dependence (the set of

distributions of the state of nature depends on the decision). In this chapter, to overcome
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the issue of act-state dependence, for the act-state dependent variable (which we identified

as availability), we assigned a set of distributions for each input parameter and simulated

the system to obtain best- and worst-case scenarios. Using these scenarios, we bounded

expected return on investment (conditional on the act-state independent variables) and

analysed these bounds, using interval dominance and Γ-maximin, to find economically

preferable options. To handle uncertainty in the act-state independent variables (which

we identified to be the capacity factor and the wholesale price of energy), we investigated

how the decision changes as a function of fixed values of these inputs.

The fifth research aim of this thesis focuses on exploring how to communicate the

handling of severe uncertainty effectively. In Chapter 6, we explored ways to present the

results in a way that is clear to interpret and achieved this using a 2-D visualisation of

the sensitivity analysis. Additionally, the visual output allows decision makers to use

their expert knowledge to simply read off the optimal decision(s), rather than input their

knowledge into the model.

Through the application presented in Chapter 6, we showed how to handle uncer-

tainty in cable failure rates, cable repair times, wholesale energy prices and wind farm

capacity factors. Therefore, this work contributed to addressing the sixth research aim

of this thesis. The study improves our understanding of applying imprecise probability

to offshore power decision problems and, confirms that by implementing these advanced

statistical techniques, we can more suitably handle severe uncertainty. These findings sug-

gest that the application of imprecise probability to offshore power transmission advances

the current practice.

The eighth research aim of this thesis involved comparing the proposed techniques to

conventional methods; especially, to identify the benefits and drawbacks of the advanced

statistical techniques when applied to offshore power transmission. The work of Chapter 6

included a discussion that compared the advanced statistical methods to techniques based

on the classical theory of probability. The advantages and disadvantages identified in

Chapter 6 will be summarised in Chapter 10.

9.6 Chapter 7 Summary

In Chapter 7, we set out to demonstrate how to apply imprecise probability to han-

dle severe uncertainty in a specific project design decision problem. This investigation

assessed the benefit of investing in an interlink between two offshore substations from two

perspectives: an offshore wind farm owner and an offshore transmission owner (OFTO).

We formulated the decision problem from both perspectives by detailing the NPV from the
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offshore transmission owner’s (OFTO) perspective and the energy generated and transmit-

ted from the wind farm owner’s perspective. We found that for the 800 MW case study

and described modelling approach, the two stakeholders select different sets of optimal

decisions. Therefore, the work of Chapter 7 addressed research aim 7b of this thesis.

In addition, we discussed that this investment decision, like others in offshore trans-

mission, is taken under severe uncertainty due to a limited amount of relevant data. This

severe uncertainty necessitated a suitable decision making approach, and therefore, we

utilised imprecise probability. Again, while applying imprecise probability, we encoun-

tered a challenge due to act-state dependence (as the set of distributions for availability

depends on the decision made). Therefore, in Chapter 7, we explained how act-state de-

pendence impacts the handling of uncertainty in different variable types. In a similar way

to Chapter 6, we described and demonstrated how to overcome the challenge of act-state

dependence. Consequently, this work also contributes to addressing the fourth research

aim of this thesis.

The fifth research aim of this thesis focuses on exploring how to communicate the

handling of severe uncertainty effectively. In Chapter 7, the approach allows the decision

maker to select wind speeds that are appropriate to their specific project and therefore,

read off the results that are relevant to them. Furthermore, the decision maker can see

if and how specific inputs affect the decisions made. In terms of visualisation, we plot

the results for varied mean wind speeds for a fixed standard deviation. We then repeat

this visualisation for different standard deviations. These visualisations contribute to

addressing the fifth research aim of this thesis.

The application presented in Chapter 7 is another contribution to the sixth research

aim of this thesis. In particular, we demonstrate how uncertainty in cable failure rates,

cable repair times and wind speed can be handled in the decision making analysis. Further-

more, the work of this chapter illustrates how techniques based on imprecise probability

compare to conventional techniques based on the classical theory of probability (there-

fore, addressing the eighth research aim of this thesis). We discussed how the approaches

differ, in particular, how techniques based on the classical theory of probability require

enough information to assign a probability distribution. In contrast, the techniques based

on imprecise probability relax this requirement and instead consider a set of distributions.

This relaxation provides a way to consider epistemic uncertainty in the input parame-

ters. Therefore, we showed how techniques based on imprecise probability provide a more

robust way to handle severe uncertainty than conventional techniques.
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9.7 Chapter 8 Summary

The work of Chapter 8 set out to demonstrate the implementation of imprecise prob-

ability to a more comprehensive offshore power transmission decision problem. Further-

more, the purpose of Chapter 8 was to present a novel investment planning tool that could

be utilised under severe uncertainty and illustrate the benefit of this approach. As part

of the developed investment planning tool, we showed how to design the decision space

this is a key difference between Chapter 8 and the previous application chapters. We

designed feasible HVAC and HVDC topologies from individual components using logical

and physical constraints. This modelling step allowed us to show, in a more direct way,

how the proposed advanced statistical methods could support project planning for a range

of projects.

Next, in the inference part of the decision making analysis, we evaluated the economic

benefit of each topology. This step involved demonstrating how to implement imprecise

probability to enable this investment planning tool to be robust under severe uncertainty.

We discussed the handling of uncertainty in several of the model inputs: offshore cable

failure and repair rate, loan interest rate, vessel hire, and planned OPEX factor. Impor-

tantly, we showed how we deal with uncertainty in act-state independent and act-state

dependent variables (again, addressing the fourth research aim of this thesis).

Following the described methods, for each topology option, we evaluated bounds for the

expectation of the metrics of interest (conditional on the act-state independent variables).

Then, we utilised decision criteria, namely Γ-maximin and interval dominance, to find

the optimal topology. Most of the methodology focused on the expectation of a metric of

interest; however, we explored aleatory uncertainty and showed how the variability around

the expectation could be a secondary consideration in the decision making process. We

also discussed how the methodology could be adapted to suit the needs of other markets.

Finally, we presented the results of the investment planning tool for three case studies,

which addresses research aim 7c of this thesis.

A significant contribution to emerge from this study is the development of an in-

vestment planning decision tool that utilises imprecise probability to more appropriately

handle severe uncertainty. Therefore, this work contributes to addressing the sixth re-

search aim of this thesis. The results suggest that: firstly, imprecise probability can be

implemented to aid in the planning of offshore transmission systems (OTSs); secondly,

the results of the techniques can be visualised in a way that is clear to communicate and

interpret (a contribution to the fifth research aim of this thesis); and finally, the proposed

techniques advance the current handling of uncertainty in economic evaluations and should

245



be implemented in the case where it is challenging to assign a probability distribution due

to limited data. Additionally, this work contributes to the eighth research aim of this thesis

by illustrating the benefits of taking this alternative approach and discussing limitations

to the sensitivity analysis approach of handling uncertainty in the act-state independent

variables.
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Chapter 10

Conclusions and Further Work

10.1 Conclusions

The work of this thesis set out to, firstly, investigate techniques that handle severe

uncertainty in the input parameters due to limited data, knowledge, and expertise. Sec-

ondly, upon identifying suitable methods, the main aim was to assess the application of

these statistical methods for long-term decision making in offshore power transmission. In

this thesis, as outlined in Chapter 1, these research aims are divided into three areas: mo-

tivating the need for the robust handling of severe uncertainty in decision making analysis

to support offshore wind integration; understanding the advanced statistical methods that

could be applied in this space; and finally, the application of these techniques to demon-

strate how they may be beneficial to decision makers in offshore power transmission.

In Chapters 2 to 4 we motivated the need for advanced statistical methods. This was

achieved through reviewing and summarising the literature in the field (Chapter 2), collat-

ing data associated with offshore transmission systems (OTSs) (Chapter 3), and through

presenting an economic model which we used to assess the impact of severe uncertainty

(Chapter 4). Furthermore, the research of Chapter 4 contributes to a deeper understand-

ing of the severe uncertainties involved in offshore transmission planning, and their impact

on a project’s expected profit. We also gained a deeper understanding of uncertainty due

to limited data regarding the failure and repair of offshore cables. Moreover, we identified

that there was a research need to develop and implement suitable techniques to handle

severe uncertainty when making decisions concerning the OTS. This work, in particular

that of Chapter 4, addressed the first and second aims of this thesis which were outlined

in Chapter 1.

In Chapter 5, we presented the advanced statistical methods proposed to handle severe

uncertainty, namely imprecise probability. Additionally, we discussed techniques within

the theory of imprecise probability that are relevant to our application; these include,
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imprecise continuous-time Markov chains and decision making criteria. We put forward the

advantages of these methods as well as introduce hurdles to implementing these techniques,

namely act-state dependence. The work of Chapter 5 addresses the third, fourth and fifth

aims of this thesis which were outlined in Chapter 1.

Following this, in Chapters 6 to 8 we demonstrated applications of the described tech-

niques. We applied the advanced statistical methods to three applications: two specific

decision problems and one comprehensive decision problem that developed a novel in-

vestment planning tool. This tool could be used to support decision makers in offshore

power transmission by designing and planning OTSs under severe uncertainty. The work

of Chapters 6 to 8, addresses the rest of the research aims presented in Chapter 1.

To summarise, the main contribution of this work is the demonstration of how to

apply advanced statistical techniques to handle severe uncertainty in long-term decision

problems in offshore power transmission. We confirmed the ability of the methods to

handle uncertainty in the input parameters required to make investment and planning

decisions. Furthermore, the applications allowed us to prove the benefits of applying these

methods to handle uncertainty, to discover the challenges of applying these techniques (in

particular, regarding act-state dependence) and overcome them.

10.1.1 Advantages

The work of this thesis advances our knowledge of how advanced statistical methods

can be beneficial to decision makers in offshore power transmission, and these advantages

are identified and discussed throughout the thesis. Furthermore, the findings contribute

to our understanding of handling severe uncertainty, and this could be utilised in both

technical and policy decisions (within the context of offshore transmission or in other

applications). The main advantages of the described advanced statistical methods can be

summarised as:

• Overcome the challenge of assigning probability distributions under se-

vere uncertainty

The methods can be used when techniques based on the classical theory of probabil-

ity are not suitable. In scenarios when we have insufficient data (which we identified

to, often, be the case in offshore power transmission), it can be challenging to assign

probability distributions. Methods based on classical probability theory usually re-

quire values or distributions to be assigned to model inputs. Assigning a distribution

under severe uncertainty, may not adequately represent the data available, and this

may impact the accuracy of the outputs. Therefore, it could be inadvisable to base
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investment decisions on these outputs. In contrast, the proposed advanced statistical

methods do not require probability distributions to be assigned and, instead, work

with sets of distributions.

• A framework to model epistemic uncertainty

The presented framework, which utilises imprecise probability, allows epistemic un-

certainty (uncertainty due to limited knowledge) in the input parameters to be mod-

elled. We noticed that this uncertainty in the input modelling parameters is due to

a limited amount of useful data. Consequently, decision makers can make their deci-

sion based on outputs that reflect the epistemic uncertainties involved. Additionally,

we explored aleatory uncertainty and showed how variability around the mean could

be a secondary consideration in the decision making process.

• An alternative approach when modelling assumptions cannot be verified

Conventional techniques used to evaluate the yearly availability of a component

assume that the failure and repair of components are exponentially distributed.

We discussed that these assumptions might be too strong in offshore transmission;

for example, we discussed that cable repairs might be quick or slow depending on

the type of repair required. Therefore, we suggested techniques that allow this

assumption to be relaxed, and we utilised imprecise continuous-time Markov chains

to achieve this. In this approach, the modelling assumptions of a Markov process

are relaxed to allow the handling of epistemic uncertainty. Specifically, we consider

a set of transition matrices by considering inputs within more suitable ranges and

therefore, we work with a set of processes. We showed how these techniques, for the

two-state imprecise Markov chain, resulted in closed expressions to evaluate bounds

for many quantities of interest (including availability).

• An approach that allows for indecision

We discussed and showed that the methods allow for indecision when there is insuf-

ficient data to draw conclusions. This aspect is in contrast to techniques based on

the classical theory of probability.

• Communication of uncertainty handling

This study has shown ways to communicate the handling of uncertainty effectively.

Advancements in clearly communicating results support the ability of advanced sta-

tistical methods to be implemented more widely the uptake of unconventional tech-

niques is a considerable challenge to overcome. These findings extend our knowledge
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of how to communicate advanced statistical modelling and the results of these meth-

ods.

In this thesis, one way to aid the communication of uncertainty handling is in-

troduced in Chapter 4. Here, we visually displayed the developed economic model,

including all model variables and dependencies between model variables. This graph-

ical representation combined with a detailed explanation aids in the communication

of the economic model, and in particular, facilitates a way to convey how uncertainty

impacts the analysis.

Another example, but focused on communication of the results is shown in Chap-

ter 6. We explored ways to present the results in a way that is clear to interpret

and achieved this using a 2-D visualisation of the sensitivity analysis. We showed

that taking this sensitivity analysis approach facilitates effective communication of

the results. Additionally, the visual output allows decision makers to use their ex-

pert knowledge to simply read off the optimal decision(s), rather than input their

knowledge into the model.

• Gained an understanding of how to implement the proposed techniques

The work of this thesis contributes to our understanding of how these techniques

could be applied to decision problems in offshore power transmission. Specifically, in

Chapters 6 to 8, we demonstrated how to implement these methods to handle severe

uncertainty present in three different, but relevant, decision problems. These appli-

cations provide more in-depth insights into the benefits of using imprecise probability

for decision making in OTS.

• Advances current practice

The findings of this thesis suggest that the application of imprecise probability to

offshore power transmission advances current practice by providing a framework

to handle severe uncertainty when making decisions. In particular, the work of

Chapters 6 to 8 supports this. Although this study focuses on the applications in

offshore power transmission, the impacts of this thesis may extend beyond this field.

• Development of an investment planning tool under severe uncertainty

A significant contribution to emerge from this study is the development of an invest-

ment planning decision tool that utilises imprecise probability to more appropriately

handle severe uncertainty. The work of Chapter 8 presented a more comprehensive

application of advanced statistical techniques to offshore power transmission, by ex-

tending the decision problem to include a framework that constructs the decision
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space. Specifically, for given design parameters specified by the decision maker, we

designed feasible OTSs from components available in the market.

Additionally, we demonstrated how to implement imprecise probability to enable

this investment planning tool to be robust under severe uncertainty. The results of

this study suggest that: firstly, imprecise probability can be implemented to aid in

the planning of OTSs; secondly, the results of the techniques can be visualised in a

way that is clear to communicate and interpret; and finally, the proposed techniques

should be implemented in the case where it is challenging to assign a probability

distribution due to limited data.

10.1.2 Limitations

So far, we have discussed the main advantages that were identified throughout this

thesis. However, it is important to note the limitations of these methods, and again, these

were discussed throughout this thesis. Here, we provide a summary of these drawbacks.

One limitation is that the method requires a set of distributions to be assigned to the

input parameters. Therefore, the methods require expert knowledge. Although this is not

as restrictive as assigning a probability distribution (as is the case for techniques based on

the classical theory of probability), this may still be a challenge. Therefore, the decision

maker must be able to assign these sets or, as we discussed in Chapter 6, know which

regions to consider on the resulting sensitivity analysis plot. In the case where a set of

distributions is challenging to identify, we may end up considering a wide range of values.

Ultimately, we could obtain large sets of distributions for the outputs that may not be

informative. However, if the primary purpose is to compare different options to make a

decision, these large intervals may not be so much of a limitation.

There exist some limitations in the sensitivity analysis approach to uncertainty han-

dling, and we described these in the application chapters. Usually, although it was dis-

cussed in Chapter 8, we did not investigate aleatory uncertainty (the uncertainty due to

variability). We explained that modelling the failure and repair of components by the

exponential distribution on the bounds introduces uncertainty due to the random process,

and consequently, there will be differences between the realisations of the process. In the

presented decision making process, we did not (usually) consider aleatory uncertainty as

we primarily aimed to maximise the expectation of the metric of interest. Instead, we

concentrated on handling uncertainty in the input modelling parameters on account of

severe epistemic uncertainty. Therefore, in the resulting plots, the intervals were due to

epistemic uncertainty in the input parameters. In Chapter 8, we did discuss how inves-

tigating aleatory uncertainty could be a secondary consideration in the decision making
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analysis, but it was not the focus for most of the methodology presented.

Another limitation to the described approach in Chapter 8 is that the analysis only

handles uncertainty in one act-state independent variable at a time. Visualising the analy-

sis in a way that is clear to interpret becomes challenging beyond one variable. Therefore,

we restricted the analysis to one variable at a time. In Chapter 6, we considered two

variables at a time by visualising the decision made (rather than bounds on the metric of

interest).

10.2 Further Work

The research of this thesis raises a number of areas of further work, and these are

discussed below.

Commercialisation

A natural progression of the work of this thesis is to understand how to take the

presented methods closer to the industry. This activity could involve firstly, understanding,

in more detail, the specific needs of the industry and secondly, making a commercially

available tool.

To support the commercialisation of this research, we must ensure that the outcome is

useful and relevant to those in the industry. Additional work could be done to comprehend

the market requirements and gain valuable insights into the needs of the industry. This

could also be achieved by engaging with stakeholders to understand the demands of end-

users (regarding a new solution to handling severe uncertainty), finding out precisely where

these methods could be implemented, and learning more about how the methods improve

their current practice. Ultimately, further work in this direction would help ensure a

developed tool meets the industry’s needs.

Further work could also extend the methods and tool into a product that could be used

by an end-user. This process could involve developing a user-friendly demonstration tool,

that could support our understanding of how to move this research closer to the market.

The end goal of this additional research would be the development of a competitive tool

that is available to the industry.

Investigate a broader range of applications

The findings of this work have shown, through three applications, the benefits of apply-

ing advanced statistical methods to handle uncertainty, when making long-term decisions

in offshore power transmission. These applications gave us insight into the advantages of
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these approaches, and, consequently, indicated that they could be implemented in other

applications. Moreover, through conducting this work, we gained a better understanding

of where these methods may be appropriate.

Closely linked to the decision problems presented in this thesis, we believe these meth-

ods could be useful when applied to decision problems concerning the selection of an

offshore grid layout. This issue was addressed somewhat in the thesis. However, addi-

tional work could go further and investigate a more coordinated approach for offshore wind

connections such as meshed systems. Studies into meshed grids already exist, but analysis

using the methods of this thesis could be adopted to handle the severe uncertainty, and

it would be interesting to see the implications of this. Furthermore, the move to meshed

offshore grids, especially where multiple nations are connected may require regulatory and

economic frameworks to be developed. This task in itself raises many research questions

that are currently being addressed by the research community and industry.

In the work of this thesis, we focused on long-term planning decision problems. By

conducting this work, we were able to understand better the applicability of these methods

to short-term operational decisions. We also gained awareness of the uncertainties present

in these operational decisions. Given the benefits of advanced statistical methods to long-

term planning, we recommend that further work: investigates how these techniques could

be applied to short-term operational decision problems in offshore power transmission;

finds and overcomes challenges that arise in this application; and assesses the benefits of

implementing these techniques. Conducting a similar study to the one of this thesis, but

focusing on operational decision problems could be a fruitful area of research, given the

inherent uncertainty.

In this thesis, we gained an understanding of the research need to investigate and im-

prove the operational maintenance strategy for offshore cables. This research was beyond

the scope of this thesis, primarily as a result of not having access to the data that those

who make operational decisions have. Nevertheless, we believe this is a place where these

advanced statistical methods could be beneficial, and further research could explore this.

In addition, the techniques applied in this thesis could be applied elsewhere in off-

shore transmission and indeed, offshore wind. Further research could assess the impact of

implementing these techniques to handle uncertainty in decision problems concerning the

long-term planning of offshore wind farms (including the wind turbines and array cables).

More broadly, these methods could be applied to other decision problems regarding power

systems or to support investment decisions of other infrastructure projects, and further

work could investigate the benefits of doing this.
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Mathematical aspects

The research presented in this thesis raises questions of a more mathematical nature

that require further investigation. In this work, we did not conduct a full uncertainty

quantification, and therefore further work could address this. Additionally, a greater

focus on assigning sets of distributions from small data samples (rather than literature

values) could produce interesting findings that may move the work forward. Access to

data is required to enable this investigation. With access to this data, further work could

apply techniques that more robustly represent our knowledge, such as implementing a

robust Bayesian model.
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Appendix A

Data

A.1 UK Operational Cable Data

The Table A.1 provides information on the cable outages experienced by some UK

offshore wind cable systems. This data is collected from [141] between 2013 and 2016. For

more recent years, we refer to the more recent reports by [141].

Date Fault Downtime (Days)

London Array

04/10/2013 Export cable 2 and 4 0.02

04/10/2013 Export cable 2 and 4 0.02

16/12/2013 Export cable 2 and 4 0.04

16/12/2013 Export cable 2 and 4 0.02

06/09/2016 Export circuit 2 0.47

20/09/2016 Export circuit 4 0.47

26/09/2016 Export circuit 1 0.49

Gwynt Y Mor

01/04/2015 Export cable 1 primary system fault (continued

from previous year)

76.86

02/03/2015 Export cable 1 primary system fault 29.25

13/09/2016 Export circuit 1 trip due to static var compen-

sator (SVC) system fault

0.05

13/09/2016 Export circuit 1 trip due to SVC system fault 0.04

19/12/2016 Export circuit 2 trip due to SVC system fault 0.06

19/12/2016 Export circuit 1 trip due to SVC system fault 0.05

Thanet

23/02/2015 Export cable 1 primary system fault 36.46
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01/04/2015 Export cable 1 primary system fault (continued

from previous year)

97.48

05/03/2016 Export cable 2 primary system fault 28.48

01/04/2016 Export cable 2 primary system fault (continued

from previous year)

27.6

Lincs

19/09/2015 A faulty component on the cable sealing end oil

booster tank resulted in a circuit trip

0.13

Walney 2

06/11/2013 Land cable fault 17.7

04/12/2015 Export cable fault 105.28

25/09/2016 Export cable 2 primary system fault 153.64

Robin Rigg

01/03/2015 Export cable fault 13

Gunfleet Sands

12/06/2014 Outage to repair cable sealing end 1

Sheringham Shoal

05/08/2013 Circuit 1 0.5

06/08/2013 Circuit 2 0.48

Table A.1: Details of cable downtime reported in National Grid’s performance reports

[141].
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Appendix B

Proofs

Theorem B.0.1. Let O0 and η1, . . . , ηn1 be given, where O0 is the final transfer value

and η` is the interest rate in the `th instalment. We aim to find P1, ..., Pn1 such that:

1. The loan amount, O0, is paid off in the loan period after n1 instalments: On1 = 0,

where O` = O`−1(1 + η`)− P` for i = 1, ..., n1 (see Lemma B.0.2).

2. The payments are constant for a fixed interest rate. If η1 = η2 = · · · = ηn1 then

P1 = P2 = · · · = Pn1 (see Lemma B.0.3).

The following equation is a standard repayment formula that satisfies the two conditions

above.

P` =
O`−1η`

1− (1 + η`)−(n1+1−`) (B.1)

Lemma B.0.2. After n payments the outstanding loan is zero: On1 = 0.

Proof.

On1 = On1−1(1 + ηn1)− Pn1 (B.2)

Pn1 =
On1−1ηn1

1− (1 + ηn1)−(n1+1−n1)
(B.3)

=
On1−1ηn1

1− 1
1+ηn1

(B.4)

=
On1−1ηn1

1+ηn1−1
1+ηn1

(B.5)

= On1−1(1 + ηn1) (B.6)

Substituting Eq. (B.6) into Eq. (B.2) leads to:

On1 = On1−1(1 + ηn1)−On1−1(1 + ηn1) = 0 (B.7)
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Lemma B.0.3. For a constant interest rate all payments are the same.

Proof. Assumption: ∀ ` ∈ (1, n1), η` = η. The following proof shows that all P` are the

same ∀ ` ∈ (1, n1). This can also be expressed as Pk−1 = Pk for a constant interest rate.

For any k ∈ {2, . . . , n1}:

Pk−1 =
Ok−2η

1− (1 + η)−(n1+1−k+1)
(B.8)

=
Ok−2η

1− (1 + η)−(n1+1−k)(1 + η)−1
(B.9)

=
Ok−2η(1 + η)

1 + η − (1 + η)−(n1+1−k) . (B.10)

Note, rearranging one has:

Pk−1(η + (1− (1 + η)−(n1+1−k))) = Ok−2η(1 + η). (B.11)

Also,

Pk =
Ok−1η

1− (1 + η)−(n1+1−k) (B.12)

=
Ok−2(1 + η)η − Pkη
1− (1 + η)−(n1+1−k) . (B.13)

Combining Eq. (B.11) and Eq. (B.13) results in the following equation:

Pk =
Pk−1(1− (1 + η)−(n1+1−k))

1− (1 + η)−(n1+1−k) +
Pk−1η − Pkη

1− (1 + η)−(n1+1−k) . (B.14)

Therefore,

Pk

(
1 +

η

1− (1 + η)−(n1+1−k)

)
= Pk−1

(
1 +

η

1− (1 + η)−(n1+1−k)

)
. (B.15)

So, Pk = Pk−1 as required.
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HVDC grid configuration options,” IEEE Transactions on Power Delivery, vol. 31,

no. 2, pp. 810–819, 2016.

[96] A. Underbrink, J. Hanson, A. Osterholt, and W. Zimmermann, “Probabilistic reli-

ability calculations for the grid connection of an offshore wind farm,” in 2006 In-

ternational Conference on Probabilistic Methods Applied to Power Systems, pp. 1–5,

2006.

[97] A. Sannino, H. Breder, and E. K. Nielsen, “Reliability of collection grids for large

offshore wind parks,” in 2006 International Conference on Probabilistic Methods

Applied to Power Systems, pp. 1–6, 2006.

268



[98] B. Tourgoutian, A. Yanushkevich, and R. Marshall, “Reliability and availability

model of offshore and onshore VSC-HVDC transmission systems,” in 11th IET In-

ternational Conference on AC and DC Power Transmission, pp. 1–8, Feb 2015.

[99] A. Beddard and M. Barnes, “Availability analysis of VSC-HVDC schemes for off-

shore windfarms,” in 6th IET International Conference on Power Electronics, Ma-

chines and Drives (PEMD 2012), pp. 1–6, March 2012.

[100] A. Thompson, B. Kazemtabrizi, C. J. Crabtree, C. Dao, F. Dinmohamadi, and

D. Flynn, “Reliability and economic evaluation of high voltage direct current inter-

connectors for large-scale renewable energy integration and transmission,” in 15th

IET International Conference on AC and DC Power Transmission (ACDC 2019),

pp. 1–6, Feb 2019.

[101] K. Herzog, Seven Questions To Consider For Offshore Wind Transmission. Burns

& McDonnell, 2019. Available at: https://www.burnsmcd.com/insightsnews/

1898/white-papers/seven-questions-for-offshore-wind-transmission, last

accessed December 2020.

[102] Navigant Netherlands B.V., Connecting offshore wind farms. A Comparison of

Offshore Electricity Grid Development Models in Northwest Europe, 2019. Avail-

able at: https://guidehouse.com/-/media/www/site/downloads/energy/2019/

2019-navigant-comparison-offshore-grid-development.pdf?la=en, last ac-

cessed December 2020.

[103] B. Brard, “A North Sea offshore grid governance model: The allocation of ownership

and operating responsibilities for a meshed offshore grid,” Master’s thesis, Delft

Univeristy of Technology, 2017.

[104] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of

offshore wind farms to the transmission system,” IEEE Transactions on energy con-

version, vol. 22, no. 1, pp. 37–43, 2007.

[105] R. Meere, J. Ruddy, P. McNamara, and T. O’Donnell, “Variable AC transmission

frequencies for offshore wind farm interconnection,” Renewable Energy, vol. 103,

pp. 321–332, 2017.

[106] E. Apostolaki-Iosifidou, R. Mccormack, W. Kempton, P. Mccoy, and D. Ozkan,

“Transmission design and analysis for large-scale offshore wind energy development,”

IEEE Power and Energy Technology Systems Journal, vol. 6, no. 1, pp. 22–31, 2019.

269

https://www.burnsmcd.com/insightsnews/1898/white-papers/seven-questions-for-offshore-wind-transmission
https://www.burnsmcd.com/insightsnews/1898/white-papers/seven-questions-for-offshore-wind-transmission
https://guidehouse.com/-/media/www/site/downloads/energy/2019/2019-navigant-comparison-offshore-grid-development.pdf?la=en
https://guidehouse.com/-/media/www/site/downloads/energy/2019/2019-navigant-comparison-offshore-grid-development.pdf?la=en


[107] K. Meng, W. Zhang, J. Qiu, Y. Zheng, and Z. Y. Dong, “Offshore transmission

network planning for wind integration considering AC and DC transmission options,”

IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4258–4268, 2019.

[108] C. MacIver, K. R. W. Bell, and D. P. Nedić, “A comparison of design options for
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