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Abstract

Unsaturated soil mechanics is rarely applied by geotechnical engineers working within

the construction industry. This could be due to a poor understanding of the subject area, a

lack of suitable unsaturated testing data, or a lack of suitable procedures and tools required

to apply the theory in practice. The aim of this research is to show how the soil water

retention curve (SWRC) and unsaturated shear strength of a soil can be estimated using

standard site investigation data and then applied to geotechnical engineering problems in

practice. This includes the development of a SWRC prediction procedure using 102 soil

datasets from the UNSODA database. Statistical analysis is undertaken to compare the

prediction of the SWRC using the Arya and Paris (1981) model (AP), Modified Kovács

Model (Aubertin et al., 2003) (MK) and the Perera et al. (2005) model (PM) with the

measured drying SWRC from the database. The 5th and 95th percentiles of the error

between the predicted and measured suction (suction error) are calculated to assess the

performance of each method for different soil types and later used as confidence limits

for soils not included in the dataset. Analysis shows that all three SWRC predictive

methods can reasonably predict the SWRC of sands, but due to a lack of plasticity data

in the database, only the Arya and Paris (1981) can be used to estimate the SWRC of

cohesive soils. The SWRC estimation procedure is validated using two soil samples from

the literature, a sandy clay soil and a sand soil. A method to estimate the increase in

shear strength due to soil suction is presented using each predicted SWRC, along with the

the upper and lower confidence limits of the SWRC, for a typical geotechnical engineering



iv

slope stability problem. The use of this research is demonstrated via a two-dimensional

PLAXIS finite element model showing how the factor of safety (FoS) of the slope increases

as a result of using the SWRC to estimate changes in shear strength using the Fredlund

et al. (1996) and Vanapalli et al. (1996) equations. By taking soil suction into account,

the FoS of the slope can be significantly increased, with an improvement of 0.24 over the

simulation that ignored suction when using the SWRC estimated using the AP model.

By using the predicted SWRC upper and lower confidence limits, it is shown that the

estimated increase in shear strength is not highly sensitive to the choice of values of soil

suction.
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Chapter 1

Introduction

It is common practice within the UK construction industry for temporary battered slopes

to be built by contractors at high slope angles without any reinforcement. Slopes may be

built above ground level, or form part of a temporary excavation and are often constructed

without a formal design by a geotechnical engineer. If a geotechnical engineer was later

appointed to assess the stability of the slope for long term drained conditions, it is likely

that the slope design would fail the Eurocode 7 design standard (BSI, 2004), and would

require some form of reinforcement such as soil nails, anchors or geotextile mesh to ensure

the slope design is compliant with Eurocode. This could come at a considerable cost to

the contractor and is often avoided where possible. As a result the contractor takes on the

risk and assumes the slope will remain stable for its design life. A likely reason why a slope

design may fail to comply with Eurocode 7, whilst remaining stable in practice, is because

the conservative saturated soil mechanics approach is used for the slope stability analysis,

and the effects of soil suction (negative pore water pressure) on the soil’s shear strength

are ignored. This was demonstrated in practice by Ching et al. (1984), who showed that

for an existing slope in Hong Kong, when the soil suction was ignored, the slope was shown

to be theoretically unstable with a factor of safety of less than 1. When soil suction was

taken into consideration, the factor of safety was shown to be greater than 1 and the slope

was theoretically considered stable (as it was in reality).

Often groundwater control measures are required when the water table is too high

for safe working conditions or construction below the water table is required. The water

1



Chapter 1. Introduction 2

table can be lowered and the pore water pressures reduced by using groundwater control

techniques such as dewatering wells and stone key drains (Powers et al., 2007). The typical

approach for battered excavations is to utilise dewatering wells located behind the crest of

the slope with stone key drains designed to intercept any incoming groundwater through

the slope face, as shown by the schematic in Figure 1.1. The stone key drains can be located

at the toe of the slope or at any material layer interfaces where groundwater seepage and

ground loss is an issue. Thomas et al. (2020) demonstrated how these techniques can

be applied in practice on a construction project where a large excavation was required

to enable the construction of an underground storm water tank in Oldham, Greater

Manchester. It is well known by site personnel and geotechnical engineers that lowering

of the groundwater table as a result of dewatering increases the strength of the soils which

results in an increase in the stability of the slopes (Latief and Zainal, 2019; Thomas et al.,

2020). However the theory of unsaturated soil mechanics, which governs this phenomenon,

is not well understood by geotechnical engineers working within industry and is therefore

not regularly applied in practice. The end result is that slope reinforcement designs can be

over-conservative and over-engineered resulting in large and potentially unnecessary costs

for the end client.

Figure 1.1: Typical problem where groundwater control techniques are required to enable

construction of an excavation below the water table.
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Considering unsaturated soil mechanics is not regularly applied in the construction

industry, the academic community has driven the subject area forward over the last

century, with the text by Fredlund et al. (2012) providing a comprehensive review. A

key aim of the research is to provide a practical way to use the theory linking water

content, soil suction and shear strength to engineering practice. The soil water retention

curve (SWRC), discovered first by Buckingham (1907), describes the relationship between

water content and soil suction. Several empirical equations have been defined in the

literature to enable a continuous curve to be fit to measured soil water retention data

(Brooks and Corey, 1964; van Genuchten, 1980; Fredlund and Xing, 1994). A continuous

SWRC given by an equation enables the SWRC to be used in computer models such as

the finite element method (one example being PLAXIS 2D (Bentley Systems, 2020)) to

simulate complex unsaturated soil behaviour. Measuring the SWRC of a soil however

requires expensive and time consuming laboratory experiments, as demonstrated by Toll

et al. (2016), and is therefore rarely included in site investigation studies for construction

projects. As a result many studies have been undertaken to predict the SWRC using

standard laboratory test results, including particle size distribution tests, Atterberg limit

tests, dry density measurements and void ratio measurements (see the works of Arya and

Paris (1981); Aubertin et al. (2003); Fredlund et al. (2002); Perera et al. (2005). The

SWRC is key to understanding the relationship between soil suction and shear strength.

Unsaturated triaxial shear strength tests can be undertaken to determine the unsaturated

shear strength of a soil at given confining pressures and soil suctions, as demonstrated by

Mendes and Toll (2016). However, unsaturated shear strength tests are similar to SWRC

tests in that they are time consuming and costly and are rarely undertaken during site

investigation works for construction projects. As a result, papers have been published

which present equations for predicting the unsaturated shear strength using the SWRC

(Fredlund et al., 1996; Vanapalli et al., 1996; Oberg and Sallfors, 1997; Toll and Ong, 2003;

Khalili and Khabbaz, 1998).

By briefly reviewing some of the key literature available on the subject area, it becomes

apparent why unsaturated soil mechanics is not regularly used by geotechnical engineers

in practice. Firstly the theory is complex and not part of the core skill set of a typical

geotechnical engineer. Extensive learning would be required by a geotechnical engineer

to be confident enough to apply the concepts to a slope design during a construction
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project. Secondly the required testing results are rarely available in site investigation

reports (i.e. SWRC and unsaturated shear strength tests) and the expense of undertaking

these tests is rarely justifiable within the available budget of the project. Thirdly there is a

lack of freely available guidance, procedures and tools with which a geotechnical engineer

can use to apply these concepts in practice. The aim of the research is to provide some

solutions to these recurring problems by presenting for the first time a procedure and set

of tools that can be used to predict the SWRC followed by the unsaturated shear strength

of a soil using only standard laboratory test results. In addition, the procedure aims

to show the possible error in the SWRC prediction and therefore the resulting error in

the shear strength prediction. The aim is to make unsaturated soil mechanics far more

accessible for geotechnical engineers working in industry who strive to learn and then

apply these concepts to real construction projects. The application of the procedure is

then demonstrated for a typical construction project problem where the groundwater table

is lowered around the perimeter of a battered excavation with the objective of increasing

the stability of the slopes. The following research objectives have been set out to achieve

the research project aims presented above:

• To present the most relevant literature that describes the mechanics and theories of

unsaturated soil behaviour, with a focus on understanding how the water content, soil

suction and shear strength are related and how these relationships can be predicted

using standard laboratory test data. This information is presented in the Literature

Review in Chapter 2.

• To develop a procedure that can be used by geotechnical engineers in practice to

estimate the SWRC of a soil using standard site investigation test data, such as a

particle size distribution, Atterberg limit test data and dry density, and then quantify

the possible error in the SWRC prediction. The development of this procedure, along

with the statistical analysis undertaken to develop the likely range in error of the

SWRC prediction, is given in Chapter 3. The validation of the procedure using two

soil samples from the literature is presented in Chapter 4, along with guidance and

recommendations for how this procedure can be applied by a geotechnical engineer

in practice.

• To develop a procedure that can be used by geotechnical engineers in practice to

estimate the increase in shear strength of a soil using a predicted SWRC from the
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previous step. The procedure will aim to quantify the possible error in shear strength

due to the possible error in the SWRC prediction. The development of this procedure

is presented in Chapter 5, along with guidance of how this can be applied to a typical

geotechnical engineering problem using the finite element software package PLAXIS

2D.

With the objectives of the research clearly laid out above, the following chapter goes on

to present an in depth review of the literature based around the link between water content,

soil suction and shear strength and how they can be applied in engineering practice.
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Chapter 2

Literature Review

This chapter presents a literature review of the topics that relate water content and shear

strength to soil suction, and how this is applied in practice. The key objective of this

Thesis chapter is to gain and present an understanding how the strength of soils increase

as the groundwater table is lowered. Therefore a firm understanding of the unsaturated

soil mechanics theories that govern these processes is absolutely vital. This chapter first

looks at some of the differences between saturated and unsaturated soil mechanics, and

how a term for unsaturated effective stress has been sought after by researchers to describe

unsaturated soil behaviour. The behaviour of unsaturated soils is directly influenced by

soil suction, which means it is fundamental to understanding how shear strength changes

for unsaturated soils. The soil water retention curve (SWRC) is reviewed in detail as it

describes how soil suction changes with water content. Topics reviewed include SWRC

measurement techniques, how to fit a best-fit curve to the measured data, and how a

SWRC of a soil can be estimated using standard laboratory test data (such as particle

size distributions). The shear strength of unsaturated soils is then reviewed. The proposed

theory for the extended Mohr-Coulomb equation by Fredlund et al. (1978) is presented,

along with several other variations of this equation for estimating the shear strength of an

unsaturated soils using the SWRC. Some experimental mechanical shear strength testing

results are considered to assess the performance of the reviewed shear strength equations.

Finally some case studies are presented which present how these concepts can be applied

in practice to assess the stability of slopes where suction has an influence on the shear

strength of the soil.
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2.1. Stress State Variables and Effective Stress 7

2.1 Stress State Variables and Effective Stress

Soil mechanics has successfully applied continuum mechanics to saturated soils (Terzaghi,

1943) and is regularly used in practice to describe the response of a soil to external forces

(Thomas et al., 2020). Saturated soils contain two phases, solid particles which form the

matrix of the soil, and water which fills the pore spaces. Saturated soil mechanics (SSM)

is therefore based on the requirement that the soil remains fully saturated at all times.

Unsaturated soil mechanics (USM) is complicated by the addition of a third phase, air.

In USM, the water content of the soil reduces from saturated conditions as pore-water

pressures become negative (i.e. suction increases). This is described by the term degree

of saturation, S which is the ratio of the volume of water to the volume of voids in a soil

sample.

Stress state variables are used to describe the state of equilibrium of a system. When

one or more stress state variables are changed, the system will change in response to

establish the new equilibrium state (Leong, 2016). Under saturated conditions, the stress

state variables include total stress σ, effective stress, σ′ and pore water pressure, uw, which

are related by the equation originally proposed by Terzaghi (1925)

σ′ = σ − uw (2.1.1)

Effective stress has proven fundamental to the development of SSM over the last century

(Terzaghi, 1943; Bishop and Blight, 1963). It is no surprise then that the discovery of an

equation for unsaturated effective stress has been a key focus of the geotechnical academic

community. Presented in Table 2.1 are equations for effective stress by Croney et al.

(1958); Bishop (1959); Aitchison (1961); Jennings (1961); Richards (1966) and Jommi

(2000). Of these equations, the most commonly discussed and cited in literature is the

equation proposed by Bishop (1959). The equation by Croney et al. (1958) is equivalent

to the equation by Bishop (1959) if pore-air pressure is taken as atmospheric pressure.

The equations by Aitchison (1961); Jennings (1961) are similar in form to the Bishop

(1959) equation, with slight variations in the pore pressure parameters. The equation by

Richards (1966) builds on the Bishop (1959) equation by splitting the pore pressure term

into two suction components, matric suction (difference between pore air and pore-water

pressure) and osmotic suction (suction due to dissolved salt). Rather than use effective

stress, Jommi (2000) argued for the use of an average skeleton mean stress, p̂ which aligns
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well with saturated critical state soil mechanics models which use the q − p space.

The use of the Bishop (1959) equation in USM has proven controversial (Leong, 2016).

This is because the Bishop (1959) equation does not fundamentally describe a stress state

of an unsaturated soil, as demonstrated in practice by Morgenstern (1979). It was shown

that the parameter, χ, when determined for volume change behaviour was different than

when determined for shear strength behaviour. It was originally thought that χ was

a function of saturation, and therefore bounded by 0 and 1, however it was shown by

experimentation to go beyond these bounds. Therefore the Bishop (1959) equation for

effective stress cannot be used as a stress state variable, but rather a constitutive equation

that links stress state variables. This means that the stress state variables for unsaturated

soils must be a combination of the stress variables total stress, σ, pore water pressure, uw

and pore air pressure, ua. Table 2.2 shows the possible combination of stress state variables

which can be used to formulate constitutive relations and elasto-plastic soil models for

unsaturated soils. The two stress state variables most commonly used to develop equations

for unsaturated shear strength include net total stress, (σ−ua) and matric suction, (ua−

uw) (Fredlund et al., 2012).

In the geotechnical academic community it is considered best practice to use two stress

state variables, net total stress and soil suction, when forming constitutive equations and

soil models for unsaturated soils (Fredlund et al., 2012). This is in place of using an

equivalent effective stress equation as proposed by Bishop (1959). The next section of the

literature review will discuss how soil suction and soil water content are linked in the form

of the soil water retention curve (SWRC).

2.2 Soil Water Retention Curves

A soil water retention curve (SWRC) describes how soil suction is a function of water

content. SWRCs are commonly referred to in literature as the soil-water characteristic

curves (SWCC) (Fredlund et al., 2012) or soil-moisture characteristic curves (SMCC)

(Arya and Paris, 1981). An example of a SWRC for sand, silt and clay soils is shown

in Figure 2.1. Our early understanding of SWRC behaviour came from research of the

soil sciences in fields such as soil physics and agronomy in the late 19th and early 20th
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Reference Effective Stress Equation Notations

Croney et al. (1958) σ′ = σ − β′uw

σ′ = effective stress

σ = normal stress

β′ = bonding factor effective in

contributing to the shear

strength of a soil

uw = pore water pressure

Bishop (1959) σ′ = (σ − ua) + χ(ua − uw)

ua = the pore air pressure

χ = the Bishop effective stress

parameter related to the degree

of saturation of a soil

Aitchison (1961) σ′ = σ + ψp

p = pore water deficiency

ψ = a parameter with values

ranging from 0 to 1

Jennings (1961) σ′ = σ − β′ | uw |
β = a statistical factor of the

same type as the contact area

Richards (1966)
σ′ = σ − ua + χm(hm + ua)

+χs(hs + ua)

χm = effective stress parameter

for matric suction

hm = matric suction (cm)

χs = effective stress parameter

for osmotic suction

hs = osmotic suction (cm of water)

Jommi (2000) p̂ = (p− ua) + Sr(ua − uw)

p̂ = average skeleton

mean stress

p = mean stress

Sr = the degree of saturation

Table 2.1: Equations for effective stress of unsaturated soils
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Reference Pressure/Stress Stress State Variables

Pore Air Pressure, ua (σ − ua) and (ua − uw)

Pore Water Pressure, uw (σ − uw) and (ua − uw)

Total Stress, σ (σ − ua) and (σ − uw)

Table 2.2: Combination of Stress State Variables for Unsaturated Soils

century. Buckingham (1907) undertook pioneering work in the field of soil physics and was

credited for introducing the concepts of ”capillary potential” and ”capillary conductivity”.

The capillary potential contains two components, ”matric suction” (σ−ua), and ”osmotic

suction”, π. Osmotic suction is attributed to the presence of dissolved salt in the pore

water and cannot be measured directly, but can be inferred from measurements of total

and matric suction (Leong et al., 2003a). The sum of the matric suction and osmotic

suction is termed total suction, ψ (Krahn and Fredlund, 1972). The term soil suction is

commonly used in place of either total suction or matric suction, and is the term that will

be used in this Thesis to describe either.

Figure 2.1: Example of SWRC for sand, silt and clay soils (Fredlund et al., 2012).
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2.2.1 Description of the SWRC

A SWRC defines soil suction for a given water content. It is standard practice to plot soil

suction on a logarithmic scale and water content on a linear scale. This is appropriate due

to scale of the variation in the two quantities. Figure 2.2 shows a typical SWRC measured

in the laboratory over the suction range 0.1 kPa to 1.0 GPa. Figure 2.2, reproduced

from Fredlund et al. (2012) highlights the three zones of desaturation. These desaturation

zones are termed the ”boundary effect zone”, the ”transition zone” and the ”residual

zone”. The boundary effect zone is also known as the ”capillary zone” when referenced to

field conditions, and represents soil above the water table which has a saturation between

approximately 90-100%. Water is drawn above the water table due to ”capillary action”,

which is driven by intermolecular forces between the water and soil particles. The height

of the capillary zone is dependant on the pore size distribution of the soil. Typically the

height increases with decreasing pore size, such that fine grained soils such as clays can

have a capillary zone in the order of 10m, whereas in sandy soils the capillary zone may

be in the order of 1m).

The point between the boundary effect zone and the transition zone is termed the

”air-entry value”. It represents the suction that is required to cause desaturation of the

largest pores (Vanapalli et al., 1999). The air-entry value is determined by extending the

constant slope of a SWRC to intersect the suction axis at the point where the soil is fully

saturated, as shown in Figure 2.2). In the transition stage, as the suction increases the soil

dries rapidly, reducing the connectivity of the water in the voids resulting in a reduction in

the hydraulic conductivity of the soil. Eventually, as suction increases further, only small

changes in the water content occur. This is known as the residual zone. The residual state

of saturation can be considered the point at which the liquid phase becomes discontinuous,

at which point it is very difficult to remove water from the soil. This condition is often not

clearly defined from laboratory testing, as high suctions are often not measurable using

standard testing apparatus, as will be explored in the following section.
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Figure 2.2: Typical SWRC showing zones of desaturation. Reproduced from Fredlund

et al. (2012).

2.2.2 Measurement of Suction and Water Content

To determine a SWRC of a soil, suction and water content must be measured simultaneously

using specialised instrumentation. The methods for measuring suction can be classified as

either direct or indirect methods. Devices that measure suction directly do so by measuring

the negative pore water pressure, the most common of which is the tensiometer (Stannard,

1992). Indirect methods measure a variable other than negative pore water pressure, such

as an elevated air pressure in the case of pressure plate devices (Vanapalli et al., 2008).

Other indirect methods include the filter paper method (Bulut, 1996) and the chilled

mirror method which measures relative humidity (Leong et al., 2003b). These devices

require calibration of the measuring device to ensure correct calculations of suction. The

measured suction range, along with the advantages and disadvantages of each method are

summarised in Table 2.3. Other methods include thermal conductivity sensors (Jin et al.,

2017), electrical resistivity methods (Hen-Jones et al., 2017), psychrometers (Cardoso
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et al., 2007) and pore fluid squeezers which are used to measure osmotic suction (Peroni

and Tarantino, 2006). The pressure plate device and tensiometer are discussed in greater

detail below. These methods are most commonly used to measure suctions in the low

suction range (1-2000kPa) accurately, which is the area of most interest in geotechnical

engineering, and more specifically groundwater control operations, where suctions greater

than 1000kPa would be unlikely.

A pressure plate device is one of the traditional methods used to measure a SWRC in

a laboratory. The pressure plate device uses a technique called null-type axis-translation,

originally proposed by Hilf (1956), to apply matric suction to soil specimens. This

technique translates the origin of reference for pore-water pressure from atmospheric

pressure to a final increased air pressure (Vanapalli et al., 2008). This method requires

the pore-water pressure to be controlled using a ceramic disk with fine pores. The soil

is placed on top of the ceramic disk, which then creates an interface which separates air

and water phases. The soil specimen and ceramic disc are contained within a pressurised

steel chamber, which is depicted in a schematic detailing the features of a basic pressure

plate device in Figure 2.3. As air pressure within the chamber is increased, drainage of

water is allowed through the pores of the ceramic disk. Once equilibrium is attained, the

water content can be determined by weighing the specimen. This method is limited by

the maximum air pressure which can be imposed in the pressure chamber, plus the air

entry value of the ceramic disc. This means that the pressure plate device is often limited

to suctions in the region of 1500 kPa.

Conventional tensiometers can be used to measure negative pore-water pressures between

suctions of 0 kPa to 90 kPa (Stannard, 1992), and usually consist of a plastic tube which

contains a high-air entry porous ceramic cup connected to a pressure measuring device.

The tube and cup are filled with deaired water and the ceramic cup must be in good contact

with the surrounding soil. The water in the tensiometer will have the same pressure as the

pore water once equilibrium is achieved between the soil and measuring system (Fredlund

et al., 2012). In the past 30 years, high-capacity tensiometers have been developed, the

first of which was developed by Ridley and Burland (1993) which could measure negative

pressures to -1500kPa. Since then a number of high-capacity tensiometers have been used

in the field and laboratory successfully (Oliveira and Marinho, 2008; Toll et al., 2016).

A high suction tensiometer has been developed at Durham University which can directly
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Device
Suction

Component

Suction Range

(kPa)
Advantages Disadvantages

Standard

tensiometer
Matric suction 0 to 90

Quick to run tests.

Suitable if only low suctions

are necessary.

(Stannard, 1992)

Limited suction range.

(Stannard, 1992)

High-capacity

tensiometer
Matric suction 0 to 2000

Drying is imposed naturally

where negative pore water

pressure is created.

Tests quicker than

pressure plate devices.

(Lourenço, 2008)

Range of measurement is a

function of the air-entry value

of the ceramic disc.

Cavitation at high suctions can

lead to erroneous results.

(Marinho et al., 2008)

Pressure plate

(axis-translation)
Matric suction 0 to 1500

Cavitation at high values of

suction does not occur

because pore water pressure

does not become negative.

(Vanapalli et al., 2008)

Range of measurement is a

function of the air-entry value

of the ceramic disc.

Tests can take a long time to

complete, especially if soils are

fine grained. (Lourenço, 2008)

Filter paper Total suction Entire range

Inexpensive and simple.

Measures full suction range.

(Bulut, 1996)

May be less accurate at low suctions

due to sensitivity of filter paper

(Bulut, 1996)

Chilled mirror Total suction Entire range

Test times range from

two minutes to one hour.

(Leong et al., 2003b)

Overestimates suction over full

suction range. Error increases as

suction increases.

(Leong et al., 2003b)

Table 2.3: Summary of devices used to measure soil suction.
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Figure 2.3: Typical laboratory pressure plate cell for measuring the soil water retention

curve of soil specimens.

measure suctions as high as 2000 kPa (Toll et al., 2013, 2015). The apparatus, shown in

Figure 2.4, allows continuous measurements of water content, suction and volume change.

The frame is placed on an electronic balance to determine the change in weight, and

hence water content (Lourenço et al., 2011). Four displacement transducer were installed

through the outside beams of the frame to measure radial displacement of the specimen,

and two more were placed through the upper beam to measure axial displacement. The

high suction tensiometer was fitted through a hole in the support plate.

The main advantage of using high-capacity tensiometers is that drying is imposed

naturally, where negative pore water pressures are created, as opposed to pressure plate

devices where atmospheric pressure is elevated inside a chamber. However, as a consequence

of this, internal pores inside the porous disk can desaturate by cavitation when the pore

pressure becomes highly negative leading to erroneous results (Marinho et al., 2008). It

is also considerably quicker to determine a SWRC of a soil using a tensiometer than a

pressure plate device. Lourenço (2008) reports that tests to determine a SWRC of a glacial

till soil sample using a pressure plate device took 7 weeks, whereas using a high-capacity

May 5, 2021



2.2. Soil Water Retention Curves 16

Figure 2.4: Durham SWRC high-capacity tensiometer equipment. Reproduced from Toll

et al. (2015).

tensiometer on the same material took less than 7 days.

A study by Toll et al. (2015) compared measured SWRCs using different laboratory

apparatus. These included the Durham high capacity tensiometer, pressure plate device,

filter paper and chilled mirror. The results from each method showed reasonable agreement.

The chilled mirror and filter paper methods show good agreement at high suctions (1,000

to 10,000kPa) wheras at low suctions (less than 2,000kPa) the pressure plate data plots

at lower suctions than the tensiometer data. This difference is explained by different

volumetric responses, specifically the pressure plate device shows different shrinkage paths

indicating less volume change.

Figure 2.5 shows an example of two SWRCs for a silty sand soil. There are individual

curves for desorption (drying) and adsorption (wetting). Laboratory experiments of

repeated drying and wetting cycles show that soil water retention behaviour is hysteretic

in nature (Toll et al., 2016; Mualem, 1974). Repeated cycles of wetting and drying, caused

by seasonal fluctuations in weather cycles, has been shown to cause irrecoverable changes

to the micro-structure of the soil, leading to a weakening of the soil (Hen-Jones et al., 2017;

Stirling et al., 2020). This could potentially lead to unstable slopes used for infrastructure,
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and is a growing concern as climate change drives more extreme weather patterns across

the globe (Tang et al., 2018).

Figure 2.5: Typical SWRC for a silty soil showing adsorption and desorption curves

(Fredlund et al., 2012).

Undertaking a SWRC test can be time consuming and expensive, which means they

are not commonly undertaken in the UK construction industry. As a result a number of

soil databases containing unsaturated soil datasets have been collated and released by the

scientific community. Three notable databases include the UNsaturated SOil Hydraulic

DAtsabase (UNSODA) (Nemes et al., 2001), the database of HYdraulic PRoperties of

European Soils (HYPRES) (Wösten et al., 1999), which is part of the larger European

Soil Database and the SVSOILS database from Soil Vision (Bentley Systems, 2020). The

UNSODA database was developed in the agricultural discipline, and contains over 790 soil

samples from around the world. The database is freely available to download, meaning

it has been used in numerous academic studies since it was introduced in 1996 (Nemes

et al., 2001; Ostovari et al., 2015; Schaap and Leij, 1998; Chai and Khaimook, 2020).

The HYPRES database was formed from a joint initiative of 20 European institutions.

It contains information on a total of 5521 soil samples, however the database is not

freely available to download as no agreement has been reached with the participating

institutions regarding their distribution. The SVSOILS database is a commercial software

product which contains data on more than 6,200 soil-water characteristic curves and

provides numerous theoretical methods for estimating the SWRC or unsaturated hydraulic
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conductivity curve. As the database is a commercial product, it is not freely available,

meaning it tends to be used in commercial projects rather than in academia.

With soil water retention data measured using any one of the methods outlined in

this section, or extracted from a soils database, it is often necessary to fit a curve to

the measured data points. This has the benefit of giving the likely suction water content

relationship over the full suction range, and can be used in computer models of unsaturated

soil behaviour. The following section reviews several empirical equations for the shape of

the SWRC proposed in literature.

2.2.3 Empirical Curve-Fit Equations for the SWRC

A number of closed-form empirical solutions have been proposed in literature to provide

a best-fit curve to measured soil water retention data (Gardner, 1958; Brooks and Corey,

1964; van Genuchten, 1980; Fredlund and Xing, 1994; Pham and Fredlund, 2008). These

equations, summarised in Table 2.4, can be classified as two or three parameter equations,

meaning they have 2 or 3 curve fitting parameters. Each equation has a curve fitting

parameter that relates to the air-entry value of the soil and the slope of the curve in

the transition zone. Additional parameters allow the low-suction range near the air-entry

value to have an independent shape to the high suction range near residual conditions,

and provides greater flexibility when fitting the curve to measured data.

Gardner (1958) originally proposed an empirical two parameter equation used to

describe the unsaturated permeability function. The curve generated by this equation

takes the same form as the SWRC equation and was therefore subsequently used to fit

a curve to measured SWRC data. Brooks and Corey (1964) proposed a two-parameter

equation which represents the desaturation of the soil when soil suction is greater than the

air-entry value. Therefore this model requires a fixed point for the air-entry value. This

leads to a sharp discontinuity in the slope near the air-entry value (AEV). The equation

can provide a good solution to soils that have a sharp change in gradient at the AEV, such

as larger pore size soils such as sands. However, this slope discontinuity is not suitable for

soils with smoother curves such as clays and silts. The discontinuity in the gradient of the

slope can also cause issues when simulating unsaturated soil behaviour using numerical
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Reference SWRC Equation Notations

Gardner (1958) θ(ψ) =
θs

1 + agψng

θ = volumetric water content

θs = saturated volumetric water content

ag = fitting parameter which is a

function of the air-entry value

of the soil

ng = fitting parameter related

to the gradient of the curve

Brooks and Corey (1964)

θ(ψ) = θs for ψ <= ψaev

Θn =

[
ψ

ψaev

]−λbc
for ψ > ψaev

where

Θn =
θ(ψ)− θr
θs − θr

ψaev = air-entry value of soil

λbc = pore size distribution index

θr = residual water content

Θn = normalised water content

van Genuchten (1980)

Θn =
1[

1 + (avgψ)nvg
]mvg

where

Θn =
θ(ψ)− θr
θs − θr

avg = fitting parameter related

to the air-entry value

nvg = fitting parameter related

to the gradient of the curve

mvg = fitting parameter related

to the residual water content

Fredlund and Xing (1994)

θ(ψ) = C(ψ)
θs{

ln
[
e+ (ψ/af )nf

]}mf

where

C(ψ) = 1− ln(1 + ψ/ψr)

ln[1 + (106/ψr)]

af = fitting parameter related

to the air-entry value

nf = fitting parameter related

to the gradient of the curve

mf = fitting parameter related

to the residual water content

ψr = soil suction corresponding to the

residual water content θr

Pham and Fredlund (2008)

for 1 ≤ ψ < ψaev

θ1(ψ) = θu − S1 log(ψ)

for ψaev ≤ ψ < ψr

θ2(ψ) = θaev − S2 log
(

ψ
ψaev

)

for ψr ≤ ψ < 106 kPa

θ3(ψ) = S3 log
(
106

ψ

)

S1, S2, S3 = slope of straight line portions

of SWRC within each zone

θu = water content at 1 kPa

θaev = water content at air-entry value

θ1, θ2, θ3 = water content in line

segments 1, 2 and 3 respectively

Table 2.4: Curve fitting equations proposed in the literature for the SWRC.
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methods such as finite element or finite difference models. van Genuchten (1980) proposed

a three-parameter equation which produces a ”S-shaped” curve, or sigmoid”. This gives a

smooth curve in the region of the air entry value, however due to the nature of the sigmoid

curve shape, the van Genuchten equation has a tendency to overestimate the residual water

content of a soil sample. This is because the water content tends towards zero as suction

tends towards 106 kPa, however at high suctions the van Genuchten (1980) equation

simulates no change in water content with suction i.e. the curve becomes horizontal.

Fredlund and Xing (1994) developed a four parameter equation which has a similar sigmoid

shape to the van Genuchten (1980) equation, but gives greater flexibility in the region of

the residual water content. It does this by applying a correction factor which directs

the SWRC to a water content of zero at a suction of 106 kPa. Most recently, Pham

and Fredlund (2008) developed a series of equations to represent SWRCs which split the

curve into three segments over the suction axis. These zones include suction less than air

entry value, suction values between the air entry value and the residual water content,

and suctions above the residual water content. This approach gives greater control over

the shape of the curve within the three zones, however it is more complicated to use and

requires a greater number of parameters to be determined.

Several comparative studies are presented in literature where SWRC equations have

been fitted to laboratory data sets, for example Leong and Rahardjo (1997) reviewed seven

SWRC equations by analysing a database of soils. For each curve fitting equation, the

minimum sum of squared residual values (SSR) was calculated to quantify the performance

of each equation. It was shown that the three curve-fitting parameter equations (van

Genuchten, 1980; Fredlund and Xing, 1994) performed better than the two parameter

equations (Gardner, 1958; Brooks and Corey, 1964). The Fredlund and Xing (1994)

equation was found to ”perform marginally better” than the van Genuchten (1980) equation.

A study by Sillers (1997) reviewed nine SWRC equations by analysing a database of 231

soils. The Akaike criterion (Akaike, 1974), a statistical indicator, was used to assess

the performance of the curve-fit using each SWRC equation. The results shows that the

Fredlund and Xing (1994) equation with the correction factor performed the best, followed

by the van Genuchten (1980) equation. The study also showed that the Fredlund and Xing

(1994) correction factor could be applied to other SWRC equations and in each case the

quality of the fit could be improved.
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The equations presented in this section can be used to fit a curve to measured SWRC

data from laboratory experiments. However, undertaking these laboratory experiments

can be laborious and time consuming, as explained in Section 2.2.2. Therefore, predicting

the SWRC accurately without having to undertake these experiments is a key focus of the

academic community. The next section takes a look at methods presented in the literature

to predict the SWRC of a soil using standard laboratory tests and index properties.

2.2.4 Estimating the SWRC

Knowledge of a soils drying SWRC is critical if the unsaturated shear strength is to be

calculated in the case of dewatering operations. However, in many cases, undertaking

a SWRC laboratory test is expensive and time consuming and therefore not feasible

during preliminary stages of construction projects. As a result, researchers have developed

methods to predict the drying SWRC of a soil using standard laboratory test results, such

as particle size distribution, dry density, particle density and voids ratio. The predictive

methods are often referred to as PedoTransfer Functions (PTF) (Schaap and Leij, 1998).

They can be broadly divided into three categories.

• Functional regression models which correlate basic soil properties to empirical SWRC

equation parameters (Benson et al., 2014; Perera et al., 2005; Rawls and Brakensiek,

1985; Vereecken et al., 1989; Schaap et al., 1998).

• Statistical estimates of water contents at various soil suctions (Gupta and Larson,

1979; Schaap et al., 1998).

• Predictive models based on the physical characteristics of the soil (Arya and Paris,

1981; Aubertin et al., 2003; Tyler and Wheatcraft, 1989).

Functional regression models correlate basic physical properties to parameters of a

SWRC equation, for example Rawls and Brakensiek (1985) presented regression equations

for estimating the parameters of the Brooks and Corey (1964) equation. These equations

are correlated to the percentage sand in the soil specimen and the porosity. Vereecken

et al. (1989) used a dataset of 40 Belgium soils to derive equations for the parameters of

the van Genuchten (1980) equation. It was found that the SWRC could be estimated to
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a reasonable degree of accuracy using the grain size distribution, dry density and carbon

content. Perera et al. (2005) used functional regression to determine equations for the

parameters of the Fredlund and Xing (1994) equation using a database of soils from the

United States. The set of equations require parameters derived from the particle size

distribution such as D10 (particle size at 10% passing) and P200 (percent passing the No.

200 sieve). Benson et al. (2014) proposed a set of equations for the van Genuchten avg

and nvg parameters for clean sands. This model requires the dry unit weight, the particle

size at 60% passing, D60, and the coefficient of uniformity, Cu. By analysing several

soils from literature, it was shown that the predicted avg and nvg values were within ±2

percent of the best-fit values. Recently Chai and Khaimook (2020) proposed a model

for estimating the parameters of the Fredlund and Xing (1994) equations using the PSD,

saturated permeability, and plasticity index. The method aims to link the air-entry value

parameter to the saturated permeability of a soil sample, and the rate of desaturation to

the slope of the PSD curve.

The second type of pedotransfer function uses statistical analysis techniques on a

database of soils. No prior shape of the SWRC is used (i.e. the empirical SWRC equations

are not used as a starting point in the analysis). Gupta and Larson (1979) developed

an equation which requires the percentage of sand, silt, clay and organic matter, along

with the bulk density. A number of regression coefficients were developed which are

selected from a table based on a given matric suction. Schaap et al. (1998) used neural

network algorithms to analyse the UNSODA database of soils and predict the hydraulic

properties of soils using different levels of input data (soil texture, density, porosity). The

model produces an estimated water content along with the uncertainty of the prediction

in each case. It was shown that the predicted errors and confidence limits were often large,

however they may still be accurate enough for most applications during preliminary stages

of projects.

The third type of pedotransfer function uses a physio-empirical approach where a

grain-size distribution curve is used in the prediction of the SWRC. The Arya and Paris

(1981) model was the first of this kind. The method attempts to estimate the pore size

distribution from the particle size distribution. The pore radii are then converted to soil

suctions through the use of capillary theory. This theory is based on the assumption

that the pore size distribution and the particle size distribution are strongly related, with
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larger particles producing larger pore sizes than smaller particles. The Arya and Paris

(1981) model contains a fitting parameter, α, which can typically be taken as 1.38, but

can range between 1.1 for fine textured soils and 2.5 for coarse grained soils (Arya et al.,

1982). This fitting parameter was included to account for uncertainties in the prediction

of the SWRC. This method requires a well defined particle size distribution, otherwise

the accuracy of the predicted curve becomes poor. There are various models presented

in the literature which aim to improve the estimate of the Arya and Paris (1981) for

heterogeneous soils. Gupta and Ewing (1992) applied the Arya and Paris (1981) model

to the PSD to understand how inter-aggregate pores (i.e inter-particle pores within a soil

aggregate) may impact the shape of the SWRC and the quality of the prediction. Nimmo

(1997) proposed an extended version of the Arya and Paris (1981) model that quantifies

the effect of soil structure and fabric on the SWRC. The model splits the pore space into

texture-related and structure-related components. The revised model was shown to be

an improvement on the Arya and Paris (1981) model by the goodness of fit, indicated by

correlation coefficients ranging from 0.908 to 0.998 for the new model, compared with a

range of 0.686 in 0.955 for the texture-based model. Tyler and Wheatcraft (1989) adapted

the Arya and Paris (1981) model by estimating the α input parameter for different soils

rather than adopting a default value. This is achieved by calculating fractal dimensions

by linear regression analysis over particles associated with the grain-size fractions.

Fredlund et al. (2002) also proposed a physio-empirical model for predicting the SWRC

of a soil from the particle size distribution. The method divides the PSD into small

particle groupings of relatively uniform particle sizes. For each uniform particle size, it is

hypothesized that there is a unique SWRC. The SWRCs for each particle size are summed

together to form one SWRC that describes the whole soil. The primary limitation of this

method lies in the ability to ’mix’ the individual particle fractions to obtain the overall

SWRC. This ’mix’ is controlled by a parameter named the assumed packing factor, np,

which must be approximated for each particle size. The method has been shown to be

quite sensitive to this parameter, and more research is required to understand how best

to estimate the parameter (Fredlund et al., 2002).

The Modified Kovács Model (Aubertin et al., 2003) is a physio-empirical model based

on standard soil properties. It is a modification of an original model proposed by Kovacs

(1981). This model makes the distinction between capillary and adhesive forces, and has
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been shown to be effective at predicting the SWRC of tailing materials and silts (Aubertin

et al., 1998) and later for cohesive and granular soils (Aubertin et al., 2003).

2.2.5 Comparison of SWRC Estimation Methods

A number of studies which compare the performance of the SWRC estimation methods

have been presented in the literature. Each study has analysed a database of soils with

experimental SWRC testing. The study by Fredlund et al. (2002) compares the method

proposed in the paper to the models by Arya and Paris (1981), Tyler and Wheatcraft

(1989), Vereecken et al. (1989), Rawls and Brakensiek (1985) and Scheinost et al. (1997)

and applies the different techniques to a database of 188 soils. The methods were compared

using the following metrics:(i) the squared difference between the measured and estimated

air-entry values, and (ii) the squared difference between the measured and estimated

maximum slopes of the SWRC. Figure 2.6, reproduced from Fredlund et al. (2002),

presents the calculated squared difference for the air-entry value and maximum slope

for all six predictive methods, where a low value of squared difference indicates a good fit.

The Fredlund et al. (2002) model and Arya and Paris (1981) model show the highest level

of confidence in correctly estimating the air-entry value of the soil across the database of

soils studied. The air-entry value is typically the most important area of the SWRC when

applying a SWRC to unsaturated soil mechanics problems because this occurs over the

low suction range of most interest to geotechnical problems. This is followed by the slope

of the SWRC. The study showed that models by Vereecken et al. (1989), Fredlund et al.

(2002), Scheinost et al. (1997) and Arya and Paris (1981) all performed reasonably well

at estimating the slope of the curve.

Figure 2.6: Squared difference results for the air-entry value and maximum slope for the

six SWRC predictive methods. Reproduced from Fredlund et al. (2002).
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In the study by Chai and Khaimook (2020), the method proposed in the paper is

compared to the Arya and Paris (1981) and Perera et al. (2005) models. A dataset of 9

soils from literature was used to verify the proposed model. This was split in four plastic

soils and five non-plastic soils. The plastic soils were defined as soils with a plasticity index

greater than 8. The absolute relative error (ARE) was calculated to compare results. A

low value of ARE indicates a better fit than a high ARE value. The results, reproduced

from Chai and Khaimook (2020), are presented in Figure 2.7. For the plastic soils, the

Chai and Khaimook (2020) performed well, whilst both the Arya and Paris (1981) and

Perera et al. (2005) models perform reasonably. Note that the average values of ARE

are largely influenced by the poor performance of each method for soil HR. If soil HR is

removed from the average, the Chai and Khaimook (2020) performs best with an ARE

value of 0.097 followed by the Arya and Paris (1981) model with 0.188 and the Perera

et al. (2005) model with 0.236. For the non-plastic soils, each predictive method performs

well, with the Chai and Khaimook (2020) model marginally better than the Arya and

Paris (1981) model and Perera et al. (2005) (See Figure 2.7).

Figure 2.7: Calculated ARE for the Chai and Khaimook (2020) model, Arya and Paris

(1981) model and the Perera et al. (2005) model. Reproduced from Chai and Khaimook

(2020).

This section has summarised some of the methods presented in literature for predicting

the SWRC of soils using standard laboratory tests such as particle size distribution and
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dry density. A predicted SWRC is essential if the shear strength of an unsaturated soils is

to be estimated without undertaking complex, time consuming and expensive laboratory

experiments. The next section documents methods for estimating the shear strength of

unsaturated soils which have been presented in the literature.

2.3 Shear Strength of Unsaturated Soils

Knowledge of the the shear strength of soils under unsaturated conditions is critical to

the safety of engineered structures. It is particularly important to the stability of slopes

which are subjected to repeated changes in moisture content due to changing weather

patterns. The previous section of this literature review presented the current accepted

understanding of the water content soil suction relationship described by the soil water

retention curve (SWRC). This relationship plays a pivotal role in the change in shear

strength of unsaturated soils when subjected to changes in water content. This section

will present the current knowledge of shear strength theory for unsaturated soils and how

the SWRC plays a key part in estimating the shear strength of soils when direct testing

methods, such as triaxial tests, are unavailable.

2.3.1 Shear Strength Theories

Theories of shear strength for unsaturated soils have been proposed as extensions to the

theories and equations regularly used in saturated soil mechanics. The shear strength of

a saturated soil can be described by the Mohr-Coulomb failure criteria and the effective

stress parameter, originally proposed by Terzaghi (1936) and regularly used in geotechnical

engineering today. It can be expressed by the equation

τ = c′ + σ′ tanφ′ (2.3.2)

where τ is the shear stress on the failure plane at failure, c′ is the effective cohesion

intercept, φ′ is the effective angle of internal friction, and σ′ is the effective stress which is

equal to (σ−uw) where σ is the normal stress on the failure plane at failure and uw is the

pore water pressure at failure. The relationship between shear strength and effective stress

is linear when plotted on a graph of effective stress and shear stress. Failure conditions
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can be drawn using Mohr circles, with the line tangent to the Mohr circles representing

the failure envelope.

The use of effective stress with the Mohr-Coulomb failure criterion has proven to be

successful when dealing with saturated soils. However, as was discussed in Section 2.1,

the use of effective stress as a stress state variable for unsaturated soils is unsatisfactory.

Instead, two stress state variable are required, net total stress (σ−ua) and matric suction

(ua − uw). The extended Mohr-Coulomb model for unsaturated soils was proposed by

Fredlund et al. (1978) and can be expressed as

τ = c′ + (σ − ua) tanφ′ + (ua − uw)f1 (2.3.3)

where f1 is a soil property function defining the relationship between shear strength and

soil suction. The form of the f1 parameter in Equation (2.3.3) allows the shear strength

envelope with respect to matric suction to be either linear of curved. The original form of

the equation proposed by Fredlund et al. (1978) was linear, where f1 = tanφb, such that

τ = c′ + (σ − ua) tanφ′ + (ua − uw) tanφb (2.3.4)

where φb is the angle indicating the rate of increase in shear strength with respect to a

change in matric suction. The failure envelope for unsaturated soils can be plotted in a

three-dimensional manner, as presented in Figure 2.8. The net normal stress is plotted

along the horizontal axis, shear stress along the vertical axis, and the matric suction is

plotted on the axis into the page. The frontal plane represents the saturated soil conditions

where matric suction is zero. The Mohr circles for unsaturated soils are plotted on the net

normal stress axis in a same manner as saturated soils are plotted on the effective stress

axis. At an elevated matric suction, a second failure envelope along with Mohr circles can

be plotted, as shown in Figure 2.8. The surface tangent to both sets of Mohr circles is

known as the Mohr-Coulomb failure plane for unsaturated soils. The inclination of this

surface is controlled by the parameter tanφb if the change in shear strength with matric

suction is linear. It was originally thought to be linear based on analysis of a limited data

set of soils (Fredlund et al., 1978). However, later studies by Gan et al. (1988) and Escario

and Jucá (1989) which involved experimental testing of partially saturated soils showed

that it was non-linear after the air-entry value of the soil was reached.

Equations for unsaturated shear strength have also been proposed as part of elastoplastic

constitutive soil models for unsaturated soils (Alonso et al., 1990; Wheeler and Sivakumar,
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Figure 2.8: Extended Mohr-Coulomb failure envelope for unsaturated soils. Reproduced

from Fredlund et al. (2012).

1995; Toll, 1990; Sun et al., 2000; Sheng et al., 2008). The equations for shear strength are

written in terms of the q − p− u space used in critical state soil models. The stress state

variables used are deviator stress, q = σ1 − σ3, mean total stress, p = (σ1 + σ2 + σ3)/3

and matric suction, u = ua − uw. σ1, σ2 and σ3 are the major, intermediate and minor

principal stresses respectively. The critical state shear strength equation of the Barcelona

Basic Model (Alonso et al., 1990) takes the form

q = M(p− ua) + k(ua − uw) (2.3.5)

where M is the gradient of the critical state line and k is an elastic constant. Wheeler

and Sivakumar (1995) suggested a critical state shear strength equation where each shear

strength property is a function of matric suction

q = Ms(p− ua) + µs (2.3.6)

where Ms and µs are material characteristics that are a function of suction. Sun et al.

(2000) suggested a different equation to describe the critical state line

q = M(s)[p̄+ σ̄0(s)] (2.3.7)

where

M(s) = M(0) +Msσ̄0(s) (2.3.8)
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where σ̄0(s) = s
1+s/a , M(0) ≡M , is the slope of the critical state line for saturated soils, Ms

is a fitting parameter, and a is constant equal to the maximum stress, σ0(s), when the soil

is subject to an infinite suction. Finally Sheng et al. (2008) proposed an alternative shear

strength equation as part of the SFG (Sheng, Fredlund, Gens) model. The SFG model

describes yield stress, shear strength, and volume change behaviour of unsaturated soils

as functions of suction. In this model an apparent tensile strength equation is proposed

p̄0 =


−S S < Ssa

−Ssa − (Ssa + 1) ln S+1
Ssa+1 S ≥ Ssa

(2.3.9)

where Ssa is the saturation suction, which represents the unique transition value of suction

between saturated and unsaturated states.

The equations proposed so far are empirical, which means that they require unsaturated

shear strength testing to determine the unsaturated shear strength parameters. The

following sections reviews some of the methods for testing unsaturated soils using laboratory

apparatus. Methods for estimating the shear strength using the SWRC are discussed in a

following section.

2.3.2 Testing Methods for Unsaturated Shear Strength

Shear strength testing for unsaturated soils is an extension of procedures undertaken for

saturated soils. Both modified triaxial cell apparatus and shear box apparatus can be used

to determine the shear strength of an unsaturated soil. These tests can be classified into

two groups (Sheng et al., 2011):

• Suction controlled tests using either triaxial or direct shear laboratory equipment.

Suction is usually held constant as stresses are applied. These tests can be considered

drained as water and air can flow in and out of the specimen in order to maintain

suction. The principal components of these tests are shown in Figure 2.9 (a) and

(c).

• Constant water content tests using either triaxial or direct shear laboratory equipment.

Water content is held constant while suction may change. These tests are less
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common because the stress state can not be controlled. The principal components

of these tests are shown in Figure 2.9 (b) and (d).

Figure 2.9: Illustration of shear strength tests for unsaturated soils for (a) suction

controlled triaxial test (b) undrained triaxial test (c) suction controlled direct shear test

and (d) undrained direct shear test. Reproduced from Sheng et al. (2011).

The following observations have come about as a result of experimental shear strength

testing of unsaturated soils (Fredlund et al., 1996; Escario and Jucá, 1989; Vanapalli et al.,

1996; Wheeler and Sivakumar, 1995; Fredlund et al., 2012):

• Under constant net vertical pressure, an increase in matric suction results in an

increase in shear strength.

• Under constant suction, an increase in net vertical stress results in an increase in

shear strength

• The relationship between shear strength and matric suction is non-linear.
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• The increase in shear strength with suction is greatest at low suctions i.e. below the

air-entry value of the soil. This increase flattens out as suction increases and water

content tends towards residual conditions.

• Vertical stress has a much greater influence on the change in shear strength than

matric suction, however at the near surface, net vertical stresses are likley to be

small whereas suctions can vary significantly.

Experimental testing will be discussed in further detail in the following sections as

estimated shear strength is compared to measured shear strength for a number of equations

presented in the literature.

2.3.3 Estimation of Shear Strength using SWRCs

A soil water retention curve, described in detail in Section 2.2, describes the relationship

between matric suction and either water content or saturation. It is known that a decrease

in water content causes an increase in shear strength i.e. there is a relationship between

the SWRC and the shear strength of a soil.

This sections documents the equations presented in the literature that aim to formulate

this relationship as an extension of the saturated Mohr-Coulomb failure model. This

model, rather than critical state soil models, has been selected to investigate further

because it is most likely to be easily implemented into current soil mechanics practice in

the construction industry. Fredlund et al. (1996) proposed a non-linear form of Extended

Mohr-Coulomb Equation 2.3.4

τ = c′ + (σ − ua) tanφ′ + (ua − uw)Θκ
d tanφ′ (2.3.10)

where and κ is a fitting parameter and Θd is the dimensionless water content defined as

θ/θs, where θ is the current volumetric water content and θs is saturated water content.

Garven and Vanapalli (2006) provided an empirical relationship between the fitting parameter

κ and plasticity index, PI, of the soil

κ = −0.0016(PI)2 + 0.0975(PI) + 1 (2.3.11)
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Figure 2.10: Relationship of SWRC to shear strength envelope. Reproduced from Fredlund

et al. (2012).

Vanapalli et al. (1996) proposed an equation where a SWRC is normalised between

saturated and residual water content conditions

τ = c′ + (σ − ua) tanφ′ + (ua − uw)
( θ − θr
θs − θr

)
tanφ′ (2.3.12)

where θr is the residual water content.

Oberg and Sallfors (1997) proposed an equation that uses the SWRC in the form of

degree of saturation, S

τ = c′ + (σ − ua) tanφ′ + (ua − uw)S tanφ′ (2.3.13)
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Toll and Ong (2003) proposed an equation that can be used in both critical state soil

models and in the extended Mohr-Coulomb equation, which is written as:

τ = c′ + (σ − ua) tanφ′ + (ua − uw)

(
Sr − Sr2
Sr1 − Sr2

)k
tanφ′ (2.3.14)

where Sr is the degree of saturation, Sr1 is a reference value which can be taken as 100%

saturation, Sr2 is a reference value which can be taken as the degree of saturation at

residual suction, and k is a fitting parameter.

Khalili and Khabbaz (1998) assume that a soil behaves like a saturated soil if the

matric suction is less than the air-entry value of the soil. Once the air-entry value is

exceeded, the suction component of shear strength is reduced by a factor λ′. The equation

takes the form

τ = c′ + (σ − ua) tanφ′ + (ua − uw)λ′ tanφ′ (2.3.15)

where

λ′ =

[
ua − uw

(ua − uw)b

]−0.55
(2.3.16)

where (ua − uw)b is the air-entry value.

The equations presented here all take a similar form, where a function relating the

SWRC is given in place of the tanφb parameter proposed by Fredlund et al. (1978).

Additionally, all the equations can be re-cast into a form of the equation using the Bishop

effective stress parameter, χ.

τ = c′ + (σ − ua) tanφ′ + χ(ua − uw) tanφ′ (2.3.17)

The equivalent form of tanφb and χ for each equation presented is given in Table 2.5.

The following section will review some mechanical testing of unsaturated soils where

the estimated and measured shear strength are compared to assess the performance of

each equation and suitability of applying each equation in engineering practice.

2.3.4 Comparison of Shear Strength Equations using Mechanical Testing

of Unsaturated Soils

There are a number of studies presented in the literature which compare the performance

of the shear strength estimation equations using experimental mechanical shear strength
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Equation tanφb = χ =

Fredlund et al. (1978) tanφb
tanφb

tanφ′

Fredlund et al. (1996) Θκ
d tanφ′ Θκ

d

Vanapalli et al. (1996)
( θ − θr
θs − θr

)
tanφ′

( θ − θr
θs − θr

)
Oberg and Sallfors (1997) S tanφ′ S

Khalili and Khabbaz (1998)

[
ua − uw

(ua − uw)b

]−0.55
tanφ′

[
ua − uw

(ua − uw)b

]−0.55

Table 2.5: Equivalent tanφb and χ for shear strength equations.

testing data (Sheng et al., 2011; Vanapalli and Fredlund, 2000). This section will review

some of these studies.

Figure 2.11: Prediction of the triaxial test data on air-dry silty clay for net confining

pressures of (a) 0 kPa, (b) 50 kPa, (c) 100 kPa, and (d) 200 kPa. Reproduced from Sheng

et al. (2011).

The first is a study by Sheng et al. (2011) which compares eight shear strength

equations using a number of experimental testing datasets. The equations compared
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are those proposed by Oberg and Sallfors (1997) [1], Fredlund et al. (1996) [2], Vanapalli

et al. (1996) [3], Toll and Ong (2003) [4], Alonso et al. (1990) [5], Sun et al. (2000) [6],

Khalili and Khabbaz (1998) [7] and Sheng et al. (2008) [8], where the numbers relate to the

predicted shear strength curves in Figures 2.11 and 2.12. The two datasets presented in

the paper are summarised here. The first was a set of triaxial compression tests undertaken

on a reconstituted silty clay provided by Cunningham et al. (2003). The slurry soil was

isotropically preconsolidated to 130kPa, before being tested at net confining pressures of

0 kPa (unconfined), 50 kPa, 100 kPa and 200 kPa, as presented in Figure 2.11 (a), (b),

(c) and (d) respectively. The results can summarised for each net confining pressure as

follows

• Unconfined - all shear strength equations overestimate the shear strength data. The

closest prediction is using the equation by Sheng et al. (2008).

• 50 kPa - Closest prediction by Sheng et al. (2011) followed by Toll and Ong (2003).

The equations based on the SWRC (Vanapalli et al., 1996; Fredlund et al., 1996)

follow the shape of the data but somewhat overestimate the shear strength at low

suctions. The shear strength appears to be sensitive to the residual suction, which

can be difficult to determine for fine grained soils.

• 100 kPa - The equations based on the SWRC give close predictions of shear strength,

particularly the equations by Fredlund et al. (1996) and Vanapalli et al. (1996).

• 200 kPa - The best prediction is given by the Toll and Ong (2003) equation, followed

by the equations by Fredlund et al. (1996) and Vanapalli et al. (1996).

In general it was shown that the shear strength equations based on the SWRC fit well

to the strength data at higher confining pressures, but less so at confining pressures less

than 100 kPa. The second dataset was provided by Thu et al. (2006) which contains shear

strength data on compacted kaolin clay (15%) and silt (85%). All soil specimens were

compacted to an optimum water content of 22% and tested at net confining pressures of

100 kPa, 200 kPa and 300 kPa. The results can be summarised for each net confining

pressure as

• 100 kPa - The closest predictions are by Sheng et al. (2008) and Sun et al. (2000).
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Figure 2.12: Prediction of the triaxial test data on compacted kaolin clay at net confining

pressures of (a) 100 kPa, (b) 200 kPa, (c) 300 kPa. Reproduced from Sheng et al. (2011).

The equations that use the SWRC perform best at intermediate suctions between

200 to 300 kPa.

• 200 kPa - The closest predictions are again by Sheng et al. (2008) and Sun et al.

(2000). The equations by Fredlund et al. (1996) and Vanapalli et al. (1996) give

reasonable predictions at intermediate suctions but underestimate shear strength at

high suctions greater than 300 kPa.

• 200 kPa - Again the closest prediction is given by the Sheng et al. (2008) equation.

The equations by Sun et al. (2000), Vanapalli et al. (1996) and Fredlund et al. (1996)

all give reasonable predictions.

Based on the experimental testing presented in this paper, the equations by Sheng et al.

(2008), Sun et al. (2000), Vanapalli et al. (1996), Fredlund et al. (1996) and Toll and Ong

(2003) consistently outperform the equations by Alonso et al. (1990), Khalili and Khabbaz

(1998) and Oberg and Sallfors (1997), which typically overestimate the shear strength of
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the soils as suction increases. It must be noted that the equations by Vanapalli et al.

(1996) and Toll and Ong (2003) are sensitive to the selection of residual suction, therefore

this parameter must be chosen with care when used in practice. It is clear from looking

at the results from each dataset that different equations may perform better for different

soils types, therefore as many equations as possible should be utilised in practice if the

required parameters cannot be determined from available shear strength data.

Vanapalli and Fredlund (2000) presented a study which compares the shear strength

equations by Fredlund et al. (1996), Vanapalli et al. (1996), Oberg and Sallfors (1997)

and Khalili and Khabbaz (1998). Three soil samples have been analysed from a dataset

of experimental direct shear tests by Escario and Jucá (1989). The soils samples include a

Madrid gray clay, red silty clay and Madrid clay sand. Escario and Jucá (1989) measured

the SWRC for each soil sample between suctions of 0 kPa and 15,000 kPa. Also the shear

strength testing was undertaken up to suctions of 15,000 kPa while the net total stress

was held constant at 120 kPa.

Figure 2.13, reproduced from Vanapalli and Fredlund (2000), shows the comparison

between the predicted and measured shear strength over the full suction range tested

for each of the three soil samples. Figure 2.14 shows the same comparison over a limited

suction range which is of most interest during the application of unsaturated soil mechanics

to geotechnical engineering problems. In each figure, Procedure 1 refers to the Fredlund

et al. (1996) equation, Procedure 2 refers to the Vanapalli et al. (1996) equation, Procedure

3 to the Oberg and Sallfors (1997) equation and Procedure 4 to the Khalili and Khabbaz

(1998) equation. The results can be summarised as follows

• Over the full suction range, the Fredlund et al. (1996) equation performs the best

of the four procedures. The Vanapalli et al. (1996) follows, however it tends to

overestimate the shear strength in the high suction range. This may be due to

possible error in estimating the residual suction from the SWRC. Both the Khalili

and Khabbaz (1998) and Oberg and Sallfors (1997) equations provide poor predictions

in the large suction ranges.

• In the limited suction range, less than 1500 kPa, both equations by Fredlund et al.

(1996) and Vanapalli et al. (1996) provide good comparisons for all three soils tested.

The Oberg and Sallfors (1997) equation is also poor in the low suction range. The
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Figure 2.13: Comparison of predicted vs measured shear strength data for the four shear

strength equations for the soils (a) Madrid gray clay (b) Red silty clay and (c) Madrid

clay sand. Reproduced from Vanapalli and Fredlund (2000).

Khalili and Khabbaz (1998) provides mixed results in the low suction range, where

it typically underestimates shear strength. As the low suction range will be of most

importance during the application of this theory in groundwater control, Fredlund

et al. (1996) and Vanapalli et al. (1996) equations are likely to give the best results.

The results presented by Vanapalli and Fredlund (2000) demonstrate that the shear
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Figure 2.14: Comparison of predicted vs measured shear strength data for the four shear

strength equations over the limited suction range of 0 kPa to 1500 kPa for the soils (a)

Madrid gray clay (b) Red silty clay and (c) Madrid clay sand. Reproduced from Vanapalli

and Fredlund (2000).

strength of an unsaturated soil can be reasonably predicted in the low to medium suction

range (less than 1500kPa) using the SWRC and the equations by Vanapalli et al. (1996)

and Fredlund et al. (1996). As the suction increases, the error between the predicted
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and measured shear strength is more likely to increase. The error in the predicted shear

strength when using the Vanapalli et al. (1996) model may be attributed to the error in

estimating the residual suction of the soil. This is particularly the case for fine grained

soils such as clay, as demonstrated by the Madrid clay in Figure 2.13. The following

section will look at how some of these concepts can be applied in geotechnical engineering

practice.

2.4 Application of Unsaturated Shear Strength in Practice

The application of unsaturated soil mechanics in engineering practice is still relatively

limited. Applying unsaturated soil mechanics is of most interest to slope stability problems,

where changes in negative pore water pressure can greatly influence the factor of safety of

a slope. Other problems include the bearing capacity of soils when designing foundations

and the stability of retaining walls. For all these problems, it is common practice within the

construction industry to use saturated soil mechanics, as this is the conservative approach.

Engineers may feel uncomfortable applying unsaturated soil mechanics for a number of

reasons, these include: (i) a lack of understanding of the theory of unsaturated shear

strength (ii) uncertainty in the negative pore-water pressure profile above the water table

(iii) a lack of computer software which can model unsaturated soil behaviour and (iv)

a perception that negative pore-water pressures can not be relied upon due to climatic

and seasonal variations in rainfall (Fredlund et al., 2012). This section of the literature

review presents a couple of case studies where unsaturated shear strength has been used

successfully during slope stability analyses.

There are several methods in which unsaturated shear strength can be used in a slope

stability analysis. The first is to use a modified geotechnical modelling software which uses

the non-linear unsaturated shear strength equations proposed by Fredlund et al. (1996).

The second approach is to use standard geotechnical modelling software (i.e. a saturated

soil mechanics model) and split the soil above the water table into a number of layers. The

total cohesion in each layer is calculated as the effective cohesion plus the cohesion due

to matric suction. This is referred to as the total cohesion method (Ching et al., 1984).

A third method is to use Bishop stress method, where the unsaturated effective stress is

calculated from suction and water content. This is the approach used by the PLAXIS
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geotechnical finite element software to model unsaturated soils.

The first example is a case study from Hong Kong presented by Ching et al. (1984)

which uses the total cohesion method. An existing 60 degree slope is located behind

a row of residential buildings. The slope has been protected from rainfall infiltration

by a lime plaster cement across its surface, however failures in this surface have been

observed leading to the study of its stability. The soil consists of colluvium, completely

weathered granite, highly weathered granite, and fully competent granite bedrock. The

groundwater table is located between around 50m below the ground surface and roughly

follows the ground surface profile. Triaxial tests were undertaken to assess the shear

strength parameters, φ′, c′ and φb. In situ measurements of soil suction were conducted

using tensiometers. From this, matric suction profiles with elevation were developed, as

shown in Figure 2.15.

Figure 2.15: In situ measurements of matric suction. Reproduced from Ching et al. (1984).

The soil stratum was split into a number of soil layers 5.0m thick, each given an

independent soil cohesion based on a matric suction profile. A number of slope stability

analyses were then undertaken based on a series of matric suction profiles that are a

percentage factor of the hydrostatic profile. For each analysis the result is given in terms of

the slope factor of safety. The results are presented in Figure 2.16. If using only saturated

soil mechanics, i.e. not taking into consideration matric suction, then the calculated factor

of safety was 0.864, indicating unstable slope conditions. However, at the time the paper
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Figure 2.16: Calculated factors of safety considering various matric suction profile as a

percentage of hydrostatic conditions. Reproduced from Fredlund et al. (2012)

was written, the slope was stable, indicating that the matric suction is playing a role in

the stability of the slope. A factor of safety of 1.0 is calculated when the matric suction

profile simulated is 10-20% of the hydrostatic matric suction profile. Above a factor of 10%

the factor of safety continues to increase before it starts to level off at around 60% of the

hydrostatic matric suction profile. Above 60%, the additional suction does not translate

into additional shear strength, meaning factor of safety no longer increases. This case

study demonstrates that matric suction plays an important part in the stability of slopes,

and clearly demonstrates that as suction increases, shear strength increases, leading to an

improvement in the factor of safety of the slope.

The second example uses the approach where the extended shear strength equation for

unsaturated soils is used during a numerical analysis (Ng, 1988). This example is based

on a typical steep slope of approximately 60 degrees in Hong Kong. Again the role of

matric suction is shown by computing the factor of safety of the slope. In this instance

however a moisture flux boundary condition is applied to the slope surface to simulate

a sudden heavy rainfall event. The geology is similar to the previous example, where

colluvium overlays weathered granite. The φb angle for each soil was assumed to be a

percentage of the effective angle of internal friction, φ′, ranging from 25%, 50%, 75% and

100%. The unsaturated hydraulic conductivity function was derived from the saturated
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soil permeability and the SWRC. The infiltration of rainfall into the soil was specified as

a moisture flux boundary condition equivalent to 10% of the average annual rainfall in

Hong Kong. The analysis is time dependant, with the results calculated at various time

steps as the water infiltrates into the slope. Figure 2.17 shows the changing negative pore

water pressure profile with time along a vertical section though the slope.

Figure 2.17: Matric suction profile along vertical section through the slope at various

elapsed times. Reproduced from Ng (1988).

The results are presented in Figure 2.18 as the factor of safety vs elapsed time for each

ratio of φb to φ′ simulated. Where negative pore pressures are ignored, i.e. φb/φ′ = 0, the

factor of safety is close to 0.9, indicating unstable slope conditions. However, observations

of a stable slope on site indicate that it must be greater than 1.0. The factor of safety

ranges from 1.0 to 1.4 when φb/φ′ varies between 0.25 to 1.0. As time progresses it can

be seen that the factor of safety of the slope decreases as the water infiltrates into the

slope. The decrease in factor of safety becomes more substantial as φb/φ′ increases, with

the greatest decrease in factor of safety when φb = φ′. This can attributed to the fact

that the critical slip surface is shallow and the mobilized shear resistance is significantly

influenced by matric suctions. The factor of safety begins to increase after 480 minutes

when the rainfall stops and the water infiltrates deeper into the soil, however the rate of

increase in factor of safety is slower than the decrease during the onset of rainfall.
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Figure 2.18: Calculated factors of safety at various elapsed times for a range of φb to φ′

ratios. Reproduced from Ng (1988).

These case studies demonstrates how critical matric suction can be to the factor of

safety of unsaturated slopes. It is common practice during geotechnical design to ignore

the effects of matric suctions, however these examples show that this may often be too

conservative and explains why many slopes fail design standards such as Eurocode when

they can be clearly observed as stable in practice. This can lead to over conservative slope

designs which require unnecessary reinforcement such as soil nails, soil anchors or geotextile

mesh, or more hard engineering solutions such as retaining walls. The change in factor of

safety due to rainfall presented in the second case study demonstrates that variable pore

water pressure conditions must be considered during the design of unsaturated slopes, as

this will have implications for the design requirements during the lifetime of the structure.

2.5 Summary

The objective of this MScR research project is to develop a process to estimate the change

in shear strength of a soil due to the lowering of the water table as a consequence of a

dewatering operation. It is also key to understand how this change in shear strength

may increase the stability of a temporary battered slope. This literature review has

presented the current understanding of the key concepts, theories and studies on the topics

that are fundamental to this research objective. As the groundwater table is lowered,
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the soil becomes unsaturated, and negative pore water pressures, i.e. matric suctions,

develop. It is this development of matric suctions that pull the soil particles together

which leads to an increase in shear strength of the soil. This soil behaviour is described

by the branch of geotechnical engineering called unsaturated soil mechanics. This first

section of this literature review discussed the concept of stress state variables, and how

it is considered best practice to use two stress state variables, net total stress (σ − ua)

and matric suction (ua − uw), as proposed by Fredlund and Morgenstern (1977), rather

than using an unsaturated effective stress parameter, as originally proposed by Bishop

(1959). This is because the effective stress parameter was experimentally shown to not

be a stress state variable, but rather a constitutive equation linking stress state variables

(Morgenstern, 1979).

Matric suction plays a fundamental part in the behaviour of soils as they desaturate.

The change in water content of a soil with matric suction is described by the soil water

retention curve (SWRC). There has been a significant amount of research into the SWRC

as it is been proven to be an essential component when applying unsaturated soil mechanics

in practice. For a given soil there can be any number of possible soil water retention curves

depending on the conditions tested. If the soil is being dried or wetted, this will lead to

separate drying and wetting curves. There is also an infinite number of possible scanning

curves which lie between these drying and wetting curves. The void ratio of the soil also

has an impact on the SWRC. Soil samples can be compacted to different densities, which

will have the effect of shifting the SWRC along the suction axis. A number of different

methods for determining the SWRC in the laboratory were discussed, along with methods

for measuring the soil suction in the field. There are a number of soil databases available

to the academic community and industry which contain laboratory testing of unsaturated

soils. The UNSODA database contains over 1,000 soil samples with a laboratory measured

SWRC (Nemes et al., 2001). There have been numerous attempts to find an empirical

equation that can produce a best fit curve to measured SWRC data. The most commonly

cited in literature are the equations by van Genuchten (1980) and Fredlund and Xing

(1994). It was shown by Leong and Rahardjo (1997) that the Fredlund and Xing (1994)

equation performs marginally better than the van Genuchten (1980) equation. Laboratory

experiments used to derive a SWRC can be time consuming and expensive to undertake,

and as a result are not widely used in the UK construction industry. Therefore, there have
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been a number of attempts to estimate a SWRC of a soil using only standard laboratory

test data. These include particle size distributions, dry density, particle density, voids

ratio and plasticity information. A number of methods including Arya and Paris (1981);

Fredlund et al. (2002); Perera et al. (2005); Rawls et al. (1982); Gupta and Larson (1979);

Aubertin et al. (2003) have been shown to give reasonable predictions, however this often

depends on the soil data set presented. The methods typically aim to translate the particle

size distribution to the SWRC by estimating the pore size distribution. This can be

difficult because factors such as particle arrangement, packing density and stress history

can impact the SWRC but do not influence the shape of the PSD (Fredlund et al., 2002).

With a SWRC for a soil sample, the unsaturated shear strength can then be assessed.

The shear strength of a soil is critical to the stability and safety of any engineered soil

structure. It is well known that in the unsaturated zone, as the matric suction increases

the strength of the soil also increases. This can be easily observed by feeling the ground on

a warm summers day, where the ground is often dried out and hard, compared to a cold

and wet winters day when the ground is comparably soft. This is also commonly observed

on construction sites when the groundwater table is lowered. The theory behind these

observations, and how this is related to the SWRC, have been presented in this literature

review. The first equation proposed for unsaturated shear strength was by Fredlund

et al. (1978), which is an extension of the Mohr-Coulomb equation for saturated soils.

The original equation by Fredlund et al. (1978) is linear, meaning that shear strength

increases with matric suction on a linear scale. The rate of change of shear strength

with matric suction is governed by the tanφb parameter. It was later shown by Gan et al.

(1988) and Escario and Jucá (1989) that the relationship between matric suction and shear

strength is linear when the suction is less than the air-entry value of the soil, but then

becomes non-linear as suction increases beyond the air-entry value. As such Fredlund et al.

(1996) proposed a non-linear version of the equation, which requires a fitting parameter

κ. There have also been a number of unsaturated shear strength equations proposed for

more advanced soil models, such as the critical state Barcelona Basic Model proposed

by Alonso et al. (1990). The unsaturated shear strength of soils can be tested in the

laboratory using modified shear strength testing apparatus such as a direct shear box and

triaxial cell. Like SWRC determination, unsaturated shear strength testing can be very

time consuming and expensive, therefore a number of equations have been proposed to
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estimate the unsaturated shear strength of a soil. Several of these require the SWRC,

such as the models by Vanapalli et al. (1996); Fredlund et al. (1996); Oberg and Sallfors

(1997). Each of these equations take the same form, but with a unique expression for

the tanφb parameter. The fitting parameter κ in the equation by Fredlund et al. (1996)

can be estimated using the plasticity index of the soil (Garven and Vanapalli, 2006). A

number of studies have been presented which assess the performance of these equations

by comparing predictions to the results of mechanical experimental testing of unsaturated

soils. It was found that the equations by Fredlund et al. (1996) and Vanapalli et al. (1996)

both give reasonable predictions, particularly in the low to medium suction range (below

1500 kPa). The equation by Oberg and Sallfors (1997) was shown to perform less well

than the others.

With an understanding of unsaturated soil mechanics, in particular the SWRC and

the extended Mohr-Coulomb equation for shear strength, these concepts can be used in

engineering practice. Of particular importance to groundwater control operations is to

understand how the strength of soils increase as the groundwater table is lowered. This

has most significance in relatively shallow excavations when there are temporary battered

slopes. It is also of great importance to understand the stability of existing natural and

engineered slopes across the world, whether this is in urban environments or rural regions,

as slope failures can have huge human and economical costs. In this literature review two

case studies have been presented which show how unsaturated soil mechanics can be used

in practice to assess the stability of two existing engineered slopes in Hong Kong (Ching

et al., 1984). It was shown that if matric suction is ignored, i.e. applying only saturated

soil mechanics, both slopes would have a factor of safety of less than 1.0, indicating

unstable and unsafe slopes. However, we know from observations that these slopes are

stable, therefore we can conclude that matric suction must be contributing to the stability

of the slope. This demonstrates that it can be highly conservative to ignore the influence

of matric suction in slope design. When matric suctions were included, the factor of

safety of the slopes increased to between 1.0 and 1.4. The second case study simulated a

sudden rainfall event, which showed that a sudden decrease in matric suction can lead to

a lowering of the factor of safety, however the factor of safety will increase again with time

as the water front flows deeper into the soil. These two case studies have highlighted the

importance of assessing the matric suction profile when analysing the stability of slope.
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Particular consideration should be taken to the changing matric suction profile in the slope

due to changes in water content, which could due be to groundwater abstraction during a

groundwater control operation or water infiltration through the surface during rainfall.

The following Chapter will build on the knowledge of the SWRC presented in this

Literature Review and present the methodology and analysis undertaken during this MScR

project to estimate the SWRC of a soil using only standard laboratory test data. It will

document the first crucial stage of estimating the unsaturated shear strength of a soil

when extensive laboratory testing cannot be undertaken.
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Chapter 3

Estimation of the Soil Water

Retention Curve

To achieve the research objective put forward in the introduction, it is critical that the

SWRC is well understood theoretically and can be estimated using standard laboratory

test data. It is also vitally important that the confidence of any prediction is understood

and quantified, as this could lead to significant errors in estimated suction and therefore

shear strength during preliminary design calculations of construction projects.

The objective of this chapter is to present the methodology undertaken to develop a

procedure for estimating the Soil Water Retention Curve (SWRC) of a soil which can be

used by geotechnical engineers in practice. The beginning of the chapter describes the data

selection process, along with a description of how the data has been preprocessed before

analysis. Following this is the core data analysis that has been undertaken. This includes

fitting best-fit curves to both the particle size distribution data and soil water retention

data for each soil of the dataset. The SWRC is then estimated from standard index

properties such as the PSD and density using three methods presented in literature. To

assess how well each predictive method performs, statistical analysis is undertaken, where

the error between the predicted and true SWRC is calculated. Using this information,

the 5th and 95th percentiles of suction error are calculated, which are used as a metric

for understanding the spread of the suction error across the dataset. Towards the end of

the chapter, it is shown how the 5th and 95th percentiles of suction error can be used as
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confidence limits during the analysis of soils by geotechnical engineers in practice.

The end result from the analysis documented in this chapter is a set of software tools

which can be used to estimate the SWRC of a soil using standard laboratory test data.

Along with this are confidence limits to quantify the possible error in the prediction. This

provides a valuable tool for practising geotechnical engineers during the design stage of

projects where it is vital to understand the possible error in estimated soil parameters,

and the implications this may have on design of a structure and its future stability.

3.1 Data Selection

The first section of the methodology presented in this chapter documents the data selection

process undertaken and the preprocessing of this data into a suitable format for data

analysis.

3.1.1 Selection of Soil Database

The Unsaturated Soil Hydraulic Database (UNSODA) (Nemes et al., 2001) contains a

large number of unsaturated soil samples with data which is suitable for this study. The

database is freely available to download online, making it ideal for selecting a sample

dataset of soils. It includes the required particle size distribution, dry density and soil

water retention data. The Hydraulic Properties of European Soils (HYPRES) database

(Lilly et al., 1999) is not freely available to download online, and could not be sourced

elsewhere, therefore it was not included as part of this study.

3.1.2 Description of UNSODA Database

The UNSODA database consists of 790 number soil samples of global origin (Nemes et al.,

2001). The soil samples within the database have been classified using the United States

Department of Agriculture Soil Classification System (USDA-SCS) (Nemes et al., 2001).

Soils are classified into 12 textural classes based on the percentage of sand, clay and silt

within the sample. The textural classes are named: sand (S), loamy sand (lS), sandy loam
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(sL), sandy clay loam (scL), sandy clay (sC), loam (L), clay loam (cL), clay (C), silty clay

(siC), silty clay loam (sicL), silt loam (siL), silt (Si). All 790 samples are presented on the

USDA-SCS textural triangle in Figure 3.1.

Figure 3.1: Distribution of the soil datasets in UNSODA V2.0 across the USDA-SCS soil

textural triangle (reproduced from Nemes et al. (2001)).

The soil samples are reasonably spread across the textural triangle, with a bias towards

the sand corner of the triangle (Figure 3.1). The number of soils within each of the USDA

textural are presented in Table 3.1.

Texture No. Soils Texture No. Soils Texture No. Soils

Sand 185 Silt 3 Clay 39

Loamy Sand 60 Silt Loam 141 Clay Loam 36

Sandy Loam 133 Silty Clay 24 Loam 69

Sandy Clay 3 Silty Clay Loam 30 Sandy Clay Loam 30

Table 3.1: Number of soils in each textural class of the UNSODA database.

Table 3.2 shows the data fields for each soil in the UNSODA database which that are

useful during the data analysis part of this study.
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Data Unit

Texture -

Dry Density g/cm3

Particle Density g/cm3

Porosity -

Particle Size Distribution

Particle Size

Particle Fraction

µm

-

Soil Water Retention

Pressure Head

Volumetric Water Content

cm

-

Soil Water Retention Testing Method -

Table 3.2: Data types included in UNSODA database suitable for use in the development

of the SWRC estimation procedure.

The soil water retention data provided is for laboratory drying and wetting experiments

plus field drying and wetting measurements. The database also contains data for hydraulic

conductivity, water diffusivity data, sample origin, organic matter content and others.

Although the database has a large quantity of useful data, it does have some limitations.

Primarily the database has been developed by the United States Department of Agriculture,

which means that it was designed for describing and classifying agricultural soils. These

soils are typically found within the upper few metres of the ground. Therefore they may

not always represent the engineering soils encountered on construction sites within the

United Kingdom and across the globe. Secondly, there is no geotechnical soil testing data,

such as liquid limit and plastic limit from Atterberg limit tests, or shear strength data from

triaxial testing. However, despite these limitations, the database of soils is still incredibly

valuable because it contains a comprehensive dataset of soil water retention data along

with index properties.
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3.1.3 Selection of Sample Data Set

A subset of soils from within the UNSODA database have been selected for this study.

A subset was chosen to enable quicker data analysis and interpretation of results. This

subset is a total of 102 soils which have been selected based on the criteria outlined below:

• Soils commonly encountered on UK construction sites. Soil categories selected based

on experience of working with these kind of soils during groundwater control projects

Thomas et al. (2020) i.e. soils from the USDA textural classes: sand, sandy clay,

clay, clay loam and silt.

• Soils which have a particle size distribution test with a least 5 No. measured points

for granular soils (sand and silt), and 3 measured points for cohesive soils (sandy

clay, clay and clay loam). At least 3 points are required to ensure that a best-fit

curve can be fit to the raw data by undertaking a regression analysis. 5 points are

required for the granular soils because the slope of the curve tends to be steeper,

making it harder to achieve a good fit for these soils.

• Soils which contain at least 10 measured points of water content on a laboratory

drying soil water retention curve test. At least 10 points are required for the

regression analysis to ensure a good fit. The measured suction points tends to be

more closely spaced together than PSD points, therefore more points are required

to ensure a good fit over most of the suction range.

• Soils which contain a test result for dry density. This is a required property for most

SWRC predictive models.

3.1.4 Data Preprocessing

The data for each of the 102 soils has been preprocessed prior to undertaking any analysis.

This involved converting from units used in agriculture to units used within geotechnical

engineering. In addition pressure head has been converted to total soil suction, ψ. Volumetric

water content, θ remains unchanged, however it is converted to degree of saturation, S,

later in the data analysis. The converted properties and units are shown in Table 3.3.
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Data Symbol Unit Converted

Dry Density ρd Mg/m3

Particle Density Pd Mg/m3

Porosity φ -

Particle Size Distribution

Particle Size

Particle Fraction

PS

PF

mm

-

Soil Water Retention

Total Soil Suction

Volumetric Water Content

ψ

θ

kPa

-

Table 3.3: Unit conversion of soil data from database prior to data analysis

The Unified Soil Classification System (USCS) is a soil classification system used in

engineering and geology to describe the texture, grain size and plasticity of a soil (ASTM

International, 2006). This system is typically used in the United Kingdom construction

industry along with the British Soil Classification System (BSCS) (BSI, 2015). For the

purpose of this study, the soil categories of the USDA-SCS have been mapped to the most

appropriate USCS soil category, however it must be noted that the classification map is

not like for like, as the USCS system classifies soils based on plasticity information for

cohesive soils and particle grading for granular soils, whereas the USDA system is based

solely on the ratio of sand/silt/clay.

USDA SCS USCS

Name Symbol Name Symbol

Sand S Poorly Graded Sand SP

Sandy Clay sC Clayey Sand SC

Silt Si Silt ML

Clay Loam cL Clay of Low Plasticity CL

Clay C Clay of High Plasticity CH

Table 3.4: Soil Classification Map: USDA to USCS

The classification map presented is to give the reader, who is more likely to understand

the USCS system, a good understanding of the UNSODA soils analysed in this study. The
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soil classification map presented in Table 3.4 is based on the study by Garćıa-Gaines and

Frankenstein (2015).

3.2 Soil Data Analysis

With a sample dataset of soils selected and preprocessed, the core data analysis for each

soil of the sample dataset now follows. The following subsections document the method of

analysis undertaken. This includes finding a best-fit curve for both the PSD and SWRC,

and then predicting the SWRC using methods presented in literature.

3.2.1 Regression Analysis of Particle Size Distribution

To estimate the soil water retention behaviour of a soil, knowledge of the particle size

distribution is essential. This is because the soil water retention curve of a soil is directly

linked to the pore size distribution of the soil, and the pore size distribution is influenced

by the particle size distribution (Fredlund et al., 2012). Determining the relationship

between the two is the main area of uncertainty when predicting a SWRC using a PSD.

This is due to factors such as grain shape, soil density and consolidation which impact the

pore size distribution of the soil but are not reflected in the particle size distribution.

For each soil in the dataset, a particle size distribution is available. A curve is fit to

the particle size distribution data by undertaking a non-linear regression analysis of the

modified Fredlund and Xing SWRC equation for particle size distribution data (Fredlund

et al., 2012). The equation is

Pp(d) =
1{

ln
[
e+ (agr/d)ngr

]}mgr
×

{
1−

[
ln(1 + dr/d)

ln(1 + dr/dm)

]7}
(3.2.1)

where Pp(d) is the percentage by mass of particles passing a particular particle size, agr is

the parameter designating the inflection point on the grain size distribution curve, ngr is

the parameter related to the steepest slope on the grain-size distribution curve, mgr is the

parameter related to the shape of the grain-size curve as it approaches the fine-grained

region, dr is the parameter related to the particle size in the fine grained region and

is referred to as the residual particle size, d is the diameter of any particle size under
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consideration, and dm is the diameter of the minimum allowable size particle.

The non-linear regression analysis was undertaken using the ”curve-fit” algorithm from

the Python Scipy package. This package is a Python based ecosystem of open-source

software for mathematics, science, and engineering (SciPy.org, 2019). The software package

was adopted because of its ease of use when programming in Python. The ”curve-fit”

algorithm uses the Trust Region Reflective least-squares algorithm to determine the curve

fitting parameter values, agr, ngr and mgr, and dr which give the best-fit curve to the

particle size data. The value of dm is fixed at 0.00001mm as recommend by the authors

Fredlund et al. (2012).

Figure 3.2: Example of the best-fit PSD curve determined by non-linear regression using

the raw PSD data for sandy soil with code 1014.

Using the resulting curve fitting parameters values, a, n, m, and dr, the best-fit curve

is plotted along with the raw particle size distribution data for all soils in the dataset. An

example is shown in Figure 3.2 for soil code 1014, which is a soil within the sand textural

class. For the resulting curve fitting parameters for each soil in the dataset, the reader

should see Table A.1 of Appendix A and Figures C1 to C102 of Digital Appendix C.
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3.2.2 Regression Analysis of Soil Water Retention Data

A non-linear curve fit regression analysis has been undertaken on the soil water retention

data for each soil of the dataset. The Fredlund and Xing (1994) equation has been selected

as the theoretical equation to fit to the measured data. This is because the Fredlund and

Xing (1994) equation provides the greatest flexibility for the shape of the curve in the

region of the air entry value (i.e at low suction area of curve) and at the residual water

content section of the curve at high suctions. The Fredlund and Xing (1994) SWRC

equation is

θ(ψ) = C(ψ)
θs{

ln
[
e+ (ψ/af )nf

]}mf
(3.2.2)

where

C(ψ) = 1− ln(1 + ψ/ψr)

ln[1 + (106/ψr)]
(3.2.3)

where θ(ψ) is the volumetric water content to be found for a given value of total soil

suction ψ, θs is the saturated volumetric water content, af is the fitting parameter related

to the air-entry, nf is the fitting parameter related to the rate of water extraction from

the soil once the air-entry value has been exceeded, mf is the fitting parameter related to

residual water content conditions and C(ψ) is the correction factor which is a function of

suction corresponding to residual water content, where ψr is the soil suction corresponding

to the residual water content θr.

The non-linear regression analysis was undertaken using the ”curve-fit” algorithm

which is part of the Python Scipy package (SciPy.org, 2019). The curve-fit algorithm

uses the Trust Region Reflective least-squares method to determine the parameters values

which give the best-fit curve to the measured soil water retention data. This method

of analysis enable bounds to be placed on the parameters values. This ensures realistic

parameter values are found, whilst ensuring the regression algorithm does not fail. The

bounds placed on the parameters are presented in Table 3.5.

Using the resulting curve fitting parameters values, θs, af , nf , mf , and ψr, the best-fit

curve is plot along with the raw soil water retention data for all the 102 No. soils. An

example is shown in Figure 3.3 for soil code 1014, which is a soil within the sand textural

class. For the resulting curve fitting parameters for each soil in the dataset, along with the

calculated coefficient of determination, R2, the reader should see Table A.2 of Appendix A
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SWRC Parameter Lower Bound Upper Bound

θs 0.1 1.0

af 0.1 1000

nf 0.1 50

mf 0.1 50

ψr 0.1 10,000

Table 3.5: Parameter bounds during SWRC regression analysis.

and Figures C1 to C102 of Digital Appendix C.

Figure 3.3: Example of the best-fit SWRC (Fredlund and Xing, 1994) determined by

non-linear regression using the raw soil water retention data for soil code 1014 of the sand

texture class.
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3.2.3 Estimation of the SWRC using the Arya and Paris (1981) Model

Background Theory

The Arya and Paris (1981) model is a physio-empirical model for predicting soil water

retention behaviour from typical laboratory soil testing data. It is based on the assumption

that the SWRC is essentially a pore-size distribution curve, which can be derived from

the particle size distribution, dry density, and particle density of a soil sample.

The following equations outline the steps to derive the SWRC as presented by Arya

and Paris (1981). The cumulative particle size distribution curve, as shown in Figure 3.4,

is split into n number intervals. The solid mass, Wi, within each interval is computed

as the difference in cumulative percentages between the boundaries of the intervals (i.e.

particle size), divided by 100. This results in values of Wi such that the sum of all Wi is

unity
n∑
i=1

Wi = 1 (3.2.4)

The pore volume for each interval size is calculated by

Vvi =
Wie

ρp
; i = 1, 2, ..., n (3.2.5)

where Vvi is the pore volume associated with the solid mass in the ith particle-size interval,

ρp is the particle density, and e is the void ratio, which can be calculated from

e =
ρp − ρd
ρd

(3.2.6)

where ρd is the measured dry density of the soil sample, or

e =
φ

1− φ
(3.2.7)

where φ is the soil porosity.

The pore volumes, Vvi , calculated for each interval size are cumulatively summed. The

volumetric water content is calculated by

θvi =

j=i∑
j=1

Vvj
Vb

; i = 1, 2, ..., n (3.2.8)

where θvi is the volumetric water content represented by a pore volume for which the

largest size pore corresponds to the upper limit of the ith particle-size interval, and the
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sample bulk volume Vb is given by

Vb =
1

ρd
(3.2.9)

The average volumetric water content, θ∗vi for the midpoint of the particle-size interval

is calculated by

θ∗vi =
θvi + θvi−1

2
(3.2.10)

The mean particle radius, Ri, which corresponds to the midpoint of a given particle-size

interval, is given by

Ri =
di/2 + di−1/2

2
(3.2.11)

The mean pore radius ri for the assemblage formed by the particles in the ith particle-size

interval is calculated by

ri = Ri

√
4en1−αi /6 (3.2.12)

where ni is the number of spherical particles given by

ni =
3Wi

4πR3
i ρp

. (3.2.13)

The parameter α in Equation (3.2.12) is an empirical constant with a value typically

within the range 0.9 to 1.4 (Vaz et al., 2005; Fredlund et al., 2012). Table 3.6 gives some

values of α for a range of soil types as recommended by Arya and Paris (1981).

USDA Texture α

Sand 1.285

Sandy Loam 1.459

Loam 1.375

Silt Loam 1.150

Clay 1.160

Table 3.6: Values of alpha proposed by Arya and Paris (1981).

Once the pore radii have been derived using the above equations, the soil water

potential ψi can be calculated

ψi =
2σ cos(Θ)

ρwgri
(3.2.14)

where σ is the surface tension of water, Θ is the contact angle (assumed as Θ = 0), ρw is

the density of water, g is acceleration due to gravity, and ri is the mean pore radius.
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Verification

Programming of the Arya and Paris (1981) model has been undertaken in order to estimate

the SWRC for each soil within the dataset. The model has been programmed using the

Python programming language. This subsection documents the verification of the Arya

and Paris (1981) model by comparing results with data published in literature.

The data used for this verification is derived from a scientific report by Arya, Richter,

and Davidson (1982). The soil is from a dataset of American soils and the soil sample

presented in the report is a sandy loam soil from New Jersey. For this soil, the particle size

distribution, dry density and particle density are provided as shown in Table 3 of Arya

et al. (1982). In addition, values calculated during each calculation step are presented,

along with the final value of suction head ψi for each value of volumetric water content,

θvi . The particle size distribution for this soil is depicted in Figure 3.4. Particle size has

been converted to units of mm from µm, and a best-fit curve has been found using the

method documented in Section 3.2.1.

Figure 3.4: Particle size distribution for soil B23t from Arya et al. (1982).

The particle size distribution, dry density, and particle density are then input to the

model and the SWRC is estimated. The results from the model verification for each
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Figure 3.5: Measured and Estimated SWRC for soil B23t from Arya et al. (1982).

calculation stage are presented in Table 3.7. Suction, ψ is presented in units of kPa but

also presented as suction head in units of cm, for direct comparison to the original results

in Arya et al. (1982).

The results are presented in graphical form as a plot of suction, ψ (kN/m2) vs volumetric

water content, θvi in Figure 3.5. The blue dashed line represents the estimated SWRC

using the raw PSD data, whilst the white circles depict the estimated SWRC as presented

in Arya et al. (1982). The black circles represent the measured SWRC, which were collected

using a tension table over the low suction range and a pressure plate apparatus for the

high suction range. It can be seen in Figure 3.5 that the blue line is a near perfect fit

for the white points. This verifies the programming of the Arya and Paris (1981) model

using the Python script, which means the script can be used for the analysis of the 102

No. selected soils in the dataset.

In addition to using the raw PSD data for the calculation of the SWRC using the Arya

and Paris (1981) model, the PSD best-fit curve is used (solid blue line in Figure 3.5). This

enables the estimation of the SWRC over the full range of suction and can give a smoother
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PS(mm) ΣWi(−) Wi(−) θvi(m
3/m3) θ∗vi(m

3/m3) Ri(m) R3
i (m

3) ni(1/g) n1−αi (−) ri(m) ψ(kN/m2) ψi(cm)

0.002 0.170 0.030 0.062 0.056 7.50E-07 4.22E-19 6.41E+09 1.88E-04 6.32E-09 2.28E+04 2.32E+05

0.005 0.244 0.074 0.088 0.075 1.75E-06 5.36E-18 1.24E+09 3.50E-04 2.02E-08 7.16E+03 7.29E+04

0.01 0.320 0.076 0.116 0.102 3.75E-06 5.27E-17 1.30E+08 8.26E-04 6.63E-08 2.17E+03 2.22E+04

0.02 0.435 0.115 0.158 0.137 7.50E-06 4.22E-16 2.46E+07 1.56E-03 1.82E-07 7.92E+02 8.07E+03

0.03 0.555 0.120 0.201 0.179 1.25E-05 1.95E-15 5.54E+06 2.74E-03 4.03E-07 3.58E+02 3.65E+03

0.05 0.715 0.160 0.259 0.230 2.00E-05 8.00E-15 1.80E+06 4.20E-03 7.97E-07 1.81E+02 1.84E+03

0.1 0.815 0.100 0.295 0.277 3.75E-05 5.27E-14 1.71E+05 1.03E-02 2.34E-06 6.16E+01 6.28E+02

0.2 0.880 0.065 0.319 0.307 7.50E-05 4.22E-13 1.39E+04 2.67E-02 7.54E-06 1.91E+01 1.95E+02

0.5 0.950 0.070 0.344 0.332 1.75E-04 5.36E-12 1.18E+03 6.81E-02 2.81E-05 5.13E+00 5.23E+01

0.7 0.970 0.020 0.351 0.348 3.00E-04 2.70E-11 6.67E+01 2.03E-01 8.31E-05 1.73E+00 1.77E+01

1 0.985 0.015 0.357 0.354 4.25E-04 7.68E-11 1.76E+01 3.36E-01 1.52E-04 9.51E-01 9.69E+00

2 1.000 0.015 0.362 0.360 7.50E-04 4.22E-10 3.20E+00 6.43E-01 3.70E-04 3.90E-01 3.97E+00

Table 3.7: Calculation of SWRC using the Arya and Paris (1981) model. Results from

Python programming script.

curve, particularly where there are few PSD data points. The closeness between the two

estimated SWRCs demonstrates the suitability of using the curve-fit PSD curve in the

estimation of the SWRC. With the Arya and Paris (1981) model verified as shown in this

section, analysis of the selected 102 No. soils in the dataset can be undertaken using the

same procedure, as shown in the following section.

Estimation of SWRC for Dataset

The SWRC estimation procedure using the Arya and Paris (1981) model, as verified in

the subsection above, is applied to each soil of the dataset. Instead of using the raw

particle size distribution data, the best-fit curve for the PSD is used. The PSD curve

has been generated using 50 calculation points. If the number of calculation points is

greater than 50, then the Arya and Paris (1981) model does not function correctly and

the SWRC curve becomes offset on the suction axis. This was observed when verifying

the model using the PSD best-fit curve. This issue arises when calculating the average

volumetric water content (Equation 3.2.10) when using small particle size intervals. As

a result of using 50 calculation points, the calculated SWRC can at times be angular in

places, particularly where the change in the gradient of the curve is sharp.

The estimated soil water retention curve is calculated using the dry density and the

particle density. Where the particle density is omitted from the database, an average value
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of 2.65 Mg/m3 is used. The estimated SWRC for a soil from each of the five textural classes

analysed (sand, clay, silt, sandy clay and clay loam) are presented in Figures 3.6 and 3.7.

The corresponding PSD for these soils are presented in Figures C1, C23, C46, C81 and

C54 of Digital Appendix C. The predicted SWRC for every soil in the dataset is presented

in Figures C1 to C102 of Appendix C.

The Root Mean Squared Logarithmic Error (RMSLE) is calculated to assess the

relative difference between the predicted SWRC and the measured SWRC across the

soils in the dataset. RMSLE is utilised as the error metric over Root Mean Square Error

(RMSE) because RMSLE does not penalise big differences in suction as the curve tends

towards the high suction range of the SWRC. The RMSLE is calculated as

RMSLE =

√√√√ 1

n

n∑
i=1

(log(ψ̂ + 1)− log(ψ + 1))2 (3.2.15)

where n is the number of sample points, ψ̂ is the predicted suction using the Arya and

Paris (1981) model and ψ is the suction derived from the best-fit curve regression analysis.

The number of sample points, n is 19, which is based on the suction difference calculated

at saturations from 0.05 to 0.95 at intervals of 0.05. A low value of RMSLE indicates

a small difference between the predicted and measured SWRC, and a high value a large

difference.

Soil 1014 Soil 1134 Soil 2361 Soil 3214 Soil 2433

RMSLE 0.256 1.689 0.328 1.179 0.575

Table 3.8: Calculated RMSLE for each soil presented in Figure 3.6.

For the soils presented in Figure 3.6, the RMSLE calculated is presented in Table 3.8.

For the sand and clay soils, the SWRC prediction performed wells with a RMSLE value

below 0.35. For the clay loam soil, the performance of the SWRC prediction was average,

with a RMSLE value above 0.5. However, for the silt and sandy clay soils, the predicted

SWRC was poor, with an RMSLE greater than 1.0, and a significant difference between

the predicted and measured suction. This is most noticeable in the offset of the predicted

curve for the sandy soil, and the gradient of the curve for the silty soil. This highlights the

difficulty in estimating the SWRC from the particle size distribution and dry density. The

shape of the SWRC estimated using the Arya and Paris (1981) model closely resembles the

shape of the PSD curve. However, in the cases where the measured SWRC has a notably
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Figure 3.6: Estimated SWRC using the Arya and Paris (1981) model (blue) vs Measured

SWRC (black) for (a) Soil 1014 Sand (b) Soil 1134 Sandy Clay (c) Soil 2361 Clay.
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Figure 3.7: Estimated SWRC using the Arya and Paris (1981) model (blue) vs Measured

SWRC (black) for (a) Soil 3214 Silt (b) Soil 2433 Clay Loam.

different shape to PSD curve, the estimation procedure performs poorly. This is maybe

due to factors influencing the SWRC which are not reflected in the shape of the PSD

curve, such as grain shape and roughness, particle arrangement and pore distribution, and

the SWRC testing methodology.

The minimum, mean, maximum, and standard deviation of the calculated RMSLE for

all analysed soils within the four textural classes are presented in Table 3.9. The mean
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Textural Class No. Soils Min RMSLE Mean RMSLE Max RMSLE Standard Deviation, σ

Sand 73 0.078 0.608 1.801 0.306

Sandy Clay 2 1.494 1.592 1.689 0.138

Silt 2 0.662 0.921 1.179 0.325

Clay 8 0.125 0.650 1.318 0.465

Clay Loam 17 0.440 0.932 1.677 0.329

Table 3.9: Calculated variability in RMSLE across each textural class when predicting the

SWRC using the Arya and Paris (1981) Model.

RMSLE for the sand, silt and clay textural classes is within the range of 0.6 to 0.7, which

suggests that the Arya and Paris (1981) model performs reasonably wells at estimating

the SWRC for these soils. For the sandy clay, silt and clay loam soils, the mean RMSLE is

above 0.8, which suggests that this method performs on average poorly. However it must

be noted that there are only two soil samples within the sandy clay and silt categories,

therefore strong conclusions about the suitability of the Arya and Paris (1981) model for

estimating the SWRC cannot be derived for these two categories.

The section has presented the analysis undertaken on the 102 number soil dataset to

predicted the SWRC using the Arya and Paris (1981) model. The next section presents a

similar analysis using the Modified Kovacs model (Aubertin et al., 2003), which is a model

for estimating the SWRC using solely particle size distribution data.

3.2.4 Estimation of the SWRC using the Modified Kovács Model

Background Theory

The Modified Kovács Model (MK) (Aubertin et al., 2003) is a predictive model based

on the physical properties of a soil. It is a modification of the original model proposed

by Kovacs (1981) and makes the distinction between capillary and adhesive forces, which

both act together to generate suction within the pore matrix of a soil. However, in the

original Kovacs (1981) model, a number of key parameters were not well defined making

it difficult to apply the model in practice. Aubertin et al. (1998) made some modifications

to this model, and applied it to a dataset of soils including tailings and silts. The model

was then later extended to include a range of soil materials, from coarse sands to clayey
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soils (Aubertin et al., 2003).

The equations for the Modified Kovács Model are briefly described below, as given in

Aubertin et al. (2003). The degree of saturation is divided into two components, adhesive

and capillary, and is described by the equation

S =
θ

φ
= 1− 〈1− Sa〉(1− Sc) (3.2.16)

where S is any degree of saturation, θ is any volumetric water content, φ is the initial

porosity of the soil, Sc is the degree of saturation associated with the capillary component,

and Sa is the degree of saturation associated with the adhesive component. The Macaulay

brackets 〈.〉 are used to define a ramp function, which is defined as

〈x〉 = 0.5(x+ |x|) (3.2.17)

which sets x i.e. 1 − Sa to zero if it is calculated to be negative. Equation (3.2.16)

defines the degree of saturation in two parts, the capillary saturation, Sc and the adhesive

saturation, Sa. Capillary saturation is thought to dominate the water absorption in the low

suction range, whilst adhesive saturation dominates in the high suction range (Fredlund

et al., 2012). The capillary saturation, Sc is defined as

Sc = 1−

[(
hc0
ψ

)2

+ 1

]m
exp

[
−m(hc0ψ)2

]
(3.2.18)

where hc0 is the equivalent capillary height which is related to an equivalent pore diameter

and the solid surface area, ψ is the soil suction represented as a head or length, and m is

the pore-size coefficient, which is unitless.

The adhesive component of saturation, Sa is empirically related to soil suction through

the following equation

Sa = ac

(
1− ln(1 + ψ/ψr)

ln(1 + ψ0/ψr)

)
(hc0/ψn)2/3

e1/3(ψ/ψn)1/6
(3.2.19)

where ac is the adhesion coefficient, e is the voids ratio, ψn is the normalisation parameter

introduced to maintain consistency in the units (ψn = 1cm when ψ is in units of cm) and

ψ0 is the suction head equal to 107cm of water corresponding to a dry soil condition.

The four parameters, hc0 (cm), ψr (cm), m and ac are required when solving the MK

model. These parameters are defined in Table 3.10 for both granular and cohesive soils.
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Parameter
Granular Soils

(Sand, Silt)

Cohesive Soils

(Clay, Clay Loam, Sandy Clay)

hc0
0.75

[1.17 log(Cu) + 1]eD10

0.15ρs
e

wL1.45

ψr 0.86h1.2c0 0.86h1.2c0

m
1

Cu
0.00003

ac 0.01 0.0007

Table 3.10: Equations for Modified Kovacs Model (Aubertin et al., 2003). D10 is the

diameter corresponding to 10% passing on the particle size distribution curve, Cu is the

coefficient of uniformity equal to D60/D10, ρs is the density of the soil particles (kg/m3),

and wL is the liquid limit (%).

Verification of Model

Programming of the MK model (Aubertin et al., 2003) has been undertaken in order to

estimate the SWRC for each soil within the dataset. The model has been programmed

using the Python programming language. This subsection documents the verification of

the programming of the MK model by comparing results with data published in literature.

The data used for this verification is from the scientific paper by Aubertin et al. (2003)

and is shown in Figure 3.8. The soil is a fine, uniform and dense sand and the data for

this soil is from Bruch (1993).

For this soil the particle size distribution has not been provided, however parameters

derived from the PSD have been, such as D10 and Cu. In addition, the void ratio, e has

been provided. The SWRC as presented in Aubertin et al. (2003) is plotted as suction, ψ

(cm) vs volumetric water content, θ (-) (Figure 3.8). The white diamonds represent the

measured SWRC from a laboratory experiment (no method of testing was given by the

authors), the black dashed line through these points is the best-fit curve, and the black

solid line is the predicted SWRC using the MK model.

To verify the model programming undertaken, the predicted SWRC has been extracted

from Figure 3.8 as a series of points using a web-based image plot digitiser. The soil suction

is converted from units of cm to units of kPa, to align with the units used by the Python
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Figure 3.8: Soil parameters and the SWRC measured and predicted as presented by

Aubertin et al. (2003).

script.

The void ratio, e, D10 and Cu are input to the model and the SWRC is estimated.

The results from the model verification are shown in Figure 3.9. The predicted SWRC

using the Python program is plotted in Figure 3.9 as a green line. The predicted SWRC

as presented by Aubertin et al. (2003) is plotted as white circles, whilst the measured

suction is plotted as black circles. It can be seen from Figure 3.5 that the green line is

a near perfect fit for the white points, which verifies the programming of the MK model

using the Python script. The following section presents the analysis of all dataset soils

using this method.

Estimation of SWRC for Selected Soils

The SWRC estimation procedure using the MK model (Aubertin et al., 2003), as verified

in the subsection above, is applied to all the granular soils within the selected dataset.
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Figure 3.9: Predicted SWRC using Python script (green line) vs predicted SWRC as

presented by Aubertin et al. (2003) (white circles). Measured SWRC shown by black

circles, with the best-fit SWRC shown by the black line.

Unfortunately, because the UNSODA database was developed for agricultural purposes,

there are no Atterberg Limit test data, specifically liquid limit, wL for cohesive soils. This

means that the MK mode cannot be used to estimate the SWRC for the cohesive soil

samples within the dataset. Therefore, the MK model has been used for any soil sample

within the sand and silt textural classes. This come to a total of 75 No. soils.

To determine the input parameters for the MK model, the best-fit PSD curve is used.

The D10 and Cu values are calculated algorithmically from the best-fit PSD curve using

linear interpolation. In addition, the void ratio is calculated from the porosity, which in

turn is calculated from the dry density and particle density of the soil. Where the particle

density is omitted from the database, an average value of 2.65 Mg/m3 is used.

The estimated SWRC for a soil from each of the two granular textural classes analysed

(sand, silt) are presented in Figure 3.10. The estimated SWRC for each soil in the dataset

is presented in Figures C1 to C102 of Digital Appendix C.
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Figure 3.10: Estimated SWRC using the MK model (Aubertin et al., 2003) (green) vs

Measured SWRC (black) for (a) Soil 1014 Sand (b) Soil 3214 Silt.
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The Root Mean Squared Logarithmic Error (RMSLE) (Equation (3.2.15) of Section

3.2.3) is calculated to assess the relative difference between the predicted SWRC and the

measured SWRC across the soils in the dataset. A low value of RMSLE indicates a small

difference between the predicted and measured SWRC, whereas a high value indicates a

large difference.

For the soils presented in Figure 3.10, the RMSLE calculated is 0.141 for Soil 1014

(sand), and 1.455 for Soil 3214 (silt). For the sand soil, the SWRC prediction performs

well with a RMSLE value below 0.23. Overall the predicted curve was a good fit for the

observed data, however the gradient is slightly steeper than the observed curve, and the

air-entry value is offset by approximately 1-2kPa from the measured suction. For the silt

soil, the SWRC prediction was poor, which resulted in a RMSLE value greater than 1.0.

The estimated air entry value was significantly offset by approximately 30kPa, and the

gradient was steeper than the measured SWRC. The corresponding PSD for these soils

are presented in Figures C1 and C81 of Digital Appendix C.

The minimum, mean and maximum calculated RMSLE for the analysed soils within

each of the two granular textural classes are presented in Table 3.11. The mean RMSLE

for the sand textural class is 0.548, which suggests that the MK model (Aubertin et al.,

2003) performs reasonably well at estimating the SWRC for these soils. The mean RMSLE

for the silt textural class is 0.936, which suggests that the MK model performs less well for

silts than sands. However there are only two soil samples within the silt category, meaning

there is not sufficient data from the silt category to derive strong conclusions about the

suitability of the MK model for estimating the SWRC for these soils.

Textural Class No. Soils Min RMSLE Mean RMSLE Max RMSLE Standard Deviation, σ

Sand 73 0.081 0.548 2.567 0.408

Silt 2 0.417 0.936 1.455 0.734

Table 3.11: Calculated variability in RMSLE across each textural class when predicting

the SWRC using the Modified Kovács Model Aubertin et al. (2003).

This section has presented the SWRC prediction analysis using the Modified Kovács

Model (Aubertin et al., 1998). The following section presents a similar analysis using the

Perera et al. (2005) model, which is a functional regression type model which estimates

parameters for the Fredlund and Xing (1994) SWRC equation using the PSD.
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3.2.5 Estimation of the SWRC using the Perera et al. (2005) Model

Background Theory

The Perera model (PM) (Perera et al., 2005) is a SWRC predictive model which correlates

soil index properties to parameters of the Fredlund and Xing (1994) equation. The model

is a development of the Zapata et al. (2000) model developed at Arizona State University.

It was developed as part of a project entitled ”Environmental Effects in Pavement Mix

and Structural Design Systems (NCHRP 9-23)”.

As part of the project a database of plastic and non-plastic soils were collected from

beneath highway pavements in 30 locations in the United States. The soils with a weighted

PI of less than 1.0 were categorised as non-plastic soils. The Weighted PI (wPI), is referred

to as the product of P200 (percentage passing the Number 200 (0.074mm) sieve) and the

PI of the soil. The soils that exhibited wPI greater than or equal to 1.0 were categorized

as plastic (PI) soils. The samples were then subject to extensive laboratory testing, and

compiled with another database collected earlier by Zapata et al. (2000).

By means of a statistical multiple regression program, the best correlations between

the Fredlund and Xing (1994) parameters a, n, m and ψr, and the PSD and index

parameters were determined and expressed as equations. These equations are defined

below for non-plastic soils (Perera et al., 2005).

a = 1.14α− 0.5 (3.2.20)

where

α = −2.79− 14.1 log(D20)− 1.9× 10−6P 4.34
200 + 7 log(D30) + 0.055D100 (3.2.21)

D20 is the particle diameter corresponding to 20% passing on the PSD curve, D30 is the

particle diameter corresponding to 30% passing on the PSD curve, P200 is the percentage

passing the No. 200 sieve (opening 0.074mm), and

D100 = 10

[
40
s1

+log(D60)

]
(3.2.22)
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where D60 is the particle diameter corresponding to 60% passing on the PSD curve and

s1 =
30

[log(D90)− log(D60)]
(3.2.23)

where D90 is the particle diameter corresponding to 90% passing on the PSD curve. Perera

et al. (2005) suggest that a is limited to a minimum 1.0 because in some extreme cases

computed values of a can be negative, which would lead to erroneous results.

The n parameter is calculated by

n = 0.936β − 3.8 (3.2.24)

where

β =

{
5.39− 0.29 ln

[
P200

(
D90

D10

)]
+ 3D0.57

0 + 0.021P 1.19
200

}
s0.11 (3.2.25)

where

D0 = 10

[
−30
s2

+log(D30)

]
(3.2.26)

where

s2 =
20

[log(D30)− log(D10)]
(3.2.27)

where D10 is the particle diameter corresponding to 10% passing on the PSD curve.

The m parameter is calculated by

m = 0.26e0.758χ + 1.4D10 (3.2.28)

where

χ = log s1.152 −
(

1− 1

n

)
(3.2.29)

and ψr = 100 (kPa)

For plastic soils, the equations are as follows

a = 32.835× ln(P200PI) + 32.438 (3.2.30)

n = 1.421× (P200PI)−0.3185 (3.2.31)

m = −0.2154× ln(P200PI) + 0.7145 (3.2.32)

where P200 is in decimal form, PI is the plasticity index and ψr = 500 kPa.
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Verification of Model

Programming of the Perera et al. (2005) (PM) model has been undertaken in order to

estimate the SWRC for each soil within the dataset. The model has been programmed

using the Python programming language. This subsection documents the verification of

the programming of the PM model by comparing results with data published in literature.

The data used for this model verification is from a scientific paper by Chai and

Khaimook (2020). The soil analysed by Chai and Khaimook (2020) was sand soil 1467

from the UNSODA database, which is part of the dataset analysed in this study. Chai and

Khaimook (2020) proposed a new equation for predicting the SWRC, whilst comparing

their results to the PM model.

For this soil the, particle size distribution and porosity of the soil sample are provided

as part of the UNSODA database. The PSD for this soil is depicted in Figure 3.11. The

PSD best-fit curve, along with the straight line fit connecting the measured points, are

presented together on this figure.

Figure 3.11: Particle Size Distribution for sand Soil 1467.

To verify the model programming undertaken, the predicted SWRC has been extracted

from Figure 12 (d) of Chai and Khaimook (2020) as a series of points using a web-based
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image plot digitiser. The measured SWRC points have been converted from volumetric

water content to degree of saturation using a porosity of 0.312 taken from the database.

The PSD and porosity are input to the Python script and the SWRC is estimated using

the PM method. For the purpose of the model verification, the D values are calculated

using linear interpolation between the measured PSD points, rather than using the best-fit

curve, as this was the approach used by Chai and Khaimook (2020). Table 3.12 presents

the calculated input parameters derived from the PSD.

D10 (mm) D20 (mm) D30 (mm) D60 (mm) D90 (mm) P200 (%)

0.029 0.139 0.209 0.390 1.014 12.36

Table 3.12: Input Parameters derived from PSD for Soil 1467.

The results from the model verification for each calculation stage are presented in

Table 3.13, and the predicted SWRC using the Python program is plotted in Figure 3.12

as a red line. The predicted SWRC as presented in Chai and Khaimook (2020) is plotted

as white circles, the measured suction is plotted as black circles, and the best-fit curve to

the measured data is plotted as the black line.

s1 D100 (mm) α a s2 D0 (mm) β n χ m ψr (kPa)

72.30 1.394 4.49 4.62 23.47 0.011 6.57 2.35 1.00 0.60 100.0

Table 3.13: Calculated parameter values for the Perera et al. (2005) model for Soil 1467.

It can be seen from Figure 3.12 that the red line is a near perfect fit for the white

points, which verifies the programming of the PM model using the Python script. The

following section presents the analysis which can now be used in the analysis of dataset of

soils using this method.

Estimation of SWRC for Selected Soils

The SWRC estimation procedure using the PM model (Perera et al., 2005), as verified in

the subsection above, is applied to all the granular soils within the selected dataset. There

is no plasticity index, PI, data for the cohesive soils (Clay, Clay Loam and Sandy Clay)

in the dataset, which means that the PM model cannot be used to estimate the SWRC
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Figure 3.12: Predicted SWRC using Python script (red line) vs predicted SWRC as

presented by Chai and Khaimook (2020) (white circles). The measured SWRC is plotted

as black circles along with the best-fit curve which is plotted as the back line.

for these soil samples. Therefore, the PM model has been used for each soil sample within

the sand and silt textural classes. This comes to a total of 75 No. soils.

To determine the input parameters for the PM model, the best-fit PSD curve is used.

The D values (D10, D20, D30, D60, D90) and P200 are calculated from the best-fit curve.

In addition, the porosity has been used to calculate the saturated water content. The

estimated SWRC for a soil from each of the two granular textural classes analysed (sand

soil 1014, silt soil 3214) are presented in Figure 3.13.

The Root Mean Squared Logarithmic Error (RMSLE) (Equation 3.2.15 of Section

3.2.3) is calculated to assess the relative difference between the predicted SWRC and the

measured SWRC across the soils in the dataset. For the soils presented in Figure 3.13,

the RMSLE calculated is 0.565 for Soil 1014 (sand), and 1.057 for Soil 3214 (silt). For

the sand soil, the SWRC prediction is average with a RMSLE greater than 0.5. Overall

the shape of the predicted curve is a close fit to the observed data, however the predicted
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Figure 3.13: Estimated SWRC using the PM model (Perera et al., 2005)(red) vs Measured

SWRC (black) for (a) Soil 1014 Sand (b) Soil 3214 Silt.
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Textural Class No. Soils Min RMSLE Mean RMSLE Max RMSLE Standard Deviation, σ

Sand 73 0.066 0.433 1.785 0.316

Silt 2 0.397 0.727 1.057 0.467

Table 3.14: Calculated variability in RMSLE across each textural class when predicting

the SWRC using the Perera Model.

curve has a significant offset from the measured curve, with the air-entry value being offset

by approximately 2kPa. For the silt soil, the predicted SWRC resulted in a RMSLE value

greater than 1.0, suggesting a poor prediction overall. The estimation was reasonable in

the high degree of saturation region near the air-entry value, however the curve becomes

largely offset between a saturation of 0.6 and 0.2. The corresponding PSD for these soils

are presented in Figures C1 and C81 of Digital Appendix C.

The minimum, mean and maximum calculated RMSLE for the analysed soils within

each of the two granular textural classes are presented if Table 3.14. The mean RMSLE

for the sand textural classes is 0.433, which suggests that the PM model (Perera et al.,

2005) performs reasonably wells at estimating the SWRC for these soils. The RMSLE for

silts is higher at 0.727. However, it must be noted that there are only two soil samples

within the silt category, which is not sufficient data to derive strong conclusions about the

suitability of the PM model for estimating the SWRC.

3.2.6 Summary of Soil Data Analysis

This section presented the analysis undertaken on a dataset of soils including sands, silts,

sandy clays, clay loams and clays. The objective of this analysis was to predict the SWRC

of a soil using several methods presented in the literature (Arya and Paris, 1981; Aubertin

et al., 2003; Perera et al., 2005), and compare the result to the measured laboratory

SWRC data. It was shown that by calculating the RMSLE, all three methods performed

reasonably well at predicting the SWRC of sands. There were insufficient datasets to draw

conclusions on the performance of each method for silt soils. For cohesive soils (clay, clay

loam and sandy clay), only the Arya and Paris (1981) model could be used because plastic

limit and liquid limit are not included in the UNSODA database.

The following section of this Chapter presents some statistical analysis undertaken to
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gain further insight to the error of the SWRC predictive methods. In particular how each

method performs over the full range of degree of saturation. In addition, it is shown how

confidence limits have been developed from this analysis. The aim of this is to develop

a tool which can be used in practice by geotechnical engineers where it is necessary to

estimate the SWRC of a soil and have an understanding of the possible error in the

prediction.

3.3 Statistical Analysis

To assess how well each SWRC predictive method performs, analysis has been undertaken

on the error between the predicted SWRC and the measured SWRC. This error is named

herein as the suction error, ψe, and is the difference between the logarithmic of the

predicted suction and the logarithmic of the measured suction at a given degree of saturation

value. It is calculated as follows:

ψe = log(ψ̂)− log(ψ) (3.3.33)

where ψ̂ is the predicted suction (using one of the predictive methods documented above)

and ψ is the measured suction (best-fit Fredlund and Xing (1994) curve). It is important

to measure the suction error in logarithmic terms because suction increase on a logarithmic

scale. If suction error was measured on a liner scale, then large errors in suction towards

residual conditions would dwarf the errors towards the air-entry value. This would make

it impossible to study the error between the predicted and measured suction over the full

degree of saturation range.

For each soil within the dataset, the predicted and measured SWRC is split into 19

intervals on the degree of saturation axis (i.e. from 0.05 to 0.95). Intervals of saturation

were chosen at 0.05 as this gave the clearest visualisation of error when plotted in graphical

form. At each of these saturation values, the suction error is calculated. To understand

the performance of a SWRC predictive method, the calculated suction error for all soils

within the dataset is plotted on a graph of suction error, ψe vs degree of saturation, S.

An example of this type of plot is shown in Figure 3.14 for the Arya and Paris (1981)

model for all 102 soils. The markers indicate the textural class of the soil. Sand soils are

plotted using yellow circles, clay loams are plotted using magenta diamonds, sandy clays
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are plotted using orange triangles, clay soils are plotted with red squares and silts are

plotted with blue hexagons.

Figure 3.14: Distribution of suction error between the predicted SWRC using the Arya

and Paris (1981) model and the best-fit curve for the measured SWRC. Based on all 102

No. analysed soils from the dataset.

For a point on the graph in Figure 3.14, if the suction error is positive, the predicted

suction was calculated to be greater than the measured suction best-fit curve at that

degree of saturation value. Likewise, where the suction error is negative, the predicted

suction was calculated to be less than the measured suction best-fit curve.

The solid black line on Figure 3.14 is the calculated mean suction error. This is

calculated by summing the suction error for all 102 No. soils at a given degree of saturation

value, then dividing by the total number of soils. This is then repeated at all saturation

values. The mean suction error is the centre of the distribution of suction error at a given

saturation value. It therefore highlights if the predictive method on average overestimates

or underestimates the suction at that saturation value. For example, in Figure 3.14, we
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can see that between saturation values of 0.40 and 0.80, the mean suction error for the

Arya and Paris (1981) is close to zero, suggesting that the model neither over predicts

or under predicts the SWRC on average. Below a saturation of 0.2 however, the mean

suction error becomes negative, suggesting on average the Arya and Paris (1981) model

under predicts suction at low saturation values.

In addition to the mean suction error, the 5th and 95th percentiles of the suction error

have been calculated at each degree of saturation value. The percentiles were calculated

using the Numpy percentile algorithm from the Scipy python package (SciPy.org, 2019).

The percentiles have been plotted as dashed lines in Figure 3.14. Between these two

percentile lines lie 90% of the calculated soil suction errors. This gives an indication of the

spread of the suction error within the dataset. For example, if the lines are close together,

the spread of the suction error is low, meaning the predicted suction is typically close to

the measured suction. This give confidence that the predictive model is a reliable method

for predicting the SWRC. If however the percentile lines are far apart, this indicates a

large spread in suction error within the dataset, meaning the predicted suction is often

far from the measured suction. This gives less confidence that the predictive method is

reliable at estimating the SWRC. Therefore the calculated percentile lines can be used as

a guide to the confidence in the predicted suction at a given degree of saturation value.

In Figure 3.14 we can see that the percentile lines are influenced by the cohesive soils

within the dataset, notably the clay loams. For example, it is clear that the Arya and Paris

(1981) model often under predicts the suction between saturations of 0.40 and 0.95 for

the cohesive soils. The shape of the 5th percentile curve reflects this by being further from

the mean in this range. A similar effect is also observed in the low saturation range below

0.40, where the Arya and Paris (1981) model often over predicts the suction of cohesive

soils. It is clear for the data in Figure 3.14 that the predictive model performs differently

for granular and cohesive soils. For a practising geotechnical engineer who knows the type

of soil they are working with, it is more appropriate to calculate the percentile lines for

granular and cohesive soils separately. The following subsections present the calculated

suction error and percentile lines for each of the SWRC predictive models, with the soils

grouped into cohesive and granular soils.
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3.3.1 Analysis of Suction Error for Granular Soils using the Arya and

Paris (1981) Model

A graph of suction error, ψe vs degree of saturation, S for the 75 No. granular soils that

have been analysed using the Arya and Paris (1981) model. This plot is presented in

Figure 3.15.

Figure 3.15: Distribution of suction error between the predicted SWRC using the Arya

and Paris (1981) model and the best-fit curve for the measured SWRC. Based on all 75

No. analysed granular soils from the dataset.

Firstly, the most noticeable difference to Figure 3.14 is that the percentile lines are

much closer together, particularly in the degree of saturation range between 0.35 to 0.95.

This indicates that the Arya and Paris (1981) model is generally good at estimating the

SWRC for granular soils in this degree of saturation range. The mean suction error is

above 0 by about 0.1, suggesting that the model on average over predicts the suction in

this range by a small amount. This generally results in the predicted SWRC being offset

to the right of the measured SWRC by approximately 1-10 kPa. Below a saturation of
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0.35, the percentile lines spread further apart and tend towards a negative suction error.

This means that the Arya and Paris (1981) model typically underestimates the suction

for granular soils in this range. Some possible explanations for this error include:

• There is a lack of measured SWRC points in the high suction, low saturation range

i.e. the best-fit SWRC curve may not accurately represent the real SWRC in this

region. Small differences in the residual degree of saturation can lead to large suction

errors.

• The dry density and PSD alone may not be sufficient to calculate the pore size

distribution, and therefore predict the SWRC accurately in this range i.e. other

factors may be influencing the SWRC in this region, such as grain shape, grain

packing and volume change as suction increases.

The calculated mean suction error and the 5th and 95th percentiles are given in

Table B.1 of Appendix A for the analysis of the 75 No. granular soils using the Arya

and Paris (1981) model.

3.3.2 Analysis of Suction Error for Cohesive Soils using the Arya and

Paris (1981) Model

A graph of suction error, ψe vs degree of saturation, S has been plotted for the 27 No.

cohesive soils that have been analysed using the Arya and Paris (1981) model. This plot

is presented in Figure 3.16.

It clear from looking at Figure 3.16 that the Arya and Paris (1981) model performs

worse for cohesive soils than granular soils. This is most noticeable in the spread of the

suction error, where the 5th and 95th percentiles are located further from the mean than

for granular soils. For example, at a saturation value of 0.6, the 5th percentile of suction

error for the cohesive soil group is -2.38. For the granular soil group it is -0.15. We can

see from Figure 3.16 than on average, the Arya and Paris (1981) model under predicts

the suction between saturations of 0.37 and 0.95. This is because for a number of soils,

the predicted SWRC is offset by a large amount to the left of the measured SWRC. The

predicted SWRC in Figure 3.6 (b) is an example of this for a sandy clay. The likely
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Figure 3.16: Distribution of suction error between the predicted SWRC using the Arya

and Paris (1981) model and the best-fit curve for the measured SWRC. Based on all 27

No. analysed cohesive soils from the dataset.

explanation for this offset is the shape of the particle size distribution curve. For clay soils

with a high content of granular material, such as sand and silt, the area of the PSD curve

where the gradient increases (equivalent to the air-entry value of the SWRC) may be in

the region of particle sizes between 0.1 to 1.0mm. If this is the case, the air-entry value

calculated using the Arya and Paris (1981) model may be in the region of 1 to 10kPa,

which is typical of sand soils. However, the measured air-entry value is typically in the

region of 10-100kPa for these types of soils. The air-entry value is typically related to

the largest pore size in the soils. For these cohesive soils with granular content, the gaps

between the largest particles are likely filled with fine clay particles, which will reduce the

size of the largest pores, effectively shifting the air-entry value of the SWRC to the right

towards higher suctions. This analysis demonstrates that the approach used by Arya and

Paris (1981) to convert the PSD to pore size distribution is less effective for cohesive soils,

particularly if there is a considerable proportion of larger diameter particles such as in the
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case of the sandy clays samples.

Below a saturation of 0.37, the mean suction error becomes positive, meaning the

Arya and Paris (1981) method tends to over predict the suction at low saturation values.

However, for most cohesive soils analysed in the dataset, there are few recorded suction

measurements at saturations below 0.5. This is probably in part due to the nature

of cohesive soils, which often have high residual saturations, and the SWRC testing

procedure, as the time it takes to reach low saturations increase the more fine grained

the soil becomes.This means that the best-fit SWRC probably does not represent the true

SWRC at the low saturation, high suction end of the SWRC. The calculated mean suction

error and the 5th and 95th percentiles are given in Table B.2 for the analysis of the 27 No.

cohesive soils using the Arya and Paris (1981) model.

3.3.3 Analysis of Suction Error for Granular Soils using the Modified

Kovács Model (Aubertin et al., 2003)

A graph of suction error, ψe vs degree of saturation, S for the 75 No. granular soils that

have been analysed using the Modified Kovács (MK) Model (Aubertin et al., 2003). This

plot is presented in Figure 3.17.

The suction error plot follows a similar pattern to the plot for the Arya and Paris

(1981) model presented in Figure 3.15. The percentile lines are close to the mean suction

error between saturations of 0.35 and 0.95, suggesting the MK model is a reliable model

for predicting the SWRC of granular soils in this suction range. The mean suction error

above a saturation of 0.45 is positive between 0 and 0.2. This suggests that the model on

average over predicts the air-entry value, which means the predicted SWRC is typically

offset to the right of the measured SWRC by approximately 1-5 kPa. Below a saturation

of 0.35, the percentile lines spread further apart and tend towards a negative suction error.

This means that the MK model usually underestimates the suction for granular soils in

this range. It appears that using information from the PSD alone is not sufficient to model

the SWRC at low saturations. In particular, the rate of change in the gradient of the curve

as it tends towards the residual saturation. In many of the predicted SWRC using the

MK model, the change in gradient of the curve at low saturations occurs sharply, between
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Figure 3.17: Distribution of suction error between the predicted SWRC using the MK

model and the best-fit curve for the measured SWRC. Based on all 75 No. analysed

granular soils from the dataset.

the suction range of 5 to 15kPa, whereas many of the measured SWRC change gradient

over a greater suction range, between 3 to 100kPa. The predicted SWRC tends to follow

the shape of the PSD, which indicates other factors such as grain arrangement may be

influencing the SWRC in this region. The calculated mean suction error and the 5th and

95th percentiles are given in Table B.3 for the analysis of the 75 No. granular soils using

the MK model.

3.3.4 Analysis of Suction Error for Granular Soils using the Perera

Model (Perera et al., 2005)

A graph of suction error, ψe vs degree of saturation, S for the 75 No. granular soils

that have been analysed using the Perera Model (PM) (Perera et al., 2005). This plot is

presented in Figure 3.18.
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Figure 3.18: Distribution of suction error between the predicted SWRC using the PM

model and the best-fit curve for the measured SWRC. Based on all 75 analysed granular

soils from the dataset.

The suction error plot follows a similar pattern to the plot for the Arya and Paris (1981)

(AP) model presented in Figure 3.15 and the Modified Kocács (MK) model presented in

Figure 3.17. Figure 3.19 presents a comparison of the percentile lines and mean suction

error for all three predictive methods. The percentile lines are close to the mean suction

error between saturations of 0.35 and 0.95, however they are not as close to the mean

line as the AP and MK models. This suggests that the PM model is a reliable model for

predicting the SWRC of granular soils, however it does not perform as well as the other

two models within this saturation range. The mean suction error in this range is also

positive, between the value of 0.0 and 0.2. This suggests that the model on average over

predicts the air-entry value, which results in the predicted SWRC being offset to the right

of the measured SWRC by approximately 1-5 kPa. This is very similar to how the MK

model behaves in this saturation range.

Below a saturation of 0.35, the percentile lines spread further apart and tend towards a
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Figure 3.19: Comparison of 5th and 95th percentiles, and the mean suction error for all

three SWRC predictive methods.

negative suction error, which means that the PM model often underestimates the suction

for granular soils in this range. However, the mean suction error is considerably less than

both the AP model and the MK model at these low values of saturation. By looking at

the SWRC predictions for all the soils (Figures C1 to C102 of Digital Appendix C), the

shape of the curve in the low saturation range is modelled much more accurately than the

other two methods. Therefore the PM model is the best performing predictive method

for estimating the SWRC in the low saturation range. The fact that the PM model was

developed by undertaking a regression of measured SWRC for a database of soils may

partly explain why this is the case i.e. it is not solely based on the data derived from

the PSD. The calculated mean suction error and the 5th and 95th percentiles are given in

Table B.4 for the analysis of the 75 No. granular soils using the PM model.

The statistical analysis presented so far quantifies the likely range of error in the SWRC

predictive methods for granular and cohesive soils. The following section describes how
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the calculated 5th and 95th percentiles can be converted to confidence limits when used to

predict the SWRC of soils in practice.

3.3.5 Use of Confidence Limits in Practice

To utilise the soil analysis undertaken in this chapter, the calculated percentile lines can

be converted to confidence limits when predicting the SWRC of soils in practice. Based on

the analysis of the dataset of soil, the limits indicate that for 90% of soils, the true SWRC

would lie between these lines. This process has been developed into software developed in

Microsoft Excel, and is described by the following list and the flow chart in Figure 3.20:

• Collect index properties of the soil for which the SWRC is to be predicted (PSD,

dry density, particle density and porosity/void ratio).

• Determine if the soil is cohesive (plastic) or granular (non-plastic) in nature. The

method proposed by Perera et al. (2005) could be used, where soils with a weighted

PI of less than 1.0 are categorized as non-plastic soils. The Weighted PI (wPI)

is referred to as the product of P200 (percentage passing the Number 200 sieve,

expressed as a decimal) and the plasticity index, PI, of the soil (expressed as a

percentage). The soils that exhibit wPI greater than or equal to 1.0 are categorized

as plastic soils. Where the D10 value cannot be determined from the PSD because

the soil has a large fines content, then the soil should be analysed as a cohesive soil.

• If the soil is cohesive (plastic), predict the SWRC using the Arya and Paris (1981)

model.

• If the soil is granular (non-plastic) then predict the SWRC using all three methods

presented here. The MK model should be used first, followed by the AP model

then the PM model. If the lower saturation range is of most significance for the

proposed analysis, then the PM model should be used as the primary method of

SWRC prediction.

• For each method, calculate the lower confidence limit (LCL) at each saturation value

using the 95th percentile values for the chosen predictive method using the following
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equation

LCL = 10(log(ψ̂)−(ψe95−ψe50 )) (3.3.34)

where LCL is the lower confidence limit in units of kPa, ψ̂ is the predicted suction,

ψe50 is the mean or 50th percentile of suction error, and ψe95 is the 95th percentile of

suction error.

• Then calculate the upper confidence limit at each saturation value using the 5th

percentile values for the chosen predictive method using the following equation

UCL = 10(log(ψ̂)+(ψe50−ψe5 )) (3.3.35)

where UCL is the upper confidence limit in units of kPa and ψe5 is the 5th percentile

suction error.

The calculated confidence limits give a possible range of suction that the real SWRC

may lie in based on the analysis of the database. An example of the calculated confidence

limits for the PM model are presented in Figure 3.21 for soil code 1467, which is a sand

soil.

We can see from Figure 3.21 that the real (measured) SWRC, presented as the black

circles, lies within the upper and lower confidence limits over the majority of the suction

range i.e. less than 1,000kPa. The measured SWRC lies just outside lower confidence limit

above 1000 kPa. This demonstrates that this approach can be used to give guidance on

the likely position of the SWRC when analysing soils in engineering practice. To explore

further how the findings from this chapter can be used in practice, the procedure will be

validated using a number of soils available in the literature, including a North East glacial

till soil sample from the BIONICS embankment project (Toll et al., 2016). These results

are presented and discussed in detail in Chapter 5.

3.4 Observations

This chapter has documented the development of a procedure to estimate the SWRC of a

soil based on standard index properties. These properties can be derived from standard

laboratory tests and include porosity/void ratio, particle size distribution, and dry density.
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Figure 3.20: Flowchart summarising SWRC Estimation procedure.

As part of the procedure, a dataset of 102 No. soils was selected from the UNSODA

database, comprising a selection of granular and cohesive soils. Each soil within the

dataset contains index properties along with a laboratory measured drying soil water

retention curve (SWRC).

For each soil in the dataset, the best fit curve was found for the SWRC by undertaking

a multiple regression analysis using the Fredlund and Xing (1994) equation. Three SWRC

predictive methods from literature, the Arya and Paris (1981) model, Modified Kovács

(MK) Model (Aubertin et al., 2003) and the Perera Model (PM) (Perera et al., 2005),

were programmed into a computer script and used to estimate the SWRC for each soil

in the dataset. Due to a lack on Atterberg limit test data within the database, the MK
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Figure 3.21: Calculated upper and lower confidence limits for the Perera Model for sand

soil 1467.

and PM models could not be used to analyse the cohesive soils within the dataset. The

programming of the predictive methods was verified by comparing results from the script

with results presented in literature.

To assess how well the predictive methods performed, the error in the suction between

the predicted and measured SWRC at selected saturation values was calculated. This is

then plotted on a graph of suction error vs degree of saturation. At each saturation value,

the mean suction error, 5th percentile and 95th percentile were calculated. These metrics

provide an indication of the performance of the predictive method at various saturation

levels. The results from this analysis can be summarised for the granular soils as:

• The AP, MK and PM models are all good at predicting the SWRC within the

saturation range of 0.95 to 0.40.
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• The range between the 5th and 95th percentile lines is smallest for the MK model,

followed by the AP model and then the PM model, suggesting the MK is the best

model for predicting the SWRC in the saturation range 0.4 to 0.95.

• All three predictive model on average overestimate the suction in the upper saturation

range between 0.95 to 0.40.

• All three of the predictive models on average underestimate the suction in the lower

saturation range between 0.40 and 0.05.

• The shape of the SWRC in the low saturation range is best modelled by the PM

model.

• The range between the 5th and 95th percentile lines is closest to zero for the PM

model in the low saturation range, followed by the MK model and then the AP

model, suggesting the PM is the best model for predicting the SWRC in the low

saturation range.

• The models developed using a physical approach (AP and MK) perform poorly in

the low saturation range. This suggests the PSD alone does not correlate well to

the SWRC at low saturations. Other factors may influence the SWRC in this zone,

such as the soil particle arrangement, particle shape, particle roughness or volume

change as suction increases.

The findings from the analysis of the cohesive soils are as follows:

• Only the AP model could be used for the prediction of the SWRC for these soils

because of a lack of Atterberg limit testing data in the database.

• In general the AP model performs poorly for these soils. Often the predicted SWRC

is considerably offset from the measured SWRC along the suction axis.

• On average the AP model underestimates suction in the high saturation range

between 0.95 and 0.40.

• The PSD may not correlate well to the SWRC when the soil is fine grained with

a large proportion of granular material. The physical approach of the AP model

estimates the air-entry value based on the coarse material in the PSD, but does not

May 5, 2021



3.4. Observations 96

take into consideration the arrangement of these particles and how this impacts the

pore size distribution. Therefore the AP model can largely over or under-estimate

the air-entry value of a cohesive soil, which has the impact of shifting the SWRC

horizontally along the suction axis.

• On average the AP model overestimates suction in the low saturation range between

0.40 and 0.05.

• A lack of measured suction points below a saturation of 0.5 means that the best-fit

measured SWRC is unlikely to be a true representation of the SWRC in the region

of the curve. Therefore no real conclusions can be determined on the ability of the

AP model to predict the SWRC in the high suction portion of the SWRC curve.

The 5th and 95th percentiles of suction error for each predictive method can then be

converted to confidence limits of suction in kPa when predicting the SWRC of a soil in

practice. This procedure was shown for the sand soil 1467 from the dataset, where the

Perera Model (Perera et al., 2005) confidence limits were presented on a plot along with

the predicted and measured SWRC. It was shown that the real (measured) SWRC was

within the confidence limits for the predictive method over the majority of the suction

range. See Chapter 5 for the validation of this procedure using a North East glacial till

which was not included as part of the analysis presented in this Chapter.
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Validation of SWRC Estimation

Procedure

Chapter 3 presented the methodology and analysis that led to the development of a

procedure for estimating the SWRC of a soil using standard laboratory soil testing data.

It was shown how calculated confidence limits could be used to give a likely range of error

in the SWRC prediction. An understanding of the possible error in the predicted SWRC,

and the associated strength capacity of the soil is essential if this procedure is to be utilised

by geotechnical engineers working on construction projects.

This chapter documents the validation of the procedure by presenting analysis of three

soil samples which were not included in the original soil analysis presented in Chapter 3.

For the process to be valid and of use by geotechnical engineers in practice, the predicted

SWRC should lie within the two calculated confidence limits. The first is a North East

Glacial Till soil (Durham Boulder Clay) which has been studied intensively as part of

the BIONICS (Biological & Engineering Impacts of Climate Change on Slopes) project

between the Universities of Bristol, Dundee, Durham, Loughborough, Nottingham Trent

and Newcastle upon Tyne (Toll et al., 2016). The second is a clean sand from the Vashon

Advance Outwash Sand formation from Washington State, USA, which was presented in a

study by Likos et al. (2010). The procedure outlined in Section 3.3.5 and by the flowchart

in Figure 3.20, is used for each soil. The flowchart has been developed to guide the user

through the process. Once soil data has been collected, the user must determine if the soil
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is Cohesive or Granular. This can be done by assessing the weighted Plasticity of the soil,

as shown previously in Section 3.3.5. Once this is know the user can estimate the SWRC

of the soil using the three models. The flow chart can be used to give preference to the

order at which the user should review the models, as it was shown using the statistical

analysis that some soils perform better for certain soil types. Thirdly the flow chart shows

that the SWRC confidence limits should be calculated last and used to assess the error in

the SWRC prediction.

This chapter is concluded by summarising some of the limitations of the procedure

along with some recommendations for future use by geotechnical engineers.

4.1 Durham Lower Boulder Clay

4.1.1 Step 1 - Collect Soil Data

The first soil sample considered is a North East Glacial Till from the BIONICS embankment.

The BIONICS embankment was built at Nafferton farm in North East England (Hughes

et al., 2009) for the purpose of understanding the impact of climate change and changing

weather patterns on UK transport infrastructure. The glacial till is from the Durham

Lower Boulder Clay, a common fill material representative of earthworks construction in

the UK (Toll et al., 2012).

The material comprises 39% sand, 34% silt and 27% clay, which means that it is

classified as a clay loam soil under the USDA soil classification system and a sandy clay

under the USCS classification system. The properties of this soil are presented in Table 4.1.

The particle size distribution for the soil is presented in Figure 4.1. A best-fit curve has

been found for the raw PSD data by applying a non-linear regression analysis using the

methodology presented in Chapter 3 Section 3.2.1. The parameters for the best-fit curve

using the Fredlund et al. (2000) equation are also presented in Figure 4.1. A minimum

particle size of 0.0001mm has been specified in the PSD equation as this ensures that the

predicted SWRC using the Arya and Paris (1981) model tends towards a saturation of 0

at a maximum suction of 1 x 106 kPa. Note that selection of this parameter impacts the

May 5, 2021



4.1. Durham Lower Boulder Clay 99

Soil Property Value Unit

% Clay 27 %

% Silt 34 %

% Sand 39 %

Liquid Limit, LL 42 %

Plastic Limit, PL 20 %

Plasticity Index, PI 22 %

Dry Density, ρd 1.59 g/cm3

Specific Gravity, Gs 2.66 g/cm3

Saturated Volumetric Water Content, θs 0.401 -

Voids Ratio, e 0.669 -

Table 4.1: Soil Properties for the Durham Lower Boulder Clay.

position of the SWRC in the high suction range of the SWRC, however this has limited

impact to the SWRC in the low suction range, which is of most interest for the application

of this work in practice.

4.1.2 Step 2 - Determine if the soil is Cohesive or Granular

The soil must be classified as either cohesive or granular in order to determine the method

of SWRC prediction and to calculate the correct confidence limits. This can be determined

mathematically using the method proposed by Perera et al. (2005), which classifies the

soil as cohesive if the weighted plasticity index (wPI) of the soil is greater than 1.0. This

is calculated by multiplying the percentage passing the number 200 sieve, P200 (mesh

size of 0.075mm), by the plasticity index, PI of the soil. For the Durham Lower Boulder

Clay, P200 is 0.657 and the plasticity index, PI is 22.2%, therefore the wPI is calculated

as 14.59, which indicates the soil is cohesive (plastic). Following the procedure outlined

in Figure 3.20, we have determined that the soil is classified as cohesive, therefore the

SWRC can be estimated using the Arya and Paris (1981) model and the confidence limits

for cohesive soils can be used. As the plasticity index is available for this soil, the SWRC

will also be estimated using both the Modified Kovács model (Aubertin et al., 2003) and

the Perera et al. (2005) model, however no confidence limits can be calculated for these
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Figure 4.1: Particle size distribution for Durham Lower Boulder Clay (black points) with

best-fit curve (black line).

SWRCs.

4.1.3 Step 3 - Estimate the SWRC

A SWRC is now estimated using the AP model, followed by the PM model and the MK

model. For these models the PSD, void ratio, and dry density are required which are

provided in Table 4.1. For the PM and MK models the Plasticity Index of the soil is also

required. The predicted SWRC using each model, along with the measured SWRC, is

plotted in Figure 4.2 as suction, ψ versus degree of saturation, S. The measured SWRC

was determined using the Durham University high-capacity tensiometer in the low suction

range (less than 700 kPa) and a WP4C Dewpoint Potentiameter over the high suction

range (greater than 700 kPa) (Toll et al., 2016).

It can be seen from Figure 4.2 (a) that there is a significant offset between the

predicted SWRC using the AP model and the measured SWRC, particularly in the degree

of saturation range between 0.6 and 1.0. The large under prediction is similar to the
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frequent under prediction of the Arya and Paris (1981) model observed during the data

analysis of the cohesive soils in Chapter 3 Section 3.3.2, in particular the clay loam and

sandy clay soils. Figure 4.2 (b) shows the predicted SWRC using the PM model. This

SWRC prediction is a good fit to the measured data, especially within the high degree of

saturation range between 0.8 and 1.0 and provides a significant improvement over the AP

model. It also follows the shape of the measured SWRC closely. Figure 4.2 (c) shows the

the predicted SWRC using the MK model, which provides a reasonable prediction of the

SWRC. Of importance is the location of the air-entry value which is in the region of the

measured SWRC air-entry value. However the shape of the SWRC causes the predicted

SWRC to under predict suction at a given saturation value. The following stage shows

how the confidence limits are calculated for the SWRC prediction based on the previous

statistical analysis of the cohesive soils.

4.1.4 Step 4 - Calculate Confidence Limits

The final stage is to calculate the upper and lower confidence limits of suction for the

predicted SWRC using the AP model. The confidence limits are based on the mean, 5th

and 95th percentiles of suction error calculated during the analysis of the cohesive soils

from the dataset (See Figure 3.16 and Table B.2). Based on the analysis of the cohesive

soils, there is a 95% likelihood that the measured SWRC will lie within the confidence

limits. The lower confidence limit (LCL) is given by the equation

LCL = 10(log(ψ̂)−(ψe95−ψe50 )) (4.1.1)

and the upper confidence limit (UCL) is given by

UCL = 10(log(ψ̂)+(ψe50−ψe5 )) (4.1.2)

where the lower and upper confidence limits are given in units of kPa, ψ̂ is the predicted

suction, ψe95 is the 95th percentile of suction error, ψe50 is the mean or 50th percentile of

suction error and ψe5 is the 5th percentile of suction error.

The calculated confidence limits for the AP model predicted SWRC are shown in

Figure 4.2 (a) as the dashed blue lines. Despite the large offset between the predicted

and measured suction, particularly in the high saturation range, the measured suction
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Figure 4.2: Measured SWRC (black circles) and predicted SWRC using (a) the AP

model,(b) the PM model and (c) the MK model for the Durham Lower Boulder Clay.

Calculated confidence limits for the AP model are shown as the blue dashed lines.
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lies within the confidence limits. Between the degree of saturation values of 0.8 and

1.0, the measured suction lies just inside the upper confidence limit. As the saturation

decreases, the confidence limits tighten towards the predicted curve, whilst the predicted

curve converges towards the measured SWRC. This shows that predicted SWRC for the

Durham Lower Boulder Clay has similar characteristics to the predicted SWRCs of the

cohesive soils from the dataset, as the confidence limits are wide enough to accommodate

the large error in the predicted SWRC by the Arya and Paris (1981). This shows that

despite the poor performance of the Arya and Paris (1981) model at predicting the SWRC

for this type of soil, the use of confidence limits can give a geotechnical engineer an idea

of the likley range of suction that the SWRC of the soil may lie within. For the other

SWRC predictive methods, confidence limits could not be calculated. However, if all three

methods are used together, then they can be used to assess whether the SWRC is likely

to lie within the AP model confidence limits. This shows how the confidence limits can be

used for the SWRC estimation procedure for cohesive soils such as clay loams and sandy

clay type soils. The following section will show how this procedure can be followed for

sand soils, using the Vashon Advance Outwash Sand as an example.

4.2 Vashon Advance Outwash Sand

4.2.1 Step 1 - Collect Soil Data

The second soil sample is a clean sand soil from the Vashon Advance Outwash Sand

formation collected from a coastal location near Edmonds, Washington State, USA (Likos

et al., 2010). The U.S. Geological Survey collected these soil samples as a part of study

on the hydrological response to rainfall in these soils.

The material is a clean sand which comprises 99% sand, 1% silt and 0% clay, which

means that it classified within the sand textural class under the USDA soil classification

system. The properties of this sand soil are presented in Table 4.2.

The particle size distribution for the sand is presented in Figure 4.3. A best-fit curve

has been found for the raw PSD data by applying a non-linear regression analysis as shown

in the previous example. The parameters for the best-fit curve using the Fredlund et al.
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Soil Property Value Unit

% Clay 0 %

% Silt 1 %

% Sand 99 %

Dry Density, ρd 1.59 g/cm3

Specific Gravity, Gs 2.65 g/cm3

Saturated Volumetric Water Content, θs 0.40 -

Void Ratio, e 0.667 -

Table 4.2: Soil Properties for the Vashon Advance Outwash Sand (Likos et al., 2010).

(2000) equation are also presented in Figure 4.3. The curve is a good fit over the full range

of particle sizes.

4.2.2 Step 2 - Determine if the soil is Cohesive or Granular

The soil must be classified as either cohesive or granular in order to determine the correct

method of SWRC prediction. As this soil is a clean sand, there is no question that this a

granular material. In the case where there is a larger proportion of fines within the sand,

the method proposed by Perera et al. (2005) could be used if the plasticity index, PI is

available for the soil. Following the procedure outlined in Figure 3.20, because the soil is

granular, the SWRC can be predicted using the three models presented in this Thesis, the

Arya and Paris (1981) model (AP), the Modified Kovács model (Aubertin et al., 2003)

(MK) and the Perera et al. (2005) model (PM).

4.2.3 Step 3 - Estimate the SWRC

The SWRC can now be estimated using all three SWRC predictive methods. As outlined

in Figure 3.20, as the soil is a poorly graded sand, the MK model should be considered

first, followed by the AP model and the PM model. The predicted SWRC can then be

compared to the measured SWRC for this soil, which was determined using a hanging

water column apparatus which measures the outflow of water to determine water content

(Likos et al., 2010).
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Figure 4.3: Particle size distribution for Vashon Advance Outwash Sand (black points)

with best-fit curve (black line). Derived from (Likos et al., 2010).

The predicted SWRC using the MK model, AP model, and the PM model, along with

the measured SWRC, is plotted in Figure 4.4 (a), (b) and (c) respectively. It can be seen

from Figure 4.4 that all three methods predict a SWRC which is in close agreement to

the measured SWRC. Both the MK and PM models give very good predictions, where

the gradient of the curve and the offset of the curve on the suction axis are close to the

measured. The AP model is slightly offset to the right on the suction axis, meaning it over

estimates the suction at a given degree of saturation value. The next stage shows how the

confidence limits can now be calculated for each SWRC prediction based on the previous

statistical analysis of the dataset of soils.

4.2.4 Step 4 - Calculate Confidence Limits

The final stage is to calculate the upper and lower confidence limits of suction for each

predicted SWRC. The confidence limits are based on the mean, 5th and 95th percentiles

of suction error calculated during the analysis of the granular soils from the dataset (See

Figures 3.15, 3.17 and 3.18 and Tables B.1, B.3 and B.4).
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Figure 4.4: Predicted SWRC for the Vashon Advance Outwash Sand using (a) MK Model,

(b) AP Model and (c) PM Model. For each case the measured SWRC, derived from Likos

et al. (2010) is plotted using black circles. May 5, 2021
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The calculated confidence limits for the Vashon Advance Outwash Sand are shown

in Figure 4.4 (a), (b) and (c) respectively as the dashed lines. For each method, the

measured SWRC lies within the confidence limits. This shows that the confidence limits,

derived from the analysis of the granular soils (predominantly clean sands) of the UNSODA

dataset, can be used to give confidence to the likely range of the true SWRC when

predicting the SWRC using the methods shown here. It should be noted however that as

the fines content of the sand soil increases i.e. if the sand is well graded, rather than poorly

graded as presented here, the confidence limits may become less reliable. This is because

the confidence limits were developed from analysis of mostly poorly graded sands from the

UNSODA database. In the case of well graded sands, the gradient of the curve shallows

towards residual conditions at higher values of saturation and over a larger suction range

i.e. it follows a curve more closely resembling the shape of the upper confidence limit

(Figure 4.4). Therefore if the confidence limits are being used for well graded sands, more

weight should be given to the upper confidence limit side of the predicted curve. Secondly,

of the three methods presented here, the Perera et al. (2005) model typically gives the best

prediction in the low saturation range suggesting that this method should be preferred

method for predicting the SWRC of well graded sands.

This section has shown how the confidence limits can be used to give the likely range

of the true SWRC when using a predictive SWRC method. The next section will discuss

some of the limitations of this method, and provide some recommendations for use in

practice by a geotechnical engineer.

4.3 Limitations and Recommendations for Future Use

This section aims to outline some of the limitations of using the calculated confidence

limits in practice, and provides some recommendations for geotechnical engineers when

applying this method.

• When predicting the SWRC of sandy clay and clay loam soils with a large fraction of

sand particles, the AP model typically under predicts the suction at high saturations.

Based on engineering judgement, if the engineer considers this to be likely, then

preference for the true SWRC can be given towards the upper confidence limit of
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the predicted SWRC.

• When predicting the SWRC of cohesive soils, if the plasticity index for the soil is

available, then the SWRC can be predicted using the MK model and the PM model.

However, the calculated confidence limits from the AP model must not be used for

these models, therefore care must be taken as there will be no indication of the likely

error in the SWRC prediction. However, if both the MK and PM models are in good

agreement, this can be used to give preference as to whether the AP model has under

or over predicted the SWRC compared to the true SWRC.

• The confidence limits for granular soils were developed using soil samples of mostly

poorly graded clean sands from the UNSODA database. Therefore, if the granular

material contains a reasonable proportion of fines, the confidence limits may be

unreliable. In this case care should be taken when using the confidence limits.

The PM model typically models granular materials with high fines content with

the closest fit, therefore this model should be given preference when predicting the

SWRC of well graded sands.

• Only two silt soils were studied as part of the dataset analysis, therefore the granular

confidence limits are unlikely to be reliable for silt soils and should not be used. Care

should be taken if predicting the SWRC of a silts as the SWRC predictive methods

can be unreliable for these types of soil. If the silt soil has a large proportion of fines,

the soil may be classified as cohesive, in which case the cohesive confidence limits

may be used.

• There are limitless possible SWRCs for a soil depending on the conditions that are

placed upon the soil. For example the SWRC of a soil in-situ will be different to the

SWRC determined in the laboratory. This is because there will be an overburden

stress acting upon the soil depending on the weight of the soil above it. Increasing the

overburden stress has the impact of reducing the porosity and void ratio of the soil,

and increasing the density of the soil, which directly impacts the SWRC. Typically

as the density increases, the SWRC shifts horizontally to the right on the suction

axis. Therefore if predicting the SWRC of a soil in-situ, the density and void ratio

of the soil should be measured from undisturbed samples at the depth of interest if

possible.
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• The SWRC predictive methods and associated confidence limits are based on drying

conditions. Under wetting conditions, the SWRC will be offset to the left of the

drying curve. The methods outlined here should not primarily be used to estimate

the wetting SWRC however the user could use the lower confidence limit of the

SWRC as guidance to the possible wetting SWRC.

• The AP model requires the selection of a value for the fitting parameter, α, which has

the effect of shifting the SWRC horizontally along the suction axis. The confidence

limits for the AP model were developed using the alpha value of 1.3, as this was

the value suggested by Arya and Paris (1981). However this value can be adjusted

depending on the soil being analysed if the geotechnical engineer takes the judgement

that the predicted SWRC is likely to be largely offset from the true SWRC. This

may be the case if the predicted SWRC using the AP model is considerably offset

from both the MK model and the PM model. The alpha values for different soil

types proposed by Arya and Paris (1981) are shown in Table 3.6 of Chapter 3.

This chapter has shown how the confidence limits calculated in Chapter 3 can be

applied in practice by geotechnical engineers. The procedure has been validated by

predicting the SWRC of a Durham Lower Boulder Clay and a sand sample from Vashon

Advance Outwash Sand formation. In both cases the measured SWRC was within the

confidence limits of the predicted SWRC. The next chapter will present a methodology

for estimating the change in shear strength above the water table based on the predicted

SWRC. The confidence limits presented here will be used to show the possible error in the

shear strength due to the possible error in the predicted SWRC.
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Chapter 5

Application of Unsaturated Shear

Strength in Practice using

Predicted SWRCs

The previous Chapter presented the validation of the SWRC estimation procedure using

two soil samples available within the literature. The aim of this Chapter is to present a

broad methodology for estimating the increase in shear strength of a soil due to an increase

in soil suction as a consequence of lowering the groundwater table. To illustrate how these

techniques can be applied in practice, a typical slope stability problem common within the

construction industry has been set up and the Durham Lower Boulder Clay soil is used

as an example. A predicted SWRC using each of the three predictive methods adopted in

this Thesis will be used to estimate an unsaturated shear strength profile due to suction

above the water table. The slope stability problem will then be simulated using the finite

element software PLAXIS 2D (Bentley Systems, 2020) to determine the factor of safety

for each profile. The variability in the calculated factor of safety will give an indication of

the influence suction has on the stability of the slope.
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5.1 Problem Definition

A typical geotechnical engineering problem will be used in this Chapter to illustrate how

the shear strength of a soil may change due to a groundwater control operation. The

problem of interest involves the construction of an 8.0m deep excavation surrounded by

temporary battered slopes constructed at an angle of 45 degrees. A groundwater control

system has been designed to lower the water table in the soil to enable construction of the

8.0m high batters. The water table must be reduced to the excavation level of 8.0m bgl

(below ground level) from an initial water level of 1.0m bgl. Groundwater control wells

will be located at the top of the batters at a distance of 1.0m from the crest. It has been

assumed that the water table has first been lowered to excavation level using the external

groundwater control wells before any excavation of the ground takes place. As excavation

proceeds, any remaining water would drain out of the slope into the excavation and be

pumped away using sump pumps. Figure 5.1 presents a schematic of the problem.

Figure 5.1: Conceptual model showing geometry of excavation with temporary battered

slopes overlain with possible steady-state pore water pressure profiles after dewatering.

As the water table is lowered, a negative pore water pressure (suction) profile will

May 5, 2021



5.1. Problem Definition 112

develop within the unsaturated zone above the water table. Once groundwater conditions

have reached steady state and the water table has reached excavation level, a suction

profile will exist in the unsaturated zone. This profile will follow the gradient of the

hydrostatic pore water pressure profile if there is no net vertical flux of groundwater

within the unsaturated zone i.e. infiltration (the process by which water on the ground

surface enters the soil) and evapotranspiration (the process by which water is transferred

from the land to the atmosphere by evaporation from the soil and by transpiration from

plants) are in equilibrium, and assuming that pore water is continuous above the water

table. If there is a net infiltration at steady state, the suction profile will be less than

hydrostatic i.e. suction will be closer to zero in the unsaturated zone. If there is a net

evapotranspiration at steady state, the suction profile will be greater than hydrostatic

(shown by the dashed black lines in Figure 5.1).

The exact negative pore water pressure profile is difficult to calculate without undertaking

field monitoring. This is because the profile is dependant on a number of variables

including; precipitation, evaporation, transpiration, surface runoff, infiltration, the soil

water retention curve of the soil, and the unsaturated hydraulic conductivity function of

the soil. Due to these uncertainties, when applying unsaturated soil mechanics in practice

it is recommended that a number of field tensiometers are installed within the ground

at defined elevations to measure suction. The suction measurements can then be used

to either estimate the steady state pore water pressure profile, or they can be used to

calibrate a finite element model which can be used to generate the pore water pressure

profile. If the installation of field tensiometers is not feasible, then several generalised pore

pressure profiles should be used to assess the variability in the potential unsaturated shear

strength profile of the soil. For example, if the site is located in a humid climate setting like

in the UK, then there is likely to be net infiltration. In this case the hydrostatic suction

profile above the water table could be multiplied by 0.5, as was demonstrated in the case

study by Ng (1988) for a slope in Hong Kong. If the site is located in an arid climate

setting, then there is likely to be net evapotranspiration. In this case the hydrostatic

suction profile above the water table may be multiplied by 2.0. The United Kingdom

typically has a humid climate with a lot of precipitation, therefore temporary battered

slopes used during construction are typically covered with an impermeable material to

prevent infiltration and surface erosion. This method of slope protection was demonstrated

May 5, 2021



5.2. Calculation of Unsaturated Shear Strength 113

by Thomas et al. (2020) during the stabilisation of steep temporary batters required for

the construction of a storm water water tank in Oldham, Greater Manchester. Given

the complexities in determining the suction profile above water table, for the purpose

of the remaining research and analysis, the suction profile will be taken as hydrostatic.

The following section will demonstrate how the unsaturated shear strength of the soil

can be calculated using a hydrostatic suction profile, however this technique can be used

regardless of how the suction profile above the water is determined or calculated.

5.2 Calculation of Unsaturated Shear Strength

The unsaturated shear strength of the soil can be estimated using a modified version

of the Extended Mohr-Coulomb equation originally proposed by Fredlund et al. (1978).

The model has been adopted here because it offers the simplest approach of integrating

unsaturated soil mechanics into geotechnical engineering practice. Numerous equations

have been proposed within the literature for estimating the unsaturated shear strength

of the soil using the SWRC, as discussed in depth in the Literature Review (see Chapter

2, Section 2.3.3). The literature review also presented some comparisons between the

estimated shear strength and the measured shear strength determined from mechanical

shear strength testing. It was found that the modified Extended Mohr-Coulomb equations

by Vanapalli et al. (1996) and Fredlund et al. (1996) provided the most reliable shear

strength predictions, particularly in the low suction range (≤1,000kPa). Therefore, both

of these equations will be used as part of this study to estimate the unsaturated shear

strength profile of the soil for the example problem outlined above.

Fredlund et al. (1996) proposed the non-linear form of the Extended Mohr-Coulomb

failure criteria

τ = c′ + (σ − ua) tanφ′ + (ua − uw)Sκ tanφ′. (5.2.1)

This equation can be split into two components, the first of which, c′ + (σ − ua) tanφ′,

describes that saturated shear strength of the soil in terms of net total stress. The second

component describes the additional shear strength due to suction and requires the use of

a fitting parameter κ and the SWRC in terms of degree of saturation, S. Garven and

Vanapalli (2006) provided an empirical relationship between the fitting parameter κ and
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the Plasticity Index, PI, of the soil

κ = −0.0016(PI)2 + 0.0975(PI) + 1 (5.2.2)

however this equation is only applicable for soils with Plasticity Index great than 0, which

is typically cohesive soils such as sandy clays.

Vanapalli et al. (1996) proposed an equation where the SWRC is normalised between

saturated and residual saturation conditions

τ = c′ + (σ − ua) tanφ′ + (ua − uw)
(S − Sr

1− Sr

)
tanφ′ (5.2.3)

where Sr is the residual degree of saturation. In order to use the Vanapalli et al. (1996)

equation, a value for the residual degree of saturation must be determined. Vanapalli et al.

(1998) presents a computational procedure for determining the residual water content

from the SWRC. This involves drawing tangents along sections of the curve and using

the intercept points to calculate the residual degree of saturation. The following section

presents calculations of additional shear strength due to suction using a suction profile

behind the crest of the slope for the example problem outlined above, assuming the slope

is constructed from Durham Lower Boulder Clay.

5.3 Calculation of Suction and Shear Strength Profiles

A vertical section is taken half a metre behind the crest of the slope. The pore water

pressure profile is calculated using a weight density of water of 10.0 kN/m3. The net total

stress profile is calculated using the weight density of soil, which is be a function of soil

saturation, and can be calculated using the dry density of the soil, ρd, weight density of

water, γw, the particle density of the soil, Gs, the void ratio, e and the degree of saturation,

S (using the predicted SWRC using the AP model) (See Table 5.1). The calculated net

total stress profile is shown in Figure 5.2. Note that compression is presented as positive

values of stress.

The assumed saturated shear strength properties of Durham Lower Boulder Clay are

given in Table 5.1. These shear strength properties are derived from mechanical shear

strength testing of the soil using a triaxial cell apparatus at the Durham University
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Figure 5.2: Pore water pressure profile and net total stress profile for vertical section taken

behind the crest of the slope using properties given in Table 5.1.

Soil Property Symbol Value Unit

Dry Density ρd 1.59 g/cm3

Particle Density Gs 2.66 g/cm3

Void Ratio e 0.70 -

Effective Cohesion c′ 10.0 kPa

Angle of Internal Friction φ′ 25.5 ◦

Table 5.1: Soil properties for the Durham Lower Boulder Clay. The shear strength

properties have been derived from triaxial testing of the soil by Mendes and Toll (2016).

Laboratory (Mendes and Toll, 2016). The saturated shear strength component is first

calculated using the net total stress (σ−ua), effective cohesion, c′ and the angle of internal

friction, φ′. The saturated shear shear strength component increases from 10 kPa at the

crest of the slope surface to 85 kPa at the excavation level.

The increase in shear strength due to suction can be estimated using the equations by

Fredlund et al. (1996) (Eq. 5.2.1) or Vanapalli et al. (1996) (Eq. 5.2.3). Both equations
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require a SWRC to calculate the shear strength. The results presented here show the

calculated additional shear strength for both equations using each of the predicted SWRCs

using the Arya and Paris (1981) Model (AP), the Modified Kovaćs Model (MK) (Aubertin

et al., 2003) and the Perera et al. (2005) (PM) model respectively, along with the measured

SWRC (M) for comparison. In addition the confidence limits for the AP model, i.e. AP

(UCL) and AP (LCL), are used to assess the sensitivity of the error in the SWRC to the

shear strength estimation. Because confidence limits could not be calculated for the MK

and PM model SWRCs, the estimated additional shear strength using these models are

used to assess whether the prediction of the AP model is reasonable.

The Fredlund et al. (1996) equation (Eq. 5.2.1) requires that the fitting parameter

κ is first calculated using the Plasticity Index, PI of the soil (Equation 5.2.2), which is

calculated to be 1.0214 for a PI of 22%. The Vanapalli et al. (1996) equation (Eq. 5.2.3)

requires the SWRC to be normalised between saturated and residual water content conditions

meaning the residual degree of saturation, Sr must be specified. Vanapalli et al. (1998)

presents a method for determining this value, however this procedure can be difficult for

soils with a high proportion of fines, which could lead to significant errors. For each SWRC

predictive method, the residual degree of saturation has been calculated as 0.42, 0.45 and

0.5 for the AP, MK and PM models respectively.

Figure 5.3 (a) shows the calculated increase in shear strength profile above the water

table using the Fredlund et al. (1996) equation (Eq. 5.2.1). The blue solid line is calculated

using the AP model predicted SWRC, the green solid line by the MK model predicted

SWRC and the red solid line by the PM model predicted SWRC. The purple line is

calculated using the measured SWRC. Using the AP model predicted SWRC, the additional

shear strength due to suction increases from 0 kPa at the water table to approximately

22 kPa at the ground surface. At the midway point at an elevation of 4.0m, highlighted

by the annotated points in Figure 5.3, the calculated additional shear strength due to

suction is 12.57 kPa. The additional shear strength due to suction can also be calculated

using the lower and upper confidence limits of the AP model predicted SWRC. These are

shown by the dashed light blue lines Figure 5.3 (a). At an elevation of 4.0m, the calculated

additional shear strength due to suction ranges from 8.74 kPa to 18.53 kPa, a difference

of 9.79 kPa. This shows that despite the potentially large range in suction between the

SWRC confidence limits for the AP model, this does not translate into a significantly large

May 5, 2021



5.3. Calculation of Suction and Shear Strength Profiles 117

difference in shear strength over the suction profile. Table 5.2 summarises these results at

elevations of 4.0m and 8.0m.

Elevation (m) Additional Shear Strength due to Suction (kPa)

AP AP (LCL) AP (UPL) MK PM M

4.0 12.57 8.74 18.53 18.83 18.46 18.34

8.0 22.60 16.00 36.44 32.60 36.22 35.83

Table 5.2: Calculated additional shear strength due to suction above the water table at

defined elevations using the Fredlund et al. (1996) equation (Eq. 5.2.1).

Figure 5.3 (b) shows the calculated increase in shear strength above the water table

using the Vanapalli et al. (1996) equation (Eq. 5.2.3). The additional shear strength due

to suction calculated using the AP model SWRC is lower than when calculated using

the Fredlund et al. (1996) equation (Eq. 5.2.1). At an elevation of 4.0m, the calculated

additional shear strength due to suction is 8.05 kPa (4.62kPa (38%) less than the Fredlund

et al. (1996) equation (Eq. 5.2.1)). The difference between the two equations becomes

greater as the elevation increase above the water table towards the ground surface, where

the additional shear strength due to suction is 11.7 kPa (10.9 kPa (48%) less than the

Fredlund et al. (1996) equation (Eq. 5.2.1)). It is well reported in the literature that

the Vanapalli et al. (1996) equation (Eq. 5.2.3) is quite sensitive to the residual degree

of saturation value, particularly for the case of fine grain size cohesive soils (Vanapalli

and Fredlund, 2000), which may account for some of the discrepancy between the two

predictive equations. It is also apparent that there is a larger spread between the upper

and lower confidence limits when using the Vanapalli et al. (1996) equation (Eq. 5.2.3).

This again may be due to the selection of a residual degree of saturation value, which

is particularly difficult to determine for the SWRC confidence limits as they may not

necessarily follow the shape of a SWRC. The results from using the Vanapalli et al. (1996)

equation (Eq. 5.2.3) are documented in Table 5.3.

The additional shear strength due to suction has been calculated for both shear

strength equations using the MK and PM predicted SWRCs, shown by the green and

red lines respectively in Figure 5.3. Interestingly, both shear strength equations give very

similar results. For example at an elevation of 4.0m, using the Fredlund et al. (1996)

model (Eq. 5.2.1), the calculated additional shear strength due to suction is 18.83 kPa for
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Figure 5.3: Plots showing the calculated additional shear strength profiles due to suction

above the water table using (a) the Fredlund et al. (1996) equation (Eq. 5.2.1) and (b)

the Vanapalli et al. (1996) equation (Eq. 5.2.3).
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Elevation (m) Additional Shear Strength due to Suction (kPa)

AP AP (LCL) AP (UPL) MK PM M

4.0 8.05 4.51 17.74 18.67 17.86 17.63

8.0 11.77 6.92 33.96 28.68 34.36 33.60

Table 5.3: Calculated additional shear strength due to suction above the water table at

defined elevations using the Vanapalli et al. (1996) equation (Eq. 5.2.3).

the MK model and 18.46 kPa for the PM model. When using the Vanapalli et al. (1996)

equation (Eq. 5.2.3), the calculated additional shear strength due to suction is 18.67 kPa

for the MK model and 17.86 kPa for the PM model. These results are all within a 1 kPa

range. Of further significance is that the calculated additional shear strength for the AP

model UCL is also very close to these values (18.53 kPa for the Fredlund et al. (1996)

equation (Eq. 5.2.1) and 17.74 kPa for the Vanapalli et al. (1996) equation (Eq. 5.2.3).)

Because all of these results are in close agreement, we can have greater confidence that

the most likely additional shear strength profile for the soil is likely to be within the range

of these profiles, which demonstrates the value of using all three SWRCs to generate the

shear strength profile.

The additional shear strength profile has then been plotted as the purple line when

using the measured drying SWRC. This profile plots within the same range as the MK

and PM models, which means that both the PM and MK SWRCs result in very similar

shear strength profiles to the profile estimated using the measured SWRC. These models

seem to be in good agreement because they quite accurately model the SWRC in the low

suction range, in particular the location of the air-entry value is in good agreement. As

has been noted previously, the AP model often under predicts the suction for cohesive

soils with a significant proportion of granular material, such as sandy clay type soils. The

analysis presented here demonstrates that despite the large error in the AP model SWRC

prediction, by utilising all three SWRC predictive models in conjunction we can gain a

reasonable prediction of the likely increase in shear strength profile due to suction.

This analysis has shown that by excavating and lowering the water table by 7.0m,

suctions of up to 80 kPa can develop in the soil at the crest of the slope for a hydrostatic

pore water pressure profile. The development of suctions within the soil matrix will lead

to an increase in soil shear strength. The analysis has shown that for a sandy clay type
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soil, the shear strength could increase in the order of 18 kPa at 4.0m above the water

table and 33 kPa at the top of the soil batter. Clearly the composition of the soil will

have a great impact on the potential increase in shear strength, with the fine grained soils

resulting in the greatest increase in shear strength. An increase in shear strength due

to suction in the soil may lead to a significant increase in the stability of a temporary

battered slope, resulting in an increased factor of safety value. The following section will

present some analysis undertaken using the geotechnical finite element model PLAXIS 2D

(Bentley Systems, 2020) to assess how suction may increase the factor of safety of a slope.

5.4 PLAXIS 2D Slope Stability Analysis

The purpose of this analysis is to assess how the factor of safety of the slope changes as

a consequence of accounting for the influence of suction on shear strength. This analysis

is also presented to demonstrate how these techniques can be applied in practice by a

geotechnical engineer who uses finite element software on a regular basis.

PLAXIS 2D is a finite element package designed for the two-dimensional analysis of

soil deformation and stability in geotechnical engineering. It is equipped with features

to deal with various aspects of geotechnical and construction processes using robust and

theoretically sound computational procedures. PLAXIS divides the domain into several

finite elements and these are typically connected by nodes to form a finite element mesh.

The model result is calculated at each node, therefore the higher the concentration of

elements and nodes, the greater the accuracy of the model result. Figure 5.4 shows the

model geometry for the example problem with the finite element mesh overlain.

There are two approaches to modelling the unsaturated shear strength behaviour of

the soil in PLAXIS 2D. The first is to ignore suction and specify an increase in the

effective cohesion, c’, of the soil over a number of horizontal layers above the water table,

as demonstrated by Ng (1988) during a project in Hong Kong. PLAXIS 2D then simulates

the soil using standard soil mechanics theory for saturated soils using the Mohr-Coulomb

model. The second approach is to use the built in tools in PLAXIS to simulate the

unsaturated behaviour of the soil, which requires the specification of the SWRC using

van Genuchten SWRC parameters (van Genuchten, 1980). This method calculates the
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Figure 5.4: PLAXIS 2D model geometry and finite element mesh.

unsaturated effective stress i.e. Bishop stress, where χ is equal to the effective saturation

Seff = (S − Sr)/(Ss − Sr). PLAXIS however does not enable χ to be specified using

another form of the Extended Mohr-Coulomb equation, such as the equation by Fredlund

et al. (1996), where χ = Sκ. For this a user defined soil model would need to be developed

for PLAXIS. Development of a user defined soil model would be time consuming and

is therefore not within the scope of this MScR. Therefore the first approach has been

undertaken for the following analysis in this section.

The soil above the water table (a level of 0.0m) is split into four 2.0m thick horizontal

layers (Figure 5.4). The average increase in shear strength is calculated for each soil layer

based on the additional shear strength profiles shown in Figure 5.3. This has been done

for each additional shear strength profile (i.e. for each SWRC) and for both shear strength

equations, which results in a total of 10 simulations in PLAXIS 2D, i.e. 5 for each shear

strength equation. The additional shear strength is added to the effective cohesion, c′

value of 10 kPa in each soil layer. The calculated average increase in shear strength for

each case is shown in Table 5.4 for the Fredlund et al. (1996) equation and Table 5.5 for

the Vanapalli et al. (1996) equation.

To determine the factor of safety, a ’Safety’ analysis is undertaken in PLAXIS 2D.

This method of analysis progressively reduces the strength properties (effective cohesion,
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Layer Average Additional Shear Strength due to Suction (kPa)

AP AP (LCL) AP (UPL) MK PM

0-2m 3.71 2.44 4.69 4.77 4.69

2-4m 9.84 6.74 13.95 14.24 13.91

4-6m 15.15 10.65 23.05 22.74 22.94

6-8m 20.16 14.27 32.01 29.45 31.82

Table 5.4: Calculated average additional shear strength due to suction for each 2.0m layer

above the water table using the Fredlund et al. (1996) equation.

Layer Average Additional Shear Strength due to Suction (kPa)

AP AP (LCL) AP (UPL) MK PM

0-2m 2.98 1.50 4.58 4.77 4.61

2-4m 6.73 3.64 13.44 14.19 13.53

4-6m 9.10 5.25 21.90 22.04 22.08

6-8m 10.95 6.44 30.01 26.95 30.32

Table 5.5: Calculated average additional shear strength due to suction for each 2.0m layer

above the water table using the Vanapalli et al. (1996) equation.

Shear Strength Equation Calculated Factor of Safety for Slope Stability Analysis

AP AP (LCL) AP (UPL) MK PM

Fredlund et al. (1996) 1.436 1.370 1.503 1.510 1.504

Vanapalli et al. (1996) 1.376 1.293 1.497 1.502 1.498

Table 5.6: Calculated factor of safety by PLAXIS 2D for the slope stability analysis.

Results are presented for each additional shear strength profile derived from the predicted

SWRCs.

c′ and friction angle, φ′) of the soil until failure occurs. The factor of safety is then derived

from the strength reduction of the soil properties. The slope stability analysis was first

undertaken using the standard soil mechanics approach where suction and additional shear

strength due to suction are ignored. This results in a calculated factor of safety of 1.138,

meaning the slope is stable for the simulated conditions and soil properties. The simulated

displacement contours at failure produced by PLAXIS 2D (shown in Figure 5.5) show the

likely method of slope failure, which in this case is a circular slip failure. Following this,

the slope stability analysis was undertaken for all 10 cases, with the factor of safety results
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given in Table 5.6.

Figure 5.5: PLAXIS 2D output from a safety analysis showing (a) the deformed mesh at

failure (b) simulated displacement contours at failure.

The results show that there is a significant increase in factor of safety for all cases

when the unsaturated shear strength of the ground is taken into account. For the AP

model predicted SWRC, which significantly under predicts the suction, the factor of safety

increased from 1.138 to 1.436 when using the Fredlund et al. (1996) shear strength equation

(Eq. 5.2.1). As expected, when using the additional shear strength profiles derived from

the MK and PM model SWRCs, the calculated factor of safety for both is 1.510 and

1.504 respectively. Of most significance however is the difference in factor of safety

between the AP (LCL) and AP (UCL) simulations. The difference in suction between

the two confidence limits is significant, often 3 orders of magnitude at a given degree of

saturation value. At the centre of the slope the degree of saturation for the AP (UCL)
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is 0.97 and for the AP (LCL) it is 0.66, however this only translates to a difference in

factor of safety of 0.133. Even for the worst case SWRC, the AP (LCL) case, there is

a significant improvement in factor of safety of 0.232 over the scenario where suction is

ignored. Where the Vanapalli et al. (1996) equation is used instead of the Fredlund et al.

(1996) equation, the AP (LCL) case yields an increase in factor of safety of 0.155. This

analysis demonstrates that despite a potentially large error in the SWRC prediction, this

may not translate in to a large difference in the factor of safety of a slope, particularly if

the soil is fine grained. It also demonstrates that by simply taking into consideration the

unsaturated shear strength of the soil, there could be a significant impact on the calculated

factor of safety of a slope when compared to the standard approach which ignores suction.

It must be noted that this analysis is based on a sandy clay soil, and these results may not

hold true across the entire grain size spectrum of soils. In particular clean sands (poorly

graded) may only see a minor increase in shear strength as they typically desaturate a

much lower suctions in the order of 1-10kPa, which may result in only a minimal change

in calculated factor of safety. It is recommended for future work that a similar analysis is

undertaken for a range of soil types to assess how the SWRC may influence the factor of

safety of a slope.

To assess whether it is appropriate to split the soil into 2.0m thick horizontal layers,

some additional analysis has been undertaken where the soil has been split into eight 1.0m

thick layers and two 4.0m thick layers. Figure 5.6 shows how the finite element mesh and

material layers have been set up in PLAXIS 2D for each modelling scenario. The modelling

has been undertaken using the shear strength profiles calculated using the Fredlund et al.

(1996) equation (Eq. 5.2.1). The calculated factors of safety for each scenario are given in

Table 5.7 and Figure 5.7.

Layer Thickness Calculated Factor of Safety for Slope Stability Analysis

AP AP (LCL) AP (UPL) MK PM

1.0m (8 layers) 1.431 1.359 1.500 1.500 1.501

2.0m (4 layers) 1.436 1.370 1.503 1.510 1.504

4.0m (2 layers) 1.460 1.385 1.533 1.535 1.535

Table 5.7: Calculated factor of safety from PLAXIS 2D slope stability analysis for 8, 4

and 2 horizontal layers above the water table for each shear strength profile derived from

the predicted SWRCs when using the Fredlund et al. (1996) equation (Eq. 5.2.1).
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Figure 5.6: Finite element mesh for the following modelling scenarios (a) 2 horizontal

layers (b) 4 horizontal layers and (c) 8 horizontal layers.

The calculated factors of safety using 8 horizontal layers is only marginally different

when compared with the results calculated using 4 layers. The largest difference between

the 8 and 4 layer simulations occurs for the AP (LCL) shear strength profile where there

is a 0.8% percentage difference between the two. For both the MK and PM models the

percentage difference is less than 0.4%, indicating that the results are very similar. Because

the difference in calculated factor of safety between the 4 and 8 layer simulations is less
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Figure 5.7: Calculated factor of safety from PLAXIS 2D slope stability analysis for 8, 4

and 2 horizontal layers above the water table for each shear strength profile derived from

the predicted SWRCs when using the Fredlund et al. (1996) equation (Eq. 5.2.1).

than 1%, we can conclude that for this model example, it is appropriate to use 2.0m thick

horizontal layers instead of 1.0m thick layers. When using 2 horizontal layers which are

4.0m thick however, the difference in the calculated factor of safety between the results

using 8 layers is more significant than when using 4 layers. For every shear strength profile,

the percentage difference between the 2 and 8 layer models is within the range of 1.9%

and 2.3%. It is clear from these results that the use of 4.0m thick horizontal layers is

insufficient to accurately model the shear strength profile. It is important that a sufficient

number of horizontal layers is used so that the shear strength at the toe of the slope is

not overestimated, as this is critical to the stability of the slope. The results shown here

demonstrate this fact, as the factor of safety was overestimated by 2%. Therefore we can

conclude that use of 2.0m thick horizontal layers is an appropriate approximation in this

example, however careful thought should be taken by the geotechnical engineer to ensure

that the average shear strength profile used in the model is sufficient to model the slope

conditions accurately.

The following section will look at some of the limitations and benefits of the methods

presented here, and give some recommendations for geotechnical engineers who aim to use
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these concepts and procedures presented in this Chapter in practice.

5.5 Limitations, Benefits and Recommendations for Future

Use

This section aims to outline some of the limitations of using the predicted SWRC to

calculate an increase in shear strength due to suction, and provides some recommendations

for geotechnical engineers when applying this method in practice.

• The methods for estimating the unsaturated shear strength due to suction presented

in this Chapter should be used with caution during the design stage of a construction

project as there could be significant errors in the calculation. The upper and lower

confidence limits give a range of possible shear strength due to the possible error in

the SWRC prediction. However, they do not give the possible error in shear strength

due to the error in the unsaturated shear strength equations by Fredlund et al. (1996)

(Eq. 5.2.1) and Vanapalli et al. (1996) (Eq. 5.2.3). Further work would be required

to assess what the likely error in these equations is for a range of soil types. It

is therefore recommended that the geotechnical engineer apply these concepts with

caution, and assess stability problems with a range of parameter values and suction

profiles. If possible, gathering of field measurements including suction, water content

and shear strength would greatly reduce the possible error in these calculations as

they could be used to calibrate a finite element model.

• The two unsaturated shear strength equations proposed by Fredlund et al. (1996)

(Eq. 5.2.1) and Vanapalli et al. (1996) (Eq. 5.2.3) both have strengths and weaknesses

when used in practice. The Vanapalli et al. (1996) equation (Eq. 5.2.3) requires that

the SWRC is normalised between fully saturated and residual degree of saturation,

however determining the residual degree of saturation can be difficult for fine grained

cohesive soils such as clays, which could lead to a significant error in the estimated

shear strength. Therefore the Fredlund et al. (1996) equation (Eq. 5.2.1) is likely

to be the preferred equation as this requires the Plasticity Index of the soil which

is normally available for fine grained cohesive soils in standard site investigation

reports. If the soil is granular however, where PI=0, then the Fredlund et al. (1996)
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equation is not applicable. In this case the Vanapalli et al. (1996) equation (Eq. 5.2.3)

should be used instead.

• The accuracy of the unsaturated shear strength profile is dependent of the quality

of the SWRC prediction, therefore it is recommended to use all three methods of

SWRC prediction and apply these to the shear strength calculations. As was shown

for the Durham Lower Boulder Clay, both the MK and PM models produced similar

shear strength profiles whilst the AP model was significantly lower. If only the AP

model was used, this could lead to a significant under prediction of the shear strength

profile. By applying all three SWRC predictions, it became clear that the AP model

was likely under predicting the increase in shear strength due to suction.

• Calculating a reasonable prediction of unsaturated shear strength is also dependant

on the suction profile within the soil. The calculations presented here are based

on a hydrostatic pore water pressure profile, i.e. there is no net infiltration or

evapotranspiration, however this is unlikely to be the case in practice. Therefore,

it is recommended that the suction profile is determined using a series of field

tensiometers installed in the ground or by using an unsaturated groundwater flow

model. This requires the careful selection of net infiltration or evapotranspiration at

the ground surface, along with a hydraulic conductivity function which describes how

hydraulic conductivity changes with suction. To determine the hydraulic conductivity

function, either laboratory testing would be required or it could be estimated from

the PSD and SWRC using methods presented in the literature (Vereecken, 1995).

Researching these estimation procedures was outside the original scope of this Thesis

project, however this could form an area of future research that could expand the

work presented here and improve the prediction of suction profiles above the water

table. If undertaking a finite element simulation is not possible due to a lack

of quality input parameters, then a series of suction profiles could be calculated

which are either reduced from hydrostatic by a factor to represent net infiltration or

increased from hydrostatic by a factor to represent net evapotranspiration. Alternatively

a moisture content profile could be determined, and suctions calculated using the

SWRC.

• If applying the additional shear strength due to suction in a finite element model

using the approach taken here i.e. adding shear strength to the effective cohesion
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parameter, care should be taken to model the layers parallel to the water table. If

the water table is highly non-linear, then this method should not be used and the

second approach which requires a user defined soil model should be developed. The

second approach will provide much greater accuracy as it will model the position of

the water table and the resulting suction profile above the water table.

• This analysis presented within the Chapter has demonstrated that by using the

developed procedure for estimating the SWRC, the unsaturated shear strength of the

soil can also be reasonably estimated. The main benefit of this is that geotechnical

design using unsaturated soil parameters can be achieved without expensive and

time consuming unsaturated soil testing, which opens up the possibilities of using

unsaturated soil mechanics on live construction projects. In addition, the estimated

unsaturated shear strength of the soil can be validated in the field using conventional

shear strength test methods such as the hand shear vane test or the standard

penetration test. In the future, with the advancement of tensiometer techniques,

it is hoped that SWRC measurement will become available at UK laboratories and

regularly used during construction project site investigation.

This chapter has shown that lowering of the groundwater table due to dewatering can

lead to an increase in the shear strength of the soil. It was shown how the unsaturated

shear strength of the soil can be predicted in practice using an estimated SWRC derived

from standard laboratory tests. By modelling the measured SWRC, it was shown that all

three SWRCs can be used together to give the likely range in shear strength for a given

suction profile with reasonable confidence. The SWRC confidence limits were used to

provide a range of shear strength values due to the possible error in the SWRC prediction,

however it was noticed that the shear strength profile was not highly sensitive to the

large difference in suction between the two SWRC confidence limits. The PLAXIS 2D

analysis demonstrated how the methods and techniques presented in this Thesis can be

integrated into finite element modelling of a slope stability problem which is typical in

the construction industry. The results demonstrated how significant the increase in the

factor of safety of a slope can be as a result of applying unsaturated soil mechanics to

slope stability problems. The following chapter concludes the findings from this Thesis.
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Conclusions

As a soil dries out it becomes harder and stronger. When it gets wet it becomes softer and

weaker. People from across the globe, from construction workers, agricultural workers and

geotechnical engineers, to walkers and cyclists, have regularly experienced this phenomenon.

It is of particular significance to the construction industry however, where the soil on

construction sites is often churned up by machinery and difficult to work on. During

construction projects where a groundwater control system is required to lower the water

table, the soil dries out and becomes more workable. Despite this regular occurrence, the

mechanics and theory that govern this phenomenon are not well understood or utilised

by geotechnical engineers working within the construction industry. There has been a

significant effort by the research community to understand, formulate and apply this

understanding, however the regular use and application of this theory has not transferred

down to geotechnical engineers working within industry. There may be several reasons for

this, such as a lack of understanding and knowledge in the subject area, unsaturated soil

testing required may be too costly or time consuming for the project, engineers may be

more comfortable taking the more conservative approach, or there is a lack of tools and

procedures that help engineers apply these concepts in practice. The aim of this Masters

by Research project has been to investigate the relationship between water content, soil

suction and shear strength and the apply these concept to typical engineering problems

within the construction industry by developing a set of set of tools which can be used by a

geotechnical engineer in practice. This aim is summarised by the following key objectives:
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• To present a scientific foundation that describes the mechanics and theories of

unsaturated soil behaviour, with a focus on understanding how the shear strength

of a soil increases as the water content decreases.

• To develop a procedure that can be used by geotechnical engineers in practice

to estimate the soil water retention curve (SWRC) of a soil using standard site

investigation test data such as a particle size distribution and dry density, and then

quantify the possible error in the SWRC prediction.

• To develop a procedure that can be used by geotechnical engineers in practice to

estimate the increase in shear strength due to suction using a predicted SWRC, and

quantify the possible variability in shear strength due to the possible error on the

SWRC prediction.

The following paragraphs present the key findings of this research project within the

context of the overall research objectives. The Literature Review in Chapter 2 presents

an in depth review of the published science that links soil testing, soil suction, water

content and shear strength, and provides the foundation to the research work presented

in Chapters 3 to 5. The literature review aims to fulfil the first research objective. If

a geotechnical engineer aims to apply in practice the procedure developed during this

research project, they should first familiarise themselves with the content of Chapter 2.

The second aim of this research project was to develop a procedure for estimating

the SWRC of a soil using only standard site investigation laboratory tests. The SWRC

describes the fundamental behaviour of how a soil desaturates with respect to soil suction

(i.e negative pore-water pressure) and is therefore critical to the relationship between

shear strength and soil suction. The laboratory tests used to determine a SWRC are

time consuming and expensive and are rarely included within a site investigation study

for a construction project, therefore estimating the SWRC from standard laboratory test

results is usually the only feasible option. Chapter 3 presents the methodology undertaken

to develop this procedure, which estimates the SWRC of a soil using the particle size

distribution, dry density and Atterberg limit test results using three well documented

SWRC prediction methods presented within the literature (the Arya and Paris (1981)

Model (AP), the Modified Kovács Model (MK) (Aubertin et al., 2003) and the Perera

et al. (2005) Model (PM)). The novel aspect of this procedure is the calculation of 5% and
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95% confidence limits for the SWRC which give the likely range in error of the SWRC

prediction. The confidence limits for a SWRC prediction can be calculated using the 5th

and 95th percentiles of suction error (given in Tables B.1 to B.4 of Appendix B) which

were calculated as a result of undertaking statistical analysis on a dataset of 102 soils

from the UNSODA database (Nemes et al., 2001). For each soil in the dataset, the SWRC

was predicted using the available soil data and predictive methods and then compared to

the measured SWRC from the laboratory. This was presented on plots of suction error

(logarithmic error between the predicted and measured suction) vs degree of saturation.

By reviewing the plots of suction error vs degree of saturation, some key findings became

apparent:

• All three SWRC predictive methods provide reasonable estimates for the drying

SWRC when the soil is granular and does not contain a large spread of particle sizes

(i.e. clean sands). When the soil contains a larger proportion of fines, the SWRC

prediction may become less reliable in the low saturation range.

• The MK model was shown to be most effective at predicting the SWRC for poorly

graded sands, with the PM model most effective for well graded sands.

• For cohesive soils, only the Arya and Paris (1981) model could be studied due to

plasticity index being omitted from the UNSODA database. For purely clay soils,

the Arya and Paris (1981) performs reasonably well.

• Significant errors in the predicted SWRC arise when then soil contains a significant

portion of granular and fine particles, as is the case for sandy clay and clay loam

type soils. The Arya and Paris (1981) model performs poorly when this is the case,

with the spread in the suction error percentiles for cohesive soils highlighting this

fact.

Understanding the possible error in material properties and functions is crucial if new

concepts and techniques are to be adopted and applied in practice. The development

of the confidence limits together with the three SWRC predictive methods results in a

procedure which geotechnical engineers can use effectively in practice as a design tool. To

improve this tool further, confidence limits could be calculated fo each soil type of the

USCS or USDA classification system, however this would require analysis a large dataset
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of soils across the entire soil particle size spectrum.

The aim of Chapter 4 was to present a validation of the procedure presented in Chapter

3. For this validation two soil sample were used, the first is a sandy clay soil from the

Durham Lower Boulder Clay, UK (Toll et al., 2012) and the second is a clean sand from

the Vashon Advance Outwash Sand from Washington State, USA (Likos et al., 2010). The

chapter guides the reader through the procedure by applying it to these soil datasets. The

SWRC was predicted using all three SWRC methods as Plasticity Index was available for

the soil, however the confidence limits could only be calculated using the Arya and Paris

(1981) model. It was shown that the SWRC predicted by the AP model was significantly

offset from the measured SWRC, however it did remain within the calculated confidence

limits. Both the PM and MK models resulted in better predictions for the SWRC, with the

PM model giving the most accurate SWRC. Despite the poor prediction by the AP model,

it was shown that the confidence limits were effective at giving the likely range of error of

the AP model, and should be used during design to assess the sensitivity of the SWRC

to changes in shear strength. This analysis also demonstrated the value of predicting the

SWRC using all three methods despite the fact that the confidence limits could not be

calculated using the MK and PM models. If two of the predicted SWRCs are in good

agreement, and within the AP model confidence limits, this increases the likelihood that

the SWRC will lie within that range and reduces the risk of using an inaccurate SWRC

in practice. The analysis of the Vashon Advance Outwash Sand demonstrated that the

procedure is valid for clean sand soils, as the measured SWRC lies within the calculated

confidence limits for each of the three SWRC predictive models. Further analysis of a

greater range of sand type soils would be required to determine if the procedure is valid

for all sand soils. The validation of the procedure using two soils from within the literature

has demonstrated that this procedure can be used successfully by geotechnical engineers

who aim to use the SWRC in practice but do not have access to expensive and time

consuming laboratory testing.

The aim of Chapter 5 was to build on the procedure outlined in Chapter 3 and 4

such that the final part of the research objected can be fulfilled. Using the predicted

SWRC, Chapter 5 showed how the shear strength of a soil may increase as a consequence

of decreasing water content and increasing soil suction. This has been demonstrated

by applying the unsaturated Extended Mohr-Coulomb Equation (Fredlund et al., 1996;
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Vanapalli et al., 1996) to an example problem which commonly occurs within the construction

industry. The example problem involves the construction of an excavation with temporary

battered slopes, groundwater control wells located around the perimeter to lower the water

table and a surface covering to protect against erosion and prevent infiltration. All these

measures therefore result in a hydrostatic negative pore-water pressure profile above the

water table. Using the predicted SWRCs the additional shear strength due to suction

was calculated. Taking a vertical section behind the crest of the slope, and using the

Durham Lower Boulder Clay as an example, it was shown that the shear strength could

be increased between 8 and 18 kPa at 4.0m above the water table for each of the SWRCs.

It became apparent that the large range in suction between the AP model upper and lower

confidence limits resulted in a difference in shear strength of only 14kPa at 4.0m above

the water table. This shows that the change in shear strength due to suction may not be

highly sensitive to the SWRC, however further analysis would be required to understand

this relationship is greater detail, particularly for other soil types. Typically, it is common

practice for a geotechnical engineer to undertake a finite element model to assess the

stability of any engineered structure and check that it conforms to design standards such

as Eurocode 7. Chapter 5 showed how it is possible to implement the increase in shear

strength due to suction into a finite element model using PLAXIS 2D. The increase in

shear strength due to suction was modelled by simulating several layers above the water

table and specifying an additional effective cohesion value in each layer. It was shown that

by modelling the unsaturated shear strength using any of the predicted SWRCs, the factor

of safety on the slope stability was significantly improved. Using the AP model to estimate

the SWRC, which often under predicts the suction on the SWRC, there was a reasonable

improvement in factor of safety of 0.238 when using the Vanapalli et al. (1996) version of

the Extended Mohr-Coulomb equation. The SWRCs generated using the MK, PM and AP

(UCL) models were all in reasonable agreement, so when using the shear strength profiles

for each SWRCs, the calculated factors of safety were remarkably similar ranging from

1.497 to 1.502. This may be in part due to the fact that for the suction range observed

in the example case (0 to 80kPa), the predicted degree of saturation did not become less

than 98% for each model. This is still significant however as for most construction site

projects, 0kPa to 100kPa is likely to be the typical range of suction within the unsaturated

zone. Given there can still be a reasonable improvement in factor of safety when using

the lower confidence limit of the SWRC, it is recommended that a SWRC is taken on the
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conservative side of the predicted SWRC when used to estimate change in shear strength

due to suction for geotechnical designs such as temporary slopes. If there is doubt in

the quality of the prediction, the lower confidence limit of the SWRC should be adopted.

This is because the lower confidence limit side of the SWRC is still likley to result in

a favourable improvement in factor of safety over the alternative approach of ignoring

suction completely. It is the skill and responsibility of the geotechnical engineer to assess

the quality of the SWRC prediction and determine if the result is reasonable from the

soil information available. Where the predicted SWRC cannot be relied upon, then the

SWRC should be determined from laboratory testing if feasible.

The conclusion of Chapter 5 showed that the factor of safety of an engineered slope

can be significantly increased if the unsaturated shear strength of the soil is taken into

consideration. An important question to ask is why the effect of suction is so often

ignored by geotechnical engineers working across the globe. The combination of ignoring

suction effects and the application of partial factors on material properties required by the

Eurocode design standard can lead to significantly over-conservative and over-engineered

slope stabilisation designs, often at the expense of the end client. Clearly there are benefits

to ignoring the effects of suction, such as reducing the risk of slope failure, along with

requiring less knowledge of unsaturated soil mechanics to undertake the slope design.

There is clearly a balance to be made however, and the procedure developed during this

Masters by Research project aim to go some way to achieving that balance. By developing

a set of tools, which will later be developed in a simple set of Excel spreadsheets that

are free to use, understanding and applying the topic becomes more achievable. The

calculation of SWRC confidence limits enables the likely range in error of the SWRC to be

assessed and the effect this may have on slope stability can be reviewed. The procedure

also only requires standard laboratory soil tests, such as the particle size distribution

and triaxial shear strength testing, meaning no expensive laboratory tests are required.

Clearly if these tests can be undertaken they should, but this should not be a barrier to

developing these concepts into the tool set of a geotechnical engineer. The engineering

community has aimed to make unsaturated soil mechanics more accessible within the

industry, with the works by Fredlund et al. (2012) providing the most comprehensive study

on the subject. Continually advancing software packages such as PLAXIS and Soil Vision

(Bentley Systems, 2020) make this area more accessible every day, but these can come at
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considerable cost and may not be regularly used by engineering companies to justify the

expense. The procedures and tools developed during this research project are not perfect

and will require further development, however they can add a small but valuable set of

tools to a geotechnical engineer working within the construction industry who wishes to

apply the concepts of unsaturated soil mechanics to the design of geotechnical structures.
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173–182, 2003b.

W. J. Likos, A. Wayllace, J. Godt, and N. Lu. Modified direct shear apparatus for

unsaturated sands at low suction and stress. Geotechnical Testing Journal, 33(4), 2010.

May 5, 2021



REFERENCES 142
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clay. Géotechnique, 53(1):93–103, 2003.

D. G. Toll, J. Mendes, D. Gallipoli, S. Glendinning, and P. N. Hughes. Investigating

the impacts of climate change on slopes: Field measurements. Geological Society

Engineering Geology Special Publication, 26(1):151–161, 2012.

D. G. Toll, S. D. Lourenço, and J. Mendes. Advances in suction measurements using high

suction tensiometers. Engineering Geology, 165:29–37, 2013.

D. G. Toll, J. D. Asquith, A. Fraser, A. A. Hassan, G. Liu, S. D. Lourenço, J. Mendes,

T. Noguchi, P. Osinski, and R. Stirling. Tensiometer techniques for determining

soil water retention curves. Unsaturated Soil Mechanics from Theory to Practice -

Proceedings of the 6th Asia-Pacific Conference on Unsaturated Soils, pages 15–22, 2015.

D. G. Toll, J. D. Asquith, P. N. Hughes, and P. Osinski. Soil Water Retention Behaviour

of a Sandy Clay Fill Material. Procedia Engineering, 143:308–314, 2016.

May 5, 2021



REFERENCES 146

S. W. Tyler and S. W. Wheatcraft. Application of Fractal Mathematics to Soil Water

Retention Estimation. Soil Science Society of America Journal, 53(4):987–996, 1989.

M. T. van Genuchten. A Closed-form Equation for Predicting the Hydraulic Conductivity

of Unsaturated Soils. Soil Science Society of America Journal, 44(5):892–898, 1980.

S. K. Vanapalli and D. G. Fredlund. Comparison of Different Procedures to Predict

Unsaturated Soil Shear Strength. Advances in Unsaturated Geotechnics, 40510(July

2000):195–209, 2000.

S. K. Vanapalli, D. G. Fredlund, D. E. Pufahl, and A. W. Clifton. Model for the prediction

of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3):

379–392, 1996.

S. K. Vanapalli, W. S. Sillers, and M. D. Fredlund. The meaning and relevance of residual

state to unsaturated soils. Proceedings of the 51st Canadian Geotechnical Conference,

(October 1998):1–8, 1998.

S. K. Vanapalli, D. G. Fredlund, and D. E. Pufahl. The influence of soil structure and

stress history on the soil-water characteristics of a compacted till. Géotechnique, 49(2):
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Appendix A

Regression Analysis Results Data

Tables

A.1 PSD Curve Fit Equation

Equation from Fredlund et al. (2000). See Chapter 3 for description of equation parameters.

Pp(d) =
1{

ln
[
e+ (a/d)n

]}m ×
{

1−

[
ln(1 + dr/d)

ln(1 + dr/dm)

]7}
(A.1.1)
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A.2 PSD Regression Analysis Results

Soil Code USDA Textural Class a n m dr R2

1014 Sand 0.23 3.26 1.29 5.68E+06 99.90

1020 Sand 1.02 25.85 0.53 4.49E-04 99.85

1021 Sand 0.96 13.07 0.57 4.31E-05 99.61

1022 Sand 1.00 19.16 0.53 1.53E+05 99.80

1041 Sand 0.22 4.53 1.37 3.20E+07 99.89

1042 Sand 0.21 4.65 1.61 1.20E+09 99.89

1043 Sand 0.23 4.65 1.36 7.74E+03 99.82

1050 Sand 0.62 4.87 1.03 6.22E-01 100.00

1052 Sand 0.76 4.80 0.98 1.52E-07 99.86

1053 Sand 0.74 4.46 1.34 2.69E-07 99.90

1054 Sand 0.73 4.23 1.71 5.20E-08 99.93

1060 Sand 0.44 3.01 1.50 1.59E-07 99.89

1061 Sand 0.49 3.16 1.27 3.28E-09 99.87

1063 Sand 0.50 2.64 1.57 2.11E-06 99.80

1070 Sand 0.53 2.16 1.57 1.06E-11 99.63

1071 Sand 0.70 2.56 1.28 2.51E-08 99.65

1072 Sand 0.79 2.41 1.29 8.94E-09 99.26

1073 Sand 0.89 2.71 1.45 3.91E-07 99.25

1074 Sand 0.83 2.76 1.58 2.09E-07 99.51

1075 Sand 0.78 3.54 1.24 1.12E-07 99.79

1110 Sand 0.30 3.09 1.42 5.24E+04 99.76

1123 Clay Loam 0.20 1.62 0.50 2.15E+03 99.22

1134 Sandy Clay 0.52 3.11 0.33 2.87E-05 99.71

1135 Sandy Clay 0.58 2.93 0.34 1.29E-05 99.12

1140 Sand 0.26 2.58 1.91 7.01E+03 99.81

1141 Sand 0.27 2.76 1.60 4.12E+05 99.80

1142 Sand 0.29 2.74 1.35 5.03E+05 99.81

1162 Clay 1.05 3.39 0.20 6.52E+02 99.94

1163 Clay 1.05 3.05 0.23 1.47E+02 99.97

1172 Clay Loam 0.19 3.84 0.33 8.79E-03 100.00
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1173 Clay Loam 0.23 2.27 0.38 2.42E+01 100.00

1180 Clay Loam 0.17 3.52 0.35 1.31E-04 100.00

1301 Clay Loam 0.12 3.16 0.45 2.46E-03 100.00

1400 Clay 0.02 1.38 0.38 4.61E+01 99.44

1460 Sand 0.64 10.57 1.15 2.12E-07 99.99

1462 Sand 0.33 5.73 1.48 4.43E+04 99.97

1463 Sand 0.32 8.29 1.26 8.94E-07 99.99

1464 Sand 0.21 49.26 0.65 9.76E-05 99.97

1465 Sand 0.13 3.69 1.33 2.85E+05 99.95

1466 Sand 0.11 6.99 1.60 2.37E+04 99.99

1467 Sand 0.54 3.46 1.05 6.18E-07 99.87

2220 Sand 0.02 0.94 10.00 2.06E+06 99.13

2221 Sand 0.13 0.87 4.19 7.50E+03 98.45

2310 Sand 0.29 3.83 2.31 4.54E-03 99.97

2360 Clay 0.10 1.15 0.46 9.93E+02 99.73

2361 Clay 0.02 1.32 0.45 3.04E+01 99.58

2362 Clay 0.01 1.25 0.43 7.70E+03 99.90

2390 Clay Loam 0.14 3.11 0.45 2.53E-03 100.00

2391 Clay Loam 0.11 3.10 0.44 1.03E-03 100.00

2392 Clay Loam 0.07 2.68 0.47 4.21E-03 100.00

2393 Clay Loam 0.11 5.32 0.41 1.27E+00 100.00

2430 Clay Loam 0.08 4.58 0.41 1.20E-05 100.00

2431 Clay Loam 0.07 2.79 0.47 1.35E-03 100.00

2433 Clay Loam 0.10 2.88 0.45 2.70E-03 100.00

2740 Clay Loam 0.09 2.95 0.50 7.69E-04 100.00

2743 Clay Loam 0.07 4.46 0.42 4.43E-05 100.00

3031 Clay Loam 0.03 0.67 1.24 1.39E-07 98.10

3032 Clay Loam 0.12 0.41 1.39 2.33E-10 95.51

3033 Clay Loam 0.01 0.32 2.23 5.67E+01 96.41

3070 Sand 0.15 5.37 3.24 7.64E-01 100.00

3132 Sand 0.27 4.75 1.07 1.17E-06 99.99

3141 Sand 0.28 5.01 1.09 3.29E+03 99.99
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3142 Sand 0.26 4.35 1.26 1.20E-05 99.98

3143 Sand 0.27 5.35 1.17 9.33E-09 99.98

3144 Sand 0.27 5.60 1.26 3.13E+01 99.99

3153 Sand 0.28 4.47 1.03 2.21E+02 99.99

3154 Sand 0.27 4.87 1.05 5.94E-07 99.99

3155 Sand 0.30 5.04 1.10 4.17E+03 99.99

3162 Sand 0.17 2.78 1.53 3.49E+03 99.91

3163 Sand 0.16 3.42 1.46 3.42E+04 99.80

3164 Sand 0.15 2.88 1.89 2.13E+04 99.94

3165 Sand 0.23 2.22 1.67 1.88E-05 99.87

3172 Sand 0.17 3.93 1.36 1.34E+04 99.90

3173 Sand 0.18 4.29 1.30 6.85E-06 99.90

3174 Sand 0.30 3.47 1.29 4.51E+02 99.86

3175 Sand 0.36 7.89 1.37 3.09E+03 99.99

3181 Sand 0.20 3.22 1.29 2.11E-05 99.83

3182 Sand 0.26 19.94 0.75 3.15E-04 99.98

3183 Sand 0.27 10.12 0.98 1.70E-04 99.99

3206 Sand 0.52 6.55 1.08 3.35E+01 99.99

3214 Silt 0.02 20.45 0.53 2.69E+03 100.00

3340 Sand 0.29 2.82 2.11 2.11E+05 99.77

4001 Sand 0.18 6.51 1.48 3.57E+03 100.00

4440 Sand 0.27 7.60 1.42 3.51E+06 99.96

4441 Sand 0.24 8.06 1.61 1.59E+07 99.94

4442 Sand 0.30 3.85 2.29 7.27E+00 99.96

4443 Sand 0.25 5.09 4.88 1.92E+02 100.00

4444 Sand 0.36 4.08 1.71 1.51E+01 99.93

4445 Sand 0.28 4.55 1.52 2.99E-04 99.62

4520 Sand 0.17 2.72 4.77 4.78E+03 99.98

4521 Sand 0.17 2.72 4.77 4.78E+03 99.98

4522 Sand 0.17 2.72 4.77 4.78E+03 99.98

4523 Sand 0.17 2.72 4.77 4.78E+03 99.98

4650 Sand 0.44 4.21 1.26 5.50E+03 99.97
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4651 Sand 0.41 3.03 1.64 3.09E-02 99.99

4660 Sand 0.45 4.86 1.01 5.94E-06 99.99

4661 Sand 0.45 5.49 1.04 1.88E-09 100.00

4670 Silt 0.03 5.28 0.91 3.16E+03 99.99

4680 Clay 0.06 1.54 0.43 2.35E+01 99.97

4681 Clay 0.04 1.10 0.50 8.92E-06 99.68

4810 Sand 0.60 6.32 1.27 4.11E+01 99.88

4941 Sand 0.70 5.38 0.64 8.92E+03 99.84

Table A.1: Best-fit curve parameters for PSD equation

(Fredlund et al., 2000) determined by regression analysis of

raw PSD data.
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A.3 SWRC Cure Fit Equation

Equation from Fredlund and Xing (1994). See Chapter 3 for description of equation

parameters.

θ(ψ) = C(ψ)
θs{

ln
[
e+ (ψ/a)n

]}m (A.3.2)

where

C(ψ) =
ln(1 + ψ/ψr)

ln[1 + (106/ψr)]
(A.3.3)

A.4 SWRC Regression Analysis Results

Soil Code USDA Textural Class θs a n m ψr R2

1014 Sand 0.36 2.71 3.62 0.94 1.44E+02 99.93

1020 Sand 0.75 2.04 15.62 0.25 1.00E+04 99.90

1021 Sand 0.37 0.77 2.40 0.56 1.58E+01 99.58

1022 Sand 0.37 0.75 2.19 0.71 1.67E+01 99.63

1041 Sand 0.32 3.23 5.85 0.67 1.00E+04 99.84

1042 Sand 0.33 3.30 5.77 0.77 1.00E+04 99.87

1043 Sand 0.31 3.76 6.59 0.84 1.00E+04 99.88

1050 Sand 0.36 1.87 5.82 0.61 1.00E+04 99.54

1052 Sand 0.35 1.13 5.84 0.63 1.00E+04 99.49

1053 Sand 0.34 1.15 5.08 0.87 1.00E+04 98.92

1054 Sand 0.35 1.10 6.52 0.91 1.00E+04 99.44

1060 Sand 0.35 2.00 5.89 0.63 1.00E+04 99.85

1061 Sand 0.33 1.84 7.35 0.65 1.00E+04 99.70

1063 Sand 0.35 1.70 5.79 0.78 1.00E+04 99.47

1070 Sand 0.45 1.38 3.09 0.80 1.00E+04 99.74

1071 Sand 0.30 1.71 5.76 0.59 1.00E+04 99.66

1072 Sand 0.32 1.31 3.41 0.80 1.00E+04 99.61
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1073 Sand 0.31 1.30 3.65 1.00 1.00E+04 99.61

1074 Sand 0.35 1.03 2.59 1.29 1.00E+04 99.79

1075 Sand 0.35 0.97 3.05 0.88 1.00E+04 99.16

1110 Sand 0.30 3.48 7.61 0.39 1.00E+04 98.43

1123 Clay Loam 0.37 43.29 0.48 0.37 1.00E+04 99.34

1134 Sandy Clay 0.37 65.86 2.75 0.14 1.00E+04 96.85

1135 Sandy Clay 0.41 63.39 3.54 0.18 1.00E+04 98.23

1140 Sand 0.37 3.05 7.01 0.60 1.00E+04 99.89

1141 Sand 0.29 3.55 7.32 0.45 1.00E+04 99.59

1142 Sand 0.24 4.17 11.09 0.22 2.58E+00 99.87

1162 Clay 0.41 2.29 1.89 0.10 3.15E+03 87.81

1163 Clay 0.40 1.77 1.81 0.10 2.24E+03 96.10

1172 Clay Loam 0.54 0.10 0.95 0.17 8.70E+02 99.27

1173 Clay Loam 0.48 2.16 0.90 0.15 1.00E+04 99.37

1180 Clay Loam 0.52 0.10 1.82 0.20 5.60E+02 99.80

1301 Clay Loam 0.37 3.66 2.12 0.17 1.91E+01 96.72

1400 Clay 0.46 67.55 0.59 0.49 1.00E+04 99.91

1460 Sand 0.49 3.44 50.00 0.56 7.82E+02 73.69

1462 Sand 0.51 2.53 7.99 0.74 8.22E+03 99.99

1463 Sand 0.38 3.59 50.00 0.47 3.81E+01 100.00

1464 Sand 0.36 3.74 20.80 0.47 6.04E+00 99.91

1465 Sand 0.32 4.89 1.68 1.10 1.05E+03 99.95

1466 Sand 0.38 5.79 8.46 0.83 1.00E+04 99.87

1467 Sand 0.48 1.32 0.52 1.88 2.13E+01 99.82

2220 Sand 0.32 7.36 10.04 0.46 2.90E+00 99.06

2221 Sand 0.31 5.36 6.25 0.62 1.99E+00 99.11

2310 Sand 0.36 3.65 15.06 0.96 1.00E+04 99.91

2360 Clay 0.50 5.03 0.94 0.20 1.65E+03 99.72

2361 Clay 0.56 4.86 1.05 0.10 4.44E+02 99.93

2362 Clay 0.56 133.07 0.98 0.28 1.00E+04 99.70

2390 Clay Loam 0.44 5.53 2.06 0.33 7.67E+01 99.94

2391 Clay Loam 0.43 3.26 1.48 0.35 1.75E+01 99.92
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2392 Clay Loam 0.43 2.93 1.26 0.36 1.57E+01 99.84

2393 Clay Loam 0.35 4.99 4.16 0.53 7.29E+00 99.95

2430 Clay Loam 0.44 3.64 1.88 0.27 2.36E+01 99.95

2431 Clay Loam 0.43 2.75 1.95 0.22 1.36E+01 99.62

2433 Clay Loam 0.36 2.92 1.20 0.40 1.00E+04 99.91

2740 Clay Loam 0.70 1.33 1.18 0.43 1.01E+02 99.70

2743 Clay Loam 0.70 1.35 1.42 0.37 1.03E+02 99.96

3031 Clay Loam 0.54 1.07 0.72 0.29 1.00E+04 99.80

3032 Clay Loam 0.55 3.29 0.81 0.40 1.00E+04 99.76

3033 Clay Loam 0.57 2.92 1.94 0.34 1.00E+04 99.65

3070 Sand 0.31 4.04 5.39 6.79 1.00E+04 98.63

3132 Sand 0.30 2.81 5.16 0.57 1.00E+04 99.84

3141 Sand 0.34 3.01 3.34 0.59 1.30E+02 99.80

3142 Sand 0.36 2.65 4.94 0.57 1.01E+02 99.88

3143 Sand 0.34 3.02 7.22 0.61 1.00E+04 99.86

3144 Sand 0.34 3.11 7.49 0.55 1.00E+04 99.82

3153 Sand 0.40 2.62 4.64 0.62 1.00E+04 99.92

3154 Sand 0.40 2.95 3.96 0.72 1.00E+04 99.96

3155 Sand 0.37 2.78 7.07 0.59 1.00E+04 99.85

3162 Sand 0.40 4.08 6.62 0.54 1.00E+04 99.84

3163 Sand 0.40 4.52 5.43 0.65 1.00E+04 99.35

3164 Sand 0.38 4.84 7.40 0.58 1.00E+04 99.22

3165 Sand 0.39 3.67 4.90 0.59 1.00E+04 99.71

3172 Sand 0.36 4.54 6.15 0.56 1.00E+04 99.70

3173 Sand 0.34 4.96 4.40 0.50 1.00E+04 99.80

3174 Sand 0.37 4.71 3.52 0.46 1.00E+04 99.75

3175 Sand 0.32 2.91 50.00 0.47 1.00E+04 99.94

3181 Sand 0.41 4.75 8.55 0.55 1.00E+04 99.57

3182 Sand 0.38 3.07 9.48 0.44 1.20E+06 99.64

3183 Sand 0.37 3.68 61.43 0.31 7.20E+07 99.98

3206 Sand 0.33 3.47 7.65 0.17 5.00E+00 99.34

3214 Silt 0.61 3.08 3.25 0.06 8.80E+01 99.69

May 5, 2021



A.4. SWRC Regression Analysis Results 156

3340 Sand 0.31 1.99 4.92 0.75 4.28E+03 99.27

4001 Sand 0.34 5.09 2.08 1.11 1.00E+04 99.88

4440 Sand 0.39 4.32 11.71 0.48 3.14E-01 99.58

4441 Sand 0.33 4.25 4.14 2.05 1.00E+04 98.39

4442 Sand 0.33 3.97 10.71 0.53 1.00E-01 94.93

4443 Sand 0.31 2.04 9.32 1.08 4.05E+00 99.69

4444 Sand 0.29 3.75 6.53 0.82 1.00E+04 99.47

4445 Sand 0.30 5.23 5.28 1.16 1.00E+04 99.14

4520 Sand 0.35 3.99 7.80 0.95 1.00E+04 99.73

4521 Sand 0.35 3.99 7.80 0.95 1.00E+04 99.73

4522 Sand 0.35 4.66 37.84 0.56 8.83E+03 99.57

4523 Sand 0.35 4.66 37.84 0.56 8.79E+03 99.57

4650 Sand 0.38 2.10 4.76 0.62 7.71E-01 99.93

4651 Sand 0.35 1.63 2.63 0.72 1.00E+04 99.03

4660 Sand 0.45 0.79 1.09 1.01 1.00E+04 98.94

4661 Sand 0.41 0.98 1.65 1.08 1.00E+04 99.57

4670 Silt 0.47 73.07 6.83 0.33 5.79E-01 99.60

4680 Clay 0.55 31.85 0.78 0.45 6.21E+03 99.91

4681 Clay 0.58 677.52 0.53 1.22 3.61E+03 99.80

4810 Sand 0.41 2.04 11.31 0.71 1.00E+04 99.86

4941 Sand 0.37 4.96 3.13 9.36 1.00E-01 99.70

Table A.2: Best-fit curve parameters for SWRC equation

(Fredlund and Xing, 1994) determined by regression analysis

of raw SWRC data.
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B.1 Calculated Suction Error Percentiles for the Arya and

Paris (1981) Model - Granular Soils

Saturation, S 5th Percentile Mean Suction Error 95th Percentile

0.95 -0.54 0.00 0.92

0.90 -0.34 0.08 0.82

0.85 -0.26 0.10 0.57

0.80 -0.20 0.13 0.52

0.75 -0.15 0.13 0.52

0.70 -0.18 0.15 0.46

0.65 -0.15 0.15 0.44

0.60 -0.20 0.15 0.43

0.55 -0.24 0.15 0.44

0.50 -0.28 0.14 0.41

0.45 -0.34 0.11 0.41

0.40 -0.52 0.08 0.40

0.35 -0.68 0.03 0.36

0.30 -0.96 -0.04 0.38

0.25 -1.35 -0.16 0.37

0.20 -1.97 -0.35 0.34

0.15 -2.48 -0.65 0.30

0.10 -3.14 -1.15 0.18

0.05 -2.86 -1.48 0.10

Table B.1: Calculated mean suction error and 5th and 95th percentiles for the analysis of

the 75 No. granular soils using the Arya and Paris (1981) model
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B.2 Calculated Suction Error Percentiles for the Arya and

Paris (1981) Model - Cohesive Soils

Saturation, S 5th Percentile Mean Suction Error 95th Percentile

0.95 -1.57 0.22 1.17

0.90 -1.80 0.00 1.06

0.85 -1.64 -0.06 0.99

0.80 -1.96 -0.17 0.92

0.75 -2.34 -0.30 0.85

0.70 -2.54 -0.40 0.77

0.65 -2.51 -0.48 0.71

0.60 -2.38 -0.54 0.71

0.55 -2.38 -0.53 0.77

0.50 -2.24 -0.47 0.73

0.45 -1.91 -0.36 0.77

0.40 -1.36 -0.16 1.04

0.35 -0.97 0.18 1.28

0.30 -0.76 0.61 1.76

0.25 0.15 1.26 2.26

0.20 0.58 1.72 2.62

0.15 1.54 1.88 2.75

0.10 1.29 1.65 2.50

0.05 1.91 1.91 1.91

Table B.2: Calculated mean suction error and 5th and 95th percentiles for the analysis of

the 27 No. cohesive soils using the Arya and Paris (1981) model
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B.3 Calculated Suction Error Percentiles for the Modified

Kovács model (Aubertin et al., 2003) - Granular Soils

Saturation, S 5th Percentile Mean Suction Error 95th Percentile

0.95 -0.28 0.22 0.84

0.90 -0.24 0.17 0.71

0.85 -0.21 0.14 0.61

0.80 -0.21 0.12 0.51

0.75 -0.22 0.11 0.41

0.70 -0.21 0.10 0.39

0.65 -0.19 0.09 0.38

0.60 -0.21 0.08 0.36

0.55 -0.22 0.07 0.28

0.50 -0.24 0.05 0.27

0.45 -0.26 0.02 0.24

0.40 -0.34 -0.01 0.22

0.35 -0.54 -0.06 0.21

0.30 -0.82 -0.13 0.17

0.25 -1.30 -0.24 0.13

0.20 -2.08 -0.43 0.15

0.15 -2.52 -0.70 0.13

0.10 -3.04 -1.09 0.21

0.05 -2.60 -1.16 0.65

Table B.3: Calculated mean suction error and 5th and 95th percentiles for the analysis of

the 75 No. granular soils using the MK model (Aubertin et al., 2003).
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B.4 Calculated Suction Error Percentiles for the Perera Model

(Perera et al., 2005) - Granular Soils

Saturation, S 5th Percentile Mean Suction Error 95th Percentile

0.95 -0.29 0.22 0.95

0.90 -0.26 0.18 0.78

0.85 -0.24 0.15 0.71

0.80 -0.22 0.14 0.66

0.75 -0.25 0.12 0.60

0.70 -0.34 0.11 0.54

0.65 -0.38 0.10 0.49

0.60 -0.38 0.09 0.46

0.55 -0.38 0.08 0.44

0.50 -0.37 0.07 0.44

0.45 -0.41 0.06 0.45

0.40 -0.44 0.04 0.46

0.35 -0.52 0.02 0.50

0.30 -0.69 -0.01 0.56

0.25 -1.14 -0.06 0.64

0.20 -1.55 -0.14 0.75

0.15 -2.21 -0.28 0.92

0.10 -2.29 -0.54 0.90

0.05 -1.90 -0.72 0.66

Table B.4: Calculated mean suction error and 5th and 95th percentiles for the analysis of

the 75 No. granular soils using the Perera model
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Digital Appendix: PSD and

SWRC Graphs

Figures C1 to C301 can seen by following the web link below.

http://www.ogi.co.uk/wp-content/uploads/2020/12/GF-MScR-Appendix-C-Digital-1.pdf
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