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Abstract. A wealth of research has focused on elucidating the key controls on mass loss 

from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in 

relation to the drivers of marine-terminating outlet glacier change. Despite the burgeoning 

availability of medium resolution satellite data, the manual methods traditionally used to 

monitor change of marine-terminating outlet glaciers from satellite imagery are time-

consuming and can be subjective, especially where a mélange of icebergs and sea-ice exists 

at the terminus. To address this, recent advances in deep learning applied to image 

processing have created a new frontier in the field of automated delineation of glacier 

termini. However, at this stage, there remains a paucity of research on the use of deep 

learning for pixel-level semantic image classification of outlet glacier environments. This 

project develops and tests a two-phase deep learning approach based on a well-established 

convolutional neural network (CNN) called VGG16 for automated classification of Sentinel-

2 satellite images. The novel workflow, termed CNN-Supervised Classification (CSC), was 

originally developed for fluvial settings but is adapted here to produce multi-class outputs 

for test imagery of glacial environments containing marine-terminating outlet glaciers in 

eastern Greenland. Results show mean F1 scores up to 95% for in-sample test imagery and 

93% for out-of-sample test imagery, with significant improvements over traditional pixel-

based methods such as band ratio techniques. This demonstrates the robustness of the deep 

learning workflow for automated classification despite the complex characteristics of the 

imagery. Future research could focus on the integration of deep learning classification 

workflows with platforms such as Google Earth Engine (GEE), to classify imagery more 

efficiently and produce datasets for a range of glacial applications without the need for 

substantial prior experience in coding or deep learning. 
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1 Introduction 

1.1 Significance of Ice Sheets and Marine-Terminating Outlet Glaciers 

The Greenland and Antarctic ice sheets act as large reservoirs which store 7.4 m and 58 m 

of potential sea-level rise, respectively (Fretwell et al., 2013; Morlighem et al., 2017). 

Alongside this, their interconnections with global atmospheric, oceanic, and biological 

systems makes them particularly important to monitor (Hawkings et al., 2014; Beaird et al., 

2018; Cape et al., 2019; Catania et al., 2020). Observations show that the Earth’s ice sheets 

have been losing mass at an increasing rate over the past several decades in response to 

climate forcing (Rignot et al., 2008, 2011, 2019; Csatho et al., 2014; Velicogna et al., 2014; 

Shepherd et al., 2018; Mouginot et al., 2019). This has resulted in sea-level contributions of 

10.8 ± 0.9 mm from the Greenland Ice Sheet (GrIS), and 7.6 ± 3.9 mm from the Antarctic 

Ice Sheet (AIS) since 1992 (Shepherd et al., 2018, 2020). Moreover, mass loss has 

predominantly been concentrated at the ice sheet margins, where acceleration, thinning and 

retreat of marine-terminating outlet glaciers has been initiated and subsequently transmitted 

to the interior of the ice sheets (Nick et al., 2009; Felikson et al., 2017). According to mass 

balance reconstructions between 1972 and 2018, ice discharge (by iceberg calving) from 

marine-terminating glaciers alone caused ~66% of mass loss from the GrIS (Mouginot et al., 

2019). Similarly, accelerated ice discharge has had a considerable impact on mass loss 

elsewhere in the Arctic (Carr et al., 2017) and in several regions of Antarctica (Joughin et 

al., 2003; Rignot, 2008; Rignot et al., 2008; Miles et al., 2013, 2017; Cook et al., 2014; 

Mouginot et al., 2014). As a result, a wealth of research has focused on elucidating the key 

drivers of marine-terminating outlet glacier retreat, acceleration and thinning (Vieli and 

Nick, 2011; Bevan et al., 2012; Rignot et al., 2014; Carr et al., 2017; Catania et al., 2018; 

Miles et al., 2021).  

The terminus regions of marine-terminating outlet glaciers provide an important interface 

between ice and the ocean-climate system. Furthermore, since dynamic changes in ice 

discharge have been linked to terminus retreat (Vieli and Nick, 2011; Hill et al., 2018), 

terminus position monitoring is frequently used as a key method to analyse the driving 

mechanisms of dynamic outlet glacier change (Lea et al., 2014). Resulting observations have 

shown that marine-terminating outlet glaciers are sensitive to internal and external drivers 

over periods of weeks to months (Howat et al., 2005; Carr et al., 2013; King et al., 2018). 

These drivers include: 1) submarine melt (Sutherland et al., 2019), induced by both localised 

runoff-driven plumes (Carroll et al., 2016), and interaction with warm ocean currents 

(Chauché et al., 2014; Jenkins et al., 2010); 2) reduced buttressing due to loss of sea-ice and 



2 

 

ice mélange (a mixture of sea-ice and icebergs) (Amundson et al., 2010; Miles et al., 2017; 

Robel, 2017; Bevan et al., 2019); 3) changes in fjord and bed geometry (Bunce et al., 2018; 

Catania et al., 2018); and 4) temporary drainage changes at the ice-bed interface (Juan et al., 

2010; Tuckett et al., 2019). In addition, these mechanisms are heterogeneous across local 

and regional scales (Carr et al., 2017; Shepherd et al., 2020), with significant spatial 

variability in thinning (Porter et al., 2018), velocity (Bevan et al., 2012), and terminus retreat 

(Motyka et al., 2017) which remains largely unexplained (Catania et al., 2018).  

Due to the range of temporal scales on which these processes operate and influence outlet 

glacier behaviour, a growing body of literature has focused on measuring glacier termini at 

high temporal resolution (from daily to monthly satellite data) to measure seasonal changes 

as well as inter-annual and decadal trends (Fried et al., 2018; King et al., 2018). However, 

since mapping the ice fronts of marine-terminating outlet glaciers continues to rely on 

labour-intense and time-consuming manual digitisation (e.g. Miles et al., 2016, 2018; Carr 

et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020), 

datasets tend to be spatially or temporally constrained (Seale et al., 2011). Thus, while recent 

efforts to examine seasonal changes in outlet glacier termini have helped elucidate our 

understanding of these drivers, the spatio-temporal limits of datasets resulting from 

methodological drawbacks are problematic, especially when extrapolating results for use in 

data-driven ice sheet models (Catania et al., 2020).  

 

1.2 Challenges of Mapping Marine-Terminating Glaciers 

Well-established, semi-automated techniques such as image band ratios which are used to 

map mountain glaciers or ice caps for glacier inventories (e.g. Bolch et al., 2010; Frey et al., 

2012; Rastner et al., 2012; Guo et al., 2015; Stokes et al., 2018) are not suitable for mapping 

marine-terminating glaciers. This is largely due to the presence of seasonally variable areas 

of a spectrally similar mélange of sea-ice and icebergs near their termini (e.g. Amundson et 

al., 2020), where the use of locally varying and image-dependent threshold values produces 

inadequate results. Consequently, even manual digitisation can be challenging, and often 

requires prior expertise. Likewise, the time-consuming nature of manual digitisation, and the 

growing requirement of high-resolution datasets, highlights the rising need for more efficient 

methods to quantify glacier change in an era of increasingly available satellite data.  
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1.3 Automated Mapping of Marine-Terminating Glaciers 

To confront the challenge of manual digitisation, some automated pixel-based techniques 

for extracting outlet glacier termini have been developed, exemplified in a small number of 

studies (Sohn and Jezek, 1999; Liu and Jezek, 2004a, b; Seale et al., 2011; Krieger and 

Floricioiu, 2017; Yu et al., 2019). These methods primarily use semantic segmentation, and 

edge detection image processing tools (described in Chapter 2.2). However, they require 

substantial pre- and post-processing, and have only been used for terminus delineation in a 

few studies (e.g. Joughin et al., 2008; Christoffersen et al., 2012). In general, techniques 

which rely solely on individual pixel values often miss contextual, class representative 

shapes and textures. Moreover, in land cover classification, traditional pixel-based 

approaches (e.g. Maximum Likelihood) commonly result in noisy classifications (Blaschke 

et al., 2000; Li et al., 2014). More recently, deep learning methods have been developed to 

overcome these drawbacks and utilise contextual data to extract the boundaries between 1) 

glaciers/ice shelves and ocean in Antarctica (Baumhoer et al., 2019), and 2) marine-

terminating outlet glaciers and mélange in Greenland (Mohajerani et al., 2019; Zhang et al., 

2019) (see Chapter 2.3). While these methods are incredibly useful for extracting glacier 

terminus outlines and quantifying fluctuations over time, they rely on binary classifications 

and perhaps overlook the ability of deep learning methods to create highly accurate multi-

class outputs (i.e., not just ice and no-ice areas).  

Detecting multiple semantic classes in a marine-terminating glacial landscape in 

combination with terminus position delineation may provide a greater holistic understanding 

of processes and interactions controlling outlet glacier behaviour. This would be particularly 

useful considering the wide range of processes occurring at the interfaces between ice, ocean, 

and atmosphere, which vary on both local and regional scales (Csatho et al., 2014; King et 

al., 2018; Catania et al., 2020). By capturing multiple classes in a landscape, the outputs 

could be used to quantify changes in a specific class over a range of timescales. For instance, 

to monitor changes in the area and extent of mélange (Foga et al., 2014; Moon et al., 2015; 

Cassotto et al., 2015), which has been found to impact the advance and retreat of marine-

terminating outlet glaciers at seasonal timescales (Howat et al., 2010; Carr et al., 2013; Todd 

and Christoffersen, 2014). Similarly, classifying water with and without icebergs may help 

elucidate spatial and temporal patterns of iceberg flux and the resulting impacts on fjord 

water properties and circulation (Moon et al., 2018). This is important because changes in 

fjord water properties may influence the temporal and spatial distribution of submarine melt 

on outlet glaciers and have potential implications for glacier retreat (Moon et al., 2018; 
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Motyka et al., 2011). Alternatively, in the same way that terminus position delineation has 

relied on detection of class boundaries in previous work (e.g., Baumhoer et al., 2019; Zhang 

et al., 2019), multi-class outputs would permit monitoring of changes in other class 

boundaries. For example, to detect changes in snowline position and quantify ablation area 

changes (Noël et al., 2019). Additionally, classification at the scale of overall landcover 

types would allow the isolation of a specific target class for detection of smaller scale 

features such as supraglacial lakes (Hochreuther et al., 2021) and subglacial plumes (How 

et al., 2017; Everett et al., 2018). Thus, multi-class outputs could provide the opportunity to 

monitor several glacial processes concurrently and understand how they interact in relation 

to outlet glacier behaviour at the scale of an entire landscape. 

The use of deep learning in glaciology is still in its infancy (Figure 1.1), but given the 

abundance of available satellite imagery, it could be a significant aid in the automation of 

image processing of marine-terminating glacial settings. Deep learning has been used 

successfully in other disciplines to classify entire landscapes or image scenes to a high level 

of accuracy (Sharma et al., 2017; Carbonneau et al., 2020a). However, image classification 

of entire marine-terminating outlet glacier environments has not yet been tested using deep 

learning. Apart from the clear potential to reduce labour-intensive manual methods, it could 

facilitate automated analysis in numerous research areas. In other words, aside from terminus 

delineation, a method which quickly produces accurate multi-class image classifications of 

complex and seasonally variable marine-terminating outlet glacier environments could 

provide an efficient and holistic way to further elucidate processes such as calving events, 

mélange evolution, subglacial plumes, and supra-glacial lakes at high temporal resolution. 

The compatibility of deep learning image classification methods with platforms such as GEE 

(Gorelick et al., 2017) and its integration with Geographic Information Systems (GIS) 

software could also improve the efficiency of such analysis and remove the need for prior 

expertise in deep learning and coding. This, in turn, could allow the incorporation of a more 

detailed understanding of marine-terminating outlet glacier dynamics and interactions in 

models used to project future sea-level changes (Csatho et al., 2014). 



5 

 

 

Figure 1.1: The number of published studies (bars) and citations (line) of research 

relating to deep learning in glaciology. Publications were identified using a systematic 

search of related terms included within publication titles. These terms contained the 

following key words/phrases: “Deep learning”, “Neural Network(s)”, or “CNN(s)”, and 

“Glacier(s)”, “Glacial”, “Ice Sheet(s)”, “Ice Shelf”, “Sea-ice”, “Ice Front(s)”, or 

“Calving Front(s)”. Data were obtained from the Web of Science Core Collection on 

1st December 2020. 
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1.4 Thesis Aims and Objectives 

This project aims to establish and evaluate a deep learning workflow for multi-class image 

classification of marine-terminating glacial environments in Greenland which can be 

accessed and used rapidly without having specialised knowledge of deep learning or the 

need for time-consuming generation of new training data. To achieve this, the following 

objectives were devised: 

• To adapt a deep learning method developed in fluvial settings for airborne image 

classification and test it on satellite imagery of marine-terminating outlet glaciers 

in Greenland. 

• To overcome problems associated with seasonal variability/spectral similarity in 

imagery by including seasonally variable model training data. 

• To assess the sensitivity of the workflow to different band combinations, training 

techniques, and model parameters. 

• To provide a preliminary evaluation of the spatial transferability of the workflow 

by applying it to unseen marine-terminating glacier environments in SE Greenland.  

• To exceed the current state-of-the-art and advance accuracy levels (F1 scores 

>90%) for pixel-level image classification of glacial environments which contain 

complex marine-terminating outlet glaciers. 

 

1.5 Thesis Outline 

This chapter has outlined the importance of ice sheets and marine-terminating outlet glaciers, 

specifically in relation to quantification of glacier change for increased understanding of 

processes operating at multi- spatial and temporal scales. Chapter 2 appraises the relevant 

literature on previous methods for mapping marine-terminating outlet glaciers. Chapter 3 

describes the methods, outlining a novel approach to classification of Sentinel-2 imagery 

containing landscapes with marine-terminating outlet glaciers in Greenland. Chapter 4 

outlines the key results. Chapter 5 discusses the results in relation to the key aims and 

objectives, and Chapter 6 concludes the thesis. Chapter 7 provides information and links for 

fundamental code and data repositories. A revised version of this work has also been 

submitted to The Cryosphere which is under review at: https://doi.org/10.5194/tc-2020-310. 
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2 A Review of Previous Methods for Mapping Marine-Terminating Ice Fronts 

2.1 Manual Digitisation 

Manual digitisation is the most common method used to delineate the fronts of marine-

terminating outlet glaciers and ice shelves from Synthetic Aperture Radar (SAR) and optical 

satellite imagery. However, it generally relies on prior expertise, and its labour-intense, time-

consuming nature often limits the spatial and temporal resolution of datasets (Seale et al., 

2011). In effect, studies which use manual digitisation are prone to either: 1) a high number 

of (daily to monthly) measurements for a limited number of glaciers or over short 

observational periods (< 10 years) (e.g. Schild and Hamilton, 2013; Moon et al., 2014, 2015; 

Kehrl et al., 2017); or 2) a limited number of (annual, interannual or decadal) measurements 

over larger spatial areas or observational periods (> 10 years) (e.g. Moon and Joughin, 2008; 

Miles et al., 2013). Additionally, manual digitisation frequently necessitates pre-processing 

steps for image enhancement (e.g. Schild and Hamilton, 2013), especially to overcome the 

challenges of digitising glacier or ice shelf margins near to spectrally similar areas of 

mélange, sea-ice, and icebergs. This is also particularly important where glacier termini are 

densely crevassed (Moon and Joughin, 2008), or where there is significant shadow due to 

topography and seasonal variations in solar illumination (Yu et al., 2019). 

Manual digitisation also normally requires the download, storage, and processing of large 

numbers of images which further restricts user accessibility. However, the recent 

development of tools for more efficient manual digitisation has reduced such computational 

demands (Lea, 2018). Lea (2018) developed the Google Earth Engine Digitisation Tool 

(GEEDiT) and Margin change Quantification Tool (MaQiT) to allow more rapid digitisation 

of glacier and ice shelf fronts, without the need to download and process satellite imagery. 

These tools have since been applied successfully to digitise ice front positions and evaluate 

glacier change in several studies (Brough et al., 2019; Holmes et al., 2019; Tuckett et al., 

2019; Amaral et al., 2020). For example, Brough et al. (2019) assessed the retreat of 

Kangerlussuaq Glacier in East Greenland using the GEEDiT and MaQiT tools, though 

problems arose where glacier ice could not be differentiated from areas of mélange. 

Similarly, in some cases manual digitisation has been combined with relatively simple 

automated approaches to increase the efficiency of terminus delineation. For example, Miles 

et al. (2017) used an automated classification method to map around 65% of terminus 

positions from Envisat Advanced Synthetic Aperture Radar (ASAR) imagery for outlet 

glaciers in Porpoise Bay, East Antarctica. Areas of glacier ice and sea-ice were classified 

using a threshold based on pixel statistics, and the boundary between classes was extracted 
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as the glacier terminus position. Nevertheless, variability in backscatter characteristics 

resulting from glacier surface melt during the austral summer impeded the automated 

method and prompted the remaining terminus delineations to be obtained manually.  

While sufficient levels of accuracy can be achieved using manual digitisation, irrespective 

of data or sensor type (Baumhoer et al., 2018), several factors can impact accuracy, including 

georeferencing error, user bias, and the spatial resolution of imagery. In general, errors in 

manual digitisation range from approximately 0.5 to 2 pixels (i.e., on the order of tens of 

metres) (e.g. Miles et al., 2018). This small margin of error is usually deemed insignificant 

in relation to the large size of outlet glaciers (i.e., of the order of kilometres) monitored over 

decadal timescales in Antarctica and Greenland (Miles et al., 2013, 2018). However, this 

level of uncertainty becomes acutely important when monitoring outlet glacier change at 

higher temporal resolutions (i.e., over seasonal, and annual timescales). This necessitates 

efforts to develop consistent, automated tools to map the complex marine-terminating outlets 

of ice sheets. Indeed, transferable methods which produce results with comparable accuracy 

to manual digitisation, independently of seasonal variations or spectrally similar surface 

types, would be beneficial for high resolution analysis of outlet glaciers and ice shelves. 

 

2.2 Image Segmentation and Edge Detection 

Prior to the recent development of automated deep learning methods, most approaches for 

semi-automated digitisation of marine-terminating ice fronts have relied on image 

segmentation and edge detection techniques. Semantic segmentation is a term used 

interchangeably with pixel-level semantic classification and refers to the process of dividing 

an image into its constituent parts based on groups of pixels of a given class, assigning each 

pixel a semantic label (Liu et al., 2019). Throughout the remainder of this study, we refer to 

this generally as classification. Edge detection identifies areas in an image with abrupt 

changes in pixel brightness, for example between glacier ice and darker areas of water and 

iceberg rich water, or lighter areas of mélange, presenting a foundation for boundary 

delineation in satellite data (Chen and Hong Yang, 1995). These image processing methods 

have been applied to both SAR and optical satellite data to delineate the marine-terminating 

margins of the AIS and GrIS (Sohn and Jezek, 1999; Liu and Jezek, 2004a; Seale et al., 

2011; Krieger and Floricioiu, 2017; Yu et al., 2019) (Table 2.1). Extracting terrestrial ice 

sheet margins generally involves segmenting images into areas of ‘ice’ and ‘no-ice’ to create 

a binary classification. This is usually followed by applying edge detection algorithms, either 

to the binary image or directly to satellite data (Table 2.1) to highlight ice margin pixels. 
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Table 2.1: Selected previous studies which developed (semi-) automated techniques to extract 

the boundaries between land-based ice and water (including mélange, sea-ice, and icebergs) at 

the edges of the Greenland and Antarctic ice sheets. 

Study and Area 

Imagery and 

Year(s) of 

Extraction 

Summary of Methods 

Pre-processing Processing 
Post-

processing 

Sohn and 

Jezek, 1999 

 

Western GrIS 

(Jakobshavn 

Glacier) 

SPOT, ERS-1 

(SAR) 

 

1988, 1992 

• Images geocoded 

• Edge enhanced, 

and texture 

images created 

• Segmentation for 

binary image 

classification using 

local dynamic 

thresholding 

• Noise removal 

• Region growing 

• Edge detection 

• Removal of 

edge 

segments 

below a 

certain 

length 

Liu and Jezek, 

2004a, 2004b 

 

Antarctica 

Radarsat-1 

(SAR) 

 

1997 

• Orthorectification 

• Noise and 

speckle reduction 

• Edge enhanced 

image created 

• Segmentation for 

binary image 

classification using 

adaptive 

thresholding 

• Region growing 

• Class labelling 

• Removal of noisy 

objects 

• Edge detection 

• Editing and 

manual 

correction of 

erroneous 

segments 

• Segments 

merged 

Seale et al., 

2011 

 

Eastern GrIS 

(32 glaciers) 

MODIS 

(optical) 

 

Seasonal 

measurements 

between 2000-

09 

• Image cropped to 

glacier front and 

rotated 

• Images with 

significant cloud 

cover, sensor 

noise, or missing 

data removed 

• Sobel edge detection 

and brightness 

profiling algorithm 

applied 

• Peak frequencies 

identified from 

Gaussian 

distribution 

• Automated 

removal of 

erroneous 

glacier front 

points using 

filter 

Krieger and 

Floricioiu, 2017 

 

North-eastern 

GrIS (Zachariæ 

Isstrøm Glacier) 

Sentinel-1, 

TerraSAR-X 

(SAR) 

 

2016 

• Images geocoded 

and sampled to 

10 m spatial 

resolution 

• Canny edge 

detection algorithm 
 

Yu et al., 2019 

Antarctica 

 

Sentinel-1, 

ENVISAT 

(SAR), 

Landsat 7 and 

8 (optical) 

2005, 2010, 

2017 

• Geocoding, 

backscatter 

calibration, and 

terrain correction 

of SAR imagery 

• Landsat 7 SLC 

failure mitigation 

• Landsat 8 images 

mosaiced 

• Image noise 

reduction using 

smoothing filter 

• Image gradient 

calculations 

• Canny edge 

detection with 

adaptive 

thresholding 

• Noise 

removal with 

median filter 

• Geographic 

coordinates 

assigned to 

edge pixels 

• Segments 

merged and 

smoothed 
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In Greenland, Sohn and Jezek (1999) applied image segmentation and edge detection 

methods using SAR imagery for automated delineation of the glacier terminus and 

surrounding ice sheet limits at Jakobshavn Glacier. In pre-processing steps, the SAR imagery 

was geocoded using a digital elevation model (DEM), and the product was used to derive 

both edge-enhanced, and texture images.  To segment the images and produce a binary 

classification, local dynamic thresholding algorithms were applied. Local dynamic 

thresholding allowed images with small physical variations to be classified successfully. 

Nonetheless, the lack of testing over larger spatial areas or study sites provided no indication 

of its transferability (Baumhoer et al., 2018). Thresholding was followed by noise removal 

and a region growing algorithm to produce more continuous class outlines. Finally, for the 

extraction of an ice sheet outline, the Roberts edge detection algorithm (Pratt, 1978) was 

applied to the binary image in combination with an algorithm to remove noisy edge segments 

below a specified length. Later, Seale et al. (2011) applied an edge detection algorithm 

directly to Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, for 

seasonal observation of terminus change at 32 marine-terminating outlet glaciers along the 

eastern margin of the GrIS. Again, this involved a series of pre-processing steps, including 

1) image cropping to within a specified width of the terminus, 2) cloud classification and 

removal of cloudy or noisy images, 3) conversion of coordinate projections, and 4) image 

rotation for consistent glacier flow direction. To extract the glacier terminus outlines, the 

Sobel edge detection algorithm (Sobel and Feldman, 2015) was applied and was followed 

by removal of erroneous results. In contrast to Sohn and Jezek (1999), Seale et al. (2011) 

applied this workflow to 32 glaciers, suggesting an increased level of spatial transferability. 

More recently, Krieger and Floricioiu (2017) applied the Canny edge detector (Canny, 1986) 

directly to SAR imagery for automated terminus delineation of Zachariæ Isstrøm Glacier in 

Northeast Greenland. However, this technique was only tested on one glacier and its 

transferability was not evaluated. 

Similarly in Antarctica, Liu and Jezek (2004a) used image segmentation and edge detection 

techniques to extract the boundaries between ice/land and water classes for the whole AIS 

using an orthorectified SAR image mosaic. To automate the process, they applied a series of 

algorithms for pre-processing, segmentation, and post-processing (Figure 2.1). The pre-

processing stage consisted of reducing noise in the data and applying an anisotropic diffusion 

operator to preserve prominent edges in the imagery (edge enhancement) (Figure 2.1b). In 

the segmentation stage, a series of steps were applied to segment the image and classify it 

into areas of land/ice and water, using local adaptive thresholding and the application of the 

Canny edge detector. Several further algorithms were applied in the post-processing stage. 
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This allowed removal of misclassified areas to reduce noise, for example, by changing 

misclassified water areas (i.e., rock, snow, frozen lakes, and radar shadows) to ice/land, and 

changing areas misclassified as ice/land (i.e., sea-ice, icebergs, and islands) to water (Figure 

2.1d and e). Finally, an edge tracing algorithm was used to produce vector outlines which 

were corrected for errors and merged (Figure 2.1f). This resulted in an outline of the AIS, 

including land-based ice, rock, and ice shelves from SAR data collected during September 

and October 1997. 

 

Figure 2.1: The outputs of each processing step in Liu and Jezek (2004a) which used image 

segmentation and edge detection methods to extract the boundaries between ice/land and water 

in Antarctica. a) Input SAR image. b) Pre-processed image (noise removal and edge 

enhancement). c) Image segmented using locally adaptive thresholding. d) and e) Removal of 

small noisy objects; and f) resulting vector outline extracted. Modified from Liu and Jezek, 

2004a. 

 

Yu et al. (2019) updated this with AIS outlines for 2005, 2010, and 2017 using Landsat 7 

and 8 imagery as well as SAR data with the Canny edge detection algorithm (Figure 2.2). 

As in Liu and Jezek, 2004a, post-processing steps were applied to remove noise and merge 

segments extracted from different images. 

(a) Input SAR Image (b) Pre-processed Image (c) Segmented Image 

(d) Noisy ‘water’ removed (e) Noisy ‘land/ice’ removed (f) Resulting Outline 
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Figure 2.2: Outputs of edge detection techniques applied in Yu et al. (2019), showing a) the 

input Landsat 7 image (acquired 25/01/2017), and a comparison of edge detection outputs for 

b) fixed (maximum and minimum) thresholds; and c) adaptive thresholds (applied to extract 

the coastline of Antarctica for 2005, 2010, and 2017). Notably, adaptive thresholding produces 

less noisy outputs compared to the fixed thresholding technique. Source: Yu et al., 2019. 

 

Despite the acceptable levels of accuracy achieved using these automated techniques, they 

have a series of limitations, perhaps explaining the general preference for manual 

digitisation. For example, thresholding and region growing are common techniques used in 

image segmentation and are useful for creating continuous edges (e.g. Sohn and Jezek, 1999; 

Liu and Jezek, 2004a, 2004b; Yu et al., 2019). However, they generally require numerous, 

time-consuming, processing steps. For instance, Sohn and Jezek (1999) produced seven 

different image products before arriving at a final outline between ice/land and water. 

Similarly, Liu and Jezek (2004a) produced a series of image derivatives before producing 

final outlines, including 1) an image with noise/speckle reduction and enhanced edges, 2) a 

binary classification image, 3) an image with noisy ‘water’ objects removed, and 4) an image 

with noisy ‘land’ objects removed (Figure 2.1). In contrast, edge detection techniques may 

require fewer steps but are more likely to produce discontinuous boundaries (Liu and Jezek, 

2004b). They therefore require computationally expensive post-processing steps to remove 

insignificant edge segments and merge edges which represent ice fronts (e.g. Seale et al., 

2011).  

In general, image rotation, cropping, edge enhancement, and noise removal are commonly 

required pre-processing steps when applying these techniques (Table 2.1). Indeed, the noisy 

nature of SAR data has resulted in a heavy reliance on noise removal steps during pre- and 

post-processing stages (e.g. Yu et al., 2019). Despite this, erroneous detection of edge 

segments has been noted to occur, particularly in areas where sea-ice or mélange is close or 

connected to glacier and ice shelf fronts (Liu and Jezek, 2004a; Yu et al., 2019). This has 

also necessitated the use of filtering algorithms and manual correction in most studies (Sohn 
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and Jezek, 1999; Liu and Jezek, 2004a, b; Seale et al., 2011; Yu et al., 2019). As a result, the 

often numerous and time-consuming processing steps required to use image segmentation 

and edge detection, which also frequently rely on specialized knowledge and expertise, 

reduce the transferability of existing automated methods for glacier and ice shelf margin 

delineation. 

Moreover, like manual digitisation, spectral similarity and seasonal variability in the 

physical environment can cause difficulties when applying these methods. For example, it 

can be challenging to differentiate between ice shelves or glacier ice and spectrally similar 

areas of icebergs, mélange, and landfast or drifting sea-ice using these methods. 

Additionally, aside from wind roughening in SAR imagery and cloud cover in optical 

imagery, variations in snow melt, sea-ice formation, and iceberg cover can impact the 

backscatter and spectral reflectance characteristics of satellite imagery. Variability between 

images and within individual classes directly impacts techniques such as thresholding. For 

example, Sohn and Jezek (1999), Liu and Jezek (2004a), and Yu et al. (2019) applied 

adaptive thresholding across images instead of using fixed thresholds (Figure 2.2). This was 

due to different levels of image contrast, for instance resulting from changes in water 

roughness, ice surface deformation and snow cover properties (Yu et al., 2019). Thus, the 

data dependency of automated thresholding techniques and local adaptations potentially 

reduces transferability to new images, time periods, or study areas. Thus, while providing 

increased levels of automation, workflows based on image segmentation and edge detection 

for ice front delineation have not successfully overcome all the problems associated with 

manual digitisation. 

The adaptive thresholding method was also primarily used to produce binary classifications, 

removing the opportunity to extract information beyond ice/water boundaries. Indeed, Sohn 

and Jezek (1999) note that using multiple classes may elucidate other important processes 

occurring in complex glacial environments (i.e. for ice contact lakes and outwash plains), 

while potentially improving boundary delineation. Thus, using methods which produce 

multi-class outcomes with meaningful class descriptions may allow a more holistic approach 

to quantification of glacier change.  

In summary, the development of (semi-) automated techniques which apply image 

segmentation and edge detection methods have advanced efforts towards more efficient 

mapping of marine terminating glaciers and ice shelves. However, they still require 

numerous processing steps and expertise, without necessarily overcoming the delineation 

problems resulting from seasonal variations and spectral similarity within and across images. 
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In contrast, recent advances in the field of deep learning (described in section 2.3.1) and the 

ability of deep learning methods to create temporally and spatially transferable multi-class 

outputs provides a new avenue to combat these challenges and build on existing automated 

methods.  

 

2.3 Deep Learning 

2.3.1 Overview of Deep Learning and Convolutional Neural Networks (CNNs) 

Deep learning is a type of machine learning in which a computer learns complex patterns 

from raw data by building a hierarchy of simpler patterns (Goodfellow et al., 2016). While 

the field of deep learning has been evolving since the 1940s (Goodfellow et al., 2016), the 

discipline has experienced significant advances over the past few decades alongside 

computer vision. This has resulted from the increasing availability and size of training 

datasets, and the improvement of computer hardware and software (LeCun et al., 2015). 

Numerous fields have helped shape the development of contemporary deep learning, 

including contributions from neuroscience, engineering, and fundamental mathematical 

principles such as probability theory (see Goodfellow et al., 2016 for a detailed review).  

Several of the earliest designs of deep learning architectures were inspired by, and attempted 

to replicate, learning procedures in the mammalian brain, whereby layers of computational 

‘neurons’ interact to acquire knowledge from an input (Goodfellow et al., 2016). For 

example, Fukushima (1980) developed a neural network for pattern recognition in images 

called the neocognitron. The model was based on the organisation of neurons used for visual 

perception, elucidated by early studies of the visual system in cats (Hubel and Wiesel, 1962). 

It was designed to correspond to the ventral stream of the visual cortex which processes a 

retinal image using a hierarchy of cells from the eye to the primary visual cortex (V1), visual 

areas V2 and V4, and the inferotemporal (IT) cortex (Hubel and Wiesel, 1962; Serre, 2013). 

Neurons in each progressive level of the hierarchy can identify increasingly complex 

features ranging from simple edges in the V1 visual area to complex combinations 

composing entire patterns and objects in the IT visual area (Felleman and Van Essen, 1991). 

Alongside this, neurons in higher stages of the hierarchy are shown to be increasingly 

tolerant to small changes in the scale and position of input images (Serre, 2013). This 

increase in image processing and neuron invariance represented by progressive layers in the 

visual hierarchy was also a key inspiration for the convolutional and pooling layers in the 

more recent CNN (LeCun et al., 1989, 1998).  
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CNNs are deep learning models specifically designed to process multiple two-dimensional 

(2D) arrays of data such as multiple image bands (LeCun et al., 2015). They differ from 

conventional classification algorithms based solely on the spectral properties of individual 

pixels by detecting the contextual information of images such as shape and texture, in the 

same way a human operator would. CNNs are usually arranged in a series of layers 

containing convolutional, non-linearity, and pooling functions (LeCun et al., 2015). The 

input data is converted into an array of features (called a feature map) in each convolutional 

stage using a locally weighted sum which represents an array of parameters (weights) 

adjusted by the model learning algorithm (Goodfellow et al., 2016). Initial convolutional 

layers learn low-level features such as lines and edges which compose the high-level features 

extracted by deeper convolutional layers, allowing the model to extract textures and shapes 

representative of image classes (Cheng et al., 2017). The outputs pass through a non-linear 

activation function such as the rectified linear unit (ReLU) (which allows the network to 

learn complex data by non-linear transformation) and then go through a pooling layer to 

introduce some invariance to the features, meaning the model can detect features with small 

variations such as differences in orientation (Goodfellow et al., 2016). There are typically 

several of these stages in a CNN, creating a hierarchy similar to that of the mammalian visual 

system, allowing the model to learn features from an image and output a prediction of class 

for each pixel. As a result of this, one of the main benefits of CNNs is that they remove the 

need for prior feature extraction or thresholding for image classification (Längkvist et al., 

2016). The CNN used for image classification in this study falls into the category of 

supervised learning (Goodfellow et al., 2016). This means the CNN is trained using labelled 

pixels and tested based on its ability to predict the class of pixels in unseen imagery. The 

ability of a model to accurately predict the class of pixels in an unseen image is called 

generalisation (Goodfellow et al., 2016) and determines the transferability of the model.  

CNNs were popularised in 2012 when Krizhevsky et al. (2012) won the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) with a CNN called AlexNet. They have since 

been applied to a broad range of disciplines, improving tasks in object detection (Zhao et al., 

2019), speech recognition (Abdel-Hamid et al., 2014), and numerous medical imaging 

applications (Lundervold and Lundervold, 2019). They are also increasingly being used for 

a variety of remote sensing applications (Buscombe and Ritchie, 2018), including 

classification of fluvial scenes (Carbonneau et al., 2020a), land-use classification (e.g. Luus 

et al., 2015), and automated detection of geological features on Mars (Palafox et al., 2017).  
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2.3.2 Deep Learning for Automated Delineation of Marine-Terminating Ice Fronts 

In glaciology, CNNs have achieved success in mapping debris-covered land-terminating 

glaciers (Xie et al., 2020), rock glaciers (Robson et al., 2020), supraglacial lakes (Yuan et 

al., 2020) and snow cover (Nijhawan et al., 2019). The application of deep learning models 

in workflows for automated delineation of marine-terminating glacier termini and ice shelf 

fronts has also been effective, resulting in accuracy comparable to conventional manual 

methods (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019). 

For example, Mohajerani et al. (2019) used a type of CNN architecture called a Fully 

Convolutional Neural Network (FCN) to classify ice front pixels and non-ice front pixels in 

Landsat imagery containing marine-terminating outlet glaciers in Greenland. The previous 

success of FCN architectures trained on small datasets with the help of augmentation 

methods justified its use for application in marine-terminating outlet glacier environments, 

where training and validation data production relies on manual digitisation. The FCN 

architecture was trained using Landsat 5 (green band), 7, and 8 (panchromatic bands) 

imagery. A series of pre-processing steps were applied to the imagery to improve the FCN 

performance, including cropping (to within 300 m of the terminus), rotation, normalisation, 

grey-scale intensity equalisation, smoothing, and edge enhancement (Figure 2.3). Dataset 

augmentation was applied to increase the number of training samples by flipping each image. 

Images were also plotted on 200 x 300-pixel grids with ice flow in the y direction. Therefore, 

instead of using the original Landsat spatial resolution (15/30 m), this resulted in images 

with different resolutions for each glacier, and consequently errors were also dependent on 

different spatial resolutions for each study site.  

Collection of training and validation data involved manual digitisation of terminus positions, 

which were rasterised into pixel-wide lines to train the model. Due to the small proportion 

of the images inhabited by the rasterised terminus outline (Figure 2.3), the FCN was 

particularly prone to class imbalance, whereby high accuracy could be obtained by simply 

excluding the terminus outline class. Therefore, custom sample weights were applied to 

avoid this issue. In post-processing steps, fjord boundaries were manually digitised in order 

to apply a least-cost path method for extraction of the pixels which most likely represent the 

terminus position. This workflow achieved similar levels of accuracy to manual digitisation, 

with most error noted to occur at the edges of the glacier termini. Mean distance from 

manually digitised fronts was 96.3 m for Helheim glacier (the test glacier). 
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Figure 2.3: The results of the deep learning method developed by Mohajerani et al. (2019) 

showing b) the classified output of the modified FCN model compared to c) results from the 

Sobel edge detection method when applied to a) a pre-processed satellite image. d) Shows the 

processed delineations of both methods in addition to manually derived terminus positions. 

Adapted from Mohajerani et al. (2019). 

 

Similarly, Zhang et al. (2019) also used an FCN to extract terminus positions from 

TerraSAR-X imagery of Jakobshavn Glacier, central west Greenland. A total of 159 images 

from 2009-2015 were used to train the model, which classified images into ‘mélange’ and 

‘non mélange’ areas. Image pre-processing involved speckle reduction, multilooking, and 

georeferencing. Images were also subdivided into 960 x 720 pixel tiles, and edge enhanced, 

normalised, and augmented (flipping and rotation) before model training. In post-processing, 

the binary classification was converted to vector format and small, erroneous polygons were 

removed before terminus extraction. The transferability of this approach was not tested as it 

was only applied to one study site. Indeed, the use of ‘mélange’ and ‘non-mélange’ classes 

also suggests it can only be applied to glaciers with mélange adjacent to the terminus. 

However, its ability to classify multitemporal data suggested it overcame problems with 

seasonal variations across imagery. Overall, the technique resulted in a mean difference of 

38 m from manually delineated terminus positions. 

Finally, Baumhoer et al. (2019) used an FCN to classify the boundaries of land-based ice 

and ocean in Antarctica (Figure 2.4). Baumhoer et al. (2019) trained the FCN using different 

SAR polarisations derived from Sentinel-1 data in combination with a TanDEM-X DEM. 

Image pre-processing involved applying the Orbital File to SAR data, thermal noise removal, 

radiometric calibration, geometric terrain correction using the DEM, and stacking of HH, 

HV, HV/HH polarisations with the DEM. A total of 38 pre-processed images from four 

training sites were tiled into 780 x 780 pixel samples, normalised and augmented (rotation 

(a) Pre-processed Input (b) NN Output (c) Sobel Output (d) Processed  
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and flipping) to train the model. Like Zhang et al. (2019), resulting class predictions were 

binary and consisted of land ice and ocean areas. The resulting classifications were filtered 

and vectorised prior to extraction of class boundaries which represented glacier terminus and 

ice shelf outlines (Figure 2.4). The use of several training sites and testing of the model on 

four areas suggests it is also transferable to other areas in Antarctica, with mean deviations 

from manually digitised fronts of 108 m in test areas. In terms of classification accuracy, 

Baumhoer et al. (2019) achieved mean F1 scores of 89 to 90% for training sites and 90 to 

91% for test sites (Greenland-based studies did not provide classification F1 scores). 

 

Figure 2.4: Results of the deep learning method developed by Baumhoer et al. (2019) for 

extraction of the boundaries between ice/land and water in Antarctica, showing comparisons 

between the deep learning method (automated), manual digitisation (manual), and Antarctic 

Digital Database (ADD) delineations. Insets (a-c) show magnified sections of Marie Byrd Land 

where methods deviated significantly. Background imagery: Sentinel-1 scenes acquired from 

18/06/2018 – 23/06/2018. Source: supplementary materials of Baumhoer et al. 2019. 

 

In summary, all three deep learning methods applied a fully convolutional architecture which 

was adapted to create binary classifications. Mohajerani et al. (2019) used the glacier 

terminus front itself as the primary class, producing results with a similar appearance to edge 

detection methods (Figure 2.3). Meanwhile, Zhang et al. (2019) and Baumhoer et al. (2019) 

applied an FCN to produce similar results to automated segmentation methods, whereby they 
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classified images into two classes and extracted the boundary between classes as the 

terminus position (Figure 2.4). The deep learning methods are promising due to their 

transferability across seasons (Baumhoer et al., 2019; Zhang et al., 2019) and spatial areas 

(Baumhoer et al. 2019), which is especially important for mapping complex marine-

terminating outlet glaciers at high temporal resolution. However, there is substantial 

potential to widen the scope of deep learning methods for classification of marine-

terminating glacial environments. Such advancements include producing deep learning 

workflows with multi-class outputs that could be used in a variety of applications, without 

numerous pre-processing steps or the need for specialised prior experience. Indeed, the 

methods presented below aim to deliver a deep learning workflow for multi-class outputs 

with simple pre-processing steps and the capacity to accurately detect spectrally similar 

surface types, using only limited training data composed of three to four optical satellite 

image bands. Moreover, the deep learning workflow adapted here is trained and tested on 

outlet glaciers in south east Greenland with a pre-defined set of image classes. In future work 

the workflow may be applicable to mapping outlet glaciers in other regions of the GrIS and 

elsewhere in the world, dependant on further testing, suitable adaptations to training data 

inputs and additional fine-tuning. 
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3 Methods 

3.1 Introduction 

This chapter explains the steps and data involved in developing a deep learning workflow 

for classification of imagery containing marine-terminating outlet glaciers in Greenland. In 

summary, the workflow is composed of two deep learning phases (Carbonneau et al., 2020a). 

First, a well-established CNN called VGG16 (Simonyan and Zisserman, 2015) was modified 

and trained using labelled image tiles from 13 seasonally variable Sentinel-2 images of 

Helheim Glacier, south east Greenland (Figure 3.1). In the first phase of the workflow, an 

unseen image from an outlet glacier environment is tiled, and the pre-trained CNN is applied 

to detect the class of each tile in the image. The resulting class predictions are then used as 

training data for a second pixel-level model which is specific to the unseen input image. In 

phase two, the second deep learning model uses the class predictions of the phase one CNN 

and input image features to determine a final pixel-level classification. The methods 

developed here are primarily tested on marine-terminating outlet glaciers in SE Greenland, 

providing a preliminary test of transferability. To determine whether the method is 

applicable for classifying marine-terminating glaciers elsewhere in Greenland, a larger 

number of test sites from different regions of the GrIS would be required. Similarly, since 

the pre-trained CNN was only trained on Helheim Glacier, additional training data would be 

required to classify landscapes with significantly different characteristics, for example to 

classify glacial landscapes in Antarctica.  

 

3.2 Study Areas 

3.2.1 Training Area: Helheim Glacier, SE Greenland 

The area chosen to train the phase one CNN in the deep learning workflow spans 68.8 x 37.2 

km (Figure 3.1c) and includes Helheim Glacier (66.4° N, 38.8° W), a major outlet of the 

south-eastern GrIS. Helheim is one of the five largest outlet glaciers of the GrIS by ice 

discharge (Howat et al., 2011; Enderlin et al., 2014) and has flow speeds of 5-11 km a-1 

(Bevan et al., 2012). The glacier has a 48,140 km2 drainage basin (Rignot and 

Kanagaratnam, 2006) equivalent to ~4% of the ice sheet’s total area (Straneo et al., 2016), 

from which several tributaries converge into a ~6 km wide terminus. There is an extensive 

area of ice mélange (a mixture of sea-ice and icebergs) adjacent to the terminus where it 

enters Sermilik Fjord and is influenced by ocean currents (Straneo et al., 2016) (Figure 3.1c). 

Inspection of available satellite imagery reveals that the area of mélange varies seasonally 



21 

 

with monthly variations in extension and composition (Andresen et al., 2012, 2013). For 

example, observations from February through to April 2019 show that the area of mélange 

was relatively small and consisted primarily of sea-ice, with fewer large icebergs in 

comparison to later months. Fjord waters were also dominated by sea-ice in various stages 

of development with few icebergs. From May through to August 2019, the mélange area 

expanded to cover a larger proportion of the fjord surface and its composition became 

dominated by icebergs, reflecting a change to iceberg-dominant fjord waters and a reduction 

in sea-ice. A gap in the mélange at the glacier terminus appeared at the beginning of July 

and persisted until mid-August, suggesting the presence of an active meltwater-fed glacial 

plume as previously observed (Straneo et al., 2011).  

Figure 3.1: Location of outlet glacier environments used for training and testing the deep 

learning workflow. (a) Sentinel-2 tile of Helheim Glacier (acquired 13/09/2019) used for testing 

the workflow (in-sample), with inset which shows the specific area used to create training data. 

(b) Sentinel-2 tile of Scoresby Sund area (acquired 01/08/2019) used for testing the workflow 

(out-of-sample). (c) Model training area (acquired 07/08/2019). Note the substantial area of ice 

mélange and an active plume at the terminus of Helheim Glacier.  
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The glacier, fjord, and surrounding landscape provide an ideal test area for the deep learning 

workflow because it contains a number of diverse elements that vary over short spatial and 

temporal scales and are typical of other complex outlet glacier settings. These characteristics 

include 1) seasonal variations in the degree of surface meltwater ponding on the glacier and 

ice mélange; 2) weekly to monthly changes in the extent and composition of mélange; 3) 

short-lived, meltwater-fed glacial plumes which result in polynyas adjacent to the terminus; 

4) sea-ice in varying stages of formation; 5) varying volumes and sizes of icebergs in fjord 

waters and 6) seasonal variations in snow cover on both bedrock and ice. The resulting 

spectral variations over multiple satellite images in addition to potential variations resulting 

from changes in illumination and weather, pose a considerable challenge to image 

classification. However, capturing these characteristics at the scale of an entire outlet glacier 

image scene is important for a more efficient and integrated understanding of how numerous 

glacial processes interact. It is worth noting that since some elements of marine-terminating 

outlet glacier landscapes are not abundantly represented within the Helheim training area 

(e.g., off-glacier vegetation, or medial moraines), further testing and fine-tuning of the 

workflow with inclusion of representative training data would be required to classify 

imagery containing these elements. 

 

3.2.2 Test Areas: Helheim Glacier and Scoresby Sund, SE Greenland 

The deep learning workflow was trained at Helheim Glacier and then tested on two areas 

(Figure 3.1a and b) using: 1) a previously unseen Sentinel-2 tile of Helheim Glacier and the 

surrounding landscape, acquired on 13/09/2019 (in-sample), and 2) a Sentinel-2 image of 

the glacial landscape in the area of Scoresby Sund, ~600 km north of Helheim, which 

features several smaller outlet glaciers and was acquired on 01/08/2019 (out-of-sample). 

This area was chosen as an ideal test site because it encompasses all the classes used in 

model training (including mélange which is not always present at glacier termini). Both 

unseen Sentinel-2 tiles used for testing were divided into nine smaller image tiles spanning 

3000x3000 pixels, resulting in 18 test images for processing by the deep learning workflow.  

 

3.3 Imagery 

Remote sensing studies which apply deep learning to image classification usually use high 

resolution (sub-metre) imagery (Sharma et al., 2017) and typically require large datasets 

(Krizhevsky et al., 2012). Acquiring high resolution imagery of outlet glacier landscapes can 
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be expensive and challenging, especially over large spatial areas. Therefore, the abundance 

of widely available medium resolution satellite imagery (10 - 60 m), often used for remote 

sensing applications in glaciology, provides an ideal data source for training and testing the 

deep learning workflow. Here Sentinel-2 bands 2 (blue), 3 (green), 4 (red), and 8 (Near 

Infrared (NIR)) at 10 m spatial resolution were used to train and test the approach (Table 

3.1). The red, green, and blue bands were chosen because they are commonly used in image 

classification with deep learning architectures such as VGG16, making existing, pre-trained, 

models easily transferable for the purpose of this study. The NIR band was chosen due to its 

common use in remote sensing of glacial environments, for example in band ratios to 

automatically identify glacier outlines (e.g. Alifu et al., 2015).  

 

Table 3.1: List of Sentinel-2 images used for training and testing the deep learning workflow. 

 

Examination of available Sentinel-2 imagery showing the seasonal change of the glacial 

landscape throughout the year resulted in the establishment of seven semantic classes, 

including: 1) open water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6) 

snow on rock, and 7) bare bedrock (see detailed criteria for each in Table 3.2). To best 

encompass the seasonally variable landscape characteristics and collect sufficient training 

data to represent intra-class variation in all seven classes, 13 cloud-free Sentinel-2 images 

taken between February and October 2019 were acquired (Table 3.1). Level-2A images were 

downloaded at no cost from Copernicus Open Access Hub (available at: 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The atmospherically 

 Study Area Acquisition Date Satellite 

T
ra

in
in

g
 

Helheim 

08/02/2019 S2A 

10/02/2019 S2B 

07/03/2019 S2A 

10/03/2019 S2A 

15/03/2019 S2B 

04/04/2019 S2B 

29/05/2019 S2A 

15/06/2019 S2A 

05/07/2019 S2A 

07/08/2019 S2A 

01/09/2019 S2B 

28/09/2019 S2B 

26/10/2019 S2A 

T
es

ti
n

g
 13/09/2019 S2A 

Scoresby 01/08/2019 S2A 

https://scihub.copernicus.eu/dhus/#/home
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corrected red, green, blue and NIR bands were combined into composite four band images 

and cropped to the training area (Figure 3.1c). Two Sentinel-2 tiles of the unseen Helheim 

(Figure 3.1a) and Scoresby Sund (Figure 3.1b) study areas were also acquired (Table 3.1), 

and the corresponding composite band images were created. 

 

 

Table 3.2: Example image samples and descriptions of each of the seven semantic classes used 

to train and validate the phase one convolutional neural networks in the deep learning 

workflow. Total number of tiles refers to the total number of tiles used for training and 

validation in each of the three datasets used to test model sensitivity to tile size after the tiling 

process described in Figure 3.5. Note that the open water, mélange, and bedrock classes have 

the smallest representation of all classes, despite the aim of producing equally represented class 

samples. 

Example Image 

of Class 

Class 

Number and 

Label 

Class Description 

Total number of Tiles 

50x50 

(total: 

354,668) 

75x75 

(total: 

319,292) 

100x100 

(total: 

293,720) 

 
1 Open 

Water 

Open water with no 

icebergs 
14,312 12,024 10,520 

  
2 Iceberg 

Water 

Water with varying 

amounts of icebergs or 

disintegrated mélange 

48,668 44,084 41,212 

  

3 Mélange 

Mixture of sea-ice, and 

icebergs of varying 

sizes 

25,540 23,396 21,192 

 

 
 

4 Glacier 

Ice 

Glacier ice, with 

seasonally variable 

surface meltwater 

84,356 77,584 71,040 

 

5 Snow on 

Ice 

Snow/ice with a smooth 

appearance 
88,412 79,540 77,004 

 

6 Snow on 

Rock 

Bedrock with varying 

amounts of snow cover 
63,180 55,052 47,588 

 

7 Bedrock 
Bedrock with no snow 

cover 
30,300 27,612 25,164 
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3.4 Classification Workflow, Model Architectures and Training 

3.4.1 CNN-Supervised Classification (CSC) 

The classification workflow used here is termed CNN-Supervised Classification (CSC), and 

was originally developed and tested on airborne imagery (<10 cm resolution) of fluvial 

environments (Carbonneau et al., 2020a). CSC is a novel two-phase workflow (Figure 3.2) 

which uses a pre-trained CNN to replace the human operator’s role in labelling training areas 

for final pixel-level classification. In the first phase of the workflow, a pre-trained CNN is 

used to predict the classes of a tiled input image. The image tiles are then reassembled to 

create a class raster which is used as training data for the second model in phase two of the 

workflow. In the second phase, the reassembled class raster and image features are 

vectorised and used to train a second model specific to the input image. The predictions of 

the second model result in a final pixel-level classified image output (Figure 3.2). 

 

Figure 3.2: Image classification workflow showing pre-processing steps, convolutional neural 

network training and 2-phase final classification steps.  

Pre-Processing 

Images cropped to training area and labelled 

according class to produce Class raster 

3. Mélange 

Classes: 

5. Snow on Ice 1. Open Water 

2. Iceberg Water 6. Snow on Rock 

7. Bedrock 

4. Glacier Ice Image and Class raster tiling and allocation to 

training and validation data folders 
Tile sizes: 50, 75, 100 pixels 

Cloud-free Sentinel-2 Images downloaded  

Class Prediction 

Unseen Sentinel-2 Images tiled and 4D 

tensors prepared Trained CNN loaded 

Phase 1 Run CNN model 
Reassemble tiles to produce CNN-predicted 

class raster 

 

Phase 2 

CNN class raster and image features vectorised 

MLP/cCNN model trained 

Final predictions and classified image 

CNN models trained and saved 
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3.4.2 Phase 1: Model Architecture and Training 

For the base architecture of the pre-trained CNN used in phase one, a well-established CNN 

called VGG16 (Simonyan and Zisserman, 2015) which outperformed the state-of-the-art 

performance of AlexNet in the ILSVRC 2014 was adapted. The VGG model used consists 

of five stacks of 13 2D convolutional layers which have filters with a size of 3x3 pixels 

(Figure 3.3). A filter is an array of numbers (which are also known as weights). The filter 

spatially convolves over the input image to create a feature map using the filter weights. For 

example, if we have a single band input image of 7x7 pixels, a 3x3 filter would convolve 

across each available pixel within the 7x7 image and produce a 5x5 pixel feature map. The 

CNN learns input features to detect the classes in an image by adjusting these filter weights 

in each convolutional layer (Goodfellow et al., 2016). In the VGG model used here, the 

dimensions of the output filters increase from 64 in the first stack of convolutional layers to 

512 in the last (Figure 3.3). So, in the first convolutional layer, since there are 64 filters, this 

produces 64 individual feature maps which become the input to the next convolutional layer, 

and so on. This allows a hierarchy of features to be detected in deepening convolutional 

layers.  

All the convolutional layers in the VGG base use ReLU activation and are interspersed with 

five max-pooling layers. ReLU is a conventional and computationally efficient non-linear 

activation function which allows non-linear transformation of the input data to make it 

separable for classification. The pooling function reduces the size of each feature map to 

make outputs more computationally manageable while retaining important information 

(Goodfellow et al., 2016). The convolutional and pooling stacks are followed by three fully 

connected (dense) layers (i.e., a normal fine-tuned neural network) without shared weights, 

typical of CNN architectures. L2 regularization was used in this top neural network to reduce 

overfitting, which occurs when a model is unable to generalize between training and test 

data (Goodfellow et al., 2016). Adam gradient-based optimisation, a common optimisation 

algorithm used in deep learning, was also used to update the weights in the network (Kingma 

and Ba, 2017). This fully connected neural network allows the features learned by the CNN 

to be allocated to a class by a final Softmax layer with the same number of units as classes. 

The Softmax layer allocates the outputs of the CNN to a set of normalised probability scores. 

In effect, each input image is assigned a probability score for each class, so the final class 

label for the image is that which has the highest probability of membership (Carbonneau et 

al., 2020a). 
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The input image tile size for the first convolutional layer in the original VGG16 model 

architecture was fixed as a 224x224x3 RGB image. However, here the impact of tile size 

was tested by using three datasets with different tile sizes of 50x50, 75x75, and 100x100 

pixels. Thus, the input image size was adjusted so it matched the three tile sizes (Figure 3.3 

shows an example of an input tile size of 100), and the number of input channels was also 

adjusted depending on the number of image bands used for training (i.e., three or four). Each 

of these image tiles was fed into the phase one CNN in the form of a four-dimensional (4D) 

tensor which contains multiple tiles (Dimensions: [tiles, x, y, bands]). 

 

Figure 3.3: Architecture of phase one convolutional neural network, adapted for three tile size 

datasets from the original VGG16 model architecture (Simonyan and Zisserman, 2015). 

Diagram shows an example using a tile size of 100 pixels. There are five stacks of 2D 

convolutional layers (labelled ‘Conv#’) which extract features from input tiles using a 3 x 3 

filter. The convolutional stacks are followed by a fully connected neural network and Softmax 

activation for final class predictions used as localised training data for phase two models. 

 

Three approaches for training the phase one CNN were tested using the three image tile 

datasets to test the sensitivity of each approach to tile size, resulting in a total of nine trained 

CNNs. The three approaches of model training were as follows: 1) only three image bands 

(RGB) were used; 2) the NIR band was used in addition to the three RGB bands (RGB+NIR), 

and 3) three image bands (RGB) were used in combination with transfer learning 

(RGB+TL). The transfer learning approach trained the model using pre-existing weights 

from the ImageNet database which contains over 14 million labelled images (Deng et al., 

2009). Only the weights in the final layers of the CNN were re-trained specifically to classify 

glacial scenes, making it quicker to train than standard full CNN architectures (Buscombe 

and Ritchie, 2018). Transfer learning has been shown to decrease training time and reduce 

the volume of data needed to produce similar levels of accuracy to non-transfer learning 

techniques (Kunze et al., 2017). As a result, with a tile size of 100 the transfer learning model 

had 9,572,616 trainable parameters of a total 17,207,880 trainable parameters if the VGG16 

model was trained without transfer learning, and weights in all layers were adjusted. For 
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each of the nine models, training hyperparameters were kept constant, with training 

occurring over 15 epochs, with a batch size of 50 images and a learning rate of 0.0001. 

Following training of the phase one CNNs, they were saved for application on unseen images 

in phase two without further training. 

3.4.3 Phase 2: Model Architectures and Training 

To classify airborne imagery of fluvial scenes using the CSC workflow, Carbonneau et al. 

(2020a) applied a pixel-based approach using a multilayer perceptron (MLP) in the second 

phase of the workflow, achieving high levels of accuracy (90-99%). This project proposes 

that applying pixel-based techniques to coarser resolution imagery such as Sentinel-2 data 

may be less effective compared to applying the workflow to high resolution imagery. 

Furthermore, particularly in landscapes containing marine-terminating glaciers, many 

distinct classes may be covered in snow or ice and therefore be very spectrally similar (i.e., 

all classes are white), and where this is the case a pixel-based MLP would predictably 

struggle to differentiate between classes. Therefore, a patch-based approach was adopted, 

which uses a small window of pixels to determine the class of a central pixel as in Sharma 

et al. (2017). This approach is based on the idea that a pixel in remotely sensed imagery is 

spatially dependent and likely to be similar to those around it (Berberoglu et al., 2000). 

Sharma et al. (2017) used a patch size of 5x5 pixels for patch-based classification of medium 

resolution Landsat 8 imagery. This use of a region instead of a single pixel allows for the 

construction of a small CNN (dubbed ‘compact CNN’ or cCNN: Samarth et al., 2019) with 

a single convolutional layer that assigns a class to the central pixel according to the properties 

of the region (Carbonneau et al., 2020b). It therefore combines spatial and spectral 

information. Here both pixel- and patch-based approaches were tested using an MLP and 

cCNN in the second phase of the workflow (the architectures and application of which are 

detailed in the following sections 3.4.3.1 and 3.4.3.2). Specifically, four patch sizes of 1x1 

(pixel-based), 3x3, 7x7, and 15x15 pixels were tested. In combination with the phase one 

CNNs using different tile sizes and bands, this resulted in the testing of 36 model workflows 

overall which were subsequently tested on in-sample and out-of-sample test images.   

 

3.4.3.1 Multilayer Perceptron (MLP) 

For the pixel-based classification in phase two, an MLP was used (Figure 3.4a). An MLP is 

a typical deep learning model (also commonly known as an artificial neural network (ANN)) 

which consists of three (or more) interconnected layers (Rumelhart et al., 1986; Berberoglu 
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et al., 2000). The first and final layers of an MLP are called the input and output layers, 

respectively. The layers in between are ‘hidden layers’ used to apply weights to the input 

data, which is then fed forward to units in other hidden layers (Atkinson and Tatnall, 1997). 

The MLP used here has five layers consisting of four fully connected (dense) layers and one 

batch normalisation layer (Figure 3.4a). The first dense layer has the same number of input 

dimensions as image bands and 64 output filters. This is followed by a batch normalization 

layer which helps to reduce overfitting by adjusting the activations in the network to add 

noise. This is followed by two more dense layers with 32 and 16 filters, respectively. The 

final output layer in the network is a dense layer with Softmax activation and eight output 

filters, to match the number of output classes. All the layers use ReLU activation except the 

output layer which uses Softmax activation to produce a vector of class probability scores.  

For both the MLP and cCNN, model training hyperparameters were kept constant (150 

epochs, learning rate of 0.001, and subsamples size of 100,000). Since the MLP is pixel-

based, the number of parameters was smaller compared to the patch-based model, with 3,128 

trainable parameters.  

 

Figure 3.4: Architecture of phase two models. (a) Shows the Multilayer Perceptron used for 

the pixel-based classification of new input images. (b) Shows the compact convolutional neural 

network used for patch-based classification of new input images. The size of the filter in the 

cCNN changes according to the patch size being tested. For example, as shown in (b) the filter 

size is 7 x 7 for testing a patch size of 7 pixels. 

 

 

3.4.3.2 Compact Convolutional Neural Network (cCNN) 

For the patch-based classification in phase two, a cCNN was used (Figure 3.4b). This model 

architecture is referred to as a compact CNN (cf. Samarth et al., 2019) because it only 

contains one convolutional layer and is much smaller than conventional CNNs (Figure 3.4b). 

This model is comprised of a 2D convolutional input layer which extracts features from the 

input image using a small window of pixels called a filter. The input layer has 64 filters with 

a kernel (window) size which is modified dependant on patch size (i.e., for testing a patch 
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size of 7x7 pixels, the kernel size is 7) (exemplified in Figure 3.4b). As with the phase one 

CNN, the input shape is a 4D tensor with the dimension of [patches, x, y, bands]. This is 

followed by a flatten layer which converts the inputs into a one-dimensional feature vector 

to be fed into the following four fully connected (dense) layers. The first dense layer has 512 

filters and is followed by a batch normalisation layer. The following three dense layers have 

64, 32, and 8 filters, respectively. As with the MLP, all the layers use ReLU activation except 

the output layer. As with all the models used in the workflow, the final layer comprises the 

same number of units as output classes and results in a vector of probability scores used to 

predict class. The cCNN had 71,272 trainable parameters with a patch size of 3, 78,952 

trainable parameters with a patch size of 7, and 112,744 trainable parameters with a patch 

size of 15. 

 

3.4.4 Training and Validation Data Preparation 

The CNNs used in phase one of the workflow were trained using image tiles which represent 

image subsamples of each individual class. These tiles were processed by the model in the 

form of 4D tensors consisting of multiple image bands (consistent with conventional data 

formatting designed for training CNNs for multiband image classification). To create 

training and validation data for the model, the composite images were manually labelled 

according to the seven training classes using QGIS 3.2 digitising tools. Vector polygons 

labelled by class number were rasterised to produce a class raster with the same geometry as 

the input image. Both the input image and class raster were then tiled using a specified size 

(height and width in pixels) and stride (number of pixels the window moves before extracting 

another tile) (Figure 3.5). Three different tile sizes were used to test model sensitivity and 

its ability to identify landscape features at the scale of the 10 m resolution imagery. This 

resulted in three datasets containing tile sizes of 50x50, 75x75, and 100x100 pixels (Table 

3.2). A stride of 35 pixels was used to allow overlap between tiles, and any tiles occupied by 

less than 95% pure class were rejected, removing tiles containing mixed classes. The image 

tiles were then rotated in increments of 90° to augment the dataset and saved to separate 

class folders. Data augmentation is a common step for bolstering training datasets in deep 

learning and usually entails slightly altering existing data to increase the number of training 

samples (Chollet, 2017). In addition to data augmentation, tile rotation allows the model to 

learn classes which may appear at different orientations in unseen images, for example 

accounting for different glacier flow directions, providing the potential for increased 

workflow transferability.  



31 

 

Each tile was normalised by 16,384 (a maximum integer value drawn from satellite imagery) 

to reduce bit depth to a scale from 0 to 255. This adjusts the range of pixel values to make 

them compatible with RGB imagery for processing by the CNN. The tiles were divided into 

training and validation datasets whereby 95% of tiles were randomly allocated to a training 

data folder and the remaining 5% were allocated to a validation data folder (Figure 3.5). It 

is common when training deep learning models for image classification applications to have 

an 80/20% split of training and validation data (Carbonneau et al., 2020a). However, here a 

95/5% split is appropriate as the ‘in-sample’ data we used to test the workflow is a new 

satellite image of the training area and surrounding landscape, previously unseen by the 

model during training, making it a more stringent test. Overall, this resulted in three datasets 

containing 354,768 tiles of 50x50 pixels, 319,292 tiles of 75x75 pixels, and 293,720 tiles of 

100x100 pixels for training and validating the phase one CNNs (Table 3.2). These datasets 

were extracted from only 13 cropped images of Helheim Glacier and are much larger 

compared to those used in previous work to train and validate CNNs for glacier boundary 

delineation. For example, Mohajerani et al. (2019) used only 123 tiles of 152x240 pixels 

obtained from three different glacier study sites. Baumhoer et al. (2019) opted for larger tile 

sizes and used a dataset of 19,576 tiles of 780x780 pixels derived from 38 scenes from four 

study sites. Finally, Zhang et al. (2019) used 36,414 tiles with a larger size of 960x720 pixels 

using 75 images from one glacier.  

Figure 3.5: Conceptual diagram of tiling process used to create training and validation data. A 

specified tile size (of 50, 75 or 100 pixels) and stride (of 35 pixels) are used to extract tiles from 

the class raster and image bands. These tiles are filtered and augmented and saved to individual 

class folders using a 95/5 % split for training and validation data.  
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3.5 Sensitivity Analysis: Training Epochs 

Since CNNs are sensitive to the number of epochs used in training, we applied the epoch 

tuning method used by Chollet (2017) with 95% of our data used to train the model and 5% 

used for validation. The term epochs refers to the iterations over training data in the CNN 

(Chollet, 2017). Each epoch is used to adjust weights and improve accuracy in the CNN 

based on training loss. Training loss is the error in CNN predictions compared to validation 

data and is quantified using a loss function.  Categorical cross entropy was used as the loss 

function in all models and is a common loss function used in deep learning for multi-class 

classification (Goodfellow et al., 2016). The VGG16 models were run for 25 epochs, and 

training accuracy, training loss, validation accuracy, and validation loss for each individual 

epoch was saved. Similarly, the MLP and cCNN models were run for 500 epochs and the 

same values were saved.  These were plotted against number of epochs (Figures 3.6 and 3.7). 

The number of epochs used to train the final set of models was then determined by the point 

of divergence between training and validation data. Where a gap between training and 

validation data appears, the model begins to overfit and its ability to generalise is reduced. 

The epoch tuning graph of the VGG16 model (Figure 3.6) begins to diverge slightly after 15 

epochs, so the model was trained for 15 epochs for optimal accuracy and training time. The 

epoch tuning graphs for the phase two models revealed that the optimum number of training 

epochs was 150 (Figure 3.7).  
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Figure 3.6: Epoch tuning graph for phase one model (trained using 50x50 pixel RGB tiles). 

 

Figure 3.7: Epoch tuning graph for phase two model (using RGB model with tile size of 50 and 

patch size of 7). 
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3.6 Model Performance 

Model performance is often measured by classification accuracy (the number of correct 

predictions divided by the total number of predictions). However, some models require more 

robust measures of accuracy that also take into account confusion between predicted classes 

(Goodfellow et al., 2016; Carbonneau et al., 2020a). This project used an F1 score as the 

primary performance metric for the models used in both phases of the classification 

workflow. The F1 score is defined as the harmonic mean between precision (𝑝) and recall 

(𝑟): 

𝐹1 =
2𝑝𝑟

𝑝 +  𝑟
 

(1) 

where precision finds the proportion of positive predictions that are actually correct by 

dividing the number of true positives by the sum of both true (correct) positives and false 

(incorrect) positives. Recall finds the proportion of positive predictions that were identified 

correctly by dividing the number of true positives by the sum of true positives and false 

negatives (misidentified positives). Thus, the inclusion of recall provides a metric which 

represents confusion between class predictions and takes into account class imbalance 

(Carbonneau et al., 2020a). F1 scores range from 0 to 1 with 1 being equivalent to 100% 

accuracy. Carbonneau et al. (2020a) used classification results from 1,724 images to 

compare F1 and accuracy. They found that they are closely correlated (accuracy = 1.03F1 

+4.1% with an R2 of 0.96), with F1 and accuracy converging at 100%. F1 scores were plotted 

against patch and tile sizes to show workflow sensitivity for each of the three training 

approaches. Confusion matrices were also plotted to show agreement between predicted 

classes and manually delineated validation data in the final classification outputs. 

Cohen’s Kappa was also used as a secondary performance metric which is a coefficient of 

agreement (Cohen, 1960). This compares the agreement between the model class predictions 

and manually determined classes (validation data). Cohen’s Kappa accounts for the chance 

occurrence of true positives in class predictions (i.e., correctly guessing the class). It is a 

useful complement to metrics such as accuracy and F1 because it better reflects the 

performance of models with class imbalance. It removes the problem of overshadowing in 

prediction performance for a smaller class by that of a larger class. Cohen’s Kappa is a 

normalised statistic, so it ranges from -1 to 1. A set of arbitrary thresholds were determined 

by Landis and Koch, (1977) to interpret the agreement statistic (Table 3.3). 
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Table 3.3: Arbitrary thresholds used to interpret Cohen’s Kappa measure of agreement 

(Landis and Koch, 1977). 

Cohen’s Kappa Statistic Strength of Agreement 

<0.0 Poor 

0.0 – 0.2 Slight 

0.21 – 0.4 Fair 

0.41 – 0.6 Moderate 

0.61 – 0.8 Substantial 

0.81 – 1.0 Almost Perfect 

 

 

3.7 Comparison to Traditional Mapping Techniques 

For a comparison of effectiveness between the CSC workflow, and pixel-based techniques 

such as band ratio methods, a test image tile of Helheim Glacier was classified using a band 

ratio technique. To create the band ratio image, the Sentinel-2 band 4 (red) was divided by 

band 11 (Shortwave Infrared) (Paul et al., 2016). A series of thresholds were used to classify 

the resulting band ratio image into three classes including glacier ice, snow on ice and 

bedrock. Classifying the band ratio image using all seven classes utilised in the CSC 

workflow was not possible. This is because the band ratio method did not detect changes 

between all the different classes such as mélange, iceberg water and open water. For 

comparison to the CSC classifications, an overall F1 score was produced for the resulting 

band ratio classification using the same validation labels used to produce F1 scores for the 

CSC classification. 
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4 Results 

4.1 CNN-Supervised Classification 

4.1.1 Performance of Phase 1 CNNs and Tile Size Sensitivity 

The performance of the phase one VGG16 models in classifying unseen Sentinel-2 image 

tiles of the Helheim and Scoresby Sund study areas are shown in Figure 4.1. With the 

exception of the transfer learning model (RGB+TL) in the Scoresby Sund study area, all 

models produced accurate classifications (F1 Scores ≥ 88%). The best performing model on 

the Helheim study area was the RGB transfer learning model (RGB+TL) with a tile size of 

50 pixels. The model predictions produced classifications with an overall F1 score of 93% 

(Figure 4.1a) and Kappa value of 0.9 (Figure 4.2). This indicates that the model class 

predictions are highly accurate and have almost perfect agreement with manually delineated 

validation data (see Table 3.3). The highest performing models for the Scoresby Sund study 

area were the RGB models which scored slightly lower F1 scores of 90% irrespective of tile 

size (Figure 4.1b). This shows that the model produces slightly improved classification 

performance on in-sample data compared to out-of-sample data. However, the RGB model 

performance on the Scoresby Sund image remains high and indicates that the phase one 

model is transferable to outlet glacier landscapes in SE Greenland which were not used in 

training. 

Overall, the performance of non-transfer learning models does not appear to be greatly 

sensitive to tile size, with RGB and RGB+NIR models resulting in F1 scores ranging from 

90 to 92% for in-sample (Helheim) data and 88 to 90% for out-of-sample (Scoresby) data. 

However, the transfer learning models were greatly impacted by tile size for both test areas, 

with tile sizes of 75 and 100 pixels producing lower F1 and Kappa scores compared to 

models trained with a tile size of 50 pixels (Figure 4.1a and Figure 4.2). The transfer learning 

models also performed substantially worse on out-of-sample data (Figure 4.1b). The addition 

of the NIR band in both study areas did not appear to improve classification results.  

In summary, while the best performing phase one CNN for in-sample data used transfer 

learning, the transfer learning approach was highly sensitive to tile size and did not perform 

well on out-of-sample data, suggesting it is less transferable compared to non-transfer 

learning approaches of model training. Additionally, both models trained using RGB and 

RGB+NIR tiles were only slightly sensitive to tile size, but the addition of the NIR band did 

not improve model performance, suggesting that the RGB models are the most transferable 

while providing high levels of classification accuracy.  
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Figure 4.1: The F1 scores of the phase one (VGG16) model classifications used to produce 

training data for phase 2 of the CSC workflow. Showing results for (a) the Helheim test area 

(in-sample) and (b) the Scoresby Sund test area (out-of-sample). Note the low sensitivity of 

RGB and RGB+NIR models to tile size (with a range in F1 scores of 2 % for both (a) and (b)). 

Also note the high sensitivity of transfer learning approaches to tile size and lower 

transferability to out-of-sample data compared to non-transfer learning approaches. 

 

 

Figure 4.2: Kappa scores resulting from phase one model classification outputs. Note the 

relatively high kappa scores showing good agreement between model results and manually 

digitised truth data used for validation, with the exception of transfer learning model results 

on out-of-sample Scoresby data. 
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4.1.2 Performance of Phase 2 Models and Patch Size Sensitivity 

4.1.2.1 Helheim (In-sample) 

Figure 4.3 shows the overall F1 scores of the CSC (CNN + MLP/cCNN) results, 

demonstrating the impact of patch size. In general, the results of applying CSC to the 

Helheim study area showed a clear sensitivity to patch size with a patch size of 1 pixel 

yielding lower F1 scores and Kappa values than larger patch sizes in all models. Larger patch 

sizes of 3, 7, and 15 pixels either produced F1 scores consistent with phase one CNN outputs 

or improved upon classification performance by 1 to 2%. A patch size of 7 pixels yielded 

the best results in all models with the highest F1 scores of 92% in the RGB+NIR model 

(Figure 4.3e), 93% in the RGB model (Figure 4.3a), and 95% in the RGB transfer learning 

model (Figure 4.3c).  

Specifically, the CSC results of the RGB models yielded F1 scores from 82 to 93% (Figure 

4.3a) and Kappa values of 0.75 to 0.89 (Figure 4.4). RGB models with tile sizes of 75 and 

100 pixels scored highest and had correspondingly high Kappa scores (≥0.8: see Figure 4.4). 

In terms of patch size, the RGB models using a cCNN patch size of 7 improved on the results 

of the phase one CNNs by 1%. RGB models using a cCNN patch size of 3 and 15 also 

performed well, either producing the same F1 score as phase one CNNs or improving 

classification results (Figure 4.3a).  

The CSC results of the RGB transfer learning models yielded F1 scores from 84 to 95% 

(Figure 4.3c) and Kappa values of 0.85 to 0.92 (Figure 4.4). RGB+TL models with a tile 

size of 50 were highest performing with F1 scores of 94 to 95% for patch sizes of 3 to 15 

pixels (Figure 4.3c). As with the RGB models, the use of a cCNN with a patch size of 7 was 

the best, consistently improving on phase one results by 2%.  

The RGB+NIR models had F1 scores ranging from 85 to 92% (Figure 4.3e) and Kappa 

values of 0.77 to 0.88 (Figure 4.4). The results of phase one RGB+NIR models with a tile 

size of 50 were not improved by the addition of a patch-based cCNN. However, RGB+NIR 

models with tiles sizes of 75 and 100 and a cCNN patch size of 3 and 7 were consistent with 

or improved upon phase one classification results. As with the pixel-based approach, the 

phase two model which used a patch size of 15 did not improve phase one RGB+NIR results.  

Overall, this suggests that the pixel-based CSC workflow is outperformed by the patch-based 

CSC workflow for in-sample classification, with a patch size of 7 pixels producing the 

optimal results. It also suggests that with optimal patch size, phase one model classifications 

are improved upon by phase two model results. 
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Figure 4.3: The F1 scores of the phase two classifications following the CSC workflow for the 

Helheim test image (a, c, e) and Scoresby test image (b, d, f). Note in some cases phase two 

results outperform phase one results. One prominent exception is the pixel-based approach for 

in-sample data. The patch-based approach performs well for in-sample data, with a patch size 

of 7 creating optimal results. The pixel-based approach performs better on out-of-sample data 

compared to in-sample data.  
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Figure 4.4: Kappa scores resulting from phase two model classification outputs. Note that 

kappa scores are generally similar to phase one results, with high levels of agreement for most 

models. Notable exceptions are the pixel-based in-sample results and out-of-sample results 

from the transfer learning model. 
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Figure 4.5 shows the in-sample CSC outputs for the best performing phase one models using 

RGB (Figure 4.5c), RGB+TL (Figure 4.5d), and RGB+NIR (Figure 4.5e) training 

approaches. All models in the figure used a cCNN patch size of 7 pixels and are applied to 

a 3000x3000 pixel image tile of Helheim glacier (Tile S2A5: 5 of 9 extracted from the test 

image). The RGB model produced an F1 score of 94% (Figure 4.5c), while the RGB model 

with transfer learning (Figure 4.5d) and the RGB+NIR model (Figure 4.5e) both produced 

F1 scores of 97%. Visual comparison between the results suggests only small variations in 

classification outputs, corresponding to small variations in F1 scores (on the scale of 1 to 

3%). Figure 4.6 shows the confusion matrices illustrating agreement between model-

predicted classes and manually delineated classes for the three best workflows shown in 

Figure 4.5. In all three model workflows there is excellent agreement between class 

predictions and manually obtained truth data, perhaps with the exception of the RGB model 

which shows some confusion between open water and bedrock classes. 

 

Taken together, these results indicate that for in-sample data the patch-based (CNN + cCNN) 

CSC workflow produces the best results. Specifically, the best performing model used a 

phase two cCNN with a patch size of 7 pixels. 
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Figure 4.5: Best performing CSC results for tile 5 of 9 from the Helheim study area 

(07/08/2019). (a) RGB input image (composite Sentinel-2 bands 4, 3, and 2). (b) Validation 

raster composed of manually digitised ‘ground truth’ polygons. Showing workflow outputs 

using (c) the RGB model (tile size: 100 pixels, patch size: 7 pixels), (d) the RGB model with 

transfer learning (tile size: 50 pixels, patch size: 7 pixels), and; (e) the RGB+NIR model (tile 

size: 50 pixels, patch size: 7 pixels). Note all models produce highly accurate classification 

outputs with small variations between outputs and minimal noise. 
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Figure 4.6: Confusion matrices for the results of the best performing in-sample models depicted 

in Figure 4.5. a) and b) Show the degree of class agreement for the RGB model which performs 

best with a tiles size of 100 and patch size of 7. C) and d) show the agreement for results of the 

best RGB+TL model, while e) and f) show the agreement for best RGB+NIR results. 
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4.1.2.2 Scoresby Sund (Out-of-sample) 

In contrast to the Helheim study area, the performance of CSC in out-of-sample data was 

high for the pixel-based approach, in most cases with identical or improved F1 scores 

compared to the larger patch-sizes (Figure 4.3). For the most part, models using smaller 

patch sizes (1, 3, and 7) performed slightly (1 to 3%) better than those with a patch size of 

15. However, it is important to note that for each of the nine individual models tested on out-

of-sample data, F1 scores only varied by up to 3% for the four different patch sizes. The 

MLP and cCNN outputs also notably outperformed phase one classification results in most 

models, by up to 4% (Figure 4.3).  

For the Scoresby Sund area the RGB models were the highest performing overall (Figure 

4.3b), with F1 scores ranging from 90 to 93%. Kappa values also showed highest agreement 

for the RGB models, with a value of 0.9 for most RGB models with tile sizes of 75 and 100 

(Figure 4.4). For patch size, the RGB model performed best with patch sizes of 1, 3, and 7.  

While the transfer learning approach improved model performance for the Helheim study 

area, as with the phase one CNN, its performance in the Scoresby Sund area (out-of-sample) 

was substantially worse, with F1 scores ranging from 74 to 89% (Figure 4.3). The transfer 

learning approach was also more sensitive to tile size than other models, with a tile size of 

50 pixels yielding the highest F1 scores of 88 to 89%, 75 pixels yielding 74 to 75%, and 100 

pixels yielding 81 to 84%, mirroring phase one model results. However, it showed very little 

sensitivity to patch size. There was no variation in F1 score between patch sizes of 1, 3, and 

7 for models trained on tile sizes of 50 and 75, and a patch size of 15 produced F1 scores 1% 

lower than smaller patch sizes. Despite this, the addition of the phase two model improved 

phase one transfer learning classification results consistently for the out-of-sample data.  

RGB+NIR models had F1 scores ranging from 88 to 92% (Figure 4.3f) and Kappa values 

from 0.81 to 0.88 (Figure 4.4), with a tile size of 75 yielding the best results. As with all 

models tested on out-of-sample data, the RGB+NIR models showed limited sensitivity to 

phase two patch size, but the pixel-based approach (patch size: 1) was consistently 1 to 2% 

better than the patch-based approach.  

Overall, these results show that out-of-sample data is less sensitive to patch size compared 

to in-sample data, with the pixel-based approach performing substantially better in out-of-

sample data. The results also suggest that phase two model predictions are highly dependent 

on the quality of classification outputs resulting from phase one predictions which are 

subsequently used as localised training data. 
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Figure 4.7 shows a visual comparison of the out-of-sample CSC outputs for the best 

performing RGB, RGB with transfer learning, and RGB+NIR models when used on a 

3000x3000 pixel image tile extracted from the Scoresby Sund area (Tile S2A8: 8 of 9 

extracted from the Sentinel-2 test tile). Figure 4.7c shows the output of the RGB model, with 

an F1 score of 97%. The transfer learning model produced an F1 score of 89% (Figure 4.7d) 

while the RGB+NIR model produced an F1 score of 94% (Figure 4.7e). In the case of the 

example tile, most confusion appears to occur between open water and iceberg water classes 

(Figure 4.7).  

The confusion matrices for overall results produced by the three best performing models for 

out-of-sample data (shown in Figure 4.7) are illustrated in Figure 4.8. The confusion between 

iceberg water and open water seen particularly in Figures 4.7d and e are also clear from the 

confusion matrices. However, a higher degree of confusion is noted to occur between snow-

covered rock and bare bedrock classes. In general, the models with the lowest performance 

experience confusion between one or more classes (see Figures A14-24). For example, the 

application of the transfer learning model with a tile size of 75 (the lowest performing model) 

to out-of-sample data resulted in confusion between open water and iceberg water classes, 

as well as confusion between snow on rock and glacier ice classes (see Figures A17-20). 

Since phase one results are used to train phase two models, high amounts of class confusion 

in phase one models can be transmitted to phase two results. However, some class confusion 

in phase one is overcome in phase two, as indicated by the consistent improvement of phase 

two results over phase one classifications. 
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Figure 4.7: Best performing CSC results for tile 8 of 9 extracted from the Scoresby Sund study 

area (01/08/2019). (a) shows the RGB input image (composite Sentinel-2 bands 4, 3, and 2); and 

(b) shows the validation raster composed of manually digitised ‘ground truth’ polygons. 

Showing workflow outputs using: (c) the RGB model (tile size: 100 pixels, patch size: 3 pixels), 

(d) the RGB model with transfer learning (tile size: 50 pixels, patch size: 1 pixel), and (e) the 

RGB+NIR model (tile size: 75 pixels, patch size: 1 pixel). Note that most class confusion occurs 

between open water and iceberg water classes. 
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Figure 4.8: Confusion matrices for the results of the best performing out-of-sample models 

depicted in Figure 4.7. a) and b) Show the degree of class agreement for the RGB model; c) and 

d) show the agreement for results of the best RGB+TL model, while e) and f) show the 

agreement for best RGB+NIR results. 
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4.2 Spatial and Temporal Transferability 

Figures 4.9 to 4.11 show CSC predictions for several 3000x3000 pixel example tiles 

extracted from the Sentinel-2 test images. These results indicate that the deep learning 

workflow is capable of classifying marine-terminating landscapes not ‘seen’ during training 

and suggest that the method is spatially transferable to glacial landscapes elsewhere in SE 

Greenland. In some cases, there are small areas of erroneous class predictions, particularly 

relating to areas of bedrock that are shadowed, supraglacial debris, supraglacial lakes 

(SGLs), small lakes in bedrock areas, and small pockets of fjord water which appear to 

contain high volumes of suspended sediment. For example, shadowed areas of bedrock were 

often misclassified as open water. This is most likely because they have similar spectral 

characteristics and only small areas of shadowed bedrock would have been included in 

model training data. Likewise, other areas of misclassification included surface types that 

were not included within the seven semantic classes outlined in Chapter 3 (e.g., SGLs, 

sediment rich water, supraglacial debris). Model predictions of these areas may have 

improved if the number of classes was expanded to be inclusive of these surface types. 

However, these areas generally tend to occupy small portions of imagery and do not 

significantly impact overall performance. Moreover, due to the small portion of imagery 

containing these classes, extracting sufficient volumes of training data would be challenging 

and potentially lead to class imbalance problems. Similarly, given that the phase one CNN 

operates at the scale of 50x50 to 100x100 pixel tiles, features which span only a few pixels 

(e.g., small lakes) would be too small to be labelled and subsequently be lost in training data 

for the phase two models. This suggests that CSC can not be used to detect smaller features 

than the input tile size, and that CSC could be improved to classify larger scale classes such 

as sediment rich water by including more diverse training data. 
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Figure 4.9: CSC (RGB+TL, Tile:50, Patch:7) results for three example tiles from the test 

Sentinel-2 image of Helheim. Note that CSC performs well in classifying both land- and 

marine-terminating glaciers, even in the presence of mélange and large volumes of icebergs. 

However, note that some small areas of shadowed bedrock are misclassified as open water.  
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Figure 4.10: CSC (RGB, Tile:100, Patch:7) results for first three tiles extracted from the test 

Sentinel-2 image of the Scoresby Sund study area. Note that the supraglacial lake in (a) is 

classified as mélange in (b) and some small lakes in bedrock areas are missed by the model. In 

(c) large areas of SGLs resulted in misclassification of glacier ice as iceberg water in (d). Also 

note the areas of sediment-rich fjord water in (c) and (e) which are misclassified as bedrock. 
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Figure 4.11: CSC (RGB, Tile:100, Patch:7) results for three more example tiles extracted from 

the test Sentinel-2 image of the Scoresby Sund study area. Note in (a), (b), (e), and (f) several 

more SGLs are classified as mélange, iceberg water or open water. The lower F1 score in (d) is 

due to confusion between predicted water types in comparison to manual truth labels. In (f) 

some areas of smooth ‘snow on ice’ areas have been classified as ‘snow on rock’.  
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4.3 Comparison of CNN-Supervised Classification to Traditional Band Ratio Methods 

Figure 4.12 shows a visual comparison between a traditional band ratio technique (as 

described in Paul et al. (2016)) and the result of the CSC workflow using the best performing 

model on tile 5 of the 9 tiles extracted from the test image of Helheim. CSC successfully 

identifies areas of mélange, glacier ice and iceberg rich fjord waters as different classes 

(Figure 4.12b). The band ratio method allows clear identification of rock, and land 

terminating ice margins. However, the technique struggles to distinguish boundaries 

between glacier ice, mélange, and iceberg water (Figure 4.12c). In the example shown, the 

abundant spectral variation and noise makes using a series of thresholds to extract margins 

in a mélange-filled fjord almost impossible. This is reflected by an F1 score of 53% for the 

band ratio technique which is substantially outperformed by CSC with a corresponding F1 

of 97%. This comparison and preliminary tests of CSC transferability suggests it is more 

robust than traditional techniques and does not rely on the requirement of identifying 

threshold values to extract classes. 
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Figure 4.12: Comparison of methods used on tile 5 of 9 (a) extracted from the Helheim study 

area (07/08/2019), including (b) Validation labels used to create F1 scores, (c) the CSC 

classification, and (d) a band ratio classification using Sentinel-2 bands 4 (red) and 11 (SWIR). 

Note that only three classes could be extracted from the band ratio image due to significant 

noise and no contrast between glacier ice, mélange, and iceberg water classes. 
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5 Discussion 

5.1 CSC Performance in Marine-Terminating Outlet Glacier Environments 

The results reported here demonstrate novel multi-class satellite image classification of 

complex outlet glacier image scenes using deep learning. The CSC workflow adapted for 

glacial settings in Greenland produced mean F1 scores up to 95% for in-sample test imagery 

and 93% for out-of-sample test imagery, with corresponding Kappa values of 0.92 and 0.9, 

respectively. The method created multi-class outputs in contrast to the binary classification 

outputs used by Mohajerani et al. (2019), Zhang et al. (2019), and Baumhoer et al. (2019) 

for automated delineation of marine-terminating ice fronts. Despite this difference in output 

classification type, mean F1 scores of classifications by Baumhoer et al. (2019) were 89 to 

90% for in-sample training sites and 90 to 91% for out-of-sample test sites, suggesting the 

CSC workflow advances the state-of-the-art in image classification of complex marine-

terminating glacial environments using deep learning.  

In addition to advancing the state-of-the-art for marine-terminating glacial settings, the 

multi-class outputs of the CSC workflow widen the scope of image classification for a 

variety of research applications, beyond just automated delineation of calving fronts from 

binary classification outputs. Moreover, the ability of the CSC deep learning workflow to 

classify images previously unseen by the model for both training and testing areas to a 

similarly high level of accuracy suggests good generalisation and highlights the 

transferability of CSC to other marine-terminating outlet glacier environments in SE 

Greenland.  

 

5.2 Comparison to Previous Work 

The results of this project build on the work of deep learning-based classification methods 

for glacier delineation (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; 

Xie et al., 2020), with several key innovations and variations of note. In particular, the 

volume, type, and number of input channels of training data used in this workflow differs 

from those of previous work. Furthermore, there are substantial differences in the deep 

learning architectures and classification approach tested in this project. 
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5.2.1 Volume of Training Data  

In terms of training data volume, fewer training images (i.e., 13) were used here compared 

to the number of training images used by Baumhoer et al. (2019), Mohajerani et al. (2019), 

and Zhang et al. (2019) (i.e., 38, 123, and 75, respectively). In terms of the number of 

training samples, Goodfellow et al. (2016) note that, as a general rule, each class should 

contain at least 5,000 samples to reach satisfactory performance, but models can reach and 

exceed human-level performance when trained on at least 10 million samples. With this in 

mind, the number of labelled samples produced by manually labelled training images and 

data augmentation in the datasets used here (< 360,000) makes them relatively small. 

However, in comparison to pre-trained models such as VGG16 which were trained on the 

ImageNet database using over 1000 classes, the adapted VGG16 architecture in this project 

only uses seven classes, and therefore can be trained sufficiently with ‘only’ a few 100 

thousand samples. This suggests that relatively few images are needed to produce highly 

accurate image classifications using the CSC workflow, reducing the time required for initial 

creation of manually labelled training data. Furthermore, the CSC workflow does not require 

the same pre-processing steps such as manually rotating images so that glacier flow 

directions are consistent or cropping input images to a specified buffer width encompassing 

glacier calving fronts as in Mohajerani et al. (2019). As such, CSC has the advantage of 

needing fewer satellite acquisitions for training and simpler pre-processing steps. 

 

5.2.2 Type of Training Data 

In relation to the type of data used to train the deep learning models, Baumhoer et al. (2019) 

and Zhang et al. (2019) used Sentinel-1 and TerraSAR-X SAR data, respectively. 

Specifically, Baumhoer et al. (2019) used different SAR polarisations with the addition of a 

DEM to train the FCN. In contrast, Mohajerani et al. (2019) used Landsat 5, 7 and 8 imagery 

for FCN training, in particular using the ‘green’ band from Landsat 5 data and 

‘panchromatic’ band from Landsat 7 and 8 data. In this project, Sentinel-2 optical data was 

used which is generally easier to process in comparison to SAR data and requires less 

specialised knowledge for pre-processing. For example, common pre-processing steps to 

implement SAR data include noise removal, radiometric calibration, and geocoding 

correction (in addition to training area cropping and tiling for model training) (Baumhoer et 

al., 2019; Zhang et al., 2019). While SAR data is not limited by clouds or polar night, using 

L2A Sentinel-2 imagery eliminates the need to incorporate DEM data and removes SAR 
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pre-processing steps from the deep learning workflow, allowing cloud-free imagery to be 

downloaded, cropped, and tiled more quickly for model training. 

5.2.3 Dimensions of Training Data 

In terms of input dimensions, Zhang et al. (2019) and Mohajerani et al. (2019) used one-

dimensional (1D) training inputs while Baumhoer et al. (2019) used data with four input 

channels. The input channels of the CSC workflow (i.e., 3 or 4 input bands) were analogous 

with those of Baumhoer et al. (2019) but with different input data types (i.e., multispectral 

data vs. SAR and DEM data). At the opposite end of the spectrum, Xie et al. (2020) used 17 

input channels, incorporating all 11 Landsat 8 bands, a DEM, and five layers derived from 

the DEM to produce binary classifications for debris-covered land-terminating glaciers. 

They produced results with F1 scores up to 94% using a CNN trained and tested on images 

of glaciers in the Karakoram region, and 90% for a transfer learning approach using the 

model initially trained on the Karakoram region, with weights adjusted using new training 

data from Nepal. Xie et al. (2020) note that using fewer input channels in experimental CNN 

training resulted in lower levels of accuracy. However, despite the large difference in input 

dimensionality between the CNN used here and that of Xie et al. (2020), resultant F1 scores 

show that the use of only three Sentinel-2 bands produces classifications with similar levels 

of accuracy. However, it is important to note that the CSC workflow was applied to a 

markedly different glacial landscape compared to Xie et al. (2020). Nevertheless, the results 

presented here show that using only three input Sentinel-2 bands is sufficient for producing 

accurate classifications in scenes containing complex marine-terminating glaciers.  

 

5.2.4 Deep Learning Model Architectures 

Likewise, further variations in comparison to previous work are apparent in the model 

architectures, number of models used, and training approaches tested for classification. All 

previous deep learning classification methods for marine-terminating glacial environments 

(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019) use the U-Net 

architecture (Ronneberger et al., 2015). Whilst U-Net architectures have reached state-of-

the-art performance in computer vision tasks, their application in complex natural landscapes 

is not necessarily optimal given the intrinsic assumptions of U-Net models.  For example, 

U-Net architectures perform exceedingly well at delineating people in imagery (Xie et al., 

2018; Wang and Bai, 2019). In such cases, skin colour and clothing colour must not be 

considered as identifying features. However, in Earth Observation (EO) images of natural 
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landscapes, there is a much stronger correlation between colour and landform.  Furthermore, 

the U-Net architecture will learn shapes that have a limited variability of both form and scale.  

For example, people have similar dimensions in imagery used in self-driving vehicles and 

their location in the image is limited to a horizontal zone across the field of view.  In contrast, 

natural landforms can vary in scales over several orders of magnitude and be located 

anywhere in an image. Therefore, it can be argued that more evidence is needed before 

considering the use of U-Net architectures as the de facto algorithm for glacial landscape 

classification. Moreover, the results presented here show that a deep learning approach based 

on a combination of local spectral and spatial properties determined by a compact CNN 

architecture has exceeded the results derived from U-Net architectures.  

 

5.3 Comparison to Traditional Glacier Mapping Methods using Band Ratios 

In contrast to previous work, this project also assessed the workflow performance in 

comparison to a traditional band ratio method for classification of an image containing a 

marine-terminating glacier (Figure 4.12). The results show that CSC is better at identifying 

classes which are spectrally similar such as mélange, glacier ice and iceberg water. This 

suggests that the method outperforms traditional pixel-based classification techniques, 

similar to findings from classification of fluvial image scenes (Carbonneau et al., 2020a). 

CSC is also more robust because it is able to classify new unseen images in SE Greenland 

without further training and does not require additional steps to determine an optimal 

threshold value for outlining class boundaries. Moreover, the method has the ability to pick 

out textures and patterns in the same way a human operator would, irrespective of variations 

in illumination, weather conditions or seasonal changes to the landscape and individual 

classes. This also highlights the benefit and transferability of CNNs over purely pixel-based 

techniques for classifying complex image scenes with substantial seasonal variations.  

 

5.4 Evaluation of Training Methods 

To evaluate the workflow, three different approaches of training the phase one CNNs were 

tested by using two different band combinations and a transfer learning technique. The 

results show that the addition of the NIR band did not significantly improve classification 

accuracy. Further testing of alternative band combinations or the addition of different 

satellite data types (e.g., SAR data) may be advantageous. However, using RGB bands 

produces satisfactory results and adding additional image bands is likely to increase 
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processing time without necessarily improving on the overall accuracy, as also suggested by 

Xie et al. (2020).  

In terms of transfer learning, the technique has been applied successfully in previous image 

classification studies which use remotely sensed satellite imagery, allowing reduced training 

times for smaller datasets (Hu et al., 2015; Pires de Lima and Marfurt, 2020). These studies 

highlighted that CNNs pre-trained on ImageNet data may be transferable to remote sensing 

imagery by fine-tuning the last layers in the CNN for dataset specific feature extraction, 

regardless of disparities in input image properties (e.g., angle of acquisition). However, Pires 

de Lima and Marfurt, (2020) recognise that, in contrast to training all the layers of a CNN 

on remote sensing data, the difference between ImageNet data and remote sensing data in 

some cases has resulted in transfer learning techniques overfitting and reducing the ability 

of models to learn. In this study, while transfer learning performed exceptionally well for in-

sample data, its performance degraded substantially when applied to out-of-sample test 

imagery, suggesting reduced transferability. The strong performance of the transfer learning 

approach on in-sample data supports findings that it is a powerful deep learning tool (Xie et 

al., 2020). However, it is suggested that the high-level features representative of diverse, 

seasonally variable image elements and classes are not as successfully detected using 

transfer learning in comparison to full CNN training. This indicates that transfer learning 

techniques would require further efforts to fine-tune for improved transferability to marine-

terminating outlet glacier environments.  

 

5.5 The Impact of Tile Size on Model Performance 

The impact of tile size (height and width of image samples used for training and validation) 

on model performance was also evaluated. For models to learn the features which represent 

diverse image elements, class representative features need to fit within an individual tile, 

thus making careful choice of tile size especially important. It is also important to consider 

that the number of tiles produced to compose a training dataset changes based on tile size. 

With the same source imagery, a large number of small tiles can be produced compared to 

fewer larger tiles (e.g., Table 3.2). Thus, the selection of tile size is dependent on the desired 

information content of a tile and the number of tiles needed to sufficiently train a CNN. It 

was for this reason that tiles sizes of 50, 75 and 100 pixels were tested.  

Results show that non-transfer learning phase one CNNs were not substantially sensitive to 

tile size, with models trained on all three tile sizes producing F1 scores within a 2% range 
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for both in-sample and out-of-sample test data. Following the full CSC workflow, the RGB 

models (without transfer learning) trained on larger tile sizes produced slightly better 

classifications with tile sizes of 100 and 75 outperforming tile sizes of 50 pixels by up to 

3%. This suggests that using fewer larger tiles (e.g., size of 100 pixels) slightly improves 

RGB model performance, specifically for the scale of features in outlet glacier landscapes 

in Greenland.  

In contrast, the transfer learning phase one CNNs had increased sensitivity to tile size, 

producing F1 scores with a range of 5% for in-sample test data and 13% for out-of-sample 

test data. This was mirrored in the CSC classifications, with large differences in F1 scores 

depending on tile size, whereby the smallest tile size of 50 pixels produced the best results, 

but model performance deteriorated with tiles sizes of 75 and 100 pixels. It is interesting to 

note that the transfer learning technique benefited from using a larger number of smaller tiles 

compared to the preferred smaller number of large tiles for the fully trained CNN. These 

results suggest that, for classification of outlet glacier landscapes, fully trained CNNs are 

more invariant to tile size for both in- and out-of-sample data, whereas transfer learning 

models produce a larger variability of F1 scores for different tile sizes, especially when 

applied to out-of-sample data. This supports the assertion that the most transferable CSC 

workflow for outlet glacier image classification uses a phase one CNN with all weights 

trained using RGB bands and larger tile sizes (of 75 or 100 pixels).  

 

5.6 The Impact of Patch Size on Model Performance 

In addition to testing the influence of tile size during training for phase one CNNs, the 

sensitivity of phase two model performance was tested by using pixel- and patch-based 

techniques. Specifically, four patch sizes of 1x1 (pixel-based), 3x3, 7x7, and 15x15 pixels 

(patch-based) were tested. The reason for testing pixel- and patch-based techniques is due to 

the use of medium resolution imagery which tends to have spectral variations across images, 

making it difficult to distinguish class from the spectral characteristics of a pixel alone 

(Maggiori et al., 2016). The best performing patch size may also vary depending on the type 

of medium resolution satellite imagery (Sharma et al., 2017) making it an important testable 

parameter. It was proposed that adopting a patch-based technique which includes contextual 

information surrounding a pixel would aid classification of complex and seasonally variable 

outlet glacier landscapes, as it has in other applications (Sharma et al., 2017). The results 

showed that for the most part this was true, especially for in-sample test imagery.  
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When CSC was applied to in-sample test data, the workflow performance was clearly 

sensitive to patch size, with the pixel-based approach producing classifications with lower 

F1 scores compared to the patch-based technique. The optimal patch-size for in-sample test 

data was 7x7 pixels. The in-sample results support the hypothesis that pixel-based 

approaches do not perform as well on medium-resolution imagery compared to the patch-

based approach. This also validates similar findings that patch-based CNNs outperform 

standard pixel-based neural networks and CNNs (Sharma et al., 2017). In contrast, for out-

of-sample data, the pixel-based approach performed substantially better than for the in-

sample test data, and smaller patch sizes of 1, 3, and 7 generally outperformed a larger patch 

size of 15. However, in general CSC results for out-of-sample data were less sensitive to 

patch size, producing a range of F1 scores that varied by only 3 % between all four patch 

sizes (per the three individual models). Therefore, it is suggested that testing a range of patch 

sizes would be beneficial before applying the workflow to a new dataset. 

 

5.7 Limitations, Transferability, and Implications for Future Work 

The performance of the CSC workflow is dependent on the success of the pre-trained CNNs 

to identify image-specific training areas in phase one. The performance of the phase one 

models can be impacted by the size and class representation of training data. It is noted that 

the data used to train the phase one CNNs was extracted from only one outlet glacier in 

Greenland, and that producing a larger training dataset from a wider array of imagery in 

other similar settings may be beneficial to increase model performance and transferability in 

future work. The lack of a benchmark dataset specifically for marine-terminating outlet 

glacier settings means that the application of deep learning in this field initially relies on 

labour-intensive manual labelling of training data. Despite this limitation, the deep learning 

workflow here produced highly accurate classifications for both images of the glacier used 

in training and of different locations not ‘seen’ by the model. Furthermore, once the phase 

one models are trained and weights are saved, no further training is required to apply the 

workflow to other marine-terminating outlet glaciers in SE Greenland. 

In addition to the size of the training dataset, class imbalance can impact model performance. 

Marine-terminating outlet glacier environments have classes which are naturally less 

abundant in imagery. For example, there were smaller areas of mélange compared to glacier 

ice or snow-covered ice in most full satellite scenes of the Helheim and Scoresby study areas. 

So, despite efforts to balance the training dataset, certain classes such as open water (without 

icebergs), mélange, and bedrock were represented by a smaller number of training samples 
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compared to more prominent classes (Table 3.2). This can lead to confusion between classes 

as was found in some of the experiments. In models with lower performance, confusion 

occurred between open water and iceberg water classes, as well as between bedrock and 

snow on bedrock classes. Furthermore, class imbalance may be problematic for classifying 

large images (e.g., entire Sentinel-2 images that have not been tiled) which contain only 

small areas of a single class. For example, if only a small area of mélange was classified 

following the application of the phase one model to a Sentinel-2 image, only a small 

proportion of image data would be available for image-specific training in phase two. 

Consequently, if removing the mélange class altogether would reduce model loss, the output 

classification would have increased class confusion due to the misclassification of the absent 

mélange class. However, in the case of the smaller 3000x3000 pixel test tiles used in this 

study, confusion between classes in output classifications was minimal for most of the 36 

models tested. 

Additionally, there are numerous hyperparameters (e.g., learning rate, batch size, etc.) that 

could be tested and tuned for improved workflow implementation. Variations in such 

parameters are likely to impact model performance but require significant time to test and 

substantially increase the dimensions of model outputs (Carbonneau et al., 2020a). In 

addition, only one model architecture was tested for the phase one pre-trained model. 

VGG16 has a relatively simple architecture but the state-of-the-art for image classification 

is constantly evolving, with consistent and rapid development of new CNN architectures. As 

a result, there are a myriad of variations in CNN characteristics that could be tested in future 

work, such as CNN depth and filter sizes. Moreover, other well-established pre-trained 

model architectures such as GoogLeNet (Szegedy et al., 2014), and NASNet (Zoph et al., 

2018) have also been successfully applied to remote sensing applications (Ostankovich and 

Afanasyev, 2018; Carbonneau et al., 2020a) and could be explored for use in the CSC 

workflow for marine-terminating outlet glacier image classification. Thus, there are several 

avenues for expanding the use of deep learning for image classification of marine-

terminating outlet glacier landscapes in future work. Nevertheless, the implications of this 

study suggest that the adapted CSC workflow is transferable to unseen landscapes in SE 

Greenland and capable of maintaining a high level of performance.  

Further integration of the workflow with GIS platforms could provide an efficient tool for 

processing large amounts of imagery at high temporal resolution. In addition, since the 

workflow was implemented in Python 3.7, it is compatible with GEE (Gorelick et al., 2017), 

a cloud-based geospatial platform for processing and analysing large-scale datasets 
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(Tamiminia et al., 2020). GEE allows processing of Landsat and Sentinel-2 imagery without 

the need to download large volumes of data and has been used effectively in glacial 

applications such as automated mapping of glacial lakes (Shugar et al., 2020). Therefore, 

there is scope to implement CSC within the GEE platform and build on existing tools for 

automated glacier margin extraction (e.g. Lea, 2018) and classification without the need for 

expertise in coding or glaciology. With such integration, classification outputs could be 

rapidly produced and used to efficiently generate vector datasets from boundaries between 

classes, for wide-ranging applications and analysis in outlet glacier landscapes. 
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6 Conclusions 

In this study a workflow for image classification of seasonally variable marine-terminating 

outlet glacier environments using deep learning was developed and evaluated. The 

development of deep learning methods for automated classification of outlet glaciers is an 

important step towards monitoring important processes at high temporal and spatial 

resolution (e.g., changes in frontal position, calving events, plume development, supraglacial 

lake development and drainage). While still in its infancy in glacial settings, image 

classification using deep learning provides clear potential to reduce the labour-intensive 

nature of manual methods and facilitate automated analysis in an era of the burgeoning 

availability of satellite imagery. The two-phase CSC workflow was adapted for classification 

of medium resolution Sentinel-2 imagery of outlet glaciers in south east Greenland. In phase 

one, the application of a well-established, pre-trained CNN called VGG16 replicates the way 

a human operator would interpret an image, rapidly producing accurate training data without 

the requirement of time-consuming manual digitisation. In phase two, the workflow 

produces a pixel-level classification according to seven semantic classes characteristic of 

complex outlet glacier settings. Alongside an evaluation of various parameters and training 

methods on model performance, the workflow was applied and tested on two new Sentinel-

2 tiles containing marine-terminating outlet glaciers, previously unseen by phase one CNNs 

during training.   

Exemplified by resulting overall F1 scores of up to 95% for in-sample data and 93% for out-

of-sample data, the workflow establishes a state-of-the-art in multi-class image classification 

for outlet glacier environments in Greenland. Additionally, when compared to traditional 

pixel-based techniques, the results of CSC clearly outperform those of image band ratio 

methods. These results demonstrate the transferability and robustness of the approach, and 

although the CSC workflow was applied and tested on outlet glaciers in Greenland, it may 

also be transferred to outlet glacier landscapes in other glaciated regions with additional 

testing and fine-tuning. 

From a wider perspective, the results of this study strengthen the foothold of deep learning 

in the realm of automated processing of freely available medium resolution satellite imagery, 

especially building on the growing body of research using deep learning in glaciology 

(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Xie et al., 2020). The 

deep learning workflow presented here offers an efficient tool for glaciologists to analyse 

the dynamics of marine-terminating outlet glaciers, without significant prior experience in 

coding or deep learning. 
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7 Code and Data Availability  

Sentinel-2 imagery is available from the Copernicus Open Access Hub (available at: 

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The Python scripts for 

the full deep learning workflow and instructions on how to apply them are available at: 

http://doi.org/10.5281/zenodo.4081095 and can be cited as Carbonneau and Marochov 

(2020). The nine pre-trained VGG16 models are available for download from this 

institutional repository: http://doi.org/10.15128/r2gh93gz51k and can be cited as Marochov 

and Carbonneau (2020). The original code for the CSC workflow for classification of fluvial 

scenes is available at: https://github.com/geojames/CNN-Supervised-Classification. 
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Appendix 

 

Helheim Confusion Matrices 

Figure A1: Confusion matrices for CSC results on the Helheim test image using 50x50 

pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A2: Confusion matrices for CSC results on the Helheim test image using 50x50 

pixel tiles and a patch-based approach (patch size: 3). 
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Figure A3: Confusion matrices for CSC results on the Helheim test image using 50x50 

pixel tiles and a patch-based approach (patch size: 7). 
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Figure A4: Confusion matrices for CSC results on the Helheim test image using 50x50 

pixel tiles and a patch-based approach (patch size: 15). 

 

 

 

 

 

 



69 

 

 

 
 

Figure A5: Confusion matrices for CSC results on the Helheim test image using 75x75 

pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A6: Confusion matrices for CSC results on the Helheim test image using 75x75 

pixel tiles and a patch-based approach (patch size: 3). 
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Figure A7: Confusion matrices for CSC results on the Helheim test image using 75x75 

pixel tiles and a patch-based approach (patch size: 7). 
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Figure A8: Confusion matrices for CSC results on the Helheim test image using 75x75 

pixel tiles and a patch-based approach (patch size: 15). 
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Figure A9: Confusion matrices for CSC results on the Helheim test image using 

100x100 pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A10: Confusion matrices for CSC results on the Helheim test image using 

100x100 pixel tiles and a patch-based approach (patch size: 3). 
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Figure A11: Confusion matrices for CSC results on the Helheim test image using 

100x100 pixel tiles and a patch-based approach (patch size: 7). 
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Figure A12: Confusion matrices for CSC results on the Helheim test image using 

100x100 pixel tiles and a patch-based approach (patch size: 15). 
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Scoresby Confusion Matrices 

 

 

Figure A13: Confusion matrices for CSC results on the Scoresby test image using 50x50 

pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A14: Confusion matrices for CSC results on the Scoresby test image using 50x50 

pixel tiles and a patch-based approach (patch size: 3). 
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Figure A15: Confusion matrices for CSC results on the Scoresby test image using 50x50 

pixel tiles and a patch-based approach (patch size: 7). 
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Figure A16: Confusion matrices for CSC results on the Scoresby test image using 50x50 

pixel tiles and a patch-based approach (patch size: 15). 
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Figure A17: Confusion matrices for CSC results on the Scoresby test image using 75x75 

pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A18: Confusion matrices for CSC results on the Scoresby test image using 75x75 

pixel tiles and a patch-based approach (patch size: 3). 
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Figure A19: Confusion matrices for CSC results on the Scoresby test image using 75x75 

pixel tiles and a patch-based approach (patch size: 7). 
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Figure A20: Confusion matrices for CSC results on the Scoresby test image using 75x75 

pixel tiles and a patch-based approach (patch size: 15). 
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Figure A21: Confusion matrices for CSC results on the Scoresby test image using 

100x100 pixel tiles and a pixel-based approach (patch size: 1). 
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Figure A22: Confusion matrices for CSC results on the Scoresby test image using 

100x100 pixel tiles and a patch-based approach (patch size: 3). 
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Figure A23: Confusion matrices for CSC results on the Scoresby test image using 

100x100 pixel tiles and a patch-based approach (patch size: 7). 
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Figure A24: Confusion matrices for CSC results on the Scoresby test image using 

100x100 pixel tiles and a patch-based approach (patch size: 15). 
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