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Melanie Marochov

Image Classification of Marine-Terminating Outlet Glaciers using Deep

Learning Methods

Abstract. A wealth of research has focused on elucidating the key controls on mass loss
from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in
relation to the drivers of marine-terminating outlet glacier change. Despite the burgeoning
availability of medium resolution satellite data, the manual methods traditionally used to
monitor change of marine-terminating outlet glaciers from satellite imagery are time-
consuming and can be subjective, especially where a mélange of icebergs and sea-ice exists
at the terminus. To address this, recent advances in deep learning applied to image
processing have created a new frontier in the field of automated delineation of glacier
termini. However, at this stage, there remains a paucity of research on the use of deep
learning for pixel-level semantic image classification of outlet glacier environments. This
project develops and tests a two-phase deep learning approach based on a well-established
convolutional neural network (CNN) called VGG16 for automated classification of Sentinel-
2 satellite images. The novel workflow, termed CNN-Supervised Classification (CSC), was
originally developed for fluvial settings but is adapted here to produce multi-class outputs
for test imagery of glacial environments containing marine-terminating outlet glaciers in
eastern Greenland. Results show mean F1 scores up to 95% for in-sample test imagery and
93% for out-of-sample test imagery, with significant improvements over traditional pixel-
based methods such as band ratio techniques. This demonstrates the robustness of the deep
learning workflow for automated classification despite the complex characteristics of the
imagery. Future research could focus on the integration of deep learning classification
workflows with platforms such as Google Earth Engine (GEE), to classify imagery more
efficiently and produce datasets for a range of glacial applications without the need for

substantial prior experience in coding or deep learning.
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1 Introduction
1.1 Significance of Ice Sheets and Marine-Terminating Outlet Glaciers

The Greenland and Antarctic ice sheets act as large reservoirs which store 7.4 m and 58 m
of potential sea-level rise, respectively (Fretwell et al., 2013; Morlighem et al., 2017).
Alongside this, their interconnections with global atmospheric, oceanic, and biological
systems makes them particularly important to monitor (Hawkings et al., 2014; Beaird et al.,
2018; Cape et al., 2019; Catania et al., 2020). Observations show that the Earth’s ice sheets
have been losing mass at an increasing rate over the past several decades in response to
climate forcing (Rignot et al., 2008, 2011, 2019; Csatho et al., 2014; Velicogna et al., 2014;
Shepherd et al., 2018; Mouginot et al., 2019). This has resulted in sea-level contributions of
10.8 £ 0.9 mm from the Greenland Ice Sheet (GrlS), and 7.6 + 3.9 mm from the Antarctic
Ice Sheet (AIS) since 1992 (Shepherd et al., 2018, 2020). Moreover, mass loss has
predominantly been concentrated at the ice sheet margins, where acceleration, thinning and
retreat of marine-terminating outlet glaciers has been initiated and subsequently transmitted
to the interior of the ice sheets (Nick et al., 2009; Felikson et al., 2017). According to mass
balance reconstructions between 1972 and 2018, ice discharge (by iceberg calving) from
marine-terminating glaciers alone caused ~66% of mass loss from the GrIS (Mouginot et al.,
2019). Similarly, accelerated ice discharge has had a considerable impact on mass loss
elsewhere in the Arctic (Carr et al., 2017) and in several regions of Antarctica (Joughin et
al., 2003; Rignot, 2008; Rignot et al., 2008; Miles et al., 2013, 2017; Cook et al., 2014;
Mouginot et al., 2014). As a result, a wealth of research has focused on elucidating the key
drivers of marine-terminating outlet glacier retreat, acceleration and thinning (Vieli and
Nick, 2011; Bevan et al., 2012; Rignot et al., 2014; Carr et al., 2017; Catania et al., 2018;
Miles et al., 2021).

The terminus regions of marine-terminating outlet glaciers provide an important interface
between ice and the ocean-climate system. Furthermore, since dynamic changes in ice
discharge have been linked to terminus retreat (Vieli and Nick, 2011; Hill et al., 2018),
terminus position monitoring is frequently used as a key method to analyse the driving
mechanisms of dynamic outlet glacier change (Lea et al., 2014). Resulting observations have
shown that marine-terminating outlet glaciers are sensitive to internal and external drivers
over periods of weeks to months (Howat et al., 2005; Carr et al., 2013; King et al., 2018).
These drivers include: 1) submarine melt (Sutherland et al., 2019), induced by both localised
runoff-driven plumes (Carroll et al., 2016), and interaction with warm ocean currents

(Chaucheé et al., 2014; Jenkins et al., 2010); 2) reduced buttressing due to loss of sea-ice and
1



ice mélange (a mixture of sea-ice and icebergs) (Amundson et al., 2010; Miles et al., 2017,
Robel, 2017; Bevan et al., 2019); 3) changes in fjord and bed geometry (Bunce et al., 2018;
Catania et al., 2018); and 4) temporary drainage changes at the ice-bed interface (Juan et al.,
2010; Tuckett et al., 2019). In addition, these mechanisms are heterogeneous across local
and regional scales (Carr et al., 2017; Shepherd et al., 2020), with significant spatial
variability in thinning (Porter et al., 2018), velocity (Bevan et al., 2012), and terminus retreat
(Motyka et al., 2017) which remains largely unexplained (Catania et al., 2018).

Due to the range of temporal scales on which these processes operate and influence outlet
glacier behaviour, a growing body of literature has focused on measuring glacier termini at
high temporal resolution (from daily to monthly satellite data) to measure seasonal changes
as well as inter-annual and decadal trends (Fried et al., 2018; King et al., 2018). However,
since mapping the ice fronts of marine-terminating outlet glaciers continues to rely on
labour-intense and time-consuming manual digitisation (e.g. Miles et al., 2016, 2018; Carr
et al., 2017; Wood et al., 2018; Brough et al., 2019; Cook et al., 2019; King et al., 2020),
datasets tend to be spatially or temporally constrained (Seale et al., 2011). Thus, while recent
efforts to examine seasonal changes in outlet glacier termini have helped elucidate our
understanding of these drivers, the spatio-temporal limits of datasets resulting from
methodological drawbacks are problematic, especially when extrapolating results for use in
data-driven ice sheet models (Catania et al., 2020).

1.2 Challenges of Mapping Marine-Terminating Glaciers

Well-established, semi-automated techniques such as image band ratios which are used to
map mountain glaciers or ice caps for glacier inventories (e.g. Bolch et al., 2010; Frey et al.,
2012; Rastner et al., 2012; Guo et al., 2015; Stokes et al., 2018) are not suitable for mapping
marine-terminating glaciers. This is largely due to the presence of seasonally variable areas
of a spectrally similar mélange of sea-ice and icebergs near their termini (e.g. Amundson et
al., 2020), where the use of locally varying and image-dependent threshold values produces
inadequate results. Consequently, even manual digitisation can be challenging, and often
requires prior expertise. Likewise, the time-consuming nature of manual digitisation, and the
growing requirement of high-resolution datasets, highlights the rising need for more efficient
methods to quantify glacier change in an era of increasingly available satellite data.



1.3 Automated Mapping of Marine-Terminating Glaciers

To confront the challenge of manual digitisation, some automated pixel-based techniques
for extracting outlet glacier termini have been developed, exemplified in a small number of
studies (Sohn and Jezek, 1999; Liu and Jezek, 2004a, b; Seale et al., 2011; Krieger and
Floricioiu, 2017; Yu et al., 2019). These methods primarily use semantic segmentation, and
edge detection image processing tools (described in Chapter 2.2). However, they require
substantial pre- and post-processing, and have only been used for terminus delineation in a
few studies (e.g. Joughin et al., 2008; Christoffersen et al., 2012). In general, techniques
which rely solely on individual pixel values often miss contextual, class representative
shapes and textures. Moreover, in land cover classification, traditional pixel-based
approaches (e.g. Maximum Likelihood) commonly result in noisy classifications (Blaschke
et al., 2000; Li et al., 2014). More recently, deep learning methods have been developed to
overcome these drawbacks and utilise contextual data to extract the boundaries between 1)
glaciers/ice shelves and ocean in Antarctica (Baumhoer et al., 2019), and 2) marine-
terminating outlet glaciers and mélange in Greenland (Mohajerani et al., 2019; Zhang et al.,
2019) (see Chapter 2.3). While these methods are incredibly useful for extracting glacier
terminus outlines and quantifying fluctuations over time, they rely on binary classifications
and perhaps overlook the ability of deep learning methods to create highly accurate multi-
class outputs (i.e., not just ice and no-ice areas).

Detecting multiple semantic classes in a marine-terminating glacial landscape in
combination with terminus position delineation may provide a greater holistic understanding
of processes and interactions controlling outlet glacier behaviour. This would be particularly
useful considering the wide range of processes occurring at the interfaces between ice, ocean,
and atmosphere, which vary on both local and regional scales (Csatho et al., 2014; King et
al., 2018; Catania et al., 2020). By capturing multiple classes in a landscape, the outputs
could be used to quantify changes in a specific class over a range of timescales. For instance,
to monitor changes in the area and extent of mélange (Foga et al., 2014; Moon et al., 2015;
Cassotto et al., 2015), which has been found to impact the advance and retreat of marine-
terminating outlet glaciers at seasonal timescales (Howat et al., 2010; Carr et al., 2013; Todd
and Christoffersen, 2014). Similarly, classifying water with and without icebergs may help
elucidate spatial and temporal patterns of iceberg flux and the resulting impacts on fjord
water properties and circulation (Moon et al., 2018). This is important because changes in
fjord water properties may influence the temporal and spatial distribution of submarine melt

on outlet glaciers and have potential implications for glacier retreat (Moon et al., 2018;



Motyka et al., 2011). Alternatively, in the same way that terminus position delineation has
relied on detection of class boundaries in previous work (e.g., Baumhoer et al., 2019; Zhang
et al., 2019), multi-class outputs would permit monitoring of changes in other class
boundaries. For example, to detect changes in snowline position and quantify ablation area
changes (Noél et al., 2019). Additionally, classification at the scale of overall landcover
types would allow the isolation of a specific target class for detection of smaller scale
features such as supraglacial lakes (Hochreuther et al., 2021) and subglacial plumes (How
etal., 2017; Everett et al., 2018). Thus, multi-class outputs could provide the opportunity to
monitor several glacial processes concurrently and understand how they interact in relation

to outlet glacier behaviour at the scale of an entire landscape.

The use of deep learning in glaciology is still in its infancy (Figure 1.1), but given the
abundance of available satellite imagery, it could be a significant aid in the automation of
image processing of marine-terminating glacial settings. Deep learning has been used
successfully in other disciplines to classify entire landscapes or image scenes to a high level
of accuracy (Sharma et al., 2017; Carbonneau et al., 2020a). However, image classification
of entire marine-terminating outlet glacier environments has not yet been tested using deep
learning. Apart from the clear potential to reduce labour-intensive manual methods, it could
facilitate automated analysis in numerous research areas. In other words, aside from terminus
delineation, a method which quickly produces accurate multi-class image classifications of
complex and seasonally variable marine-terminating outlet glacier environments could
provide an efficient and holistic way to further elucidate processes such as calving events,
mélange evolution, subglacial plumes, and supra-glacial lakes at high temporal resolution.
The compatibility of deep learning image classification methods with platforms such as GEE
(Gorelick et al., 2017) and its integration with Geographic Information Systems (GIS)
software could also improve the efficiency of such analysis and remove the need for prior
expertise in deep learning and coding. This, in turn, could allow the incorporation of a more
detailed understanding of marine-terminating outlet glacier dynamics and interactions in

models used to project future sea-level changes (Csatho et al., 2014).



- 140

14 -
L 120
12
. L 100
4 _
< 2
10 <
S 80 £
8 B
5 87 2
£ <
— F60 ©
S 5
2 6 E
g 40 7
Z
4_
L 20
2_
|_| )
0 ] I 1 I 1 ] 1 I 1
N D XS b ST D O NIV M>XH A DO D
N I N M N L N N A S N N A N e N e g e M N A S N )
DA A A A DA A A A AT AT AT AR AR AR AT AR AR A

Figure 1.1: The number of published studies (bars) and citations (line) of research
relating to deep learning in glaciology. Publications were identified using a systematic
search of related terms included within publication titles. These terms contained the
following key words/phrases: “Deep learning”, “Neural Network(s)”, or “CNN(s)”, and
“Glacier(s)”, “Glacial”, “Ice Sheet(s)”, “Ice Shelf”’, “Sea-ice”, “Ice Front(s)”’, or
“Calving Front(s)”. Data were obtained from the Web of Science Core Collection on
15t December 2020.



1.4 Thesis Aims and Objectives

This project aims to establish and evaluate a deep learning workflow for multi-class image
classification of marine-terminating glacial environments in Greenland which can be
accessed and used rapidly without having specialised knowledge of deep learning or the
need for time-consuming generation of new training data. To achieve this, the following

objectives were devised:

. To adapt a deep learning method developed in fluvial settings for airborne image
classification and test it on satellite imagery of marine-terminating outlet glaciers
in Greenland.

. To overcome problems associated with seasonal variability/spectral similarity in
imagery by including seasonally variable model training data.

« To assess the sensitivity of the workflow to different band combinations, training
techniques, and model parameters.

. To provide a preliminary evaluation of the spatial transferability of the workflow
by applying it to unseen marine-terminating glacier environments in SE Greenland.

. To exceed the current state-of-the-art and advance accuracy levels (F1 scores
>90%) for pixel-level image classification of glacial environments which contain

complex marine-terminating outlet glaciers.

1.5 Thesis Outline

This chapter has outlined the importance of ice sheets and marine-terminating outlet glaciers,
specifically in relation to quantification of glacier change for increased understanding of
processes operating at multi- spatial and temporal scales. Chapter 2 appraises the relevant
literature on previous methods for mapping marine-terminating outlet glaciers. Chapter 3
describes the methods, outlining a novel approach to classification of Sentinel-2 imagery
containing landscapes with marine-terminating outlet glaciers in Greenland. Chapter 4
outlines the key results. Chapter 5 discusses the results in relation to the key aims and
objectives, and Chapter 6 concludes the thesis. Chapter 7 provides information and links for
fundamental code and data repositories. A revised version of this work has also been
submitted to The Cryosphere which is under review at: https://doi.org/10.5194/tc-2020-310.



2 A Review of Previous Methods for Mapping Marine-Terminating Ice Fronts
2.1 Manual Digitisation

Manual digitisation is the most common method used to delineate the fronts of marine-
terminating outlet glaciers and ice shelves from Synthetic Aperture Radar (SAR) and optical
satellite imagery. However, it generally relies on prior expertise, and its labour-intense, time-
consuming nature often limits the spatial and temporal resolution of datasets (Seale et al.,
2011). In effect, studies which use manual digitisation are prone to either: 1) a high number
of (daily to monthly) measurements for a limited number of glaciers or over short
observational periods (< 10 years) (e.g. Schild and Hamilton, 2013; Moon et al., 2014, 2015;
Kehrl et al., 2017); or 2) a limited number of (annual, interannual or decadal) measurements
over larger spatial areas or observational periods (> 10 years) (e.g. Moon and Joughin, 2008;
Miles et al., 2013). Additionally, manual digitisation frequently necessitates pre-processing
steps for image enhancement (e.g. Schild and Hamilton, 2013), especially to overcome the
challenges of digitising glacier or ice shelf margins near to spectrally similar areas of
mélange, sea-ice, and icebergs. This is also particularly important where glacier termini are
densely crevassed (Moon and Joughin, 2008), or where there is significant shadow due to

topography and seasonal variations in solar illumination (Yu et al., 2019).

Manual digitisation also normally requires the download, storage, and processing of large
numbers of images which further restricts user accessibility. However, the recent
development of tools for more efficient manual digitisation has reduced such computational
demands (Lea, 2018). Lea (2018) developed the Google Earth Engine Digitisation Tool
(GEEDIT) and Margin change Quantification Tool (MaQIiT) to allow more rapid digitisation
of glacier and ice shelf fronts, without the need to download and process satellite imagery.
These tools have since been applied successfully to digitise ice front positions and evaluate
glacier change in several studies (Brough et al., 2019; Holmes et al., 2019; Tuckett et al.,
2019; Amaral et al., 2020). For example, Brough et al. (2019) assessed the retreat of
Kangerlussuaq Glacier in East Greenland using the GEEDIT and MaQIiT tools, though
problems arose where glacier ice could not be differentiated from areas of mélange.
Similarly, in some cases manual digitisation has been combined with relatively simple
automated approaches to increase the efficiency of terminus delineation. For example, Miles
et al. (2017) used an automated classification method to map around 65% of terminus
positions from Envisat Advanced Synthetic Aperture Radar (ASAR) imagery for outlet
glaciers in Porpoise Bay, East Antarctica. Areas of glacier ice and sea-ice were classified

using a threshold based on pixel statistics, and the boundary between classes was extracted
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as the glacier terminus position. Nevertheless, variability in backscatter characteristics
resulting from glacier surface melt during the austral summer impeded the automated

method and prompted the remaining terminus delineations to be obtained manually.

While sufficient levels of accuracy can be achieved using manual digitisation, irrespective
of data or sensor type (Baumhoer et al., 2018), several factors can impact accuracy, including
georeferencing error, user bias, and the spatial resolution of imagery. In general, errors in
manual digitisation range from approximately 0.5 to 2 pixels (i.e., on the order of tens of
metres) (e.g. Miles et al., 2018). This small margin of error is usually deemed insignificant
in relation to the large size of outlet glaciers (i.e., of the order of kilometres) monitored over
decadal timescales in Antarctica and Greenland (Miles et al., 2013, 2018). However, this
level of uncertainty becomes acutely important when monitoring outlet glacier change at
higher temporal resolutions (i.e., over seasonal, and annual timescales). This necessitates
efforts to develop consistent, automated tools to map the complex marine-terminating outlets
of ice sheets. Indeed, transferable methods which produce results with comparable accuracy
to manual digitisation, independently of seasonal variations or spectrally similar surface

types, would be beneficial for high resolution analysis of outlet glaciers and ice shelves.

2.2 Image Segmentation and Edge Detection

Prior to the recent development of automated deep learning methods, most approaches for
semi-automated digitisation of marine-terminating ice fronts have relied on image
segmentation and edge detection techniques. Semantic segmentation is a term used
interchangeably with pixel-level semantic classification and refers to the process of dividing
an image into its constituent parts based on groups of pixels of a given class, assigning each
pixel a semantic label (Liu et al., 2019). Throughout the remainder of this study, we refer to
this generally as classification. Edge detection identifies areas in an image with abrupt
changes in pixel brightness, for example between glacier ice and darker areas of water and
iceberg rich water, or lighter areas of melange, presenting a foundation for boundary
delineation in satellite data (Chen and Hong Yang, 1995). These image processing methods
have been applied to both SAR and optical satellite data to delineate the marine-terminating
margins of the AIS and GrIS (Sohn and Jezek, 1999; Liu and Jezek, 2004a; Seale et al.,
2011; Krieger and Floricioiu, 2017; Yu et al., 2019) (Table 2.1). Extracting terrestrial ice
sheet margins generally involves segmenting images into areas of ‘ice’ and ‘no-ice’ to create
a binary classification. This is usually followed by applying edge detection algorithms, either

to the binary image or directly to satellite data (Table 2.1) to highlight ice margin pixels.



Table 2.1: Selected previous studies which developed (semi-) automated techniques to extract
the boundaries between land-based ice and water (including mélange, sea-ice, and icebergs) at
the edges of the Greenland and Antarctic ice sheets.

Imagery and Summary of Methods
Study and Area Year(s) of ) i Post-
Extraction Pre-processing Processing processing
Segmentation for
Sohn and binary image Removal of
Jezek, 1999 SPOT, ERS-1 Images geocoded classification using edge
(SAR) Edge enhanced, local dynamic segments
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(Jakobshavn 1988, 1992 images created Noise removal certain
Glacier) Region growing length
Edge detection
Segmentation for
blnar'y'lme'lge . Editing and
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. Orthorectification . manual
Liu and Jezek, Radarsat-1 Noise and adaptive correction of
2004a, 2004b (SAR) . thresholding
speckle reduction . . erroneous
Edge enhanced Region growing segments
Antarctica 1997 . Class labelling
image created . Segments
Removal of noisy
. merged
objects
Edge detection
Image cropped to Sobel edge detection
MODIS - .
. glacier front and and brightness Automated
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2011 rotated profiling algorithm removal of
Images with applied erroneous
Seasonal e . .
significant cloud Peak frequencies glacier front
Eastern GrIS measurements . - . .
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(32 glaciers) between 2000- . . . .
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Krieger and .
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GriS (Zacharlae 2016 resolution
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. . Noi
Geocoding, Image noise 015 .
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Sentinel-1, backscatter reduction using median filter
ENVISAT calibration, and smoothing filter Geoaraphic
Yu et al., 2019 (SAR), terrain correction Image gradient ) coor?jinZtes
Antarctica Landsat 7 and of SAR imagery calculations assioned to
8 (optical) Landsat 7 SLC Canny edge od 3 els
2005, 2010, failure mitigation detection with Seg m?en s
2017 Landsat 8 images adaptive g
. . merged and
mosaiced thresholding
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In Greenland, Sohn and Jezek (1999) applied image segmentation and edge detection
methods using SAR imagery for automated delineation of the glacier terminus and
surrounding ice sheet limits at Jakobshavn Glacier. In pre-processing steps, the SAR imagery
was geocoded using a digital elevation model (DEM), and the product was used to derive
both edge-enhanced, and texture images. To segment the images and produce a binary
classification, local dynamic thresholding algorithms were applied. Local dynamic
thresholding allowed images with small physical variations to be classified successfully.
Nonetheless, the lack of testing over larger spatial areas or study sites provided no indication
of its transferability (Baumhoer et al., 2018). Thresholding was followed by noise removal
and a region growing algorithm to produce more continuous class outlines. Finally, for the
extraction of an ice sheet outline, the Roberts edge detection algorithm (Pratt, 1978) was
applied to the binary image in combination with an algorithm to remove noisy edge segments
below a specified length. Later, Seale et al. (2011) applied an edge detection algorithm
directly to Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, for
seasonal observation of terminus change at 32 marine-terminating outlet glaciers along the
eastern margin of the GrlS. Again, this involved a series of pre-processing steps, including
1) image cropping to within a specified width of the terminus, 2) cloud classification and
removal of cloudy or noisy images, 3) conversion of coordinate projections, and 4) image
rotation for consistent glacier flow direction. To extract the glacier terminus outlines, the
Sobel edge detection algorithm (Sobel and Feldman, 2015) was applied and was followed
by removal of erroneous results. In contrast to Sohn and Jezek (1999), Seale et al. (2011)
applied this workflow to 32 glaciers, suggesting an increased level of spatial transferability.
More recently, Krieger and Floricioiu (2017) applied the Canny edge detector (Canny, 1986)
directly to SAR imagery for automated terminus delineation of Zacharig Isstrem Glacier in
Northeast Greenland. However, this technique was only tested on one glacier and its

transferability was not evaluated.

Similarly in Antarctica, Liu and Jezek (2004a) used image segmentation and edge detection
techniques to extract the boundaries between ice/land and water classes for the whole AIS
using an orthorectified SAR image mosaic. To automate the process, they applied a series of
algorithms for pre-processing, segmentation, and post-processing (Figure 2.1). The pre-
processing stage consisted of reducing noise in the data and applying an anisotropic diffusion
operator to preserve prominent edges in the imagery (edge enhancement) (Figure 2.1b). In
the segmentation stage, a series of steps were applied to segment the image and classify it
into areas of land/ice and water, using local adaptive thresholding and the application of the

Canny edge detector. Several further algorithms were applied in the post-processing stage.
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This allowed removal of misclassified areas to reduce noise, for example, by changing
misclassified water areas (i.e., rock, snow, frozen lakes, and radar shadows) to ice/land, and
changing areas misclassified as ice/land (i.e., sea-ice, icebergs, and islands) to water (Figure
2.1d and e). Finally, an edge tracing algorithm was used to produce vector outlines which
were corrected for errors and merged (Figure 2.1f). This resulted in an outline of the AlS,
including land-based ice, rock, and ice shelves from SAR data collected during September
and October 1997.

(@) Input SAR Image

T =y

(d) Noisy ‘water’ removed (e) Noisy ‘land/ice’ removed (f) Resulting Outline

Figure 2.1: The outputs of each processing step in Liu and Jezek (2004a) which used image
segmentation and edge detection methods to extract the boundaries between ice/land and water
in Antarctica. a) Input SAR image. b) Pre-processed image (noise removal and edge
enhancement). ¢) Image segmented using locally adaptive thresholding. d) and €) Removal of
small noisy objects; and f) resulting vector outline extracted. Modified from Liu and Jezek,
2004a.

Yu et al. (2019) updated this with AIS outlines for 2005, 2010, and 2017 using Landsat 7
and 8 imagery as well as SAR data with the Canny edge detection algorithm (Figure 2.2).
As in Liu and Jezek, 2004a, post-processing steps were applied to remove noise and merge

segments extracted from different images.
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Original Algorithm Result JImproved Algorithm Result

Figure 2.2: Outputs of edge detection techniques applied in Yu et al. (2019), showing a) the
input Landsat 7 image (acquired 25/01/2017), and a comparison of edge detection outputs for
b) fixed (maximum and minimum) thresholds; and c¢) adaptive thresholds (applied to extract
the coastline of Antarctica for 2005, 2010, and 2017). Notably, adaptive thresholding produces
less noisy outputs compared to the fixed thresholding technique. Source: Yu et al., 2019.

Despite the acceptable levels of accuracy achieved using these automated techniques, they
have a series of limitations, perhaps explaining the general preference for manual
digitisation. For example, thresholding and region growing are common techniques used in
image segmentation and are useful for creating continuous edges (e.g. Sohn and Jezek, 1999;
Liu and Jezek, 2004a, 2004b; Yu et al., 2019). However, they generally require numerous,
time-consuming, processing steps. For instance, Sohn and Jezek (1999) produced seven
different image products before arriving at a final outline between ice/land and water.
Similarly, Liu and Jezek (2004a) produced a series of image derivatives before producing
final outlines, including 1) an image with noise/speckle reduction and enhanced edges, 2) a
binary classification image, 3) an image with noisy ‘water’ objects removed, and 4) an image
with noisy ‘land’ objects removed (Figure 2.1). In contrast, edge detection techniques may
require fewer steps but are more likely to produce discontinuous boundaries (Liu and Jezek,
2004Db). They therefore require computationally expensive post-processing steps to remove
insignificant edge segments and merge edges which represent ice fronts (e.g. Seale et al.,
2011).

In general, image rotation, cropping, edge enhancement, and noise removal are commonly
required pre-processing steps when applying these techniques (Table 2.1). Indeed, the noisy
nature of SAR data has resulted in a heavy reliance on noise removal steps during pre- and
post-processing stages (e.g. Yu et al., 2019). Despite this, erroneous detection of edge
segments has been noted to occur, particularly in areas where sea-ice or mélange is close or
connected to glacier and ice shelf fronts (Liu and Jezek, 2004a; Yu et al., 2019). This has

also necessitated the use of filtering algorithms and manual correction in most studies (Sohn
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and Jezek, 1999; Liu and Jezek, 20044, b; Seale et al., 2011; Yu et al., 2019). As a result, the
often numerous and time-consuming processing steps required to use image segmentation
and edge detection, which also frequently rely on specialized knowledge and expertise,
reduce the transferability of existing automated methods for glacier and ice shelf margin

delineation.

Moreover, like manual digitisation, spectral similarity and seasonal variability in the
physical environment can cause difficulties when applying these methods. For example, it
can be challenging to differentiate between ice shelves or glacier ice and spectrally similar
areas of icebergs, mélange, and landfast or drifting sea-ice using these methods.
Additionally, aside from wind roughening in SAR imagery and cloud cover in optical
imagery, variations in snow melt, sea-ice formation, and iceberg cover can impact the
backscatter and spectral reflectance characteristics of satellite imagery. Variability between
images and within individual classes directly impacts techniques such as thresholding. For
example, Sohn and Jezek (1999), Liu and Jezek (2004a), and Yu et al. (2019) applied
adaptive thresholding across images instead of using fixed thresholds (Figure 2.2). This was
due to different levels of image contrast, for instance resulting from changes in water
roughness, ice surface deformation and snow cover properties (Yu et al., 2019). Thus, the
data dependency of automated thresholding techniques and local adaptations potentially
reduces transferability to new images, time periods, or study areas. Thus, while providing
increased levels of automation, workflows based on image segmentation and edge detection
for ice front delineation have not successfully overcome all the problems associated with

manual digitisation.

The adaptive thresholding method was also primarily used to produce binary classifications,
removing the opportunity to extract information beyond ice/water boundaries. Indeed, Sohn
and Jezek (1999) note that using multiple classes may elucidate other important processes
occurring in complex glacial environments (i.e. for ice contact lakes and outwash plains),
while potentially improving boundary delineation. Thus, using methods which produce
multi-class outcomes with meaningful class descriptions may allow a more holistic approach

to quantification of glacier change.

In summary, the development of (semi-) automated techniques which apply image
segmentation and edge detection methods have advanced efforts towards more efficient
mapping of marine terminating glaciers and ice shelves. However, they still require
numerous processing steps and expertise, without necessarily overcoming the delineation

problems resulting from seasonal variations and spectral similarity within and across images.
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In contrast, recent advances in the field of deep learning (described in section 2.3.1) and the
ability of deep learning methods to create temporally and spatially transferable multi-class
outputs provides a new avenue to combat these challenges and build on existing automated

methods.

2.3 Deep Learning
2.3.1 Overview of Deep Learning and Convolutional Neural Networks (CNNs)

Deep learning is a type of machine learning in which a computer learns complex patterns
from raw data by building a hierarchy of simpler patterns (Goodfellow et al., 2016). While
the field of deep learning has been evolving since the 1940s (Goodfellow et al., 2016), the
discipline has experienced significant advances over the past few decades alongside
computer vision. This has resulted from the increasing availability and size of training
datasets, and the improvement of computer hardware and software (LeCun et al., 2015).
Numerous fields have helped shape the development of contemporary deep learning,
including contributions from neuroscience, engineering, and fundamental mathematical

principles such as probability theory (see Goodfellow et al., 2016 for a detailed review).

Several of the earliest designs of deep learning architectures were inspired by, and attempted
to replicate, learning procedures in the mammalian brain, whereby layers of computational
‘neurons’ interact to acquire knowledge from an input (Goodfellow et al., 2016). For
example, Fukushima (1980) developed a neural network for pattern recognition in images
called the neocognitron. The model was based on the organisation of neurons used for visual
perception, elucidated by early studies of the visual system in cats (Hubel and Wiesel, 1962).
It was designed to correspond to the ventral stream of the visual cortex which processes a
retinal image using a hierarchy of cells from the eye to the primary visual cortex (V1), visual
areas V2 and V4, and the inferotemporal (IT) cortex (Hubel and Wiesel, 1962; Serre, 2013).
Neurons in each progressive level of the hierarchy can identify increasingly complex
features ranging from simple edges in the V1 visual area to complex combinations
composing entire patterns and objects in the IT visual area (Felleman and VVan Essen, 1991).
Alongside this, neurons in higher stages of the hierarchy are shown to be increasingly
tolerant to small changes in the scale and position of input images (Serre, 2013). This
increase in image processing and neuron invariance represented by progressive layers in the
visual hierarchy was also a key inspiration for the convolutional and pooling layers in the
more recent CNN (LeCun et al., 1989, 1998).
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CNNs are deep learning models specifically designed to process multiple two-dimensional
(2D) arrays of data such as multiple image bands (LeCun et al., 2015). They differ from
conventional classification algorithms based solely on the spectral properties of individual
pixels by detecting the contextual information of images such as shape and texture, in the
same way a human operator would. CNNs are usually arranged in a series of layers
containing convolutional, non-linearity, and pooling functions (LeCun et al., 2015). The
input data is converted into an array of features (called a feature map) in each convolutional
stage using a locally weighted sum which represents an array of parameters (weights)
adjusted by the model learning algorithm (Goodfellow et al., 2016). Initial convolutional
layers learn low-level features such as lines and edges which compose the high-level features
extracted by deeper convolutional layers, allowing the model to extract textures and shapes
representative of image classes (Cheng et al., 2017). The outputs pass through a non-linear
activation function such as the rectified linear unit (ReLU) (which allows the network to
learn complex data by non-linear transformation) and then go through a pooling layer to
introduce some invariance to the features, meaning the model can detect features with small
variations such as differences in orientation (Goodfellow et al., 2016). There are typically
several of these stages in a CNN, creating a hierarchy similar to that of the mammalian visual
system, allowing the model to learn features from an image and output a prediction of class
for each pixel. As a result of this, one of the main benefits of CNNs is that they remove the
need for prior feature extraction or thresholding for image classification (Langkvist et al.,
2016). The CNN used for image classification in this study falls into the category of
supervised learning (Goodfellow et al., 2016). This means the CNN is trained using labelled
pixels and tested based on its ability to predict the class of pixels in unseen imagery. The
ability of a model to accurately predict the class of pixels in an unseen image is called

generalisation (Goodfellow et al., 2016) and determines the transferability of the model.

CNNs were popularised in 2012 when Krizhevsky et al. (2012) won the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) with a CNN called AlexNet. They have since
been applied to a broad range of disciplines, improving tasks in object detection (Zhao et al.,
2019), speech recognition (Abdel-Hamid et al., 2014), and numerous medical imaging
applications (Lundervold and Lundervold, 2019). They are also increasingly being used for
a variety of remote sensing applications (Buscombe and Ritchie, 2018), including
classification of fluvial scenes (Carbonneau et al., 2020a), land-use classification (e.g. Luus

et al., 2015), and automated detection of geological features on Mars (Palafox et al., 2017).
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2.3.2 Deep Learning for Automated Delineation of Marine-Terminating Ice Fronts

In glaciology, CNNs have achieved success in mapping debris-covered land-terminating
glaciers (Xie et al., 2020), rock glaciers (Robson et al., 2020), supraglacial lakes (Yuan et
al., 2020) and snow cover (Nijhawan et al., 2019). The application of deep learning models
in workflows for automated delineation of marine-terminating glacier termini and ice shelf
fronts has also been effective, resulting in accuracy comparable to conventional manual
methods (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019).

For example, Mohajerani et al. (2019) used a type of CNN architecture called a Fully
Convolutional Neural Network (FCN) to classify ice front pixels and non-ice front pixels in
Landsat imagery containing marine-terminating outlet glaciers in Greenland. The previous
success of FCN architectures trained on small datasets with the help of augmentation
methods justified its use for application in marine-terminating outlet glacier environments,
where training and validation data production relies on manual digitisation. The FCN
architecture was trained using Landsat 5 (green band), 7, and 8 (panchromatic bands)
imagery. A series of pre-processing steps were applied to the imagery to improve the FCN
performance, including cropping (to within 300 m of the terminus), rotation, normalisation,
grey-scale intensity equalisation, smoothing, and edge enhancement (Figure 2.3). Dataset
augmentation was applied to increase the number of training samples by flipping each image.
Images were also plotted on 200 x 300-pixel grids with ice flow in the y direction. Therefore,
instead of using the original Landsat spatial resolution (15/30 m), this resulted in images
with different resolutions for each glacier, and consequently errors were also dependent on

different spatial resolutions for each study site.

Collection of training and validation data involved manual digitisation of terminus positions,
which were rasterised into pixel-wide lines to train the model. Due to the small proportion
of the images inhabited by the rasterised terminus outline (Figure 2.3), the FCN was
particularly prone to class imbalance, whereby high accuracy could be obtained by simply
excluding the terminus outline class. Therefore, custom sample weights were applied to
avoid this issue. In post-processing steps, fjord boundaries were manually digitised in order
to apply a least-cost path method for extraction of the pixels which most likely represent the
terminus position. This workflow achieved similar levels of accuracy to manual digitisation,
with most error noted to occur at the edges of the glacier termini. Mean distance from

manually digitised fronts was 96.3 m for Helheim glacier (the test glacier).
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Figure 2.3: The results of the deep learning method developed by Mohajerani et al. (2019)
showing b) the classified output of the modified FCN model compared to c¢) results from the
Sobel edge detection method when applied to a) a pre-processed satellite image. d) Shows the
processed delineations of both methods in addition to manually derived terminus positions.
Adapted from Mohajerani et al. (2019).

Similarly, Zhang et al. (2019) also used an FCN to extract terminus positions from
TerraSAR-X imagery of Jakobshavn Glacier, central west Greenland. A total of 159 images
from 2009-2015 were used to train the model, which classified images into ‘mélange’ and
‘non mélange’ areas. Image pre-processing involved speckle reduction, multilooking, and
georeferencing. Images were also subdivided into 960 x 720 pixel tiles, and edge enhanced,
normalised, and augmented (flipping and rotation) before model training. In post-processing,
the binary classification was converted to vector format and small, erroneous polygons were
removed before terminus extraction. The transferability of this approach was not tested as it
was only applied to one study site. Indeed, the use of ‘mélange’ and ‘non-mélange’ classes
also suggests it can only be applied to glaciers with mélange adjacent to the terminus.
However, its ability to classify multitemporal data suggested it overcame problems with
seasonal variations across imagery. Overall, the technique resulted in a mean difference of

38 m from manually delineated terminus positions.

Finally, Baumhoer et al. (2019) used an FCN to classify the boundaries of land-based ice
and ocean in Antarctica (Figure 2.4). Baumhoer et al. (2019) trained the FCN using different
SAR polarisations derived from Sentinel-1 data in combination with a TanDEM-X DEM.
Image pre-processing involved applying the Orbital File to SAR data, thermal noise removal,
radiometric calibration, geometric terrain correction using the DEM, and stacking of HH,
HV, HV/HH polarisations with the DEM. A total of 38 pre-processed images from four
training sites were tiled into 780 x 780 pixel samples, normalised and augmented (rotation
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and flipping) to train the model. Like Zhang et al. (2019), resulting class predictions were
binary and consisted of land ice and ocean areas. The resulting classifications were filtered
and vectorised prior to extraction of class boundaries which represented glacier terminus and
ice shelf outlines (Figure 2.4). The use of several training sites and testing of the model on
four areas suggests it is also transferable to other areas in Antarctica, with mean deviations
from manually digitised fronts of 108 m in test areas. In terms of classification accuracy,
Baumhoer et al. (2019) achieved mean F1 scores of 89 to 90% for training sites and 90 to

91% for test sites (Greenland-based studies did not provide classification F1 scores).

ADD
—— manual 0
automated

100 km

Figure 2.4: Results of the deep learning method developed by Baumhoer et al. (2019) for
extraction of the boundaries between ice/land and water in Antarctica, showing comparisons
between the deep learning method (automated), manual digitisation (manual), and Antarctic
Digital Database (ADD) delineations. Insets (a-c) show magnified sections of Marie Byrd Land
where methods deviated significantly. Background imagery: Sentinel-1 scenes acquired from
18/06/2018 — 23/06/2018. Source: supplementary materials of Baumhoer et al. 2019.

In summary, all three deep learning methods applied a fully convolutional architecture which
was adapted to create binary classifications. Mohajerani et al. (2019) used the glacier
terminus front itself as the primary class, producing results with a similar appearance to edge
detection methods (Figure 2.3). Meanwhile, Zhang et al. (2019) and Baumhoer et al. (2019)

applied an FCN to produce similar results to automated segmentation methods, whereby they
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classified images into two classes and extracted the boundary between classes as the
terminus position (Figure 2.4). The deep learning methods are promising due to their
transferability across seasons (Baumhoer et al., 2019; Zhang et al., 2019) and spatial areas
(Baumhoer et al. 2019), which is especially important for mapping complex marine-
terminating outlet glaciers at high temporal resolution. However, there is substantial
potential to widen the scope of deep learning methods for classification of marine-
terminating glacial environments. Such advancements include producing deep learning
workflows with multi-class outputs that could be used in a variety of applications, without
numerous pre-processing steps or the need for specialised prior experience. Indeed, the
methods presented below aim to deliver a deep learning workflow for multi-class outputs
with simple pre-processing steps and the capacity to accurately detect spectrally similar
surface types, using only limited training data composed of three to four optical satellite
image bands. Moreover, the deep learning workflow adapted here is trained and tested on
outlet glaciers in south east Greenland with a pre-defined set of image classes. In future work
the workflow may be applicable to mapping outlet glaciers in other regions of the GrIS and
elsewhere in the world, dependant on further testing, suitable adaptations to training data

inputs and additional fine-tuning.
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3 Methods
3.1 Introduction

This chapter explains the steps and data involved in developing a deep learning workflow
for classification of imagery containing marine-terminating outlet glaciers in Greenland. In
summary, the workflow is composed of two deep learning phases (Carbonneau et al., 2020a).
First, a well-established CNN called VGG16 (Simonyan and Zisserman, 2015) was modified
and trained using labelled image tiles from 13 seasonally variable Sentinel-2 images of
Helheim Glacier, south east Greenland (Figure 3.1). In the first phase of the workflow, an
unseen image from an outlet glacier environment is tiled, and the pre-trained CNN is applied
to detect the class of each tile in the image. The resulting class predictions are then used as
training data for a second pixel-level model which is specific to the unseen input image. In
phase two, the second deep learning model uses the class predictions of the phase one CNN
and input image features to determine a final pixel-level classification. The methods
developed here are primarily tested on marine-terminating outlet glaciers in SE Greenland,
providing a preliminary test of transferability. To determine whether the method is
applicable for classifying marine-terminating glaciers elsewhere in Greenland, a larger
number of test sites from different regions of the GrlS would be required. Similarly, since
the pre-trained CNN was only trained on Helheim Glacier, additional training data would be
required to classify landscapes with significantly different characteristics, for example to

classify glacial landscapes in Antarctica.

3.2 Study Areas
3.2.1 Training Area: Helheim Glacier, SE Greenland

The area chosen to train the phase one CNN in the deep learning workflow spans 68.8 x 37.2
km (Figure 3.1c) and includes Helheim Glacier (66.4° N, 38.8° W), a major outlet of the
south-eastern GrlS. Helheim is one of the five largest outlet glaciers of the GrIS by ice
discharge (Howat et al., 2011; Enderlin et al., 2014) and has flow speeds of 5-11 km a*
(Bevan et al., 2012). The glacier has a 48,140 km? drainage basin (Rignot and
Kanagaratnam, 2006) equivalent to ~4% of the ice sheet’s total area (Straneo et al., 2016),
from which several tributaries converge into a ~6 km wide terminus. There is an extensive
area of ice melange (a mixture of sea-ice and icebergs) adjacent to the terminus where it
enters Sermilik Fjord and is influenced by ocean currents (Straneo et al., 2016) (Figure 3.1c).

Inspection of available satellite imagery reveals that the area of mélange varies seasonally
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with monthly variations in extension and composition (Andresen et al., 2012, 2013). For
example, observations from February through to April 2019 show that the area of mélange
was relatively small and consisted primarily of sea-ice, with fewer large icebergs in
comparison to later months. Fjord waters were also dominated by sea-ice in various stages
of development with few icebergs. From May through to August 2019, the mélange area
expanded to cover a larger proportion of the fjord surface and its composition became
dominated by icebergs, reflecting a change to iceberg-dominant fjord waters and a reduction
in sea-ice. A gap in the mélange at the glacier terminus appeared at the beginning of July
and persisted until mid-August, suggesting the presence of an active meltwater-fed glacial

plume as previously observed (Straneo et al., 2011).
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Figure 3.1: Location of outlet glacier environments used for training and testing the deep
learning workflow. (a) Sentinel-2 tile of Helheim Glacier (acquired 13/09/2019) used for testing
the workflow (in-sample), with inset which shows the specific area used to create training data.
(b) Sentinel-2 tile of Scoresby Sund area (acquired 01/08/2019) used for testing the workflow
(out-of-sample). (¢) Model training area (acquired 07/08/2019). Note the substantial area of ice
mélange and an active plume at the terminus of Helheim Glacier.
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The glacier, fjord, and surrounding landscape provide an ideal test area for the deep learning
workflow because it contains a number of diverse elements that vary over short spatial and
temporal scales and are typical of other complex outlet glacier settings. These characteristics
include 1) seasonal variations in the degree of surface meltwater ponding on the glacier and
ice mélange; 2) weekly to monthly changes in the extent and composition of mélange; 3)
short-lived, meltwater-fed glacial plumes which result in polynyas adjacent to the terminus;
4) sea-ice in varying stages of formation; 5) varying volumes and sizes of icebergs in fjord
waters and 6) seasonal variations in snow cover on both bedrock and ice. The resulting
spectral variations over multiple satellite images in addition to potential variations resulting
from changes in illumination and weather, pose a considerable challenge to image
classification. However, capturing these characteristics at the scale of an entire outlet glacier
image scene is important for a more efficient and integrated understanding of how numerous
glacial processes interact. It is worth noting that since some elements of marine-terminating
outlet glacier landscapes are not abundantly represented within the Helheim training area
(e.g., off-glacier vegetation, or medial moraines), further testing and fine-tuning of the
workflow with inclusion of representative training data would be required to classify

imagery containing these elements.

3.2.2 Test Areas: Helheim Glacier and Scoresby Sund, SE Greenland

The deep learning workflow was trained at Helheim Glacier and then tested on two areas
(Figure 3.1a and b) using: 1) a previously unseen Sentinel-2 tile of Helheim Glacier and the
surrounding landscape, acquired on 13/09/2019 (in-sample), and 2) a Sentinel-2 image of
the glacial landscape in the area of Scoresby Sund, ~600 km north of Helheim, which
features several smaller outlet glaciers and was acquired on 01/08/2019 (out-of-sample).
This area was chosen as an ideal test site because it encompasses all the classes used in
model training (including mélange which is not always present at glacier termini). Both
unseen Sentinel-2 tiles used for testing were divided into nine smaller image tiles spanning

3000x3000 pixels, resulting in 18 test images for processing by the deep learning workflow.

3.3 Imagery

Remote sensing studies which apply deep learning to image classification usually use high
resolution (sub-metre) imagery (Sharma et al., 2017) and typically require large datasets

(Krizhevsky et al., 2012). Acquiring high resolution imagery of outlet glacier landscapes can
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be expensive and challenging, especially over large spatial areas. Therefore, the abundance
of widely available medium resolution satellite imagery (10 - 60 m), often used for remote
sensing applications in glaciology, provides an ideal data source for training and testing the
deep learning workflow. Here Sentinel-2 bands 2 (blue), 3 (green), 4 (red), and 8 (Near
Infrared (NIR)) at 10 m spatial resolution were used to train and test the approach (Table
3.1). The red, green, and blue bands were chosen because they are commonly used in image
classification with deep learning architectures such as VGG16, making existing, pre-trained,
models easily transferable for the purpose of this study. The NIR band was chosen due to its
common use in remote sensing of glacial environments, for example in band ratios to

automatically identify glacier outlines (e.g. Alifu et al., 2015).

Table 3.1: List of Sentinel-2 images used for training and testing the deep learning workflow.

Study Area Acquisition Date Satellite

08/02/2019 SZA

10/02/2019 s2B

07/03/2019 S2A

10/03/2019 S2A

15/03/2019 2B

g’ 04/04/2019 S2B
= _ 29/05/2019 S2A
£ Helheim 15/06/2019 S2A
05/07/2019 S2A

07/08/2019 S2A

01/09/2019 S2B

28/09/2019 2B

26/10/2019 S2A

o 13/09/2019 S2A
E Scoresby 01/08/2019 S2A

Examination of available Sentinel-2 imagery showing the seasonal change of the glacial
landscape throughout the year resulted in the establishment of seven semantic classes,
including: 1) open water, 2) iceberg water, 3) mélange, 4) glacier ice, 5) snow on ice, 6)
snow on rock, and 7) bare bedrock (see detailed criteria for each in Table 3.2). To best
encompass the seasonally variable landscape characteristics and collect sufficient training
data to represent intra-class variation in all seven classes, 13 cloud-free Sentinel-2 images
taken between February and October 2019 were acquired (Table 3.1). Level-2A images were
downloaded at no cost from Copernicus Open Access Hub (available at:

https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The atmospherically
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corrected red, green, blue and NIR bands were combined into composite four band images
and cropped to the training area (Figure 3.1c). Two Sentinel-2 tiles of the unseen Helheim
(Figure 3.1a) and Scoresby Sund (Figure 3.1b) study areas were also acquired (Table 3.1),

and the corresponding composite band images were created.

Table 3.2: Example image samples and descriptions of each of the seven semantic classes used
to train and validate the phase one convolutional neural networks in the deep learning
workflow. Total number of tiles refers to the total number of tiles used for training and
validation in each of the three datasets used to test model sensitivity to tile size after the tiling
process described in Figure 3.5. Note that the open water, mélange, and bedrock classes have
the smallest representation of all classes, despite the aim of producing equally represented class
samples.

Total number of Tiles

Class
Example Image
prI 7 i e Class Description 50x50 75x75  100x100
oI Al L abel (total: (total: (total:
354,668) 319,292) 293,720)
1 Open Open water with no
) 14,312 12,024 10,520
Water icebergs
Water with varying
2 lceberg )
amounts of icebergs or 48,668 44,084 41,212
Water o ;
disintegrated mélange
- A Mixture of sea-ice, and
,r ’7 , . 3 Mélange icebergs of varying 25,540 23,396 21,192
o - sizes
) Glacier ice, with
Glacier )
| seasonally variable 84,356 77,584 71,040
ce

surface meltwater

Snow on  Snow/ice with a smooth
88,412 79,540 77,004
Ice appearance

Snow on  Bedrock with varying
63,180 55,052 47,588
Rock amounts of snow cover

Bedrock with no snow
Bedrock 30,300 27,612 25,164
cover

24



3.4 Classification Workflow, Model Architectures and Training
3.4.1 CNN-Supervised Classification (CSC)

The classification workflow used here is termed CNN-Supervised Classification (CSC), and
was originally developed and tested on airborne imagery (<10 cm resolution) of fluvial
environments (Carbonneau et al., 2020a). CSC is a novel two-phase workflow (Figure 3.2)
which uses a pre-trained CNN to replace the human operator’s role in labelling training areas
for final pixel-level classification. In the first phase of the workflow, a pre-trained CNN is
used to predict the classes of a tiled input image. The image tiles are then reassembled to
create a class raster which is used as training data for the second model in phase two of the
workflow. In the second phase, the reassembled class raster and image features are
vectorised and used to train a second model specific to the input image. The predictions of

the second model result in a final pixel-level classified image output (Figure 3.2).

Pre-Processing

Cloud-free Sentinel-2 Images downloaded

Images cropped to training area and labelled Classes:
according class to produce Class raster 1. Open Water 5. Snow on Ice
2. Iceberg Water 6. Snow on Rock
3. Mélange 7. Bedrock

Image and Class raster tiling and allocation to 4. Glacier Ice

training and validation data folders Tile sizes: 50, 75, 100 pixels

CNN models trained and saved

Class Prediction

Unseen Sentinel-2 Images tiled and 4D )
tensors prepared Trained CNN loaded

Phase 1 Run CNN model Reassemble tiles to produce CNN-predicted
class raster

CNN class raster and image features vectorised
Phase 2

MLP/cCNN model trained

Final predictions and classified image

Figure 3.2: Image classification workflow showing pre-processing steps, convolutional neural
network training and 2-phase final classification steps.
25



3.4.2 Phase 1: Model Architecture and Training

For the base architecture of the pre-trained CNN used in phase one, a well-established CNN
called VGG16 (Simonyan and Zisserman, 2015) which outperformed the state-of-the-art
performance of AlexNet in the ILSVRC 2014 was adapted. The VGG model used consists
of five stacks of 13 2D convolutional layers which have filters with a size of 3x3 pixels
(Figure 3.3). A filter is an array of numbers (which are also known as weights). The filter
spatially convolves over the input image to create a feature map using the filter weights. For
example, if we have a single band input image of 7x7 pixels, a 3x3 filter would convolve
across each available pixel within the 7x7 image and produce a 5x5 pixel feature map. The
CNN learns input features to detect the classes in an image by adjusting these filter weights
in each convolutional layer (Goodfellow et al., 2016). In the VGG model used here, the
dimensions of the output filters increase from 64 in the first stack of convolutional layers to
512 in the last (Figure 3.3). So, in the first convolutional layer, since there are 64 filters, this
produces 64 individual feature maps which become the input to the next convolutional layer,
and so on. This allows a hierarchy of features to be detected in deepening convolutional

layers.

All the convolutional layers in the VGG base use ReL.U activation and are interspersed with
five max-pooling layers. ReLU is a conventional and computationally efficient non-linear
activation function which allows non-linear transformation of the input data to make it
separable for classification. The pooling function reduces the size of each feature map to
make outputs more computationally manageable while retaining important information
(Goodfellow et al., 2016). The convolutional and pooling stacks are followed by three fully
connected (dense) layers (i.e., a normal fine-tuned neural network) without shared weights,
typical of CNN architectures. L2 regularization was used in this top neural network to reduce
overfitting, which occurs when a model is unable to generalize between training and test
data (Goodfellow et al., 2016). Adam gradient-based optimisation, a common optimisation
algorithm used in deep learning, was also used to update the weights in the network (Kingma
and Ba, 2017). This fully connected neural network allows the features learned by the CNN
to be allocated to a class by a final Softmax layer with the same number of units as classes.
The Softmax layer allocates the outputs of the CNN to a set of normalised probability scores.
In effect, each input image is assigned a probability score for each class, so the final class
label for the image is that which has the highest probability of membership (Carbonneau et
al., 2020a).
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The input image tile size for the first convolutional layer in the original VGG16 model
architecture was fixed as a 224x224x3 RGB image. However, here the impact of tile size
was tested by using three datasets with different tile sizes of 50x50, 75x75, and 100x100
pixels. Thus, the input image size was adjusted so it matched the three tile sizes (Figure 3.3
shows an example of an input tile size of 100), and the number of input channels was also
adjusted depending on the number of image bands used for training (i.e., three or four). Each
of these image tiles was fed into the phase one CNN in the form of a four-dimensional (4D)

tensor which contains multiple tiles (Dimensions: [tiles, X, y, bands]).

100x100x3  100x100x64  50x50x128  25x25x256  12x12x512 6x6x512  Units: 4608

T / 3x3x512 )
B 3x3 512 256 8
e | ﬁ
= Dropout Oytput

I I I
T
Input Convl Conv2 Conv3 (‘oln\'4 Convs Flz:tten
Tile Size: 100 {3 3x3 Filter [ ) Convolution (ReLU) Max Pooling Fully Connected (ReLU) [ Softmax

Figure 3.3: Architecture of phase one convolutional neural network, adapted for three tile size
datasets from the original VGG16 model architecture (Simonyan and Zisserman, 2015).
Diagram shows an example using a tile size of 100 pixels. There are five stacks of 2D
convolutional layers (labelled ‘Conv#’) which extract features from input tiles using a 3 x 3
filter. The convolutional stacks are followed by a fully connected neural network and Softmax
activation for final class predictions used as localised training data for phase two models.

Three approaches for training the phase one CNN were tested using the three image tile
datasets to test the sensitivity of each approach to tile size, resulting in a total of nine trained
CNNSs. The three approaches of model training were as follows: 1) only three image bands
(RGB) were used; 2) the NIR band was used in addition to the three RGB bands (RGB+NIR),
and 3) three image bands (RGB) were used in combination with transfer learning
(RGB+TL). The transfer learning approach trained the model using pre-existing weights
from the ImageNet database which contains over 14 million labelled images (Deng et al.,
2009). Only the weights in the final layers of the CNN were re-trained specifically to classify
glacial scenes, making it quicker to train than standard full CNN architectures (Buscombe
and Ritchie, 2018). Transfer learning has been shown to decrease training time and reduce
the volume of data needed to produce similar levels of accuracy to non-transfer learning
techniques (Kunze et al., 2017). As a result, with a tile size of 100 the transfer learning model
had 9,572,616 trainable parameters of a total 17,207,880 trainable parameters if the VGG16
model was trained without transfer learning, and weights in all layers were adjusted. For
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each of the nine models, training hyperparameters were kept constant, with training
occurring over 15 epochs, with a batch size of 50 images and a learning rate of 0.0001.
Following training of the phase one CNNs, they were saved for application on unseen images

in phase two without further training.
3.4.3 Phase 2: Model Architectures and Training

To classify airborne imagery of fluvial scenes using the CSC workflow, Carbonneau et al.
(2020a) applied a pixel-based approach using a multilayer perceptron (MLP) in the second
phase of the workflow, achieving high levels of accuracy (90-99%). This project proposes
that applying pixel-based techniques to coarser resolution imagery such as Sentinel-2 data
may be less effective compared to applying the workflow to high resolution imagery.
Furthermore, particularly in landscapes containing marine-terminating glaciers, many
distinct classes may be covered in snow or ice and therefore be very spectrally similar (i.e.,
all classes are white), and where this is the case a pixel-based MLP would predictably
struggle to differentiate between classes. Therefore, a patch-based approach was adopted,
which uses a small window of pixels to determine the class of a central pixel as in Sharma
et al. (2017). This approach is based on the idea that a pixel in remotely sensed imagery is
spatially dependent and likely to be similar to those around it (Berberoglu et al., 2000).
Sharmaet al. (2017) used a patch size of 5x5 pixels for patch-based classification of medium
resolution Landsat 8 imagery. This use of a region instead of a single pixel allows for the
construction of a small CNN (dubbed ‘compact CNN’ or cCNN: Samarth et al., 2019) with
asingle convolutional layer that assigns a class to the central pixel according to the properties
of the region (Carbonneau et al., 2020b). It therefore combines spatial and spectral
information. Here both pixel- and patch-based approaches were tested using an MLP and
cCNN in the second phase of the workflow (the architectures and application of which are
detailed in the following sections 3.4.3.1 and 3.4.3.2). Specifically, four patch sizes of 1x1
(pixel-based), 3x3, 7x7, and 15x15 pixels were tested. In combination with the phase one
CNNs using different tile sizes and bands, this resulted in the testing of 36 model workflows

overall which were subsequently tested on in-sample and out-of-sample test images.

3.4.3.1 Multilayer Perceptron (MLP)

For the pixel-based classification in phase two, an MLP was used (Figure 3.4a). An MLP is
a typical deep learning model (also commonly known as an artificial neural network (ANN))
which consists of three (or more) interconnected layers (Rumelhart et al., 1986; Berberoglu
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et al., 2000). The first and final layers of an MLP are called the input and output layers,
respectively. The layers in between are ‘hidden layers’ used to apply weights to the input
data, which is then fed forward to units in other hidden layers (Atkinson and Tatnall, 1997).
The MLP used here has five layers consisting of four fully connected (dense) layers and one
batch normalisation layer (Figure 3.4a). The first dense layer has the same number of input
dimensions as image bands and 64 output filters. This is followed by a batch normalization
layer which helps to reduce overfitting by adjusting the activations in the network to add
noise. This is followed by two more dense layers with 32 and 16 filters, respectively. The
final output layer in the network is a dense layer with Softmax activation and eight output
filters, to match the number of output classes. All the layers use ReLU activation except the
output layer which uses Softmax activation to produce a vector of class probability scores.
For both the MLP and cCNN, model training hyperparameters were kept constant (150
epochs, learning rate of 0.001, and subsamples size of 100,000). Since the MLP is pixel-
based, the number of parameters was smaller compared to the patch-based model, with 3,128
trainable parameters.

(a) MLP Fully Connected (ReLU)|  (b) cCNN 1) Convolution (ReLU) | Fully Connected (ReLU)
[JSoftmax []Softmax
100x 100 x 3 100x 100x 3 100 x 100 x 64
T Units: 64 64 2 ey 512 512
———=Filter Size = Units: 64 64 3,
Patch size Flatten 2 8
e.g. 7x7 S ﬁ
N Output
Input h: Input Convl
‘ | o oo |
Batch Normalization Batch Normalization

Figure 3.4: Architecture of phase two models. (a) Shows the Multilayer Perceptron used for
the pixel-based classification of new input images. (b) Shows the compact convolutional neural
network used for patch-based classification of new input images. The size of the filter in the
CcCNN changes according to the patch size being tested. For example, as shown in (b) the filter
size is 7 x 7 for testing a patch size of 7 pixels.

3.4.3.2 Compact Convolutional Neural Network (cCNN)

For the patch-based classification in phase two, a cCNN was used (Figure 3.4b). This model
architecture is referred to as a compact CNN (cf. Samarth et al., 2019) because it only
contains one convolutional layer and is much smaller than conventional CNNs (Figure 3.4b).
This model is comprised of a 2D convolutional input layer which extracts features from the
input image using a small window of pixels called a filter. The input layer has 64 filters with

a kernel (window) size which is modified dependant on patch size (i.e., for testing a patch
29



size of 7x7 pixels, the kernel size is 7) (exemplified in Figure 3.4b). As with the phase one
CNN, the input shape is a 4D tensor with the dimension of [patches, X, y, bands]. This is
followed by a flatten layer which converts the inputs into a one-dimensional feature vector
to be fed into the following four fully connected (dense) layers. The first dense layer has 512
filters and is followed by a batch normalisation layer. The following three dense layers have
64, 32, and 8 filters, respectively. As with the MLP, all the layers use ReL U activation except
the output layer. As with all the models used in the workflow, the final layer comprises the
same number of units as output classes and results in a vector of probability scores used to
predict class. The cCNN had 71,272 trainable parameters with a patch size of 3, 78,952
trainable parameters with a patch size of 7, and 112,744 trainable parameters with a patch
size of 15.

3.4.4 Training and Validation Data Preparation

The CNNs used in phase one of the workflow were trained using image tiles which represent
image subsamples of each individual class. These tiles were processed by the model in the
form of 4D tensors consisting of multiple image bands (consistent with conventional data
formatting designed for training CNNs for multiband image classification). To create
training and validation data for the model, the composite images were manually labelled
according to the seven training classes using QGIS 3.2 digitising tools. Vector polygons
labelled by class number were rasterised to produce a class raster with the same geometry as
the input image. Both the input image and class raster were then tiled using a specified size
(height and width in pixels) and stride (number of pixels the window moves before extracting
another tile) (Figure 3.5). Three different tile sizes were used to test model sensitivity and
its ability to identify landscape features at the scale of the 10 m resolution imagery. This
resulted in three datasets containing tile sizes of 50x50, 75x75, and 100x100 pixels (Table
3.2). A stride of 35 pixels was used to allow overlap between tiles, and any tiles occupied by
less than 95% pure class were rejected, removing tiles containing mixed classes. The image
tiles were then rotated in increments of 90° to augment the dataset and saved to separate
class folders. Data augmentation is a common step for bolstering training datasets in deep
learning and usually entails slightly altering existing data to increase the number of training
samples (Chollet, 2017). In addition to data augmentation, tile rotation allows the model to
learn classes which may appear at different orientations in unseen images, for example
accounting for different glacier flow directions, providing the potential for increased

workflow transferability.
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Each tile was normalised by 16,384 (a maximum integer value drawn from satellite imagery)
to reduce bit depth to a scale from 0 to 255. This adjusts the range of pixel values to make
them compatible with RGB imagery for processing by the CNN. The tiles were divided into
training and validation datasets whereby 95% of tiles were randomly allocated to a training
data folder and the remaining 5% were allocated to a validation data folder (Figure 3.5). It
is common when training deep learning models for image classification applications to have
an 80/20% split of training and validation data (Carbonneau et al., 2020a). However, here a
95/5% split is appropriate as the ‘in-Sample’ data we used to test the workflow is a new
satellite image of the training area and surrounding landscape, previously unseen by the
model during training, making it a more stringent test. Overall, this resulted in three datasets
containing 354,768 tiles of 50x50 pixels, 319,292 tiles of 75x75 pixels, and 293,720 tiles of
100x100 pixels for training and validating the phase one CNNs (Table 3.2). These datasets
were extracted from only 13 cropped images of Helheim Glacier and are much larger
compared to those used in previous work to train and validate CNNs for glacier boundary
delineation. For example, Mohajerani et al. (2019) used only 123 tiles of 152x240 pixels
obtained from three different glacier study sites. Baumhoer et al. (2019) opted for larger tile
sizes and used a dataset of 19,576 tiles of 780x780 pixels derived from 38 scenes from four
study sites. Finally, Zhang et al. (2019) used 36,414 tiles with a larger size of 960x720 pixels

using 75 images from one glacier.

Class 1 Class 2
Class Raster

Pure Class >95%

4
> Augmentation -
L— stride Class Tile — rotation by 90°,

size By 180°, 270°
P
Image Tile

V (R,G,B,NIR) Image Tiles saved
according to Class
R
I
B Training 5%

nput Image o
NIR Validation

Figure 3.5: Conceptual diagram of tiling process used to create training and validation data. A
specified tile size (of 50, 75 or 100 pixels) and stride (of 35 pixels) are used to extract tiles from
the class raster and image bands. These tiles are filtered and augmented and saved to individual
class folders using a 95/5 % split for training and validation data.
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3.5 Sensitivity Analysis: Training Epochs

Since CNNSs are sensitive to the number of epochs used in training, we applied the epoch
tuning method used by Chollet (2017) with 95% of our data used to train the model and 5%
used for validation. The term epochs refers to the iterations over training data in the CNN
(Chollet, 2017). Each epoch is used to adjust weights and improve accuracy in the CNN
based on training loss. Training loss is the error in CNN predictions compared to validation
data and is quantified using a loss function. Categorical cross entropy was used as the loss
function in all models and is a common loss function used in deep learning for multi-class
classification (Goodfellow et al., 2016). The VGG16 models were run for 25 epochs, and
training accuracy, training loss, validation accuracy, and validation loss for each individual
epoch was saved. Similarly, the MLP and cCNN models were run for 500 epochs and the
same values were saved. These were plotted against number of epochs (Figures 3.6 and 3.7).
The number of epochs used to train the final set of models was then determined by the point
of divergence between training and validation data. Where a gap between training and
validation data appears, the model begins to overfit and its ability to generalise is reduced.
The epoch tuning graph of the VGG16 model (Figure 3.6) begins to diverge slightly after 15
epochs, so the model was trained for 15 epochs for optimal accuracy and training time. The
epoch tuning graphs for the phase two models revealed that the optimum number of training
epochs was 150 (Figure 3.7).
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Figure 3.6: Epoch tuning graph for phase one model (trained using 50x50 pixel RGB tiles).
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Figure 3.7: Epoch tuning graph for phase two model (using RGB model with tile size of 50 and

patch size of 7).
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3.6 Model Performance

Model performance is often measured by classification accuracy (the number of correct
predictions divided by the total number of predictions). However, some models require more
robust measures of accuracy that also take into account confusion between predicted classes
(Goodfellow et al., 2016; Carbonneau et al., 2020a). This project used an F1 score as the
primary performance metric for the models used in both phases of the classification

workflow. The F1 score is defined as the harmonic mean between precision (p) and recall

(r):

2pr
p+r

F1 =

(1)
where precision finds the proportion of positive predictions that are actually correct by
dividing the number of true positives by the sum of both true (correct) positives and false
(incorrect) positives. Recall finds the proportion of positive predictions that were identified
correctly by dividing the number of true positives by the sum of true positives and false
negatives (misidentified positives). Thus, the inclusion of recall provides a metric which
represents confusion between class predictions and takes into account class imbalance
(Carbonneau et al., 2020a). F1 scores range from 0 to 1 with 1 being equivalent to 100%
accuracy. Carbonneau et al. (2020a) used classification results from 1,724 images to
compare F1 and accuracy. They found that they are closely correlated (accuracy = 1.03F1
+4.1% with an R? of 0.96), with F1 and accuracy converging at 100%. F1 scores were plotted
against patch and tile sizes to show workflow sensitivity for each of the three training
approaches. Confusion matrices were also plotted to show agreement between predicted
classes and manually delineated validation data in the final classification outputs.

Cohen’s Kappa was also used as a secondary performance metric which is a coefficient of
agreement (Cohen, 1960). This compares the agreement between the model class predictions
and manually determined classes (validation data). Cohen’s Kappa accounts for the chance
occurrence of true positives in class predictions (i.e., correctly guessing the class). It is a
useful complement to metrics such as accuracy and F1 because it better reflects the
performance of models with class imbalance. It removes the problem of overshadowing in
prediction performance for a smaller class by that of a larger class. Cohen’s Kappa is a
normalised statistic, so it ranges from -1 to 1. A set of arbitrary thresholds were determined
by Landis and Koch, (1977) to interpret the agreement statistic (Table 3.3).
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Table 3.3: Arbitrary thresholds used to interpret Cohen’s Kappa measure of agreement
(Landis and Koch, 1977).

Cohen’s Kappa Statistic Strength of Agreement
<0.0 Poor
0.0-0.2 Slight
021-04 Fair
0.41-0.6 Moderate
0.61-0.8 Substantial
0.81-1.0 Almost Perfect

3.7 Comparison to Traditional Mapping Techniques

For a comparison of effectiveness between the CSC workflow, and pixel-based techniques
such as band ratio methods, a test image tile of Helheim Glacier was classified using a band
ratio technique. To create the band ratio image, the Sentinel-2 band 4 (red) was divided by
band 11 (Shortwave Infrared) (Paul et al., 2016). A series of thresholds were used to classify
the resulting band ratio image into three classes including glacier ice, snow on ice and
bedrock. Classifying the band ratio image using all seven classes utilised in the CSC
workflow was not possible. This is because the band ratio method did not detect changes
between all the different classes such as mélange, iceberg water and open water. For
comparison to the CSC classifications, an overall F1 score was produced for the resulting
band ratio classification using the same validation labels used to produce F1 scores for the

CSC classification.
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4 Results
4.1 CNN-Supervised Classification
4.1.1 Performance of Phase 1 CNNs and Tile Size Sensitivity

The performance of the phase one VGG16 models in classifying unseen Sentinel-2 image
tiles of the Helheim and Scoresby Sund study areas are shown in Figure 4.1. With the
exception of the transfer learning model (RGB+TL) in the Scoresby Sund study area, all
models produced accurate classifications (F1 Scores > 88%). The best performing model on
the Helheim study area was the RGB transfer learning model (RGB+TL) with a tile size of
50 pixels. The model predictions produced classifications with an overall F1 score of 93%
(Figure 4.1a) and Kappa value of 0.9 (Figure 4.2). This indicates that the model class
predictions are highly accurate and have almost perfect agreement with manually delineated
validation data (see Table 3.3). The highest performing models for the Scoresby Sund study
area were the RGB models which scored slightly lower F1 scores of 90% irrespective of tile
size (Figure 4.1b). This shows that the model produces slightly improved classification
performance on in-sample data compared to out-of-sample data. However, the RGB model
performance on the Scoresby Sund image remains high and indicates that the phase one
model is transferable to outlet glacier landscapes in SE Greenland which were not used in

training.

Overall, the performance of non-transfer learning models does not appear to be greatly
sensitive to tile size, with RGB and RGB+NIR models resulting in F1 scores ranging from
90 to 92% for in-sample (Helheim) data and 88 to 90% for out-of-sample (Scoresby) data.
However, the transfer learning models were greatly impacted by tile size for both test areas,
with tile sizes of 75 and 100 pixels producing lower F1 and Kappa scores compared to
models trained with a tile size of 50 pixels (Figure 4.1a and Figure 4.2). The transfer learning
models also performed substantially worse on out-of-sample data (Figure 4.1b). The addition

of the NIR band in both study areas did not appear to improve classification results.

In summary, while the best performing phase one CNN for in-sample data used transfer
learning, the transfer learning approach was highly sensitive to tile size and did not perform
well on out-of-sample data, suggesting it is less transferable compared to non-transfer
learning approaches of model training. Additionally, both models trained using RGB and
RGB+NIR tiles were only slightly sensitive to tile size, but the addition of the NIR band did
not improve model performance, suggesting that the RGB models are the most transferable

while providing high levels of classification accuracy.
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(a) Helheim Phase 1 (VGG16) Results (b) Scoresby Phase 1 (VGGI16) Results
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Figure 4.1: The F1 scores of the phase one (VGG16) model classifications used to produce
training data for phase 2 of the CSC workflow. Showing results for (a) the Helheim test area
(in-sample) and (b) the Scoresby Sund test area (out-of-sample). Note the low sensitivity of
RGB and RGB+NIR models to tile size (with a range in F1 scores of 2 % for both (a) and (b)).
Also note the high sensitivity of transfer learning approaches to tile size and lower
transferability to out-of-sample data compared to non-transfer learning approaches.
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Figure 4.2: Kappa scores resulting from phase one model classification outputs. Note the
relatively high kappa scores showing good agreement between model results and manually
digitised truth data used for validation, with the exception of transfer learning model results

on out-of-sample Scoresby data.
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4.1.2 Performance of Phase 2 Models and Patch Size Sensitivity
4.1.2.1 Helheim (In-sample)

Figure 4.3 shows the overall F1 scores of the CSC (CNN + MLP/cCNN) results,
demonstrating the impact of patch size. In general, the results of applying CSC to the
Helheim study area showed a clear sensitivity to patch size with a patch size of 1 pixel
yielding lower F1 scores and Kappa values than larger patch sizes in all models. Larger patch
sizes of 3, 7, and 15 pixels either produced F1 scores consistent with phase one CNN outputs
or improved upon classification performance by 1 to 2%. A patch size of 7 pixels yielded
the best results in all models with the highest F1 scores of 92% in the RGB+NIR model
(Figure 4.3e), 93% in the RGB model (Figure 4.3a), and 95% in the RGB transfer learning
model (Figure 4.3c).

Specifically, the CSC results of the RGB models yielded F1 scores from 82 to 93% (Figure
4.3a) and Kappa values of 0.75 to 0.89 (Figure 4.4). RGB models with tile sizes of 75 and
100 pixels scored highest and had correspondingly high Kappa scores (>0.8: see Figure 4.4).
In terms of patch size, the RGB models using a cCNN patch size of 7 improved on the results
of the phase one CNNs by 1%. RGB models using a cCNN patch size of 3 and 15 also
performed well, either producing the same F1 score as phase one CNNs or improving

classification results (Figure 4.3a).

The CSC results of the RGB transfer learning models yielded F1 scores from 84 to 95%
(Figure 4.3c) and Kappa values of 0.85 to 0.92 (Figure 4.4). RGB+TL models with a tile
size of 50 were highest performing with F1 scores of 94 to 95% for patch sizes of 3 to 15
pixels (Figure 4.3c). As with the RGB models, the use of a cCNN with a patch size of 7 was
the best, consistently improving on phase one results by 2%.

The RGB+NIR models had F1 scores ranging from 85 to 92% (Figure 4.3e) and Kappa
values of 0.77 to 0.88 (Figure 4.4). The results of phase one RGB+NIR models with a tile
size of 50 were not improved by the addition of a patch-based cCNN. However, RGB+NIR
models with tiles sizes of 75 and 100 and a cCNN patch size of 3 and 7 were consistent with
or improved upon phase one classification results. As with the pixel-based approach, the

phase two model which used a patch size of 15 did not improve phase one RGB+NIR results.

Overall, this suggests that the pixel-based CSC workflow is outperformed by the patch-based
CSC workflow for in-sample classification, with a patch size of 7 pixels producing the
optimal results. It also suggests that with optimal patch size, phase one model classifications

are improved upon by phase two model results.
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(a) Helheim RGB Model (b) Scoresby RGB Model
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Figure 4.3: The F1 scores of the phase two classifications following the CSC workflow for the
Helheim test image (a, ¢, €) and Scoresby test image (b, d, f). Note in some cases phase two
results outperform phase one results. One prominent exception is the pixel-based approach for
in-sample data. The patch-based approach performs well for in-sample data, with a patch size
of 7 creating optimal results. The pixel-based approach performs better on out-of-sample data
compared to in-sample data.
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(a) Helheim RGB Model (b) Scoresby RGB Model
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Figure 4.4: Kappa scores resulting from phase two model classification outputs. Note that
kappa scores are generally similar to phase one results, with high levels of agreement for most
models. Notable exceptions are the pixel-based in-sample results and out-of-sample results
from the transfer learning model.
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Figure 4.5 shows the in-sample CSC outputs for the best performing phase one models using
RGB (Figure 4.5c), RGB+TL (Figure 4.5d), and RGB+NIR (Figure 4.5e) training
approaches. All models in the figure used a cCNN patch size of 7 pixels and are applied to
a 3000x3000 pixel image tile of Helheim glacier (Tile S2A5: 5 of 9 extracted from the test
image). The RGB model produced an F1 score of 94% (Figure 4.5c), while the RGB model
with transfer learning (Figure 4.5d) and the RGB+NIR model (Figure 4.5e) both produced
F1 scores of 97%. Visual comparison between the results suggests only small variations in
classification outputs, corresponding to small variations in F1 scores (on the scale of 1 to
3%). Figure 4.6 shows the confusion matrices illustrating agreement between model-
predicted classes and manually delineated classes for the three best workflows shown in
Figure 4.5. In all three model workflows there is excellent agreement between class
predictions and manually obtained truth data, perhaps with the exception of the RGB model

which shows some confusion between open water and bedrock classes.
Taken together, these results indicate that for in-sample data the patch-based (CNN + cCNN)

CSC workflow produces the best results. Specifically, the best performing model used a

phase two cCNN with a patch size of 7 pixels.
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(b) Validation Labels

(a) RGB Image

Class Key

I Unclassified Glacier Ice

I Bedrock Mélange
Snow on Bedrock WM Iceberg Water
Snow on Ice I Open Water

Figure 4.5: Best performing CSC results for tile 5 of 9 from the Helheim study area
(07/08/2019). (a) RGB input image (composite Sentinel-2 bands 4, 3, and 2). (b) Validation
raster composed of manually digitised ‘ground truth’ polygons. Showing workflow outputs
using (c) the RGB model (tile size: 100 pixels, patch size: 7 pixels), (d) the RGB model with
transfer learning (tile size: 50 pixels, patch size: 7 pixels), and; (¢) the RGB+NIR model (tile
size: 50 pixels, patch size: 7 pixels). Note all models produce highly accurate classification

outputs with small variations between outputs and minimal noise.
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(b) RGB CNN+¢CNN (Patch: 7)
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Figure 4.6: Confusion matrices for the results of the best performing in-sample models depicted
in Figure 4.5. a) and b) Show the degree of class agreement for the RGB model which performs
best with a tiles size of 100 and patch size of 7. C) and d) show the agreement for results of the
best RGB+TL model, while e) and f) show the agreement for best RGB+NIR results.
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4.1.2.2 Scoresby Sund (Out-of-sample)

In contrast to the Helheim study area, the performance of CSC in out-of-sample data was
high for the pixel-based approach, in most cases with identical or improved F1 scores
compared to the larger patch-sizes (Figure 4.3). For the most part, models using smaller
patch sizes (1, 3, and 7) performed slightly (1 to 3%) better than those with a patch size of
15. However, it is important to note that for each of the nine individual models tested on out-
of-sample data, F1 scores only varied by up to 3% for the four different patch sizes. The
MLP and cCNN outputs also notably outperformed phase one classification results in most

models, by up to 4% (Figure 4.3).

For the Scoresby Sund area the RGB models were the highest performing overall (Figure
4.3b), with F1 scores ranging from 90 to 93%. Kappa values also showed highest agreement
for the RGB models, with a value of 0.9 for most RGB models with tile sizes of 75 and 100
(Figure 4.4). For patch size, the RGB model performed best with patch sizes of 1, 3, and 7.

While the transfer learning approach improved model performance for the Helheim study
area, as with the phase one CNN, its performance in the Scoresby Sund area (out-of-sample)
was substantially worse, with F1 scores ranging from 74 to 89% (Figure 4.3). The transfer
learning approach was also more sensitive to tile size than other models, with a tile size of
50 pixels yielding the highest F1 scores of 88 to 89%, 75 pixels yielding 74 to 75%, and 100
pixels yielding 81 to 84%, mirroring phase one model results. However, it showed very little
sensitivity to patch size. There was no variation in F1 score between patch sizes of 1, 3, and
7 for models trained on tile sizes of 50 and 75, and a patch size of 15 produced F1 scores 1%
lower than smaller patch sizes. Despite this, the addition of the phase two model improved
phase one transfer learning classification results consistently for the out-of-sample data.

RGB+NIR models had F1 scores ranging from 88 to 92% (Figure 4.3f) and Kappa values
from 0.81 to 0.88 (Figure 4.4), with a tile size of 75 yielding the best results. As with all
models tested on out-of-sample data, the RGB+NIR models showed limited sensitivity to
phase two patch size, but the pixel-based approach (patch size: 1) was consistently 1 to 2%

better than the patch-based approach.

Overall, these results show that out-of-sample data is less sensitive to patch size compared
to in-sample data, with the pixel-based approach performing substantially better in out-of-
sample data. The results also suggest that phase two model predictions are highly dependent
on the quality of classification outputs resulting from phase one predictions which are

subsequently used as localised training data.
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Figure 4.7 shows a visual comparison of the out-of-sample CSC outputs for the best
performing RGB, RGB with transfer learning, and RGB+NIR models when used on a
3000x3000 pixel image tile extracted from the Scoresby Sund area (Tile S2A8: 8 of 9
extracted from the Sentinel-2 test tile). Figure 4.7c shows the output of the RGB model, with
an F1 score of 97%. The transfer learning model produced an F1 score of 89% (Figure 4.7d)
while the RGB+NIR model produced an F1 score of 94% (Figure 4.7¢). In the case of the
example tile, most confusion appears to occur between open water and iceberg water classes
(Figure 4.7).

The confusion matrices for overall results produced by the three best performing models for
out-of-sample data (shown in Figure 4.7) are illustrated in Figure 4.8. The confusion between
iceberg water and open water seen particularly in Figures 4.7d and e are also clear from the
confusion matrices. However, a higher degree of confusion is noted to occur between snow-
covered rock and bare bedrock classes. In general, the models with the lowest performance
experience confusion between one or more classes (see Figures Al4-24). For example, the
application of the transfer learning model with a tile size of 75 (the lowest performing model)
to out-of-sample data resulted in confusion between open water and iceberg water classes,
as well as confusion between snow on rock and glacier ice classes (see Figures A17-20).
Since phase one results are used to train phase two models, high amounts of class confusion
in phase one models can be transmitted to phase two results. However, some class confusion
in phase one is overcome in phase two, as indicated by the consistent improvement of phase

two results over phase one classifications.
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(a) RGB Image (b) Validation Labels

Yl

(c) Best RGB Model F1: 0.966 (d) Best RGB+TL Model F1: 0.891

Class Key

I Unclassified Glacier Ice

I Bedrock Mélange
Snow on Bedrock WM Iceberg Water
Snow on Ice I Open Water

Figure 4.7: Best performing CSC results for tile 8 of 9 extracted from the Scoresby Sund study
area (01/08/2019). (a) shows the RGB input image (composite Sentinel-2 bands 4, 3, and 2); and
(b) shows the validation raster composed of manually digitised ‘ground truth’ polygons.
Showing workflow outputs using: (c) the RGB model (tile size: 100 pixels, patch size: 3 pixels),
(d) the RGB model with transfer learning (tile size: 50 pixels, patch size: 1 pixel), and (e) the
RGB+NIR model (tile size: 75 pixels, patch size: 1 pixel). Note that most class confusion occurs

between open water and iceberg water classes.
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(a) RGB CNN (Tile:100)
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(b) RGB CNN+¢CNN (Patch: 3)
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Figure 4.8: Confusion matrices for the results of the best performing out-of-sample models
depicted in Figure 4.7. a) and b) Show the degree of class agreement for the RGB model; ¢) and
d) show the agreement for results of the best RGB+TL model, while e) and f) show the
agreement for best RGB+NIR results.
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4.2 Spatial and Temporal Transferability

Figures 4.9 to 4.11 show CSC predictions for several 3000x3000 pixel example tiles
extracted from the Sentinel-2 test images. These results indicate that the deep learning
workflow is capable of classifying marine-terminating landscapes not ‘seen’ during training
and suggest that the method is spatially transferable to glacial landscapes elsewhere in SE
Greenland. In some cases, there are small areas of erroneous class predictions, particularly
relating to areas of bedrock that are shadowed, supraglacial debris, supraglacial lakes
(SGLs), small lakes in bedrock areas, and small pockets of fjord water which appear to
contain high volumes of suspended sediment. For example, shadowed areas of bedrock were
often misclassified as open water. This is most likely because they have similar spectral
characteristics and only small areas of shadowed bedrock would have been included in
model training data. Likewise, other areas of misclassification included surface types that
were not included within the seven semantic classes outlined in Chapter 3 (e.g., SGLs,
sediment rich water, supraglacial debris). Model predictions of these areas may have
improved if the number of classes was expanded to be inclusive of these surface types.
However, these areas generally tend to occupy small portions of imagery and do not
significantly impact overall performance. Moreover, due to the small portion of imagery
containing these classes, extracting sufficient volumes of training data would be challenging
and potentially lead to class imbalance problems. Similarly, given that the phase one CNN
operates at the scale of 50x50 to 100x100 pixel tiles, features which span only a few pixels
(e.g., small lakes) would be too small to be labelled and subsequently be lost in training data
for the phase two models. This suggests that CSC can not be used to detect smaller features
than the input tile size, and that CSC could be improved to classify larger scale classes such

as sediment rich water by including more diverse training data.

48



(a) Input RGB Image (Helheim S2A2)
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(b) CSC Classification (F1: 0.942)
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Figure 4.9: CSC (RGB+TL, Tile:50, Patch:7) results for three example tiles from the test
Sentinel-2 image of Helheim. Note that CSC performs well in classifying both land- and
marine-terminating glaciers, even in the presence of mélange and large volumes of icebergs.
However, note that some small areas of shadowed bedrock are misclassified as open water.

49



(a) Input RGB Image (Scoresby S2AT1)

(b) CSC Classification (F1: 0.958)
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Figure 4.10: CSC (RGB, Tile:100, Patch:7) results for first three tiles extracted from the test
Sentinel-2 image of the Scoresby Sund study area. Note that the supraglacial lake in (a) is
classified as mélange in (b) and some small lakes in bedrock areas are missed by the model. In
(c) large areas of SGLs resulted in misclassification of glacier ice as iceberg water in (d). Also

note the areas of sediment-rich fjord water in (c) and (e) which are misclassified as bedrock.
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(a) Input RGB Image (Scoresby S2A4) (b) CSC Classification (F1: 0.963)

S
(d) CSC Classification (F1: 0.773)

(e) Input RGB Image (Scoresby S2A7)
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Figure 4.11: CSC (RGB, Tile:100, Patch:7) results for three more example tiles extracted from
the test Sentinel-2 image of the Scoresby Sund study area. Note in (a), (b), (e), and (f) several
more SGLs are classified as mélange, iceberg water or open water. The lower F1 score in (d) is
due to confusion between predicted water types in comparison to manual truth labels. In (f)

some areas of smooth ‘snow on ice’ areas have been classified as ‘snow on rock’.
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4.3 Comparison of CNN-Supervised Classification to Traditional Band Ratio Methods

Figure 4.12 shows a visual comparison between a traditional band ratio technique (as
described in Paul et al. (2016)) and the result of the CSC workflow using the best performing
model on tile 5 of the 9 tiles extracted from the test image of Helheim. CSC successfully
identifies areas of melange, glacier ice and iceberg rich fjord waters as different classes
(Figure 4.12b). The band ratio method allows clear identification of rock, and land
terminating ice margins. However, the technique struggles to distinguish boundaries
between glacier ice, melange, and iceberg water (Figure 4.12c). In the example shown, the
abundant spectral variation and noise makes using a series of thresholds to extract margins
in a mélange-filled fjord almost impossible. This is reflected by an F1 score of 53% for the
band ratio technique which is substantially outperformed by CSC with a corresponding F1
of 97%. This comparison and preliminary tests of CSC transferability suggests it is more
robust than traditional techniques and does not rely on the requirement of identifying

threshold values to extract classes.
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(a) RGB Image (b) Validation Labels

(¢) CSC Classification F1: 0.967 (d) Band Ratio Classification F1: 0.534
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Figure 4.12: Comparison of methods used on tile 5 of 9 (a) extracted from the Helheim study
area (07/08/2019), including (b) Validation labels used to create F1 scores, (c) the CSC
classification, and (d) a band ratio classification using Sentinel-2 bands 4 (red) and 11 (SWIR).
Note that only three classes could be extracted from the band ratio image due to significant
noise and no contrast between glacier ice, mélange, and iceberg water classes.
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5 Discussion
5.1 CSC Performance in Marine-Terminating Outlet Glacier Environments

The results reported here demonstrate novel multi-class satellite image classification of
complex outlet glacier image scenes using deep learning. The CSC workflow adapted for
glacial settings in Greenland produced mean F1 scores up to 95% for in-sample test imagery
and 93% for out-of-sample test imagery, with corresponding Kappa values of 0.92 and 0.9,
respectively. The method created multi-class outputs in contrast to the binary classification
outputs used by Mohajerani et al. (2019), Zhang et al. (2019), and Baumhoer et al. (2019)
for automated delineation of marine-terminating ice fronts. Despite this difference in output
classification type, mean F1 scores of classifications by Baumhoer et al. (2019) were 89 to
90% for in-sample training sites and 90 to 91% for out-of-sample test sites, suggesting the
CSC workflow advances the state-of-the-art in image classification of complex marine-

terminating glacial environments using deep learning.

In addition to advancing the state-of-the-art for marine-terminating glacial settings, the
multi-class outputs of the CSC workflow widen the scope of image classification for a
variety of research applications, beyond just automated delineation of calving fronts from
binary classification outputs. Moreover, the ability of the CSC deep learning workflow to
classify images previously unseen by the model for both training and testing areas to a
similarly high level of accuracy suggests good generalisation and highlights the
transferability of CSC to other marine-terminating outlet glacier environments in SE

Greenland.

5.2 Comparison to Previous Work

The results of this project build on the work of deep learning-based classification methods
for glacier delineation (Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019;
Xie et al., 2020), with several key innovations and variations of note. In particular, the
volume, type, and number of input channels of training data used in this workflow differs
from those of previous work. Furthermore, there are substantial differences in the deep

learning architectures and classification approach tested in this project.
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5.2.1 Volume of Training Data

In terms of training data volume, fewer training images (i.e., 13) were used here compared
to the number of training images used by Baumhoer et al. (2019), Mohajerani et al. (2019),
and Zhang et al. (2019) (i.e., 38, 123, and 75, respectively). In terms of the number of
training samples, Goodfellow et al. (2016) note that, as a general rule, each class should
contain at least 5,000 samples to reach satisfactory performance, but models can reach and
exceed human-level performance when trained on at least 10 million samples. With this in
mind, the number of labelled samples produced by manually labelled training images and
data augmentation in the datasets used here (< 360,000) makes them relatively small.
However, in comparison to pre-trained models such as VGG16 which were trained on the
ImageNet database using over 1000 classes, the adapted VGG16 architecture in this project
only uses seven classes, and therefore can be trained sufficiently with ‘only’ a few 100
thousand samples. This suggests that relatively few images are needed to produce highly
accurate image classifications using the CSC workflow, reducing the time required for initial
creation of manually labelled training data. Furthermore, the CSC workflow does not require
the same pre-processing steps such as manually rotating images so that glacier flow
directions are consistent or cropping input images to a specified buffer width encompassing
glacier calving fronts as in Mohajerani et al. (2019). As such, CSC has the advantage of
needing fewer satellite acquisitions for training and simpler pre-processing steps.

5.2.2 Type of Training Data

In relation to the type of data used to train the deep learning models, Baumhoer et al. (2019)
and Zhang et al. (2019) used Sentinel-1 and TerraSAR-X SAR data, respectively.
Specifically, Baumhoer et al. (2019) used different SAR polarisations with the addition of a
DEM to train the FCN. In contrast, Mohajerani et al. (2019) used Landsat 5, 7 and 8 imagery
for FCN training, in particular using the ‘green’ band from Landsat 5 data and
‘panchromatic’ band from Landsat 7 and 8 data. In this project, Sentinel-2 optical data was
used which is generally easier to process in comparison to SAR data and requires less
specialised knowledge for pre-processing. For example, common pre-processing steps to
implement SAR data include noise removal, radiometric calibration, and geocoding
correction (in addition to training area cropping and tiling for model training) (Baumhoer et
al., 2019; Zhang et al., 2019). While SAR data is not limited by clouds or polar night, using
L2A Sentinel-2 imagery eliminates the need to incorporate DEM data and removes SAR
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pre-processing steps from the deep learning workflow, allowing cloud-free imagery to be
downloaded, cropped, and tiled more quickly for model training.

5.2.3 Dimensions of Training Data

In terms of input dimensions, Zhang et al. (2019) and Mohajerani et al. (2019) used one-
dimensional (1D) training inputs while Baumhoer et al. (2019) used data with four input
channels. The input channels of the CSC workflow (i.e., 3 or 4 input bands) were analogous
with those of Baumhoer et al. (2019) but with different input data types (i.e., multispectral
data vs. SAR and DEM data). At the opposite end of the spectrum, Xie et al. (2020) used 17
input channels, incorporating all 11 Landsat 8 bands, a DEM, and five layers derived from
the DEM to produce binary classifications for debris-covered land-terminating glaciers.
They produced results with F1 scores up to 94% using a CNN trained and tested on images
of glaciers in the Karakoram region, and 90% for a transfer learning approach using the
model initially trained on the Karakoram region, with weights adjusted using new training
data from Nepal. Xie et al. (2020) note that using fewer input channels in experimental CNN
training resulted in lower levels of accuracy. However, despite the large difference in input
dimensionality between the CNN used here and that of Xie et al. (2020), resultant F1 scores
show that the use of only three Sentinel-2 bands produces classifications with similar levels
of accuracy. However, it is important to note that the CSC workflow was applied to a
markedly different glacial landscape compared to Xie et al. (2020). Nevertheless, the results
presented here show that using only three input Sentinel-2 bands is sufficient for producing

accurate classifications in scenes containing complex marine-terminating glaciers.

5.2.4 Deep Learning Model Architectures

Likewise, further variations in comparison to previous work are apparent in the model
architectures, number of models used, and training approaches tested for classification. All
previous deep learning classification methods for marine-terminating glacial environments
(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019) use the U-Net
architecture (Ronneberger et al., 2015). Whilst U-Net architectures have reached state-of-
the-art performance in computer vision tasks, their application in complex natural landscapes
is not necessarily optimal given the intrinsic assumptions of U-Net models. For example,
U-Net architectures perform exceedingly well at delineating people in imagery (Xie et al.,
2018; Wang and Bai, 2019). In such cases, skin colour and clothing colour must not be
considered as identifying features. However, in Earth Observation (EO) images of natural
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landscapes, there is a much stronger correlation between colour and landform. Furthermore,
the U-Net architecture will learn shapes that have a limited variability of both form and scale.
For example, people have similar dimensions in imagery used in self-driving vehicles and
their location in the image is limited to a horizontal zone across the field of view. In contrast,
natural landforms can vary in scales over several orders of magnitude and be located
anywhere in an image. Therefore, it can be argued that more evidence is needed before
considering the use of U-Net architectures as the de facto algorithm for glacial landscape
classification. Moreover, the results presented here show that a deep learning approach based
on a combination of local spectral and spatial properties determined by a compact CNN

architecture has exceeded the results derived from U-Net architectures.

5.3 Comparison to Traditional Glacier Mapping Methods using Band Ratios

In contrast to previous work, this project also assessed the workflow performance in
comparison to a traditional band ratio method for classification of an image containing a
marine-terminating glacier (Figure 4.12). The results show that CSC is better at identifying
classes which are spectrally similar such as mélange, glacier ice and iceberg water. This
suggests that the method outperforms traditional pixel-based classification techniques,
similar to findings from classification of fluvial image scenes (Carbonneau et al., 2020a).
CSC is also more robust because it is able to classify new unseen images in SE Greenland
without further training and does not require additional steps to determine an optimal
threshold value for outlining class boundaries. Moreover, the method has the ability to pick
out textures and patterns in the same way a human operator would, irrespective of variations
in illumination, weather conditions or seasonal changes to the landscape and individual
classes. This also highlights the benefit and transferability of CNNs over purely pixel-based

techniques for classifying complex image scenes with substantial seasonal variations.

5.4 Evaluation of Training Methods

To evaluate the workflow, three different approaches of training the phase one CNNs were
tested by using two different band combinations and a transfer learning technique. The
results show that the addition of the NIR band did not significantly improve classification
accuracy. Further testing of alternative band combinations or the addition of different
satellite data types (e.g., SAR data) may be advantageous. However, using RGB bands
produces satisfactory results and adding additional image bands is likely to increase
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processing time without necessarily improving on the overall accuracy, as also suggested by
Xie et al. (2020).

In terms of transfer learning, the technique has been applied successfully in previous image
classification studies which use remotely sensed satellite imagery, allowing reduced training
times for smaller datasets (Hu et al., 2015; Pires de Lima and Marfurt, 2020). These studies
highlighted that CNNs pre-trained on ImageNet data may be transferable to remote sensing
imagery by fine-tuning the last layers in the CNN for dataset specific feature extraction,
regardless of disparities in input image properties (e.g., angle of acquisition). However, Pires
de Lima and Marfurt, (2020) recognise that, in contrast to training all the layers of a CNN
on remote sensing data, the difference between ImageNet data and remote sensing data in
some cases has resulted in transfer learning techniques overfitting and reducing the ability
of models to learn. In this study, while transfer learning performed exceptionally well for in-
sample data, its performance degraded substantially when applied to out-of-sample test
imagery, suggesting reduced transferability. The strong performance of the transfer learning
approach on in-sample data supports findings that it is a powerful deep learning tool (Xie et
al., 2020). However, it is suggested that the high-level features representative of diverse,
seasonally variable image elements and classes are not as successfully detected using
transfer learning in comparison to full CNN training. This indicates that transfer learning
techniques would require further efforts to fine-tune for improved transferability to marine-

terminating outlet glacier environments.

5.5 The Impact of Tile Size on Model Performance

The impact of tile size (height and width of image samples used for training and validation)
on model performance was also evaluated. For models to learn the features which represent
diverse image elements, class representative features need to fit within an individual tile,
thus making careful choice of tile size especially important. It is also important to consider
that the number of tiles produced to compose a training dataset changes based on tile size.
With the same source imagery, a large number of small tiles can be produced compared to
fewer larger tiles (e.g., Table 3.2). Thus, the selection of tile size is dependent on the desired
information content of a tile and the number of tiles needed to sufficiently train a CNN. It
was for this reason that tiles sizes of 50, 75 and 100 pixels were tested.

Results show that non-transfer learning phase one CNNs were not substantially sensitive to
tile size, with models trained on all three tile sizes producing F1 scores within a 2% range
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for both in-sample and out-of-sample test data. Following the full CSC workflow, the RGB
models (without transfer learning) trained on larger tile sizes produced slightly better
classifications with tile sizes of 100 and 75 outperforming tile sizes of 50 pixels by up to
3%. This suggests that using fewer larger tiles (e.g., size of 100 pixels) slightly improves
RGB model performance, specifically for the scale of features in outlet glacier landscapes

in Greenland.

In contrast, the transfer learning phase one CNNs had increased sensitivity to tile size,
producing F1 scores with a range of 5% for in-sample test data and 13% for out-of-sample
test data. This was mirrored in the CSC classifications, with large differences in F1 scores
depending on tile size, whereby the smallest tile size of 50 pixels produced the best results,
but model performance deteriorated with tiles sizes of 75 and 100 pixels. It is interesting to
note that the transfer learning technique benefited from using a larger number of smaller tiles
compared to the preferred smaller number of large tiles for the fully trained CNN. These
results suggest that, for classification of outlet glacier landscapes, fully trained CNNs are
more invariant to tile size for both in- and out-of-sample data, whereas transfer learning
models produce a larger variability of F1 scores for different tile sizes, especially when
applied to out-of-sample data. This supports the assertion that the most transferable CSC
workflow for outlet glacier image classification uses a phase one CNN with all weights
trained using RGB bands and larger tile sizes (of 75 or 100 pixels).

5.6 The Impact of Patch Size on Model Performance

In addition to testing the influence of tile size during training for phase one CNNs, the
sensitivity of phase two model performance was tested by using pixel- and patch-based
techniques. Specifically, four patch sizes of 1x1 (pixel-based), 3x3, 7x7, and 15x15 pixels
(patch-based) were tested. The reason for testing pixel- and patch-based techniques is due to
the use of medium resolution imagery which tends to have spectral variations across images,
making it difficult to distinguish class from the spectral characteristics of a pixel alone
(Maggiori et al., 2016). The best performing patch size may also vary depending on the type
of medium resolution satellite imagery (Sharma et al., 2017) making it an important testable
parameter. It was proposed that adopting a patch-based technique which includes contextual
information surrounding a pixel would aid classification of complex and seasonally variable
outlet glacier landscapes, as it has in other applications (Sharma et al., 2017). The results

showed that for the most part this was true, especially for in-sample test imagery.
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When CSC was applied to in-sample test data, the workflow performance was clearly
sensitive to patch size, with the pixel-based approach producing classifications with lower
F1 scores compared to the patch-based technique. The optimal patch-size for in-sample test
data was 7x7 pixels. The in-sample results support the hypothesis that pixel-based
approaches do not perform as well on medium-resolution imagery compared to the patch-
based approach. This also validates similar findings that patch-based CNNs outperform
standard pixel-based neural networks and CNNs (Sharma et al., 2017). In contrast, for out-
of-sample data, the pixel-based approach performed substantially better than for the in-
sample test data, and smaller patch sizes of 1, 3, and 7 generally outperformed a larger patch
size of 15. However, in general CSC results for out-of-sample data were less sensitive to
patch size, producing a range of F1 scores that varied by only 3 % between all four patch
sizes (per the three individual models). Therefore, it is suggested that testing a range of patch

sizes would be beneficial before applying the workflow to a new dataset.

5.7 Limitations, Transferability, and Implications for Future Work

The performance of the CSC workflow is dependent on the success of the pre-trained CNNs
to identify image-specific training areas in phase one. The performance of the phase one
models can be impacted by the size and class representation of training data. It is noted that
the data used to train the phase one CNNs was extracted from only one outlet glacier in
Greenland, and that producing a larger training dataset from a wider array of imagery in
other similar settings may be beneficial to increase model performance and transferability in
future work. The lack of a benchmark dataset specifically for marine-terminating outlet
glacier settings means that the application of deep learning in this field initially relies on
labour-intensive manual labelling of training data. Despite this limitation, the deep learning
workflow here produced highly accurate classifications for both images of the glacier used
in training and of different locations not ‘seen’ by the model. Furthermore, once the phase
one models are trained and weights are saved, no further training is required to apply the

workflow to other marine-terminating outlet glaciers in SE Greenland.

In addition to the size of the training dataset, class imbalance can impact model performance.
Marine-terminating outlet glacier environments have classes which are naturally less
abundant in imagery. For example, there were smaller areas of mélange compared to glacier
ice or snow-covered ice in most full satellite scenes of the Helheim and Scoresby study areas.
So, despite efforts to balance the training dataset, certain classes such as open water (without

icebergs), mélange, and bedrock were represented by a smaller number of training samples
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compared to more prominent classes (Table 3.2). This can lead to confusion between classes
as was found in some of the experiments. In models with lower performance, confusion
occurred between open water and iceberg water classes, as well as between bedrock and
snow on bedrock classes. Furthermore, class imbalance may be problematic for classifying
large images (e.g., entire Sentinel-2 images that have not been tiled) which contain only
small areas of a single class. For example, if only a small area of mélange was classified
following the application of the phase one model to a Sentinel-2 image, only a small
proportion of image data would be available for image-specific training in phase two.
Consequently, if removing the mélange class altogether would reduce model loss, the output
classification would have increased class confusion due to the misclassification of the absent
mélange class. However, in the case of the smaller 3000x3000 pixel test tiles used in this
study, confusion between classes in output classifications was minimal for most of the 36

models tested.

Additionally, there are numerous hyperparameters (e.g., learning rate, batch size, etc.) that
could be tested and tuned for improved workflow implementation. Variations in such
parameters are likely to impact model performance but require significant time to test and
substantially increase the dimensions of model outputs (Carbonneau et al., 2020a). In
addition, only one model architecture was tested for the phase one pre-trained model.
VGG16 has a relatively simple architecture but the state-of-the-art for image classification
is constantly evolving, with consistent and rapid development of new CNN architectures. As
a result, there are a myriad of variations in CNN characteristics that could be tested in future
work, such as CNN depth and filter sizes. Moreover, other well-established pre-trained
model architectures such as GoogLeNet (Szegedy et al., 2014), and NASNet (Zoph et al.,
2018) have also been successfully applied to remote sensing applications (Ostankovich and
Afanasyev, 2018; Carbonneau et al., 2020a) and could be explored for use in the CSC
workflow for marine-terminating outlet glacier image classification. Thus, there are several
avenues for expanding the use of deep learning for image classification of marine-
terminating outlet glacier landscapes in future work. Nevertheless, the implications of this
study suggest that the adapted CSC workflow is transferable to unseen landscapes in SE

Greenland and capable of maintaining a high level of performance.

Further integration of the workflow with GIS platforms could provide an efficient tool for
processing large amounts of imagery at high temporal resolution. In addition, since the
workflow was implemented in Python 3.7, it is compatible with GEE (Gorelick et al., 2017),

a cloud-based geospatial platform for processing and analysing large-scale datasets
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(Tamiminia et al., 2020). GEE allows processing of Landsat and Sentinel-2 imagery without
the need to download large volumes of data and has been used effectively in glacial
applications such as automated mapping of glacial lakes (Shugar et al., 2020). Therefore,
there is scope to implement CSC within the GEE platform and build on existing tools for
automated glacier margin extraction (e.g. Lea, 2018) and classification without the need for
expertise in coding or glaciology. With such integration, classification outputs could be
rapidly produced and used to efficiently generate vector datasets from boundaries between

classes, for wide-ranging applications and analysis in outlet glacier landscapes.
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6 Conclusions

In this study a workflow for image classification of seasonally variable marine-terminating
outlet glacier environments using deep learning was developed and evaluated. The
development of deep learning methods for automated classification of outlet glaciers is an
important step towards monitoring important processes at high temporal and spatial
resolution (e.g., changes in frontal position, calving events, plume development, supraglacial
lake development and drainage). While still in its infancy in glacial settings, image
classification using deep learning provides clear potential to reduce the labour-intensive
nature of manual methods and facilitate automated analysis in an era of the burgeoning
availability of satellite imagery. The two-phase CSC workflow was adapted for classification
of medium resolution Sentinel-2 imagery of outlet glaciers in south east Greenland. In phase
one, the application of a well-established, pre-trained CNN called VGG16 replicates the way
a human operator would interpret an image, rapidly producing accurate training data without
the requirement of time-consuming manual digitisation. In phase two, the workflow
produces a pixel-level classification according to seven semantic classes characteristic of
complex outlet glacier settings. Alongside an evaluation of various parameters and training
methods on model performance, the workflow was applied and tested on two new Sentinel-
2 tiles containing marine-terminating outlet glaciers, previously unseen by phase one CNNs

during training.

Exemplified by resulting overall F1 scores of up to 95% for in-sample data and 93% for out-
of-sample data, the workflow establishes a state-of-the-art in multi-class image classification
for outlet glacier environments in Greenland. Additionally, when compared to traditional
pixel-based techniques, the results of CSC clearly outperform those of image band ratio
methods. These results demonstrate the transferability and robustness of the approach, and
although the CSC workflow was applied and tested on outlet glaciers in Greenland, it may
also be transferred to outlet glacier landscapes in other glaciated regions with additional

testing and fine-tuning.

From a wider perspective, the results of this study strengthen the foothold of deep learning
in the realm of automated processing of freely available medium resolution satellite imagery,
especially building on the growing body of research using deep learning in glaciology
(Baumhoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019; Xie et al., 2020). The
deep learning workflow presented here offers an efficient tool for glaciologists to analyse
the dynamics of marine-terminating outlet glaciers, without significant prior experience in

coding or deep learning.
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7 Code and Data Availability

Sentinel-2 imagery is available from the Copernicus Open Access Hub (available at:
https://scihub.copernicus.eu/dhus/#/home, last accessed: 20/07/20). The Python scripts for
the full deep learning workflow and instructions on how to apply them are available at:
http://doi.org/10.5281/zen0d0.4081095 and can be cited as Carbonneau and Marochov
(2020). The nine pre-trained VGG16 models are available for download from this

institutional repository: http://doi.org/10.15128/r2gh93gz51k and can be cited as Marochov

and Carbonneau (2020). The original code for the CSC workflow for classification of fluvial

scenes is available at: https://github.com/geojames/CNN-Supervised-Classification.
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Figure Al: Confusion matrices for CSC results on the Helheim test image using 50x50
pixel tiles and a pixel-based approach (patch size: 1).
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Figure A2: Confusion matrices for CSC results on the Helheim test image using 50x50
pixel tiles and a patch-based approach (patch size: 3).
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Figure A3: Confusion matrices for CSC results on the Helheim test image using 50x50
pixel tiles and a patch-based approach (patch size: 7).
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Figure A4: Confusion matrices for CSC results on the Helheim test image using 50x50
pixel tiles and a patch-based approach (patch size: 15).
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Figure A5: Confusion matrices for CSC results on the Helheim test image using 75x75
pixel tiles and a pixel-based approach (patch size: 1).
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Figure A6: Confusion matrices for CSC results on the Helheim test image using 75x75
pixel tiles and a patch-based approach (patch size: 3).
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Figure A7: Confusion matrices for CSC results on the Helheim test image using 75x75
pixel tiles and a patch-based approach (patch size: 7).
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Figure A8: Confusion matrices for CSC results on the Helheim test image using 75x75
pixel tiles and a patch-based approach (patch size: 15).

72



Phase 1: CNN

(a) RGB 56.7% QAR 0.3% 40.6%
“\N 177315 gl L] 866 126990
QB
O 99.7% MNEA 0.3%
g‘!\“\" 1139043 K] 3345
23
® 35% [EIRYA 3.6% 1.0%
\6(\90 8335 PARGLE] 8467 2284
— =)
s W 04% 1.1% [IREW 9.9% 21% 2.1%
2 _6‘\09 7690 19927 (EEEUKL 185698 39044 40387
2
o 0.0% 0.2% RYEPM 7.2% 0.2%
‘M\\cﬁ 1011 9335 'PEryry] 328692 10728
‘-\0
S 2.0% 12% BEXZA 18.3%
?pc‘.f‘ 3056 1797 RPLEPL] 28126
b
o 0.0% 1.4% 02% 1.0% 01% 0.3% LR
@oo* 806 24107 3060 16052 1899 5389 (LRKIKL
(b) RGB+TL [ 0.3%  0.0% 21.8%
“\N- 244352 861 103 68504
Qe-
C 0.9% [EE 0.0% 0.3%
q 10470 (RPLYEY 3574
a‘g
® 0.1% J 2.7% 29% 1.8%
\e(\oﬁ 354 216757 kL] 6862 4335
— )
S W 01% 0.0% 3.3% [CENLA 96% 0.8% 2.6%
E (P 1952 4 62400 (EIPLIE 181209 14230 48692
2@
2%
o 01% 0.1% 01% 0.3% [EUGYN 7.5% 1.3%
\N\\o@ 6411 3851 2601 13749 TEELJOK 346140 57983
o
¢ 7.2% 21% 02% 22% 0.8% XN 16.9%
Q\oo‘f* 11178 3231 287 3347 1295 RULKPL] 26092
o\
o 26% 1.1% 02% 08% 01% 0.7% LA
Qb 43802 19122 3334 12976 955 11280 (ILFAKC
Q_O
+
(c) RGB+NIR (72T 0.3% 6.4% 31.1%
NN 195035 T4 20103 97326
QG
o 0.3% I 2.3%
q*\\' 3586 (RR[LLE] 25652
)
© 3.3% BIEPA 6.7% 2.9%
\9(\96 7933 PAl7agl 15762 6981
— e
s W 0.1% 0.2% WEXEA 14.7% 2.9%  3.5%
E (P 1388 4706 [PTARG: 277326 53967 65978
(&
o>
e 00% 02% RN 8.2% 0.9%
‘ﬂ\\c.e 865 10003 'REINE 377161 40814
“0
S 02% 041% 04% 0.7% LAY 38.6%
@oo‘l* 307 138 594 1115 [CPIERN 59300
o\
ox© 01% 01% 04% 03% 01% 01% [REEES
@00‘# 870 1163 941 5460 1067 1726 (LgLLEl)
D & P \P ot ¢
O@eﬁ\‘\‘ &S \!\'B\'z'(\g cl\e’(\ (\0\‘“\ \ﬂ\?‘o @@
) o= e
Predicted

Phase 2: CNN + MLP

42.6% 27.8% 0.0% 29.6%
133238 86906 3 92732
0.1% [PXCA 1.0% 02% 0.0% 0.3% 6.0%
1331 (DEELRN 11419 1981 58 3744 68746
15.0% QI®TM 01% 0.0% 06% 0.1%
35481 RLLFEPY 203 94 1400 251
0.0% 36% 21% (G 21.1% 11.2% 1.1%
28 66917 39175 (KIILLE| 397504 210914 21362
0.0% 041% 1.0% [EIFPEA 7.7% 0.0%
1324 2328 46465 [RLELrY 354975 28
24% 22% 35% 8.3% 8.3%
3694 3327 5416 12759 REES
0.0% 0.4% 0.7% 0.0%
135 6966 11078 6
&N 12.7% 0.0% 10.3%
PYTERT 39862 4 32419
27% REXZA 12% 0.0% 00% 04% 6.0%
31281 (WPFPLY 13536 568 42 4288 68513
0.0% 12.9% [EINEN 0.1% 0.0% 05% 0.5%
5 30435 PIEELE] 313 101 1224 1111
0.0% 23% 28% |ikyd 27.3% 6.2% 2.5%
377 43480 53471 [E[EUE 513712 116917 47102
0.0% 0.0% 0.0% 0.9% ELESS 8.2% 0.4%
828 1385 1896 42595 'EPVILYI 377886 17366
54% 1.8% 214% 11.1% 8.0% [y 19.0%
8323 2716 3194 17207 12371 |ikl-)| 29384
00% 04% 00% 041% 0.0% 0.7% [KENEA
261 7551 307 1379 1 11725 [LpXeX
LRV 19.5% 9.4% 20.8%
157758 1L 29373 65245
05% KRN 1.0% 0.1% 0.2% 2.3%
5360 GOEKEEK 11520 800 1929 26587
13.5% IEFA 0.3% 00% 01% 0.1%
32056 PUEEGIA 791 2 177 354
0.0% 17% 23% R 24.1% 7.0%  3.2%
103 32510 43115 (ELjkrry: 454812 132545 60726
0.0% 2.3% [EEREN 8.2% 0.4%
120 107417 [DELEDE 378087 20420
00% 04% 1.9% 7.4% |le) 40.2%
68 551 2857 10912 | gkl 61724
0.1% 0.1% 0.1% [RERES
2163 1199 1758 GERLLE
W W @ P
e 63* é\'ao '\0‘ \l\\\ \?‘ &
of e o
O @8 W e g ot
Predicted

80

60

-40

-20

80

60

-40

-20

80

60

-40

-20

Figure A9: Confusion matrices for CSC results on the Helheim test image using
100x100 pixel tiles and a pixel-based approach (patch size: 1).
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Figure A10: Confusion matrices for CSC results on the Helheim test image using
100x100 pixel tiles and a patch-based approach (patch size: 3).
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Figure All: Confusion matrices for CSC results on the Helheim test image using
100x100 pixel tiles and a patch-based approach (patch size: 7).

75



Phase 1: CNN

(a) RGB e 2.5% 0.3% 40.6%
IR 176833 IELEY 890 126721
QB
o 29.7% [EXE3 0.3%
*\Nv 1132709 3503
)
© 3.6% BUREA 3.6% 1.0%
\a(\ge 8520 PPIRLE] 8632 2339
— &
s W 0.4% 1.1% [IRUM 99% 21% 2.1%
ks \® 7887 20362 [I1TE4P: 186253 38761 39946
< ac'l\e.‘
o 0.0% 02% ROPON 72% 0.2%
\ﬂ\\cﬁ 1036 9391 'PIEFEE 330207 10518
(\0
S 2.0% 1.2% 18.1%
\?pc,\‘L 3070 1849 [EPIGiéd 27840
o
o 0.0% 1.4% 02% 1.0% 01% 0.3%
?\oc}l* 771 24249 3015 16220 2046 5121 YLERVRL
(b) RGB+TL ¥ 03%  0.0% 21.7%
IO 242805 863 107 67479
Qa
© 0.9% [EXYA 0.0% 0.3%
\!\N- 10648 (RPRLYEl 2 3456
eﬂg
® 02% 0.8% QUREA 28% 29% 1.9%
\a‘\ge 386 1979 PILLI] 6596 7029 4497
R
S W 04% 0.0% 3.3% [CENLA 9.7% 0.7% 2.5%
E @ 2006 6 62053 (ELIIIE 181437 13912 47331
2@
2
o 04% 0.1% 01% 03% UKW 7.5% 1.3%
\,4\\56 6389 3780 2589 13741 'ELJZLR] 346220 57859
o
&° 73% 21% 02% 22% 0.8% [OEIN 17.0%
@oc* 11175 3153 288 3322 1226 [LLFLL] 26091
|
o 26% 1.2% 02% 07% 01% 07% IR
?\oc}k 43105 19487 3446 12534 987 11074 \LRRYEL
(c) RGB+NIR  popmm 5., 6.5% 31.1%
IR 193841 XL 20109 96895
QG
© 03% I 2.3%
*\N' 3662 (RIILN 25739
a‘g
© 33% XN 6.7% 3.14%
£ 7949 PITAED] 16048 7315
— oV
S W 0.1% 0.3% [ELEN 14.8% 2.8%  3.5%
E _e‘\c,e 1308 4895 PRATLE 277378 52761 64898
Ca
¥ 0.0% 0.2% [EICEAY 8.2% 0.9%
@\\c'e 916 9930 'RLYLIE 379381 40811
00
S 02% 01% 04% 0.7% (LA 38.4%
?_of}‘“ 277 129 622 1099 [CPFLCH 58815
o\
e 04% 04% 0.1% 0.3% 04% 0.1% RIERES
@oo* 918 1204 920 5517 1075 1741 (LIRPEN
. . ] N ok
60\‘\\ S \!@ é\e(\g G\e" \® 0“"\ \c® \ ?\00 @00
O @@ W ™ o 5“0«
Predicted

Phase 2: CNN + cCNN

PEXI 5.9% 0.0% 44.6%
154517 [RLEE) 2 139254
0.0% [EEEYA 02% 00% 0.0% 0.0% 04%
115 (RPEILY] 2070 426 1 448 4477
4.4% 0.0% 0.3%
10478 2 731
0.0% 0.5% 02% [EIRGH 8.4% 2.6% 1.5%
20 8942 3460 \[PLLFFI 158460 49413 28604
0.3% RIEXA 8.8% 0.1%
12833 'RRPPLLT 405058 4090
0.0% 02% 00% 03% 0.6% KRN 12.3%
15 364 1 458 923 REENXE] 18840
0.0% 0.2% 0.0% 04% 01% 02% [CEREA
59 2965 731 7391 980 2530 (LLLIEL
X 0.1% 13.2%
269673 KN 41141
1.5% KENEY 02% 01% 0.0% 0.41% 0.2%
16500 (RRPLY% 1893 1355 1 712 2576
0.2% 3.6% BINEN 2.6% 1.8%  0.8%
530 8548 PIRZEL] 6316 4262 1967
01% 0.2% 1.6% [CLRA 7.2% 1.3% 20%
1220 3955 30481 ([IRER(s 134798 25327 37202
0.0% 00% 01% 53% REEVE 7.5% 0.7%
966 3 2585 243038 SLTERLE 346153 29910
3.6% 00% 02% 17% 05% NEEyM 14.1%
5529 24 305 2682 702 RPPLlY 21627
09% 00% 00% 03% 00% 0.3% RLRE)
14788 651 519 5367 718 4578 (LIyftw
63.6% IFA3A 6.5% 27.3%
198166 [CRLL] 20250 85197
0.4% RLXVA 01% 0.0% 00% 0.0% 1.2%
4513 (RRELFE 611 258 5 272 13103
3.5% BrAYA 3.2% 0.0% 1.3%
8354 PFIEPL] 7554 5 3211
0.0% 0.2% 02% [EIGLN 89% 25% 3.7%
934 2883 2974 (LLIZVE 166672 47474 68529
7.4% KZEYN 9.0% 0.7%
340859 <LRRPLY: 413514 32982
0.0% 0.0% 04% 06% [LERN 30.4%
5 4 590 983 E[ILIZ) 46637
0.0% 04% 0.0% 0.2% 00% 0.0% [EENEA
126 976 15 2847 117 523 (LyEIPE
W W @ P oSt
et (Q\l é\a“ '\e‘ \N\ \@ &
of v o
o & W e o ‘5‘\0@
Predicted

80

60

-40

-20

80

60

-40

-20

80

60

-40

-20

Figure Al12: Confusion matrices for CSC results on the Helheim test image using
100x100 pixel tiles and a patch-based approach (patch size: 15).
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Figure A13: Confusion matrices for CSC results on the Scoresby test image using 50x50
pixel tiles and a pixel-based approach (patch size: 1).
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Figure Al4: Confusion matrices for CSC results on the Scoresby test image using 50x50
pixel tiles and a patch-based approach (patch size: 3).
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Figure A15: Confusion matrices for CSC results on the Scoresby test image using 50x50
pixel tiles and a patch-based approach (patch size: 7).
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Phase 2: CNN + cCNN

IRV 01%  0.0%  3.5% 8.1%
EVETSY) 268 43 13775 31360
50.1% | 49.4% AL YL) 0.0%  0.2% 80
543370 | 536289 17 IE L] 8 2159
0.9% RV 11.5% 0.1% 0.1% 1.1%
1149 REDLIEDE 14774 128 108 1404 60
00% 1.5% 10.9% [OREH 11% 04% 1.6%
737 38592 282886 MALLEYL 27486 2326 41813
01% 05% 03% [XLH 06% 00% -40
1236 9574 6445 POIIEIL) 12098 232
0.6% 65.2% [ELPL)
5 571 300 -20
04% 00% 00% 00% 00% 03% KEX)
4249 128 919 1593 B2 9467 EYEREE
-0
XYM 1.6% 0.0% 0.0% 0.3% 0.0% 8.5%
BV 6137 20 1 1205 21 33108
S Al 0.0%  04%  0.0%  0.0%  0.0% 80
544659 | 535545 [ZELINRT I 17 493
00% 88% EIRGA 62% 02% 11% 0.8%
32 11254 QIEOE] 7974 225 1427 1069 60
01% 02% 51% [EXEH 45% 24% 7.8%
2092 6235 131848 ANL(VCY 115647 60989 203241
00% 02% 02% 041% RoPEl 02% 0.41% -40
21 3600 3814 2872 WLKIPL 5060 1528
144% 05% 05% 02% 0.1% RGN 10.3%
122 4 4 2 N s B -20
3.4% 0.3% 0.1% 0.1% 0.1% 0.1% RELEES
127647 9949 2135 3891 3306 4432 x{pLERE)
RUA 0.3% 0.0% 01% 8.5%
354833 R 33128
UL 04%  04%  00%  00%  0.2% 80
R 721 1456 10 180 2359
5.0% BIRGA 10.4% 01% 19% 0.7%
6408 JULLIEEY 13285 151 2470 914 60
0.0% 3.4% 17.6% NG 09% 09% 1.6%
73 88459 455600 (LIRELY: 22748 22237 41638
00% 0.0% 01% 01% IR 13% 0.0% -40
2 A1 1388 2411 (TIOLLL 26610 51
06.2% XL
g1o [ED) -20
00% 00% 00% 00% 00% 04% RNES
400 86 17 87 18 16520 kpflrLl
-0
R R S NSNS o5, oS
(s)
NP R - CRSP L
OF o7 W et o oo
Predicted

Figure A16: Confusion matrices for CSC results on the Scoresby test image using 50x50
pixel tiles and a patch-based approach (patch size: 15).
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Phase 2: CNN + MLP
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Figure A17: Confusion matrices for CSC results on the Scoresby test image using 75x75
pixel tiles and a pixel-based approach (patch size: 1).
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Figure A18: Confusion matrices for CSC results on the Scoresby test image using 75x75
pixel tiles and a patch-based approach (patch size: 3).
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Figure A19: Confusion matrices for CSC results on the Scoresby test image using 75x75
pixel tiles and a patch-based approach (patch size: 7).
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Figure A20: Confusion matrices for CSC results on the Scoresby test image using 75x75
pixel tiles and a patch-based approach (patch size: 15).
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Figure A21: Confusion matrices for CSC results on the Scoresby test image
100x100 pixel tiles and a pixel-based approach (patch size: 1).
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Figure A22: Confusion matrices for CSC results on the Scoresby test image

100x100 pixel tiles and a patch-based approach (patch size: 3).
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Figure A23: Confusion matrices for CSC results on the Scoresby test image using
100x100 pixel tiles and a patch-based approach (patch size: 7).
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Figure A24: Confusion matrices for CSC results on the Scoresby test image using
100x100 pixel tiles and a patch-based approach (patch size: 15).
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