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Abstract

Many Markov chains with a single absorbing state have a unique limiting conditional

distribution (LCD) to which they converge, conditioned on non-absorption, regard-

less of the initial distribution. If this limiting conditional distribution is used as the

initial distribution over the non-absorbing states, then the probability distribution

of the process at time n, conditioned on non-absorption, is equal for all values of

n > 0. Such an initial distribution is known as the quasi-stationary distribution

(QSD). Thus the LCD and QSD are equal. These distributions can be found in

both the discrete-time and continuous-time case.

In this thesis we consider finite Markov chains which have one absorbing state,

and for which all other states form a set which is a single communicating class. In

addition, every state is aperiodic. These conditions ensure the existence of a unique

LCD. We first consider continuous Markov chains in the context of survival analysis.

We consider the hazard rate, a function which measures the risk of instantaneous

failure of a system at time t conditioned on the system not having failed before t.

It is well-known that the QSD leads to a constant hazard rate, and that the hazard

rate generated by any other initial distribution tends to that constant rate. Claims

have been made by Aalen [1], and Aalen and Gjessing [2] that it may be possible

to predict the shape of hazard rates generated by phase type distributions (first

passage time distributions generated by atomic initial distributions) by comparing

these initial distributions with the QSD. In Chapter 2 we consider these claims, and

demonstrate through the use of several examples that the behaviour considered by
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those conjectures is more complex then previously believed.

In Chapters 3 and 4 we consider discrete Markov chains in the context of impre-

cise probability. In many situations it may be unrealistic to assume that the transi-

tion matrix of a Markov chain can be determined exactly. It may be more plausible

to determine upper and lower bounds upon each element, or even determine closed

sets of probability distributions to which the rows of the matrix may belong. Such

methods have been discussed by Kozine and Utkin [42] and Škulj [62], [63], and in

each of these papers results were given regarding the long-term behaviour of such

processes. None of these papers considered Markov chains with an absorbing state.

In Chapter 3 we demonstrate that, under the assumption that the transition matrix

cannot change from time step to time step, there exists an imprecise generalisation

to both the LCD and the QSD, and that these two generalisations are equal. In

Chapter 4, we prove that this result holds even when we no longer assume that the

transition matrix cannot change from time step to time step. In each chapter, ex-

amples are presented demonstrating the convergence of such processes, and Chapter

4 includes a comparison between the two methods.



Declaration

The work in this thesis is based on research carried out at the Statistics and Prob-

ability Research Group, Department of Mathematical Sciences, Durham University,

England. No part of this thesis has been submitted elsewhere for any other degree

or qualification and is all my own work unless referenced to the contrary in the text.

Copyright c© 2009 by Richard J Crossman.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v



Acknowledgements

So many people to acknowledge, so little space. Thanks to Frank for supervising

me, and to both Frank and Iain for their mathematical wisdom and help in general.

My further gratitude to Erik and Phil, with whom I had several detailed discussions

and exchanges of examples which informed Chapter 2. Thanks also to Matthias

and Dave, for interesting discussions and the beer that accompanied them. Damjan

gets thanks for that as well, but in addition has my endless gratitude for his contri-

butions to Chapter 4, written partly during his two months in Durham and partly

during my three-week stay in Slovenia (thanks also to the University of Ljubljana

for letting me haunt their halls for that period), and for a fascinating and useful

e-mail correspondence.

Further thanks to Anna, Kate, Chris and Tara for keeping me sane; my parents

for so generously ensuring I couldn’t bankrupt myself (and for proofreading duties);

Becky, Becka, Jonathan and Joey for keeping me supplied with fuel (of one kind or

another); Paul, James and Jamie for distracting me with bright lights and shifting

colours; and Nathan, Rachel and Ben for picking up the torch in various different

ways. There are a lot of other people who contributed to the process of keeping me

on the rails, so suffice it to say, if you’ve accompanied me to the New Inn, Queen’s

Head, Elm Tree, Woodsman, Tap, or that restauraunt in Prague where someone

threw a plate at Scott Ferson, then I appreciate the effort.

Above all else, though, I want to thank my first supervisor Pauline, who gave

up so much of her time for me, for discussions and corrections and general support.

None of us have as much time as we’d like, and Pauline had far less than most, and

far, far less than she deserved. I am proud of this thesis, and I very much hope that

she would be too.

vi



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Imprecise Probability . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Hazard Rates for Continuous Time Birth-Death Processes 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Absorption Times and Hazard Rates . . . . . . . . . . . . . . . . . . 18

2.3.1 Absorption Times . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 The Hazard Rate . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Stochastic Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Phase Type Distributions . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Starting State 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Starting State s . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.3 Starting States Between 0 and s . . . . . . . . . . . . . . . . . 37

vii



Contents viii

2.7 Alternative Approaches and Concluding Remarks . . . . . . . . . . . 39

2.7.1 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 40

2.7.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 44

3 Time-Homogeneous Markov Chains with Imprecision 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Time Homogeneous Markov Chains with Imprecision . . . . . . . . . 46

3.3 Long-Term Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Calculations and Examples . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Time-Inhomogeneous Markov Chains with Imprecision 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Markov Chains with Interval Probabilities . . . . . . . . . . . . . . . 75

4.3 Distributions at Step n . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 M∞ and the Absorbing State . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conditioning Upon Non-Absorption . . . . . . . . . . . . . . . . . . . 83

4.6 Convergence to Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.1 Distances Between Sets . . . . . . . . . . . . . . . . . . . . . . 89

4.6.2 Fixed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 113



Chapter 1

Introduction

1.1 Background and Motivation

Markov chains provide a flexible method with which to model many real-world sit-

uations. A great deal of work has been done on describing the long-term behaviour

of Markov chains under various conditions. In general, a Markov process will tend

toward a pattern of behaviour which does not depend on the initial distribution of

the process. This long-term behaviour is referred to as the limiting distribution.

The irreducibility and aperiodicity of a finite chain are sufficient conditions for this

to occur. Sometimes it is alternatively called the stationary distribution, but in this

thesis that term is reserved for using the limiting distribution as the initial distri-

bution for the process. Taking the stationary distribution as the initial distribution

ensures that the distribution of the process at time step n is identical for all values

of n > 0.

The specific case considered in this thesis is the situation in which a Markov

chain contains an absorbing state, which is a state that, once reached, can never

be left. Markov chains of this type have for example been used to model animal

populations, such as those of reindeer imported onto the island of St George in 1911

(Scheffer [55]). Other alternative applications include catalytic reactions (Parsons

and Pollett [52]) and marriage lifetimes (see Aalen [2]).

It is well known that in general eventual absorption is inevitable in such cases.

It is also known, however, that in certain situations the expected time to absorption

1
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is so long that the process can settle into a pattern of behaviour before absorption

occurs. By conditioning upon non-absorption then, a distribution can be found

that describes the pattern of behaviour before absorption occurs. Such a distribu-

tion is called the limiting conditional distribution (LCD). Sufficient conditions for

the existence of the LCD for a finite chain are that the non-absorbing states form

a single communicating set, and each state is aperiodic. It is also sometimes re-

ferred to as the quasi-stationary distribution (QSD), but, in a similar manner to

the stationary distribution, we reserve the term quasi-stationary distribution for

the initial distribution over the non-absorbing states which is equal to the limiting

conditional distribution. Taking the quasi-stationary distribution as the initial dis-

tribution ensures that the distribution of the process at time step n, conditioned on

non-absorption, is identical for all values of n.

These ideas and terms are applicable to both discrete-time and continuous-time

Markov chains. In this thesis both discrete and continuous Markov chains will be

considered, although the context in which discrete chains are considered is very

different to the one in which continuous chains are considered. In both cases, we

assume a finite number of states, and that the non-absorbing states form a single

communicating class, each state of which is aperiodic. Doing so guarantees the

existence of a unique limiting conditional distribution, and hence a unique quasi-

stationary distribution.

In the continuous case, we consider Markov chains in combination with the sur-

vival function, which describes the probability of absorption not having occurred by

a specific time, and the hazard rate, which is calculated from the survival function

and describes the rate of failure at any point, given that by that point failure has

not occurred. Both these concepts can be found in e.g. Aalen et al. [3]; examples of

the application of hazard rates are given by Olave and Salvador [48] (an example in

finance), and Rogers et al. [53] (an example from the world of medicine). It is well

known that by starting with the quasi-stationary distribution the hazard rate will be

constant, and moreover that by starting with any other initial distribution over the

non-absorbing states, the hazard rate will eventually converge to that same constant

value. What is less well understood is the behaviour of the hazard rate before con-
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vergence. Certain situations are well described, others are only partially described

or almost entirely unknown. It has been suggested by Aalen and Gjessing [2] that

there are circumstances under which the shape of a hazard rate can be predicted by

comparing the corresponding initial distribution with the quasi-stationary distribu-

tion. Specifically, in situations in which the distance between a transient state and

the absorbing state can be sensibly determined, and in which the only possible initial

distributions are those which guarantee a given starting state, it may be possible to

predict the shape of a hazard rate by comparing the corresponding initial distribu-

tion with the quasi-stationary distribution. In Chapter 2, the specific conjectures

put forward in [2] will be considered at length, and attempts to mathematically

rigorise them will be made. Chapter 2 will demonstrate that the behaviour these

conjectures consider is in fact more complicated than initially believed.

Chapters 3 and 4 deal with the modelling of discrete-time Markov chains in

the context of imprecise probability (Walley [66]). There are situations in which

a discrete-time Markov chain is a reasonable model for a situation, but for which

exact transition probabilities may be difficult or even impossible to find. In such

situations imprecise probability may be very useful. Rather than each probability

having an exact value, each one is assumed to lie within a closed set. Further, rather

than using a single probability vector as the initial distribution, a set of probability

vectors are used as possible initial distributions.

The challenge then is to discover what can still be said regarding the long-term

behaviour of the process. The time-homogeneous case, in which each transition

probability is assumed to be independent of time, has been considered by Kozine and

Utkin [42]. The time-inhomogeneous case, in which transition probabilities are not

only unknown but may change from step to step, has been considered by Škulj [62],

[63]. In both these cases, however, absorption is still in general a certainty. In this

thesis, then, it is shown how one can consider the long-term behaviour of imprecise

Markov chains with an absorbing state conditioned upon non-absorption. If [42], [62]

and [63] thus generalise the concept of the limiting and stationary distributions,

this thesis generalises the limiting conditional and quasi-stationary distributions.

Specifically, we prove that such a generalisation does indeed exist, and is independent
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of the choice of initial distributions.

1.2 Literature and Notation

In this section a brief review is presented on previous work regarding the concepts

of Markov chains (both discrete and continuous) with an absorbing state, and of

imprecise probability. We also introduce notation and terminology which will be

used throughout the thesis.

1.2.1 Markov Chains

In this subsection we introduce the notation that will be used for the state space

of a Markov chain, and for the transition probabilities or intensities for the discrete

and continuous cases, respectively.

Discrete Time Markov Chains

The notation we use for discrete-time Markov chains is as follows. Let X =

{X(n), n = 0, 1, . . .} be a discrete-time Markov chain on the state space S =

{−1} ∪ C with C = {0, 1, . . . , s}, where −1 is an absorbing state, and C is a set

of transient states. In general, we assume that C is a single communicating class,

and each state in C is aperiodic. We also assume the absorbing state is reachable

from C. These conditions are sufficient to ensure that a unique LCD exists for the

chain. We denote by p
(n)
ij the probability that the chain is in state j at time n + 1,

given that it is state i at time n, i.e. p
(n)
ij = P (X(n + 1) = j|X(n) = i). We can

thus define the transition matrix Pn as follows:

Pn =





























1 0 0 0 . . . 0 0

p
(n)
0,−1 p

(n)
00 p

(n)
01 p

(n)
02 . . . p

(n)
0s−1 p

(n)
0s

p
(n)
1,−1 p

(n)
10 p

(n)
11 p

(n)
12 . . . p

(n)
1s−1 p

(n)
1s

...
...

...
... · · · ...

...

p
(n)
s−1,−1 p

(n)
s−1,0 p

(n)
s−1,1 p

(n)
s−1,2 . . . p

(n)
s−1,s−1 p

(n)
s−1,s

p
(n)
s,−1 p

(n)
s0 p

(n)
s1 p

(n)
s2 . . . p

(n)
ss−1 p

(n)
ss





























. (1.1)
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We also denote the initial distribution by π(0).

A discrete Markov chain is either time-homogeneous or time-inhomogeneous. In

a time-homogeneous chain, the one-step transition probabilities are assumed to be

independent of time, thus P (X(n + 1) = j |X(n) = i ) = p
(n)
ij =: pij , i, j ∈ S for all

n ≥ 0. The one-step transition probability matrix P = (pij)i,j∈S of the chain can

therefore be written as

P =





























1 0 0 0 . . . 0 0

p0,−1 p00 p01 p02 . . . p0s−1 p0s

p1,−1 p10 p11 p12 . . . p1s−1 p1s

...
...

...
... · · · ...

...

ps−1,−1 ps−1,0 ps−1,1 ps−1,2 . . . ps−1,s−1 ps−1,s

ps,−1 ps0 ps1 ps2 . . . pss−1 pss





























. (1.2)

Let P ∗ be defined as follows

P ∗ =























p00 p01 p02 . . . p0s−1 p0s

p10 p11 p12 . . . p1s−1 p1s

...
...

... · · · ...
...

ps−1,0 ps−1,1 ps−1,2 . . . ps−1,s−1 ps−1,s

ps0 ps1 ps2 . . . pss−1 pss























. (1.3)

A matrix is called strictly substochastic if each row sums to a value in the interval

[0, 1], and at least one row sums to a value in the interval [0, 1). Since at least one

value pi,−1 must be strictly positive for i ≥ 0, in order that the absorbing state

be reachable from C, it follows that P ∗ is a strictly substochastic matrix. For a

time-homogeneous Markov chain with one-step transition probability matrix P , it

is known (see e.g. [41]) that

pij(n) := P (X(n) = j |X(0) = i ) = [P n]ij ∀i, j ∈ S. (1.4)

Let pj(n) := P (X(n) = j) be the probability that the chain is in state j at time

n, then the probability distribution of the Markov chain at time n is given by

p(n) = (p−1(n), p0(n), . . . , ps(n)).

For the time-inhomogeneous case, the transition matrix describing the chain is

allowed to change from one time step to the next. Very little work on the long-term
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behaviour of time-inhomogenous chains has been done, and such work frequently

assumes an underlying time-homogeneous process which is perturbed by so called

“mutations” which require either strong conditions upon them or tend to zero over

time (see for example Bergin and Lipman [9], or Pak [50]); this assumption of

mutation from an underlying transition matrix which is independent of time may

be unrealistic in practice.

The origins of the theory of quasi-stationarity for discrete chains can be in found

in the work of Yaglom [71]1. In that paper the existence of what is now known as the

limiting conditional distribution was proved. Perhaps the most important work on

quasi-stationary distributions in the discrete-time case is Darroch and Seneta [21],

a paper which deals with finite state spaces. In this paper it is demonstrated under

which conditions the limiting conditional distribution exists. Moreover, it is proved

that such a distribution, if it exists, is unique, and that it equals the quasi-stationary

distribution. Various other results have followed since, involving multiple absorption

states or an infinite state space. These will not be discussed here, but interested

readers may like to consider Seneta and Vere-Jones [60], or Kesten [40].

We now define a specific kind of discrete Markov chain, known as the birth-death

process. In a birth-death process, a transition from state i to state j over one time

step is impossible unless |i − j| ≤ 1. Continuing to assume that each chain has

−1 as an absorbing state, the transition matrix at time step n therefore takes the

following form:

Pn =





























1 0 0 0 . . . 0 0

p
(n)
0,−1 p

(n)
00 p

(n)
01 0 . . . 0 0

0 p
(n)
10 p

(n)
11 p

(n)
12 . . . 0 0

...
...

...
... · · · ...

...

0 0 0 0 . . . p
(n)
s−1,s−1 p(s−1,s)

0 0 0 0 . . . p
(n)
ss−1 p

(n)
ss





























. (1.5)

1This paper is in Russian, and thus has not been read directly by the author; the reference

above was originally given by Schrijner [56].
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Continuous Time Markov Chains

Darroch and Seneta [22] adapted many of the results from [21] to the continuous case.

Specifically, the existence of a unique LCD that is equal to the QSD was once again

proved. It is well known that the quasi-stationary distribution is intrinsically linked

with the concept of a hazard rate, which is a measure of the risk of spontaneous

absorption at time t, assuming absorption has not occurred by time t. Specifically,

the QSD leads to a constant hazard rate, and any other initial distribution will

generate a hazard rate that tends towards that constant value (see Aalen [3]). This

will be explored in greater detail in Chapter 2.

The concept of phase type distributions (first passage time distributions gener-

ated by atomic initial distributions, that is those for which only one starting state

is permitted) is described by Neuts [47] as having been initially based on ideas pro-

posed by A.K. Erlang (no citation is given in the former paper). The theory was

then expanded by Cox [16]. A phase type distribution is the distribution of the first-

passage time between a given non-absorbing state and the absorbing state. In [1]

these phase type distributions were considered in the context of survival analysis, in

order to better understand the behaviour of the hazard rate. As an extension of this,

the conjecture was put forward in [2] that by comparing an initial distribution to the

QSD, predictions might be made regarding the hazard rate that initial distribution

would generate. This comparison was vaguely described as some sort of compara-

tive measure of “distance” from the absorbing state; initial distributions “closer” to

the absorbing state than was the QSD would have a decreasing hazard rate, those

“further” from the absorbing state than was the QSD would have increasing hazard

rates, and those between the two extremes would display unimodal behaviour.

The notation used throughout our consideration of continuous-time Markov

chains will now be given. A continuous-time Markov process X = {X(t), t ≥ 0}
upon the state space S, with |S| < ∞, will have the following properties. Denote

the transition probability functions by

pij(t) = P (X(t) = j|X(0) = i) ∀i, j ∈ S. (1.6)

The matrix of these functions will be denoted P (t). The constant qij is a transition
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intensity if

qij =







limh→0+
pij(h)

h
≥ 0 i 6= j

limh→0+
pii(h)−1

h
≤ 0 i = j

. (1.7)

We write the matrix of these constants as Q, and call Q the generator corresponding

to the Markov process. The generator defines the process as follows:

P (t) = exp(Qt). (1.8)

This is the solution to the Kolmogorov equations (see Aalen et al. [3], and Darroch

and Seneta [22]).

A generator Q = (qij) corresponding to a Markov chain with state space S is

called conservative if
∑

j∈S qij = 0 ∀i ∈ S. Note that (1.7) gives

∑

j∈S

qij = lim
h→0+

∑

j∈S pij(h) − 1

h
= 0 (1.9)

making the generator Q conservative. A state i in a Markov chain is absorbing if

pii(t) = 1 (1.10)

holds for all t. Also, a state i in a Markov chain X = {X(t), t ≥ 0} is transient (see

e.g. [49]) if, assuming X(0) = i and there exists s = inft{X(t) 6= i},

P (Si < ∞) < 1 (1.11)

where Si = inft{X(t+ s) = i} is the time between the process leaving i and the first

return to i. In other words, i is a transient state if there exists a positive probability

that once the process has left i it will never return there.

When considering a finite-state Markov chain the transience property is necessary

in order to guarantee eventual absorption to occur with probability 1. Were a state

i ∈ C not transient, then we would expect to return to that state each time we left

it, and therefore absorption could be postponed indefinitely.

The continuous Markov chain X = {X(t), t ≥ 0} is time homogeneous if

P (X(t) = i|X(0) = j) = P (X(t + s) = i|X(s) = j) (1.12)

holds for all states i and j and for all t ≥ 0, s ≥ 0. All continuous chains in this

thesis will be assumed to be time-homogeneous.
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Just as in the discrete case, there is a specific form of continuous Markov chain

known as the birth-death processes. A continuous-time Markov process on the state

space S = {−1, . . . , s} is called a birth-death process if qij = 0 for all i, j ∈ S for

which |i − j| > 1. Thus the process, when in state i, can move only to states i − 1

and i + 1. We refer to the value qi,i+1 as the birth rate from state i, which we label

λi, and similarly refer to qi,i−1 as the death rate from state i, which will be denoted

µi.

Each of the birth-death processes considered will be of the following type. The

continuous Markov chain X = {X(t), t ≥ 0} will have a state space S = {−1} ∪
{0, . . . , s} as previously described. This results in a generator Q of the form shown

below

Q =





























0 0 0 0 . . . 0 0

µ0 −(λ0 + µ0) λ0 0 . . . 0 0

0 µ1 −(λ1 + µ1) λ1 . . . 0 0

0 0 µ2 −(λ2 + µ2) . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . µs −µs





























. (1.13)

We also define the intensity matrix Q∗ as follows

Q∗ =























−(λ0 + µ0) λ0 0 . . . 0 0

µ1 −(λ1 + µ1) λ1 . . . 0 0

0 µ2 −(λ2 + µ2) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . µs −µs























. (1.14)

The eigenvalues of this matrix will be of great importance in Chapter 2. More on

continuous birth-death processes and their conditional limiting distributions can be

found in work by Seneta [59], and van Doorn [24].

1.2.2 Imprecise Probability

Research on Markov chains where the one-step transition probability matrix is not

completely known has been carried out from several perspectives. Schweitzer [58]
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expressed imprecision in the form of perturbations in otherwise known transition

probability matrices. Avrachenkov and Sanchez [6] introduced imprecision by means

of fuzzy Markov chains.

A comprehensive approach to imprecision was written by Walley [66]. The ap-

proach to imprecise probability taken in this thesis is based on Weichselberger [68],

which in turn is based upon [66]. Let S be a non-empty set and A the
∑

-

algebra of all subsets of S. The term classical probability is used to describe any

set function p : A → R which satisfies Kolmogorov’s axioms. An interval prob-

ability is now defined as follows. Let L and U be set functions on A such that

L ≤ U , L(∅) = U(∅) = 0, and L(S) = U(S) = 1. The interval-valued function

P (·) = [L(·), U(·)] is called an interval probability. Each of these interval probabil-

ities P generates a structure, which is the set M of classical probability measures

on the measurable space (S,A) that lie between L and U . For an interval probabil-

ity with a non-empty structure, the quadruple (S,A, L(·), U(·)) is described as an

R-field. If the following properties holds for an R-field

L(A) = inf
p∈M

p(A), and U(A) = sup
p∈M

p(A), ∀A ∈ A (1.15)

meaning that the lower bound L and upper bound U are strict, then it is described

as an F-field. This is closely related to Walley’s concept of coherence, and in fact

the two coincide upon finite Markov chains. In brief, coherence requires that our

bounds be as tight as possible, which is clearly the case with F-fields.

Kozine and Utkin [42] used the theory of interval-valued coherent previsions

in order to generalise discrete-time, time-homogeneous irreducible Markov chains

to interval-valued probabilities. A general procedure of interval-valued probability

elicitation from heterogeneous and partial information is also analysed. Skulj [62,

63] obtained the relation between the sets of invariant distributions and limiting

distributions for discrete-time, time-inhomogeneous irreducible Markov chains on

a finite state space with interval probabilities based on theories of Weichselberger

[68,69]. Recently de Cooman et al. [15] studied the time evolution of this same class

of chains using upper and lower previsions (expectations).

Two notes are made here on terminology. First, once an attempt is made to

extend our knowledge into the rich area of imprecision, care needs to be taken
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regarding what the term time-homogeneity means. Without imprecision, a process is

called time-homogeneous when the transition probabilities are constant, while in the

imprecise situation the unknown transition probabilities are not necessarily constant.

However, the bounds on the transition probabilities can be either time-dependent

or constant and this latter case can also be considered as time-homogeneous within

an imprecise framework. In this thesis, a Markov chain is called imprecise and time-

homogeneous if the transition probabilities are assumed constant and known to exist

within constant intervals, whereas an imprecise and time-inhomogeneous chain has

transistion probabilities that might change from time step to time step, but always

lie within constant intervals. Second, an attempt is made here to pre-empt any

confusion as to the difference between probability intervals and interval probablility.

The former implies a probability which has a single value, with that value only

known to reside within a given interval. The latter case is the more general theory

of mathematically expressing uncertainty across a range of situations.

1.3 Thesis Outline

In Chapter 2 continuous-time Markov chains are considered, in an attempt to inves-

tigate the claim made by Aalen and Gjessing [2] that the shape of the hazard rate

generated by the initial distribution π(0) can be predicted by comparing π(0) with

the QSD of the chain. It is demonstrated that the relationship postulated in [2] can-

not occur without significant assumptions being made upon both the nature of the

Markov chain and the set of possible initial distributions. Previously known results

regarding the behaviour of hazard rates for birth-death processes are reviewed and

expanded upon, and possible avenues for further study are discussed.

In Chapter 3 the long-term behaviour of discrete-time-homogeneous Markov

chains with imprecision is considered. Thus it is assumed that there exists a single

transition matrix, which describes the behaviour of the chain at every time step,

but the elements of that matrix are known only to exist within a given closed set.

The possible initial distributions over the non-absorbing states are also represented

by a closed set. Thus all possible distributions over the state space can be found



1.3. Thesis Outline 12

by multiplying the set of initial distributions by the union of the set of transition

matrices to the nth power. The results obtained in [42] are applied to the case of

such chains with one absorbing state, as are those of [62] following the necessary

adaptation, and it is proved that absorption remains certain. These results are then

adapted to allow for conditioning on non-absorption, and it is shown that following

these adaptations an invariant set of conditional distributions can be found that de-

scribes the long-term behaviour, conditioned on non-absorption, of the union of all

chains described by the closed set of transition matrices. Moreover, it is proved that

using this set as the set of possible initial distributions over the non-absorbing states

ensures that the set of all possible distributions, conditioned on non-absorption, will

be equal for all time steps, thus making this set the generalistion of the QSD in the

precise time-homogeneous case. Approximations to this invariant set of conditional

distributions are given in an example. The paper [17] contains a condensed form of

the work done in this chapter.

The layout of Chapter 4 follows roughly that of Chapter 3. In Chapter 4 the

assumption of time-homogeneity is removed. Thus not only is the transition matrix

for each time step known only to exist within a given closed set, there is also no

reason to believe the same element of that set will describe the Markov chain at the

next time step. The results of [62] and [63] are applied, once again proving that

absorption remains certain. We then adapt the method given in these papers to

include conditioning upon non-absorption. It is then proved that there exists an

invariant set of conditional distributions that describes the long-term behaviour of

these chains, conditioned on non-absorption. Moreover, it is proved that using this

set as the set of possible initial distributions over the non-absorbing states ensures

that the set of all possible distributions, conditioned on non-absorption, will be

independent of time. An example for the time-inhomogeneous case is then given.

Finally, two further examples are given comparing the time-inhomogeneous case

with the time-homogeneous case in Chapter 3.

Papers [18] and [19] combine to form a condensed version of this Chapter 4. The

former concentrates on the theory which is presented in Chapter 4, whilst the latter

compares the model presented in Chapter 4 with the model presented in Chapter 3.
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Damjan Škulj is a named author on both these two papers. This reflects the fact

that Section 4.2 and 4.6 were co-written with Škulj, and much of Chapter 4 is based

upon various discussions and correspondence with him.



Chapter 2

Hazard Rates for Continuous

Time Birth-Death Processes

2.1 Introduction

The research contained in this chapter investigates claims that have been made by

Aalen [2] and Aalen and Gjessing [1]. The topic of those two papers is the study of

hazard rates. The hazard rate is a function measuring the risk of absorption at time

t for a Markov chain with one absorbing state, given that by t absorption has yet

to occur. In this chapter, as in the papers cited above, time t is considered to be a

continuous variable. The hazard rate exists in the discrete case also, but since Aalen

considers only the continuous case, we shall do the same. We also consider only finite

chains, so as to ensure each such chain has a unique quasi-stationary distribution

(QSD). It is well-known (see e.g. [1]) that setting the initial distribution of the

Markov process as equal to the QSD of that process will lead to a constant hazard

rate. The thrust of [2] is the study of how such hazard rates change according to the

initial distribution of the Markov process. For example, were one to look at graphs of

the hazard rate h(t), one might ask under what circumstances specific shapes occur.

Monotonically increasing or decreasing, unimodal, and “bathtub” (decreasing then

increasing) shapes are all possible (see [2]), along with more complex shapes.

In [1] and [2] it is suggested that, for a given Markov process with an absorbing

state, there exists under certain conditions a method for comparing the chosen initial

14
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distribution and the (family of) QSD(s) of the process that will provide information

on the hazard rate’s shape. To be specific, the following two conjectures were posed

by Aalen and Gjessing [2]:

A1. The shape of the hazard rate is created by a balance between the attraction

of the absorbing state, and general diffusion within the transient states;

A2. The hazard rate’s shape is determined by how “close” the initial distribution is

to the absorbing state compared to how close the quasi-stationary distribution

is to that same state. Obviously this second statement only makes intuitive

sense when distance from the absorbing state has some meaning (see below).

For the sake of brevity, these conjectures will be referred to from now on as “Aalen’s

conjectures”, partially because he is the first named author of [2], and partially

because similar comments were made in [1], for which Aalen is the only credited

author. Conjectures A1 and A2 clearly lack specificity. Determining the relative

“distance” of two initial distributions from the starting state requires two things.

Firstly, since A2 only makes intuitive sense when distance from the absorbing state

has some meaning, a method is needed by which two states can be compared in

terms of their distance from the absorbing state. Second, a method is required by

which two initial distributions over the state space can be compared.

In [1] and [2] this first problem is addressed by considering only chains for which

the distance between states is intuitively obvious. One such chain is the birth-death

process (see Section 1.2.1), for which transitions from state i to state j are impossible

unless |i − j| < 1. This condition means that the minimum number of transitions

from state i ∈ {0, 1, . . . , s} to the absorbing state, denoted −1, is i + 1. If this

minimum number of transitions is considered as the distance to the absorbing state,

comparing distances becomes simple.

The second problem is addressed only briefly in [1] and [2]. There are many

different methods available by which two distributions can be compared (some of

which will be discussed in Section 2.5), and determining which method is appropriate

(if indeed any of them are) is a non-trivial task. Aalen and Gjessing assume that

each initial distribution is atomic, meaning each distribution over the set of transient
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states C takes the form ei = (δ0i, δ1i, . . . , δsi), where δij is the Kronecker delta. This

initial distribution forces the process to start in state i, and leads to first-passage

times that are phase type distributed. Comparing the “distance” between such

distributions is not difficult, one can simply compare the distance between the two

starting states. However, the QSD will not be an atomic distribution if s > 0, which

makes comparing the QSD’s distance to the absorbing state with that of ei difficult.

In this chapter we too consider birth-death processes, in order to have a sim-

ple method for comparing the distance between states. In Section 2.2 the spectral

representation of the probability function for such processes will be discussed. Sec-

tion 2.3 will discuss the variable known as time to absorption, and will define the

hazard rate in detail. Section 2.4 presents examples of the behaviour of the hazard

rates of birth-death processes. Section 2.5 offers a method of comparing two ini-

tial distributions. Section 2.6 concerns itself with the nature of the hazard rate for

birth-death processes with first-passage distributions of phase type (see Cox [16]).

Finally, Section 2.7 contains conclusions, along with possible directions for future

work.

2.2 The Spectral Representation

The continuous birth-death process was defined in Section 1.2.1. Recall that we

assume a finite number of states S = {−1} ∪ {−0, . . . , s}, where −1 is an ab-

sorbing state and C := {0, 1, . . . , s} is an irreducible set of transient states. We

now introduce notation which follows that used by Kijima [41]. The eigenvalues

of the intensity matrix Q∗ (see (1.14)) are denoted by the real values (see [41])

−x0,−x1, . . . ,−xs, where xi > 0 for all i and x0 ≤ x1 ≤ x2 ≤ . . . ≤ xs. In Man-

delson [46] and Kijima [41] it is shown that for a regular C, where regular denotes

a set in which all states are transient and all states communicate, there is a unique

eigenvalue −x0 of Q∗, with maximal real part, which is real and less than zero.

Therefore we have that x0 < x1.

In this section, previously known results will be utilised to show that each element

i of a left (respectively right) eigenvector of Q∗ is equal to a polynomial Li(x)
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(respectively Ri(x)), which will be defined later, evaluated at the absolute value

of the corresponding eigenvalue. Before considering the polynomials themselves,

however, it will be advantageous to consider various matrix properties which will be

used in the rest of the chapter. This first definition can be found in e.g. Solomon et

al. [64].

Definition 2.2.1 The square matrix Q∗ = [qij ]ij is said to be weakly symmetric if

there exist strictly positive numbers {m0, . . . , ms} such that

miqij = mjqji. (2.1)

If this is the case, {m0, . . . , ms} is called a symmetric measure.

From [32] we have that the intensity matrix Q∗ of a birth-death process is weakly

symmetric with symmetric measure {π0, . . . , πs}, where

π0 = 1; πi =
λ0λ1 . . . λi−1

µ1µ2 . . . µi

, i = 1, . . . , s. (2.2)

Denote by R(x) = (R0(x), R1(x), . . . , Rs(x))′ the vector such that R(xi) is the right

eigenvector of Q∗ corresponding to eigenvalue −xi. Similarly denote by L(x) =

(L0(x), L1(x), . . . , Ls(x)) the polynomial vector such that L(xi) is the left eigenvec-

tor of Q∗ corresponding to eigenvalue −xi. Since if v is a eigenvector of Q∗ so too

is cv for c ∈ R, we can normalise both R(x) and L(x) so that R0(x) = L0(x) = 1.

Lemma 2.2.1 The polynomials {Rj(x)}s
j=0 satisfy the following equations:

1. −xR0(x) = −(λ0 + µ0)R0(x) + λ0R1(x)

2. −xRi(x) = µiRi−1(x) − (λi + µi)Ri(x) + λiRi+1(x), i = 1, . . . , s − 1

3. −xRs(x) = µsRs−1(x) − µsRs(x)

Similarly the polynomials {Lj(x)}s
j=0 satisfy the following equations:

1. −xL0(x) = −(λ0 + µ0)L0(x) + µ1L1(x)

2. −xLi(x) = λi−1Li−1(x) − (λi + µi)Li(x) + µi+1Li+1(x), i = 1, . . . , s − 1

3. −xLs(x) = λs−1Ls−1(x) − µsLs(x)
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Proof See [32]. 2

The relationship between the intensity matrix Q and the transition probabilities

pij(t) was given in (1.8). Combining that result with the vector R(x), transition

probabilities can be expressed in terms of polynomials. We have from Abate [4] that

pij(t) = πj

s
∑

k=0

e−xktRi(xk)Rj(xk)c
2
k, (2.3)

where

ck = (

s
∑

i=0

πiR
2
i (xk))

− 1
2 . (2.4)

These equations allow us to differentiate and integrate the transition probabilities.

This will prove useful in Section 2.3, in which we move between probability densities

and survival functions.

2.3 Absorption Times and Hazard Rates

As stated in Section 2.1, our primary focus of consideration is the behaviour of phase

type distributions, just as it was in [2]. In this section we consider the distribution

of the time to absorption from a given state. This will then lead to an expression

for the hazard rate for a birth-death process with atomic initial distributions.

2.3.1 Absorption Times

Let T denote the random variable of time to absorption for a given finite birth-

death process X with state space S = {−1} ∪C and for a given initial distribution.

The lifetime distribution function of T ≥ 0, denoted Gπ(0)(t) is the probability that

absorption has occurred by time t given initial distribution π(0). Thus the lifetime

distribution function is the cumulative distribution function of T . Let

gπ(0)(t) =
d

dt
Gπ(0)(t). (2.5)

For a finite birth-death process which is irreducible over C, it is known that absorp-

tion is certain (see e.g. Darroch and Seneta [22]), hence
∫ ∞

0

dGπ(0)(t) =

∫ ∞

0

gπ(0)(t)dt = 1. (2.6)
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Lemma 2.3.1 The lifetime distribution function Gei
(t) of a finite birth-death pro-

cess X with guaranteed starting state i can be written as

Gei
(t) = µ0

∫ t

0

[
s
∑

k=0

e−xkτRi(xk)c
2
k]dτ (2.7)

and is equal to

Gei
(t) = µ0

(

s
∑

k=0

1 − e−xkt

xk

Ri(xk)c
2
k

)

(2.8)

where ck is as defined in (2.4).

Proof Gei
(t) = P (T ≤ t|X(0) = i), so

Gei
(t) = 1 − P (X(t) 6= −1|X(0) = i) = 1 −

s
∑

k=0

pik(t). (2.9)

Differentiating the right-hand side and using Kolmogorov’s forward equations P ′(t) =

P (t)Q∗ (see e.g Kijima [41]) yields

gei
(t) = − d

dt

s
∑

j=0

pij(t) = −
s
∑

j=0

s
∑

k=0

pik(t)qkj. (2.10)

Then, recalling from (1.14) that the intensity matrix Q∗ of a continuous birth-death

process takes the form

Q∗ =























−(λ0 + µ0) λ0 0 . . . 0 0

µ1 −(λ1 + µ1) λ1 . . . 0 0

0 µ2 −(λ2 + µ2) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . µs −µs























(2.11)

we have that

s
∑

j=0

s
∑

k=0

pik(t)qkj = −(λ0 + µ0)pi0(t) + µ1pi1(t)

+
s−1
∑

j=1

(λj−1pij−1(t) − (λj + µj)pij(t) + µj+1pij+1(t))

+ λs−1pis−1(t) − µspis(t)

= −µ0pi0(t) (2.12)



2.3. Absorption Times and Hazard Rates 20

and hence, using (2.3) along with (2.10),

gei
(t) = − d

dt

∑

j∈C

pij(t) = µ0pi0(t) = µ0

s
∑

k=0

e−xktRi(xk)c
2
k (2.13)

where C is the set of transient states. Therefore, using (2.5), the probability that

absorption occurs before time t, given that π(0) = ei, can be written as

Gei
(t) = µ0

∫ t

0

pi0(τ)dτ

= µ0

∫ t

0

s
∑

k=0

e−xkτRi(xk)c
2
kdτ

= µ0

(

s
∑

k=0

1 − e−xkt

xk

Ri(xk)c
2
k

)

. (2.14)

2

Lemma 2.3.2
s
∑

k=0

1

xk

Ri(xk)c
2
k = µ−1

0 (2.15)

Proof Through the use of (2.13) and (2.6) with π(0) = ei we have that

1 = µ0

∫ ∞

0

s
∑

k=0

e−xktRi(xk)c
2
kdt

= µ0

s
∑

k=0

Ri(xk)c
2
k

∫ ∞

0

e−xktdt

= µ0

s
∑

k=0

Ri(xk)c
2
k

1

xk

(2.16)

where the interchange of summation and integration is justified by the fact that

Ri(xk) and C2
k are finite constants, and the area under each e−xkt for 0 ≤ t ≤ ∞ is

finite since all xk are positive. 2

Combining Lemmas 2.3.1 and 2.3.2 yields the following corollary.

Corollary 2.3.1 The lifetime distribution of a finite birth-death process with π(0) =

ei equals

Gei
(t) = 1 − µ0

s
∑

k=0

1

xk

e−xktRi(xk)c
2
k. (2.17)
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2.3.2 The Hazard Rate

The hazard rate is best thought of as a measure of the risk of instantaneous absorp-

tion undergone by a process at time t, conditional on the fact that by time t the

process has not yet been absorbed. Such a measure is of use in a variety of fields,

such as medicine and finance (see Section 1.1).

Definition 2.3.1 The hazard rate for a continuous Markov process X with initial

distribution π(0) is (see e.g Keilson [36])

hπ(0)(t) =
gπ(0)(t)

1 − Gπ(0)(t)
. (2.18)

For a finite time-homogeneous birth-death process X this becomes

hπ(0)(t) =
µ0

∑s
k=0 πk(0)pk0(t)

∑s

k=0

∑s

j=0 πk(0)pkj(t)
=

µ0

∑s
k=0 πk(0)pk0(t)

1 −∑s

k=0 πk(0)pk,−1(t)
. (2.19)

For atomic initial distributions, we have

hei
(t) =

µ0pi0(t)
∑s

j=0 pij(t)
. (2.20)

The latter two definitions may be obvious, or can be derived directly from (2.5)

and (2.10). As has been mentioned, the shape of a hazard rate is closely connected

with the concept of a QSD. The QSD was briefly described in Section 1.1, we now

provide the definition for the continuous case. This definition can be found in many

places, see for example van Doorn [24].

Definition 2.3.2 For a finite-state birth-death process X with state space S =

{−1} ∪ C where C is a set of transient states, an initial distribution π(0) over C is

referred to as the quasi-stationary distribution if

πj(t)

1 − π−1(t)
= qj , ∀j ∈ C (2.21)

where πj(t) = Pπ(0){X(t) = j} and qj is independent of time. The quasi-stationary

distribution is thus the vector q.

As t tends to infinity the hazard rate always tends to the value of the constant

hazard rate generated by using the QSD as the initial distribution. There are several
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ways to prove this fact, one such method is given by Aalen et al. [3]. In that book

it is proved that for a birth-death process X on the state space −{1} ∪C, where C

is a finite single communicating class with all states aperiodic, and for which state i

has birth rate λi and death rate µi, the hazard rate h(t) can be described as follows:

h(t) = µ0P (X(t) = 0|X(t) ≥ 0). (2.22)

Since we know convergence to the QSD is certain in the limit, we have

lim
t→∞

h(t) = µ0d0. (2.23)

Moreover,

hd(t) = µ0d0, ∀t > 0 (2.24)

where d is the quasi-stationary distribution.

In the next section, we begin to explore Aalen’s two conjectures, as described in

Section 2.1. The main question we consider is if it can be shown, in fact, that there

exists some method of comparing ei and the QSD for a given birth-death process

that will allow us to predict the hazard rate hei
(t)?

2.4 Examples

In this section two examples are presented, in order to demonstrate the difficulties

in attempting to first rigorise and then prove (or disprove) Aalen’s conjectures. The

first example is taken from [2], and expanded upon here. It was with this example

that Aalen and Gjessing demonstrated the behaviour that they believe can be gen-

eralised into Conjectures A1 and A2.

Example 2.4.1

Consider a continuous-time Markov chain on the state space S = {−1, . . . , 4} =

{−1} ∪ C, where −1 is the absorbing state and C = {0, . . . , 4} is a set of transient

states. Let λi = 1.5 for all 0 ≤ i < 4 and µi = 1 for all 0 ≤ i ≤ 4.

The absolute value of the dominant eigenvalue is 0.037 (hence x0 = 0.037), with

corresponding (normalised) left eigenvector (0.037, 0.090, 0.167, 0.276, 0.430), which
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is the quasi-stationary distribution. This tells us both that 0.037 is the constant

hazard rate under quasi-stationarity (see (2.23)). It is also easy to calculate that the

expected value of starting state for the quasi-stationary distribution is 2.972. We

need to be careful with the idea of an expected value of the starting state, since of

course our numbering of the states is essentially arbitrary. However, in the examples

considered in this thesis, the consistency of our labelling of states combined with

the meaningful concept of distance between states means that the expected value of

the starting state is a value that can be considered safely.

Three initial distributions are considered in [2], e0, e2, and e4; these are called

Cases 0, 2 and 4 respectively. Two further cases are given here, employing initial

distributions e1 and e3; these are called Cases 1 and 3 respectively. Adding these

cases allows for a more complete overview.

Figure 2.1 shows the hazard rates for all five cases. Note that in all but Case 0

the hazard rate is zero at t = 0, and that he0(0) = 1. This effect can be explained

by the fact that pj0(0) = 0 for all j 6= 0 and by the fact that absorption is only

possible from state 0. Also note that in each case the hazard rate converges towards

0.037, which follows from (2.23).
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Figure 2.1: Hazard rates corresponding to Cases 0 - 4 in Example 2.4.1.
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The suggested general trend given by Aalen’s conjectures is demonstrated here. Case

0 produces a decreasing hazard rate, Cases 1 and 2 produce unimodal hazard rates,

and Cases 3 and 4 produce increasing hazard rates. It is also interesting to note

that hei
(t) ≥ hei+1

(t) for i = 0, . . . , 3. The maximum value of the hazard rate in

Case 2 is both smaller and occurs later than that of Case 1. Cases 3 and 4 have no

maximum, but at any given point in time the hazard rate for Case 4 is further from

the limit than is the hazard rate for Case 3.

The other important aspect to Example 2.4.1 is that the expected starting state

for the quasi-stationary distribution is 2.972, and that Cases 1 and 2 have unimodal

hazard rates, whereas Cases 3 and 4 have non-decreasing hazard rates. It appears

that it is for this reason that Aalen’s conjectures suggest it should be possible to

compare an initial distribution ei with the quasi-stationary distribution q, in terms

of their relative distances from absorption. It will be shown in Section 2.6 that it

does not hold in general either that i > E(Xq) implies an increasing hazard rate, or

that i < E(Xq) implies a unimodal hazard rate, where Xq is the discrete random

variable with probability distribution q (thus E(Xq) is the expected value of the

starting state for the QSD).

Based on the above example, we present our own pair of conjectures:

B1. hei+1
(t0) ≤ hei

(t0) for all t0 ∈ [0,∞) and for all i = 0, . . . , s − 1;

B2. hei
(t) has at most one turning point for all values of i ∈ C.

The first of these conjectures is equivalent to claiming there exists a hazard

rate ordering for the hazard rates hei
(t), this is a term which will be discussed in

Section 2.5. Were these conjectures proved then it would follow that there exists

a value r∗ for which hei
(t) is unimodal for i ≤ r∗ and hei

(t) is strictly increasing

for i > r∗. In other words there exists a set of states A for which starting in state

i ∈ A guarantees a unimodal distribution, and a set of states B for which starting

in state j ∈ B guarantees a non-decreasing function. Further, {0} ∪ A ∪ B = C,

A ∩ B = ∅ and maxi∈A i = minj∈B j − 1. Let us now compare Conjectures B1 and

B2 with Conjectures A1 and A2. A1 and A2 suggest that starting in a state far

enough away from absorption will produce an increasing hazard rate, and starting
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from a state closer to absorption will produce a unimodal hazard rate, and that

the value that determines “far enough away” is related in some way to the QSD.

Conjectures B1 and B2 also assume this value exists, and labels it r∗. However, we

do not say anything about how r∗ can be found. What we do claim, however, is

that the reason such a value can be found is that hei
(t) has only one turning point,

and that hei+1
(t0) ≤ hei

(t0), which combined with the fact that hei
(t) has the same

limit for all values of i means that if hen
(t) is non-decreasing, then hen+m

(t) must

be non-decreasing also. It will be shown in Section 2.6 that hes
(t) is in fact strictly

increasing, so r∗ < s, assuming Conjectures B1 and B2 are true.

In the following example we demonstrate that without the assumption that each

initial distribution is atomic, the behaviour demonstrated in Example 2.4.1 may not

occur.

Example 2.4.2

This example proves that, even whilst restricting attention to birth-death processes,

the corresponding hazard rate does not have to be either increasing, decreasing, or

unimodal for general initial distributions. It is highly likely that it is for this reason

that Aalen and Gjessing restricted their attention to atomic initial distributions, a

restriction which we also use in general.

Let s = 5, λi = 0.6 for i = 0, 1, . . . , 4, and µi = 0.3 for i = 0, 1, . . . , 5, leading to

the following transition intensity matrix for the transient states

Q∗ =



































0 0 0 0 0 0 0

0.3 −0.9 0.6 0 0 0 0

0 0.3 −0.9 0.6 0 0 0

0 0 0.3 −0.9 0.6 0 0

0 0 0 0.3 −0.9 0.6 0

0 0 0 0 0.3 −0.9 0.6

0 0 0 0 0 0.3 −0.3



































. (2.25)

The quasi-stationary distribution of this birth-death process is (0.0085, 0.0255,

0.0592, 0.1261, 0.2588, 0.5220). The initial distribution (0.086, 0.010, 0.010, 0.010,
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0.010, 0.874) then produces the hazard rate illustrated in Figure 2.2. This hazard

rate is not monotonically increasing or decreasing, or unimodal.

The above example makes it clear that we cannot expect to prove Aalen’s con-

jectures without at least some restrictions on the possible initial distributions. This

may well have been clear to Aalen at the time, and may have led to the restriction

in [2] to only consider atomic initial distributions, though we have not come across

any specific comments regarding this. Following Example 2.4.2, we will continue to

consider Aalen’s conjectures by exclusively using atomic initial distributions.

Example 2.4.1 demonstrated that hei
(t) is decreasing if and only if i = 0. We

still require a method of comparison between the QSD and an initial distribution ei

with i > 0 that will allow us to determine whether the hazard rate hei
(t) is unimodal

or increasing. Two very common methods for comparing probability distributions

are stochastic domination of the first order, and of the second order. These methods

will be defined in the next section, before being applied to our ongoing problem.
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Figure 2.2: “Bath-tub” shaped hazard rate in Example 2.4.2.
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2.5 Stochastic Orderings

Stochastic orderings can be thought of as comparisons between two probability dis-

tributions. In our case, we can consider stochastic orderings between two different

initial distributions, or we can consider stochastic orderings between two continuous

distributions which have been generated by two different initial distributions. In

this thesis, we have concentrated exclusively on the former, but we will include in

this section some information on the latter as well.

The hope is that there exists such methods that will allow us to determine

the value r∗, described in the Section 2.4, through the comparison of the quasi-

stationary distribution q with an atomic initial distribution ei. There are many

methods available for comparing distributions. We will consider first and second

order stochastic dominance (see [41] and [7], respectively). The reason for this choice

comes from Aalen’s conjectures. The claim made in those conjectures is that the

shape of the hazard rate depends on the distance between the initial distribution

and absorption, which in the case of an atomic initial distribution ei means the

distance i+1. This distance is then compared with the distance between the quasi-

stationary distribution and absorption. The reason why this suggests the use of first

order stochastic dominance is given below. First, however, we give the necessary

definition.

Definition 2.5.1 For random variables X = {0, 1, . . . , s} and Y = {0, 1, . . . , s},
with discrete distributions given by the vectors a = (a0, . . . , as)

′ and b = (b0, . . . , bs)
′

respectively, X is greater than Y in the sense of stochastic dominance of the first

order (also stochastically greater), denoted by X ≥st Y or a ≥st b, if and only if

n
∑

i=0

ai ≤
n
∑

i=0

bi, ∀ n = 0, . . . , s. (2.26)

In words, if a and b are distributions over the set of transient states C, a ≥st b

is true if and only if for every state i, the probability of being in state i or above is

greater in distribution a than it is in b. With −1 an absorbing state, it does not

seem unreasonable to argue therefore that a ≥st b means that the initial distribution



2.5. Stochastic Orderings 28

a is further from absorption than b is. This makes it a logical choice of comparative

method to apply to our problem, in which the distance from absorption is important.

In Example 2.1, e4 ≥st q ≥st e0, where q is the QSD. Initial distributions e1,

e2, and e3 cannot be ordered in such a way with relation to the quasi-stationary

distribution. This also illustrates the obvious fact that for probability vectors a and

b it is not the case that either a ≥st b or b ≥st a must hold.

Alternatively, for continuous distributions the following definition (see e.g. [54])

is used instead.

Definition 2.5.2 For two continuous variables X and Y , X ≥st Y if

P (X > a) ≥ P (Y > a) (2.27)

for all a.

Thus the hazard rate itself could be compared. However, we will not make explicit

use of this definition, save to discuss the concept of hazard rate ordering later in the

section.

Definition 2.5.3 For the situation of Definition 2.5.1, X is greater than Y in the

sense of stochastic dominance of the second order, denoted by X ≥2st Y or a ≥2st b,

if
n
∑

k=0

k
∑

j=0

aj ≤
n
∑

k=0

k
∑

j=0

bj , ∀ n = 0, . . . , s. (2.28)

Second order stochastic dominance is less easy to define in words, but can be

thought of as a measure of risk. Note that first order stochastic dominance implies

second order stochastic dominance, but that the reverse does not hold. Therefore

we concentrate on applying second order stochastic dominance, since it follows that

if second order stochastic dominance cannot provide sufficient conditions, then first

order cannot either.

The following theorem is fairly simple, and therefore we were surprised to not

find it anywhere in the literature. For the sake of completeness, we prove it here.

Theorem 2.5.1 ei ≥2st q ⇔ E(Xei
) = i ≥ E(Xq), where Xπ(0) is a random variable

with π(0) as its probability mass function.
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Proof The following notation is introduced,

n
∑

k=0

k
∑

j=0

(ei)j = U i
n (2.29)

and
n
∑

k=0

k
∑

j=0

qj = Vn. (2.30)

We need to prove that

n
∑

k=0

k
∑

j=0

(ei)j ≤
n
∑

k=0

k
∑

j=0

qj ∀n = 0, . . . , s ⇔ E(Xei
) ≥ E(Xq). (2.31)

We first prove that (2.31) holds for the case where n = s.

s
∑

k=0

k
∑

j=0

(ei)j ≤
s
∑

k=0

k
∑

j=0

qj ⇔ E(Xei
) ≥ E(Xq). (2.32)

We have that

s
∑

k=0

k
∑

j=0

πj(0) = (s + 1)π0(0) + sπ1(0) + . . . + 2πs−1(0) + πs(0)

= s + 1 − E(Xπ(0)) (2.33)

Hence

s
∑

k=0

k
∑

j=0

(ei)j ≤
s
∑

k=0

k
∑

j=0

qj ⇔ s+1−E(Xei
) ≤ s+1−E(Xq) ⇔ E(Xei

) ≥ E(Xq) (2.34)

as required. Next we prove that for vectors ei and q, if (2.28) holds for n = s, it

holds for all 0 ≤ n < s. In other words, it must be proven that

s
∑

k=0

k
∑

j=0

(ei)j ≤
s
∑

k=0

k
∑

j=0

qj ⇒
n
∑

k=0

k
∑

j=0

(ei)j ≤
n
∑

k=0

k
∑

j=0

qj , ∀ n = 0, . . . , s. (2.35)

The proof uses the special nature of ei and induction. From (2.32) it follows that

E(Xei
) ≥ E(Xq) ⇔ U i

s ≤ Vs. Assume now that U i
n ≤ Vn holds for n ≥ j; it remains

to show that U i
j−1 ≤ Vj−1. There are two possibilities, either j ≥ i or j < i. From

(2.29) and (2.30)

U i
n − U i

n−1 =

n
∑

j=0

(ei)j =







1 if n ≥ i

0 if n < i
(2.36)
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and so U i
n − U i

n−1 = 0 if n < i, that is if both U i
n and U i

n−1 are equal to 0. In

contrast, however,

Vn − Vn−1 =

n
∑

j=0

qj ≤
s
∑

j=0

qj = 1. (2.37)

Therefore

U i
n − U i

n−1 ≥ Vn − Vn−1, ∀n = i, . . . , s (2.38)

and

U i
n = 0 ≤ Vn, ∀n = 0, . . . , i − 1. (2.39)

It is demonstrated in (2.38) that U i
n decreases by at least as much as Vn as n goes

from j to j − 1 as long as j ≥ i. Hence the assumption that U i
j ≤ Vj leads to

U i
j−1 ≤ Vj−1. By induction this gives us

U i
n ≤ Vn, ∀n = i, . . . , s. (2.40)

If j < i, proving U i
j−1 ≤ Vj−1 is even easier, since (2.39) gives U i

j−1 = 0. Combining

(2.39) and (2.40) therefore gives

U i
n ≤ Vn, ∀n = 0, . . . , s. (2.41)

Hence the condition U i
s ≤ Vs ⇒ U i

n ≤ Vn holds for all n = 0, . . . , s. 2

An alternative to considering stochastic dominance would be to make use of haz-

ard rate ordering. In [41] hazard rate ordering is defined as an ordering between two

discrete distributions, hence this method can be used to compare initial distributions

Definition 2.5.4 X is greater than Y in the sense of hazard rate order, denoted by

X ≥hr Y or a ≥hr b, if

(

s
∑

k≥i

ak)(

s
∑

k≥j

bk) ≥ (

s
∑

k≥j

ak)(

s
∑

k≥i

bk), ∀ i > j. (2.42)

It can be proven that e0 ≤hr q, es ≥hr q, and that no other ordering is possible for

atomic initial distributions.



2.5. Stochastic Orderings 31

Lemma 2.5.1 The equation

er ≥hr q (2.43)

can only hold when r = s. The same equation with the inequality reversed can only

hold when r = 0.

Proof Assume r = s. This forces
∑s

k≥i (es)k = 1 for every 0 ≤ i ≤ s. Thus (2.42)

reduces to
s
∑

k≥j

qk ≥
s
∑

k≥i

qk (2.44)

which is obviously true since all elements of q are non-negative and i > j. Hence

es ≥hr q.

Now assume r = 0. This forces
∑s

k≥0(es)k = 1, and
∑s

k≥j(es)k = 0 for all j > 0.

Since i > j, i can never be zero, and so (2.42) becomes either

0 ≤
s
∑

k≥i

qk (2.45)

if j = 0, or has both sides equal to zero if j > 0. Thus e0 ≤hr q.

Finally, assume 0 < r < s. If i > r, we have that
∑s

k≥i(er)k = 0, and if i ≤ r,

we have
∑s

k≥i(er)k = 1. Since i > j there is at least one combination of i and j

for which the left hand side and right hand side of (2.42) are re-written as 0 and
∑s

k≥i qk respectively. Clearly 0 ≤ ∑s

k≥i qk. Thus it is impossible for er ≥hr q to

hold for any r < s.

We now prove er ≤hr q is also impossible for r > 0. This comes from the fact

that in the case where j < i ≤ r, we have that
∑s

k≥i(er)k =
∑s

k≥j(er)k = 1. This

reduces (2.42) to
k
∑

k≥j

qk ≥
k
∑

k≥i

qk (2.46)

for those values of i and j. This inequality rules out the possibility that er ≤hr q,

completing the proof. 2

Therefore using hazard rate ordering to compare initial distributions is of little use

to us, since there are only cases for which the ordering can be used, namely for

initial distributions e0 and es, and in both these cases the behaviour of the hazard

rate is already known (see Section 2.6).
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An alternate way to define hazard rate ordering is to compare the rates them-

selves directly. This is done in e.g. [54]. In this sense two hazard rates can be ordered

only if one is greater than the other for all values of t , but it can be shown that (to

immediately relate the result to our case),

hei
(t0) ≥ hei+1

(t0) ∀t0 ∈ [0,∞)

⇔ P (Xei
> s + t|Xei

> t) ≤ P (Xei+1
> s + t|Xei+1

> t) (2.47)

where Xd is the random variable of time to absorption given initial distribution d.

Also equivalent to the above is that

(Xei
)t ≤st (Xei+1

)t (2.48)

where ≤st is as defined in (2.27), and (Xd)t is the time to absorption of a time given

initial distribution d, and conditioned on non-absorption by time t.

Considering this relation may be fruitful for future work. For now, however,

we continue to compare initial distributions. What we want is for second order

stochastic dominance to suffice as a measure of an initial distribution’s “distance”

from absorption, thus allowing us to prove Aalen’s conjecture regarding predicting

the shape of the hazard rate. We are therefore interested in whether either or both

of the following statements hold:

C1. a ≥2st q or its converse is a sufficient condition for a specific shape of hazard

rate;

C2. a ≥2st q or its converse is a necessary condition for a specific shape of hazard

rate.

We will show in the next section that neither of these statements hold in general,

and therefore that first or second order stochastic dominance cannot be used to find

the value r∗ which followed from Conjectures B1 and B2, which in turn means that

these methods cannot be used to prove Conjectures A1 and A2.



2.6. Phase Type Distributions 33

2.6 Phase Type Distributions

As Aalen and Gjessing [2] suggested, and Section 2.4 demonstrated, restrictions need

to be placed upon the possible initial distributions for a birth-death process in order

for their conjectures to not be immediately disproved. In this section we consider the

behaviour of hazard rates with initial distributions of the form ei for i = 0, . . . , s. In

fact, the shape of the hazard rate he0(t) and hes
(t) is known for all possible intensity

matrices Q∗ for a given birth-death process, and this will be demonstrated in this

section. For initial distributions ei for i = 1, . . . , s − 1, the shape of the hazard

rate depends on the intensity matrix Q∗. In this section we attempt to predict this

behaviour using second order stochastic dominance, as defined in Section 2.5, for

the reasons given in that section. We will prove here that ei ≤2st q guarantees

a decreasing hazard rate, but that ei ≥2st q in general implies nothing about the

shape of the hazard rate unless i = s. These results in combination will demonstrate

that in general second order stochastic dominance does not allow us to predict the

shape of the hazard rate when dealing with phase type distributions in the manner

suggested by Aalen’s conjectures.

Lemma 2.6.1

e0 ≤2st q ≤2st es. (2.49)

Further, ei ≤2st q is impossible for i > 0.

Proof We have from (2.28) that e0 ≤2st q requires that

n
∑

k=0

1 ≥
n
∑

k=0

k
∑

j=0

qj, ∀ 0 ≤ n ≤ s (2.50)

where the left hand side follows from the nature of e0. Inequality (2.50) holds if
∑k

j=0 qj ≤ 1 for all k, which must be the case since q is a probability distribution.

Similarly, q ≤2st es requires the following inequalities to hold

n
∑

k=0

k
∑

j=0

qj ≥ 0, ∀ n = 0, . . . , s − 1 (2.51)

and
s
∑

k=0

k
∑

j=0

qj ≥ 1 (2.52)
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where the right hand sides of (2.51) and (2.52) follow from the nature of es. Clearly

the first inequality is true. The second inequality also holds once it is realised that
∑s

k=0

∑k

j=0 qj ≥
∑s

j=0 qj = 1.

It is now proved that ei ≤2st q is only possible if i = 0. By the definition of ei

0 =
n
∑

k=0

k
∑

j=0

(ei)j <
n
∑

k=0

k
∑

j=0

qj , ∀n < i. (2.53)

Since it is already known that q0 > 0, the above inequality is a contradiction of the

conditions necessary for ei ≤2st q if i > 0. 2

In Conjectures C1 and C2 we suggested that ei ≤2st q and q ≤2st ei might be

sufficient and/or necessary conditions for predicting the shape of the hazard rate.

From Lemma 2.6.1 we now have that ei ≤2st q can only hold if i = 0. In the

following subsection we prove that, indeed, the hazard rate he0(t) can be predicted.

It is worth noting that the results given in Subsections 2.6.1 and 2.6.2 seem to

be well-accepted in the relevant literature. Despite this, however, we are aware of

no specific proof, and thus include our own here for the sake of completeness.

2.6.1 Starting State 0

In this subsection it is proved that the initial distribution e0 will lead to a non-

increasing hazard rate. This result follows immediately from Theorems 5.4 B and

C and 5.8 B in Keilson [36], and is thus presented as a corollary. The proof of

this corollary requires the definition of a completely monotone function, taken from

Kijima [41].

Definition 2.6.1 An infinitely-differentiable function g(t) is called completely mono-

tone if (−1)n dn

dtn
g(t) ≥ 0 for all t, and all n.

Definition 2.6.2 A twice-differentiable function g(t) is called convex if d2

dt2
g(t) ≥ 0,

for all t. A function g(t) is called log-convex if log(g(t)) is a convex function.
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Corollary 2.6.1 For a finite birth-death process with absorbing state -1, the hazard

rate corresponding to initial distribution e0, he0(t) is a non-increasing function and

bounded from below by x0, where −x0 is the dominating eigenvalue of the intensity

matrix Q∗.

Proof From (2.13)

ge0(t) = − d

dt

∑

j∈C

p0j(t) = µ0p00(t). (2.54)

Using (2.9), (2.10), and (2.20)

he0(t) =
µ0p00(t)

∑

j∈C p0j(t)
=

ge0(t)

Ge0(t)
= − d

dt
log(Ge0(t)). (2.55)

From Theorem 5.2 in [41] it is known that for a birth-death process each of the

transition probability functions pii(t) are completely monotone, and consequently,

using (2.54), ge0(t) is completely monotone. From Theorems 5.4 B and C and

Theorem 5.8 in [36] any completely monotone density function is also log-convex

and that if a density function ge0(t) is log-convex, then Ge0(t) is log-convex also.

This means that d
dt

log(Ge0(t)) is a non-decreasing function, and hence that he0(t)

is non-increasing, as required. 2

We have now proved that q ≥2st ei is a sufficient condition for the shape of the hazard

rate to be non-increasing. It also must be a necessary condition, since hei
(0) = 0

for i = 1, . . . , s as was discussed in Section 2.4.

2.6.2 Starting State s

In this subsection it is proved that for a finite birth-death process with absorbing

state, the hazard rate is a non-decreasing function when starting in the state furthest

from absorption, and further that it is bounded from above by the constant hazard

rate obtained when the quasi-stationary distribution is taken as initial distribution of

the process. From Theorem 5.5 in Kijima [41] we have the following result. Suppose

that λs = 0, µ0 > 0 and π(0) = es, then the time until absorption T is the sum

of s + 1 independent and exponentially distributed random variables with distinct

parameters.
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The proof of the theorem below also requires the following definition of Polya-

frequency densities of infinite order (PF∞), obtained from [36].

Definition 2.6.3 A probability density function g(x) is a Polya-frequency density

of infinite order (g ∈ PF∞) if, possibly after translation, g(x) is (the limit of a

sequence of densities, each of which is) a convolution of a finite number of exponential

densities.

Theorem 5.3 in Karlin [34] proves that if the probability density functions f(x)

and g(x) lead to increasing hazard rates, then the convolution f∗g(x) is a probability

density function (pdf) that also leads to an increasing hazard function. Therefore if

an exponential distribution leads to an increasing hazard rate, then a convolution of

such distributions must also lead to an increasing hazard rate. Since an exponential

distribution does lead to an increasing hazard rate, we have that a hazard rate is non-

decreasing if the associated pdf is a Polya-frequency density of infinite order. Proving

that the pdf f(x) of the first passage time from s to −1 is such that f(x) ∈ PF∞

will therefore prove that the hazard rate hes
(t) is non-decreasing.

It can now be proved that for a finite birth-death process with absorbing state,

the hazard rate, when starting in state s, is a non-decreasing function and bounded

from above by the constant hazard rate obtained when the quasi-stationary distri-

bution is taken as initial distribution of the process. It has already been shown

that

hes
(t) =

µ0ps0(t)

1 − ps,−1(t)
=

µ0ps0(t)
∑

j∈C

psj(t)
. (2.56)

Also we know that the constant hazard rate obtained when the quasi-stationary

distribution is taken as initial distribution of the process equals x0, where −x0 is

the dominating eigenvalue of the intensity matrix Q∗.

Theorem 2.6.1 For a finite birth-death process X on the state space S = {−1}∪C,

the hazard rate, when starting in the final state s, is a non-decreasing function and

is bounded from above by x0.
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Proof From (2.18) with π(0) = es it follows that

hes
(t) =

ges
(t)

Ḡes
(t)

= − d

dt
log(Ḡes

(t)). (2.57)

From Theorem 5.5 in [41] it follows that, when π(0) = es, the time to absorption T

is the sum of s + 1 independent and exponential distributed random variables and

consequently the pdf of T is a Polya-frequency density of infinite order. 2

2.6.3 Starting States Between 0 and s

The shape of the hazard rate when the process has guaranteed starting state r, for

0 < r < s, is now considered. It is first demonstrated that ei ≥2st q is neither a

necessary nor sufficient condition for the hazard rate to be increasing (since es ≥2st q

and hes
(t) is non-decreasing it immediately follows that ei ≥2st q cannot be a

necessary or sufficient condition for the hazard rate to be unimodal). This is shown

by the following two examples.

Example 2.6.1

Let s = 5, and define Q∗ as follows

Q∗ =





























−0.9 0.3 0 0 0 0

0.6 −0.9 0.3 0 0 0

0 0.6 −0.9 0.6 0 0

0 0 0.6 −0.9 0.3 0

0 0 0 0.6 −0.9 0.3

0 0 0 0 0.6 −0.6





























. (2.58)

This chain has the quasi-stationary distribution (0.176, 0.233, 0.220, 0.175, 0.122,

0.074). Further, E(Xq) = 2.0581, where Xq is the expected starting state for the

quasi-stationary distribution. If taking π0 = e3 leads to a non-decreasing hazard

rate, it would support Conjectures C1. As can be seen in Figure 2.3, however, that

is not the case. Hence er ≥2st q is not a sufficient condition for a monotonically

non-decreasing hazard rate.
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Figure 2.3: Hazard rate from state 3 in Example 2.6.1.

Example 2.6.2

Keep s = 5, and define Q∗ as follows

Q∗ =





























−0.9 0.6 0 0 0 0

0.3 −0.9 0.6 0 0 0

0 0.3 −0.9 0.6 0 0

0 0 0.3 −0.9 0.6 0

0 0 0 0.3 −0.9 0.6

0 0 0 0 0.3 −0.3





























. (2.59)

The quasi-stationary distribution for this process is (0.009, 0.026, 0.059, 0.126, 0.259,

0.522). Note that E(Xq) = 4.1671, and hence q ≤2st e4 does not hold. Were he4(t)

to be unimodal, this would support Conjecture C2. As can be seen in Figure 2.4,

however, the hazard rate is in fact non-decreasing. Thus er ≥2st q is neither a

sufficient nor a necessary condition for a non-decreasing hazard rate.
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Figure 2.4: Hazard rate from state 5 in Example 2.6.2.

Although the two methods considered in Sections 2.5 and 2.6 are the most ob-

vious ones, there are of course other possible stochastic orderings which might be

employed here, in a continued effort to prove Aalen’s conjectures. Rather than at-

tempt to apply each one in turn in the hope of progress, however, other methods

and ideas are now briefly discussed which might lead to advances in the future.

2.7 Alternative Approaches and Concluding Re-

marks

Although the comments made in [2] are somewhat vague, we have demonstrated in

this chapter that if we attempt to assume logical reading of the evidence in that

paper, the suggestion that the expecting value of the starting state for the QSD

determines the value r∗ does not hold. However, it is worth noting that during

the research of which the results are summarised in this chapter many examples

were calculated, and in every case r∗ was found to exist and to often be close to

the expected value of the starting state for the QSD. It is therefore our hope that

a relation between the two can be found to exist, either directly, or through some

third variable or property that affects the values of both r∗ and the QSD. Potential
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approaches which we might choose to take in order to progress from this point

are given below, lack of time meant these methods could not be explored whilst

preparing this thesis.

2.7.1 Alternative Approaches

Further progress may be made by considering under what conditions the hazard rate

is non-decreasing. Recall that we claimed that a value r∗ ∈ {1, 2, . . . , s} exists such

that her
is non-decreasing for r∗ ≤ r ≤ s and unimodal for 0 < r < r∗. We focus now

on what conditions are necessary for the hazard rate to be non-decreasing. Naturally

one necessary and sufficient condition is that its first derivative is non-negative. We

have that

d

dt
her

(t) =
(−µ0

∑s
k=0 xke

−xktRr(xk)c
2
k)(−µ0

∑s
k=0 x−1

k e−xktRr(xk)c
2
k)

(µ0

∑s
k=0 x−1

k e−xktRr(xk)c2
k)

2

−(µ0

∑s
k=0 e−xktRr(xk)c

2
k)(−µ0

∑s
i=0 e−xitRr(xk)c

2
k)

(µ0

∑s
k=0 x−1

k e−xktRr(xk)c2
k)

2
(2.60)

from (2.20), (2.3) and (2.17). Thus in order for the hazard rate to be non-decreasing

it is required that

(

µ0

s
∑

k=0

e−xktRr(xk)c
2
k

)2

−
(

µ0

s
∑

k=0

xke
−xktRr(xk)c

2
k

)(

µ0

s
∑

k=0

x−1
k e−xktRr(xk)c

2
k

)

≥ 0

(2.61)

for all values of t ≥ 0. By use of (2.3) and (2.17) it can be seen that (2.61) is

equivalent to

(µ0pr0(t))
2 + µ0

(

d

dt
pr0(t)

)

Ger
(t) ≥ 0

⇔ µ0(pr0(t))
2 +

(

d

dt
pr0(t)

)

Ger
(t) ≥ 0, ∀t ≥ 0. (2.62)

Therefore µ0pr0(t) = ger
(t) and hence (2.61) is equivalent to

pr0(t)ger
(t) +

(

d

dt
pr0(t)

)

Ger
(t) ≥ 0, ∀t ≥ 0

⇔
(

d
dt

pr0(t)
)

pr0(t)
≥ − ger

(t)

Ger
(t)

, ∀t ≥ 0

⇔ d

dt
log pr0(t) ≥

d

dt
log Ger

(t), ∀t ≥ 0 . (2.63)
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If we now define y := Ger
(t) = 1 − µ0

∫ t

0
pr0(τ)dτ then clearly y′ = −ger

(t) and

y′′ = −µ0
d
dt

pr0(t). Thus finally the inequality (2.61) is equivalent to

y′′

y′
≥ y′

y
⇔ y′′y ≥ (y′)2. (2.64)

If it is possible to find conditions under which this differential inequality holds true,

then we would also have conditions for which the hazard rate is non-decreasing, but

we lacked the necessary time to investigate further.

An alternative might be to use of the approach taken by Glaser [28], where

sufficient conditions are given for non-increasing, non-decreasing, unimodal, and

bathtub shaped hazard rates. To list these conditions, the following definitions are

required.

Definition 2.7.1 The function l(t) is the reciprocal of the hazard rate, that is

l(t) :=
1

h(t)
=

G(t)

g(t)
. (2.65)

Definition 2.7.2

η(t) = −g′(t)

g(t)
(2.66)

The following results are given in [28]:

1. If η′(t) > 0 for all t > 0, then h(t) is non-decreasing.

2. If η′(t) < 0 for all t > 0, then h(t) is non-increasing.

3. If there exists t0 such that η′(t) < 0 for all t ∈ (0, t0), η′(t0) = 0, and η′(t) > 0

for all t ∈ (t0,∞), and if l′(t) has at least one zero, then h(t) is bathtub shaped.

4. If there exists t0 such that η′(t) < 0 for all t ∈ (0, t0), η′(t0) = 0, and η′(t) > 0

for all t ∈ (t0,∞), and if l′(t) has no zeros, then h(t) is non-decreasing.

5. If there exists t0 such that η′(t) > 0 for all t ∈ (0, t0), η′(t0) = 0, and η′(t) < 0

for all t ∈ (t0,∞), and if l′(t) has at least one zero, then h(t) is unimodal.
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6. If there exists t0 such that η′(t) > 0 for all t ∈ (0, t0), η′(t0) = 0, and η′(t) < 0

for all t ∈ (t0,∞), and if l′(t) has no zeros, then h(t) is non-increasing.

It is a trivial task to apply these results to the special case considered in this

chapter. Specifically, we have that a given hazard rate is increasing if either η′(t)

is everywhere positive, or that η′(t) has one zero, η′(t + c) > 0 for any positive

constant c, and l′(t) has no zeros. Similarly, it can be proved that a given hazard

rate is unimodal by showing that η′(t) has one zero, η′(t + c) < 0 for any positive

constant c, and l′(t) has at least one zero.

Note that through the use of the chain rule

η′(t) =
(g′(t))2 − g(t)g′′(t)

(g(t))2
(2.67)

and hence considering the sign of η′(t) is equivalent to considering at what values

of t the inequality (g′(t))2 > g(t)g′′(t) holds. Note further at this point that it is

proven in [39] that g(t) is unimodal.

The justification given in [28] for the use of this method is that η(t) can often

be easier to find than h(t). Whether or not this is true for our current situation, we

have not yet had the time to consider.

Finally, as mentioned in Section 2.5, it may be possible to consider either stochas-

tic dominance or hazard rate ordering for the hazard rates themselves, rather than

their initial distributions. Applying such comparisons, however, would be a non-

trivial task, it is also not immediately clear as to whether such considerations would

lead us to a method by which r∗ can be calculated, which is the goal of our research

in this area.

Whilst writing this thesis attempts were made to find a method by which r∗

could be found in the case where all birth rates for states 0 to s−1 were equal to λ,

and all death rates for states 0 to s were equal to µ. For this special case, the ratio

λ
µ

was considered. It was hoped that this ratio would at best allow the calculation

of r∗, or at least that altering the ratio would affect the value r∗ in a way that could

be predicted. Whilst the former goal was not achieved, we acheived some possible

partial success with the latter. We summarise the results of this attempt below;

perhaps further study will bring more insight.
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λ µ λ
µ

⌈E(Xq)⌉ r∗

0.8 1.2 0.6667 7 11

0.9 1.1 0.8181 9 12

1 1 1 13 13

1.1 0.9 1.2222 16 15

1.2 0.8 1.5 18 16

Table 2.1: λ
µ

ratio for s = 19.

λ µ λ
µ

⌈E(Xq)⌉ r∗

0.3 0.7 0.4286 4 20

0.4 0.6 0.6667 6 21

0.5 0.5 1 25 26

0.6 0.4 1.5 37 35

0.7 0.3 2.3333 39 17

Table 2.2: λ
µ

ratio for s = 39.

We began with the case where s = 19. Five situations were considered, λ = 1.2

and µ = 0.8, λ = 0.8 and µ = 1.2, λ = 1.1 and µ = 0.9, λ = 1.1 and µ = 0.9,

and finally λ = µ = 1. Results demonstrated that for the cases where λ
µ

> 1,

⌈E(Xq)⌉ > r∗ , and for the cases where λ
µ

< 1, ⌈E(Xq)⌉ < r∗. When λ
µ

= 1,

⌈E(Xq)⌉ = r∗. Finally, there was a direct correspondence between the size of λ
µ

and

the value of E(Xq). This information is summarised in Table 2.1.

Next, similar situations were considered in the case where s = 39. This time we

considered the situations where λ = 0.7 and µ = 0.3, λ = 0.3 and µ = 0.7, λ = 0.6

and µ = 0.4, λ = 0.4 and µ = 0.6, and finally λ = µ = 0.5. This time the case

in which λ
µ

= 1 led to ⌈E(Xq)⌉ < r∗, but it still remains true that where λ
µ

> 1,

⌈E(Xq)⌉ > r∗ and where λ
µ

< 1, ⌈E(Xq)⌉ < r∗. This information is summarised in

Table 2.2.

Overall, experimental results suggest that there is a critical region for the value λ
µ

within which ⌈E(Xq)⌉ = r∗. If λ
µ

lies above that interval, then it appears ⌈E(Xq)⌉ >

r∗, and when it lies below this interval, ⌈E(Xq)⌉ < r∗. The size and location of this
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theoretical interval is dependent upon the value of s, when s = 29 the ratio 1.03
0.97

leads to ⌈E(Xq)⌉ = r∗ but when s = 34 this is no longer the case, and that ratio

leads to ⌈E(Xq)⌉ > r∗ instead.

2.7.2 Concluding Remarks

In this chapter we have demonstrated that, if Aalen’s conjectures do in fact hold, the

method by which they can be defined in rigorous mathematical terms is less obvious

than might originally have been believed. The expected value of the starting state

for the initial distribution, E(Xq), gives in general a good approximation of the value

r∗, but the two are not always equal, and moreover examples can be constructed

that make the estimation less impressive, and in addition so far no method can

be found which allows the latter to be directly determined by the former. We are

unaware of any other attempt to describe Aalen’s conjectures in more detail, or to

either prove or disprove them. Clearly this subject will benefit from more attention.

Subsection 2.7.1 offers two alternate approaches to finding a method of comparing

initial distributions, but time constraints prevented detailed consideration of either

of them.

Another potential avenue of future research would be considering hazard rates

for imprecise Markov chains, and what can be said about their shape. Discrete

time imprecise Markov chains are defined in Chapters 3 and 4, but there are few

results regarding such chains in continuous-time. It is not clear how one would

define the hazard rate in such a setting (would one give upper and lower bounds

upon the survival function, for instance?), though Coolen and Newby [13] give one

suggestion. It may however be possible to adapt Aalen’s conjectures by specifying

two values, r∗ and r∗, such that the imprecise hazard rate is known to be unimodal

for initial distribution ei with i < r∗, and known to be non-decreasing for initial

distribution ei with i > r∗.



Chapter 3

Time-Homogeneous Markov

Chains with Imprecision

3.1 Introduction

In this chapter we discuss discrete-time Markov chains on a finite state space and

with one absorbing state. For these chains it is not assumed that all one-step transi-

tion probabilities are precisely known, instead each individual row of the transition

matrix is known to be an element of a given set of probability distributions. While

the precise value of p
(n)
ij := P (X(n + 1) = j|X(n) = i) may be unknown, it is as-

sumed that p
(n)
ij = p

(m)
ij , for all integers n, m ≥ 0. In other words, it is known that

we are in the time-homogeneous case (see Section 1.2.1).

Over the course of this chapter we will describe a generalisation of the idea of the

limiting conditional distribution to the imprecise case. It will be proven, subject to

mild conditions similar to those required in the precise case, that as time approaches

infinity these imprecise chains, conditioned on non-absorption, tend towards a set

of distributions which are conditionally invariant. Methods for approximating this

set will be presented, and applied to examples.

45
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3.2 Time Homogeneous Markov Chains with Im-

precision

In this section imprecision is introduced to time-homogeneous Markov chains. The

approach taken follows work by Kozine and Utkin [42], in which each element of

the transition matrix is known to be within a given interval. They thus use interval

probabilities, which we defined in Section 1.2.2. It was also explained in that section

that each interval probability has an associated structure, which is made up of all

probability measures on the measurable space (S,A) that lie between the bounds of

the interval. In this chapter we relax the model given in [42] by allowing elements

of the transition matrix to take values, not just from a single interval probabilities,

but from finite unions of interval probabilities. Each of these unions will also have

an associated structure.

The reason for this generalisation of Kozine and Utkin’s approach to imprecise

Markov chains may not be obvious at first. It is difficult to imagine a particularly

plausible situation in which a transition probability is considered to be independent

of time, but also to lie within a known union of intervals rather than a single interval.

What data or intuition could imply a value of p
(n)
ij which was independent of n and

belonged either to the interval [1
4
, 1

3
] or the interval [2

3
, 3

4
], for example? Situations

can be considered for which this model could be applied, say one in which a coin is

known to be biased such that p ∈ [1
4
, 1

3
] but with p either the probability of heads or

the probability of tails. More importantly, the generalisation is consistent with the

work in this chapter to follow along similar lines to Chapter 4, where the assumption

that p
(n)
ij is independent of n is no longer used. At such a point situations in which

the possible values of transition probabilities do not include every value of a single

interval become more plausible.

We begin by describing the transition matrix for the chain. Each row of the

transition matrix will be taken from a closed set of probability distributions. In

turn, each element of these probability distributions will be taken from a finite

union of interval probabilities, as discussed above.
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Definition 3.2.1 Define s + 2 closed sets of probability distributions, R(i), i =

−1, 0, . . . , s. The transition matrix for the chain takes the form

P =

















r(−1)

r(0)

. . .

r(s)

















(3.1)

where r(i) ∈ R(i), for all i ∈ S. Clearly R(−1) = {(1, 0, . . . , 0)} in order to ensure

that −1 is an absorbing state.

Definition 3.2.2

P := {P : r(i) ∈ R(i), ∀i ∈ S} (3.2)

Thus P denotes the set of all possible transition matrices for the chain. Let

cij := minr(i)∈R(i) r
(i)
j and cij := maxr(i)∈R(i) r

(i)
j . These values are of great use in

several results in this chapter, some of which require the existence of maxima and

minima over each R(i), and it is for this reason that it is assumed that the sets R(i)

are closed.

As was stated in Section 1.2.1, the limiting conditional distribution of a precise

Markov chain only exists under certain mild conditions. Generalisations of these

conditions are necessary in this chapter. Specifically, the sets R(i) must be defined

so that all transition matrices in P describe Markov chains for which C is a single

communicating class, and for which each state in C is aperiodic. A specific method

for ensuring that these conditions hold will not be given. However, both the peri-

odicity of each state and the number of communicating classes are properties which

depend only on which transitions are and are not possible. If we know with certainty

whether or not a jump is possible, irrespective of how likely or not that jump is,

then either every transition matrix in P has C a single communicating class with

each state aperiodic, or none of them do. Therefore sufficient conditions for the

aperiodicity of each state in C and that C be a single communicating class are given

as follows: let there be no i, j for which 0 = cij < cij, and let any transition matrix
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in P have C a single communicating class with each state aperiodic. We assume

these conditions from this point forward.

Since in the case considered in this chapter it is assumed that one of the matrices

in P is in fact the actual matrix for all time steps, the two conditions given above

ensure that the chain has a quasi-stationary distribution (QSD), even though our

lack of knowledge regarding the chain means that the QSD is unknown.

Lemma 3.2.1 For a finite time-homogeneous Markov chain X on the state space

S = {−1} ∪ C with one-step transition probability matrix P ∈ P and v a proper

distribution over S,

vP = (1, 0, . . . , 0) ⇐⇒ v = (1, 0, . . . , 0). (3.3)

Proof To prove that vP = (1, 0, . . . , 0) ⇒ v = (1, 0, . . . , 0) we assume the contrary.

If there exists v 6= (1, 0, . . . , 0) and P ∈ P such that vP = (1, 0, . . . , 0) then there

is at least one element vi, i ∈ C such that vi > 0. Since P is the transition matrix

of a chain which is irreducible over C, there must be a strictly positive element Pij

for some j ≥ 0. Hence we must have that (vP )i > 0, contradicting our assumption.

The fact that vP = (1, 0, . . . , 0) ⇐ v = (1, 0, . . . , 0) is obvious. 2

Lemma 3.2.1 demonstrates that at any finite time step absorption cannot be

certain unless it was certain in the initial distribution. Therefore (1, 0, . . . , 0) can

be excluded from any set of initial distributions without fear that it will re-appear

at any finite time step.

Definition 3.2.3 Let

M0 := {v = (vi)i∈S | 0 ≤ vi ≤ 1, ∀i ∈ S,
∑

i∈S

vi = 1} \ {(1, 0, . . . , 0)} (3.4)

denote all initial distributions over the set S. Further, let D0 be the set of all

possible initial distributions corresponding to X in a specific situation, where D0 is

non-empty.

It is important to understand what is happening here, to avoid confusion. M0

describes all distributions over a set of s+2 states, with the exception of (1, 0, . . . , 0).
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D0 describes all the distributions that have been determined as possible for the

specific situation being described. Hence

D0 ⊆ M0. (3.5)

If no restrictions are placed on the initial distribution, beyond the fact that the

possibility of certain absorption at time 0 is excluded, then we have

M0 = D0. (3.6)

This can be considered as the case of “maximum imprecision” with regard to the

initial distribution. In fact, in Sections 3.3 and 3.4 it will be proved that the choice

of D0 does not affect the long-term behaviour of the chain both with or without

conditioning on non-absorption. From this point on, the phrase “possible initial

distributions” will be used to refer to those distributions that have been determined

to be possible for a given situation.

3.3 Long-Term Behaviour

In order to study the long-term behaviour of imprecise Markov chains it is necessary

to consider the possible distributions at each finite time step n. Since we are in

the time-homogeneous case, we know that there exists a single matrix in P which

contains the actual transition probabilities for every time step. We thus make use

of the following definition. For a one-step transition probability matrix P ∈ P and

a given D0, the set Dn(P ) of all possible state distributions of X at time n ≥ 1 over

the state space S can be defined inductively.

Definition 3.3.1

Dn(P ) = {vP | v ∈ Dn−1(P )} = {vP n | v ∈ D0(P )} (3.7)

where D0(P ) := D0. Further,

Mn(P ) = {vP | v ∈ Mn−1(P )} = {vP n | v ∈ M0(P )} (3.8)

where M0(P ) := M0.
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Note that we have added the transition matrix P to the notation, to reflect the

fact that we are in the time-homogenous case, and thus that the transition matrix

cannot change from time step to time step. This notation will be very useful when

we begin to take the unions of these sets over all possible transition matrices for the

chain.

Thus, if v ∈ Dn(P ) we have that v = (v−1, v0, . . . , vs) satisfies vj =
∑

i∈S

ṽipij(n)

for a ṽ ∈ D0 and p
(n)
ij = [P n]ij. The upcoming Lemma 3.3.1 shows that the sets

Dn(P ) are nested when D0 = M0. This is useful for calculating the set of β-invariant

distributions of X , defined below (see e.g. Li [44]).

Definition 3.3.2 Consider a finite time-homogeneous Markov chain X with one-

step transition probability matrix P . A collection of nonnegative numbers µ =

{µi}i∈S with µ 6= 0 and
∑

i∈S

µi = 1 satisfying

β
∑

i∈S

µipij = µj, j ∈ S (3.9)

is called a β-invariant distribution of X (or P ) over S. In the case where β = 1, µ

is also called an invariant distribution.

The stationary distribution (see Section 1.1) is an invariant distribution. A

quasi-stationary distribution is a 1
λ
-invariant distribution where λ is the dominating

eigenvalue of P ∗, which is defined in (1.3). This follows from the fact that α can be

obtained by solving αP ∗ = λα. The advantage of this terminology is that it allows

us to describe a distribution as being in effect a quasi-stationary distribution and

describing the equivalent dominant eigenvalue at the same time.

Lemma 3.3.1

Mn+1(P ) ⊆ Mn(P ) (3.10)

Proof For each P ∈ P, it follows from D0 = M0 and the fact that P is a stochastic

matrix that M1(P ) = {vP | v ∈ M0} ⊆ M0. Now assume that for a certain n ≥ 1,

Mn(P ) ⊆ Mn−1(P ). Then

Mn+1(P ) = {vP | v ∈ Mn(P )} ⊆ {vP | v ∈ Mn−1(P )} = Mn(P ) (3.11)
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as needed, so the general property follows by induction. 2

If we knew which matrix P ∈ P correctly described the chain, we would know

that the set of possible distributions at time n was Dn(P ). Since we do not have

this information, however, we know only that the set of all possible distributions at

time n must lie within the union of all Dn(P ) for all P ∈ P.

Definition 3.3.3 Let

D̃n :=
⋃

P∈P

Dn(P ) (3.12)

and

M̃n :=
⋃

P∈P

Mn(P ). (3.13)

We are interested in the set containing all possible limiting distributions of X
corresponding to all P ∈ P, that is, the set of all distributions of X at time n, with

n tending to infinity.

Definition 3.3.4 Let

D∞(P ) := { lim
n→∞

(vP n) : v ∈ D0}, ∀P ∈ P (3.14)

and

D̃∞ :=
⋃

P∈P

D∞(P ). (3.15)

Hence, v = (v−1, v0, . . . , vs) ∈ D∞(P ) satisfies

vj = lim
n→∞

∑

i∈S

ṽipij(n) (3.16)

for a ṽ ∈ D0, where pij(n) = [P n]ij . In the case D0 = M0 for all P ∈ P, we define

M̃∞ =
⋃

P∈P

M∞(P ) =
⋃

P∈P

{ lim
n→∞

(vP n) : v ∈ M0} (3.17)

Lemma 3.3.2

M̃∞ = {π} (3.18)

where π = (1, 0, . . . , 0).
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Proof It is known (see e.g. Kijima [41]) that absorption is certain for any P ∈ P
and v ∈ M0. Consequently M∞(P ) = {π} for all P ∈ P and all v ∈ M0. Therefore
⋃

P∈P M∞(P ) = {π}. 2

Corollary 3.3.1

D̃∞ = {π} (3.19)

where π = (1, 0, . . . , 0).

Proof Since we have from (3.5) that D0 ⊆ M0 for every P ∈ P, we have that

Dn(P ) = {vP n : v ∈ D0} ⊆ {vP n : v ∈ M0} = Mn(P ) (3.20)

for every P ∈ P. It follows from (3.12) therefore that D̃n ⊆ M̃n and from (3.15) that

D̃∞ ⊆ M̃∞. From Lemma 3.3.2, we have either that D̃∞ = {π}, or that D̃∞ = ∅.
Since D0 is non-empty, however, and every v ∈ D0 is such that limn→∞ vP n = π,

D̃∞ = ∅ cannot hold. 2

Let us consider what is learned from this lemma and its corollary. We now know

that irrespective of how little information we have regarding a set of imprecise time-

homogeneous Markov chains, each with one absorbing state and s + 1 transient,

aperiodic states that form a single communicating class, it must be the case that

each and every member of that set will become absorbed with certainty as time goes

to infinity.

By the very definition of an absorbing state π must satisfy πP = π. Therefore

π is an invariant distribution for each P ∈ P (see Definition 3.3.2). It is also known

(see e.g. Kijima [41]) that under the conditions assumed in Section 3.2, each P

has only one such invariant distribution. Therefore {π} can be referred to as an

invariant set of distributions, in the sense that it is invariant under multiplication

by a set of stochastic matrices. At this moment it may seem unnecessary to use

such a term to describe a set with only one element, but results in Sections 3.4 and

Chapter 4 will expand upon the concept. In the set notation used in Section 3.4

and Chapter 4, we have that {π} is the only set N for which

NP = N (3.21)
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where NP = {vP : v ∈ N, P ∈ P}; this will be the standard method for multiplying

sets from this point on. Any set N with this property is referred to as an invariant

set of distributions.

Having described the long-term behaviour of the Markov chains under consider-

ation, we move on to considering the effect of conditioning on non-absorption.

3.4 Conditional Distributions

For a precise Markov chain on a finite state space including an absorbing state,

it is known (see e.g. Darroch and Seneta [21]) that the process may settle down

to some kind of equilibrium over the non-absorbing states before absorption takes

place. Here we consider similar properties on the long-term behaviour of the state

probabilities of an imprecise finite time-homogeneous Markov chain X at time n

conditioned on non-absorption, with set of possible one-step transition probability

matrices P. Let d(n) = (d0(n), . . . , ds(n)) be the distribution of X at time n under

the condition that absorption has not occurred yet, then we have from [21] that the

components of d(n) satisfy

dj(n) =
P (X(n) = j)

P (X(n) 6= −1)
=

pj(n)

1 − p−1(n)
, j ∈ C, (3.22)

where, for k ∈ S, pk(n) =
∑

i∈S vipik(n) with v ∈ M0 and P ∈ P. We are interested

in the set of all possible limiting conditional distributions d = (d0, d1, . . . , ds) of X ,

where

dj := lim
n→∞

dj(n), j ∈ C. (3.23)

For an imprecise time-homogeneous Markov chain X there is still only one limiting

conditional distribution, but its value is unknown, since the correct transition matrix

is unknown, and the LCD is a 1
λ
-invariant distribution (see Definition 3.3.2) to

that matrix. However, it is known to be a proper distribution over the transient

states C. It is therefore of use to define a function that transforms probability

distributions across S into probability distributions across C. At each time n ≥
0, the distribution d(n) of X conditioned on non-absorption is obtained from the

unconditional distribution p(n) of X by applying the function f : [0, 1)× [0, 1]s+1 →
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[0, 1]s+1 defined by

f(p(n)) := f((v−1, v0, . . . , vs)) =
1

1 − v−1
(v0, v1, . . . , vs). (3.24)

Note that (1, 0, . . . , 0) is not within the domain of f . We have

d(n) = f(p(n)). (3.25)

From (3.24), the set of possible conditional distributions at time n ≥ 0 for X with

one-step transition probability matrix P ∈ P over C is

DC
n (P ) = {f(v) | v ∈ Dn(P )} (3.26)

for the set of possible initial distributions D0. In the case where D0 = M0, i.e. all

initial distributions other than (1, 0, . . . , 0) are deemed possible, we have

MC
n (P ) = {f(v) | v ∈ Mn(P )} (3.27)

where

MC
0 (P ) = {f(v) | v ∈ M0} =: MC

0 . (3.28)

Hence, v∗ = (v∗
0 , v

∗
1, . . . , v

∗
s) ∈ DC

n (P ) satisfies

v∗
j =

vj

1 − v−1
for a v ∈ Dn(P )

=
pj(n)

1 − p−1(n)
, (3.29)

where pk(n) =
∑

i∈S

ṽipik(n) for a ṽ ∈ D0(P ) and pik(n) = [P n]ik. We therefore have

from (3.22) that

v∗
j = dj(n). (3.30)

This allows us to consider the possible distributions, conditioned upon non-absorption,

at any time step, which will be of great use in finding an imprecise equivalent to the

limiting conditional distribution. The next theorem shows that the sets MC
n (P ) are

nested in a similar way to the sets Mn(P ) (see Lemma 3.3.1).

Theorem 3.4.1 For each P ∈ P and n ≥ 0,

MC
n+1(P ) ⊆ MC

n (P ). (3.31)
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Proof For each P ∈ P we have from (3.26) and Lemma 3.3.1 that

MC
n+1(P ) = {f(v) | v ∈ Mn+1(P )}}

⊆ {f(v) | v ∈ Mn(P )}}
= MC

n (P )

(3.32)

as needed. 2

We are interested in the set of all possible limiting conditional distributions of

X corresponding to all possible one-step transition probability matrices P ∈ P and

all possible initial distributions v ∈ M0. Let the sets M0
0 and Mǫ

0 be defined by

M0
0 = {(0, v0, v1, . . . , vs) | 0 ≤ vi ≤ 1, ∀i ∈ C,

∑

i∈C

vi = 1} (3.33)

and

Mǫ
0 = {(ǫ, v0, . . . , vs) | 0 < ǫ < 1, 0 ≤ vi ≤ 1, ∀i ∈ C,

∑

i∈C

vi = 1 − ǫ}. (3.34)

Then the set M0 can be written as

M0 = M0
0 ∪ (∪ǫ>0Mǫ

0). (3.35)

Lemma 3.4.1

MC
0 = {f(v) | v ∈ M0

0} (3.36)

Proof From (3.26) MC
0 = {f(v) | v ∈ M0}. Hence, we have to prove that for all

ṽ ∈ Mǫ
0, f(ṽ) ∈ {f(v) | v ∈ M0

0}. Suppose ∃ṽ ∈ Mǫ
0 such that v∗ = f(ṽ) /∈

{f(v) | v ∈ M0
0}. Then (0, v∗

0, v
∗
1, . . . , v

∗
s) /∈ M0

0, but this is in contradiction with

the definition (3.33) of M0
0, and hence f(ṽ) ∈ {f(v) | v ∈ M0} for all ṽ ∈ Mǫ

0. 2

As a result of Lemma 3.4.1 attention can be restricted in this section to the

distributions belonging to M0
0. Once again, since it is unknown which element of P

correctly describes the process, we consider unions of sets within which all possible

distributions at time step n are included.
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Definition 3.4.1

D̃C
n :=

⋃

P∈P

DC
n (P ) (3.37)

and

M̃C
n :=

⋃

P∈P

MC
n (P ). (3.38)

Theorem 3.4.1 tells us it is appropriate to define the set of all possible limit-

ing conditional distributions of X corresponding to all possible one-step transition

probability matrices P ∈ P and all possible initial distributions v ∈ M0.

Definition 3.4.2

M̃C
∞ :=

⋃

P∈P

MC
∞(P ) (3.39)

where

MC
∞(P ) = lim

n→∞
MC

n (P ). (3.40)

Hence, v ∈ MC
∞(P ) implies that v = (v0, v1, . . . , vs) satisfies

vj = lim
n→∞

pj(n)

1 − p−1(n)
= lim

n→∞

∑

i∈C

ṽipij(n)

1 − ∑

i∈C

ṽipi,−1(n)
, (3.41)

for a ṽ ∈ MC
0 and pij(n) = [P n]ij . The next result is a corollary to Theorem 3.4.1.

Corollary 3.4.1

M̃C
n ⊆ M̃C

n−1 (3.42)

Proof We have that

M̃C
n =

⋃

P∈P

MC
n ⊆

⋃

P∈P

MC
n−1 = M̃C

n−1 (3.43)

where the subset is justified by Theorem 3.4.1. 2

As a final comment in this section, note that the set M̃C
∞ has the following

property

M̃C
∞ =

⋃

P∈P

MC
∞(P ) =

⋃

P∈P

(f(f̃α(MC
∞(P ))P )) (3.44)
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where f̃α(·) is defined in Definition 4.5.3, but for the moment can be considered

a function that maps a distribution over C to a distribution over S such that

f(f̃α1(v)) = f(f̃α2(v)) = v. In Chapter 4 we will define the conditionally invariant

set of distributions (see (4.50)), that is those sets N for which

f(f̃α(N )P) = N (3.45)

(compare this to (3.21), which expressed a similar concept without conditioning

upon non-absorption). The set M̃C
∞ is not a true conditionally invariant distribution,

because of the assumption of time-homogeneity. Nevertheless, the similarity between

(3.44) and (3.45) should be noted.

Theorem 3.4.2 For an imprecise time-homogeneous Markov chain X , with set of

possible one-step transition probability matrices P, and any given set of initial

distributions, the set of all possible limiting conditional distributions of X is given

by

M̃C
∞ =

⋃

P∈P

{α(P )} (3.46)

where α(P ) is the limiting conditional distribution of X corresponding to P .

Proof The proof follows from the fact that, as discussed from Section 1.2.1, each

P ∈ P has a unique limiting conditional distribution, denoted by α(P ), which is

independent of the initial distribution. Hence
⋃

P∈P{α(P )} must be equal to the set

of all limiting conditional distributions of X with set of possible one-step transition

probability matrices P. 2

3.5 Calculations and Examples

At present we are not aware of a general method for finding M̃C
n , for finite values

of n > 0, directly from the support of P. Since P can be defined algebraically (see

(3.53), for example), it is possible to define M̃C
n as an algebraic vector. However,

depending on P, the elements of this vector may be n-degree polynomials in up

to s2 + 3s + 2 variables. Finding the set such an algebraic vector defines can be

problematic even for fairly low values of n.
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In this section, therefore, three methods are presented by which approximations

can be derived for the sets M̃C
n and M̃C

∞. Methods 1 and 2 can be applied to any

Markov chain of the type in this chapter, although again computational complexity

may become an issue. Method 1 replaces MC
0 and P with discrete subsets, Method

2 involves calculating bounds upon the elements of the sets M̃C
n . Finally, a third

method, adapted from the unconditional case used by Kozine and Utkin [42] will be

discussed; it will then be explained why, once conditioning upon non-absorption is

considered, the method no longer gives useful results.

The probability simplex representation [67] is used here in order to graphically

represent three-element probability distributions with the two dimensional proba-

bility simplex. A probability simplex representation is an equilateral triangle with

perpendicular height one unit, in which each vertex represents the probability dis-

tribution with all mass in one state of C. The probabilities assigned to the three

elements of C are identified with perpendicular distances from the three sides of the

triangle. From Lemma 3.4.1 it follows that the set MC
0 is represented by the whole

simplex diagram.

It should be noted that in each example in this section the unknown elements of

the transition matrix are taken from intervals, rather than unions of intervals. This

is partially because, as stated in Section 3.2, situations in the time-homogeneous

case for which elements are known to be within unions of intervals do not seem

particularly realistic, and also because using Method 2 for finding bounds on M̃C
n

would become far more complicated were we to consider unions of intervals.

Method 1: Approximation of MC
n (P ).

Method 1 approximates the sets MC
0 and P with discrete subsets, and then uses

these approximations to find an approximation to M̃C
n . The set of possible initial

distributions MC
0 is approximated by the discrete finite set MC

0 where

MC
0 = {( i

γ
,
k

γ
, 1 − i + k

γ
|i, k ∈ {0, 1 . . . , γ} with i + k ≤ γ}, (3.47)

where γ is a positive integer. Next, we consider each combination of integers i, j for

which cij < cij. Each of these combinations corresponds to a variable aij that can
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take any value in a known interval. Note that the fact that each matrix must be

stochastic means for each i one aij is expressible in terms of aik for all k 6= j. We

have that 1 ≤ |{aij}| ≤ s2 + 3s + 2. For each aij we define

Aij = {cij +
k(cij − cij)

δij

|k ∈ {0, 1 . . . , δij}} (3.48)

for a positive integer δij , and

P := {P ∈ P|pij ∈ Aij} ⊆ P. (3.49)

We can thus find a discrete subset of MC
n (P ) for P ∈ P as follows

MC
n (P ) = {vP n|v ∈ MC

0 } (3.50)

and a discrete subset M̃C
n as follows

M̃C

n :=
⋃

P∈P

MC
n (P ). (3.51)

Similarly we can find a discrete subset of M̃C
∞, which we will denote M̃C

∞, by cal-

culating the quasi-stationary distribution for each matrix in P .

Method 2: Bounds for M̃C
n .

In this method, rather than using discrete subsets, we calculate bounds on each

element in the set M̃C
n . As in Method 1, we define aij as a variable lying in the

interval cij, cij. We then define the algebraic matrix P such that Pij = aij for all i, j

for which cij < cij, and equals Pij := cij for all elements where cij = cij . We also

define the vector v as follows

v = (0, v0, v1, v2) (3.52)

where v0 + v1 + v2 = 1, vi ≥ 0 for all i = 0, 1, 2. Thus every possible distribution

over C at time step n can be described by the vector ṽ := f(vP n). We can then

maximise and minimise each element of ṽ over the region defined by the conditions

aij ∈ [cij , cij ],
∑

pij = 1, v0 + v1 + v2 = 1, and vi ≥ 0 for all i = 0, 1, 2. This will

give bounds upon the elements of M̃C
n .
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Example 3.5.1

Consider a time-homogeneous Markov chain X with state space S = {−1} ∪ C

where C = {0, 1, 2}, and let the set of all possible one-step transition probability

matrices P be given by

P = {

















1 0 0 0

0.5 0 0.5 0

0 a10 0 1 − a10

0 0 0.75 0.25

















| a10 ∈ [0.1, 0.2] } (3.53)

For Method 1, we take γ = 20 and δ10 = 10. This leads to

MC
0 = {(0.05i, 0.05k, 1− 0.05(i + k)), i, k ∈ {0, 1 . . . , 20} with i + k ≤ 20} (3.54)

and

A10 = {0.1 +
0.1k

10
, k ∈ {0, 1 . . . , 10}}. (3.55)

As can be seen in Figure 3.1 a), b) and c), this choice of γ and δ10 appears to

generate sets with good coverage, in that the shapes of the sets these figures are

approximating seem very clear. More coverage could be achieved by increasing the

values of γ or δ10, or both, but it seems unlikely that this would lead to a substantial

increase in comprehension of the shape of the sets.

Equations (3.54) and (3.55) lead to the following subset of the set of all possible

conditional distributions at time 1,

M̃C

1 = {f

















(0, v0, v1, v2)

















1 0 0 0

0.5 0 0.5 0

0 a10 0 1 − a10

0 0 0.75 0.25

































|a10 ∈ A10, v ∈ MC
0 }

(3.56)

and therefore

M̃C

1 =

{

1

2(2 − v0)
(4a10v1, 2v0 + 3v2, 4(1 − a10)v1 + v2)|a10 ∈ A10, v ∈ MC

0

}

.

(3.57)

This set is shown in Figure 3.1 a).
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(0,0,1)(1,0,0)

(0,1,0)

 

 

(1,0,0)

(0,1,0)

(0,0,1)(1,0,0)

(0,1,0) (0,1,0)

(1,0,0)(0,0,1)(1,0,0) (0,0,1)

(0,1,0)

(0,0,1)

a) b)

c) d)

Figure 3.1: The sets a) M̃C

1 , b) M̃C

2 , c) M̃C

3 and d) M̃C

∞.

Continuing in this way, subsets of all possible conditional distributions at time

2 and 3 are given as follows:

M̃C

2 = { 1

8(2 − v0 − a10v1)
(8a10v0 + 12a10v2, 4(3 − a10)v1 + 3v2,

8(1 − a10)v0 + 4(1 − a10)v1 + (13 − 12a10)v2)

|a10 ∈ A10, ∀v ∈ MC
0 } (3.58)



3.5. Calculations and Examples 62

and

M̃C

3 = { 1

8(8 − (4 + 2a10)v0 − 4a10v1 − 3a10v2)
(16a10(3 − a10)v1 + 12a10v2,

8(3 − a10)v0 + 12(1 − a10)v1 + 3(13 − 4a10)v2,

8(1 − a10)v0 + 4(13 − 17a10 + 4a2
10)v1 + (25 − 24a10)v2)

|a10 ∈ A10, ∀v ∈ MC
0 }. (3.59)

The simplex diagrams of the two sets (3.58) and (3.59) are given in Figure 3.1 b)

and c), respectively.

Using Theorem 3.4.2 together with (3.49), an approximation of the set of all

possible limiting conditional distributions of X is given by

M̃C

∞ :=
⋃

P∈P

M̃C

∞(P ) =
⋃

P∈P

α(P ) (3.60)

where the quasi-stationary distribution α(P ) is obtained by solving

α(P ) P ∗ = λ(P ) α(P )

with λ(P ) the dominating eigenvalue of P ∗ (see (1.3)). Using Mathematica1, we can

find the set M̃C

∞. For a given value of a10, the dominating eigenvalue of P ∗, which

we denote λ10 is found to be equal to

λ10 =
(55−126a10+6

√
3
√

−441+328a10−a2
10+16a3

10)
1
3+37−12a10

12(55 − 126a10 + 6
√

3
√

−441 + 328a10 − a2
10 + 16a3

10)
1
3

+
(55−126a10+6

√
3
√

−441+328a10−a2
10+16a3

10)
2
3

12(55 − 126a106
√

3
√

−441 + 328a10 − a2
10 + 16a3

10)
1
3

. (3.61)

Note that (3.61) contains complex values, all of these however cancel out across the

expression. The associated quasi-stationary distribution is

3a10

a10 + 3λ10 + 4λ2
10

(

1,
λ10

a10
,
2(2λ2

10 − a10)

3a10

)

. (3.62)

Therefore

M̃C
∞ =

{

3a10

a10 + 3λ10 + 4λ2
10

(1,
λ10

a10

,
2(2λ2

10 − a10)

3a10

)|a10 ∈ A10

}

(3.63)

where λ = λ10 is given by (3.61). Table 3.1 gives the quasi-stationary distribution

corresponding to each a10 ∈ A10, while diagram d) in Figure 3.1 shows the simplex

representation of the set (3.63).
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State 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

0 .044 .048 .053 .057 .062 .066 .071 .075 .080 .085 .089

1 .428 .428 .427 .427 .427 .427 .427 .427 .427 .427 .427

2 .528 .524 .520 .516 .511 .507 .502 .498 .493 .488 .484

Table 3.1: Quasi-stationary distribution for each a10

We now discuss Figure 3.1. We note first that these diagrams reflect what is

known from Corollary 3.4.1, namely that M̃C
n ⊆ M̃C

n−1, though the rate of conver-

gence is difficult to judge. Further, d) demonstrates that even with imprecision, the

long-term behaviour conditioned on non-absorption is known to be a single distri-

bution belonging to what is a very small set compared to MC
0 .

The other property of interest in Figure 3.1 is the stratification of the points

in diagrams a) through c). The method by which MC
0 is constructed ensures that

the approximation of MC
0 is a regular lattice. The behaviour demonstrated in these

diagrams, in which some areas of M̃C

n for n > 0 contain more elements than others,

is worth commenting on. Note that throughout this chapter (and the next) we

have very deliberately avoided assigning distributions to the intervals within which

the elements of the transition matrix are known to lie. A value for a transition

probability is either possible, or it is impossible, we do not consider whether one

possible value is more or less likely than another. However, by approximating MC
0

as a regular lattice and then multiplying that lattice by a set of matrices which

have been defined by taking regular points from the intervals in which the transition

probabilities lie, we are in fact implicitly assuming uniform distributions on the set

of initial distributions and the intervals used to define P. In this sense, figures a)

through c) are demonstrating that if the initial distributions are drawn from uniform

distributions, and the matrices from P drawn likewise, there is no reason to believe

the resulting distributions at time n with n > 0 will be uniformly distributed. In

fact, it is for precisely this reason that we consider specific values of the transition

probabilities as merely either possible or impossible. Were we to do otherwise we

1Version 6.
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would have to consider combining distributions, and the run-on effects upon the

theory would be considerable.

We begin Method 2 by noting that we have from (3.56) that every vector v(1) ∈
M̃C

1 (P ) can be written as

v(1) =
1

2(2 − v0)
(4a10v1, 2v0 + 3v2, 4(1 − a10)v1 + v2) (3.64)

with a10 ∈ [0.1, 0.2] and v ∈ M0
0. We now need to find

min
a10∈[0.1,0.2], v∈M0

0

v
(1)
i and max

a10∈[0.1,0.2], v∈M0
0

v
(1)
i (3.65)

for i = 0, 1, 2. Since (v0, v1, v2) is an honest probability distribution, we must have

that v0 + v1 = 1 − v2, and so

v(1) =

(

4a10v1

2(2 − v0)
,

3 − v0 − 3v1

2(2 − v0)
,

1 − v0 + (3 − 4a10)v1

2(2 − v0)

)

. (3.66)

What is needed is the maximum and minimum values of each element of v(1) within

the region

R := {(a10, v0, v1) : a10 ∈ [0.1, 0.2], v0 ∈ [0, 1], v1 ∈ [0, 1], v0 + v1 ≤ 1}.

Note that R does not describe a probability space, it is simply a subset of R
3. We

find the minima and maxima over R by partially differentiating each element of v(1)

∂

∂v0
v(1) =

(

8a10v1

(4 − 2v0)2
,

2 − 6v1

(4 − 2v0)2
,

(6 − 8a10)v1 − 2

(4 − 2v0)2

)

(3.67)

and
∂

∂v1
v(1) =

(

4a10

2(2 − v0)
,

−3

2(2 − v0)
,

(3 − 4a10)

2(2 − v0)

)

. (3.68)

Note that for each element of v(1) there is no co-ordinate within the region R at

which its derivative with respect to v0 and its derivative with respect to v1 are both

zero. Thus the maximum and minimum values of each element lie on the boundary

of R. This leads us to v
(1)
0 ∈ [0, 0.2], v

(1)
1 ∈ [0, 1] and v

(1)
2 ∈ [0, 0.9]. These bounds

are shown in diagram a) of Figure 3.2.

Similarly, each vector v(2) ∈ ⋃

P∈P MC
2 (P ) and v(3) ∈ ⋃

P∈P MC
3 (P ) can be

represented as

v(2)=

(

8a10v0+12a10v2

8(2−v0−a10v1)
,

4(3−a10)v1+3v2

8(2−v0−av1)
,

8(1−a10)v0+4(1−a10)v1+(13−12a10)v2

8(2−v0−a10v1)

)
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and

v(3)=

(

16a(3−a10)v1+12a10v2

8(8−(4+2a10)v0−4a10v1−3a10v2)
,

8(3−a10)v0+12(1−a10)v1+3(13−4a10)v2

8(8−(4+2a10)v0−4a10v1−3a10v2)
,

8(1−a10)v0+4(13−17a10+4a2
10)v1+(25−24a10)v2

8(8−(4+2a10)v0−4a10v1−3a10v2)

)

with a10 ∈ [0.1, 0.2] and v0 + v1 + v2 = 1. Finding the minimum and maximum of

each component of v(2) and v(3) individually leads to v
(2)
0 ∈ [0, 0.2], v

(2)
1 ∈ [0, 0.778],

v
(2)
2 ∈ [0.222, 0.9] and v

(3)
0 ∈ [0, 0.156], v

(3)
1 ∈ [0.167, 0.778] and v

(3)
2 ∈ [0.222, 0.746].

These bounds are shown in Figure 3.2 in diagrams b) and c), respectively. By

minimising and maximising the elements of (3.62) we can obtain bounds for the

quasi-stationary distribution, yielding v
(∞)
0 ∈ [0.044, 0.089], v

(∞)
1 ∈ [0.427, 0.428],

v
(∞)
2 ∈ [0.484, 0.529], these bounds are shown in diagram d) in Figure 3.2. However,

the minimum and maximum bounds for v
(∞)
1 are so close that they are all but

indistinguisable in the simplex diagram. We see that the set of possible conditional

distributions at time n shrinks quickly with n.

We now compare Figure 3.1 and 3.2. The region in each diagram in Figure 3.2

is a strict superset of the equivalent region in Figure 3.1. Notice though that for

every bound in Figure 3.2 there is a distribution in the equivalent diagram in Figure

3.1 that lies on that bound. In other words, the bounds on each element of M̃C
n

are the same as the bounds on each element of M̃C

n when n = 1, 2, 3 or n = ∞.

Therefore Figure 3.1 provides the better approximation to M̃C
n , as the bounds can be

calculated directly from the diagrams it contains, and those diagrams also give some

insight into the shape of M̃C
n . Thus the only disadvantage we can see for Method

1 is the time required to calculate so many distributions, as has been previously

mentioned. Of course, if possible, it would be most sensible to apply both methods,

as this will generate both an idea of the shape of each set and precise bounds for

which the set must lie within.
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(1,0,0) (0,0,1)

(0,1,0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.2,0.8,0)

(0,0.1,0.9) (0,0.1,0.9)

(0,0,1)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1) (1,0,0)

(0.2,0.8,0)
(0,0.78,0.22)

(0,1,0)

(0.16,0.84,0)

(1,0,0) (0,0,1)

(0.83,0.17,0)

(0,0.78,0.22)

(0,0.25,0.75)

(0,1,0)

(0,0,1)(1,0,0)

(0.573,0.427,0) (0,0.428,0.572)

(0,0.516,0.484)

(0.044,0.956,0)
(0.089,0.911,0)

(0.471,0,0.529)

a)

c) d)

b)

Figure 3.2: Bounds for the sets M̃C
n for a) n = 1, b) n = 2, c n = 3 and d) n = ∞,

when a10 ∈ [0.1, 0.2].

Example 3.5.2

This example is similar to Example 3.5.1, the only change is a widening of the

interval for the single unknown value. This will allow us to see how the bounds are

affected by an increase in imprecision. This time P is

P = {

















1 0 0 0

0.5 0 0.5 0

0 a10 0 1 − a10

0 0 0.75 0.25

















| a10 ∈ [0.1, 0.4] } (3.69)

It is interesting to see how sensitive the bounds are to an increase in imprecision.
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Figure 3.3 shows the diagrams corresponding to those in Figure 3.2, thus allowing

direct comparison. Clearly, the bounds are wider in Example 3.5.2 than in Example

3.5.1, but once again the set of possible conditional distributions shrinks considerably

with each time step shown. The bounds for the set of quasi-stationary distributions

are v
(∞)
0 ∈ [0.044, 0.187], v

(∞)
1 ∈ [0.425, 0.428] and v

(∞)
2 ∈ [0.388, 0.529]. The interval

in which v1 is contained is so narrow that it is difficult to see the bounds upon the

set, which demonstrates how much can be said about the long term behaviour of

the chain, conditioned on non-absorption, even in a situation with imprecision.
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(0,1,0)
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(1,0,0)

(0,1,0)

(0,0,1)

(0,0.1,0.9)

(0.813,0,0.187)

(0.187,0.813,0)
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(0,0,1)

(0,0.25,0.75)

(0.86,0.14,0)

(1,0,0) (0.81,0,0.19)

(0,1,0)

(0.19,0.81,0)

(0.33,0.67,0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,0,0)

(0,0.425,0.575)

(0,0.612,0.388)

(0,0,1)(0.471,0,0.529)

(0,1,0)

(0.572,0.428,0)

(0.044,0.956,0)

(0.187,0.813,0)

a) b)

d)c)

Figure 3.3: Bounds for the sets M̃C
n for a) n = 1, b) n = 2, c) n = 3 and d) n = ∞,

when a10 ∈ [0.1, 0.4].

Note that, as one would expect, the region in each diagram in Figure 3.3 is a

superset of the region of the corresponding diagram in Figure 3.2.
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Example 3.5.3

In this third example there is no state i ∈ C for which the transition probabili-

ties pij are precisely known. This time the set of all possible one-step transition

probability matrices P is given by

P={

















1 0 0 0

a0,−1 0 1 − a0,−1 0

0 a10 0 1 − a10

0 0 a21 1 − a21

















|a0,−1 ∈ [0.1, 0.4];a10 ∈ [0.4, 0.6];a21 ∈ [0.65, 0.85] }

(3.70)

Again, Method 2 is used to find bounds upon the elements of the possible distri-

butions at time steps 1, 2, 3 and as time approaches infinity. The resulting simplex

diagrams are shown in Figure 3.4. Note that in the first three time steps there is

little difference between Examples 2 and 3 (most likely this is due to both chains

being birth-death processes, limiting the paths that the process can take), but that

the bounds upon M̃C
∞ are indeed wider in Example 3.5.3 than those in Example

3.5.2, as would be expected due to the increased imprecision.

Kozine and Utkin [42] presented another method for finding bounds on the

state distribution p(n) at time n for a finite time-homogeneous imprecise irreducible

Markov chain. In the terminology of this thesis, this is equivalent to finding bounds

on the elements of the set M̃n = ∪P∈PMn(P ) (note that these are sets of distri-

butions over S and not C). This method can easily be adapted to obtain bounds

on the elements of the conditional distribution d(n) at time n (see (3.22)), which

of course are also bounds on the elements of the set M̃n. However, the resulting

bounds may well prove to be of little use, as will be illustrated and discussed with

an example.
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(0,1,0)

(1,0,0)

(1,0,0)

(0,1,0)

(1,0,0)

(0,1,0)

(0,0.1,0.9)

(0.4,0.6,0)

(0,0.1,0.9)

(0.4,0.6,0)

(0,0.85,0.15)

(0,0.85,0.15)

(0,0.24,0.76)

(0.88,0.12,0)

(0,1,0)

(0,0,1) (0,0,1)

(0,0,1)(1,0,0)(0,0,1)

(0,0.39,0.61)

(0.04,0.96,0)

(0.20,0,0.80)

(0,0.65,0.35)

(0.54,0.46,0)

(0.34,0.66,0)

(0.43,0,0.57)

a) b)

c) d)

a)

c) d)

c)

Figure 3.4: Bounds for the sets M̃C
n for a) n = 1, b) n = 2, c) n = 3 and d) n → ∞,

when a0,−1 ∈ [0.1, 0.4], a10 ∈ [0.4, 0.6], and a21 ∈ [0.65, 0.85].

Method 3: Alternate bounds for M̃C
n .

In [42] it is proved that for finite imprecise time-homogeneous Markov chains for

which C is a single communicating class with all states aperiodic, and for bounds

on the initial distribution, p
j
(0) ≤ pj(0) ≤ pj(0), bounds can be defined as follows

p
j
(n) :=

s
∑

i=−1

p
i
(n − 1)cij (3.71)

and

pj(n) :=
s
∑

i=−1

pi(n − 1)cij (3.72)

for all j ∈ S, so that p
j
(n) ≤ pj(n) ≤ pj(n) for all n > 0 and for all j ∈ S, where
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pj(n) = P (X(n) = j). This result gives a method for calculating upper and lower

bounds, pj(n) and p
j
(n), respectively, on the jth component of the elements of the

set M̃n for a given value of n, where j ∈ S.

A small adaptation to this result enables us to derive upper and lower bounds,

which we shall denote pC
j (n) and pC

j
(n) respectively, upon the jth element of the

set M̃C
n for a given value of n, where j ∈ C. The lower bounds are calculated first.

First we set p
j
(0) > 0 for at least one value of j, thus ensuring (1, 0, . . . , 0) cannot

be an initial distribution. By minimising over the probability that the process is in

state j at time n, given absorption has not occurred, we define

pC

j
(n) := inf

pi,pij

∑s
i=0 pi(n − 1)pij

1 −∑s

i=0 pi(n − 1)pi,−1

, ∀j ∈ C (3.73)

which holds as p0(n − 1) < 1 follows directly from pj(0) < 1 (see Lemma 3.2.1).

Since all elements of the numerator are positive, as are all elements of the sum in

the denominator, the numerator can be minimised and the denominator maximised

simultaneously, leading to

pC

j
(n) :=

∑s
i=0 p

i
(n − 1)cij

1 − p
−1

(n − 1) −∑s

i=0 p
i
(n − 1)ci,−1

, ∀j ∈ C. (3.74)

The upper bound is calculated in a similar way.

pC
j (n) := sup

pi,pij

∑s
i=0 pi(n − 1)pij

1 −∑s

i=0 pi(n − 1)pi,−1

, ∀j ∈ C. (3.75)

Note that by taking the supremum of
∑s

i=0 pi(n − 1)pij over pij separately from

the supremum of
∑s

i=0 pi(n − 1)pi,−1 over pi, there is no reason to believe that

the resulting value represents a conditional probability. Therefore, there is also no

reason that the resulting value cannot be greater than 1, and so we have

pC
j (n) = min{

∑s
i=0 pi(n − 1)cij

1 − p−1(n − 1) −∑s

i=0 pi(n − 1)ci,−1
, 1}, ∀j ∈ C. (3.76)

All together, this gives us pC

j
(n) ≤ pC

j (n) ≤ pC
j (n), where pC

j (n) = P (X(n) =

j|X(n) ≥ 0). These bounds are illustrated in Example 3.5.4.
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Example 3.5.4

The imprecise Markov chain X = {X(n), n = 0, 1, . . .} has P

{

















1 0 0 0

a0,−1 0 1 − a0,−1 0

0 a10 0 1 − a10

0 0 a21 1 − a21

















|a0,−1 ∈ [0.1, 0.2], a10 ∈ [0.45, 0.6], a21 ∈ [0.7, 0.8]}.

(3.77)

By (3.74) and (3.76) the following equations are obtained

pC

0
(n) =

0.45p
1
(n − 1)

1 − 0.1p
0
(n − 1) − p

−1
(n − 1)

pC

1
(n) =

0.8p
0
(n − 1) + 0.7p

2
(n − 1)

1 − 0.1p
0
(n − 1) − p

−1
(n − 1)

pC

2
(n) =

0.4p
1
(n − 1) + 0.2p

2
(n − 1)

1 − 0.1p
0
(n − 1) − p

−1
(n − 1)

(3.78)

and

pC
0 (n) =

0.6p1(n − 1)

1 − 0.2p0(n − 1) − p−1(n − 1)

pC
1 (n) =

0.9p0(n − 1) + 0.8p2(n − 1)

1 − 0.2p0(n − 1) − p−1(n − 1)

pC
2 (n) =

0.55p1(n − 1) + 0.3p2(n − 1)

1 − 0.2p0(n − 1) − p−1(n − 1)
. (3.79)

Consider all possible initial distributions satisfying

p
−1

(0) = p−1(0) = 0 (3.80)

p
0
(0) =

1

4
, p

1
(0) =

2

5
, p

2
(0) =

1

5
(3.81)

p0(0) =
7

20
, p1(0) =

1

2
, p2(0) =

2

5
. (3.82)

We have from (3.80) that there is zero probability of beginning in the absorbing

state, immediately giving us pC
i (0) = pi(0) for i = 0, 1, 2. From (3.81) and (3.82) we

have lower and upper bounds for beginning in each of the three states in C. Hence

p
j
(n) and pj(n) can be calculated for all n > 0 and for all j ∈ S and pC

j
(n) and

pC
j (n) follow for all n > 0 and for all j ∈ C. Table 3.2 gives these values up to
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n p(n) p(n)

1 (0.025, 0.180, 0.340, 0.200) (0.070, 0.300, 0.635, 0.395)

2 (0.043, 0.153, 0.284, 0.176) (0.130, 0.381, 0.586, 0.468)

3 (0.058, 0.128, 0.246, 0.149) (0.206, 0.352, 0.717, 0.463)

4 (0.071, 0.111, 0.206, 0.128) (0.277, 0.430, 0.687, 0.533)

5 (0.082, 0.093, 0.178, 0.108) (0.363, 0.412, 0.814, 0.538)

6 (0.091, 0.080, 0.150, 0.093) (0.445, 0.488, 0.801, 0.609)

7 (0.099, 0.068, 0.129, 0.079) (0.543, 0.480, 0.927, 0.623)

8 (0.106, 0.058, 0.109, 0.067) (0.639, 0.556, 0.931, 0.697)

n pC(n) pC(n)

1 (0.185, 0.349, 0.205) (0.323, 0.683, 0.425)

2 (0.160, 0.297, 0.184) (0.438, 0.674, 0.538)

3 (0.136, 0.261, 0.158) (0.443, 0.903, 0.583)

4 (0.119, 0.222, 0.138) (0.595, 0.949, 0.737)

5 (0.101, 0.194, 0.118) (0.646, 1.000, 0.843)

6 (0.088, 0.165, 0.102) (0.880, 1.000, 1.000)

7 (0.075, 0.143, 0.087) (1.000, 1.000, 1.000)

8 (0.065, 0.122, 0.075) (1.000, 1.000, 1.000)

Table 3.2: Bounds on pC(n) for Example 3.5.4
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n = 8, the values p
j
(n), pj(n), pC

j
(n) and pC

j (n) are written as elements of vectors

p(n), p(n), pC(n) and pC(n), respectively.

Note that for each i = 0, 1, 2, pC
i (n) quickly reaches 1 as n increases. Further,

the values of pC

i
(n) seem to tend to zero, by the 43rd time step all three elements

of pC(n) are less than 0.0005. Considering that the actual amount of imprecision in

this example is fairly small, it seems reasonable to conclude that for more general

examples, this method will not prove to be very useful.

General concluding remarks on the long-term behaviour of imprecise Markov

chains conditioned on non-absorption will be presented at the end of Chapter 4.

For now, we simply note the different advantages and disadvantages to the first two

methods. Method 1 seems to produce a far more accurate approximation to M̃C
n

than Method 2, since the 231 initial distributions that we use to approximate MC
0

are comparatively close together, thus providing a reasonable approximation, and

thus the general shape of M̃C
n is easy to make out from M̃C

n , even though the latter

is a strict subset of the former. However, the computational time required to find

the nth power of eleven 3x3 matrices, and then multiplying each by 231 vectors

before conditioning, will become problematic for large examples.

Method 2, on the other hand, guarantees bounds that lie on the set, and at

each time step requires the calculation of only one algebraic vector by one algebraic

matrix, for which maxima and minima can then be directly found using, for example,

Mathematica. The obvious drawback is that the resulting supersets of M̃C
n give no

insight into the true shape of M̃C
n . Whenever possible, however, it would be best to

use both methods, as each method has its own advantages, that combine well.



Chapter 4

Time-Inhomogeneous Markov

Chains with Imprecision

4.1 Introduction

In this chapter we generalise the model defined in Chapter 3. Specifically, the

property that transition probabilities are independent of time is no longer assumed.

Thus, not only is the transition matrix unknown at each time step, it is allowed to

change from one step to the next. In this sense, the work here can be considered as

generalising the theory of finite time-inhomogeneous Markov chains in the classical

case.

The motivation for this approach should be clear. There are many situations

in which it would be unrealistic to assume that the transition matrix of a Markov

chain will be independent of the time steps. This makes the time-inhomogeneous

case a very important one, and it follows that describing an imprecise model for

this case is worthwhile. Moreover, it is intuitively reasonable that a transition

matrix that can change from time step to time step, potentially in unpredictable

ways, might be sensibly modelled by placing bounds upon each element, thus the

method of describing imprecision by interval probability lends itself well to time-

inhomogeneous Markov chains. Lastly, there is not a great deal known about the

long-term behaviour of time-inhomogeneous Markov chains in the precise case, and

this is a situation that the method presented here can potentially change.

74
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The long-term behaviour of the time-inhomogeneous case has been studied in

detail by Škulj [62,63], who proved that, subject to mild conditions, there exists an

invariant set of distributions that describes the long-term behaviour of such chains.

The work in [62] is expanded upon in Sections 4.2 and 4.3.

Škulj [62, 63] did not however consider the effect of adding an absorbing state

to the chain (doing so would violate the assumptions made in [63]). In Section

4.4 it is proven that with the inclusion of an absorbing state, and the imposition

of mild conditions, absorption is certain. Thus a method for conditioning upon

non-absorption in this case is of interest, and is presented in Section 4.5. The long-

term behaviour of these chains conditioned upon non-absorption is then described.

This satisfies one of the main goals of this thesis, namely to demonstrate that there

exists a generalisation of the limiting conditional distribution in the imprecise time-

inhomogeneous case. It is then demonstrated in Section 4.6 that this long-term

behaviour conditioned upon non-absorption is independent of the choice of set of

initial distributions, which strengthens the link between our results and those in the

precise case. Section 4.7 contains examples illustrating our method, and Section 4.8

compares the model considered in this chapter with the one presented in Chapter

3. Finally, concluding remarks are given in Section 4.9.

4.2 Markov Chains with Interval Probabilities

Much of the set-up for the model to be introduced in this chapter follows that

described in Chapter 3. Consider a Markov chain X = {X(n), n = 0, . . .} with state

space

S = {−1, 0, . . . , s} = {−1} ∪ C (4.1)

where −1 is an absorbing state, and the finite set of states C is a single communicat-

ing class with each state aperiodic. C has the properties that i, j ∈ C implies that i

and j communicate, and that −1 is reachable from C. We will assume that known

bounds exist on the possible values of each transition probability at each step. Škulj

assumes in [62] and [63] that closed intervals can be used to define the possible

values of transition probabilities. Just as in Chapter 3, this method is generalised
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as follows.

Define s + 2 closed sets of probability distributions, R(i), i = −1, 0, . . . , s. A

transition matrix for this chain is defined by

P =

















r(−1)

r(0)

. . .

r(s)

















. (4.2)

Thus the set of possible transition matrices for a given time step can be defined as

follows.

Definition 4.2.1 All potential transition matrices for a given time step belong to

the set

P := {P | r(i) ∈ R(i), ∀i ∈ C} (4.3)

where the choice of the element from R(i) has no effect on the choice of the element

R(j) if i 6= j.

Note that the probability sets themselves are independent of the current step,

even though the transition matrix may change from one step to the next. Note also

that R(−1) = (1, 0, . . . , 0) and that ei /∈ R(i) for i > −1, where ei = (δ−1i, δ0i, . . . , δsi)

as defined in Chapter 3. This ensures that our Markov chain has exactly one absorb-

ing state. The assumption is also made that each of the possible transition matrices

guarantee that C is a single communicating class with every state aperiodic. Finally,

if [P ]ij = 0 for any P ∈ P then it is assumed that [P ′]ij = 0 for all P ′ ∈ P. Thus

a jump from state i to state j is either possible independently of the time step, or

impossible independently of the time step. This prevents situations in which the

matrices P1, P2, . . . , Pr ∈ P each represent chains which are irreducible over C but

the chain represented by Πr
i=1Pi is not irreducible over C. While it is not difficult

to prove that such a combination of matrices could exist, it is not clear that such

combinations would be permitted by the earlier assumptions. Thus, it may be pos-

sible to prove that this final requirement is already covered by those assumptions

previously made. We state it separately for now, however, due to its importance in

proving Lemma 4.6.6 in Section 4.6.
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Following on from Definition 4.2.1, the set of possible n-step transition matrices

is now defined.

Definition 4.2.2

Pn := {P1P2 . . . Pn, Pi ∈ P} (4.4)

Note that

P1 = P. (4.5)

A property of sets of transition matrices is now defined that will become critical to

later work.

Definition 4.2.3 The set P is called regular if for some n every P ∈ Pn has only

strictly positive elements. Further, the set P is called conditionally regular on C if

for some n every P ∈ Pn has all elements of the form Pij strictly positive, where

i, j ∈ C.

Lemma 4.2.1 All matrices which belongs to the set Ps+1 have strictly positive

elements beneath the first row, making P conditionally regular.

Proof Any matrix P that is contained in Ps+1 will represent the behaviour of a

time-inhomogeneous Markov chain over s+1 time steps. By assumption each of the

time steps are described by transition matrices for which C is a single communicating

class, with each element aperiodic. Therefore there is a path of n states, denoted

{ak}k=1,...,n, between i and j, where i, j ∈ C, and no element of {ak}k=1,...,n is equal

to either i or j.

Assume i 6= j. By assumption the possibility of a jump from a given state to

another given state is completely independent of which time step it is. Therefore if

there exists k1 6= k2 such that ak1 = ak2, the elements ak1, ak1+1, . . . , ak2−1 can be

removed from {ak}k=1,...,n and the remainder still represents a viable path from i to

j. This process can continue until no duplicated value in the path remains, forcing

n ≤ s − 1. Thus j can be reached from i in s jumps, forcing P (X(s) = j|X(0) =

i) > 0. P (X(s + 1) = j|X(0) = i) > 0 follows immediately from the fact that each
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possible transition matrix has C has each state aperiodic, and so if there exists a

route from i to j in exactly s steps, there exists a route from i to j in exactly s + t

steps, t > 0, since at least one state in that route allows the process to remain in

that state from one time step to the next.

Now assume i = j. The same process as above applies, except that without

duplicated values in the path we have n ≤ s, and hence we can return to i after

s + 1 jumps, and P (X(s + 1) = j|X(0) = i) > 0. 2

Lastly, we consider initial distributions. The set of all possible distributions for

which absorption is not certain is denoted as M0, thus

M0 := {v = (v−1, v0, . . . , vs)|
s
∑

i=−1

vi = 1} \ {(1, 0, . . . , 0)}. (4.6)

Therefore any set of initial distributions, which in general will be denoted as D0,

will have the property that D0 ⊆ M0.

4.3 Distributions at Step n

In the precise case, one finds the distribution at step n by simply multiplying the

distribution at step n − 1 by the appropriate transition matrix. The following

method simply generalises this concept. For the set of initial distributions D0 the

set of distributions at time n is defined by

Dn := {vP |v ∈ Dn−1; P ∈ P} (4.7)

where P is as defined in (4.3). Obviously, in the special case where it is assumed

that all distributions are possible at step 0,

Mn := {vP |v ∈ Mn−1; P ∈ P}. (4.8)

Lemma 4.3.1 For the sets of initial distributions D0

D0 ⊆ D1 ⇒ Dn ⊆ Dn+1, ∀n (4.9)

and

D1 ⊆ D0 ⇒ Dn+1 ⊆ Dn, ∀n. (4.10)
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Proof Both parts of the lemma are proved by induction and through the use of

(4.7). For the first part, assume that Dn−1 ⊆ Dn. Note that

Dn+1 = {vP |v ∈ Dn; P ∈ P}

⊇ {vP |v ∈ Dn−1; P ∈ P}

= Dn. (4.11)

The argument is almost identical for the proof of the second part of the lemma. 2

Lemma 4.3.2 For all v ∈ Mn and all P ∈ P,

vP = (1, 0, . . . , 0) ⇔ v = (1, 0, . . . , 0). (4.12)

Proof Follows immediately from Lemma 3.2.1. 2

Corollary 4.3.1

Mn+1 ⊆ Mn, ∀n (4.13)

Proof Since M0 contains every possible distribution for which absorption is not

certain, it immediately follows that M1 ⊆ M0, so long as (1, 0, . . . , 0) /∈ M1.

Lemma 4.3.2 proves that this cannot be the case. 2

This corollary (proven in a slightly different way in [62]) immediately allows the

following definition (also found in [62]) for the limiting set of distributions

M∞ =
∞
⋂

n=0

Mn. (4.14)

The following definition is now introduced.

Definition 4.3.1 Any set of distributions N with the property

{vP |v ∈ N ; P ∈ P} = N (4.15)

is described as an invariant set of distributions.
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Clearly the set M∞ is non-empty (it will contain the stationary distribution of

every P ∈ P, for example), and has the property that

{vP |v ∈ M∞; P ∈ P} = M∞. (4.16)

Thus it is an invariant set of distributions. This set is analogous to the stationary

distribution in the precise case, in the sense that once the invariant set is arrived

at, it can never be left in future time-steps. Methods for approximating this set for

given situations are described in [62].

4.4 M∞ and the Absorbing State

In this section it is shown that under the conditions assumed in this chapter, eventual

absorption remains certain. The most important part of this process is to prove that

the sequence vP1P2 . . . Pn, where v ∈ M0 and each Pi ∈ P, tends to (1, 0, . . . , 0) as

n tends to infinity. This result will follow from the theorem below.

Theorem 4.4.1 For Pi ∈ Ps+1 (see Definition 4.2.2)

lim
n→∞

P1P2 . . . Pn =

















1 0 . . . 0

1 0 . . . 0
...

...
. . .

...

1 0 . . . 0

















. (4.17)

Proof Let

B(n) := P1P2 . . . Pn =























1 0 0 . . . 0

b
(n)
0,−1 b

(n)
00 b

(n)
01 . . . 1 −∑s−1

j=−1 b
(n)
0j

b
(n)
1,−1 b

(n)
10 b

(n)
11 . . . 1 −∑s−1

j=−1 b
(n)
1j

...
...

...
. . .

...

b
(n)
s,−1 b

(n)
s0 b

(n)
s1 . . . 1 −∑s−1

j=−1 b
(n)
sj























(4.18)

where Pk ∈ Ps+1. As previously mentioned in the comments following Definition

4.2.3 this guarantees that each Pi will be strictly positive below the first row. It

immediately follows that

b
(n+1)
i,−1 = b

(n)
i,−1 +

s
∑

j=0

[Pn+1]j,−1b
(n)
ij (4.19)
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and therefore that either b
(n)
i,−1 = 1, or b

(n)
i,−1 is strictly increasing in n for each i ∈ C,

since [Pn+1]ji > 0, for all j ∈ C, which in turn means that b
(n)
ij > 0 for all i ∈ C and

j ∈ S.

Assume that for a given i ∈ C, limn→∞ b
(n)
i,−1 = αi < 1. At each step n, therefore,

we have that
∑s

j=0 b
(n)
ij > 1 − αi > 0. By the fact that each row of P (and hence of

Ps+1) is generated from a closed set of distributions, there exists a set of constants

{ci} such that [Pk]ji ≥ ci > 0 for all j ∈ C. Thus

b
(n+1)
i,−1 ≥ b

(n)
i,−1 +

s
∑

j=0

c−1b
(n)
ij

= b
(n)
i,−1 + c−1

s
∑

j=0

b
(n)
ij

> b
(n)
i,−1 + c−1(1 − αi). (4.20)

Since c−1(1 − αi) is independent of n there must exist an n0 such that b
(n0)
i,−1 > 1,

which is clearly impossible. Thus no such αi < 1 can exist, and since b
(n)
i,−1 is known

to be both increasing in n and never more than 1, it must be that limn→∞ b
(n)
i,−1 = 1

as required. 2

Corollary 4.4.1 Let Pi ∈ Ps+1, ∀i. Further let x ∈ M0. Then

lim
n→∞

xP1P2 . . . Pn = (1, 0, . . . , 0). (4.21)

Proof

lim
n→∞

xP1P2 . . . Pn = x( lim
n→∞

P1P2 . . . Pn)

= x(1, 0, . . . , 0)

= (

s
∑

i=−1

xi, 0, . . . , 0) = (1, 0, . . . , 0) (4.22)

where the first equality comes from the associativity of matrix multiplication, the

second equality comes from Theorem 4.4.1, and the final equality comes from the

fact that x is an honest probability distribution. 2
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Corollary 4.4.2 For the imprecise Markov chain X = {X(n), n = 0, . . .} on the

state space S = {−1}∪C, where −1 is an absorbing state, the only probability dis-

tribution that can be an element of M∞ (see [62]) is (π−1, π0, . . . , πs) = (1, 0, . . . , 0)

where

πi = lim
n→∞

(xP1P2 . . . Pn)i = (xΠ∞
n=1Pn)i (4.23)

with Pi ∈ P. Hence,

M∞ = {(1, 0, 0, . . . , 0)}. (4.24)

Proof Define

Mi+1 = {xP : x ∈ Mi, P ∈ P} (4.25)

and

M∞ = ∩∞
i=0Mi. (4.26)

This leads to

M∞ = { lim
n→∞

xP1P2 . . . Pn : x ∈ M0; Pi ∈ P, ∀i}. (4.27)

From Theorem 4.4.1 and Corollary 4.4.1 we have that

M∞ = { lim
n→∞

xP ′
1P

′
2 . . . P ′

n : x ∈ M0; P
′
i ∈ Ps+1, ∀i}. (4.28)

By elementary matrix algebra it follows that

a
(n+1)
i,−1 = a

(n)
i,−1 +

s
∑

j=0

[Pn+1]j,−1a
(n)
ij ≥ a

(n)
i,−1 (4.29)

where a
(n)
ij = (P1P2 . . . Pn)ij with Pi ∈ P. It is also known from (4.19) that

a
(n+s+1)
i,−1 > a

(n)
i,−1, ∀n ≥ 0. (4.30)

Thus the sequence {a(n)
i,−1}n∈Z is non-decreasing for each i ∈ S, and the subsequence

{a((s+1)n)
i,−1 }n∈Z is strictly increasing for each i ∈ S. This completes the proof. 2

Therefore, even in this case where potentially very little is known about the be-

haviour of the Markov chain, so long as it is known that S is finite, that there is a

single absorbing state, and that C is a single communicating class with each state

aperiodic, absorption in the limit is certain. Clearly in such situations considering

M∞ is not particularly enlightening.
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4.5 Conditioning Upon Non-Absorption

In this section it is proved that under the conditions assumed in this chapter each

Markov chain has a conditionally invariant set of distributions to which it will tend

as time goes to infinity, assuming no distribution over C is ruled out as a possi-

ble initial distribution. This conditionally invariant set is a generalisation of the

limiting conditional distribution in the precise time-homogeneous case, as well as

a generalisation of the set M̃C
∞ discussed in Chapter 3 (see Definition 3.4.2). We

begin by defining this initial distribution set.

Definition 4.5.1 Denote by MC
0 the set of all probability distributions over the

set of transient states C,

MC
0 = {v = (vj)

s
j=0 : vj ∈ [0, 1], ∀j;

s
∑

j=0

vj = 1}. (4.31)

Next, the set of strictly substochastic matrices (see (1.3)) that describe the behaviour

over C is defined. Note that for all P ∈ P

P :=





1 0

p Q



 (4.32)

where 0 is a row vector with s + 1 elements, all of which are zero; p is a column

vector with s + 1 elements; and Q is an (s + 1) × (s + 1) substochastic matrix,

ensuring that transition to state -1 is possible.

Definition 4.5.2 Define the following set of substochastic matrices

PC =







Q :





1 0

p Q



 ∈ P







. (4.33)

Note that there is a one-to-one correspondence between the elements of P and the

elements of PC . Hence the following matrix functions can be defined

g := P → Q. (4.34)

g−1 := Q → P. (4.35)
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Since M0 is an infinite set of (s + 2)-vectors, MC
0 is an infinite set of (s + 1)-

vectors. The vector function f : R
s+2 → R

s+1 is now introduced, where for v ∈ Mn,

f(v) = f((v−1, v0, . . . , vs)) =
1

1 − v−1

(v0, v1, . . . , vs). (4.36)

In words, the function f(·) takes a distribution over S and conditions it upon the

event that the process cannot be in the absorbing state, and hence gives a new

distribution over the transient states. Therefore f(·) transforms a distribution over

S into a distribution over C. Obviously the one exception to this is the distribution

(1, 0, . . . , 0), but this distribution is not within the function’s domain. Therefore

v ∈ M0 ⇒ f(v) ∈ MC
0 . (4.37)

Unlike the matrix function g(·), f(·) does not have a unique inverse. The follow-

ing function is defined instead.

Definition 4.5.3

f̃α(v) = f̃α(v0, . . . , vs) := (α, (1 − α)(v0, . . . , vs)) (4.38)

where α ∈ [0, 1).

Obviously this function has the following property

f(f̃α(v)) = v. (4.39)

Therefore f̃α(·) transforms a distribution over C into a distribution over S by as-

signing a value α to the probability of absorption.

Definition 4.5.4 For the set of possible initial distributions D0,

DC
n := {f(v) : v ∈ Dn}. (4.40)

When D0 = M0 we have

MC
n := {f(v) : v ∈ Mn}. (4.41)
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Every element of the set MC
n is a possible distribution at time n, conditioned

upon non-absorption. This definition is going to prove problematic if there exists

n < ∞ such that (1, 0, . . . , 0) ∈ Mn, but this is impossible due to Lemma 4.3.2.

We therefore have that MC
n can be calculated from Mn. It is also possible to

calculate MC
n from MC

n−1. For each distribution v in MC
n−1 there exists a value

αv such that f̃αv
(v) ∈ Mn−1. Therefore f̃αv

(v)P ∈ Mn for any P ∈ P, and hence

f(f̃αv
(v)P ) ∈ MC

n . On first consideration, it may appear that determining the value

of αv may be problematic. However, in the following lemma it is proved that, in

fact, any value of α can be taken.

Lemma 4.5.1 f((α, (1−α)v)P ) = f((β, (1−β)v)P ) for any P ∈ P, independently

of the values of α and β.

Proof

f(f̃α(v)P ) = f



(α, (1 − α)v)





1 0

p Q









=
(1 − α)vQ

|(1 − α)vQ|
=

vQ

|vQ| . (4.42)

2

Therefore if two distributions at step n are equal after conditioning upon non-

absorption, and are multiplied by the same transition matrix P ∈ P, then they

will be equal after conditioning upon non-absorption at step n + 1. This leads to

the alternative formulation given below

MC
n = {f(f̃α(v)P )|v ∈ MC

n−1, P ∈ P} (4.43)

If it is decided that not every distribution in MC
0 is a possible initial distribution

for the chain, the set of possible initial distributions over C can be denoted DC
0 ⊂

MC
0 .

The following lemma proves two results which will become useful when consid-

ering long-term behaviour.
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Lemma 4.5.2

DC
1 ⊆ DC

0 ⇒ DC
n+1 ⊆ DC

n (4.44)

and

DC
1 ⊇ DC

0 ⇒ DC
n+1 ⊇ DC

n . (4.45)

Proof We prove (4.44) by induction. Assume DC
n ⊆ DC

n−1. Then

f̃α(DC
n ) ⊆ f̃α(DC

n−1). (4.46)

That means

DC
n+1 = {f(v) : v ∈ Dn+1 \ {(1, 0, . . . , 0)}}

= {f(vP ) : v ∈ Dn \ {(1, 0, . . . , 0)}, P ∈ P}

= {f(vP ) : v ∈ f̃α(DC
n ) \ {(1, 0, . . . , 0)}, P ∈ P}

⊆ {f(vP ) : v ∈ f̃α(DC
n−1) \ {(1, 0, . . . , 0)}, P ∈ P}

= {f(v) : v ∈ f̃α(DC
n ) \ {(1, 0, . . . , 0)}}

= {f(v) : v ∈ Dn \ {(1, 0, . . . , 0)}}

= DC
n (4.47)

where the third and sixth lines follow from Lemma 4.5.1, and through the use of

(4.39). The second part of the lemma is also proved by induction, and uses a very

similar progression to that given in (4.47). 2

Note that the result above does not follow immediately from Lemma 4.3.1, because

of course, for example, DC
1 ⊆ DC

0 does not imply D1 ⊆ D0.

Corollary 4.5.1

MC
n+1 ⊆ MC

n (4.48)

Proof We have that MC
1 ⊆ MC

0 . Lemma 4.5.2 completes the proof. 2

This next definition is therefore appropriate, and describes the behaviour of the

chain, conditioned on non-absorption, as time approaches infinity.
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Definition 4.5.5

MC
∞ = ∩∞

n=0MC
n (4.49)

Definition 4.5.6 N is described as a conditionally invariant set of distributions

over C, henceforth known as CISD, if

f(f̃α(N )P) = N (4.50)

for some α ∈ [0, 1).

Clearly by (4.49) and Lemma 4.5.1, MC
∞ must be a CISD. This is crucial, because

a CISD remains unchanged from time step to time step, once conditioning upon non-

absorption has once more been applied. In this sense, it is the logical generalisation

of the quasi-stationary distribution in the precise, time-homogeneous case. It is

now demonstrated that neither MC
∞ nor MC

0 \ MC
∞ are empty. There are several

results that we will require in order to accomplish this. It is known that a quasi-

stationary distribution exists for the homogeneous Markov chains generated by each

P (Darroch and Seneta [21]). Moreover, this distribution has the property that

qQ = λq, where λ is the dominating eigenvalue of Q.

Lemma 4.5.3

Q := {q : ∃Q ∈ PC for which q is a QSD to Q} ⊆ MC
∞ (4.51)

Equivalently, every quasi-stationary distribution which corresponds to the time-

homogenous Markov chain with generator Q ∈ PC is contained in MC
∞. Moreover,

the left-hand set is not empty.

Proof Since MC
0 contains all distributions over C, it follows that Q ⊆ MC

0 . It is

necessary to prove that

Q ⊆ MC
n ⇒ Q ⊆ MC

n+1. (4.52)

By definition q ∈ Q ⊆ MC
n implies that there exists α ∈ [0, 1) such that f̃α(q) ∈

Mn. It also follows that there exists a Q ∈ PC such that qQ = λq. Since g−1(Q) ∈
P, we have by Lemma 4.5.1 that

f(f̃α(q)g−1(Q)) = q (4.53)
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and so q ∈ MC
n+1. Hence Q ⊆ MC

n+1, as required. 2

Thus MC
∞ is non-empty. It is now proved that the set MC

0 \MC
∞ is also non-empty.

Lemma 4.5.4 The set MC
∞ is a strict subset of MC

0 , that is

MC
∞ ⊂ MC

0 (4.54)

and therefore there exists at least one v for which v ∈ MC
0 \MC

∞ holds.

Proof From (4.4) the set of matrices

{P1P2 . . . Ps+1| Pi ∈ P} (4.55)

is conditionally regular on C. Therefore

(P1P2 . . . Ps+1)ij > 0, ∀i ∈ C, j ∈ S. (4.56)

Consider the set of (s + 1)-vectors {ei} where

ei = (δi0, . . . , δis). (4.57)

We prove that ei (i ≥ 0) cannot lie within MC
∞. Assume that in fact ei ∈ MC

∞ for

some i ∈ C. By the definition of MC
∞ it must be the case that

(α, (1 − α)ei) ∈ M∞ (4.58)

for some α ∈ [0, 1). Thus by (4.13) and (4.14) for the same value of α

(α, (1 − α)ei) ∈ Mn, ∀n. (4.59)

Combining (4.56) with the fact that

Ms+1 = {vP1P2 . . . Ps+1 : v ∈ M0; Pi ∈ P} (4.60)

implies that (α, (1 − α)ei) cannot belong to Ms+1. This is a contradiction, which

thus forces {ei}, i ∈ C, to lie in the complement of MC
∞. 2
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MC
∞ has now been defined, and it has been demonstrated that it is neither empty,

nor does it contain every element of MC
0 . We therefore have that some distribu-

tions conditioned on non-absorption are possible as time approaches infinity, and

that some are impossible, even though we have assumed nothing about the initial

distribution over C.

In the following section it is proved that the assumption that the initial distri-

bution could be any honest probability distribution over C is in fact redundant.

Rather, it will be shown that as time approaches infinity the chain, conditioned

upon non-absorption, will tend to MC
∞ independently of the subset of MC

0 chosen

as the set of initial distributions. This is another reason to claim that MC
∞ is a

generalisation of the concept of the limiting conditional distribution.

4.6 Convergence to Equilibrium

This section begins with a definition for a distance measure1 which will eventually be

employed to prove that for any set of initial distributions over C, denoted DC
0 ⊆ MC

0 ,

the sets DC
n must converge to MC

∞ as time approaches infinity.

4.6.1 Distances Between Sets

In order to demonstrate that as time approaches infinity, the sequence of sets MC
n

converges to MC
∞, a method is required for judging how different two sets are after

conditioning their elements upon non-absorption. This will be done by defining a

distance measure between two sets of distributions that have been conditioned upon

non-absorption. Let N and N ′ be sets of distributions on S. Recall from (4.36)

that f(v−1, v0, . . . , vs) = 1
1−v−1

(v0, . . . , vs).

1Technically this potentially an abuse of terminology, since we do not prove this measure obeys

the triangle inquality. However, that particular property is not required anywhere in this thesis,

and so the function can simply be considered as a “measure of dissimilarity”, which when adapted

to a function over sets of distributions at time n will be shown to tend to zero as n tends to infinity.
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Definition 4.6.1 If the sets N and N ′ are such that

f(N ) = f(N ′) (4.61)

then they are referred to as conditionally equal on C, where C is the set of non-

absorbing states.

Definition 4.6.2 Several steps are required in order to define a distance between

two sets of distributions. We begin by defining a distance between two individual

distributions. Let v and w be precise distributions on S and let i ∈ S be such that

wi > 0. Define

αv,w;i :=
vi

wi

. (4.62)

The following equality holds for any distributions v, w, x where wi and xi are both

non-zero.

αv,x;i = αv,w;iαw,x;i. (4.63)

We now use the terms above to define a distance measure between two distributions.

Definition 4.6.3 If wi > 0 for every i ∈ C, we let α
v,w := mini∈C αv,w;i and

αv,w := maxi∈C αv,w;i. A distance measure between distributions positive on every

subset of C is then defined as follows

d(v, w) :=
αv,w − α

v,w

α
v,w

. (4.64)

Clearly, d(v, w) ≥ 0 for any v and w for which it exists, but d(v, w) = 0 can hold

for different v and w, therefore this distance measure does not define a metric space,

but rather a pseudometric space (see Steen [65]). The following lemmas demonstrate

some important properties of the function d(·, ·).

Lemma 4.6.1 Let v and w be distributions that are positive on every subset of C.

Then d(v, w) = 0 is equivalent to f(v) = f(w).

Proof We have that d(v, w) = 0 must be equivalent to αv,w = α
v,w. Thus,

αv,w;i =
vi

wi

= α for every i ∈ C where α is a constant independent of i. Since v
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and w are probability measures, we can define Pv(A) =
∑

i∈A vi. For every A ⊆ S,

then,

Pv(A|C) =
Pv(A ∩ C)

Pv(C)
=

∑

iA∩C vi
∑

i∈C vi

=

∑

iA∩C αwi
∑

i∈C αwi

= Pw(A|C). (4.65)

To prove the implication in the opposite direction let Pv(A|C) = Pw(A|C) for

every A ⊆ S, or in particular Pv(i|C) = Pw(i|C) for every i ∈ C. For every i ∈ C

αv,w;i =
vi

wi

=
Pv(i|C)Pv(C)

Pw(i|C)Pw(C)
=

Pv(C)

Pw(C)
(4.66)

which is independent of i. Therefore α
v,w = αv,w, which implies d(v, w) = 0. 2

Note that d(v, w) is continuous in both terms. The following lemma shows that it

is also symmetric.

Lemma 4.6.2 Let v and w be probability measures such that vi, wi > 0 for every

i ∈ C. Then d(v, w) = d(w, v).

Proof Since αv,w;i = α−1
w,v;i, α

v,w = α−1
w,v and αv,w = α−1

w,v. By substituting these

identities into (4.64) the following is obtained

d(v, w) =
αv,w − α

v,w

α
v,w

=
α−1

w,v − α−1
w,v

α−1
w,v

=
αw,v − α

w,v

α
w,v

= d(w, v). (4.67)

2

Having defined a measure for the distance between two distributions, measures are

next defined for the distance between a single distribution and a set of distributions,

and for the distance between two sets of distributions.

Definition 4.6.4 For a distribution v and a set of distributions N , where all ele-

ments in N are positive on every subset of C, define

d(v,N ) = inf
w∈N

d(v, w). (4.68)

Furthermore, if N ′ is another set of probabilities, define

dH̃(N ′,N ) = sup
v∈N ′

d(v,N ). (4.69)
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Note that this is not a symmetric measure.

The above construction of the distance measures between sets of probabilities is

analogous to the construction of the Hausdorff measure (see e.g. [63])

dH(X, Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

(4.70)

where (N , d) is a non-empty complete metric space and X, Y ⊂ N (hence our use

of H̃). This is usually used to extend a distance function from a complete metric

space to the space of its compact subsets. However, MC
0 is not a complete space,

so the two are not identical.

Lemma 4.6.3 Let v be a distribution and N a closed set of distributions. Then

d(v,N ) = 0 if and only if there is a distribution w ∈ N such that f(v) = f(w).

Consequently, dH̃(N ′,N ) = 0 if and only if for every v ∈ N ′ there is a w ∈ N such

that f(v) = f(w).

Proof Since N is a closed subset of the compact set of distributions on a finite

space, it is compact. Furthermore, if v is a distribution such that d(v,N ) = 0,

then there exists a sequence {wn} ⊂ N such that limn→∞ d(v, wn) = 0. Because

of the compactness of N , this sequence has a subsequence which converges to some

w ∈ N . Lastly, continuity of d implies that d(v, w) = 0, and hence f(v) = f(w).

Now assume that for every v ∈ N ′ there is a w ∈ N such that f(v) = f(w). It

follows from Lemma 4.6.1 and (4.69) that d(v,N ) = 0, for all v ∈ N ′. Hence from

(4.69) we have dH̃(N ′,N ) = 0. 2

Corollary 4.6.1 Let N and N ′ be closed sets of distributions. Then f(N ) ⊆ f(N ′)

if and only if dH̃(N ,N ′) = 0.

Proof Assume first that f(N ) ⊆ f(N ′). Then for every v ∈ N there exists a

w ∈ N ′ such that f(v) = f(w). Thus d(v, w) = 0, which implies d(v,N ′) = 0

and hence that dH̃(N ,N ′) = 0. To prove the result in the opposite direction, let

dH̃(N ,N ′) = 0. By Lemma 4.6.3, for every v ∈ N there exists w ∈ N ′ such that

d(v, w) = 0. This gives f(v) = f(w), which consequently implies f(N ) ⊆ f(N ′).

2
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The value of this measure for the distance between sets is now becoming apparent.

From Lemma 4.6.2, if every element of N and of N ′ contains no zeros, then Corollary

4.6.1 gives us f(N ) = f(N ′) ⇔ dH̃(N ,N ′) = dH̃(N ′,N ) = 0. Note that by the

condition of regularity given earlier, there exists n0 so that every element of every

set MC
n is non-zero for n ≥ n0. It is now shown that two closed sets of distributions

that are conditionally equal are always equally far away from any other closed set

of distributions.

Lemma 4.6.4 For closed sets of distributions N and N ′, which are conditionally

equal on C, and any other closed set of distributions L,

dH̃(N ,L) = dH̃(N ′,L) (4.71)

and

dH̃(L,N ) = dH̃(L,N ′). (4.72)

Proof The first part of the lemma is proved by showing that d(v, w) = 0 implies

d(v, x) = d(w, x) for all probability distributions w and x which have no zero

elements (thus allowing the distances to be well-defined). In other words, if v and

w have no distance between them, then the distance from v to x must be the same

as the distance from w to x. Note that d(v, w) = 0 implies that

αw,x;i = αw,v;iαv,x;i = α
w,vαv,x;i (4.73)

since αw,v;i = α
w,v for every i ∈ C. This implies that α

w,x = α
w,vα

v,x and αw,x =

α
w,vαv,x. Substituting these identities into (4.64) produces

d(w, x) =
αw,x − α

w,x

α
w,x

=
α

w,vαv,x − α
w,vα

v,x

α
w,vαv,x

=
αv,x − α

v,x

α
v,x

= d(v, x). (4.74)

It is now shown that for all closed sets of distributions L and any distributions

v and w such that d(v, w) = 0, d(v,L) = d(w,L). This follows from

d(v,L) = inf
x∈L

d(v, x) = inf
x∈L

d(w, x) = d(w,L) (4.75)

where the second equality follows from (4.74) and the first and third follow from

Definition 4.6.4. Finally, let N ,N ′ and L be closed sets of distributions such that



4.6. Convergence to Equilibrium 94

all elements of each distribution in L are non-zero. It follows that

dH̃(N ,L) = sup
v∈N

d(v,L) ≤ sup
w∈N ′

d(w,L) = dH̃(N ′,L) (4.76)

where the last inequality follows from Lemma 4.6.3, which for every v ∈ N shows

the existence of a distribution w ∈ N ′ such that d(v, w) = 0. Because of the

symmetry between N and N ′ the opposite inequality also holds, and therefore the

first equality in the lemma is proved.

The second equality d(L,N ) = d(L,N ′) will be proved using a method very

similar to that of the first part. The crucial step is once more to show that d(v, w) =

0 implies d(x, v) = d(x, w). Note that

αx,w;i = αx,v;iαv,w;i = αx,v;iαv,w. (4.77)

Thus it can be derived that d(x, w) = d(x, v).

We have therefore that d(x,N ) = infv∈N d(x, v) for every x, and since for every

v ∈ N there exists w ∈ N ′ such that d(v, w) = 0, this infimum must be smaller

or equal to infw∈N ′ d(x, w) = d(x,N ′). Therefore, d(x,N ) ≤ d(x,N ′) and, by

symmetry, also d(x,N ′) ≤ d(x,N ). Thus d(x,N ) = d(x,N ′). Finally, note

dH̃(L,N ) = sup
x∈L

d(x,N ) = sup
x∈L

d(x,N ′) = dH̃(L,N ′) (4.78)

which completes the proof. 2

Lemma 4.6.5 Let v be a distribution and N a closed set of distributions. Then

there exists a distribution w ∈ N such that d(v, w) = d(v,N ).

Proof A similar argument as in the proof of Lemma 4.6.3 is applied. Since there

is a sequence of distributions {wn} ⊂ N such that limn→∞ d(v, wn) = d, the limit

w of a convergent subsequence must be the probability required. 2

We now have a comprehensive method of judging the similarity of two closed sets

of conditional distributions. In Subsection 4.6.2, this method will be applied to

demonstrate that for a given Markov chain there is in fact only one corresponding

conditionally invariant set of distributions.
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4.6.2 Fixed Sets

It will be proved in this subsection that MC
∞ is the only set N with the property

that

f(f̃α(N )P) = N (4.79)

where, as always, P is the set of transition matrices. In other words, MC
∞ is the

only set that is conditionally invariant.

What follows will frequently require that no element of any transition matrix

below the first row is equal to zero. Obviously, that is not necessarily the case from

one time step to the next. This dilemma is solved by once again making use of Ps+1

(see Definition 4.2.2). Later in this section it shall be shown that the long-term

behaviour of P and of Ps+1 is identical.

The smallest possible element Pij, where i, j ∈ C, of any such matrix will usually

be denoted by m > 0. It is first proved that this constant does in fact exist.

Lemma 4.6.6 There exists a constant m > 0 such that

P ∈ Ps+1 ⇒ Pij ≥ m (4.80)

for all i, j ∈ C.

Proof Define P such that P ij = minj{r(i)
j : r(i) ∈ R(i)} (this minimum exists since

R(i) is a closed set for all i). It follows that P ≤ P for any P ∈ P, and hence that

(P )s+1 ≤ P ′ for any P ′ ∈ Ps+1. Set m := mini,j∈C(P )s+1
ij . This proves that (4.80)

holds. It remains to be proved that m > 0, this is done as follows. Note that for

each P ∈ P

P =























1 0 0 . . . 0

c0,−1 + α0,−1 c00 + α00 c01 + α01 . . . c0s + α0s

c1,−1 + α1,−1 c10 + α10 c11 + α11 . . . c1s + α1s

...
...

...
. . .

...

cs,−1 + αs,−1 cs0 + αs0 cs1 + αs1 . . . css + αss























(4.81)

where 0 ≤ αij ≤ cij − cij . By the assumption that each P must represent a Markov

chain for which C is a single communicating class, we have that for any P (s+1) =
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P1P2 . . . Ps+1, where Pi ∈ P, every element of P (s+1) below the first row is strictly

positive. It is also the case, from the assumptions stated in Section 4.2, that if it

is possible for αij > 0 to hold then cij > 0, since all jumps must be either always

possible, or always impossible. It therefore follows that every element of P s+1 is

strictly positive beneath the first row, since for any element sum involved in matrix

multiplication, αij can only make a positive contribution if cij makes one too. 2

The following results guarantee that all probabilities in sets MC
1 ,MC

2 , . . . are bounded

from below by a constant n.

Corollary 4.6.2 Let P ∈ P be denoted by

P =

















P−1

P0

...

Ps

















. (4.82)

Let n > 0 be a constant such that (f(v))i ≥ n for all i ∈ C and for every v ∈
Pk, k ≥ 0. Let w+ ∈ Mn for some n > 0. Then (f(w+))i ≥ n for all i ∈ C.

Proof The assumption of the corollary is that
Pij

P

j∈C Pij
≥ n. Let w+ = wP . Then

(f(w+))j =

∑

i∈C wiPij
∑

k∈C

∑

i∈C wiPik

=

∑

i∈C wiPij
∑

i∈C wi

∑

k∈C Pik

≥
∑

i∈C win
∑

k∈C Pik
∑

i∈C wi

∑

k∈C Pik

= n. (4.83)

2

It follows from the above corollary that conditional probabilities in every fixed set

must be greater or equal to n on every non-empty subset of C.

The following lemma shows that multiplication with a conditionally regular set

of transition matrices is a contraction with respect to the distance function d.
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Lemma 4.6.7 Let v and w be distributions on S and let the set K contain matrices

whose entries of the form Pij, i, j ∈ C, are greater or equal to < 0m < 1
2
. Assume

also that (f(w))i ≥ m for every i ∈ C. Take an arbitrary P ∈ K and denote

v+ = vP and w+ = wP . Then

d(v+, w+) ≤ (1 − 2m2)d(v, w) (4.84)

for d(·, ·) as given by Definition 4.6.3.

Note that since each distribution w has at least two elements (assuming we are

not in the trivial case with only one non-absorbing state), it is impossible for wi ≥ m

for all i if m > 1
2
. Thus under the conditions of the corollary, (1 − 2m2) is always

positive.

Proof Take any j ∈ C and calculate

αv+,w+;j =

∑

i∈C viPij
∑

i∈C wiPij

=

∑

i∈C αv,w;iwiPij
∑

i∈C wiPij

=
∑

i∈C

αv,w;i
wiPij

∑

k∈C wkPkj

. (4.85)

Note that (4.85) is a convex combination of elements αv,w;i with coefficients

wiPij
P

k∈C wkPkj
≥ m2. Thus, m2αv,w+(1−m2)α

v,w ≤ αv+,w+;j ≤ (1−m2)αv,w+m2α
v,w.

Using this and α
v+,w+ ≥ α

v,w it follows that

d(v+, w+) =
αv+,w+ − α

v+,w+

α
v+,w+

≤ (1 − m2)αv,w + m2α
v,w − m2αv,w − (1 − m2)α

v,w

α
v,w

= (1 − 2m2)
αv,w − α

v,w

α
v,w

= (1 − 2m2)d(v, w). (4.86)

2

Corollary 4.6.3 Let N and N ′ be closed sets of distributions such that for every

w ∈ N , wi ≥ m for every i ∈ C; and let K be as in Lemma 4.6.7. Denote N ′+ = N ′K
and N+ = NK. Then

dH̃(N ′+,N+) ≤ (1 − 2m2)dH̃(N ′,N ). (4.87)
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Proof Denote d = dH̃(N ′,N ) and take any v+ = vP where v ∈ N ′ and P ∈ K.

Hence v+ ∈ N ′+. Then there is a w ∈ N such that d(v, w) ≤ d. Denote w+ = wP .

By Lemma 4.6.7, d(v+, w+) ≤ (1− 2m2)d(v, w) ≤ (1− 2m2)d. Therefore, for every

v+ ∈ N ′+ we have d(v+,N+) ≤ (1 − 2m2)d and consequently dH̃(N ′+,N+) =

supv+∈N ′+ d(v,N+) ≤ (1 − 2m2)d, which proves the corollary. 2

This corollary demonstrates that, as long as m > 0, the distance between two

closed sets of distributions decreases with every successive multiplication by P. Of

course, the value of m is determined by P, and it has already been proved that a

value of m > 0 can be found after at most s + 1 time steps.

Definition 4.6.5 Let N be a compact set of distributions on S and K a set of

transition matrices that are conditionally regular on C. Then N is a conditionally

fixed set of K if f(NK) = f(N ), or equivalently, if N and NK are conditionally

equal on C.

It immediately follows that if N is a conditionally fixed set of P, then f(N ) is

a conditionally invariant set of distributions (note the difference between the two

terms). Therefore, if it can be shown that all conditionally fixed sets of P are

conditionally equal, it follows that there can be only one conditionally invariant set

of distributions. The first stage in proving this result is the theorem below.

Theorem 4.6.1 Assume every matrix in P has every element below the first row

strictly positive. Let N and N ′ be conditionally fixed sets of P. Then they are

conditionally equal on C.

Proof It follows from Corollary 4.6.1 that the sets N and N ′ are conditionally

equal on C if and only if dH̃(N ,N ′) = dH̃(N ′,N ) = 0. Suppose that one of the

distances is greater than 0, say dH̃(N ,N ′) > 0. Then, by Lemma 4.6.4 and Corollary

4.6.3, dH̃(N ,N ′) = dH̃(NP,N ′) = dH̃(NP,N ′P) ≤ (1 − 2m2)dH̃(N ,N ′), which is

a contradiction, since m > 0. 2

From Lemma 4.6.6 we have that each element of any matrix in Ps+1 is positive

below the first row. Therefore all conditionally fixed sets of Ps+1 are conditionally
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equal. The relationship between the conditionally fixed sets of P and the condition-

ally fixed sets of Ps+1 is now given.

Lemma 4.6.8 If N is a conditionally fixed set of P, it is also a conditionally fixed

set of Ps+1.

Proof It is proved first that N is a conditionally fixed set of P2 (see 4.2.2). Note

that by Lemma 4.5.1 it follows that for P1, P2 ∈ P,

f(f̃α(v)P1P2) = f(f̃β(v)P1P2), (4.88)

since P2 is a set of transition matrices corresponding to a Markov chain with a single

absorbing state, and a set of transient states C which is a single communicating class

with all states aperiodic. Let f̃α(vP1) = vα and f̃β(vP1) = vβ . By the fact that N
is a conditionally fixed set of P we have that f(vα) ∈ N and f(vβ) ∈ N . Hence,

once again making use of Lemma 4.5.1, it follows that

f(vαP2) = f(vβP2). (4.89)

Hence N is a conditionally fixed set of P2. The proof follows by induction. Assume

N is a conditionally fixed set of both P and Pn. For P1 ∈ P and Pn ∈ Pn it follows

from Lemma 4.5.1 that

f(f̃α(v)P1Pn) = f(f̃β(v)P1Pn). (4.90)

Using Lemma 4.5.1 one last time gives us

f(vαPn) = f(vβPn). (4.91)

Hence N is a conditionally fixed set of Pn+1, as needed. 2

Thus any conditionally fixed set of P is also a conditionally fixed set of Ps+1.

Since we already know that all conditionally fixed sets of Ps+1 are conditionally

equal, the corollary below quickly follows.

Corollary 4.6.4 All conditionally fixed sets of P are conditionally equal.
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Proof Let N and L be conditionally fixed sets of P. By Lemma 4.6.8 they must

also be conditionally fixed sets of Ps+1, and therefore by Theorem 4.6.1 they must

be conditionally equal. 2

Corollary 4.6.4 proves that all conditionally fixed sets for P are conditionally

equal, which of course means that for every such set N , it holds that f(N ) = MC
∞.

Therefore MC
∞ is the only set that a set of initial distributions over C can converge

to as time approaches infinity, conditioned upon non-absorption. All that remains

to be proved is that all such sets of initial distributions do indeed converge. This

is done with the results below. To prove this convergence one more definition is

introduced.

Definition 4.6.6 Denote by Tn the union of all possible distributions, conditioned

upon non-absorption over steps 0 to n, that is

Tn =

n
⋃

i=0

DC
i . (4.92)

Further

T∞ =
∞
⋃

i=0

DC
i (4.93)

for the set of initial distributions DC
0 .

Note that

T∞ ⊇ Q (4.94)

where Q is the set of quasi-stationary distributions for the elements in P. The

theory in this chapter concludes with a final theorem, which proves that setting DC
0

equal to the set of all quasi-stationary distributions for the matrices in P will result

in convergence to MC
∞, followed by a corollary which proves that convergence to

MC
∞ will occur irrespective of DC

0 .

Theorem 4.6.2 Let Q be the set of quasi-stationary distributions for the elements

in P. Set DC
0 = Q. Then DC

∞ = MC
∞.
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Proof DC
0 = Q implies that DC

0 ⊆ DC
1 , since for every element q ∈ Q there is a

P ∈ P such that f(f̃α(qP )) = q. Thus by Lemma 4.5.2, DC
n ⊆ DC

n+1, ∀n ≥ 0, and

hence
⋃n

i=0 DC
i = DC

n . Lemma 4.5.3 gives us that Q ⊆ MC
∞. Therefore, since MC

∞

is a conditionally invariant set, DC
n ⊆ MC

∞ holds for all n. Thus the sequence of

increasing sets DC
n is bounded from above. Next, we demonstrate that the union of

DC
∞ =

⋃∞
i=0 DC

i , and that its closure, denoted by D, is a conditionally invariant set

of distributions, and therefore that DC
∞ = MC

∞ by Corollary 4.6.4.

Since v ∈ DC
∞ ⇒ v ∈ DC

n for some n, we have that for any P ∈ P,

v ∈ DC
∞ ⇒ f(f̃α(v)P ) ∈ DC

∞ (4.95)

since f(f̃α(v)P ) ⊆ DC
n+1 ⊆ DC

∞. Hence for any v′ ∈ DC
n there exists P ∈ P and

w ∈ DC
n−1 such that f(f̃α(w)P ) = v′. Since DC

n−1 ⊆ DC
∞ and DC

n ⊆ DC
∞, it follows

that

f(f̃α(DC
∞)P) = DC

∞. (4.96)

Therefore DC
∞ has the property of a conditionally invariant set of distributions.

We now consider D. Since both it and P are closed sets, proving that D is a

conditionally invariant set of distributions requires only that

f(f̃α(D)P) ⊆ DC
∞ ∪ D (4.97)

holds. This in conjunction with (4.96) will force

f(f̃α(DC
∞ ∪ D)P) = DC

∞ ∪ D (4.98)

as needed.

We now prove that (4.97) holds. By the definition of the closure of an open set,

it must be the case that for every distribution v ∈ D there exists a sequence of

vectors {vn}n∈N such that vn ∈ DC
∞, ∀n ≥ 0 and limn→∞ vn = v. This means in

particular that for any ǫ > 0 there exists an n0 ≥ 0 such that |vi − (vn0)i| < ǫ for all

n ≥ n0 and for all i ∈ C.

Let us assume that there exist v ∈ D and P ∈ P such that f(f̃α(v)P ) does not

lie within DC
∞∪D. It follows that there exists a perpendicular distance between the
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distribution f(f̃α(v)P ) and the set DC
∞ ∪ D. This distance is denoted a. However,

from (4.95) it is known that f(f̃α(vn)P ) ∈ DC
∞ ∪ D, for all n. Thus

‖ f(f̃α(v)P ) − f(f̃α(vn)P ) ‖2≥ a2, (4.99)

where ‖ · ‖ denotes the standard Euclidean distance. This contradicts continuity.

Thus, as claimed, DC
∞ ∪ D is a conditionally invariant set, as claimed, which

completes the proof. 2

Corollary 4.6.5 For any set of initial distributions DC
0 , DC

∞ = MC
∞.

Proof We have from (4.94) that T∞ ⊇ Q . This combined with Theorem 4.6.1

gives the result. 2

From combining results from this section, then, it can be proved that for a given

set P there is only one conditionally invariant set of distributions, and that the

long-term behaviour of the process, conditioned upon non-absorption, tends to this

set independently of the choice of DC
0 .

This is the set that we wanted to find. In the precise, time-homogeneous case,

the limiting conditional distribution d has the property that if the distribution over

C at time n is d, then the distribution over C at time n + 1, conditioned on non-

absorption, must also be d. Similarly, in the imprecise time-inhomogeneous case, if

the set of possible distributions over C at time n is MC
∞, then the set of possible

distributions over C, conditioned on non-absorption, at time n + 1 must also be

MC
∞. Moreover, just as convergence to the limiting conditional distribution d in

the limit is certain in the precise time-homogeneous case, so too is convergence to

MC
∞ in the limit in the imprecise time-inhomogeneous case. This justifies our earlier

claim that a generalisation exists in the imprecise, time-inhomogeneous case for both

the limiting conditional distribution and the quasi-stationary distribution, and that

these two concepts are generalised by sets of distributions that are in fact equal.

We do not at present have a method for directly calculating MC
∞. Škulj presents

in [62] a method for approximating M∞ (so without conditioning) using Choquet

integrals. De Cooman offers a precise method for calculating M∞ in [15]. Whether
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either of these methods can be adapted to our situation remains an open question.

In the next section, we present an example in which MC
∞ is approximated.

4.7 An Example

We now present an example which will demonstrate the convergence to the condi-

tionally invariant set of distributions MC
∞.

Example 4.7.1

Consider the Markov chain X := {X(n), n = 0, 1, . . .} with state space S =

{−1, 0, 1, 2}, where −1 is an absorbing state. Define each possible transition matrix

as

P =

















r(−1)

r(0)

r(1)

r(2)

















where r(i) ∈ R(i), and let

R(−1) = {(1, 0, 0, 0)}

R(0) = {(0.5, 0, 0.5, 0)}

R(1) = {(0, a, 0, 1− a)|a ∈ [0.1, 0.2])}

R(2) = {(0, 0, 0.75, 0.25)}.

Therefore only the transition probabilities from state 1 are not known precisely.

All possible initial distributions over C are allowed, thus the set of initial distribu-

tions is MC
0 . Rather than attempt to find each MC

n precisely, exact bounds are found

upon each element of the vectors in the sets MC
n for n = 1 . . . , 4, in the same manner

as in Method 2 in Section 3.5. Approximate bounds are also offered for the elements

of the vectors in sets MC
50 and MC

100. These approximate bounds were found by ran-

domly calculating 1000 50-step and 100-step matrices, multiplying each one by the

distributions (1, 0, 0), (0, 1, 0), and (0, 0, 1), conditioning each resulting distribution
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(0,1,0) (0,1,0)

(1,0,0) (0,0,1) (1,0,0) (0,0,1)

a) b)

d)

f)e)

c)

Figure 4.1: Precise bounds upon sets MC
n for n = 1, . . . , 4, (diagrams a) to d),

respectively) and approximate bounds for n = 50, 100 (diagrams e) and f), respec-

tively) for Example 4.7.1.

upon non-absorption, and then taking the minimum and maximum of each element

over the resulting 3 000 distributions. The justification for using those three vectors

is the fact that for any v ∈ MC
0 , v = α(1, 0, 0)+β(0, 1, 0)+(1−α−β)(0, 0, 1). Thus

vP = α(1, 0, 0)P + β(0, 1, 0)P + (1− α − β)(0, 0, 1)P , and so the vectors (1, 0, 0)P ,

(0, 1, 0)P and (0, 0, 1)P describe the set vP . It was discovered during calculation
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that these three vectors were equal to at least 4 decimal places. R2 was used to

perform these calculations.

The resulting diagrams demonstrate that even in a situation in which the tran-

sition matrix is free to change between time steps, the possible behaviour as time

approaches infinity, conditioned on non-absorption, can be shown to lie within a

comparatively small set of distributions. This is very important, and not only in the

field of imprecise probability. Determining the long-term behaviour of precise time-

inhomogeneous chains is often very difficult. Assuming that the range each element

of the transition matrix must lie within over all time steps is known, however, MC
∞

will be a superset of all possible distributions, conditioned upon non-absorption,

that the process can display as time approaches infinity.

4.8 Comparison of Methods

In this section comparisons are made between the model described in this chapter,

and that described in Chapter 3, in which the transition matrix, whilst containing

unknown elements, was assumed to remain constant.

Two examples are presented. In the first, there is no state in C for which the

transition probabilities from that state are known precisely. In the second example,

there is only one state for which the transition probabilities from that state are not

known precisely, but the interval describing that imprecision is much wider than

any of those in the first example. This will allow us to compare two different forms

of imprecision: imprecision in the sense of number of states for which we cannot

exactly calculate their associated transition probablities, and imprecision in the

sense of the level of our uncertainty regarding the transition probabilities associated

with a specific state. In the simplest terms possible, what qualitative difference is

there between a case for which the transition probabilities p0,−1, p01, p10 and p12 are

known to lie in [0.4, 0.6], and the case in which the transition probabilities p0,−1 and

p01 are known to lie in [0.3, 0.7]? In each example we consider the difference between

applying the model presented in Chapter 3 and that presented in this chapter by

2Version 2.8.1
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comparing the sizes of the bounded sets generated at equivalent time steps for each

case. We will also compare the degree of convergence both within and between each

method.

Note that throughout this section MC
0 is used as the set of all possible initial

distributions over C. In each diagram, the method used in Chapter 3 is displayed

on the left, and the method used in this chapter is displayed on the right.

Example 4.8.1

Consider the birth-death process X with state space S = {−1} ∪ C where C =

{0, 1, 2}. The set of all possible one-step transition matrices P is given by

P =















































1 0 0 0

a 0 1 − a 0

0 b 0 1 − b

0 0 c 1 − c















































(4.100)

where a ∈ [0.1, 0.3], b ∈ [0.5, 0.6], and c ∈ [0.67, 0.73].

From Definition 3.4.1 we have

M̃C
n =

⋃

P∈P

MC
n (P ) =

⋃

P∈P

{f(vP n)|v ∈ M0} (4.101)

and from (4.43) we have

MC
n =

{

f(f̃α(v)P )|v ∈ MC
n−1, P ∈ P

}

, (4.102)

respectively. Deriving either of these sets for n > 0 in their entirety for this example

is a non-trivial task. Instead, the maximum and minimum values of each element

of the vectors contained in M̃C
n and MC

n will be calculated.

The simplex diagrams in Figure 4.2 show M̃C
n for n = 2, 3, 4 (diagrams a), c), and

e), respectively), and MC
n , also for n = 2, 3, 4 (diagrams b), d), and f), respec-

tively). Bounds have also been approximated for the sets M̃C
100 and MC

100, in the

same manner as those found in Section 4.7. We argue that these sets are close

approximations to M̃C
∞ and MC

∞, respectively, as follows. A number of matrices

P ∈ P100 were calculated, and for any vectors v, v′ ∈ MC
0 , it was calculated that
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(1,0,0) (0,0,1)

(0,1,0) (0,1,0)

(1,0,0) (0,0,1)

n=100

n=4

n=3

n=2

f)

a) b)

c) d)

e)

g) h)

Figure 4.2: Bounds for the sets M̃C
n and MC

n in Example 4.8.1.

‖ (v − v′)P ‖< 0.000001, where ‖ · ‖ indicates the supremum norm. It is thus

argued that by time step 100, the convergence to the set MC
∞ is all but complete.

Given this, then, it seems entirely reasonable that by n = 100 the convergence will

be almost complete in the time-homogeneous case also.

Recall that it is known that the size of the bounded areas are non-increasing

from time step n to n + 1, according to (3.10) and (4.13). Figure 4.2 demonstrates
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these properties very well. Note also that, as expected, for every time step the

bounded areas on the right are larger than those on the left. This should come as

no surprise considering what the two different models represent. For the sets DC
0

and P any long-term behaviour observed using the model described in Chapter 3

could theoretically also be observed in the model described in this chapter. The

reverse, however, is not true. Thus it is entirely consistent that the sets shown in

the simplex diagrams on the left hand side should be as small as or smaller than

those on the right.

Example 4.8.2

Consider an imprecise birth-death process X with state space S = {−1} ∪C where

C = {0, 1, 2}. The set of all possible one-step transition matrices P is given by

P =















































1 0 0 0

0.6 0 0.4 0

0 d 0 1 − d

0 0 0.7 0.3















































(4.103)

where d ∈ [0.37, 0.73]. The diagrams were created using identical methods to those

used in the first example.

The same observations regarding Figure 4.2 can also be made about Figure 4.3.

If the two figures are compared, it can be seen that in the second example more

can be said about the probability of being in state 1 (in the sense that the distance

between the bounds on the probability of being in state 1 are closer together in

Figure 4.3), conditioned on non-absorption as time approaches infinity, but less can

be said about the probabilities of being in states 0 or 2. This may be explained as

follows. In the method used in Chapter 3, the bounds upon M̃C
∞ are simply the

bounds upon the set
⋃

P∈P αP . Thus the bounds approximated in the bottom-left

simplex of Figure 2 relate to the three elements of a vector function with three

unknowns, a, b and c, all with comparatively small ranges. In comparison, the

bounds which are approximated in the bottom-left simplex diagram of Figure 4.2

relate to the three elements of a vector function with one unknown, d, which has
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a comparatively large range. The fact that the set in the bottom-left diagram of

Figure 4.3 then is more elongated and thinner than the equivalent set in Figure 4.2

is therefore unsurprising. Moreover, the knowledge that M̃C
∞ ⊆ MC

∞ makes it also

unsurprising that the bottom-right diagrams in Figures 4.2 and 4.3 exhibit similar

characteristics.
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f)
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e)

g) h)

Figure 4.3: Bounds for the sets M̃C
n and MC

n in Example 4.8.2.
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A final point regarding Figure 4.2 and 4.3 is the fact that in both the situation

in which little is known about one state’s behaviour, and in that where no state’s

behaviour is entirely known, there is much that can be said about the long-term

behaviour conditioned on non-absorption. It is not the case, as may have been

feared, that the imprecision grows with each new iteration until there is nothing

to be said about a given time-step. Moreover, this is true even when the transi-

tion matrix is not assumed to be constant. This is particularly important because

it suggests that the model used in this chapter can be applied to approximating

the long-term behaviour of precise time-inhomogeneous chains with an absorbing

state, conditioned upon non-absorption, an area in which very few results have been

published, compared to what is known regarding the precise time-homogeneous case.

It is also possible to compare the two models by creating a set of r initial distri-

butions to approximate MC
0 and a set of s transition matrices to approximate P.

These can then be used to create sets of vectors to approximate MC

n and MC
n .

The drawback to this method is that the number of calculations required rapidly

becomes very large. In the example above, allowing MC
0 to be approximated by the

231 vectors { i
20

, j

20
, k

20
}, where i, j, k are the set of non-negative integers for which

i + j + k = 20, and allowing P to be approximated by the 264 matrices for which

a ∈ [0.1, 012, . . . , 0.3], b ∈ [0.5, 0.52, . . . , 0.7], and c ∈ [0.67, 0.69, 0.71, 0.73], then by

the time n = 4 there are over a thousand billion vectors to calculate.

4.9 Concluding Remarks

In Chapters 3 and 4 we have demonstrated that in many cases an imprecise Markov

chain will converge towards an analogue to the limiting conditional distribution

of a precise Markov chains. Moreover, this result holds in conditions that are only

slightly more restrictive than the conditions required in the precise case to guarantee

a limiting conditional distribution. It has also been shown that taking the set

of distributions to which an imprecise Markov chain tends, conditioned on non-

absorption, and using it as the set of possible initial distributions over C leads to

the set of possible distributions, conditioned on non-absorption, being equal at all
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time steps. Therefore, our analogue to the limiting conditional distribution is also

an analogue to the quasi-stationary distribution.

Furthermore, it has been shown that these results apply even in situations in

which the transition matrix is allowed to change from time step to time step. This

is a powerful result, both on its own terms, and because the set MC
∞ must contain all

possible limiting conditional distributions for a precise time-inhomogeneous Markov

chain which draws its transition matrices from some subset of P. As the long-term

behaviour of time-inhomogeneous Markov chains is not well-known, the resulting

approximation that our model gives may be of great value.

There are multiple possibilities for further research. The most obvious one,

perhaps, is to find a method by which the conditionally invariant set of distributions

can be calculated, or at least bounded using a method that offers more insight

than taking the maximum and minimum of each element. For the situation in

which no absorbing state is present, Škulj [62] presents a method for bounding the

set of invariant distributions using Choquet integrals, and de Cooman et al. [15]

provided a method of direct calculation by the application of a concept known as

lower previsions. Adapting either of these methods to the case where conditioning

is required would allow bounds on MC
∞ to be calculated using iterative methods.

Lack of time prevented further consideration of such methods in this thesis.

A second obvious extension to the work here would be to consider the situation

in which there exists an infinite number of states. In the precise case this situation

leads to each chain having families of limiting conditional distributions, rather than

a single unique one (see Seneta and Vere-Jones, [60]). Whether this means that in

our case, there will exist families of conditional sets of invariant distributions, is an

open question.

The third potential avenue of progress is the most daunting. Would it be pos-

sible to achieve similar results in the case of continuous Markov chains? To our

knowledge, imprecise Markov chains are an area in which almost no research has

been carried out. Unlike the discrete case, we are not aware of any results on the

long term behaviour of imprecise Markov chains whatsoever. Even the method by

which such chains would be modelled is unclear; would we (for example) use interval
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transition rates in Q, or would we attempt to introduce intervals into the matrix

P (t)? These two approaches might lead to different results (see (1.8)). Ultimately,

our aim is to describe the long-term behaviour of a continuous-time Markov chain

with an absorbing state, conditioned on non-absorption, and then consider the effect

imprecision has on the behaviour of the hazard rate, as defined in Chapter 2. This,

however, is clearly something that lies some way in the future, if indeed it is possible

at all.
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